

# केन्द्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार Central Ground Water Board Department of Water Resources, River

Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

## AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

Kaimur District Bihar

मध्य पूर्वी क्षेत्र, पटना Mid Eastern Region, Patna



## AQUIFER MAPPING REPORT ON KAIMUR DISTRICT

## ( AAP 2018-19)



# CENTRAL GROUND WATER BOARD MINISTRY OF JAL SHAKTI MID-EASTERN REGION, PATNA

**JUNE-2022** 



## AQUIFER MAPPING REPORT ON KAIMUR DISTRICT

### (AAP 2018-19)

**Principal Contributors** 

Under Guidance of

A.K.Agrawal

(Regional Director)

### Dr. Indranil Roy, Scientist C

(Nodal Officer)

| <u>Hydrogeologist</u><br><u>Chemist</u>                 | <u>Geophysicist</u>          |        |
|---------------------------------------------------------|------------------------------|--------|
| Chao Konseng Gogoi, Scientist B<br>Kumar, asst. Chemist | Dr. Subrato Das, Scientist B | Suresh |
| Singaren Sandeep Purty, Scientist B                     | Somaru Ram, Sr. Tech.Asst.   |        |
| Aneesh Kumar V, Scientist B                             |                              |        |

**JUNE 2022** 

#### Contents

| INTRODUCTION                                                           | 5  |
|------------------------------------------------------------------------|----|
| 1.0 INTRODUCTION                                                       | 5  |
| 1.1 Objective and Scope of the Study                                   | 5  |
| 1.2 Approach and Methodology                                           | 6  |
| 1.3 Area Details                                                       | 6  |
| 1.4 Brief Description                                                  | 7  |
| 1.4.1 Data Availability                                                | 8  |
| 1.4.2 Rainfall - Spatial and temporal distribution                     | 8  |
| 1.4.3 Physiographic set up                                             |    |
| 1.4.4 DEM                                                              | 9  |
| 1.4.5 Geomorphology                                                    | 9  |
| 1.4.6 Land Use Pattern:                                                | 10 |
| 1.4.8 Hydrology and Drainage                                           | 13 |
| 1.4.9 Agriculture                                                      | 14 |
| 1.4.10 Irrigation                                                      | 15 |
| 1.4.11 Geology                                                         | 18 |
| CHAPTER II                                                             | 20 |
| DATA COLLECTION AND GENERATION                                         | 20 |
| 2.1 Hydrogeology                                                       | 20 |
| 2.1.1Water level, Pumping test                                         | 20 |
| Water Level                                                            | 20 |
| Pumping test                                                           | 21 |
| 2.2 Hydrogeochemical Investigation                                     | 24 |
| 2.2.1 Water Quality Sampling, Number of Samples and Analysis Mechanism | 24 |
| 2.2.2Ground Water Quality                                              | 24 |
| 2.2.3 Assessment of ground water quality with various chemical diagram | 26 |
| 2.2.4 Water quality evaluation for irrigation purpose                  | 28 |
| 2.3 Geophysical Investigation                                          | 30 |
| 2.3.1 Location, Number, Analytical Techniques                          | 30 |
| 2.4 Exploratory Drilling - State Govt., CGWB and Private Wells         | 32 |
| 2.4.1 Number, Location, Depths, Well Design                            | 32 |

| CHAPTER-III                                               | 34 |
|-----------------------------------------------------------|----|
| GENERATION OF AQUIFER MAP                                 | 34 |
| 3.1 Aquifer Disposition                                   | 34 |
| 3.1.1 Aquifer disposition in the area                     | 34 |
| 3.1.2 Aquifer Characterizations                           | 35 |
| 3.1.3 Aquifer hydraulic characteristics                   | 36 |
| CHAPTER -IV                                               |    |
| GROUND WATER RESOURCES                                    |    |
| 4.1 Dynamic Ground Water Resources                        |    |
| 4.2 Static Ground Water Resources                         |    |
| CHAPTER - V                                               | 40 |
| GROUND WATER RELATED ISSUES                               | 40 |
| 5.1 Identification of issues                              | 40 |
| 5.1.1 Major Ground Water Issues                           | 40 |
| CHAPTER - VI                                              |    |
| MANAGEMENT STRATEGIES                                     | 42 |
| 6.1 Ground water issue of plateau:                        | 42 |
| 6.2 Deeper water level in north western part of district: | 42 |
| 6.3 Management plan for drinking and domestic purpose:    | 43 |
| Block wise                                                | 45 |
| Block Wise Aquifer Maps and Management plans              | 45 |
| ADHAURA (923.42 sq. km)                                   | 45 |
| BHABUA (334.39 sq. km)                                    | 47 |
| BHAGWANPUR (231.5sq. km)                                  | 49 |
| CHAINPUR (454.64 sq. km)                                  | 52 |
| CHAND (206.70 sq. km)                                     | 55 |
| DURGAWATI (167.64 sq. Km)                                 | 57 |
| KUDRA : (210.54 sq. Km)                                   | 60 |
| MOHANIA : (285.52 sq. Km)                                 | 63 |
| NUAON: 189 sq. Km                                         |    |
| RAMGARH : 168.52 sq. Km                                   |    |
| RAMPUR : 190.09 sq. Km                                    |    |

## List Of Figures

| Figure 1 Location map of kaimur district                                          | 7     |
|-----------------------------------------------------------------------------------|-------|
| Figure 2: Deviation of annual rainfall from mean rainfall                         | 8     |
| Figure 3:Digital elevation map of Kaimur                                          | 9     |
| Figure 4: Geomorphology map of Kaimur                                             | 11    |
| Figure 5: Landuse map of Kaimur                                                   | 12    |
| Figure 6: Soil map of Kaimur                                                      | 13    |
| Figure 7: Drainage map of kaimur                                                  | 14    |
| Figure 8: Bar graph showing net irrigated area by canal                           | 16    |
| Figure 9: Canal network of Kaimur district                                        | 17    |
| Figure 10: Geology map of kaimur district                                         | 18    |
| Figure 11: Locations of NHNS nad NAQUIM water level monitoring stations           | 22    |
| Figure 12: Pre-Monsoon depth to water level map                                   | 23    |
| Figure 13: Post-monsoon depth to water level map                                  | 23    |
| Figure 14: water level fluctuation map                                            | 24    |
| Figure 15: Piper diagram for representing ground water analysis                   | 27    |
| Figure 16: Wilcox diagram to represent relationship between salinity and sodium   | 27    |
| Figure 17: Electrical Conductivity map of Kaimur                                  | 29    |
| Figure 18: VES location map of Kaimur                                             | 30    |
| Figure 19: Locations of exploratory wells at kaimur                               | 33    |
| Figure 20: 2D Hydrogeological section from Pachilakhi to Rampur                   | 36    |
| Figure 21: Hydrogeological section along north-south transect from Nuaon to Pipar | ia.37 |
| Figure 22: 2D Geophysical section along Kaimur to Rohtas district                 | 37    |

#### List of Tables

| Table 1: Land Use Pattern of Kaimur District                                             | 11   |
|------------------------------------------------------------------------------------------|------|
| Table 2 : Source wise irrigation potential created and CCA of Kaimur district       2    | 15   |
| Table 3: Stratigraphic sequence of rock formation in Kaimur district                     | 18   |
| Table4:Summary of depth to water level fluctuation in monitoring well                    | 20   |
| Table 5: Exploratory well details                                                        | 20   |
| Table 6: Chemical quality of water samples of pre-monsoon in Kaimur district             | 24   |
| Table 7: Resistivity range and litholog                                                  | 30   |
| Table 8:Location details of exploratory wells by CGWB and GSI                            | 31   |
| Table 9: Location details of exploratory wells by outsourcing                            | . 31 |
| Table 10: Summary of dynamic ground water resource estimation kaimur district            | .37  |
| Table 11: Estimated blockwise storage of Aquifer I                                       | 38   |
| Table 12: Feasible number of additional shallow tubewells in kaimur district             | 40   |
| Table 13: Feasible number of tubewells for pipe drinking water supply in kaimur district | .43  |
| Table 14: Projected water demand                                                         | 43   |
| List of Annexures:                                                                       |      |
| Annexure I: Key well details of NAQUIM wells                                             | .75  |
| AnnexureII: VES details of Kaimur district                                               | 77   |
| Annexure III: Exploratory well details of Kaimur district                                | .78  |
| Annexure IV: Ground water resource estimation of Kaimur district                         | .79  |
| Annexure V: Minor irrigation data of Kaimur district                                     | 80   |
| Annexure VI: Blockwise land use land cover details                                       | 81   |
| Annexure VII: Chemical quality data of NAQUIM water samples                              | .83  |

#### CHAPTER 1

#### INTRODUCTION

#### **1.0 INTRODUCTION**

The vagaries of rainfall, inherent heterogeneity, over exploitation of once copious aquifers, lack of regulation mechanism etc has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from **"Traditional Groundwater Development concept**" to **"Modern Groundwater Management concept**". Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. This leads to concept of Aquifer Mapping and Ground Water Management Plan. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation.

During XII five year plan (2012-17) National Aquifer Mapping (NAQUIM) study was initiated by CGWB to carry out detailed hydrogeological investigation. The Aquifer Mapping programme has been continued till 2023 to cover whole country. The present studies of Kaimur district, Bihar have been taken up in AAP 2018-19 as a part of NAQUIM Programme. The aquifer maps and management plans will be shared with the administration of Kaimur district and other user agencies for its effective implementation.

#### **1.1 Objective and Scope of the Study:**

The major objectives of aquifer mapping are

- Delineation of lateral and vertical disposition of aquifers and their characterization
- Quantification of ground water availability and assessment of its quality to formulate aquifer management plans to facilitate sustainable management of ground water resources at appropriate scales through participatory management approach with active involvement of stakeholders.

The groundwater management plan includes Ground Water recharge, conservation, harvesting, development options and other protocols of managing groundwater. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e, the aquifer map and management plan.

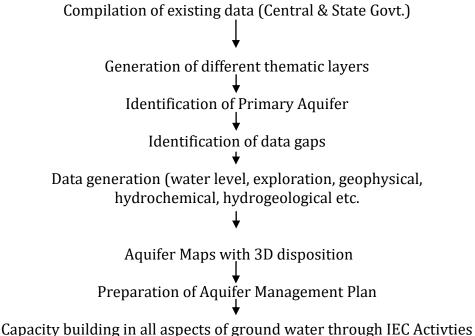
The main activities under NAQUIM are as follows:

a). Identifying the aquifer geometry

b). Aquifer characteristics and their yield potential

- c). Quality of water occurring at various depths
- d). Aquifer wise assessment of ground water resources

e). Preparation of aquifer maps and


f). Formulate ground water management plan.

The demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a "Road Map" to systematically manage the ground water resources for equitable distribution across the spectrum.

#### **1.2 Approach and Methodology:**

The on going activities of NAQUIM include hydrogeological data acquisition supported by geophysical and hydro-chemical investigations supplemented with ground water exploration down to the depths of 200 meters in hard rock and 300 m in soft rocks

Considering the objectives of the NAQUIM, the data on various components was segregated, collected and brought on GIS platform by geo-referencing the available information for its utilization for preparation of various thematic maps. The approach and methodology followed for Aquifer mapping is as given below:



1.3 Area Details

The study area forms part of South Bihar Alluvial Plain and bounded by 24.9 to 25.33 North latitudes and 83.33 to 83.66 East longitude. Kaimur district covers an area of 3362.06 Sq. Km and located in Western part of Bihar state bordering Uttar Pradesh. The district with it's headquarter at Bhab ua, is divided into 11 administrative blocks. It is bounded in the north by Buxar district, in the west by Varanasi district (U.P state) and in the south and east by Rohtas district. Total population of the district is 1626384 (Census 2011). Majority of population are in

rural areas (1560813). The decadal variation of the district has been seen at 27.5 percent during the decade 2001-2011.

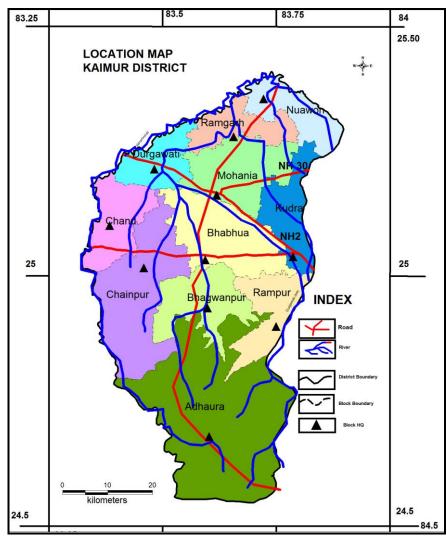



Figure 1 Location map of kaimur district

#### **1.4 Brief Description**

National Aquifer Mapping Programme (NAQUIM) Phase VI covers 4 districts namely Arwal, Aurangabad, Kaimur(Bhabua) and Rohtas. Sone river passing through the axial part of NAQUIM area divides the area into eastern and western half. Arwal and Aurangabad on eastern part of Sone, Rohtas and Kaimur on its western portion. The study area is marked by varied geology mainly Quaternary alluvium, Vindhyan formation and Chota Nagpur Gneissic Complex.

The study area of Kaimur is mainly occupied by two geological succession viz. Vindhyan Supergroup and Quaternary Alluvium. Karamnasa and Kudra river marked the western and eastern boundary of the district.

#### 1.4.1 Data Availability

Ground water regime monitoring and ground water exploration work has been carried out in the district. Under National Hydrographic Station monitoring ground water level monitoring is carried out on regular basis. Data from previous work done on this area has been compiled. Based on the available dataset and data further required for detail study data gap analysis has been done.

#### 1.4.2 Rainfall - Spatial and temporal distribution

Rainfall commences from mid june with the outburst of rain through south west monsoon. Average rainfall in Kaimur district is 837.5 mm, about 80% of rainfall occurs during mid june to September. Average number of rainy days in the district is 36.4. **(Reff)** Block wise assessment of monthly rainfall data for period of 5 years (2013-2017) indicates that there was percent deparature of annual rainfall from normal i.e >-25 in Adhaura,Chainpur, Chand, durgawati, Mohania, Rampur during the year 2014 as given in fig 3



Figure 2: Deviation of annual rainfall from mean rainfall

#### 1.4.3 Physiographic set up

Study area represents two distinct physiographic division viz. flat alluvial plain on the northern fringe and high Kaimur plateau on the southern part. General elevation of alluvial plain varies from 65m to 90m amsl while top of Kaimur plateau is of the order of 500 m amsl. Towards north and north east the plateau exhibit undulating topography.

Peidmont zones have been observed in the central part of the district along the base of Adhaura Plateau namely in Bhagwanpur, Rampur, Chainpur blocks.



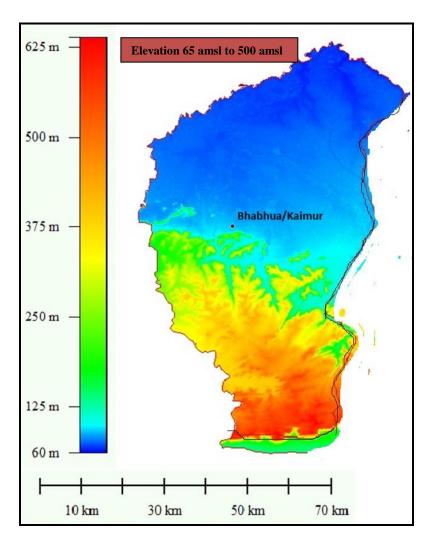



Figure 3:Digital elevation map of Kaimur

General elevation of the district ranges from 65m to 500m above m.s.l. Two distinct physiographic pattern have been observed Adhaura plateau of Vindhyan formation towards south and flat alluvial terrain towards northern part (fig 4)

#### 1.4.5 Geomorphology

Study area is marked by two prominent geomorphological units *i.e.* geomorphic features of alluvial plain and geomorphic features of Vindhyan

plateau. The northern part of the district is underlain by alluvium of quaternary age. It is mainly consists of unconsolidated sediments such as clay, sand and gravel deposited by Ganga, Karamnasa and Durgawati rivers . Thickness of alluvium increases in the northern part of the district. Alluvial deposits can be sub divided into two types viz. Older alluvium and younger alluvium.

- (a) Older alluvium:- Older alluvium comprises of coarse grained gravel with some calcareous nodules. Kankar is remarkably found in the soil.
- (b) Younger alluvium:- It occupies the northern part of the district consisting of thick sequence of clay. Thickness varies from 6.0 metres to 30 metres .

Vindhyan plateau is mainly composed of fluvio-marine deposit which have been uplifted and peneplained. Geomorphic features observed in Vindhyans are dissected plateaus, escarpments, denudational hills, pediments. Due to differential weathering and erosional pattern it has resulted in dissected plateau .Dissected plateau is criss cross by various streams resulting in various features like intermontane valley ,escarpment.

Structural or residual hills are observed on the northern part of Adhaura plateau . They are the end product of the process of pediplanation. The isolated low relief hills formed due to differential weathering and the more resistant formation stand as residual like small hill.

Pediment zone is observed near the boundary of vindhyans. It is mainly eroded bedrock surfaces with gentle slopes. The process of pediment formation involves weathering, rill wash, mass wasting, sheet wash etc. Pediment zones are characterise by flat surfaces with thin to thick veener of weathered and unconsolidated materials. Geomorphic map of kaimur is depicted given in fig 1.5.

#### **1.4.6 Land Use Pattern:**

Land use pattern of an area has a intrinsic relationship to geology and lithology of the area. Water demand of an area depends on the utility of the land for various purposes. From district agricultural recordsit has been found that the total geographical area of Kaimur district is 3339.31 Sq.Km out of which 1673.01 Sq.Km area is net sown area . The net sown area constitute 50% of the total area

of the district. The cropping intensity in the district is 129% with Rampur block accounting for 182% cropping intensity (Table1.4). 27% of total geographical area is covered by forest . Adhaura block with forest area of 641.68 Sq.Km covers 73% of total forest area of the district. The land use land cover map of Kaimur is prepared based on NRSA data. Land use land cover map produced based on NRSA data is as under fig 6

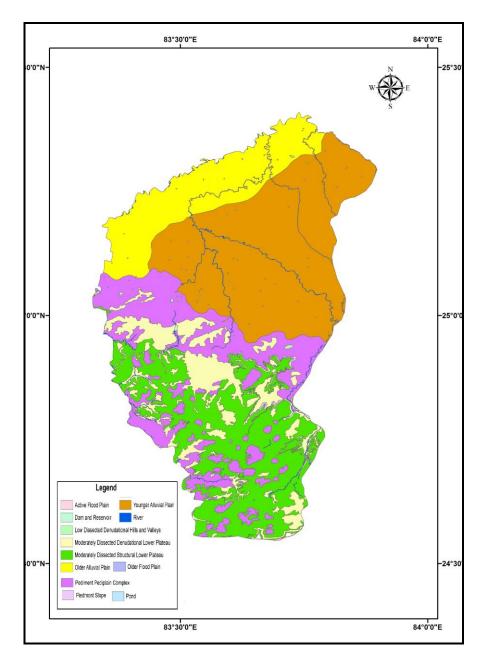



Figure 4: Geomorphology map of Kaimur

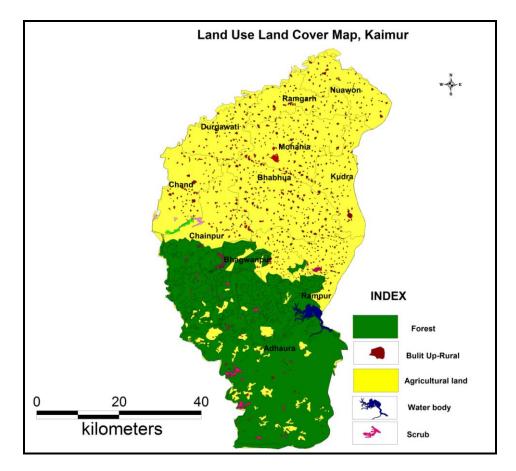



Figure 5: Landuse map of Kaimur

| Block      | Total<br>Geographical<br>Area | Gross<br>cropped<br>Area | Net<br>Sown<br>Area | Area<br>Sown<br>more<br>than<br>once | Cropping<br>Intensity | Area<br>under<br>Forest | Area<br>under<br>Wasteland | Area<br>under<br>other<br>uses |
|------------|-------------------------------|--------------------------|---------------------|--------------------------------------|-----------------------|-------------------------|----------------------------|--------------------------------|
| Adhaura    | 91591                         | 2561                     | 2240                | 321                                  | 114                   | 64168                   | 1326                       | 2449                           |
| Bhabua     | 32985                         | 33662                    | 28928               | 4734                                 | 116                   | 0                       | 0                          | 54                             |
| Bhagwanpur | 23546                         | 11987                    | 11529               | 459                                  | 104                   | 9384                    | 1674                       | 0                              |
| Chainpur   | 45280                         | 18724                    | 18358               | 366                                  | 102                   | 10893                   | 1268                       | 81                             |
| Chand      | 20322                         | 14331                    | 13848               | 483                                  | 103                   | 0                       | 1307                       | 425                            |
| Durgawati  | 17382                         | 18313                    | 15199               | 3113                                 | 120                   | 0                       | 315                        | 24                             |
| Kudra      | 21360                         | 26011                    | 15553               | 10458                                | 167                   | 0                       | 1760                       | 400                            |
| Mohania    | 28715                         | 38237                    | 24611               | 13626                                | 155                   | 0                       | 873                        | 240                            |
| Nuaon      | 19384                         | 19676                    | 16055               | 3621                                 | 123                   | 4                       | 660                        | 40                             |
| Ramgarh    | 16979                         | 19992                    | 13790               | 6202                                 | 145                   | 0                       | 91                         | 170                            |
| Rampur     | 16387                         | 13110                    | 7188                | 5922                                 | 182                   | 6245                    | 671                        | 24                             |
| Total      | 333931                        | 216605                   | 167301              | 49305                                | 129                   | 90694                   | 9947                       | 3907                           |

#### Table 1: Land Use Pattern of Kaimur District

(Source: DIP Kaimur 2016-20)

#### 1.4.8 Hydrology and Drainage

Drainage of Kaimur district can be divided into two parts , Karamnasa river forms the catchment in western part of the district and the eastern part includes the drainage of Durgawati river. The Karamnasa river originates at Adhaura plateau and flows in north to south direction and further along south west to north east direction. Durgawati river is a tributary of karamnasa river and originates in Adhaura plateau. The tributaries of Durgawati nadi are Kudra, Gahuman, Koel, Bajra, Halat nadi and Sura nadi.Drainage of the area is controlled by lithology, fractures and joints. Rectangular drainage pattern is observed in Adhaura plateau whereas in alluvium tracts below the plateau, sub-parallel to converging and braided streams are found .Drainage pattern of the district is shown in fig 8

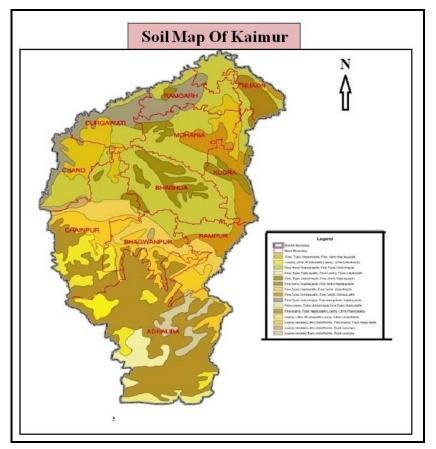



Figure 6: Soil map of Kaimur

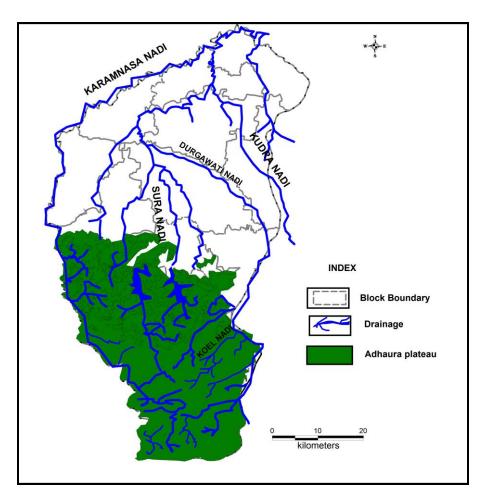



Figure 7: Drainage map of kaimur

#### 1.4.9 Agriculture

Agriculture is the backbone of economy in the district. The region falls on Agro Climatic Zone III. Agriculture production is limited to cereals and pulses. Sowing season for kharif crops starts in mid may and harvesting is done on October. The principal kharif crops are maize, arhar , rice etc. Rabi cropping season starts from mid October and harvesting is done on march. Important rabi crops are wheat, paddy, green gram,peas etc. From district irrigation plan data it has been observed that total irrigated area in the district is 1.94 lakh hectare. The maximum extent of irrigated area is in kharif season (1,13,653 ha) followed by rabi season (80,507.6 ha).

#### 1.4.10 Irrigation

In an agriculture based economy, irrigation is one of the main commodity. Canals and tubewells are the main source of irrigation in the district. The main irrigation projects are Sone High Level Canal, Karmansa irrigation project, Durgawati Irrigation project, Kohira reservoir project. The gross irrigated area by canals as on 2013-14 year is 1.02 lakh hectare and net irrigated area is 0.53 lakh hectares (as per Bihar Statistical Report ,2016).

Karamnasa irrigation project was design to irrigate the Chand, Durgawati and Ramgarh block. The projected culturable command area (CCA) is 13213 ha. However, as per 2<sup>nd</sup> Bihar Irrigation Commission report, tail end of the command area in Ramgarh block doesn't receive sufficient amount of water for irrigation. Durgawati irrigation project with a main canal length of 34.8 Km designed to irrigate the Kudra, Mohania and Durgawati blocks. Culturable command area as is 33.47 thousand hectare (WRD, Bihar 2016). Western Sone High Level canal irrigates Kudra and Bhagwanpur blockds of the district.

Kohira reservoir project was design to provide water supply to drought affected blocks in southern part of district namely, Chainpur and Chand block. Designed annual irrigation potential of the project was 13,455 ha.

Tubewell is another major source of irrigation. Dugwells and tubewells with submersible and centrifugal pump are used for the purpose. Gross irrigated area by tubewells is 87000 hectare (Bihar Statistical handbook, 2016). Density of tubewells is more on the northern part of district on the alluvium tract. It has been observed that there is a mark shift in depth of tubewells, wells tapping deeper aquifer zone (>100 mbgl) has increased from 4<sup>th</sup> MI (Minor Irrigation) census to 5<sup>th</sup> MI census. Shallow tubewells is mostly used for irrigation in the district as its culturable command area is 63948 hectares (Table 1.2). Net area irrigated by tubewell and canal for the period 2012-17 is shown in fig 9

Table 2 :Source wise irrigation potential created and CCA of Kaimur district (in hectares)

| Source                | Culturable<br>command<br>Area | Irrigation<br>potential<br>created -<br>kharif | Irrigation<br>potential<br>created -<br>rabi |
|-----------------------|-------------------------------|------------------------------------------------|----------------------------------------------|
| Dug well              | 15402.49                      | 7570.12                                        | 5594.78                                      |
| Shallow Tube<br>wells | 63948.47                      | 28225.21                                       | 22433.81                                     |
| Medium tube<br>wells  | 22197.38                      | 9427.42                                        | 7221.71                                      |
| Deep tube<br>wells    | 8145.81                       | 3972.75                                        | 3134.96                                      |

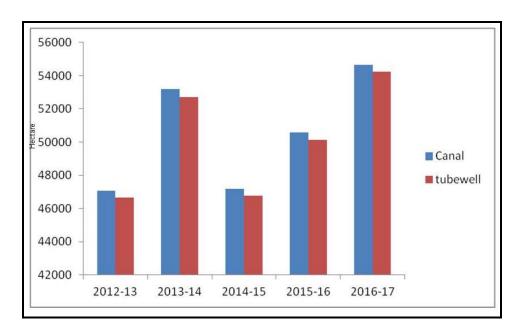



Figure 8: Bar graph showing net irrigated area by canal.

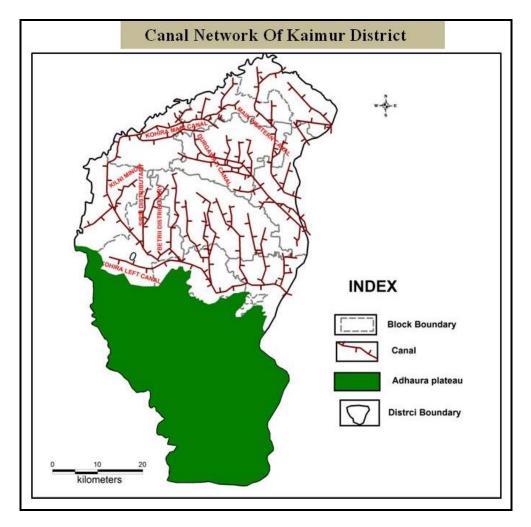



Figure 9: Canal network of Kaimur district

#### 1.4.11 Geology

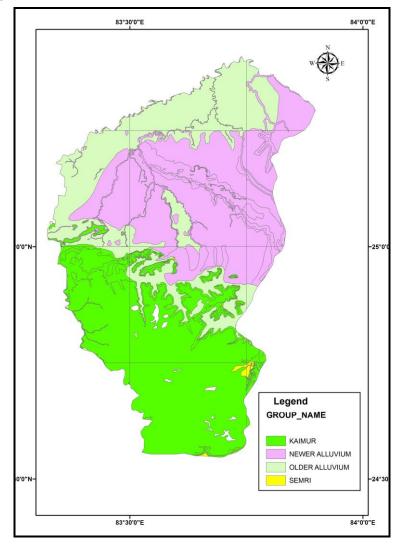



Figure 10: Geology map of kaimur district

Kaimur district is mainly occupied by two distinct geological succession viz. Vindhyan Supergroup and Quaternary Alluvium. Vindhyan supergroup of rocks are exposed as plateau in southern part of the district. The rock formation are mainly lime-stone, shale, quartzite and sandstone of Semri group and Quartzite and Sandstone of Kaimur

Rocks belonging only to the Semri and Kaimur Groups of the Vindhyan Supergroupare exposed in the area. Of the Semris, only the Kheinjua and Rohtas Subgroups are exposed, the underlying formationsbeing not exposed in the area. The Kheinjua Sub-group includes Olive Shale, FawnLimestone and Grauconitic sandstone formations which are overlain by well beddedlimestone and shale alternations belonging to the Rohtas Subgroup.The limestone and shale alternations, in turn, areoverlain by the Kaimur Group comprising sandstone, quartzite and shale. Depositional environment of Kaimur group is fluviatile in nature formed under arid to sub-arid condition

|                         | Recent            |              |              | Alluvium Laterite<br>calc-Tuffa                                     |
|-------------------------|-------------------|--------------|--------------|---------------------------------------------------------------------|
| Vindhyan Super<br>group | Upper<br>Vindhyan | Kaimur Group | Upper Kaimur | Dhandraul quartzite<br>formation,Scrap<br>Sandstone formation       |
|                         |                   |              | Lower Kaimur | Bijaigarh Shale<br>formation,Lower<br>Kaimur Sandstone<br>formation |
|                         | Lower<br>Vindhyan | Semri Group  |              | Rohtas Formation                                                    |

#### Table 3 Stratigraphic sequence of rock formation in Kaimur district

#### **CHAPTER II**

#### DATA COLLECTION AND GENERATION

#### 2.1 Hydrogeology

The area falls under South Bihar Plain. Hydrogeology of the area shows variation according to change in geology. Assessment of sub surface data has revealed a thick pile of alluvium sediments on northern part of the district which are important reservoir of ground water. The composition of sediments are not uniform, thus there is wide diversity in ground water condition. Unconsolidated materials are composed of sands of varying grades and pebbles of different size.

Available data indicates that north of G.T road there is presence of second aquifer system upto depth of 130 m. Multiple aquifer system has been observed in Ramgarh and Nuaon blocks where exploration has been carried out upto depth of 300 m. Thickness of alluvial sediments increases further north towards confluence of Karamnasa and Ganga river.

South of G.T road there is shift in hydrogeological pattern . Subsurface data has reaveled presence of thick clay overburden in the range of 40-70 m. Prominent aquifer system has not been encountered. Ground water occurs in weathered mantle and fractures in Vindhyan sandstone formation. Fracture zones has been recognised from exploratory well at Adhaura and Rampur block. The recharge, storage and yield capacity are guided by the prevalent lithology and lineaments

#### 2.1.1Water level, Pumping test

#### Water Level

To study the behavioural pattern of water level during pre and post monsoon 38 key wells were established in Kaimur district. The general formation wise depth to water level is tabulated in Annexure (I)

| Formation | Range of total depth of well<br>(mbmp) | Depth to    | water Level  | Fluctuation (mbgl) |
|-----------|----------------------------------------|-------------|--------------|--------------------|
|           |                                        | Pre (mbgl)  | Post(mbgl)   |                    |
| Vindhyan  | 4.50 to 12.10                          | 3.6 to 10.8 | 3.05 to 7.73 | 1.57 to 4.70       |
| Alluvial  | 5.30 to 13.20                          | 4.4 to 11.4 | 2.42 to 10.2 | 0.78 to8.15        |

Table 4 :Summary of depth to water level and fluctuation of monitoring wells .

Depth to water level in alluvium varies between 4.4 mbgl to 11.4 mbgl during post monsoon and 2.42 mbgl to 10.2 mbgl during post- monsoon period, while in Vindhyan's depth to water level is between 3.6 mbgl to 10.8 mbgl and 3.05 mbgl to 7.73 mbgl during pre and post monsoon period respectively. Deeper water level of more then 8 mbgl is confined to north-western part of the district along the bank of Karmansha river.

#### **Pumping test**

Pumping test data of exploratory wells through outsourcing and historical data of wells constructed by CGWB and GSI indicates that the transmissivity value of aquifer ranges from 269.3 m<sup>2</sup>/day to 6074 m<sup>2</sup>/day. Storativity value ranges from  $3.4 \times 10^{-4}$  to  $2.2 \times 10^{-6}$ . Pumping test data of CGWB ,GSI and through outsourcing is summarized in Table 5.

| Sl<br>no | Location | Block   | Depth<br>Drilled | Depth<br>range of<br>Granular<br>zones                       | Discharg<br>e | Drawdow<br>n | Transmissivity | Storativity            |
|----------|----------|---------|------------------|--------------------------------------------------------------|---------------|--------------|----------------|------------------------|
|          |          |         | (mbgl)           | ( <b>m</b> )                                                 | (m3/hr)       | ( <b>m</b> ) | (m2/day)       |                        |
| 1        | Barahuli | Mohania | 125.05           | 10-24,80-<br>100,105-115                                     | 36.79         | 10.11        | 269.3          |                        |
| 2        | Dahrak   | Ramgarh | 259.69           | 32-60,72-<br>100,126-<br>139,142-<br>160,170-<br>180,190-200 | 124.46        | 4.58         | 6074           | 3.4 * 10 <sup>-4</sup> |

| Table 5 : Exploratory well detail |
|-----------------------------------|
|-----------------------------------|

| 3 | Nuaon   | Nuaon    | 310.44 | 25-30,47-<br>57,61-70,87-<br>94,115-<br>125,135-<br>140,150-<br>172,177-<br>196,210-<br>240,245-260      | 164.875 | 8.35 | 2069 |                      |
|---|---------|----------|--------|----------------------------------------------------------------------------------------------------------|---------|------|------|----------------------|
| 4 | Jagaria | Chainpur | 91     | 24-26,39-48                                                                                              | 79.25   | 3.76 | 4094 | 2.2*10 <sup>-6</sup> |
| 5 | Ramgarh | Ramgarh  | 295.95 | 35-46,76.20-<br>85.34,<br>124.96-<br>152.39,164.<br>58-176.77                                            | 159     | 5.84 | 2505 |                      |
| 6 | Piparia | Mohania  | 188.98 | 10.66-<br>14.02,27.73-<br>55.27,62.78-<br>73.76,89.77-<br>111.86,115.<br>66-<br>132.99,136.<br>73-157.88 | 245     | 5.33 | 4162 |                      |

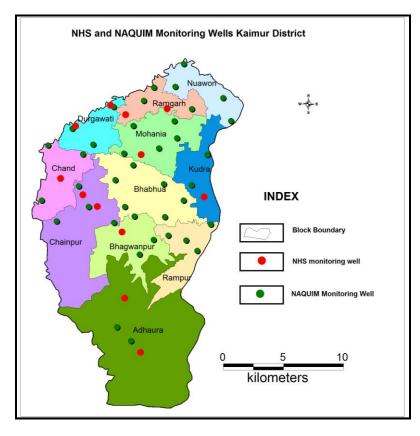



Figure 11: Locations of NHNS nad NAQUIM water level monitoring stations.

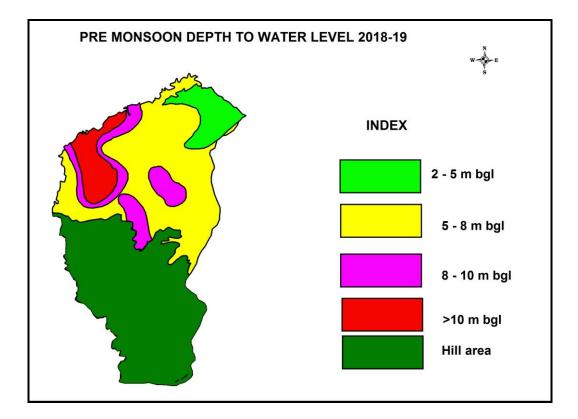



Figure 12: Pre-Monsoon depth to water level map

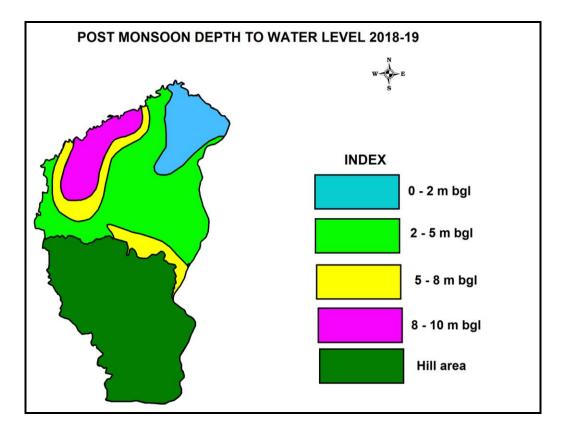



Figure 13: Post-monsoon depth to water level map

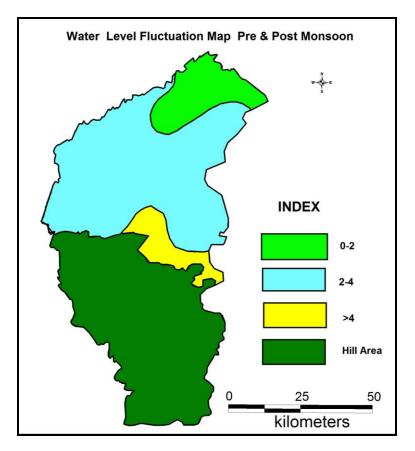



Figure 14: water level fluctuation map.

#### 2.2 Hydrogeochemical Investigation

2.2.1 Water Quality Sampling, Number of Samples and Analysis Mechanism

Assessment of ground water quality is an integral part of any hydrogeological study. Qualitative estimation of physical and chemical quality of water is essential for assessing the suitability of water for drinking and irrigational purposes. Ground water quality of an area and its physical and chemical characteristics are greatly influenced by geological and anthropogenic factors. Concentration of major ions and dissolved ions are also influenced by the aquifer matrix through which the movement of groundwater occurred. Groundwater geochemistry helps to interpret the geological environment, source, direction and movement of ground water, recharge and discharge relationships.

#### 2.2.2Ground Water Quality

To study the ground water quality of the study area water samples from dug wells and tube wells were collected during pre-monsoon and post monsoon seasons. A total of 35 samples were collected during pre-monsoon. Chemical analysis of ground water samples is carried out by regional chemical laboratory of Central Ground Water Board, Mid Eastern Region, Patna. Samples were analyzed for the parameters like pH, EC, Turbidity, TDS, CO3, Cl, SO4, Na, K, HCO3, NO3, F, Ca, Mg, As and Fe. The chemical analysis data of groundwater samples from Kaimur district during pre-monsoon.

| SI.NO. | Chemical constituents (Concentrations in mg/l except pH, EC and As) | Maximum | Minimum |
|--------|---------------------------------------------------------------------|---------|---------|
| 1      | рН                                                                  | 8.2     | 7.1     |
| 2      | EC (μs/cm) 25°C                                                     | 1365    | 126     |
| 3      | CO <sub>3</sub> -2                                                  | BDL     | BDL     |
| 4      | HCO <sub>3</sub> -1                                                 | 622     | 61      |
| 5      | Cl-                                                                 | 35.5    | 3.55    |
| 6      | SO <sub>4</sub> -2                                                  | 65      | 5       |
| 7      | NO <sub>3</sub> -1                                                  | 73      | 8       |
| 8      | F-                                                                  | 0.94    | 0.13    |
| 9      | Ca+2                                                                | 200     | 14      |
| 10     | Mg <sup>+2</sup>                                                    | 44      | 2       |
| 11     | TH (as CaCO <sub>3</sub> )                                          | 500     | 55      |
| 12     | Na                                                                  | 185     | 2.8     |
| 13     | K                                                                   | 6.8     | 1.2     |

Table 6: Chemical quality of water samples Kaimur district pre-monsoon

It is deciphered from table 6 that the all the samples have pH values in the range from 7.1 to 8.2 during pre-monsoon season. No sample has pH value less than 6.5. So it can be inferred that the nature of ground water is neutral to slightly alkaline.

#### 2.2.3 Assessment of ground water quality with various chemical diagram

Ground water quality has been assessed with the help of various chemical diagram such as Piper diagram, Wilcox diagram and Stiff diagram prepared with the help of Aquachem 9 software.

#### <u>Piper diagram</u>

In order to understand water composition and chemical relationship between dissolved ions, Pipers trilinear diagram for graphical analysis (Figure 14) is used. This diagram reveals similarities and differences among water samples. Most of the water samples analyzed fall within the calcium type in case of cations with few samples fall under no dominant type and Na-K type. In case of anions, most of the samples are under bicarbonate type. These trends are reflected in the central diamond of the diagram where most of the samples fall under the category of alkaline dominant field in case of cations within which around 90% of the samples falls under Magnesium bicarbonate (Mg-HCO3) type ,8% of the samples falls under mixed type and 2% both under calcium chloride (CaCl) type and sodium chloride (NaCl) type. In case of anions, most of samples are within weak acids (HCO3 - CO3) dominant field The results suggest that Magnesium bicarbonate and mixed type are the dominant hydro chemical facies for the studied groundwater samples.

#### Wilcox diagram

According to Wilcox diagram (US Salinity Laboratory's diagram) in Figure 15, salinity and alkalinity hazard class of water samples were C2–S1 (80 %) and C3–S1 (20 %). The result shows that a majority of the ground water samples possess medium salinity with low sodium (C2–S1)and few samples possess high salinity and low sodium (C3–S1). It can be inferred that salinity range of water for High-salinity water (C3) cannot be used on soils with restricted drainage. The calculated value of SAR in the ground water of the study area ranges from 0.11–3.37. The plot of data on the US salinity diagram, in which the EC is taken as salinity hazard and SAR as alkalinity hazard,

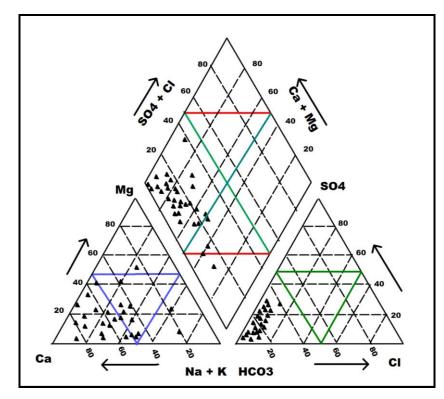



Figure 15: Piper diagram for representing ground water analysis

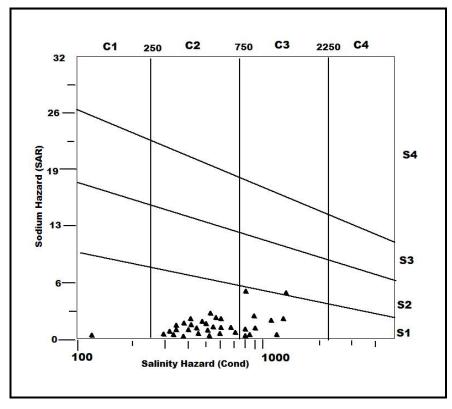



Figure 16: Wilcox diagram to represent relationship between salinity and sodium.

#### 2.2.4 Water quality evaluation for irrigation purpose

To study the water quality for irrigation purpose, 35 water samples (both DW and TW) are collected during pre-monsoon. Different chemical parameters like pH, electrical conductivity(EC), total dissolved solids (TDS), Ca2+, Mg2+, Na+, K+, Cl-, HCO3,CO3, SO4, F- and various chemical index such as sodium absorption ratio.

#### Alkalinity Hazard (SAR)

Irrigation water is classified on the basis of SAR. Hence, the assessment of sodium hazard is necessary while considering the suitability for irrigation. The SAR values of the groundwater samples varies from 0.16-10.5 respectively. The SAR values of the water samples of the study area less than 10 and are classified as excellent for irrigation.

#### **Residual Sodium Carbonate (RSC)**

Bicarbonates (HCO3-) occur in low salinity water and its concentration usually decreases with an increase in EC. The proportion of bicarbonate ion is higher than calcium ions are considered undesirable, because after evaporation of irrigation water bicarbonate ions tend to precipitate calcium ions. Hence, the effect of bicarbonate together with carbonates evaluated through RSC.

The RSC values varies from -1.7 to 5 ppm for pre monsoon water samples respectively.88% of the pre monsoon water samples are suitable for irrigation, 14% are marginally suitable and 2% are unsuitable for irrigation.

#### Magnesium Ratio

In the study area, nearly 80% of the pre monsoon water samples monsoon samples has Mg ratio less than 50 % which is suitable for irrigation, as magnesium ratio of more than 50% indicate that the soil is more alkaline which adversely effects the crop yield

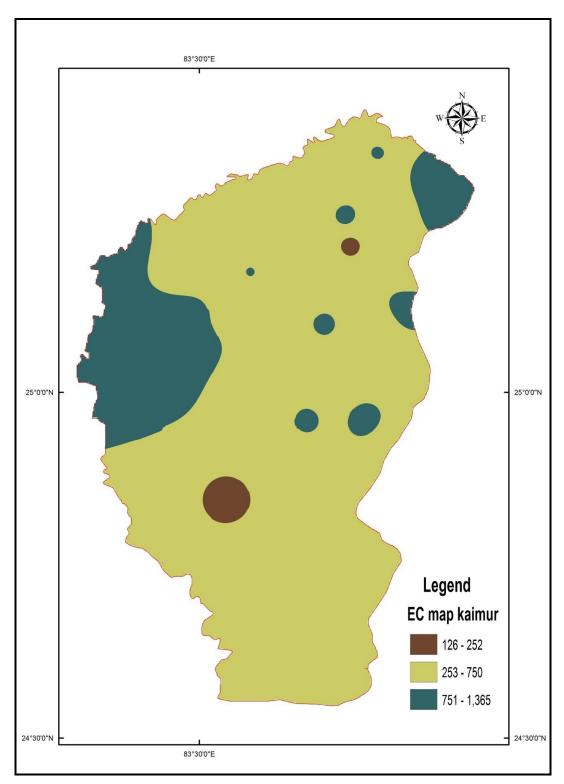



Figure 17: Electrical Conductivity map of Kaimur

#### 2.3 Geophysical Investigation

#### 2.3.1 Location, Number, Analytical Techniques

As a part of NAQUIM programme 17 Vertical Electric Sounding (VES) resistivity method was carried out in study area. VES survey was mostly carried out in alluvial areas; previously VES survey was carried out in Adhaura plateau as a part of special study. Data was initially interpreted manually by matching two layer standard curves, detail interpretation was made with the help of computer programme.. Locations of VES points are shown in Fig 2.4.

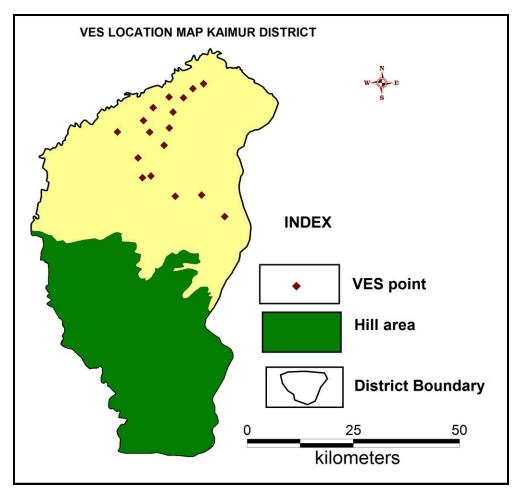



Figure 18: VES location map of Kaimur

#### **Analytical Techniques:**

Electrical Resistivity of water bearing formation is goverened by resisitivity of water in aquifer matrices. It is also dependent on effective porosity and amount of clay material remain within. In resistivity method of traversing two methods of investigation is applied (a) Resisitivity depth probing or sounding (b) Traversing or profiling method.

Resistivity data may be interpreted from master curves for a small number of earth layers assuming them as horizontal layer of uniform thickness and resistivity. They are prepared for particular electrode configuration, like, Wenner, Schlumbereger, various thicknesses and resistivity ratios being assumed for individual layers.

All the curves are interpreted with the help of partial curve matching technique and also by the resistivity sounding interpretation software. The interpreted data is correlated with the available borehole information near by the survey area and utilised resistivity range with respect to lithology is given below. Interpreted VES results are tabulated in **Annexure-III**.

| Resistivity Range (Ω-<br>m) | Lithology                            |
|-----------------------------|--------------------------------------|
| 9-15                        | Clay                                 |
| 14-30                       | Sand mixed with clay                 |
| 16-25                       | Medium to coarse sand                |
| 60-200                      | Coarse sand mixed with gravel/kankar |
| 200-500                     | Unsaturated sand                     |

Table 7: Resistivity range and litholog

#### 2.4 Exploratory Drilling - State Govt., CGWB and Private Wells

#### 2.4.1 Number, Location, Depths, Well Design

Subsurface lithological information and delineation of aquifer system down to the depth of 300 mbgl has been obtained through exploratory drilling by CGWB and GSI. Drilling was confined mostly to Quaternary Alluvium formation. Location and depth of drilling is given in tabular format on Table 7.

| DISTRICT | BLOCK      | LOCATION  | LONG  | LAT   | DEPTH<br>DRILLED<br>(mbgl) |
|----------|------------|-----------|-------|-------|----------------------------|
| Kaimur   | Ramgarh    | Ramgarh   | 83.65 | 25.28 | 295.95                     |
| Kaimur   | Mohania    | Mohania   | 83.60 | 25.16 | 135.02                     |
| Kaimur   | Pachilakhi | Durgawati | 83.52 | 25.27 | 86.86                      |
| Kaimur   | Piparia    | Mohania   | 83.54 | 25.18 | 188.98                     |

#### Table 8: Location details exploratoey wells by CGWB and GSI

Exploratory drilling was carried out through outsourcing by WAPCOS .About 8 exploratory wells has been drilled and maximum drilling depth is 310 mbgl. Wells have tapped different geological setting of Kaimur i.e the Quaternary alluvium and Vindhyan sandstone formation. Location and depth of drilling is mentioned in Table 7. Exploratory wells by all agencies has been shown in map in Fig 17. Lithological information is mentioned in ANNEXURE IV.

Table 9: Location details of exploratory wells through out sourcing

| DISTRICT | BLOCK      | LOCATION                  | LONG  | LAT   | DEPTH<br>DRILLED<br>(mbgl) |
|----------|------------|---------------------------|-------|-------|----------------------------|
| Kaimur   | Chainpur   | Jagaria                   | 83.51 | 25.04 | 93                         |
| Kaimur   | Mohania    | Barahuli                  | 83.70 | 25.10 | 125.05                     |
| Kaimur   | Nuon       | Nuon                      | 83.74 | 25.35 | 310.44                     |
| Kaimur   | Ramgarh    | Dahrak                    | 83.64 | 25.29 | 259.69                     |
| Kaimur   | Bhagwanpur | Mundeshwari<br>sthan Park | 83.57 | 24.98 | 46                         |

| Kaimur | Bhagwanpur | Paryatan<br>Dharmshala              | 83.58 | 24.99 | 70   |
|--------|------------|-------------------------------------|-------|-------|------|
| Kaimur | Rampur     | Shree Nehru +2<br>School            | 84.22 | 24.82 | 102  |
| Kaimur | Rampur     | Rajkiya Krit<br>Madhya<br>Vidyalaya | 84.17 | 24.19 | 45.4 |

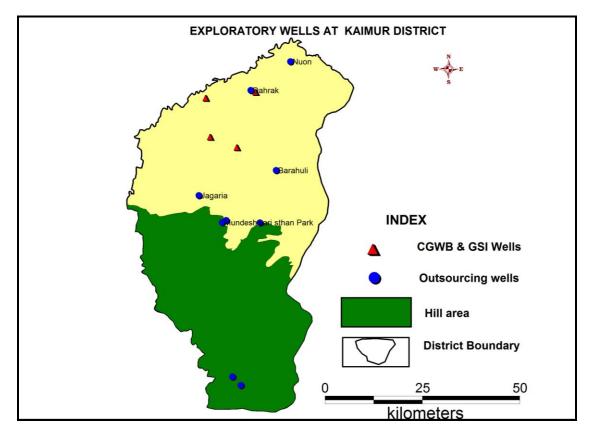



Figure 19: Locations of exploratory wells at kaimur

# **CHAPTER-III**

# **GENERATION OF AQUIFER MAP**

# 3.1 Aquifer Disposition

Aquifer disposition in Kaimur district can be characterised based on geological succession viz Vindhyan Supergroup and Quaternary alluvium. Water bearing formation in Vindhyan Supergroup in southern part of the district occurs in the planar features such as joints fractures etc. Northern part of the district is underlain by Quaternary alluvium formation. Alluvium forms the most important reservoir for ground water. Aquifer zones in alluvium formation are composed of granular sediments separated by impervious clay layers. Unconsolidated materials are composed of sands of varying grades.

# 3.1.1 Aquifer disposition in the area

To study the aquifer disposition and its lateral variation exploratory drilling was carried out by CGWB and other agencies along with VES survey. Based on lithological information obtained through exploratory drilling, sections and fence diagrams were prepared to establish the aquifer geometry. Aquifer geometry is delineated based on geological formations:

# 1. Quaternary alluvium:

Two aquifer systems have been observed in the alluvium terrain on the northern part of the district. These aquifer systems are as below:-

(a) Shallow aquifer:

Depth of phreatic aquifer from 10-60 mbgl with an average thickness of 20m. The shallow aquifer constitute of silt,sand and calcareous nodules. Groundwater generally occurs in semi-confined condition.

# (b) Deeper aquifer:

The depth of deeper aquifer ranges from 72-100 mbgl; 105-140 mbgl; 150-190 mbgl; 210-250 mbgl. As one proceeds towards north of G.T road multiple aquifer system is encountered at Ramgarh and Nuaon blocks. Exploratory drilling upto 300 mbgl in Nuon and Ramgarh block reveals multiple aquifer system with depth range upto 210-250 mbgl.

In alluvium formation different granular formation has been identified within depth range of 300 mbgl. The depth of formation and its thickness vary laterally. A great deal of facies variation and lateral accretion is prominent.

# 2. Vindhyan formation:-

The depth and lateral extent of aquifers in consolidated sedimentary rocks of Vindhyan formation is governed by tectonic history and geological structure.

In consolidated Vindhyan sandstone water bearing formations are encountered in fracture zones. Through exploratory drilling at Adhaura plateau down to depth of 133 mbgl and 157 mbgl fracture plane has been observed at 97 mbgl; 110 mbgl and 128 mbgl.

At the pediment zone there is a thick overburden of clay and shale down to depth of 66 mbgl . Fracture bearing aquifer zone is encountered at depth of 35 mbgl at shale and 75 mbgl on sandstone formation at Rampur block. Through exploratory well drilled at Bhagwanpur and Chainpur block it has been noticed that there is a thick overburden of clay layer in the range 45-70 mbgl .The thickness of clay overburden increases as one traverse further south of G.T road.

# 3.1.2 Aquifer Characterizations

Characterization of aquifer down to 300 mbgl in the study area have been arrived at byconvergence of the observations from the study of the different lithological sections, fence diagrams, geoelectrical sections, sections based on e-logs and overall lithological model of the area. On the north of G.T road different granular zones has been identified within depth of 300 mbgl. A great deal of facies variation and lateral accretion is prevalent .Multiple aquifer zones are encountered as one traverse further north toward Ramgarh and Nuaon blocks. South of G.T road there is a thick overburden of clay layer down to depth of 75 mbgl. Fracture bearing aquifers are observed in Vindhyan sandstone and in the pediment zone.

# 3.1.3 Aquifer hydraulic characteristics

Pumping test data of the exploratory wells drilled by CGWB and other agencies has been analysed to delineate the hydraulic characteristic of the aquifer system. In quaternary alluvium shallow tube wells upto depth of 50 mbgl yield 27 m<sup>3</sup>/hr to 60 m<sup>3</sup>/hr for draw down of 3-11 m. Deep tube wells constructed in alluvium sediments upto depth of 300 mbgl usually sustain a yield of 159 m<sup>3</sup>/hr to 3957 m<sup>3</sup>/hr for a draw down of 4.25 to 10.11 m. Transmissivity of aquifers are in the range of 1706 m<sup>2</sup>/day to 5466 m<sup>2</sup>/day. Storativity value of deeper aquifer is  $3.4*10^{-4}$  which suggest that the aquifer is in confined to semi-confined condition.

Fracture zones encountered in vindhyan sandstone yields a discharge of 39 m<sup>3</sup>/hr . Through preliminary yield test conducted at wells tapping Vindhyan sandstone the fracture zones yield a discharge of 97.76 m<sup>3</sup>/hr for a drawdown of 23.97 m. Transmissivity of wells are in range of 11 m<sup>2</sup>/day to 395 m<sup>2</sup>/day.

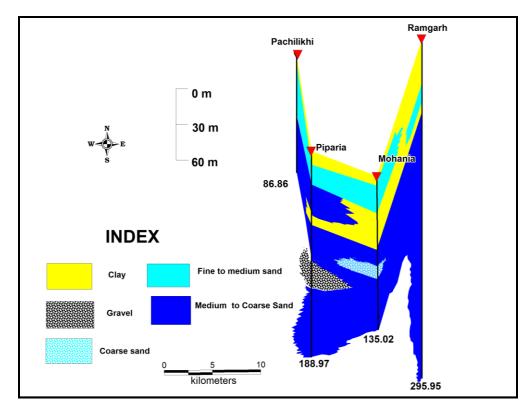



Figure 20: 2D Hydrogeological section from Pachilakhi to Rampur

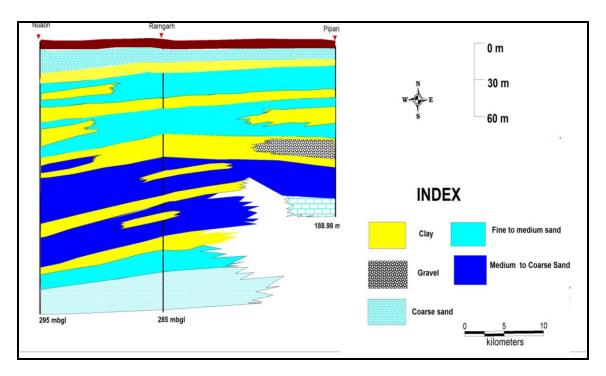



Figure 21: Hydrogeological section along north-south transect from Nuaon to Piparia

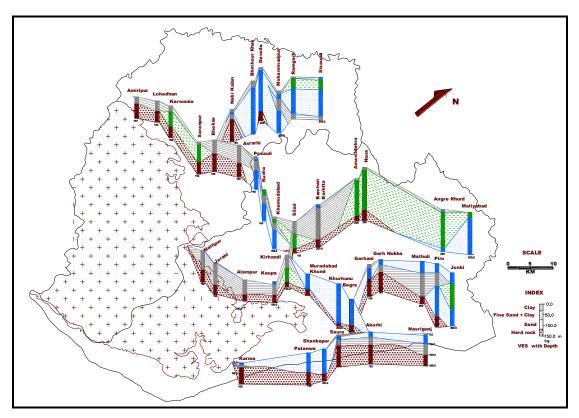



Figure 22: 2D Geophysical section along Kaimur to Rohtas district

# **CHAPTER -IV**

# **GROUND WATER RESOURCES**

# 4.1 Dynamic Ground Water Resources

Dynamic groundwater resource of Kaimur district has been assessed as per GEC-2017. Blockwise ground water assessment report has been mentioned in annexure IV. Summary of ground water estimation of the district is mentioned in table 4.1:-

|                                                                                    | Dynamic GW<br>Resource<br>(in BCM) |
|------------------------------------------------------------------------------------|------------------------------------|
| Total Ground water Recharge                                                        | 0.99                               |
| Provision of Natural Ground water Discharge                                        | 0.09                               |
| Net Ground Water Availability                                                      | 0.90                               |
| Gross Ground water Draft for all uses                                              | 0.30                               |
| Current annual Ground Water draft for irrigation                                   | 0.26                               |
| Current annual Ground Water draft for domestic and industrial uses                 | 0.03                               |
| Stage of Ground Water development (%)                                              | 33.19 %                            |
| Annual Allocation of Ground Water for domestic & industriall water supply for 2042 | 0.01                               |
| Net Ground Water Availability for 'Future Irrigation Use'                          | 0.63                               |

# Table 10: Summary of Dynamic Ground Water Resource Estimation of Kaimur District

The overall stage of development in the district is 33.19%. All the blocks in the district has been categorised under safe category. There is spatial variation in the stage of development within the district Mohania block (SOD 54%) has the highest development of ground water resource and Adhaura block (SOD 7.8%) has the lowest development.

Principal source of ground water recharge is precipitation in the area. Rainfall infiltration contributes to about 60% of ground water recharge The other sources of recharge in the district include return flow of irrigation, seepage from canal, tanks etc. About 27% of ground water recharge is contributed by return flow from ground water irrigation. There is wide variation in ground water potential of the district. The variation is due to variation in nature of lithological units, geology and aquifer system in the area. In hard rock terrain the aquifer is confined to weathered mantle and fracture zones. The

alluvial sediments in forms viable water table aquifer and semi confined to confined aquifer.

# 4.2 Static Ground Water Resources

Static ground/in storage ground water resources has been computed blockwise. The methodology applied is as per GEC-2017 norms . The base of unconfined aquifer blockwise has been assessed through available ,lithologs, VES survey data. The availability of static ground water in Aquifer I, considering an specific yield of 6% for alluvial areas and 3% for sandstone formation is 4.8 BCM. Block wise estimated resource of Aquifer I is given in table 4.2

| Administrative<br>Units | Ground water<br>Assessment Sub-<br>Unit | Bottom of<br>Unconfined<br>Aquifer | GW<br>Worthy<br>Area | Pre-<br>Monsoon<br>Water<br>Level | Specific<br>Yield | In-<br>Storage<br>Resource | In-<br>Storage<br>Resource |
|-------------------------|-----------------------------------------|------------------------------------|----------------------|-----------------------------------|-------------------|----------------------------|----------------------------|
|                         |                                         | (m bgl)                            | (ha)                 | (m bgl)                           | (%)               | (ham)                      | (bcm)                      |
| Adhaura                 | Vindhyan sandstone                      | 40                                 | 72249                | 9.27                              | 0.03              | 66606.4                    | 0.7                        |
| Bhabhua                 | Alluvium                                | 35                                 | 33449                | 8.27                              | 0.06              | 53645.5                    | 0.5                        |
| Bhagwanpur              | Alluvium                                | 25                                 | 4900                 | 7.78                              | 0.06              | 5062.7                     | 0.1                        |
| Bhagwanpur              | Vindhyan sandstone                      | 20                                 | 6126                 | 8.78                              | 0.03              | 2062.0                     | 0.0                        |
| Chainpur                | Alluvium                                | 50                                 | 40768                | 8.43                              | 0.06              | 101683.6                   | 1.0                        |
| Chainpur                | Vindhyan sandstone                      | 20                                 | 559                  | 8.43                              | 0.03              | 194.0                      | 0.0                        |
| Chand                   | Alluvium                                | 30                                 | 20670                | 8.45                              | 0.06              | 26726.3                    | 0.3                        |
| Durgawati               | Alluvium                                | 60                                 | 16764                | 7.09                              | 0.06              | 53219.0                    | 0.5                        |
| Kudra                   | Alluvium                                | 35                                 | 21054                | 7.03                              | 0.06              | 35332.8                    | 0.4                        |
| Mohania                 | Alluvium                                | 45                                 | 28552                | 6.99                              | 0.06              | 65115.7                    | 0.7                        |
| Nuaon                   | Alluvium                                | 35                                 | 18900                | 5.72                              | 0.06              | 33203.5                    | 0.3                        |
| Ramgarh                 | Alluvium                                | 25                                 | 16852                | 5.9                               | 0.06              | 19312.4                    | 0.2                        |
| Rampur                  | Alluvium                                | 25                                 | 13251                | 8.24                              | 0.06              | 13325.2                    | 0.1                        |
| Rampur                  | Vindhyan sandstone                      | 20                                 | 3946                 | 9.24                              | 0.03              | 1273.8                     | 0.0                        |
|                         |                                         | Total                              |                      | nd Water Est                      |                   |                            | 4.8                        |

Table 11: Estimated block wise storage of Aquifer I

(Based on Ground Water Estimation-2015)

# **CHAPTER - V**

# **GROUND WATER RELATED ISSUES**

# **5.1 Identification of issues**

The major groundwater issue identified in the district are deeper water level at northwestern part ; shortage of water supply for irrigation and drinking purpose in plateau .Flouride and nitrate contamination of ground water has been reported.

## **5.1.1 Major Ground Water Issues**

The major ground water issues are listed below:

(1) Deeper water level in north western part of district:

During pre and post monsoon monitoring deeper water level of 8-11 mbgl was noticed in Durgawati, Rampur blocks. The area has high cropping intensity and paddy is cultivated before the onset of monsoon. Due to erratic rainfall and pattern and uncertainity in the release of canal water, farmers has resorted to using borewells . There is a mark significant increase in the number of borewells as well as the tube wells tapping deeper aquifer has been on significant rise.

(2) Shortage of drinking water supply for drinking and irrigation purpose in Adhaura plateau:

Ground water prospect in dissected plateau is poor whereas it is moderate along lineaments. The major source of rural water supply is based on ground water exploitation. Undulating topography and disperse habitation cause hindrance in water supply.

(3) Nitrate and fluoride contamination

Flouride and nitrate contamination has been reported from Kaimur through analysis of water samples by CGWB and PHED, Bihar. Flouride contamination is within the permissible limit (>1.5 mg/l) as per WHO recommendation. Nitrate contamination has been reported in Kaimur ,the possible contributor of nitrate to ground water is from decaying organic matter, sewage and barnyard waste and nitrate fertiliser.

#### Table 12 : Feasible Numbers of Additional Shallow Tubewells in Kaimur District

| Block     | Sub- Unit | Total Annual<br>Recharge(ham) | Net<br>Resource(ham) | Gross Draft<br>All<br>Uses(ham) | SOD(%) | Existing STW | Ground<br>water draft<br>at 70%<br>SOD(ham) | Additional<br>Resource<br>Available(ham) | Feasible no.<br>Of tubewells<br>considering<br>ground water<br>availability |
|-----------|-----------|-------------------------------|----------------------|---------------------------------|--------|--------------|---------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|
| Bhabhua   | Alluvium  | 11318.92                      | 10187.03             | 5767.23                         | 56.61  | 3099         | 7130.92                                     | 2909.64                                  | 1790                                                                        |
| Chand     | Alluvium  | 7292.83                       | 6563.55              | 3421.11                         | 52.12  | 1858         | 4594.48                                     | 1891.13                                  | 1163                                                                        |
| Durgawati | Alluvium  | 5646.21                       | 5081.59              | 1860.62                         | 36.61  | 912          | 3557.11                                     | 1444.64                                  | 889                                                                         |
| Kudra     | Alluvium  | 15726.47                      | 14153.82             | 3333.14                         | 23.55  | 1639         | 9907.68                                     | 4149.88                                  | 2553                                                                        |
| Mohania   | Alluvium  | 9048.76                       | 8596.32              | 4884.25                         | 56.82  | 2577         | 6017.43                                     | 2447.63                                  | 1506                                                                        |
| Nuaon     | Alluvium  | 6050.44                       | 5747.92              | 3043.05                         | 52.94  | 1666         | 4023.54                                     | 1662.28                                  | 1022                                                                        |
| Ramgarh   | Alluvium  | 4056.76                       | 3651.08              | 1454.97                         | 39.85  | 245          | 2555.76                                     | 1017.99                                  | 626                                                                         |

(Based upon Groundwater Resource Estimation of Bihar, 2015, CGWB and MI Census 2013-2014)

\*Estimation done only for alluvial areas

## **CHAPTER - VI**

# **MANAGEMENT STRATEGIES**

Managment staretegies has been prepared considering the sustainability and equitability of ground water resource. Approximetely 45% of total land area is under cultivation so optimal utilisation of groundwater resource considering sustainability of aquifers and productivity of agriculture. The area is interspersed with different geological conditions so a uniform management pattern is not suitable. Demand of ground water for drinking and irrigation purpose in Vindhyans and Alluvium area is different. A broad management strategy has been prepared , taking into consideration that the management strategy can be suitably modified according to manifestation of area specific issues.

# 6.1 Ground water issue of plateau:

There is shortage of water for irrigation in plateau area. Storage scheme work to harness the available water resource in the headward region of Karmansha and Durgawati river. Storage scheme work in upper catchment can be constructed as the topography seems favourable for building of small reservoirs and tanks. It will help in ground water recharge apart from providing viable water source for drinking water and irrigation. The soil moisture in the plateau region is poor ;for proper ground water management micro-level ecological planning involving afforestation, soil and moisture conservation and artificial recharge techniques like creation of mini reservoir, construction of small weirs. Optimal beneficial development can be realized by conjuctive and systematic use of ground water.

# 6.2 Deeper water level in north western part of district:

Intensive agricultural practices are applied in alluvium areas due to availability of potential ground water resources. Paddy is majorly cultivated in this area. Depleting rainfall pattern during the sowing season and canal water source being not available, farmers resort to tube wells. It has been observed that abstraction structures has increased over the years along with increase in depth of penetration of deeper aquifer system. Economically well off farmers avail heavy duty tube wells which leads to hand pump at 60-70 feet go dry. Sustainable agriculture is key to the future. An assessment of crop water requirement is needed so that ground water resources could be better managed. Shallow tubewells in alluvium zone has high yield potential so it must be used for irrigation. Deeper aquifers may be used only for drinking purpose. Water use efficiency techniques such as drip and sprinkler irrigation facilitates continuous availability of water to the root vicinity, thus plants grows with optimum soil moisture and proper aeration of the soil.

System of Rice Intensification (SRI) practices could be applied in near future for better conservation of resources. Under SRI paddy cultivation, paddy fields are not flooded but kept moist during the vegetative phase. Only one inch of water is maintained during later phase. The practice requires only about half as much water as normally applied in irrigated field. It helps in ground water conservation and involves less expenditure and gives more yields. It is beneficial for small and marginal farmers.

# 6.3 Management plan for drinking and domestic purpose:

\

Pipe water supply scheme is considered under mini –water supply scheme. To cover the 100% population of the blocks considering 40 lpcd of drinking water need. Considering the prevailing hydrogeological condition the average discharge of the wells ranges from 40m<sup>3</sup>/hr to 100 m<sup>3</sup>/hr and accordingly a unit draft one tubewell has been arrived at 8 hours running per day. Blockwise average number of tube wells has been arrived at and mentioned in table 12.

The northern part of the district has prominent water bearing zones and development for drinking purpose can be tapped from 1<sup>st</sup> and 2 nd aquifer. The 2<sup>nd</sup> aquifer may be developed for drinking and pipe water supply purpose. In marginal alluvium and hard rock areas potential fractures and interconnections may be possible source . Water development plan may be prepared keeping in view the hydrogeological condition, yield potential, and possible granular and water bearing fracture zones.

| Block      | Geology              | Population | Annual<br>resource<br>required to<br>cover total<br>population(40<br>lpcd)ham | Unit draft of one TW<br>in ham(considering<br>average discharge<br>and 8 hrs/day of<br>running) | No. Of<br>tubewells/bore<br>wells required<br>to cater to total<br>population of<br>the block |
|------------|----------------------|------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Adhaura    | Hard Rock            | 57100      | 0.228                                                                         | 0.001                                                                                           | 159                                                                                           |
| Bhabhua    | Alluvium             | 301440     | 1.206                                                                         | 0.032                                                                                           | 38                                                                                            |
| Bhagwanpur | Alluvium / Hard rock | 91113      | 0.364                                                                         | 0.001                                                                                           | 253                                                                                           |
| Chainpur   | Alluvium / Hard rock | 133682     | 0.535                                                                         | 0.032                                                                                           | 17                                                                                            |
| Chand      | Alluvium             | 187692     | 0.751                                                                         | 0.032                                                                                           | 23                                                                                            |
| Durgawati  | Alluvium             | 136962     | 0.548                                                                         | 0.080                                                                                           | 7                                                                                             |
| Kudra      | Alluvium             | 165145     | 0.661                                                                         | 0.080                                                                                           | 8                                                                                             |
| Mohania    | Alluvium             | 225181     | 0.901                                                                         | 0.080                                                                                           | 11                                                                                            |
| Nuaon      | Alluvium             | 106530     | 0.426                                                                         | 0.080                                                                                           | 5                                                                                             |
| Ramgarh    | Alluvium             | 132663     | 0.531                                                                         | 0.080                                                                                           | 7                                                                                             |
| Rampur     | Alluvium / Hard rock | 88876      | 0.356                                                                         | 0.032                                                                                           | 11                                                                                            |

**Stress aspect against future demand:** 

Demand of water is increasing day by day against the increasing population Demographic pattern is forecasted till 2030 based on census 2011. Consideringh water demand of 130 lpcd and 55 lpcd (according to MOHUA) for urban and rural areas, water demand for 2030 is projected. Projected demand of ground water for drinking purpose is 5457 Ham. The demand of water is increasing due to highly increasing of population. Thus, recommended for alternate surface water supply from river to reduce the stress of ground water

| Table | 14: | Proi | iected | water | demand |
|-------|-----|------|--------|-------|--------|
| 10010 |     |      |        |       |        |

|            |         | 2011    |          |                | Population pro | jection 2030 | Water De | mand (2030) |
|------------|---------|---------|----------|----------------|----------------|--------------|----------|-------------|
| Block      | Total   | Rural   | Urban    | Decadal growth | rural          | urban        | rural    | urban       |
| Ramgarh    | 132663  | 123973  | 8690.00  | 27.1           | 195233         | 13685        | 392      | 67          |
| Nuaon      | 106530  | 106530  | 0.00     | 26.6           | 165263         | 0            | 332      | 0           |
| Kudra      | 165145  | 165145  | 0.00     | 29.2           | 267908         | 0            | 538      | 0           |
| Mohania    | 225181  | 218479  | 6702.00  | 28.3           | 349228         | 10713        | 701      | 53          |
| Durgawati  | 136962  | 136962  | 0.00     | 23             | 202964         | 0            | 407      | 0           |
| Chand      | 133682  | 133682  | 0.00     | 32             | 226550         | 0            | 455      | 0           |
| Chainpur   | 187692  | 187692  | 0.00     | 28.8           | 300016         | 0            | 602      | 0           |
| Bhabua     | 301440  | 251261  | 50179.00 | 27.6           | 395687         | 79022        | 794      | 389         |
| Rampur     | 88876   | 88876   | 0.00     | 20.8           | 125669         | 0            | 252      | 0           |
| Bhagwanpur | 91113   | 91113   | 0.00     | 28.3           | 145640         | 0            | 292      | 0           |
| Adhaura    | 57100   | 57100   | 0.00     | 27.8           | 89921          | 0            | 181      | 0           |
| Total      | 1626384 | 1560813 | 65571.00 |                | 2464080        | 103420       | 4947     | 510         |

#### Block wise Block Wise Aquifer Maps and Management plans

Salient Information Name of the Block and Area (in km<sup>2</sup>) ADHAURA (923.42 sq. km)

District/ State Kaimur/Bihar

#### Rainfall

The normal annual rainfall of Adhaura block is 1387 mm of which 95% occurs during the monsoon season. The normal rainfall during monsoon season is 1324 mm and during non monsoon season is 63 mm.

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The soils in this zone are Sandy loam, Clay loam, red laterite soils , with pH in the range of 6.8 - 8.0. from 37.1 to 7.8°C.

#### Ground water resource availability and extraction

The dynamic ground water resource of Adhaura block has been assessed as 81.90 MCM. The gross ground water draft for all uses stands at 6.37 MCM. The stage of Development is 7.78 % depicted in Annuexure I. 1491 STWs are feasible with available ground water resources considering up to 70% SOD.

#### Water level behaviour

The depth to water level varies from 4 to 7 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 2 to 5 mbgl in most parts.

#### **Aquifer Disposition**

Aquifer disposition in the bock is structurally controlled.Water bearing formations are encountered in fracture zones. Prominent fracture zones encountered during the course of exploration ar at depth of 109.7-110 mbgl, 97 mbgl and 128 mbgl.

#### Ground water resource, extraction, contamination and other issues

The stage of groundwater development in the block is 56.25% and water level trend is not declining. Shallow Tube Well (STW) is the main abstraction structure for irrigation purposes. No contamination is found in ground water of two aquifers.

#### Ground water resource enhancement

As the stage of groundwater development is within the safe limit and there is no long-term water level decline in the area, the need for artificial recharge through check dams and gabion structures.

#### **Demand side interventions**

There is no pumping zone capable of yielding moderate to high discharge, the only possibility indicated is the availability of aquifer capable of yielding low discharge. Artificial recharge structures need to built to augment the demand side intervention.

## **Dynamic Ground Water Resource Estimation**

| District | Blocks  | Recharge from rainfall<br>Monsoon | Recharge from rainfall<br>Non-Monsoon | Recharge from other<br>sources Monsoon | Recharge from other<br>sources Non-Monsoon | Total ground water<br>recharge | Provision for natural<br>discharge | Net ground water<br>availibility | Existing Gross Ground<br>Water Draft for<br>irrigation | Existing Gross Ground<br>Water Draft for<br>Domestic Uses | Existing Gross Ground<br>Water Draft for<br>Industrial Uses | Existing Gross Ground<br>Water Draft for All Uses | Provision for Domestic<br>and Industrial<br>Requirement for Next 25<br>vears | Net GW Availability for<br>Future Irrigation<br>Development | Stage of Ground Water<br>Development (%) | Category:safe/semi-<br>critical/critical/over-<br>exploited. |
|----------|---------|-----------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|
|          |         | (ham)                             | (ham)                                 | (ham)                                  | (ham)                                      | (ham)                          | (ham)                              | (ham)                            | (ham)                                                  | (ham)                                                     | (ham)                                                       | (ham)                                             | (ham)                                                                        | (ham)                                                       |                                          |                                                              |
| Kaimur   | Adhaura | 8328.8<br>9                       | 478.29                                | 109.61                                 | 183.70                                     | 9100.4<br>9                    | 910.05                             | 8190.44                          | 513.09                                                 | 93.99                                                     | 30.35                                                       | 637.43                                            | 94.00                                                                        | 7553.0<br>0                                                 | 7.78                                     | Safe                                                         |

## Chemical Analysis of Ground Water Sample

#### Location Block District pН EC ΤН Ca Mg Na K **CO3** HCO3 Cl NO3 **SO4** F Adhaura Karar Kaimur 7.9 126 1.2 14 6 0 3.2 0 61 0 15 0 0 Garka Adhaura Kaimur 8 467 3.8 62 9 22 4.7 0 244 4 25 17 0.15

#### Annexure I

## Annexure II

Salient Information Name of the Block and Area (in km<sup>2</sup>) BHABUA (334.39 sq. km)

# District/ State Kaimur/Bihar

#### Rainfall

The normal annual rainfall of Bhabua block is 1024 mm of which 95% occurs during the monsoon season. The normal rainfall during monsoon season is 956mm and during non monsoon season is 68 mm.

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The soils in this zone are Sandy loam, Clay loam, with pH in the range of 6.8 - 8.0.Temparature ranges from from 37.1 to 7.8°C.

#### Ground water resource availability and extraction

The dynamic ground water resource of Bhabua block has been assessed as 101.87 MCM. The gross ground water draft for all uses stands at 57.67 MCM. The stage of Development is 51.61 % depicted in Annexure I. 17909 STWs are feasible with available ground water resources considering up to 70% SOD.

#### Water level behaviour

The depth to water level varies from 4 to 10 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 2 to 7 mbgl in most parts.

#### **Aquifer Disposition**

Aquifer disposition in the bock is structurally controlled. Water bearing formations are encountered in fracture zones. Prominent fracture zones encountered during the course of exploration at depth of 109.7-110 mbgl, 97 mbgl and 128 mbgl.

#### Ground water resource, extraction, contamination and other issues

The stage of groundwater development in the block is 56.61% and water level trend is not declining. Shallow Tube Well (STW) is the main abstraction structure for irrigation purposes.

#### Ground water resource enhancement

As the stage of groundwater development is within the safe limit and there is no long-term water level decline in the area. Artificial recharge method should be carried out to enhance ground water resource.

#### **Demand side interventions**

There is no pumping zone capable of yielding moderate to high discharge, the only possibility indicated is the availability of aquifer capable of yielding low discharge. Artificial recharge structures need to build to augment the demand side intervention.

# **Dynamic Ground Water Resource Estimation**

| District | Blocks  | Recharge from rainfall<br>Monsoon | Recharge from rainfall Non-<br>Monsoon | Recharge from other sources<br>Monsoon | Recharge from other sources<br>Non-Monsoon | Total ground water recharge | Provision for natural<br>discharge | Net ground water availibility | Existing Gross Ground Water<br>Draft for irrigation | Existing Gross Ground Water<br>Draft for Domestic Uses | Existing Gross Ground Water<br>Draft for Industrial Uses | Existing Gross Ground Water<br>Draft for All Uses | Provision for Domestic and<br>Industrial Requirement for<br>Next 25 years | Net GW Availability for<br>Future Irrigation<br>Development | Stage of Ground Water<br>Development (%) | Category:safe/semi-<br>critical/critical/over-exploited. |
|----------|---------|-----------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------|------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|
| Kaimur   | Bhabhua | 8483.23                           | 487.15                                 | 798.5                                  | 1550.04                                    | 11318.92                    | 1131.892                           | 10187.03                      | 5074.<br>17                                         | 413.<br>61                                             | 279.<br>45                                               | 5767.<br>23                                       | 413.6                                                                     | 4419.<br>79                                                 | 56.6<br>1                                | Safe                                                     |

# Chemical Analysis of Ground Water Sample

| District | Location  | Block  | District | рН  | EC  | ТН  | Ca | Mg | Na  | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|----------|-----------|--------|----------|-----|-----|-----|----|----|-----|-----|-----|------|----|-----|-----|------|
| Kaimur   | Nibkhura  | Bhabua | Kaimur   | 8.1 | 696 | 4.5 | 58 | 19 | 42  | 2.3 | 0   | 305  | 18 | 50  | 5   | 0.41 |
| Kaimur   | Daraula   | Bhabua | Kaimur   | 7.9 | 614 | 5.6 | 92 | 12 | 30  | 1.4 | 0   | 323  | 11 | 44  | 26  | 0.54 |
| Kaimur   | Jadupur   | Babhua | Kaimur   | 7.8 | 507 | 4.7 | 72 | 13 | 27  | 1.9 | 0   | 262  | 14 | 38  | 30  | 0.23 |
| Kaimur   | Nirbispur | Bhabua | Kaimur   | 8   | 327 | 3   | 38 | 13 | 2.8 | 3.4 | 0   | 171  | 4  | 8   | 10  | 0    |
| Kaimur   | Silautu   | Bhabua | Kaimur   | 8.1 | 821 | 2.5 | 36 | 9  | 147 | 2.1 | 0   | 427  | 7  | 49  | 45  | 0.25 |
| Kaimur   | Samra     | Bhabua | Kaimur   | 8.2 | 366 | 2.4 | 30 | 11 | 28  | 3.6 | 0   | 195  | 4  | 14  | 12  | 0    |

## Annexure II

# District/ State Kaimur/Bihar

## Rainfall

The normal annual rainfall of Bhagwanpur block is 972.1 mm of which 95% occurs during the monsoon season. The normal rainfall during monsoon season is 910 mm and during non monsoon season is 62 mm.

## **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The numbers of irrigation structures are as follows:

| Block      | Dug<br>well | Shallow<br>tube well | Medium<br>tube<br>well | Deep<br>tube<br>well |
|------------|-------------|----------------------|------------------------|----------------------|
| Bhagwanpur | 642         | 444                  | 570                    | 78                   |

## Ground water resource availability and extraction

The dynamic ground water resource of Bhagwanpur block has been assessed as 74.44 MCM. The gross ground water draft for all uses stands at 15.59 MCM. The stage of Development is 20.94 % depicted in Annexure I. 1323 STWs are feasible with available ground water resources considering up to 70% SOD.

# Water level behaviour

The depth to water level varies from 4 to 10 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 2 to 7 mbgl in most parts.

# **Aquifer Disposition**

Exploration carried out at Bhagwanpur reveals that there is thick clay overburden upto the depth of 40 mbgl along with occurrence of boulder bed. No major aquifer zone has been encountered at Bhagwanpur block.



Fig: Lihtological log of exploratory well at Bhagwanpur block

## Ground water resource enhancement

As the stage of groundwater development is within the safe limit and there is no long-term water level decline in the area. Artificial recharge method should be carried out to enhance ground water resource.

## **Demand side interventions**

Major aquifer zones has not been encountered till the depth of 40 mbgl, the only possibility indicated is the availability of aquifer capable of yielding low discharge. Artificial recharge structures need to build to augment the demand side intervention.

## **Dynamic Ground Water Resource Estimation**

| District   | Blocks             | Recharge from rainfall<br>Monsoon | Recharge from rainfall Non-<br>Monsoon | Recharge from other sources<br>Monsoon | Recharge from other sources<br>Non-Monsoon | Total ground water recharge | Provision for natural<br>discharge | Net ground water availibility | Existing Gross Ground Water<br>Draft for irrigation | Existing Gross Ground Water<br>Draft for Domestic Uses | Existing Gross Ground Water<br>Draft for Industrial Uses | Existing Gross Ground Water<br>Draft for All Uses | Provision for Domestic and<br>Industrial Requirement for<br>Next 25 years | Net GW Availability for<br>Future Irrigation<br>Development | Stage of Ground Water<br>Development (%) | Category:safe/semi-<br>critical/critical/over-exploited. |
|------------|--------------------|-----------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------|------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|
| Kaim<br>ur | Bhag<br>wanp<br>ur | 1761.5<br>4                       | 111.<br>91                             | 2911.6<br>7                            | 3192.3<br>3                                | 7977.4<br>5                 | 532.<br>57                         | 7444.8<br>8                   | 1087.0<br>1                                         | 397.<br>79                                             | 74.2<br>4                                                | 1559.0<br>4                                       | 397.80                                                                    | 5885.8<br>3                                                 | 20.9<br>4                                | Safe                                                     |

# Annexure II

# Chemical Analysis of Ground Water Sample

| Block      | District | pН  | EC  | ТН  | Ca  | Mg | Na | K   | CO3 | НСО3 | Cl | NO3 | SO4 | F    |
|------------|----------|-----|-----|-----|-----|----|----|-----|-----|------|----|-----|-----|------|
| Bhagwanpur | Kaimur   | 7.9 | 815 | 6.7 | 110 | 15 | 46 | 3.5 | 0   | 397  | 11 | 65  | 42  | 0.23 |

# Salient Information Name of the Block and Area (in km<sup>2</sup>) CHAINPUR (454.64 sq. km)

District/ State Kaimur/Bihar Population (as per 2011 census): 227101

## Normal Annual Rainfall: 901.7 mm

## **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The numbers of irrigation structures are as follows:

| Block    | Dug well | Shallow<br>tube well | Medium<br>tube well | Deep tube<br>well |
|----------|----------|----------------------|---------------------|-------------------|
| Chainpur | 670      | 511                  | 732                 | 112               |

## Ground water resource availability and extraction

The dynamic ground water resource of Chainpur block has been assessed as 140.22 MCM. The gross ground water draft for all uses stands at 22.37 MCM. The stage of Development is 15.96 % depicted in Annexure I. 2521STWs are feasible with available ground water resources considering up to 70% SOD.

# Water level behaviour

The depth to water level varies from 5 to 8 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 3 to 7 mbgl in most parts.

# **Aquifer Disposition**

Exploration carried out at Chainpur block down to depth of 80 mbgl reveals that there is aquifer zone is encountered at depth range of 39 to 48 mbgl. Transmissivity of the aquifer is  $4094 \text{ m}^2/\text{day}$ .

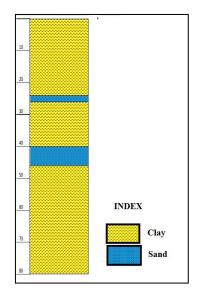



Fig: Lihtological log of exploratory well at Chainpur block.

## Ground water resource enhancement

As the stage of groundwater development is within the safe limit and there is no long-term water level decline in the area. Artificial recharge method should be carried out to enhance ground water resource.

## **Dynamic Ground Water Resource Estimation**

| Blocks   | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availibility | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | Stage of Ground<br>Water<br>Development (%) | Category safe/semi-<br>critical/critical/over<br>exploited |
|----------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|
| Chainpur | 10403.89                          | 597.45                                    | 2149.84                                   | 2429.36                                        | 15580.54                       | 1558.05                            | 14022.49                         | 1822.45                                                | 308.97                                     | 106.57                                       | 2237.99                                              | 308.97                                         | 11784.50                                                       | 15.96                                       | Safe                                                       |

## Annexure II

# Chemical Analysis of Ground Water Sample

| Location | Block    | District | pН  | EC   | ТН  | Ca | Mg | Na   | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|----------|----------|----------|-----|------|-----|----|----|------|-----|-----|------|----|-----|-----|------|
| Madurna  | Chainpur | Kaimur   | 7.8 | 1365 | 5   | 42 | 35 | 185  | 3.2 | 0   | 610  | 28 | 70  | 55  | 0.82 |
| Khoradih | Chainpur | Kaimur   | 7.8 | 347  | 3.2 | 56 | 5  | 6.82 | 1.9 | 0   | 177  | 4  | 23  | 8   | 0.15 |

Salient Information Name of the Block and Area (in km<sup>2</sup>) CHAND (206.70 sq. km)

# District/ State Kaimur/Bihar Population (as per 2011 census): 161147. Normal Annual Rainfall : 875.6 mm

## **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The number of irrigation structures is as follows:

| Dug Well          | 15   |
|-------------------|------|
| Shallow Tube well | 1715 |
| Medium Tube Well  | 13   |
| Deep Tube wells   | 0    |

#### Ground water resource availability and extraction

The dynamic ground water resource of Chand block has been assessed as 65.63 MCM. The gross ground water draft for all uses stands at 34.21 MCM. The stage of Development is 52.12 % depicted in Annuexure I. 1163 STWs are feasible with available ground water resources considering up to 70% SOD.

#### Water level behaviour

The depth to water level varies from 4.2 to 10.8 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 2.7 to 7.3 mbgl in most parts.

## **Aquifer Disposition**

Exploration carried out at Chainpur block down to depth of 80 mbgl reveals that there is aquifer zone is encountered at depth range of 39 to 48 mbgl. Transmissivity of the aquifer is 4094  $m^2/day$ .

# **Dynamic Ground Water Resource Estimation**

| Blocks | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availibility | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | ge סו טרנס<br>Water<br>elopment | Category safe/semi-<br>critical/critical/over<br>exploited |
|--------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|---------------------------------|------------------------------------------------------------|
| Chand  | 5242.26                           | 301.04                                    | 799.04                                    | 950.49                                         | 7292.83                        | 729.28                             | 6563.55                          | 3038.14                                                | 220.06                                     | 162.91                                       | 3421.11                                              | 220.06                                         | 3142.44                                                        | 52.12                           | Safe                                                       |

## Annexure II

# Chemical Analysis of Ground Water Sample

| Location | Block | pН  | EC   | ТН  | Ca  | Mg | Na  | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|----------|-------|-----|------|-----|-----|----|-----|-----|-----|------|----|-----|-----|------|
| Baradhi  | Chand | 7.6 | 541  | 1.9 | 38  | 0  | 66  | 1.9 | 0   | 238  | 7  | 30  | 14  | 0.21 |
| Biuri    | Chand | 7.8 | 1217 | 10  | 200 | 0  | 40  | 2.4 | 0   | 531  | 18 | 73  | 62  | 0.85 |
| Mahdaich | Chand | 7.9 | 1325 | 9   | 140 | 24 | 101 | 2.5 | 0   | 622  | 36 | 65  | 54  | 0.8  |
| Kukra    | Chand | 7.6 | 509  | 2.9 | 30  | 17 | 49  | 1.7 | 0   | 232  | 18 | 32  | 12  | 0.35 |

Salient Information Name of the Block and Area (in km<sup>2</sup>) DURGAWATI (167.64 sq. Km)

District/ State Kaimur/Bihar Population (as per 2011 census): 162765

## Normal Annual Rainfall: 957.76 mm

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The number of irrigation structures are as follows:

| Dug Well          | 92  |
|-------------------|-----|
| Shallow Tube well | 839 |
| Medium Tube Well  | 4   |
| Deep Tube wells   | 2   |

Kharif and rabi crop coverage during 2017-2018 (in hectares)

|           |       | Kharif (in | hectares) | Rabi (in hectares) |              |              |            |          |  |
|-----------|-------|------------|-----------|--------------------|--------------|--------------|------------|----------|--|
| Block     | Paddy | Maize      | Pulses    | Oilseeds           | Wheat        | Barley       | Pulses     | Oilseeds |  |
| Durgawati | 8270  | 20         | 145       | 0                  | 5915         | 40           | 1660       | 395      |  |
|           |       |            |           | Source:            | District Agi | riculture Of | fice, Kain | ur,      |  |

#### Ground water resource availability and extraction

The dynamic ground water resource of Durgawati block has been assessed as 50.81 MCM. The gross ground water draft for all uses stands at 18.60 MCM. The stage of Development is 36.61 % depicted in Annexure I. 889 STWs are feasible with available ground water resources considering up to 70% SOD.

## Water level behaviour

The depth to water level varies from 6.4 to 11.4 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 3.2 to 8.7 mbgl in most parts.

## **Aquifer Disposition**

Exploration carried out at Durgawati block down to depth of 87.89 mbgl reveals that the thickness of aquifer zone is encountered 26.20 metre consisting .Transmissivity of the aquifer is  $2200 \text{ m}^2/\text{day}$ .

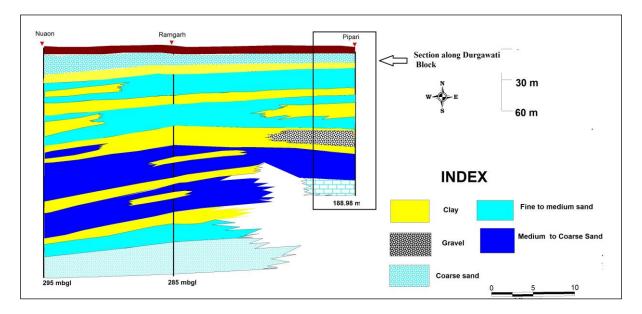



Fig: Lihtological log of exploratory well at Durgawati block

# **Dynamic Ground Water Resource Estimation**

| Blocks    | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availibility | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | lage of Gro<br>Water<br>evelopment | Category sate/semi-<br>critical/critical/over<br>exploited |
|-----------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|------------------------------------|------------------------------------------------------------|
| Durgawati | 2834.42                           | 244.15                                    | 1547.86                                   | 1019.78                                        | 5646.21                        | 564.62                             | 5081.59                          | 1546.56                                                | 225.46                                     | 88.60                                        | 1860.62                                              | 225.46                                         | 3220.97                                                        | 36.61                              | Safe                                                       |

## Annexure II

# Chemical Analysis of Ground Water Sample

| Location   | Block     | рН  | EC  | ТН  | Ca | Mg | Na   | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|------------|-----------|-----|-----|-----|----|----|------|-----|-----|------|----|-----|-----|------|
| Kabilaspur | Durgawati | 7.8 | 377 | 4.2 | 70 | 9  | 8.75 | 3.9 | 0   | 153  | 18 | 34  | 54  | 0.19 |
| Gora       | Durgawati | 8.2 | 403 | 3   | 56 | 2  | 25   | 1.5 | 0   | 189  | 7  | 32  | 15  | 0.15 |

Salient Information Name of the Block and Area (in km<sup>2</sup>) KUDRA : (210.54 sq. Km)

District/ State Kaimur/Bihar Population (as per 2011 census): 198312.

## Normal Annual Rainfall: 755.51 mm

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The number of irrigation structures are as follows:

| Dug Well          | 367  |
|-------------------|------|
| Shallow Tube well | 1524 |
| Medium Tube Well  | 995  |
| Deep Tube wells   | 493  |

Kharif and rabi crop coverage during 2017-2018 (in hectares)

|       |       | Kharif (in | hectares) |               | Rabi (in hectares) |              |        |          |  |  |  |
|-------|-------|------------|-----------|---------------|--------------------|--------------|--------|----------|--|--|--|
| Block | Paddy | Maize      | Pulses    | Oilseeds      | Wheat              | Barley       | Pulses | Oilseeds |  |  |  |
| Kudra | 15714 | 15         | 130       | 5             | 9210               | 85           | 1540   | 345      |  |  |  |
|       |       |            | Source    | e: District A | griculture         | Office, Kain | nur,   |          |  |  |  |

#### Ground water resource availability and extraction

The dynamic ground water resource of **Kudra** block has been assessed as 141.53 MCM. The gross ground water draft for all uses stands at 33.33 MCM. The stage of Development is 23.55 % depicted in Annexure I. 2553 STWs are feasible with available ground water resources considering up to 70% SOD.

## Water level behaviour

The depth to water level varies from 4.9 to 7.4 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 3.1 to 5.7 mbgl in most parts.

## **Aquifer Disposition**

Granular zones delineated from exploration data reveals that aquifer zones are encountered at:

Shallow aquifer zone: 10-30 mbgl, average thickness is 20 m.

Deeper aquifer zone I: 95-125 mbgl, average thickness of 30 m.

Deeper aquifer zone II: 130-165 mbgl, average thickness of 35 m.

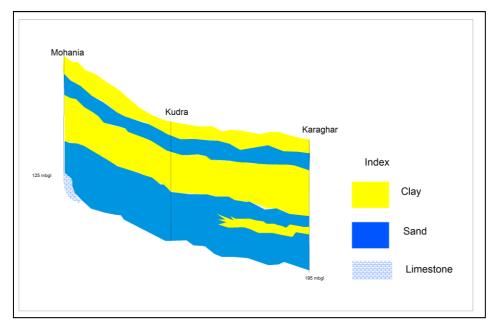



Fig: Aquifer disposition along Kudra block

# **Dynamic Ground Water Resource Estimation**

| Blocks | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availibility | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | Stage of Ground<br>Water<br>Development (%) | Category sate/semi-<br>critical/critical/over<br>exploited |
|--------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|
| Kudra  | 5339.65                           | 306.63                                    | 3916.54                                   | 6163.65                                        | 15726.47                       | 1572.65                            | 14153.82                         | 2902.57                                                | 271.85                                     | 158.72                                       | 3333.14                                              | 271.86                                         | 10820.67                                                       | 23.55                                       | Safe                                                       |

## Annexure II

# Chemical Analysis of Ground Water Sample

| Location         | Block | pН  | EC   | ТН  | Ca  | Mg | Na | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|------------------|-------|-----|------|-----|-----|----|----|-----|-----|------|----|-----|-----|------|
| Mokaran          | Kudra | 7.9 | 597  | 4.7 | 70  | 15 | 40 | 2.4 | 0   | 317  | 7  | 35  | 22  | 0.17 |
| Asraulia         | Kudra | 7.1 | 357  | 3.1 | 48  | 9  | 30 | 6.4 | 0   | 214  | 4  | 50  | 10  | 0    |
| Bhadaura         | Kudra | 7.9 | 392  | 2   | 30  | 6  | 32 | 1.8 | 0   | 153  | 4  | 12  | 30  | 0    |
| Chtrabhuji sthan | Kudra | 7.8 | 1132 | 7.3 | 100 | 28 | 91 | 1.7 | 0   | 494  | 25 | 69  | 65  | 0.94 |

Salient Information Name of the Block and Area (in km<sup>2</sup>) MOHANIA : (285.52 sq. Km)

District/ State Kaimur/Bihar Population (as per 2011 census): 269088

## Normal Annual Rainfall: 929.1 mm

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The number of irrigation structures are as follows:

| Dug Well          | 88   |
|-------------------|------|
| Shallow Tube well | 1548 |
| Medium Tube Well  | 883  |
| Deep Tube wells   | 220  |

Kharif and Rabi crop coverage during 2017-2018 (in hectares)

|         |       | Kharif (in | hectares)   | Rabi (in hectares) |             |        |        |          |  |  |
|---------|-------|------------|-------------|--------------------|-------------|--------|--------|----------|--|--|
| Block   | Paddy | Maize      | Pulses      | Oilseeds           | Wheat       | Barley | Pulses | Oilseeds |  |  |
| Mohania | 13033 | 65         | 115         | 7                  | 14700       | 200    | 2160   | 410      |  |  |
|         |       | Sourc      | e: District | Agriculture        | Office, Kai | imur,  |        |          |  |  |

#### Ground water resource availability and extraction

The dynamic ground water resource of Mohania block has been assessed as 85.96 MCM. The gross ground water draft for all uses stands at 48.84 MCM. The stage of Development is 56.82 % depicted in Annuexure I. 1506 STWs are feasible with available ground water resources considering up to 70% SOD.

## Water level behaviour

The depth to water level varies from 4.9 to 11.5 m bgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 3.02 to 4.78 m bgl in most parts.

#### **Aquifer Disposition**

Granular zones delineated from exploration data reveals that aquifer zones are encountered at:

Shallow aquifer zone: 10-30 mbgl, average thickness is 20 m.

Deeper aquifer zone I: 95-125 mbgl, average thickness of 30 m.

Deeper aquifer zone II: 130-165 mbgl, average thickness of 35 m.

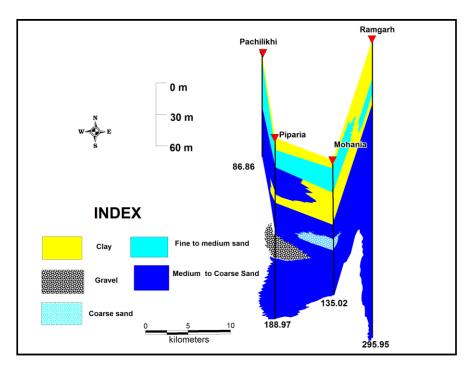



Fig: Aquifer disposition along Mohania block

# **Dynamic Ground Water Resource Estimation**

| Blocks  | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availability | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | tage of Groun<br>Water<br>evelopment (% | Category safe/semi-<br>critical/critical/over<br>exploited |
|---------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|
| Mohania | 6302.19                           | 415.83                                    | 792.54                                    | 1538.20                                        | 9048.76                        | 452.44                             | 8596.32                          | 4256.91                                                | 392.74                                     | 234.60                                       | 4884.25                                              | 392.75                                         | 3712.06                                                        | 56.82                                   | Safe                                                       |

## Annexure II

| Location    | Block   | pН  | EC  | ТН  | Ca  | Mg | Na | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|-------------|---------|-----|-----|-----|-----|----|----|-----|-----|------|----|-----|-----|------|
| Usri        | Mohania | 8   | 759 | 5.7 | 84  | 18 | 38 | 5.2 | 0   | 354  | 14 | 25  | 40  | 0.81 |
| Karmhara    | Mohania | 8   | 842 | 7.3 | 124 | 13 | 27 | 3.2 | 0   | 397  | 11 | 39  | 52  | 0.61 |
| Muijan      | Mohania | 8.1 | 143 | 1.1 | 16  | 4  | 0  | 1.7 | 0   | 61   | 0  | 8   | 0   | 0    |
| Bomhar khas | Mohania | 7.8 | 444 | 2.2 | 44  | 0  | 56 | 2.5 | 0   | 189  | 7  | 25  | 45  | 0    |
| Bokhari     | Mohania | 8   | 467 | 3.2 | 20  | 27 | 26 | 3.1 | 0   | 201  | 4  | 35  | 20  | 0    |

# ical Analysis of Ground Water SampleChem

Salient Information Name of the Block and Area (in km<sup>2</sup>) NUAON : 189 sq. Km

District/ State Kaimur/Bihar Population (as per 2011 census): 127433

## Normal Annual Rainfall: 723.7 mm

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The number of irrigation structures are as follows:

| Dug Well          | 11   |
|-------------------|------|
| Shallow Tube well | 1418 |
| Medium Tube Well  | 318  |
| Deep Tube wells   | 33   |

Kharif and Rabi crop coverage during 2017-2018 (in hectares)

|       |       | Kharif (in | hectares) | Rabi (in hectares) |            |              |        |          |  |  |
|-------|-------|------------|-----------|--------------------|------------|--------------|--------|----------|--|--|
| Block | Paddy | Maize      | Pulses    | Oilseeds           | Wheat      | Barley       | Pulses | Oilseeds |  |  |
| Nuaon | 7784  | 21         | 114       | 2                  | 6960       | 30           | 1130   | 350      |  |  |
|       |       |            | Sour      | ce: District       | Agricultur | e Office, Ka | imur,  |          |  |  |

#### Ground water resource availability and extraction

The dynamic ground water resource of Nuaon block has been assessed as 54.47 MCM. The gross ground water draft for all uses stands at 30.43 MCM. The stage of Development is 52.49 % depicted in Annexure I. 1022 STWs are feasible with available ground water resources considering up to 70% SOD.

#### Water level behaviour

The depth to water level varies from 4 to 6.8 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 2.42 to 4.78 mbgl in most parts.

## **Aquifer Disposition**

Aquifer disposition and characteristics can be ascertained through bore hole data at the block. Aquifer zones are delineated in the block based on exploration data down to depth of 295 mbgl. Aquifer zones are of different grades of sand, silt and clay.

Shallow aquifer zone: 10-30 mbgl, average thickness is 20 m.

Deeper aquifer zone I: 95-125 mbgl, average thickness of 30 m.

Deeper aquifer zone II: 130-165 mbgl, average thickness of 35 m.

Deeper aquifer zone II: 210-250 mbgl, average thickness of 40m.

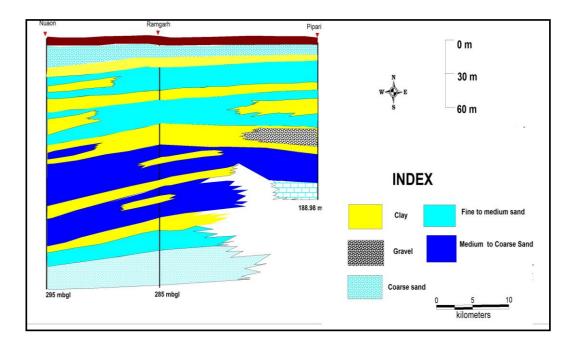



Fig: Aquifer disposition along Nuaon block

# **Dynamic Ground Water Resource Estimation**

| Blocks | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availibility | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | stage of Ground<br>Water<br>evelopment (% | Category safe/semi-<br>critical/critical/over<br>exploited |
|--------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|
| Nuaon  | 3872.97                           | 275.26                                    | 647.14                                    | 1255.07                                        | 6050.44                        | 302.52                             | 5747.92                          | 2722.78                                                | 175.36                                     | 144.91                                       | 3043.05                                              | 175.37                                         | 2704.86                                                        | 52.94                                     | Safe                                                       |

## Annexure II

# Chemical Analysis of Ground Water Sample

| Location     | Block | pН  | EC  | ТН  | Ca | Mg | Na | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|--------------|-------|-----|-----|-----|----|----|----|-----|-----|------|----|-----|-----|------|
| Jaitpur      | Nuon  | 7.6 | 388 | 2.2 | 40 | 2  | 42 | 2.6 | 0   | 177  | 4  | 35  | 25  | 0.13 |
| Etwa english | Nuon  | 7.9 | 768 | 6.5 | 96 | 21 | 23 | 5.2 | 0   | 366  | 11 | 52  | 22  | 0.65 |
| Mukhraon     | Nuon  | 7.7 | 861 | 7   | 68 | 44 | 35 | 6.8 | 0   | 403  | 14 | 55  | 36  | 0.94 |
| Kuchilliana  | Nuon  | 7.9 | 932 | 5.2 | 98 | 4  | 88 | 2.1 | 0   | 415  | 18 | 60  | 36  | 0.85 |

Salient Information Name of the Block and Area (in km<sup>2</sup>) RAMGARH : 168.52 sq. Km

District/ State Kaimur/Bihar Population (as per 2011 census): 157369

## Normal Annual Rainfall: 552.6 mm

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The number of irrigation structures are as follows:

| Dug Well          | 1140 |
|-------------------|------|
| Shallow Tube well | 227  |
| Medium Tube Well  | 82   |
| Deep Tube wells   | 44   |

Kharif and Rabi crop coverage during 2017-2018 (in hectares)

|                                              | Kharif (in hectares) |       |        |          | Rabi (in hectares) |        |        |          |
|----------------------------------------------|----------------------|-------|--------|----------|--------------------|--------|--------|----------|
| Block                                        | Paddy                | Maize | Pulses | Oilseeds | Wheat              | Barley | Pulses | Oilseeds |
| Ramgarh                                      | 10605                | 85    | 250    | 6        | 7935               | 65     | 1360   | 400      |
| Source: District Agriculture Office, Kaimur, |                      |       |        |          |                    |        |        |          |

#### Ground water resource availability and extraction

The dynamic ground water resource of Ramgarh block has been assessed as 36.51 MCM. The gross ground water draft for all uses stands at 14.54 MCM. The stage of Development is 39.85 % depicted in Annuexure I. 626 STWs are feasible with available ground water resources considering up to 70% SOD.

#### Water level behaviour

The depth to water level varies from 5.1 to 7.1 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 1.82 to 2.43 mbgl in most parts.

## **Aquifer Disposition**

Aquifer disposition and characteristics can be ascertained through bore hole data at the block. Aquifer zones are delineated in the block based on exploration data down to depth of 295 mbgl. Aquifer zones are of different grades of sand, silt and clay.

Shallow aquifer zone: 10-30 mbgl, average thickness is 20 m.

Deeper aquifer zone I: 95-125 mbgl, average thickness of 30 m.

Deeper aquifer zone II: 130-165 mbgl, average thickness of 35 m.

Deeper aquifer zone II: 210-250 mbgl, average thickness of 40m.

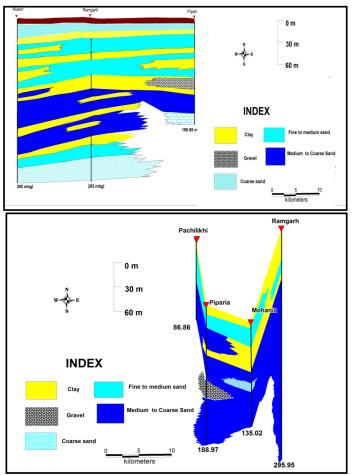



Fig: Aquifer disposition along Ramgarh block

## Annexure I

## **Dynamic Ground Water Resource Estimation**

| Blocks  | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availibility | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | nage or ५७ roum<br>Water<br>evelopment (% | Category sate/semi-<br>critical/critical/over<br>exploited |
|---------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|
| Ramgarh | 2849.30                           | 245.43                                    | 327.27                                    | 634.76                                         | 4056.76                        | 405.68                             | 3651.08                          | 1136.15                                                | 246.99                                     | 71.83                                        | 1454.97                                              | 247.00                                         | 2196.10                                                        | 39.85                                     | Safe                                                       |

#### Annexure II

## Chemical Analysis of Ground Water Sample

| Location   | Block   | pН  | EC  | ТН  | Ca | Mg | Na | K   | CO3 | нсоз | Cl | NO3 | SO4 | F    |
|------------|---------|-----|-----|-----|----|----|----|-----|-----|------|----|-----|-----|------|
| Bhairgawan | Ramgarh | 7.9 | 591 | 3.2 | 60 | 2  | 70 | 2.1 | 0   | 244  | 7  | 50  | 62  | 0.88 |
| Bharauli   | Ramgarh | 7.5 | 408 | 3   | 56 | 2  | 26 | 1.2 | 0   | 153  | 11 | 30  | 43  | 0.37 |
| Rashidpur  | Ramgarh | 8.1 | 500 | 3.5 | 60 | 6  | 35 | 3.1 | 0   | 189  | 7  | 42  | 54  | 0.14 |

Salient Information Name of the Block and Area (in km<sup>2</sup>) RAMPUR : 190.09 sq. Km

District/ State Kaimur/Bihar Population (as per 2011 census): 107019

#### Normal Annual Rainfall: 771.18 mm

#### **Agriculture and Irrigation**

The block falls in the Agro-climatic Zone III. The cropping sequence followed in this zone is Rice – Wheat, Rice – Maize, Rice – Lentil, Rice – Rai. Principal crops sown are paddy, wheat, sugarcane, potato and vegetables. Crops are growing in all the four seasons namely Bhadai, Ahgani, Rabi and Garma seasons in a year. The number of irrigation structures are as follows:

| Dug Well          | 183 |
|-------------------|-----|
| Shallow Tube well | 738 |
| Medium Tube Well  | 265 |
| Deep Tube wells   | 209 |

Kharif and Rabi crop coverage during 2017-2018 (in hectares)

|        |                                              | Kharif (in | hectares) |          |       | Rabi (in l | nectares) |          |  |  |  |
|--------|----------------------------------------------|------------|-----------|----------|-------|------------|-----------|----------|--|--|--|
| Block  | Paddy                                        | Maize      | Pulses    | Oilseeds | Wheat | Barley     | Pulses    | Oilseeds |  |  |  |
| Rampur | 9730                                         | 125        | 235       | 0        | 4290  | 65         | 1195      | 260      |  |  |  |
|        | Source: District Agriculture Office, Kaimur, |            |           |          |       |            |           |          |  |  |  |

#### Ground water resource availability and extraction

The dynamic ground water resource of Ramgarh block has been assessed as 62.62 MCM. The gross ground water draft for all uses stands at 16.37 MCM. The stage of Development is 26.15 % depicted in Annexure I. 1124 STWs are feasible with available ground water resources considering up to 70% SOD.

#### Water level behaviour

The depth to water level varies from 4.4 to 4.8 mbgl during pre-monsoon season. In post monsoon season, the depth to water level varies from 1.78 to 3.57 mbgl in most parts.

#### **Aquifer Disposition**

Aquifer disposition and characteristics can be ascertained through bore hole data at the block. Water bearing formation mainly consists of fractured sandstone. Two fracture zone has been encountered at the depth range of 33-33.4 mbgl and 75-75.7 mbgl.

## Annexure I

## **Dynamic Ground Water Resource Estimation**

| Blocks | Recharge from<br>rainfall Monsoon | Recharge from<br>rainfall Non-<br>Monsoon | Recharge from<br>other sources<br>Monsoon | Recharge from<br>other sources Non-<br>Monsoon | Total ground water<br>recharge | Provision for<br>natural discharge | Net ground water<br>availibility | Existing Gross<br>Ground Water<br>Draft for irrigation | Ground Water<br>Draft for Domestic<br>Uses | Ground Water<br>Draft for<br>Industrial Uses | Existing Gross<br>Ground Water<br>Draft for All Uses | Industrial<br>Requirement for<br>Next 25 years | Net GW<br>Availability for<br>Future Irrigation<br>Development | stage of Ground<br>Water<br>evelopment (% | Category sate/semi-<br>critical/critical/over<br>exploited |
|--------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|
| Rampur | 3815.57                           | 219.11                                    | 993.93                                    | 1929.41                                        | 6958.02                        | 695.80                             | 6262.22                          | 1413.37                                                | 146.30                                     | 77.98                                        | 1637.65                                              | 146.31                                         | 4624.56                                                        | 26.15                                     | Safe                                                       |

#### Annexure II

## Chemical Analysis of Ground Water Sample

| Location | Block  | pН  | EC  | TH  | Ca  | Mg | Na | K   | CO3 | НСО3 | Cl | NO3 | SO4 | F    |
|----------|--------|-----|-----|-----|-----|----|----|-----|-----|------|----|-----|-----|------|
| Gangapur | Rampur | 8.2 | 929 | 7   | 122 | 11 | 51 | 1.7 | 0   | 458  | 7  | 36  | 45  | 0.87 |
| Pali     | Rampur | 8.1 | 429 | 4.1 | 78  | 2  | 15 | 1.3 | 0   | 250  | 4  | 13  | 15  | 0.13 |

## Annexure I

## NAQUIM KEY WELL DETAILS

| SI no.   | District         | Block                  | Location                   | Longitude        | Latitude         | M.P  | Depth(mbmp) | Dia  | Elevation m<br>amsl | Pre-monsoon<br>water<br>level(mbg) | Post-monsoon<br>water<br>level(mbg) |
|----------|------------------|------------------------|----------------------------|------------------|------------------|------|-------------|------|---------------------|------------------------------------|-------------------------------------|
| 1        | Kaimur           | Bhabua                 | Nibkhurd                   | 83.599           | 25.145           | 0.20 | 6.10        | 1.50 | 79.00               | 5.6                                | 3.34                                |
| 2        | Kaimur           | bhabua                 | Dharaula                   | 83.550           | 25.108           | 0.90 | 12.10       | 1.50 | 78.70               | 10.2                               | 7.73                                |
| 3        | Kaimur           | Bhabua                 | Jadupur                    | 83.685           | 25.017           | 0.20 | 7.50        | 1.85 | 89.10               | 5.4                                | 3.17                                |
| 4        | Kaimur           | Bhabua                 | Siu                        | 83.602           | 25.018           | 0.10 | 9.40        | 1.50 | 86.20               | 8.6                                | 5.77                                |
| 5        | Kaimur           | Bhabua                 | Khorasan                   | 83.576           | 25.042           | 0.10 | 9.10        | 2.00 | 84.60               | 8.7                                | 5.35                                |
| 6        | Kaimur           | Bhabua                 | Silauthu                   | 83.682           | 25.098           | 0.25 | 4.50        | 1.50 | 81.00               | 3.6                                | 1.85                                |
| 7        | Kaimur           | Bhabua                 | Samra                      | 83.736           | 25.058           | 1.20 | 7.65        | 1.85 | 85.30               | 4.5                                | 2.02                                |
| 8        | Kaimur           | Bhagwanpur             | Gobarcha                   | 83.655           | 24.961           | 1.20 | 9.60        | 1.85 | 90.50               | 7.5                                | 5.93                                |
| 9        | Kaimur           | Bhagwanpur             | Saraiya                    | 83.596           | 24.987           | 0.85 | 13.20       | 1.84 | 88.80               | 12.4                               | 7.65                                |
| 10       | Kaimur           | Chainpur               | madurna                    | 83.478           | 25.042           | 0.45 | 11.60       | 1.85 | 87.90               | 10.6                               | 5.35                                |
| 11       | Kaimur           | chainpur               | khoradih                   | 83.547           | 25.003           | 0.20 | 7.80        | 1.60 | 89.00               | 5.3                                | 3.05                                |
| 12       | Kaimur           | Chand                  | Baradhi                    | 83.462           | 25.172           | 0.85 | 12.10       | 2.00 | 75.30               | 10.8                               | 7.27                                |
| 13       | Kaimur           | Chand                  | Biuri                      | 83.367           | 25.194           | 1.40 | 9.80        | 1.20 | 77.20               | 7.5                                | 9.23                                |
| 14       | Kaimur           | Chand                  | mahdaich                   | 83.349           | 25.058           | 0.45 | 6.40        | 2.15 | 84.50               | 4.0                                | 5.72                                |
| 15       | Kaimur           | Chand                  | Kukra                      | 83.450           | 25.093           | 0.20 | 9.60        | 1.85 | 79.70               | 8.3                                | 2.7                                 |
| 16       | Kaimur           | Chand                  | Chand in p.s.              | 83.400           | 25.113           | 0.30 | 5.50        | 1.00 | 81.00               | 5.2                                | 7.66                                |
| 17       | Kaimur           | Durgawati              | Karmansa                   | 83.433           | 25.236           | 0.40 | 13.20       | 2.10 | 77.00               | 11.4                               | 3.2                                 |
| 18       | Kaimur           | Durgawati              | Kabilashpur                | 83.545           | 25.289           | 0.64 | 11.40       | 2.27 | 72.20               | 10.1                               | 8.72                                |
| 19<br>20 | Kaimur<br>Kaimur | Durgawati<br>Durgawati | Gora<br>Kabilashpur<br>p.O | 83.490<br>83.548 | 25.196<br>25.289 | 0.85 | 8.50        | 2.10 | 75.50               | 6.4                                | 7.48<br>5.49 <b>7</b> 5             |

| 21 | Kaimur | Kudra   | Mokaran            | 83.811 | 24.999 | 0.20 | 6.85  | 1.20 | 95.20 | 4.9  | 9.1   |
|----|--------|---------|--------------------|--------|--------|------|-------|------|-------|------|-------|
| 22 | Kaimur | Kudra   | Bhadaura           | 83.758 | 25.096 | 0.10 | 8.20  | 1.25 | 84.30 | 7.4  | 10.2  |
| 23 | Kaimur | Kudra   | Dumari             | 83.801 | 25.171 | 0.30 | 7.20  | 2.15 | 78.80 | 6.0  | 9.5   |
| 24 | Kaimur | Mohania | Usri               | 83.574 | 25.174 | 0.21 | 7.30  | 1.50 | 79.20 | 5.9  | 10.06 |
| 25 | Kaimur | Mohania | Mujan              | 83.718 | 25.212 | 0.35 | 6.50  | 1.85 | 76.00 | 4.9  | 3.02  |
| 26 | Kaimur | Mohania | Bomhar khas        | 83.599 | 25.242 | 0.40 | 12.20 | 2.50 | 75.00 | 11.5 | 5.06  |
| 27 | Kaimur | Mohania | Bokhari            | 83.669 | 25.187 | 0.45 | 7.20  | 1.65 | 76.00 | 6.4  | 4.82  |
| 28 | Kaimur | Mohania | Chotki<br>kulharia | 83.711 | 25.254 | 0.25 | 7.60  | 1.50 | 72.60 | 6.2  | 4.92  |
| 29 | Kaimur | Nuon    | Rashidpur          | 83.714 | 25.339 | 1.05 | 13.72 | 1.80 | 71.20 | 5.4  | 2.91  |
| 30 | Kaimur | Nuon    | Jaitpur            | 83.737 | 25.395 | 0.85 | 9.80  | 2.15 | 69.70 | 5.9  | 8.72  |
| 31 | Kaimur | Nuon    | Mukhraon           | 83.844 | 25.311 | 0.77 | 8.10  | 1.80 | 73.00 | 6.8  | 2.42  |
| 32 | Kaimur | Nuon    | Kuchillana         | 83.865 | 25.254 | 0.20 | 5.30  | 1.50 | 75.90 | 4.0  | 2.42  |
| 33 | Kaimur | Ramgarh | Bhairgawan         | 83.628 | 25.304 | 0.10 | 9.18  | 1.85 | 70.10 | 7.1  | 1.82  |
| 34 | Kaimur | ramgarh | Bharauki           | 83.656 | 25.337 | 0.85 | 6.85  | 1.64 | 69.10 | 5.2  | 2.25  |
| 35 | Kaimur | ramgarh | Tenuyan            | 83.759 | 25.284 | 1.40 | 7.50  | 1.80 | 71.40 | 5.2  | 2.43  |
| 36 | Kaimur | Rampur  | Chamariawan        | 83.694 | 24.971 | 0.35 | 6.50  | 1.80 | 95.80 | 4.8  | 1.78  |
| 37 | Kaimur | Rampur  | Gangapur           | 83.743 | 24.959 | 0.85 | 8.35  | 2.00 | 99.00 | 4.4  | 3.57  |

#### Annexure II

| Block    | Dist   | Block    | Village                | Longitude | Latitude | r1    | r2   | r3   | r4   | r5   | r6 | h1   | h2   | h3   | h4   | h5  |
|----------|--------|----------|------------------------|-----------|----------|-------|------|------|------|------|----|------|------|------|------|-----|
| Bhabhua  | Kaimur | Bhabhua  | Posauli                | 83.72     | 25.10    | 17.23 | 8.1  | 40   | 5.7  | 60   |    | 3.25 | 3.85 | 13.6 | 42.3 |     |
| Kudra    | Kaimur | Kudra    | Kudra                  | 83.77     | 25.05    | 14.1  | 6.81 | 24.3 | 4.24 | 55.6 |    | 2.7  | 3.3  | 24.2 | 37.1 |     |
| Mohania  | Kaimur | Mohania  | Mohammadpur            | 83.64     | 25.24    | 9     | 7    | 42   | 7    | 91   |    | 1    | 16   | 33   | 42   |     |
| Ramgarh  | Kaimur | Ramgarh  | Akorhi Mauja           | 83.68     | 25.31    | 4     | 15   | 7    | 28   |      |    | 1    | 7    | 21   |      |     |
| Ramgarh  | Kaimur | Ramgarh  | Ramgarh                | 83.65     | 25.27    | 16    | 28   | 15   | 29   | 5    |    | 4    | 7    | 46   | 122  |     |
| Ramgarh  | Kaimur | Ramgarh  | Sisauda                | 83.70     | 25.32    | 5     | 2    | 17   | 5    | 20   | 57 | 1    | 1    | 8    | 11   | 165 |
| Noan     | Kaimur | Noan     | Kanhua                 | 83.72     | 25.34    | 10    | 26   | VH   |      |      |    | 20   | 33   |      |      |     |
| Mohania  | Kaimur | Mohania  | Usari                  | 83.57     | 25.18    | 21    | 6    | 21   | 3    |      |    | 1    | 6    | 393  |      |     |
| Mohania  | Kaimur | Mohania  | Bomhour Khas           | 83.60     | 25.23    | 13    | 11   | 25   | 61   |      |    | 2    | 30   | 199  |      |     |
| Durgauti | Kaimur | Durgauti | Chahria (Tola- Shemra) | 83.52     | 25.23    | 86    | 39   | 13   | 156  | VH   |    | 1    | 15   | 24   | 59   |     |
| Bhabhua  | Kaimur | Bhabhua  | Nibi Kalan             | 83.60     | 25.14    | 8     | 41   | 3    | 130  |      |    | 11   | 12   | 24   |      |     |
| Bhabhua  | Kaimur | Bhabhua  | Marichawan             | 83.58     | 25.14    | 8     | 7    | 24   | 5    | 20   | VH | 1    | 8    | 12   | 21   | 159 |
| Bhabhua  | Kaimur | Bhabhua  | Asrarhi                | 83.66     | 25.10    | 12    | 5    | 14   | 5    | 12   | 7  | 1    | 1    | 3    | 5    | 15  |
| Mohania  | Kaimur | Mohania  | Dasoti                 | 83.63     | 25.20    | 9     | 6    | 16   |      |      |    | 1    | 42   |      |      |     |
| Ramgarh  | Kaimur | Ramgarh  | Devhalia               | 83.58     | 25.26    | 18    | 157  | 14   | 31   | 182  |    | 1    | 1    | 10   | 193  |     |
| Ramgarh  | Kaimur | Ramgarh  | Piparia                | 83.64     | 25.31    | 9     | VH   |      |      |      |    | 44   |      |      |      |     |
| Ramgarh  | Kaimur | Ramgarh  | Sahuka                 | 83.61     | 25.28    | 24    | 8    | 34   |      |      |    | 3    | 21   |      |      |     |

## VES Survey Details of Kaimur District

## Annexure III

## Exploratory Well Details of Kaimur District

| Location | Longitude | Latitude | Drilled<br>depth<br>(mbgl) | Zones taped (mbgl)                          | Fracture zone<br>(mbgl) | Discharge (m3/day) | Transmissivity(m2/day) | Storativity          |
|----------|-----------|----------|----------------------------|---------------------------------------------|-------------------------|--------------------|------------------------|----------------------|
| Barahuli | 83.70     | 25.11    | 125.05                     | 80-89;92-101;109-115                        |                         | 883                | 269.3                  |                      |
| Jagaria  | 83.51     | 25.04    | 93                         | 39-48                                       |                         | 1902               | 4094                   | $2.2 \times 10^{-6}$ |
| Nuon     | 83.74     | 25.35    | 310.44                     | 156-162;168-174;190-<br>196;211-217;250-256 |                         | 3957               | 2069                   |                      |
| Dahrak   |           |          | 259.69                     | 118-124;131-137;143-<br>146;170-176;196-205 |                         | 2987               | 6074                   | $3.4 	imes 10^{-4}$  |
| Adhaura  | 83.61     | 24.68    | 154                        |                                             | 97 &128                 | 1121.47            |                        |                      |
| Nauhatta | 84.22     | 25.57    | 102                        |                                             | 36-37; 75-76            | 1192.32            | 121.32                 |                      |

# Annexure IV

| District | Block      | Formation | Net Annual<br>Ground<br>Water<br>Availability | Existing<br>Gross<br>Ground<br>Water Draft<br>for<br>irrigation | Existing<br>Gross<br>Ground<br>Water<br>Draft for<br>Domestic<br>Uses | Existing<br>Gross<br>Ground<br>Water Draft<br>for<br>Industrial<br>Uses | Existing<br>Gross<br>Ground<br>Water<br>Draft for<br>All Uses | Provision for<br>Domestic<br>and<br>Industrial<br>Requirement<br>for Next 25<br>years | Net GW<br>Availability<br>for Future<br>Irrigation<br>Development | Stage of<br>Ground<br>Water<br>Development |
|----------|------------|-----------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
|          |            |           | (ham)                                         | (ham)                                                           | (ham)                                                                 | (ham)                                                                   | (ham)                                                         | (ham)                                                                                 | (ham)                                                             | (%)                                        |
| Kaimur   | Adhaura    | Hard Rock | 8190.441                                      | 513.09                                                          | 93.9948                                                               | 30.35                                                                   | 637.4348                                                      | 33.29                                                                                 | 7644.061                                                          | 7.78                                       |
| Kaimur   | Bhabhua    | Alluvium  | 10187.028                                     | 5074.17                                                         | 413.61216                                                             | 279.45088                                                               | 5767.23304                                                    | 146.47                                                                                | 4966.388                                                          | 56.61                                      |
| Kaimur   | Bhagwanpur | Alluvium  | 5038.2965                                     | 516.66                                                          | 114.0698                                                              | 31.54                                                                   | 662.2698                                                      | 23.62                                                                                 | 4498.0165                                                         | 13.14                                      |
| Kaimur   | Bhagwanpur | Hard Rock | 2406.582                                      | 570.35                                                          | 283.72326                                                             | 42.7                                                                    | 896.77326                                                     | 58.75                                                                                 | 1777.482                                                          | 37.26                                      |
| Kaimur   | Chainpur   | Alluvium  | 13524.057                                     | 1705.8                                                          | 304.78814                                                             | 100.53                                                                  | 2111.11814                                                    | 107.93                                                                                | 11710.327                                                         | 15.61                                      |
| Kaimur   | Chainpur   | Hard Rock | 498.429                                       | 116.65                                                          | 4.17998                                                               | 6.04                                                                    | 126.86998                                                     | 1.48                                                                                  | 380.299                                                           | 25.45                                      |
| Kaimur   | Chand      | Alluvium  | 6563.547                                      | 3038.14                                                         | 220.05996                                                             | 162.91                                                                  | 3421.10996                                                    | 77.93                                                                                 | 3447.477                                                          | 52.12                                      |
| Kaimur   | Durgawati  | Alluvium  | 5081.589                                      | 1546.56                                                         | 225.45904                                                             | 88.6                                                                    | 1860.61904                                                    | 79.84                                                                                 | 3455.189                                                          | 36.61                                      |
| Kaimur   | Kudra      | Alluvium  | 14153.823                                     | 2902.57                                                         | 271.852                                                               | 158.72                                                                  | 3333.142                                                      | 96.27                                                                                 | 11154.983                                                         | 23.55                                      |
| Kaimur   | Mohania    | Alluvium  | 8596.322                                      | 4256.91                                                         | 392.74292                                                             | 234.6016                                                                | 4884.25452                                                    | 131.27                                                                                | 4208.142                                                          | 56.82                                      |
| Kaimur   | Nuaon      | Alluvium  | 5747.918                                      | 2722.78                                                         | 175.36352                                                             | 144.91                                                                  | 3043.05352                                                    | 62.1                                                                                  | 2963.038                                                          | 52.94                                      |
| Kaimur   | Ramgarh    | Alluvium  | 3651.084                                      | 1136.15                                                         | 246.99258                                                             | 71.8324                                                                 | 1454.97498                                                    | 77.34                                                                                 | 2437.594                                                          | 39.85                                      |
| Kaimur   | Rampur     | Alluvium  | 5035.626                                      | 985.91                                                          | 112.73244                                                             | 54.93                                                                   | 1153.57244                                                    | 39.92                                                                                 | 4009.796                                                          | 22.91                                      |
| Kaimur   | Rampur     | Hard Rock | 1226.592                                      | 427.46                                                          | 33.56978                                                              | 23.05                                                                   | 484.07978                                                     | 11.89                                                                                 | 787.242                                                           | 39.47                                      |

## Dynamic Ground Water Resources (2017)

## Annexure V

| Block      | Dug well | Shallow tube well | Medium tube well | Deep tube well            |
|------------|----------|-------------------|------------------|---------------------------|
| Adhaura    | 30       | 3                 | 277              | 0                         |
| Bhabua     | 35       | 2857              | 92               | 119                       |
| Bhagwanpur | 642      | 444               | 570              | 78                        |
| Chainpur   | 670      | 511               | 732              | 112                       |
| Chand      | 15       | 1715              | 13               |                           |
| Durgawati  | 92       | 839               | 4                | 2                         |
| Kudra      | 367      | 1524              | 995              | 493                       |
| Mohania    | 88       | 1548              | 883              | 220                       |
| Nuaon      | 11       | 1418              | 318              | 33                        |
| Ramgarh    | 1140     | 227               | 82               | 44                        |
| Rampur     | 183      | 738               | (ML Census dat   | a <b>2013-14</b> )<br>209 |

## Minor Irrigation Census Data of Kaimur District

Annexure VI

|         |                  |                  |                   |                     | Block wi     | ise land use               | data of Ka    | imur distric    | et (in acres)                     |                                                                    |                |                |               |              |
|---------|------------------|------------------|-------------------|---------------------|--------------|----------------------------|---------------|-----------------|-----------------------------------|--------------------------------------------------------------------|----------------|----------------|---------------|--------------|
| SI<br>N | Name of<br>Block | Geograp<br>hical | Forest<br>(acres) | Barren<br>and       | Land         | not availab<br>cultivation |               | Cultura<br>ble  | Permane<br>nt                     | Land<br>under                                                      |                |                |               | (3 - 14)     |
| 0.      |                  | area             |                   | unculura            | Land         | Water                      | r Area        | Waste           | pasture                           | misc.                                                              | Other          | Current        | Total (4      |              |
|         |                  | (acres)          |                   | ble land<br>(acres) | Area         | Perenni<br>al              | Tempor<br>ary | land<br>(acres) | and<br>grazing<br>land<br>(acres) | Tree,<br>crops<br>and<br>Gross<br>net<br>includi<br>ng net<br>area | fallow<br>land | fallow<br>land | to 13)        |              |
| 1       | 2                | 3                | 4                 | 5                   | 6            | 7                          | 8             | 9               | 10                                | 11                                                                 | 12             | 13             | 14            | 15           |
| 1       | Bhabhua          | 82462.39         | 0                 | 612.2               | 17715.8<br>5 | 3096.65                    | 127.15        | 0               | 9.14                              | 1119.35                                                            | 260.1          | 170.1          | 23110.54      | 59351.8<br>5 |
| 2       | Bhagwanp<br>ur   | 58864.35         | 23460.4<br>9      | 4185.63             | 5964.01      | 2556.03                    | 712.51        | 3.61            | 186.34                            | 544.8                                                              | 190.8          | 280.2          | 38084.42      | 20779.9<br>3 |
| 3       | Rampur           | 40968.67         | 15612.2<br>5      | 1678.12             | 3499.55      | 1156.63                    | 2.39          | 0               | 0                                 | 380.85                                                             | 99.16          | 80.16          | 22509.11      | 18459.5<br>6 |
| 4       | Chainpur         | 113201.0<br>0    | 27232.8<br>1      | 3072.28             | 7700.02      | 2580.2                     | 28.43         | 455.25          | 131.87                            | 428.46                                                             | 7561.2<br>3    | 18140.3        | 67330.89      | 45870.1<br>1 |
| 5       | Chand            | 50805.00         | 0                 | 3215.21             | 6420.65      | 2235.34                    | 227.9         | 0               | 0                                 | 510.18                                                             | 2169.5<br>2    | 4219.83        | 18998.63      | 31806.3<br>7 |
| 6       | Adhaura          | 228978.4<br>6    | 160418.<br>9      | 3314.64             | 4682.7       | 1750.1                     | 143.38        | 3812.66         | 0                                 | 842.76                                                             | 18736.<br>1    | 32541.9        | 226243.1<br>4 | 2735.32      |
| 7       | Mohania          | 71787.00         | 0                 | 1183.48             | 6643.34      | 2445.4                     | 154.37        | 1642.33         | 0                                 | 574.32                                                             | 510.19         | 986.15         | 14139.58      | 57647.4<br>2 |
| 8       | Durgawati        | 43454.37         | 0                 | 3245.87             | 6303.27      | 4192.36                    | 184.25        | 843.54          | 0                                 | 976.1                                                              | 508.13         | 288.35         | 16541.87      | 26912.5      |

#### Blockwise Land Use Land Cover Details Of Kaimur District

| 9  | Kudra   | 53400.00      | 0            | 1031.81  | 5814.48      | 983.12       | 234.41  | 1008.73 | 141.36 | 781.64  | 316.76      | 316.26       | 10628.57      | 42771.4<br>3 |
|----|---------|---------------|--------------|----------|--------------|--------------|---------|---------|--------|---------|-------------|--------------|---------------|--------------|
| 10 | Ramgadh | 42446.73      | 0            | 846.58   | 6754.69      | 698.48       | 224.84  | 0       | 0      | 156.32  | 91.01       | 89.46        | 8861.38       | 33585.3<br>5 |
| 11 | Nuwau   | 48459.27      | 10.08        | 3494.89  | 8193.11      | 3185.34      | 816.4   | 187.58  | 115.38 | 836.74  | 31078       | 310.91       | 17461.21      | 30998.0<br>6 |
| 12 | Total   | 834827.2<br>4 | 226734.<br>5 | 25880.71 | 79691.6<br>7 | 24879.6<br>5 | 2856.03 | 7953.7  | 584.09 | 7151.52 | 30753.<br>8 | 57423.6<br>6 | 463909.3<br>4 | 370917.<br>9 |

(Source: District Statistical Office, Kaimur)

## Annexure VII

| Sl<br>no | Location     | Block     | District | Longitude | Latitude | рН  | EC<br>(μs/cm)<br>25C | TH (as<br>CaCO3) | Ca+2 | Mg+2 | Na   | К   | CO3-2 | HCO3- | Cl- | NO3-1 | SO4-2 | F-   |
|----------|--------------|-----------|----------|-----------|----------|-----|----------------------|------------------|------|------|------|-----|-------|-------|-----|-------|-------|------|
| 1        | Usri         | Mohania   | Kaimur   | 83.574    | 25.174   | 8   | 759                  | 285              | 84   | 18   | 38   | 5.2 | 0     | 354   | 14  | 25    | 40    | 0.81 |
| 2        | Kabilaspur   | Durgawati | Kaimur   | 83.545    | 25.289   | 7.8 | 377                  | 210              | 70   | 9    | 8.75 | 3.9 | 0     | 153   | 18  | 34    | 54    | 0.19 |
| 3        | Bhairgawan   | Ramgarh   | Kaimur   | 83.490    | 25.196   | 7.9 | 591                  | 160              | 60   | 2    | 70   | 2.1 | 0     | 244   | 7   | 50    | 62    | 0.88 |
| 4        | Bharauli     | Ramgarh   | Kaimur   | 83.656    | 25.337   | 7.5 | 408                  | 150              | 56   | 2    | 26   | 1.2 | 0     | 153   | 11  | 30    | 43    | 0.37 |
| 5        | Rashidpur    | Ramgarh   | Kaimur   | 83.644    | 25.300   | 8.1 | 500                  | 175              | 60   | 6    | 35   | 3.1 | 0     | 189   | 7   | 42    | 54    | 0.14 |
| 6        | Jaitpur      | Nuon      | Kaimur   | 83.733    | 25.391   | 7.6 | 388                  | 110              | 40   | 2    | 42   | 2.6 | 0     | 177   | 4   | 35    | 25    | 0.13 |
| 7        | Etwa english | Nuon      | Kaimur   | 83.757    | 25.347   | 7.9 | 768                  | 325              | 96   | 21   | 23   | 5.2 | 0     | 366   | 11  | 52    | 22    | 0.65 |
| 8        | Mukhraon     | Nuon      | Kaimur   | 83.844    | 25.311   | 7.7 | 861                  | 350              | 68   | 44   | 35   | 6.8 | 0     | 403   | 14  | 55    | 36    | 0.94 |
| 9        | Kuchilliana  | Nuon      | Kaimur   | 83.865    | 25.254   | 7.9 | 932                  | 260              | 98   | 4    | 88   | 2.1 | 0     | 415   | 18  | 60    | 36    | 0.85 |
| 10       | Gora         | Durgawati | Kaimur   | 83.490    | 25.196   | 8.2 | 403                  | 150              | 56   | 2    | 25   | 1.5 | 0     | 189   | 7   | 32    | 15    | 0.15 |
| 11       | Baradhi      | Chand     | Kaimur   | 83.462    | 25.172   | 7.6 | 541                  | 95               | 38   | 0    | 66   | 1.9 | 0     | 238   | 7   | 30    | 14    | 0.21 |
| 12       | Biuri        | Chand     | Kaimur   | 83.367    | 25.194   | 7.8 | 1217                 | 500              | 200  | 0    | 40   | 2.4 | 0     | 531   | 18  | 73    | 62    | 0.85 |
| 13       | Mahdaich     | Chand     | Kaimur   | 83.450    | 25.093   | 7.9 | 1325                 | 450              | 140  | 24   | 101  | 2.5 | 0     | 622   | 36  | 65    | 54    | 0.8  |
| 14       | Madurna      | Chainpur  | Kaimur   | 83.478    | 25.042   | 7.8 | 1365                 | 250              | 42   | 35   | 185  | 3.2 | 0     | 610   | 28  | 70    | 55    | 0.82 |
| 15       | Kukra        | Chand     | Kaimur   | 83.547    | 25.003   | 7.6 | 509                  | 145              | 30   | 17   | 49   | 1.7 | 0     | 232   | 18  | 32    | 12    | 0.35 |
| 16       | Khoradih     | Chainpur  | Kaimur   | 83.547    | 25.003   | 7.8 | 347                  | 160              | 56   | 5    | 6.82 | 1.9 | 0     | 177   | 4   | 23    | 8     | 0.15 |
| 17       | Nibkhura     | Bhabua    | Kaimur   | 83.599    | 25.145   | 8.1 | 696                  | 225              | 58   | 19   | 42   | 2.3 | 0     | 305   | 18  | 50    | 5     | 0.41 |
| 18       | Daraula      | Bhabua    | Kaimur   | 83.550    | 25.108   | 7.9 | 614                  | 280              | 92   | 12   | 30   | 1.4 | 0     | 323   | 11  | 44    | 26    | 0.54 |
| 19       | Jadupur      | Babhua    | Kaimur   | 83.685    | 25.017   | 7.8 | 507                  | 235              | 72   | 13   | 27   | 1.9 | 0     | 262   | 14  | 38    | 30    | 0.23 |
| 20       | Nirbispur    | Bhabua    | Kaimur   | 83.602    | 25.018   | 8   | 327                  | 150              | 38   | 13   | 2.8  | 3.4 | 0     | 171   | 4   | 8     | 10    | 0    |
| 21       | Gangapur     | Rampur    | Kaimur   | 83.743    | 24.959   | 8.2 | 929                  | 350              | 122  | 11   | 51   | 1.7 | 0     | 458   | 7   | 36    | 45    | 0.87 |
| 22       | Pali         | Rampur    | Kaimur   | 83.774    | 24.934   | 8.1 | 429                  | 205              | 78   | 2    | 15   | 1.3 | 0     | 250   | 4   | 13    | 15    | 0.13 |
| 23       | Mokaran      | Kudra     | Kaimur   | 83.811    | 24.999   | 7.9 | 597                  | 235              | 70   | 15   | 40   | 2.4 | 0     | 317   | 7   | 35    | 22    | 0.17 |

# Chemical data of pre-monsoon water samples ,Kaimur

| 24 | Asraulia            | Kudra      | Kaimur | 83.758 | 25.096 | 7.1 | 357  | 155 | 48  | 9  | 30  | 6.4 | 0 | 214 | 4  | 50 | 10 | 0    |
|----|---------------------|------------|--------|--------|--------|-----|------|-----|-----|----|-----|-----|---|-----|----|----|----|------|
| 25 | Bhadaura            | Kudra      | Kaimur | 83.801 | 25.171 | 7.9 | 392  | 100 | 30  | 6  | 32  | 1.8 | 0 | 153 | 4  | 12 | 30 | 0    |
| 26 | Chtrabhuji<br>sthan | Kudra      | Kaimur | 83.8   | 25.123 | 7.8 | 1132 | 365 | 100 | 28 | 91  | 1.7 | 0 | 494 | 25 | 69 | 65 | 0.94 |
| 27 | Karmhara            | Mohania    | Kaimur | 83.711 | 25.254 | 8   | 842  | 365 | 124 | 13 | 27  | 3.2 | 0 | 397 | 11 | 39 | 52 | 0.61 |
| 28 | Muijan              | Mohania    | Kaimur | 83.718 | 25.212 | 8.1 | 143  | 55  | 16  | 4  | 0   | 1.7 | 0 | 61  | 0  | 8  | 0  | 0    |
| 29 | Karar               | Adhaura    | Kaimur | 83.540 | 24.848 | 7.9 | 126  | 60  | 14  | 6  | 0   | 3.2 | 0 | 61  | 0  | 15 | 0  | 0    |
| 30 | Garka               | Adhaura    | Kaimur | 83.595 | 24.711 | 8   | 467  | 190 | 62  | 9  | 22  | 4.7 | 0 | 244 | 4  | 25 | 17 | 0.15 |
| 31 | Mohanpur            | Bhagwanpur | Kaimur | 83.655 | 24.961 | 7.9 | 815  | 335 | 110 | 15 | 46  | 3.5 | 0 | 397 | 11 | 65 | 42 | 0.23 |
| 32 | Silautu             | Bhabua     | Kaimur | 83.682 | 25.098 | 8.1 | 821  | 125 | 36  | 9  | 147 | 2.1 | 0 | 427 | 7  | 49 | 45 | 0.25 |
| 33 | Samra               | Bhabua     | Kaimur | 83.736 | 25.058 | 8.2 | 366  | 120 | 30  | 11 | 28  | 3.6 | 0 | 195 | 4  | 14 | 12 | 0    |
| 34 | Bomhar khas         | Mohania    | Kaimur | 83.599 | 25.242 | 7.8 | 444  | 110 | 44  | 0  | 56  | 2.5 | 0 | 189 | 7  | 25 | 45 | 0    |
| 35 | Bokhari             | Mohania    | Kaimur | 83.669 | 25.187 | 8   | 467  | 160 | 20  | 27 | 26  | 3.1 | 0 | 201 | 4  | 35 | 20 | 0    |