

केंद्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES THANE DISTRICT, MAHARASHTRA

मध्य क्षेत्र, नागपुर Central Region, Nagpur

Interim Report 2504/NQM/2022 कार्यालयीन उपयोग हेतु For official use only

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग **जल शक्ति मंत्रालय** भारत सरकार

CENTRAL GROUND WATER BOARD

Department of Water Resources, RD&GR Ministry of Jal Shakti Government of India

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN

THANE DISTRICT, MAHARASHTRA

AAP 2022-23

मध्यक्षेत्र, नागपुर Central Region, Nagpur

2022

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, THANE DISTRICT, MAHARASHTRA CONTRIBUTORS

Principal Authors		
Priti D.Raut	:	Scientist-C (Hydrogeologist)
Pawar Srinivas	:	Assistant Hydrogeologist
V.Venktesam	:	Senior Technical Assistant (Hg)
Hydrometeology		
Dr. P. Kiran Kumar	:	Scientist B (HM)
Supervision & Guidance		
N. Varadaraj	:	Regional Director
K. P. Dongre	:	Scientist-D (Hydrogeologist)
Abhay Niwasarkar	:	Scientist-D (Hydrogeologist)
Hydrogeology, GIS maps and Management Plan		
Priti D.Raut	:	Scientist-C(Hydrogeologist)
Pawar Srinivas	:	Assistant Hydrogeologist
V.Venktesam	:	Senior Technical Assistant (Hg)
S.N.Navghare	:	Draftsman
Sandesh Bhange	:	YP
Chemical Analysis and Chemical		
chapter		
Dr. Devsharan Verma	:	Scientist C (Chemist)
Dr. Sailee Bhange, STA (Chem)	:	Senior Technical Assistant (Chemist)

1. G	ENERAL INFORMATION		
	Geographical Area	:	4,091 sq. km.
	Administrative Divisions (2014)	:	Taluka- 7; Thane,Kalyan,Murabd,Ulhasnagar
			Ambarnath, Bhiwandi, Shahapur
	Villages (Census 2011)	:	807 Nos.
	Population (Census 2011)	:	8070 thousand
	Rainfall 2022	:	2801.1 mm
	Normal rainfall	:	2530 mm
	Long term rainfall Trend (1998-2022)	:	Rising trend 17.04 mm/year
2. G	EOMORPHOLOGY AND DRAINAGE		
	Major Physiographic unit	:	a)Alluvium/Valley/Beach sand/Channel Bar
			b) Denudational Hills of Sahaydri hill ranges
			c) Highly Dissected Basaltic plateau
			d) Highly Dissected Basaltic plateau
			e) Moderately Dissected Basaltic plateau
			f) Slightly Dissected Basaltic Plateau
	Major Drainage	:	Tributaries of Vaitarna and Ulhas River
3. L	AND USE (2020-21) (sources: DSA 2021)		
	Forest Area	:	1345.14 sq. km. (11.77%)
	Cultivable Area	:	6043.76 sq. km. (52.81 %)
	Net Area Sown	:	815.9 sq. km. (41.14 %)
	Area Sown more than once		55.14 Sq. km. (3.24%)
4.	SOIL TYPE	:	Sandy Loam Soil, Black Colored Soil,
			Lighter Colored soils, Coastal Soil
5. P	RINCIPAL CROPS (2020-21)		
	Rice		561.21 sq. km.
	Pulses	:	134.02 sq. km.
	Cerels	:	609 sq. km.
	Oil Seeds	:	3.2 sq. km.
6.	HORTICULTURAL CROPS		
	Mango	:	27.7 sq. km.
	Citrus fruit	:	0.04 sq. km.
	Banana	:	0.15 sq. km.
	Spices and vegetable	:	32.78 sq. km.
7.	IRRIGATION BY DIFFERENT SOURCES (2006-07)		Nos.
	Surface Flow Schemes	:	2637
	Surface Lift Sources		-
	Net Irrigated Area	· :	106700 ha
8.6	ROUND WATER MONITORING WE		
5.0	Dug wells		25
-	Piezometers	:	1
	EOLOGY	·	-
9.0	Recent	:	Alluvium (River Alluvium)
		:	Deccan Traps Basalt
10	Up. Cretaceous-Late Eocene HYDROGEOLOGY	•	Dectain Haps Dasait
10.			1. Hard Rock:
	Major Water Bearing	:	1. Hard Rock:

THANE DISTRICT AT A GLANCE

	Formation		Deccan Trans Pacalt Weathered vesicular
	Formation		Deccan Traps Basalt- Weathered, vesicular, fractured and
			Jointed basalt form aquifer. The depth of
			weathered mantle ranges from 1 to 8m
			and potential fractures normally are
			Limited to 20 to 60m depth range Under
			Unconfined to Confined conditions.
			2. Soft Rock:
			Alluvium- Coastal alluvial sediment with
			calcareous materials occurs in the
			western part of the district along the
			Coast. The fluvial alluvium occurs along
			The river drainage. The thickness of
			Alluvium varies from few meters to 20m
			UnderUnconfined to Confined conditions.
	Depth to water level in Shallow	۸a	
	Pre-monsoon Depth to Water		0.7 to 9.3 mbgl
	Level (May-2022)		
	Post-monsoon Depth to Water	:	0.5 to 4.75mbgl
	Level (Nov2022)	•	
	Depth to water level in Deeper A	/ui	uifer
	Water Level		1.4 to >50mbgl
	Water level Trend (2013-22)	-	
	Pre- monsoon Water Level	:	Rise: 0.0015 to 0.64m/year
	Trend (2013-2022)	•	Fall: 0.016 to 0.46m/year
	Post-monsoon Water Level	:	Rise: 0.0018 to 0.108 m/year
	Trend (2013-2023)	•	Fall: 0.002 to 0.37 m/year
11 6	GROUND WATER EXPLORATION (A	<u>د م</u>	
11. 0		50	Basalt
	Wells Drilled (CGWB)	:	EW 23, OW 5, Pz 4
		•	Total -32
	Depth Range	:	32 to 201 mbgl
	SWL	•	0.14 to 10 mbgl
	Discharge	:	0.14 to 10 lps
	Transmissivity	•	7.28 to 177.60 m ² /day
12 6		r n	art ground water is suitable for drinking and irrigation
	oses except localized nitrate conta	•	
	OSES EXCEPTIOCALZED INITIALE CONTA		
	Annual Extractable Ground	:	163.69 MCM
	Water Recharge	•	
	Total Extraction	:	31.11 MCM
	Projected Demand (Domestic)	•	7.13 MCM
	Stage of Ground Water	:	19.00 %
	Development	•	13.00 /0
			Safe
14			
14.	MAJOR GROUND WATER PROBL		
			from 1998 to 2022 it is observed that, two times
	moderate drought were face		•
	Low Development of Ground		
	 Sustainability in Hard Rock A 	١re	as.

	Ground Water Pollution from Industries.						
15.	Aquifer Management Plan						
	Demand side Management	ent : 1094 ha. area proposed for Drip irrigation					
	Expected Benefits	: 11030 ha. area comes under Assured Ground Wa					
			Irrigation.				

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, THANE DISTRICT, MAHARASHTRA

S.No	CONTENTS Topic	Page No.
1	INTRODUCTION	1
1.1	ABOUT THE AREA	1
1.2	GEOMORPHOLOGY, DRAINAGE AND SOIL TYPES	4
1.3	CLIMATE AND RAINFALL	7
1.4	GEOLOGY	12
2	HYDROGEOLOGY	15
2.2	AQUIFER PARAMETERS	20
2.3	3-D AND 2-D AQUIFER DISPOSITION	20
3	WATER LEVEL SCENARIO	24
3.1	DEPTH TO WATER LEVEL (AQUIER-I/SHALLOW AQUIFER)	24
3.2	DEPTH TO WATER LEVEL (AQUIER-II/DEEPER AQUIFER)	25
3.3		25
5.5	WATER LEVEL TREND (2013-2022)	20
3.4	HYDROGRAPH ANALYSIS	29
4	GROUND WATER QUALITY	31
5	GROUND WATER RESOURCES	38
6	GROUND WATER Issues	39
7	GROUND WATER MANAGEMENT PLAN	42
7.1	SUPPLY SIDE MANAGEMENT	42
7.2	DEMAND SIDE MANAGEMENT	42
7.3	EXPECTED BENEFITS	43
LIST OF FIGURES		
Figure 1. 1	INDEX MAP, THANE DISTRICT	2
Figure 1.2	ADMINISTRATIVE MAP, THANE DISTRICT	3
Figure 1. 3	LOCATIONS OF EXISTING EXPLORATORY AND GROUND WATER MONITORING WELLS	4
Figure 1.4	GEOMORPHOLOGY, THANE DISTRICT	5
Figure 1. 5	DRAINAGE, THANE DISTRICT	6
Figure 1. 6	SOIL, PALGHAR DISTRICT	7
Figure 1. 7	ANNUAL RAINFALL PATTERN (1998-2022)	9
Figure 1. 8	ISOHYET MAP OF THANE DISTRICT	10
FIGULE 1. O		-
-		11
Figure 1. 9	GEOLOGICAL MAP, THANE DISTRICT	11 12
Figure 1. 9 Figure 2.1	GEOLOGICAL MAP, THANE DISTRICT HYDROGEOLOGY, THANE DISTRICT	11 12
Figure 1. 9 Figure 2.1 Figure 2.2	GEOLOGICAL MAP, THANE DISTRICT HYDROGEOLOGY, THANE DISTRICT WATER TABLE CONTOUR THANE DISTRICT	12
Figure 1. 9 Figure 2.1	GEOLOGICAL MAP, THANE DISTRICTHYDROGEOLOGY, THANE DISTRICTWATER TABLE CONTOUR THANE DISTRICTDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTURED	-
Figure 1. 9 Figure 2.1 Figure 2.2 Figure 2.3	GEOLOGICAL MAP, THANE DISTRICT HYDROGEOLOGY, THANE DISTRICT WATER TABLE CONTOUR THANE DISTRICT DEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTURED ROCK THICKNESS-AQUIFER-I	12
Figure 1. 9 Figure 2.1 Figure 2.2	GEOLOGICAL MAP, THANE DISTRICTHYDROGEOLOGY, THANE DISTRICTWATER TABLE CONTOUR THANE DISTRICTDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-IDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTURED	12 18
Figure 1. 9 Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4	GEOLOGICAL MAP, THANE DISTRICTHYDROGEOLOGY, THANE DISTRICTWATER TABLE CONTOUR THANE DISTRICTDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-IDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-II	12 18
Figure 1. 9 Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5	GEOLOGICAL MAP, THANE DISTRICTHYDROGEOLOGY, THANE DISTRICTWATER TABLE CONTOUR THANE DISTRICTDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-IDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-IIYIELD POTENTIAL AQUIFER-I	12 18 18 19
Figure 1. 9 Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5 Figure 2.6	GEOLOGICAL MAP, THANE DISTRICTHYDROGEOLOGY, THANE DISTRICTWATER TABLE CONTOUR THANE DISTRICTDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-IDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-II	12 18 18
Figure 1. 9 Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5	GEOLOGICAL MAP, THANE DISTRICTHYDROGEOLOGY, THANE DISTRICTWATER TABLE CONTOUR THANE DISTRICTDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-IDEPTH OF OCCURRENCE AND WEATHERED ZONE/ FRACTUREDROCK THICKNESS-AQUIFER-IIYIELD POTENTIAL AQUIFER-I	12 18 18 19

CONTENTS

Figure 2.10	LITHOLOGICAL SECTION (A-A')	22					
Figure 2.11	LITHOLOGICAL SECTION (B-B')	22					
Figure 2.12	LITHOLOGICAL SECTION (C-C')	22					
Figure 2.13	LITHOLOGICAL SECTION (D-D')	23					
Figure 3.1	DTWL, SHALLOW AQUIFER (MAY 2022)	24					
Figure 3.2	DTWL, SHALLOW AQUIFER (NOV 2022)	25					
Figure 3.3	DTWL, DEEPER AQUIFER	26					
Figure 3.4	PRE-MONSOON DECADAL TREND (2013-22)						
Figure 3.5	POST-MONSOON DECADAL TREND (2013-22)	28					
Figure 3.7	BEHAVIOR OF WATER LEVEL WITH TIME	31					
Figure 4.1	GROUND WATER QUALITY, AQUIFER-I	33					
Figure 4.2	PERCENTAGE DISTRIBUTION OF GROUND WATER SAMPLES AS PER BIS DRINKING WATER STANDARDS.	35					
Figure 5.1	GROUND WATER RESOURCES (2022), THANE DISTRICT	39					
Figure 6.1	DRAFT VS AVAILABILITY OVER THE TIME	41					
Figure 7.1	DEMAND SIDE INTERVENTION	43					
Figure 7.2	ADDITIONAL AREA PROPOSED TO BE BOUGHT UNDER ASSURED GW IRRIGATION	43					
LIST OF TABLES							
TABLE 1. 1	LONG TERM RAINFALL ANALYSIS (1998 TO 2021) OF THANE DISTRICT	8					
TABLE 1.2	BLOCK WISE ANNUAL RAINFALL ANALYSIS (2013-2022)	11					
TABLE 1.3	GENERALIZED GEOLOGICAL SEQUENCE THANE DISTRICT	12					
TABLE 2.1	AQUIFER CHARACTERISTIC OF MAJOR AQUIFERS OF THANE DISTRICT	17					
TABLE 4.1	MINIMUM, MAXIMUM AND AVERAGE VALUES OF PARAMETERS IN GROUND WATER OF SHALLOW AQUIFER	31					
TABLE 4.2	CLASSIFICATION OF GROUND WATER SAMPLES OF SHALLOW AQUIFER AS PER BIS DRINKING WATER STANDARDS	34					
TABLE 4.3	CLASSIFICATION OF GROUND WATER OF SHALLOW AQUIFER FOR IRRIGATION BASED ON EC VALUES	35					
TABLE 4.4	CLASSIFICATION OF GROUND WATER OF SHALLOW AQUIFER FOR IRRIGATION BASED ON SAR VALUES	36					
TABLE 4.5	CLASSIFICATION OF GROUND WATER OF SHALLOW AQUIFER FOR IRRIGATION BASED ON RSC VALUES	36					
TABLE 5.1	GROUND WATER RESOURCES, AQUIFER-I (SHALLOW AQUIFER), THANE DISTRICT (2022)	38					
TABLE 7.1	AREA PROPOSED FOR MICRO IRRIGATION TECHNIQUES AND WATER SAVING THROUGH DEMAND SIDE INTERVENTIONS	43					
TABLE 7.4	EXPECTED BENEFITS AFTER MANAGEMENT OPTIONS						
TABLE 7.4	BLOCK WISE ADDITIONAL AREA UNDER ASSURED GW IRRIGATION	44					
	ANNEXURES						
ANNEXURE I	SALIENT FEATURES OF GROUND WATER EXPLORATION (CGWB), THANE DISTRICT	48					

ANNEXURE III	WATER LEVEL DATA OF MONITORING WELLS IN THANE	51
	DISTRICT	
ANNEXURE IIIII	LONG TERM GROUND WATER LEVEL TREND OF MONITORING	55
	WELLS IN THANE DISTRICT (2013-2022)	
ANNEXURE IVV	RESULTS OF CHEMICAL ANALYSIS OF GROUND WATER	58
	SAMPLES, SHALLOW AQUIFERS (MAY 2022)	
ANNEXURE V	DETAILS OF KEY OBSERVATION WELLS	59

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, THANE DISTRICT

1. INTRODUCTION

National Aquifer Mapping (NAQUIM) has been taken up in XII five-year plan by CGWB to carry out detailed hydrogeological investigation on 1:50,000 scale. The NAQUIM has been prioritized to study Over-exploited, Critical and Semi-Critical blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & poor sustainability of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulatory mechanism, has had a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional ground water development concept" to "modern ground water management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the **"Road Map"** for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus, the crux of NAQUIM is not merely mapping, but reaching the goal of ground water management through community participation. The aquifer maps and management plans will be shared with the administration of Thane district, Maharashtra for its effective implementation.

The activities under NAQUIM are aimed at:

- Identifying the aquifer geometry
- 4 Aquifer characteristics and their yield potential
- Quality of water occurring at various depths
- Aquifer wise assessment of ground water resources
- Preparation of aquifer maps and
- Formulate ground water management plan

1.1 ABOUT THE AREA

Thane is the northern most district of Konkan region of Maharashtra State. It is situated in the eastern part of Maharashtra between North Latitude 18° 42' and 20° 20', and East Longitude 72° 45' and 73° 48'. The total area of the district is 4214 sq. km. and falls in parts of survey of India degree sheets 46D, 46H, 47A and 47E. It is bounded on south by Mumbai Upnagar and Raigad District, east by Pune and Ahmednagar district, on north by Thane districts, on west by Arebian Sea.

The district headquarters is located at Thane Town. For administrative convenience, the district is divided into 7 blocks viz., Thane, Kalyan, Murabd, Ulhasnagar, Ambarnath, Bhiwandi, Shahapur It has a total population of 80,70,032 as per 2011 Census. The district has 31 towns and 807 villages out of which 13 villages are uninhabited. The entire district lies in vaitarna and Ulas sub basins of Vaitarna basin. Waitarna, Ulas, Tansa, Bhor and Bhatsa are the main rivers flowing through the district. The district is well drained by Waitarna and Ulas rivers and their tributaries. The district is categorized as safe as per Ground Water Resources Estimation 2020. The Index and Administrative map of the Thane district is presented in **Fig. 1.1 and Fig. 1.2**.

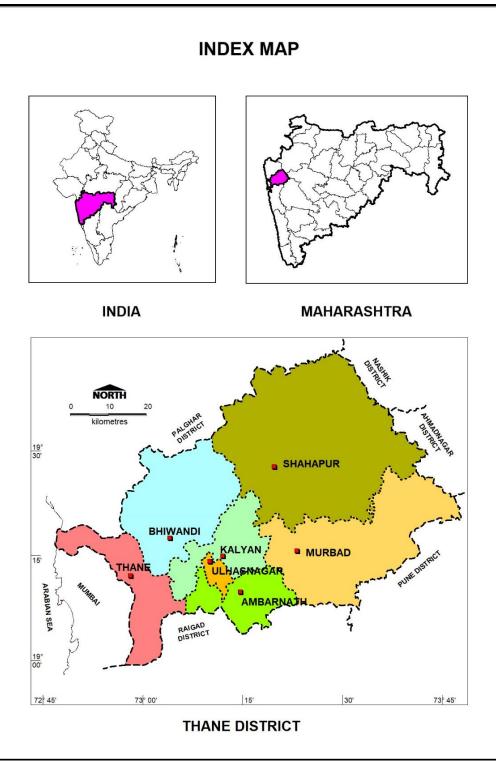


Figure 1. 1 : Index map, Thane District

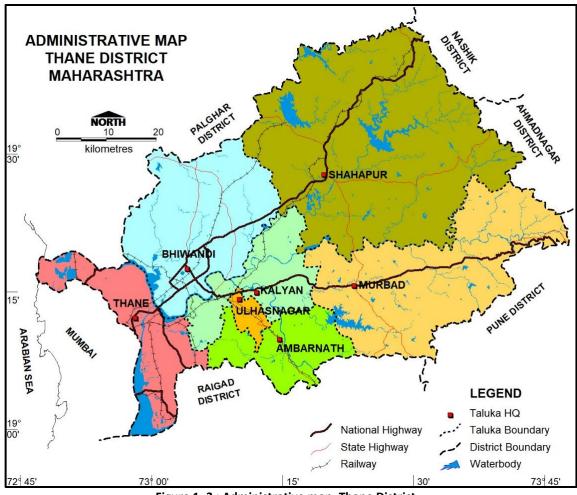


Figure 1. 2 : Administrative map, Thane District

Thane district has been taken up under NAQUIM study in the year 2022-23 (AAP 2022-23) Ground water exploration in the district has been taken up in different phases since 1976. During 1976 to 1991 in three phases; total 23 Exploratory Wells (EW), 04 Observation Wells (OW). In addition to these 04 Piezometers (Pz) were also constructed for monitoring of ground water levels.

The ground water exploration has been carried out in hard rock areas occupied by Deccan Trap Basalt. To establish the geometry, disposition and potential of aquifers, ground water exploration down to the depth of 200 mbgl has constructed during the years 2009-2010 to 2011-12. A total of 23 EWs, 4 OWs and 4 Piezometers have been constructed till March 2012. Salient Features and details of Ground Water Exploration are given in **Annexure-I**.

To assess the ground water regime, 26 existing ground water monitoring stations of CGWB being monitored 4 times in a year are used to acquire micro level hydrogeological data to decipher the water level scenario, sub-surface lithological disposition and hydrogeological setup of shallow aquifer (Aquifer-I). The details of monitoring wells are given in **Annexure-III**. Locations of existing ground water monitoring stations and exploratory wells are shown in **Fig.1.3**.

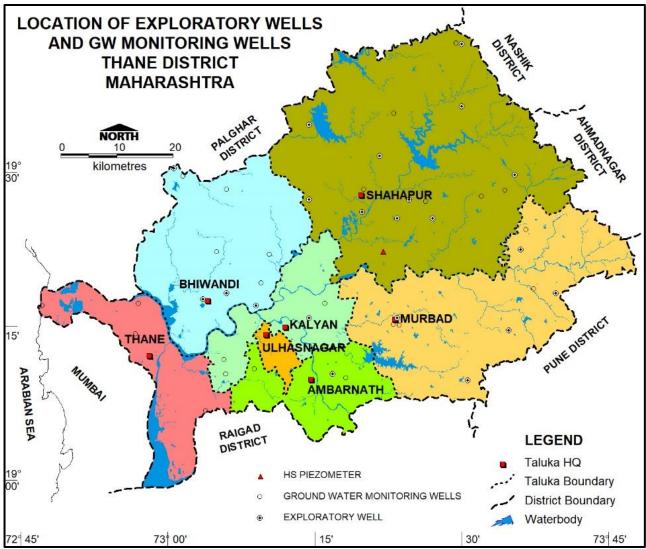


Figure 1. 3: Locations of Existing Exploratory and Ground Water Monitoring Wells

1.2 GEOMORPHOLOGY, DRAINAGE AND SOIL TYPES

The Thane district forms part of western slope of Sahayadri hill range. This hill range passes through the eastern part of the district. Major part of the district constitutes rugged and uneven topography, characterized by high hills and steep valleys. Physiographically, district can be divided into two broad divisions-Undulating Hilly Tract and Coastal Plain in western part. The area is drained by innumerable streams and tributaries of Vaitarna and Ulhas River. The four main tributaries of river Vaitarna are Surya, Tansa, Deharaja and Pinjal Rivers. Ulhas River is the other important river in the district. The flat terrain of Thane district lies generally with elevation less than 250 ml. **Fig. 1.4**

There are many creeks in the area prominent among them are Danda Creek in the southern most part, Mahim Creek, Ucheli Creek, Unbhat Creek, Chinchani-Tarapur Creek and Dahanu Creek in the northern end of the area. Mahim creek divides the village Mahim from village Kelwa. These creeks run from coastal inland up to a considerable distance carrying backwater. The Mahim, Satpati Akarbati areas area characterized by mangrove swamps and mud flats or marshy saline lands. The streams or the rivers carry very heavy load / flooded during the rainy season and flow up to January end every year. There are prominent salt pan areas located about 3km west of Kelve village close to Kelve-Makunsar road. The sea water inflows during high tide are used for salt preparation by natural evaporation process.

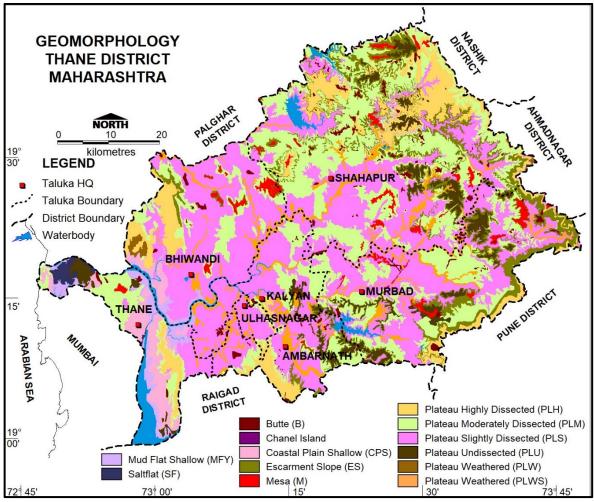


Figure 1. 4: Geomorphology, Thane District

The area is drained by innumerable streams and tributaries of Vaitarna and Ulhas River. The four main tributaries of river Vaitarna are Surya, Tansa, Deharaja and Pinjal Rivers. Ulhas River is the other important river in the district. The Drainage map is shown in **Fig. 1.5**

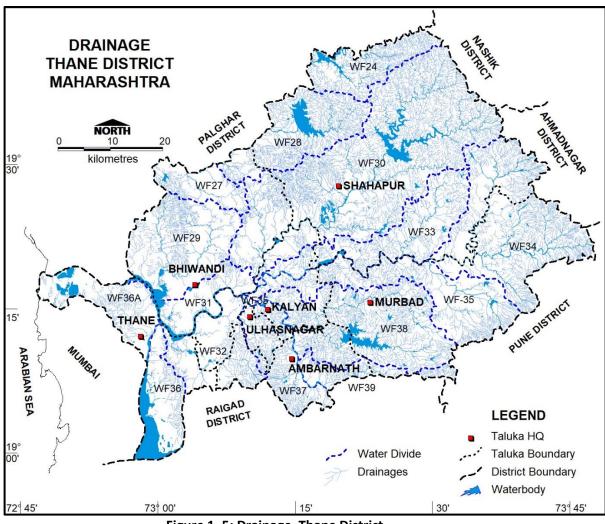


Figure 1. 5: Drainage, Thane District

Soil plays a very important role in the agricultural activities and forest growth of the area. The fertility of the soil from agricultural point of view depends upon the texture and structure which controls the retaining and transmitting capacity of the soil to hold the moisture content and various nutrients such as nitrogen, phosphorous and potassium present in the parent rock. The process of formation of the soil in the area is influenced by the climate, geology, vegetation, drainage and topography. The soil of Thane district is of various types. Each type of soil covering a well-defined track which displays different cropping pattern. Generally major part of the study area has black cotton soil called regur formed by weathering of trap rocks. It is rich in plant nutrients such as lime, magnesia, iron and alkaline on which cotton, jowar, bazra, tur etc. flourish. The soil varies both in texture and depth. The depth is generally shallow at the highland and hill slope and deeper in lowland and valley portion.

Sandy soil and older alluvial deposits of the Vaitharna and Surya Rivers are also found in pockets along the banks of these rivers.

Most of the soils in the district can be considered as being derived from trap (Basaltic) rocks. The soil has been classified into three broad categories based on the characteristics and relationship with topographic set up. (1) Soil of Coastal Lands with Residual Hills - These soils are slightly deep, poorly drained, fine soils on gentle sloping land and very fine soil on sloping land. These soils are calcareous and occur along the coast of

Vasai, Palgarh and Dahanu., (2) Lighter Colored soils - These soils are occurring on the undulating, elongated hills and 5 intervening valleys. These are medium to deep grayish in color, poor in fertility, clayey to loamy in nature, shallow in depth and coarse in texture. These soils are known as Varkas and are suitable for rice. The thematic map of soil distribution in the district is shown in **Fig. 1.6**.

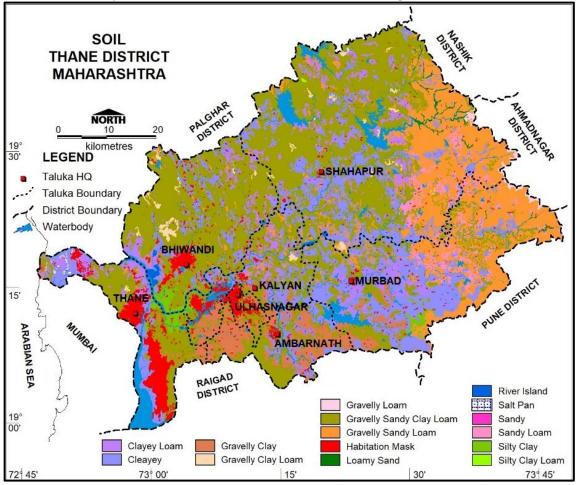


Figure 1. 6 : Soil, Thane District

Soil Infiltration test: To estimate the actual rate of infiltration in various soil types and their impact on recharge to ground water in Thane district, 2 soil infiltration tests were conducted at Vaishakra and Waret various soil types. The data has been analyzed and the salient features of the soil infiltration tests are presented in **Table 1.1.** The duration of the test is 140 minute and the infiltration rate in the area ranged from 0.3 to 1.8 cm/hr. Based on soil infiltration test it is observed that:

- Soils with low Infiltration rate shall be responsible for high runoff and become saturated during rain events. There will be less recharge to ground water. This, in turn, decreases soil strength and increases erosion potential.
- Soils that have less Infiltration rates lead to an increase in the overall volume of runoff. The excess run off caused by low Infiltration rate of soils may also contribute to local and regional flooding of streams and rivers or may result in accelerated soil erosion of fields or stream banks.
- Soil infiltration rate varies from 0.3 to 1.8 cm/hr.

S.No.	District	Block	Location	Latitude	Longitude	Rate of infiltration (cm/hr)
1	Thane	Murbhad	Vaishakra	19.70409	73.21248	1.8
2	Thane	Bhivandi	Waret	19.900862	72.941147	0.3

Table 1. 1: Salient Features of Infiltration Tests

1.3 CLIMATE AND RAINFALL

Climate of the district is characterized by high humidity throughout the year, an oppressive summer followed by well distributed and heavy rainfall during the southwest monsoon season. The cold season starts from December to February followed by summer from March to May. The southwest monsoon season is from June to September while October and November constitute the post monsoon season. The month with the highest relative humidity is July (89.00 %). The month with the lowest relative humidity is March (53.05 %). The rainfall is not uniform throughout the district. It is considerably more inland than on the coast. The district, however, receives heavy and assured rainfall.

Significant spatial variation in the normal rainfall ranging from less than 2100 mm/year to more than 2500 mm/year is observed. Minimum rainfall in the southern part of the district and gradually increases reaches maximum towards north and northern parts of district in parts of Shahapur and Bhiwandi blocks. Very insignificant rainfall variability is observed in the northern and northwestern parts of the district. Western part of the district shows heavy rainfall more than 2500 mm/year particularly Thane block. Central and eastern parts of the district in parts of Kalyan and Murbad blocks also receives maximum rainfall more than 2500 mm/year. Southern part of the district observes with strong isohyet gradients with rainfall between less than 2100 mm/year to 2500 mm/year particularly in parts of Ulhasnagar and Ambarnath blocks. The number of rainy days varying between 77 to 117 days.

The normal rainfall of the district is 2554 mm. Annual rainfall data of 1998-2022 is analysed and presented in Fig. 1.7. This indicates that Minimum rainfall occurred in 2009 (1883.1 mm) and maximum rainfall in 2005 (3871 mm). The rainfall trend analysis shows a rising trend @ 17.04 mm/year. The rainfall analysis show that the departure of annual rainfall from the normal rainfall, expressed in terms of percentage, varied from -26 to 51 percent. The departure percent analysed denotes the rainfall variation pattern occurred during the period 1998-2022. The area experienced 3 times (12%) excess rainfall, 20 times (80%) normal rainfall and 2 time (8%) moderate drought conditions as given in Table 1.1. The coefficient of variation of the annual rainfall from the mean rainfall has been observed to be 18.4%. The isohyet map of the district is depicted in Figure 1.8.

		Period =	No. of Years = 25					
YEAR	AVERAGE	NORMAL	MAL DEPARTURE		CATEGORY	Normal Rainfall	2554.024	
1998	2498.4	2558.6	-2.35	116	NORMAL	Standard Deviation	493.9398	
1999	1962.3	2558.6	-23.31	94	NORMAL	COEFFICIENT OF VARIATION	18.4	
2000	2502.5	2558.6	-2.19	92	NORMAL	MEAN	2687.7	
2001	2370	2558.6	-7.37	92	NORMAL	MEDIAN	2630.2	
2002	2385	2558.6	-6.78	77	NORMAL	SLOPE	17.04	
2003	2669.4	2558.6	4.33	105	NORMAL	INTERCEPT	2466.2	
2004	2823.9	2558.6	10.37	90	NORMAL	EQUATION OF TREND LINE	y=17.04x +	2466.2

 Table 1.2: Long Term Rainfall Analysis (1998 to 2022) of Thane district

2005	3871	2558.6	51.29	95	EXCESS	CATEGORY	NUMBER OF YEARS	%OF TOTAL YEARS	
2006	3079	2558.6	20.34	102	NORMAL	DEPARTURES			
2007	2490.2	2558.6	-2.67	91	NORMAL	POSITIVE	14	56.00	
2008	2630.2	2558.6	2.80	92	NORMAL	NEGATIVE	11	44.00	
2009	1883.1	2558.6	-26.40	78	MODERATE	DROUGHTS			
2010	2852.2	2558.6	11.48	112	NORMAL	MODERATE	2	8.00	
2011	2847.7	2558.6	11.30	103	NORMAL	SEVERE	0	0.00	
2012	2242.3	2558.6	-12.36	95	NORMAL	ACUTE	0	0.00	
2013	3062.8	2558.6	19.71	116	NORMAL	NORMAL & EXCESS R/F			
2014	2546.9	2558.6	-0.46	83	NORMAL	NORMAL	20	80.00	
2015	1900	2558.6	-25.74	94	MODERATE	EXCESS	3	12.00	
2016	2684.4	2558.6	4.92	93	NORMAL				
2017	3388.3	2558.6	32.43	110	EXCESS				
2018	2425.5	2558.6	-5.20	94	NORMAL	Rainfall depar		-	
2019	3734.9	2530	47.62	116	EXCESS	NORMAL: +25 TO -25; MODERATE TO -50; SEVERE: -50 TO -75; ACU			
2020	2559.5	2530	1.17	114	NORMAL	- 10-50; SEVERE: -50 10-75; ACUT -75			
2021	2982.8	2530	17.90	117	NORMAL				
2022	2801.1	2530	10.72	100	NORMAL				

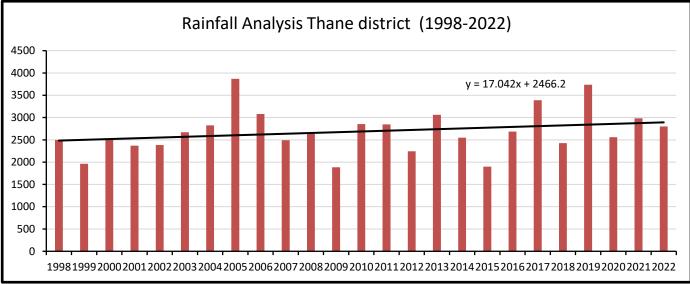


Figure 1.7: Annual Rainfall Pattern (1998-2022)

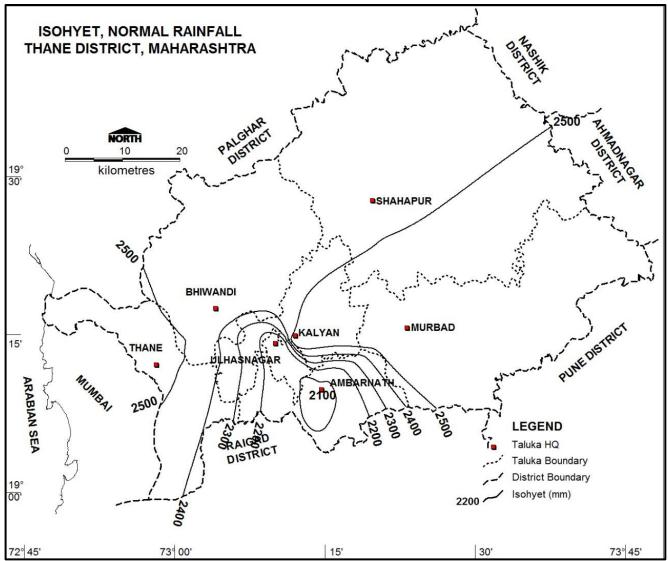


Figure 1.8: The isohyet map of the Thane district

	Normo											Avera
Block	Norma I Rainfal I (mm)	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	ge Rainf all (mm)
Ambarn	2452.2	3264	2622	1982	2885	3552	2531	3980	3016	3454	3135	2974.
ath	63 2576.7	.8 2932	.9 2347	.1 1851	.6 2506	.7 3196	.7 2399	.5 3504	.5 2646			3 2708.
Bhivandi	08	.1	.8	.2	.7	.4	.2	.7	.7	3121	2673	3
Kalyan	2501.2 5	3011 .5	2658 .9	1812 .4	3020 .9	3421	2262 .2	3340 .9	2031 .1	2434 .6	2633	2649. 5
	2542.2	2957	2490	1707	2387	3621	2290	3883	2620	2976		2747.
Murbad	6	.2	.3	.4	.5	.3	.4	.2	.4	.6	2792	7
Shahap	2666.1	3037	2686	2031	2712	3387	2386	3719	2203	2854	2973	2768.
ur	2000.1	.6	.2	.5	.3	.4	2300	.6	.6	.1	2575	4
Thane	2601.7 88	3332 .1	2261 .6	1893 .4	2526 .4	3165 .2	2480	2554 .4	0	3053 .4	2680	2386. 8
Ulhasna	2426.7	3080	2512	1902	2564	3891	2700	3891	2789	2855	2976	2861.
gar	72	.4	.7	1502	.1	5051	2,00	.1	.4	.1	2570	3
Average	2538.2	3088 .0	2511 .5	1882 .9	2657 .6	3462 .1	2435 .6	3553 .5	2186 .8	2964 .1	2837 .4	2728. 0

Table 1.2. Annual Block wise rainfall analysis (2013-2022)

1.4 GEOLOGY

Geologically, all the rock formations of different geological ages (Archean to Recent) are found in Thane district. The district is endowed with rich minierals deposits like coal, iron ore, Limestone, barytes and chromites. The generalized geological sequence of the area is given in **Table 1.2** A major part of district is covered with basalt lava flows generally called as Deccan trap. This volcanic activity was confined mainly to Upper Cretaceous to Lower Eocene age. Besides Deccan traps the formation like local alluvium, beach sand, coastal alluvium, laterites, trachytes & rhyolite cover very small area of the district. The main topographic features of this lava flows are flat topped hills and steps like

terrace Statigraphic sequences of the geological formation in the district is shown as below:-**Table 1. 3: Generalized Geological sequence Thane district**

Formation	Age	Lithology	
Alluvium	Recent	clay, silt and sand	
Beach sand	Recent	sand and silt	
Laterite	Pleistocene	Laterite	
Dykes		Basic intrusion	
Deccan traps basalt	Eocene to upper cretaceous	Amygdularbasalt	
Rhyolite	Eocene to upper cretaceous	Rhyolite	
Trachyte	Eocene to upper cretaceous	Trachyte	

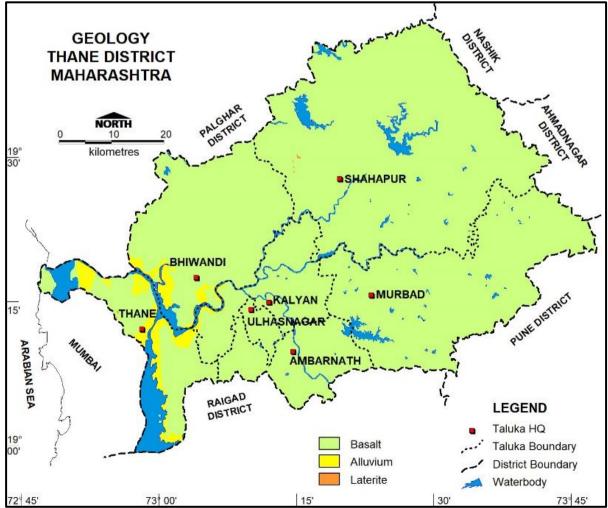


Figure 1. 9: Geological Map, Thane district

Deccan Traps

The basaltic lava flows of the Deccan Traps are the major rock formation of the area and total 8 flows have been demarcated from 509 to 987 m above MSL by G.S.I. Predominantly the Deccan Trap flows are simple "aa" types. The thickness of individual flow ranges from few meters to as much as 37 m. The "aa" flows generally show a thin zone of grayish basal clinker, a prominent middle section of dark dense rock and a top section of reddish altered breccia. The breccia comprises of angular and rounded reddish vesicular or massive trap pulverized rock material zeolites. The top surface of "aa" flows are represented by several centimetres of red bole. The middle dense section shows columnar or rectangular joints and conspicuous spheroidal weathering. All the Pahoehoe and "aa" flows are seen to have horizontal disposition with minor tilts here and there. In general they show a gentle easterly dip of 1 in 300 to 1 in 110.

Some of the flows are porphyritic in nature due to occurrence of plagioclase association with basalt. These lathes do not show any preferred orientation and occur randomly and also show criss-cross disposition. Each flow is characterized by the prominent units of vesicular and massive basalt. The flow contacts are demarcated based on (i) the occurrence of red or green bole or tuff (ii) chilled fine grained basalt at the base containing pipe amygdules (iii) highly vesicular and zeolitic upper parts (iv) textural and lithological characteristics and (v) distinct slope breaks.

The basaltic pile of the area is profusely intruded by dolerite and basaltic dykes, tuffs and agglomerates. The frequency of dykes is much more in the northern part where the N-S trending dykes are very conspicuous. Dykes trending NW-SE, NE-SW and E-W are also observed. Frequencies of dykes become relatively less in the south eastern part. At places triangular or rectilinear dykes' pattern are noticed.

The weathered mantle of basalt is called the murrum. The vertical and areal extension of weathered zone is highly variable being thinner at hill slopes and highland and thick at valley. The average weathered thickness ranges from 1 to 4m.

Laterite

Laterite of Cainozoic age occurs as small isolated capping on the top of hill. It is reddish to brown in color and pisolitic in nature.

Red Bole

The horizons of red or green bole, ranging in thickness from less than a meter to a few meters, are exposed at different places and altitudes. They occur as the top undulating layers of the flow, consisting of clay like materials, generally red and green in few places known as `red bole' or green boles respectively. These red bole beds are fine grained, ferruginous and clayey in nature and indicate presence of vesicular or zeolitic trappean unit underneath. They generally serve as marker horizons to differentiate the different flows.

Alluvium

The alluvium consisting of a clay, sand and gravel mostly occur in small lenticular patches, mostly along the bank of rivers towards the northern and eastern part of the study area. The shallow alluvium ranges in thickness from less than a meter to 8 m and directly overlie the Deccan Trap. The loosely cemented sands and gravels are probably derived from the traps. Besides the above patches, thin alluvium covers are also found at the banks of small nala occurring in area. Alluvium is more potential for ground water than the Deccan Trap. Coastal alluvial sediments are calcareous in nature. The alluvium is found along the rivers draining the coast and along the creeks and is composed of gravel, silt and clay. It ranges in thickness from 10 to 20m. Along the coast, alluvium is composed of soft, low-density clay deposits commonly referred as mud flats.

Subsurface Geology

Different flows occur at different elevation. Each flow is characterized by the prominent units of vesicular and massive basalt. The flow contacts are demarcated based on (i) the occurrence of red or green bole or tuff (ii) chilled fine grained basalt at the base containing pipe amygdules (iii) highly vesicular and

zeolitic upper parts (iv) textural and lithological characteristics and (v) distinct slope breaks. The weathered mantle of basalt is called the murrum. The vertical and areal extension of weathered zone is highly variable being thinner at hill slopes and highland whreas thick in valley. The average weathered thickness ranges from 1 to 4m. The horizons of red or green bole, ranging in thickness from less than a meter to a few metres, are exposed at different places and altitudes. The shallow alluvium ranges in thickness from less than a meter to 18 m and directly overlie the Deccan Trap.

Structures

Normally the Deccan Trap formations are not structurally disturbed. However due to West Coast proximity some structural features were developed. Structural disturbance in the area manifest as joints, fractures and shear zones. Lineaments are plentiful in the study area. Vertical to almost vertical and horizontal to sub horizontal joints are the most common although inclined joints are found locally. In general two sets of lineaments (i.e., trending NE-SW and NW-SE) are observed in the area. Besides a set of lineaments having N-S trend is also observed in some localities. The bore wells / Tube wells located along the lineaments or the intersection yield more ground water than those sited elsewhere.

Joints and Fractures

Sudden cooling during the process of lava eruption has given rise to development of vesicles and joints due to evaporation of gases. The traps are cut by two to three sets of vertical joints having general trend along N-S, NW-SE direction and rarely toward E-W direction. Horizontal joints or joints parallel to the upper and lower surface of the flow are also found. Fractures and shear zones are found at several places.

Dykes

A number of basic dykes ranging in width from 5 to 10 m and 0.5 km to 1 Km in length have been observed in the area intruding the basaltic flow. They have vertical to sub vertical disposition. In the western part of the area, the dykes are generally following the major regional trend viz., NW-SE to NNW-SSE. They are highly fractured with two to three sets of joints. Dykes trend in the N-S and E-W direction in the eastern part of the area.

The basaltic flows are also intruded by dykes, which have similar mineralogical composition as basalt. The general trend of the dykes are N60°E - S60°W, N5° to 10°E - S5° to 10°W, N30°E - S30°W, N35°W - S35°E and E-W. They generally form minor surface divides in the area and as such contain less amount of water. However, occasionally they behave as conduits in favorable hydrogeological conditions.

2. HYDROGEOLOGY

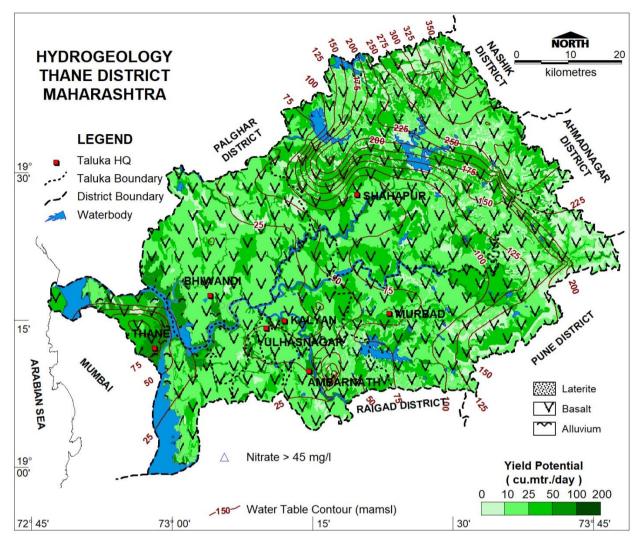


Figure 2. 1: Hydrogeology, Thane District

Deccan trap Basalt of Upper Cretaceous to Lower Eocene age is the major rock type covering about 80% of the district, coastal alluvium is other formation occurring only in western end of the district. A map depicting hydrogeology of Thane district is presented in **Fig. 2.1**.

Deccan Trap Basalt

Ground water in Deccan Traps mostly occurs in the weathered and fractured parts down to 10-15m depth. At places potential zones are encountered at deeper levels in the form of fractures and inter-flow zones which are generally confined down to 60-80m in the district. The weathered portions of both vesicular and massive units have better porosity and permeability. Intensity of weathering is less in hilly region as seen in the eastern part of the district while it is higher in plain area. The yield of dug wells tapping phreatic aquifer ranges between 18 to 152cum/day, which have 5-12m depth range. The bore wells are generally drilled down to 40 to 60m tapping weathered and fracture/vesicular zones, these wells have a discharge of 2 to 41ps. It is noticed and reported that the yields of the wells drastically get reduced in summer months beginning form March up June end.

Alluvium

These are developed in the western part of the area along the coast and river courses and are lacustrine in nature. Along the coast, alluvium consists of clayey and mud deposits. The quality of water is slightly brackish and pumping from this formation has to be restricted to prevent ingression of seawater. The alluvium constitutes the potential aquifer in the area. The yield of dug wells ranges between 122 to 252cum/day, which have 8-16m depth range. The bore wells are generally drilled down to 20 to 30m

tapping weathered and fracture/vesicular zones, these wells have a discharge of 4 to 6lps.

Springs details

There are volcanic springs associated with volcanic rocks and fissure springs resulting from fractures extending to a great depth in the earth's crust. When such springs are thermal in their water temperature they are called Hot Springs. During the course of field survey a number of Hot Springs were observed in and around SE part of the area near Vajreshwari, Ganesh Puri etc. These are the parts of water shed number WF-27 and WF-26. These areas are underlain by basaltic rocks having two sets of fractures in NNW and NE direction. The ground elevation in the area is between 20m to 25m amsl. The area is drained by Tansa River. Numbers of Hot Springs at Ganeshpuri are located along the river bed where massive basalt is exposed. The thermal water flowing from the hot spring has the temperature range of 42°C to 55°C. The discharge varies from 20 to 60 lpm. Ganeshpuri being the pilgrimage center, the devotees for bathing and other domestic use are utilizing the hot spring water. Besides, the spring water has got therapeutic importance. The locations of important hot springs are Paduspada (19°42': 73°4'), and Kokrene (19°43': 72°5').

Water table contour

Based on the Premonsoon water level data, a Premonsoon water table contour map has been prepared and presented in **figure 2.2**. The map depicts occurrence and movement of ground water in the district. The ground water flow lines are marked to show the direction of ground water flow. The elevation of water table ranges from 25 to 350 m amsl and generally follows the topography. In general, the ground water movement is towards the south -west. The ground water movement is generally sluggish in the alluvial areas with high permeable zones and in the areas of convergent ground water flow. Such areas have been demarcated as ground water potential zones. In area of low permeability, the water table contours are closely spaced indicating steep gradient.

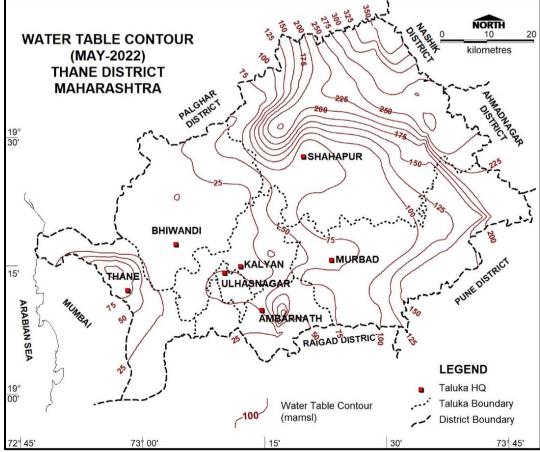


Figure 2.2: Water table contour map, Thane District.

2.1.1 Aquifer Geometry and Characterisation

Based on the ground water exploration data the existing aquifer systems in the area may be divided into two namely phreatic and deeper aquifer. Depth of occurrence of Aquifer -I and II is depicted in **Fig. 2.4** and yield in the **Fig. 2.6**

Basalt Aquifer system:

Ground water occurs under both phreatic and semiconfined condition. Dug well generally tap the weathered, jointed and fractured zones of the basaltic aquifers and in bore wells fractured part is more promising aquifer. The shallow aquifers are tapped by dug wells; depth of dug wells varies between 8 to 30 mbgl and thickness of weathered zones varies between 5 to 30 m. average yield potential of the aquifer varies from 0 to 200 m³/day. Bore wells are not common in the district due to poor ground water potential of deeper aquifers of Deccan Traps and their yield varies between 2 and 20 m3/ hr.

Major Aquifers	Basalt (Deccan Trap) (BS 01)	
Type of Aquifer (Phreatic/Semiconfined/Confined)	Aquifer-I (Phreatic)	Aquifer-II (Semiconfined/ confined)
Depth to Bottom of Aquifer (mbgl)	8-30	16-195
Weathered/Fractured rocks thickness (m)	5-18	1-9
Yield Potential	0 to 200 m³/day	1 to 3.3 lps
Specific Yield (Sy)/ Storativity (S)	0.02	0.0082 to 0.0986.
Transmissivity (T) (m²/day)	-	7.28 to 177.60 m2/day

Table 2. 1: Aquifer Characteristic of Major aquifers of Thane district

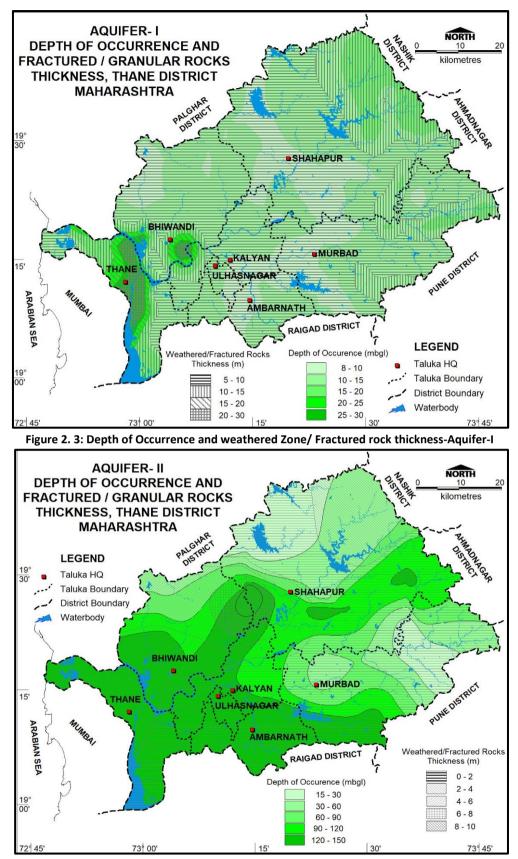


Figure 2. 4: Depth of Occurrence and weathered Zone/ Fractured rock thickness-Aquifer-II

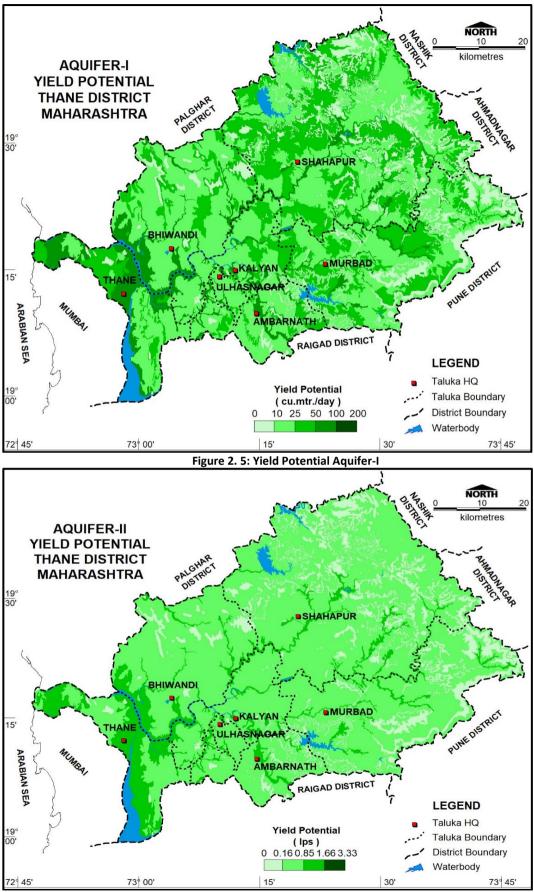


Figure 2. 6: Yield Potential, Aquifer-II

2.2 AQUIFER PARAMETERS

Based on drilled exploratory wells, the aquifer performance test conducted on some these wells indicate that the Specific Capacity ranges from 1.23 to 62.05, Transmissivity ranges from 7.28 to 177.60 m^2 /day whereas Storativity varies between 0.0082 and 0.0986.

2.3 3-D AND 2-D AQUIFER DISPOSITION

Based on the existing data, aquifer disposition in 3D, Fence diagram, 3D bar diagram, various hydrogeological sections have been prepared along section lines to understand the subsurface disposition of aquifer systems and are shown in **Fig. 2.7 to 2.13**.

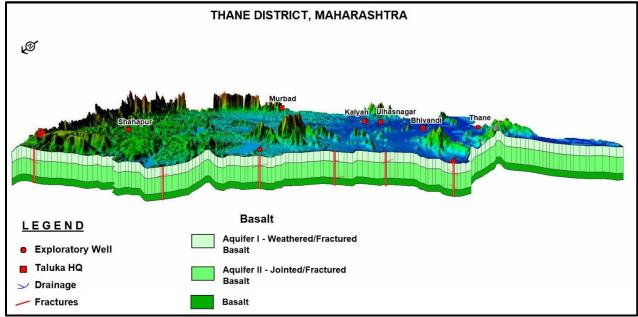


Fig.2.7: 3D Aquifer Disposition



Fig. 2.8: 3D Fence of Thane district.

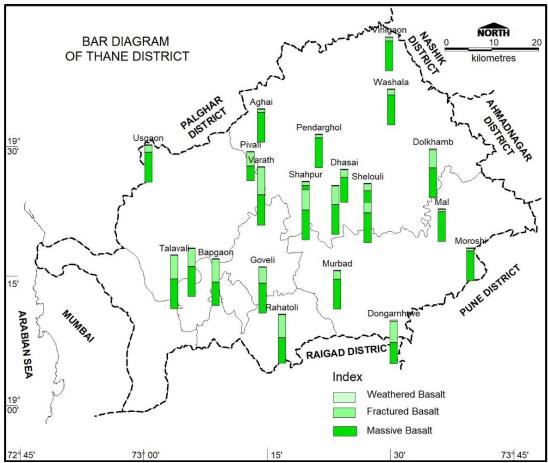
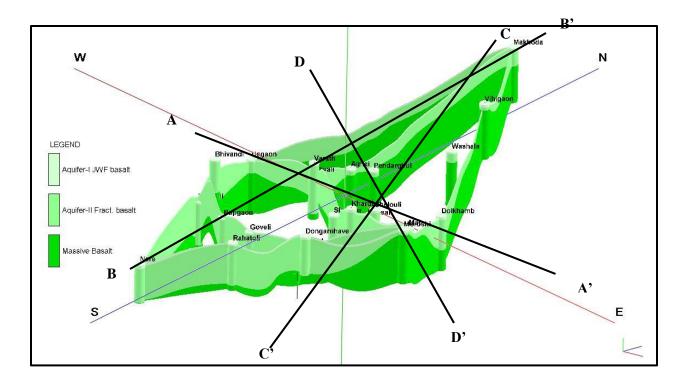



Figure 2.9: 3D Bar Diagram

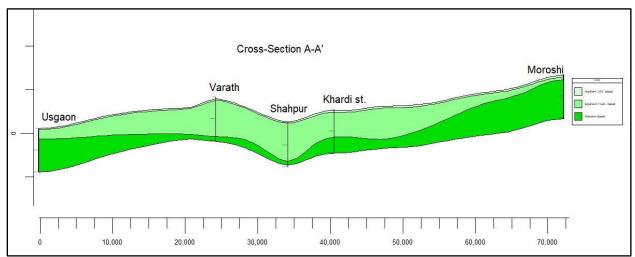


Figure 2.10: Lithological section (A-A')

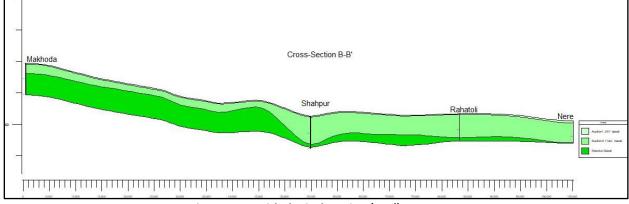


Figure 2.11: Lithological section (B-B')

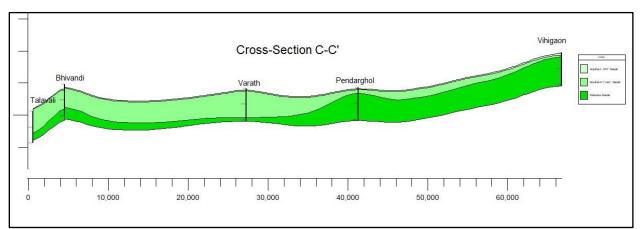


Figure 2.12: Lithological section (C-C')

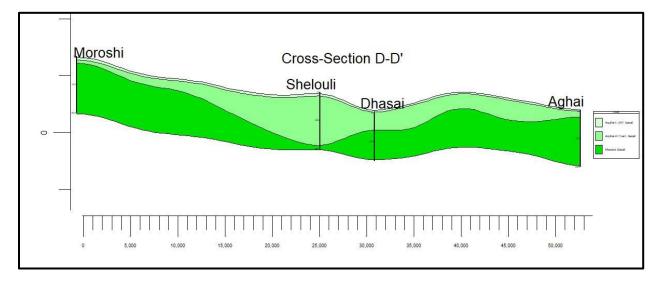


Figure 2.13: Lithological section (D-D')

3. WATER LEVEL SCENARIO

3.1 DEPTH TO WATER LEVEL (AQUIER-I/SHALLOW AQUIFER)

Central Ground Water Board periodically monitors 26 Ground Water monitoring wells four times a year i.e., in May (Premonsoon), August, November (Postmonsoon) and January in the district.

The depth to water levels during May 2022 were found ranging from 0.7 (Thane, Shahapur block) to 9.3 mbgl (Kasgaon, ambarnath block). Shallow water level within 2 mbgl are observed in small isolated patches in .Water levels between 2 and 5 mbgl have been observed inmajor part of the district .The depth to water level between 5 to 10 mbgl has been observed in parts of Shahapur, bhivandi, ambarnath and Murbad blocks The premonsoon depth to water level map is depicted in **Fig. 3.1**.

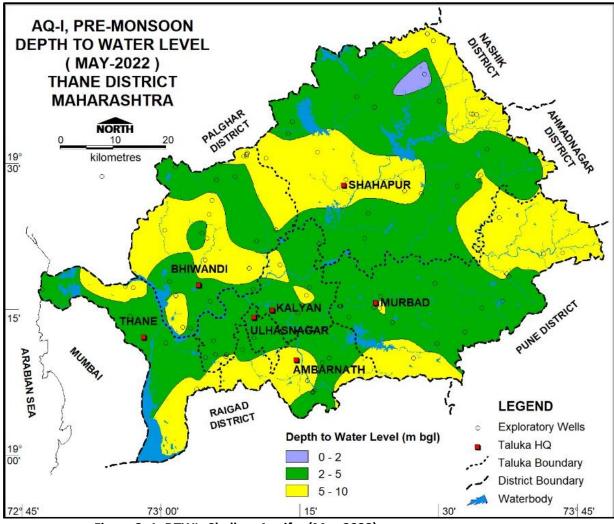


Figure 3. 1: DTWL, Shallow Aquifer (May 2022)

The depth to water levels during Nov. 2022 were found ranging from 0.5 (Cherfully, Sahapurblock) to 4.75 mbgl (Uttan, Thane block). Shallow water level within 2 mbgl are observed inmajor part in Sahapur and Murbad blocks. Water levels between 2 and 5 mbgl have been observed in major part of the district. Shahapur, bhivandi, ambarnath and Murbad blocks The Postmonsoon depth to water level map is depicted in **Fig. 3.2.**

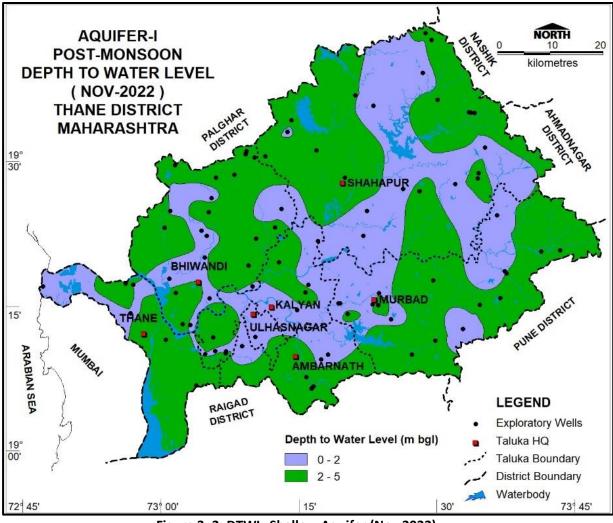


Figure 3. 2: DTWL, Shallow Aquifer (Nov 2022)

3.2 DEPTH TO WATER LEVEL (AQUIER-II/DEEPER AQUIFER)

The depth to water levels AquiferII were found ranging from 1.4 (Talavali, Bhivandi block) to more than 50 mbgl (Shelouli, Shahapur block). Shallow water level within 2 mbgl are observed in Bhiwandi and Thane blocks. Water levels between 2 and 5 mbgl have been observed in North-southern parts of the district. Water level 5-10 mbgl have been observed in the south-eastern parts of the district and water level 10- more than 30 mbgl observed in the North-Eastern parts of the district. The depth to water level map is depicted in **Fig. 3.3**.

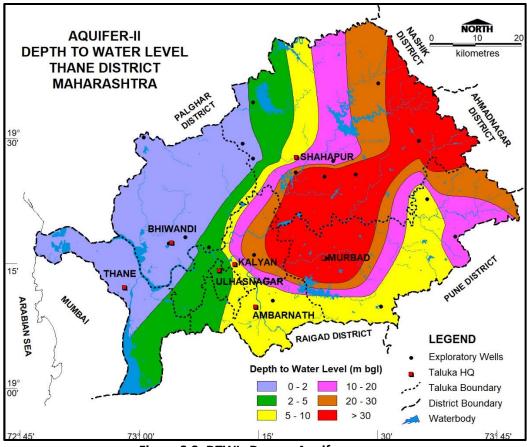


Figure 3.3: DTWL, Deeper Aquifer.

3.3 WATER LEVEL TREND (2013-2022)

During pre-monsoon period, falling water level trend has been recorded at 20 stations ranging from 0.016(Ghodbandar, Thane block) to 0.46m/year (Dahisar, Thane block) while Rising trend was observed in 28 stations varying from 0.0015(Washind, Sahapur block) to 0.64 m/year (Shivale, Murbad block).

During pre-monsoon period, decline in water level trend less than 0.20 m/year has been observed in 1376 sq. km. i.e., 30 % of the of the district. Decline of more than 0.20 m/year has been observed in 241 sq. km., i.e. 5% of the district, isolated patches are observed in Sahapur and Murbad block. Rise in water level trend less than 0.20 m/year has been observed in 1742 sq. km i.e., 39 % of the of the district. Rise in water level trend more than 0.20 m/year has been observed in 744 sq. km i.e., 16% of the of the district area as isolated patches in Murbad, Bhiwandi and Ulhasnagar blocks. (Fig.3.4)

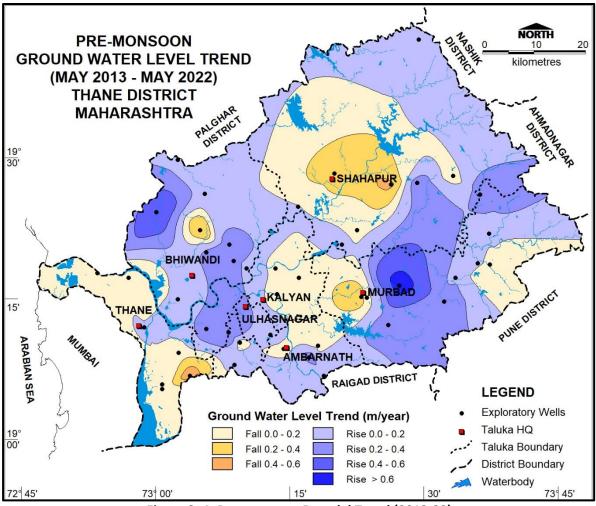


Figure 3. 4: Pre-monsoon Decadal Trend (2013-22)

During post-monsoon period, falling water level trend has been recorded at 36 stations ranging from 0.002 (Inde, Murbad block) to 0.37m/year (Dahisar, Thane block) while Rising trend was observed in 12 stations varying from 0.0018 (Dapode, Bhiwandi block) to 0.108 m/year (Sesne, Sesne block).

During post-monsoon period, decline in water level trend less than 0.20 m/year has been observed in 3405 sq. km. i.e., 83 % of the of the district. Decline of more than 0.20 m/year has been observed in 140sq. km., i.e. 3% of the district, isolated patches are observed in Thane and Sahapur blocks. Rise in water level trend less than 0.20 m/year has been observed in 565 sq. km i.e., 13 % of the of the district, isolated patches are observed in 565 sq. km i.e., 13 % of the of the district, isolated patches are observed in Thane and Murbad blocks. (Fig.3.5)

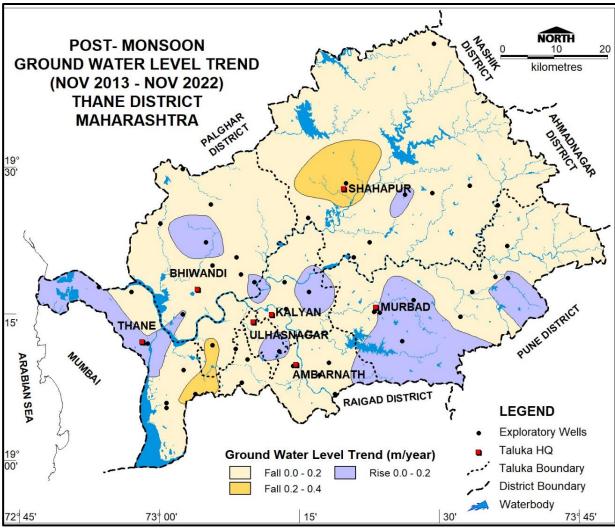
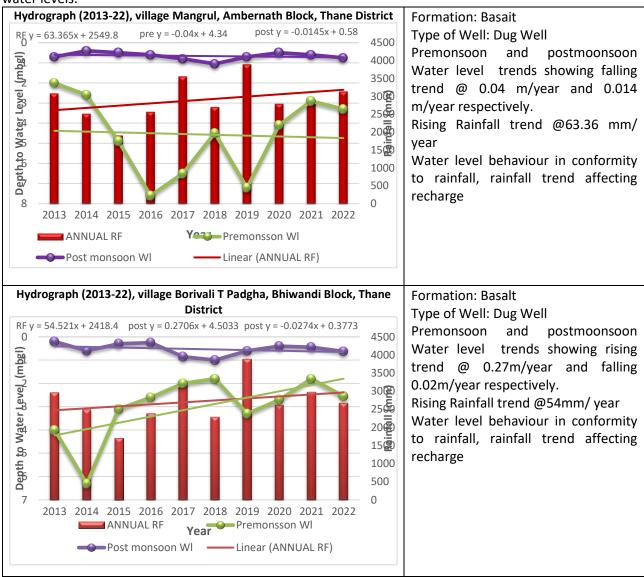
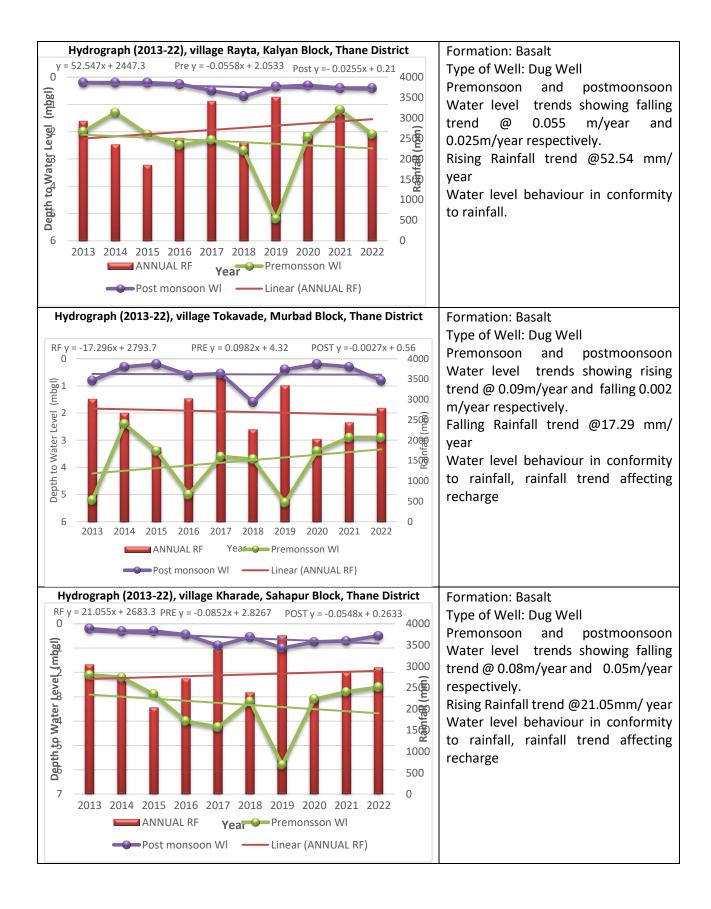




Figure 3. 5: Post-monsoon Decadal Trend (2013-22)

3.4 HYDROGRAPH ANALYSIS

The variation in short term and long-term water level trends may be due to variation in natural recharge from rainfall and withdrawal of groundwater for various agricultural, domestic and industrial requirements. The analysis of hydrographs shows that the annual rising limbs in hydrographs indicate the natural recharge of groundwater regime due to monsoon rainfall, as the monsoon rainfall is the sole source of natural recharge to the ground water regime. However, continuous increase in the groundwater draft is indicated by the recessionary limb. The figure 3.7 shows selected hydrographs (time series) of water levels.

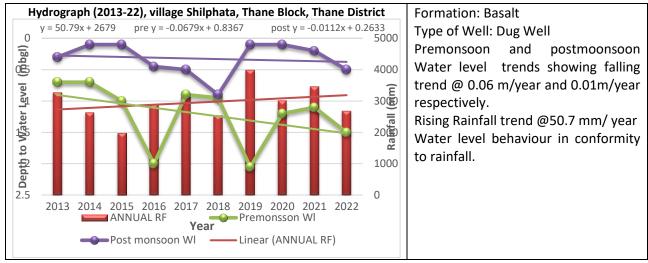


Figure 3. 7: Behavior of water level with time

4. GROUND WATER QUALITY

Ground water sampling is being done every year from GWM wells during pre-monsoon period (May). In May 2022, 19 samples have been collected from GWM wells of Thane district. Under NAQUIM study, 28 samples from KOW wells have been collected for ground water quality. The GWM wells and KOW wells both represent the shallow aquifer. The ground water quality data of total 47 water samples from GWM wells and KOW wells have been utilised to decipher the water quality scenario of shallow aquifer of Thane district which described below in detail.

The minimum, maximum and the average values of the chemical parameters analysed in the 47 ground water samples are summarized in **Table-1** and water quality data is presented in **Annexure-V**.

Sr. No.	Parameters	Minimum	Maximum	Average
1	рН	6.43	8.24	7.52
2	Electrical Conductivity (EC) μS/cm @ 25°C	156	2424	614
3	Total Dissolved Solid (TDS) mg/L	100	1551	393
4	Total Hardness (TH) mg/L	75	855	229
5	Calcium (Ca ⁺⁺) mg/L	18	180	51
6	Magnesium (Mg ⁺⁺) mg/L	4	98	25
7	Sodium (Na⁺) mg/L	5	168	30
8	Potassium (K⁺) mg/L	0.22	55	7
9	Carbonate (CO₃⁻) mg/L	0	0	0
10	Bi-Carbonate (HCO₃⁻) mg/L	61	519	230
11	Chloride (Cl ⁻) mg/L	7	603	66
12	Nitrate (NO₃ ⁻) mg/L	BDL	46	8
13	Sulphate (SO4) mg/L	BDL	56	19
14	Fluoride (F ⁻) mg/L	0.13	0.83	0.27
15	Uranium (U) μg/L	BDL	2.96	0.29

Table-4.1: Minimum, Maximum and Average Values of Parameters in Ground Water of Shallow
Aquifer

(BDL- Below Detection Limit)

4.1.1 Distribution of pH

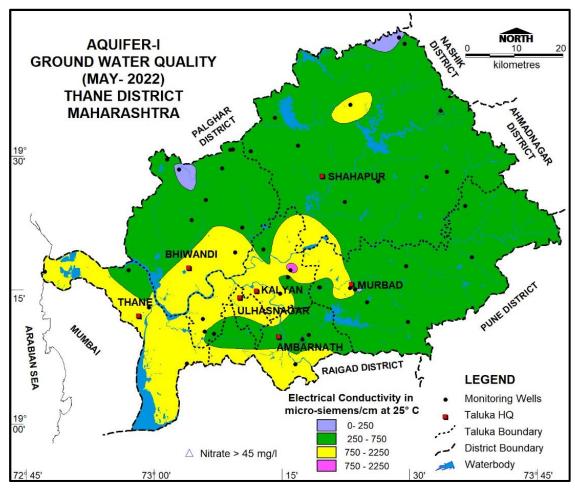
The range and average value of pH of the ground water samples of shallow aquifer indicates that the ground water in Thane district is predominantly alkaline in nature. The pH values also indicate that the CO_2 dissolved in water exists mainly in the form of HCO_3^- . This is also clear from the concentration of HCO_3^- and CO_3^{2-} ions in the ground water. Under the natural condition, the pH of ground water is usually found in the range of 6.5 to 8.5. However, low pH (<6.5) found in the ground water may be due to the availability of CO_2 in environment in which the water is existing. Sometimes, it may also be due to the percolation of strongly acidic wastewater from anthropogenic sources to groundwater. In Thanedistrict, pH range was found to be between 6.43 and 8.24 with average pH being 7.52. pH less than desirable limit of 6.5 is observed at only 1 location in KOW well at Aaptewadi, Ambarnath. pH more than 8.5 is not observed at any locationin Thane district.

4.1.2 Distribution of Electrical Conductivity (EC) and Total Dissolved Solids (TDS)

The measurement of EC of water gives an idea about the ions concentration in the water. As the concentration of dissolved ions increases, the water becomes more conductive and also shows rise in TDS values. EC and TDS are interrelated as mostly inorganic substances are dissolved in ground water. The TDS is computed as sum of ions concentration in ground water. It is also an important parameter to assess the quality of water.

The average values of EC and TDS of the samples suggest that the groundwater in majority of the 47 wells is fresh and potable in nature. It is observed that the EC and TDS of ground water of shallow aquifer in Thane district are within permissible limit as prescribed by Bureau of Indian Standards (BIS). The EC is in the range of 156 – 2424 μ S/cm with the average EC being 614 μ S/cm and TDS is in the range of 100– 1551 mg/L with the average TDS being 393 mg/L.

4.1.3 Distribution of Total Alkalinity


The total alkalinity of water is its acid neutralizing capacity and primarily a function of carbonate, bicarbonate and hydroxide content of water. It is expressed in terms of $CaCO_3$. The range and average concentration values of carbonate and bicarbonate ions indicate that the alkalinity of ground water is mainly due to the bicarbonate ion. The total alkalinity in Thane districtis found in the range of 61 – 519 mg/L with the average being 230 mg/L. Total alkalinity is observed to be more than desirable limit of 200 mg/L in 27 locations but within maximum permissible limit of 600 mg/L.

4.1.4 Distribution of Total Hardness (TH)

The total hardness (TH) is the sum of calcium (Ca) and magnesium (Mg) concentration expressed in terms of CaCO₃ in mg/L. The carbonate and bicarbonate salts of Ca and Mg give temporary hardness to ground water while a chloride and sulphate salt gives permanent hardness. The total hardness in Thane districtis found in the range of 75 – 855 mg/L with the average being 229 mg/L. Total hardness more than desirable limit of 200 mg/L is observed in 26 locations in Thane district with one location i.e. Kolimb in Kalyan block with TH more than maximum permissible limit of 600 mg/L.

4.1.5 Distribution of Chloride (Cl) and Sulphate (SO₄)

As Maharashtra State is covered mainly by Basalt, the possibility of Cl and SO₄ in ground water from aquifer material is low. It is observed that the chloride content in the ground water samples of Thane districtis found in the range of 7 - 603 mg/L with the average being 66 mg/L. Majority of locations have chloride concentration within the desirable limits as prescribed by BIS, i.e. 250 mg/L. Only 2 locations have been found with chloride concentration more than the desirable limit but well within the maximum permissible limits i.e. 1000 mg/L. The sulphate concentration in all 47 samples of Thane district was within the desirable limit as prescribed by BIS, i.e. 200 mg/L. The range of sulphate concentration was found to

be BDL -56 mg/L with the average being 19 mg/L. The average values of Cl and SO₄ also show that the potability of ground water is less affected due to these ions.

Figure 4. 1: Ground Water Quality, Aquifer-I

4.1.6 Distribution of Nitrate (NO₃)

Under natural geochemical condition, nitrate rarely becomes a major ion in the ground water. Nitrogen in the form of dissolved nitrate, is a nutrient for vegetation and an essential element to all life. The major contribution in ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. The nitrate content in the ground water samples of Thane district is found in the range of BDL – 46 mg/L with the average being 8 mg/L. Anthropogenic contamination of nitrate (NO₃) is observed above the maximum permissible limits of 45 mg/L in only 2 locations at Aaptewadi and Kothala.

4.1.7 Distribution of Fluoride (F)

The concentration of fluoride in Thane district is found in the range of 0.13 - 0.83 mg/L with the average being 0.27 mg/L. The concentration of fluoride in shallow basaltic aquifer is low. All the 47 wells of Thane district have concentrations of fluoride less than desirable limit of 1 mg/L. The source of fluoride in ground water is inherent fluoride bearing minerals present in the geological formation existing in the area.

4.1.8 Distribution of Uranium (U)

CGWB had decided to conduct ground water quality monitoring for Uranium through its Ground Water Monitoring Stations (GWMS) established throughout the country to generate background ground water quality data for U throughout India after an article titled "Large-Scale Uranium Contamination of Ground Water Resources in India" was published in 'Environmental Science and Technology letter' in May 2018. Based on the report, uranium concentration above the permissible/guideline value of WHO, 2011 (30 ppb) had been observed in ground water in some pockets of 16 States in India. As a part of this activity, the CGWB, Central Region (CR), Nagpur, had also carried out the ground water quality monitoring during AAP 2019-20. Since 2021 all the collected ground water samples have been analysed for Uranium contamination. In the water quality of Thane district, the Uranium concentration was found to be in the range of BDL –2.96 ppb which indicated no Uranium contamination in Thane district of Maharashtra.The groundwater in Thane district is safe for drinking as far as U concentration in groundwater is concerned.

4.2. SUITABILITY OF GROUND WATER FOR DRINKING PURPOSE

The suitability of ground water for drinking purpose is determined keeping in view the effects of various chemical constituents in water on the biological system of human being. The standards proposed by the Bureau of Indian Standards (BIS) for drinking water (IS-10500-2012) were used to determine the suitability of ground water for drinking purpose. The ground water samples are classified on the basis of constituents falling below desirable limit (<DL), in the range of desirable and maximum permissible limit (DL-MPL) and above maximum permissible limit (MPL) for drinking water purpose.

The classification of ground water samples of shallow aquiferfor drinking water purpose is shown in **Table-4.2** and graphical representation is shown in **Figure-**4.2

Parameter Drinking water Standards (IS- 10500-2012)		Total Samples	Samples < DL		Samples between DL and MPL		Samples > MPL		
	DL	MPL		Samples	%	Samples	%	Samples	%
рН	6.5-8.5	-	47	1	2.13	46	97.87	0	0
TDS (mg/L)	500	2000	47	36	76.60	11	23.40	0	0
TH (mg/L)	200	600	47	21	44.68	25	53.19	1	2.13
Ca (mg/L)	75	200	47	42	89.36	5	10.64	0	0
Mg (mg/L)	30	100	47	34	72.34	13	27.66	0	0
Cl (mg/L)	250	1000	47	45	95.74	2	4.26	0	0
SO₄ (mg/L)	200	400	47	47	100	0	0	0	0
NO₃ (mg/L)	45	No relax	47	45	95.74	-	-	2	4.26
F (mg/L)	1	1.5	47	47	100	0	0	0	0

Table-4.2: Classification of Ground Water Samples of Shallow Aquifer as per BIS Drinking Water Standards

(DL= Desirable Limit; MPL= Maximum Permissible Limit)

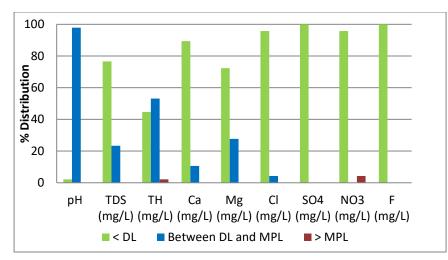


Figure 4.2: Percentage Distribution of Ground Water Samples as per BIS Drinking Water Standards.

As seen in **Table-4.2**, the Ground water quality of Thane district shallow aquifer is good and potable in general.

4.3. SUITABILITY OF GROUND WATER FOR IRRIGATION PURPOSE

The quality of water used for irrigation is an important factor in crop productivity, its yield and quality. The irrigation water quality depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria as per Bureau of Indian Standards (BIS) for quality of irrigation water (IS-11624-1986, Reaffirmed 2009), which influence the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The concentration of dissolved ions in the water is best represented by the parameter electrical conductivity. In relation to hazardous effects of the total salt concentration (EC), the irrigation water can be classified into four major groups-

Low Salinity Water (EC: Below 1500 μ S/cm): Suitable for sensitive crops.

Medium Salinity Water (EC: 1500 – 3000 μ S/cm): Suitable for semi-tolerant crops.

High Salinity Water (EC: $3000 - 6000 \ \mu\text{S/cm}$): Suitable for tolerant crops.

Very High Salinity Water (EC: >6000 µS/cm): Not suitable for irrigation.

It is clear from **Table-4.3** that majority samples fall under low salinity, 3 locations have medium salinity water and 1 location has high salinity water. This shows that the ground water from shallow aquifer of Thane district is safe to use for irrigation.

Table-4.3: Cla	ssification of	f Ground wate	r of Shallow A	Aquifer fo	r Irriga	ition based or	n EC values

Sr.	Class	Range of EC in µS/cm	No. of samples	% of samples
1	Low Salinity Water	< 1500	43	91.49
2	Medium Salinity Water	1500 - 3000	4	8.51
3	High Salinity Water	3000 - 6000	0	0
4	Very High Salinity Water	> 6000	0	0

Total	47	100

Sodium Adsorption Ratio (SAR)

Since Calcium and Magnesium replace Sodium more readily than vice versa, the ratio reflects the Sodium hazard. The SAR indicates the relative activity of the Sodium ions in exchange reactions with the soil. Irrigation water with a high SAR will cause the soil to tighten up. The Sodium Adsorption Ratio (SAR) can be calculated from following formula-

Sodium Absorption ratio=
$$\frac{Na^{+}}{\left[\frac{(Ca^{++} + Mg^{++})}{2}\right]^{1/2}}$$

(Here, the concentrations of cations are expressed in meq/L).

In relation to hazardous effects of SAR, the irrigation water quality is given in Table-4.4

Table-4.4: Classification of Ground water of Shallow Aquifer for Irrigation based on SAR values

Sr.	Class	SAR Value	No. of samples	% of samples
1	Low	0-10	47	100
2	Medium	10-18	0	0
3	High	18-26	0	0
4	Very high	>26	0	0
Total			47	100

All the water samples of shallow aquifer have SAR values less than 10 and are considered good for irrigation.

Residual Sodium Carbonate (RSC):

The RSC index of irrigation water and soil water is used to indicate the alkalinity hazards for soil. RSC is considered to be superior to SAR as a measure of sodicity particularly at low salinity levels. Calcium reacts with bi-carbonate and precipitates as CaCO₃. Magnesium salt is more soluble and so there is less tendency for it to precipitate. When Calcium and Magnesium are lost from the water, the proportion of Sodium is increased resulting in the increase in sodium hazard. This hazard is evaluated in terms of RSC.

Residual Sodium Carbonate=(CO₃⁻⁻+ HCO₃⁻⁻)- (Ca⁺⁺+ Mg⁺⁺)

(All the ionic concentrations in the above equation are expressed in meq/L).

In relation to hazardous effects of RSC, the irrigation water quality is given in Table-4.5.

Sr.	Class	RSC Value	No. of samples	% of samples
1	Low	< 1.5	47	100
2	Medium	1.5 – 3.0	0	0
3	High	3.0 - 6.0	0	0
4	Very high	>6.0	0	0
Tota	al	47	100	

Table-4.5: Classification of Ground water of Shallow Aquifer for Irrigation based on RSC values

From the table it is observed that 100 % of the samples of shallow aquifer show RSC values less than 1.5 meq/L. Overall, the ground water quality of Thane district is suitable for irrigation purpose based on above study.

4. DISCUSSION ON TRACE ELEMNENTS CONTENT

From the area under investigation, 11 water samples were analyzed for selected trace elements viz. Mn, Cr, Fe, Zn, Pb, Cu, Cd, As, Se and Ni content. All the ground water samples contain Copper, Lead, Cadmium, Arsenic, Selenium and Nickelbelow the desirable limit of BIS for the drinking water. The concentration of Manganese found in the ground water of study area is in the range of BDL to 0.459 mg/L. Only one (9.09%) sample is found to contain Mn above the BIS permissible limit of 0.3 mg/l. The chromium content in study area varies from BDL to 0.403 mg/L. Only one (9.09%) sample is found to contain Mn above the BIS permissible limit of 0.3 mg/l. The chromium content in study area varies from BDL to 0.403 mg/L. Only one (9.09%) sample is found tocontain chromium above the permissible limit of BIS (0.05 mg/L) for the drinking water. Iron in ground water generally exists as Fe(II) but may oxidised to Fe(III) when ground water is under aerobic condition. In the study area, the iron content in ground water varies from BDL to 0.683 mg/L. Total 36.36% samples are found containing Fe above the BIS permissible limit (0.3 mg/l). Thus, it can be concluded that the ground water quality in major part of the study area is affected by excess of iron. After proper treatment of iron contamination, the ground water of area is suitable for drinking purpose from other trace elemental contamination point of view.

5. GROUND WATER RESOURCES

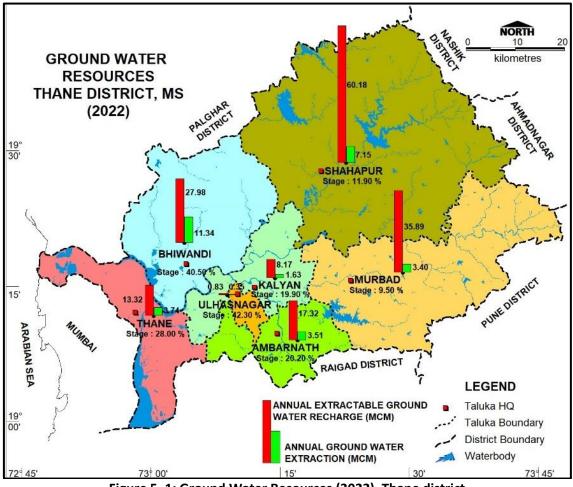
5.1 GROUND WATER RESOURCES – AQUIFER-I

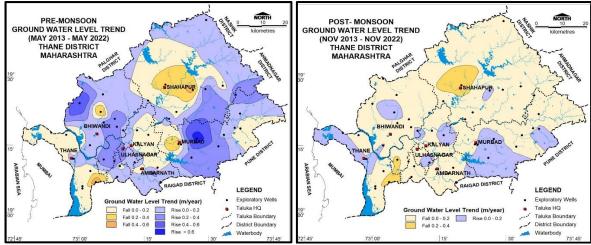
Central Ground Water Board and Ground Water Survey and Development Agency (GSDA) have jointly estimated the ground water resources of Thane district based on GEC-2015 methodology. Block wise ground water resources are given in Table 5.1, and graphical representations of the resources on the map are shown in **Figure-5.1**.

Ground Water Resource estimation was carried out for 2334.47 sq. km. area out of which 104.92 sq. km. is under canal command and 2229.54 sq. km. is in non-command. As per the estimation, the Annual extractable ground water resources is 163.69 MCM.The total Extraction is estimated at 31.11 MCM with irrigation sector having a draft of 23.97 MCM and Domestic use having draft of 7.14 MCM. The net ground water availability for future use is estimated at 132.58 MCM. Stage of ground water development varies from 9.46 % (Murbad) to 42.3 % (Ulhasnagar). The overall stage of ground water development for the district is 19 %. Block wise assessments indicate that all the blocks in the district fall under "Safe" category.

Administrat ive Unit	Annual Extractable Ground Water Recharge	Annual Ground Water Extraction- irrigation use	Annual Ground Water Extraction- industrial use	Annual Ground Water Extraction- domestic use	Total Extractio n	Annual GW Allocati on for Domes tic Use as on 2025	Net Ground Water Availabi lity for future use	Stage of Ground Water Extraction	Categ ory
Ambarnath	17.32	2.86	0.00	0.64	3.50	0.64	13.81	20.2%	Safe
Bhivandi	27.97	10.07	0.00	1.27	11.3	1.27	16.63	40.54%	Safe
Kalyan	8.17	1.21	0.00	0.41	1.63	0.41	6.54	19.94%	Safe
Murbad	35.88	2.11	0.00	1.28	3.39	1.28	32.48.	9.46%	Safe
Shahapur	60.18	5.17	0.00	1.97	7.14	1.97	53.03	11.87%	Safe
Thane	13.32	2.21	0.00	1.5	3.73	1.52	9.58	28.04%	Safe
Ulhasnagar	0.82	0.33.29	0.00	0.17	0.35	0.1	0.47	42.30%	Safe
Total	163.69	23.97	0.00	7.1	31.11	7.13	132.58	19%	Safe

Table 5. 1: Ground water resources, Aquifer-I (Shallow aquifer), Thane district (2022) (in MCM)



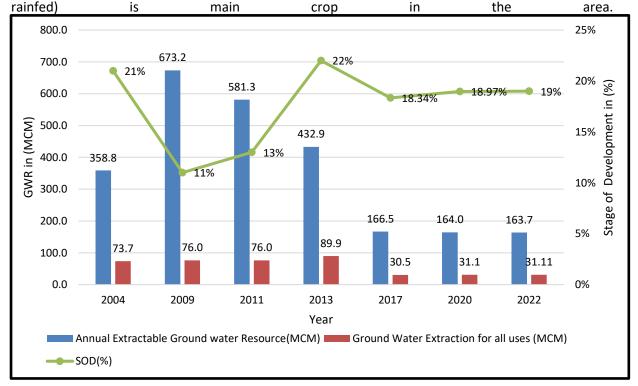

Figure 5. 1: Ground Water Resources (2022), Thane district

6. GROUND WATER RELATED ISSUES

6.1 DECLINING WATER LEVEL TREND

The ground water exploitation has resulted in decline of water levels over the period of time. In During pre-monsoon period, decline in water level trend less than 0.20 m/year has been observed in 1376 sq. km. i.e., 30 % of the of the district. Decline of more than 0.20 m/year has been observed in 241 sq. km., i.e. 5% of the district, isolated patches are observed in Sahapur and Murbad block

During post-monsoon period, decline in water level trend less than 0.20 m/year has been observed in 3405 sq. km. i.e., 83 % of the of the district. Decline of more than 0.20 m/year has been observed in 140sq. km., i.e. 3% of the district, isolated patches are observed in Thane and Sahapur blocks.



6.2 SUSTAINABILITY IN HARD ROCK AREAS

The major part of the district is occupied by hard rock formations (that inherently consist of limited extent of porous and pervious zone; absence of primary porosity; predominance of secondary porosity that has evolved from prevailing erratic joint pattern, absence of primary porosity and also, low rainfall results in poor sustainability of the aquifers. However, the erratic nature of existing joints/fractures pattern results in highly varying yield capacities of the aquifers in the area.

6.3 GROUND WATER RESOURCES-Low Ground Water Development

Eventhough the district continous to be safe category; the Stage of ground water development has decrease over the period of time from 2004 to 2020 from 21 % (2004) to 19 % (2022) but no singnificant changes in SOD has been observed over the time. In Thane district, Ground water draft for domestic and industrial purposes is contiously increased from 12.32 mcm to 15.16 mcm from 2004 to 2013. After 2013 district has been slip into Palghar District. Similarly Ground water draft of irrigation purposes is also increased from 61.3 mcm to 74.7 mcmi.e., 2004 to 2013. Low devlopement of GW resources in irrigation sector may be due to less cultivable area availableand karif crops (rice-

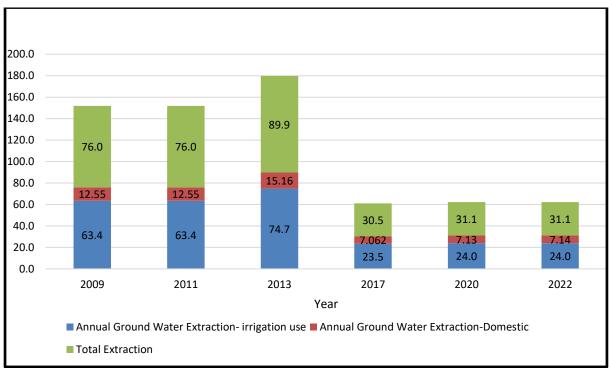


Figure 6. 1: Draft Vs Availability Over the time

6.4 Ground Water Pollution from Industries

Since Thane is one of the most industrially developed district in the State, the pollution by industries is an important threat to the ground water regime, hence the special studies were carried out in the district to ascertain the pollution threat. In view of the ground water quality problems in the resulting from Industrial activity, the studies were undertaken by C.G.W.B, CR in year 1990 to evaluate the impact of industrialization on ground water in Thane-Belapur industrial belt, Kairna, Khadi Pada and Ghansoli areas. It is observed that the ground water is of Magnesium Chloride (Mg-Cl) type, whereas in affected area it is of Sodium Chloride (Na-Cl) type. The chloride anion is predominant in both the areas, and among cations, magnesium is predominant in unaffected areas and sodium is predominant in affected area. This indicates possibility of ground water pollution by addition of sodium cations in the affected area due to hectic industrial activity. Further, the average value of TDS in unaffected area is 760 mg/l where as in the affected area it is 975 mg/l. Also change in pH from 7.71 to 8.18 indicates deterioration of ground water quality in the area and percolation of industrial effluents to ground water.

7. GROUND WATER MANAGEMENT PLAN

A comprehensive ground water resources management plan has been proposed to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management. The supply side management is proposed based on surplus surface water availability and the unsaturated thickness of aquifer whereas the demand side management is proposed by use of micro irrigation techniques and change in cropping pattern.

7.1. SUPPLY SIDE MANAGEMENT

The supply side management of ground water resources can be done through the artificial recharge by utilization of surplus runoff available within river sub basins and micro watersheds. Also, it is necessary to understand the unsaturated aquifer volume available for recharge. But in case of Thane district, the entire area having water level is less than 3 m and stage of ground water development varies from 9.4 % (Murbad) to 42.30 % (Ulhasnagar). The overall stage of ground water development for the district is 19.00 % only as per Ground water resource estimation 2022. Hence Supply-side management plan is not recommended in Thane district.

7.2 DEMAND SIDE MANAGEMENT

The Demand Side Management is proposed in areas where the Stage of Ground Water Development is relatively high and adopting micro-irrigation techniques for water intensive crops (Sugarcane) or change in cropping pattern or both are required to save water.

Considering the low stage of ground water development in the district, demand side interventions have not been proposed in only 20% of total Horticulture crop /Orchard area. However, this is the right time to further enhance the micro irrigation practices in the selected areas to manage the resources perceiving the future demand of resources. So only 20% area (1094 ha) of total Horticulture crop/Orchard area of all the blocks except Thane and Ulhasnagar blocks are proposed for micro irrigation and that would save a total of 4.37 MCM water (Table.7.3). Change in cropping patterns is not proposed in any of the blocks. Fig 7.2 depicts the proposed demand side interventions.

Block	Horticulture crop/Orchard	Total Volume of Water expected to be saved (MCM)
Ambarnath	249	0.99
Bhivandi	326	1.30
Kalyan	88	0.35
Murbad	195	0.78
Shahapur	236	0.94
Thane	0	0.00
Ulhasnagar	0	0.00
Grand Total	1094	4.37

Table 7.3: Area proposed for Micro irrigation Techniques and water saving through Demand side interventions

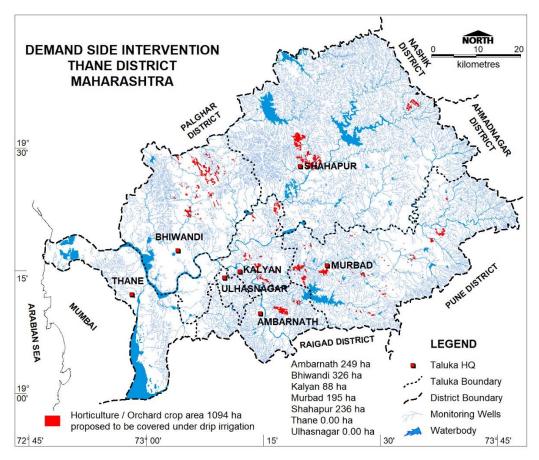


Figure 7. 1: Demand Side Intervention

7.3 EXPECTED BENEFITS

The impact of implementation of groundwater management plans on the groundwater system in the district is evaluated and the outcome shows significant improvement in groundwater scenario in all blocks (Table 7.3). The Stage of ground water development gets reduced and comes below 60%.

Taluka	Balance Ground water Available/ required to bring stage of GWD to 60% (MCM)	Volume of water expected to be saved due to Demand Side Intervention s MCM	Total GW Extractio n after Demand side interventi on (MCM)	Stage of development after Demand side interventions	Balance Ground water Available/ required to bring stage of GWD to 60% (MCM)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m till 60% stage of
Ambarnat h	6.91	0.99	2.51	14.47	7.91	achieved 12.17
Bhivandi	5.44	1.30	10.04	35.88	6.75	10.38
Kalyan	3.31	0.35	1.28	15.52	3.66	5.63
Murbad	18.28	0.78	2.62	7.25	19.06	29.32
Shahapur	28.96	0.94	6.21	10.31	29.91	46.02

 Table 7. 1: Expected benefits after management options

Thane	4.26	0.00	3.74	28.05	4.26	6.55
Ulhasnagar	0.15	0.00	0.35	42.30	0.15	0.23
TOTAL	67.30	4.37	26.74	21.97	71.70	110.30

7.4. DEVELOPMENT PLAN

The ground water development plan has been proposed with the view of developing the additional ground water resources available after supply side interventions to bring the stage of ground water development up to 60%. The 71.7 MCM volume of ground water generated can bring additional 11030 ha. Kharif Crop area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 4304 Dug wells and 719 Bore wells. Block wise details are given in Table 7.4. The area feasible for ground development is shown in **Fig. 7.2.**

le 7. 2: Block wise	additional area u	nder assured GW	ingation	
Block	GW Resources Available for Development and Bring Stage of GWD upto 60% from present SOD (MCM)	Proposed no. of DW (@ 1.5 ham for 90% of GWR Available)	Proposed no. of BW* (@ 1.0 ham for 10% of GWR Available)	Additional area that can be brought under assured GW irrigation with av. CWR of 0.65 m
AMBARNATH	7.91	475	79	1217
BHIVANDI	6.75	405	68	1038
KALYAN	3.66	220	37	563
MURBAD	19.06	1144	191	2932
SHAHAPUR	29.91	1795	299	4602
THANE	4.26	256	43	655
ULHASNAGAR	0.15	9	2	23
TOTAL	71.7	4304	719	11030

Table 7. 2: Block wise additional area under assured GW Irrigation

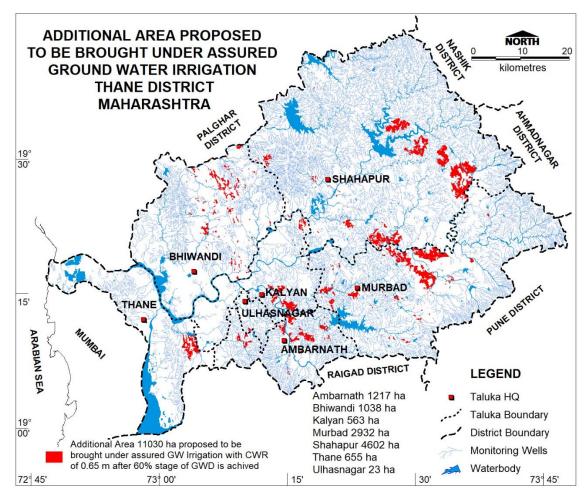


Figure 7. 2: Additional area Proposed to be bought under Assured GW irrigation

8. SUM UP

The study was carried out based on the data available in-house as well as acquired from State Govt. departments and in pursuit to fill up the data gaps, generated data in-house; prepared GIS maps for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of block wise aquifer maps and aquifer management plans of the district.

Thane district covering an area of about 4091 sq. km. with 2106 sq. km. being hilly terrain is occupied by Basalt formations. The potential aquifers are form of weathered/ jointed/ Fractured Basalt. The weathered thickness of the Basaltic aquifer is 5 to 18 m. In major part ground water is suitable for drinking and irrigation purposes except localized nitrate contaminated

The stage of ground water development of the district is 19%. The area has witnessed low yield potential of aquifers, Low development of GW resources and Declining Water level trend the major issues in the district.

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management.

As a part of Supply side Management, Thane district, the entire area having water level is less than 3 m and stage of ground water development varies from 9.4 % (Murbad) to 42.30 % (Ulhasnagar). The overall stage of ground water development for the district is 19.00 % only as per Ground water resource estimation 2022. Hence Supply-side management plan is not recommended in Thane district.

As a part of Demand side Management, micro-irrigation techniques are to be adopted in 1094 ha. Horticulture crop area/Orchard thereby saving a total of 4.37 MCM/year. Change in cropping patterns is not proposed in any of the blocks.

The ground water development plan has been proposed in view of the developing additional ground water resources available after supply side interventions to bring the stage of ground water development up to 60%. The 71.7 MCM/year volume of ground water generated can bring 11030 ha. Additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 4304 Dug wells and 719 Bore wells.

Watershed treatment through contour trenching, Nala bunding and gully plugging are proposed in suitable locations to retain or improve the soil moisture for a long time.

Form ponds, Contour trenches, contour bund, graded bund, and other soil water conservation techniques to be carried out in all cultivable area so that maximum rain water is harvested and percolated to augment ground water and this will also help in sustainable springs for longer period during non-monsoon season for augmentation of runoff water in hilly areas.

Intercropping cultivation excess available water can be used effectively to produce greater yield per unit area of the land.

Under spring shed development, construction of percolation tank in the recharge area of the spring is proposed, this may help to improve the sustainability of spring in lean period for public use.

For prevention of Sea water intrusion in coastal areas only low discharge pumping or intermittent pumping are only allowed.

Conjuctive use of water is planned in Command area.

IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory ground water management. These types of programmes have helped the general public to understand the problems, that they will face in future if the ground water is continued to be exploited in unplanned way and also sewage wastes is not properly managed resulting in ground water pollution.

These interventions also need to be supported by regulations for deeper aquifer and hence it is recommended to regulate/ban deeper tube wells/bore wells of more than 60 m depth in these blocks,

so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought.

ANNEXURES

S.no	Block/ Taluka	Village	Longit ude	Latit ude	Type of Well EW/ OW/ Pz	Dept h Drille d (m bgl)	Casin g dept h (m bgl)	Geolog Y	Aquifer	Aquifer Zones encounter ed (mbgl)	S.W.L (m.bgl)	Disch arge(lps)	Drawd own (m)	T (m² /da y)	s
	Murba		73.662												
1	d	Moroshi	22	19.3	EW	200		Basalt	FMB	18.0-19.0	12	0.38			
	Bhiwa		73.062	19.2						158.0-					
2	ndi	Talavali	22	8583	EW	200		Basalt	FMB	159.0	1.4	0.38			
	Murba		73.603	19.3								0.47			
3		Mal	89	7389	EW	200		Basalt	FMB	15.0-16.0	5.2	1			
	Shaha		73.586	19.4						122.0-		Trace			
4	•	Dolkhamb	39	8889	EW	200		Basalt	FMB	123.0	36	S			
	Murba	Khewatre	73.577	19.2											
5		-Mahaj	78	3972	EW	200		Basalt	-		-	nil			
	Murba	Dongarnh	73.506	19.1						142.0-					
6	d	ave	94	6139	EW	143		Basalt	FMB	143.0	5.5	10			
7	Murba d	Dongarnh ave	73.506 94	19.1 6139	ow	142		Basalt	FMB	28.7- 29.7,123.0 -124.0	6	1.37			
8	Panvel	Nere	73.166 94	19.0 0917	EW	142		Basalt	FMB	12.6- 13.60,139. 0-140.0	7.1	13.5			
9	Panvel	Nere	73.17	19.0 0917	ow	142		Basalt				2.16			
	Murba		73.392	19.2								Trace			
10	d	Murbad	22	5639	EW	200	5.7	Basalt	FMB	56-57	>50	s			
			73.241	19.2								0.43			
11	Kalyan	Goveli	11	6306	EW	200	4.5	Basalt	VB	106-107	26.5	1	>50		
	Bhiwa		73.146	19.2					FVB	30-31&		0.65			
12	ndi	Bapgaon	11	7833	EW	160	5.6	Basalt	FMB	150-151	2.3	1	>50		

Annexure V: Salient Features of Ground Water Exploration (CGWB), Thane District.

					Type of Well EW/	Dept h Drille	Casin g dept			Aquifer Zones	S.W.L	Disch	Drawd	T (m²	
S.no	Block/ Taluka	Village	Longit ude	Latit ude	OW/ Pz	d (m bgl)	h (m bgl)	Geolog V	Aquifer	encounter ed (mbgl)	(m.bgl	arge(lps)	own (m)	/da y)	s
5.110	Ambar	village	73.280	19.1	F2	ngij	ngi)	У	FMB	27-28,)	ih2)	(11)	y)	3
13	nath	Rahatoli	28	7278	EW	172	5.7	Basalt	FVB	152-153	4.9	13.5	30		
15	Ambar	Ranaton	73.280	19.1		1/2	5.7	Dasan	FMB	27-28 &	4.5	15.5	50		
14	nath	Rahatoli	28	7278	ow	200	5.7	Basalt	FVB	147-148	7.55	1.37	25		
	Shaha	Hanaton	73.406	19.4		200	517	Basart		10 10	7100	1.07			
15	pur	Dhasai	39	4944	EW	169	5.7	Basalt	FVB	52-53	15.2	5.77	>50		
	Shaha		73.406	19.4											
16	pur	Dhasai	39	4944	ow	200	5.7	Basalt	-		-	Dry	-		
	Shaha		73.453	19.4											
17	pur	Shelouli	61	225	EW	200	5.7	Basalt	WVB	194-195	>50	0.38	>50		
	Shaha		73.453	19.4						44.50-					
18	pur	Shelouli	61	225	ΡZ	80.6	5.7	Basalt	WVB	45.50	>50	0.38	>50		
	Shaha		73.388	19.4					FMB	78-79 &		0.62			
19	pur	Khardi st.	33	1833	EW	200	5.7	Basalt	FMB	126-127	>50	1	>50		
	Shaha		73.388	19.5											
20	pur	Khardi st.	33	85	PZ	80	5.7	Basalt	-		-	Dry	-		
	Shaha	Pendargh		19.5											
21	pur	ol	73.355	1667	EW	200	5.7	Basalt	-		-	Dry	-		
	Shaha		73.238	19.5								Trace			
22	pur	Aghai	33	6528	EW	200	5.7	Basalt	-		-	S	-		
										40.9-					
										44.00,					
										132.40-					
	Chaba		72 220	10.4						135.50 <i>,</i> 181.20-					
22	Shaha	Varath	73.238	19.4	E\A/	205	6.6	Pacalt			1 5 4	2.64	49		
23	pur	Varath	33	5417	EW	205	6.6	Basalt	WFB	184.20	1.54	2.64	49		

S.no	Block/ Taluka	Village	Longit ude	Latit ude	Type of Well EW/ OW/ Pz	Dept h Drille d (m bgl)	Casin g dept h (m bgl)	Geolog Y	Aquifer	Aquifer Zones encounter ed (mbgl)	S.W.L (m.bgl)	Disch arge(lps)	Drawd own (m)	T (m² /da y)	S
										59.20-					
										62.30,					
	Shaha		73.238	19.4						138.50-					
24	pur	Varath	33	5417	OW	143	6.1	Basalt	WFB	112.00,	1.54	3.17	58		
	Shaha		73.497	19.7											
25	pur	Vihigaon	22	0278	EW	203		Basalt				Dry			
	Shaha		73.501	19.6						34.90-		Trace			
26	pur	Washala	39	0278	EW	203	6.1	Basalt	FB	37.90		S			
	Bhiwa		73.097	19.2								Negli			
27	ndi	Bhivandi	22	9861	EW	202	6.1	Basalt	FB	118-121		gible			
	Bhiwa		73.009	19.4				_							
28	ndi	Usgaon	72	9611	EW	201	6.1	Basalt	FB	41-47		0.03			
										25.70-					
	Charles.		72.220	10.1						28.70,					
20	Shaha	Chabaaaa	73.328	19.4		200	6.4	Decelt	50	187.30-		0.1.4			
29	pur	Shahpur	33	2639	EW	200	6.1	Basalt	FB	190.40		0.14			
										12.20-					
										13.20, 17.50-					
										17.30- 18.30,					
	Shaha		73.328	19.4						26.50-					
30	pur	Shahpur	33	2639	ΡZ	32	6.1	Basalt	FB	27.00		0.11			
	Shaha	Sharipai	73.216	19.4	12	52	0.1	Dasart		86.00-		0.00			
31	pur	Pivali	67	8333	ΡZ	102	5.6	Basalt		95.80		5			
	Mokha		73.366	19.9			5.5	200010							
32	da	Makhoda	67	1667	EW	203	6.1	Basalt	FB	65-66		0.78			

s.no	District	Taluka	Village/Location	Lattitude Longitude		altitude	DTW	(mbgl)
						(masl)	May- 22	Nov-22
1	Thane	Ambarnat h	Ambarnath	19.1983 3	73.16767	41.2	3.2	1.82
2	Thane	Ambarnat h	Bandhanwadi	19.1661 1	73.11694	18.7	6.3	2.48
3	Thane	Ambarnat h	Aaptewadi	19.1556 1	73.29028	139	4.3	1.48
4	Thane	Bhivandi	sagao	19.5132 2	73.28169	232.8	6.3	3.42
5	Thane	Bhivandi	Igashi	19.4713 9	73.13325	51.8	3.7	2.75
6	Thane	Shahapur	khorgaon	19.5059 2	73.14892	37.1	5.6	2.41
7	Thane	Shahapur	aatgaon	19.5027 8	73.18933	74.2	7.3	3.46
8	Thane	Shahapur	Pachghar	19.4718 3	72.89439	33.2	3.8	1.86
9	Thane	Shahapur	Mugaon	19.3759 2	73.07353	28.5	3	1.46
10	Thane	Murbad	saralgaon	19.2910 3	73.49322	81.4	3	2.3
11	Thane	Murbad	Shiraval	19.2244 4	73.41667	84.3	3.6	1.86
12	Thane	Murbad	Sakurli	19.1880 6	73.49667	121	3	2.5
13	Thane	Ambarnat h	Khoni	19.1697 2	73.11778	23.1	2	1.02
14	Thane	Ambarnat h	Kasgaon	19.1252 8	73.26306	18	9.3	4.4
15	Thane	Shahapur	Taharpur	19.5448 1	73.22906	67.9	4.6	1.86
16	Thane	Kalyan	Vavghar	19.3583 3	73.28472	65.3	3.1	1.88
17	Thane	Shahapur	Palshin	19.6069 2	73.35242	209.2	3.8	2.02
18	Thane	Shahapur	Kasara, khurd	19.6456 4	73.47411	288.6	0.7	0.82
19	Thane	Shahapur	Vashali	19.5996 9	73.50086	283.1	4.2	2.4
20	Thane	Shahapur	Kothala	19.5779 2	73.5575	282	8.9	3.78
21	Thane	Shahapur	Talvadi	19.5179 7	73.58656	279.5	2.5	1.45
22	Thane	Murbad	Nadhai	19.2690 3	73.39489	72.9	4.7	1.93

Annexure VII: Water level Data of monitoring wells in Thane District

s.no	District	Taluka	Village/Location	Lattitude	Longitude	altitude	DTW	(mbgl)
						(masl)	May- 22	Nov-22
23	Thane	Murbad	Potgaon	19.2517 5	73.32461	48	2	1.12
24	Thane	Murbad	Musali belpada	19.2330 6	73.33833	82	3.2	2.09
25	Thane	Murbad	Masha- malyachapada	19.1641 7	73.45472	93.7	7	3.9
26	Thane	Murbad	Khopiwali	19.2075	73.54694	163.7	3.8	1.4
27	Thane	Murbad	Mahaj	19.2491 7	73.57722	140.3	dry	2.4
28	Thane	Murbad	Dahigaon	19.2608 3	73.61444	156.7	2.9	3.3
29	Thane	Murbad	Vaishak	19.3022 2	73.62639	132.7	4	3.21
30	Thane	Murbad	Moroshi	19.3405 6	73.68889	146.6	6.2	3.02
31	Thane	Murbad	Anjangaon	19.3419 4	73.72278	216.2	6	2.88
32	Thane	Bhivandi	Pimpalgaon	19.2600 3	73.08847	9.1	4.1	1.95
33	Thane	Bhivandi	Anjura	19.2163 9	73.03944	9.6	6.2	2.86
34	Thane	Bhivandi	Bharadi	19.2143 6	73.0535	4.2	4	1.87
35	Thane	Bhivandi	Rahnal	19.2697 2	73.02722	12.6	5.2	2.48
36	Thane	Bhivandi	Vadghar	19.2933 3	73.01556	5	2.2	0.98
37	Thane	Bhivandi	Tembhavali	19.33	73.07917	18	5.5	1.96
38	Thane	Bhivandi	Chimpipada	19.3806 4	73.00706	26.5	7.2	3.92
39	Thane	Bhivandi	Mahapoli	19.4077 8	73.08639	28.8	5.7	2.86
40	Thane	Bhivandi	Nandkar	19.2804 2	73.16628	13.7	4	1.85
41	Thane	Bhivandi	Dahole	19.3813 9	73.20639	27.4	5	2.46
42	Thane	Bhivandi	Aawalipada	19.4316 7	73.09194	27	5.5	1.8
43	Thane	Sahapur	Aghai	19.5643 8	73.23662	72.2	3.5	2.2
44	Thane	Sahapur	Kulhe	19.4431 1	73.46847	89.9	5	2.45
45	Thane	Sahapur	Awalpada	19.4742 2	73.57547	167.2	5.7	3.25
46	Thane	Sahapur	Shirgaomn	19.4094 1	73.37312	54.6	3.8	1.3
47	Thane	Sahapur	Vihigaon	19.7132 1	73.47956	357.7	6.1	2.03

s.no	District	Taluka	Village/Location	Lattitude	Longitude	altitude	DTW	(mbgl)
						(masl)	May- 22	Nov-22
48	Thane	Kalyan	Guravali	19.3219 1	73.21366	25.6	5.2	2.48
49	Thane	Kalyan	Navagaon vapsi	19.2701	73.26223	60.8	6.6	3.13
50	Thane	Kalyan	Dahegaon	19.2400 8	73.2469	21.3	2.95	1.68
51	Thane	Kalyan	Nilaje	19.1648	73.08011	8.2	2.75	1.98
52	Thane	Thane	Gaimuk	19.2854 5	72.9364	10.1	7.6	1.4
53	Thane	Ambarnat h	Goregaon	19.1094 4	73.27667	27.7	4.6	3.42
54	Thane	Ambarnat h	Goregaon	19.1066 7	73.27389	29.7	4.7	3.25
55	Thane	Ambarnat h	Goregaon	19.1052 8	73.27306	39.1	4.9	3.28
56	Thane	Ambarnat h	Goregaon	19.1052 8	73.27306	39.1	5	2.78
57	Thane	Bhivandi	Sagaon	19.5113 9	73.15472	42.3	8	3.4
58	Thane	Bhivandi	Sagaon	19.5091 7	73.15444	47.7	7.5	2.52
59	Thane	Bhivandi	Sagaon	19.5061 1	73.15389	41.4	4	3.58
60	Thane	Shahapur	Kothala	19.5772 2	73.56833	275.7	8.1	3.4
61	Thane	Shahapur	Kothala	19.5775	73.56111	302.7	8	3.88
62	Thane	Shahapur	Kothala	19.5775	73.56111	302.7	7.5	4
63	Thane	Murbad	Potgaon	19.2516 7	73.32167	49	1.8	2.9
64	Thane	Murbad	Potgaon	19.2513 9	73.32306	50.6	3	1.46
65	Thane	Ambarnat h	Palegaon	19.1891 7	73.00889	43	4	2
66	Thane	Bhiwandi	Amangaon (Amne)	19.3163 9	73.15889	31.1	7.3	2.58
67	Thane	Bhiwandi	Ambadi	19.4666 7	73.1	27		4.7
68	Thane	Bhiwandi	Angaon	19.3666 7	73.08333	15	6	
69	Thane	Thane	Bhaindarpada	19.2833 3	72.95	2	6.023	1.75
70	Thane	Shahapur	Cherfully	19.4666 7	73.33333	61	6.65	1.98
71	Thane	Thane	Dahisar Mori	19.1111 1	73.06389	19.8	5.28	4.75
72	Thane	Kalyan	Hetutane	19.17	73.09861	12.3	2.8	2.85
73	Thane	Ambarnat h	Katolwadi (Mulgaon)	19.1638 9	73.30278	74.7	3.9	1.67

s.no	District	Taluka	Village/Location	Lattitude	Longitude	altitude	DTW	(mbgl)
						(masl)	May- 22	Nov-22
74	Thane	Shahapur	Khardi-1	19.5888	73.38444	233.2	2.55	
				9				1.3
75	Thane	Kalyan	Kolimb (KOLAM)	19.2833 3	73.26667	41	4.2	1.63
76	Thane	Murbad	Murbad	19.25	73.38333	72	2.28	1.5
77	Thane	Ambarnat h	Navali-1	19.1780 6	73.14694	26.9	3.8	1.8
78	Thane	Shahapur	Nishanpada	19.4555 6	73.53333	154.7	3.7	0.55
79	Thane	Bhiwandi	Padghe-1	19.3625	73.17222	16.7	3.92	1.32
80	Thane	Murbad	Pasheri	19.2480 6	73.39333	75.7	6.95	2.3
81	Thane	Shahapur	Pendharichapad a	19.465	73.57361	168.3	4.52	3.43
82	Thane	Kalyan	Pimpleshwar	19.1933 3	73.095	19	3.7	3.5
83	Thane	Shahapur	Sathgaon	19.4472 2	73.43889	89.7	5.8	3.7
84	Thane	Shahapur	Shendrun_Pz	19.3666 7	73.36667	100		1.3
85	Thane	Murbad	Shiroshi-1	19.4019 4	73.60889	139.7	8.6	5.6
86	Thane	Shahapur	Talempada (Bihigaon)	19.7013 9	73.49028	381.1	7.9	1.8
87	Thane	Murbad	Tokavade (Tokoda)	19.3069 4	73.62222	126.1	5.3	3.15
88	Thane	Thane	Uttan	19.2802 8	72.78639	9.3	3.8	1.15
89	Thane	Bhiwandi	Vajreshwari	19.4877 8	73.02528	23.1	3.05	0.5
90	Thane	Thane	Yeur	19.2347 2	72.94472	110.2	3.28	2.15

Annexure VIII: Long term ground water level trend of monitoring wells in Thane District (2013-

S.N O	Block	Village	Lat_decima I	long decimal	AGENCY NAME	Pre-mo trend (n			nonsoon (m/year)
						FALL	RICE	FALL	RICE
1	Bhiwandi	Angaon	19.3666667	73.08333 33	CGWB	-0.4064			0.0752
2	There	Bhaindarpa	10 2022222	72.95000	COMP	0.1700		0 1022	
2	Thane	da	19.2833333	00 73.33333	CGWB	-0.1790		-0.1923	
3	Shahapur	Cherfully	19.4666667	73.06388	CGWB	-0.2700		-0.2670	
4	Thane	Dahisar	19.1111111	89	CGWB	-0.4663		-0.3791	
5	Ambarnat h	Katolwadi (Mulgaon)	19.1638889	73.30277 78	CGWB	-0.0168		-0.0428	
6	Kalyan	Kolimb	19.2833333	73.26666 67	CGWB	-0.0909			0.0203
7	Murbad	Murbad	19.2500000	73.38333 33	CGWB	-0.2664		-0.0362	
				73.39333				0.0302	
8	Murbad	Pasheri	19.2480556	33	CGWB	-0.0258	0.000		0.0527
9	Kalyan	Pimpleshw ar	19.1933333	73.09500 00	CGWB		0.280 1	-0.2267	
10		C 11	40 4470000	73.43888	0014/5	0.4400			0.01.45
10	Shahapur	Sathgaon Talempada	19.4472222	89 73.49027	CGWB	-0.4188	0.107		0.0145
11	Shahapur	(Bihigaon)	19.7013889	78	CGWB		6	-0.0638	
12	Murbad	Tokavade (Tokoda)	19.3069444	73.62222 22	CGWB	-0.1479			0.0051
12	BHIWAND	Akoli	19.3003444	73.04166	GSDA	-0.1479		-	0.0031
13	I			667			0.139 7	0.0175 7576	
14	BHIWAND I	Awale	19.4305556	73.09166 667	GSDA		0.173 8	- 0.0464 5161	
14	AMBARN	Awale	19.4305550	73.23888	GSDA		0	0.0296	
15	ATH	Badlapur	19.1583333	889		-0.0361		9697	
16	BHIWAND I	Bapgaon	19.3125	73.14583 333	GSDA		0.316 7	- 0.0403 0303	
	BHIWAND			73.09444	GSDA		0.218	- 0.0273	
17	1	Bhinar	19.3277778	444	GSDA		8	9394	
18	BHIWAND I	Borivali T. Padgha	19.3416667	73.1375			0.270 6	0.0175 7576	
19	MURBAD	Bursunge	19.4291667	73.60416 667	GSDA		0.267 6	- 0.0184 8485	
20	BHIWAND	Dapode	19.2458333	73.04166 667	GSDA		0.020		0.001818 182
21	THANE	Ghodband ar	19.2916667	72.89166 667	GSDA	-0.0164			0.019696 97
22	MURBAD	Inde	19.2833333	73.55833	GSDA		0.172	- 0.0027 2727	

S.N O	Block	Village	Lat_decima	long decimal	AGENCY NAME	Pre-mo trend (n			monsoon (m/year)
						FALL	RICE	FALL	RICE
					GSDA			-	
	AMBARN			73.28611			0.306	0.0315	
23	ATH	Kanhor	19.1430556	111			1	1515	
24	AMBARN ATH	Karay	10 1111111	73.31388 889	GSDA		0.079 7	0.02	
24	АІП	Karav	19.1111111	889	GSDA		/	-0.02	
	AMBARN			73.21388	GJDA		0.100		0.023939
25	ATH	Katrap	19.1833333	889			9		394
		·			GSDA				
								-	
	SHAHAPU			73.55416				0.0548	
26	R	Kharade	19.4625	667		-0.0852		4848	
					GSDA			-	
77	TUANE	Kopar	10.005.0222	72 0125		0.0205		0.0106	
27	THANE	Karane	19.0958333	73.0125	GSDA	-0.0395		0606	
					GSDA			0.0590	
28	THANE	Kopari	19.0875	73.0125		-0.0273		9091	
		Nopuli	10.0070		GSDA	0.0270		-	
	AMBARN							0.0145	
29	ATH	Mangrul	19.1697222	73.1575		-0.0400		4545	
					GSDA			-	
	AMBARN			73.13611			0.402	0.0263	
30	ATH	Newale	19.1875	111			4	6364	
				70.00400	GSDA		0.550	-	
21	BHIWAND	Dimpolehat	10 2096111	73.00138			0.553	0.0039	
31	1	Pimpalshet	19.3986111	889	GSDA		0	3939	
				73.22638	GSDA			0.0254	
32	KALYAN	Rayta	19.2541667	889		-0.0558		5455	
-	BHIWAND	.,		73.16944	GSDA		0.155		0.015151
33	1	Sange	19.3	444			4		515
				73.43333	GSDA		0.252		0.108484
34	MURBAD	Sasne	19.2	333			1		848
					GSDA			-	
25	SHAHAPU	Ch an dann	10 200007	70.075		0.0227		0.0145	
35	R	Shendrun	19.3666667	73.375	CCDA	-0.0327		4545	
	AMBARN	Shil To		73.14722	GSDA		0.068	- 0.0290	
36	ATH	Chon	19.1305556	222			5	9091	
					GSDA		-	-	
				73.04305				0.0112	
37	THANE	Shilphata	19.1513889	556		-0.0679		1212	
					GSDA				
<i></i>				73.45416			0.647		0.004545
38	MURBAD	Shivale	19.2694444	667	0000		9		455
					GSDA			-	
				73.62083			0.114	0.0181 8182	
39	MURBAD	Talegaon	19.3611111	333			0.114 8	0102	
55		i dieguon	10.0011111	555	GSDA		Ť	-	
								0.0372	
	SHAHAPU			73.34722			0.039	7273	
40	R	Tembhare	19.3416667	222			7		
					GSDA				
				72.97916			0.005		0.007272
41	THANE	Thane	19.1958333	667			5		727

S.N O	Block	Village	Lat_decima I	long decimal	AGENCY Pre-monsoon Post-mon NAME trend (m/year) trend(m/				
						FALL	RICE	FALL	RICE
					GSDA			-	
								0.0109	
							0.297	0909	
42	MURBAD	Thunepada	19.2416667	73.5375			2		
					GSDA			-	
				73.22361				0.0181	
43	KALYAN	Titwala	19.3	111		-0.0436		8182	
					GSDA			-	
							0.098	0.0187	
44	MURBAD	Tokavde	19.3083333	73.6			2	9032	
					GSDA			-	
	SHAHAPU			73.62083			0.085	0.0666	
45	R	Varaskol	19.3611111	333			5	6667	
					GSDA			-	
	SHAHAPU						0.210	0.0672	
46	R	Vehaloli	19.45	73.4875			1	7273	
					GSDA			-	
	SHAHAPU						0.372	0.0312	
47	R	Vihigaon	19.45	73.4875			6	1212	
					GSDA			-	
	SHAHAPU			73.26527			0.001	0.0790	
48	R	Washind	19.4080556	778			6	9091	

S.N	BLOCK	VILLAGE	Well	Lat	Long	рН	EC	TDS	TH	Ca	Mg	Na	К	CO ₃	HCO ₃	CI	SO ₄	NO ₃	F	U	SAR	RSC
			Туре				(µS/ cm)		•				mį	g/L						(ppb)		
1	Thane	Bhaindarpada	NHS	19.283	72.950	6.96	631	404	225	60	18	30	1	0	195	67	29	25	0.36	0.16	0.87	-1.3
2	Murbad	Murbad	NHS	19.250	73.383	7.43	1031	660	345	74	39	57	6	0	378	110	25	6	0.35	1.79	1.34	-0.7
3	Kalyan	Kolimb	_						_				_	_			_	_				
		(Kolam)	NHS	19.283	73.267	7.14	2424	1551	855	180	98	168	6	0	372	603	10	10	0.23	2.60	2.50	-11.0
4	Shahapur	Talempada	NHS	19.701	73.490	7.29	473	302	215	54	19	12	5	0	232	14	29	4	0.36	BDL	0.35	-0.5
5	Shahapur	Nishanpada	NHS	19.456	73.533	7.69	342	219	160	36	17	9	1	0	183	14	11	BDL	0.27	BDL	0.29	-0.2
6	Shahapur	Sathgaon	NHS	19.447	73.439	7.50	334	214	165	40	16	9	0	0	183	14	5	1	0.38	BDL	0.32	-0.3
7	Bhiwandi	Padgha	NHS	19.363	73.172	7.32	649	415	215	48	23	34	21	0	275	43	25	2	0.26	0.02	1.00	0.2
8	Murbad	Tokavade (Tokoda)	NHS	19.307	73.622	7.55	368	236	145	36	13	18	1	0	201	14	7	1	0.26	BDL	0.65	0.4
9	Thane	Dahisar Mori	NHS	19.111	73.064	7.49	1411	903	535	124	55	61	1	0	421	209	54	6	0.30	2.96	1.14	-3.8
10	Ulhasnagar	Katolwadi (Mulgaon)	NHS	19.164	73.303	7.64	546	350	225	60	18	17	4	0	250	28	18	1	0.28	0.01	0.49	-0.4
11	Murbad	Pasheri	NHS	19.248	73.393	7.48	226	145	100	24	10	7	1	0	122	7	2	2	0.26	BDL	0.29	0.0
12	Kalyan	Hetutane	NHS	19.170	73.099	7.69	790	505	340	70	40	25	5	0	372	50	21	1	0.34	0.14	0.59	-0.7
13	Kalyan	Pimpleshwar	NHS	19.193	73.095	7.43	1332	852	490	100	58	78	1	0	244	323	31	2	0.79	0.93	1.53	-5.8
14	liaiyan	Amangaon		10.100	, 0.000		1552	001		100			_			010		_	0170	0.00	1.00	0.0
	Bhiwandi	(Amne)	NHS	19.316	73.159	7.74	1467	939	420	94	45	99	55	0	519	174	53	44	0.32	2.05	2.10	0.1
15	Murbad	Shiroshi-1	NHS	19.402	73.609	7.39	563	360	230	50	26	16	25	0	275	32	12	7	0.30	BDL	0.45	-0.1
16		Pendharichap																				
	Shahapur	ada	NHS	19.465	73.574	7.49	373	238	160	36	17	10	1	0	183	14	9	3	0.27	BDL	0.34	-0.2
17	Shahapur	Khardi-1	NHS	19.589	73.384	7.63	790	505	240	52	27	58	12	0	323	82	20	4	0.28	0.47	1.62	0.5
18	Bhiwandi	Vajreshwari	NHS	19.488	73.025	7.44	370	237	175	40	18	12	0.2	0	171	25	21	2	0.35	BDL	0.40	-0.7
19	Thane	Uttan	NHS	19.280	72.786	7.80	1223	783	320	70	35	118	4	0	476	121	53	3	0.83	0.82	2.87	1.4
20		Aghai	KOW	19.564	73.237	7.39	404	259	205	30	32	14	0	0	140	85	16	3	0.36	BDL	0.44	-1.8
21		Shirgaomn	KOW	19.409	73.373	7.52	591	378	230	40	32	26	1	0	262	32	22	26	0.22	BDL	0.75	-0.3
22		Vihigaon	KOW	19.713	73.480	7.50	182	116	75	18	7	9	1	0	98	11	BDL	4	0.16	BDL	0.43	0.1
23		Guravali	KOW	19.322	73.214	7.47	614	393	235	52	26	21	17	0	293	35	28	8	0.17	BDL	0.59	0.1
24		Navagaonvap																				
		si	KOW	19.270	73.262	7.51	437	280	165	32	21	12	2	0	183	25	15	12	0.16	BDL	0.41	-0.3
25		Dahegaon	KOW	19.240	73.247	7.43	893	572	300	46	45	45	3	0	317	96	33	7	0.15	BDL	1.14	-0.8
26		Guravali	KOW	19.322	73.214	7.45	540	346	205	40	26	15	12	0	256	25	17	6	0.18	BDL	0.47	0.1
27	Ambarnath	Ambarnath	KOW			6.82	183	117	90	20	10	8	3	0	61	35	4	8	0.13	0.06	0.36	-0.8
28	Ambarnath	Bandhanwadi	KOW	19.166	73.117	7.40	479	307	230	54	23	11	0	0	275	18	10	3	0.17	BDL	0.32	-0.1

Annexure- IV: Ground Water Quality data of Shallow Aquifer of Thane District

S.N	BLOCK	VILLAGE	Well	Lat	Long	рН	EC	TDS	TH	Ca	Mg	Na	K	CO ₃	HCO ₃	Cl	SO ₄	NO ₃	F	U	SAR	RSC
			Туре		-	-	(μS/						mg	;/L						(ppb)		
							cm)												r			
29	Ambarnath	Aaptewadi	KOW	19.156	73.290	6.43	489	313	140	36	12	20	5	0	79	46	15	46	0.15	BDL	0.73	-1.5
30	Bhivandi	Sagao	KOW	19.513	73.282	8.23	598	383	235	64	18	18	18	0	256	43	32	13	0.16	BDL	0.52	-0.5
31	Bhivandi	Igashi	KOW	19.471	73.133	7.66	606	388	245	56	26	17	2	0	287	28	12	2	0.25	BDL	0.47	-0.2
32	Bhivandi	Bharadi	KOW	19.214	72.990	7.53	761	487	300	70	30	37	6	0	293	60	56	5	0.24	BDL	0.92	-1.2
33	Bhivandi	Khaniwali	KOW	19.413	73.101	7.42	404	259	175	50	12	12	8	0	214	18	8	3	0.26	0.12	0.40	0.0
34	Shahapur	Khorgaon	KOW	19.506	73.149	7.53	377	241	150	30	18	10	0.3	0	140	28	9	7	0.22	BDL	0.37	-0.7
35	Shahapur	Aatgaon	KOW	19.503	73.189	7.57	368	236	150	40	12	14	2	0	165	35	8	2	0.20	BDL	0.51	-0.3
36	Shahapur	Pachghar	KOW	19.472	72.894	7.93	156	100	75	20	6	5	0.5	0	61	25	4	2	0.15	BDL	0.27	-0.5
37	Shahapur	Mugaon	KOW	19.376	73.074	7.64	507	324	195	40	23	29	2	0	262	35	10	3	0.25	BDL	0.91	0.4
38	Murbad	Saralgaon	KOW	19.291	73.493	8.24	476	305	195	40	23	16	4	0	183	53	18	4	0.19	BDL	0.50	-0.9
39	Murbad	Shiraval	KOW	19.224	73.417	7.40	363	232	160	36	17	10	4	0	183	18	2	7	0.18	0.01	0.35	-0.2
40	Murbad	Sakurli	KOW	19.188	73.497	7.62	379	243	90	26	6	42	17	0	153	35	8	29	0.17	0.03	1.92	0.7
41	Ambarnath	Goregaon	KOW	19.109	73.277	7.53	878	562	360	84	36	12	0	0	336	82	19	2	0.17	BDL	0.28	-1.7
42	Bhivandi	Sagao	KOW	19.506	73.154	7.46	500	320	205	36	28	12	1	0	201	46	18	3	0.18	BDL	0.37	-0.8
43	Shahapur	Kothala	KOW	19.578	73.561	7.47	242	155	75	24	4	21	19	0	67	32	8	45	0.28	0.46	1.07	-0.4
44	Shahapur	Kothala	KOW	19.578	73.561	7.49	792	507	320	70	35	8	5	0	232	71	29	11	0.19	0.54	0.20	-2.6
45	Shahapur	Kothala	KOW	19.578	73.561	7.54	216	138	75	20	6	28	20	0	104	35	9	7	0.19	BDL	1.40	0.2
46	Murbad	Potgaon	KOW	19.252	73.325	7.99	732	468	225	50	24	43	1	0	244	71	30	1	0.17	0.25	1.25	-0.5
47	Murbad	Potgaon	KOW	19.251	73.323	8.03	367	235	90	20	10	42	0.4	0	92	53	26	1	0.51	BDL	1.94	-0.3

SI. No.	District	Location/Village	Latitude (N)	Longit ude (E)	Cr (ppm)	Mn (ppm)	Fe (ppm)	Ni (ppm)	Cu (ppm)	67 Zn (ppm)	As (ppm)	Se (ppm)	Cd (ppm)	Pb (ppm)	U (ppb)
1			10.564	73.23	0.004		0.000			0.010					0.467
	Thane	Aghai	19.564	7	0.001	0.039	0.202	0.000	0.002	0.013	0.000	0.000	0.000	0.002	0.167
2	Thane	Shirgaomn	19.409	73.37 3	0.001	0.024	0.171	0.000	0.002	0.005	0.000	0.000	0.000	0.000	0.197
3	Thane	Guravali	19.322	73.21 4	0.001	0.023	0.218	0.001	0.004	0.016	0.000	0.000	0.000	0.000	0.214
4	Thane	Aaptewadi	19.156	73.29 0	0.003	0.002	0.043	0.000	0.001	0.012	0.000	0.000	0.000	0.001	0.071
5		·		73.28											
	Thane	Sagao	19.513	2	0.003	0.007	0.170	0.001	0.002	0.017	0.000	0.000	0.000	0.001	0.505
6	Thane	Aatgaon	19.503	73.32 7	0.002	0.459	0.683	0.001	0.002	0.023	0.000	0.000	0.000	0.001	0.361
7	Thane	Potgaon	19.252	73.32 5	0.001	0.031	0.208	0.001	0.001	0.010	0.000	0.000	0.000	0.001	0.167
8	Thane	Pimpalgaon	19.260	73.08 8	0.403	0.022	0.384	0.001	0.002	0.010	0.000	0.000	0.000	0.001	0.425
9				73.06											
10	Thane	Vajreshwari	19.469	5	0.019	0.013	0.322	0.001	0.001	0.011	0.000	0.000	0.000	0.001	0.077
10	Thane	Kothala	19.578	73.56 1	0.003	0.030	0.565	0.001	0.008	0.015	0.000	0.000	0.000	0.002	0.428
11	Thane	Sagao	19.506	73.15 4	0.000	0.000	0.004	0.000	0.000	BDL	0.000	0.000	0.000	0.000	0.179
				MAX	0.403	0.459	0.683	0.001	0.008	0.023	0.000	0.000	0.000	0.002	0.505
				MIN	0.000	0.000	0.004	0.000	0.000	BDL	0.000	0.000	0.000	0.000	0.071
				AVER AGE	0.040	0.059	0.270	0.001	0.002	0.012	0.000	0.000	0.000	0.001	0.254

Annexure- IV A : Heavy metal data of Shallow Aquifer of Thane District.

Annexure-V: Details of Key Obser	vation Wells of Thane District.
----------------------------------	---------------------------------

SI. No.	well no.	District	Taluka	Village/Location	Lattitude	Longitude	D.T.W. (Pre - 2022) (m bgl)	D.T.W. (Post - 2022) (m bgl)	EC (Pre - 2022)	EC (Post - 2022)
1	KOW-AB-1	Thane	Ambarnath	Ambarnath	19.19833	73.16767	3.2	1.82	110	128
2	KOW-AB-3	Thane	Ambarnath	Bandhanwadi	19.16611	73.11694444	6.3	2.48		209
3	KOW-AB-4	Thane	Ambarnath	Aaptewadi	19.15561	73.29027778	4.3	1.48	331	320
4	KOW-BH-6	Thane	Bhivandi	sagao	19.51322	73.28169444	6.3	3.42	487	398
5	KOW-BH-7	Thane	Bhivandi	Igashi	19.47139	73.13325	3.7	2.75	475	372
8	KOW-SH_7	Thane	Shahapur	khorgaon	19.50592	73.14891667	5.6	2.41	297	251
9	KOW-SH_10	Thane	Shahapur	aatgaon	19.50278	73.18933333	7.3	3.46	310	259
10	KOW-SH_16	Thane	Shahapur	Pachghar	19.47183	72.89438889	3.8	1.86	165	142
11	KOW-SH_18	Thane	Shahapur	Mugaon	19.37592	73.07352778	3	1.46	728	646
12	KOW-MB-19	Thane	Murbad	saralgaon	19.29103	73.49322222	3	2.3	458	404
13	KOW-MB-23	Thane	Murbad	Shiraval	19.22444	73.41666667	3.6	1.86	215	182
14	KOW-MB-25	Thane	Murbad	Sakurli	19.18806	73.49666667	3	2.5	223	194
15	KOW-AB-2	Thane	Ambarnath	Khoni	19.16972	73.11777778	2	1.02		249
16	KOW-AB-5	Thane	Ambarnath	Kasgaon	19.12528	73.26305556	9.3	4.4	475	392
17	KOW-SH-8	Thane	Shahapur	Taharpur	19.54481	73.22905556	4.6	1.86	377	328
18	KOW-K-9	Thane	Kalyan	Vavghar	19.35833	73.28472222	3.1	1.88	1624	1428
19	KOW-SH_11	Thane	Shahapur	Palshin	19.60692	73.35241667	3.8	2.02	385	320
20	KOW-SH_12	Thane	Shahapur	Kasara, khurd	19.64564	73.47411111	0.7	0.82	335	382
21	KOW-SH_13	Thane	Shahapur	Vashali	19.59969	73.50086111	4.2	2.4	125	90
22	KOW-SH_14	Thane	Shahapur	Kothala	19.57792	73.5575	8.9	3.78	165	128
23	KOW-SH_15	Thane	Shahapur	Talvadi	19.51797	73.58655556	2.5	1.45	73	70
25	KOW-MB-20	Thane	Murbad	Nadhai	19.26903	73.39488889	4.7	1.93	271	246
26	KOW-MB-21	Thane	Murbad	Potgaon	19.25175	73.32461111	2	1.12	345	308

SI. No.	well no.	District	Taluka	Village/Location	Lattitude	Longitude	D.T.W. (Pre - 2022) (m bgl)	D.T.W. (Post - 2022) (m bgl)	EC (Pre - 2022)	EC (Post - 2022)
27	KOW-MB-22	Thane	Murbad	Musali belpada	19.23306	73.33833333	3.2	2.09	387	327
28	KOW-MB-24	Thane	Murbad	Masha-malyachapada	19.16417	73.45472222	7	3.9	427	481
29	KOW-MB-26	Thane	Murbad	Khopiwali	19.2075	73.54694444	3.8	1.4	345	360
30	KOW-MB-27	Thane	Murbad	Mahaj	19.24917	73.57722222	dry	2.4		361
31	KOW-MB-28	Thane	Murbad	Dahigaon	19.26083	73.61444444	2.9	3.3	151	1661
32	KOW-MB-29	Thane	Murbad	Vaishak	19.30222	73.62638889	4	3.21	750	604
33	KOW-MB-30	Thane	Murbad	Moroshi	19.34056	73.68888889	6.2	3.02	270	262
34	KOW-MB-32	Thane	Murbad		19.34194	73.72277778	6	2.88	375	302
35	KOW-BH-33	Thane	Bhivandi	Pimpalgaon	19.26003	73.08847222	4.1	1.95	1324	1080
36	KOW-BH-34	Thane	Bhivandi	Anjura	19.21639	73.03944444	6.2	2.86	487	401
37	KOW-BH-35	Thane	Bhivandi	Bharadi	19.21436	73.0535	4	1.87	618	540
38	KOW-BH-36	Thane	Bhivandi	Rahnal	19.26972	73.02722222	5.2	2.48	851	780
39	KOW-BH-40	Thane	Bhivandi	Vadghar	19.29333	73.01555556	2.2	0.98	727	628
40	KOW-BH-41	Thane	Bhivandi	Tembhavali	19.33	73.07916667	5.5	1.96	1315	1260
41	KOW-BH-42	Thane	Bhivandi	Chimpipada	19.38064	73.00705556	7.2	3.92	664	618
42	KOW-BH-43	Thane	Bhivandi	Mahapoli	19.40778	73.08638889	5.7	2.86	762	698
43	KOW-BH-44	Thane	Bhivandi	Nandkar	19.28042	73.16627778	4	1.85	436	496
44	KOW-BH-47	Thane	Bhivandi	Aawalipada	19.43167	73.09194444	5.5	2.46	965	1018
45	KOW-BH-45	Thane	Bhivandi	Dahole	19.38139	73.20638889	5	1.8	555	490
46	KOW-TN-1	Thane	Sahapur	Aghai	19.56438	73.23662222	3.5	2.2	286	220
47	KOW-TN-2	Thane	Sahapur	Kulhe	19.44311	73.46847	5	2.45	412	432
48	KOW-TN-3	Thane	Sahapur	Awalpada	19.47422	73.57547	5.7	3.25	415	218
49	KOW-TN-4	Thane	Sahapur	Shirgaomn	19.40941	73.37311944	3.8	1.3	566	434
50	KOW-TN-5	Thane	Sahapur	Vihigaon	19.71321	73.47956111	6.1	2.03	168	172
51	KOW-TN-6	Thane	Kalyan	Guravali	19.32191	73.21366389	5.2	2.48	670	496
52	KOW-TN-7	Thane	Kalyan	Navagaon vapsi	19.2701	73.26223333	6.6	3.13	428	486

SI. No.	well no.	District	Taluka	Village/Location	Lattitude	Longitude	D.T.W. (Pre - 2022) (m bgl)	D.T.W. (Post - 2022) (m bgl)	EC (Pre - 2022)	EC (Post - 2022)
53	KOW-TN-8	Thane	Kalyan	Dahegaon	19.24008	73.2469	2.95	1.68	1684	1820
54	KOW-TN-9	Thane	Kalyan	Nilaje	19.1648	73.08010833	2.75	1.98	562	622
55	KOW-TN-10	Thane	Thane	Gaimuk	19.28545	72.9364	7.6	3.42	332	368
56	KOW-BH-46	Thane	Bhivandi	Khaniwali	19.41278	73.21805556	1.4	1.55	327	436
57	PL-AB-1	Thane	Ambarnath	Goregaon	19.10944	73.27666667	4.6	3.25	737	640
58	PL-AB-2	Thane	Ambarnath	Goregaon	19.10667	73.27388889	4.7	3.28	4.7	420
59	PL-AB-3	Thane	Ambarnath	Goregaon	19.10528	73.27305556	4.9	2.78	404	382
60	PL-AB-4	Thane	Ambarnath	Goregaon	19.10528	73.27305556	5.6	3.4	370	390
61	PL-BH-1	Thane	Bhivandi	Sagaon	19.51139	73.15472222	8	2.52	360	470
62	PL-BH-2	Thane	Bhivandi	Sagaon	19.50917	73.15444444	5.8	3.58	420	628
63	PL-BH-3	Thane	Bhivandi	Sagaon	19.50611	73.15388889	4	3.4	770	746
64	PL-SH-1	Thane	Shahapur	Kothala	19.57722	73.56833333	8.1	3.88	156	170
65	PL-SH-2	Thane	Shahapur	Kothala	19.5775	73.56111111	8	4	666	490
66	PL-MB-2	Thane	Murbad	Potgaon	19.25167	73.32166667	1.8	1.46	614	586
67	PL-MB-3	Thane	Murbad	Potgaon	19.25139	73.32305556	4.2	2	289	328
68	PL-AB-1	Thane	Ambarnath	Palegaon	19.18917	73.00888889	4	2.58	131	190

Annexure-VI: Details of Soil infiltration tests of Thane District.

Date	17-12-2022		Vaish	akra	
Unique ID no.	Thane-1	60			
Village	Vaishakra (Khadakpada)	یر ⁵⁰			
Taluka	Murbhad	02 thr 07 thr 07 thr 07 thr 07 thr 07 thr 01	_		
District	Gondia	05 rate			
Coordinates	19.307899, 73.623489	.0 .0			
Elevation/RL (mamsl)	130	02 trat			
Initial water level	29				
Geology	Decan Basalt				
Soil Type	Clayey loam	0.0000 0.	.5000 1	.0000 1.500	0 2.0000
Final Infiltration Rate (cm/hr)	1.8			ne (hr)	
Total Precipitation	10.4				
	Duration (min)	Cum Time	Wate	Infiltrate	Infiltratio
		(min)	r level Dept h	d water depth (cm)	n rate (cm/hr)
S.no	1.00		(cm)	1.00	
1	1.00	1	28.00	1.00	60
2	1.00	2	28.60	0.40	24
3	1.00	3	28.70	0.30	18
4	2.00	5	28.60	0.40	12
5	5.00	10	28.10	0.90	10.8
6	5.00	15	28.20	0.80	9.6
7	5.00	20	28.30	0.70	8.4
8	5.00	25	28.50	0.50	6
9	10.00	30	28.50	0.50	3
10	10.00	40	28.10	0.90	5.4
11	10.00	50	28.20	0.80	4.8
12	10.00	60	28.20	0.80	4.8
13	10.00	70	28.40	0.60	3.6
14	10.00	80	28.50	0.50	3
15	10.00	90	28.85	0.40	2.4
16	10.00	100	28.70	0.30	1.8
17	10.00	110	28.70	0.30	1.8
18	10.00	120	28.70	0.30	1.8

Date	19-12-2022	Waret							
Unique ID no.	Thane-2	45							
Village	Waret	40							
Taluka	Bhivandi	5 30							
District	Thane	25 at							
Coordinates	19.458829, 73.084036	u 40 35 30 25 25 20 15 15 10 20							
Elevation/RL (mamsl)	30.66		~						
Initial water level	20	<u> </u>		_					
Geology	Decan Basalt	0							
Soil Type	Clay loam	0.0000	0.50	00 1.00	1.50	2.000			
Final Infiltration Rate	- /]		Time	hrs				
(cm/hr)	0.3								
Total Precipitation	5.7								
	Duration (min)	Cum Time	Wate	Infiltrate	Infiltratio	Remark			
		(min)	r	d water	n rate	s			
			level	depth	(cm/hr)				
			Dept	(cm)					
c			h						
S.no	4.00		(cm)	0.70					
	1.00	1	19.3 0	0.70					
			0						
1					42				
	1.00	2	19.5	0.50					
2			0		30				
	1.00	3	19.7	0.30					
3			0		18				
4	2.00	5	19.4	0.60	10				
4	2.00	7	0 19.5	0.50	18				
5	2.00	/	19.5	0.50	15				
5	3.00	10	19.5	0.50	10				
6			0		10				
-	5.00	15	19.2	0.80					
7			0		9.6				
	5.00	20	19.3	0.70					
8			0		8.4				
_	10.00	30	19.2	0.80					
9	40.00		0	0.00	4.8				
10	10.00	40	19.4 0	0.60	3.6				
10	10.00	50	19.8	0.20	3.0				
11	10.00	50	19.8	0.20	1.2				
11	10.00	60	19.9	0.10	1.2				
12			0	0.10	0.6				
	20.00	80	19.9	0.10					
13			0		0.3				
	20.00	100	19.9	0.10					
14			0		0.3				
	20.00	120	19.9	0.10					
15			0		0.3				