

# केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण

विभाग, जल शक्ति मंत्रालय

भारत सरकार

# **Central Ground Water Board**

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

# AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

# **BONGAIGAON DISTRICT, ASSAM**

उत्तर पूर्वी क्षेत्र, गुवाहाटी North Eastern Region, Guwahati



# AQUIFER MAPPING AND MANAGEMENT PLAN OF BONGAIGAON DISTRICT, ASSAM

ANNUAL ACTION PLAN, 2022-23

Chao Konseng Gogoi, Scientist-C

& Bipul Vishal STA (Hg.)

CENTRAL GROUND WATER BOARD North Eastern Region Guwahati

# **CONTENTS**

| CHAPTER 1                                                                       | 1          |
|---------------------------------------------------------------------------------|------------|
| 1.0 INTRODUCTION                                                                | 1          |
| 1.12 GEOLOGY:                                                                   | 14         |
| CHAPTER 2                                                                       | 16         |
| 2. DATA COLLECTION                                                              | 16         |
| 2.1: HYDROGEOLOGICAL DATA                                                       | 16         |
| 2.2 WATER QUALITY                                                               | 16         |
| 2.3: GEOPHYSICAL SURVEY                                                         | 16         |
| 2.4: EXPLORATORY DRILLING:                                                      | 18         |
| CHAPTER 3                                                                       | 20         |
| 3. DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING                         | 20         |
| 3.1DATA INTERPRETATION                                                          | 20         |
| 3.1.1GEOPHYSICAL EXPLORATION AND AQUIFER CHARACTERIZATION –                     | 20         |
| 3.1.2 AQUIFER DISPOSITION                                                       | 20         |
| 3.1.3 AQUIFER CHARACTERISTICS                                                   | 20         |
| 3.5 GROUND WATER QUALITY                                                        | 24         |
| 3.5.1 : HYDROGEOCHEMICAL FACIES                                                 | 25         |
| 3.5.2 IRRIGATION WATER SUITABILITY INDICES:                                     | 27         |
| CHAPTER 4.0                                                                     | 30         |
| GROUND WATER RESOURCES                                                          | 30         |
| 5. GROUND WATER RELATED ISSUES                                                  | 33         |
| 5.1 LOW STAGE OF GROUND WATER DEVELOPMENT:                                      | 33         |
| 5.2 HIGH IRON CONCENTRATION:                                                    | 33         |
| 5.3 WATER LOGGING:                                                              | 33         |
| CHAPTER 6.0                                                                     | 34         |
| MANAGEMENT STRATEGY                                                             | 34         |
| 6.1: MANAGEMENT STRATEGIES FOR AGRICULTURE                                      | 34         |
| 6.2 DEMAND SIDE MANAGEMENT                                                      | 39         |
| LIST OF TABLES                                                                  |            |
| TABLE 1.1: BLOCK WISE AREA OF BONGAIGAON DISTRICT, ASSAM                        | 3          |
| TABLE 1.2: DATA ADEQUACY AND DATA GAP ANALYSIS                                  | 4          |
| TABLE 1.3: CLASSIFICATION OF DEVIATION OF MONSOONAL RAINFALL FROM NORMAL (2022) | 2012-<br>4 |

| TABLE 1.4: MONTHLY RAINFALL DATA OF BONGAIGAON DISTRICT, 2022                                                        | 5        |
|----------------------------------------------------------------------------------------------------------------------|----------|
| TABLE 1.5: LAND USE PATTERN IN BONGAIGAON DISTRICT (IN HECTARES)                                                     | 8        |
| TABLE 1.6: AGRICULTURE ACREAGE AND YIELD IN BONGAIGAON DISTRICT (IN HECTARES)                                        | 12       |
| TABLE 1.7: IRRIGATION STRUCTURES IN BONGAIGAON (5 <sup>th</sup> MI CENSUS)                                           | 13       |
| TABLE 1.8: SOURCE WISE IRRIGATION POTENTIAL CREATED AND CCA OF BONGAIGAON<br>DISTRICT (IN HECTARES)                  | 13       |
| TABLE 1.9: STRATIGRAPHY OF BONGAIGAON                                                                                | 14       |
| TABLE 2.1: LOCATION OF VES SURVEY IN BONGAIGAON DISTRICT                                                             | 16       |
| TABLE 2.2: DETAILS OF KEY WELLS ESTABLISHED IN BONGAIGAON DISTRICT.                                                  | 16       |
| TABLE 2.3: DETAILS OF EXPLORATORY WELL IN BONGAIGAON DISTRICT.                                                       | 19       |
| TABLE 3.1: AQUIFER CHARACTERISTICS OF EXPLORATORY WELLS AT BONGAIGAON                                                | 20       |
| TABLE 4.1: SHOWS THE NET GROUNDWATER AVAILABILITY, EXISTING DRAFT AND STAGE OF DEVELOPMENT FOR THE YEAR 2022.        | 31       |
| TABLE 3.2: SALIENT INFORMATION OF STATIC RESOURCE OF BONGAIGAON DISTRICT, ASSAM                                      | 32       |
| TABLE 6.1: CROPPING PATTERN OF UN-IRRIGATED AREAS OF BONGAIGAON DISTRICT                                             | 34       |
| TABLE 3.2: WATER REQUIREMENT FOR UN-IRRIGATED AREAS OF BONGAIGAON DISTRICT                                           | 35       |
| TABLE 6.3: PRECIPITATION DEFICIENCY                                                                                  | 37       |
| TABLE 6.4: ACTUAL MONTHLY WATER REQUIREMENT FOR DIFFERENT CROPS IN UNIRRIGATE<br>AREAS OF BONGAIGAON DISTRICT, ASSAM | ED<br>38 |
| TABLE 6.4: SUMMARISED RESULTS OF WATER REQUIREMENT TO BRING THE UN-IRRIGATED AREA OF BONGAIGAON DISTRICT, ASSAM      | 39       |
| LIST OF FIGURES                                                                                                      |          |
| FIG.1.1: BASE MAP OF BONGAIGAON DISTRICT                                                                             | 3        |
| FIG. 1.2: GRAPH OF MONTHLY RAINFALL AND NORMAL RAINFALL BONGAIGAON , 2022                                            | 5        |
| FIG. 1.3: GRAPH OF PERCENTAGE DEVIATION OF MONSOONAL RAINFALL FROM NORMAL (201                                       | 1-       |
| 2021)                                                                                                                | 6        |
| FIG. 1.4: DIGITAL ELEVATION MAP OF BONGAIGAON.                                                                       | 7        |
| FIG.1.5: GEOMORPHOLOGY MAP OF BONGAIGAON.                                                                            | 8        |
| FIG. 1.6: LAND USE LAND COVER MAP OF BONGAIGAON DISTRICT.                                                            | 9        |
| FIG.1. 7: SOIL MAP OF BONGAIGAON DISTRICT                                                                            | 10       |
| FIG.1.8: DRAINAGE MAP OF BONGAIGAON DISTRICT                                                                         | 11       |
| FIG.1.9: LINEAMENT MAP OF BONGAIGAON DISTRICT.                                                                       | 12       |
| FIG. 1.10: GEOLOGY MAP OF BONGAIGAON DISTRICT                                                                        | 15       |
| FIG.2.1: LOCATION OF KEY WELLS UNDER NAQUIM, BONGAIGAON DISTRICT                                                     | 18       |
| FIG. 2.2: EXPLORATORY WELLS BONGAIGAON DISTRICT                                                                      | 19       |

| FIG.3.1: SECTION SHOWING AQUIFER DISPOSITION ALONG NORTHEAST TO SOUTHEAST IN BONGAIGAON DISTRICT. | 20 |
|---------------------------------------------------------------------------------------------------|----|
| FIG. 3.2: 2D DISPOSITION OF AQUIFER ALONG NORTHWEST TO SOUTHWEST IN BONGAIGAON DISTRICT.          | 20 |
| FIG. 3.3: 3D DISPOSITION OF AQUIFER IN BONGAIGAON DISTRICT.                                       | 21 |
| FIG. 3.4: STRATIGRAPHIC MODEL OF AQUIFER DISPOSITION ALONG BONGAIGAON DISTRICT.                   | 22 |
| FIG. 3.5: - PRE MONSOON DTWL MAP OF BONGAIGAON DISTRICT.                                          | 22 |
| FIG. 3.6: POST MONSOON DTWL MAP OF BONGAIGAON DISTRICT                                            | 23 |
| FIG 3.7: WATER LEVEL FLUCTUATION MAP OF BONGAIGAON DISTRICT                                       | 23 |
| FIG. 3.8: WATER TABLE CONTOUR MAP OF BONGAIGAON DISTRICT                                          | 24 |
| FIG. 3.9: PIPER PLOT OF PRE-MONSOON GROUNDWATER SAMPLES.                                          | 26 |
| FIG. 3.10: PIPER PLOT OF POST-MONSOON GROUNDWATER SAMPLES                                         | 26 |
| FIG. 3.11: USSL SALINITY PLOT OF PRE-MONSOON GROUNDWATER SAMPLES                                  | 27 |
| FIG. 3.12: USSL SALINITY PLOT OF POST-MONSOON GROUNDWATER SAMPLES                                 | 28 |
| FIG. 3.13: HYDROGEOLOGICAL MAP OF BONGAIGAON DISTRICT.                                            | 29 |

# LIST OF ANNEXURES

| ANNEXURE I   | 44 |
|--------------|----|
| ANNEXURE II  | 47 |
| ANNEXURE III |    |
| ANNEXURE IV  | 51 |

#### **CHAPTER 1**

#### **1.0 Introduction**

The vagaries of rainfall, inherent heterogeneity and unsustainable nature of aquifers, over exploitation of once copious aquifers, lack of regulation mechanism etc has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from **"Traditional Groundwater Development concept**" to **"Modern Groundwater Management concept**". Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. This leads to concept of Aquifer Mapping and Ground Water Management Plan. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation.

#### 1.1 Objective and Scope

The major objectives of aquifer mapping are

• Delineation of lateral and vertical disposition of aquifers and their characterization

• Quantification of ground water availability and assessment of its quality to formulate aquifer management plans to facilitate sustainable management of ground water resources at appropriate scales through participatory management approach with active involvement of stakeholders.

The groundwater management plan includes Ground Water recharge, conservation, harvesting, development options and other protocols of managing ground-water. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e, the aquifer map and management plan.

The main activities under NAQUIM are as follows:

- a). Identifying the aquifer geometry
- b). Aquifer characteristics and their yield potential
- c). Quality of water occurring at various depths
- d). Aquifer wise assessment of ground water resources
- e). Preparation of aquifer maps and
- f). Formulate ground water management plan.

The demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a "Road Map" to systematically manage the ground water resources for equitable distribution across the spectrum.

#### **1.2 Approach and Methodology**

The ongoing activities of NAQUIM include hydrogeological data acquisition supported by geophysical and hydro-chemical investigations supplemented with ground water exploration.

Considering the objectives of the NAQUIM, the data on various components was segregated, collected and brought on GIS platform by geo-referencing the available information for its utilization for preparation of various thematic maps. The approach and methodology followed for Aquifer mapping is as given below:



#### **1.3 Area Details**

Study area is situated in eastern most part of Assam and on the southern bank of Brahmaputra . Bongaigaon district of Assam covers a geographical area of 1093 sq. km and lies between 26° 09′ 52″ and 26° 30′ 03″ N. Latitudes and 92° 22′ 47″ East longitudes. The district is bounded on the North by Chriang and North West by Kokrajhar district on the East by Barpeta district on the South west by Dhubri district. The Brahmaputra River flows through the southern boundary of the district. Bongaigaon has been subdivided into five

administrative development blocks namely Dangtol, Boitamari, Manikpur, Srijangram, Tappatary.

The study area is bound by survey of India toposhetno:78J/02,83M/03,83M/04,83M/06,83M/07,83M/08,83I/11,83I/12,83I/14,83I/15,83I/ 16. Administrative map of the district is given in Figure **1.** As per 2011 census report total population of Bongaigaon district is 7,38,804. Blockwise area of the district is shown in Table 1.



Fig.1.1: Base map of Bongaigaon district

| Sl. No. | Block      | Area in (Hectare) |
|---------|------------|-------------------|
| 1       | Manikpur   | 28038             |
| 2       | Dangtol    | 24121             |
| 3       | Boitamari  | 24080             |
| 4       | Tapattary  | 14329             |
| 5       | Srijangram | 20317             |

Table 1.1: Block wise Area of Bongaigaon District, Assam

# 1.4. Data Availability Adequacy and Data Gap analysis

# 1.4.1 Data Availability:

Central Ground Water Board has carried out exploratory drilling in the district and drilled 6 exploratory wells and 4 piezometer in alluvial formation and piedmont zone . In addition, ten numbers of permanent observation well station (NHNS) of Central Ground Water Board located in the district are being monitored for ground water regime and to assess the chemical quality of ground water.

# 1.4.2 Data Adequacy and Data Gap Analysis:

The available data of the Exploratory wells drilled by Central Ground Water Board, North-Eastern Region, Guwahati, ground water monitoring stations and ground water quality stations monitored by Central Ground Water Board were compiled and analysed for adequacy of the same for the aquifer mapping studies.

After taking into consideration, the available data of ground water exploration, geophysical survey, ground water monitoring and ground water quality, the data adequacy has been compiled. The summarised details of required, existing and data gap of exploratory wells, ground water monitoring and ground water quality stations are given in table–2.

| Table 1.2: Data adequacy | and data gap | analysis |
|--------------------------|--------------|----------|
|--------------------------|--------------|----------|

| Exploratory data |        |     | Geophysical data |       |     | GW mo | nitoring | data | GW quality data |   |     |
|------------------|--------|-----|------------------|-------|-----|-------|----------|------|-----------------|---|-----|
| Req.             | Exist. | Gap | Req.             | Exis. | Gap | Req.  | Exist.   | Gap  | Req. Exis.      |   | Gap |
| 9                | 3      | 6   | 15               | 0     | 0   | 36    | 10       | 26   | 36              | 9 | 25  |

# 1.5 Rainfall - Climate

Climate of area is sub-tropical, humid and typical of Brahmaputra valley. Winter usually commences in November and continues upto February, followed by brief period of spring from March to April. Pre-monsoon shower appears in first-half of April, but regular monsoon sets in May and continues upto middle of October.

Annual rainfall in Bongaigaon district for the year 2022 is 1527mm there is a deviation of 42% from normal rainfall. Rainfall analysis has been done based on gridded IMD data for the study area. Based on percent deviation of monsoonal rainfall for a period of 10 years (2012-2022). The Rainfall Deviation ( $Rf_{dev}$ ) which is expressed in percentage terms is calculated as below:

 $Rf_{dev} = {(Rfi-RFn)/RFn}*100$ 

where, Rfi is current rainfall for a comparable period (in mm)

Rfn is the normal rainfall (at least 30 years average) for the same period (in mm).

Table 1.3: Classification of deviation of monsoonal rainfall from normal (2012-2022)

| Deviation from     | Category  | Monsoonal rainfall year            |
|--------------------|-----------|------------------------------------|
| Normal rainfall(%) |           |                                    |
| +19 to-19          | Normal    | 2013,2015,2017,2020                |
| -20 to -59         | Deficient | 2011,2012,2014,2016,2018,2019,2021 |

According to IMD classification for percentage deviation of rainfall from normal rainfall during the period, it has been observed from that there has been deficit (-20% to 59%) monsoonal rainfall in 2022 (-42.6%). Monsoonal rainfall has been erratic in the observed period. There are few monsoon season where rainfall has been deficit. As agriculture is rainfall dependent in the study area deficit rainfall pattern creates impact on groundwater withdrawal for irrigation.

| MONTH | ACTUAL RAINFALL(mm) | NORMAL RAINFALL(mm) |
|-------|---------------------|---------------------|
| JAN   | 13.8                | 36.1                |
| FEB   | 68.65               | 56.2                |
| MAR   | 20.47               | 103.8               |
| APRIL | 489.16              | 222.6               |
| MAR   | 515.19              | 313                 |
| JUNE  | 1260.99             | 416.6               |
| JULY  | 261.38              | 531.6               |
| AUG   | 352.71              | 439.8               |
| SEP   | 185.54              | 329.5               |
| ОСТ   | 260.77              | 153.7               |
| NOV   | 0                   | 26.7                |
| DEC   | 0.3184              | 19.8                |

Table 1.4: Monthly Rainfall data of Bongaigaon district, 2022



Fig. 1.2: Graph of monthly rainfall and normal rainfall Bongaigaon, 2022





Study area represents two distinct physiographic division viz. (a) flood plains of Brhamaputra River and (b) Denudational hills of Archean age. Bongaigaon district is a part of the northern extremity of the Shillong Plateau. The topography of the area is controlled mostly by the N-S to NE-SW trending hill ranges with intermittent valleys. The spatial disposition of the hillocks seems to be controlled by the structural lineaments and the major deformational events of the area. The highest elevation of the area is 510m above msl in Bhairab R.F (south of Mechpara) in the south- central part of the area while the lowest elevation is 33 m above msl in Brahmaputra River. Prominent hills located in the area are Bishwakarma Pahar, Mahadeo, Mahadeb, Bhairab, Bamungaon, Sonakhuli, Kakaijan, Phagkati, Lungai, Nakati and Bageswari.

The alluvial plain evolved during Quaternary period from the foreland depression between Himalayan orogenic belt and crystalline massif of shillong plateau. General elevation of alluvial plain varies from 33to 48 m above m.s.l. The general slope of the area is towards south.. The alluvial plains are marked by abandoned channels, meander cut-offs and water bodies locally called bil. Tamranga bil, Kanara bil, Bherbari bil, Dalani bil and Binabaja bil are the important bils located in the area.



Fig. 1.4: Digital Elevation Map of Bongaigaon.

# 1.7 Geomorphology

The present area of study forms part of the vast alluvial plains with gentle rolling topography of the Brahmaputra basin. It is bounded by Brahmaputra River in the south to the north the piedmont zone and to the southwest pediment inselberg complex. Geomorphologically the district is subdivided into five geomorphic units: 1. Flood plain 2. Younger alluvial plain 3.Older alluvial plain 4. Pediment inselberg complex 5.Denudetional hills of gneissic complex.

**Flood plain:** Along river Brahmaputra and Manas thick piles of flood plain have been deposited due to river action, comprising different grades of sands, gravels, clays Abondoned channels, natural levees, channel bars are also observed in places.

**Younger alluvial plain**: Major parts of the district is underlain by younger alluvial plain, comprising different grades of sand, gravels, pebbles and silts. Old meanders, abondoned channels are also common in the unit.

**Older alluvial plain**: Northern and northwestern parts of the district is generally covered by older alluvial plain. These areas slightly at higher elevation then younger alluvial plain. The formation is mainly comprised of unconsolidated to semi-consolidated weathered limonitic clay, unsorted boulders, pebbles, gravels and sand.

**Pediment Inselberg Complex**: Pediment inselberg complex occurs in fringe areas of foothills, the thickness of pediment deposits varies from 5 to 15 metres. The degree of weathering is more in the valley then in the hill slopes.

**Denudational hills of gneissic complex**: Denudational hills of gneissic complex are found in the western part of the district. In northern and central part isolated denudational hills exist. These hills are mostly comprised of gneissic rocks and pegmatite occurs as intrusive



of varied nature. These rocks are deformed due to tectonic activities, resulting in development of fractures, fissures, cracks and lineaments.

Fig.1.5: Geomorphology Map of Bongaigaon.

# 1.8 Land Use Pattern:

The greatest area under agriculture is in Manikpur block with 32,895 hectares of land as gross cropped area followed by Boitamari and Dangtol blocks. The least area under agriculture is in Tapattary block, but this may be due to the fact that it has the least geographical area as well. In terms of forest cover, Dangtol block has the highest area under forests with 2967 hectares or 14% of it's total geographical area, considerably more than the other blocks in the district

| Block      | Total Geo-<br>graphical<br>Area | Gross<br>cropped<br>Area | Net<br>Sown<br>Area | Area<br>Sown<br>more<br>than<br>once | Cropping<br>Intensity | Area<br>under<br>Forest<br>(Ha) | Area un-<br>der<br>Wasteland<br>(Ha) | Area<br>under<br>other<br>uses<br>(Ha) |
|------------|---------------------------------|--------------------------|---------------------|--------------------------------------|-----------------------|---------------------------------|--------------------------------------|----------------------------------------|
| Manikpur   | 43369                           | 32894                    | 18905               | 7412                                 | 174%                  | 313                             | 2493                                 | 3046                                   |
| Dangtol    | 70527                           | 21656                    | 12446               | 5412                                 | 174%                  | 2967                            | 1143                                 | 990                                    |
| Boitamari  | 26950                           | 27862                    | 16013               | 7942                                 | 174%                  | 379                             | 2364                                 | 1269                                   |
| Tapattary  | 52912                           | 20594                    | 11836               | 5218                                 | 174%                  | 315                             | 1501                                 | 1127                                   |
| Srijangram | 42723                           | 14694                    | 8445                | 4021                                 | 174%                  | 227                             | 1125                                 | 1499                                   |

Table 1.5: Land Use Pattern in Bongaigaon District (in hectares)



Fig. 1.6: Land Use Land Cover Map of Bongaigaon district.

# 1.9 Soil

Soils of the area are sandy to clayey loam type and greyish in colour. They are acidic in reaction with PH ranges from 4.6 to 5.9. Based on pedogenic and pedological characters, soils of this area may be classified into following classes a) Recent riverine alluvial soils (Antisol) b) Old riverine alluvial soils (Inceptisol) c) Old mountain valley alluvial soils (Alfisol) The predominantly soil of the district is clay loam which is covering an area of 255062 ha that is 76.59% of the total geographical area followed by clay soil with 8.78%, Sandy soil-by 7.60% and sandy loam soil-7.03%. Major areas of all AES and blocks are having clay loam soil, similarly clay, sandy and sandy loam soils are also found in all blocks. Large area under clay soil is present in two blocks namely Manikpur and Boitamari in comparison to other five blocks.



Fig.1. 7: Soil Map of Bongaigaon district

# 1.10 Hydrology and Drainage

The Manas River originates from the Bhutan Himalaya and flows in the north eastern part of the district. It flows in the northeast to southwest direction and meets Brahmaputra which forms the southern boundary of the district. The north-east to south-west direction of flow is also observed in Aie River, which is a third order tributary to the Manas River. The high degree of sinuosity, compression and deep incision observed along the course of the Manas River could be indicative of upliftment due to neotectonic activity. Champawati River originates in Chirang and flows northeast to south west direction and merges with Brahmaputra.

Kujia nadi flows through the central part of the area towards south and joins Kanara Bil. Tunia nadi flows from north to south and westward near Salbari and enters the adjacent sheet. The regional drainage pattern is observed to be structurally controlled. The sub- parallel drainage is manifested by the higher order streams while in some subbasins.The 1 <sup>st</sup> and 2<sup>nd</sup> order streams also show sub parallel to dendritic drainage pattern.



Fig.1.8: Drainage Map of Bongaigaon district

The lineaments are observed by linear ridges, streams and River course. The trends of lineaments are NE-SW, , NNW-SSE correlatable with Kopili lineament and E-W correlatable with Dauki lineament. At the place of crosscutting of lineaments, the E-W trending lineaments are discontinuous and this indicates E-W trending lineaments are earlier and other lineaments are later. The long axis of flood plain basins are NE-SW, NW-SE and N-S. This indicates the flood plain basins are structurally controlled. Drainage parallel lineaments are observed in Aie River, Kujia nadi.



Fig.1.9: Lineament Map of Bongaigaon district.

# 1.11 Agriculture

The local population of the district mostly depends on agriculture for their sustenance. The agriculture activity of the area is solely dependent upon the monsoon rainfall. Paddy is the main crop of the district. Rice and pulses are other crops grown widely in Bongaigaon and its adjoining areas. Irrigational facilities are not adequate in this district. Most agriculture is rainfed, but this is not a very dependable source of irrigation. Minor irrigation structures like surface water, tanks and ponds are the other source for irrigation. Available source wise acreage of agriculture production is given in table 5.

| Rice                             |             |             |             |             |             |      |            |         |           |          |             |             |      |      |
|----------------------------------|-------------|-------------|-------------|-------------|-------------|------|------------|---------|-----------|----------|-------------|-------------|------|------|
| Year                             | 2007-<br>08 | 2008-<br>09 | 2009-<br>10 | 2010-<br>11 | 2011<br>12  |      | 201<br>13  | 2-<br>} | 201<br>14 | 13-<br>4 | 2014-<br>15 | 2015-<br>16 |      |      |
| Area (in hect.)                  | 58846       | 70544       | 76156       | 77254       | 7740        | 9    | 775        | 87      | 780       | 70       | 74728       | 79342       |      |      |
| Production (in tonnes)           | 93732       | 13534<br>7  | 15493<br>5  | 162958      | 10525       | 59   | 9 161327   |         | 148       | 054      | 129091      | 153400      |      |      |
| Average yield (in kg /<br>hect.) | 1617        | 1948        | 2065        | 2141        | 1380        | 1380 |            | 2111    |           | 11 192   |             | 25          | 1753 | 1963 |
| Pulses                           |             |             |             |             |             |      |            |         |           |          |             |             |      |      |
| Year                             | 2007<br>-08 | 2008<br>-09 | 2009<br>-10 | 2010<br>-11 | 2011<br>-12 | 2    | 012-<br>13 | 20<br>1 | 13-<br>4  | 2        | 2014-15     | 2015<br>-16 |      |      |

Table 1.6: Agriculture acreage and yield in Bongaigaon District (in hectares)

| Area (in hect.)                  | 1055        | 688         | 1028        | 1099        | 1153        | 1865        | 1929        | 1779            | 1870        |  |  |  |
|----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------|-------------|--|--|--|
| Production (in tonnes)           | 477         | 323         | 478         | 512         | 534         | 831         | 1105        | 996             | 1189        |  |  |  |
| Average yield (in kg /<br>hect.) | 452         | 468         | 465         | 466         | 464         | 445         | 573         | 560             | 635         |  |  |  |
| Rabi Pulses                      |             |             |             |             |             |             |             |                 |             |  |  |  |
| Year                             | 2007<br>-08 | 2008<br>-09 | 2009<br>-10 | 2010<br>-11 | 2011<br>-12 | 2012-<br>13 | 2013-<br>14 | 2014-15         | 2015<br>-16 |  |  |  |
| Area (in hect.)                  | 1007        | 668         | 972         | 1034        | 1118        | 1825        | 1880        | 1730            | 1813        |  |  |  |
| Production (in tonnes)           | 441         | 308         | 436         | 463         | 506         | 798         | 1063        | 949             | 1143        |  |  |  |
| Average yield (in kg /<br>hect.) | 438         | 461         | 449         | 448         | 453         | 437         | 565         | 549             | 630         |  |  |  |
|                                  | I           | Ι           | Ι           | Oil Seed    | ls          | I           | I           | ſ               | Ι           |  |  |  |
| Year                             | 2007<br>-08 | 2008<br>-09 | 2009<br>-10 | 2010<br>-11 | 2011<br>-12 | 2012-<br>13 | 2013-<br>14 | 2014-15(<br>Pr) | 2015<br>-16 |  |  |  |
| Area (in hect.)                  | 858         | 846         | 1054        | 1198        | 2384        | 2502        | 2872        | 2794            |             |  |  |  |
| Production (in tonnes)           | 475         | 434         | 719         | 722         | 2324        | 2196        | 1799        | 1950            |             |  |  |  |
| Average yield (in kg /<br>hect.) | 552         | 514         | 682         | 603         | 975         | 877         | 626         | 698             |             |  |  |  |

### 1.4.10 Irrigation

The district has net and gross cropped areas of 1,27,313 hectares and 1,88,692 hectares respectively, the net cropped area being 68 percent of the total geographical area. About 61,379 hectares out of the net cropped areas is put under multiple cropping with an average cropping intensity 148 percent as against 152.43 percent for the state. The crop wise irrigated and rain fed area sown in different seasons like kharif, rabi and summer.

The irrigation potential in the district is developed both from the surface and ground water sources. The irrigation department is responsible for creation of major, medium and minor irrigation schemes. The agriculture department has also created irrigation potential in different cultivable area by way of installation of shallow tube well schemes

Table 1.7: Irrigation structures in Bongaigaon (5<sup>th</sup> MI census)

|      | Grour     | Surface   | water     |              |              |
|------|-----------|-----------|-----------|--------------|--------------|
| Dug  | Shallow   | Medium    | Deep Tube | Surface flow | Surface lift |
| Well | Tube well | Tube Well | Well      | scheme       | irrigation   |
| 2    | 1454      | 0         | 11        | 2            | 379          |

| Table 1.8: Source wise irrigation potential created and CCA of Bongaigaon d | listrict ( | in hec- |
|-----------------------------------------------------------------------------|------------|---------|
| tares)                                                                      |            |         |

|        | Culturable |           |           |        | Culturable |           |           |
|--------|------------|-----------|-----------|--------|------------|-----------|-----------|
|        | Command    | Potential | Potential |        | Command    | Potential | Potential |
| In Use | Area       | Created   | Utilised  | In Use | Area       | Created   | Utilised  |
| 2911   | 7359.5     | 8288.32   | 4627.08   | 95     | 2056.69    | 2714.99   | 431.2     |

#### 1.12 Geology:

The area is part of foreland depression between younger Himalayan Mountains in the north and block mountains of shillong plateau in the south. The origin and development of the area is related to phases of uplifment due tectonic movement, glaciation and erosion of Himalaya and sinking with sedimentation.

The geological formation of the area can be describes as:

The Archean group of rocks comprising of biotite –hornblende gneiss, granulites, schist which are intruded by granite with pegmatites are trending NE-SW with moderate dip towards NW. They have very sharp contact with the unconsolidated formations.

The unconsolidated formation is divided into younger and older alluvium. Major parts of the district are underlain by younger alluvial plain, comprising different grades of sand, gravels, pebbles and silts. Old meanders, abandoned channels are also common in the unit.

The older alluvial plain is slightly at higher elevation then younger alluvial plain. The formation is mainly comprised of unconsolidated to semi-consolidated weathered limonitic clay, unsorted boulders, pebbles, gravels and sand.

| Age              | Group    | Formation           | Lithology                              |
|------------------|----------|---------------------|----------------------------------------|
| Late Holocene    |          | Barpeta Formation   | Unoxidised grey loose sand, silt,      |
|                  |          |                     | clay with cobbles, pebbles and         |
|                  |          |                     | gravels.                               |
| Middle to late   |          | Hauli Formation     | Unoxidised grey coloured sand, silt,   |
| Holocene         |          |                     | silty-clay, clay with cobbles, pebbles |
|                  |          |                     | and gravels.                           |
| Late Pleistocene |          | Sorbhog Formation   | Moderately oxidized, pale- yellow-     |
| to Early Holo-   |          |                     | ish to dull brown sand, sandy-silt,    |
| cene             |          |                     | silty-clay with gravels and pebbles    |
| Middle to late   |          | Chapar Formation    | Brick- red color, highly oxidized      |
| Pleistocene      |          |                     | semi consolidated,                     |
| Proterozoic      |          |                     | moderately sorted gravel,              |
|                  |          | <b>Unconformity</b> | pebbles, sand, silt and clay.          |
|                  |          |                     | Granites, pegmatites and quartz        |
|                  |          |                     | veins. Secondary silicified zone.      |
| Archean (?) to   | Assam    |                     | Biotite-gneiss/migmatite.              |
| Early            | Meglaya  |                     | Amphibolite, Mica-schist               |
| Proterozoic      | Gneissic |                     | Banded Magnetite Quartzite (BMQ).      |
|                  | Complex  |                     |                                        |

Table 1.9: Stratigraphy of Bongaigaon



Fig. 1.10: Geology Map of Bongaigaon district

## **CHAPTER 2**

#### 2. Data collection

Data collection includes collection of rainfall data from state government, tea estates, compilation of CGWB's earlier survey data, exploration, and geophysical data. Population and agricultural data are collected from Census of India website.

### 2.1: Hydrogeological data

The entire study area is covered by regular monitoring of existing 9 GWMS (NHNS) and another 56 Key wells have been established. All these wells are monitored after establishment. Table 2.1 and figure (10) shows the details of monitoring well (GWMS) established in Bongaigaon district in AAP 2022-2023.

### 2.2 Water Quality

To assess the quality of ground water for drinking and irrigation purpose water samples were collected during pre and post monsoon season from 08 no of NHNS monitoring stations and 26 other sampling locations from dug wells and tube wells.

### 2.3: Geophysical survey

During AAP 2022-23, 06 no of geophysical survey had been conducted in Bongaigaon district.

| Sl No. | Location    | Longitude | Latitude |
|--------|-------------|-----------|----------|
| 1      | Aolaguri    | 90.775    | 26.417   |
| 2      | Srijangram  | 90.718    | 26.388   |
| 3      | Kabaitori   | 90.596    | 26.236   |
| 4      | Mulagaon    | 90.542    | 26.452   |
| 5      | Baraibukhur | 90.576    | 26.334   |
| 6      | Gerukapur   | 90.692    | 26.485   |

Table 2.1: Location of VES survey in Bongaigaon district

Table 2.2: Details of Key wells established in Bongaigaon district.

|                |           |          |      | Depth  | Dia | Type of |                  |
|----------------|-----------|----------|------|--------|-----|---------|------------------|
| Location       | Longitude | Latitude | M.P  | (mbmp) | (m) | well    | Formation        |
| North Salmara  | 90.63     | 26.371   | 0.59 | 7.2    | 1   | DW      | Younger Alluvium |
| Sarakola       | 90.65     | 26.456   | 0.93 | 4.5    | 0.7 | DW      | Younger Alluvium |
| Chaprakata     | 90.61     | 26.486   | 0.87 | 4.3    | 0.8 | DW      | Younger Alluvium |
| Kakijana       | 90.66     | 26.43    | 0.67 | 4.7    | 0.8 | DW      | Younger Alluvium |
| Borpara        | 90.56     | 26.456   | 0.5  | 7.5    | 0.8 | DW      | Consolidated     |
| Mulagaon       | 90.54     | 26.44    | 0.87 | 9.3    | 1   | DW      | Consolidated     |
| Mulagaon PHC   | 90.53     | 26.429   | 1    | 10.4   | 1.2 | DW      | Consolidated     |
| Bansbari Pt II | 90.51     | 26.393   | 0.77 | 8.09   | 2.1 | DW      | Younger Alluvium |
| Dhaknabari     | 90.5      | 26.323   | 0.74 | 7.3    | 0.7 | DW      | Younger Alluvium |

|               |           |          |      | Depth  | Dia   | Type of |                   |
|---------------|-----------|----------|------|--------|-------|---------|-------------------|
| Location      | Longitude | Latitude | M.P  | (mbmp) | (m)   | well    | Formation         |
| Boilamari     | 90.49     | 26.301   | 0.7  | 5.1    | 0.67  | DW      | Younger Alluvum   |
| Talguri       | 90.49     | 26.326   | 1.02 | 7.3    | 2     | DW      | Younger Alluvium  |
| Salbari       | 90.5      | 26.332   | 0.8  | 8.2    | 2     | DW      | Younger Alluvium  |
| Borkhata      | 90.54     | 26.387   | 1.02 | 6.1    | 1     | DW      | Younger Alluvium  |
| Durgapur      | 90.59     | 26.354   | 0.67 | 6.05   | 0.7   | DW      | Younger Alluvium  |
| Ghilaguri     | 90.59     | 26.31    | 1.3  | 12.1   | 0.5   | DW      | Younger Alluvium  |
| Sakumari      | 90.57     | 26.311   | 0.67 | 10.2   | 2     | DW      | Younger Alluvium  |
| Chalantapara  |           |          |      |        |       |         |                   |
| Pt II`        | 90.59     | 26.265   | 0.7  | 13.5   | 1     | DW      | Older Alluvium    |
| Majgaon       | 90.59     | 26.407   | 0.56 | 5.4    | 1     | DW      | Older Alluvium    |
| Kayapatty     | 90.58     | 26.236   | 0.97 | 8.7    | 0.7   | DW      | Younger Alluvium  |
| Mohanpur      |           |          |      |        |       |         |                   |
| PWSS          | 90.61     | 26.235   | 1    | 100    | 0.102 | TW      | Younger Alluvium  |
| Pachania      | 90.63     | 26.233   | 0.67 | 5.2    | 0.7   | DW      | Consolidated      |
| Malegarh Pt I | 90.64     | 26.254   | 0.8  | 13.06  | 0.7   | DW      | Consolidated      |
| Lalmati       | 90.65     | 26.298   | 1.2  | 9.15   | 2     | DW      | Consolidated      |
| Amtola        | 90.65     | 26.374   | 0.8  | 6.42   | 1     | DW      | Younger Alluvium  |
| Srijan-       |           |          |      |        |       |         |                   |
| jan-          |           |          |      |        |       |         |                   |
| gram(Borhola  |           |          |      |        |       |         |                   |
| Pt II)        | 90.73     | 26.384   | 1    | 5.95   | 1     | DW      | Younger Alluvium  |
| Hooramara     | 90.69     | 26.419   | 0.7  | 5.3    | 0.7   | DW      | Younger Alluvium  |
| Kakoijana     | 90.67     | 26.426   | 0.98 | 5.45   | 0.7   | DW      | Younger Alluvium  |
| Simalguri     | 90.5      | 26.488   | 0.8  | 7.72   | 1     | DW      | Younger Alluvium  |
| Kinaborgaon   | 90.48     | 26.46    | 1.05 | 8.3    | 0.75  | DW      | Younger Alluvium  |
| Kakragaon     | 90.45     | 26.446   | 0.8  | 15.5   | 0.9   | DW      | Younger Alluvium  |
| Bijaygaon     | 90.42     | 26.445   | 0.8  | 6.2    | 1     | DW      | Younger Alluvium  |
| Bilaspur PHED | 90.41     | 26.412   | 1    | 100    |       | TW      | Younger Alluvium  |
| Choraikonsra  | 90.44     | 26.421   | 0.9  | 8.5    | 0.7   | DW      | Younger Alluvium  |
| Bidyapur      | 90.46     | 26.39    | 0.9  | 6.1    | 1     | DW      | Younger Alluvium  |
| Jalakhata     | 90.49     | 26.363   | 0.5  | 5.5    | 0.7   | DW      | Younger Alluvium  |
| Malipara      | 90.61     | 26.363   | 1.1  | 5.8    | 0.8   | DW      | Younger Alluvium  |
| Jogipara      | 90.62     | 26.346   | 0.8  | 5.25   | 0.7   | DW      | Younger Alluvium  |
| Choutaki      | 90.63     | 26.33    | 1.1  | 6.62   | 0.7   | DW      | Younger Alluvium  |
| Nayagaon      | 90.62     | 26.305   | 0.7  | 7      | 1.2   | DW      | Younger Alluvium  |
| Nayagaon      | 90.61     | 26.314   | 0.6  | 9      | 1     | DW      | Younger Alluvium  |
| Bongaigaon    | 90.55     | 26.485   | 1.1  | 9.2    | 2.2   | DW      | Younger Alluvium  |
| Deohati       | 90.64     | 26.361   | 1.2  | 7      | 0.7   | DW      | Younger Alluvium  |
| Abhyapuri     | 90.66     | 26.341   | 0.5  | 6.65   | 0.9   | DW      | Younger Alluvium  |
| Piradhara     | 90.69     | 26.313   | 0.4  | 100    | 0.102 | TW      | Older flood plain |
| Nuagaon       | 90.84     | 26.411   | 0.8  | 100    |       | TW      | Older flood plain |
| Jharbari      | 90.84     | 26.42    | 1.3  | 7.2    | 1     | DW      | Older flood plain |
| Chakihali     | 90.83     | 26.432   | 0.8  | 7.2    | 0.7   | DW      | Younger Alluvium  |

|                  |           |          |      | Depth  | Dia   | Type of |                  |
|------------------|-----------|----------|------|--------|-------|---------|------------------|
| Location         | Longitude | Latitude | M.P  | (mbmp) | (m)   | well    | Formation        |
| Manikpur         | 90.8      | 26.469   | 1.1  | 7.3    | 0.9   | DW      | Younger Alluvium |
| Birjhora         | 90.58     | 26.475   | 0.8  | 7.2    | 0.7   | DW      | Younger Alluvium |
| Pakhrapara       | 90.57     | 26.468   | 0.9  | 5.2    | 0.7   | DW      | Younger Alluvium |
| Jhakuapara       | 90.6      | 26.463   | 0.8  | 6.3    | 0.8   | DW      | Younger Alluvium |
| Kashidoba        | 90.59     | 26.434   | 1    | 5.5    | 0.7   | DW      | Younger Alluvium |
| Katasbari PT-III | 90.6      | 26.284   | 0.5  | 7.2    | 0.7   | DW      | Younger Alluvium |
| Chalantapara     |           |          |      |        |       |         |                  |
| Pt -I            | 90.59     | 26.268   | 0.6  | 12.1   | 0.8   | DW      | Older Alluvium   |
| Chalantapara     | 90.59     | 26.261   | 0.6  | 12.2   | 0.7   | DW      | Older Alluvium   |
| Jogighopa        | 90.56     | 26.249   | 0.7  | 13.1   | 0.8   | DW      | Older Alluvium   |
| Sakamura         | 90.57     | 26.29    | 0.62 | 12.5   | 1.2   | DW      | Older Alluvium   |
| Borigaon PHED    | 90.68     | 26.34    | 0.5  | 100    | 0.102 | DW      | Younger Alluvium |

Fig.2.1: Location of Key wells under NAQUIM, Bongaigaon district



# 2.4: Exploratory Drilling:

CGWB has drilled 06 no. of exploratory well for ground water investigation in Bongaigaon district. Under AAP 2022-23, 03 no. of new exploratory well has been drilled. The details of exploratory well are given in table 11

| District   | Location        | Труе    | Торо   | Depth of | Depth of | Source       |
|------------|-----------------|---------|--------|----------|----------|--------------|
|            |                 | of well | sheet  | Drilled  | constr.  |              |
|            |                 |         |        | (mbgl)   | (mbgl)   |              |
| Bongaigaon | Gerukabari-EW   | EW      | 78J/11 | 81.25    | 63       | CGWB         |
| Bongaigaon | Kalbari-EW      | EW      | 78J/11 | 100.50   | 92       | CGWB         |
| Bongaigaon | Kalbari -OW     | OW      | 78J/11 | 100.50   | 92       | CGWB         |
| Bongaigaon | Chalantpara -EW | EW      | 78J/12 | 100.50   | 84       | CGWB         |
| Bongaigaon | Chalantapara-OW | OW      | 78J/12 | 100.50   | 84       | CGWB         |
| Bongaigaon | Aolaguri-EW     | EW      | 78J/12 | 94.6     | 94       | CGWB         |
| Bongaigaon | Aolaguri-OW     | EW      | 78J/11 | 90       | 80       | CGWB         |
| Bongaigaon | Srijangram -EW  | EW      | 78J/11 | 32.3     | 32       | CGWB         |
| Bongaigaon | Bagulamari EW   | EW      |        | 30.6     | 30       | CGWB         |
| Bongaigaon | Pachania        | EW      | 78J/11 | 156.16   |          | State Agency |
| Bongaigaon | Jogighopa       | EW      | 78J/11 | 165.5    |          | State Agency |
| Bongaigaon | Boitamari       | EW      | 78J/11 | 125.87   |          | State Agency |
| Bongaigaon | Abhyapuri       | OW      | 78J/11 | 125.5    |          | State Agency |

Table 2.3: Details of exploratory well in Bongaigaon district.



Fig. 2.2: Exploratory wells Bongaigaon district

#### **CHAPTER 3**

### 3. Data Interpretation, Integration and Aquifer Mapping

#### **3.1Data Interpretation**

#### 3.1.1Geophysical Exploration and Aquifer Characterization -

Geophysical studies have been conducted in Bongaigaon district. To unearth the subsurface information systematic geophysical studies such as vertical electric sounding (VES), survey is being conducted by CGWB.

### 3.1.2 Aquifer disposition

Aquifer disposition has been interpreted based on data collected from the tube wells by state agencies and exploratory drilling by central Ground Water Board. It has been observed that the aquifer disposition changes from north to south of the district. In the north eastern and northern fringe of the district exploratory tube wells drilled down to the depth of 100 m shows mono aquifer system. The granular zones comprising of fine to coarse sand associated with gravels occurs at the depth varying from 10 to 100m exploratory tube wells drilled in the younger alluvium at Gerukabari, Aolaguri, Bongaigaon refinery shows the dominance of coarse sand and gravel zones.

Exploratory wells drilled at Abhyapuri, Pachania, Jogighopa,Boitamari reveals that the thickness of first granular zone increases from east to west, i.e., from Boitamari towards Jogighopa and south to north i.e., from Jogighopa towards Abhyapuri. The second granular zone occurs at depth ranging from 30 to 62 m and comprises medium to coarse sand with occasional gravel. The thickness of aquifer varies from 30 to 85 m with the explored depth of 165 m. The first and second granular zones are separated by a clay bed of 1 to 11 m thickness.

Bed rock topography is highly irregular in Bongaigaon district. The sub-surface geology of inselberg zone was studied with the help of the lithological logs of the exploratory drilled by CGWB at Boitamari, Pachania, Jogighopa and Abhyapuri down to the depth of 142,165,151 and 91 m respectively. The boreholes at Jogighopa and Pachania though ar located in the inselberg, the bedrock was not encountered down to the depth of 165m.

In the northern part of the district along the flood plain zone exploratory wells drilled at Abhyapuri and Bongaigaon refinery township bedrock was encountered at the depth of 140 to 145 m.



Fig.3.1: Section showing Aquifer disposition along Northeast to Southeast in Bongaigaon district.



Fig. 3.2: 2D disposition of aquifer along Northwest to Southwest in Bongaigaon district.



Fig. 3.3: 3D disposition of aquifer in Bongaigaon district.



Fig. 3.4: Stratigraphic model of aquifer disposition along Bongaigaon district.

#### **3.1.3 Aquifer Characteristics**

Unconsolidated rocks covering the flood plain and younger alluvium in the northern part of the district depicts thick extensive aquifer system , comprising of different grades of sand, gravels ,pebbles and boulders within the depth range of 6m to 100 m. Tubewells tapping the granular zone in the northern part of Aie river basin are high yielding, the yield ranges from 46.54 m<sup>3</sup>/hr at Gerukabari to a maximum of 156m<sup>3</sup>/hr at BRPL township for a drawdown of 146m to 20.75 m. Transmissivity varies from 2110 m<sup>2</sup>/day to 4300 m<sup>2</sup>/day .Groundwater occurs under water table or unconfined condition.

Aquifer system in the younger alluvium formation towards southern part of the district at Abhyapuri, Pachania and kalbari are generally two aquifer system separated by thin clay layers. The yield of aquifer ranges from 43.62 m<sup>3</sup>/hr at kalbari to 136.38 m<sup>3</sup>/hr for a drawdown of 2.50 m to 4 m. The aquifers are in semi confined to confined condition with storativity of 1.09X 10<sup>-2</sup> at Pachania to 5.4X 10<sup>-4</sup> at Kalbari. Transmissivity value ranges from 1032 m<sup>2</sup>/day to 6779 m<sup>2</sup>/day.

Multiple aquifer system has been observed in the older alluvium (Chapar formation) at the fringe area of hard rock at Jogighopa down to depth of 165.23 m. The yield of tubewells constructed at older alluvium ranges from 42.5 m<sup>3</sup>/hr at Jogighopa to 43.53 m<sup>3</sup>/hr at Chalantapara for a drawdown of 2.72m to 4.90 m. Transmissivity value ranges from 47.5 m<sup>2</sup>/day to 7417 m<sup>2</sup>/day.

| District   | Location                             | Longitude | Latitude | Depth<br>of<br>Drilled<br>(mbgl) | Depth<br>of con-<br>str.<br>(mbgl) | Zones encoun-<br>tered                                                   | Static<br>Water<br>level<br>(mbgl) | Discharge<br>(m <sup>3</sup> /hr) | Draw Down<br>(m) | T (m2/<br>day | Permea-<br>bility<br>(m/day) | Storage<br>co-<br>efficient<br>(S)<br>(lpm/m) |
|------------|--------------------------------------|-----------|----------|----------------------------------|------------------------------------|--------------------------------------------------------------------------|------------------------------------|-----------------------------------|------------------|---------------|------------------------------|-----------------------------------------------|
| Bongaigaon | Kalbari (Abha-<br>yapuri)-EW         | 90.662    | 26.309   | 100.50                           | 92.00                              | 41-53,59-<br>71,77-89                                                    | 3.50                               | 43.62                             | 2.50             | 1036.5        |                              | 5.4*10-4                                      |
| Bongaigaon | M.G.College<br>(Chalantapara)-<br>EW | 90.583    | 26.270   | 100.50                           | 84.00                              | 33-48,72-81                                                              | 7.05                               | 42.5                              | 4.90             | 47.54         |                              |                                               |
| Bongaigaon | Gerukabari-EW                        | 90.575    | 26.476   | 81.25                            | 63.00                              | 33-54                                                                    | 3.03                               | 46.54                             | 1.46             | 4758          | 176                          |                                               |
| Bongaigaon | Jogighopa                            | 90.554    | 26.2486  | 165.23                           |                                    | 41.27-<br>53.81,91.26-<br>103.87,117.13<br>-<br>129.72,136.48<br>-146.92 | 6.02                               | 43.83                             | 2.72             | 7416          |                              | 8.75*10 <sup>-2</sup>                         |
| Bongaigaon | Pachania                             | 90.6249   | 26.238   | 156.16                           |                                    | 33.52-45.24,<br>73.20-98.91,<br>125.61-<br>131.50,143.70<br>-150.10      | 4.53                               | 90.15                             | 5.65             | 6779          |                              | 1.09*10-2                                     |
| Bongaigaon | Abhyapuri                            | 90.664    | 26.281   | 145.00                           |                                    | 22.38-<br>27.43,39.62-<br>51.81,57.91-<br>73.14                          | 3.34                               | 136.38                            | 4                |               |                              |                                               |

| Table 3.1: Aquifer | characteristics of | of explorator | v wells at | Bongaigaon |
|--------------------|--------------------|---------------|------------|------------|
|                    |                    |               | J          | - 0.0      |

## Ground water level of Shallow Aquifer zone:

CGWB has established 09 no of groundwater monitoring stations in the district. During AAP 2022-23 as a part of NAQUIM 59 key wells were established to monitor pre and post monsoon ground water level in phreatic aquifer. Water level of NHNS wells are summarized in table 3.2. Details of key wells, pre and post monsoon data along with seasonal fluctuations is attached in Annexure (I)

| NHNS well                   | Pre monsoon<br>DTWL(mbgl) | Post mon-<br>soon<br>DTWL(mbgl) | Fluctuation |
|-----------------------------|---------------------------|---------------------------------|-------------|
| Abhyapuri                   | 4.10                      | 3.36                            | 0.74        |
| Boitamari                   | 5.10                      | 2.72                            | 2.38        |
| Bongaigaon New              | 2.80                      | 2.17                            | 0.63        |
| Chalantapara                | 9.10                      | 8.50                            | 0.6         |
| Chaprakata                  | 3.12                      | 2.63                            | 0.49        |
| Chaprakata<br>(Dankinamari) | 3.05                      | 2.56                            | 0.49        |
| Majgaon                     | 4.12                      | 2.92                            | 1.9         |
| Manikpur                    | 3.16                      | 2.72                            | 0.44        |
| North Salmara               | 5.00                      | 3.07                            | 1.93        |

Table 3.2: Pre & Post Monsoon DTWL and fluctuation data of NHNS monitored wells

Based on the pre & post monsoon depth to water level data collected from monitoring of the key wells, DTWL maps have been drawn and shown in Fig 3.5 & 3.6

Groundwater condition in the district are described under three distinct hydrogeological units namely (i) consolidated conditions (inselberg zone) (ii) Unconsolidated formations (terraced flood plains) (iii) Unconsolidated formations (older alluvium condition).

Weathered mantle of the crystalline rocks occurring as inselbergs form another hydrogeological unit. In the fringe area of the foot hills, the thickness of the weathered mantle varies from 4 to 10 m. Groundwater occurs under water table condition and move along joints and fractures. The water level in varies from 3mbgl to 5 mbgl in premonsoon and in 2mbgl to 4 mbgl in post monsoon with and fluctuation of 1 m.

Groundwater occurs both water table and semi-confined conditions. In the vicinity of rivers, where sand and silt occurs thin veener or pockets above clay beds, perched water table conditions are noticed. In the flood plain area groundwater varies from 2mbgl to 5 mbgl in pre –monsoon and 1mbgl to 4 mbgl in post monsoon with an fluctuation of 0.94 m. In general, depth to water level increases from Aie river levee to central flood plain. Depth to water table in older alluvial plain (Chapar formation) generally varies from 5.5 mbgl to 10.1 mbgl in pre –monsoon. The older formation consists of admixtures of sand of all grades and gravel intervened by lenticular clay and sandy clay. These formations are capped by poorly permeable lateritic clay. Generally deeper water level has been noticed in older alluvial plain namely in Chalantapara, Kheragaon, Uparkarya.. The annual fluctuation is > 1 m.



Fig. 3.5: - Pre monsoon DTWL map of Bongaigaon district.



Fig. 3.6: Post monsoon DTWL map of Bongaigaon district



Fig 3.7: Water level fluctuation map of Bongaigaon district

#### Ground Water Movement

The water table contour has been prepared based on the water level of ground water monitoring stations with respect to its elevation above mean sea level. Regional ground water flow conforms to the general elevation of the district gently sloping towards the south. The general direction of groundwater flow is from higher elevation in the north to lower elevation in the south with local variation due to presence of denudational hills. In the western part of the district flow is towards the west, hydraulic gradients also varies due to difference of elevation in the fringe areas of the denudational hills and it is generally estimated to be 0.90 m/Km for plain areas and 1.40 m/Km in the northern parts.



Fig. 3.8: Water table contour map of Bongaigaon district

# 3.5 Ground water quality

Ground water samples were collected during pre and post monsoon field season .A total of 27 samples were collected during post monsoon period and 25 samples were collected during pre-monsoon period. Chemical analysis of ground water samples is carried out by regional chemical laboratory of Central Ground Water Board, North Eastern Region, Guwahati. Samples were analyzed for the parameters like pH, EC, Turbidity, TDS, CO3, Cl, SO4, Na, K, HCO3, NO3, F, Ca, Mg, As and Fe. Chemical analysis of groundwater samples for pre and post monsoon are summarized in Annexure III and IV.

#### <u>рН:</u>

pH is an important parameter in evaluating the acid–base balance of water. It is also the indicator of acidic or alkaline condition of water status. WHO has recommended maximum permissible limit of pH from 6.5 to 8.5. Values of pH range of water samples collected range from 7.03-8.47(pre-monsoon) and 6.1 -8.35 (post-monsoon) .The over-all value indicate that water from study area is within the suitable and desired range.

# **Electrical Conductivity (EC)**:

Generally, the amount of dissolved solids in water determines the electrical conductivity. Electrical conductivity (EC) actually measures the ionic process of a solution that enables it to transmit current. According to WHO standards, EC value should not exceeded 400  $\mu$ S/cm. The current investigation indicated that EC value range from 15-731.2  $\mu$ S/cm with an average value of 239  $\mu$ S/cm. 90% of samples falls within the permissible limit. These results clearly indicate that in the study area indicate few samples were considerably ionized and higher ionic concentration activity.

### Total Dissolved Solids(TDS):

According to BIS specification TDS up to 500 mg/l is the highest desirable and up to 2000 mg/l is maximum permissible. In the study area the TDS value varies between a minimum of 10.22 mg/l and a maximum of 486 mg/l, indicating that most of the groundwater samples lies within the maximum required acceptance limit.

#### Calcium and magnesium (Ca and Mg):

Calcium and magnesium are the most abundant elements in the natural surface and groundwater and exist mainly as bicarbonates and to a lesser degree in the form of sulfate and chloride. Ca<sup>2+</sup> concentrations are varying from 4 to 138 mg/l. The desirable limit of calcium concentration for drinking water is specified as 75 mg/l (BIS, 2012). A few water samples collected during post-monsoon shows calcium value above desirable limit..

Magnesium content is varying from 2.42 to 72.80 mg/l. The maximum permissible limit of  $Mg^{2+}$  concentration of drinking water is specified as 100 mg/l (BIS.2012) .All the samples are within the maximum permissible limit.

# 3.5.1 : Hydrogeochemical facies

Piper diagram was created for ground water samples analysed during pre and post –monsoon period. Based on plotting of data on piper plot it has been observed that during pre-monsoon period there are four water types (fig 21). Majority of the samples (72%) are plotted in Ca-HCO3 type . 14% in Ca-Mg-Cl type field and rest in Ca-Na-HCO3 type field. Alkaline earth and weak acid (CaMgHCO3) type are the domimant facies.



Fig. 3.9: Piper plot of pre-monsoon groundwater samples.



Fig. 3.10: Piper plot of post-monsoon groundwater samples

In post monsoon sample majority of the sample belongs to  $Ca^{2+} - Mg^{2+}-HCO^{3-}$  type facies(fig:22). About 52% of sample falls in no dominant type in cation field and almost 92% of sample falls in bicarbonate type in anion triangle.

# 3.5.2 Irrigation water suitability Indices:

# Sodium Percent (Na%)

The sodium in irrigation waters is usually denoted as percent of sodium. Na% is a common parameter to assess its suitability for irrigational purposes. The sodium percent (Na%) values was obtained by using the following equation:

# Na%=Na+×100/[Ca2++Mg2++Na++K+]Na%=Na+×100/[Ca2++Mg2++Na++K+]

where all ionic concentrations are expressed in meq/l. Based on analysis of percent and total concentration shows that 83 % of the groundwater samples fall in the field of good category and 17% of groundwater samples falls in permissible for irrigation category.

# Sodium Adsorption Ratio:

Sodium adsorption ratio (SAR) is a measure of the suitability of water for use in agricultural irrigation, because sodium concentration can reduce the soil permeability and soil structure (Todd 1980). SAR is a measure of alkali/sodium hazard to crops and it was estimated by the following formula:

# SAR=Na/ [(Ca+Mg)/2]<sup>0.5</sup>

The calculated values of SAR in the study area vary between 0.08 and 2.83. The SAR values of all the samples are found within the range of excellent. The water is suitable for irrigation.



# <u>USSL Diagram</u>

Fig. 3.11: USSL salinity plot of pre-monsoon groundwater samples



Fig. 3.12: USSL salinity plot of post-monsoon groundwater samples

The US Salinity Laboratory diagram (USSL) can be used to evaluate the suitability of irrigation water based on alkalinity and salinity. The vertical ordinates are SAR and %Na respectively, and the horizontal ordinates of them are both electric conductivity (EC). In pre-monsoon groundwater samples 23 samples falls under C1S1 and one in C2S1. The groundwater samples are suitable for irrigation purpose. Salinity and soudim percentage is low in the water samples.

In post-monsoon groundwater samples 18 samples falls in C1S1 and 8 samples falls in C2S1 i.e of low SAR and medium salinity.



Fig. 3.13: Hydrogeological map of Bongaigaon district.

#### **CHAPTER 4.0**

#### **Ground water Resources**

The rechargeable area of the district is found to be 99730 ha. As block boundary is not available, it was not possible to carry out block wise resource calculation. Here district wise resource calculation is presented.

The computation of ground water resources available in the district has been done using GEC 2015 methodology.

Data and assumptions used in the assessment: Following data and assumptions are used in the assessment:

- Rainfall recharge has been computed by both RIF and WLF methods. Rainfall infiltration factor of 22% for valley fill as per norms is taken for calculation. In WLF method, specific yield has been taken as 0.16 for valley fill deposit following the norms recommended by GEC'2015. The rainfall of Bongaigaon district is 1672 mm.
- 2) Water level data has been considered for 2021-22. Water level fluctuation based on data of March (Pre monsoon) and November (post monsoon) have been considered. The average pre- and post-monsoon water level of Bongaigaon district is 4.36 mbgl and 3.19 mbgl.
- 3) The population figures were collected from Census, 2011 and projected to 2022. The per capita domestic requirement is considered as 60 lpcd.
- 4) Recharge from other sources includes recharge from minor surface and ground water irrigation.

**Recharge:** The aquifers of the study area are recharged by rainfall. The area experiences south-east monsoon. Monsoon rainfall contributes approximately 70 percent of total rainfall (June, July, August, September) while share of post and pre monsoon rainfall are approximately 30 percent each.

Previous records show that the rainfall occurs almost in every month of a year. The month November to December has the minimum number of rainy days in any year and the period June to September has maximum number of rainy days.

The monsoon recharge of the 99370 ha of recharge worthy area is 33285.82 ham while non-monsoon recharge is 12847.54 ham. Recharge from other sources is 4804.64 ham. Total ground water recharge is 50938 ham.

**Extraction:** The agriculture in the area generally rainfed. 20% of cropped area has irrigation facilities and groundwater irrigation is nearly 50% of total irrigation. Total groundwater extraction for irrigation purpose is 10155 ham. Total industrial extraction is 1.53 ham and total domestic extraction is 1634.40 ham. Total groundwater extraction of Bongaigaon district is 11909.56 ham.

**Allocation of resources up to 2025:** The net ground water resource is allocated for domestic use 1780.70 ham. Net available resource for future use is 33840.38 ham.

Stage of groundwater development: Groundwater is mainly utilized for domestic purposes. The stage of groundwater extraction in the district is 25.76%.

Table 4.1: shows the net groundwater availability, existing draft and stage of development for the year 2022.

| Recharge<br>worthy area<br>Ha | Total annual<br>GW recharge<br>Ham | Environ-<br>mental<br>flow Ham | Annual ex-<br>tractable GW<br>resource<br>Ham<br>(2-3) | Existing<br>gross GW<br>extraction<br>for all uses<br>Ham | Stage of GW<br>extraction<br>[(5/4)*100%] |
|-------------------------------|------------------------------------|--------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| 1                             | 2                                  | 3                              | 4                                                      | 5                                                         | 6                                         |
| 99730                         | 51598                              | 5159.80                        | 45778.20                                               | 11791.52                                                  | 25.74                                     |

Extraction from unconfined aquifer/deeper aquifer: Groundwater in the district is utilized for (a) irrigation, (b) drinking or domestic purposes and (c) industrial purpose.

# **Potential resource:**

- (i) Shallow water table areas: Potential resource due to shallow water table areas was estimated from aquifer area where depth-to-water level was within 5mbgl. The area within depth-to-water level of 5mbgl is 59967.66 Ha which is 60 % of total area of the district. The potential resource of shallow water table areas is 7234.83 ham.
- (ii) Flood prone area: As per GWRE 2020, the flood prone area of the district is 41605 ha and it is considered that flood water remained in the area for at least 30 days. Potential resource in flood prone area is 1797.34 ham.
- (iii) Total potential resource of Bongaigaon district is 9032.17 ham.

**Static resource:** Here also the administrative district has been considered as the assessment unit due to paucity of block-wise data. Hilly areas having slope more than 20% are deleted from the total area to get the area suitable for recharge. The average thickness of saturated unconfined aquifer below ground level as obtained from dug wells / bore wells in the district has been considered.

The Pre-monsoon (month of March) Water Level from Monitoring Wells of CGWB in Bongaigaon district has been considered as the maximum depth below ground level up to which the zone of water level fluctuation occurs. Since the north eastern states receives pre-monsoon showers, which commences from the first week of April, resulting in rise in water levels in the phreatic zones, the deepest water levels are recorded during the month of March. Specific yield value of 0.12 is considered for the district.

(e) Finally the Static Ground Water Resource is computed from the data as obtained:

 $Y = A^* (Z_1 - Z_2)^* Sy$ 

Where, Y = Static ground water resources,

A = Area of ground water assessment unit

 $Z_1$  = Thickness of saturated unconfined aquifer below ground level

Z<sub>2</sub> = Pre-monsoon water level

Sy = Specific yield of the unconfined aquifer

Table 3.2: Salient information of static resource of Bongaigaon district, Assam

| Type of rock formation                                               | Alluvium  |
|----------------------------------------------------------------------|-----------|
| Total Geographical Area (Ha)                                         | 109300    |
| Assessment Area (Ha)                                                 | 99730     |
| Bottom of the unconfined aquifer (m)                                 | 50        |
| Average Pre- monsoon Water Level (m)                                 | 4.36      |
| Thickness of the saturated zone of the un-confined aquifer below WLF | 45.64     |
| zone (m) [(5)-(6)]                                                   |           |
| Volume of Saturated zone of the unconfined aquifer below WLF zone    | 4551677.2 |
| (ham)                                                                |           |

Static/In-storage Ground Water Resources (ham): Volume of saturated zone X specific yield

= 4551677.2 X 0.12= 546201.26 ham

#### 5. Ground Water Related Issues

The main groundwater issues in the study area include areas vulnerable to water logging as well as prone to water logging conditions along with high Iron concentration in ground water above the WHO permissible limit.

## 5.1 Low stage of ground water development:

As per ground water resource estimation 2021, the stage of ground water extraction is just 25.76 % .Due to lack of irrigation vast tract of agriculture land remain fallow. Therefore, there is enough scope for future development of ground water in the study area to bring more area under irrigation practice. Irrigation scheme has been developed under PMKSY-HKKP scheme.

# 5.2 High Iron Concentration:

Quality analysis of groundwater samples collected from dug wells and tubewells during pre and post monsoon shows presence of high iron(Fe) concentration above permissible limit (>0.3mg/l) (fig 25) as per BIS IS 10500:2012 drinking water standard.

### 5.3 Water logging:

Water logged area is mainly observed in the flood plain zone of Brahmaputr, Manas and Aie river mostly in the northeastern, eastern and south eastern part . Depth to ground water level in these areas is below 2 mbgl. High rainfall and and inundation by flood along with low stage of ground water development also results in water logging in the area. Such area has pre monsoon depth to water level of 2-3m.

### CHAPTER 6.0

#### **Management Strategy**

#### 6.1: Management strategies for agriculture

The groundwater regime of Bongaigaon district is influenced by lithological variation and geomorphologic set up. The district can be divided into two slope classes, viz., slope >20% and slope <=20%. Areas with slope more than 20% are found in northern and western extremities of the central part of the district. Geomorphologically, these areas include structural hills in southern-central, western-central and central part in pockets. Areas with slope less or equal to 20% slope include alluvial plain and flood plain. Water logged areas are found in alluvial plain.

Sustainable Management Plan of Resource: Some important points have to be taken into consideration during preparation of aquifer management plan.

- Stage of groundwater development in the district is 25.76 % leaving vast scope for groundwater development.
- Irrigated area is still 20 % only and requires boasting for agricultural purpose.

Management of resources for agricultural sector: The crop water requirement for unirrigated area of the district is estimated based on soil condition, amount of rainfall, flooding and geomorphic classification and the estimation is carried out in accordance to the suggestion of Assam Agriculture University. AAU has identified characteristics cropping sequence for different geomorphologic conditions. The cropping pattern suitable for unirrigated area is shown below:

| SN | Сгор              | Planting date | Area (%) | Actual area (ha) |
|----|-------------------|---------------|----------|------------------|
| 1  | Winter Rice       | 10-May        | 10       | 1976             |
| 2  | Winter Rice       | 25-May        | 20       | 3951             |
| 3  | Winter Rice       | 10-Jun        | 25       | 4939             |
| 4  | Winter Rice       | 20-Jun        | 25       | 4939             |
| 5  | Winter Rice       | 10-Jul        | 10       | 1976             |
| 6  | Winter Rice       | 15-Aug        | 10       | 1976             |
| 7  | Maize             | 20-Feb        | 10       | 1975.6           |
| 8  | Pulse             | 20-Nov        | 10       | 1975.6           |
| 9  | Pulse             | 10-Dec        | 10       | 1975.6           |
| 10 | Oil seed          | 15-0ct        | 10       | 1975.6           |
| 11 | Oil seed          | 10-Nov        | 10       | 1975.6           |
| 12 | Winter Vegetables | 10-0ct        | 5        | 987.8            |

Table 6.1: Cropping pattern of un-irrigated areas of Bongaigaon district

| 13 | Winter Vegetables | 10-Nov | 5  | 987.8  |
|----|-------------------|--------|----|--------|
| 14 | Winter Vegetables | 30-Nov | 5  | 987.8  |
| 15 | Summer Vegetables | 10-Mar | 5  | 987.8  |
| 16 | Summer Vegetables | 20-Mar | 5  | 987.8  |
| 17 | Summer Vegetables | 30-Mar | 5  | 987.8  |
| 18 | Potato            | 10-Nov | 10 | 1975.6 |
| 19 | Wheat             | 15-Nov | 10 | 1975.6 |

The water demand of agricultural sector to provide assured irrigation potentiality to un-irrigated areas will be calculated using Cropwat 8.0 software of FAO. AAU suggested cropping sequence can be followed which will provide flood affected people assured irrigation facility.

As per information, Net sown area of the district is 94908 ha and out of which 14389 ha only is under irrigation (District Irrigation Plan 2016-20). It is observed that un-irrigated area associated with kharif paddy (winter rice) is 19756 ha which is sown during summer time from May-July. For further utilization of groundwater seeing the vast scope for ground water development in the area, other crops like maize, pulses, rapeseed, potato, winter vegetables will be used in the 100% of the area of kharif paddy with in area of 19756 ha.

A management plan has been prepared for un-irrigated crop land based on cropping pattern suggested by Assam Agriculture University (Table 6.2)

| Cropping pattern (s)                |           |           |                       |            |
|-------------------------------------|-----------|-----------|-----------------------|------------|
| Early Summer Rice-Late Winter Rice  | Present   | Area to   | Area to be cul-       | Irrigation |
|                                     | Cultivat- | be culti- | tivated ( <b>ha</b> ) | require-   |
|                                     | ed area   | vated     |                       | ment       |
| Summer vegetables- Late Winter Rice | (ha)      | (%)       |                       | (ham)      |
|                                     |           |           |                       |            |
| Pulses-Late Winter Rice-            |           |           |                       |            |
| Potato/Vegetables/Wheat             |           |           |                       |            |
| Net cultivated area                 | 19756     |           |                       |            |
|                                     | 1         | 2 (= %    | 3                     | 4          |
|                                     |           | of 1)     |                       |            |
| Rice (main crop)                    | 19756     |           | 19756                 |            |
| Winter Rice (main crop)             | 19756     | 100       | 19756                 | 2861       |
| Potato                              |           | 10        | 1976                  | 476        |
| Pulses                              |           | 20        | 3951                  | 743        |
| Mustard                             |           | 20        | 3951                  | 1106       |
| Winter vegetables                   |           | 15        | 2963                  | 477        |
| Summer vegetables                   |           | 15        | 2963                  | 115        |
| Wheat                               |           | 10        | 1976                  | 558        |
| Maize                               |           | 10        | 1976                  | 134        |

Table 3.2: Water requirement for un-irrigated areas of Bongaigaon district

| Gross cultivated area (Pad-<br>dy/+Maize/+Wheat+Pulses+Vegetables<br>) | 39512        | 6470 |
|------------------------------------------------------------------------|--------------|------|
| Total irrigation requirement (70% irri-<br>gation efficiency)          |              | 9243 |
| Cropping intensity                                                     | 200% (Intend | ed)  |

Sowing season of winter rice is October-November and can be harvested during summer season. Winter rice sowing month is fixed as May-July depending upon cessation of flood water from the crop land. If flood water retains in paddy field during July and August then the winter rice may not be cultivated, instead other crops like vegetables, wheat, pulses and potato can be cultivated with assured irrigation facilities provided by construction of tube wells.

| Sr. no. | Precipitation     | Jan  | Feb  | Mar  | Apr  | May   | Jun  | Jul | Aug | Sep | Oct | Nov  | Dec  |
|---------|-------------------|------|------|------|------|-------|------|-----|-----|-----|-----|------|------|
|         | deficit           |      |      |      |      |       |      |     |     |     |     |      |      |
| 1       | Rice              | 0    | 0    | 0    | 57.9 | 98    | 0    | 0   | 0   | 0   | 0   | 0    | 0    |
| 2       | Rice              | 0    | 0    | 0    | 0    | 197.2 | 0    | 0   | 0   | 3.1 | 0   | 0    | 0    |
| 3       | Rice              | 0    | 0    | 0    | 0    | 49.6  | 98   | 0   | 0   | 0   | 0   | 0    | 0    |
| 4       | Rice              | 0    | 0    | 0    | 0    | 48.4  | 97.5 | 0   | 0   | 0   | 0   | 0    | 0    |
| 5       | Rice              | 0    | 0    | 0    | 0    | 0     | 48.9 | 98  | 0   | 0   | 2.5 | 8.7  | 0    |
| 6       | Rice              | 0    | 0    | 0    | 0    | 0     | 0    | 49  | 98  | 0   | 5.7 | 65.2 | 23.1 |
| 7       | Maize (Grain)     | 0    | 2.9  | 17   | 47.8 | 0     | 0    | 0   | 0   | 0   | 0   | 0    | 0    |
| 8       | Pulses            | 61.1 | 70.1 | 7.1  | 0    | 0     | 0    | 0   | 0   | 0   | 0   | 9.4  | 34.7 |
| 9       | Pulses            | 44.3 | 78.1 | 54.7 | 0    | 0     | 0    | 0   | 0   | 0   | 0   | 0    | 16.7 |
| 10      | Mustard           | 46.9 | 59.4 | 68.5 | 22.6 | 0     | 0    | 0   | 0   | 0   | 0   | 40.4 | 53   |
| 11      | Mustard           | 46.9 | 59.4 | 68.5 | 22.6 | 0     | 3.1  | 0   | 0   | 0   | 0   | 21.1 | 47.2 |
| 12      | Small Vegetables  | 20   | 0    | 0    | 0    | 0     | 0    | 0   | 0   | 0   | 2.3 | 51.6 | 62.1 |
| 13      | Small Vegetables  | 56.2 | 26.9 | 0    | 0    | 0     | 0    | 0   | 0   | 0   | 0   | 34.2 | 53.2 |
| 14      | Small Vegetables  | 53.1 | 69.2 | 8.7  | 0    | 0     | 0    | 0   | 0   | 0   | 0   | 1.7  | 43.6 |
| 15      | Small Vegetables  | 0    | 0    | 33   | 23.7 | 0     | 6.9  | 0   | 0   | 0   | 0   | 0    | 0    |
| 16      | Small Vegetables  | 0    | 0    | 16.8 | 9.8  | 0     | 6.9  | 0   | 0   | 0   | 0   | 0    | 0    |
| 17      | Small Vegetables  | 0    | 0    | 6.3  | 5.7  | 0     | 0    | 7   | 0   | 0   | 0   | 0    | 0    |
| 18      | Potato            | 61.6 | 74.3 | 36.9 | 0    | 0     | 0    | 0   | 0   | 0   | 0   | 23.8 | 44.4 |
| 19      | Winter Wheat f.f. | 40.9 | 57.7 | 74.4 | 39.2 | 0     | 0    | 2   | 0   | 0   | 0   | 25.7 | 42.7 |

Table 6.3: Precipitation deficiency

| Actual mont             | thly wate           | er requir | rement fo | r different | crops in 1 | Flood Pro | ne Areas o | of Bongai | gaon disti | rict, Assan | n     |         |        |                                |                                  |
|-------------------------|---------------------|-----------|-----------|-------------|------------|-----------|------------|-----------|------------|-------------|-------|---------|--------|--------------------------------|----------------------------------|
| Сгор                    | Net<br>sown<br>area | Jan       | Feb       | Mar         | Apr        | May       | Jun        | Jul       | Aug        | Sep         | Oct   | Nov     | Dec    | Cropwise<br>Total IWR<br>(Ham) | Total crop-<br>wise IWR<br>(Ham) |
| Winter Rice             | 1975.6              | 0         | 0         | 0           | 114.39     | 193.61    | 0          | 0         | 0          | 0           | 0     | 0       | 0      | 307.99                         | 2861.36                          |
| Winter Rice             | 3951.2              | 0         | 0         | 0           | 0          | 779.18    | 0          | 0         | 0          | 12.25       | 0     | 0       | 0      | 791.43                         |                                  |
| Winter Rice             | 4939                | 0         | 0         | 0           | 0          | 244.97    | 484.02     | 0         | 0          | 0           | 0     | 0       | 0      | 728.99                         |                                  |
| Winter Rice             | 4939                | 0         | 0         | 0           | 0          | 239.05    | 481.55     | 0         | 0          | 0           | 0     | 0       | 0      | 720.60                         |                                  |
| Winter Rice             | 1975.6              | 0         | 0         | 0           | 0          | 0         | 96.60      | 193.61    | 0          | 0           | 4.939 | 17.19   | 0      | 312.34                         |                                  |
| Winter Rice             | 1975.6              | 0         | 0         | 0           | 0          | 0         | 0          | 96.80     | 193.61     | 0           | 11.26 | 128.81  | 45.63  | 476.11                         |                                  |
| Maize                   | 1975.6              | 0         | 5.73      | 33.59       | 94.43      | 0         | 0          | 0         | 0          | 0           | 0     | 0       | 0      | 133.75                         | 133.75                           |
| Pulse                   | 1975.6              | 120.71    | 138.49    | 14.027      | 0          | 0         | 0          | 0         | 0          | 0           | 0     | 18.57   | 68.55  | 360.35                         | 743.22                           |
| Pulse                   | 1975.6              | 87.52     | 154.29    | 108.07      | 0          | 0         | 0          | 0         | 0          | 0           | 0     | 0       | 32.99  | 382.87                         |                                  |
| Oil seed                | 1975.6              | 92.66     | 117.35    | 135.32      | 44.65      | 0         | 0          | 0         | 0          | 0           | 0     | 79.81   | 104.71 | 574.50                         | 1105.54                          |
| Oil seed                | 1975.6              | 92.66     | 117.35    | 135.32      | 44.65      | 0         | 6.12       | 0         | 0          | 0           | 0     | 41.69   | 93.24  | 531.04                         |                                  |
| Winter Vege-<br>tables  | 987.8               | 19.76     | 0         | 0           | 0          | 0         | 0          | 0         | 0          | 0           | 2.27  | 50.97   | 61.34  | 134.34                         | 476.91                           |
| Winter Vege-<br>tables  | 987.8               | 55.51     | 26.57     | 0           | 0          | 0         | 0          | 0         | 0          | 0           | 0     | 33.78   | 52.55  | 168.42                         |                                  |
| Winter Veg-<br>etables  | 987.8               | 52.45     | 68.36     | 8.59386     | 0          | 0         | 0          | 0         | 0          | 0           | 0     | 1.67926 | 43.07  | 174.15                         |                                  |
| Summer<br>Vegetables    | 987.8               | 0         | 0         | 32.5974     | 23.4108    | 0         | 6.81582    | 0         | 0          | 0           | 0     | 0       | 0      | 62.82408                       | 114.68                           |
| Summer<br>Vegetables    | 987.8               | 0         | 0         | 16.59504    | 9.68044    | 0         | 6.81582    | 0         | 0          | 0           | 0     | 0       | 0      | 33.0913                        |                                  |
| Summer<br>Vegetables    | 987.8               | 0         | 0         | 6.22314     | 5.63       | 0         | 0          | 6.91      | 0          | 0           | 0     | 0       | 0      | 18.77                          |                                  |
| Potato                  | 1975.6              | 121.7     | 146.79    | 72.89       | 0          | 0         | 0          | 0         | 0          | 0           | 0     | 47.02   | 87.72  | 476.12                         | 476.12                           |
| Wheat                   | 1975.6              | 80.80     | 113.991   | 146.98      | 77.44      | 0         | 3.95       | 0         | 0          | 0           | 0     | 50.77   | 84.36  | 558.30                         | 558.30                           |
| Month wise<br>IWR (Ham) | 39512               | 723.76    | 888.92    | 710.22      | 414.2      | 1456.80   | 1085.88    | 297.32    | 193.61     | 12.25       | 18.47 | 470.29  | 674.17 | 6946.01                        | 6469.89                          |

Table 6.4: Actual monthly water requirement for different crops in Unirrigated Areas of Bongaigaon district, Assam

Total unirrigated area of the district is 31032 ha and out of which 19756 ha is kharif paddy. Total water requirement to bring the un-irrigated area of the district and water availability for future use are summarized in Table: 6.5

Table 6.4: Summarised results of water requirement to bring the un-irrigated area of Bongaigaon district, Assam

| Area         | Net Cultivated area<br>(Ha) | Irrigation water re-<br>quirement (Ham) | Water allocated for future use (Ham) |
|--------------|-----------------------------|-----------------------------------------|--------------------------------------|
| Kharif paddy | 19756                       | 9243                                    | 33840                                |

Discharge of the tube wells constructed by CGWB tapping 20 to 40m depth of the older alluvial aquifer varies from 30 to 35 m<sup>3</sup>/hr. If the well is allowed to run 8 hrs a day for 120 days then a tube well having discharge of 30 m<sup>3</sup>/hr will extract 2.88 ham groundwater annually.

Total numbers of shallow tube wells require to construct in the district to fulfil the irrigation requirement of 9243 ham, is found to be 2247 nos. On the other hand consideration of safe distance of 200 m permits to construct 4949 nos.

Extraction of 9243 ham of groundwater will increase the stage of groundwater extraction to 46 %. Potential resource of the district is 9032.17 ham.

Sustainable management plan should take care to increase recharge of rain water artificially. Increase recharge will fill the aquifer as well as lower surface run-off and soil erosion.

# 6.2 Demand side management

Demand side management implies sustainable management of water. In irrigation and in drinking water supply also sufficient quantity of water loss occurs.

Water use efficiency should be high in all sectors particularly in the irrigation sector. Loss in irrigation water will increase water logged area.

Irrigation efficiency can be increased by

- reducing convenience loss
- improving water application efficiency

Following demand side interventions will increase water use efficiency

- Use of water efficient irrigation method: Drip and sprinkler irrigation methods are very useful in saving water. Both of them save conveyance losses and improve water application efficiency by applying water near the root-zone of the plant. Drip irrigation can increase crop yield per hectare and also saves water up to 70% than conventional irrigation.
- Water loss through supply canals can be minimized by proper lining in the canals.

• Adopting water saving rice irrigation: In this method instead of submerging the paddy field for longer duration, the rice field have to provide water through irrigation only after a certain number of days when the ponded water disappears. This technology is known as alternate wetting and drying (AWD) irrigation. With the optimal management, this technology reduces the amount of water required by about 25% without reduction in yields.

Therefore, groundwater resource of the district is sufficient to meet drinking water demand and also irrigation and other industrial demands under different condition.

# Following recommendations are suggested:

- Water distribution mechanism should minimize water loss by using lining distribution canals. Locally available materials are to be preferred as these materials are cheap and eco-friendly.
- Conservation of rain water in the up dip of cultivated field. During rabi season the conserved water can be drained to paddy field through gravity.
- In some pockets iron content is very high. The sources of iron pollution in deeper aquifer can be attributed to geogenic origin. It needs removal before human consumption.
- Rain water harvesting in the technique collection and storage of rainwater at surface or in sub-surface aquifer, before it is lost as surface runoff further aggravating water logging condition. Therefore, existing and abandoned dug wells may be utilized as recharge structure after cleaning and desilting the same.

# **ANNEXURE I**

|                     |           |          |      | Donth  |        | Type |                               |                 |                 |             |
|---------------------|-----------|----------|------|--------|--------|------|-------------------------------|-----------------|-----------------|-------------|
| Location            | Longitude | Latitude | M.P  | (mbmp) | Dia(m) | well | Formation                     | W.L(mbgl) (Nov) | W.L(mbgl) (Feb) | Fluctuation |
| North Salmara       | 90.63     | 26.371   | 0.59 | 7.2    | 1      | DW   | Younger Alluvium              | 3.95            | 4.8             | 0.85        |
| Sarakola            | 90.65     | 26.456   | 0.93 | 4.5    | 0.7    | DW   | Younger Alluvium              | 1.47            | 1.97            | 0.5         |
| Chaprakata          | 90.61     | 26.486   | 0.87 | 4.3    | 0.8    | DW   | Younger Alluvium              | 1.53            | 2.23            | 0.7         |
| Kakijana            | 90.66     | 26.43    | 0.67 | 4.7    | 0.8    | DW   | Younger Alluvium              | 2.42            | 2.75            | 0.33        |
| Borpara             | 90.56     | 26.456   | 0.5  | 7.5    | 0.8    | DW   | Consolidated Formation        | 3.17            | 3.71            | 0.54        |
| Mulagaon            | 90.54     | 26.44    | 0.87 | 9.3    | 1      | DW   | Consolidated Formation        | 5.14            | 5.78            | 0.64        |
| Mulagaon PHC        | 90.53     | 26.429   | 1    | 10.4   | 1.2    | DW   | <b>Consolidated Formation</b> | 5.18            | 5.52            | 0.34        |
| Bansbari Pt II      | 90.51     | 26.393   | 0.77 | 8.09   | 2.1    | DW   | Younger Alluvium              | 4.83            | 5.58            | 0.75        |
| Dhaknabari          | 90.5      | 26.323   | 0.74 | 7.3    | 0.7    | DW   | Younger Alluvium              | 3.86            | 4.18            | 0.32        |
| Boilamari           | 90.49     | 26.301   | 0.7  | 5.1    | 0.67   | DW   | Younger Alluvium              | 3.25            | 3.75            | 0.5         |
| Talguri             | 90.49     | 26.326   | 1.02 | 7.3    | 2      | DW   | Younger Alluvium              | 4.18            | 4.83            | 0.65        |
| Salbari             | 90.5      | 26.332   | 0.8  | 8.2    | 2      | DW   | Younger Alluvium              | 5               | 5.65            | 0.65        |
| Borkhata            | 90.54     | 26.387   | 1.02 | 6.1    | 1      | DW   | Younger Alluvium              | 1.88            | 2.83            | 0.95        |
| Durgapur            | 90.59     | 26.354   | 0.67 | 6.05   | 0.7    | DW   | Younger Alluvium              | 5.38            | 5.78            | 0.4         |
| Ghilaguri           | 90.59     | 26.31    | 1.3  | 12.1   | 0.5    | DW   | Younger Alluvium              | 5.9             | 6.2             | 0.3         |
| Sakumari            | 90.57     | 26.311   | 0.67 | 10.2   | 2      | DW   | Younger Alluvium              | 5.73            | 6.7             | 0.97        |
| Chalantapara Pt II` | 90.59     | 26.265   | 0.7  | 13.5   | 1      | DW   | Older Alluvium                | 10.28           | 10.53           | 0.25        |
| Majgaon             | 90.59     | 26.407   | 0.56 | 5.4    | 1      | DW   | Older Alluvium                | 2.14            | 3.34            | 1.2         |
| Kayapatty           | 90.58     | 26.236   | 0.97 | 8.7    | 0.7    | DW   | Younger Alluvium              | 0.83            | 1.7             | 0.87        |
| Mohanpur PWSS       | 90.61     | 26.235   | 1    | 100    | 0.102  | TW   | Younger Alluvium              | 1.4             | 2.1             | 0.7         |

# Details of wells established for ground water monitoring under NAQUIM, Bongaigaon district

|                              |           |          |      | Donth  |        | Type |                        |                 |                 |             |
|------------------------------|-----------|----------|------|--------|--------|------|------------------------|-----------------|-----------------|-------------|
| Location                     | Longitude | Latitude | M.P  | (mbmp) | Dia(m) | well | Formation              | W.L(mbgl) (Nov) | W.L(mbgl) (Feb) | Fluctuation |
| Pachania                     | 90.63     | 26.233   | 0.67 | 5.2    | 0.7    | DW   | Consolidated formation | 1.73            | 4.43            | 2.7         |
| Malegarh Pt I                | 90.64     | 26.254   | 0.8  | 13.06  | 0.7    | DW   | Consolidated formation | 2.7             | 4.1             | 1.4         |
| Lalmati                      | 90.65     | 26.298   | 1.2  | 9.15   | 2      | DW   | Consolidated formation | 4.2             | 5.37            | 1.17        |
| Amtola                       | 90.65     | 26.374   | 0.8  | 6.42   | 1      | DW   | Younger Alluvium       | 3.7             | 4.26            | 0.56        |
| Srijangram(Borhola<br>Pt II) | 90.73     | 26.384   | 1    | 5.95   | 1      | DW   | Younger Alluvium       | 4.25            | 4.97            | 0.72        |
| Hooramara                    | 90.69     | 26.419   | 0.7  | 5.3    | 0.7    | DW   | Younger Alluvium       | 1.6             | 2.27            | 0.67        |
| Kakoijana                    | 90.67     | 26.426   | 0.98 | 5.45   | 0.7    | DW   | Younger Alluvium       | 1.72            | 2.67            | 0.95        |
| Simalguri                    | 90.5      | 26.488   | 0.8  | 7.72   | 1      | DW   | Younger Alluvium       | 3.9             | 5.05            | 1.15        |
| Kinaborgaon                  | 90.48     | 26.46    | 1.05 | 8.3    | 0.75   | DW   | Younger Alluvium       | 4.21            | 5.07            | 0.86        |
| Kakragaon                    | 90.45     | 26.446   | 0.8  | 15.5   | 0.9    | DW   | Younger Alluvium       | 2.3             | 3.36            | 1.06        |
| Bijaygaon                    | 90.42     | 26.445   | 0.8  | 6.2    | 1      | DW   | Younger Alluvium       | 3.1             | 3.96            | 0.86        |
| Bilaspur PHED                | 90.41     | 26.412   | 1    | 100    |        | тw   | Younger Alluvium       | 3.4             | 4.34            | 0.94        |
| Choraikonsra                 | 90.44     | 26.421   | 0.9  | 8.5    | 0.7    | DW   | Younger Alluvium       | 4.4             | 5.05            | 0.65        |
| Bidyapur                     | 90.46     | 26.39    | 0.9  | 6.1    | 1      | DW   | Younger Alluvium       | 2.5             | 3.88            | 1.38        |
| Jalakhata                    | 90.49     | 26.363   | 0.5  | 5.5    | 0.7    | DW   | Younger Alluvium       | 2.55            | 3.15            | 0.6         |
| Malipara                     | 90.61     | 26.363   | 1.1  | 5.8    | 0.8    | DW   | Younger Alluvium       | 2.32            | 2.86            | 0.54        |
| Jogipara                     | 90.62     | 26.346   | 0.8  | 5.25   | 0.7    | DW   | Younger Alluvium       | 2.4             | 2.96            | 0.56        |
| Choutaki                     | 90.63     | 26.33    | 1.1  | 6.62   | 0.7    | DW   | Younger Alluvium       | 1.8             | 2.35            | 0.55        |
| Nayagaon                     | 90.62     | 26.305   | 0.7  | 7      | 1.2    | DW   | Younger Alluvium       | 3.31            | 4.27            | 0.96        |
| Nayagaon                     | 90.61     | 26.314   | 0.6  | 9      | 1      | DW   | Younger Alluvium       | 5.45            | 6.56            | 1.11        |
| Bongaigaon                   | 90.55     | 26.485   | 1.1  | 9.2    | 2.2    | DW   | Younger Alluvium       | 4.5             | 5.29            | 0.79        |
| Deohati                      | 90.64     | 26.361   | 1.2  | 7      | 0.7    | DW   | Younger Alluvium       | 2.82            | 3.81            | 0.99        |
| Abhyapuri                    | 90.66     | 26.341   | 0.5  | 6.65   | 0.9    | DW   | Younger Alluvium       | 2.85            | 3.73            | 0.88        |
| Piradhara                    | 90.69     | 26.313   | 0.4  | 100    | 0.102  | тw   | Older flood plain      | 3.08            | 3.94            | 0.86        |
| Nuagaon                      | 90.84     | 26.411   | 0.8  | 100    |        | тw   | Older flood plain      | 2.68            | 3.33            | 0.65        |
| Jharbari                     | 90.84     | 26.42    | 1.3  | 7.2    | 1      | DW   | Older flood plain      | 1.85            | 2.55            | 0.7         |

|                    |           |          |      | Depth  |        | Type<br>of |                  |                 |                 |             |
|--------------------|-----------|----------|------|--------|--------|------------|------------------|-----------------|-----------------|-------------|
| Location           | Longitude | Latitude | M.P  | (mbmp) | Dia(m) | well       | Formation        | W.L(mbgl) (Nov) | W.L(mbgl) (Feb) | Fluctuation |
| Chakihali          | 90.83     | 26.432   | 0.8  | 7.2    | 0.7    | DW         | Younger Alluvium | 2.5             | 3.16            | 0.66        |
| Manikpur           | 90.8      | 26.469   | 1.1  | 7.3    | 0.9    | DW         | Younger Alluvium | 2.2             | 2.7             | 0.5         |
| Birjhora           | 90.58     | 26.475   | 0.8  | 7.2    | 0.7    | DW         | Younger Alluvium | 5.12            | 5.55            | 0.43        |
| Pakhrapara         | 90.57     | 26.468   | 0.9  | 5.2    | 0.7    | DW         | Younger Alluvium | 2.6             | 3.9             | 1.3         |
| Jhakuapara         | 90.6      | 26.463   | 0.8  | 6.3    | 0.8    | DW         | Younger Alluvium | 4.3             | 4.55            | 0.25        |
| Kashidoba          | 90.59     | 26.434   | 1    | 5.5    | 0.7    | DW         | Younger Alluvium | 2.3             | 2.62            | 0.32        |
| Katasbari PT-III   | 90.6      | 26.284   | 0.5  | 7.2    | 0.7    | DW         | Younger Alluvium | 3.6             | 4.47            | 0.87        |
|                    |           |          |      |        |        |            |                  |                 |                 |             |
| Chalantapara Pt -I | 90.59     | 26.268   | 0.6  | 12.1   | 0.8    | DW         | Older Alluvium   | 7.9             | 8.47            | 0.57        |
| Chalantapara       | 90.59     | 26.261   | 0.6  | 12.2   | 0.7    | DW         | Older Alluvium   | 8.7             | 9.16            | 0.46        |
| Jogighopa          | 90.56     | 26.249   | 0.7  | 13.1   | 0.8    | DW         | Older Alluvium   | 8.4             | 9.31            | 0.91        |
| Sakamura           | 90.57     | 26.29    | 0.62 | 12.5   | 1.2    | DW         | Older Alluvium   | 7.36            | 7.83            | 0.47        |
| Borigaon PHED      | 90.68     | 26.34    | 0.5  | 100    | 0.102  | DW         | Younger Alluvium | 3.26            | 3.86            | 0.6         |

#### **ANNEXURE II**

#### DETAILS OF GROUND WATER EXPLORATORY WELL IN BONGAIGAON DISTRICT

| District   | Location                             | Longitude | Latitude | Depth<br>of<br>Drilled<br>(mbgl) | Depth<br>of con-<br>str.<br>(mbgl) | Zones encoun-<br>tered                                                   | Static<br>Water<br>level<br>(mbgl) | Discharge<br>(m <sup>3</sup> /hr) | Draw Down<br>(m) | T (m2/<br>day | Permea-<br>bility<br>(m/day) | Storage<br>co-<br>efficient<br>(S)<br>(lpm/m) |
|------------|--------------------------------------|-----------|----------|----------------------------------|------------------------------------|--------------------------------------------------------------------------|------------------------------------|-----------------------------------|------------------|---------------|------------------------------|-----------------------------------------------|
| Bongaigaon | Kalbari (Abha-<br>yapuri)-EW         | 90.662    | 26.309   | 100.50                           | 92.00                              | 41-53,59-<br>71,77-89                                                    | 3.50                               | 43.62                             | 2.50             | 1036.5        |                              | 5.4*10-4                                      |
| Bongaigaon | M.G.College<br>(Chalantapara)-<br>EW | 90.583    | 26.270   | 100.50                           | 84.00                              | 33-48,72-81                                                              | 7.05                               | 42.5                              | 4.90             | 47.54         |                              |                                               |
| Bongaigaon | Gerukabari-EW                        | 90.575    | 26.476   | 81.25                            | 63.00                              | 33-54                                                                    | 3.03                               | 46.54                             | 1.46             | 4758          | 176                          |                                               |
| Bongaigaon | Jogighopa                            | 90.554    | 26.2486  | 165.23                           |                                    | 41.27-<br>53.81,91.26-<br>103.87,117.13<br>-<br>129.72,136.48<br>-146.92 | 6.02                               | 43.83                             | 2.72             | 7416          |                              | 8.75*10-2                                     |
| Bongaigaon | Pachania                             | 90.6249   | 26.238   | 156.16                           |                                    | 33.52-45.24,<br>73.20-98.91,<br>125.61-<br>131.50,143.70<br>-150.10      | 4.53                               | 90.15                             | 5.65             | 6779          |                              | 1.09*10-2                                     |
| Bongaigaon | Abhyapuri                            | 90.664    | 26.281   | 145.00                           |                                    | 22.38-<br>27.43,39.62-<br>51.81,57.91-<br>73.14                          | 3.34                               | 136.38                            | 4                |               |                              |                                               |

#### **ANNEXURE III**

# CHEMICAL ANALYSIS DATA OF PRE-MONSOON GROUND WATER SAMPLES, BONGAIGAON DISTRICT.

| Location        | Unit | pH    | El.  | Turbidi- | TDS   | СО | HCO3  | Meas-                | Cl   | SO4  | NO3  | F  | Са  | Mg   | Meas-            | Na  | К   |
|-----------------|------|-------|------|----------|-------|----|-------|----------------------|------|------|------|----|-----|------|------------------|-----|-----|
|                 |      | (lab) |      | ty (NTU) |       | 3  |       | ured Al-<br>kalinity |      |      |      |    |     |      | ured<br>Hardness |     |     |
|                 | mg/  |       | 19.2 |          |       |    |       |                      | 10.6 | 23.0 |      | 0. |     |      |                  |     |     |
| Amtola          | L    | 7.41  | 5    | 0.04     | 12.71 | 0  | 18.31 | 18.31                | 4    | 2    | 4.03 | 0  | 4.0 | 6.1  | 35.0             | 5.6 | 6.2 |
|                 | mg/  |       | 183. |          | 121.1 |    | 616.5 |                      | 35.4 |      |      | 0. | 54. | 108. |                  |     |     |
| Aolaguri        | L    | 8.23  | 6    | 0.11     | 8     | 12 | 9     | 628.59               | 5    | 5.73 | 0.22 | 1  | 0   | 0    | 580.0            | 5.5 | 5.3 |
|                 | mg/  | 7.65  | 86.3 |          |       |    |       |                      | 24.8 |      | 17.3 | 0. |     |      |                  |     |     |
| Bansbari Pt 1 1 | L    | 8     | 5    | 0.04     | 56.99 | 0  | 42.73 | 42.73                | 2    | 4.96 | 4    | 0  | 8.0 | 7.3  | 50.0             | 9.9 | 9.9 |
|                 | mg/  |       | 171. |          | 112.9 |    | 268.6 |                      | 24.8 | 20.9 |      | 0. | 56. |      |                  | 22. | 21. |
| Birjhora        | L    | 8.23  | 2    | 0.02     | 9     | 12 | 1     | 280.61               | 2    | 1    | 3.51 | 0  | 0   | 25.5 | 245.0            | 2   | 7   |
|                 | mg/  | 8.28  | 128. |          |       |    | 170.9 |                      | 10.6 |      |      | 0. | 22. |      |                  | 20. |     |
| Borkhata        | L    | 3     | 7    | 0.06     | 84.94 | 0  | 4     | 170.94               | 4    | 0.00 | 0.21 | 4  | 0   | 9.7  | 95.0             | 0   | 5.9 |
|                 | mg/  |       | 120. |          |       |    |       |                      | 21.2 |      |      | 0. | 28. |      |                  | 10. |     |
| Borpara         | L    | 7.39  | 4    | 0.06     | 79.46 | 0  | 97.68 | 97.68                | 7    | 7.61 | 1.05 | 1  | 0   | 7.3  | 100.0            | 4   | 5.3 |
|                 | mg/  |       | 377. |          | 249.0 |    | 293.0 |                      | 14.1 | 19.4 |      | 0. | 48. |      |                  | 16. |     |
| Chakihali       | L    | 8.47  | 4    | 0.2      | 8     | 18 | 3     | 311.03               | 8    | 9    | 3.56 | 0  | 0   | 30.3 | 245.0            | 6   | 5.5 |
|                 | mg/  |       | 136. |          |       |    |       |                      | 35.4 |      | 38.5 | 0. | 26. |      |                  | 13. |     |
| Circuit house   | L    | 7.55  | 3    | 0.03     | 89.96 | 0  | 48.84 | 48.84                | 5    | 8.52 | 1    | 0  | 0   | 9.7  | 105.0            | 9   | 5.3 |
|                 | mg/  | 7.31  | 29.6 |          |       |    |       |                      | 10.6 |      |      | 0. |     |      |                  |     |     |
| Dhaknabari      | L    | 2     | 2    | 0.17     | 19.55 | 0  | 30.52 | 30.52                | 4    | 0.14 | 1.49 | 0  | 8.0 | 3.6  | 35.0             | 2.3 | 1.9 |
|                 | mg/  | 7.18  | 63.2 |          |       |    |       |                      | 17.7 |      |      | 0. | 16. |      |                  |     |     |
| Durgapur        | L    | 9     | 5    | 0.3      | 41.75 | 0  | 48.84 | 48.84                | 3    | 0.98 | 5.18 | 0  | 0   | 6.1  | 65.0             | 4.2 | 1.2 |

| Location         | Unit  | pH<br>(lab) | El.<br>Cond | Turbidi-<br>tv (NTU) | TDS   | CO<br>3 | HCO3   | Meas-<br>ured Al- | CI   | SO4  | NO3  | F  | Са        | Mg   | Meas-<br>ured | Na  | К   |
|------------------|-------|-------------|-------------|----------------------|-------|---------|--------|-------------------|------|------|------|----|-----------|------|---------------|-----|-----|
|                  |       |             | •           | -7 ( -7              |       |         |        | kalinity          |      |      |      |    |           |      | Hardness      |     |     |
|                  |       |             | 100         |                      |       |         |        |                   |      |      |      |    |           |      |               |     |     |
| Ghilaguri        | mg/   | 7.03        | 133.        | 0.06                 | 88.24 | 0       | 24.42  | 21 12             | 56.7 | 0 97 | 32.9 | 0. | 10        | 12.1 | 60.0          | 25. | 6.8 |
| Gilliagui        | mg/   | 7.05        | , 112       | 0.00                 | 00.24 | 0       | 24.42  | 24.42             | 56.7 | 0.57 | 0    | 0  | 16        | 12.1 | 00.0          |     | 10  |
| Jhakuapara       | L     | 8.06        | 8           | 0.14                 | 74.45 | 0       | 48.84  | 48.84             | 2    | 1.41 | 2.97 | 1  | 0         | 10.9 | 85.0          | 9.8 | 3   |
| •                | mg/   |             | 28.8        |                      |       |         |        |                   | 10.6 | 23.9 |      | 0. |           |      |               |     |     |
| Kabaitari        | L     | 7.41        | 8           | 0.11                 | 19.06 | 0       | 36.63  | 36.63             | 4    | 7    | 1.03 | 0  | 6.0       | 9.7  | 55.0          | 5.4 | 6.0 |
|                  | mg/   |             | 41.4        |                      |       |         |        |                   | 10.6 | 25.6 |      | 0. | 14.       |      |               |     |     |
| Kakragaon        | L     | 7.78        | 5           | 0.09                 | 27.36 | 0       | 42.73  | 42.73             | 4    | 9    | 0.00 | 0  | 0         | 6.1  | 60.0          | 5.6 | 6.2 |
|                  | mg/   | 7.50        |             |                      |       |         |        |                   |      |      |      | 0. |           |      |               |     |     |
| Kayapatty        | L     | 7           | 29.1        | 0.73                 | 19.21 | 0       | 36.63  | 36.63             | 7.09 | 0.36 | 2.81 | 0  | 6.0       | 3.6  | 30.0          | 5.1 | 3.2 |
|                  | mg/   |             | 66.2        |                      |       |         |        |                   | 21.2 |      |      | 0. |           |      |               |     |     |
| Lalmati          | L ,   | 7.67        | 9           | 0.25                 | 43.75 | 0       | 54.94  | 54.94             | 7    | 2.50 | 6.36 | 0  | 8.0       | 7.3  | 50.0          | 9.9 | 6.1 |
|                  | mg/   | 0.07        | 228.        | 0.40                 | 150.8 | 00      | 500.6  | 500.00            | 14.1 | 0.00 | 6.00 | 0. | 54.       | 20.2 | 200.0         | 85. | 66. |
| Ivianikpur       | L     | 8.37        | 6           | 0.49                 | 8     | 99      | 0      | 599.60            | 8    | 0.99 | 6.88 | 1  | 0         | 30.3 | 260.0         | 3   | 8   |
|                  | mg/   | 1.44        | 53.2<br>E   | 0.1                  | 21.05 | 0       | 12 72  | 12 72             | 7.00 | 0.40 | 4 17 | 0. | 00        | 26   | 25.0          | 5 / | 1 1 |
| IVIUIAGAUTI FIIC |       | 7.46        | J<br>15/    | 0.1                  | 102.1 | 0       | 42.75  | 42.75             | 1/ 1 | 0.49 | 4.17 | 0  | 0.0<br>18 | 5.0  | 55.0          | 5.4 | 4.1 |
| North Salmara    | 111g/ | 1           | 7           | 0.08                 | 0     | 0       | 67 15  | 67 15             | 8    | 1 90 | 2.22 | 1  | 0         | 3.6  | 60.0          | 55  | 59  |
|                  | mg/   | -           | 221.        | 0.00                 | 145.9 |         | 07.110 | 07120             | 24.8 | 94.7 |      | 0. | 26.       | 0.0  |               | 0.0 |     |
| Nuagaon          | L     | 8.42        | 2           | 0.09                 | 9     | 0       | 30.52  | 30.52             | 2    | 7    | 1.72 | 1  | 0         | 21.8 | 155.0         | 6.6 | 5.5 |
|                  | mg/   |             | 146.        |                      |       |         | 134.3  |                   | 24.8 | 12.7 |      | 0. | 26.       |      |               |     |     |
| Pachania         | L     | 7.95        | 9           | 0.09                 | 96.95 | 0       | 1      | 134.31            | 2    | 0    | 1.06 | 1  | 0         | 21.8 | 155.0         | 6.1 | 5.5 |
|                  | mg/   |             | 219.        |                      | 144.6 |         | 293.0  |                   | 14.1 |      |      | 0. | 52.       |      |               |     |     |
| Piradhara        | L     | 8.47        | 1           | 0.06                 | 1     | 18      | 3      | 311.03            | 8    | 4.62 | 1.56 | 1  | 0         | 27.9 | 245.0         | 8.6 | 5.4 |
|                  | mg/   | 7.30        | 49.2        |                      |       |         |        |                   | 17.7 |      |      | 0. | 12.       |      |               |     |     |
| Sakumari         | L     | 3           | 3           | 0.05                 | 32.49 | 0       | 42.73  | 42.73             | 3    | 3.23 | 3.13 | 0  | 0         | 3.6  | 45.0          | 5.4 | 6.2 |
|                  | mg/   | 8.01        | 138.        |                      |       |         | 170.9  |                   | 10.6 |      |      | 0. | 34.       |      |               |     |     |
| Sarakola         | L     | 1           | 9           | 0.11                 | 91.67 | 0       | 4      | 170.94            | 4    | 3.35 | 1.45 | 2  | 0         | 13.3 | 140.0         | 5.2 | 5.2 |

| Location                | Unit | pH<br>(lab) | El.<br>Cond | Turbidi-<br>ty (NTU) | TDS   | CO<br>3 | HCO3  | Meas-<br>ured Al-<br>kalinity | CI   | SO4  | NO3  | F  | Ca  | Mg   | Meas-<br>ured<br>Hardness | Na  | К   |
|-------------------------|------|-------------|-------------|----------------------|-------|---------|-------|-------------------------------|------|------|------|----|-----|------|---------------------------|-----|-----|
| Sri-<br>jangram(Borhola | mg/  |             | 184.        |                      | 121.5 |         | 244.2 |                               |      | 25.3 |      | 0. | 54. |      | 100.0                     | 14. |     |
| Pt II )                 | L    | 8.36        | 2           | 0.08                 | 7     | 9       | 0     | 253.20                        | 7.09 | 5    | 4.32 | 3  | 0   | 10.9 | 180.0                     | 2   | 5.1 |

**ANNEXURE IV** 

| Location                                   | Unit | pH<br>(lab) | El.<br>Cond. | Tur-<br>bidity<br>(NTU<br>) | TDS    | CO3 | HCO3   | Meas-<br>ured<br>Alka-<br>linity | Cl    | SO4   | NO3       | F    | Са     | Mg        | Mea<br>sur<br>ed<br>Har<br>dne<br>ss | Na    | К         | Fe    |
|--------------------------------------------|------|-------------|--------------|-----------------------------|--------|-----|--------|----------------------------------|-------|-------|-----------|------|--------|-----------|--------------------------------------|-------|-----------|-------|
| North Salmara                              | mg/L | 7.009       | 80.31        | 0.05                        | 53.00  | 0   | 61.05  | 61.05                            | 7.09  | 8.90  | 2.10      | 0.08 | 16.01  | 2.42      | 50                                   | 5.35  | 2.43      | 0.366 |
| Sarakola                                   | mg/L | 7.263       | 156.8        | 0.11                        | 103.49 | 0   | 128.20 | 128.20                           | 21.27 | 2.64  | 12.5<br>6 | 0.11 | 36.03  | 2.41      | 100                                  | 13.09 | 3.73      | 2.659 |
| Chaprakata                                 | mg/L | 6.531       | 134.5        | 0.04                        | 88.77  | 0   | 67.15  | 67.15                            | 28.36 | 21.56 | 6.74      | 0.06 | 20.02  | 4.84      | 70                                   | 13.85 | 11.2<br>2 | 0.149 |
| Borpara                                    | mg/L | 5.643       | 137.5        | 0.1                         | 90.75  | 0   | 18.31  | 18.31                            | 17.73 | 6.93  | 42.2<br>0 | 0.02 | 26.02  | 2.41      | 75                                   | 4.4   | 3.17      | 0.293 |
| Mulagaon PHC                               | mg/L | 6.904       | 57.05        | 0.29                        | 37.65  | 0   | 36.63  | 36.63                            | 7.09  | 1.74  | 10.5<br>7 | 0.07 | 16.01  | 1.21      | 45                                   | 1.75  | 1.24      | 1.06  |
| Bansbari Pt II                             | mg/L | 6.565       | 114.3        | 0.05                        | 75.44  | 0   | 30.52  | 30.52                            | 21.27 | 12.09 | 18.8<br>2 | 0.04 | 14.01  | 2.42      | 45                                   | 9.01  | 8.77      | 0.025 |
| Dhaknabari                                 | mg/L | 6.467       | 33.84        | 0.09                        | 22.33  | 0   | 30.52  | 30.52                            | 7.09  | 1.18  | 3.19      | 0.03 | 6.00   | 3.64      | 30                                   | 2.23  | 1.54      | 0.203 |
| Borkhata                                   | mg/L | 7.328       | 171.5        | 1.3                         | 113.19 | 0   | 158.73 | 158.73                           | 17.73 |       | 9.44      | 0.41 | 32.03  | 3.63      | 95                                   | 23.22 | 1.81      | 0.605 |
| Durgapur                                   | mg/L | 7.239       | 57.54        | 0.06                        | 37.98  | 0   | 30.52  | 30.52                            | 10.64 | 0.14  | 1.10      | 0.06 | 14.01  | 1.21      | 40                                   | 2.08  | 0.49      | 0.078 |
| Ghilaguri                                  | mg/L | 6.195       | 168.8        | 0.03                        | 111.41 | 0   | 30.52  | 30.52                            | 63.81 | 2.54  | 29.7<br>3 | 0.02 | 10.01  | 8.49      | 60                                   | 29.05 | 6.77      | 0.043 |
| Sakumari                                   | mg/L | 6.895       | 41.86        | 0                           | 27.63  | 0   | 48.84  | 48.84                            | 7.09  | 1.62  | 2.05      | 0.05 | 10.01  | 3.64      | 40                                   | 3.51  | 1.38      | 0.078 |
| Kayapatty                                  | mg/L | 7.818       | 736.8        | 0.05                        | 486.29 | 0   | 665.43 | 665.43                           | 74.45 | 36.87 | 5.65      | 0.2  | 154.12 | 46.0<br>4 | 575                                  | 48.22 | 6.06      | 0.549 |
| Kabaitari                                  | mg/L | 7.939       | 447.2        | 0.02                        | 295.15 | 0   | 433.45 | 433.45                           | 24.82 | 13.22 | 0.23      | 0.09 | 118.09 | 14.5<br>1 | 355                                  | 10.52 | 5.89      | 0.061 |
| Pachania                                   | mg/L | 7.125       | 186.1        | 0.07                        | 122.83 | 0   | 122.10 | 122.10                           | 21.27 | 22.13 | 0.00      | 0.09 | 26.02  | 12.1<br>2 | 115                                  | 15.33 | 4.21      | 1.099 |
| Lalmati                                    | mg/L | 6.682       | 72.27        | 0                           | 47.70  | 0   | 61.05  | 61.05                            | 17.73 | 3.48  | 4.07      | 0.03 | 8.01   | 8.49      | 55                                   | 7.96  | 1.88      | 0.061 |
| Amtola                                     | mg/L | 6.37        | 15.48        | 0.04                        | 10.22  | 0   | 30.52  | 30.52                            | 10.64 | 0.49  | 0.95      | 0.02 | 4.00   | 2.43      | 20                                   | 6.63  | 3.41      | 0.096 |
| Srijan-<br>jan-<br>gram(Borhola<br>Pt II ) | mg/L | 7.816       | 282.8        | 0.07                        | 186.65 | 0   | 299.14 | 299.14                           | 17.73 | 7.29  | 0.04      | 0.33 | 68.05  | 16.9<br>6 | 240                                  | 15.17 | 4.94      | 0.185 |

# CHEMICAL ANALYSIS DATA OF POST\_MONSOON GROUND WATER SAMPLES

| Location      | Unit    | pH<br>(lab) | El.<br>Cond | Tur-<br>bidity | TDS    | CO3 | HCO3    | Meas-  | Cl    | S04   | NO3  | F    | Са     | Mg   | Mea | Na    | К    | Fe      |
|---------------|---------|-------------|-------------|----------------|--------|-----|---------|--------|-------|-------|------|------|--------|------|-----|-------|------|---------|
|               |         | (lub)       | conu.       | (NTU           |        |     |         | Alka-  |       |       |      |      |        |      | ed  |       |      |         |
|               |         |             |             | )              |        |     |         | linity |       |       |      |      |        |      | Har |       |      |         |
|               |         |             |             |                |        |     |         |        |       |       |      |      |        |      | ss  |       |      |         |
| Kakragaon     | mg/L    | 7.037       | 72.28       | 0.04           | 47.70  | 0   | 61.05   | 61.05  | 10.64 | 4.90  | 0.28 | 0.03 | 18.01  | 6.06 | 70  | 2.13  | 0.87 | 0.167   |
|               |         |             |             |                |        |     |         |        |       |       | 14.1 |      |        |      |     |       |      |         |
| Circuit house | mg/L    | 6.544       | 91.25       | 0.02           | 60.23  | 0   | 30.52   | 30.52  | 24.82 | 7.84  | 1    | 0.1  | 20.02  | 1.20 | 55  | 8.15  | 3.57 | 0.043   |
| D' 11         | /1      | 7 000       | 412.0       | 0.1.1          | 272.14 | 0   | 457.07  | 457.07 | 21.27 | 0.50  | 7.05 | 0.24 | 120.10 | 10.8 | 270 | 6.00  | 4.02 | 10.85   |
| Piradhara     | mg/L    | 7.023       | 413.8       | 0.11           | 2/3.11 | 0   | 457.87  | 457.87 | 21.27 | 0.59  | 7.25 | 0.24 | 130.10 | 6    | 370 | 6.08  | 4.02 | 5       |
| Bartari       | mg/L    | 8.23        | 314.7       | 0.03           | 207.70 | 12  | 305.24  | 317.24 | 17.73 | 1.78  | 0.08 | 0.23 | 48.04  | 40.0 | 285 | 2.77  | 3.34 | 1.493   |
|               | 8/      |             |             |                |        |     |         |        |       |       |      |      |        | 49.7 |     |       |      |         |
| Nuagaon       | mg/L    | 8.35        | 304.4       | 0.04           | 200.90 | 15  | 366.29  | 381.29 | 14.18 | 0.29  | 0.68 | 0.36 | 42.03  | 4    | 310 | 6.15  | 3.96 | 0.043   |
|               |         |             |             |                |        |     |         |        |       |       |      |      |        | 84.9 |     |       |      |         |
| Chakihali     | mg/L    | 8.26        | 496.9       | 0.03           | 327.95 | 15  | 482.29  | 497.29 | 28.36 | 25.19 | 2.47 | 0.18 | 42.03  | 3    | 455 | 10.22 | 4.1  | 0.384   |
|               |         |             |             |                |        |     |         |        |       |       |      |      |        | 35.1 |     |       |      |         |
| Aolaguri      | mg/L    | 8.33        | 305.3       | 0.01           | 201.50 | 15  | 335.77  | 350.77 | 17.73 | 4.25  | 0.06 | 0.2  | 58.05  | 7    | 290 | 3.79  | 3.46 | 0.774   |
| NC 11         | /1      | 0.00        | 267.4       | 0.04           | 176.40 | 10  | 260.61  | 200 (1 | 21.27 | 0.07  | 2.00 | 0.22 | (0.0F  | 24.2 | 250 | 2.1.1 |      | 0.167   |
| Manikpur      | mg/L    | 8.22        | 267.4       | 0.04           | 1/6.48 | 12  | 268.61  | 280.61 | 21.27 | 0.27  | 2.89 | 0.22 | 60.05  | 4    | 250 | 2.11  | 5.57 | 0.167   |
| Biribora      | mg/I    | 6.22        | 106.6       | 0.02           | 120.76 | 0   | 54.94   | 54.94  | 5210  | 29.75 | 0.79 | 0.03 | 12.01  | 14.5 | 00  | 10.25 | 22.8 | 0 1 2 2 |
| Ibalaapara    | IIIg/ L | 0.22        | 190.0       | 0.02           | 129.70 | 0   | 140 412 | 140.41 | 55.10 | 2 964 | 5.70 | 0.05 | 12.01  | 121  | 90  | 10.55 | 1    | 0.132   |
| Chitkagaon    | mg/I    | 717         | 175.0       | 0.01           | 116.00 | 0   | 140.412 | 22     | 20.26 | 2.004 | 54   | 0.10 | 22.02  | 2    | 120 | 8.06  | 12.6 | 0.940   |
| Chitkaga011   | mg/ь    | /.1/        | 1/3.9       | 0.01           | 110.09 | U   | 4       | 44     | 20.30 | 3     | 54   | 0.19 | 54.05  | 4    | 130 | 0.90  | 12.0 | 0.049   |