

केंद्रीय भूमि जल बोर्ड

भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

Government of India
Ministry of Jal Shakti
Department of Water Resources,
River Development & Ganga Rejuvenation

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN

WARDHA DISTRICT, MAHARASHTRA

AAP 2019-20

मध्य क्षेत्र, नागपुर / Central Region, Nagpur मार्च/March 2021

AQUIFER MAPS AND GROUND WATER MANAGEMENTPLAN, WARDHA DISTRICT, MAHARASHTRA

(AAP 2019-20) CONTRIBUTORS

Principal Authors					
Athira R	:	Scientist-B			
Venkatesam V	:	STA (Hg)			
Guidance					
Dr. P. K. Jain	:	Regional Director			
Shri.K. P. Dongre	:	Scientist-C (SHG)			
Supervision					
Shri.K. P. Dongre	:	Scientist-C (SHG)			
Hydrogeology, GIS maps and Management Plan					
Shri .K. P. Dongre	:	Scientist-C (SHG)			
Groundwater Exploration					
Shri.K. P. Dongre	:	Scientist-C (SHG)			
Athira R	:	Scientist-B			
Shri.Venkatesam	:	STA (Hg)			
Chemical Analysis					
Dr. Devsharan Verma	:	Scientist B (Chemist)			
Smt. K. Padmavathi		Scientist B (Chemist)			
Dr. Rajni Kant Sharma	:	Scientist B (Chemist)			
Shri. T. Dinesh Kumar	:	Assistant Chemist			

WARDHA DISTRICT AT A GLANCE

1 6	ENERAL INFORMATION							
1. 0			C 240 am Km					
	Geographical Area Administrative Divisions	:	· ·					
		•	Blocks-08: Arvi, Ashti, Deoli, Hinganghat,					
	(2011)	_	Karanja, Samudrapur, Selu and Wardha					
	Villages (Census 2011)	:	1,361					
-	Population (Census 2011)	:	13,00,774					
	Rainfall 2019		900 mm					
	Normal rainfall (1998-1917)		1056.9 mm					
	Long term rainfall Trend		-2.072 m/year					
2.5	(1998-2019)							
2. G	EOMORPHOLOGY	ı	I					
	Major Physiographic unit	:	Nothern Hills and Southern Plains					
	Major Drainage	<u>.</u>	Wardha					
3. L/		iha	sdb.maharashtra.gov.in/district Report)					
	Forest Area	:	386.53 Sq. Km. (6.11 %)					
	Net Area Sown	<u>:</u>	4098.6 Sq. Km. (64.75 %)					
	Cultivable Area	:	4633.52 Sq. Km. (73.20%)					
4.	SOIL TYPE	:	Black or Dark Brown soil viz., Kali, Morand,					
			Khardi, Bardi, Fine calcareous deep soil, Loamy					
			clayey extremely shallow soil, Fine loamy					
			clayey shallow soil, Fine calcareous very deep					
			soil and Loamy clayey very shallow soil.					
5. Pl	RINCIPAL CROPS							
	Oil seeds	:	1353.96 Sq. Km.					
	Cotton	:	2065.92 Sq. Km.					
	Pulses	:	856.29 Sq. Km.					
	Cereals	:	238.67 Sq. Km.					
	Sugarcane		10.53 Sq. Km.					
6. IR	RIGATION BY DIFFERENT SOUR	CE	S (2019-20) - Nos. / Potential Created (ha)					
	Dugwells	:	76033/81081					
	Tubewells/Borewells	:	106/-					
	Surface Flow Schemes	<u>:</u>	-/5276					
	Surface Lift Schemes	:	5/-					
7. G	ROUND WATER MONITORING V	ΝE	LLS (March 2019)					
	Dugwells	:	57+133=190					
	Piezometers	:	11					
8. G	EOLOGY							
	Recent to sub-recent	:	Alluvium					
	Late Cretaceous to Eocene	:	Basalt (Deccan Traps)					
L	<u>l</u>	1						

ni-
mi-
mi-
ni-
111
ithin
to
,

	Projected Demand for	:	3698.32 ham				
	(Domestic use up to 2025)						
	Stage of Ground Water	:	52 %				
	Development						
	Category		SC: Karanja, rest Blocks are Safe				
13. N	MAJOR GROUND WATER PROB	LEN	AS AND ISSUES				
	The moderate drought area ha	as k	peen observed in the north western parts of the				
	district i.e., in major parts of A	sht	i, Karanja and Arvi talukas. Ground water quality				
	is adversely affected by nitrate	со	ntamination and fluoride contamination in some				
	parts of the district.						
14.	Aquifer Management Plan						
	Supply side Management		Proposed AR structures:				
			177 Percolation Tanks and				
			503 Check dams.				
			The expected recharge every year from these				
			structures is 219.04 MCM.				
	Demand side Management		A total of 31.6 sq km area of cotton crop is				
			proposed to cover under drip and sprinkler				
			irrigation.				
			8.22 MCM of ground water can be saved.				
	Development plan		Proposed 9256 Dugwells and 1543 Borewells in				
			phased manner for 6 years.				

AQUIFER MAPS AND GROUND WATER MANAGEMENTPLAN WARDHA DISTRICT, MAHARASHTRA (AAP 2019-20)

CONTENTS

1.	INTRODUCTION	1
1.1	About the Area	1
1.2	Geomorphology, Drainage, Land Use and Soil Types	4
1.3	Climate and Rainfall	6
1.4	Soil Infiltration Tests	8
1.5	Specific Yield Tests	9
2.	HYDROGEOLOGY	11
2.1	Major Aquifer Systems	
2.2	Aquifer Parameters	
2.3	3-D and 2-D Aquifer Disposition	20
3.	WATER LEVEL SCENARIO	25
3.1	Depth to Water level of (Aquifer-I/Shallow Aquifer)	25
3.1.	•	
3.1.	2 Seasonal Water Level Fluctuation (May-Nov2019)	26
3.2	Depth to water level of (Aquifer-II /Deeper Aquifer)	26
3.2.	1 Pre-monsoon Depth to Water Level (May-2019)	26
3.2.	2 Post-monsoon Depth to Water Level (Nov-2019)	27
3.3	Water Level Trend (2010-2019)	
3.4	Hydrograph Analysis	28
4.	GROUND WATER QUALITY	32
4.1	Electrical Conductivity (EC)	32
4.1.		
4.1.	2 Distribution of Electrical Conductivity in Deeper Aquifer	32
4.2	Nitrate	
4.3	Fluoride	
4.4	Suitability of Ground Water for Drinking Purpose	
4.5	Suitability of Ground Water for Irrigation	35
5 .	GROUND WATER RESOURCES	37
5.1	Ground Water Resources - Aquifer-I	37
5.2	Ground Water Resources - Aquifer-II	38
6.	GROUND WATER RELATED ISSUES	42
6.1	Declining Water Levels	42
6.2	Rainfall and Droughts	
6.3	Over-Exploitation	
7.	GROUND WATER MANAGEMENT PLAN	43
7.1	Supply Side Management	
7.2	Demand Side Management	
7.3	Expected Benefits	
7.4	Development Plan	48

8.	SUM UP	50
9.	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN	53
9.1	ARVI BLOCK, WARDHA DISTRICT, MAHARASHTRA	
9.2	ASHTI BLOCK, WARDHADISTRICT, MAHARASHTRA	63
9.3	DEOLI BLOCK, WARDHA DISTRICT, MAHARASHTRA	
9.4	HINGANGHAT BLOCK, WARDHA DISTRICT, MAHARASHTRA	
9.5	KARANJA BLOCK, WARDHA DISTRICT, MAHARASHTRA	
9.6	SAMUDRAPUR BLOCK, WARDHA DISTRICT, MAHARASHTRA	
9.7	SELU BLOCK, WARDHA DISTRICT, MAHARASHTRA	
9.8	WARDHA BLOCK, WARDHA DISTRICT, MAHARASHTRA	
10.	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, 1	
	VILLAGE ASHTI, ASHTI BLOCK, WARDHA DISTRICT	
10.2	VILLAGE DAHEGAON (GONDI), ARVIBLOCK, WARDHA DISTRIC	ı
10 2	139 VILLAGE HINGNI,SELUBLOCK, WARDHA DISTRICT	116
10.3	VILLAGE SARAWADI, KARANJA BLOCK, WARDHA DISTRICT	153
	VILLAGE DEOLI, DEOLI BLOCK, WARDHA DISTRICT	
	VILLAGE JAMNI, HINGANGHAT BLOCK, WARDHA DISTRICT	
	VILLAGE UMRI, WARDHA BLOCK, WARDHA DISTRICT	
11.	Annexures	81
	LICT OF FLOUDES	
	LIST OF FIGURES	_
	e.1.1 (a) Index map, Wardha District	
	e 1.1 (b): Administrative map, Wardha District	≾
Figure	e 1.2: Location of Existing Exploratory wells, Key wells, and Ground Water	
- '	Monitoring Wells	
_	e 1.3: Geomorphology of Wardha District	
_	e 1.5: Drainage, Wardha District	
_	e 1.5: Land Use of Wardha District	
	e 1.6: Soil, Wardha District	
	e 1.7: Rainfall Analysis (1998-2019), Wadha District	
_	e 1.8: Isohyet map of Wardha District e 1.9: Soil Infiltration Tests of Wardha District	
_		
_	e 2.1: Major Aquiferse 2.2: Hydrogeology	
_	e 2.3: Water Table contour	
_	e 2.4: Depth of occurrence and fractured/granular rock thickness of Aquifer-	
_	e 2.5: Depth of occurrence and fractured/granular rock thickness of Aquifer-	
_	e 2.6: Aquifer-I Yield Potential (Basalt & Alluvium	
_	e 2.7: Aquifer-II Yield Potential (Basalt & Alluvium	
_	2.8-3D Aquifer Disposition	
_	e 2.9: Fence Diagram	
_	2.10: Bar Diagram	
_	2.11 (a): Lithological section	
	2.11 (a): Lithological section	
_	e 2.11 (b): Lithological section	
ı ıgult	- 2.11 (c). Littlological section	. 23

Figure 2.11 (d): Lithological section	23
Figure 2.11 (e): Lithological section	24
Figure 3.1: DTWL shallow aquifer (May 2019)	25
Figure 3.2: DTWL shallow aquifer (Nov. 2019)	25
Figure 3.3: Seasonal Fluctuation, shallow aquifer (May-19 vs Nov- 19)	26
Figure 3.4: DTWL deeper aquifer (May 2019)	27
Figure 3.5: DTWL deeper aquifer (Nov. 2019)	27
Figure 3.6: Pre-monsoon decadal trend (2010-19)	28
Figure 3.7: Post-monsoon decadal trend (2010-19)	28
Figure 3.8 a: Hydrograph (2010-19), Kharangana, Arvi Taluka	28
Figure 3.8 b: Hydrograph (2010-19), Ashti, Ashti Taluka	
Figure 3.8 c: Hydrograph (2010-19), Giroli, Deoli Taluka	
Figure 3.8 d: Hydrograph (2010-19), Pipri, Hinganghat Taluka	
Figure 3.8 e: Hydrograph (2010-19), Nagalwadi, Karanja Taluka	
Figure 3.8 f: Hydrograph (2010-19), Sakhra, Samudrapur Taluka	
Figure 3.8 g: Hydrograph (2010-19), Keljhar, Selu Taluka	
Figure 3.8 h: Hydrograph (2010-19), Vadad, Wardha Taluka	
Figure.4.1: Ground Water Quality, Aquifer-I	
Figure 4.2: Ground Water Quality, Aquifer-II	
Figure 5.1: Ground Water Resources (2017), Wardha district	
Figure 6.1: Ground water related issues	
Figure 7.1: Location of Proposed Artificial Recharge structures	
Figure 7.2: Location of Proposed Demand side interventions	
Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation	40
LIST OF TABLES	
Table 1.1: Long-term rainfall analysis	6
Table 1.2: Annual rainfall data (2010-2019) (in mm)	
Table 1.3: Salient Features of Infiltration Tests	9
Table 1.4: Salient Features of Specific Yield Tests.	10
Table 2.1: Aquifer Characteristic of Wardha district	14
Table 4.1: Aquifer wise ranges of chemical constituents in Wardha District	32
Table 4.2: Aquifer wise Electrical conductivity analytical data	
Table 4.3: Aquifer wise Nitrate and Fluoride concentration	
Table 4.4: Concentration of Chemical constituents in Shallow Aquifer	
Table 4.5: Concentration of chemical constituents in Deeper Aquifer	
Table 4.6: Classification of Ground water for Irrigation based on EC values	36
Table 5.1 Ground water resources, Aquifer-I (Shallow aquifer), Wardha district	
(2017)	
Table 5.2: Ground Water Resources of Aquifer-II (Deeper aquifer)	
Table 7.2: Proposed Artificial Recharge Structures	
Table 7.3 Demand side interventions proposed	
Table 7.4: Expected benefits after management options	
Table 7.5: Block wise additional area wells proposed	49

ANNEXURES

Annexure-I: Salient Features of Ground Water Exploration

Annexure-II: Aquifer I depth to water level details in Wardha district Annexure-III A: Aquifer II depth to water level details in Wardha district Annexure-III B: Aquifer II depth to water level details in Wardha district

Annexure-IV: Details of PMP wells, Wardha district

Annexure- V: Soil Infiltration test data

Annexure-VI: Water Level trend (2010-2019) Annexure-VII: Aquifer- I Chemical analysis Annexure VIII: Aquifer II Chemical analysis

Annexure-IX: Location of proposed Percolation tanks in Wardha district

Annexure-X: Location of proposed check dam in Wardha district

AQUIFER MAPS AND GROUND WATER MANAGEMENTPLAN WARDHA DISTRICT, MAHARASHTRA

1. INTRODUCTION

National Aquifer Mapping (NAQUIM) has been taken up in XII five-year plansby CGWB to carry out detailed hydrogeological investigation on toposheet scale of 1:50,000. The NAQUIM has been prioritized to study Over-exploited, Critical and Semi-Critical Blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geological, geophysical, hydrological and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of basalt aquifers, over exploitation of once copious alluvial aquifers, lack of regulation mechanism has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus, the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the Administration of Wardha district, Maharashtra for its effective implementation.

The activities under NAQUIM are aimed at:

- Identifying the aquifer geometry,
- Aguifer characteristics and their yield potential
- Quality of water occurring at various depths,
- ❖ Aquifer wise assessment of ground water resources
- Preparation of aquifer maps and
- Formulate ground water management plan

1.1 About the Area

Wardha is one the 11 districts of Vidarbha. It has a geographical area of 6310 $\rm km^2$, which is about 2.0% of the area of the State. It is bounded by north latitudes 20"08' and 21°22' and east longitudes 78"30' and 79"15. It falls in parts of Survey of India degree sheets 55 K, 55 L and 55 P.

The district headquarters is located at Wardha town. For administrative convenience, the district has been divided into eight talukas, i.e., Arvi, Ashti, Deoli, Hinganghat, Karanja, Samudrapur, Selu and Wardha. There are 1376 villages and 13 towns in the district. The total population of the district as per 2011 census is 13,00,774 and the density of population is 206persons/sq. km. The district forms part of Godavari

basin. Wardha River is the main river flowing through western boarder of district sharing with Amaravati district.

Wardha district has been taken up under NAQUIM study during the year 2019-20. The total area of the district is 6,310 sq km. The Karanja Block is categorised as Semicritical and rest of the Blocks are categorized as safe as per Ground Water Resources Estimation as on March 2017. The Administrative and Index map of the study area is presented in **Figure.1.1** (a &b).

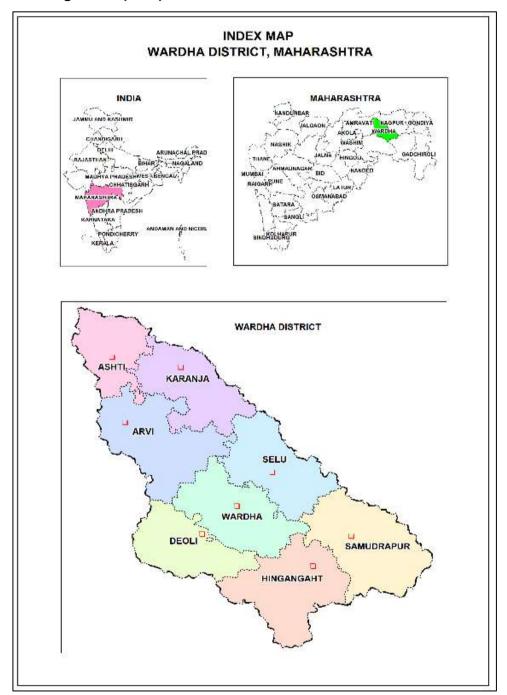


Figure.1.1 (a) Index map, Wardha District

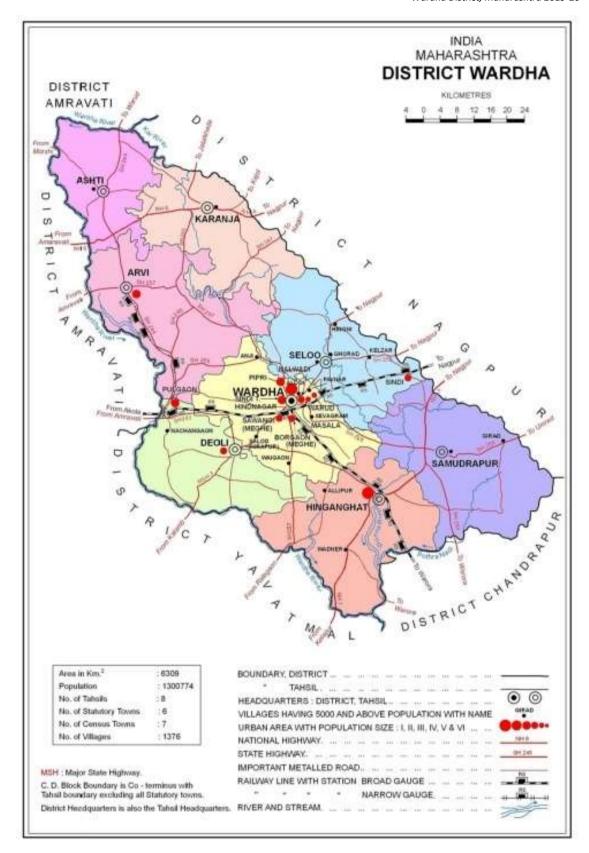


Figure 1.1 (b): Administrative map, Wardha District

Ground water exploration has been taken up in the district in different phases. The first exploration was taken up between 1974 and 1976 when 20 wells were drilled in Yashoda basin. Subsequently later on exploration was also taken up in other parts of the CGWB, CR, Nagpur

district and so far, 79 wells (EW-50, OW-14 and PZ-15) have been drilled. The taluka wise salient features of ground water exploration are given in Annexure-I

A total of 68 existing ground water monitoring stations were being monitored 4 times in a year to assess the ground water scenario of the district. Based on data gap analysis additional 133KOWs were inventoried to acquire micro level hydrogeological data to decipher the water level scenario, sub-surface lithological disposition and hydrogeological setup of shallow aquifer (Aquifer-I). The details of KOWs, GWM and PMP wells are given in Annexure-II and IV. Locations of existing ground water monitoring stations and exploratory wells are shown in **Figure.1.2**.

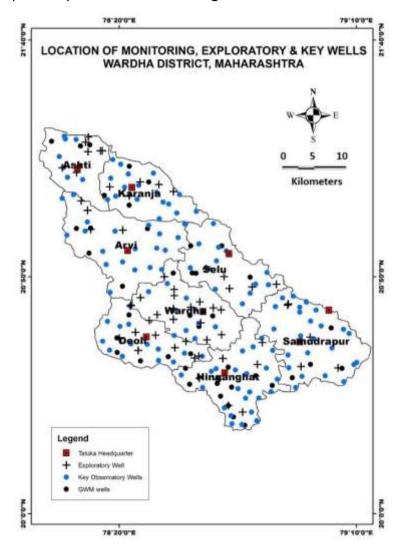
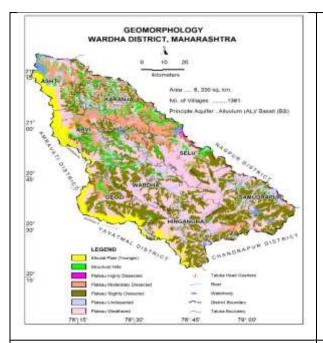
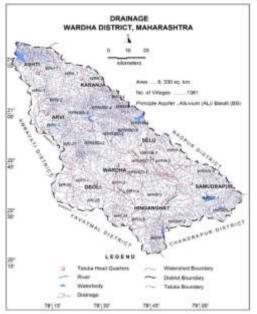



Figure 1.2: Location of Existing Exploratory wells, Key wells, and Ground Water Monitoring Wells

1.2 Geomorphology, Drainage, Land Use and Soil Types

The area is physiographically divided in two parts, the north and north eastern parts forming into a hilly spur projecting south and south eastwards from the Satpuras. While the southern part forms into an undulating plain with average elevation ranging between 300 and 500 metre above mean sea level (m amsl) the general slope is southwards and gentle towards Wardha River but tends to become steeper in the northern uplands. The geomorphological map of Wardha district is shown in **Figure. 1.3** CGWB, CR, Nagpur



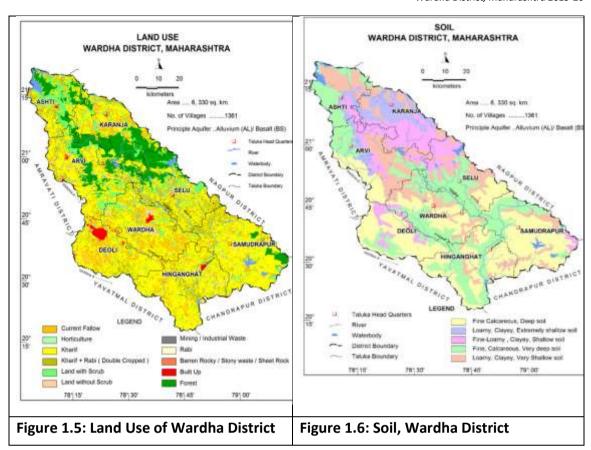

Figure 1.3: Geomorphology of Wardha District

Figure 1.5: Drainage, Wardha District

The entire district is mainly drained by Wardha River and its tributaries viz., Yashoda, Wunna and Bakli. Based on geomorphological setting and drainage pattern, the district is divided into 39 watersheds. The drainage map of Wardha district is shown in **Figure. 1.4**

Land Use (**Figure .1.5**) details have been observed that the major parts of the district are covered by agricultural land with net sown area of 4098.6 Sq.km (65.17%). Forest covers very little area of 386.16 Sq.km (6.14 %) and double cropped area covers 534.97 Sq.km (8.50%). The built-up area is reflected wherever settlement have come up.

The soil of the district is basically derived from Deccan Trap Basalt comprising of clay and loam mixture and almost entire district consists of black or dark brown soil over a sheet of Deccan Trap Basalt. The soil varies in depth from few centimetres to 3 m with average thickness being about 0.75 m. The soils of the district can be grouped as., Kali, Morand, Khardi and Bardi, fine calcareous deep soil, Loamy clayey extremely shallow soil, Fine loamy clayey shallow soil, Fine calcareous very deep soil and Loamy clayey very shallow soil with major part of the district being occupied by Kali soil. The thematic map of soil distribution in the district is shown in **Figure. 1.6**

1.3 Climate and Rainfall

The climate of the district is characterized by a hot summer and general dryness throughout the year except during the south-west monsoon season i.e., June to September. The mean minimum temperature is 12.1°C and the mean maximum temperature is 42.8°C.

The Normal rainfall of the district is 1056.9 mm spread over 47 to 50 rainy days in normal condition. Long term rainfall analysis (1998-2019) and annual rainfall data of last ten years is given in **Table 1.1** and **1.2** and **Figure. 1.7**. The spatial distribution of the rainfall is given in **Figure. 1.8**.

Table 1.1: Long-term rainfall analysis

District	Period	No of years	Normal Rainfall (mm)	Std. Deviation (mm)	Coefficient of Variation (%)	Rainfall Trend (mm/year)			
Wardha	1998- 2019	22	1056.9	253.18	26.9	-2.072			
	No of Year	S		% of total Years					
Departures	Departures								
Positive	Positive 6				27				
Negative	16			73					
Drought		·	·						
Moderate	4			18					

Severe	0	0			
Acute	1	5			
Normal & Excess RF					
Normal	16	73			
Excess	1	5			

Table 1.2: Annual rainfall data (2010-2019) (in mm)

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Average
											Rainfall
											(mm)
Warhda	1277	978.3	886.5	1249.6	735.5	987.6	964.9	687.8	769.2	900	943.64

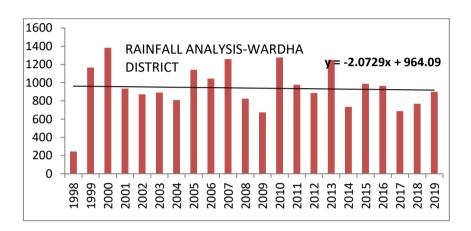
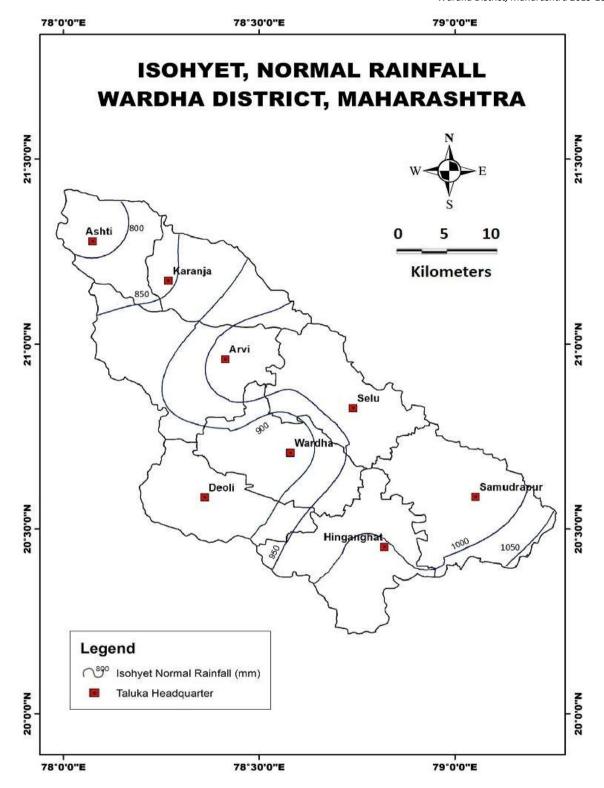
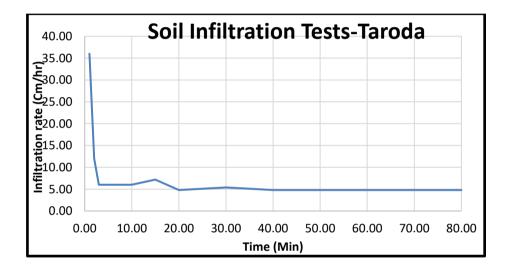


Figure 1.7: Rainfall Analysis (1998-2019), Wadha District




Figure 1.8: Isohyet map of Wardha District

1.4 Soil Infiltration Tests

To estimate the actual rate of infiltration of various soil cover and their impact on recharge to ground water, 2 infiltration tests have been conducted at Taroda and Mandgaon in various soil types. The data has been analyzed and the salient features of

the infiltration tests are presented in **Table 1.3**, whereas the data is presented in **Annexure-V** and the plots of soil infiltration tests are presented in **Fig. 1.9**. The duration of the test ranges from 80 to 122 minutes, the depth of water infiltrated varied from 0.80 cm to 1.00 cm and the final infiltration rate in the area are 4.80 cm/hr at Taroda and 6.20 cm/hr at Mandgaon.

SI No	Village	Date	Duration (min)	Water Level (cm agl)	Final infiltrated Water Depth(cm)	Final Infiltration Rate (cm/hr)
1	Taroda	08/01/2020	80	30	0.80	4.80
2	Mandgaon	07/01/2020	122	30	1.00	6.20

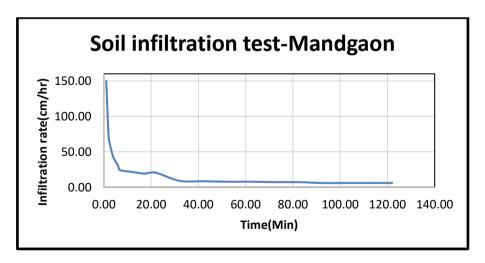


Figure 1.9: Soil Infiltration Tests of Wardha District

1.5 Specific Yield Tests

To estimate the aquifer parameters of shallow aquifer (Aquifer-I) in the area, 2 pumping tests on open dug wells have been conducted. The data has been analyzed by Kumarswamy method. The salient features of pumping tests are given in **Table 1.4**. The discharge of the wells ranged from 120 to 150 lpm for pumping duration of 160 to 180 minutes.

The drawdown observed at the end of the pumping ranged from 1.89 to 2.2 m and the residual drawdown for the 1st minute was observed to be ranging from 0.1 to 0.45 m. The aquifer parameter values estimated by Kumarswamy method are observed to be well within the general range of values for weathered and jointed basalt i.e., the transmissivity value was observed from 51.10 to 407.82 m2/day, whereas the specific yield 0.05% to 0.07%, whereas specific capacity values ranged from 54.55 to 79.37 lpm/m.

Table 1.4: Salient Features of Specific Yield Tests.

SI No	Village	Diameter (m)	Depth (mbgl)	SWL (mbgl)	Q (lpm)	Pt (min)	DD (m)	RDD (m)	C (lpm/m)	T (m²/day	Sy
1	Taroda	6.55	9.51	4.87	120	180	2.2	0.45	54.55	51.10	0.045
2	Mandgaon	5.83	15.38	7.43	150	160	1.89	0.1	79.37	407.82	0.074

Q=Discharge in LPM Pt=Pumping duration in Minutes

DD=Drawdown in meter RDD=Residual drawdown in meters

C=Specific Capacity in lpm/m

T=Transmissivity in m²/day

S_v=Specific Yield

2. HYDROGEOLOGY

2.1 Major Aquifer Systems

There are 2 types of aquifer systems in the area namely Alluvium and Basalt. The map showing major aquifer systems of Wardha district is shown in **Figure 2.1.**

Alluvium

The Alluvial deposits are restricted along the banks of Wardha River and Yashoda River and have limited areal extent. They comprise of upper layer of silt material underlain by a coarse detrital material like sand and gravel with admixture of clay. Coarse detrital material occurring as lenses form good aquifers, whereas finer silt and clayey material are poorly permeable and act as aquiclude. The maximum thickness of Alluvium is about 30 m, which is situated along the bank of Wardha River elsewhere it is very shallow.

Basalt

Deccan Trap Basalt of late Cretaceous to Eocene age is the major rock formation in the district covering almost entire district, a map depicting hydrogeological features is presented in **Figure 2.2** and water table contour map is shown in **Figure 2.3**.

Deccan Trap Basalt represents a thick pile of nearly horizontal flows, within these thick piles seven flows have been deciphered down to a depth of 120 m. The porosity and permeability have been found to change in an individual flow, from flow to flow and from place to place.

Ground water in the near-surface strata generally occurs under unconfined conditions but at deeper levels it usually occurs under semi- confined state, the confining layers being red boles and dense massive part of Basalt. Deeper confined aquifers are less productive than shallow semi- confined and phreatic aquifers, unless they have interconnected fracture system, which is being recharged. Weathering of Basalt both in massive and vesicular unit have given rise to good phreatic aquifers even down to a depth of 20 m and these shallow aquifers are extensive and homogeneous. The palaeoweathering which has taken place during the time intervals between two eruptions has given rise to stratified aquifer systems. Ground water is under semi-confined conditions in these aquifers, which get recharged mainly from downward recharge through shallow aquifers and from major surface water bodies. Broadly speaking, three distinct aquifer systems are available in the Basalts in areas underlain by Deccan Traps, Wardha district being one such area.

- Shallow water table or phreatic aquifer down to 30 m depth.
- Semi-confined aquifers at slightly deeper levels overlain by massive Basalt and red boles from 30 to 60 m depth.
- Confined aquifers, which are noticed at still deeper levels in flows not exposed and available from about 60 m to about 170 m.

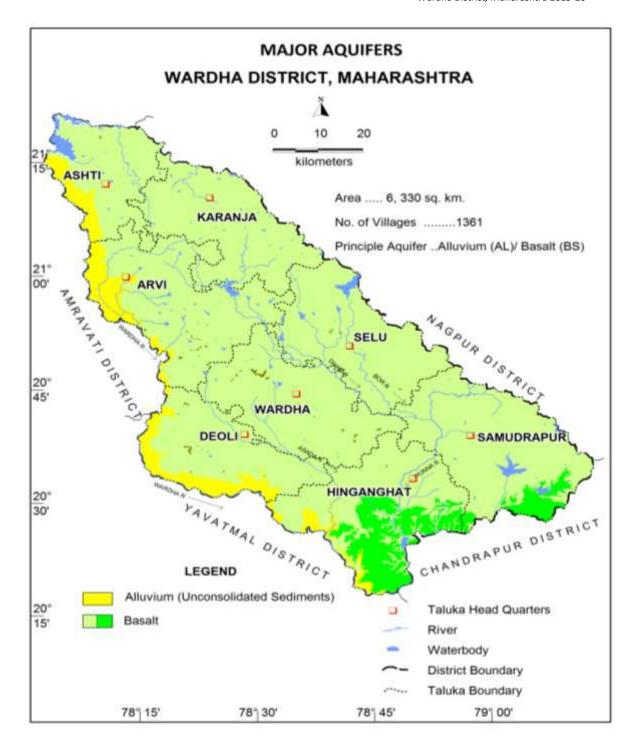


Figure 2.1: Major Aquifers

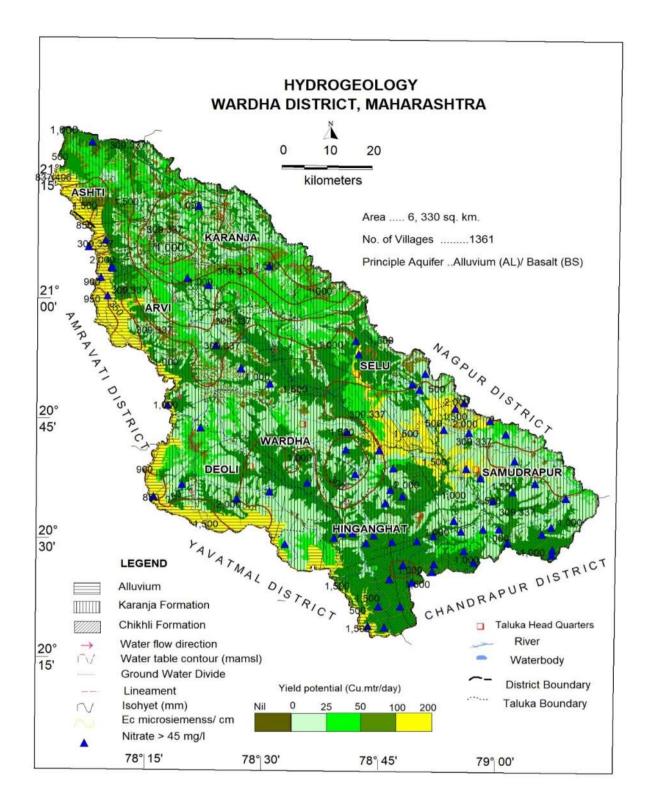
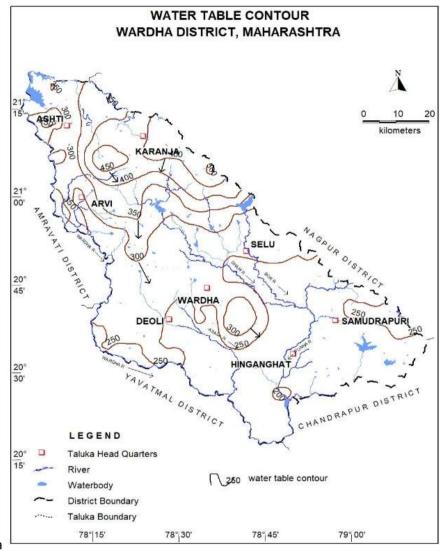



Figure 2.2: Hydrogeology

Water Table Elevation in Wardha district ranges between 200 m amsl and 500 m amsl. The entire district is mainly drained by tributaries of Wardha River, the general slope is southwards and gentle towards Wardha River but tends to become steeper in the northern uplands. GW movement is from NE to SW with elevation from 450 m to 250 m amsl. Dham river has GW movement from N to SE with elevation from 450 m to 250 m

amsl while Wunna river in southern part of the district has GW movement from SE to S with elevation from 250 m to 200 m amsl. Bor river has GW movement from N to SE with elevation from 350 m to 250 m amsl. It has been observed that the ground water flow direction follows the drainage and topography of

the area

Figure 2.3: Water Table contour

Table 2.1: Aquifer Characteristic of Wardha district

Major Aquifers	Basalt (Deccan Traps)	Alluvium		
Type of Aquifer	Aquifer-I	Aquifer-II	Aquifer-I (AL02)	
Formation	Weathered/Fractured	Jointed / Fractured	Alluvium-Sand /	
	Basalt	Basalt	silt &Clay	
Depth of Occurrence	5 to 30	30 to 170	5 to 30	
(mbgl)				
SWL (mbgl)	3.1 to 18.9	1.05 to 65	3.1 to 20	
Granular/Weathered	5 to 20	3 to 11	5 to 22	
/Fractured rocks				
thickness (m)				

Fractures/granular zone encountered (mbgl)	Upto 28	Upto 170	Upto 30	
Yield	10 – 100 m ³ /day	2.5 lps	60-120m ³ /day	
Sustainability	1 to 3 hrs	0.5 to 3 hrs	1 to 4 hrs	
Transmissivity (m ² /day)	51.10 -407.82	0.27-270	12-250	
Specific Yield/	0.045 to 0.074	3.3*10 ⁻⁴ to 1.35*10 ⁻²	0.07	
Storativity				
(Sy/S)				
Suitability for drinking/	Suitable for both	Suitable for both,	Suitable for	
irrigation	except high Nitrate	except high EC	both	
	(>45 mg/l)			

Aquifer Characteristic of Wardha district is shown in **Figure 2.1.** There are two major aquifers such as Deccan Trap Basalt and Alluvium. Weathered/Fractured Basalt and Jointed / Fractured Basalt are the water bearing formations in Deccan Trap Basalt of Wardha District. Yield of Aquifer –I is $10 - 100 \, \text{m}^3/\text{day}$, Aquifer-II is $0-2.5 \, \text{lps}$ and Aquifer-I Alluvium having yield of $60-120 \, \text{m}^3/\text{day}$.

Depth of occurrence and fractured/granular rock thickness of Aquifer-I and Aquifer-II is shown in **Figure 2.4 and 2.5**, respectively. Depth of occurrence of Aquifer –I Basalt (Weathered /Fractured Basalt) and Aquifer –I Alluvium are 5 to 30 m while depth of occurrence of Aquifer-II Basalt (Jointed & Fractured Basalt) is 30 to 170 m.

Yield Potential of Aquifer-I (Basalt & Alluvium) and Aquifer-II (Basalt) is shown in **Figure 2.6 and 2.7**. Aquifer –I Alluvium having yield potential of 60 to 120 m³/day while yield potential of Aquifer-I Basalt is 10 to 100 m³/day. Yield Potential of Aquifer-II Basalt is 0 to 2.5 lps.

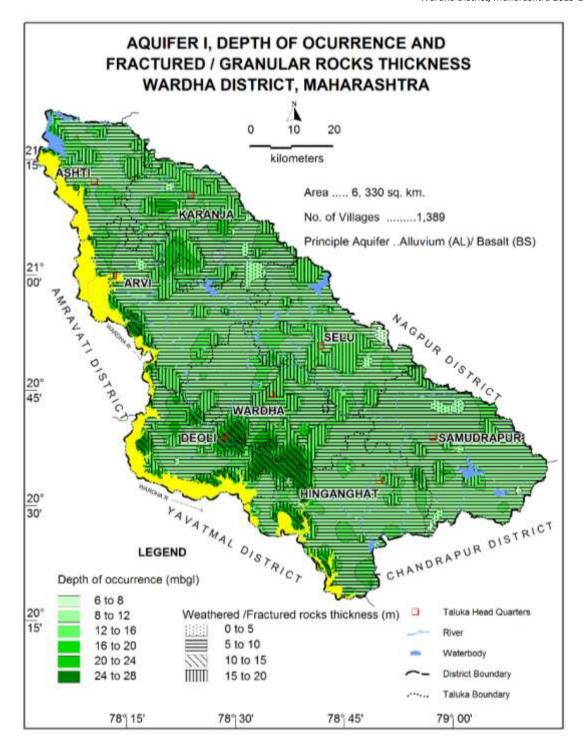


Figure 2.4: Depth of occurrence and fractured/granular rock thickness of Aquifer-I

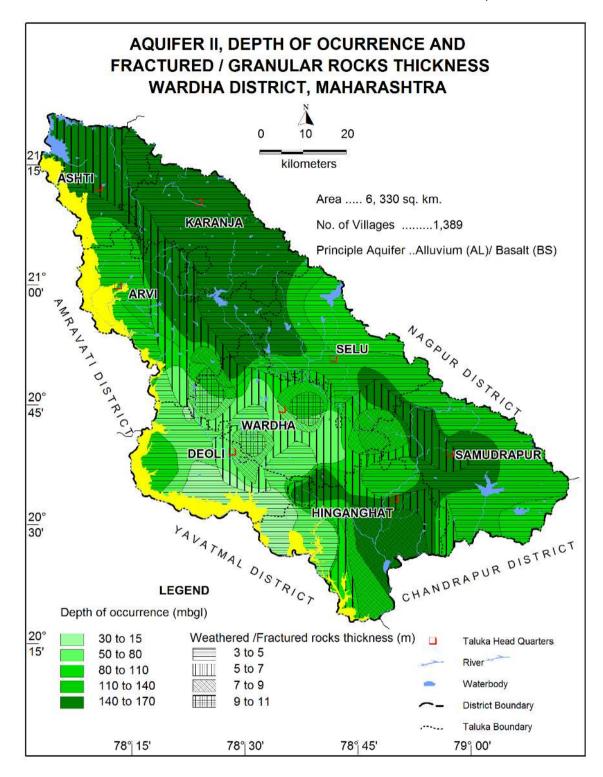


Figure 2.5: Depth of occurrence and fractured/granular rock thickness of Aquifer-II

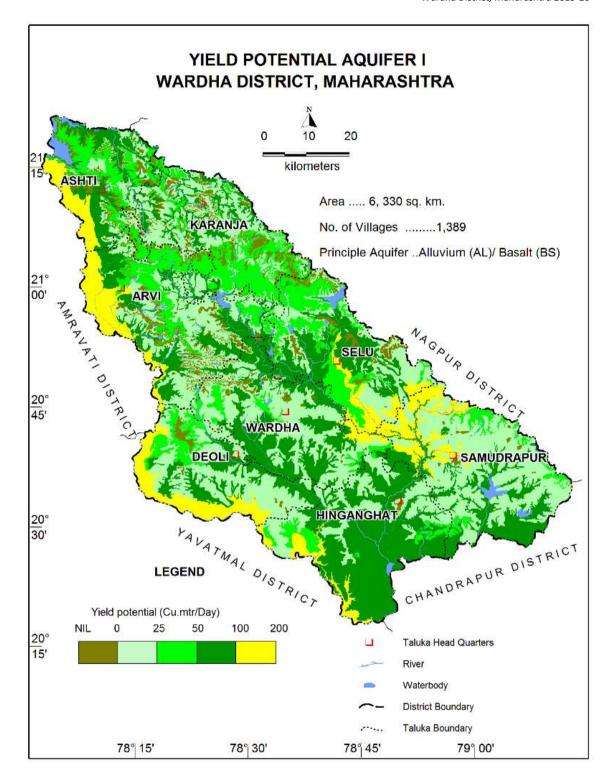


Figure 2.6: Aquifer-I Yield Potential (Basalt & Alluvium

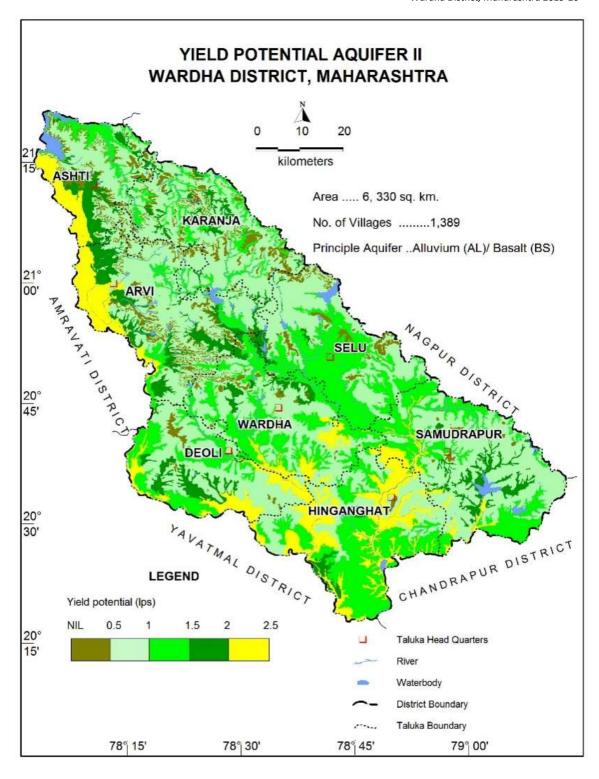


Figure 2.7: Aquifer-II Yield Potential (Basalt)

Yield		
potential	Aquifer I	Aquifer II
Alluvium	100 to 120 m ³ /day	-
Basalt	10 to 100 m ³ /day	0.0 to 2.5 lps

2.2 Aquifer Parameters

Aquifer parameters are available from ground water exploration carried out in the basaltic area of the district as well as from the pumping tests carried out on dugwells in Basaltic and Alluvial terrain. The specific capacity of the wells tapping Deccan Trap Basalt ranges between 0.003 and 18.75 lpm/m-drawdown and the transmissivity ranges from 51 to $407 \text{ m}^2/\text{day}$. The specific capacity of dugwells tested in Deccan Trap Basalt ranges between 54.55 and 79.37 lpm/m-drawdown. During the pumping tests conducted on the exploratory wells in Basalt, the transmissivity was found to vary from 0.27to $270\text{m}^2/\text{day}$. The storage coefficient varied between 3.3×10^{-4} and 135×10^{-2}

2.3 3-D and 2-D Aquifer Disposition

Based on the existing data, 3D aquifer disposition, Fence diagram, Bar diagram and hydrogeological sections along different directions have been prepared and shown in **Figure 2.9**, **2.10**, **2.11 and 2.12** (a to d) to understand the subsurface disposition of aquifer system.

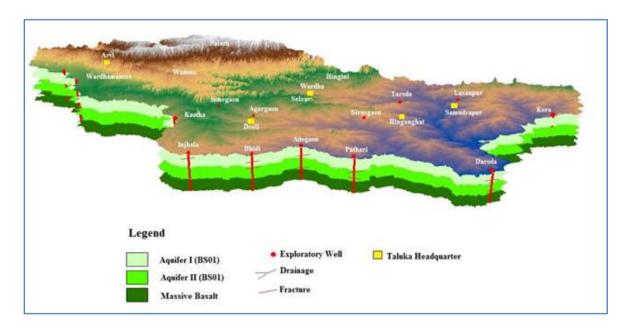


Figure 2.8-3D Aquifer Disposition

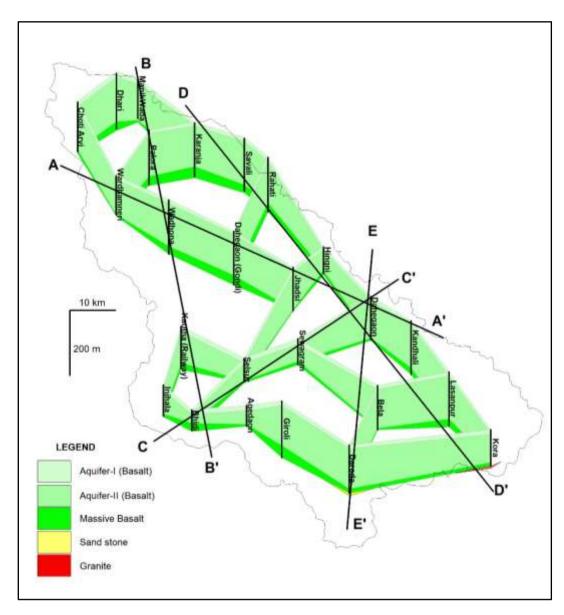


Figure 2.9: Fence Diagram

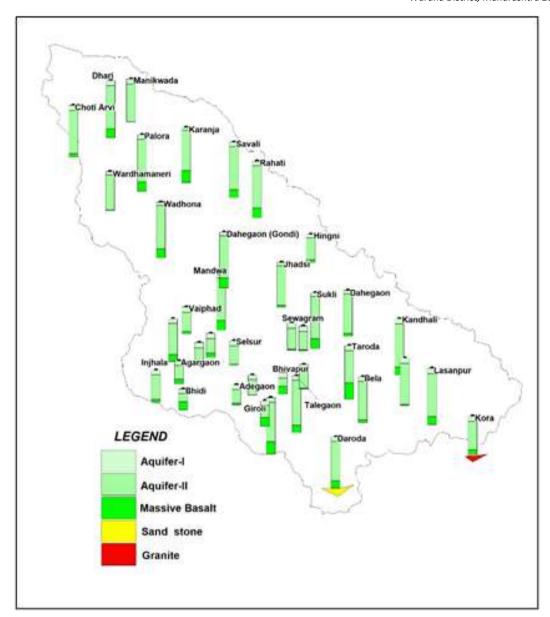
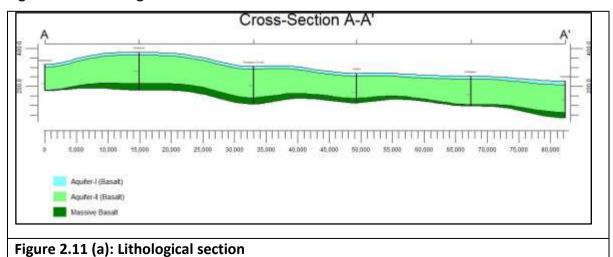



Figure 2.10: Bar Diagram

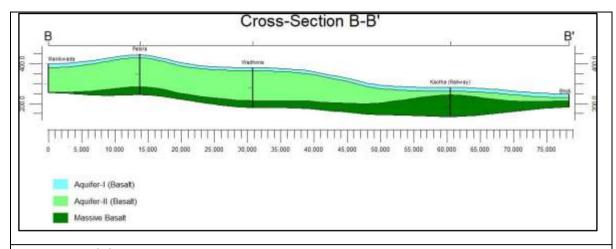


Figure 2.11 (b): Lithological section

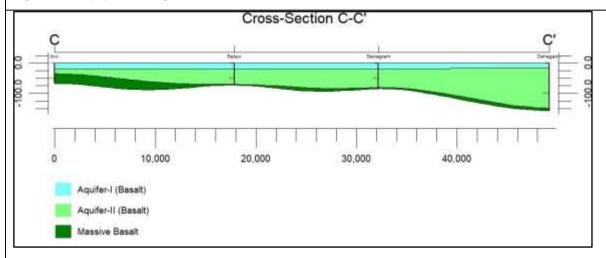


Figure 2.11 (c): Lithological section

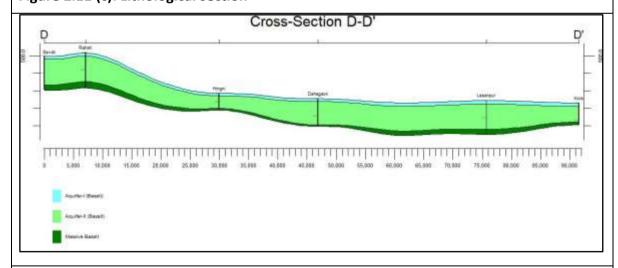


Figure 2.11 (d): Lithological section

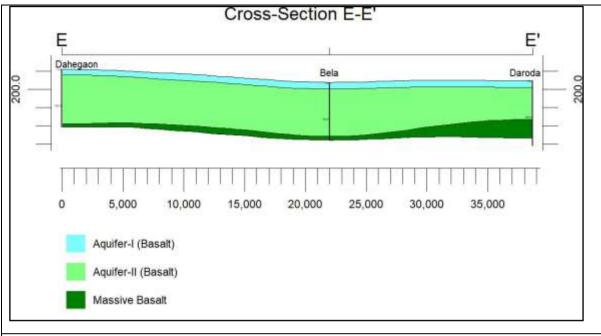
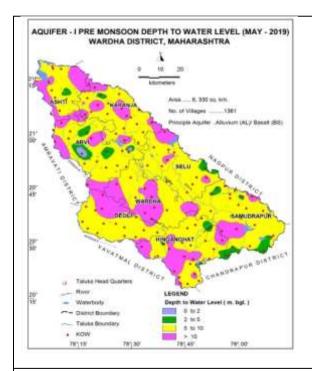


Figure 2.11 (e): Lithological section


3. WATER LEVEL SCENARIO

3.1 Depth to Water level of (Aquifer-I/Shallow Aquifer)

Central Ground Water Board periodically monitors 68 (GWMW-57, PZ-11) Ground Water monitoring wells in the Wardha district, four times a year i.e. in January, May (Premonsoon), August and November (Postmonsoon). Apart from this under NAQUIM study, 133 KOW were also established and monitored during the year 2019. These data have been used for preparation of depth to water level maps of the district. Pre-monsoon and post monsoon water levels along with fluctuation during 2019 and long-term water level trends (2010-2019) are given in Annexure-VI.

3.1.1 **Pre-monsoon DTW (May-2019)**

The depth to water levels in Wardha district during May 2019 ranges between 3.12 (Sawangi, Hinganghat block) and 18.90 mbgl (Nababpur, Ashti block). The depth to water levels less than 5 mbgl and more than 10 mbgl are observed in isolated patches. The depth to Water level between 5-10 mbgl covers almost the entire area of the district. Water level range between 2-5 m bgl is observed in small patches of all blocks except Wardha and Deoli blocks. Water level ranges between 0-2 m bgl is observed in Arvi block of the Wardha district. The premonsoon depth to water level map is depicted in **Figure. 3.1.**

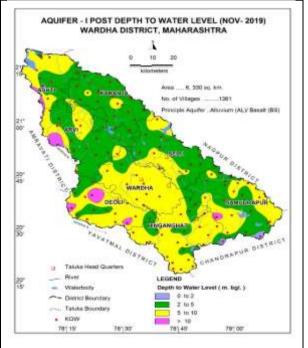


Figure 3.1: DTWL shallow aquifer (May 2019)

Figure 3.2: DTWL shallow aquifer (Nov. 2019)

3.1.2 Seasonal Water Level Fluctuation (May-Nov2019)

It is observed that minimal water level fluctuation was observed at Silli, Samudrapur block (0.15 m) while maximal water level fluctuation was measured at Kharas Khande, Karanja block (11.70 m). Declining water level has been observed in most of the locations of the blocks except for the few locations of Samudrapur, Deoli, Hinganghat and Arvi. The map depicting seasonal fluctuation is shown in **Fig. 3.3.**

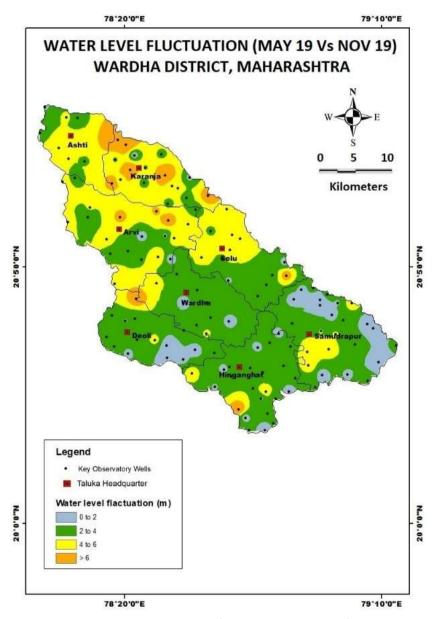
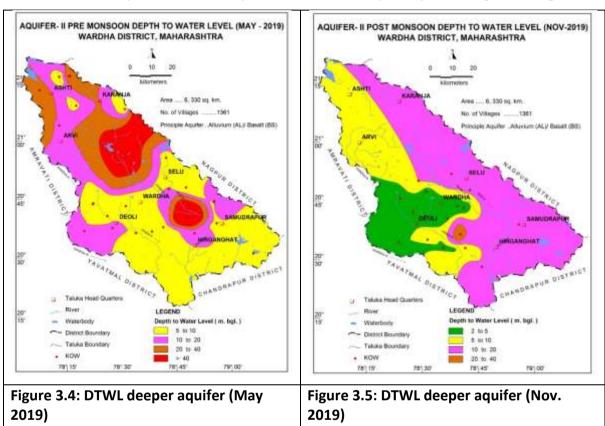


Figure 3.3: Seasonal Fluctuation, shallow aquifer (May-19 vs Nov- 19)

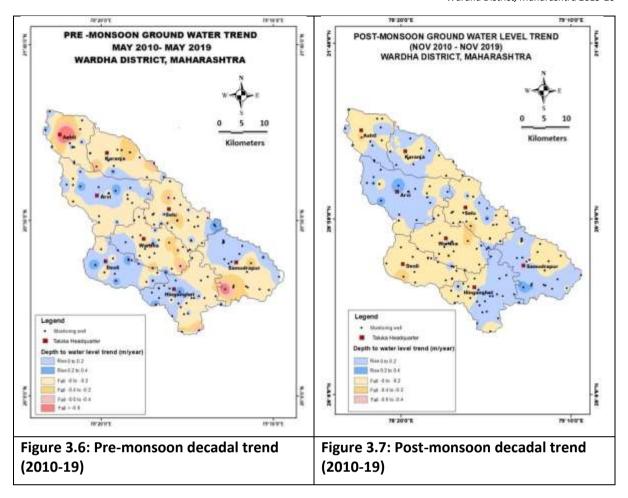
3.2 Depth to water level of (Aguifer-II /Deeper Aguifer)


3.2.1 Pre-monsoon Depth to Water Level (May-2019)

The pre-monsoon depth to water level in deeper aquifer of Wardha district, during May 2019 range from 1.05 mbgl (Kaotha, Deoliblock) to 65 mbgl (Rahati, Karanjablock). The depth to water level between 10 and 20 mbgl is observed in the parts of Deoli, Hinganghat, Karanja, Samudrapur and Selu blocks. The deepest water level (>30 mbgl) has been observed

in Arvi, Ashti, Karanja and Wardha Blocks. The pre-monsoon depth to water level map of Aquifer-II is given in **Figure 3.4.**

3.2.2 Post-monsoon Depth to Water Level (Nov-2019)


In Aquifer-II, the post-monsoon depth to water levels in Wardha District during November 2019 range between 2.65 mbgl (Sewagram, Wardha block) and 27 mbgl (Talegaon, Wardha block). Depth to water level less than 10 m bgl has been observed in parts of Deoli, Hinganghat and Wardha block. Depth to water level more than 20 mbgl is observed in only Wardha block. The post-monsoon depth to water level map of Aquifer-II is given in **Figure 3.5.**

3.3 Water Level Trend (2010-2019)

During pre-monsoon, rise in water level trend has been recorded at 61 stations and ranges from 0.0096m/year (Kajalsara, Hinganghat block) to 0.53 m/year (Danapur, Karanja block) while falling trend was observed in 92 stations varying from 0.003 (Dahigaon) to 2.58 m/year (Ashti, Ashti block). Area showing rising trend >0.2 m observed in 123.59 Km². Area showing falling trend >0.2 m observed in 797 Km². (Figure 3.6).

During post monsoon, rise in water level trend has been recorded at 69 stations and it ranges between 0.0012 m/year (Sirsoli, Ashti block) to 0.437m/year (Itala, Wardha block) while falling trend was observed in 85 stations varying from 0.0042 (Samudrapur) to 0.39 m/year (Gondapur, Selu block). Area showing rising trend >0.2 m observed in 105.4Km². Area showing falling trend >0.2 m observed in 103.49 Km². (Figure 3.7).

3.4 Hydrograph Analysis

The variation in short term and long-term water level trends may be due to variation in natural recharge due to rainfall and withdrawal of groundwater for various agricultural activities, domestic requirements, and industrial needs. The analysis of hydrographs shows that the annual rising limbs in hydrographs indicate the natural recharge of groundwater regime due to monsoon rainfall, as the monsoon rainfall is the sole source of natural recharge to the ground water regime (**Figure. 3.8 a to h**). However, continuous increase in the groundwater draft is indicated by the recessionary limb.

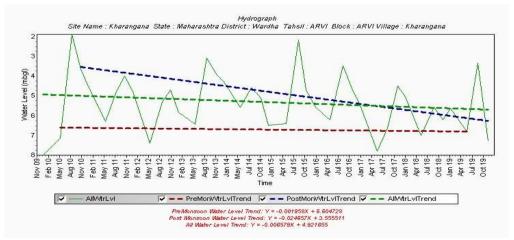


Figure 3.8 a: Hydrograph (2010-19), Kharangana, Arvi Taluka

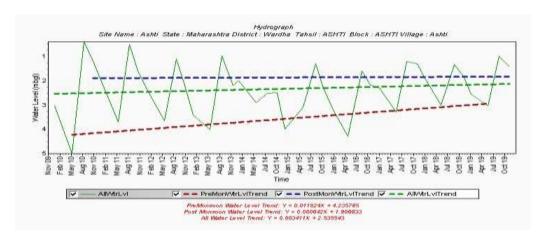


Figure 3.8 b: Hydrograph (2010-19), Ashti, Ashti Taluka

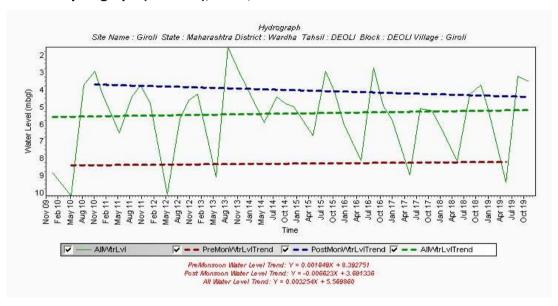


Figure 3.8 c: Hydrograph (2010-19), Giroli, Deoli Taluka

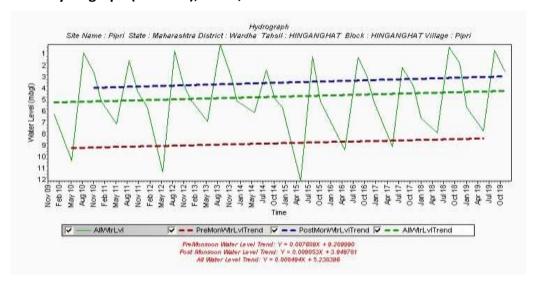


Figure 3.8 d: Hydrograph (2010-19), Pipri, Hinganghat Taluka

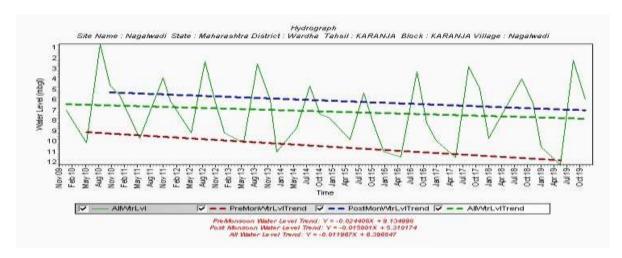


Figure 3.8 e: Hydrograph (2010-19), Nagalwadi, Karanja Taluka

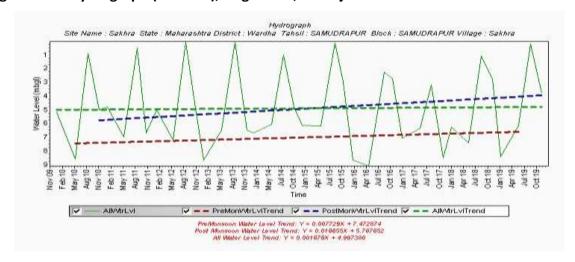


Figure 3.8 f: Hydrograph (2010-19), Sakhra, Samudrapur Taluka

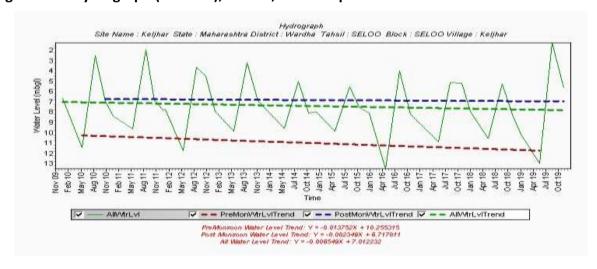


Figure 3.8 g: Hydrograph (2010-19), Keljhar, Selu Taluka

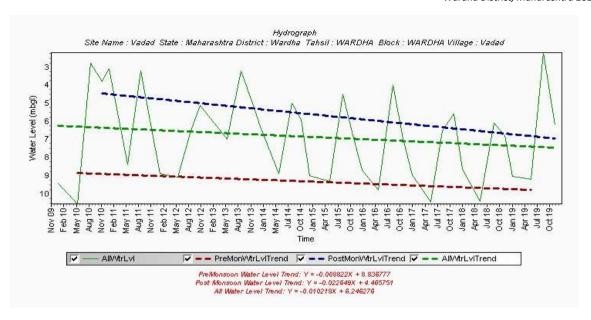


Figure 3.8 h: Hydrograph (2010-19), Vadad, Wardha Taluka

4. GROUND WATER QUALITY

Water sampling is being done every year from GWM wells during pre-monsoon period (May). The data gap analysis has been carried out to find out the adequacy of information on water quality. To decipher the ground water quality scenario, 360 samples from aquifer-I / shallow aquifer and 46 from aquifer – II / deeper aquifers have been utilized including monitoring wells/exploratory wells, tube wells/bore wells of CGWB and GSDA; data from earlier studies. The aquifer wise ranges of different chemical constituents present in ground water are given in **Table 4.1**. The details of chemical analysis are given in **Annexure VII and VIII**.

Table 4.1: Aquifer wise ranges of chemical constituents in Wardha District

Constituents	Shallow	aquifer	Dee	per aquifer
Constituents	Min Max		Min	Max
Ph	7.1	8.5	6.8	8.7
EC (μS/cm)	307.6	4456	380	3077
TDS (mg/l)	200	2659	70	1810
TH (mg/l)	5	840	40	1096
Calcium (mg/l)	3	247.5	8	200
Magnesium (mg/l)	0.07	117.7	1	217.48
Potassium (mg/l)	0.38	143	BDL	41
Sodium (mg/l)	8.26	2152.2	12	632.5
Bicarbonate (mg/l)	58.6	1284.66	43	848
Carbonate (mg/l)	0	0	BDL	48
Chloride (mg/l)	10.3	600	BDL	549
Sulphate (mg/l)	3	267	BDL	576
Nitrate (mg/l)	4	98	BDL	56.42
Fluoride (mg/l)	0.01	2.39	BDL	3.06

*BDL- below detection limit

4.1 Electrical Conductivity (EC)

4.1.1 Distribution of Electrical Conductivity in Shallow Aguifer

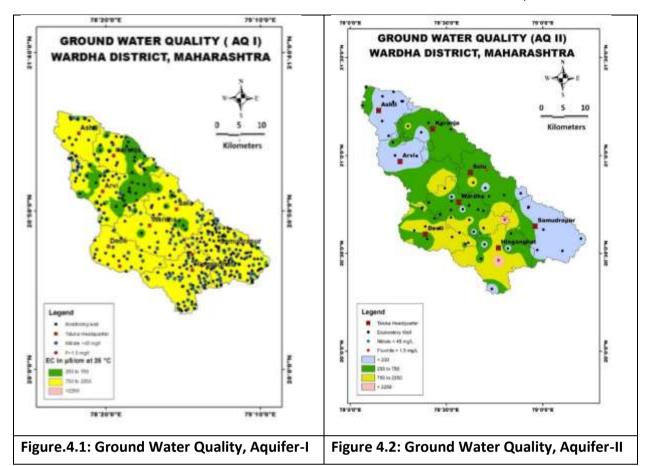
The concentration of EC in shallow aquifer varies between 307.6 (Panwadi, Arvi) and 4456 μ S/cm (Khandali). Out of 360 samples collected from dug wells, 13 samples are having EC >2250 μ S/cm and 122 samples have shown EC ranges from 250 to 750 μ S/cm. Concentration of EC >3000 μ S/cm has been observed in parts of Samudrapur, Arvi and Hinganghat Blocks. The distribution of electrical conductivity in shallow aquifers is shown in **Figure 4.1** and analytical data is presented in **Table 4.2**.

4.1.2 Distribution of Electrical Conductivity in Deeper Aquifer

The concentration of EC in deeper aquifer varies between 380 (Wardhamaneri, Arvi block) and 3077 μ S/cm (Daroda, Hinganghat block).Out of 46 samples collected from bore wells, only one sample having EC >3000 μ S/cm (Daroda, Hinganghat block) .The distribution of electrical conductivity in deeper aquifers is shown in **Figure4.2**and analytical data is presented in **Table 4.2**.

S.	EC	Shallow aquifer		Deeper Aquifer	
No.	(μS/cm)	No. of samples	% of samples	No. of samples	% of samples
1	< 250	0	0	0	0
2	>250-750	122	33.89	24	52.17
3	>750-2250	225	62.5	19	41.30
4	>2250-3000	9	2.5	2	4.35
5	>3000	4	1.11	1	2.18
Total	samples	360	100	46	100

4.2 Nitrate


Nitrogen in the form of dissolved nitrate nutrient for vegetation, and the element is essential to all life. The major contribution in ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. In Wardha district nitrate concentration varies between BDL to 98 mg/l. As per BIS (2012) the desirable limit is 45 mg/l. In shallow aquifer, 360 samples were analysed; out of this, 85 water samples show the nitrate concentrations exceeding the desirable limit of 45 mg/l. The high concentration of Nitrate may be due to domestic waste and sewage in the urban and rural parts of district. In deeper aquifer, 46 wells were analysed, out of this only one water sample show nitrate concentration exceeding the desirable limit of 45 mg/l. Aquifer wise nitrate concentration is given in **Table 4.3.**

4.3 Fluoride

In shallow aquifer, concentration of fluoride ranges from 0.01 to 2.39 mg/l. out of 360 samples was analysed, 14 samples show fluoride concertation more than 1 mg/l. In Deeper Aquifer, concentration of fluoride ranges from BDL to 4.1 mg/l. Out of 46 samples analysed, 4 samples show fluoride concertation more than 1 mg/l. Aquifer wise fluoride concentration is given in **Table 4.3.**

Table 4.3: Aguifer wise Nitrate and Fluoride concentration

Aquifer	No₃> 45 mg/l		Fluoride >1 mg/l		
	Total Samples	No of samples	Total Samples	No of samples	
Shallow Aquifer	360	85	360	14	
	Total Samples	No of samples	Total Samples	No of samples	
Deeper Aquifer	46	1	46	4	

4.4 Suitability of Ground Water for Drinking Purpose

In shallow aquifer, 59.16 % of samples have TDS concentration above the Desirable limit (DL) but below the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment. It is also seen that about 0 to 18.61 % samples are beyond the maximum permissible limit for the parameters like TH, Ca, Mg, F and NO_3 indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in shallow Aquifer is given in **Table 4.4.**

In Deeper aquifer, none of the samples having TDS more than maximum permissible limit (MPL) and $28.26\,\%$ of samples have TDS concentration above the Desirable limit (DL) but below the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment. It is also seen that about 0 to $15.22\,\%$ samples are beyond the maximum permissible limit for the parameters like TH, Mg, SO_4 , F and NO_3 indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in Deeper Aquifer is given in **Table 4.5.**

Table 4.4: Concentration of Chemical constituents in Shallow Aguifer

Parameter	Drinl	king water	Total	Total Shallow aquifer					
	Standards (IS-10500- 2012)		no of ground water	Samples (<dl)< th=""><th colspan="2">Samples (DL-MPL)</th><th colspan="2">Samples (>MPL)</th></dl)<>		Samples (DL-MPL)		Samples (>MPL)	
	DL	MPL	samples	No	%	No	%	No	%
рН	6.5	8.5	360	0	0	355	98.6	5	1.38
TDS	500	2000	360	143	39.72	213	59.16	4	1.11
TH	300	600	360	195	54.16	148	41.11	17	4.72
Ca (mg/L)	75	200	360	330	91.66	27	7.5	3	9.09
Mg (mg/L)	30	100	360	200	55.55	39	10.83	1	0.27
CI (mg/L)	250	1000	360	337	93.61	23	6.38	0	0
SO ₄ (mg/L)	200	400	360	359	99.72	1	0.27	0	0
NO₃ (mg/L)	45	No	360	293	81.38	-	-	67	18.61
		relaxation							
F (mg/L)	1	1.5	360	346	96.11	13	3.61	1	0.27

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

Table 4.5: Concentration of chemical constituents in Deeper Aquifer

Parameter	Drinking water		Total no	Deepe	er aquife	er			
	Standa		of	Samples		Samples		Samples	
	(IS-10500-2012) DL MPL		ground water	(<dl) No</dl) 	%	(DL-MPL) No %		(>MPL)	
	DL	IVIFL	samples	140	76	140	70	NO	76
рН	6.5	8.5	46	0	0	41	89.13	5	10.87
TDS	500	2000	46	33	71.74	13	28.26	0	0
TH	300	600	46	28	60.87	11	23.91	7	15.22
Ca (mg/L)	75	200	46	38	82.61	8	17.39	0	0
Mg (mg/L)	30	100	46	36	78.20	8	17.39	2	4.35
CI (mg/L)	250	1000	46	39	84.78	7	15.22	0	0
SO ₄ (mg/L)	200	400	46	42	91.30	3	6.52	1	2.17
NO ₃ (mg/L)	45	No relaxation	46	45	97.83	-	-	1	2.17
F (mg/L)	1	1.5	46	41	89.13	0	0	4	8.70

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

4.5 Suitability of Ground Water for Irrigation

The quality of Irrigation water affects the productivity, yield and quality of the crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria, which asses the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The amount of dissolved ions in the water is represented by the electrical conductivity. The classification of water for irrigation based on the EC values is given in **Table 4.6** and discussed as follows: -

Low Salinity Water (EC: 100-250 \muS/cm): This water can be used for irrigation with most crops on most soils with little likelihood that salinity will develop.

Medium Salinity Water (EC: $250 - 750 \,\mu\text{S/cm}$): This water can be used if moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

High Salinity Water (EC: $750 - 2250 \,\mu\text{S/cm}$): This water cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very High Salinity Water (EC: >2250 μ S/cm): This water is not suitable for irrigation under ordinary condition. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and very salt tolerant crops should be selected.

Table 4.6: Classification of Ground water for Irrigation based on EC values

S. No	Water Quality Type	EC in	EC in Shallow aquifer			Deeper Aquifer		
		μS/cm	No. of	% of	No. of	% of		
			Samples	samples	samples	samples		
1	Low Salinity Water	< 250	0	0	0	0		
2	Medium Salinity Water	>250-750	122	33.89	24	52.17		
3	High Salinity Water	>750-2250	225	62.5	19	41.30		
4	Very High Salinity Water	> 2250	13	3.6	3	6.53		
Total	Water		360	100	46	100		

In shallow aquifer, maximum numbers of samples fall under the category of high salinity type of water. In deeper Aquifer, maximum numbers of samples fall under the category of medium salinity type of water. The areas where very high salinity prevails (>2250 μ S/cm), ground water can be used for irrigation for very high salt tolerant crops and with proper soil and crop management practices

5. GROUND WATER RESOURCES

5.1 Ground Water Resources - Aquifer-I

Central Ground Water Board and Ground Water Survey and Development Agency (GSDA) have jointly estimated the ground water resources of Wardha district based on GEC-2015 methodology. Block wise ground water resources are given in **Table 5.1**, and graphical representations of the resources on the map are shown in **Figure 5.1**.

Ground Water Resources estimation was carried out for 5812.16 sq. km. area out of which 2041.28 sq. km. is under command and 3770.88 sq. km. is under non-command. As per the estimation, the net annual ground water availability comes to be 79068.08 MCM. The gross draft for all uses is estimated at 43384.70 MCM with irrigation sector being the major consumer having a draft of 39911.98 MCM. The domestic and industrial water requirements are worked out at 3472.72 MCM. The net ground water availability for future irrigation is estimated at 35457.78 MCM.

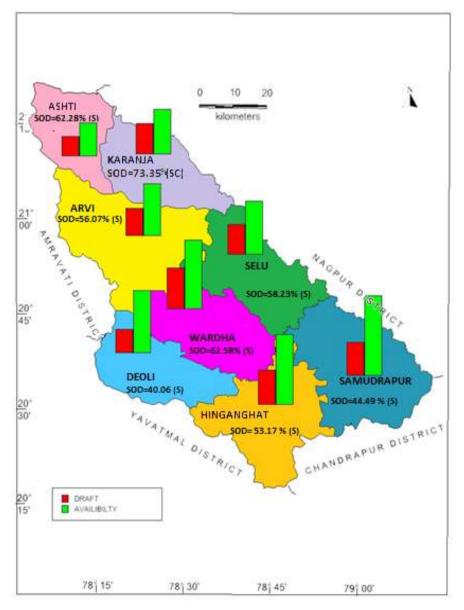


Figure 5.1: Ground Water Resources (2017), Wardha district

5.2 Ground Water Resources - Aquifer-II

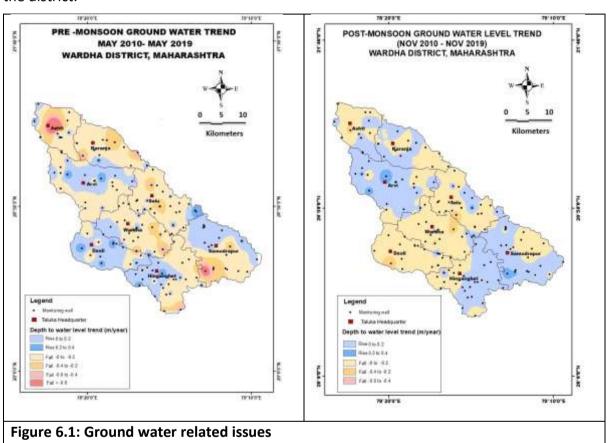
Block wise ground water resources of Aquifer-II are given in **Table 5.2.** Total Ground Water Resources of Wardha district is 78.79 MCM, resources out of which 13.62 MCM is under Hinganghat block, 12.39 MCM is under Wardha Block and 12.37 mcm is under Samudrapur block.

Table 5.1 Ground water resources, Aquifer-I (Shallow aquifer), Wardha district (2017)

	Annual Ground	Water Draft for irrigation (MCM)	Ground Water Draft for	Ground Water Draft for All uses (MCM)	for domestic and industrial requirement supply to 2025	Water Availability for future	Ground Water Development {13/10 * 100}	
Arvi	89.09	44.64	5.30	49.95	5.67	41.20	56.07	Safe
Ashti	57.58	32.91	2.94	35.86	3.16	20.78	62.28	Safe
Deoli	105.42	38.02	4.20	42.23	4.79	61.68	40.06	Safe
Hinganghat	117.98	57.51	5.2	62.73	5.41	56.03	53.17	Safe
Karanja	77.27	53.29	3.37	56.68	3.54	21.06	73.35	Semi Critical
Samudrapur	135.26	56.12	4.04	60.17	4.23	74.71	44.49	Safe
Seloo	91.52	49.24	4.04	53.30	4.24	38.13	58.23	Safe
Wardha	116.54	67.35	5.57	72.93	5.95	40.99	62.58	Safe
TOTAL	790.65	399.08	34.68	433.84	36.99	354.58	54.87	Safe

Table 5.2: Ground Water Resources of Aquifer-II (Deeper aquifer)

Taluka	Mean thickness (m)	Area in sqkm	Piezometric head meter above bottom of confining layer	S	Sy	Resource in above confining layer (mcm)	Resource in confining layer (mcm)	Total resource (mcm)
Arvi	4	552.64	42.5	0.0000438	0.002	1.028739	4.42112	5.449859
Arvi	6	337.47	55	0.0000438	0.002	0.812965	4.04964	4.862605
Arvi	8	43.74	60	0.0000438	0.002	0.114949	0.69984	0.814789
Arvi	10	8.37	60	0.0000438	0.002	0.021996	0.1674	0.189396
Arvi	•							11.31665
Ashti	4	249.54	50	0.000012	0.002	0.149724	1.99632	2.146044
Ashti	6	290.07	49	0.000012	0.002	0.170561	3.48084	3.651401
Ashti	•							5.797445
Deoli	4	516.61	51.05	0.0000438	0.002	1.155135	4.13288	5.288015
Deoli	6	114.4	61.5	0.0000438	0.002	0.308159	1.3728	1.680959
Deoli	8	29.46	12.5	0.0000438	0.002	0.016129	0.47136	0.487489
Deoli								7.456463
Hinganghat	4	288.18	64	0.0000438	0.002	0.807826	2.30544	3.113266
Hinganghat	6	298.35	60	0.0000438	0.002	0.784064	3.5802	4.364264
Hinganghat	8	320.11	73	0.0000438	0.002	1.02352	5.12176	6.14528
Hinganghat								13.62281
Karanja	4	664.31	42.5	0.0000438	0.002	1.236613	5.31448	6.551093
Karanja	6	72.47	44	0.0000438	0.002	0.139664	0.86964	1.009304
Karanja								7.56037
Samudrapur	4	753.31	58	0.000065	0.002	2.839979	6.02648	8.866459
Samudrapur	6	172.69	56	0.000065	0.002	0.628592	2.07228	2.700872
Samudrapur	8	42.86	42	0.000065	0.002	0.117008	0.68576	0.802768


Wardha District, Maharashtra 2019-20

Taluka	Mean thickness (m)	Area in sqkm	Piezometric head meter above bottom of confining layer	S	Sy	Resource in above confining layer (mcm)	Resource in confining layer (mcm)	Total resource (mcm)
Samudrapur			•			•		12.3701
Selu	4	642.8	55	0.000033	0.002	1.166682	5.1424	6.309082
Selu	6	97	60	0.000033	0.002	0.19206	1.164	1.35606
Selu	8	31.97	50	0.000065	0.002	0.103903	0.51152	0.615423
Selu								8.280565
Wardha	4	146.28	55	0.0000438	0.002	0.352389	1.17024	1.522629
Wardha	6	359.78	60	0.0000438	0.002	0.945502	4.31736	5.262862
Wardha	8	160.34	47	0.0000438	0.002	0.330076	2.56544	2.895516
Wardha	10	120.71	55	0.0000438	0.002	0.29079	2.4142	2.70499
Wardha								12.386
District Total						·		78.79042447

6. GROUND WATER RELATED ISSUES

6.1 Declining Water Levels

Pre monsoon ground water falling trend greater than 0.2/ year covered 797.28 sq km of the area, Post monsoon ground water falling trend 0.2/ year covered 104 sq km of the area in the north western part of the district i.e., in major part of Ashti, Karanja and Arvi talukas. The average annual rainfall during is also minimum in this part. Thus, future water conservation and artificial recharge structures in the district may be prioritized in this part of the district.

6.2 Rainfall and Droughts

Based on the long-term rainfall analysis from 1998 to 2019 it is observed that Selu, Arvi, Hinganghat and Wardha Blocks experienced declining rainfall trend. Severe droughts have been observed in Selu Block for 1 time, rest of the blocks never experienced severe drought conditions; however, it has experienced Moderate droughts.

6.3 Over-Exploitation

All the block of the district falls under the safe category in 2004-2011. In 2017 all the block of the district falls under the safe category (Stage of development below 65%) except for the Karanja block, the, in karanja block stage of ground water development increasing 2004 to 2011 but in safe category, whereas 2017 stage of ground water development of which is 73.35 % and which falls under the semi-critical category. In these blocks, declining ground water level trend has been observed both in pre- and post-monsoon season.

7. GROUND WATER MANAGEMENT PLAN

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management. The supply side management is proposed based on surplus surface water availability and the unsaturated thickness of aquifer whereas the demand side management is proposed by use of micro irrigation techniques and change in cropping pattern.

7.1 Supply Side Management

The supply side management of ground water resources can be done through the artificial recharge of surplus runoff available within river sub basins and micro watersheds. Also, it is necessary to understand the unsaturated aquifer volume available for recharge. The unsaturated volume of aquifer was computed based on the area feasible for recharge, unsaturated depth below 3 mbgl and the specific yield of the aquifer. The **Table 7.1** gives the block wise volume available for the recharge.

Table 7.1: Area fea	asible and volume availab	ole for Artificial Recharge
Block	Δrea	Area feasible for recha

Block	Area	Area feasible for recharge	Unsaturated Volume
		(Sq. km.)	(MCM)
Arvi	1110.94	570.36	610.28
Ashti	464.94	25.68	88.85
Deoli	699.32	385.25	616.4
Hinganghat	899.19	58.94	47.74
Karanja	619.11	196.6	365.69
Samudrapur	999.68	76.44	71.09
Selu	715.93	504.46	1932.08
Wardha	820.89	429.70	988.31
Total	6330.00	2247.43	4720.44

The total unsaturated volume available for artificial recharge is 4720.44 MCM and it ranges from 47.74 MCM in Hinganghat block to 1932.08 MCM in Selu block. The available surplus runoff can be utilized for artificial recharge through construction of percolation tanks and Check dams.

The surplus water available for artificial recharge is 50.32 MCM. This surplus can be used to recharge facility through 177 Percolation Tanks and 503 Check dams. The expected recharge every year from these structures is 219.04 MCM. The talukawise details are given **Table 7.2.** Tentative locations of these structures are given in **Figure. 7.1** and details are given in **Annexures IX** and **X**.

The rainwater harvesting in urban areas can be adopted in 50% of the household with 50 sq.m roof area. A total of 3.52 MCM potential can be generated by taking 80% runoff coefficient with a cost estimate of 146.03 corers. However, it is not economically viable and not recommended.

Table 7.2: Proposed Artificial Recharge Structures

Block	Availability of Surplus surface runoff (MCM)	No. of PT (100 TCM * 2 Fillings = 200 TCM)	No. of CD (10 TCM * 3 Fillings = 30 TCM)	Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)
Arvi	12.77	45	128	9.58
Ashti	0.57	2	6	0.43
Deoli	8.62	30	86	6.47
Hinganghat	1.32	5	13	0.99
Karanja	4.40	15	44	3.30
Samudrapur	1.71	6	17	1.28
Seloo	11.3	40	113	8.48
Wardha	9.62	34	96	7.22
Total	50.31	177	503	219.04

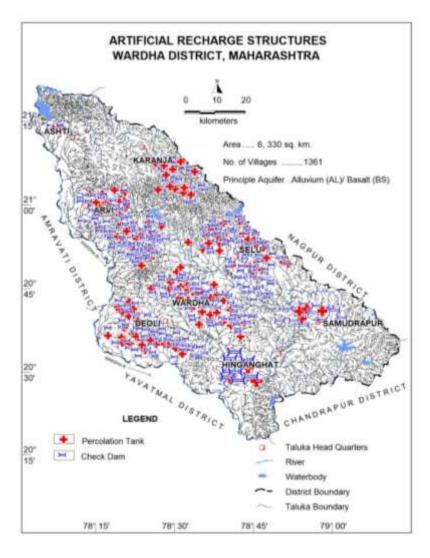


Figure 7.1: Location of Proposed Artificial Recharge structures

7.2 Demand Side Management

The Demand Side Management is proposed in areas where the stage of ground water development is relatively high and adopting micro-irrigation techniques for water intensive crops or change in cropping pattern or both are required to save water.

Table 7.3 Demand side interventions proposed

Taluka	Cotton	Volume	Total GW	Stage of	GWR	Additional
	Area	of Water	Draft after GWD after		available	Area
	proposed	expected	Demand	demand side	1	proposed
	to be	to be	side	intervention	required	to be
	covered	saved	intervention	s (%)	to bring	brought
	under	with drip	(MCM)		the stage	under
	drip (sq.km)	irrigation for			of GWD to 70%	assured GW
	(Sq.Kiii)	cotton			(MCM)	irrigation
		(MCM)			(IVICIVI)	(sq.km.)
Arvi			49.95	50.62	19.12	29.41
Ashti	14.70	3.82	32.04	55.23	8.57	13.18
Deoli			42.23	37.74	36.09	55.52
Hinganghat			62.73	52.73	20.55	31.61
Karanja	16.90	4.39	52.29	64.90	4.11	6.33
Samudrapur			60.17	44.07	35.41	54.48
Seloo			53.29	53.29	16.71	25.70
Wardha			72.93	58.93	13.70	21.07
Total	31.60	8.22	425.62	51.38	154.25	237.31

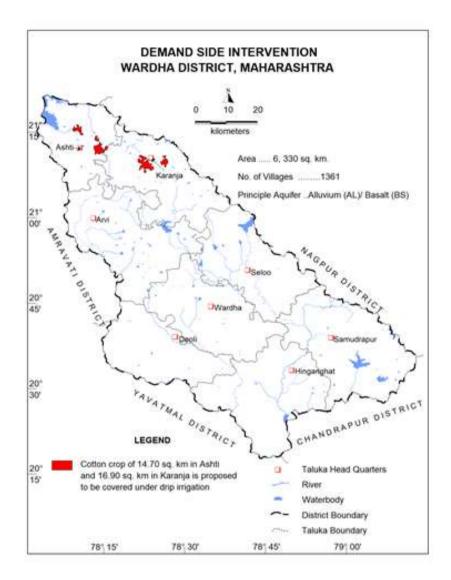


Figure 7.2: Location of Proposed Demand side interventions

7.3 Expected Benefits

The impact of groundwater management plans on the groundwater system in the district after its implementation is evaluated and the outcome shows significant improvement in groundwater scenario in all Blocks as given in the **Table 7.4.**

Table 7.4: Expected benefits after management options

Block	Total GW resource available after supply side intervention (MCM)	Total GW Draft after Demand side intervention (M CM)	Stage of GWD after supply side and demand side interventions (%)	GWR available/ required to bring the Stage of GWD to 70% (MCM)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation (sq.km)
Arvi	98.67	49.95	50.62	19.12	29.41
Ashti	58.01	32.04	55.23	8.57	13.18
Deoli	111.89	42.23	37.74	36.09	55.52

Block	Total GW resource available after supply side intervention (MCM)	Total GW Draft after Demand side intervention (M CM)	Stage of GWD after supply side and demand side interventions (%)	GWR available/ required to bring the Stage of GWD to 70% (MCM)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation (sq.km)
Hinganghat	118.97	62.73	52.73	20.55	31.61
Karanja	80.57	52.29	64.90	4.11	6.33
Samudrapur	136.54	60.17	44.07	35.41	54.48
Seloo	100.00	53.29	53.29	16.71	25.70
Wardha	123.76	72.93	58.93	13.70	21.07
Total	828.39	425.62	51.38	154.25	237.31

The total ground water resource available after supply side intervention are 828.39 MCM whereas the total ground water draft after demand side intervention is 425.62 MCM. Thus about 154.25 MCM of ground water is available to bring stage of ground water development to 70%. With this, additional area of 237.31 sq.km can be irrigated. Tentative locations of these areas are shown in Figure 7.3.



Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation.

7.4 Development Plan

Since additional ground water to the tune of 154.25 MCM is available for irrigating the additional area, a number of wells can be constructed. 90% of this water is proposed for constructing dugwells and remaining 10% for borewells. Thus about 9256 dugwells and 1543 borewells can be constructed. The block wise details are given in **Table 7.5.**

Table 7.5: Block wise additional area wells proposed

Block	GWR available/ required to bring the Stage of GWD to 70% (MCM)	Proposed No. of DW @1.5 ham for 90% of GWR Available	Proposed No. of BW @1 ham for 10% of GWR Available)	
Arvi	19.12	1147	191	
Ashti	8.57	514	86	
Deoli	36.09	2165	361	
Hinganghat	20.55	1233	206	
Karanja	4.11	247	41	
Samudrapur	35.41	2125	354	
Selu	16.71	1003	167	
Wardha	13.70	822	137	
Total	154.26	9256	1543	

8. SUM UP

The highly diversified occurrence and considerable variations in the availability and utilization of groundwater makes its management a challenging task. Scientific development and management strategy for groundwater has become imperative to avert the looming water crisis. In this context, various issues such as, prioritization of areas for development of groundwater resources vis-a-vis its availability, augmentation of groundwater through rainwater harvesting and artificial recharge, pricing and sectoral allocation of resources and participation of the stakeholders must be considered. In view of the above, the present study area a systematic, economically sound and politically feasible framework for groundwater management is required.

A thorough study was carried out based on data gap analysis, data generated in-house; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of block wise aquifer maps and aquifer management plans of Wardha district.

Geographically, Wardha district covers an area of 6310 sq km, out of this 561.50 sq km area is occupied by forest. Geologically, the area is occupied by Basalt and Alluvium formations. The stage of ground water development is 54.87 %. Karanja block is categories as semi-critical and rest of the blocks is categorized as safe. The area has witnessed droughts; declining water level and low yield potential of aquifers are the major issues in the district. Declining water level trend between 0.0042 -0.39 m/year has been observed in 85 stations during post monsoon. Declining water level trend of between 0.003-2.58 m/year has been observed in 92 stations during pre-monsoon.

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management.

The total unsaturated volume available for artificial recharge is 4720.44 MCM and it ranges from 47.74 MCM in Hinganghat block to 1932.08 MCM in Selu block. The available surplus runoff can be utilized for artificial recharge through construction of percolation tanks and Check dams. The surplus water available for artificial recharge is 50.32 MCM. This surplus can be used to recharge facility through 177 Percolation Tanks and 503 Check dams. The expected recharge every year from these structures is 219.04 MCM.

The demand side management can be implemented through the micro-irrigation techniques. It is proposed to be adopted drip irrigation in about 31.6 sq. km cotton areas in the district. With this about area 8.22 MCM of ground water can be saved.

With supply side and demand side interventions, it is expected that about 154.25 MCM of ground water would be available to bring stage of ground water development to 70%. With this, additional area of 237.31 sq.km can be irrigated through additional 9256 dugwells and 1543 borewells.

Thus, the focus of proposed management plan was to use ground water very effectively with supply and demand side interventions. The perusal of above ground water management plan lays stress on adopting micro-irrigation techniques and artificial recharge measures. Considering the low stage of ground water, development in the district demand side interventions have not been proposed. However, this is the right time to further enhance

the micro irrigation practices in the selected areas to manage the resources perceiving the future demand of resources.

These interventions also need to be supported by regulation for deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewells of more than 60 m depth in these Blocks, so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought. IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory ground water management.

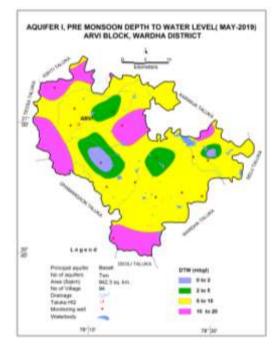
Roof top Rainwater harvesting is not recommended as it is economically not viable.

LOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

- 1. ARVI BLOCK
- 2. ASHTI BLOCK
- 3. DEOLI BLOCK
- 4. HINGANGHAT BLOCK
- 5. KARANJA BLOCK
- 6. SAMUDRAPUR BLOCK
- 7. SELU BLOCK
- 8. WARDHA BLOCK

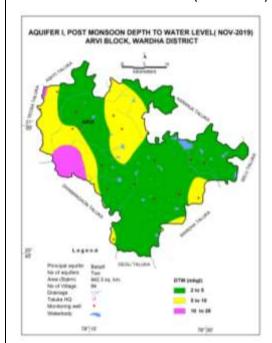
9. AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN

9.1 ARVI BLOCK, WARDHA DISTRICT, MAHARASHTRA


1. SALIENT FEATURE	
1.1 Introduction	
Block Name	Arvi
Geographical Area (Sq. Km.)	1110.94 Sq. Km.
Forest Area (Sq. Km)	48.07 Sq. Km.
` · · ·	145.07 3q. KIII.
Population (2011) Climate	
	Monsoon sub-tropical
Net Annual Ground Water Avai	
Existing Gross Ground Water D	
Stage of Ground Water Develo	
Category	SAFE
1.2 Rainfall Analysis	
Normal Rainfall	982.3 mm
Annual Rainfall (2019)	899.7 mm
Decadal Average Annual Rainfa	, ,
Long Term Rainfall Analysis	Falling Trend 13.71 mm/year.
(1998-2019)	Probability of Normal/Excess Rainfall-
	77%/9%.
	Probability of Drought (Moderate /Acute)-:
	9
	% Moderate & 5%Acute.
Rainfall Trend Analysis (1998 To	2019)
RAINFALL	ANALYSIS-ARVI TALUKA
2000	
1500	
<u>.</u>	y = -13.71x + 1126.2
1000	···· ··· ··· ··· ···· ··· ··· ··· ···
500	111.111111111
500	
	top, top, top, top, top, top, top, top,
EQUATION OF TREND LINE: Y=	
1.3 Geomorphology, Soil & Ge	
	oderately dissected plateau and alluvial plain covers major
-	ea, followed by Slightly dissected plateau, weathered
·	ateau, structutal hills and undissected plateau.
(¬eology	uvium (sand/silt and clay alternating beds)., Age: Recent
to	Sub-recent
D	eccan Traps (Basalt). Age: Late Cretaceous to Eocene

Soil		soil found in calcareous ve	ous deep soil and Loamy, clayey very shallow the major parts of the block followed by fine ery deep soil, fine-Loamy, clayey shallow soil clayey, extremely shallow soil.			
1.4Hydrology 8	& Drainage					
Drainage		The main rive Wardha distr		f Godava	ri and sub basins of	
Major projec				0		
		Medium		1 (Mad	anproject)	
Hydrology	Hydrology		(250 to 600 and	8 PT	. , ,	
		>600 Ha.) Minor Irrigation Project (100 to 250 Ha)		8 PT, 2 Minor irrigation scheme		
		Minor Irrigation Project (0 to		49 Diversion dam, 45 KT		
	100 H		L00 Ha.)		& 2 Minor irrigation	
				9		
1.5 Land Use, Ag		ation & Croppin	g Pattern		T	
Geographical A	rea			1110.94 Sq. Km.		
Forest Area				48.07 Sq. Km.		
Cultivable Area					477.84 Sq. Km.	
Net Sown Area					412.02 Sq. Km.	
Double Croppe					65.82 Sq. Km.	
Area under	Surface Wa				8.84 Sq. Km.	
Irrigation	Ground Wa	ter	Τ -		28.61 Sq. Km.	
			Crop Type		Area (Sq. Km.)	
	(= 6		Cotton Cerals		219.22	
Principal Crops	Principal Crops (Reference year 2018-19)				15.07	
			Pulses		81.21	
			Oil Seeds		147.96	
Horticultural Cr	ops		Sugarcane	1.06		
			Fruits and vegetal	oles	11.13	
			Spices		1.16	

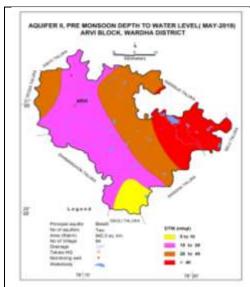
Water Level Behaviour


Aguifer-I/Shallow Aguifer

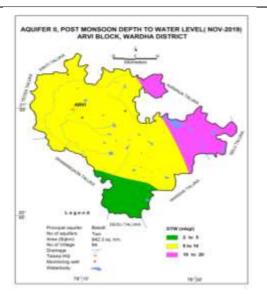
Pre-Monsoon Water Level (May 2019)

Water level between 10 -20 m bgl is observed as small patches. Water level ranges between 5-10 m bgl are covered major part of the Block. Water level ranges between 2-5 m bgl observed in small patches in central and eastern part of the block. Water level ranges between 0-2 m bgl observed in central and eastern parts of the block.

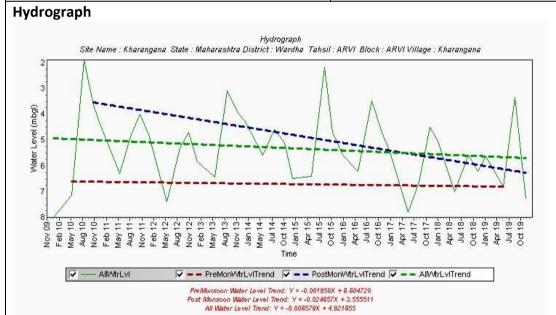
Post-Monsoon Water Level (Nov. 2019)



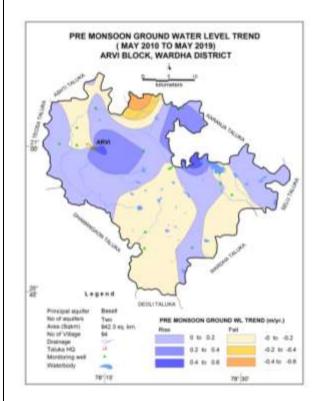
Water level between 10-20 m bgl is observed in the western part of the block as small patches. Water level ranges between 5-10 m bgl are covered north eastern part of the block and small patches observed in the southern and eastern part of the block and small patches observed in the northern blocks. Water level ranges between 2-5 m bgl covering maximum area of the block.


Aquifer-II/Deeper Aquifer

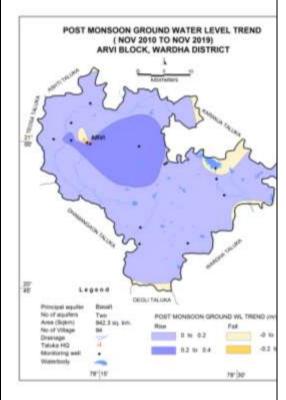
Pre-Monsoon Water Level (May 2019)


Post-Monsoon Water Level (Nov. 2019)

Water level >40 mbgl is observed in eastern part of the block while water level between 20-40 mbgl is observed in western and north eastern parts of the block. Water level between 10-20 mbgl is observed major parts of the blocks except eastern portion while water level between 5-10 mbgl observed in the southern fringe of the block.



Water level between 10-20 mbgl is observed in eastern part of the block while water level between 5- 10 mbgl is observed in major parts of the block. Water level between 2-5 mbgl observed in the southern fringe of the block.



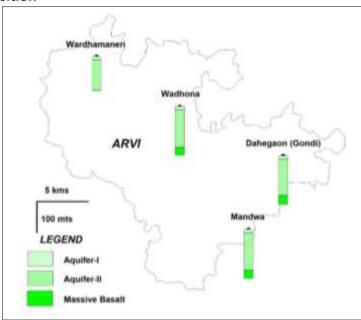
Hydrograph shows Pre-monsoon falling water	Hydrograph shows Post- monsoon
level trend @ 0.023 m/year	fallingwater level trend @ 0.296 m/year
Pre-Monsoon trend	Post-Monsoon trend
Falling 0.01 to 0.16 m/year, Rising 0.01 to 0.42	Rising 0.03 to 0.37 m/year
m/year	
Pre-Monsoon Water Level Trend (2010-2019)	Post-Monsoon Water Level Trend (2010-
Almost entire taluka is showing falling trend.	2019) Almost entire taluka is showing

Maximum area of taluka is showing 0-0.2 m rising trend. Area showing rising trend >0.2 m is 13.75 Km2.Falling trend >0.2 observed in 12.87 Km2.Falling trend between 0.2 -0.4 m and 0.4-0.6 m are observed in isolated patches. Rising trend of >0.4 m is observed in isolated patches.

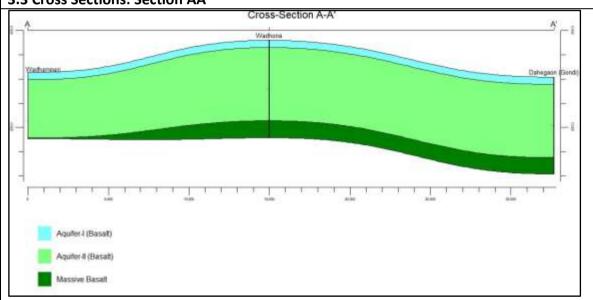
Rising trend. Area showing rising trend >0.2 m is observed in 62.41 Km2 while area showing falling trend >0.2 observed in 0.18 Km2.Maximum area of taluka is showing 0- 0.2 m Rising trend.Rising between 0.2- 0.4 m is observed in central part of the block. Falling trend of 0-0.2 m is observed in isolated patches.

2. GROUND WATER ISSUES

Limited aquifer potential Water scarcity in lean period


3. AQUIFER DISPOSITION

3.1 Number of Aquifers


Basalt – Aquifer-I (weathered& fractured basalt)

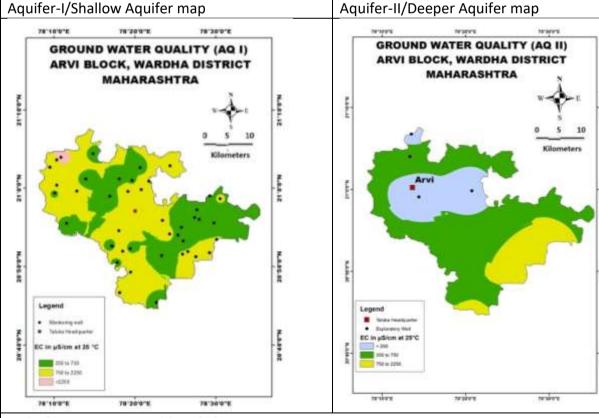
Basalt – Aquifer-II (Jointed & fractured basalt)

3.3 Cross Sections: Section AA'

3.4 Aguifer Characteristics

3.4 Aquiter Characteristics							
Major Aquifers	Basalt	(Deccan	Alluvium				
	Traps)						
Type of Aquifer	Aquif	Aquifer-	Aquifer -I				
(Phreatic/Semiconfined/Confined)	er-I	II (Semi-					
	(Phre	confine					
	atic)	d					
		/confin					
		ed)					

Depth of Occurrence (mbgl)	9 to	40-176	5-30
	30		
Granular/weathered/fractured rocks thickness	5	3 to 6	5 to22
(m)	to22		
Yield	10 –	Upto	60-100m ³ /day
	100m	2.5 lps	
	³ /day		
Specific yield/Storativity (S)	0.019	0.0004	0.07
	_	38	
	0.028		
Transmissivity (T)	30-80	38.85m	12-250 m ² /day
	m²/d	² /day	
	ay		


4. GROUND WATER QUALITY

4.1 Aquifer-I/Shallow Aquifer

EC between 750- 2250 μ S/cm has been observed in major part of block. Area showing EC >2250 μ S/cm observed in 6.54 Km².

4.2 Aquifer-II/Deeper Aquifer

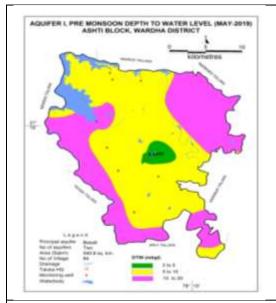
EC ranging from 250 to 750 μ S/cm has been observed in major parts of the block while EC between 750 -2250 μ S/cm has been observed in southeastern part of the block. EC less than 250 μ S/cm have been observed in northern and central part of the block. The ground water quality of deeper aquifer is suitable for drinking purpose.

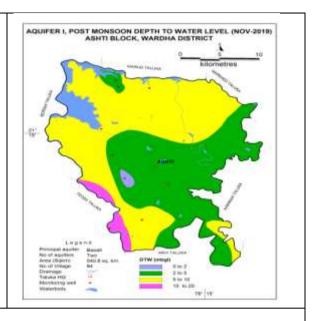
5. GROUND WATER RESOURCES

5.1 Aquifer-I/Shallow Aquifer

Ground	Water R	echarge M	Jorthy Are	a (Sa Km)					794.76
Ground Water Recharge Worthy Area (Sq. Km.) Total Annual Ground Water Recharge (MCM)								94.36	
								5.27	
Natural Discharge (MCM) Net Annual Ground Water Availability (MCM)								89.08	
					(NACNA)				44.64
Existing Gross Ground Water Draft for irrigation (MCM) Existing Gross Ground Water Draft for domestic and industrial water									
supply(round wa	ter Drait i	or domestic	and ind	ustriai wat	er		5.30
Existing	Gross G	round Wat	ter Draft fo	or all uses					49.95
Provision	n for do	mestic and	l industria	l requireme	nt suppl	y to 2025(I	MCN	1)	5.67
Net Gro	ound Wa	ter Availab	ility for fu	ture irrigati	on devel	opment (N	ΛСМ)	41.20
Stage o	f Ground	Water De	velopmen	ıt (%)					56.07
Catego	ry								SAFE
5.2 Aqu	ifer-II/D	eeper Aqu	iifer						
Taluka Mean thickne ss (m) Area in sqkm Mead metric head meter above bottom of confining layer I aluka Mean thickne sqkm Me							Total resource (mcm)		
Arvi	4	552.64	42.5	0.0000438	0.002	1.028739	4.42	112	5.449859
Arvi								4.862605	
Arvi	8	43.74	60	0.0000438	0.002	0.114949	0.69		0.814789
Arvi TOTAL	10	8.37	60	0.0000438	0.002	0.021996	0.16	1/4	0.189396 11.31665
	UND WA	TER RESO	URCE MAI	NAGEMENT	•				11.51005
Net An	านลl Gro	und Water	Availabilit	ty (MCM)				89.0	9
Gross A	nnual Dr	aft (MCM)						49.9	5
Stage o	f Ground	Water De	velopmen	ıt (%)				56.0	7
6.1 Sup	ply Side	Managem	ent						
SUPPLY	(MCM)								
Agricult	tural Sup	ply –GW						44.6	4
Agricult	tural Sup	ply –SW						8.84	
Domestic Supply – GW 5.31									
Domes	tic Supply	/ – SW						1.33	
Total Supply 60.1						2			
Area of Block (Sq. Km.)).94			
Area suitable for Artificial recharge(Sq. Km) 570.						36			
						l Rock			
Area fe	asible for	r Artificial	Recharge	(WL >3mbgl	l) (Sq. Kn	າ.)		570.	36
Volume	of Unsa	turated Zo	ne (MCM))				610.	28
Average	e Specific	Yield						0.02	
Rechar	ge Poten	tial (MCM)						12.2	1
Surplus water Available (MCM) 12.77					7				

Proposed Structures	Percolation Tank (@	Check D	•
	Rs.175.14 lakh, Av.		32 lakh, Av.
	Gross Capacity-100		pacity-10
	TCM*2 fillings = 200		fillings = 30
	TCM)	TCM)	
Number of Structures	45	128	
Volume of Water expected to be	6.71	2.87	
conserved / recharged @ 75% efficiency			
(MCM)			
RTRWH Structures – Urban Areas			
Households to be covered (50% with 50 m ² a	rea)		9550
Total RWH potential (MCM)			0.42
Rainwater harvested / recharged @ 80% runoff co-efficient			0.33
RTRWH & AR is economically not viable& he	nce not recommended	ł.	
6.2 Demand Side Management			
Micro irrigation techniques			
Irrigation Area (sq. km.) proposed for irrigation through Drip and Sprinkler			Not
			proposed
Water Saving by use of Drip and Sprinklers			-
Proposed Cropping Pattern change			Not
			proposed
Ground water Irrigated area under Water Intensive Crop (sq.km)			NIL
Water Saving by water use efficiency (MCM)			NIL
6.3 Expected Benefits			
Net Ground Water Availability (MCM)			89.09
Existing Ground Water Draft for All Uses (MG	CM)		49.95
Present stage of Ground Water Developmen	it (%)		56.07
Additional GW resources available after Sup	ply side interventions ((MCM)	9.58
Ground Water Availability after Supply side i	ntervention (MCM)		98.67
Stage of Ground Water Development after S	upply side Intervention	ns (%)	50.62
Total GWR available for GW Development (N	исм)		19.12
GW draft after Ground Water Development	to enhance Stage of		69.07
Development to 70% (MCM)			
Other Interventions Proposed if any			
Alternate Water Sources Available			NIL
6.4 Development Plan			•
Volume of water available for GWD to enha	nce stage of GWD to 70	0%	19.12
(MCM)			
Proposed Number of DW (@ 1.5 ham for 90	% of GWR Available)		1320
Proposed Number of BW (@ 1 ham for 10%	of GWR Available)		220
Additional Area (sq.km.) proposed to be brought under assured GW			29.41
irrigation with av. CWR of 0.65 m			




Area proposed under Assured GW irrigation

9.2 ASHTI BLOCK, WARDHADISTRICT, MAHARASHTRA

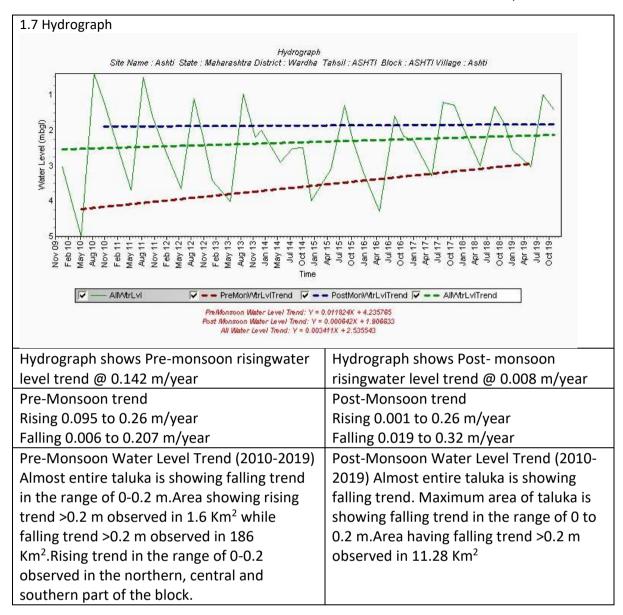
1. SALIENT FEATURE		
1.1 Introduction		
Block Name		Ashti
Geographical Area (Sq. Km.)		464.94 Sq. Km.
Forest Area (Sq. Km)		56.96 Sq. Km.
Population (2011)		76276
Climate		Monsoon sub-tropical
Net Annual Ground Water Availability (MCM)		57.58
Existing Gross Ground Water Draft for All uses (MCM)		35.86
Stage of Ground Water Development (%)		62.28
Category		SAFE
1.2 Rainfall Analysis		·
Normal Rainfall		837.5 mm
Annual Rainfall (2019	9)	974.4 mm
Decadal Average Ann	nual Rainfall (2010-19)	854.64 mm
ong Term Rainfall Rising Trend 1.51 mm/year.		
Analysis (1998-	Probability of Normal/Excess Rainfall: 67%/14 %.	
2019)	Probability of Drought (Moderate/Acute)-: 14 % Moderate & 5 %	
	Acute.	
Rainfall Trend (1998-	- 2019)	
2000 -		
	ASHTI RAINFALL ANALYSIS	5
	ASHTI RAINFALL ANALYSIS	y = 1.5097x + 820.12
1500	ASHTI RAINFALL ANALYSIS	
	ASHTI RAINFALL ANALYSIS	
	ASHTI RAINFALL ANALYSIS	
1500 -	ASHTI RAINFALL ANALYSIS	
1500 -	ASHTI RAINFALL ANALYSIS	
1500 -	ASHTI RAINFALL ANALYSIS	
1500 -	ASHTI RAINFALL ANALYSIS	
1500 -		y = 1.5097x + 820.12
1500 - 1000 - 500	22	y = 1.5097x + 820.12
1500 - 1000 - 500	5 ¹ 20 ² 20 ⁴ 20 ⁵ 20 ⁶ 20 ¹ 20 ⁸ 20 ⁸ 20 ⁵ 2	y = 1.5097x + 820.12
1500 - 1000 - 500	²⁾ χ ²⁾	y = 1.5097x + 820.12
1500 - 10	ລັງຄົງຄົງຄົງຄົງຄົງຄົງຄົງຄົງຄົງຄົງຄົງຄົງຄົງ	y = 1.5097x + 820.12 2 201 201 201 201 201 201 201 201 201 20
1500 - 10	D LINE: Y= 1.509x + 820.1 Oil & Geology The block is divided into 5 unit's viz al dissected plateau and plateau weather	y = 1.5097x + 820.12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1500 - 10	D LINE: Y= 1.509x + 820.1 oil & Geology The block is divided into 5 unit's viz al dissected plateau and plateau weather while Slightly dissected plateau and st	y = 1.5097x + 820.12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1500 - 10	The block is divided into 5 unit's viz al dissected plateau and st some parts of the block.	y = 1.5097x + 820.12 2
1500 1000 500 EQUATION OF TRENE 1.3 Geomorphology, S Geomorphic Unit	The block is divided into 5 unit's viz al dissected plateau and plateau weather while Slightly dissected plateau and st some parts of the block. Alluvium (sand/ silt and clay alternation)	y = 1.5097x + 820.12 2
1500 1000 500 500 EQUATION OF TRENE 1.3 Geomorphology, So	The block is divided into 5 unit's viz al dissected plateau and plateau weather while Slightly dissected plateau and st some parts of the block. Alluvium (sand/ silt and clay alternation recent	luvial plain, Moderately ered covering maximum area cructural hills observed in
1500 1000 500 EQUATION OF TRENE 1.3 Geomorphology, S Geomorphic Unit	The block is divided into 5 unit's viz al dissected plateau and plateau weather while Slightly dissected plateau and st some parts of the block. Alluvium (sand/ silt and clay alternation)	luvial plain, Moderately ered covering maximum area cructural hills observed in ng beds), Age: Recent to Sub-

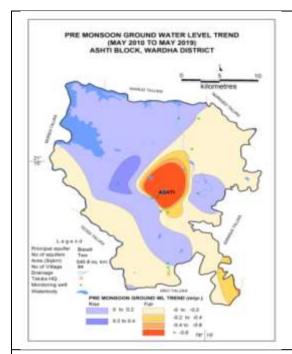
	Fi	ne calcareous very de	en sc	il cover	s maximum area of block	
Soil Fine calcareous very deep soil cove followed by Loamy clayey very shall						
3011		shallow soil and fine loamy clayey shallow soil.				
1.4 Hydrology 8			,,,,, C	nayey on	anew sem	
Drainage		Wardha river is the main river it enters Ashti at Salora village				
	M	lajor project		1 (Kar)		
Bi		ledium		0		
		Bigger Minor (250 to 600 1 PT		1 PT		
		and >600 Ha.)				
Hydrology	M	linor Irrigation Project		3 PT		
	(1	.00 to 250 Ha.)				
	M	linor Irrigation Project	t (O	33 Dive	ersion Dam, 12 KT Weirs, 2 PT, 1	
	to	100 Ha.)		Minor	Irrigation tank	
1.5 Land Use, A	gricultu	re, Irrigation & Cropp	ing P	attern		
Geographical Ar	ea				464.94 Sq.km.	
Forest Area				56.96 Sq. Km.		
Cultivable Area					350.75 Sq. Km.	
Net sown area					300.84 sq. km	
Double cropped area					49.91 sq. km	
• •					5.44	
Irrigation G	round W	ound Water			28.08	
Principal Crops Crop Type			Area (Sq. Km.)			
(Reference year 2018- Cotton				147.13		
		Cereals		14.37		
,		Pulses		67.38		
		Oil Seeds		104.5		
Horticultural Crops Fruits and vegetable		٠,				
Troi croarcarar er	5 P 5	Sugarcane		0.67		
		Spices			1.4	
1.6 Water Level	Rehavio	-			1.7	
1.6.1 Aquifer-I/						
•		•	Pos	t-Monso	oon Water Level (Nov. 2019)	
Pre-Monsoon Water Level (May 2019) Water level ranging from 2 to 5 mbgl is			Water Level between 0-2 mbgl observed as			
observed in central part of the block as a		a small patch in the central portion of the				
patch while water level in the range of 5 to		block while water level between 2-5 mbgl				
10 mbgl is observed in major parts of the		observed in the central and south eastern				
block.Water level ranges from 10-20 mbgl		parts of the block. Water level between 5-				
	•	astern and south	10 mbgl is observed in major part of the			
			block while water lever between 10-20			
western parts of the block.		mbgl observed in the south eastern part of the block.				

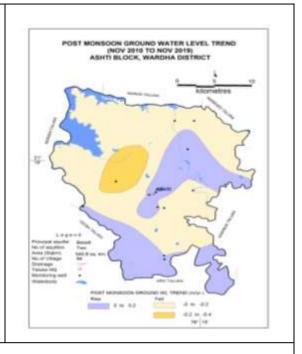
1.6.2 Aquifer-II/Deeper Aquifer

Pre-Monsoon Water Level (May 2019) Water level between 5-10 mbgl is observed in central eastern parts of the block while water level between 10-20 mbgl is observed in major part of the block. Water level between 20-40 mbgl observed in the north eastern and south western parts of the block.

AQUIFER II. PRE MONBOON DEPTH TO WATER LEVEL (MAY-2019)
ASHTI BLOCK, WARDHA DISTRICT


TO 10


NIJOCHITES


PRENIUM REACH REACH FOR SELECTION OF THE PRENIUM SELECTION OF THE

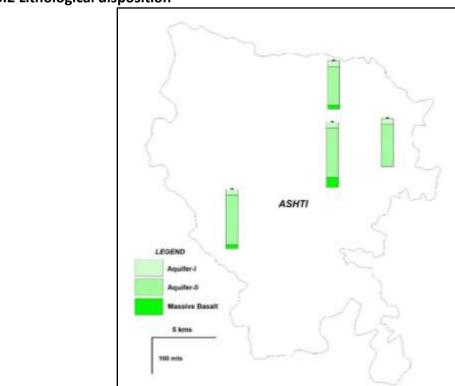
Post-Monsoon Water Level (Nov. 2019) Water level 5-10 mbgl is observed in major part of the block while water level between 20-40 mbgl is observed in the north eastern part of the block.

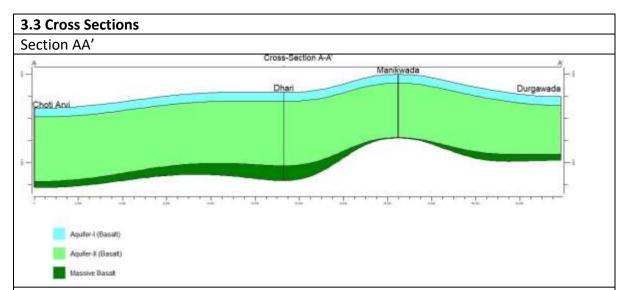
2. GROUND WATER ISSUES

Limited aquifer potential

Water scarcity in lean period

Declining Water Level trend during pre and post monsoon in almost entire block Nitrate >45 mg/l observed in Aquifer I


3. AQUIFER DISPOSITION


3.1 Number of Aquifers

Basalt – Aquifer-I (weathered& fractured basalt)

Basalt – Aquifer-II (Jointed & fractured basalt)

3.2 Lithological disposition

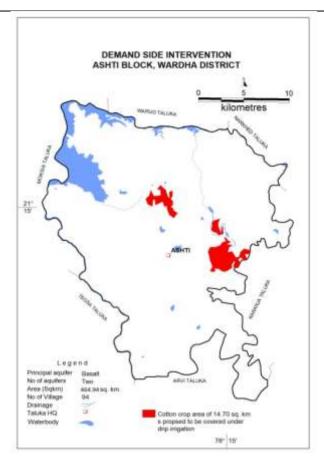
3.4 Aquifer Characteristics

5.4 Aquiler Characteristics			
Major Aquifers	Basalt (Deccan Traps)		Alluvium
Type of Aquifer (Phreatic/Semi-	Aquifer-I	Aquifer-II (Semi-	Aquifer-I
confined/Confined)	(Phreatic)	confined	
		/confined)	
Depth of Occurrence (mbgl)	9to 30	40 to 143	5-30
Granular/weathered/fractured rocks	6.2 to 22	1 to 3	5 to22
thickness (m)			
Yield	10 –	Upto 2.5 lps	60-
	100m³/day		100m³/day
Specific yield/Storativity (S)	0.019 -	0.000012	0.07
	0.028		
Transmissivity (T)	30-80	8.97 m ² /day	60-
	m²/day		120m ² /day

4. GROUND WATER QUALITY

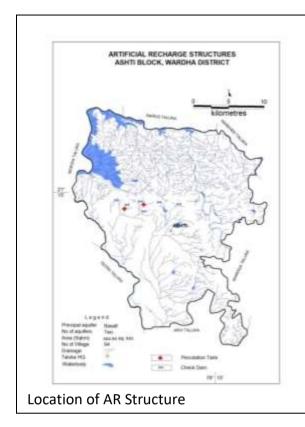
4.1 Aquifer-I/Shallow Aquifer

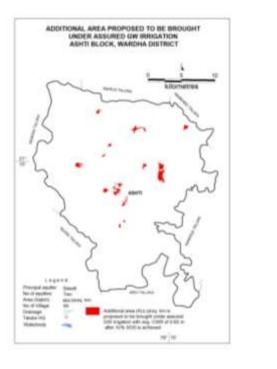
EC more than 2250 μ S/cm has been observed as a very small patch in 3 Km² area of the block. Nitrate >45 mg/l observed in southern part of the block.


4.2 Aquifer-II/Deeper Aquifer

Almost entire block is having EC values less than 250 μ S/cm. The ground water quality of deeper aquifer is suitable for drinking purpose

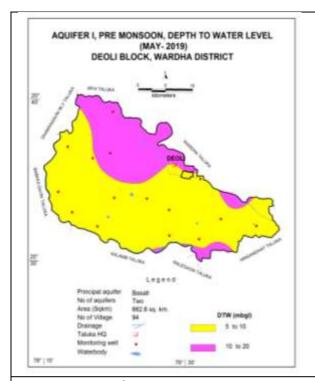
Aquifer-I/Shallow Aquifer map Aquifer-II/Deeper Aq
--

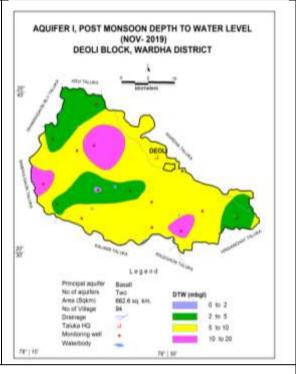



Gross Annual Draft (MCM)			35.86
Stage of Ground Water Developme	ent (%)		62.28
6.1 Supply Side Management	(/-5)	L	
SUPPLY (MCM)			
Agricultural Supply -GW			32.91
			5.44
			2.95
			0.74
			42.04
			464.94
			25.68
Type of Aquifer	,(59, 1)		Hard Rock
Area feasible for Artificial Recharge	- (WL >3mhgl) (Sa Km)		25.68
Volume of Unsaturated Zone (MCN	• • • •		88.85
Average Specific Yield	1		0.02
Recharge Potential (MCM)			1.78
Surplus water Available (MCM)			0.58
Proposed Structures	Percolation Tank (@	1	am(@ Rs.19.432
Troposed structures	Rs.175.14 lakh, Av.		. Gross Capacity-10
	Gross Capacity-100	-	fillings = 30 TCM)
	TCM*2 fillings = 200		
	TCM)		
Number of Structures	2	6	
Volume of Water expected to be 0.30 0.13			
conserved / recharged @ 75%			
efficiency (MCM)			
RTRWH Structures – Urban Areas			
Households to be covered (50% wi	th 50 m²area)		0
Total RWH potential (MCM)			0
Rainwater harvested / recharged @	9 80% runoff co-efficient		0
Estimated Expenditure (Rs. In Cr.)	@ Rs.30000/-per HH		0
RTRWH & AR is economically not v	iable & hence, not recomm	ended.	•
6.2 Demand Side Management			
Micro irrigation techniques			
Irrigation Area (sq. km.) proposed for irrigation through Drip and			14.7
Sprinkler			
Volume of Water expected to be saved (MCM). Surface Flooding req-			3.82
0.815 m. Drip Req0.511, WUE- 0.	.304 m		
Proposed Cropping Pattern change			Not proposed
Ground water Irrigated area under	Water Intensive Crop (sq.k	m)	NIL
Water Saving by water use efficien	cy (MCM)		NIL

Demand side Interventions

57.58
35.86
62.28
0.43
58.01
61.81
8.57
44.43
Not
proposed
NIL
8.57
514
86
13.18

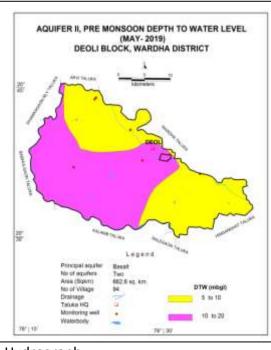

Area proposed under Assured GW irrigation

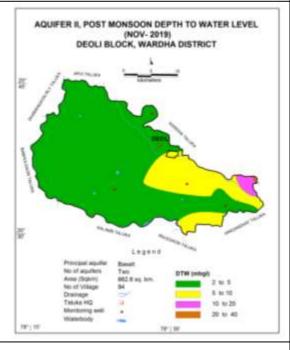

9.3 DEOLI BLOCK, WARDHA DISTRICT, MAHARASHTRA

1.SALIENT FEATURE	
1.1 Introduction	
Block Name	Deoli
Geographical Area (Sq. Km.)	699.32Sq. Km.
Forest Area (Sq. Km)	12.43Sq. Km.
Population (2011)	159877
Climate	Monsoon sub-tropical
Net Annual Ground Water Availability (MCM)	105.42
Existing Gross Ground Water Draft for All uses(MCM)	42.23
Stage of Ground Water Development (%)	40.06
Category	SAFE

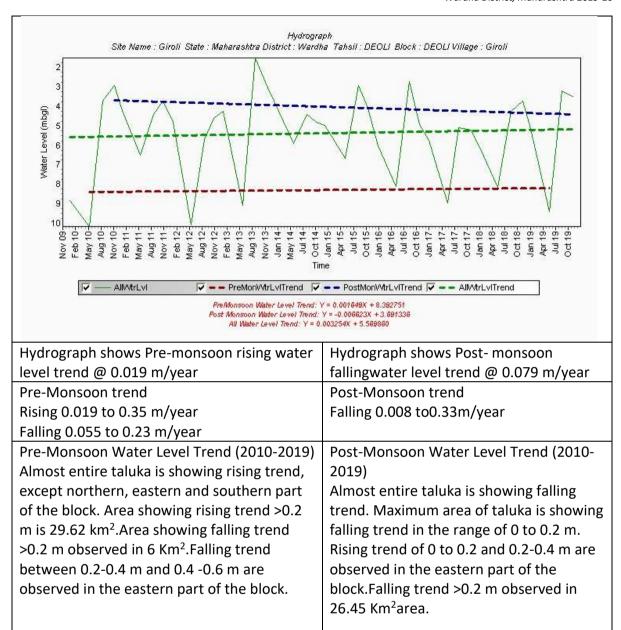
Normal Rainfall			
Annual Rainfall (2019) Decadal Average Annual Rainfall (2010-19) Long Term Rainfall Analysis (1998-2019) Rainfall Trend(1998-2019) RAINFALL ANALYSIS DEOLI TALUKA RAINFALL ANALYSIS DEOLI TALUKA RAINFALL ANALYSIS DEOLI TALUKA 935.2 mm Rising Trend 3.841 mm/year. Probability of Normal/Excess Rainfall: 72%/14%. Probability of Drought (Moderate/Acute)-: 9 % Moderate & 5% Accessed by			
Decadal Average Annual Rainfall (2010-19) Long Term Rainfall Analysis (1998-2019) Rainfall Trend(1998-2019) RAINFALL ANALYSIS DEOLI TALUKA Possible of the process of t			
Long Term Rainfall Analysis (1998-2019) Rising Trend 3.841 mm/year. Probability of Normal/Excess Rainfall: 72%/14%. Probability of Drought (Moderate/Acute)-: 9 % Moderate & 5% Action Rainfall Trend(1998-2019) RAINFALL ANALYSIS DEOLI TALUKA y = 3.8417x + 846.22			
Rainfall Analysis (1998-2019) Probability of Normal/Excess Rainfall: 72%/14%. Probability of Drought (Moderate/Acute)-: 9 % Moderate & 5% Acceptable (1998-2019) Rainfall Trend(1998-2019) RAINFALL ANALYSIS DEOLI TALUKA y = 3.8417x + 846.22			
(1998-2019) Probability of Drought (Moderate/Acute)-: 9 % Moderate & 5% Acceptable (1998-2019) RAINFALL ANALYSIS DEOLI TALUKA y = 3.8417x + 846.22			
Rainfall Trend(1998-2019) RAINFALL ANALYSIS DEOLI TALUKA y = 3.8417x + 846.22 1000 500			
RAINFALL ANALYSIS DEOLI TALUKA y = 3.8417x + 846.22 1000 500			
1500 - RAINFALL ANALYSIS DEOLI TALOKA 1500 - TALOKA			
1000			
288 288 200 201, 200, 202, 200, 200, 200, 200,			
EQUATION OF TREND LINE: Y= 3.841x + 846.2			
1.3 Geomorphology, Soil & Geology			
Geomorphic Unit Alluvium plain, slightly dissected plateau, highly dissected plateau plateau weathered observed major parts of the block while Moderately dissected plateau and structural hillscovering smaller portion of the block.			
Alluvium (sand/ silt and clay alternating beds).			
Geology Age: Recent to Sub-recent			
Deccan Traps (Basalt)			
Age: Late Cretaceous to Eocene			
Soil Major part of theblock is covered by fine calcareous deep soil, followed by fine calcareous very deep soil and fine Loamy clayey shallow soil			
1.4 Hydrology & Drainage			
Drainage The block is drained by Yasodha river			
Major project Nil			
Medium Nil			
Bigger Minor (250 to 600 and >600 Nil Ha.)			
Minor Irrigation Project (100 to Nil 250 Ha)			
Minor Irrigation Project (0 to 100 5 PT, 9 KT Weirs ,22 Diversio Ha.) 5 PT, 9 KT Weirs ,22 Diversio			

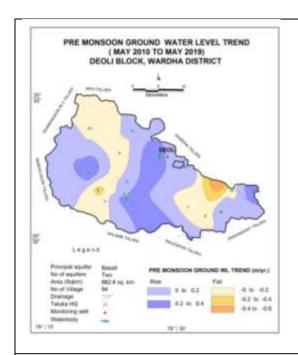
1			
		Scheme,7 Sakhali Cement Nala	
		Band	
1.5 Land Use, Agricul	ture, Irrigation & Cropp	ing Pattern	
Geographical Area		699.32Sq. Km.	
Forest Area		12.43Sq. Km.	
Cultivable Area		545.12 Sq. Km.	
Net Sown Area		511.44Sq. Km.	
Double Cropped Area)	33.68Sq. Km.	
Area under Irrigation Surface Water		0	
	Ground Water	12.71	
Principal Crops	Crop Type	Area (Sq. Km.)	
(Reference year	Cotton	242.34	
2018-19)	Cereals	15.68	
	Pulses	81.22	
	Oil Seeds	198.61	
Horticultural Crops	Fruits and Vegetables	4.11	
	Sugarcane	0.63	
	Spices	1.19	
1.6 Water Level Beha	aviour		
1.6.1 Aquifer-I/Shallo	ow Aquifer		
Pre-Monsoon Water	Level (May 2019)	Post-Monsoon Water Level (Nov. 2019)	
Water level between 5-10 mbgl is observed		Water Level between 0-2 mbgl is	
in almost entire block while water level		observed in isolated patches in central	
between 10-20 mbgl observed in the north		part of block. Water level between 2 to 5	
eastern and southern parts of the block.		mbgl observed in the northern, eastern,	
		and central parts of the block as patches.	
		Water level between 5-10 mbgl is	
		observed in almost entire block. Water	
		level between 10-20 mbgl is observed in	
		the central, western and southern parts of	
		the block as small patches.	

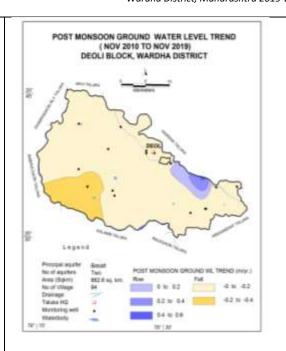




1.6.2 Aquifer-II/Deeper Aquifer


Pre-Monsoon Water Level (May 2019) Water level between 5-20 mbgl is observed in north eastern parts of the block while water level between 10-20 mbgl is observed almost entire block.

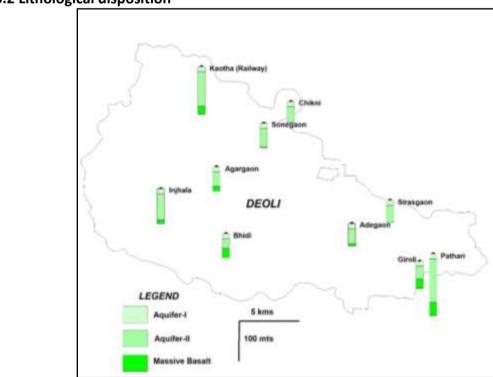

Post-Monsoon Water Level (Nov. 2019) Water level between 2-5 mbgl is observed in major part of the block while water level between 5-10 mbgl observed in the eastern part of the block while water level between 10-20 mbgl observed in the eastern tip of the block.

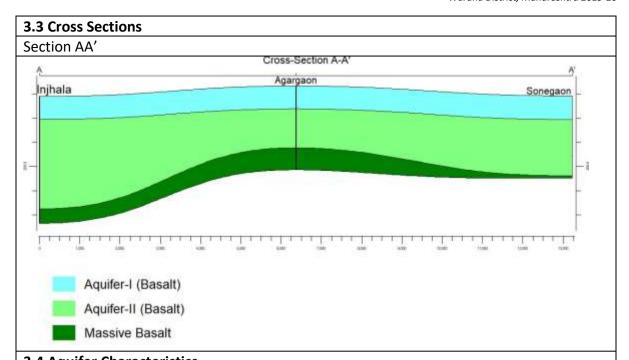


Hydrograph

2. GROUND WATER ISSUES

- 1. Water scarcity in lean period
- 2.Fluoride>1.5 mg/l
- 3.Nitrate>45mg/l


3. AQUIFER DISPOSITION


3.1 Number of Aquifers

Basalt – Aquifer-I (weathered& fractured basalt)

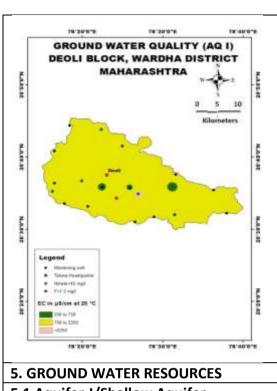
Basalt – Aquifer-II (Jointed & fractured basalt)

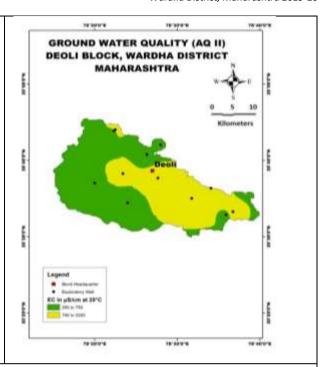
3.2 Lithological disposition

3.4 Aquiter Characteristics	5
Major Aquifers	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Major Aquifers	Basalt (Deccan Traps)		Alluvium
Type of Aquifer (Phreatic/Semi-	Aquifer-I	Aquifer-II	Aquifer-I
confined/Confined)	(Phreatic)	(Semi-confined	
		/confined)	
Depth of Occurrence (mbgl)	10 to 30	40 to 153	5-30
Granular/weathered/fractured rocks	8 to 22	5 to 7	5 to22
thickness (m)			
Yield	10 -	Upto 2.5 lps	60-100m ³ /day
	100m³/day		
Specific yield/Storativity (S)	0.019 - 0.028	0.000438	0.07
Transmissivity (T)	30-80 m ² /day	10-100 m ² /day	60-120
			m²/day

4. GROUND WATER QUALITY


4.1 Aquifer-I/Shallow Aquifer


EC between 750 and 2250 μS/cm has been observed in the major parts of the block. Nitrate and Fluoride observed in few location of southern part of the block. Area showing EC>2250 μS/cm observed in 1.91 Km²

4. 1 Aquifer-II/Deeper Aquifer

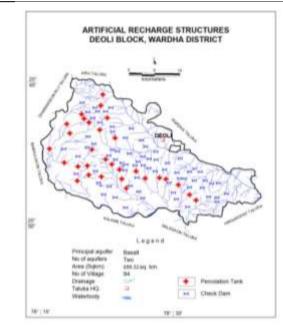
EC between 750-2250 μ S/cm is observed in major part of the block. Overall the ground water quality of deeper aquifer is suitable for irrigation purpose and for drinking purpose with primary treatment.

Aquifer-I/Shallow Aquifer map	Aquifer-II/Deeper Aquifer map

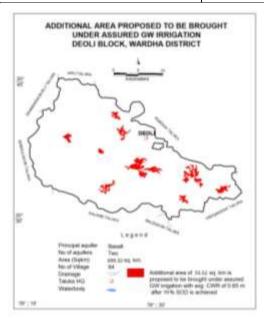
5.1 Aquifer-I/Sh	allow Ac	ıuifer
------------------	----------	--------

Ground Water Recharge Worthy Area (Sq. Km.)	681.78
Total Annual Ground Water Recharge (MCM)	111.07
Natural Discharge (MCM)	5.64
Net Annual Ground Water Availability (MCM)	105.42
Existing Gross Ground Water Draft for irrigation (MCM)	38.01
Existing Gross Ground Water Draft for domestic and industrial water supply	4.20
(MCM)	
Existing Gross Ground Water Draft for All uses(MCM)	42.23
Provision for domestic and industrial requirement supply to 2025(MCM)	4.79
Net Ground Water Availability for future irrigation development (MCM)	61.68
Stage of Ground Water Development (%)	40.06
Category	Safe

5.2 Aquifer-II/Deeper Aquifer

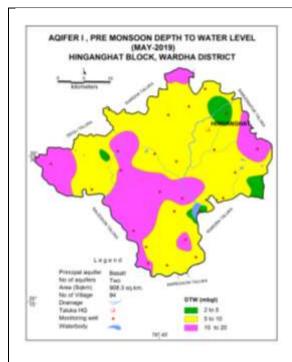

Taluka	Mea	Area in	Piezomet	S	Sy	Resource	Resourc	Total resource
raidita	n thick ness (m)	sqkm	ric head meter above bottom of confining layer			in above confining layer (mcm)	e in confinin g layer (mcm)	(mcm)
Deoli	4	516.61	51.05	0.0000438	0.002	1.155135	4.13288	5.288015
Deoli	6	114.4	61.5	0.0000438	0.002	0.308159	1.3728	1.680959
Deoli	8	29.46	12.5	0.0000438	0.002	0.016129	0.47136	0.487489
Total	•		•				•	7.456463

6. GROUND WATER RESOURCE MANAGEMENT

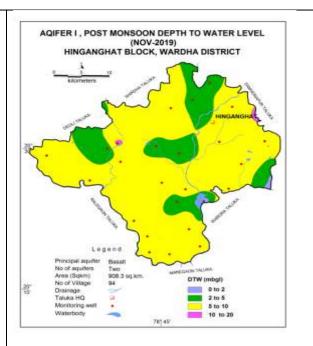

Net Annual Ground Water Availability (MCM)	105.43
Gross Annual Draft (MCM)	42.23
Stage of Ground Water Development (%)	40.06

6.1 Supply Side Management				
SUPPLY (MCM)				
Agricultural Supply -GW			38.02	
Agricultural Supply -SW		0.0		
Domestic Supply - GW		4.21		
Domestic Supply - SW		1.05		
Total Supply			43.28	
Area of Block (Sq. Km.)			699.32	
Area suitable for Artificial recharge(Sq.			385.25	
Type of Aquifer	Killy		Hard Rock	
Area feasible for Artificial Recharge (WI	>3mhgl) (Sa Km)		385.25	
Volume of Unsaturated Zone (MCM)	- × 31110gi) (3q. Kill.)		616.4	
Average Specific Yield			0.02	
Recharge Potential (MCM)			12.32	
Surplus water Available (MCM)			8.62	
Proposed Structures	Percolation Tank (@	Check Da		
Froposed Structures	Rs.175.14 lakh, Av.		a lakh, Av.	
	Gross Capacity-100		pacity-10 TCM	
	TCM*2 fillings = 200		gs = 30 TCM)	
	TCM 2 minigs = 200	3 11111118	35 - 30 1011)	
Number of Structures	30	86		
Volume of Water expected to be	4.53	1.94		
conserved / recharged @ 75%	4.55	1.54		
efficiency (MCM)				
RTRWH Structures – Urban Areas				
Households to be covered (50% with 50) m ² area)		12182	
Total RWH potential (MCM)	, in area,		0.55	
Rainwater harvested / recharged @ 809	% runoff co-efficient		0.44	
RTRWH & AR is economically not viable		ed.	10.11	
The stable				
6.2 Demand Side Management				
Micro irrigation techniques				
Irrigation Area (sq. km.) proposed for ir	rigation through Drip and S	Sprinkler	Not	
0	0 · · · · · · · · · · · · · · · · · · ·	- 1-	proposed	
Water Saving by use of Drip and Sprinkl	ers		<u>'</u>	
Proposed Cropping Pattern change			Not	
	proposed			
Ground water Irrigated area under Wat	NIL			
Water Saving by water use efficiency (N	NIL			
6.3 EXPECTED BENEFITS	•			
Net Ground Water Availability (MCM)			105.43	
Existing Ground Water Draft for All Use	42.23			
Present stage of Ground Water Develop			40.06	
Additional GW resources available after		(MCM)	6.47	
Ground Water Availability after Supply	• • •	<u> </u>	111.9	

Stage of Ground Water Development after Supply side Interventions (%)	37.74
Total GWR available for GW Development (MCM)	36.09
GW draft after Ground Water Development to enhance Stage of	78.32
Development to 70% (MCM)	
Other Interventions Proposed, if any	Not
	proposed
Alternate Water Sources Available	NIL
6.4 Development Plan	
Volume of water available for GWD to enhance stage of GWD to 70% (MCM)	36.09
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	2165
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	361
Additional Area (sq.km.) proposed to be brought under assured GW	55.52
irrigation with av. CWR of 0.65 m	

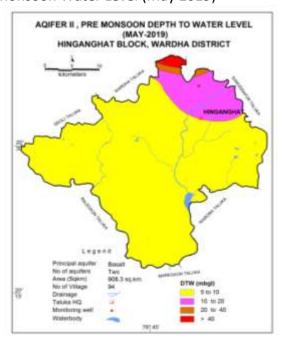


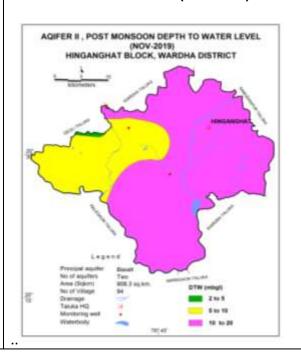
Area proposed under Assured GW irrigation


9.4 HINGANGHAT BLOCK, WARDHA DISTRICT, MAHARASHTRA

1. SALIENT FEATURE		
1.1 Introduction		
Block Name	Hinganghat	
Geographical Area(Sq. Km.)	899.19Sq. Km.	
Forest Area (Sq. Km)		26.49Sq. Km.
Population (2011)		224017
Climate		Monsoon sub-
		tropical
Net Annual Ground Water A	vailability (MCM)	117.98
Existing Gross Ground Water	Draft for All uses(MCM)	62.73
Stage of Ground Water Deve	lopment (%)	53.17
Category		SAFE
1.2 Rainfall Analysis		
Normal Rainfall		1006.4 mm
Annual Rainfall (2019)		811.9 mm
Decadal Average Annual Rair	nfall (2010-19)	966.13 mm
Long Term Rainfall Analysis (1998-2019)	Falling Trend 6.170 mm/year. Probability of Normal/Excess Rainfall: 59%/27% Probability of Drought (Moderate /Acute)-: 9 %	
Rainfall Trend 1998-2019		
	NFALL ANALYSIS HINGANGHAT UKA	
1998 2000 2000 2003 2004 2004 2004 2005	2005 2006 2007 2008 2010 2011 2013 2015 2016 2017 2018 2018	
EQUATION OF TREND LINE: \	′= -6.170x + 1077	
1.3 Geomorphology, Soil & (Geology	
Geomorphic Unit	The block is occupied by slightly dissected plate weathered plateau, alluvial plain in the wester block. Plateau undissected observed in the block portion. Structural hills observed as patches and dissected observed as patches in the eastern p	n part of the k except southern d plateau moderately
Geology	Alluvium (sand/silt and clay alternating beds). recent Deccan Traps (Basalt). Age: Late Cretaceous to	
Soil	Fine calcareous, deep soil found in the major p followed by fine calcareous very deep soil and	arts of the block

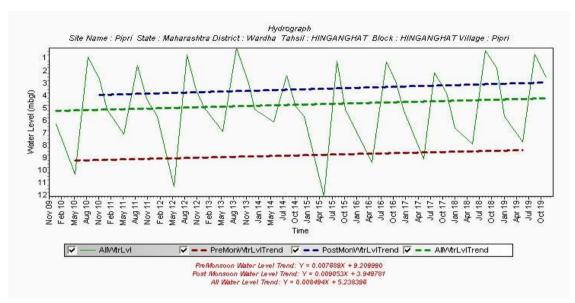
Drainage		The block is drained by tributaries of Godavari and Sub basins of						
		Wardha River. The main	rivers flowing throu	igh the block are Wunna				
		and Asada river.	and Asada river.					
		Major project		1(Wana Project)				
		Medium		2 (Dham, Pothra)				
		Bigger Minor (250 to 60	0 and >600 Ha.)	1 Small Irrigation Pond				
		Minor Irrigation Project	(100 to 250 Ha.)	1 PT				
Hydrology		Minor Irrigation Project	(0 to 100 Ha.)	34 Diversion Dam, 25				
				KT Weirs,7 Minor				
				Irrigation Scheme, 1 PT,				
				14 Sakhali Cement Nala				
				Band				
1.5 Land U	Jse, Agriculture, Ir	rigation & Cropping Patte	rn					
Geographi	ical Area			899.19Sq. Km.				
Forest Are	а		26.49Sq. Km.					
Cultivable	Area		828.33Sq. Km.					
Net Sown	Area		761.31 Sq. Km.					
Double Cr	opped Area		67.02 Sq. Km.					
Area	Surface Water		0					
under Irrigation	Ground Water			37.58				
Principal C	crops	Crop Type		Area (Sq. Km.)				
(Reference	e year 2018-19)	Cotton		441.27				
		Cereals		21.26				
		Pulses		181.54				
		Oil Seeds		173.03				
Horticultu	ral Crops	Fruits and Vegetables		6.78				
•		Sugarcane		0.18				
		Spices	1.81					
1.6 Water	Level Behaviour							
1.6.1 Aqui	fer-I/Shallow Aqu	ifer						
Pre-Monse	oon Water Level (I	May 2019)	Post-Monsoon Wa	ter Level (Nov. 2019)				

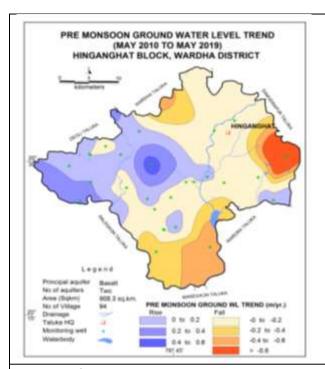

Water level between 2-5 mbgl observed as small patches while water level between 5-10 mbgl observed in almost entire part of the block. Water level between 10-20 mbgl observed in the south western and northeastern parts of the block.

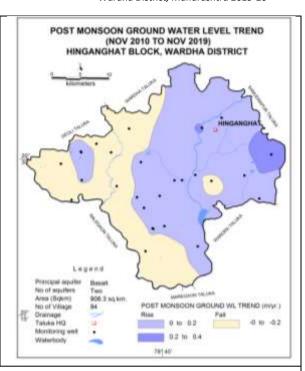

Water level level between 0-2 mbgl observed as very small patches while water level between 2-5 mbgl observed in all parts of the block as patches .Water level between 5-10 mbgl observed in almost entire part of the block while water level between 10-20 mbgl observed in eastern and western part as very small patches.

1.6.2 Aquifer-II/Deeper Aquifer

Pre-Monsoon Water Level (May 2019)


Post-Monsoon Water Level (Nov. 2019)


Water level between 5-10 mbgl is observed in almost entire block, while water level between 10-20, 20-40 and >40 mbgl observed in the northern parts of the block as small patches.

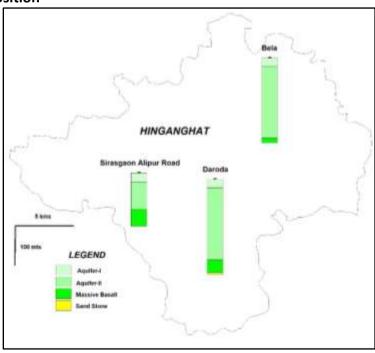

Water level between 2-5 mbgl is observed in western part as small patch while water level between 5-10 mbgl observed in western part.Water level between 10-20 mbgl observed almost entire part of the block.

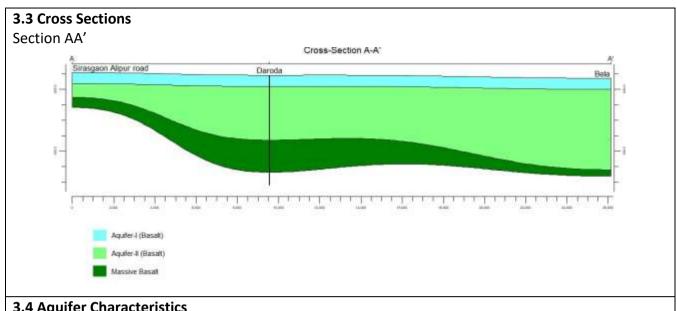
Hydrograph

Hydrograph shows Pre-monsoon risingwater level	Hydrograph shows Post- monsoon
trend @ 0.0076 m/year	risingwater level trend @ 0.108 m/year
Pre-Monsoon Water Level Trend (2010-2019) Rising	Post-Monsoon Water Level Trend (2010-
0.009 to 0.446 m/year	2019)
Falling 0.01 to 1.1 m/year	Rising 0.004 to 0.357 m/year
	Falling 0.006 to 0.19 m/year
Almost entire taluka is showing falling trend, except	Almost entire taluka is showing rising trend.
north western and eastern part of the block. Area	Area showing rising trend >0.2 m observed
showing rising trend >0.2 m observed in 27.33Km ² .	in 24.15Km ² . Except southern,
Falling trend > 0.6 m is observed in eastern part of the	northwestern and southern part, it shows
block.Area showing falling trend >0.2 m observed in	falling trend th the range of 0 to 0.2 m.
92.03 Km ² .	

2. Ground Water Issues

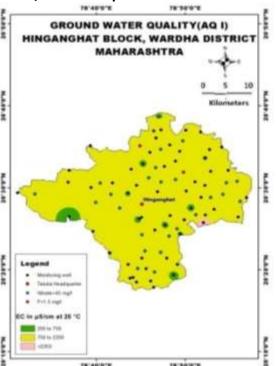
- 1.Limited aquifer potential
- 2. Water scarcity in lean period
- 3.Fluoride >1.5mg/l
- 4.Nitrate>45 mg/l

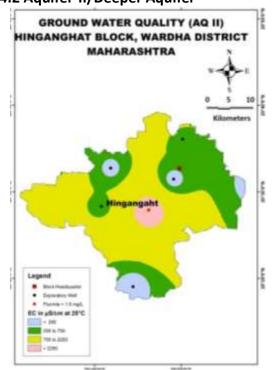

3. AQUIFER DISPOSITION


3.1 Number of Aquifers

Basalt - Aquifer-I (weathered& fractured basalt)

Basalt - Aquifer-II (Jointed & fractured basalt)


3.2 Lithological Disposition


3.4 Aquifer Characteristics					
Major Aquifers	Aquifers Basalt (Deccan Traps)				
Type of Aquifer (Phreatic/Semi-confined/Confined)	Aquifer-I (Phreatic)	Aquifer-II (Semi-confined /confined)	Aquifer-I		
Depth of Occurrence (mbgl)	9 to 30	40 to 176	5-30		
Granular/weathered/fractured rocks thickness (m)	5.4 to 22	3 to 9	5 to22		
Yield	10 – 100m³/day	Upto 2.5 lps	60-100m ³ /day		
Specific yield/Storativity (S)	0.019 - 0.028	0.000438	0.07		
Transmissivity (T)	30-80 m ² /day	149 to 260 m²/day	60-120 m ² /day		
4. GROUND WATER QUALITY					

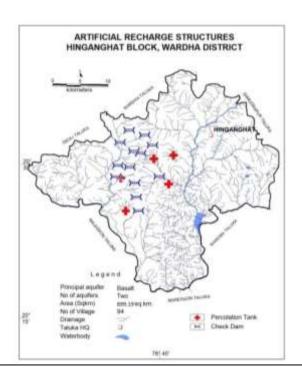
4.1 Aquifer-I/Shallow Aquifer

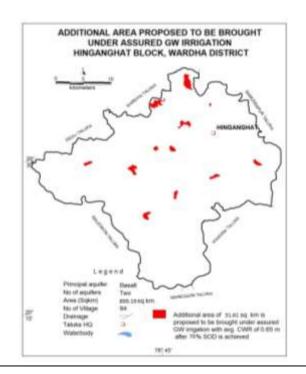
EC > 2250 μ S/cm has been observed in southeastern part of block as a small patch covering 3.27 Km². Whereas most of the area shows EC between750-2250 μ S/cm. Areas having EC between250-750 μ S/cm observed as small patches in the block.Fluoride >1.5 mg/l observed in the northern and eastern part of the block and Nitrate >45 mg/l observed in many parts of the block.

4.2 Aquifer-II/Deeper Aquifer

The ground water quality of deeper aquifer is suitable for irrigation purpose.EC between 750-2250 μ S/cm observed in major part of the block while EC between 250-750 μ S/cm observed in the north western part. Area showing EC>2250 μ S/cm is observed in 32.98 Km². Fluoride>1.5 mg/l observed in the central part of the block.

5. GROUND WATER RESOURCES

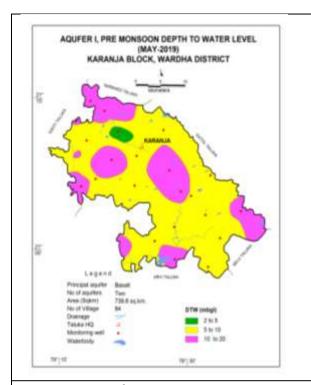

5.1 Aquifer-I/Shallow Aquifer	
Ground Water Recharge Worthy Area (Sq. Km.)	919.65
Total Annual Ground Water Recharge (MCM)	124.91
Natural Discharge (MCM)	6.93
Net Annual Ground Water Availability (MCM)	117.98
Existing Gross Ground Water Draft for irrigation (MCM)	57.50
Existing Gross Ground Water Draft for domestic and industrial water supply (MCM)	5.22
Existing Gross Ground Water Draft for All uses(MCM)	62.73
Provision for domestic and industrial requirement supply to 2025(MCM)	5.40
Net Ground Water Availability for future irrigation development (MCM)	56.02
Stage of Ground Water Development (%)	53.17
Category	Safe

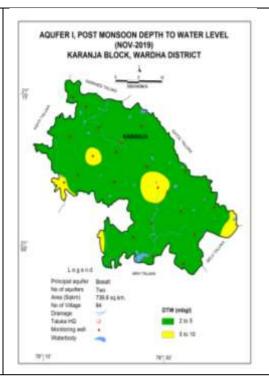

5.2 Aquifer-II/Deeper Aquifer

	Taluka	Mean	Area in	Piezom	S	Sy	Resource in	Resource in	Total resource
		thickn	sqkm	etric			above	confining	(mcm)
l				head				layer (mcm)	

	ess (m)		meter above bottom of confini ng layer				confining layer (mcm)				
Hingang hat	4	288.18	64	0.00004	138	0.002	0.807826	2.30544	3	3.113266	
Hingang hat	6	298.35	60	0.00004	138	0.002	0.784064	3.5802	4	1.364264	
Hingang hat	8	320.11	73	0.00004	138	0.002	1.02352	5.12176	6	5.14528	
Hingangh	at									13.62281	
6. GROU	JND WA	ATER RESO	URCE M	ANAGE	MENT				l		
Net Ann	ual Gro	und Wate	r Availab	ility (M	CM)					7.98	
		raft (MCM	<u> </u>						62.		
		d Water De		ent (%)					53.	17	
	-	Managen	nent								
SUPPLY	<u>` </u>	anhi CM							F 7	Г1	
	•	pply -GW pply -SW							57.51 0.0		
Domest									5.2		
Domesti		•								.31	
Total Su		, 300							64.		
Area of	· · ·	Sa. Km.)								0.45	
		or Artificial	recharge	e(Sq. Kr	n)				58.		
Type of				` .	· · · · · · · · · · · · · · · · · · ·				Hai	rd Rock	
Area fea	sible fo	r Artificial	Recharg	e (WL >	3mbgl) (Sq. Km.)			58.	94	
Volume	of Unsa	aturated Zo	one (MCI	M)					47.	74	
Average	Specifi	c Yield							0.02		
Recharg	e Poter	ntial (MCM)						0.95		
Surplus	water A	vailable (N	исм)						1.3	2	
Propose	d Struc	tures			Percolation Tank (@ Rs.175.14 Cl				Check Dam(@ Rs.19.432		
					lakh, Av. Gross Capacity-100			lakh, Av. Gross Capacity-		• •	
					TCM*2 fillings = 200 TCM)			10 TCM * 3 fillings = 30			
Number of Structures							TCM)				
Volume of Water expected to be					5 13 0.69 0.30						
		charged @			0.03			0.30			
efficienc	-	_	, 5 / 0								
	RTRWH Structures – Urban Areas										
							23409				
Total RWH potential (MCM)						1.13					
	•	ested / red	-	@ 80% i	unoff co	-efficien	t			0.90	
RTRWH	& AR is	economic	ally not v	viable &	hence, r	not recor	mmended.				
6.2 Dem	nand Sid	de Manage	ement								

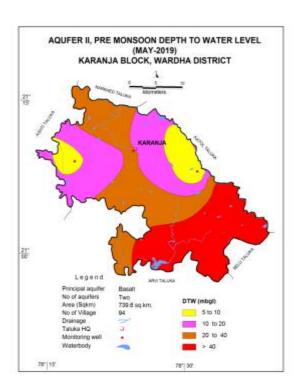
Micro irrigation techniques	
Irrigation Area (sq. km.) proposed for irrigation through Drip and Sprinkler	Not
	proposed
Water Saving by use of Drip and Sprinklers	-
Proposed Cropping Pattern change	Not
	proposed
Ground water Irrigated area under Water Intensive Crop (sq.km)	NIL
Water Saving by water use efficiency (MCM)	NIL
6.3 EXPECTED BENEFITS	
Net Ground Water Availability (MCM)	117.98
Existing Ground Water Draft for All Uses (MCM)	62.73
Present stage of Ground Water Development (%)	53.17
Additional GW resources available after Supply side interventions (MCM)	0.99
Ground Water Availability after Supply side intervention (MCM)	118.97
Stage of Ground Water Development after Supply side Interventions (%)	52.73
Total GWR available for GW Development (MCM)	20.55
GW draft after Ground Water Development to enhance Stage of Development to	83.28
70% (MCM)	
Other Interventions Proposed if any	Not
	proposed
Alternate Water Sources Available	NIL
6.4 Development Plan	
Volume of water available for GWD to enhance stage of GWD to 70% (MCM)	20.55
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	1233
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	206
Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m	31.61

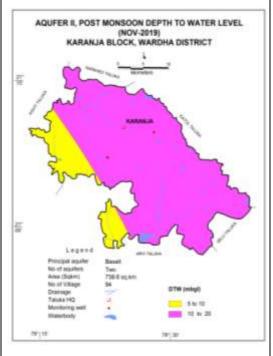



Location of AR Structure	Area proposed under Assured GW irrigation

9.5 KARANJA BLOCK, WARDHA DISTRICT, MAHARASHTRA

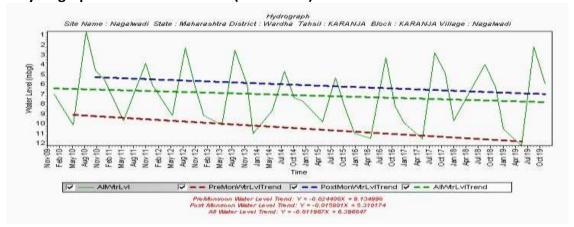
		TON, WANDING DIOTHOT, MAHAMAOHTMA			
1. SALIENT FEA					
1.1 Introductio	n				
Block Name Karanja					
Geographical Area (Sq. Km.) 619.11 Sq.					
Forest Area (Sq	լ. Km)	8	36.1 Sq. Km.		
Population (20:	11)	S	90462		
Climate		ſ	Monsoon sub-		
		t	ropical		
Net Annual Gro	ound \	Water Availability (MCM)	77.27		
Existing Gross (Groun	d Water Draft for All uses(MCM)	56.68		
Stage of Groun	d Wat	ter Development (%)	73.35		
Category		5	Semi -Critical		
1.2 Rainfall An	alysis				
Normal Rainfal		8	375.5 mm		
Annual Rainfall	(2019	9) 8	373 mm		
Decadal Averag	ge Anr	nual Rainfall (2008-17)	394.13 mm		
Long Term Rair	nfall	Rising Trend 0.478 mm/year.			
Analysis (1998-	-	Probability of Normal/Excess Rainfall: 85%/5%.			
2019)		Probability of Drought (Moderate/Severe)-: 5 % M	oderate & 5%		
•		Severe.			
Rainfall Trend (1998	-2019)			
2000					
2000 -		RAINFALL ANALYSIS-KARANJA v = 0.478	34x + 869.97		
1500		TALUKA	5-X + 605.57		
1000					
500	ш				
0			(
59° 59° 7	300 200,	LOU	2016 2017 2018 2019		
	•				
1.3 Geomorph	ology	, Soil & Geology			
Geomorphic The block is covered by structural hills followed by plateau slightly					
Unit dissected, plateau moderately dissected and plateau weathered					
Geology	eology Deccan Traps (Basalt)Age: Late Cretaceous to Eocene				
Soil					
followed by loamy, clayey extremely shallow soil, loamy clayey very					
shallow soil and fine, calcareous very deep soil in the northern part of the					
block as patches.					
1.4 Hydrology & Drainage					
Drainage The block is drained by the tributaries of Godavariand Sub basins of					
	Ward	dha river			
Hudrolog:	Majo	r project	1 (Kar)		
Hydrology	Medi	ium	0		


	Bigger Minor (250 to 600 and	>600 Ha.)	1 PT		
	Minor Irrigation Project (100	1 PT			
	Minor Irrigation Project (0 to	100 Ha.)	25 PT, 43 K T		
			Weirs, 54		
1.5 Land Use, A	griculture, Irrigation & Croppi	ng Pattern			
Geographical A	rea		619.11 Sq.		
			Km.		
Forest Area			86.1 Sq. Km.		
Cultivable Area			452.31 Sq.		
			Km.		
Net Sown Area			389.14 Sq.		
Net 30WII Alea			Km.		
Double Cropped	63.17 Sq. Km.				
Area under	Surface Water		0.76		
Irrigation	Ground Water		27.41		
Principal Crops	Crop Type		Area (Sq. Km.)		
(Reference year	Cotton		168.8		
2013-14)	Cereals		42.12		
	Pulses		71.24		
	Oil Seeds		142.22		
Horticultural	Fruits and Vegetables		25.39		
Crops	Sugarcane		0.25		
	Spices		2.23		
1.6 Water Level	behaviour				
1.6.1 Aquifer-I/	Shallow Aquifer				
Pre-Monsoon V	Vater Level (May 2019)	Post-Monsoon Water Level (Nov. 2019)			
Water level bet	ween 2-5 mbgl is observed	Water Level less between 2-5 mbgl is			
in isolated patches in the northern part of observed in almost entire area of the b					
the block while water level in the range of while water level between 5-			5-		
	served in almost entire	10mbglobservrd in isolated	d patches of the		
	el between 10-20 observed	block.			
as isolated patc	hes in the block.				


1.6.2 Aquifer-II/Deeper Aquifer

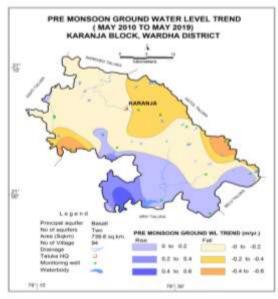
Pre-Monsoon Water Level (May 2019)

Water level between 5-10 mbgl is observed in isolated patch in eastern and western part of the block. Whereas, water levelbetween 20-30 mbgl is observed in major parts of the block. Water level between 10-20 mbgl observed in the western and eastern parts of the block whereas


Post-Monsoon Water Level (Nov. 2019)

Water level between 5-10 mbgl is observed in western and southwestern parts of the block while water level between 10-20 mbgl observed in the major parts of the block.

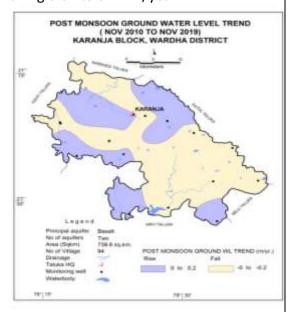
water level >40 mbgl observed in the southern and eastern part of the block.


1.7 Hydrograph&Water Level Trend (2010-2019)

Hydrograph shows Pre-monsoon falling water level trend @ 0.29 m/year

Pre-Monsoon Water Level Trend (2010-2019)

Pre-Monsoon trend Rising 0.06 to 0.53 m/year Falling 0.03 to 0.58 m/year



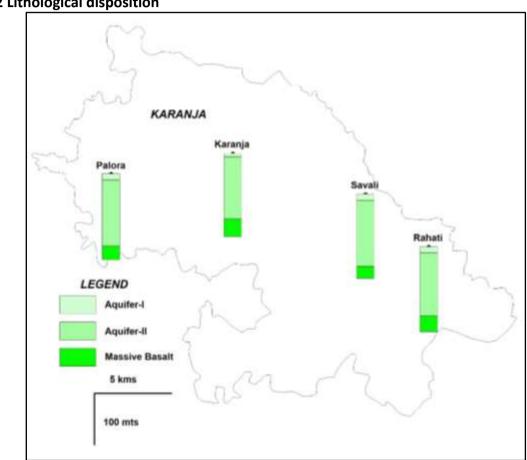
Almost entire block is showing falling trend, except southern and south eastern and north eastern parts of the block. Area showing rising trend >0.2 m is 10.76 Km². Most of the area shows falling trend in the range between 0 to 0.2 m. Area showing falling trend >0.2 m covering 165.91 Km²

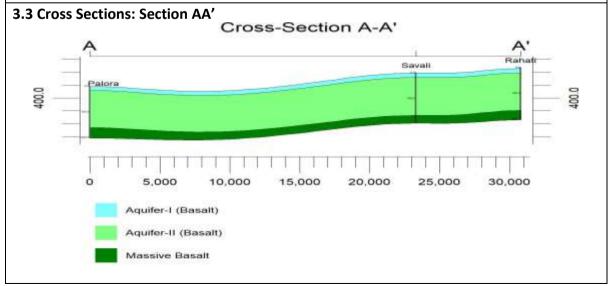
Hydrograph shows Post-monsoon fallingwater level trend @ 0.189 m/year

Post-Monsoon Water Level Trend (2010-2019)

Post-Monsoon trend Rising 0.007to 0.08 m/year Falling 0.04 to 0.14 m/year

Almost entire blockis showing falling trend in the range between 0 -0.2 m while rest of the block having rising trend in the range between 0-0.2 m.

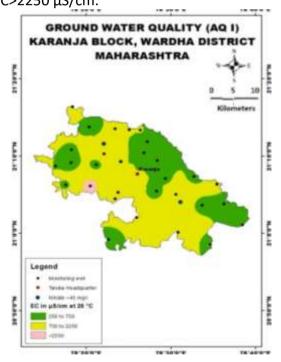

2.0 GROUND WATER ISSUES


- 1. Over exploitation
- 2. Water scarcity in lean period
- 3. Declining Water Level trend is observed in almost entire block.
- 4.Nitrate>45mg/l in Aquifer I

3.0AQUIFER DISPOSITION

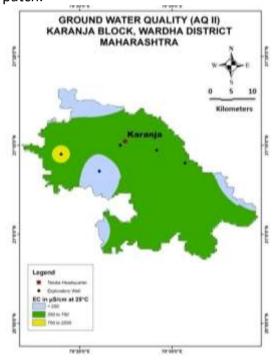
3.1 Number of Aquifers

3.2 Lithological disposition



3.4 Aquifer Characteristics		
Major Aquifers	Basalt (Deccan Traps	5)
Type of Aquifer (Phreatic/Semiconfined/Confined)	Aquifer-I (Phreatic)	Aquifer-II (Semi-confined /confined)
Depth of Occurrence (mbgl)	9 - 18	40 – 163
Granular/weathered/fractured rocks thickness (m)	5.4 – 114	1 to 3
Yield	10 - 100m ³ /day	Upto 2.5lps
Specific yield/Storativity (S)	0.019 - 0.028	0.00002 -0.000057
Transmissivity (T)	30-80 m ² /day	43 m ² /day

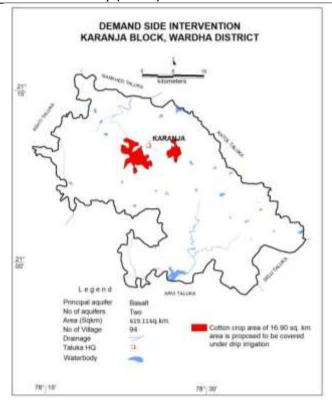
4. GROUND WATER QUALITY


4.1 Aquifer-I/Shallow Aquifer

EC between 750- 2250 μ S/cm has been observed in major parts of the block as patches.Nitrate >45 mg/l observed in some parts of the block.4.90 Km² area showing EC>2250 μ S/cm.

4.2 Aquifer-II/Deeper Aquifer

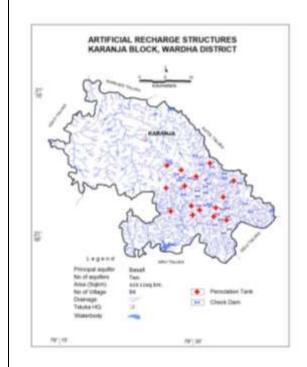
EC between 250- 750 μ S/cm is observed in almost entire part of the block. EC between 750- 2250 μ S/cm has been observed in western part of the block as a patch.

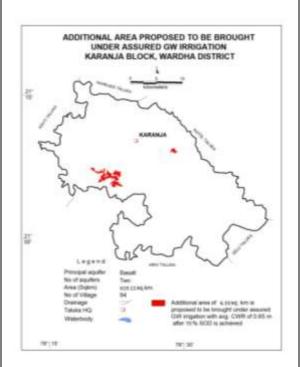


5 GROUND WATER RESOURCES

3. GROOM WATER RESCORCES	
5.1 Aquifer-I/Shallow Aquifer	
Ground Water Recharge Worthy Area (Sq. Km.)	603.20
Total Annual Ground Water Recharge (MCM)	81.47
Natural Discharge (MCM)	4.19
Net Annual Ground Water Availability (MCM)	77.27
Existing Gross Ground Water Draft for irrigation (MCM)	53.29

Existing Gross Ground Water Draft for domestic and industrial water supply (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for All uses (MCM) Existing Gross Ground Water Draft for fulture irrigation development (MCM) Existing Gross Ground Water Availability (MCM) Existing Gross Ground Water Availability (MCM) Existing Gross Ground Water Availability (MCM) Existing Gross Ground Water Draft (MCM) Existing Gross Ground Water Availability (MCM) Existing Ground Water Availability (MCM) Existing Ground Water Availability (MCM) Existing Ground Water Availability (MCM) Exist	Fxisting (Gross G	round W	ater Draft for	domestic a	nd indu	ıstrial wate	r	3.37
Existing Gross Ground Water Draft for All uses(MCM) 3.53	_		ioana w	ater brait for	domestic d	na maa	striai wate		3.37
Provision for domestic and industrial requirement supply to 2025(MCM) 3.53 Net Ground Water Availability for future irrigation development (MCM) 21.05 Stage of Ground Water Development (%) 5.3 Category	, `		round W	ater Draft for	All uses(M0	CM)			56.68
Net Ground Water Availability for future irrigation development (MCM) Stage of Ground Water Development (%) Semi-Critical Semi-Critica					-		to 2025(N	1CM)	
Stage of Ground Water Development (%) Semi-Critical					•		•		
Semi-Critical Semi-Critical Semi-Critical S.2 Aquifer-II/Deeper Aquifer Taluka Mean Area in thickn sqkm head meter above bottom of confining layer (mcm) layer (mcm)				-					
Taluka					<u>, </u>				Semi-Critical
Thicknown Sqkmown Sq			eeper Aq	uifer					
Namaber of Structures Namaber Structures Namber of Structures Name of Structures N	Taluka	thickn ess		head meter above bottom of confining	S	Sy	in above confining layer	e in confinin g layer	(mcm)
Total 6. GROUND WATER RESOURCE MANAGEMENT Net Annual Ground Water Availability (MCM) 77.27 Gross Annual Draft (MCM) 56.68 Stage of Ground Water Development (%) 73.35 6.1 Supply Side Management SUPPLY (MCM) Agricultural Supply -GW 53.3 Agricultural Supply -SW 0.76 Domestic Supply - GW 3.38 Domestic Supply - SW 0.85 Total Supply Area of Block (Sq. Km.) 619.11 Area suitable for Artificial recharge (Sq. Km) 196.61 Type of Aquifer Hard Rock Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) 196.61 Type of Aquifer Hard Rock Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) 196.61 Volume of Unsaturated Zone (MCM) 365.70 Average Specific Yield 0.02 Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30 TCM) Number of Structures 15 44 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas	_						1		
Net Annual Ground Water Availability (MCM) 77.27		6	72.47	44	0.0000438	0.002	0.139664	0.86964	
Net Annual Ground Water Availability (MCM) Gross Annual Draft (MCM) Stage of Ground Water Development (%) 73.35 6.1 Supply Side Management SUPPLY (MCM) Agricultural Supply -GW Agricultural Supply -GW 53.3 Agricultural Supply -SW Domestic Supply - GW 58.29 Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Average Specific Yield Volume of Unsaturated Zone (MCM) Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures — Urban Areas		NID MAA	TED DEC	DUDGE NAANA	CENTENIT				7.56037
Gross Annual Draft (MCM) 56.68 Stage of Ground Water Development (%) 73.35 6.1 Supply Side Management									77 27
Stage of Ground Water Development (%) 6.1 Supply Side Management SUPPLY (MCM) Agricultural Supply -GW Agricultural Supply -SW Domestic Supply - GW 3.38 Domestic Supply - SW Total Supply Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures — Urban Areas				-	(IVICIVI)				
SUPPLY (MCM) Agricultural Supply -GW Agricultural Supply -SW Domestic Supply - GW Sa.29 Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Average Specific Yield Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharge @ 75% efficiency (MCM) RTRWH Structures — Urban Areas			•	•	/n/\				
SUPPLY (MCM) Agricultural Supply -GW Agricultural Supply -SW Domestic Supply - GW 3.38 Domestic Supply - SW Consequence of Block (Sq. Km.) Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures — Urban Areas				•	(%)				/3.35
Agricultural Supply -GW Agricultural Supply -SW Domestic Supply - GW 3.38 Domestic Supply - SW Domestic Supply - SW Domestic Supply - SW Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Average Specific Yield Average Specific Yield Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures — Urban Areas			ivianager	nent					
Agricultural Supply - SW Domestic Supply - GW 3.38 Domestic Supply - SW			ala CM						F2.2
Domestic Supply - GW Domestic Supply - SW Domestic Supply - SW Total Supply Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Number of Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) TCM * 3 fillings = 30 TCM) Number of Structures 15 44 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures — Urban Areas	_		-						
Domestic Supply - SW Total Supply Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Average Specific Yield Surplus water Available (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas									
Total Supply Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Average Potential (MCM) Surplus water Available (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas									
Area of Block (Sq. Km.) Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Average Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas									
Area suitable for Artificial recharge (Sq. Km) Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures — Urban Areas									
Type of Aquifer Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures — Urban Areas									
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) Volume of Unsaturated Zone (MCM) Average Specific Yield Recharge Potential (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures 15 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas			Artificia	recharge (Sc	į. Kiii)				
Volume of Unsaturated Zone (MCM)365.70Average Specific Yield0.02Recharge Potential (MCM)7.31Surplus water Available (MCM)4.40Proposed StructuresPercolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM)Rs.19.432 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30 TCM)Number of Structures1544Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)2.310.99RTRWH Structures – Urban Areas									
Average Specific Yield Recharge Potential (MCM) Surplus water Available (MCM) Proposed Structures Percolation Tank (@ Check Dam(@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Tomas 44 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas				<u> </u>	/L >SIIIDBI) (,3 q . KIII	•)		
Recharge Potential (MCM) Surplus water Available (MCM) Proposed Structures Percolation Tank (@ Check Dam(@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures – Urban Areas				one (wich)					
Surplus water Available (MCM) Proposed Structures Percolation Tank (@ Rs.175.14 lakh, Av. Gross Capacity-10 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas		•		1)					
Percolation Tank (@ Check Dam(@ Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2 fillings = 200 TCM) Number of Structures Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures Percolation Tank (@ Check Dam(@ Rs.19.432 lakh, Av. Gross Capacity-10 TCM*3 fillings = 30 TCM) TCM * 3 fillings = 30 TCM) TCM) 0.99 0.99									
Rs.175.14 lakh, Av. Gross Capacity-10 TCM*2 fillings = 200 TCM) Number of Structures 15 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures - Urban Areas									
Number of Structures 15 44 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures – Urban Areas	Rs.175.14 lakh, Av. Gross Capacity-100 TCM*2		Av. Gross :M*2	Rs.19.432 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30					
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) RTRWH Structures – Urban Areas	·								
conserved / recharged @ 75% efficiency (MCM) RTRWH Structures – Urban Areas									
efficiency (MCM) RTRWH Structures – Urban Areas	·								
RTRWH Structures – Urban Areas		-	_						
			•	an Areas					
	Househo	lds to b	e covere	d (50% with 5	0 m²area)				0

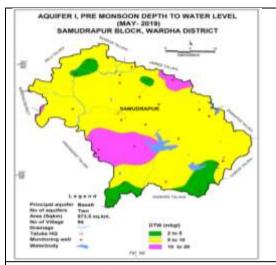

Total RWH potential (MCM)	0
Rainwater harvested / recharged @ 80% runoff co-efficient	0
Estimated Expenditure (Rs. In Cr.) @ Rs.30000/-per HH	0
RTRWH & AR is economically not viable & hence, not recommended.	
6.2 Demand Side Management	
Micro irrigation techniques	
Irrigation Area (sq. km.) proposed for irrigation through Drip and Sprinkler	16.9
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.815	4.39
m. Drip Req0.55, WUE- 0.304 m	
Proposed Cropping Pattern change	Not
	proposed
Ground water Irrigated area under Water Intensive Crop (sq.km)	NIL
Water Saving by water use efficiency (MCM)	NIL

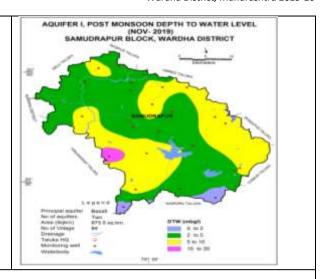

Demand Side Interventions

6.3 EXPECTED BENEFITS	
Net Ground Water Availability (MCM)	77.27
Existing Ground Water Draft for All Uses (MCM)	56.68
Present stage of Ground Water Development (%)	73.35
Additional GW resources available after Supply side and Demand side	3.30
interventions (MCM)	
Ground Water Availability after Supply side and Demand side intervention	80.57
(MCM)	
Stage of Ground Water Development after Supply side and Demand side	70.34
Interventions (%)	

Total GWR available for GW Development (MCM)	4.11
GW draft after Ground Water Development to enhance Stage of	60.79
Development to 70% (MCM)	
Other Interventions Proposed, if any	Not
	proposed
Alternate Water Sources Available	NIL
6.4 Development Plan	
Volume of water available for GWD to enhance stage of GWD to 70% (MCM)	4.11
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	247
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	41
Additional Area (sq.km.) proposed to be brought under assured GW	6.33
irrigation with av. CWR of 0.65 m	

Location of AR Structure

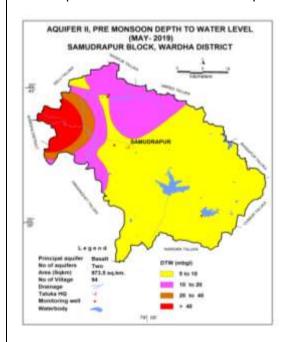



Area proposed under Assured GW irrigation

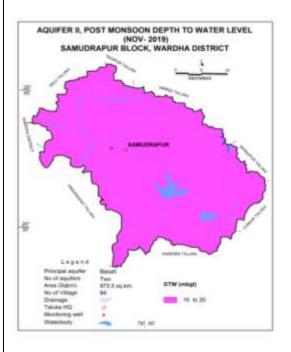
9.6 SAMUDRAPUR BLOCK, WARDHA DISTRICT, MAHARASHTRA

	ATURE		
1.1 Introduction	n		
Block Name			Samudrapur
Geographical A	996.68		
Forest Area (Sq	43.61		
Population (202	11)		117038
Climate	Monsoon sub-		
			tropical
Net Annual Gro	ound Water A	vailability (MCM)	135.26
Existing Gross (Ground Water	Draft for All uses(MCM)	60.17
Stage of Groun	d Water Deve	lopment (%)	44.49
Category			SAFE
1.2 Rainfall Ana	alysis		
Normal Rainfall			957.8 mm
Annual Rainfall	(2019)		1133.2 mm
Decadal Averag	ge Annual Rair	nfall (2010-19)	991.94 mm
Long Term Rain		Rising Trend 5.912 mm/year.	•
(1998-2019)	-	Probability of Normal/Excess Rainfall:	59%/27%.
		Probability of Drought (Moderate/Acu	
		5% Acute	
2000 -		LL ANALYSIS-SAMUDRAPUR	889.86
1500 BLOCI		y = 5.912x +	
1500 BLOCI		LL ANALYSIS-SAMUDRAPUR y = 5.912x +	
1500 BLOCI	K Pool Jool Jook J	y = 5.912x +	
BLOCI 1500 1000 500 1.3 Geomorphol Geomorphic	ogy, Soil & Ge	ology ts of the block are occupied by slightly of the part of the place of the pla	dissected plateau
1.3 Geomorphol	logy, Soil & Ge	ער בי און אין אין אין אין אין אין אין אין אין אי	dissected plateau eau observed In the
BLOCI 1500 1000 500 1.3 Geomorphol Geomorphic	Major part followed by central and	ology ts of the block are occupied by slightly on plateau weathered. Undissected plated northeastern parts while plateau mod	dissected plateau eau observed In the
BLOCI 1500 1000 500 1.3 Geomorphol Geomorphic	Major part followed by central and	ער בי און אין אין אין אין אין אין אין אין אין אי	dissected plateau eau observed In the
BLOCI 1500 1000 500 1.3 Geomorphol Geomorphic	logy, Soil & Geometric followed by central and found in so	ology ts of the block are occupied by slightly on plateau weathered. Undissected plated northeastern parts while plateau mod	dissected plateau eau observed In the derately dissected
BLOCI 1500 1000 500 1.3 Geomorphol Geomorphic Unit	Major part followed by central and found in second Train	ts of the block are occupied by slightly of portion parts while plateau modulthern and eastern parts of the block. aps (Basalt), Age: Late Cretaceous to Eo	dissected plateau eau observed In the derately dissected
1.3 Geomorphol Geomorphic Unit	Major part found in set Deccan Tra	אין	dissected plateau eau observed In the derately dissected cene

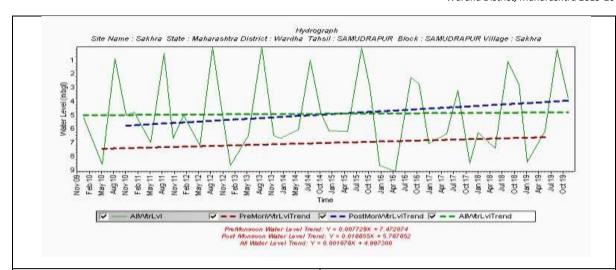
1.4 Hydrology & Drainage						
Drainage	The area is	drained by trib	utaries of	Godavari and Sub ba	sins of Wardha	
	River i.e. Ve	ena river				
	Major proje	ect		2 (Bor, Wana)		
	Medium			2 (Dam, Pothra)		
	Bigger Mind	or (250 to 600 a	and >600	1 Small Irrigation Po	ond	
	Ha.)					
	Minor Irriga	ation Project (1	00 to 250	0		
	Ha.)					
Hydrology	Minor Irriga	ation Project (0	to 100	38 Diversion Dam,	17 KT Weirs,5	
riyarology	Ha.)			Minor Irrigation Sch	neme, 4 PT, 12	
				Sakhali Cement Nal	la Band	
1.5 Land Use, Agi		gation & Cropp	ing Patter	n	_	
Geographical Are	ea				996.68 Sq.	
					Km.	
Forest Area					43.61 Sq. Km.	
Cultivable Area					869.87 Sq.	
					Km.	
Net Sown Area					733.28 Sq.	
					Km.	
Double Cropped	Area				136.59 Sq.	
		T			Km.	
Area under Irriga	tion	Surface Water			35.74	
		Ground Water			100.41	
Principal Crops		Crop Type			Area (Sq. Km.)	
(Reference year 2	2018-19)	Cotton			367.11	
		Cereals			52.89	
		Pulses			192.98	
		Oil Seeds		248.85		
Horticultural Cro	ps	Fruits and Ve	getables		5.69	
		Sugarcane			0	
		Spices			2.35	
1.6 Water Level E						
1.6.1 Aquifer-I/SI			1			
Pre-Monsoon Wa	•	•	Post-Monsoon Water Level (Nov. 2019)			
Water level betw	_		Water Level between 0-2 mbgl is observed			
in northern, sout			in isolated patch in southern part of block.			
parts of the block	•	•		evel between 2 to 5 n	_	
water level in the	_	_	_	part of the block. W		
observed entire			_	is observed in easter		
Waterlevel range observed in sout		_	-	the block. Water level observed in the wes		
parts of the block		ui Eastelli	_	very small isolate pa	•	
				•		



1.6.2 Aquifer-II/Deeper Aquifer


Pre-Monsoon Water Level (May 2019)

Water level between 5-10 mbgl is observed in almost entire block. Water level between 10-20 mbgl observed in the northern and western parts of the block while water level between 20-40 mbgl observed in the western part of the block. Water level >40 mbgl observed in the western part of the block as an isolated patch.



Post-Monsoon Water Level (Nov. 2019)

Water level between 10-20 mbgl observed in almost entire block

1.7Hydrograph and Water Level Trend (2010-2019)

Hydrograph shows Pre-monsoon rising water level trend @ 0.09 m/year

Hydrograph shows Post- monsoon risingwater level trend @ 0.199 m/year

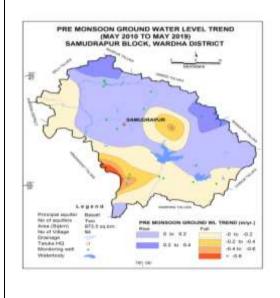
Pre-Monsoon trend

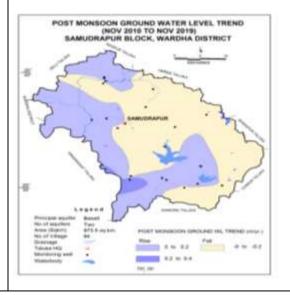
Post-Monsoon trend

Rising 0.01 to 0.13 m/year

Rising 0.03 to 0.18 m/year

Falling 0.01 to 0.24 m/year


Falling 0.009 to 0.125 m/year


Pre-Monsoon Water Level Trend (2010-2019)

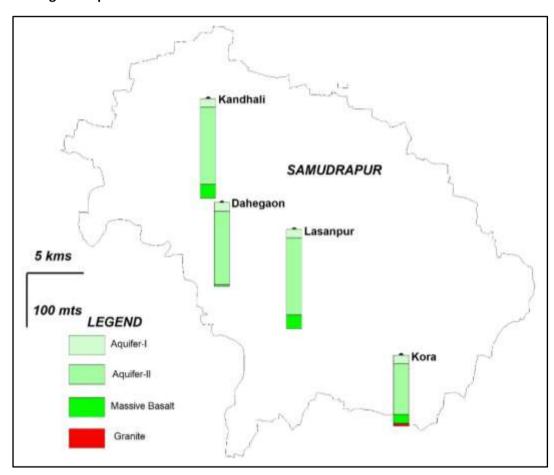
Post-Monsoon Water Level Trend (2010-2019)

Almost entire taluka is showing rising trend, except central and western part of the block. Area the range of 0 to 0.2 m. Rising trend is observed showing rising trend >0.2 m is 5.64 Km². Falling in western and northern parts of the block. Area trend between 0 -0.2m m is observed in isolated showing rising trend >0.2 m is 9.87 Km². patches in central and western part of the block. Area showing falling trend >0.2 m is 135.58 Km².

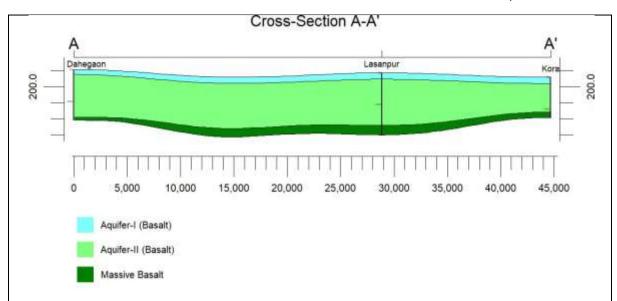
Almost entire taluka is showing falling trend in

2.0 GROUND WATER ISSUES

- 1. Water scarcity in lean period
- 2.Nitrate>45mg/l in Aquifer I


3.0 AQUIFER DISPOSITION

3.1 Number of Aquifers


Basalt – Aquifer-I (weathered& fractured basalt)

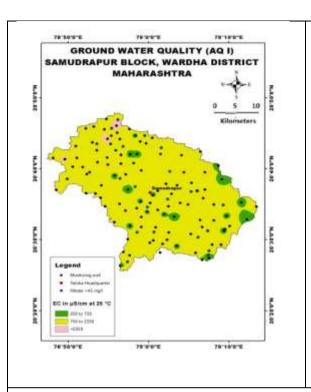
Basalt – Aquifer-II (Jointed & fractured basalt)

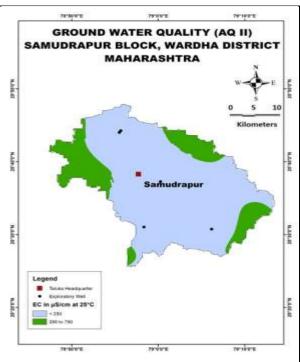
3.2 Lithological disposition

3.3 Cross Sections: Section AA'

3.4 Aquifer Characteristics

Major Aquifers	Basalt (Deccan Traps)			
Type of Aquifer (Phreatic/Semiconfined/Confined)	Aquifer-I (Phreatic)	Aquifer-II (Semi-confined /confined)		
Depth of Occurrence (mbgl)	9 to 16	40 to 157		
Granular/weathered/fractured rocks thickness (m)	5.4 to 12	1 to 6		
Yield	10 – 100m³/day	Upto 2.5 lps		
Specific yield/Storativity (S)	0.074	1.35*10-2		
Transmissivity (T)	407.82	98.6		


4.GROUND WATER QUALITY


4.1 Aquifer-I/Shallow Aquifer

EC between 750-2250 $\mu S/cm$ has been observed in almost entire part of the block while >2250 $\mu S/cmobserved$ northern part covering 11.17 Km^2 area. Nitrate>45 mg/l observed in some parts of the block

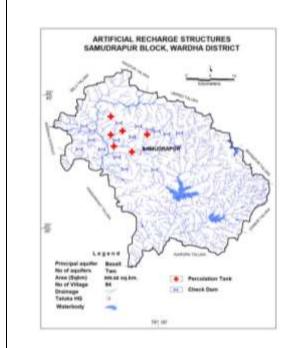
4.2 Aquifer-II/Deeper Aquifer

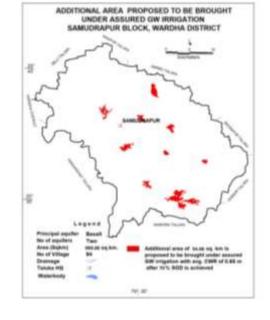
The ground water quality of deeper aquifer is suitable for drinking purpose. The EC less than 250 μ S/cm is observed in almost entire part of the block.

5. GROUND WATER RESOURCES

5.1 Aguifer-I/	Shallow	Aauifer
----------------	---------	---------

Ground Water Recharge Worthy Area (Sq. Km.)	925.52
Total Annual Ground Water Recharge (MCM)	142.62
Natural Discharge (MCM)	7.35
Net Annual Ground Water Availability (MCM)	135.26
Existing Gross Ground Water Draft for irrigation (MCM)	56.12
Existing Gross Ground Water Draft for domestic and industrial water supply (MCM)	4.04
Existing Gross Ground Water Draft for All uses(MCM)	60.17
Provision for domestic and industrial requirement supply to 2025(MCM)	4.23
Net Ground Water Availability for future irrigation development (MCM)	74.71
Stage of Ground Water Development (%)	44.49
Category	Safe


5.2 Aquifer-II/Deeper Aquifer


Taluka	Mean	Area in	Piezometric	S	Sy	Resource in	Resource in	Total resource
	thick	sqkm	head meter			above confining	confininglay	(mcm)
	ness		above			layer (mcm)	er (mcm)	
	(m)		bottom of					
			confining					
			layer					

								,		
Samudrapu		753.3	50	0.000055	0.000	2 020070	6.006		0.055450	
r	4	1	58	0.000065	0.002	2.839979	6.0264	18	8.866459	
Samudrapu r	6	172.6 9	56	0.000065	0.002	0.628592	2.0722	2	2.700872	
		,	30	0.000003	0.002	0.020332	2.0722	-0	2.700072	
Samudrapu r	8	42.86	42	0.000065	0.002	0.117008	0.6857	76	0.802768	
									12.3701	
6 GPOLINE	Total 12.3701 6. GROUND WATER RESOURCE MANAGEMENT									
Net Annual (11			13	35.26	
Gross Annua	ıl Draft	(MCM)						60	0.17	
Stage of Gro	und W	ater Dev	velopment	(%)				44	1.49	
			·	(//						
6.1 Supply SUPPLY (MC		nanage	ment							
Agricultural :	Supply	-GW						56	5.13	
Agricultural								35.74		
Domestic Su									04	
Domestic Su	pply - S	sW						1.	04	
Total Supply	'							96	5.92	
Area of Block	k (Sq. k	(m.)						99	99.68	
Area suitable	e for A	rtificial r	echarge(Sq	. Km)				76	5.44	
Type of Aqui	fer							Ha	ard Rock	
Area feasible	e for Ai	rtificial R	Recharge (W	/L >3mbgl) (9	Sq. Km.)			76	5.44	
Volume of U	nsatur	ated Zoı	ne (MCM)					71	L.09	
Average Spe	cific Yi	eld						0.	02	
Recharge Po	Recharge Potential (MCM)							1.	42	
Surplus wate			CM)					1.	71	
•				Dorgo	lation Tan	w/@	Chook F			
Proposed St	iuctur	- 5			lation Tar 5 14 lakh	الد رس Av. Gross	Check [lakh, Av.	
						CM*2 fillings			acity-10 TCM	
					•	Civi Z illilligs		•	•	
	= 200 TCM) * 3 fillings = 30 TCM						- 30 TCIVI			
Number of S	tructu	res		6			17			

Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	0.9	0.39	
RTRWH Structures – Urban Areas	No Urban area		
Households to be covered (50% with 50 m	² area)	()
Total RWH potential (MCM)		()
Rainwater harvested / recharged @ 80% r	unoff co-efficient	()
Estimated Expenditure (Rs. In Cr.) @ Rs.30	000/-per HH	()
RTRWH & AR is economically not viab	le & hence, not recommended.		
6.2 Demand Side Management Micro irrigation techniques			
Irrigation Area (sq. km.) proposed for irriga	ation through Drip and Sprinkler	1	Not proposed
Water Saving by use of Drip and Sprinklers		-	-
Proposed Cropping Pattern change		N	Not proposed
Ground water Irrigated area under Water	Intensive Crop (sq.km)	1	VIL
Water Saving by water use efficiency (MCI	M)	ſ	VIL
6.3 EXPECTED BENEFITS			
Net Ground Water Availability (MCM)			135.26
Existing Ground Water Draft for All Uses (N	MCM)		60.17
Present stage of Ground Water Developme	ent (%)		44.49
Additional GW resources available after Su	ipply side interventions (MCM)		1.28
Ground Water Availability after Supply side	e intervention (MCM)		136.54
Stage of Ground Water Development after	Supply side Interventions (%)		44.07
Total GWR available for GW Development	(MCM)		35.41
GW draft after Ground Water Developmer 70% (MCM)	nt to enhance Stage of Developm	ent to	95.58
Other Interventions Proposed, if any			Not proposed
Alternate Water Sources Available			NIL
6.4 Development Plan			
Volume of water available for GWD to enl	nance stage of GWD to 70% (MC	M)	35.41

Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	2125
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	354
Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m	54.48

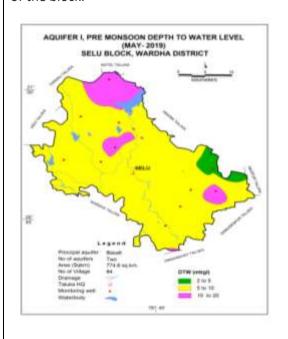
Location of AR Structure

Area proposed under Assured GW irrigation

9.7 SELU BLOCK, WARDHA DISTRICT, MAHARASHTRA

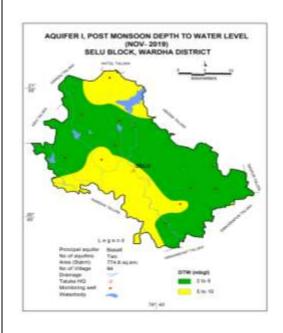
1.0 SALIENT FEATURE			
1.1 Introduction			
Block Name		Selu	
Geographical Area (Sq. Km.)		715.93 Sq. Km.	
Forest Area (Sq. Km)		110.58Sq. Km.	
Population (2011)		129647	
Climate		Monsoon sub-	
		tropical	
Net Annual Ground Water Avail	ability (MCM)	91.52	
Existing Gross Ground Water Dr	raft for All uses(MCM)	53.29	
Stage of Ground Water Develop	oment (%)	58.23	
Category		SAFE	
1.2 Rainfall Analysis			
Normal Rainfall		984.4 mm	
Annual Rainfall (2019)	869.4mm		
Decadal Average Annual Rainfa	II (2010-19)	923 mm	
Long Term Rainfall Analysis	Falling Trend 4.34 mm/year.		
(1998-2019)	Probability of Normal/Excess Rainfall: 54	%/32%.	
	Probability of Drought (Moderate/Severe	e)-: 9 % Moderate & 5%	
	Severe.		
Rainfall Trend (1998-2019)			
1			
2000 - RAINI	FALL ANALYSIS-SELU BLOCK y = -4.3	3432x + 1034.3	
500			
282, 282, 200, 200, 200, 200, 200, 2	200, 500, 500, 500, 500, 500, 500, 500,	25, 501, 501, 501, 5018	

	logy, Soil & Geol					
Geomorphic Un	it	Plateau weathered occupy almost entire area of				
		block.Moderately dissected plateau observed in the northern part of the block while slightly dissected plateau observed in the				
		1.	•			
		southern and northern parts of the block. Highly dissected plateau observed as small patches .				
Geology		Deccan Traps (Basalt), Age: Late Cretaceous to Eocene				
Soil	Major parts of the block covered by fine-loamy clayey shallow					
		followed by fine calcareous very dee		calcareous deep		
		soil and loamy clayey very shallow so	il.			
1.4 Hydrology 8	Drainage					
Drainage		The main river of the block is Bor.				
		Major project	2 (Bor, W	ana)		
		Medium	2 (Panchdhara,			
Headard and			Dongargaon)			
Hydrology		Bigger Minor (250 to 600 and >600	2 KT Weirs, I PT			
		Ha.)				
		Minor Irrigation Project (100 to 250	1 PT			
		Ha.)	29 Diversion Dam, 40 K			
		Minor Irrigation Project (0 to 100				
		Ha.)	Weirs, 6 N	Minor Irrigation		
			Scheme, 2	2 PT		
1.5 Land Use, A	griculture, Irriga	tion & Cropping Pattern				
Geographical A	·ea			715.93 Sq.		
				Km.		
_				110.58 Sq.		
Forest Area				Km.		
Cultivable Area				485.4 Sq. Km.		
				431.52 Sq.		
Net Sown Area				Km.		
Double Cropped	l Area			53.88 Sq. Km.		
Area under	Surface Water			1.98		
Irrigation	Ground Water			26.14		


Principal Crops	Стор Туре	Area (Sq.
(Reference year 2013-14)		Km.)
	Cotton	210.4
	Cereals	42.21
	Pulses	70.71
	Oil Seeds	144.93
Horticultural Crops	Fruits and Vegetables	7.27
	Sugarcane	6.19
	Spices	3.08

1.6 Water Level Behavior

1.6.1 Aquifer-I/Shallow Aquifer


Pre-Monsoon Water Level (May 2019)

Water level between 2-5 mbgl is observed in eastern part of the block while water level in the range of 5 to 10 mbgl is observed in almost entire block. Water level between 10-20 mbgl is observed in northern, central and eastern parts of the block.

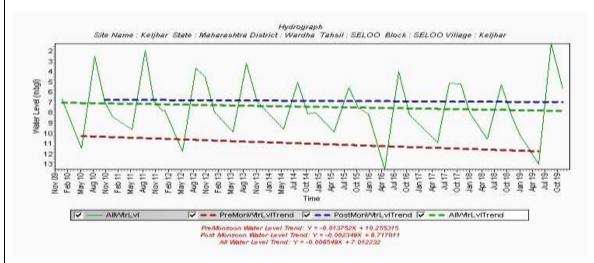
Post-Monsoon Water Level (Nov. 2019)

Water Level between 2- 5 mbgl is observed in almost entire part of the block while water level between 5-10 mbgl is observed in northen and south western parts of the block.

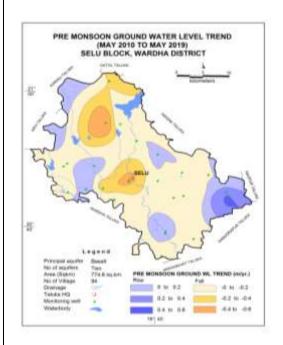
1.6.2 Aquifer-II/Deeper Aquifer

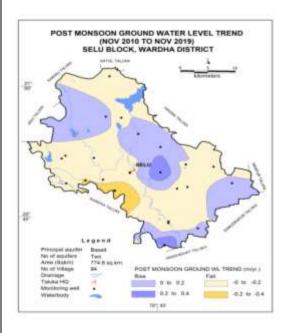
Pre-Monsoon Water Level (May 2019)

Post-Monsoon Water Level (Nov. 2019)


Water level between 5-10 mbgl is observed in major part of the block. Water level between 10-20 mbgl observed in the north western, southern and eastern parts of the block. Water level between 20-40 and >40 mbgl observed in the north western and southern parts of the block.

Water level 2 to 5 mbgl is observed in southern part of the block as an isolated patch. Water level between 5-10 mbgl is observed in the south eastern part of the block. Water level between 10-20 mbgl observed in the major part of the block.

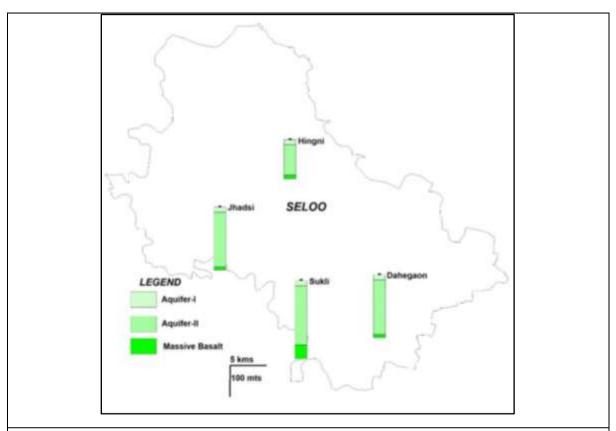

1.7 Hydrograph and Water Level Trend (2010-2019)


Hydrograph shows Pre-monsoon falling water	Hydrograph shows Post- monsoon fallingwater
level trend @ 0.165 m/year	level trend @ 0.03 m/year
Pre-Monsoon trend	Post-Monsoon trend
Rising 0.024 to 0.235 m/year	Rising 0.002 to 0.338 m/year
Falling 0.006 to 0.54 m/year	Falling 0.02 to 0.39 m/year
Pre-Monsoon Water Level Trend (2010-2019)	Post-Monsoon Water Level Trend (2010-2019)
Falling trend is observed in almost entire part of	Rising trend is observed in south eastern, central
the block. Rising trend is observed in eastern,	and western part. Area showing rising trend >0.2

southern,western and central parts of the block as isolated patches. Area showing rising trend >0.2 m observed in 32.09 Km²

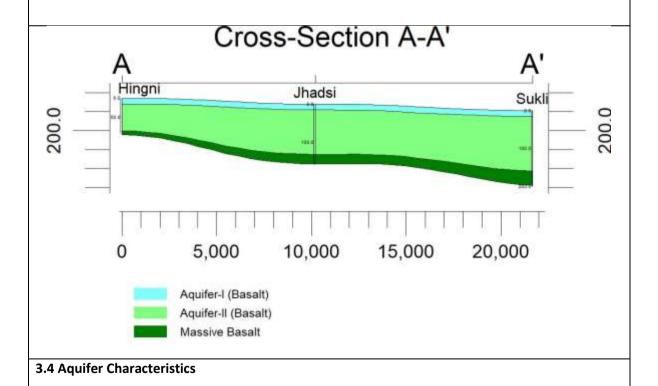
While falling trend >0.2 mobserved in 80.04 Km².

m observed in 6.70 Km^{2.} Falling trend is observed in almost entire part of the block. Area showing falling trend >0.2 m observed in 13.93 Km².


2.0 Ground Water Issues

- 1. Water scarcity in lean period
- 2. Declining Water Level trend is observed in almost entire block.
- 3.Nitrate>45mg/l in Aquifer I
- 4.Fluoride>1.5 mg/l in Aquifer II

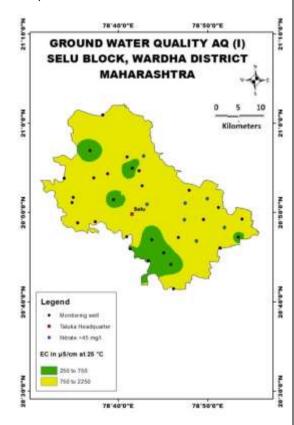
3.0 AQUIFER DISPOSITION


3.1 Number of Aquifers	Basalt – Aquifer-I (weathered& fractured
	basalt)
	Basalt – Aquifer-II (Jointed & fractured basalt)

3.2 Lithological disposition

3.3 Cross Sections: Section AA'

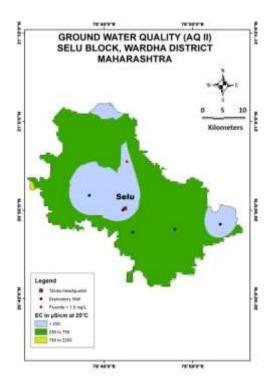
Major Aquifers


Basalt (Deccan Traps)

Type of Aquifer (Phreatic/Semiconfined/Confined)	Aquifer-I (Phreatic)	Aquifer-II (Semi-confined /confined)
Depth of Occurrence (mbgl)	9 to 18	40 to 162
Granular/weathered/fractured rocks thickness (m)	5.4 to 14	1 to 4
Yield	10 – 100m³/day	Upto 2.5 lps
Specific yield/Storativity (S)	0.019 - 0.028	0.00033
Transmissivity (T)	30-80 m ² /day	13 to 270 m ² /day

4 GROUND WATER QUALITY

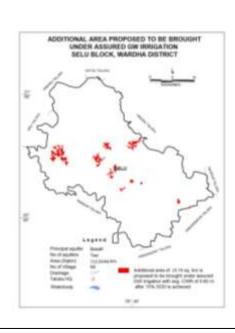
4.1 Aquifer-I/Shallow Aquifer


EC between 750-2250 μ S/cm has been observed in major part of the block while EC between 250-750 μ S/cm has been observed in the south eastern, north western and central parts of the block. Nitrate >45 mg/l observed in central and esternparts of the block.

4.2 Aquifer-II/Deeper Aquifer

EC between 250-750 μ S/cm has been observed in major part of the block while EC between 750 - 2250 μ S/cm has been observed in western parts of the block as a small patch.

Fluoride>1.5 mg/l observed in north estern part of the block.

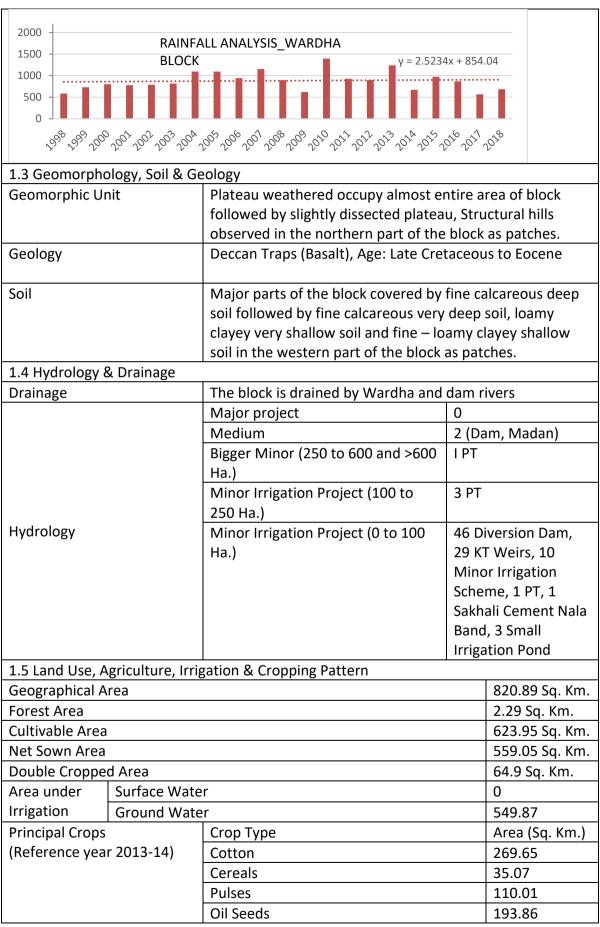

5. GROUND WATER RESOURCES

5.1 Aguifer-I/Shallow Aguifer

Ground Water Recharge Worthy Area (Sq. Km.)						641.40		
Total Annual Ground Water Recharge (MCM)							96.56	
Natura	al Discharge (МСМ)						5.04
Net Ar	nual Ground	Water A	vailability	(MCM)				91.52
Existin	g Gross Grou	nd Wate	r Draft for	irrigatio	n (MCM)		49.24
Existin (MCM	g Gross Grou)	nd Wate	r Draft for	domesti	c and in	dustrial wate	er supply	4.04
Existin	g Gross Grou	nd Wate	r Draft for	All uses(MCM)			53.29
Provisi	ion for domes	stic and i	ndustrial re	equirem	ent supp	oly to 2025(N	исм)	4.24
Net Gr	ound Water	Availabili	ty for futu	re irrigat	ion dev	elopment (M	ICM)	38.13
Stage	of Ground Wa	ater Deve	elopment (%)				58.23
Catego	ory							Safe
5.2 Aq	uifer-II/Deep	er Aquif	er					
Taluka	Mean thickness (m)	Area in sqkm	Piezometri c head meter above bottom of confining layer	S	Sy	Resource in above confining layer (mcm)	Resource in confininglayer (mcm)	Total resource (mcm)
Selu	4	642.8	55	0.000	0.00	1.166682	5.1424	6.309082
Jeiu		042.0	33	0.000	0.00	1.100002	3.1424	0.303002
Selu	6	97	60	0.000	2	0.19206	1.164	1.35606
				0.000	0.00			
Selu	8	31.97	50	065	2	0.103903	0.51152	0.615423
							Total	8.280565
	OUND WATI				IENT			01.52
	nnual Ground		valiability	(IVICIVI)				91.52
Gross Annual Draft (MCM)						53.29		
Stage of Ground Water Development (%)						58.23		
	ipply Side M Y (MCM)	lanagen	nent					
Agricultural Supply -GW						49.24		
Agricultural Supply -SW						1.98		

Domestic Supply - GW			4.05
Domestic Supply - SW	1.01		
Total Supply	Total Supply		
Area of Block (Sq. Km.)			715.93
Area suitable for Artificial recharge(Sq. Km)			504.46
Type of Aquifer			Hard Rock
Area feasible for Artificial Recharge (WL >3mbg	l) (Sq. Km.)		504.46
Volume of Unsaturated Zone (MCM)			1932.08
Average Specific Yield			0.02
Recharge Potential (MCM)			38.64
Surplus water Available (MCM)			11.30
Proposed Structures	am(@ Rs.19.432 . Gross Capacity- * 3 fillings = 30		
Number of Structures	40	113	
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)			
RTRWH Structures – Urban Areas			
Households to be covered (50% with 50 m²area	a)		2938
Total RWH potential (MCM)			0.13
Rainwater harvested / recharged @ 80% runof	f co-efficient		0.10
RTRWH & AR is economically not viable &	hence, not recommende	d.	- I
6.2 Demand Side Management			
Micro irrigation techniques			
Irrigation Area (sq. km.) proposed for irrigation through Drip and Sprinkler			Not proposed
Water Saving by use of Drip and Sprinklers	-		
Proposed Cropping Pattern change			Not proposed
Ground water Irrigated area under Water Intensive Crop (sq.km)			NIL

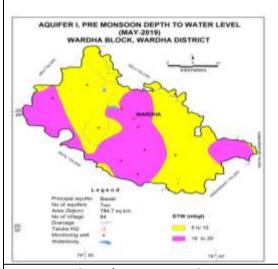
Water Saving by water use efficiency (MCM)	NIL
6.3 EXPECTED BENEFITS	
Net Ground Water Availability (MCM)	91.52
Existing Ground Water Draft for All Uses (MCM)	53.29
Present stage of Ground Water Development (%)	58.23
Additional GW resources available after Supply side interventions (MCM)	8.48
Ground Water Availability after Supply side intervention (MCM)	100
Stage of Ground Water Development after Supply side Interventions (%)	53.29
Total GWR available for GW Development (MCM)	16.71
GW draft after Ground Water Development to enhance Stage of Development to 70% (MCM)	70
Other Interventions Proposed, if any	Not proposed
Alternate Water Sources Available	NIL
6.4 Development Plan	
Volume of water available for GWD to enhance stage of GWD to 70% (MCM)	16.71
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	1003
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	167
Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m	25.70



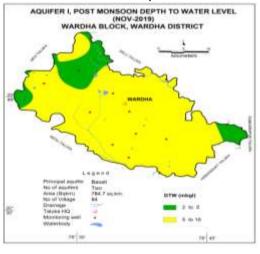
Area proposed under Assured GW irrigation

9.8 WARDHA BLOCK, WARDHA DISTRICT, MAHARASHTRA

1.0 SALIENT FEATURE			
1.1 Introduction			
Block Name		Wardha	
Geographical Area (Sq. Km.)		820.89 Sq. Km.	
Forest Area (Sq. Km)		2.29 Sq. Km.	
Population (2011)		357476	
Climate		Monsoon sub-	
		tropical	
Net Annual Ground Water Av	Annual Ground Water Availability (MCM)		
Existing Gross Ground Water	oss Ground Water Draft for All uses(MCM)		
Stage of Ground Water Development (%)		62.58	
Category		SAFE	
1.2 Rainfall Analysis		·	
Normal Rainfall		894.6 mm	
Annual Rainfall (2019)		789.3 mm	
Decadal Average Annual Rain	infall (2010-19) 901.51 mm		
Long Term Rainfall Analysis	Rising Trend 2.52 mm/year.		
(1998-2019)	Probability of Normal/Excess Rainfall: 72%/14%.		
	Probability of Drought (Moderate)-: 14 % Moderate.		
Rainfall Trend (1998-2019)			

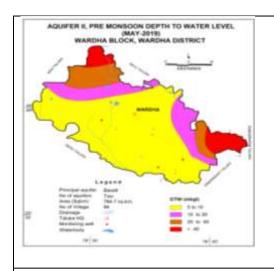


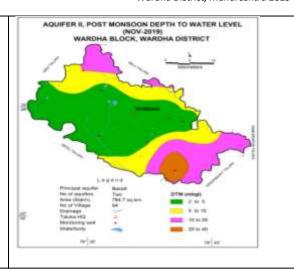
Fruits and Vegetables	9.6
Sugarcane	1.55
Spices	2.93
	Sugarcane


1.6 Water Level Behavior

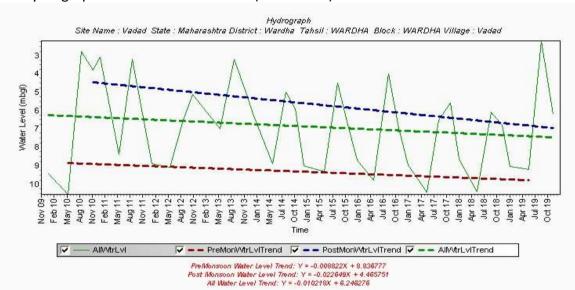
1.6.1 Aguifer-I/Shallow Aguifer

Pre-Monsoon Water Level (May 2019) Water level between 5- 10 mbgl is observed in major part of the block while water level between 10-20 mbgl observed in the eastern, central and south western parts of the block.


Post-Monsoon Water Level (Nov. 2019) Water Level between 5-10 mbgl is observed in almost entire parts of the block while water level between 2-5 mbgl observed in the isolated patch in eastern, western and northern parts of the block.



1.6.2 Aquifer-II/Deeper Aquifer


Pre-Monsoon Water Level (May 2019) Water level between 5-10 mbgl is observed in major parts of the block while water level between 10-20 mbgl, 20-40 mbgl and >40 mbgl are observed in the northern and eastern parts of the block.

Post-Monsoon Water Level (Nov. 2019) Water level 2 to 5 mbgl is observed in major part of the block while water level 5-10 mbgl is observed in north eastern and south eastern part of the block. Water level between 10-20 mbgl observed in the northern and south eastern parts of the block while water level between 20-40 mbgl observed in the southern part of the block.

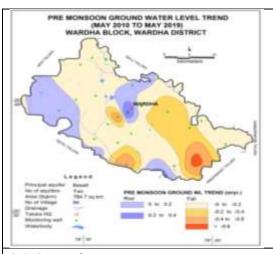
1.7 Hydrograph and Water Level Trend (2010-2019)

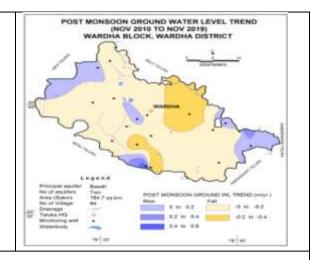
All Water Level Trend: Y = -0.010218X + 6.2462

Hydrograph shows Pre-monsoon falling water level trend @ 0.11 m/year

Pre-Monsoon trend Rising 0.045 to 0.107 m/year Falling 0.012 to 0.545 m/year

Pre-Monsoon Water Level Trend (2010-2019)

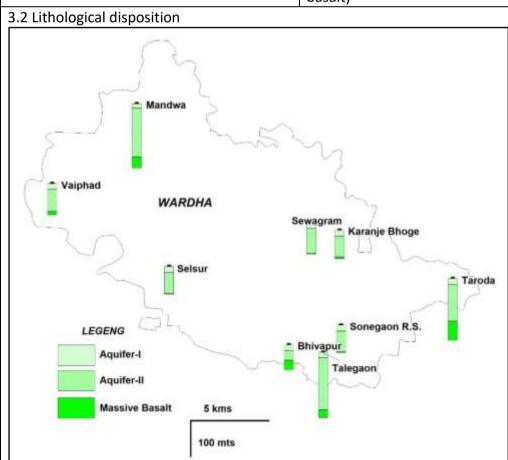

Major parts of the block showing falling trend. Area showing falling trend >0.2 m observed in 113.54 Km². Rising trend is observed in sothern, western and central part. Area showing rising trend >0.2 m observed in 3.17 Km².

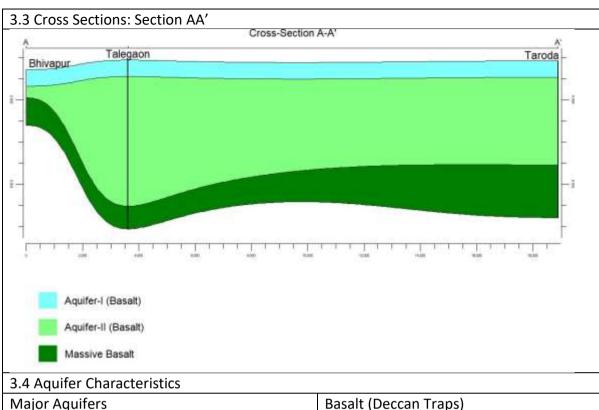

Hydrograph shows Post- monsoon fallingwater level trend @ 0.27 m/year

Post-Monsoon trend Rising 0.04 to 0.437 m/year Falling 0.019 to 0.377 m/year

Post-Monsoon Water Level Trend (2010-2019)

Major parts of the block showing falling trend. Area showing falling trend >0.2 m observed in 52.72 Km². Area showing rising trend >0.2 m observed in 2.29 Km² Rising trend is observed in sothern, western, eastern and central part as isolated patches.

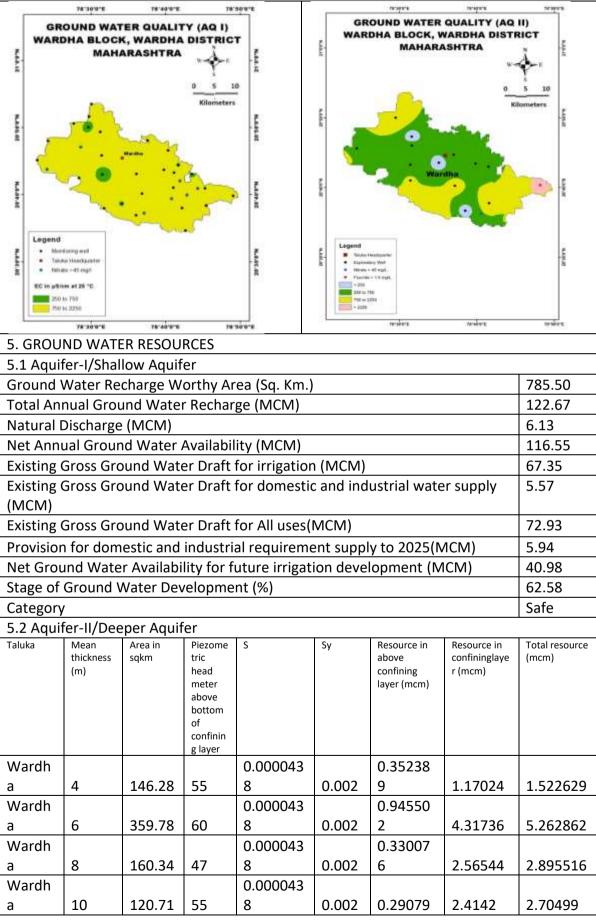



2.0 Ground Water Issues

- 1. Water scarcity in lean period
- 2. Declining Water Level trend is observed in almost entire block.
- 3. Nitrate>45 mg/l in Aquifer I &II
- 4.F>1.5 mg/l observed in Aquifer II

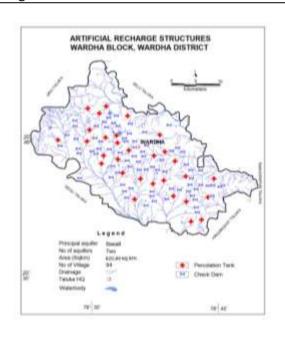
3.0 AQUIFER DISPOSITION

3.1 Number of Aquifers	Basalt – Aquifer-I (weathered& fractured
	basalt)
	Basalt – Aquifer-II (Jointed & fractured
	basalt)

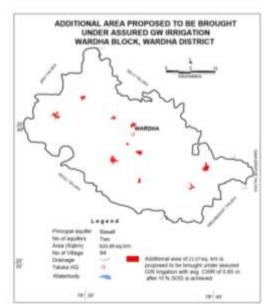

Major Aquifers	Basalt (Deccan Tra	Basalt (Deccan Traps)		
Type of Aquifer (Phreatic/Semi-	Aquifer-I	Aquifer-II (Semi-		
confined/Confined)	(Phreatic)	confined /confined)		
Depth of Occurrence (mbgl)	9 to 30	40 to 173		
Granular/weathered/fractured rocks	6.3 to 22	1 to 11.5		
thickness (m)				
Yield	10 – 100m³/day	Upto 2.5 lps		
Specific yield/Storativity (S)	0.045	0.00033		
Transmissivity (T)	51.10m ² /day	0.27 to 237.7 m ² /day		

4 GROUND WATER QUALITY

4.1Aquifer-I/Shallow Aquifer


EC between 750- 2250 μ S/cm has been observed in major part of the block while EC between 250-750 μ S/cm observed in the central, northern, central and eastern parts of the block. Nitrate>45 mg/l observed in eastern, southern and western parts of the block.

4.2 Aquifer-II/Deeper Aquifer EC between 250-750 μS/cm has been observed in major part of the block while EC between less than 250 μS/cm observed in southern, central and northern parts of the block. Area showing EC>2250 μS/cm observed in 13.67 Sq. Km. Nitrate>45 mg/l observed in southern part of the block and Fluoride>1.5 mg/l observed in eastern part of the block.



Total			12.386	
6. GROUND WATER RESOURCE MANAGEMENT			·	
Net Annual Ground Water Availability (MCM)			116.55	
Gross Annual Draft (MCM)			72.93	
Stage of Ground Water Development (%)			62.58	
6.1 Supply Side Management		<u>'</u>		
SUPPLY (MCM)				
Agricultural Supply -GW			67.36	
Agricultural Supply -SW			0.0	
Domestic Supply - GW			5.57	
Domestic Supply - SW			1.39	
Total Supply			74.32	
Area of Block (Sq. Km.)			820.89	
Area suitable for Artificial recharge (Sq. Km)			429.7	
Type of Aquifer			Hard Rock	
Area feasible for Artificial Recharge (WL >3mbg	gl) (Sq. Km.)		429.7	
Volume of Unsaturated Zone (MCM)			988.31	
Average Specific Yield			0.02	
Recharge Potential (MCM)			19.77	
Surplus water Available (MCM)			9.62	
Proposed Structures	Percolation	Check D	 Dam(@	
	Tank (@	Rs.19.4	32 lakh, Av.	
	Rs.175.14 lakh,	Gross C	Capacity-10 TCM	
	Av. Gross	* 3 fillin	ngs = 30 TCM)	
	Capacity-100			
	TCM*2 fillings =			
	200 TCM)			
Number of Structures	34	96		
Volume of Water expected to be conserved /	5.05	2.17		
recharged @ 75% efficiency (MCM)				
RTRWH Structures – Urban Areas				
Households to be covered (50% with 50 m ² area	a)		49274	
Total RWH potential (MCM)			2.18	
Rainwater harvested / recharged @ 80% runoff	1.74			
Estimated Expenditure (Rs. In Cr.) @ Rs.30000/	73.91			
RTRWH & AR is economically not viable & hence, no	ot recommended.			
6.2 Demand Side Management				
Micro irrigation techniques				
Irrigation Area (sq. km.) proposed for irrigation	Not			
	proposed			
Water Saving by use of Drip and Sprinklers -				
Proposed Cropping Pattern change	Not			
			proposed	
Ground water Irrigated area under Water Inten	NIL			

Water Saving by water use efficiency (MCM)	NIL
6.3 EXPECTED BENEFITS	_
Net Ground Water Availability (MCM)	116.55
Existing Ground Water Draft for All Uses (MCM)	72.93
Present stage of Ground Water Development (%)	62.58
Additional GW resources available after Supply side interventions (MCM)	7.22
Ground Water Availability after Supply side intervention (MCM)	123.77
Stage of Ground Water Development after Supply side Interventions (%)	58.92
Total GWR available for GW Development (MCM)	13.70
GW draft after Ground Water Development to enhance Stage of	86.63
Development to 70% (MCM)	
Other Interventions Proposed, if any	Not
	proposed
Alternate Water Sources Available	NIL
6.4 Development Plan	
Volume of water available for GWD to enhance stage of GWD to 70% (MCM)	13.70
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	822
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	137
Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m	21.07

Area proposed under Assured GW irrigation

PANCHAYAT WISE AQUIFER MAPS AND MANAGEMENT PLAN

- 1. ASHTI VILLAGE
- 2. DAHEGAON (GONDI)
- 3. HINGNI
- 4. SARAWADI
- 5. DEOLI
- 6. JAMNI
- 7. UMRI

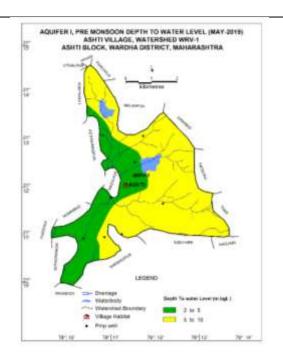
10. PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN,

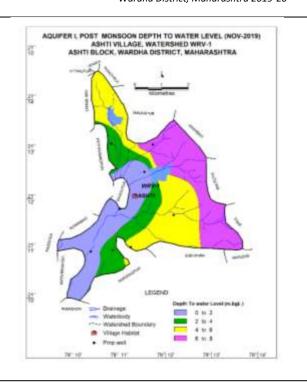
10.1 VILLAGE ASHTI, ASHTI BLOCK, WARDHA DISTRICT

1. SALIENT FEATURES		•	DIA DIOTRIOT	
1.1 Introduction				
Village Name		Ashti		
Geographical Area (Sq. Km.)			21.70	
Hilly Area (Sq. Km.)			Nil	
Population (Current year -2019)			11716	
Climate			Monsoon Sub-Tropical	
Normal Rainfall (mm)			974.4	
Average Rainfall (mm) 2010-19			854.6	
1.2. Geomorphology, Soil & Geology				
Geomorphic Unit	Pla	teau (w	eathered, modera	tely dissected, slightly
	dis	sected),	Butte.	
Geology	Dec	ccan Tra	aps (Basalt) Age: La	ate Cretaceous to Eocene
Soil		-	J	ny mixed, fine loamy
	mix	red, fine	e calcareous.	
1.3. Hydrology & Drainage				
Watershed	Watershed WRV-1			
_		Godava patteri	davari basin; dendritic to sub-dendritic drainage tern.	
1 st Ord		1 st Ord	rder Stream – 18.1673 km	
2 nd Or		2 nd Ord	der Stream – 11.8065 km	
3 rd Order Stream – 5.		ler Stream – 5.0396	km	
Irrigation Project (Major/Medium/Minor etc.)				
WC structures (PT / KT / CD / FP etc.) 01-CD, PT-02,LBS-01, Vill f		PT-02,LBS-01, Vill fa	arm-2.	
1.4. Land Use, Agriculture, Irrigation & Co	roppi	ing Patt	ern	
Specifics		Area		
Forest Area		Nil		
Cultivable Area		848.98 ha		
Net Sown Area		883.93		
Double Cropped Area				4.536 sq.km (As per land use Map), 83 ha(Data collected from Talathi)

Irrigation Dug wells		256
Irrigation Bore wells		25
Area under Drip & Sprinkler Irrigation		-
Area under Irrigation Surface Water	Surface Water	0.1798
	Ground Water	0.7113
Principal Crops	Soyabean	360 ha
	Jawar	5.0 ha
	Pulses (<i>Tur</i>)	139ha
	Sugar cane	3.0 ha
	Cotton	249.0 ha
Wheat		59.0 ha
	Gram	48.0 ha
	Orange	79.0 ha
	Vegetables	5.0 ha
	Others	0.0 ha

1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer)


In the village, 08 KOW were established to decipher the water level scenario.


Pre-Monsoon (May-2019)

In the western part of village shows the DTWL ranges between 0-5 mbgl, remaining part of the area DTWL ranges 5-10 mbgl is observed.

Post-Monsoon (November-2018)

In the western part of village shows the DTWL ranges between 0-4mbgl, remaining part of the area DTWL ranges 4-8mbgl is observed.

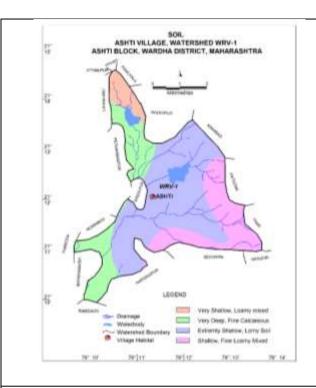
2. Ground Water Issues

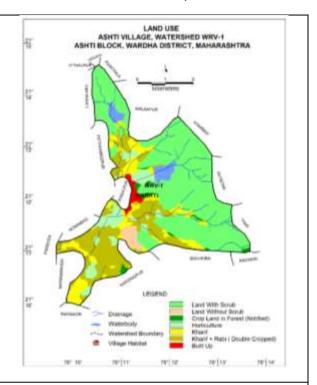
- 1. Non-availability of surface water for irrigation.
- 2. Less ground water potential in basaltic aquifer.
- 3. Water stress situation during lean period (March to June).

3. AQUIFER DISPOSITION

3.1. Number of Aquifers	Basalt –Aquifer-I (Phreatic / Shallow aquifer)	
3.2. Aquifer Characteristics		
Major Aquifers	Basalt (Deccan Traps)	
Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)	
Static Water Level (mbgl)	1.0-7.00	
Depth of Occurrence (mbgl)	10.00-35.00	
weathered thickness (m)	0- 14.00	
Yield	10 – 100 m³/day	
Specific yield (Sy)	0.02 (norms)	

4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)

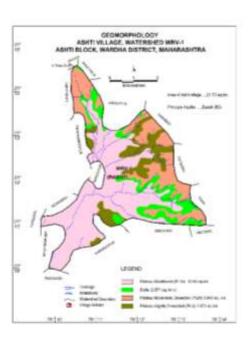

In the village of Ashti, 08 nosKow established Ec is ranges 518 to 1880. Three water sample collected for the chemical analysis.


5.0. GROUND WATER RESOURCE MANAGEMENT

5.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	8.28

Agricultural Supply –GW 0.71	
Agricultural Supply -SW 17.98	
Domestic Supply - GW 0.39	
Domestic Supply - SW 0.00	
Non agriculture use (MCM) 0.18	
Total GW availability (MCM) 6.99	
Gross Annual Draft (MCM) 0.71	
Area of village (Sq. Km.)	
Area suitable for Artificial recharge (sq km) 21.05	
Type of Aquifer Hard rock	
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.) 12.87	
Volume of Unsaturated Zone (MCM) 27.027	
Average Specific Yield 0.02	
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM) 0.540540000000	
Surplus runoff considered for planning (MCM) @ 100% 0.02	
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30 TCM)) Not proposed	
Proposed AR Structures Gabion Not proposed	
Proposed AR Structures Other Not proposed	
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) Total of above	
Specific Recommendations -	
As per State Govt. Resolution, segment wise nala/stream desilting,	
deepening and widening upto 3 m depth or upto weathered rock	
considering the local hydrogeological condition without disturbing the	
ecology/aquifer/environmental flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
	0.00
recharge @ 75%	
RTRWH Structures	
Households to be covered (Pakka House only)	020
Total RWH potential (MCM) (25% with 50 m2 area) 0.0000	499
Total NVIII potential (Well) (25% With 50 M2 area)	
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM) 0.0000	400

6.2. Demand Side Management			
Micro irrigation techniques			
Area is proposed to be covered under Drip		Not proposed	
Volume of Water expected to be saved (MCM). Surface Flooding req-			
0.36 m. Drip Req 0.24, WUE- 0.12 m			
Proposed Cropping Pattern change			
Irrigated area under Water Intensive Crop(ha)		Not proposed	
Water Saving by Change in Cropping Pattern			
6.3. Expected Benefits			
Net Ground Water Availability (MCM)		8.28	
Additional GW resources available after Supply side	de interventions	0.00	
(MCM)			
Ground Water Availability after Supply side interv	ention(MCM)	8.28	
Existing Ground Water Draft for All Uses (MCM)		1.29	
GW draft after Demand Side Interventions (MCM)		0.00	
Present stage of Ground Water Development (%)		15.55	
Expected Stage of Ground Water Development after interventions (%)		15.55	
Other Interventions Proposed, if any			
Alternate Water Sources Available		Nil	
6.4. Development Plan			
Volume of water available for GWD after stage of GWD brought to		0.78	
25% (MCM)			
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)		47	
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)		8	
Area (ha) proposed to be brought under assured GW irrigation with		120.39	
av. CWR of 0.65 m after 60% stage of gwd is achieved			
Soil map Landuse map		duse map	



In the village major area consisting mostly of loamy soil in the center part of the village, fine calcareous soil observed in north and south-west parts, fine loamy mixed observed in the southeastern parts.

In the village major cultivable land is under Kharif cropping pattern

Geomorphology & Drainage map

Major part of the village shows weathered plateau in the center, south and south-west part of the village, plateau moderately dissected is observed in north-

Hydro-geology map

Entire village is covered by Deccan trap Basalt.

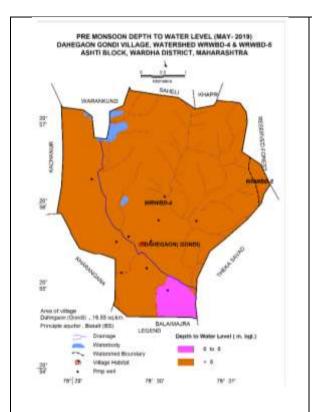
Wardha District, Maharashtra 2019-20

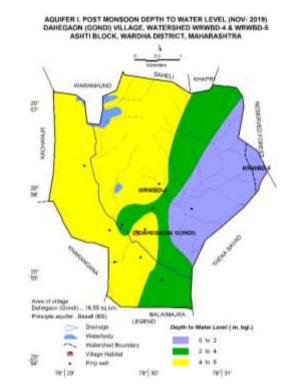
east and north-west parts, plateau slightly dissected	
observed in north-west and small patches in south,	
eastern parts. Butte observed in north and south-east	
parts.	

Panchayat Level Aquifer Management Plan

Village – Ashti, Ashti Taluka, Wardha District

Aquife r (Promi	Current Scenario	Geology / Basalt flow	Geomorp hology	GW quality		* Recommendations for Aquifer Development				Aquifer Management Plan
nent Lithol ogy)					Typ e	Zones/De pth to be tapped	HP of pum p to be lowe red	Pumpi ng Hours	Yiel d (Cu. m / Day)	
Aquife r I (Basalt - Weath ered and fractur es)	848.98 ha cultivable land by GW, 01 CD, 02 PT, 01 LBS, 07 DW(d),25 6 DW (i), Pre monsoon DTWL~ 2.6-9.5 m bgl. Post monsoon DTWL~ 01-7.2 m bgl.	OT Basalt (Ajanth a/ Chikhli/ Karanja formati ons)	Plateau (weathere d, moderatel y, slightly dissected,), Butte with weathere d and thickness.	Good; All parame ters are within MPL.	Du g wel I	Depth Range of Zones: 3–15 m	3 to 5	1 to 3	< 10 - 100 m³/ day Or 0.7 ham /yea r	 Construction of 47nos dug wells and 08nos bore wells. Desilting of existing water conservation and artificial recharge structures. The GW should be used for irrigation purpose.
Aquife r II (Basalt - Jointe d & Fractu res)	25 BW(i), 50 BW (d), HP-Nil DTWL~ 15-35 m bgl.	As above		-	Bor e wel I	Depth :60 m	3 to 5	1 to 3	0.14 - 2.16 lps	1. The GW should be used for drinking purpose. 4. BW should not be drilled down below the red bole.


 $Note: DW(d) = Dug \ well \ Domestic; \ DW \ (i) = Dug \ Well \ Irrigation; \ BW(d) = Bore \ Well \ Domestic; \ BW(i) = Bore \ Well \ Irrigation$


10.2 VILLAGE DAHEGAON (GONDI), ARVIBLOCK, WARDHA DISTRICT

1. SALIENT FEATURES					
1.1 Introduction					
Village Name			Dahegaon (Gondi)		
Geographical Area (Sq. Km.)			16.55		
Hilly Area (Sq. Km.)			Nil		
Population (Current year -2019)			1742		
Climate			Monsoon Sub-Tropical		
Normal Rainfall (mm)			899		
Average Rainfall (mm) 2010-19			905		
1.2. Geomorphology, Soil & Geology					
Geomorphic Unit	Pla	teau (v	eau (weathered, moderately dissected, slightly		
	diss	sected,	d, Undissected).		
Geology	Dec	ccan Tr	aps (Basalt) Age: Late Cretaceous to		
	Eoc	ene			
Soil	Soi	l mostl	y consisting of fine loamy mixed, loamy,		
	fine	e calcai	reous.		
1.3. Hydrology & Drainage					
Watershed WRV			BD-4 & WRWBD-5		
Drainage		Godavari basin; dendritic to sub-dendritic			
			drainage pattern.		
		1st Order Stream – 17.4591 km			

	7	2 nd Order Stream – 8.4	485 km		
		order Stream – 3.3			
Irrigation Project (Major/Medium/Minor	_	Vil			
etc.)					
WC structures (PT / KT / CD / FP etc.)	0	06-CD, PT-02, LBS-03, Vill farm-04, other-02			
1.4. Land Use, Agriculture, Irrigation & Cr	rop	ping Pattern			
Specifics			Area		
Forest Area			7.547 Sq.km		
Cultivable Area			759.8 ha		
Net Sown Area					
Double Cropped Area			5.8 ha(Data collected		
			from Talathi)		
Irrigation Dug wells			185		
Irrigation Bore wells		16			
Area under Drip & Sprinkler Irrigation		-			
Area under Irrigation	Surface Water		0.051816		
	Gro	ound Water	0.590903		
Principal Crops	Soy	/abean	66 ha		
	Jaw	var	8.0 ha		
	Pul	ses (Tur)	147.0 ha		
	Sug	gar cane	0.8 ha		
	Cot	tton	587.0 ha		
	Wh	neat	17.0 ha		
	Gra	am	16.0 ha		
	Ora	ange	5.0 ha		
	Ve	getables	0.5 ha		
	Oth	ners	0.0 ha		
1.5. Water Level Behaviour: Aquifer-I (Sh	allo	ow Aquifer)			
In the village, 09 KOW were established to	o de	ecipher the water leve	l scenario.		
Pre-Monsoon (May-2019)		Post-Monsoon (Nov	•		
The entire village shows the DTWL ranges		In the most part of village shows the DTW			
between more than 8 mbgl, small isolated		ranges between 4-6 mbgl in the north-west			
part southern side of the area DTWL rang	es	and south-west, remaining part of the area			
8-6 mbgl is observed.		DTWL ranges 0-4 mbgl is observed in the			

north-east and south-east.

2.Ground Water Issues

- 4. Non-availability of surface water for irrigation.
- 5. Less ground water potential in basaltic aquifer.
- 6. Water stress situation during lean period (March to June).

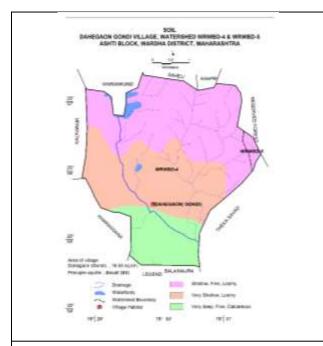
3. AQUIFER DISPOSITION

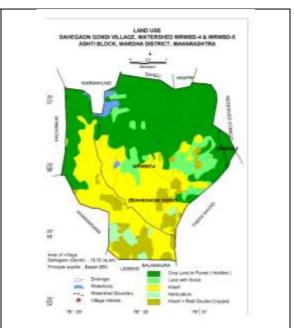
3.1. Number of Aquifers	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
-------------------------	--

3.2. Aquifer Characteristics

Major Aquifers	Basalt (Deccan Traps)
Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
Static Water Level (mbgl)	5.4-9.4
Depth of Occurrence (mbgl)	10.00-35.00
weathered thickness (m)	0- 10.00
Yield	10 – 100 m³/day
Specific yield (Sy)	0.02 (norms)

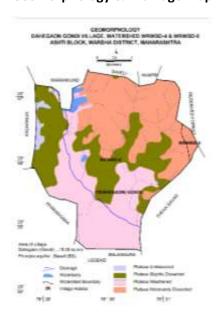
4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)


In the village of Dahegaon (Gondi), 09 nosKow established Ec is ranges 570 to 1012. Three water sample collected for the chemical analysis.


5.0. GROUND WATER RESOURCE MANAGEMENT

5.1. Supply Side Management	
SUPPLY (MCM)	

Available Resource (MCM)	6.03
Available Resource (MCM)	0.59
Agricultural Supply –GW	
Agricultural Supply -SW	5.18 0.05
Domestic Supply - GW	
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.13
Total GW availability (MCM)	5.25
Gross Annual Draft (MCM)	0.59
Area of village (Sq. Km.)	16.55
Area suitable for Artificial recharge (sq km)	16.55
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.)	9.268
Volume of Unsaturated Zone (MCM)	19.4628
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial	0.389256000000
Recharge (MCM)	
Surplus runoff considered for planning (MCM) @ 100%	0.02
Proposed AR Structures (Check Dam(@ Rs.30 lakh, Av. Gross	Not proposed
Capacity-10 TCM * 3 fillings = 30 TCM))	rtot proposed
Proposed AR Structures Gabbion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	Total of above
Specific Recommendations -	
As per State Govt. Resolution, segment wise nala/stream desilting,	
deepening and widening upto 3 m depth or upto weathered rock	
considering the local hydrogeological condition without disturbing	
the ecology/aquifer/environmental flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
Considering average nala deepening of 1 m depth, additional	0.00
recharge @ 75%	0.00
RTRWH Structures	
Households to be covered (Pakka House only)	330
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Total NVVII potential (IVICIVI) (23/0 WILLI 30 III2 alea)	0.0000439
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However, RTRWH is economically not viable & I	not Recommended


6.2. Demand Side Management						
Micro irrigation techniques						
Area isproposed to be covered under Drip	Not proposed					
Volume of Water expected to be saved (MCM). Surface Flooding						
req- 0.36 m. Drip Req 0.24, WUE- 0.12 m						
Proposed Cropping Pattern change						
Irrigated area under Water Intensive Crop(ha)	Not proposed					
Water Saving by Change in Cropping Pattern						
6.3. Expected Benefits						
Net Ground Water Availability (MCM)	6.03					
Additional GW resources available after Supply side interventions	0.00					
(MCM)						
Ground Water Availability after Supply side intervention(MCM)	6.03					
Existing Ground Water Draft for All Uses (MCM)	0.78					
GW draft after Demand Side Interventions (MCM)	0.00					
Present stage of Ground Water Development (%)	12.92					
Expected Stage of Ground Water Development after interventions	12.92					
(%)						
Other Interventions Proposed, if any						
Alternate Water Sources Available	Nil					
6.4. Development Plan						
Volume of water available for GWD after stage of GWD brought to	0.73					
60% (MCM)						
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	44					
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	7					
Area (ha) proposed to be brought under assured GW irrigation with	112.15					
av. CWR of 0.65 m after 70% stage of gwd is achieved						
Soil map Landuse map						



In the village major area consisting mostly of fine loam soil in north and middle of the village from west to east shows loamy soil. Small portion of south of the village shows fine calcareous soil. In the village major cultivable land is under Kharif cropping pattern

Geomorphology & Drainage map

Hydro-geology map

Major part of the village shows weathered plateau in the centre, south part of the village, plateau moderately dissected is observed in north-east parts, plateau slightly dissected observed in centre and small patches in west, eastern parts. Plateau un dissected observed in small portion of western parts.

Entire village is covered by Deccan trap Basalt.

Panchayat Level Aquifer Management Plan

Village – Dahegaon (Gondi), Arvi Taluka, Wardha District

Aquifer (Promi	Curren t	Geolog y/	Geomorph ology	GW quality		commenda elopment	tions for	r Aquifer		Aquifer Manage
nent Litholo gy)	Scenar io	Basalt flow		quanty	Ty pe	Zones/D epth to be tapped	HP of pum p to be lowe red	Pump ing Hour s	Yield (Cu. m / Day)	ment Plan
Aquifer I (Basalt-Weath ered and fractur es)	759.8 ha cultiva ble land by GW, 06 CD, 02 PT, 03 LBS, 20 DW(d), 185 DW (i), Pre monso on DTWL~ 5.4-9.4 m bgl. Post monso on DTWL~ 02-5.5 m bgl.	DT Basalt (Ajanth a/ Chikhli/ Karanja formati ons)	Plateau (weathered , moderately dissected, slightly dissected (Undissected). With weathered and thicknessranging from 0 to 10 m.	Good; All parame ters are within MPL.	Du g we II	Depth Range of Zones: 5–15 m	3 to 5	1 to 3	< 10 – 100 m³/da y Or 0.7 ham/y ear	Construction of 44nos dug wells and 07nos bore wells. Desilting of existing water conserva tion and artificial recharge structur es. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed &Fract ures)	16 BW(i), 03 BW (d), HP-Nil DTWL~ 15-35 m bgl.	As above		-	Bo re we II	Depth: Up to 170 m	3 to 5	1 to 3	0.14- 2.16 lps	1. The GW should be used for drinking purpose. BW should not be drilled down below the red bole.

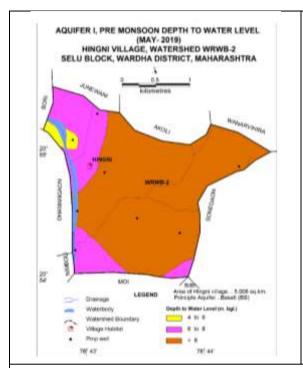
Note: DW(d)= Dug well Domestic; DW (i)= Dug Well Irrigation; BW(d)= Bore Well Domestic; BW(i)= Bore Well Irrigation

10.3 VILLAGE HINGNI, SELUBLOCK, WARDHA DISTRICT

10.3 VILLAGE HINGNI,SELU 1. SALIENT FEATURES		, =====================================			
1.1 Introduction					
Village Name	lingni				
Geographical Area (Sq. Km.)		5	.006		
Hilly Area (Sq. Km.)		N	lil		
Population (Current year -2020)		5	416		
Climate		N	Nonsoon Sub-Tropical		
Normal Rainfall (mm)		8	69.4		
Average Rainfall (mm) 2010-19		9	23		
1.2. Geomorphology, Soil & Geol	ogy	<u> </u>			
Geomorphic Unit	Pla	teau (slightly dissed	cted to moderately dissected,		
	we	athering (2-5m)).			
Geology	De	ccan Traps (Basalt)	Age: Late Cretaceous to Eocene		
Soil	Soi	I mostly consisting	of very deep, Fine, calcareous		
	and	d loamy, clay.			
1.3. Hydrology & Drainage					
Watershed		WRWB-2	WRWB-2		
Drainage		Godavari basin; dendritic to sub-dendritic			
		drainage pattern.			
		1 st Order Stream – 2.5329 km			
		2 nd Order Stream – 4.1585km			
		3 rd Order Stream	3 rd Order Stream – 0.07412 km		
Irrigation Project		Nil			
(Major/Medium/Minor etc.)					
WC structures (PT / KT / CD / FP e	etc.)	LBS-03			
1.4. Land Use, Agriculture, Irrigat	tion &	Cropping Pattern			
Specific	cs		Area		
Forest Area		Nil			
Cultivable Area			430.15 ha		
Net Sown Area		577.52 ha			
Double Cropped Area			55.2 ha(Data collected		
			from Talathi)		
Irrigation Dug wells			110		
Irrigation Bore wells	85				

Area under Drip & Sprinkler Irrigation	-	
Area under Irrigation	Surface Water	0.10668 (MCM)
	Ground Water	0.45931185 (MCM)
Principal Crops	Soyabean	35 ha
	Jawar	1.5
	Pulses (Tur)	41
	Groundnut	5.40
	Cotton	292.95 ha
	Wheat	35.0 ha
	Sugarcane	5.20
	Vegetables	2.80
	Orange and	2.60
	Pomegranate, Banana	
	Others	2.0

1.5. Water Level Behavior: Aquifer-I (Shallow Aquifer)


In the village, 13 KOW were established to decipher the water level scenario.

Pre-Monsoon (May-2019)

Entire area of the village shows DTWL in the range of above 8 mbgl except in the north-west, south-west and south- east part a small patch of DTWL ranging 6-8 mbgl is observed. A small isolated patch of the DTWL 4-6 mbgl is observed in the north-west of the village.

Post-Monsoon (November-2019)

In the north-east part the DTWL ranges between 6-8 mbgl whereas in the south, south-west and north-west DTWL ranges between 4-6 mbgl. A small isolated patch of the DTWL 4-6 mbgl is observed in the north-west of the village.

2.Ground Water Issues

- 7. Non-availability of surface water for irrigation.
- 8. Less ground water potential in basaltic aquifer.
- 9. Water stress situation during lean period (March to June).

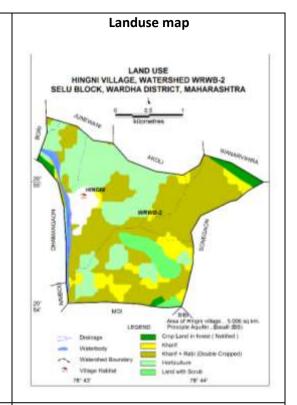
3. AQUIFER DISPOSITION

3.2. Aquifer Characteristics

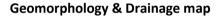
Major Aquifers	Basalt (Deccan Traps)
Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
Static Water Level (mbgl)	3.6-8
Depth of Occurrence (mbgl)	10.00-30.00
weathered thickness (m)	0- 14.00
Yield	10 – 100 m³/day
Specific yield (Sy)	0.02 (norms)

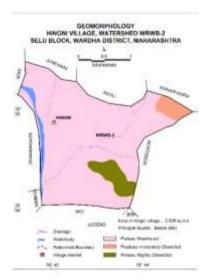
4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)

In the village of Hingni, 13 nosKow established Ec is ranges 590 to 1480. Three water sample collected for the chemical analysis. Chemical Result awaited.


5.0. GROUND WATER RESOURCE MANAGEMENT

5.1. Supply Side Management		
SUPPLY (MCM)		
Available Resource (MCM)	2.06	
Agricultural Supply –GW	0.46	
Agricultural Supply -SW	10.67	


Domestic Supply - GW	0.21
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.05
Total GW availability (MCM)	1.34
Gross Annual Draft (MCM)	0.46
Area of village (Sq. Km.)	5.78
Area suitable for Artificial recharge (sq km)	5.78
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.)	12.8
Volume of Unsaturated Zone (MCM)	26.88
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0.537600000000
Surplus runoff considered for planning (MCM) @ 100%	0.02
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30 TCM))	Not proposed
Proposed AR Structures Gabion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	Total of above
Specific Recommendations -	
As per State Govt. Resolution, segment wise nala/stream desilting,	
deepening and widening upto 3 m depth or upto weathered rock	
considering the local hydrogeological condition without disturbing	
the ecology/aquifer/environmental flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
Considering average nala deepening of 1 m depth, additional recharge @ 75%	0.00
RTRWH Structures	
Households to be covered (Pakka House only)	330
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However, RTRWH is economically not viable &	not Recommended
6.2. Demand Side Management	


Micro irrigation techniques	
Area isproposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	2.06
Additional GW resources available after Supply side interventions (MCM)	0.00
Ground Water Availability after Supply side intervention(MCM)	2.06
Existing Ground Water Draft for All Uses (MCM)	0.72
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	34.81
Expected Stage of Ground Water Development after interventions (%)	34.81
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 50% (MCM)	0.31
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	19
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	3
Area (ha) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m after 70% stage of gwd is achieved	48.13

In the village major area consisting mostly of very deep, Fine, calcareous and very small patch in end of Eastern side very shallow, loamy, clay. In the village major cultivable land is under Kharif cropping pattern

Major part of the village shows Plateau weathered, small patches in north-east and south- east, Plateau moderately and slightly dissected.

Hydro-geology map

Entire village is covered by Deccan trap Basalt.

152

Panchayat Level Aquifer Management Plan

Village – Hingni, Selu Taluka, Wardha District

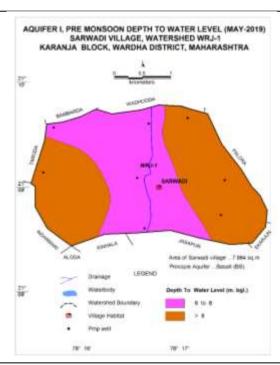
Aquifer (Promin	Curre nt	Geolog y/	Geomorph ology	GW quality	* Recommendations for Aquifer Development				Aquifer Manage	
ent Litholog y)	Scena rio	Basalt flow	<i>5</i> ,		Ty pe	Zones/D epth to be tapped	HP of pum p to be lowe red	Pump ing Hours	Yield (Cu. m / Day)	ment Plan
Aquifer I (Basalt- Weathe red and fracture s)	430.1 5 ha cultiva ble land by GW, 3 lbs, 32 DW(d) , 110 DW (i), Pre mons oon DTWL ~ 5.5- 13.12 m bgl. Post mons oon DTWL ~ 3.6- 7.8 m bgl.	DT Basalt (Ajanth a/ Chikhli/ Karanja formati ons)	Plateau (moderate ly, slightly dissected, weathered) with weathered	Good; All parame ters are within MPL.	Du g we II	Depth Range of Zones: 5– 15 m	3 to 5	1 to 3	< 10 – 100 m³/da y Or 0.7 ham/y ear	Construction of 19nos dug wells and 03nos bore wells. Desilting of existing water conservation and artificial recharge structure s. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed &Fractu res)	85 BW(i), 324 BW (d), HP-Nil DTWL ~ 15- 35 m bgl.	As above	ic: DW(i) - Dug	-	Bo re we II	Depth:upto 170 m	3 to 5	1 to 3	0.14- 2.16 lps	1. The GW should be used for drinking purpose. BW should not be drilled down below the red bole.

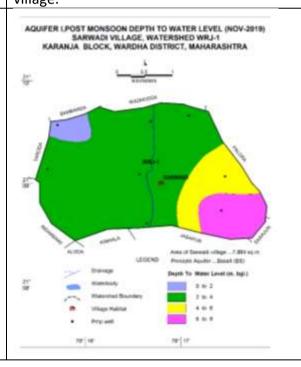
Note: DW (d) = Dug well Domestic; DW (i) = Dug Well Irrigation; BW (d) = Bore Well Domestic; BW (i) = Bore Well Irrigation

10.4 VILLAGE SARAWADI, KARANJA BLOCK, WARDHA DISTRICT

1. SALIENT FEATURES				
1.1 Introduction				
Village Name			Sarawadi	
Geographical Area (Sq. Km.)			7.864	
Hilly Area (Sq. Km.)		1	Nil	
Population (Current year -2020)		2	2561	
Climate		1	Monsoon Sub-Tropical	
Normal Rainfall (mm)		3	373	
Average Rainfall (mm) 2010-19		8	394.13	
1.2. Geomorphology, Soil & Geolog	<u>sy</u>			
Geomorphic Unit		eau (weathered, sli Butte.	ghtly dissected, Un dissected)	
Geology	Deco	can Traps (Basalt) A	ge: Late Cretaceous to Eocene	
Soil	Soil	mostly consisting o	f Extremely and very shallow	
	loam	ny, clay.		
1.3. Hydrology & Drainage				
Watershed		WRJ-1		
Drainage		Godavari basin; dendritic to sub-dendritic		
		drainage pattern.		
		1 st Order Stream – 5.1871 km		
		2 nd Order Stream	ı −2.778 km	
Irrigation Project		Nil		
(Major/Medium/Minor etc.)				
WC structures (PT / KT / CD / FP etc	c.)	CD-03, PT-02,		
1.4. Land Use, Agriculture, Irrigation	n & Cr	opping Pattern		
Specifics			Area	
Forest Area			Nil	
Cultivable Area			520 ha	
Net Sown Area				
Double Cropped Area			1.316 sq.km (As per land	
			14) 400 /5 ;	
			use Map), 100 ha (Data	
			collected from Talathi)	
Irrigation Dug wells			• **	
Irrigation Bore wells			collected from Talathi)	
<u> </u>	on		collected from Talathi) 186	
Irrigation Bore wells		ace Water	collected from Talathi) 186	
Irrigation Bore wells Area under Drip & Sprinkler Irrigation	Surf	face Water und Water	collected from Talathi) 186 13	
Irrigation Bore wells Area under Drip & Sprinkler Irrigation	Surf Gro		collected from Talathi) 186 13 - 0.24384 (MCM)	
Irrigation Bore wells Area under Drip & Sprinkler Irrigation Area under Irrigation	Surf Gro	und Water	collected from Talathi) 186 13 - 0.24384 (MCM) 0.519924 (MCM)	

Groundnut (ha)	5.4
Cotton (ha)	200
Wheat (ha)	80
Sugarcane (ha)	0
Vegetables (ha)	5.2
Orange and	100
Pomegranate, Banana	
(ha)	
Others (ha)	2


1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer)


In the village, 08 KOW were established to decipher the water level scenario.

Pre-Monsoon (May-2019)

Major part of the village shows DTWL in the range of above 8 mbgl in the western and eastern part, whereas ranging 6-8 mbgl is observed in the north -south of the village.

Post-Monsoon (November-2019)
Major part of the village shows DTWL
ranges between 2 to 4 mbgl in the west,
north and south parts, whereas in the
south-east DTWL ranges between 4-6 mbgl.
A small isolated patch of the DTWL 4-6
mbgl is observed in the north-west of the
village.

2. Ground Water Issues

Non-availability of surface water for irrigation.

Less ground water potential in basaltic aquifer.

Water stress situation during lean period (March to June).

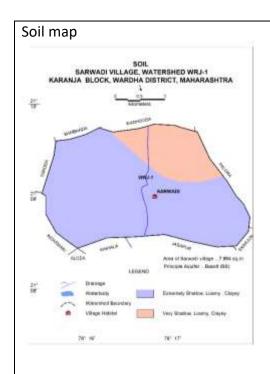
3. AQUIFER DISPOSITION

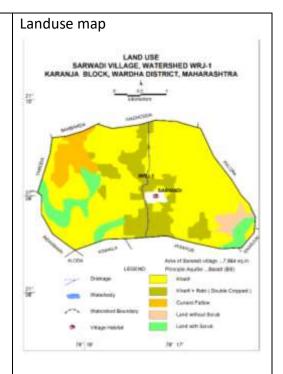
3.1. Number of Aquifers	Basalt –Aquifer-I (Phreatic / Shallow
	aquifer)

3.2. Aquifer Characteristics

Major Aquifers Basalt (Deccan Traps)

Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
Static Water Level (mbgl)	2.0-8.0
Depth of Occurrence (mbgl)	10.00-30.00
weathered thickness (m)	0- 10.00
Yield	10– 100 m³/day
Specific yield (Sy)	0.02 (norms)


4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)


In the village of Sarawadi, 8 nosKow established Ec is ranges 890 to 1026. Two water sample collected for the chemical analysis.

5.0. GROUND WATER RESOURCE MANAGEMENT

J.U. GROOND WATER RESOURCE MANAGEMENT	
5.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	2.78
Agricultural Supply –GW	0.52
Agricultural Supply -SW	24.38
Domestic Supply - GW	0.07
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.06
Total GW availability (MCM)	2.12
Gross Annual Draft (MCM)	0.52
Area of village (Sq. Km.)	7.86
Area suitable for Artificial recharge (sq km)	7.86
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.)	1.923
Volume of Unsaturated Zone (MCM)	4.0383
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0.080766000000
Surplus runoff considered for planning (MCM) @ 100%	0.02
Proposed AR Structures (Check Dam(@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30 TCM))	Not proposed
Proposed AR Structures Gabbion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	Total of above
Specific Recommendations - As per State Govt. Resolution, segment wise nala/stream desilting, deepening and widening upto 3 m depth or upto weathered rock considering the local hydrogeological condition without disturbing the ecology/aquifer/environmental flow of nala/stream.	

Considering average nala deepening of 1 m depth, additional	0.00
storage	0.00
Considering average nala deepening of 1 m depth, additional	0.00
recharge @ 75%	
RTRWH Structures	
Households to be covered (Pakka House only)	330
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However, RTRWH is economically not viable & not Recommended	
5.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM). Surface Flooding	
req- 0.36 m. Drip Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	
5.3. Expected Benefits	
Net Ground Water Availability (MCM)	2.78
Additional GW resources available after Supply side interventions (MCM)	0.00
Ground Water Availability after Supply side intervention (MCM)	2.78
Existing Ground Water Draft for All Uses (MCM)	0.66
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	23.58
Expected Stage of Ground Water Development after interventions	23.58
(%)	
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
5.4. Development Plan	•
Volume of water available for GWD after stage of GWD brought to 50% (MCM)	0.18
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	11
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	2
Area (ha) proposed to be brought under assured GW irrigation with	27.41
av. CWR of 0.65 m after 70% stage of gwd is achieved	

In the village major area consisting mostly of very Extremely Shallow, loamy, clayey observed in south, west and south-east parts. A small area in very shallow, loamy, clayey observed in north-eastern side.

In the village major cultivable land is under Kharif cropping pattern.

Geomorphology & Drainage map

Hydro-geology map

Major part of the village shows Plateau weathered in the centre of the part, Plateau slightly Dissected observed in along west and east, Plateau Un dissected observed in fringe of South-west. Butte observed in the south-west parts and end of south-east part.

Entire village is covered by Deccan trap Basalt.

Panchayat Level Aquifer Management Plan

Village –Sarawadi, Karanja Taluka, Wardha District

Aquifer (Promi	Curre nt	Geolog y/	Geomorph ology	GW quality	* Recommendations for Aquifer Development			Aquifer Manage		
nent Litholo gy)	Scena rio	Basalt flow			Ty pe	Zones/D epth to be tapped	HP of pum p to be lowe red	Pump ing Hours	Yield (Cu. m / Day)	ment Plan
Aquifer I (Basalt-Weathe red and fracture s)	520 ha cultiva ble land by GW, 3 lbs, 04 DW(d) , 186 DW (i), Pre mons oon DTWL ~ 6.5- 12.2 m bgl. Post mons oon DTWL ~ 3.5- 8 m bgl.	DT Basalt (Ajanth a/ Chikhli/ Karanja formati ons)	Plateau (weathere d, slightly dissected, Undissecte d) and Butte.	Good; All parame ters are within MPL.	Du g we II	Depth Range of Zones: 5– 15 m	3 to 5	1 to 3	< 10 – 100 m³/da y Or 0.7 ham/y ear	Construction of 11 nos dug wells and 02 nos bore wells. Desilting of existing water conservation and artificial recharge structure s. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed &Fractu res)	13 BW(i), 16 BW (d), HP-Nil DTWL ~ 15- 35 m bgl.	As above		-	Bo re we II	Depth :60 m	3 to 5	1 to 3	0.14- 2.16 lps	1. The GW should be used for drinking purpose. BW should not be drilled down below the red bole.

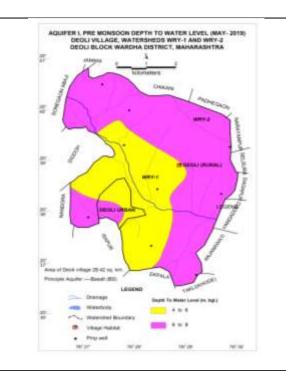
Note: DW (d) = Dug well Domestic; DW (i) = Dug Well Irrigation; BW (d) = Bore Well Domestic; BW (i) = Bore Well Irrigation

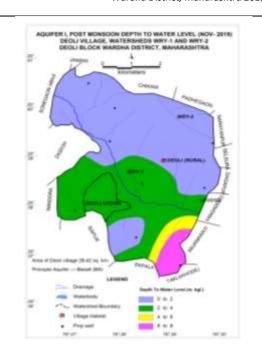
10.5 VILLAGE DEOLI, DEOLI BLOCK, WARDHA DISTRICT

1.1 Introduction					
Village Name	Deoli				
Geographical Area (Sq. Km.)			26.30		
Hilly Area (Sq. Km.)		N	Nil		
Population (Current year -2020)		1	.9288		
Climate		N	Ionsoon Sub-Tropical		
Normal Rainfall(mm)		8	333		
Average Rainfall (mm) 2010-19		9	935.2		
1.2. Geomorphology, Soil & Geolo	gy	•			
Geomorphic Unit Geology	villa	ge followed by Plat	ering the major part of the eau slightly dissected		
deology	Eoc	. , ,	ge. Late cretaceous to		
Soil	Maj	or parts of the area	having deep fine calcareous		
	soil	followed by shallow fine loamy soil and very			
	dee	p, fine calcareous so	careous soil.		
1.3. Hydrology & Drainage					
Watershed		WRY-1 & WRY-2			
Drainage		Godavari basin; dendritic to sub-dendritic			
		drainage pattern.			
		1st Order Stream – 18.24 km			
		2 nd Order Stream– 4.40 km			
		3 rd Order Stream–5.95 km			
Irrigation Project		Nil			
(Major/Medium/Minor etc.)					
WC structures (PT/KT/CD/FP etc.)		NIL			
1.4. Land Use, Agriculture, Irrigation		ropping Pattern	1		
Specifics			Area		
Forest Area			Nil		
Cultivable Area			1632 ha		
Net Sown Area			1972.79 ha		
Double Cropped Area		95.21 ha (Data collected			
			from Talati)		
Irrigation Dug wells	241				
IrrigationBore wells			192		
Area under Drip & Sprinkler Irrigation			i		

Area under Irrigation	Surface Water	0.17 (MCM)
	Ground Water	1.46 (MCM)
Principal Crops	Soyabean	684.45 ha
	Jawar	0
	Pulses (Tur)	287.21
	Groundnut	0
	Cotton	789.77 ha
	Wheat	55.35 ha
	Gram	60 ha
	Sugarcane	0.8
	Vegetables	95.21
	Orange and	0
	Pomegranate, Banana	
	Others	0

1.5. Water Level Behaviou: Aquifer-I (Shallow Aquifer)


In the village, 9 KOW were established to decipher the water level scenario.


Pre-Monsoon (May-2019)

Water level between 4-6 m bgl is observed in the central and southern part of the village while water level between 6-8 m bgl is covered major part of the village. m bgl observed in central and

Post-Monsoon (November-2019)

Water level between 0-2 m bgl is observed in the northern and southern parts of the village. Water level ranges between 2-4 m bgl are covered south eastern, central and western part of the village while water level between 4-6 m bgl observed in the southern part as a small patch. Water level between 6-8 m bgl observed in the southern tip of the village as an isolated patch.

2.Ground Water Issues

- 10. Non-availability of surface water for irrigation.
- 11. Less ground water potential in basaltic aquifer.
- 12. Water stress situation during lean period (March to June).

3. AQUIFER DISPOSITION

3.1. Number of Aquifers	Basalt –Aquifer-I (Phreatic / Shallow
	aquifer)

3.2. Aquifer Characteristics

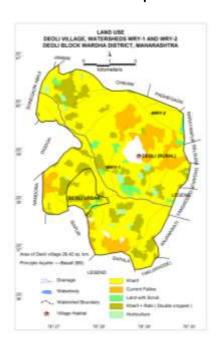
Major Aquifers	Basalt (Deccan Traps)
Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
Static Water Level (mbgl)	2.5-12
Depth of Occurrence (mbgl)	10.00-20.00
weathered thickness (m)	0- 11.00
Yield	10 – 100 m³/day
Specific yield (Sy)	0.02 (norms)

4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)

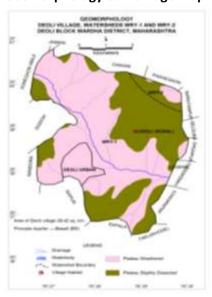
In the village of Deoli, 9 nosKow established Ec is ranges 550 to 1400. Three water samples collected for the chemical analysis and all chemical parameters are within the permissible limit.

5.0. GROUND WATER RESOURCE MANAGEMENT

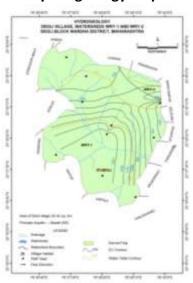
5.1. Supply Side Management
SUPPLY (MCM)
SUPPLY (MCM)


Available Resource (MCM)	9.05
Agricultural Supply –GW	1.46
Agricultural Supply -SW	16.87
Domestic Supply - GW	0.43
	0.43
Domestic Supply - SW	
Non agriculture use (MCM)	0.20
Total GW availability (MCM)	6.96
Gross Annual Draft (MCM)	1.46
Area of village (Sq. Km.)	26.30
Area suitable for Artificial recharge (sq km)	26.30
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.)	7.38
Volume of Unsaturated Zone (MCM)	15.498
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0.00000030996
Surplus runoff considered for planning (MCM) @ 100%	0.02
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30 TCM))	Not proposed
Proposed AR Structures Gabbion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	Total of above
Specific Recommendations -	
As per State Govt. Resolution, segment wise nala/stream desilting,	
deepening and widening upto 3 m depth or upto weathered rock	
considering the local hydrogeological condition without disturbing the	
ecology/aquifer/environmental flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
Considering average nala deepening of 1 m depth, additional recharge @ 75%	0.00
RTRWH Structures	
	2240
Households to be covered (Pakka House only)	2240
Total RWH potential (MCM) (25% with 50 m2 area)	0.0004718
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0003774
However, RTRWH is economically not viable & no	t kecommended
6.2. Demand Side Management	
Micro irrigation techniques	

Area isproposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM). Surface Flooding req-	
0.36 m. Drip Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	9.05
Additional GW resources available after Supply side interventions	0.00
(MCM)	
Ground Water Availability after Supply side intervention (MCM)	9.05
Existing Ground Water Draft for All Uses (MCM)	2.09
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	23.13
Expected Stage of Ground Water Development after interventions (%)	23.13
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to	1.07
35% (MCM)	
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	64
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	11
Area (ha) proposed to be brought under assured GW irrigation with	165.33
av. CWR of 0.65 m after 70% stage of gwd is achieved	


Landuse map

In the village major area consisting mostly of deep, Fine, calcareous soil. Shallow fine, loamy soil found in the north eastern part of the village while very deep, fine, calcareous soil observed in the north eastern and south eastern parts of the block.


In the village major cultivable land is under Kharif cropping pattern

Geomorphology & Drainage map

Major part of the village shows Plateau weathered followed by Plateau slightly dissected observed as small patches in the eastern and southern part of the village and very small patches observed in the northern and western part of the village.

Hydro-geology map

Entire village is covered by Deccan trap Basalt.

Panchayat Level Aquifer Management Plan

Village – Deoli, Deoli Taluka, Wardha District

Aquifer (Promin	Curre nt	Geolog y/	Geomorph ology	GW quality		commendat elopment	ions for	Aquifer		Aquifer Manage
ent Litholog y)	Scena rio	Basalt flow			Ty pe	Zones/D epth to be tapped	HP of pum p to be lowe red	Pump ing Hours	Yield (Cu. m / Day)	ment Plan
Aquifer I (Basalt-Weathe red and fracture s)	1632 ha cultiva ble land by GW, 2 DW(d) , 241 DW (i), Pre mons oon DTWL ~ 9.14- 13.26 m bgl. Post mons oon DTWL ~2.6- 11.48 m bgl.	DT Basalt (Ajanth a/ Chikhli/ Karanja formati ons)	Plateau, weathered , Plateau slightly dissected.	Good; All parame ters are within MPL.	Du g we II	Depth Range of Zones: 9-17 m	3 to 5	1 to 3	< 10 – 120 m³/da y Or 0.7 ham/y ear	Construction of 64 nos dug wells and 11nos bore wells. Desilting of existing water conservation and artificial recharge structure s. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed &Fractu res)	192 BW(i), 176 BW (d), HP-Nil DTWL ~ 15- 35 m bgl.	As above	ic: DW/il = Dug	-	Bo re we II	Depth:upto 150 m	3 to 5	1 to 3	0.14- 2.16 lps	1.The GW should be used for drinking purpose. 2. BW should not be drilled down below the red bole.

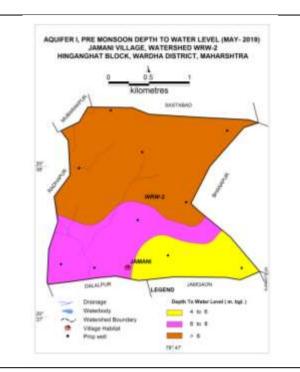
Note: DW (d) = Dug well Domestic; DW (i) = Dug Well Irrigation; BW (d) = Bore Well Domestic; BW (i) = Bore Well Irrigation CGWB, CR, Nagpur

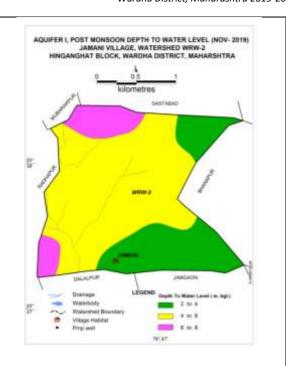
10.6 VILLAGE JAMNI. HINGANGHAT BLOCK, WARDHA DISTRICT

1. SALIENT FEATURES				
1.1 Introduction				
Village Name				ni
Geographical Area (Sq. Km.)			4.53	
Hilly Area (Sq. Km.)			Nil	
Population (Current year -2020)			1065	i
Climate			Mon	soon Sub-Tropical
Normal Rainfall(mm)			1006	5.4
Average Rainfall (mm) 2010-19		!	966.	13
1.2. Geomorphology, Soil & Geolog	gy	1		
Geomorphic Unit	Plat	eau slightly dissect	ted c	overing major part of the
	villa	ge followed by plateau weathered.		
Geology	Dec	can Traps (Basalt) Age: Late Cretaceous to		
	Eoc	ene		
Soil	Dee	ep fine calcareous soil covering major part of the		
	villa	ge followed by very shallow, loamy, clayey soil.		
1.3. Hydrology & Drainage				
Watershed		WRW-2		
Drainage		Godavari basin; dendritic to sub-dendritic		
		drainage pattern.		
		1 st Order Stream – 1.62 km		
		2 nd Order Stream– 1.53 km		
	3 rd Order Stream–0.36 km			
Irrigation Project		Nil		
(Major/Medium/Minor etc.)				
WC structures (PT/KT/CD/FP etc.)	PT-6, CD-7			
1.4. Land Use, Agriculture, Irrigation	on & C	ropping Pattern		
Specific	s		_	Area

Forest Area	Nil	
Cultivable Area	411.27 ha	
Net Sown Area		481.77 ha
Double Cropped Area		8.11 ha (from land use
		map)
Irrigation Dug wells		52
IrrigationBore wells		NIL
Area under Drip & Sprinkler II	rrigation	-
Area under Irrigation	Surface Water	0.042 (MCM)
	Ground Water	0.36 (MCM)
Principal Crops	Soyabean	58.14 ha
	Jawar	0
	Pulses (Tur)	70.9
	Groundnut	0
	Cotton	282.23 ha
	Wheat	13.90 ha
	Gram	55.6 ha
	Sugarcane	0
	Vegetables	1
	Orange and	0
	Pomegranate, Banana	
	Others	0

1.5. Water Level Behavior: Aquifer-I (Shallow Aquifer)


In the village, 10 KOW were established to decipher the water level scenario.


Pre-Monsoon (May-2019)

Water level ranges between 4-6 m bgl observed in the southern and south eastern parts of the village while water level ranges between 6-8 m bgl observed in the southern, south western and south eastern parts of the village. Water level >8 m bgl covering major parts of the village.

Post-Monsoon (November-2019)

Water level ranges between 2-4 m bgl observed in the southern and north eastern parts of the village while water level ranges between 4-6 m bgl observed in the major parts of the village. Water level ranges between 6-8 m bglobserved in the northern and south western parts of the village.

2.Ground Water Issues

- 13. Non-availability of surface water for irrigation.
- 14. Less ground water potential in basaltic aquifer.
- 15. Water stress situation during lean period (March to June).

3. AQUIFER DISPOSITION

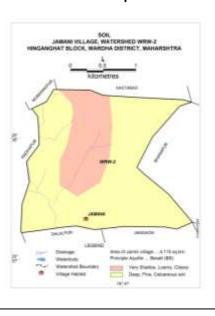
3.1. Number of Aquifers	Basalt –Aquifer-I (Phreatic / Shallow
	aquifer)

3.2. Aquifer Characteristics

Major Aquifers	Basalt (Deccan Traps)
Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
Static Water Level (mbgl)	5-13
Depth of Occurrence (mbgl)	7-20
weathered thickness (m)	0- 10
Yield	10 – 100 m³/day
Specific yield (Sy)	0.02 (norms)

4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)

In the village of Hingni, 10 nosKow established Ec is ranges 618 to 1526. Three water samples collected for the chemical analysis. Chemical parameters are within the permissible limit.

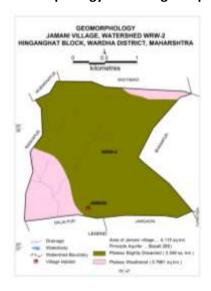

5.0. GROUND WATER RESOURCE MANAGEMENT

5.1. Supply Side Management	
SUPPLY (MCM)	


Available Resource (MCM)	1.51		
	0.36		
Agricultural Supply – GW	4.24		
Agricultural Supply -SW	0.03		
Domestic Supply - GW			
Domestic Supply - SW	0.00		
Non agriculture use (MCM)	0.03		
Total GW availability (MCM)	1.08		
Gross Annual Draft (MCM)	0.36		
Area of village (Sq. Km.)	4.53		
Area suitable for Artificial recharge (sq km)	4.53		
Type of Aquifer	Hard rock		
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.)	3.52		
Volume of Unsaturated Zone (MCM)	7.392		
Average Specific Yield	0.02		
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0.148		
Surplus runoff considered for planning (MCM) @ 100%	0.02		
Proposed AR Structures (Check Dam(@ Rs.30 lakh, Av. Gross Capacity-10	Not		
TCM * 3 fillings = 30 TCM))	proposed		
Proposed AR Structures Gabbion	Not		
	proposed		
Proposed AR Structures Other	Not		
	proposed		
Volume of Water expected to be conserved / recharged @ 75% efficiency	Total of		
(MCM)	above		
Specific Recommendations -			
As per State Govt. Resolution, segment wise nala/stream desilting,			
deepening and widening upto 3 m depth or upto weathered rock			
considering the local hydrogeological condition without disturbing the			
ecology/aquifer/environmental flow of nala/stream.			
Considering average nala deepening of 1 m depth, additional storage	0.00		
Considering average nala deepening of 1 m depth, additional recharge @ 75%	0.00		
RTRWH Structures			
Households to be covered (Pakka House only)	232		
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000470		
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000376		
However, RTRWH is economically not viable & not Recommended			
6.2. Demand Side Management			
Micro irrigation techniques			

Area is proposed to be covered under Drip	Not	
	proposed	
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36		
m. Drip Req 0.24, WUE- 0.12 m		
Proposed Cropping Pattern change		
Irrigated area under Water Intensive Crop(ha)	Not	
	proposed	
Water Saving by Change in Cropping Pattern		
6.3. Expected Benefits		
Net Ground Water Availability (MCM)	1.51	
Additional GW resources available after Supply side interventions (MCM)	0.00	
Ground Water Availability after Supply side intervention(MCM)	1.51	
Existing Ground Water Draft for All Uses (MCM)	0.43	
GW draft after Demand Side Interventions (MCM)	0.00	
Present stage of Ground Water Development (%)	28.28	
Expected Stage of Ground Water Development after interventions (%)	28.28	
Other Interventions Proposed, if any		
Alternate Water Sources Available	Nil	
6.4. Development Plan		
Volume of water available for GWD after stage of GWD brought to 35%	0.10	
(MCM)		
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	6	
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	1	
Area (ha) proposed to be brought under assured GW irrigation with av.	15.61	
CWR of 0.65 m after 70% stage of gwd is achieved		

Soil map



Landuse map

In the village major area consisting mostly of deep, Fine, calcareous soil followed by very shallow, loamy clayey soil. In the village major cultivable land is under Kharif cropping pattern

Geomorphology & Drainage map

Major part of the village shows Plateau slightly dissected followed by Plateau weathered which is observed in the northern and south western parts of the village.

Hydro-geology map

Entire village is covered by Deccan trap Basalt.

Panchayat Level Aquifer Management Plan

Village –Jamni, Hinganghat Taluka, Wardha District

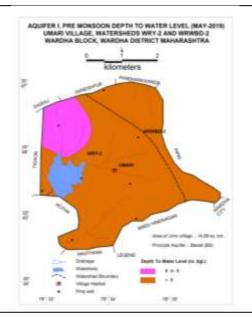
Aquifer (Promi	Curre nt	Geolog y/	Geomorph ology	GW quality		commenda elopment	tions for	Aquifer		Aquifer Manage	
nent Litholo gy)	tholo rio flow				Ty pe	Zones/D epth to be tapped	HP of pum p to be lowe red	Pump ing Hours	Yield (Cu. m / Day)	ment Plan	
Aquifer I (Basalt-Weathe red and fracture s)	411.2 7 ha cultiva ble land by GW, 7 CD,6 PT, 3 DW(d) , 52 DW (i), Pre mons oon DTWL ~ 5.0 - 13 m bgl. Post mons oon DTWL ~ 2.27- 7.96 m bgl.	DT Basalt (Ajanth a/ Chikhli/ Karanja formati ons)	Plateau slightly dissected, Plateau weathered	Good; All parame ters are within MPL.	Du g we II	Depth Range of Zones: 6– 15 m	3 to 5	1 to 3	< 10 – 120 m³/da y Or 0.7 ham/y ear	Construction of 6nosdug wells and 1 no bore well. Desilting of existing water conserva tion and artificial recharge structure s. The GW should be used for irrigation purpose.	
Aquifer II (Basalt- Jointed &Fractu res)	BW(i)- Nil 8 BW (d), HP-Nil DTWL ~ 15- 35 m bgl.	As above	-	-	Bo re we II	Depth:upto 160 m	3 to 5	1 to 3	0.5- 2.5lps	1. The GW should be used for drinking purpose. 2. BW should not be drilled down below	

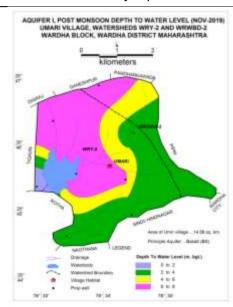
Aquifer	Curre	Geolog	Geomorph	GW	* Re	Aquifer								
(Promi	nt	y/	ology	quality	Deve	elopment				Manage				
nent	Scena	Basalt			Ту	Ty Zones/D HP of Pump Yield								
Litholo	rio	flow			ре	epth to	pum	ing	(Cu. m	Plan				
gy)						be	p to	Hours	/ Day)					
						tapped	be							
							lowe							
							red							
										the red				
										bole.				

Note: DW (d) = Dug well Domestic; DW (i) = Dug Well Irrigation; BW (d) = Bore Well Domestic; BW (i) = Bore Well Irrigation

10.7 VILLAGE UMRI, WARDHA BLOCK, WARDHA DISTRICT

10.7 VILLAGE UWRI, WARD	HA BLOCK, WARDHA	A DISTRICT					
1. SALIENT FEATURES							
1.1 Introduction							
Village Name	Village Name						
Geographical Area (Sq. Km.)	14.46						
Hilly Area (Sq. Km.)	Nil						
Population (Current year -2020)	3469						
Climate	Monsoon Sub-Tropical						
Normal Rainfall(mm)	894.6						
Average Rainfall (mm) 2010-19	901.51						
1.2. Geomorphology, Soil & Geo	logy						
Geomorphic Unit	Plateau slightly disse	cted covering major part of the					
	village followed by P	lateau Undissected, Plateau					
	weathered and Butte	غ					
Geology	Deccan Traps (Basalt) Age: Late Cretaceous to Eocene					
Soil	Deep fine calcareous	soil covering major part of the					
	village followed by v	ery shallow, loamy, clayey soil					
	and very deep, fine o	alcareous soil which is observed					
	as very small patches	as very small patches in the southern tip of the					
	village.	village.					
1.3. Hydrology & Drainage							


		Wardha District, Maharashtra 2019-20				
Watershed	WRY-2, WRWBD-2					
Drainage	Godavari basin;dendr	itic to sub-dendritic				
	drainage pattern.					
	1 st Order Stream – 10	.14 km				
	2 nd Order Stream– 3 k	ĸm				
Irrigation Project	Nil					
(Major/Medium/Minor etc.)						
WC structures (PT/KT/CD/FP etc.)	PT-1,CD-6, LBS-8, Villa	age farm-1				
1.4. Land Use, Agriculture, Irrigation &	Cropping Pattern					
Specifics		Area				
Forest Area		Nil				
Cultivable Area		674 ha				
Net Sown Area		811.2 ha				
Double Cropped Area		15.80 (Data collected				
		from Talati)				
Irrigation Dug wells		54				
Irrigation Bore wells		NIL				
Area under Drip & Sprinkler Irrigation		-				
Area under Irrigation	Surface Water	0.03 (MCM)				
	Ground Water	0.60 (MCM)				
Principal Crops	Soyabean	115 ha				
	Jawar	3				
	Pulses (<i>Tur</i>)	117				
Major/Medium/Minor etc.) VC structures (PT/KT/CD/FP etc.) .4. Land Use, Agriculture, Irrigation a Specifics orest Area ultivable Area let Sown Area rigation Dug wells rigation Bore wells rrea under Drip & Sprinkler Irrigation rea under Irrigation rincipal Crops	Groundnut	0				
	Cotton	531 ha				
·	Wheat	11 ha				
	Gram	7				
<u>:</u>	Sugarcane	0				
<u> </u>	Vegetables	15.80				
	Orange and	2.40				
	Pomegranate, Banana					
	Others	0				
1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer)					
In the village, 8 KOW were established	to decipher the water lev	el scenario.				


Pre-Monsoon (May-2019)

Water level ranges between 6-8 m bgl observed in the north western part of the village while water level > 8 m bgl observed in the major parts of the village.

Post-Monsoon (November-2019)

Water level ranges between 0-2 m bgl observed in the western part of the village while water level ranges between 2-4 m bgl observed in the southern and south eastern parts of the village. Water level ranges between 4-6 m bgl observed in the north eastern, central and western parts of the village. Water level ranges between 6-8 mbgl observed in the major parts of the village.

2. Ground Water Issues

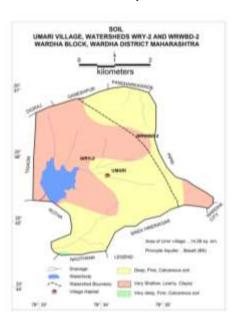
- 16. Non-availability of surface water for irrigation.
- 17. Less ground water potential in basaltic aquifer.
- 18. Water stress situation during lean period (March to June).

3. AQUIFER DISPOSITION

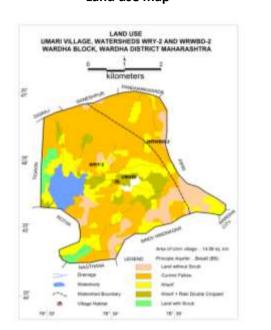
3.2. Aquifer Characteristics

Major Aquifers	Basalt (Deccan Traps)
Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
Static Water Level (mbgl)	6-13
Depth of Occurrence (mbgl)	7-20
weathered thickness (m)	0- 10
Yield	10 – 100 m³/day
Specific yield (Sy)	0.02 (norms)

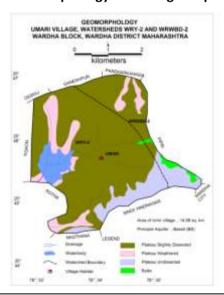
4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)


In the village of Hingni, 8 nosKow established Ec is ranges 580 to 1280. Three water samples collected for the chemical analysis. Chemical parameters are within the permissible limit.

5.0. GROUND WATER RESOURCE MANAGEMENT


5.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	4.63
Agricultural Supply –GW	0.60
Agricultural Supply -SW	3.35
Domestic Supply - GW	0.09
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.10
Total GW availability (MCM)	3.84
Gross Annual Draft (MCM)	0.60
Area of village (Sq. Km.)	14.46
Area suitable for Artificial recharge (sq km)	14.46
Type of Aquifer	Hard rocl
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.)	10.78
Volume of Unsaturated Zone (MCM)	22.64
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge	0.45
(MCM)	
Surplus runoff considered for planning (MCM) @ 100%	0.02
Proposed AR Structures (Check Dam(@ Rs.30 lakh, Av. Gross Capacity-10	No
TCM * 3 fillings = 30 TCM))	proposed
Proposed AR Structures Gabbion	No
	proposed
Proposed AR Structures Other	No
	proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency	Total o
(MCM)	above
Specific Recommendations -	
As per State Govt. Resolution, segment wise nala/stream desilting,	
deepening and widening upto 3 m depth or upto weathered rock	
considering the local hydrogeological condition without disturbing the	
ecology/aquifer/environmental flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
Considering average nala deepening of 1 m depth, additional recharge @ 75%	0.00

RTRWH Structures	
Households to be covered (Pakka House only)	864
Total RWH potential (MCM) (25% with 50 m2 area)	0.0001706
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0001365
However, RTRWH is economically not viable & not I	Recommended
6.2. Demand Side Management	
Micro irrigation techniques	
Area isproposed to be covered under Drip	Not
	proposed
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36	
m. Drip Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not
	proposed
Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	4.63
Additional GW resources available after Supply side interventions (MCM)	0.00
Ground Water Availability after Supply side intervention(MCM)	4.63
Existing Ground Water Draft for All Uses (MCM)	0.79
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	17.12
Expected Stage of Ground Water Development after interventions (%)	17.12
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 35%	0.83
(MCM)	
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	50
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	8
Area (ha) proposed to be brought under assured GW irrigation with av. CWR	127.41
of 0.65 m after 70% stage of gwd is achieved	


Land use map

In the village major area consisting mostly of deep, Fine, calcareous soil followed by very shallow, loamy clayey soil and very deep, fine, calcareous soil observed in the southern tip of the village.

In the village major cultivable land is under current Fallow.

Geomorphology & Drainage map

Plateau slightly dissected covering major part of the village followed by Plateau Undissected, Plateau weathered and Butte

Hydro-geology map

Entire village is covered by Deccan trap Basalt.

Panchayat Level Aquifer Management Plan

Village –Umri, Wardha Taluka, Wardha District

Aquifer (Promi	Curre nt	Geolog y/	Geomorph ology	GW quality		commenda elopment	Aquifer Manage			
nent Litholo gy)	Scena rio	Basalt flow			Ty pe	Zones/D epth to be tapped	HP of pum p to be lowe red	Pump ing Hour s	Yield (Cu. m / Day)	ment Plan
Aquifer I (Basalt- Weath ered and fractur es)	674 ha cultiv able land by GW, 8 lbs,6 CD, 1 PT,1 DW(d), 54 DW (i), Pre mons oon DTWL ~ 6.32- 12.91 m bgl. Post mons oon DTWL ~ 0.5- 9.0 m bgl.	DT Basalt (Ajanth a/ Chikhli/ Karanja formati ons)	Plateau slightly dissected, Plateau undissecte d, Plateau weathered and Butte	Good; All parame ters are within MPL.	Du g we II	Depth Range of Zones: 6–16 m	3 to 5	1 to 3	< 10 – 100 m³/da y Or 0.7 ham/y ear	Construction of 50nos dug wells and 8nos bore wells. Desilting of existing water conservation and artificial recharge structure s. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed & Fractur es)	BW(i)- Nil, 30 BW (d), HP-Nil DTWL ~ 15- 35 m bgl.	As above		-	Bo re we II	Depth :upto 150 m	3 to 5	1 to 3	0.14- 2.20lp s	1.The GW should be used for drinking purpose. 2BW should not be drilled down

Aquifer (Promi	Curre	Geolog y / Basalt	Geomorph ology	GW quality	* Re Deve	Aquifer Manage				
nent Litholo gy)	Scena rio				Ty pe	Zones/D epth to be tapped	HP of pum p to be lowe red	Pump ing Hour s	Yield (Cu. m / Day)	ment Plan
										below the red bole.

Note: DW (d) = Dug well Domestic; DW (i) = Dug Well Irrigation.

BW (d) = Bore Well Domestic; BW (i) = Bore Well Irrigation

11. ANNEXURES

ANNEXURES

Annexure-I: Salient Features of Ground Water Exploration	1
Annexure-II: Aquifer I depth to water leveldetails in Wardha district	8
Annexure-III A: Aquifer II depth to water level details in Wardha district	14
Annexure-III B: Aquifer II depth to water level details in Wardha district	18
Annexure-IV: Details of PMP wells, Wardha district	20
Annexure-V: Soil Infiltration test data	24
Annexure-VI: Water Level trend (2010-2019)	26
Annexure-VII: Aquifer-I Chemical analysis	34
Annexure VIII: Aquifer II Chemical analysis	52
Annexure-IX: Location of proposed Percolation tanks in Wardha District	55
Annexure-X: Location of proposed check dam in Wardha district	58

Annexure-I: Salient Features of Ground Water Exploration

Sl. No.	Taluka	Village	X Longitude	Y Latitude	Altitud e (m AMSL)	Year	Туре	Aquif er	Drilling Depth (m)	Constr Depth (m)	Casi ng (m)	AQ_Zones (m)	SWL (m)	PYT Disch (lps).	PYT DD (m)	A q u if e r I	Aquif er II	Aqui fer Thic knes s	APT _SW L	APT Dischar ge	AP T_ DD (m)	Т
1	Karanja	Savali	78.5236	21.1333	499.1	1992	EW	FB	195.2	_	6.5	_	4.9	1.05	-		165	5	_	_	_	_
2	Ashti	Dhari	78.2239	21.2733	358.3	2012	EW	JMB	200	-	11.7	_	4.4	Trace s			166	6	-	_	-	-
3	Ashti	Durgawad a	78.225	21.325	349	1992	EW	-	143.3	24.3	-	_	-	_	-				-	-	_	-
4	Ashti	Sahur	78.215	21.3067	354	1995	PZ	FB	30		13.4	7.35 -19.55	8.44	4.43	-				-	Г	-	-
5	Ashti	Sahur	78.215	21.3067	354		EW	_	_	_	_	_	-	_	-				_	-	_	-
6	Ashti	Ashti	78.1833	21.2	330	2011	Pz	-	40	5	-	-	6.6	2.16					_	_	-	_
7	Ashti	Talegaon	78.2	21.1	319	2011	Pz	-	40	11.8	-	-	8.7	Trace s					_	-	-	-
8	Ashti	Choti Arvi	78.1333	21.2167	322.9	1992	EW	FB	180	-	13.5	_	25.5	1.73	-		166	5	_	_	_	_
9	Arvi	Wardhama neri	78.2222	21.0667	313.5	1992	EW	FB	136.7	_	12.5	25-27.40, 54-57, 73.20- 76.20, 89- 91.50	30.2	16.88	10.37		135	5	26.0 5	7.12	10. 37	38.85
10	Arvi	Wardhama neri	78.2222	21.0667	313.5	1992	OW	FB	99	_	15.5		9.1	2.16	10.55		93	3	-	_	-	-
11	Ashti	Manikwad a	78.2736	21.2764	399.4	2013	OW	FB	143.8	-	5	140-143	31.83	4.43			143	3	_	_	-	8.97
12	Ashti	Manikwad a	78.2672	21.2764	401.7	2013	EW	FB	143.8	-	2.5	140-143	29.6	4.43	21.25		143	3	-	-	_	-
13	Karanja	Karanja	78.4069	21.1667	439.7	1992	EW	FB	201.3	_	3	16.3 - ,48.1 -	24.09	9.84	33.43				16	5.4	34	43
14	Karanja	Karanja	78.4069	21.1667	439.7	1992	OW	FB	201.3	_	6	30 - ,153 -	16.5	7.76	1.2		156	3	_	_	_	-
15	Karanja	Junapani	78.3689	21.1181	456.5	2011	Pz		40	2.4			21.9	0.14	_				_	_	_	_
16	Karanja	Palora	78.3	21.15	447	1992	EW	FB	201.3	-	3.5		8.8	_	_		165	5	_	-	_	_
17	Karanja	Thanegaon	78.4725	21.1575	476	1995	PZ		30	-	10.8		4.75	-	_				_	-	_	_
18	Arvi	Arvi	78.2333	20.9997	305.1	2011	Pz	-	40	5.4			9.2	Trace s						_	-	_

Sl. No.	Taluka	Village	X Longitude	Y Latitude	Altitud e (m AMSL)	Year	Туре	Aquif er	Drilling Depth (m)	Constr Depth (m)	Casi ng (m)	AQ_ Zones (m)	SWL (m)	PYT Disch (lps).	PYT DD (m)	A q u if e	Aquif er II	Aqui fer Thic knes s	APT _SW L	APT Dischar ge	AP T_ DD (m)	Т
19	Deoli	Adegaon	78.5292	20.5833	262.8	1978	EW	VB	60.55	60.55	4.3	1.25 -6.85 ,9.93 -13 ,45.95 -52.8 ,20.09 - 23.59	6.83	0.6	5.88	I	45	7	6.83	0.6	5.8 8	8.26
20	Hingang hat	Alipur	78.6972	20.5458	236	1975	EW	WB	49.2	49.2	-	5.15 -15.31 ,23.57 -26	5.59	4.76	16.78				5.59	4.76	16. 78	149.3
21	Hingang hat	Alipur	78.6972	20.5458	236	1975	OW	WB	48.1	48.1	48.1	5.2 -17.58 ,24.32 - 27.07	_	-	-				-	_	-	_
22	Wardha	Bhivapur	78.6417	20.6111	235.6	1979	EW	VB	65.57	65.57	65.5 7	7.83 -12.98 ,30.09 -33.5	2.87	1.25	4.31		60	3	2.87	1.25	4.3 1	53.1
23	Wardha	Dhotra	78.5236	20.7208	259.6	1979	EW	JB	65.95	65.95	5.15	29.5 -35	2.6	8.16	5.4		60	3	_	_	_	_
24	Deoli	Giroli	78.5986	20.5472	253.3	1975	EW	VB	78.87	78.87	4.5	20.59 - 29.05 ,42.51 - 45.05	4.14	_	-		42	3	-	_		_
25	Wardha	Karanje Bhoge	78.6917	20.7167	244.8	1978	EW	VB	75.42	75.42	75.4 2	9.75 -18.5 ,34.8 -37 ,67.71 - 70.71 ,50 -	2.66	5.01	10.09		65	5	2.66	5.01	10. 09	50.23
26	Deoli	Pathari	78.6125	20.5542	241	1996	EW	_	200.15	-	26.5 5	74 -77 ,149 -152.75	_	-	-				-	-	-	-
27	Wardha	Selsur	78.5236	20.6833	244.7	1978	EW	VB	71.52	71.52	-	11.6 -15 ,27.6 -31 ,65 -69.9 ,46.5 -52.45	2.96	0.57	8.82		46	11	2.96	0.57	8.8	5.27
28	Wardha	Selu Khurd	78.6194	20.6708	258.4	1975	EW	VB	86.23	86.23	86.2	2.75 -8 ,38.5 -41.5 ,78.7 -80 ,61.6 -63.11	4.77	-	12.95		78	5	-	-	-	-

Sl. No.	Taluka	Village	X Longitude	Y Latitude	Altitud e (m AMSL)	Year	Туре	Aquif er	Drilling Depth (m)	Constr Depth (m)	Casi ng (m)	AQ_Zones (m)	SWL (m)	PYT Disch (lps).	PYT DD (m)	A q u if e r	Aquif er II	Aqui fer Thic knes s	APT _SW L	APT Dischar ge	AP T_ DD (m)	T
29	Wardha	Sewagram	78.6639	20.7236	249.3	1978	EW	VB	83.25	83.25	-	5.68 -9.5 ,41.15 -45.4 ,78.5 -80.5 ,63.5 -68.38	2.65	6.29	9.22		78	11	2.65	6.2	9.2 2	237.6
30	Deoli	Sirasgaon	78.5681	20.6056	239.3	1975	EW	VB	60.2	60.2	7.62	7.63 -16.8 ,30.4 -32.55 ,58.35 - 59.85 ,45.8 -47.8	8.44	-	3		46	3.5	-	_	-	_
31	Wardha	Sawangi (meghe)	78.585	20.7258	278.1	2011	Pz		40	5.4			4.9	traces					_	-	_	-
32	Wardha	Sonegaon R.S.	78.6931	20.6292	252.6	1979	EW	VB	73.29	73.29	73.2 9	18 -23.8 ,35 -36.25 ,62.1 -63.3 ,51.4 - 53.4 ,67.75 -69.8	6.51	0.56	22.3		51	5.5	6.51	0.56	22. 3	0.62
33	Wardha	Wardha	78.6167	20.745	285.9	1995	PZ	FB	30	_	7.85	_	-	-	_				_	_	_	_
34	Ralegao n	Adgaon	78.7164	20.2819	215.7	2011	Pz	-	40	5.4	-	-	17.8	Trace s					_	_	_	_
35	Hingang hat	Sirasgaon Alipurroad	78.6792	20.4722	227.3	1979	EW	VB	56.47	56.47	10.3	8.26 -12.62 ,20.19 - 25.54	1.29	12	5.7				1.29	12	5.7	260.38
36	Kelapur	Sarul	78.6211	20.1356	298.1	2011	Pz	-	40	14	-	-	37	Trace s	-				_	_	-	-
37	Kelapur	Sirasgaon	78.5464	20.0242	249.9	2011	Pz	_	40	11.8	_		6.9	0.78	_				_	_	_	_
38	Seloo	Dahegaon	78.8	20.7972	254.6	1991	EW	FB	158.6	-	10	-	1.87	1.73	_		145	5	_	-	_	-
39	Seloo	Sindi (Rly)	78.8856	20.8067	247.7	2011	Pz	_	40	5.9		_	8	Trace s	_				_	_	-	-
40	Hingang hat	Bela	78.8361	20.6014	218.2	1991	EW	MB	158.5	_	6.5	-	11.5	1.37	2.19				-	_	-	_
41	Hingang hat	Bela	78.8361	20.6014	218.2	1991	OW	МВ	110	_	6	_	11.5	1.37	2.19				_	-	-	_

Sl. No.	Taluka	Village	X Longitude	Y Latitude	Altitud e (m AMSL)	Year	Туре	Aquif er	Drilling Depth (m)	Constr Depth (m)	Casi ng (m)	AQ_Zones (m)	SWL (m)	PYT Disch (lps).	PYT DD (m)	A q u if e r	Aquif er II	Aqui fer Thic knes s	APT _SW L	APT Dischar ge	AP T_ DD (m)	T
42	Samudr apur	Kandhali	78.925	20.7333	228.1	1991	EW	FB	195.2	-	18.5	-	8	-	8	ı	159	5	_	_	-	-
43	Hingang hat	Nandgaon (Borgaon)	78.8189	20.5247	219.8	2011	Pz	_	40	5.4		_	5.1	0.38	-				-	-	-	-
44	Samudr apur	Nandori	78.9725	20.5172	244.4	2011	Pz	_	40	5.4		-	39	Trace s	-				-	-	-	-
45	Samudr apur	Pipri	78.9278	20.7375	225.7	1991	EW	F Limes tone	103.7	-	2.5	-	13.4	13.5	21.95		99	3	15.1	13.42	21. 95	47.2
46	Samudr apur	Pipri	78.9278	20.7375	225.7	1991	OW	F Limes tone	130.7	-	2	-	10.07	10.98	0.73		120	3	_	-	_	-
47	Arvi	Mandwa	78.4917	20.8333	276	1991	EW		201.3	-	12.5	_	10	1.37	-		158	5	_	_	_	_
48	Wardha	Vaiphad	78.4083	20.7597	294.6	1979	EW	VB	84.34	84.34	84.3 4	40.5 -45 ,65 -72	2.72	-	22.78		65	11.5	2.72	0.3	22. 78	0.27
49	Arvi	Wadhona	78.3458	20.9972	380.1	1991	EW	_	201.3	-	6.5	-	_	_	_				-	_	_	_
50	Deoli	Agargaon	78.3903	20.6375	266.6	1979	EW	F Basalt	69.3	69.3	6.55	10.03 - 27.07 ,37.03 - 51.47	5.34	2.8	6.76				5.34	2.8	6.7 6	95.37
51	Deoli	Bhidi	78.4	20.5736	248.3	1978	EW	VB	66	66	66	4.5 -11 ,29 - 33.82	4.18	3.7	12.1		30	3	4.18	3.7	12. 1	247.93
52	Wardha	Chikni	78.4667	20.7	259	1978	EW	VB	74.41	74.41	74.4 1	6.45 -13 ,49.68 -55	3.33	3.2	8.38		49	5	3.33	3.2	8.3	168.9
53	Deoli	Injhala	78.3333	20.6167	258	1996	EW	_	104.95	_	6.5	7.35 -10.35	10.84	_	_		90	3	-	-	-	-
54	Deoli	Injhapur	78.4611	20.6278	255.3	1975	EW	VB	58	58	58	8 -11.6 ,24 - 26	13.55	3.46	10.96				13.5 5	3.46	10. 96	0

Sl. No.	Taluka	Village	X Longitude	Y Latitude	Altitud e (m AMSL)	Year	Туре	Aquif er	Drilling Depth (m)	Constr Depth (m)	Casi ng (m)	AQ_Zones (m)	SWL (m)	PYT Disch (lps).	PYT DD (m)	A q u if e r I	Aquif er II	Aqui fer Thic knes s	APT _SW L	APT Dischar ge	AP T_ DD (m)	Т
55	Deoli	Kaotha (Railway)	78.375	20.7333	282	1996	EW	_	147.65	-	2.5	6 -6.5 ,34 - 36	1.05	1.05	-		34	3	-	-	-	-
56	Deoli	Kavtha	78.3722	20.7306	284.7	1979	EW	JB	51.02	51.02	51.0 2	7.97 -14.45 ,44.5 -50.29	5.2	7.3	8.1		44	5	5.2	7.3	8.1	56.5
57	Wardha	Sonegaon	78.4389	20.6792	258.4	1975	EW	VB	67.91	67.91	67.9	6.75 -9.5 ,14.1 -18.6 ,36.45 -38.5 ,28.55 - 30.15 ,47 - 49 ,65 - 67.91	4.02	4.55	12.07		47	5	4.02	4.55	12. 07	24
58	Seloo	Jhadsi	78.6389	20.8611	268.8	1991	EW	FB	140.3	-	35.5	-	16	_	-		130	3	_	_	-	-
59	Seloo	Jhadsi	78.6389	20.8611	268.8	1991	OW	FB	158.6	-	18.5	-	_	0.78	-				_	-	-	-
60	Seloo	Selu	78.7019	20.8336	265.8	2011	Pz	_	40	7.4	_	_	11.7	traces	_				_	_	_	_
61	Seloo	Sukli	78.7208	20.7917	252.2	1991	EW	FB	201.3	-	19	_	10.65	4.43	11.25		157	6	10.2 4	5.3	16. 9	13
62	Seloo	Sukli	78.7208	20.7917	252.2	1991	OW	FB	97.6	-	24.5	-	10.4	1.37	-							
63	Wardha	Tigaon (EW)	78.5264	20.7667	288	1978	EW	VB	78.87	78.87	78.8 7	7.6 -10.63 ,35.2 -39.28 ,73.89 - 77.89 ,64.43 - 67.91	-	-	-				3.9	4.97	13.	8.72
64	Wardha	Tigaon (OW)	78.5264	20.7883	294.9	1975	OW	VB	70	70	70	21 -25 ,33.5 -37.2 ,65.8 - 68 ,52.7 -56	3.9	4.97	13.2							
65	Samudr apur	Kora	79.1028	20.5125	230.7	1991	EW	F Granit e	112.8	-	17.5	_	5.92	8.6	14.73		105	3	5.92	8.6	14. 73	98.6

Sl. No.	Taluka	Village	X Longitude	Y Latitude	Altitud e (m AMSL)	Year	Туре	Aquif er	Drilling Depth (m)	Constr Depth (m)	Casi ng (m)	AQ_Zones (m)	SWL (m)	PYT Disch (lps).	PYT DD (m)	A q u if e r	Aquif er II	Aqui fer Thic knes s	APT _SW L	APT Dischar ge	AP T_ DD (m)	Т
66	Samudr apur	Kora	79.1028	20.5125	230.7	1991	OW	F Granit e	128.1	_	15		6.23	-	1.74							
67	Samudr apur	Lasanpur	79.0042	20.6208	245.1	1991	EW		195.2	-	1.5		-	-	-							
68	Selu	Hingni	78.709833	20.92464	285	2019	EW	FB	93	_	18	41-43,81-83	6.76				81	4				
69	Selu	Hingni	78.70975	20.92472	285	2019	OW	FB	86.9	-	18	41- 44,83.80- 86.90	7.42									
70	Arvi	Dahegaon (Gondi)	78.499444	20.929	304	2019	EW	FB	200		18	TRACES	55				155	3				
71	Karanja	Rahati	78.579167	21.09006	519	2019	EW	FB	200		18	TRACES	65				160	3				
72	Wardha	Taroda	78.803194	20.67225	246	2019	EW	FAB	185.5		18	71.70- 74.70, 105.70- 108.20, 120.40- 123.50	49.6				120	9				270.18
73	Wardha	Taroda	78.803139	20.67258	248	2019	OW	DRY	129.6		18	DRY	DRY									183.92
74	Samudr apur	Dahegaon	78.937861	20.64375	240	2019	EW	SST	160.1		20	126.50- 129.60, 157-160.10	9.29					6				
75	Samudr apur	Dahegaon	78.937917	20.64361	241	2019	OW	SST	160.1		20.2	105.20- 108.20, 157-160.10	15.1									
76	Hingang hat	Daroda	78.770472	20.46506	223	2019	EW	FMB/ SST	178.4		18	7-10, 65-68, 102-105, 173-176	7.6				173	9				
77	Hingang hat	Daroda	78.7707	20.46508	223	2019	OW	FMB	154		17.5	102-105	14.55									

Sl. N	o. Taluka	Village	Х	Υ	Altitud	Year	Туре	Aquif	Drilling	Constr	Casi	AQ_ Zones	SWL	PYT	PYT	Α	Aquif	Aqui	APT	APT	AP	T
			Longitude	Latitude	е			er	Depth	Depth	ng	(m)	(m)	Disch	DD	q	er II	fer	_SW	Dischar	T_	
					(m				(m)	(m)	(m)			(lps).	(m)	u		Thic	L	ge	DD	
					AMSL)											if		knes			(m)	
																е		S				
																r						
																ı						
78	Arvi	Kachnur	78.46375	20.94494	310	2019	EW		32		18											16.32
79	Wardha	Talegaon	78.67547	20.60419	247	2019	EW	FMB	200		19.5	10-13, 86-	27				169	7				0.09
												89, 169-173										

Annexure-II: Aquifer I depth to water leveldetails in Wardha district

SI. No	Taluka	Village	Y Lat	X Long	Elevation (m)	Depth (m)	Pre-monsoon WL (m)	Post-monsoon WL (m)	Fluctuation (m)	RL Pre-monsoon (m AMSL)
1	Samudrapur	Marda	20.75889	78.90772	232	9.63	4.8	6.5	-1.7	227.2
2	Samudrapur	Barbadi	20.76492	78.94550	240	13.7	5.5	3.22	2.28	234.5
3	Samudrapur	Umri	20.74425	78.99142	238	10	7.35	4.47	2.88	230.65
4	Samudrapur	Kawadapur	20.71511	79.07089	250	14.1	11.35	5.22	6.13	238.65
5	Samudrapur	Waigaon (gond)	20.71600	79.02564	247	7.3	4.3	6.17	-1.87	242.7
6	Samudrapur	Harankhuri	20.70844	78.96831	246	8.6	5.7	4.2	1.5	240.3
7	Samudrapur	Rampur	20.72622	78.96800	243	9	5.2	4.9	0.3	237.8
8	Wardha	Umri	20.75822	78.56956	290	13.72	12.9	9.73	3.17	277.1
9	Wardha	Pavnar	20.78919	78.67136	251	11.29	9.2	7.37	1.83	241.8
10	Wardha	Borgaon	20.71806	78.60097	260	10.5	10.1	6.46	3.64	249.9
11	Wardha	Belgaon	20.80922	78.50314	284	7.22	5.7	3	2.7	278.3
12	Wardha	Lonsawali	20.78036	78.43703	283	11.9	10.35	6	4.35	272.65
13	Deoli	Kavtha	20.73067	78.37214	285	16.5	12.35	3.26	9.09	272.65
14	Deoli	Pipri	20.66625	78.36722	294	18.7	18.3	16.17	2.13	275.7
15	Deoli	Ekamba	20.65864	78.33642	277	13	9.5	7.6	1.9	267.5
16	Wardha	Dhotra	20.71667	78.52514	258	8.13	7.9	6.72	1.18	250.1
17	Deoli	Dahegaon dhande	20.67622	78.29256	265	8.62	6.64	3.32	3.32	258.36
18	Deoli	Bopapur (dighi)	20.62631	78.52686	246	14.77	8.97	6.57	2.4	237.03
19	Deoli	Sendari	20.60647	78.27556	256	12.73	9.23	11.64	-2.41	246.77
20	Deoli	Tambha	20.57481	78.30019	259	10.75	7.97	3.97	4	251.03
21	Deoli	Malatpur	20.55303	78.34472	249	11	9.8	8.23	1.57	239.2
22	Deoli	Talni(khandera)	20.59708	78.37450	261	10.7	5.4	1.86	3.54	255.6
23	Deoli	Ratnapur	20.59583	78.43222	262	10.19	9.27	4.41	4.86	252.73
24	Deoli	Wakheda	20.57847	78.47125	250	9.2	5.6	5.85	-0.25	244.4
25	Deoli	Andori	20.53850	78.47181	277	12.7	9.65	8.81	0.84	267.35
26	Deoli	Anji	20.53314	78.52431		11.83	9.1	10.69	-1.59	-9.1
27	Wardha	Selukate	20.66903	78.61347	261	12.85	12.67	9	3.67	248.33
28	Wardha	Sirasgaon	20.64436	78.56864	265	19.75	12.31	8.79	3.52	252.69
29	Wardha	Dewangan	20.61606	78.59994	240	16.05	13.8	9.37	4.43	226.2
30	Deoli	Nibhsada	20.55350	78.62569	244	7.12	5.13	2.69	2.44	238.87
31	Deoli	Chinchala	20.56417	78.56297	251	10.48	8.5	9.75	-1.25	242.5
32	Hinganghat	Khangaon	20.48775	78.55189	245	12.5	12.3	6.69	5.61	232.7
33	Hinganghat	Katri	20.44353	78.62675	229	10.3	8.25	6.42	1.83	220.75
34	Hinganghat	Sirasgaon	20.47658	78.67986	228	11.11	10.2	6.12	4.08	217.8

SI. No	Taluka	Village	Y Lat	X Long	Elevation (m)	Depth (m)	Pre-monsoon WL (m)	Post-monsoon WL (m)	Fluctuation (m)	RL Pre-monsoon (m AMSL)
35	Hinganghat	Chanki	20.50044	78.65722	231	8.37	4.75	3.41	1.34	226.25
36	Hinganghat	Arvi	20.50503	78.74192	237	9.12	7.4	4.12	3.28	229.6
37	Wardha	Ashta	20.65694	78.67206	355	19.55	9.64	8.2	1.44	345.36
38	Wardha	Talegaon	20.50953	78.67419	247	17.9	12.45	10.2	2.25	234.55
39	Hinganghat	Wela	20.57211	78.76711	230	13.8	7.7	9.37	-1.67	222.3
40	Hinganghat	Wagholi	20.58681	78.80433	219	10	6.2	3.17	3.03	212.8
41	Hinganghat	Kingaon	20.61719	78.83422	229	10.49	5.52	4.13	1.39	223.48
42	Hinganghat	Ajanti	20.57461	78.87328	227	4.72	3.82	6.97	-3.15	223.18
43	Samudrapur	Kinhala	20.55783	78.92692	255	19.7	16.6	11.17	5.43	238.4
44	Hinganghat	Sawli (wagh)	20.51333	78.92953	243	12.9	12.22	6.17	6.05	230.78
45	Hinganghat	Kumbhi	20.51222	78.85100	218	12.43	8.25	5.89	2.36	209.75
46	Hinganghat	Ghatsavli	20.49181	78.78153	233	7.77	7.28	4.3	2.98	225.72
47	Hinganghat	Wadner	20.43950	78.75136	236	14.24	11.95	8	3.95	224.05
48	Hinganghat	Bhopapur	20.37186	78.70308	226	18.05	17.45	7.8	9.65	208.55
49	Hinganghat	Pohana	20.34411	78.72619	219	10.45	6.8	8	-1.2	212.2
50	Hinganghat	Yearla	20.31589	78.72978	212	10.6	10.5	8.4	2.1	201.5
51	Hinganghat	Dhochi	20.31256	78.76464	219	11.45	8.25	7.35	0.9	210.75
52	Hinganghat	Khekdi	20.32639	78.81742	218	17.75	9.65	7.47	2.18	208.35
53	Hinganghat	Selu	20.35692	78.79847	1100	16.64	10.65	8.47	2.18	1089.35
54	Hinganghat	Tembha	20.42786	78.79225	203	13.5	13.63	7.42	6.21	189.37
55	Hinganghat	Bambarda	20.40581	78.77769	221	9.22	5.42	3.69	1.73	215.58
56	Hinganghat	Sawangi	20.40647	78.82414	212	8.25	3.12	1.1	2.02	208.88
57	Hinganghat	Ladki	20.42881	78.86717	213	13.3	9.6	8.45	1.15	203.4
58	Hinganghat	Dhamangaon	20.47283	78.88922	228	10.52	5.35	7.78	-2.43	222.65
59	Samudrapur	Pothara	20.44306	78.95367	220	5.6	3.45	1.45	2	216.55
60	Samudrapur	Govindpur	20.48289	78.97614	214	8.12	4.95	5.81	-0.86	209.05
61	Samudrapur	Karur	20.48503	79.05772	229	11	6	4.27	1.73	223
62	Samudrapur	Khapri	20.46386	79.12325	249	4.53	4.12	1	3.12	244.88
63	Samudrapur	Silli	20.52433	79.15875	248	5.62	4.15	4	0.15	243.85
64	Samudrapur	Dasoda	20.53186	79.16814	243	11.35	7.6	5.26	2.34	235.4
65	Samudrapur	Pimpalgaon	20.58256	79.08181	244	9	8.65	4.82	3.83	235.35
66	Samudrapur	Lonhar	20.56536	78.99644	248	15.55	13.4	8.22	5.18	234.6
67	Samudrapur	Arvi	20.63333	79.14156	268	8.43	6.2	5.95	0.25	261.8
68	Samudrapur	Girad	20.64817	79.12219	266	6.92	5.48	5.83	-0.35	260.52
69	Samudrapur	Bodkha	20.61439	79.01836	245	7.8	7.13	3	4.13	237.87
70	Samudrapur	Muradpur	20.62494	78.97133	247	10.25	7.2	3.14	4.06	239.8

SI. No	Taluka	Village	Y Lat	X Long	Elevation (m)	Depth (m)	Pre-monsoon WL (m)	Post-monsoon WL (m)	Fluctuation (m)	RL Pre-monsoon (m AMSL)
71	Samudrapur	Chakur	20.72836	78.88269	237	10	4.9	3.66	1.24	232.1
72	Samudrapur	Mandgaon	20.64950	78.87753	225	10.4	9.3	5.36	3.94	215.7
73	Samudrapur	Hiwara	20.66011	79.04397	264	9	6.5	2.86	3.64	257.5
74	Samudrapur	Dhumankheda	20.67703	79.00669	266	10	8.2	7.73	0.47	257.8
75	Arvi	Sukli (uber)	20.85889	78.48336	285	11.9	8.2	7.3	0.9	276.8
76	Arvi	Ajangaon	20.86575	78.44206	296	12.7	9.5	3.4	6.1	286.5
77	Arvi	Saldara	20.85711	78.38844	324	9.3	6.3	2.3	4	317.7
78	Arvi	Wadala	20.77825	78.30142	275	13.6	10.6	5.1	5.5	264.4
79	Arvi	Dhanodi	20.87642	78.28781	285	11	7	3.4	3.6	278
80	Arvi	Pipari	20.92256	78.27578	298	13.5	Dry	4.5	4.5	-
81	Arvi	Deurwada	20.97953	78.14949	382	14.3	12.5	7.8	4.7	369.5
82	Arvi	Vathoda(wallipur)	20.99397	78.21383	299	10.6	7.8	5.7	2.1	291.2
83	Arvi	Jamb	21.02614	78.22186	308	11.3	6.4	2.2	4.2	301.6
84	Arvi	Dahigaon (gond)	20.92675	78.49553	300	9.3	8.7	3.5	5.2	291.3
85	Arvi	Kachnur	20.93381	78.46544	306	9.1	5.7	4.1	1.6	300.3
86	Arvi	Bothali heti	20.93189	78.38994	354	8	4.2	3.1	1.1	349.8
87	Arvi	Panjara bothali	20.88533	78.34597	295	9.8	7.3	4.9	2.4	287.7
88	Arvi	Bedhona	20.99375	78.31925	397	14.5	13.5	6.8	6.7	383.5
89	Arvi	Chincholi	20.01967	78.30114	401	9	3.5	2.8	0.7	397.5
90	Arvi	Takarkhed	20.03167	78.14419	296	11.8	8.8	4.4	4.4	287.2
91	Arvi	Jalgaon	20.06611	78.18064	307	14.8	12	12.2	-0.2	295
92	Ashti	Nababpur	21.10950	78.13308	317	20.7	18.9	13	5.9	298.1
93	Ashti	Anandwadi	21.12217	78.17297	306	11	8.2	5.4	2.8	297.8
94	Ashti	Parsoda	21.18356	78.15183	328	10	5.6	1.6	4	322.4
95	Ashti	Lahan arvi	21.21752	78.13680	233	11.2	8	2.6	5.4	225
96	Ashti	Pilapur	21.25642	78.12297	355	12.3	10.5	7.2	3.3	344.5
97	Ashti	Borgaon	21.31653	78.18203	352	11.3	9.2	6.15	3.05	342.8
98	Ashti	Wadala	21.32800	78.14072	351	8.5	6.7	4.9	1.8	344.3
99	Ashti	Satarpur	21.31811	78.14414	361	10.3	9	4.8	4.2	352
100	Ashti	Sindivihira	21.17511	78.20500	352	13	8.3	4.6	3.7	343.7
101	Karanja	Masod	20.98386	78.47558	341	13	12.1	3.5	8.6	328.9
102	Karanja	Dhaga	21.03742	78.47461	400	6	5.5	2.3	3.2	394.5
103	Karanja	Ambhora	21.05739	78.53572	448	7	5.7	2.6	3.1	442.3
104	Karanja	Maragsur	21.01883	78.56414	442	7.9	5	2.7	2.3	437
105	Karanja	Susund	20.97136	78.54092	364	9.8	8.5	3.15	5.35	355.5
106	Karanja	Brahmanwada	21.01422	78.43667	352	9.9	9.4	3	6.4	342.6

SI. No	Taluka	Village	Y Lat	X Long	Elevation (m)	Depth (m)	Pre-monsoon WL (m)	Post-monsoon WL (m)	Fluctuation (m)	RL Pre-monsoon (m AMSL)
107	Karanja	Jaurwada (heti)(kann	21.08881	78.50753	439	9.7	9.3	4.9	4.4	429.7
108	Karanja	Ajandoh	21.09589	78.48783	451	15.4	12.3	7.7	4.6	438.7
109	Karanja	Kharas khande	21.13072	78.46494	500	17.5	16.3	4.6	11.7	483.7
110	Karanja	Selgaonlawane	21.19750	78.45378	465	11.8	7.9	4.45	3.45	457.1
111	Karanja	Susundra	21.24550	78.31128	391	16.3	14.7	4.6	10.1	376.3
112	Karanja	Belgaon	21.22906	78.33878	409	14	13.2	2.4	10.8	395.8
113	Karanja	Ajandevi	21.19483	78.36525	418	10	3.5	2.8	0.7	414.5
114	Karanja	Pardi	21.18017	78.30364	445	7.3	6.7	3	3.7	438.3
115	Karanja	Malegaon(kali)	21.10456	78.29281	482	13.2	12	5.1	6.9	470
116	Karanja	Sonegaon	21.11656	78.32108	475	9.8	9.5	4.1	5.4	465.5
117	Karanja	Rajani	21.14828	78.35264	434	16.2	15	5.5	9.5	419
118	Karanja	Karanja	21.15486	78.40150	453	10.4	7.2	3.4	3.8	445.8
119	Karanja	Agargaon	21.12264	78.54539	499	7.6	5.3	3.9	1.4	493.7
120	Karanja	Yengaon	21.10589	78.39719	454	7.3	6.5	3.4	3.1	447.5
121	Karanja	Dhanoli	21.06344	78.60492	512	11.5	11	2.5	8.5	501
122	Seloo	Garamsur	21.02042	78.66497	433	15.1	13.6	7.6	6	419.4
123	Selu	Amgaon	20.94869	78.61378	355	10	8	4.3	3.7	347
124	Selu	Salai pevath	20.93694	78.68292	301	9.2	8	3.1	4.9	293
125	Selu	Juvedi	20.88914	78.67567	286	11.8	10.5	4.7	5.8	275.5
126	Selu	Antargaon	20.86128	78.65000	271	11.8	9.5	5.8	3.7	261.5
127	Selu	Akoli	20.86483	78.58317	284	9.2	8.4	3.8	4.6	275.6
128	Selu	Seldoh	20.84806	78.85286	270	6	4.5	3.1	1.4	265.5
129	Selu	Helodi	20.80506	78.85806	245	12.7	11.6	3.7	7.9	233.4
130	Selu	Khapri (dhone)	20.80722	78.81278	257	8.5	7.1	3.9	3.2	249.9
131	Selu	Junona	20.77525	78.79367	255	10	8	5.15	2.85	247
132	Selu	Chopra	20.73806	78.76675	240	9	8	4.8	3.2	232
133	Selu	Hingni	20.92456	78.70942	292	`12.0	8.7	4.1	4.6	283.3
134	Hinganghat	Pipri	20.38889	78.73528	232.7	12.6	7.73	2.6	5.13	225
135	Hinganghat	Kapsi	20.43500	78.59778	234.48	14.3	7.48	8.45	-0.97	227
136	Hinganghat	Daroda	20.46667	78.78333	219.46	6.55	5.2	2.45	2.75	214.26
137	Hinganghat	Kangaon	20.51083	78.61417	230	10.7	6	1.95	4.05	224
138	Samudrapur	Wasi	20.51667	79.04167	237.06	10.15	7.92	1.2	6.72	229.14
139	Samudrapur	Nandori_pz	20.51722	78.97250	255.4	40	11.1	2.7	8.4	244.3
140	Samudrapur	Sakhra	20.54611	79.10639	247.24	10	6.17	3.8	2.37	241.07
141	Deoli	Giroli	20.54889	78.58500	268.4	10.2	9.4	3.5	5.9	259
142	Hinganghat	Alipur	20.54889	78.69417	241	12.4	9.85	3.2	6.65	231.2

SI. No	Taluka	Village	Y Lat	X Long	Elevation (m)	Depth (m)	Pre-monsoon WL (m)	Post-monsoon WL (m)	Fluctuation (m)	RL Pre-monsoon (m AMSL)
143	Hinganghat	Hinganghat	20.55000	78.81667	228.5	5.95	4.58	0.8	3.78	223.89
144	Deoli	Bhidi	20.57167	78.40361	255.05	10.5	6.1	2.5	3.6	248.95
145	Deoli	Sarul_pz	20.58639	78.60528	242.8	40	8.9	6.7	2.2	233.9
146	Wardha	Sonegaon	20.61667	78.71667	269.31	16.5	8	3.14	-3.14	261.31
147	Samudrapur	Dhondgaon	20.63167	79.05778	249.38	10.5	9	5.05	3.95	241.73
148	Samudrapur	Samudrapur	20.63889	78.96389	248.68	9.65	7.65	2	5.65	241.03
149	Deoli	Deoli	20.65000	78.46667	263.32	13.5	8	1.37	6.63	255.32
150	Samudrapur	Ajda	20.65000	78.92917	234.1	7.8	4.6	2.45	2.15	229.5
151	Wardha	Madni	20.65500	78.77500	249.22	10.8	10.18	4.45	5.73	239.04
152	Wardha	Vadad	20.65833	78.56667	249.15	12	9.2	6.2	3	239.95
153	Samudrapur	Girad	20.65833	79.11667	304.85	12	6	3	3	298.85
154	Deoli	Muradgaon (balsare)1	20.69167	78.41611	301.05	9	7.05	2.19	4.86	294
155	Wardha	Karanji kaji	20.70722	78.72861	251.83	14.8	10.43	4.2	6.23	241.4
156	Wardha	Sawangi	20.71667	78.56667	273.69	10	5.5	2.7	-2.7	268.19
157	Wardha	Sawangi meghe_pz	20.72583	78.58500	283.1	40	5.1	0.5	4.6	278
158	Wardha	Sewagram	20.72806	78.66250	267.75	11.6	10.75	6.55	4.2	257
159	Samudrapur	Kandhli (juna)	20.73750	78.92556	233.21	10.2	6.22	2.45	3.77	226.99
160	Wardha	Dahigaon	20.75444	78.48528	286.42	7.5	6.87	3.65	3.22	279.55
161	Wardha	Tigaon	20.76389	78.52361	289.55	8.4	7.25	2.4	4.85	282.3
162	Selu	Sindi rly_pz	20.80667	78.88556	253.75	40	6.05	4.6	1.45	247.7
163	Selu	Yelakeli	20.81389	78.59028	275.65	13	12.9	9.5	3.4	262.75
164	Selu	Selu_pz	20.83361	78.70194	285.8	40	20	5.8	-5.8	265.8
165	Wardha	Mandwa	20.83417	78.49417	280	6.5	5.03	0.5	4.53	275
166	Wardha	Anji	20.85000	78.51667	280.9	10.5	9	6.7	2.3	271.9
167	Selu	Keljhar	20.85000	78.80000	297.8	15	13	5.63	7.37	284.8
168	Selu	Jamni	20.86139	78.58222	290.8	13.1	8.7	2.1	6.6	282.1
169	Selu	Hingni	20.90833	78.71667	300.99	11	9.42	6.06	3.36	291.57
170	Arvi	Kharangana	20.91667	78.48333	296.36	8	6.8	7.3	-0.5	289.56
171	Arvi	Mahakali	20.95417	78.46083	312.35	9	3.35	4.3	-0.95	309
172	Arvi	Pimpalkhuta	20.96139	78.36833	216.66	8	6.66	2	4.66	210
173	Arvi	Arvi_pz	20.99833	78.22750	324.8	40	11.8	5.6	6.2	313
174	Ashti	Talegaon_pz	21.10556	78.20333	323.1	40	10.1	6.4	3.7	313
175	Karanja	Junapani	21.11806	78.36889	461.52	8	5.1	2.45	2.65	456.42
176	Karanja	Sarwadi	21.15194	78.28139	461.84	11	8.44	2.9	5.54	453.4
177	Karanja	Thanegaon-1	21.15694	78.47306	488.8	14.45	13	2.85	10.15	475.8
178	Karanja	Nagalwadi	21.16667	78.43333	481.55	12	12.25	6	6.25	469.3

Sl. No	Taluka	Village	Y Lat	X Long	Elevation	Depth	Pre-monsoon WL	Post-monsoon	Fluctuation	RL Pre-monsoon
					(m)	(m)	(m)	WL	(m)	(m AMSL)
								(m)		
179	Ashti	Ashti	21.20000	78.18333	335.06	7.3	3.03	1.42	1.61	332.03
180	Ashti	Ashti_pz	21.20361	78.19222	406.78	40	25.68	4.1	21.58	381.1
181	Ashti	Thar	21.20611	78.24028	401	10	9.3	4.6	4.7	410.3
182	Ashti	Dhadi	21.26667	78.23333	368.44	14	12.85	6	6.85	355.59
183	Ashti	Sahur	21.30833	78.24167	359.7	10.25	8.9	5	3.9	350.87

Annexure-III A: Aquifer II depth to water level details in Wardha district

SI. No.	Taluka	Village	Topo sheet	X Longitude	Y Latitude	Altitude (m)	Year	Туре	Aquifer	Drillingd epth (m)	Const_d epth (m)	Casing (m)	AQ_ Zone (m)	Pre SWL (m)
1	Hinganghat	Bela	55L/14	78.8361	20.6014	218.2	1991	EW	МВ	158.5		6.5		11.5
2	Wardha	Bhivapur		78.6417	20.6111		1979	EW	VB	65.57	65.57	65.57	7.83 -12.98 ,30.09 -33.5	2.87
3	Ashti	Choti Arvi	55K/4	78.1333	21.2167	322.9	1992	EW	F Basalt	180		13.5		25.5
4	Seloo	Dahegaon	55L/13	78.8	20.7972		1991	EW	F Basalt	158.6		10		1.87
5	Samudrapur	Dahegaon	55L/13	78.93786	20.64375	240	2019	EW	SSt	160.1		20	126.50-129.60, 157-160.10	9.29
6	Arvi	Dahegaon (Gondi)	55L/5	78.49944	20.929	304	2019	EW	FB	200		18	Traces	55
7	Ashti	Dhari	55K/3	78.2239	21.2733	358.3	2012	EW	JMB	200		11.7		4.4
8	Wardha	Dhotra	55L/10	78.5236	20.7208	259.6	1979	EW	J Basalt	65.95	65.95	5.15	-19 ,29.5 -35	2.6
9	SELU	Hingni	55L/9	78.70983	20.92464	285	2019	EW	FB	93		18	41-43,81-83	6.76
10	SELU	Hingni	55L/9	78.70975	20.92472	285	2019	OW	FB	86.9		18	41-44,83.80- 86.90	7.42
11	Deoli	Injhala	55L/6	78.3333	20.6167	258	1996	EW		104.95		6.5	7.35 -10.35	10.84
12	Deoli	Injhapur	55L/6	78.4611	20.6278		1975	EW	VB	58	58	58	8 -11.6 ,24 -26	13.55
13	Arvi	Kachnur	55L/5	78.46375	20.94494	310	2019	EW		32		18	Dry	0
14	Samudrapur	Kandhali	55L/14	78.925	20.7333		1991	EW	F Basalt	195.2		18.5		8

SI. No.	Taluka	Village	Topo sheet	X Longitude	Y Latitude	Altitude (m)	Year	Туре	Aquifer	Drillingd epth (m)	Const_d epth (m)	Casing (m)	AQ_ Zone (m)	Pre SWL (m)
15	Deoli	Kaotha (Railway)	55L/6	78.375	20.7333		1996	EW		147.65		2.5	6 -6.5 ,34 -36	1.05
16	Karanja	Karanja	55K/8	78.4069	21.1667	439.7	1992	EW	F Basalt	201.3		3	16.3 - ,48.1 -	24.09
17	Karanja	Karanja	55K/8	78.4069	21.1667	439.7		OW	F Basalt	201.3		6	30 - ,153 -	16.5
18	Deoli	Kavtha	55L/6	78.3722	20.7306	284.7		EW	J Basalt	51.02	51.02	51.02	7.97 -14.45 ,44.5 -50.29	5.2
19	Samudrapur	Kora	55P/2	79.1028	20.5125	230.7	1991	EW	F Granite	112.8		17.5		5.92
20	Samudrapur	Kora	55P/2	79.1028	20.5125	230.7	1991	OW	F Granite	128.1		15		6.23
21	Ashti	Manikwada	55K/7	78.2736	21.2764	399.4	2013	OW	FB	143.8		5	140-143	31.83
22	Ashti	Manikwada	55K/7	78.2672	21.2764	401.7	2013	EW	FB	143.8		2.5	140-143	29.6
23	Karanja	Palora	55K/8	78.3	21.15	447		EW	F Basalt	201.3		3.5		8.8
24	Samudrapur	Pipri	55L/14	78.9278	20.7375	225.7	1991	EW	F Limesto ne	103.7		2.5		13.4
25	Samudrapur	Pipri	55L/14	78.9278	20.7375	225.7	1991	OW	F Limesto ne	130.7		2		10.07
26	Karanja	Rahati	55K/12	78.57917	21.09006	519	2019	EW	FB	200		18	Traces	65

SI. No.	Taluka	Village	Topo sheet	X Longitude	Y Latitude	Altitude (m)	Year	Туре	Aquifer	Drillingd epth (m)	Const_d epth (m)	Casing (m)	AQ_ Zone (m)	Pre SWL (m)
27	Karanja	Savali	55K/12	78.5236	21.1333	499.1	1992	EW	F Basalt	195.2		6.5		4.9
28	Deoli	Sirasgaon	55L/10	78.5681	20.6056		1975	EW	VB	60.2	60.2	7.62	7.63 -16.8 ,30.4 - 32.55 ,58.35 - 59.85 ,45.8 -47.8	8.44
29	Wardha	Sonegaon	55L/6	78.4389	20.6792	258.4	1991	EW	VB	67.91	67.91	67.91	6.75 -9.5 ,14.1 - 18.6 ,36.45 -38.5 ,28.55 -30.15 ,47 -49 ,65 -67.91	4.02
30	Wardha	Sonegaon R.S.	55L/10	78.6931	20.6292	252.6	1979	EW	VB	73.29	73.29	73.29	18 -23.8 ,35 - 36.25 ,62.1 -63.3 ,51.4 -53.4 ,67.75 -69.8	6.51
31	Seloo	Sukli	55L/9	78.7208	20.7917	252.2		ow	F Basalt	97.6		19		10.4
32	Wardha	Taroda	55L/14	78.80314	20.67258	248	2019	OW		129.6		18	Dry	129.6
33	Wardha	Taroda	55L/14	78.80319	20.67225	246		EW	FAB	185.5		18	71.70-74.70, 105.70- 108.20,120.40- 123.50	49.6
34	Arvi	Wardhaman	55K/4	78.2222	21.0667	313.5	1992	EW	F Basalt	136.7	-	12.5	25-27.40, 54-57, 73.20-76.20, 89-	30.2

SI. No.	Taluka	Village	Topo sheet	X Longitude	Y Latitude	Altitude (m)	Year	Туре	Aquifer	Drillingd epth (m)	Const_d epth (m)	Casing (m)	AQ_ Zone (m)	Pre SWL (m)
		eri											91.50	
35	Arvi	Wardhaman eri	55K/4	78.2222	21.0667	313.5	1992	OW	F Basalt	99	-	15.5		9.1

Annexure-III B: Aquifer II depth to water level details in Wardha district

SI. No.	Taluka	Village	Topo sheet	X Longitude	Y Latitude	Altitude	Year	Туре	Aquifer	Drilling_ depth	Const_depth	Casing	AQ_ Zones	Post SWL
1	Deoli	Adegaon	55L/10	78.5292	20.5833		1978	EW	VB	60.55	60.55	4.3	1.25 -6.85 ,9.93 -13 ,45.95 -52.8 ,20.09 -23.59	6.83
2	Deoli	Giroli	55L/10	78.5986	20.5472		1975	EW	VB	78.87	78.87	4.5	20.59 -29.05 ,42.51 -45.05	4.14
3	Deoli	Bhidi	55L/6	78.4	20.5736		1978	EW	VB	66	66	66	4.5 -11 ,29 - 33.82	4.18
4	Hinganghat	Daroda	55L/15	78.77049	20.46507	223	2019	EW	FMB	178.4		18	7-10, 65- 68,102-105,173- 176	7.6
5	Hinganghat	Daroda		78.7707	20.46508			OW		154.1		17.5		14.55
6	Hinganghat	Alipur	55L/10	78.6972	20.5458		1975	EW	W Basalt	49.2	49.2	-	5.15 -15.31 ,23.57 -26	5.59
7	Seloo	Jhadsi	55L/9	78.6389	20.8611	268.8	1991	EW	F Basalt	140.3		35.5		16
8	Seloo	Sukli	55L/9	78.7208	20.7917		1991	EW	F Basalt	201.3		24.5		10.65
9	Wardha	Karanje Bhoge	55L/10	78.6917	20.7167	244.8	1978	EW	VB	75.42	75.42	75.42	9.75 -18.5 ,34.8 -37 ,67.71 - 70.71 ,50 -52	2.66
10	Wardha	Selsur	55L/10	78.5236	20.6833		1978	EW	VB	71.52	71.52		11.6 -15 ,27.6 - 31 ,65 -69.9 ,46.5 -52.45	2.96
11	Wardha	Selu Khurd	55L/10	78.6194	20.6708	258.4		EW	VB	86.23	86.23	86.23	2.75 -8 ,38.5 - 41.5 ,78.7 -80 ,61.6 -63.11	4.77
12	Wardha	Sewagram	55L/10	78.6639	20.7236	249.3	1978	EW	VB	83.25	83.25		5.68 -9.5 ,41.15 -45.4 ,78.5 -80.5 ,63.5 -68.38	2.65
13	Wardha	Talegaon	55K/4	78.67547	20.60419	319	2019	EW	FMB	200	11.8	19.5	10-13,86- 89,169-173	27
14	Wardha	Chikni	55L/6	78.4667	20.7			EW	VB	74.41	74.41	74.41	6.45 -13 ,49.68 - 55	3.33
15	Wardha	Vaiphad	55L/5	78.4083	20.7597		1979	EW	VB	84.34	84.34	84.34	40.5 -45 ,65 -72	2.72

SI. No.	Taluka	Village	Topo sheet	X Longitude	Y Latitude	Altitude	Year	Туре	Aquifer	Drilling_ depth	Const_depth	Casing	AQ_ Zones	Post SWL
16	Wardha	Tigaon (OW)	55L/9	78.5264	20.7883		1975	OW	VB	70	70	70	21 -25 ,33.5 - 37.2 ,65.8 -68 ,52.7 -56	3.9
17	Arvi	Mandwa	55L/5	78.4917	20.8333		1991	EW		201.3		12.5		10
18	Samudrapur	Dahegaon	55L/14	78.93792	20.64361		2006	ow	sandstone	160.1		10	105.20-108.20, 157-160.10	15.1

Annexure-IV: Details of PMP wells, Wardha district

SI. No	Taluka	Village	Type of well	Toposheet no.	Latitude	Longitude	Altitude (m amsl)	Depth (mbgl)	Aquifer	Q (lps)	Fractured thickness(m)
1	Deoli	Deoli	DW	55L/6	20.65436	78.49789	261	17.02	Basalt	3	6.49
2	Deoli	Deoli	DW	55L/6	20.65312	78.50668	262	16.29	Basalt	3	3.03
3	Deoli	Deoli	DW	55L/6	20.65929	78.54504	249	15.32	Basalt	3	3.04
4	Deoli	Deoli	DW	55L/6	20.66633	78.46521	261	15.24	Basalt	3	3.54
5	Deoli	Deoli	DW	55L/6	20.67478	78.45651	265	16.4	Basalt	3	4.13
6	Deoli	Deoli	DW	55L/6	20.64061	78.47438	253	11.55	Basalt	3	1.65
7	Deoli	Deoli	DW	55L/6	20.64211	78.47517	254	11.29	Basalt	3	2.15
8	Deoli	Deoli	DW	55L/6	20.65634	78.49836	267	15.71	Basalt	3	4.2
9	Deoli	Deoli	DW	55L/6	20.66221	78.50958	257	15.59	Basalt	3	5.95
10	Hinganghat	Jamni	DW	55L/11	20.61758	78.77667	228	9.29	Basalt	3	0.8
11	Hinganghat	Jamni	DW	55L/11	20.61707	78.77794	234	13.6	Basalt	3	4.28
12	Hinganghat	Jamni	DW	55L/11	20.61354	78.77679	233	10.35	Basalt	3	0.35
13	Hinganghat	Jamni	DW	55L/11	20.62215	78.77405	233	9.15	Basalt	3	1.78
14	Hinganghat	Jamni	DW	55L/11	20.62255	78.77008	237	9.35	Basalt	3	3.05
15	Hinganghat	Jamni	DW	55L/11	20.62007	78.76343	239	8.7	Basalt	3	0.65
16	Hinganghat	Jamni	DW	55L/11	20.62742	78.77918	245	10	Basalt	3	2.9
17	Hinganghat	Jamni	DW	55L/11	20.63496	78.7797	252	14.72	Basalt	3	1.6
18	Hinganghat	Jamni	DW	55L/11	20.62353	78.78274	241	8.56	Basalt	3	3.54

SI. No	Taluka	Village	Type of well	Toposheet no.	Latitude	Longitude	Altitude (m amsl)	Depth (mbgl)	Aquifer	Q (lps)	Fractured thickness(m)
19	Hinganghat	Jamni	DW	55L/11	20.62251	78.77858	243	7.72	Basalt	0.5	2.06
20	Wardha	Umri	DW	55L/9	20.76102	78.56874	285	9.82	Basalt	1	1.6
21	Wardha	Umri	DW	55L/9	20.75781	78.57283	287	14.72	Basalt	3	1.81
22	Wardha	Umri	DW	55L/9	20.75453	78.55201	274	13.08	Basalt	3	2.32
23	Wardha	Umri	DW	55L/9	20.75626	78.54921	268	16.42	Basalt	5	4.64
24	Wardha	Umri	DW	55L/9	20.76126	78.5657	283	9.65	Basalt	3	1.73
25	Wardha	Umri	DW	55L/9	20.75935	78.55973	282	11.82	Basalt	3	2.38
26	Wardha	Umri	DW	55L/9	20.77259	78.55833	290	10.85	Basalt	3	1.39
27	Wardha	Umri	DW	55L/9	20.77269	78.55373	285	11.34	Basalt	3	5.82
28	Selu	Hingni	DW	55L/9-3C	20.91389	78.71922	280	10.07	Basalt	1	1.84
29	Selu	Hingni	DW	55L/9-3C	20.90781	78.72383	291	13.6	Basalt	3	3.3
30	Selu	Hingni	DW	55L/9-3C	20.91936	78.72397	299	9.7	Basalt	3	2.1
31	Selu	Hingni	DW	55L/9-3C	20.92194	78.71119	285	8.97	Basalt	3	3.42
32	Selu	Hingni	DW	55L/9-3C	20.91264	78.71006	288	15.12	Basalt	3	6.07
33	Selu	Hingni	DW	55L/9-3C	20.90633	78.70628	286	15.7	Basalt	5	2.58
34	Selu	Hingni	DW	55L/9-3C	20.90875	78.71533	283	9.26	Basalt	3	0.96
35	Selu	Hingni	DW	55L/9-3C	20.90356	78.71506	279	9.78	Basalt	3	2.28
36	Selu	Hingni	DW	55L/9-3C	20.92456	78.70942	292	`12.0	Basalt	3	3.3
37	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.92033	78.49947	298	9.6	Basalt	3	0.2
38	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.92586	78.50039	297	10.16	Basalt	3	2.06
39	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.928	78.167	304	7.5	Basalt	1	0.35
40	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.93489	78.50336	311	5.85 (Dry)	Basalt	1	0.50

SI. No	Taluka	Village	Type of well	Toposheet no.	Latitude	Longitude	Altitude (m amsl)	Depth (mbgl)	Aquifer	Q (lps)	Fractured thickness(m)
41	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.93008	78.50203	300	10.48	Basalt	3	1.15
42	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.92786	78.49661	302	9.23	Basalt	3	0.93
43	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.92569	78.49286	300	9.5	Basalt	3	1
44	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.92392	78.49703	297	8.25	Basalt	3	0.25
45	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.92517	78.49836	303	8	Basalt	3	2.6
46	Arvi	Dahegaon (Gond)	DW	55L/5-1C	20.92675	78.49553	300	9.3	Basalt	0.5	0.6
47	Karanja	Sarwadi	DW	55K/8-2A	21.14944	78.27736	540	9.45	Basalt	3	2.4
48	Karanja	Sarwadi	DW	55K/8-2A	21.15006	78.27969	437	9.5	Basalt	3	0.5
49	Karanja	Sarwadi	DW	55K/8-2A	21.15025	78.279	444	9.7	Basalt	3	0.9
50	Karanja	Sarwadi	DW	55K/8-2A	21.14792	78.27897	439	9.55	Basalt	0.75	2.5
51	Karanja	Sarwadi	DW	55K/8-2A	21.14922	78.27967	448	9.7	Basalt	1	0.9
52	Karanja	Sarwadi	DW	55K/8-2A	21.14914	78.27433	439	11.88	Basalt	0.75	1.35
53	Karanja	Sarwadi	DW	55K/8-2A	21.15144	78.27611	435	14.67	Basalt	0.5	7.71
54	Karanja	Sarwadi	DW	55K/8-2A	21.15256	78.28022	441	13.33	Basalt	0.75	1.13
55	Ashti	Ashti	DW	54K/4-1C	21.21403	78.18714	352	7.32	Basalt	0.5	1.9
56	Ashti	Ashti	DW	54K/4-1C	21.21219	78.18461	346	10.3	Basalt	3	2.95
57	Ashti	Ashti	BW	54K/4-1C	21.20906	78.19233	353	8	Basalt	2	5.38
58	Ashti	Ashti	BW	54K/4-1C	21.20583	78.18219	339	8.1		3	0.28
59	Ashti	Ashti	DW	54K/4-1C	21.20647	78.18628	348	5	Basalt	0.5	0.95
60	Ashti	Ashti	DW	54K/4-1C	21.20432	78.18303	346	6	Basalt	0.5	1.35
61	Ashti	Ashti	DW	54K/4-1C	21.19978	78.17906	338	11.9	Basalt	3	2.8

SI. No	Taluka	Village	Type of well	Toposheet no.	Latitude	Longitude	Altitude (m amsl)	Depth (mbgl)	Aquifer	Q (lps)	Fractured thickness(m)
62	Ashti	Ashti	DW	54K/4-1C	21.19656	78.18331	329	7	Basalt	0.75	2.5
63	Ashti	Ashti	DW	54K/4-1C	21.18275	78.18083	333	10.05	Basalt	3	4.05
64	Ashti	Ashti	DW	54K/4-1C	21.18375	78.18733	337	10	Basalt	3	1.7

Annexure-V: Soil Infiltration test data

Date	08.01.2020
Unique ID No	SITENOWR-01
Village	Taroda
Location	In the field of Eswar somnathe
Taluka	Wardha
District	Wardha
Coordinates	20°40'51.60", 78°46'25.40"
Elevation / RL (mamsl)	240
Initial Water Level (cm)	30
Geology	Deccan Basalt
Soil type	Black cotton soil
Final Infiltration Rate (cm/hr)	4.80

SI.No	Clock time	Duration(m)	Cumulative time (minutes)	Water level depth(c m)	Infiltrate d water Depth (cm)	Infiltratio n rate(cm/h r)	Remark s
1	13.01	1.00	1.00	29.40	0.60	36.00	
2	13.02	1.00	2.00	29.80	0.20	12.00	
3	13.03	1.00	3.00	29.90	0.10	6.00	
4	13.04	1.00	4.00	29.90	0.10	6.00	
5	13.05	1.00	5.00	29.90	0.10	6.00	
6	13.10	5.00	10.00	29.50	0.50	6.00	
7	13.15	5.00	15.00	29.40	0.60	7.20	
8	13.20	5.00	20.00	29.60	0.40	4.80	
9	13.30	10.00	30.00	29.10	0.90	5.40	
10	13.40	10.00	40.00	29.20	0.80	4.80	
11	13.50	10.00	50.00	29.20	0.80	4.80	
12	14.00	10.00	60.00	29.20	0.80	4.80	
13	14.10	10.00	70.00	29.20	0.80	4.80	
14	14.20	10.00	80.00	29.20	0.80	4.80	

Date	07.01.2020		
Unique ID No	SITENOWR-02		
Village	MANDGAON		
Location	In the field of Ganesh Tathoke		
Taluka	Samudrapur		
District	Wardha		
Coordinates	20°39 '28.13", 78°50' 41.89"		
Elevation / RL (mamsl)	231		
Initial Water Level (cm)	30		
Geology	Deccan Basalt		
Soil type	Black cotton soil		
Final Infiltration Rate (cm/hr)	6.00		

SI.No	Clock time	Duration(m)	Cumulative time (minutes)	Water level depth(c m)	Infiltrate d water Depth (cm)	Infiltratio n rate(cm/h r)	Remark s
1	12.31	1.00	1.00	27.50	2.50	150.00	
2	12.32	1.00	2.00	28.80	1.20	72.00	
3	12.33	1.00	3.00	29.10	0.90	54.00	
4	12.34	1.00	4.00	29.30	0.70	42.00	
5	12.35	1.00	5.00	29.40	0.60	36.00	
6	12.36	1.00	6.00	29.50	0.50	30.00	
7	12.37	1.00	7.00	29.60	0.40	24.00	
8	12.42	5.00	12.00	28.20	1.80	21.60	
9	12.47	5.00	17.00	28.40	1.60	19.20	
10	12.52	5.00	22.00	28.30	1.70	20.40	
11	13.02	10.00	32.00	28.50	1.50	9.00	
12	13.12	10.00	42.00	28.60	1.40	8.40	
13	13.22	10.00	52.00	28.70	1.30	7.80	
14	13.32	10.00	62.00	28.70	1.30	7.80	
15	13.42	10.00	72.00	28.80	1.20	7.20	
16	13.52	10.00	82.00	28.80	1.20	7.20	
17	14.02	10.00	92.00	29.00	1.00	6.00	
18	14.12	10.00	102.00	29.00	1.00	6.00	
19	14.22	10.00	112.00	29.00	1.00	6.00	
20	14.32	10.00	122.00	29.00	1.00	6.00	

Annexure-VI: Water Level trend (2010-2019)

Sl.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea		Post tre (m/yea	
							bgl)	bgl)	Rise (m)	Fall (m)	Rise (m)	Fall (m)
1	Hinganghat	Pipri	20.38889	78.73528		2019	7.73	2.6	0.09		0.11	
2	Hinganghat	Kapsi	20.435	78.59778		2019	7.48	8.45	0.31			-0.18
3	Hinganghat	Daroda	20.46667	78.78333		2019	5.2	2.45		-0.01	0.04	
4	Hinganghat	Kangaon	20.51083	78.61417		2019	6	1.95		-0.09	0.13	
5	Samudrapur	Wasi	20.51667	79.04167		2019	7.92	1.2		-0.16	0.1	
6	Samudrapur	Nandori_Pz	20.51722	78.9725		2019	11.1	2.7		-0.48	0.35	
7	Samudrapur	Sakhra	20.54611	79.10639		2019	6.17	3.8	0.09		0.2	
8	Deoli	Giroli	20.54889	78.585		2019	9.4	3.5	0.02			-0.08
9	Hinganghat	Alipur	20.54889	78.69417		2019	9.85	3.2	0.03			-0.08
10	Hinganghat	Hinganghat	20.55	78.81667		2019	4.58	0.8		-0.18	0.2	
11	Deoli	Bhidi	20.57167	78.40361		2019	6.1	2.5	0.26			-0.08
12	Deoli	Sarul_Pz	20.58639	78.60528		2019	8.9	6.7		-0.06		-0.08
13	Wardha	Sonegaon	20.61667	78.71667		2019	6.1	3.14		-0.64		-0.17
14	Samudrapur	Dhondgaon	20.63167	79.05778		2019	9	5.05		-0.42		-0.06
15	Samudrapur	Samudrapur	20.63889	78.96389		2019	7.65	2	0.04		0	
16	Deoli	Deoli	20.65	78.46667		2019	8	1.37	0.26			-0.07
17	Samudrapur	Ajda	20.65	78.92917		2019	4.6	2.45	0.04		0.07	
18	Wardha	Madni (New)	20.655	78.775		2019	10.18	4.45	0		0.18	

Sl.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea		Post tr (m/yea	-
							bgl)	bgl)	Rise (m)	Fall (m)	Rise (m)	Fall (m)
19	Wardha	Vadad	20.65833	78.56667		2019	9.2	6.2		-0.1		-0.27
20	Samudrapur	Girad	20.65833	79.11667		2019	6	3	0.22			-0.08
21	Deoli	Muradgaon (Balsare)1	20.69167	78.41611		2019	7.05	2.19	0.02			-0.18
22	Wardha	Karanji Kaji	20.70722	78.72861		2019	10.43	4.2		-0.08	0.13	
23	Wardha	Sawangi	20.71667	78.56667		2019	5.5	2.7		-0.61	0.09	
24	Wardha	Sawangi Meghe_Pz	20.72583	78.585		2019	5.1	0.5	0.42			-0.06
25	Wardha	Sewagram	20.72806	78.6625		2019	10.75	6.55		-0.4		-0.3
26	Samudrapur	Kandhli (Juna)	20.7375	78.92556		2019	6.22	2.45	0.22		0.22	
27	Wardha	Dahigaon	20.75444	78.48528		2019	6.87	3.65	0			-0.13
28	Wardha	Tigaon	20.76389	78.52361		2019	7.25	2.4		-0.07		-0.01
29	Selu	Yelakeli	20.81389	78.59028		2019	12.9	9.5		-0.14		-0.12
30	Selu	Selu_Pz	20.83361	78.70194		2019		5.8		-1.04		-0.21
31	Wardha	Mandwa	20.83417	78.49417		2019	5.03	0.5		-0.2	0.04	
32	Wardha	Anji	20.85	78.51667		2019	9	6.7		-0.01		-0.14
33	Selu	Keljhar	20.85	78.8		2019	13	5.63		-0.16		-0.03
34	Selu	Jamni	20.86139	78.58222		2019	8.7	2.1		-0.02		-0.06
35	Selu	Hingni	20.90833	78.71667		2019	9.42	6.06		-0.07	0.06	
36	Arvi	Mahakali	20.95417	78.46083		2019	3.35	4.3		-0.18		-0.12
37	Arvi	Pimpalkhuta	20.96139	78.36833		2019	6.66	2		-0.05	0.19	
38	Arvi	Arvi_Pz	20.99833	78.2275		2019	11.8	5.6		-0.21		-0.26
39	Ashti	Talegaon_Pz	21.10556	78.20333		2019	10.1	6.4		-0.21	0.14	

Sl.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea		Post tr (m/yea	
							bgl)	bgl)	Rise (m)	Fall (m)	Rise (m)	Fall (m)
40	Karanja	Junapani	21.11806	78.36889		2019	5.1	2.45	0.02			-0.04
41	Karanja	Sarwadi	21.15194	78.28139		2019	8.44	2.9		-0.17	0.04	
42	Karanja	Thanegaon-1	21.15694	78.47306		2019	13	2.85		-0.65	0.43	
43	Karanja	Nagalwadi	21.16667	78.43333		2019	12.25	6		-0.29		-0.19
44	Ashti	Ashti	21.2	78.18333		2019	3.03	1.42	0.14		0.01	
45	Ashti	Ashti_Pz	21.20361	78.19222		2019	25.68	4.1		-2.58	0.07	
46	Ashti	Thar	21.20611	78.24028		2019	9.3	4.6	0.15			-0.06
47	Ashti	Dhadi	21.26667	78.23333		2019	12.85	6		-0.16	0.18	
48	Ashti	Sahur	21.30833	78.24167		2019	8.9	5		-0.01		-0.08
49	Hinganghat	Pohana	20.35306	78.72194		2019	16	5.9		-0.28		-0.2
50	Hinganghat	Dhanora	20.36083	78.80972		2019	12.6	1.4		-0.55	0.03	
51	Hinganghat	Pipri	20.38944	78.73361		2019	10.2	1.1		-0.13	0.04	
52	Hinganghat	Khapri	20.39306	78.75361		2019	7.7	1	0.04		0.04	
53	Hinganghat	Parsoda	20.42222	78.71944		2019	9	1.7		-0.03	0.06	
54	Hinganghat	Kajalsara	20.43694	78.91333		2019	8.9	2.5	0.01		0.04	
55	Hinganghat	Veni	20.43694	78.91333		2019	9.1	1	0.06		0.01	
56	Hinganghat	Mankapur	20.43917	78.7075		2019	7.9	1.5	0.08		0	
57	Hinganghat	Wadner	20.44139	78.74583		2019	9	2.1		-0.06	0.03	
58	Hinganghat	Nidha	20.45694	78.67361		2019	8.9	5.3		-0.07		-0.05

Sl.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea	-	Post tr (m/yea	
							bgl)	bgl)	Rise (m)	Fall (m)	Rise (m)	Fall (m)
59	Hinganghat	Burkoni	20.46528	78.83278		2019	11.8	1.5	, ,	-0.16		-0.01
60	Hinganghat	Daroda	20.46639	78.77056		2019	6	1.1		-0.01	0	
61	Hinganghat	Kosurla Kh	20.46667	78.615		2019	6.3	2.9	0.2			-0.04
62	Hinganghat	Inzala	20.47389	78.88833		2019	8.7	1.5		-0.06	0.05	
63	Hinganghat	Chincholi	20.475	78.80556		2019	8.4	1	0.08		0.01	
64	Hinganghat	Bhayyapur	20.49278	78.57972		2019	6.8	1.8	0.12			-0.11
65	Hinganghat	Kanchangaon	20.49528	78.71417		2019	5.6	0.5	0.45		0.02	
66	Samudrapur	Khek	20.50472	79.14583		2019	9.9	1		-0.03		-0.01
67	Hinganghat	Sawali wagh	20.5075	78.93333		2019	10.5	0.8		-1.1	0.36	
68	Samudrapur	Kora	20.50833	79.1		2019	8.2	0.7		-0.05	0.07	
69	Hinganghat	Gadegaon	20.51083	78.66417		2019	8.6	2	0.02			-0.09
70	Hinganghat	Kangaon	20.51222	78.61333		2019	6.6	0.6	0.09		0.08	
71	Samudrapur	Savangi (Zade)	20.52083	79.03333		2019	8.5	0.9		-0.2	0.03	
72	Hinganghat	Rohankheda	20.52472	78.63944		2019	9	1.9		-0.02		-0.06
73	Samudrapur	Nandori	20.525	78.975		2019	13.9	2		-0.24		-0.01
74	Deoli	Andori	20.54167	78.55417		2019	9.1	2.2		-0.16		-0.18
75	Deoli	Giroli	20.54861	78.58333		2019	5.6	1	0.33			-0.08
76	Hinganghat	Shahalangdi	20.56611	78.85		2019	7	0.5		-0.04	0	
77	Deoli	Bhidi	20.58056	78.4		2019	7.6	1.5	0.09			-0.1
78	Deoli	Rohani	20.5875	78.35		2019	12.6	4		-0.23		-0.33
79	Deoli	Bhojankheda	20.5875	78.64583		2019	7.2	1.2	0.31			-0.02

Sl.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea	-	Post tr (m/yea	-
							bgl)	bgl)	Rise	Fall	Rise	Fall
	_	_							(m)	(m)	(m)	(m)
80	Samudrapur	Burfa	20.58889	79.03889		2019	8.3	0.9	0.01			-0.12
81	Wardha	Itala	20.60833	78.58333		2019	12.6	1.8		-0.55		-0.14
82	Deoli	Inzala	20.61806	78.33278		2019	7.7	1.9	0.32			0.01
83	Deoli	Dighi	20.62778	78.51528		2019	7.8	1.1	0.12			-0.01
84	Samudrapur	Renkapur	20.62917	78.95		2019	4.8	0.5	0.09			-0.02
85	Deoli	Kolhapur	20.64583	78.46667		2019	4.6	1.6	0.35			-0.05
86	Deoli	Deoli	20.64583	78.48278		2019	9.7	1.7	0.11			-0.09
87	Deoli	Agargaon	20.65306	78.39111		2019	7.8	0.6		-0.06		-0.03
88	Wardha	Selsura	20.66667	78.52083		2019	7.8	1.7		-0.1		-0.05
89	Samudrapur	Dhumankheda	20.675	79.00278		2019	10.7	1.9	0.02			-0.17
90	Wardha	Jamtha	20.67833	78.59222		2019	13.6	1.2		-0.1		-0.03
91	Wardha	Madani	20.68889	78.75417		2019	10.8	1.5		-0.01		-0.14
92	Wardha	Waigaon (Nipani)	20.69167	78.70556		2019	13.6	2		-0.26	0.34	
93	Selu	Dindola	20.69583	78.7625		2019	10.5	1.4		-0.13		-0.14
94	Deoli	Nachangaon	20.69722	78.33333		2019	7.2	1.5		-0.06		-0.06
95	Wardha	Salod (Hirapur)	20.7	78.54722		2019	12	1.9		-0.02		-0.15
96	Samudrapur	Waigaon(Gond)	20.71389	79.01667		2019	8.6	0.6	0.12			-0.01
97	Samudrapur	Kori	20.72639	78.92306		2019	4.7	1.3	0.13			-0.09
98	Selu	Hamdapur	20.7275	78.82111		2019	8	1.6		-0.11	0	
99	Samudrapur	Kankati	20.73083	78.9275		2019	5.9	1		-0.01	0.03	
100	Selu	Kopra	20.73778	78.76917		2019	8.8	5.6	0.02			-0.2

SI.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea	-	Post tr (m/yea	-
							bgl)	bgl)	Rise (m)	Fall (m)	Rise (m)	Fall (m)
101	Samudrapur	Kandhali	20.73972	78.92472		2019	8	1.9	0.13	(111)	(111)	-0.11
102	Selu	Chanki	20.74083	78.76972		2019	9.2	6.1	0.07			-0.18
103	Selu	Gondapur	20.79944	78.67583		2019	17.9	7.8		-0.18		-0.39
104	Selu	Yankapur (Ramna)	20.8	78.675		2019	12.9	6.7	0.05			-0.24
105	Selu	Anjangaon	20.80361	78.78472		2019	5	1.7		-0.09		-0.08
106	Selu	Dahegaon (Gosai)	20.80667	78.80278		2019	4.4	0.4		-0.19		-0.02
107	Selu	Sindi Kh(Railway)	20.81417	78.88083		2019	5.8	0.7	0.24		0.03	
108	Selu	Babapur	20.81917	78.62389		2019	7.5	2.3	0.1			-0.2
109	Selu	Surgaon	20.82083	78.655		2019	15.1	7		-0.28		-0.14
110	Arvi	Marda	20.825	78.32278		2019	10	0.9		-0.04		-0.13
111	Arvi	Pachod (Virul)	20.82639	78.41028		2019	5.4	1.3	0.01		0.15	
112	Selu	Selu	20.83472	78.70222		2019	15	10.4	0.18		0.11	
113	Selu	Janglapur	20.83472	78.75556		2019	7.2	0.2		-0.02	0.31	
114	Selu	Seldoh	20.84556	78.84861		2019	8.4	2.1		-0.02		-0.09
115	Arvi	Rohana	20.85333	78.32417		2019	11.1	1.7		-0.16	0.14	
116	Selu	Zadsi	20.8625	78.63889		2019	8	4.1	0.06			-0.06
117	Selu	Akoli	20.86667	78.58889		2019	8.3	0.9		-0.02		-0.05
118	Selu	Khapari Shivangaon	20.88333	78.75556		2019	8.6	4.1	0.04		0.17	
119	Arvi	Kachnur	20.93611	78.4625		2019	6.2	1.4	0.01		0.06	

Sl.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea		Post tr (m/yea	-
							bgl)	bgl)	Rise (m)	Fall (m)	Rise (m)	Fall (m)
120	Selu	Salai (Pevath)	20.93944	78.68694		2019	6.7	1.9		-0.01		-0.05
121	Selu	Sondi	20.94167	78.65972		2019	11.6	0.9		-0.54	0.02	
122	Karanja	Borgaon (Gondi)	20.96111	78.5625		2019	4.3	1.9	0.1		0.08	
123	Arvi	Pimpalkhuta	20.96389	78.37222		2019	6.7	1.1		-0.06	0.19	
124	Karanja	Danapur	20.975	78.40417		2019		0.8	0.53		0.06	
125	Karanja	Ladgad	20.9875	78.475		2019	9.8	2	0.06			-0.06
126	Arvi	Bedhona	20.99194	78.32167		2019	12	2.1	0.2		0.38	
127	Arvi	Arvi	20.99583	78.23333		2019	8	2	0.42		0.24	
128	Ashti	Salora	21.00194	78.19861		2019	9.9	1.4		-0.18	0.26	
129	Arvi	Nandpur	21.00417	78.16667		2019	5	1.5	0.14		0.14	
130	Selu	Garamsur	21.01889	78.66611		2019	11.3	2.3		-0.21		-0.09
131	Arvi	Khadki Kh	21.03194	78.19861		2019	8.8	1.8		-0.1	0.14	
132	Karanja	Sindi Vihiri	21.03889	78.55556		2019	14.4	2.3		-0.04		-0.06
133	Karanja	Met Hiraji	21.04028	78.63611		2019	11	6.8	0.1			-0.14
134	Arvi	Mandla	21.06528	78.23333		2019	5.1	1.9	0.06		0.06	
135	Karanja	Narsingpur	21.08889	78.31056		2019	11.6	0.3		-0.55	0.03	
136	Karanja	Pipari	21.09194	78.39444		2019	8.9	1.5		-0.12	0.01	
137	Karanja	Kajali	21.10417	78.59028		2019	9.8	0.9		-0.59		-0.1
138	Ashti	Talegaon	21.11111	78.20278		2019	8	2	0.11			-0.02
139	Karanja	Sawali Kh	21.13333	78.52083		2019	5.6	2.5		-0.05		-0.14
140	Karanja	Sarwadi	21.15417	78.28056		2019	9.9	2.4		-0.08		-0.04

Sl.No	Taluka	Village	Y Lat	X Long	Depth	Year	Pre- monsoon water level (m	Post- monsoon water level (m	Pre tre (m/yea		Post tro (m/yea	
							bgl)	bgl)	Rise (m)	Fall (m)	Rise (m)	Fall (m)
141	Karanja	Thanegaon	21.15667	78.47306		2019	10.5	2.5		-0.04		-0.06
142	Karanja	Karanja	21.16944	78.4125		2019	5	0.3		-0.08	0.04	
143	Ashti	Sindivihira	21.18056	78.20278		2019	10	6.5		-0.27		-0.16
144	Ashti	Antora	21.18194	78.19444		2019	10	3.1		-0.06	0.01	
145	Ashti	Drugwada	21.18194	78.19444		2019	8.1	1	0.26		0.04	
146	Ashti	Sirsoli	21.18278	78.0975		2019	22.1	17.8		-0.15	0	
147	Ashti	Lahan	21.21944	78.14028		2019	10.5	4.4	0.25			-0.32
148	Ashti	Sahur	21.30833	78.21667		2019	10	2.1	0.1			-0.09

Annexure-VII: Aquifer-I Chemical analysis

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in µS/cm at 25 C)				•	•	•	(mg/L)		1			1	
1	NHS 2018	Deoli	Pulgaon-1	7.6	1198	632	59.54	46	0.68	459	83.81	BDL	529.33	95.54	24	4	0.77	-
2	NHS 2018	Arvi	Mahakali	7.8	398	210	20.66	8	0.14	193.8	42.93	BDL	202.22	11.17	13	5	0.61	-
3	NHS 2018	Arvi	Paragothan-1	7.3	475	252	23.09	9	0.46	204	42.93	BDL	261.69	11.17	0	5	0.57	-
4	NHS 2018	Karanja	Thanegaon-1	7.7	564	298	24.3	7	0.16	260.1	63.37	BDL	255.74	21.09	17	6	0.76	-
5	NHS 2018	Wardha	Mandwa	7.8	520	276	4.86	12	0.19	249.9	91.98	BDL	255.74	11.17	23	13	0.89	-
6	NHS 2018	Karanja	Sarwadi	7.7	450	239	9.72	9	0.12	198.9	63.37	BDL	190.32	21.09	5	13	0.81	-
7	NHS 2018	Wardha	Wardha-1	7.7	667	354	29.16	17	0.07	280.5	63.37	BDL	315.22	28.54	22	18	0.66	-
8	NHS 2018	Ashti	Thar	7.5	1673	881	87.49	55	47.82	566.1	79.72	BDL	523.38	187.35	24	23	0.51	-
9	NHS 2018	Samudrapur	Ajda	7.8	591	312	20.66	25	0.17	244.8	63.37	BDL	255.74	38.46	14	24	0.84	-
10	NHS 2018	Hinganghat	PIPRI	7.8	996.9231	648	480	-	-	-	-	-	-	100	24	26	0.4	-
11	NHS 2018	Hinganghat	PIPRI	8.3	836.92	544	360	-	-	-	-	-	-	90	52	28	1.06	-
12	NHS 2018	Arvi	ARVI	7.64	484.61	315	220	-	-	-	-	-	-	76	94	28	0.47	-
13	NHS 2018	Samudrapur	Girad	7.8	785	414	49.82	8	0.1	351.9	57.23	BDL	315.22	45.91	20	33	0.67	-
14	NHS 2018	Arvi	Pimpalkhuta	7.9	699	371	57.11	6	0.17	367.2	51.1	BDL	344.96	45.91	34	33	0.63	-
15	NHS 2018	Arvi	ARVI	8.37	741.53	482	210	-	-	-	-	-	-	90	40	35	0.77	-
16	NHS 2018	Hinganghat	Daroda	7.7	854	452	43.75	5	0.51	402.9	87.9	BDL	350.9	65.76	32	36	0.35	-
17	NHS 2018	Hinganghat	Pipri	7.8	1552	824	98.43	12	0.43	693.6	112.42	BDL	469.85	219.61	46	36	0.62	-
18	NHS 2018	Deoli	Muradgaon (Balsare)1	7.9	1485	788	111.8	16	0.16	673.2	81.76	BDL	553.12	169.98	47	36	0.64	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Са	Mg	Na	К	CO3	НСО3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)							(mg/L)				•	•	
19	NHS 2018	Arvi	Rohna	7.9	1229	653	93.57	33	75.95	520.2	51.1	BDL	612.59	55.83	16	36	0.73	-
20	NHS 2018	Ashti	Ashti	7.5	840	445	43.75	4	0.36	397.8	85.85	BDL	362.8	43.43	29	37	0.78	-
21	NHS 2018	Wardha	Sewagram	8	1165	618	85.06	17	0.37	535.5	71.54	BDL	493.64	93.06	23	37	0.74	_
22	NHS 2018	Arvi	Wadhona-1	7.1	1471	779	88.71	30	0.4	673.2	120.6	BDL	582.86	105.46	12	37	0.59	ı
23	NHS 2018	Hinganghat	Hinganghat	7.7	926	490	52.25	7	0.12	453.9	94.03	BDL	368.75	88.09	49	38	0.52	-
24	NHS 2018	Arvi	Kharangana	7.7	945	498	71.7	3	0.91	453.9	61.32	BDL	410.38	63.28	39	38	0.7	-
25	NHS 2018	Karanja	Nagalwadi	7.7	541	287	6.08	15	0.16	229.5	81.76	BDL	255.74	16.13	11	38	0.85	-
26	NHS 2018	Wardha	Tigaon	8	787	416	53.47	3	0.36	357	53.15	BDL	315.22	35.98	38	38	0.61	-
27	NHS 2018	Wardha	Vadad	7.6	1137	602	59.54	22	1.71	520.2	108.34	BDL	446.06	73.2	28	38	1.19	-
28	NHS 2018	Hinganghat	Kangaon	7.7	1067	535	65.62	13	1.12	504.9	91.98	BDL	475.8	75.69	41	38	0.78	-
29	NHS 2018		Sirpur NHS	7.6	1608	854	148.25	8	0.37	785.4	65.41	BDL	553.12	162.54	25	39	0.69	-
30	NHS 2018	Selu	Keljhar	7.5	902	478	53.47	13	0.11	438.6	85.85	BDL	374.69	58.32	32	39	0.54	_
31	NHS 2018	Ashti	Sahur	7.7	1937	1027	173.77	8	0.57	938.4	83.81	BDL	749.39	169.98	39	39	0.74	-
32	NHS 2018	Wardha	Anji	7.5	1663	882	156.76	5	1.16	785.4	51.1	BDL	672.07	107.95	34	39	1.1	-
33	NHS 2018	Wardha	Dahegaon	7.6	694	368	17.01	17	0.16	316.2	98.12	BDL	344.96	23.57	19	39	0.63	-
34	NHS 2018	Wardha	Madni (New)	7.9	907	480	41.32	21	2.16	402.9	91.98	BDL	368.75	68.24	34	39	0.5	-
35	NHS 2018	Wardha	Dahigaon	7.8	777	411	48.61	7	0.12	387.6	73.59	BDL	410.38	26.06	16	39	1.1	-
36	NHS 2018	Hinganghat	Alipur	7.7	1253	665	87.49	21	0.45	520.2	61.32	BDL	553.12	70.72	22	39	0.42	-
37	NHS 2018	Deoli	Giroli	7.7	1947	1028	149.47	10	0.8	943.5	126.73	BDL	731.54	145.17	67	39	1.12	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	К	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)							(mg/L)						
38	NHS 2018	Samudrapur	Sakhra	7.8	928	492	43.75	9	6.8	443.7	104.25	BDL	434.17	70.72	29	39	0.94	_
39	NHS 2018	Selu	Hingni	7.9	1148	609	74.13	11	0.5	515.1	81.76	BDL	469.85	65.76	46	39	0.78	_
40	NHS 2018	Deoli	Bhidi	7.9	1250	665	47.39	6	9.28	515.1	126.73	BDL	469.85	93.06	28	39	1.16	_
41	NHS 2018	Selu	Yelakeli	7.9	1526	806	121.52	4	0.55	739.5	91.98	BDL	731.54	100.5	37	39	0.6	_
42	NHS 2018	Ashti	Dhadi	7.9	1081	573	57.11	12	0.38	504.9	106.29	BDL	463.91	80.65	22	39	0.68	_
43	NHS 2018	Samudrapur	Wasi	7.9	1578	835	110.58	29	1.12	708.9	98.12	BDL	648.28	169.98	33	39	0.7	_
44	NHS 2018	Wardha	Karanji Kaji	7.9	1183	626	66.84	19	0.27	510	91.98	BDL	463.91	105.46	35	39	0.66	_
45	NHS 2018	Selu	Jamni	7.8	1330	705	102.08	8	0.18	606.9	71.54	BDL	570.96	95.54	50	39	0.64	-
46	NHS 2018	Samudrapur	Khandali	7.9	4456	2363	427.75	6	5.15	2152.2	143.09	BDL	1284.66	596.8	180	40	0.72	-
47	NHS 2018	Samudrapur	Girad	8.04	800	520	280	-	-	-	-	-	-	266	15	40	0.65	-
48	NHS 2018	Wardha	Dahegaon	7.8	1144.615	744	520	-	-	-	-	-	-	220	35	45	0.35	_
49	KOW 2019-20	Samudrapur	Marda Kow- 5/01 (Wardha)	7.7	1526	992	154.4	57.9	23.4	105.33	23.4	BDL	170.8	107.9	92	15	0.15	_
50	KOW 2019	Samudrapur	Umri Sd/ 003	7.6	1973	1282	179.3	63.9	28	89.23	10.51	BDL	83	131.1	82	78	0.08	-
51	KOW 2019	Samudrapur	Barbadi W/002	7.9	1339	870	463.1	179.6	68.9	25.2	3.2	BDL	458.7	107.9	24	36	0.06	-
52	KOW 2019	Wardha	Borgaon Kow/003	7.5	745	484	129.5	49.9	19.3	15.02	5.4	BDL	58.6	74.5	13	4	0.23	_
53	KOW 2019	Wardha	Lansawadi Kow- W/005	7.5	832	541	159.4	57.9	24.7	29.05	8.7	BDL	107.4	74.5	25	24	0.14	_
54	KOW 2019	Deoli	Kawtha Kow- 001	7.4	817	531	214.1	81.8	32.2	21.25	9.66	BDL	200.1	59.1	24	48	0.1	-
55	KOW 2019	Wardha	Dotra W/006	7.8	593	385	84.7	29.9	13.3	32.44	5.74	BDL	122	25.7	22	12	0.07	-
56	KOW 2019	Deoli	Bopapur Kow- D/005	7.7	782	508	159.4	59.9	24.2	41.57	16.6	BDL	292.8	25.7	15	18	0.1	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	К	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)							(mg/L)			•			•
57	KOW 2019	Deoli	Sendari Kow- D/006	7.7	816	530	189.2	63.9	30.5	41.24	14.8	BDL	327	25.7	10	21	0.07	-
58	KOW 2019	Deoli	Tambha Kow- D/007	7.5	950	618	254	97.8	38	22.02	9.5	BDL	175.7	92.5	32	8	0.08	-
59	KOW 2019	Deoli	Maltpur-D/008	8.1	1147	746	224.1	83.8	34.1	78.69	24.5	BDL	346.5	107.9	31	11	0.04	-
60	KOW 2019	Deoli	Talni Khander Kow-D/009	7.5	678	441	224.1	79.8	35.1	30.47	3.58	BDL	209.8	54	14	18	0.23	_
61	KOW 2019	Deoli	Ratnpur Kow- D/010	7.5	585	380	144.4	49.9	23	18.87	8.5	BDL	165.9	33.4	17	25	0.1	-
62	KOW 2019	Deoli	Andori Kow- D/012	7.8	1136	738	179.3	67.9	27.1	45.45	3.8	BDL	112.2	115.7	12	21	0.07	-
63	KOW 2019	Deoli	Aanji Kow- D/013	8	1144	744	179.3	67.9	27.1	41.03	4.2	BDL	78.1	131.1	18	35	0.32	-
64	KOW 2019	Wardha	Selukate Kow- W/007	7.7	1695	1102	438.2	157.7	68.2	44.56	33.5	BDL	297.7	128.5	44	43	0.35	-
65	KOW 2019	Wardha	Sirsagaon Kow- W/008	7.9	731	475	179.3	63.9	28	28.67	11.6	BDL	214.7	38.6	16	40	0.3	-
66	KOW 2019	Wardha	Dewangaon Kow-W/009	7.9	828	538	189.2	69.9	29	35.4	11.46	BDL	258.6	38.6	13	52	0.4	-
67	KOW 2019	Deoli	Nibhsada Kow- D/014	8	795	517	134.5	39.9	23	78.36	0.58	BDL	278.2	41.1	22	20	0.15	-
68	KOW 2019	Hinganghat	Khangaon Kow- Hi/001	7.6	1327	863	303.8	115.8	45.7	53.2	22.2	BDL	214.7	143.9	52	76	0.07	-
69	KOW 2019	Hinganghat	Chanki Kow- Hi/004	7.9	775	504	154.4	51.9	24.9	44.16	9.2	BDL	248.9	25.7	17	49	0.05	-
70	KOW 2019	Hinganghat	Arvi Kow- Hi/005	7.5	1737	1129	358.6	131.7	55.1	63.61	24.6	BDL	239.1	187.6	43	90	0.1	-
71	KOW 2019	Wardha	Talegaon Kow- W/011	7.6	1725	1121	353.6	135.7	52.9	94.4	34.6	BDL	239.1	267.3	46	79	0.04	-
72	KOW 2019	Hinganghat	Wela Kow- Hi/006	7.5	749	487	224.1	79.8	35.1	16.45	15.3	BDL	185.4	43.7	19	59	0.22	-
73	KOW 2019	Hinganghat	Wegholi Kow- Hi/007	7.9	1598	1039	438.2	159.7	67.7	115.85	33.04	BDL	263.5	182.5	104	74	0.1	-
74	KOW 2019	Hinganghat	Kingaon Kow- Hi/008	7.8	2364	1537	488	159.7	79.8	84.5	1.07	BDL	170.8	362.4	83	40	0.07	-
75	KOW 2019	Hinganghat	Sawali (Wagh) Kow Hi/010	7.6	1111	722	453.2	175.6	67.4	49.49	1.01	BDL	185.4	133.6	104	67	0.04	-

SI.	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
No					(in μS/cm at 25 C)							(mg/L)	<u>I</u>	l				
76	KOW 2019	Hinganghat	Kumbhi Kow- Hi/011	8.1	1169	760	263.9	99.8	39.9	70.7	19.4	BDL	248.9	128.5	34	35	0.3	-
77	KOW 2019	Hinganghat	Ghatsewali Kow-Hi/012	7.7	898	584	219.1	79.8	33.8	39.84	19.6	BDL	263.5	59.1	27	48	0.4	-
78	KOW 2019	Hinganghat	Wadner Kow- Hi/013	8.1	864	562	149.4	49.9	24.2	66.9	23.6	BDL	214.7	15.4	79	11	0.15	-
79	KOW 2019	Hinganghat	Pohana Kow- Hi/015	7.9	785	510	109.6	39.9	16.9	75.91	1.47	BDL	258.6	25.7	18	42	0.07	-
80	KOW 2019	Hinganghat	Yearla Kow- Hi/016	7.6	1596	1037	572.7	219.6	85.8	70.9	31.85	BDL	361.1	200.5	83	81	0.04	-
81	KOW 2019	Hinganghat	Dhochi Kow Hi/017	7.8	732	476	184.3	69.9	27.8	33.12	12	BDL	165.9	38.6	18	70	0.07	-
82	KOW 2019	Hinganghat	Selu Kow- Hi/019	7.5	1275	829	229.1	67.9	39.2	37.31	18.8	BDL	151.3	105.4	25	89	0.22	-
83	KOW 2019	Hinganghat	Sawangi Kw- Hi/022	7.8	688	447	169.3	59.9	26.6	32.5	18.5	BDL	170.8	36	22	66	0.1	-
84	KOW 2019	Hinganghat	Ladki Kow- Hi/023	7.7	3290	2139	577.7	219.6	87	372.9	16.89	BDL	361.1	426.6	267	91	0.22	-
85	KOW 2019	Samudrapur	Waigaon Kow- Sd/005	7.8	755	491	109.6	39.9	16.9	68.46	1.38	BDL	234.2	33.4	16	46	0.31	-
86	KOW 2019	Samudrapur	Haran Khuri Kow-Sd/006	7.8	680	442	159.4	59.9	24.2	34.38	6.9	BDL	209.8	28.3	19	44	0.02	-
87	KOW 2019	Samudrapur	Pothara Kow- Sd/008	7.6	654	425	169.3	61.9	26.1	28.33	13.1	BDL	239.1	23.1	18	25	0.05	-
88	KOW 2019	Samudrapur	Karur Kow- Sd/010	7.7	601	391	94.6	31.9	15.2	49.6	15.6	BDL	229.4	23.1	13	23	0.1	-
89	KOW 2019	Samudrapur	Khapri Kow- Sd/011	7.6	710	462	184.3	63.9	29.3	25.48	14.7	BDL	244	20.6	22	45	0.04	-
90	KOW 2019	Samudrapur	Silli Kow- Sd/012	7.8	703	457	149.4	53.9	23.2	68.1	2.17	BDL	248.9	43.7	21	14	0.22	-
91	KOW 2019	Samudrapur	Dasod Kow- Sd/013	7.6	1274	828	244	81.8	39.4	67	10.12	BDL	248.9	102.8	86	10	0.1	-
92	KOW 2019	Samudrapur	Pimpalgaon Kow-Sd/014	7.7	970	631	219.1	79.8	33.8	51.4	46.88	BDL	302.6	69.4	31	16	0.22	-
93	KOW 2019	Samudrapur	Lonhar Kow- Sd/015	7.7	609	396	114.5	39.9	18.1	53.68	1.84	BDL	190.3	28.3	17	33	0.31	-
94	KOW 2019	Samudrapur	Girad Kow-Sd/- 017	7.6	614	399	144.4	41.9	24.9	28.12	14.3	BDL	200.1	36	19	26	0.02	-

SI. No	Agency	Taluka	Village	pН	EC	TDS	TH Ca	Са	Mg	Na	К	CO3	HCO3	Cl	SOR	No3	F	Fe
140					(in μS/cm at 25 C)			ı		1	<u> </u>	(mg/L)		1	ı		1	
95	KOW 2019	Samudrapur	Bodkha Kow- Sd/018	7.8	741	482	169.3	61.9	26.1	36.84	14.4	BDL	214.7	46.3	21	44	0.07	-
96	KOW 2019	Samudrapur	Muradpur- Sd/019	7.6	617	401	144.4	47.9	23.5	20.92	6.8	BDL	180.6	18	15	46	0.19	-
97	KOW 2019	Samudrapur	Andgaon- Sd/020	8	1711	1112	338.6	125.7	51.7	84.5	30.76	BDL	453.8	125.9	73	20	0.22	-
98	KOW 2019	Samudrapur	Chakur -Sd/021	7.9	727	473	124.5	43.9	19.6	46.9	4.57	BDL	126.9	48.8	22	12	0.07	-
99	KOW 2019	Samudrapur	Hiwara-Sd/022	7.7	1676	1089	323.7	121.8	49.1	74.4	47.3	BDL	302.6	177.3	48	80	0.05	-
100	KOW 2019	Wardha	Dhanora-Kow- W-012	7.8	1156	751	239	83.8	37.7	74.44	16.2	BDL	248.9	131.1	42	57	0.01	-
101	KOW 2019	Arvi	Agangaon Ar-02 (Wardha)	7.8	761	495	174.3	55.9	28.8	29.87	2.88	BDL	229.4	28.3	19	32	0.62	-
102	KOW 2019	Arvi	Saldara Ar-03	7.8	503	327	144.4	41.9	24.9	14.51	4.91	BDL	185.4	15.4	21	12	0.06	-
103	KOW 2019	Arvi	Wadala Ar-04	8.1	1680	1092	263.9	83.8	43.8	191	0.38	BDL	414.8	120.8	141	41	0.16	-
104	KOW 2019	Arvi	Dhanodi-05	7.8	780	507	159.4	55.9	25.1	45.25	1.47	BDL	253.8	20.6	10	37	0.07	-
105	KOW 2019	Arvi	Deurwad Ar-07	8	1507	980	219.1	71.9	35.8	98.09	2.4	BDL	258.6	102.8	85	67	0.48	-
106	KOW 2019	Arvi	Vathoda (Wallipur) Ar-08	7.9	886	576	199.2	61.9	33.4	33.6	2.23	BDL	205	36	28	11	0.24	-
107	KOW 2019	Arvi	Dhahigaon Arvi Ar-010	7.6	608	395	139.4	41.9	23.7	27.29	3.7	BDL	185.4	18	18	42	0.17	-
108	KOW 2019	Arvi	Kaohnur Ar-11	7.7	527	343	134.5	39.9	23	22.23	1.43	BDL	185.4	18	18	20	0.62	-
109	KOW 2019	Arvi	Bothli Heti Ar- 012	7.7	848	551	194.2	59.9	32.6	28.64	58.01	BDL	229.4	64.3	41	21	0.19	-
110	KOW 2019	Arvi	Ar-14 Bedhona	7.8	1167	759	239	81.8	38.2	60.6	2.45	BDL	219.6	84.8	67	21	0.09	-
111	KOW 2019	Arvi	Chincholi Ar-15	7.8	544	354	129.5	41.9	21.3	22.58	0.94	BDL	190.3	15.4	14	16	0.08	-
112	KOW 2019	Arvi	Jalgaon Ar-17	7.8	4090	2659	732.1	247.5	117.7	304.55	2.42	BDL	346.5	516.6	190	98	0.1	-
113	KOW 2019	Ashti	Nababpur As- 01	8.1	1885	1225	328.7	111.8	52.7	163.15	10.5	BDL	507.5	133.6	94	58	0.16	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)						-	(mg/L)						
114	KOW 2019	Ashti	Anandwadi As- 02	8.2	835	543	164.3	61.9	24.9	67.63	11.4	BDL	214.7	28.3	69	11	0.06	BDL
115	KOW 2019	Ashti	Parsodi As-03	8.2	2370	1541	219.1	75.8	34.8	130.66	28.2	BDL	312.3	131.1	112	17	0.14	BDL
116	KOW 2019	Ashti	Lahan Arvi	7.7	603	392	154.4	47.9	25.9	16.75	2.8	BDL	161	33.4	26	21	0.13	_
117	KOW 2019	Ashti	Borgaon	7.6	683	444	169.3	59.9	26.6	39.38	0.49	BDL	209.8	25.7	43	31	0.85	-
118	KOW 2019	Ashti	Wadla As-07	7.5	1031	670	224.1	81.8	34.6	36.82	19.7	BDL	156.2	79.7	76	73	0.09	-
119	KOW 2019	Ashti	Satarpur As-08	7.6	636	413	124.5	43.9	19.6	34.66	6.2	BDL	209.8	20.6	14	22	0.15	-
120	KOW 2019	Karanja	Masad K-O1	7.7	590	384	139.4	53.9	20.8	27.45	9.27	BDL	234.2	12.9	10	23	0.11	-
121	KOW 2019	Karanja	Dhaga K-02	7.7	349	227	94.6	31.9	15.2	8.26	7.36	BDL	122	12.9	6	14	0.1	-
122	KOW 2019	Karanja	Ambori K-3	7.9	647	421	159.4	53.9	25.6	19.8	3.18	BDL	248.9	15.4	5	5	0.2	-
123	KOW 2019	Karanja	Susund K-5	7.6	569	370	129.5	41.9	21.3	27.95	1.71	BDL	209.8	10.3	12	21	0.09	-
124	KOW 2019	Karanja	Brahmanwadi K-6	7.8	905	588	179.3	69.9	26.6	37.7	3.4	BDL	122	61.7	48	40	0.11	-
125	KOW 2019	Karanja	Asandoh K-8	7.7	535	348	119.5	41.9	18.9	16.94	1.49	BDL	151.3	15.4	7	24	0.09	-
126	KOW 2019	Karanja	Selgaon Lawane K-10	7.4	563	366	169.3	59.9	26.6	22.61	9	BDL	165.9	23.1	67	21	0.09	-
127	KOW 2019	Karanja	Belgaon K-11	7.7	600	390	139.4	41.9	23.7	27.06	0.42	BDL	200.1	10.3	23	15	0.08	-
128	KOW 2019	Karanja	Anjandev K-12	7.5	1049	682	199.2	73.9	30.5	33.6	37.74	BDL	190.3	69.4	41	21	0.54	-
129	KOW 2019	Karanja	Pardi K-13	7.6	721	469	119.5	43.9	18.4	52.11	3.5	BDL	107.4	92.5	24	18	0.09	-
130	KOW 2019	Karanja	Malegaon K-14 Kali	7.8	678	441	164.3	51.9	27.3	22.49	8.05	BDL	141.5	33.4	38	43	0.08	-
131	KOW 2019	Karanja	Rajani	7.7	535	348	124.5	39.9	20.6	22.69	5.71	BDL	107.4	23.1	50	44	0.08	-
132	KOW 2019	Karanja	Karanja	7.6	738	480	144.4	41.9	24.9	36.41	17.5	BDL	185.4	38.6	35	43	0.12	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	НСО3	Cl	SOR	No3	F	Fe
INU					(in μS/cm at 25 C)		1			1	1	(mg/L)					1	
133	KOW 2019	Karanja	Agargaon K-18	7.9	652	424	159.4	61.9	23.7	30.62	7.65	BDL	165.9	43.7	47	15	0.08	-
134	KOW 2019	Karanja	Dhandli K-20	7.7	639	415	149.4	49.9	24.2	20.02	6.4	BDL	175.7	25.7	25	27	0.24	-
135	KOW 2019	Selu	Amgaon Selu Sh-2	7.8	581	378	139.4	41.9	23.7	22.84	1.34	BDL	131.8	30.8	35	34	0.15	_
136	KOW 2019	Selu	Salaipeth Shelu Sh-3	7.8	800	520	189.2	63.9	30.5	39.8	13.4	BDL	287.9	23.1	27	44	0.27	ı
137	KOW 2019	Selu	Juvedi	7.8	707	460	139.4	45.9	22.7	40.94	10.9	BDL	170.8	28.3	47	52	0.15	-
138	KOW 2019	Selu	Anthargaon Sh- 5	7.8	755	491	119.5	41.9	18.9	90.73	8.2	BDL	248.9	23.1	103	30	0.3	-
139	KOW 2019	Selu	Akoli Sh-6	7.9	862	560	189.2	63.9	30.5	35.42	16.3	BDL	180.6	79.7	50	22	0.25	-
140	KOW 2019	Selu	Seldoh Sh-7	8	1778	1156	303.8	113.8	46.2	112.02	9.9	BDL	229.4	174.8	22	82	0.56	-
141	KOW 2019-20	Selu	Garamsur Sh-11	7.9	1419	922	283.9	103.8	43.8	64.33	8.73	BDL	327	123.4	20	9	0.12	-
142	GSDA	Karanja	Parsodi	7.7	763	496	410	-	-	-	-	-	-	112	32	42	0.82	-
143	GSDA	Karanja	Kakada	7.8	772.3	502	400	-	-	-	-	-	-	126	40	44	0.86	-
144	GSDA	Ashti	Peth ahmadpur	7.7	861.5	560	310	-	-	-	-	-	-	80	22	32	0.26	-
145	GSDA	Karanja	Palora	7.8	452.3	294	200	-	-	-	-	-	-	78	26	12	0.66	-
146	GSDA	Arvi	Nandora	7.7	640	416	298	-	-	-	-	-	-	114	26	32	0.8	-
147	GSDA	Ashti	Anandwadi	7.7	1538	1000	372	-	-	-	-	-	-	82	32	48	0.6	-
148	GSDA	Karanja	Nara	7.8	1446	940	340	-	-	-	-	-	-	108	92	78	0.36	-
149	GSDA	Arvi	Lahadevi	7.7	523	340	200	-	-	-	-	-	-	100	38	32	0.3	-
150	GSDA	Karanja	Chopan	7.7	600	390	300	-	-	-	-	-	-	80	22	9	0.24	-
151	GSDA	Karanja	Panjara gondi	7.8	1446	940	390	-	-	-	-	-	_	100	72	49	0.81	-
152	GSDA	Arvi	Panwadi	7.6	307.6	200	160	-	-	-	-	-	_	78	20	9	0.07	-
153	GSDA	Arvi	Morangana	7.7	652.3	424	230	-	-	-	-	-	-	120	28	19	0.11	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
-					(in μS/cm at 25 C)		ı	1		•	•	(mg/L)	•	•			·	<u>. I </u>
154	GSDA	Ashti	Bhishnur	7.6	476.9	310	200	-	-	-	-	-	-	80	22	11	0.41	-
155	GSDA	Arvi	Ajangaon	7.6	553.8	360	196	-	-	-	-	-	-	72	12	6	0.18	-
156	GSDA	Arvi	Sukli	7.6	372.3	242	168	-	-	-	-	-	-	78	16	9	0.09	-
157	GSDA	Arvi	Kachnur	7.7	600	390	306	-	-	-	-	-	-	92	16	18	0.32	-
158	GSDA	Ashti	Khadaka	7.6	433.8	282	188	-	-	-	-	-	-	80	19	9	0.22	-
159	GSDA	Arvi	Dhanodi	7.7	630.7	410	320	-	-	-	-	-	-	80	20	16	0.19	-
160	GSDA	Karanja	Chandewani	7.7	664.6	432	290	-	-	-	-	-	-	90	29	38	0.32	-
161	GSDA	Karanja	Madani	7.7	1084	705	304	-	-	-	-	-	-	104	32	48	0.19	-
162	GSDA	Ashti	Talegaon	7.7	753.8	490	310	-	-	-	-	-	-	92	40	9	0.18	-
163	GSDA	Arvi	Jamkhuta	7.7	618.4	402	296	-	-	-	-	-	-	86	24	24	0.62	-
164	GSDA	Ashti	Manikwada	7.6	600	390	224	-	-	-	-	-	-	88	38	17	0.42	-
165	GSDA	Ashti	Drugwada	7.7	486.1	316	296	-	-	-	-	-	-	110	30	22	0.017	-
166	GSDA	Arvi	Pargothan	7.7	800	520	390	-	-	-	-	-	-	110	18	19	0.16	-
167	GSDA	Arvi	Khanwadi	7.7	504.6	328	236	-	-	-	-	-	-	82	17	19	0.28	-
168	GSDA	Ashti	Bharaswada	7.6	495.3	322	212	-	-	-	-	-	-	82	20	18	0.11	-
169	GSDA	Arvi	Jalgaon	7.7	1538	1000	500	-	-	-	-	-	-	140	29	68	0.98	-
170	GSDA	Arvi	Kasarkheda	7.7	753.8	490	390	-	-	-	-	-	-	122	32	24	0.86	-
171	GSDA	Arvi	Dighi	7.7	627.6	408	260	-	-	-	-	-	-	98	20	19	0.36	-
172	GSDA	Karanja	Kajali	7.7	809.2	526	310	-	-	-	-	-	-	100	36	40	0.8	-
173	GSDA	Arvi	Kopara	7.7	600	390	214	-	-	-	-	-	-	88	24	20	0.5	-
174	GSDA	Karanja	Garpit	7.7	701.5	456	246	-	-	-	-	-	-	96	24	36	0.16	-
175	GSDA	Arvi	Saheli	7.7	787.6	572	312	-	-	-	-	-	-	112	38	37	0.82	-
176	GSDA	Karanja	Kundi	7.6	643	418	300	-	-	-	-	-	-	90	22	18	0.32	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)				•			(mg/L)			•	•		
177	GSDA	Arvi	Talegaon	7.7	640	416	298	-	-	-	-	-	-	84	38	32	0.28	-
178	GSDA	Arvi	Bodad	7.6	581.5	378	218	-	-	-	-	-	-	80	25	30	0.24	-
179	GSDA	Arvi	Taroda	7.7	766.1	498	328	-	-	-	-	-	-	98	30	17	0.16	-
180	GSDA	Arvi	Karmabad	7.8	504.6	328	290	-	-	-	-	-	-	98	26	16	0.2	-
181	GSDA	Karanja	Ambhora	7.6	646.1	420	316	-	-	-	-	-	-	104	27	11	0.62	-
182	GSDA	Samudrapur	Babapur	7.95	852	554	440	-	-	-	-	-	-	80	43	36	0.65	-
183	GSDA	Hinganghat	Dhamangaon	7.12	1146	745	440	-	-	-	-	-	-	80	42	42	0.48	-
184	GSDA	Hinganghat	Waldhur	8.2	957	622	320	-	-	-	-	-	-	280	7	68	0.45	-
185	GSDA	Hinganghat	Manora	8.4	1097	713	160	-	-	-	-	-	-	120	95	44	0.2	-
186	GSDA	Hinganghat	Murpad	7.35	817	531	120	-	-	-	-	-	-	140	40	35	0.25	-
187	GSDA	Samudrapur	Belghat	7.89	654	425	240	-	-	-	-	-	-	60	22	44	0.23	-
188	GSDA	Samudrapur	Dhanoli	7.45	2785	1810	600	-	-	-	-	-	-	440	26	38	0.65	-
189	GSDA	Samudrapur	Nandra	7.82	894	581	80	-	-	-	-	-	-	560	22	21	0.25	-
190	GSDA	Samudrapur	Parda	7.62	1277	830	448	-	-	-	-	-	-	150	74	15	0.24	-
191	GSDA	Samudrapur	Silli	7.65	655	426	200	-	-	-	-	-	-	40	79	26	0.16	-
192	GSDA	Karanja	Dhanoli	7.7	769.2	500	302	-	-	-	-	-	-	110	26	38	0.9	-
193	GSDA	Arvi	Jamb	7.6	323	210	196	-	-	-	-	-	-	80	15	7	0.09	-
194	GSDA	Hinganghat	Daigavhan	8.25	620	403	360	-	-	-	-	-	-	80	68	44	0.12	-
195	GSDA	Hinganghat	Gangapur	8	1340	871	280	-	-	-	-	-	-	60	65	45	0.96	-
196	GSDA	Hinganghat	Burkoni	7.6	531	345	120	-	-	-	-	-	-	60	24	40	0.47	-
197	GSDA	Hinganghat	Yenora	7.9	1020	663	280	-	-	-	-	-	-	100	44	49	0.56	-
198	GSDA	Hinganghat	Selu	8.2	834	542	387	-	-	-	-	-	-	50	35	78	0.96	-
199	GSDA	Hinganghat	Kajalsara	8.4	2523	1640	230	-	-	-	-	-	-	120	35	45	0.16	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)			•				(mg/L)			•			
200	GSDA	Hinganghat	Narsala	7.59	831	540	365	-	-	-	-	-	-	140	24	33	0.15	-
201	GSDA	Hinganghat	Chincholi	7.12	1332	866	650	-	-	-	-	-	-	40	40	43	0.65	-
202	GSDA	Samudrapur	Lahori	7.95	1072	697	440	-	-	-	-	-	-	80	55	40	0.24	-
203	GSDA	Samudrapur	Harankhuri	7.8	554	360	280	-	-	-	-	-	-	80	34	42	0.95	-
204	GSDA	Samudrapur	Nirgudi	7.4	888	577	520	-	-	-	-	-	-	100	126	55	0.52	-
205	GSDA	Samudrapur	Dhamangaon	8	1600	1040	320	-	-	-	-	-	-	140	95	45	0.66	-
206	GSDA	Hinganghat	Daigavhan	8.1	723	470	320	-	-	-	-	-	-	260	110	89	2.39	-
207	GSDA	Samudrapur	Dahegaon	7.8	1145	744	520	-	-	-	-	-	-	220	35	45	0.35	-
208	GSDA	Samudrapur	Chikhali	8.1	672	437	280	-	-	-	-	-	-	210	98	75	0.48	-
209	GSDA	Samudrapur	Jira	8.2	849	552	320	-	-	-	-	-	-	60	35	24	0.45	-
210	GSDA	Samudrapur	Kurla	7.6	1474	958	720	-	-	-	-	-	-	80	59	22	0.27	-
211	GSDA	Samudrapur	Parsodi	7.9	905	588	340	-	-	-	-	-	-	200	101	35	0.56	-
212	GSDA	Samudrapur	Washi	8.4	2277	1480	560	-	-	-	-	-	-	480	19	33	0.16	-
213	GSDA	Samudrapur	Asola	7.1	938	610	280	-	-	-	-	-	-	100	28	45	0.55	-
214	GSDA	Samudrapur	Karur	7.9	1162	755	520	-	-	-	-	-	-	40	27	44	0.64	-
215	GSDA	Samudrapur	Mendula	7.3	715	465	120	-	-	-	-	-	-	40	110	38	0.45	-
216	GSDA	Samudrapur	Derda	8	1000	650	440	-	-	-	-	-	-	80	26	40	0.65	-
217	GSDA	Samudrapur	Govindpur	7.6	972	632	360	-	-	-	-	-	-	120	10	35	0.28	-
218	GSDA	Samudrapur	Pothara	7.8	1331	865	340	-	-	-	-	-	-	260	34	62	0.01	-
219	GSDA	Samudrapur	Ganeshpur	8.3	2292	1490	220	-	-	-	-	-	-	40	22	45	0.65	-
220	GSDA	Samudrapur	Narayanpur	8.2	452	294	220	-	-	-	-	-	-	40	26	27	0.6	-
221	GSDA	Samudrapur	Bothuda	7.6	1095	712	320	-	-	-	-	-	-	160	26	22	0.4	-
222	GSDA	Samudrapur	Nandori	8.1	805	523	360	-	-	-	-	-	-	120	58	45	0.5	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	НСО3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)			•	•		•	(mg/L)		•		•	•	
223	GSDA	Samudrapur	Runka	8.4	649	422	120	-	-	-	-	-	-	60	147	25	0.6	-
224	GSDA	Samudrapur	Zunka	7.6	495	322	320	-	-	-	-	-	-	100	16	20	0.8	-
225	GSDA	Samudrapur	Kinhala	7.8	742	482	200	-	-	-	-	-	-	60	48	40	0.4	-
226	GSDA	Samudrapur	Mahagaon	8.4	546	355	320	-	-	-	-	-	-	120	43	22	1.02	-
227	GSDA	Samudrapur	Chincholi	8.4	2954	1920	440	-	-	-	-	-	-	420	72	12	0.2	-
228	GSDA	Samudrapur	Mangaon	8	1215	790	400	-	-	-	-	-	-	100	19	16	0.2	-
229	GSDA	Samudrapur	Kandhali	7.8	1846	1200	400	-	-	-	-	-	-	140	10	15	0.4	-
230	GSDA	Samudrapur	Mandgaon	7.8	766	498	420	-	-	-	-	-	-	160	25	40	1.07	-
231	GSDA	Samudrapur	Lonhar	7.8	1923	1250	520	-	-	-	-	-	-	300	96	68	0.5	-
232	GSDA	Samudrapur	Wagheda	8.2	635	413	400	-	-	-	-	-	-	160	55	26	0.2	-
233	GSDA	Samudrapur	Dhagadban	8.1	1154	750	480	-	-	-	-	-	-	200	95	36	0.8	-
234	GSDA	Samudrapur	Tas	7.2	569	370	200	-	-	-	-	-	-	60	102	42	0.4	-
235	GSDA	Samudrapur	Bhosa	7.5	1028	668	400	-	-	-	-	-	-	120	35	35	0.5	-
236	GSDA	Samudrapur	Marda	8.4	1140	741	360	-	-	-	-	-	-	160	45	38	0.5	-
237	GSDA	Samudrapur	Salapur	8.4	1155	751	360	-	-	-	-	-	-	140	35	26	0.4	-
238	GSDA	Samudrapur	Vikhani	7.4	3585	2330	840	73.6	48.6	73.8	0.3	BDL	281.8	600	19	64	0.9	0.2
239	GSDA	Samudrapur	Khandala	8.1	1497	973	520	51.2	55.4	39.5	5.3	BDL	359.9	280	82	40	0.9	BDL
240	GSDA	Samudrapur	Pipri	8.3	837	544	360	76.8	29.2	40.9	10.2	BDL	279.4	90	52	28	1.06	0.1
241	GSDA	Samudrapur	Gaul	7.6	1538	1000	440	89.6	36.9	43.3	1.8	BDL	381.9	300	88	35	0.8	0.1
242	GSDA	Samudrapur	Kalamana	8.4	975	634	440	64	8.3	33.2	132	BDL	323.3	400	35	66	1.02	0.1
243	GSDA	Samudrapur	Kinhi	8.1	822	534	360	48	36	38.8	1.1	BDL	263.3	280	22	74	0.4	0.8
244	GSDA	Samudrapur	Khapri	8.5	555	361	360	70.4	29.2	49.7	0.4	BDL	286.7	100	98	16	0.5	0.1
245	GSDA	Samudrapur	Pimpalgaon	8	977	635	400	57.6	32.1	23.8	2.2	BDL	303.8	100	47	12	1.02	0.1

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)			•	•	•	•	(mg/L)		•	•	•	•	
246	GSDA	Samudrapur	Ganeshpur	8.4	722	469	240	52.8	43.7	34.9	0.7	BDL	294.8	180	65	62	0.6	BDL
247	GSDA	Samudrapur	Nandpur	7.4	1938	1260	320	63.2	27.2	47.8	0.5	BDL	259.2	200	110	78	0.2	0.1
248	GSDA	Samudrapur	Pardi	8.3	1157	752	460	35.2	40.8	41.6	0.9	BDL	267.7	160	22	39	0.4	BDL
249	GSDA	Samudrapur	Rajjakpur	7.6	2338	1520	440	49.6	41.8	20.1	2.2	BDL	315.9	200	35	26	0.8	0.1
250	GSDA	Samudrapur	Haladgaon	7.8	1700	1105	240	40	53.5	13.4	0.8	BDL	361.5	60	98	16	0.02	BDL
251	GSDA	Samudrapur	Shivani	8.2	1323	860	520	43.2	34	19.7	0.3	BDL	219.3	320	48	22	0.8	BDL
252	GSDA	Hinganghat	Chikmoh	7.5	900	585	260	59.2	7.3	16.2	0.5	BDL	191.4	320	28	45	0.12	BDL
253	GSDA	Hinganghat	Segaon	8.3	862	560	460	36.8	15.6	8.6	0.5	BDL	119.5	210	24	98	0.15	BDL
254	GSDA	Hinganghat	Khapri	7.9	508	330	240	-	-	-	-	-	-	140	85	36	0.15	-
255	GSDA	Hinganghat	Pohana	7.3	720	468	280	-	-	-	-	-	-	140	25	16	0.25	-
256	GSDA	Hinganghat	Veni	7.4	1985	1290	640	-	-	-	-	-	-	190	84	92	0.5	-
257	GSDA	Hinganghat	Ladki	7.2	1520	988	320	-	-	-	-	-	-	240	25	46	0.9	-
258	GSDA	Hinganghat	Satefal	7.6	762	495	160	-	-	-	-	-	-	190	33	28	0.6	-
259	GSDA	Hinganghat	Kadajana	8.2	871	566	560	-	-	-	-	-	-	200	62	44	0.7	-
260	GSDA	Hinganghat	Kukabardi	8.2	1415	920	600	-	-	-	-	-	-	120	45	16	0.5	-
261	GSDA	Hinganghat	Kund	7.9	825	536	320	-	-	-	-	-	-	210	92	94	0.4	-
262	GSDA	Hinganghat	Wani	7.6	2308	1500	600	-	-	-	-	-	-	420	59	36	0.5	-
263	GSDA	Hinganghat	Kawadghat	7.8	951	618	490	-	-	-	-	-	-	145	78	29	0.8	-
264	GSDA	Hinganghat	Bopapur	8.4	1908	1240	400	-	-	-	-	-	-	200	65	25	0.6	-
265	GSDA	Hinganghat	Pardi	7.4	1018	662	360	-	-	-	-	-	-	240	87	40	0.1	-
266	GSDA	Hinganghat	Borgaon	7.8	1303	847	600	-	-	-	-	-	-	80	3	86	0.5	-
267	GSDA	Hinganghat	Nandgaon	7.4	920	598	400	-	-	-	-	-	-	140	67	54	0.5	-
268	GSDA	Hinganghat	Kumbhi	7.6	740	481	400	-	-	-	-	-	-	140	20	37	0.2	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)				•			(mg/L)			•	•		
269	GSDA	Hinganghat	Pimpalgaon	7.6	1200	780	320	-	-	-	-	-	-	120	22	45	0.6	-
270	GSDA	Hinganghat	Pipri	7.8	997	648	480	-	-	-	-	-	-	100	24	26	0.4	-
271	GSDA	Hinganghat	Dhanora	8.2	892	580	240	-	-	-	-	-	-	120	45	35	0.9	-
272	GSDA	Hinganghat	Hivara	8.4	1300	845	520	-	-	-	-	-	-	120	24	25	0.36	-
273	GSDA	Hinganghat	Khekdi	7.5	622	404	400	-	-	-	-	-	-	110	45	36	0.12	-
274	GSDA	Hinganghat	Kolhi	7.4	877	570	320	-	-	-	-	-	-	115	26	22	0.35	-
275	GSDA	Hinganghat	Sasti	8.5	1008	655	384	-	-	-	-	-	-	44	46.3	30.5	0.79	-
276	GSDA	Hinganghat	Dhochi	7.68	1052	684	480	-	-	-	-	-	-	68	66.8	40.5	0.62	-
277	GSDA	Hinganghat	Sawangi	7.76	738	480	400	-	-	-	-	-	-	62	60.4	38.2	0.73	-
278	GSDA	Hinganghat	Dorla	7.84	1662	1080	480	-	-	-	-	-	-	36	54	30.6	0.92	-
279	GSDA	Hinganghat	Yerla	7.68	962	625	400	-	-	-	-	-	-	121	58	30.6	0.74	-
280	GSDA	Hinganghat	Kutki	7.58	683	444	280	-	-	-	-	-	-	140	78	36.8	0.22	-
281	GSDA	Hinganghat	Sonegaon	7.24	760	494	490	-	-	-	-	-	-	120	62	70.5	0.12	-
282	GSDA	Hinganghat	Ajanti	7.88	858	558	320	-	-	-	-	-	-	110	10	11	0.28	-
283	GSDA	Hinganghat	Kolhi	8.34	785	510	490	-	-	-	-	-	-	60	3	35.2	0.989	-
284	GSDA	Hinganghat	Rimdoh	7.94	705	458	380	-	-	-	-	-	-	140	85	44	1.202	-
285	GSDA	Hinganghat	Inzala	7.52	820	533	360	-	-	-	-	-	-	90	27	82	0.472	-
286	GSDA	Hinganghat	Pawani	7.96	1615	1050	497	-	-	-	-	-	-	170	35	65	0.472	-
287	GSDA	Hinganghat	Allipur	7.96	658	428	210	-	-	-	-	-	-	40	29	19	0.162	-
288	GSDA	Hinganghat	Sastabad	8.46	662	430	290	-	-	-	-	-	-	70	15	59	0.52	-
289	GSDA	Hinganghat	Govindpur	8.49	877	570	360	-	-	-	-	-	-	80	35	24.9	0.56	-
290	GSDA	Hinganghat	Bambarda	8.07	1022	664	580	-	-	-	-	-	-	120	26	45	0.16	-
291	GSDA	Hinganghat	Bhiwapur	8.14	1277	830	560	-	-	-	-	-	-	80	94	45	0.0273	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)			•	•			(mg/L)			•		•	
292	GSDA	Hinganghat	Gangapur	8.21	915	595	340	-	-	-	-	-	-	80	81	10	0.752	-
293	GSDA	Hinganghat	Jamani	8.14	908	590	390	-	-	-	-	-	-	220	25	16	0.896	-
294	GSDA	Hinganghat	Dalalpur	8.24	760	494	280	-	-	-	-	-	-	110	11	16	0.42	-
295	GSDA	Hinganghat	Jamgaon	8.46	1585	1030	580	-	-	-	-	-	-	120	52	22	0.485	-
296	GSDA	Hinganghat	Kanchangaon	7.43	649	422	240	-	-	-	-	-	-	80	82	56	0.689	-
297	GSDA	Hinganghat	Arvi	8.37	742	482	210	-	-	-	-	-	-	90	40	35	0.767	-
298	GSDA	Hinganghat	Wadner	7.69	654	425	220	-	-	-	-	-	-	140	33	15	1.102	-
299	GSDA	Hinganghat	Ajangaon	7.97	775	504	320	-	-	-	-	-	-	220	37	12	0.849	-
300	GSDA	Hinganghat	Gaul	7.95	671	436	320	-	-	-	-	-	-	160	26	29	0.888	-
301	GSDA	Hinganghat	Tembha	7.75	654	425	260	-	-	-	-	-	-	80	18	25	0.12	-
302	GSDA	Hinganghat	Borkhedi	8.34	957	622	270	-	-	-	-	-	-	210	14	34	1.009	-
303	GSDA	Hinganghat	Dabha	8.44	862	560	360	-	-	-	-	-	-	57	39	26	0.318	-
304	GSDA	Hinganghat	Ganeshpur	8.2	1245	809	600	-	-	-	-	-	-	304	17	68	0.298	-
305	GSDA	Hinganghat	Pimpalgaon	8.12	1349	877	400	-	-	-	-	-	-	190	31	42	0.737	-
306	GSDA	Hinganghat	Sirud	8.01	594	386	320	-	-	-	-	-	-	76	63	44.2	0.876	-
307	GSDA	Hinganghat	Yerandwadi	8.16	1340	871	240	-	-	-	-	-	-	133	61	32	0.776	-
308	GSDA	Hinganghat	Wagholi	8.17	1160	754	560	-	-	-	-	-	-	95	198	42	0.16	-
309	GSDA	Samudrapur	Dongargaon	8.17	543	353	260	-	-	-	-	-	-	76	65	25	0.45	-
310	GSDA	Samudrapur	Arvi	7.64	485	315	220	-	-	-	-	-	-	76	94	28	0.47	-
311	GSDA	Samudrapur	Faridpur	7.75	600	390	150	-	-	-	-	-	-	114	117	42	0.84	-
312	GSDA	Samudrapur	Sujatpur	8.21	817	531	340	-	-	-	-	-	-	74	26	36	0.71	-
313	GSDA	Samudrapur	Gangapur	8.5	815	530	320	-	-	-	-	-	_	140	110	55	0.4	-
314	GSDA	Samudrapur	Yekodi	7.55	511	332	280	-	-	-	-	-	-	60	135	88	0.65	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	K	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)				•			(mg/L)		•	•	•	•	
315	GSDA	Samudrapur	Khek	8.02	1046	680	490	-	-	-	-	-	-	114	61	39	0.86	-
316	GSDA	Samudrapur	Bothali	8.14	785	510	210	-	-	-	-	-	-	152	85	12	0.91	-
317	GSDA	Samudrapur	Hiwara	8.1	600	390	190	-	-	-	-	-	-	57	76	45	0.96	-
318	GSDA	Samudrapur	Sukali	7.91	775	504	330	-	-	-	-	-	-	95	72	40	0.65	-
319	GSDA	Samudrapur	Antargaon	7.85	626	407	220	-	-	-	-	-	-	90	109	44	0.94	-
320	GSDA	Samudrapur	Ghorpad	8.16	1200	780	490	-	-	-	-	-	-	75	133	67	0.84	-
321	GSDA	Samudrapur	Savangi (mirzapur)	8.21	1538	1000	620	-	-	-	-	-	-	117	70	89	0.69	-
322	GSDA	Samudrapur	Mangrul	7.9	666	433	310	-	-	-	-	-	-	76	82	35	0.83	-
323	GSDA	Samudrapur	Tadgaon	8.05	500	325	190	-	-	-	-	-	-	76	4	20	0.61	-
324	GSDA	Samudrapur	Girad	8.04	800	520	280	-	-	-	-	-	-	266	15	40	0.65	-
325	GSDA	Samudrapur	Peth	7.33	1538	1000	720	-	-	-	-	-	-	140	78	81	0.79	-
326	GSDA	Samudrapur	Yedalabad	7.74	1677	1090	600	-	-	-	-	-	-	160	65	45	0.6	-
327	GSDA	Samudrapur	Bothuda	8.4	737	479	120	-	-	-	-	-	-	40	26	10	0.15	-
328	GSDA	Hinganghat	Umari	7.23	1046	680	380	-	-	-	-	-	-	95	35	45	0.55	-
329	GSDA	Samudrapur	Usegaon	8.21	908	590	380	-	-	-	-	-	-	160	3	67	0.64	-
330	GSDA	Samudrapur	Davalatpur	7.13	1309	851	580	-	-	-	-	-	-	100	35	64	0.57	-
331	GSDA	Samudrapur	Dhamangaon	8.27	840	546	430	-	-	-	-	-	-	114	125	43.6	0.91	-
332	GSDA	Samudrapur	Khursapur	8.21	969	630	490	-	-	-	-	-	-	110	57	33	0.86	-
333	GSDA	Samudrapur	Arambha	7.84	1238	805	600	-	-	-	-	-	-	76	155	10	0.78	-
334	GSDA	Samudrapur	Mangali	7.12	1175	764	520	-	-	-	-	-	-	76	25	35	0.46	-
335	GSDA	Samudrapur	Nimbha	7.81	800	520	260	-	-	-	-	-	-	75	117	42	0.91	-
336	GSDA	Samudrapur	Sirpur	7.97	1738	1130	550	-	-	-	-	-	-	113	45	45	0.81	-
337	GSDA	Samudrapur	Bhawanpur	7.89	1191	774	480	-	-	-	-	-	-	120	25	21	0.91	-

SI. No	Agency	Taluka	Village	рН	EC	TDS	TH Ca	Ca	Mg	Na	К	CO3	HCO3	Cl	SOR	No3	F	Fe
					(in μS/cm at 25 C)			•	•			(mg/L)				•		
338	GSDA	Samudrapur	Dhondgaon	7.92	923	600	470	-	-	-	-	-	-	117	55	23	0.71	-
339	GSDA	Samudrapur	Husenpur	7.89	582	378	220	-	-	-	-	-	-	92	11	38	0.28	-
340	GSDA	Samudrapur	Kora	7.65	920	598	290	-	-	-	-	-	-	116	56	45	0.62	-
341	GSDA	Samudrapur	Bodkha	7.62	1631	1060	640	-	-	-	-	-	-	200	26	22.6	0.25	-
342	GSDA	Samudrapur	Lokhandi	8.25	1211	787	520	-	-	-	-	-	-	111	26	33	0.25	-
343	GSDA	Samudrapur	Paikmari	8.36	1600	1040	680	-	-	-	-	-	-	105	25	22	0.2	-
344	GSDA	Samudrapur	Wadgaon	8.24	1600	1040	590	-	-	-	-	-	-	111	15	36	0.6	-
345	GSDA	Samudrapur	Shivanfal	8	1200	780	580	-	-	-	-	-	-	80	92	19	0.45	-
346	GSDA	Samudrapur	Undirgaon	8.5	669	435	280	-	-	-	-	-	-	140	36	32	0.05	-
347	GSDA	Samudrapur	Jogingumpa	8.02	1172	762	460	-	-	-	-	-	-	160	55	37	0.87	-
348	GSDA	Samudrapur	Mandgaon	8.5	908	590	280	-	-	-	-	-	-	65	25	39	0.84	-
349	GSDA	Samudrapur	Khairgaon	7.4	1285	835	520	-	-	-	-	-	-	80	35	12.62	0.45	-
350	GSDA	Samudrapur	Ralegaon	8.25	977	635	200	-	-	-	-	-	-	130	62	10.62	0.16	-
351	GSDA	Samudrapur	Wanarchuwa	7.4	708	460	260	-	-	-	-	-	-	75	10	78.26	0.85	-
352	GSDA	Samudrapur	Chakur	8.16	828	538	320	-	-	-	-	-	-	75	23	45	0.58	-
353	GSDA	Samudrapur	Kankati	7.6	923	600	440	-	-	-	-	-	-	140	125	26	0.29	-
354	GSDA	Samudrapur	Tambhari	8.01	920	598	387	-	-	-	-	-	-	80	16	9.1	0.55	-
355	GSDA	Samudrapur	Rasa	8.32	1362	885	520	-	-	-	-	-	-	80	110	40	0.92	-
356	GSDA	Samudrapur	Barfa	8.02	1146	745	410	-	-	-	-	-	-	95	46	65	0.22	-
357	GSDA	Samudrapur	Sukali	7.56	1118	727	420	-	-	-	-	-	-	110	58	28	0.82	-
358	GSDA	Samudrapur	Usegaon	7.74	908	590	460	-	-	-	-	-	-	114	9	76	0.73	-
359	GSDA	Samudrapur	Chapapur	7.66	1206	784	510	-	-	-	-	-	-	98	76	59	0.25	-
360	GSDA	Samudrapur	Girgaon	8.12	1065	692	390	-	-	-	-	-	-	109	29	44	0.48	-

Annexure VIII: Aquifer II Chemical analysis

SI.No	Agency	District	Taluka	Village	рН	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F
31.140	Agency	District	Turuku	Village	P 11	(in μS/cm at 25 C)						(in ı	mg/L)					
1	GWE	Wardha	Wardha	Karanje Bhoge	8.3	576	245	245	64	21	12	1	BDL	384	14	BDL	BDL	BDL
2	GWE	Wardha	Karanja	Karanja	8.65	410	240	40	12	2	76	2	18	43	50	67	BDL	BDL
3	GWE	Wardha	Hinganghat	Daroda OW	7.9	2404	1414	50	18	1.2152	529	5.083	BDL	781.056	304.87	72	38.44	3.06
4	GWE	Wardha	Arvi	Wardhamaneri	8.43	380	200	60	22	1	60	2	12	55	71	24	BDL	BDL
5	GWE	Wardha	Seloo	Sukli	8.56	670	350	75	12	11	117	3	30	171	67	48	BDL	BDL
6	GWE	Wardha	Ashti	Choti Arvi	8.4	560	410	80	16	10	90	2	6	79	99	60	BDL	BDL
7	GWE	Wardha	Arvi	Wardhamaneri	8.7	560	330	80	24	5	115	2	12	79	117	24	BDL	BDL
8	GWE	Wardha	Deoli	Pathari	7.9	1400	880	95	36	1.2	276	5	BDL	43	284	250	9	BDL
9	GWE	Wardha	Seloo	Jhadsi	7.38	890	524	95	30	5	NA	NA	BDL	109	167	BDL	BDL	BDL
10	GWE	Wardha	Selu	Hingni EW	7.6	914	485	102	35	4	116	1.8	BDL	119	135	71	5	1.94
11	GWE	Wardha	Karanja	Karanja	8.6	1450	870	110	22	13	281	BDL	12	104	262	230	BDL	BDL
12	GWE	Wardha	Karanja	Savali	8.3	410	230	115	50	1	32	2	BDL	104	57	35	BDL	BDL
13	GWE	Wardha	Seloo	Sukli	8.6	850	450	120	8	24	138	2	48	275	14	96	BDL	BDL
14	GWE	Wardha	Hinganghat	Daroda EW	7.8	3077	1810	140	44	7.2912	632.5	3.91	BDL	848.178	496.3	110.4	17.36	2.26
15	GWE	Wardha	Selu	Hingni OW	6.8	790	430	153	39	13	114	2.2	BDL	131	133	100	3	1.94
16	GWE	Wardha	Karanja	Palora	7.6	880	500	165	56	6	122	6	BDL	195	142	77	BDL	BDL
17	GWE	Wardha	Karanja	Thanegaon	8.35	740	460	185	32	26	83	4	3	104	113	80	18	BDL
18	GWE	Wardha	Hinganghat	Bela	7.96	650	382	185	36	23	NA	NA	BDL	212	21	BDL	BDL	BDL
19	GWE	Wardha	Ashti	Sahur	8	500	260	190	44	19	28	0.5	BDL	256	18	5	17	BDL

SI.No	Agency	District	Taluka	Village	рН	EC	TDS	TH	Ca	Mg	Na	К	CO3	нсоз	Cl	SO4	NO3	F
	0,				•	(in μS/cm at 25 C)		•		•		(in ı	mg/L)	•	•			
20	GWE	Wardha	Wardha	Talegaon EW	7.5	1023	602	200	22	35.2408	156.4	4.692	BDL	286.794	177.25	29.76	56.42	0.35
21	GWE	Wardha	Wardha	Wardha	8.4	600	430	215	42	27	37	0.5	9	232	21	50	14	BDL
22	GWE	Wardha	Hinganghat	Bela	7.9	470	276	220	52	22	NA	NA	BDL	244	21	BDL	BDL	BDL
23	GWE	Wardha	Karanja	Rahati	8.15	830	488	225	54	22	87	2	BDL	256	89	62	20	0.63
24	GWE	Wardha	Deoli	Kaotha (Railway)	7.8	1110	640	240	52	27	145	2	BDL	195	209	100	5	BDL
25	GWE	Wardha	Wardha	Tigaon (EW)	7.9	405	70	260	16	7	82	BDL	BDL	268	18	BDL	BDL	BDL
26	GWE	Wardha	Deoli	Injhala	8.1	750	395	270	64	27	48	1	BDL	243	64	30	16	BDL
27	GWE	Wardha	Deoli	Kavtha	8.2	470	150	272	40	12	43	BDL	BDL	244	32	BDL	BDL	BDL
28	GWE	Wardha	Deoli	Giroli	8.3	457	199	294	25	21	40	12	12	232	48	BDL	BDL	BDL
29	GWE	Wardha	Wardha	Sonegaon	7.9	530	211	316	45	24	27	BDL	BDL	305	24	BDL	BDL	BDL
30	GWE	Wardha	Deoli	Bhidi	7.5	495	280	318	80	19	70	1	BDL	329	18	BDL	BDL	BDL
31	GWE	Wardha	Samudrapur	Pipri	8.05	1650	971	320	68	36	NA	NA	BDL	122	392	BDL	BDL	BDL
32	GWE	Wardha	Wardha	Chikni	7.8	531	270	345	60	29	23	1	BDL	345	18	45	BDL	BDL
33	GWE	Wardha	Wardha	Vaiphad	7.8	562	224	348	55	21	25	1	BDL	280	24	10	BDL	BDL
34	GWE	Wardha	Hinganghat	Sirasgaon Alipurroad	8	592	162	360	30	21	66	BDL	BDL	330	16	10	BDL	BDL
35	GWE	Wardha	Wardha	Dhotra	8.1	592	162	370	30	21	16	1	BDL	476	181	56	BDL	BDL
36	GWE	Wardha	Wardha	Sewagram	7.8	576	265	370	40	40	33	1	BDL	360	25	4.5	BDL	BDL
37	GWE	Wardha	Seloo	Dahegaon	7.83	750	441	375	80	42	NA	NA	BDL	201	77	BDL	BDL	BDL
38	GWE	Wardha	Wardha	Selsur	8.1	801	90	530	22	9	192	1	BDL	580	14	BDL	BDL	BDL
39	GWE	Wardha	Deoli	Agargaon	7.9	888	236	565	30	39	94	1	BDL	402	64	20	BDL	BDL

CI N		5:	T.1.1.	vell		EC	TDS	TH	Ca	Mg	Na	К	CO3	нсоз	Cl	SO4	NO3	F
Sl.No	Agency	District	Taluka	Village	pН	(in μS/cm at 25 C)						(in ı	mg/L)					
40	GWE	Wardha	Arvi	Mandwa	7.4	1800	1059	625	174	46	NA	NA	BDL	164	386	BDL	BDL	BDL
41	GWE	Wardha	Deoli	Injhapur	8.2	1021	199	630	75	3	149	BDL	BDL	256	BDL	132	BDL	BDL
42	GWE	Wardha	Wardha	Sonegaon R.S.	7.6	1036	436	658	134	24	27	1	BDL	378	96	40	BDL	BDL
43	GWE	Wardha	Wardha	Taroda EW	7.85	2830	1665	660	200	39	345	13	BDL	43	549	576	14	4.1
44	GWE	Wardha	Wardha	Selu Khurd	8.2	886	160	680	15	30	180	1	BDL	208	152	BDL	BDL	BDL
45	GWE	Wardha	Deoli	Adegaon	7.3	1557	505	1050	180	123	70	41	BDL	476	181	56	BDL	BDL
46	GWE	Wardha	Deoli	Sirasgaon	7.3	1666	570	1096	80	217.48	110	10	BDL	354	208	310	BDL	BDL

Annexure-IX: Location of proposed Percolation tanks in Wardha District

SN	Village	Taluka
1	Sarangpuri	Arvi
2	Chincholi	Arvi
3	Titona	Arvi
4	Bedhona	Arvi
5	Adegaon	Arvi
6	Lahadevi	Arvi
7	Sarangpuri	Arvi
8	Sarangpuri	Arvi
9	Chincholi	Arvi
10	Chincholi	Arvi
11	Panjara	Arvi
12	Lahadevi	Arvi
13	Mirapur	Arvi
14	Borgaon	Arvi
15	Chincholi	Arvi
16	Ashta	Arvi
17	Chandani	Arvi
18	Revti	Arvi
19	Panjara	Arvi
20	Pipari	Arvi
21	Sawangi	Arvi
22	Pargothan	Arvi
23	Dahegaon Mustafa	Arvi
24	Sawangi	Arvi
25	Kawadi	Arvi
26	Pachegaon	Arvi
27	Pipari	Arvi
28	Wallipur	Arvi
29	Pargothan	Arvi
30	Sawangi	Arvi
31	Hashimpur	Arvi
32	Hardoli	Arvi
33	Titona	Arvi
34	Hiwara	Arvi
35	Krishnapur	Arvi
36	Pachod	Arvi
37	Saldara	Arvi
38	Kakaddara	Arvi
39	Bhadod	Arvi
40	Bothali Heti	Arvi
41	Talegaon	Arvi
42	Umari	Arvi

SN	Village	Taluka
43	Sukli	Arvi
44	Chandani	Arvi
45	Talegaon	Arvi
46	Sujatpur	Ashti
47	Lingapur	Ashti
48	Nachangaon	Deoli
49	Haralpur	Deoli
50	Bachchharajpur	Deoli
51	Khadki	Deoli
52	Pipri	Deoli
53	Bhidi	Deoli
54	Bhidi	Deoli
55	Wabgaon	Deoli
56	Ratnapur	Deoli
57	Kajalsara	Deoli
58	Agargaon	Deoli
59	Wakheda	Deoli
60	Kolona (Chore)	Deoli
61	Adegaon	Deoli
62	Dapori	Deoli
63	Bhidi	Deoli
64	Bhidi	Deoli
65	Ratnapur	Deoli
66	Kajalsara	Deoli
67	Babhulgaon	Deoli
68	Kajalsara	Deoli
69	Wakheda	Deoli
70	Muradgaon (Khose)	Deoli
71	Palasgaon	Deoli
72	Bhidi	Deoli
73	Durgada	Deoli
74	Fattepur	Deoli
75	Belgaon	Deoli
76	Digdoh.	Deoli
77	Inzala	Deoli
78	Gaul	Hinganghat
79	Pawani	Hinganghat
80	Kanchangaon	Hinganghat
81	Gadegaon	Hinganghat
82	Sirasgaon	Hinganghat
83	Budhalagad	Karanja
84	Budhalagad	Karanja

	I	1
SN	Village	Taluka
85	Maraksur	Karanja
86	Maraksur	Karanja
87	Eni Dodka	Karanja
88	Rahati	Karanja
89	Ajandoh	Karanja
90	Tulana	Karanja
91	Bhiwapur	Karanja
92	Kannamwar Gram	Karanja
93	Sindi Vihiri	Karanja
94	Kannamwar Gram	Karanja
95	Sawali Kh	Karanja
96	Sawali Kh	Karanja
97	Agargaon	Karanja
98	Mandgaon	Samudrapur
99	Shedgaon	Samudrapur
100	Khandala	Samudrapur
101	Shivani	Samudrapur
102	Mandgaon	Samudrapur
103	Shedgaon	Samudrapur
104	Belgaon	Selu
105	Wanarvihira	Selu
106	Bori	Selu
107	Bori	Selu
108	Hingni	Selu
109	Shiwangaon	Selu
110	Gaimukh	Selu
111	Mohgaon	Selu
112	Kelzar	Selu
113	Anjangaon	Selu
114	Itala	Selu
115	Wadgaon (Jangli)	Selu
116	Kelzar	Selu
117	Seldoh	Selu
118	Dorli	Selu
119	Kinhala	Selu
120	Borkhedi	Selu
121	Juwadi	Selu
122	Dhanoli (Gawande)	Selu
123	Borkhedi (Kala)	Selu
124	Khairi Menkhat	Selu
125	Salai (Kala)	Selu
126	Salai (Pevath)	Selu
127	Nanbardi	Selu
128	Khairi Menkhat	Selu
	I	I.

SN	Village	Taluka
129	Salai (Kala)	Selu
130	Borkhedi	Selu
131	Khairi Menkhat	Selu
132	Sondi	Selu
133	Salai (Kala)	Selu
134	Ringani	Selu
135	Kotamba	Selu
136	Belgaon	Selu
137	Ghorad	Selu
138	Dhanoli (Meghe)	Selu
139	Kotamba	Selu
140	Chichghat	Selu
141	Chichghat	Selu
142	Bori	Selu
143	Hingni	Selu
144	Dattapur	Wardha
145	Raipalli	Wardha
146	Balapur	Wardha
147	Pipri	Wardha
148	Digraj	Wardha
149	Pipri	Wardha
150	Pandharkawda	Wardha
151	Rotha	Wardha
152	Ashrafpur	Wardha
153	Borgaon (Meghe)	Wardha
154	Paloti	Wardha
155	Banpur	Wardha
156	Inzapur	Wardha
157	Sawangi (Meghe)	Wardha
158	Salod (Hirapur)	Wardha
159	Nagthana	Wardha
160	Fattepur	Wardha
161	Inzapur	Wardha
162	Barbadi	Wardha
163	Mandavgad	Wardha
164	Yesamba	Wardha
165	Goji	Wardha
166	Goji	Wardha
167	Yesamba	Wardha
168	Yerandgaon	Wardha
169	Itlapur	Wardha
170	Abdullapur	Wardha
171	Ashta	Wardha
172	Yesamba	Wardha

SN	Village	Taluka
173	Bondapur	Wardha
174	Bhankheda	Wardha
175	Gondapur	Wardha
176	Taroda	Wardha
177	Chichala	Wardha

Annexure-X: Location of proposed check dam in Wardha district

SN	Village	Taluka
1	Belhara	Arvi
2	Chopan	Arvi
3	Fefarwada	Arvi
4	Wadhona	Arvi
5	Bedhona	Arvi
6	Belhara	Arvi
7	Belhara	Arvi
8	Chopan	Arvi
9	Fefarwada	Arvi
10	Wadhona	Arvi
11	Bedhona	Arvi
12	Borkhedi	Arvi
13	Jamkhuta	Arvi
14	Wadhona	Arvi
15	Nagazari	Arvi
16	PanjaraBothali	Arvi
17	PanjaraBothali	Arvi
18	PanjaraBothali	Arvi
19	PanjaraBothali	Arvi
20	Gaurkheda	Arvi
21	PanjaraBothali	Arvi
22	PanjaraBothali	Arvi
23	Sirpur	Arvi
24	Chor Amba	Arvi
25	Bodad	Arvi
26	Bodad	Arvi
27	Sawangi	Arvi
28	Taroda	Arvi
29	Kinhala	Arvi
30	Tuljapur	Arvi
31	Taroda	Arvi
32	Bothali Heti	Arvi
33	Bothali Heti	Arvi
34	Kinhala	Arvi
35	Taroda	Arvi
36	Pimpalkhuta	Arvi
37	Gundmund	Arvi
38	Pimpalkhuta	Arvi
39	Khairi	Arvi
40	Ratnapur	Arvi
41	Pachod	Arvi

SN	Village	Taluka
42	Saldara	Arvi
43	Ajangaon	Arvi
44	Saldara	Arvi
45	Ajangaon	Arvi
46	Saldara	Arvi
47	Wai	Arvi
48	Pachod	Arvi
49	Pachod	Arvi
50	Krishnapur	Arvi
51	Pachod	Arvi
52	Saldara	Arvi
53	Kakaddara	Arvi
54	Bhadod	Arvi
55	Bothali Heti	Arvi
56	Talegaon	Arvi
57	Umari	Arvi
58	Sukli	Arvi
59	Chandani	Arvi
60	Talegaon	Arvi
61	Nanhi	Arvi
62	Umari	Arvi
63	Talegaon	Arvi
64	Bothali Heti	Arvi
65	Talegaon	Arvi
66	Kakaddara	Arvi
67	Bothali Heti	Arvi
68	Sukli	Arvi
69	Ajangaon	Arvi
70	Umari	Arvi
71	Pachod	Arvi
72	Panwadi	Arvi
73	Ajangaon	Arvi
74	Ajangaon	Arvi
75	Pimpalgaon	Arvi
76	Pimpalgaon	Arvi
77	Tembhari	Arvi
78	Tembhari	Arvi
79	Dighi	Arvi
80	Ajangaon	Arvi
81	Morangana	Arvi
82	Dahegaon(Gondi)	Arvi

SN	Village	Taluka
83	Kachnur	Arvi
84	Morangana	Arvi
85	Bothali	Arvi
86	Bothali	Arvi
87	Patan	Arvi
88	Kachnur	Arvi
89	Dahegaon(Gondi)	Arvi
90	Kachnur	Arvi
91	Morangana	Arvi
92	Balaimajara	Arvi
93	Kachnur	Arvi
94	Kachnur	Arvi
95	Kasarkheda	Arvi
96	Mahakali	Arvi
97	Sarangpuri	Arvi
98	Chincholi	Arvi
99	Titona	Arvi
100	Bedhona	Arvi
101	Adegaon	Arvi
102	Lahadevi	Arvi
103	Sarangpuri	Arvi
104	Sarangpuri	Arvi
105	Chincholi	Arvi
106	Chincholi	Arvi
107	Panjara	Arvi
108	Lahadevi	Arvi
109	Mirapur	Arvi
110	Borgaon	Arvi
111	Chincholi	Arvi
112	Ashta	Arvi
113	Chandani	Arvi
114	Revti	Arvi
115	Panjara	Arvi
116	Pipari	Arvi
117	Sawangi	Arvi
118	Pargothan	Arvi
119	Dahegaon Mustafa	Arvi
120	Sawangi	Arvi
121	Kakaddara	Arvi
122	Bhadod	Arvi
123	Bothali Heti	Arvi
124	Talegaon	Arvi
125	Umari	Arvi

SN	Village Taluka			
126	Sukli	Arvi		
127	Chandani	Arvi		
128	Talegaon	Arvi		
129	Nababpur	Ashti		
130	Anandwadi	Ashti		
131	Parsoda	Ashti		
132	Lahan Arvi	Ashti		
133	Pilapur	Ashti		
134	Borgaon	Ashti		
135	Ratnapur	Deoli		
136	Kajalsara	Deoli		
137	Babhulgaon	Deoli		
138	Kajalsara	Deoli		
139	Wakheda	Deoli		
140	Muradgaon (Khose)	Deoli		
141	Palasgaon	Deoli		
142	Bhidi	Deoli		
143	Durgada	Deoli		
144	Fattepur	Deoli		
145	Belgaon	Deoli		
146	Digdoh.	Deoli		
147	Deoli (Rural)	Deoli		
148	Deoli (Rural)	Deoli		
149	Muradgaon (Khose)	Deoli		
150	Wai	Deoli		
151	Isapur	Deoli		
152	Ekpala	Deoli		
153	Takli (Khode)	Deoli		
154	Dighi	Deoli		
155	Takli (Khode)	Deoli		
156	Chikhali	Deoli		
157	Kolona (Chore)	Deoli		
158	Barhanpur	Deoli		
159	Adegaon	Deoli		
160	Adegaon	Deoli		
161	Chikhali	Deoli		
162	Krishnapur	Deoli		
163	Giroli	Deoli		
164	Sonegaon	Deoli		
165	Krishnapur	Deoli		
166	Chichala	Deoli		
167	Chichala	Deoli		

SN	Village	Taluka		
168	Takali (Chanaji)	Deoli		
169	Sarul	Deoli		
170	Pathari	Deoli		
171	Giroli	Deoli		
172	Giroli	Deoli		
173	Ekpala	Deoli		
174	Nachangaon	Deoli		
175	Bachchharajpur	Deoli		
176	Khadki	Deoli		
177	Pipri	Deoli		
178	Bhidi	Deoli		
179	Bhidi	Deoli		
180	Wabgaon	Deoli		
181	Ratnapur	Deoli		
182	Kajalsara	Deoli		
183	Agargaon	Deoli		
184	Wakheda	Deoli		
185	Kolona (Chore)	Deoli		
186	Adegaon	Deoli		
187	Dapori	Deoli		
188	Bhidi	Deoli		
189	Bhidi	Deoli		
190	Ratnapur	Deoli		
191	Kajalsara	Deoli		
192	Babhulgaon	Deoli		
193	Kajalsara	Deoli		
194	Wakheda	Deoli		
195	Muradgaon (Khose)	Deoli		
196	Palasgaon	Deoli		
197	Bhidi	Deoli		
198	Durgada	Deoli		
199	Fattepur	Deoli		
200	Chichala	Deoli		
201	Chichala	Deoli		
202	Takali (Chanaji)	Deoli		
203	Sarul	Deoli		
204	Pathari	Deoli		
205	Giroli	Deoli		
206	Giroli	Deoli		
207	Ekpala	Deoli		
208	Nachangaon	Deoli		
209	Bachchharajpur	Deoli		

SN	Village	Taluka	
210	Khadki	Deoli	
211	Pipri Deoli		
212	Bhidi Deoli		
213	Bhidi	Deoli	
214	Wabgaon	Deoli	
215	Ratnapur	Deoli	
216	Kajalsara	Deoli	
217	Agargaon	Deoli	
218	Wakheda	Deoli	
219	Ratnapur	Deoli	
220	Kajalsara	Deoli	
221	Allipur	Hinganghat	
222	Arvi	Hinganghat	
223	Pimpalgaon	Hinganghat	
224	Gaul	Hinganghat	
225	Pawani	Hinganghat	
226	Kanchangaon	Hinganghat	
227	Gadegaon	Hinganghat	
228	Sirasgaon	Hinganghat	
229	Daroda	Hinganghat	
230	Tivsadi	Hinganghat	
231	Katri	Hinganghat	
232	Sirasgaon	Hinganghat	
233	Wela	Hinganghat	
234	Dhaga	Karanja	
235	Bangadapur	Karanja	
236	Ambhora	Karanja	
237	Ajandoh	Karanja	
238	Nandora	Karanja	
239	Jaurkheda	Karanja	
240	Ambhora	Karanja	
241	Ambhora	Karanja	
242	Sindi Vihiri	Karanja	
243	Budhalagad	Karanja	
244	Budhalagad	Karanja	
245	Maraksur	Karanja	
246	Maraksur	Karanja	
247	Eni Dodka	Karanja	
248	Rahati	Karanja	
249	Ajandoh	Karanja	
250	Tulana	Karanja	
251	Bhiwapur	Karanja	

SN	Village Taluka			
252	Kannamwar Gram Karanja			
253	Sindi Vihiri	Karanja		
254	Kannamwar Gram	Karanja		
255	Sawali Kh	Karanja		
256	Sawali Kh	Karanja		
257	Agargaon	Karanja		
258	Dongargaon	Karanja		
259	Joga	Karanja		
260	Joga	Karanja		
261	Dhanoli	Karanja		
262	Umar Vihiri	Karanja		
263	Ajandoh	Karanja		
264	Kundi	Karanja		
265	Kharas Khanda	Karanja		
266	Kharas Khanda	Karanja		
267	Ambhora	Karanja		
268	Ambhora	Karanja		
269	Sindi Vihiri	Karanja		
270	Budhalagad	Karanja		
271	Budhalagad	Karanja		
272	Maraksur	Karanja		
273	Maraksur	Karanja		
274	Eni Dodka Karanja			
275	Rahati	Karanja		
276	Ajandoh	Karanja		
277	Tulana	Karanja		
278	Tekadi	Samudrapur		
279	Bothali	Samudrapur		
280	Ralegaon	Samudrapur		
281	Dhumankheda.	Samudrapur		
282	Govindpur	Samudrapur		
283	Shivani	Samudrapur		
284	Mandgaon	Samudrapur		
285	Shedgaon	Samudrapur		
286	Khandala	Samudrapur		
287	Harankhuri	Samudrapur		
288	Hiwara	Samudrapur		
289	Dahegaon	Samudrapur		
290	Lahori	Samudrapur		
291	Dhumankheda.	Samudrapur		
292	Haladgaon	Samudrapur		
293	Khandala Samudrapu			
294	Ajda Samudrapur			

Selu	
Selu	
Selu	
Selu	
Selu	
Selu	
Selu	

SN	Village	Taluka			
339	Khairi	Selu			
340	Borkhedi	Selu			
341	Juwadi	Selu			
342	Dhanoli (Gawande)	Selu			
343	Borkhedi (Kala)	Selu			
344	Khairi Menkhat	Selu			
345	Salai (Kala)	Selu			
346	Salai (Pevath)	Selu			
347	Nanbardi	Selu			
348	Khairi Menkhat	Selu			
349	Salai (Kala)	Selu			
350	Borkhedi	Selu			
351	Khairi Menkhat	Selu			
352	Sondi	Selu			
353	Salai (Kala)	Selu			
354	Ringani	Selu			
355	Kotamba	Selu			
356	Belgaon	Selu			
357	Ghorad	Selu			
358	Dhanoli (Meghe)	Selu			
359	Kotamba	Selu			
360	Chichghat	Selu			
361	Chichghat	Selu			
362	Jogapur	Selu			
363	Manoli	Selu			
364	Junewani	Selu			
365	Bori	Selu			
366	Bori	Selu			
367	Junewani	Selu			
368	Wanarvihira	Selu			
369	Gohda (Kh)	Selu			
370	Bori	Selu			
371	Hingni	Selu			
372	Shiwangaon	Selu			
373	Bibi	Selu			
374	Jungad	Selu			
375	Mohgaon	Selu			
376	Mungapur	Selu			
377	Nimboli	Selu			
378	Gohda (Kh)	Selu			
379	Sonegaon	Selu			
380	Bramhani	Selu			
381	Mohgaon	Selu			

SN	Village	Taluka			
382	Kelzar	Selu			
383	Anjangaon Selu				
384	Itala Selu				
385	Wadgaon (Jangli)	Selu			
386	Kelzar	Selu			
387	Seldoh	Selu			
388	Raipur (Jangli)	Selu			
389	Tamaswada	Selu			
390	Takali	Selu			
391	Borkhedi	Selu			
392	Pimpal Shenda	Selu			
393	Khairi Menkhat	Selu			
394	Juwadi	Selu			
395	Khairi Menkhat	Selu			
396	Khairi Menkhat	Selu			
397	Salai (Kala)	Selu			
398	Salai (Kala)	Selu			
399	Nanbardi	Selu			
400	Salai (Pevath)	Selu			
401	Dorli	Selu			
402	Belgaon	Selu			
403	Wanarvihira	Selu			
404	Bori Selu				
405	Bori	Selu			
406	Hingni	Selu			
407	Shiwangaon	Selu			
408	Dhotra	Wardha			
409	Rotha	Wardha			
410	Dhotra	Wardha			
411	Dahegaon Miskin	Wardha			
412	Amboda	Wardha			
413	Tigaon	Wardha			
414	Degaon	Wardha			
415	Dahegaon Miskin	Wardha			
416	Amboda	Wardha			
417	Dhamangaon	Wardha			
418	Wathoda	Wardha			
419	Tigaon	Wardha			
420	Umari	Wardha			
421		Wardha			
422	Umari	Wardha			
423	Umari	Wardha			
424	Tigaon Wardha				
		Δ-62			

SN	Village Taluka			
425	Digraj Wardha			
426	Pipri Wardha			
427	Digraj Wardha			
428	Pipri	Wardha		
429	Pandharkawda	Wardha		
430	Rotha	Wardha		
431	Ashrafpur	Wardha		
432	Borgaon (Meghe)	Wardha		
433	Paloti	Wardha		
434	Banpur	Wardha		
435	Inzapur	Wardha		
436	Sawangi (Meghe)	Wardha		
437	Salod (Hirapur)	Wardha		
438	Nagthana	Wardha		
439	Fattepur	Wardha		
440	Inzapur	Wardha		
441	Barbadi	Wardha		
442		Wardha		
443	Satoda	Wardha		
444	Warud	Wardha		
445	Masala	Wardha		
446	Selukate	Wardha		
447	Inzapur	Wardha		
448	Chichala	Wardha		
449	Chitoda	Wardha		
450		Wardha		
451	Barbadi	Wardha		
452	Ashta	Wardha		
453	Aminpur	Wardha		
454	Walhapur	Wardha		
455	Neri	Wardha		
456	Shivapur	Wardha		
457	Kutki	Wardha		
458	Karanji (Bhoge)	Wardha		
459	Nandora	Wardha		
460	Kharangana (Gode)	Wardha		
461	Sondlapur	Wardha		
462	Mandavgad	Wardha		
463	Yesamba	Wardha		
464	Goji Wardha			

SN	Village	Taluka		
465	Goji	Wardha		
466	Yesamba Wardha			
467	Yerandgaon Wardha			
468	Itlapur	Wardha		
469	Abdullapur	Wardha		
470	Ashta	Wardha		
471	Yesamba	Wardha		
472	Bondapur	Wardha		
473	Bhankheda	Wardha		
474	Gondapur	Wardha		
475	Taroda	Wardha		
476	Sakhara	Wardha		
477	Waigaon	Wardha		
478	Pujai	Wardha		
479	Bhankheda	Wardha		
480	Dahegaon Miskin Wardha			
481	Waifad	Wardha		
482	Tigaon	Wardha		
483	Umari	Wardha		
484	Rotha	Wardha		
485	Umari	Wardha		
486	Digraj	Wardha		
487	Borgaon (Nandora)	Wardha		
488		Wardha		
489	Padhegaon (Mokashi)	Wardha		
490	Jamtha	Wardha		
491	Selukate	Wardha		
492	Sawangi (Meghe)	Wardha		
493	Barbadi	Wardha		
494	Warud	Wardha		
495	Bhuigaon	Wardha		
496	Bhuigaon	Wardha		
497	Ashta Wardha			
498	Waigaon	Wardha		
499	Sevagram	Wardha		
500	Nagapur	Wardha		
501	Sonegaon	Wardha		
502	Dattapur	Wardha		
503	Raipalli Wardha			