

केंद्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण

विभाग, जल शक्ति मंत्रालय

भारत सरकार Central Ground Water Board Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES SHANKARGARH BLOCK, BALRAMPUR DISTRICT, CHHATTISGARH

उत्तर मध्य छत्तीसगढ़ क्षेत्र, रायपुर North Central Chhattisgarh Region, Raipur

REPORT ON AQUIFER MAPPING AND MANAGEMENT PLAN OF SHANKARGARH BLOCK, BALRAMPUR DISTRICT, CHHATTISGARH

Prepared By G. Sreenath Scientist-B

Under Guidance of Shri A. K. Patre Scientist-D

Central Ground Water Board North Central Chhattisgarh Region, Raipur Department of Water Resources, Ganga Rejuvenation & River Development Ministry of Jal Shakti Government of India

> RAIPUR 2021

Acknowledgement

The author is grateful to Shri G C Pati, Chairman, Central Ground Water Board for giving opportunity for preparation of Aquifer Map and Management Plan of Shankargarh Block, Balrampur district of Chhattisgarh state. I express my sincere gratitude to Shri Utpal Gogoi, Member (East) CGWB for giving valuable guidance, encouragement and suggestions during the preparation of this report. The author is thankful to Dr. A.K.Biswal, Head of the Office, Central Ground Water Board, NCCR, Raipur extending valuable guidance and constant encouragement during the preparation of this report. I am extremely grateful to Sh. A.K.Patre, Scientist-D, for his continuous guidance and support during preparation of this report. The author is also thankful to Sh A.K. Biswal, Sc-D and Sh. J.R.Verma, Sc.D for the guidance and suggestions. I would like to acknowledge the help rendered by Smt Prachi Gupta, Sc-B while preparing aquifer map. The author is also thankful to Sh Uddeshya Kumar, Sc-B and Sh Sidhanta Sahu, Sc-B for providing the data of ground water exploration and aquifer management plan in Balrampur district. The efforts made by Sh. T.S. Chouhan, Draftsman, for digitization of maps are thankfully acknowledged. The author is also thankful to the state agencies for providing the various needful data. The author is thankful to Technical Section, Data Centre, Chemical Section, Report Processing Section and Library of CGWB, NCCR, Raipur for providing the various needful data.

> G. Sreenath Scientist-B (JHG)

AQUIFER MAPPING AND MANAGEMENT PLAN FOR SHANKARGARH BLOCK (BALRAMPUR DISTRICT), CHHATTISGARH

CONTENTS

	<u>Topic</u>			Pages
1.	Salient Information			01-14
	About the area			
	Population			
	Rainfall			
	Agriculture and Irrigat	tion		
	Groundwater Resource	ce Availabili [.]	ty and Extraction	
	Water Level Behaviou	ır		
2.	Aquifer Disposition			15-16
	Number of aquifers			
	Aquifer wise characte	ristics		
3.	Ground water resource, e	extraction, o	contamination and other issues	17
	Aquifer wise resource	availability	and extraction	
	Categorisation			
	Chemical quality of gro	ound water	and contamination	
4.	Ground Water Resource	enhanceme	nt	17
5.	Issues			17
6.	Management plan			18
7.	Conclusion			19
ABBR	EVIATIONS			
DW	Dugwell	m bgl	meter below ground level	
EC	Electrical Conductivity	m2/day	Square meter/ day	

EC	Electrical Conductivity	m2/day	Square meter/ day
GS	Gabion structures	m3/day	cubic meter/day
GW/ gw	Ground Water	MCM/mcm	Million Cubic Meter
ha	Hectare	mm	Milimeter
Ham	Hectare meter	OE	Overexploited
НР	Handpump (Shallow)	Sq Km	Square Kilometer
lpm	litres per minute	STP	Sewage Treatment Plant
lps	liters per second	т	Transmissivity
m	meter	тw	Tubewell

AQUIFER MAP AND MANAGEMENT PLAN: SHANKARGARH BLOCK

1. Salient Information:

<u>About the area:</u> Shankargarh Block is situated on the southern part of Balrampur district of Chhattisgarh and is bounded in the west by Sarguja District and Rajpur Block, in the north by Balrampur block, in the south by Jashpur district and in the east by Kusmi block. The block area lies between 23.10 and 23.30 N latitudes and 83.28and 83.50 E longitudes. The geographical extension of the study area is 655.74 sq. km representing around 10.88 % of the district's geographical area. Administrative map of the block is shown in Fig. 1. Geomorphologically northern part comprises of denudational plateau, eastern and southern part comprises pediment and western part comprises region of plateau. Geomorphology map is shown in Figure 2. The major drainage of the block includes Mahan and Kanhar River and part of Son Basin. Drainage map shown in Fig. 3.

<u>Population</u>: The total population of Shankargarh block as per 2011 Census is 70244. The population break up i.e. male- female and rural- urban is given below -

Block	Total population	Male	Female	Rural population	Urban population
Shankergarh	72088	36419	35669	72088	0

Table- 1: Population Break Up

Source: CG Census, 2011

<u>Growth rate</u>: The decadal growth rate of the block is 16.46 as per 2011 census.

<u>Rainfall</u>: The study area receives rainfall mainly from south-west monsoon. About 87% of the annual rainfall is received during June to September and July and August are the months of maximum precipitation. The area gets some rainfall during winter season also. Average annual rainfall in the study area is (Average of the last ten years i.e. 2009 to 2018) 858.80 mm with 70 to 80 rainy days.

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Annual rainfall	463.2	419.4	1121.0	1067.5	805.3	832.5	419.4	916.2	1290.5	1253.0

Table-2: Rainfall data in Shankargarh block in mm

Source: IMD

Figure 1 Administrative Map of Shankargarh Block

Figure 2 Geomorphology Map of Shankargarh Block

Figure 3 Drainage Map of Shankargarh Block

<u>Agriculture and Irrigation</u>: Agriculture is practiced in the area during Kharif and Rabi season every year. During the Kharif, cultivation is done through rainfall while during the Rabi season; it is done through ground water as well as partly through surface water like canals and other sources. The groundwater abstraction structures are generally Dugwells, Borewells /tubewells. The principal crops in the block are Paddy, Wheat, Vegetables and pulses.

In some areas, double cropping is also practiced. The agricultural pattern, cropping pattern and area irrigated data of Shankargarh block is given in Table 3 (A, B, C, D, and E).

Total geographical area	Forest area	Area not available for cultivation	Nonagricultural & Fallow land	Agricultural Fallow land	Net sown area	Double cropped area	Gross cropped area
90038	24463	2950	2577	1733	35516	15510	51026

Table 3 (A): Land use and Agricultural pattern (in ha)

Table 3 (C): Cropping pattern (in ha)

Khorif	Dahi		Cer	eal		Pulses	Tilhan	Fruits and Vegetables	Sugarcane	Mirch Masala	Others
Knarif	карі	Wheat Rice	Rice	Jowar & Maize	Medo						
20290	6780	1870	11560	13671	170	2400	2872	860	180	150	27

Table 3 (D): Area irrigated by various sources (in ha)

No. of canals (private and Govt.)	Irrigated area	No. of bore wells/ Tube wells	Irrigated area	No. of dug wells	Irrigated area	No. of Talabs	Irrigated area	Irrigated area by other sources	Net Irrigated area	Gross irrigated area	% of irrigated area wrt. Net sown area
2	80	50	90	415	180	57	340	840	1530	2740	7.00

Table 3 (E): Statistics showing Irrigation by Ground water

Block	Net Irrigated Area	Net Irrigated Area by ground water	Percentage of Area Irrigated by ground water wrt Net Irrigated Area
Shankargarh	1530	170	11.00

<u>Groundwater Resource Availability and Extraction</u>: Based on the resource assessment made, the resource availability in aquifer wise in Shankergarh block is given in the table-4.

	()			J			
	Ground Wate	r Recharge(Han	n)			Total	
	Monsoon Seas	son	Non-monso	on season	Total Annual		
Assessment Unit Name	Recharge from Rainfall Recharge from Other Sources		Recharge from Rainfall	Recharge from Other Sources	Ground Water (Ham) Recharge	Natural Discharges (Ham)	
Shankargarh	5177.61	140.79	526.98	325.45	6170.83	617.08	

Table – 4 (A): Ground Water Budget of Shankergarh block in Ham

Table – 4 (B): Ground Water Dynamic Resource (Unconfined Aquifer) of Shankargarh block in Ham

Annual	Cur	rent Annua Extracti	l Ground W on(Ham)	ater	Annual GW	Net	Stage of	Categorizat	
ble Ground Water Recharg e (Ham)	Irrigation Use	Industria I Use	Domesti c Use	Total Extraction	Allocatio n for Domesti c Use as on 2025	Water Availabilit y for future use	Ground Water Extractio n (%)	ion (OE/Critical /Semicritic al/Safe)	
5553.75						3834.22	30.59	Safe	
	1525.25	173.47	0.00	1698.72	194.28				

Table – 4 (C): Ground Water Static Resource (Unconfined Aquifer) and Dynamic Resource (Confined Aquifer) of Shankargarh block in Ham

1		0				
Static	Difference	Storativity	Dynamic Ground	Bottom	In storage	Sum of
Resources	Piezometric	(S)	Water Resource of	level of the	Ground	Dynamic GW
Area (Ha)	Head (Pre-		Confined Aquifer	top	Water	(Confined
	post) m		(Ham)	confining	Resource	Aquifer) and In
				layer (m)	of	storage GW
					Unconfined	(Unconfined
					Aquifer	Aquifer)
					(Ham)	resource (Ham)
90038	6.51	0.00025	144.19	205.00	4228.31	4372.50

Existing and Future Water Demand (2025): The existing draft for irrigation in the area is 1410.50 Ham while the total extraction for all uses is 1579.47 Ham. At present scenario to meet the future demand for water, a total quantity of 2626.32 ham of ground water is available for future use.

<u>Water Level Behavior</u>: (i) Pre- monsoon water level: In the pre-monsoon period, it has been observed that in Shankargarh block, water level in dugwells (phreatic aquifer) varies between 4.90 to 8.90 mbgl with average water level of 6.38 mbgl. In semiconfined aquifer, the maximum water level is 20.70 mbgl; the average water level is 15.18 mbgl.

Block Name	Phreatic Aquifer					
BIOCK Maine	Min Max		Avg			
Shankargarh	4.90	8.90	6.38			

Table 5A: Phreatic aquifer Depth to Water Level in mbgl (Pre-monsoon)

Table 5B: Semiconfined Aquifer Depth to Water Level in mbgl (Pre-monsoon)

Block Name	Semiconfined Aquifer				
DIOCK Nume	Min	Max	Avg		
Shankargarh	11.75	20.70	15.18		

(ii) Post- monsoon water level: In the post-monsoon period, it has been observed that the water level varies from 2.00 to 6.50 mbgl with an average of 3.49 mbgl in phreatic aquifer. In semiconfined/fractured formation, the post monsoon water level variation range is 3.85 to 11.93 mbgl with average of 7.15 mbgl.

Table 5C: Phreatic Aquifer Depth to Water Level in mbgl (Post-monsoon)

Block Name	Phreatic Aquifer			
DIOCK NAME	Min	Max	Avg	
Shankargarh	2.00	6.50	3.49	

Table 5D: Semiconfined Aquifer Depth to Water Level in mbgl (Post-monsoon)

Diack Nama	Semiconfined Aquifer				
BIOCK Maine	Min Max		Avg		
Shankargarh	3.85	11.93	7.15		

(iii) Seasonal water level fluctuation: The water level fluctuation data indicates that in Shankargarh block, water level fluctuation in phreatic aquifer varies from 0.50 to 3.85 m with an average fluctuation of 2.90 m. Water level fluctuation in semiconfined Aquifer varies from 6.88 to 8.86 m with an average fluctuation of 8.03 m.

Block Name	Phreatic Aquifer				
DIOCK Name	Min	Max	Avg		
Shankargarh	0.50	3.85	2.90		

Table 5E: Phreatic Aquifer Depth to Water Level Fluctuation (meter)

Table 5E	Semiconfined A	nuifer De	nth to Wate	r I evel	Fluctuation	(meter)
Table JL.	Semicommed A	quiici De	μιπιο νναιε	LEVEI	Tuctuation	(inerer)

Block Name	Semico	nfined	Aquifer
	Min	Max	Avg
Shankargarh	6.88	8.86	8.03

Figure 4 Depth to water level map Phreatic Aquifer (Pre-monsoon)

Figure 5 Depth to water level map Phreatic Aquifer (Post-monsoon)

Figure 6 Depth to water level fluctuation map of Phreatic Aquifer

Figure 7 Depth to water level map Semi confined/confined Aquifer (Pre-monsoon)

Figure 8 Depth to water level map Semi confined/confined Aquifer (Post-monsoon)

Figure 9 Depth to water level fluctuation map of Semi confined/confined Aquifer

(iv) <u>The long term water level trend</u>: There is no significant decline in water level in pre and post monsoon period in all observed NHS networks.

2. Aquifer Disposition:

<u>Number of Aquifers</u>: There is one major aquifer system viz. Granite Aquifer system and. Granite aquifer system has the shallow aquifer and deeper aquifer which occurs in phreatic and semiconfined condition respectively. Although there are few patches of unclassified metamorphic, biotite schist and other rocks.

3-d aquifer disposition and basic characteristics of each aquifer:

Granite Aquifer System: Groundwater occurrence is largely limited to secondary permeability, such as weathered zones, joints, fractures or faults. The potential of weathered zones depends on the degree and depth of weathering and associated fracturing, and the saturated thickness. The aquifers are generally discontinuous, and often confined. Higher yields are obtained where thick weathered zones are associated with bedrock fracturing.

The average thickness of the weathered portion in the area is around 20 m. In general, the discharge varies from meagre to 12.7 lps. In block maximum discharge was at Chiranga village where total 04 set of fracture zone identified having the cumulative discharge of 12.7 lps. At 104 mbgl last water zone encountered. The average drawdown of the formation is around 29 m. DTH drilling technique is preferred in Granite aquifer where well construction is required depending upon the thickness of weathered zone. Water zone has been encountered up to 158 mbgl in the formation. Transmissivity range observed is upto 43.72 sq meter/day.

Figure 11: Aquifer map of Shankargarh block

3. Ground water Resource, extraction, contamination and other issues:

Resource availability of Shankargarh block is given in the table -4 where net ground water availability for future use is 3834.22ham. The extraction details and the future scenario (2025) along with the categorisation are also depicted in the table-4.

District	Block	Stage of Ground water development (%)	Categorisation
Balrampur	Shankargarh	30.59	Safe

Table 7 Categorization	of Assessment Unit
------------------------	--------------------

Categorisation: Shankargarh block falls in safe category. The stage of Ground water development is 30.59%. The Annual Extractable Ground Water Recharge is 5553.75ham. The Ground water draft for all uses is 1698.72Ham.

<u>Chemical Quality of Ground water and Contamination</u>: Throughout the study area, the water samples from both dugwell and handpumps were collected and chemical analysis has been completed. Overall ground water of the study area is suitable for the drinking, agriculture and industrial purpose.

4. Ground Water Resource enhancement:

Aquifer wise space available for recharge and proposed interventions:

Table -8: Summarised detail of Volume of porous space available for recharge

Major Aquifer	Area Identified for Artificial Recharge (Sq. Km)	Sp. Yield for the formation	Volume of vadose zone available for recharge(mcm)	Sub surface storage potential (mcm)		
Granite gneiss	16.27	0.011	73	0.806		

(Aquifer wise)

5. Issues:

- (i) During summer, dugwells in villages becomes dry at many locations. Several handpumps also stop yielding water. The aquifer itself is a low yielding one.
- (ii) In Granite aquifer system potential zone for ground water is related with occurrence of fracture, so drilling a high yield well is always a challenge. Proper scientific study coupled with geophysical investigation may minimize the failure of well.
- (iii) Fluoride and Iron filter plant may be installed in the villages having higher value of contaminants..

6. Management Plan:

- (i) It has been observed during fieldwork, there is colossal wastage of groundwater through private well and public water supply system. So, Information, Education and Communication (IEC) activities need to be organized to sensitize people on the issues of depleting groundwater resource. Massive awareness campaigns are essential to aware people about the importance of community participation in saving water.
- (ii) Desiltation of existing Tanks and Talabs to be carried out for efficient storage of rainwater. Also Rain water harvesting structures may be constructed in villages to reduce stress on groundwater.
- (iii) It has been observed that the demand of ground water is increasing for irrigation, industrial and domestic uses. At locations where water level is declining, we have to go for artificial recharge on a long-term sustainability basis. Artificial Recharge structures may be constructed at suitable locations especially in the areas where the water level remains more than 3m in the post-monsoon period in this block to arrest the huge non-committed run-off and augment the ground water storage in the area. The different types of artificial structures feasible in the block are described in table-9.

Name of Block	Area Feasible for recharge (sq.km)	Volume of Sub Surface Potential for Artificial recharge (MCM)	Types of Sti Percolation tank	ructures Fea Nalas bunding cement plug/ check dam	asible and their Gravity head /Dug well/ tube well/Recharge shaft	Numbers Gully plugs Gabion structures
Shankargarh	16.27	0.972	2	8	20	15
	Re (1	echarge Capacity MCM)/structure	0.2192	0.0326	0.00816	0.0073

Table-9: Types of Artificial Recharge structures feasible

- (iv) Fluoride and Iron filter plant may be installed in the villages having higher value of contaminants.
- (v) In urban areas STP may be installed for the treatment of sewage water in proper numbers to avoid contamination of ground water. Treatment of sewage water in village through soak pit for the individual houses and Seechewal model or similar model for community level may be adopted to avoid contamination of ground water. Treated water may also be reused for irrigation and other industrial purposes.
- (vi) Since the stage of development in the block is 37.38 %. There is scope of utilizing more ground water for future irrigation purpose. Additional number of Ground

water abstraction structure may be developed for the effective utilization of ground water resources in the block. The ground water is presently developed through dug wells and tube wells. Yield potential for the block has been shown in Aquifer map (fig 11). Sites for wells need to be selected only after proper scientific investigation. The ground water quality also needs to be ascertained and the wells used for water supply should be first checked for Iron, Fluoride and other pollutants.

Net Groundwater availability (ham)	Stage of ground water Developm ent (%)	Present ground water draft (Ham)	Ground water draft at 70% stage of developmen t (ham)	Surplus ground water at present Stage of Development (ham)	Number of TW Recommended in each block (Assuming unit draft as 1.6 ham/structure/year)	Number of DW Recommended in each block (Assuming unit draft as 0.72 ham/structure/year)
4225.96	37.38	1579.47	2958.17	1378.70	517	766

Table 10: Potential of Additional GW abstraction structure creation

7. Conclusion:

For effective utilization of Ground water existing draft for irrigation may be coupled with micro irrigation system. Change in irrigation pattern, optimum use of available resource, use of ground water potential created after artificial recharge can lead to groundwater savings and increase in gross cropped area of the block (Table: 11).

Table 11: Detail of groundwater saved through change in cropping pattern and other interventions

Block	Existing	Additional	GW	Development	Additional	Additional	Percent
	Gross	Saving of	Potential	by new GW	GW	Irrigation	increase
	Ground	GW after	created	abstraction	irrigation	potential	in Crop
	Water	using Micro	after	structure	Potential	creation for	area
	Draft for	Irrigation	Artificial		created in	Maize/	compare
	Irrigation	methods in	recharge		Ham	wheat in	to Gross
	in Ham	Ham	structure			winter	cropped
		(Assuming	in Ham			season in Ha	area
		30 % saving)				(Assuming	
						500 mm	
						water	
						requirement)	
Shankargarh	1525.25	457.57	97.19	2188.91	2743.67	5487.34	20.18