

भारत सरकार

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय केंद्रीय भूमि जल बोर्ड

GOVERNMENT OF INDIA MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT AND GANGA REJUVENATION

CENTRAL GROUND WATER BOARD

प्रायोगिक जलभृत मानचित्रण परियोजना का प्रतिवेदन चंद्रभागा वाटरशेड (डबल्यूजीकेकेसी-2) नागपुर जिला, महाराष्ट्र

REPORT ON PILOT PROJECT ON AQUIFER MAPPING IN CHANDRABHAGA WATERSHED (WGKKC-2), NAGPUR DISTRICT, MAHARASHTRA

> मध्य क्षेत्र, नागपुर CENTRAL REGION, NAGPUR दिसंबर-2015 December-2015

केन्द्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास एवं गंगा संरक्षण मंत्रालय भारत सरकार नई दिल्ली

Central Ground Water Board Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India New Delhi

FOREWORD

Increasing development of ground water to meet the requirements of various segments has resulted in the over-exploitation of this vital natural resource in parts of the country and consequent adverse environmental impacts include, deepening water levels and drying up of shallow wells, reduction in sustainability of wells and seawater ingress in coastal freshwater aquifers. Contamination of ground water due to natural and anthropogenic causes has also increased substantially in the recent decades. The anticipated impact of global warming and climate change are also considered to add to further complicate the issues plaguing the water resources sector in India in the not so distant future. Sustainable development of ground water through judicious management interventions becomes very important to ensure the water security of the future generations.

It is in this context that the Central Ground Water Board, Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India decided to take up the National Aquifer Mapping and Management (NAQUIM) Programme, aimed at detailed and systematic study of the major aquifer systems in the country and formulation of management plans for sustainable development of their ground water resources. The Programme envisaged various activities such as compilation of all available data, analysis of data gaps and generation of additional data to fill them, preparation of detailed aquifer maps and formulation of management plans. Various conventional and modern techniques of field data generation, data processing and analysis including integration of data on a GIS platform and numerical groundwater modelling were expected to be used for the programme.

With a view to understand the applicability and efficacy of the above-mentioned techniques in different hydrogeological settings, pilot projects on aquifer mapping were taken up in Six different Hydrogeological terrains in the states of Bihar, Rajasthan, Maharashtra, Karnataka and Tamil Nadu.CSIR-NGRI was engaged as a consultant by CGWB to facilitate use of advanced geophysical techniques in the programme. During the course of the study, groundwater issues have been identified by CGWB specific to the area. With inputs from aquifer mapping studies, aquifer response models have been formulated and various strategies have been tested to arrive at optimal aquifer management plan for sustainable management of precious resources.

This is one among the six reports being brought out based on the studies taken up in the pilot projects. The findings are brought out in the report very coherently and 1 would like to place on record my appreciation for the excellent work done by the team. I fondly hope that this report will serve as a valuable guide for sustainable development of ground water in the area.

K.B.Biswas Chairman

18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone : (011) 23383561 Fax : 23382051, 23386743 E-mail : chmn-cgwb@nic.in Website: www.cgwb.gov.in, www.mowr.gov.in

PREFACE

Around 92% of areas of Maharashtra and entire area of UT of Dadra and Nagar Haveli are occupied by hard rocks. The uneven distribution of groundwater in the State can be mainly attributed by highly heterogeneous lithology and variability and regional variation of rainfall. The basic characteristics of hard rock aquifer coupled with variability physiography and rainfall place the limitations on the availability of groundwater. Therefore, the scientific understanding and management of groundwater is essential for optimal and sustainable use of this limited and precious natural resource to fulfil the agricultural, industrial and domestic need of the state in terms of quality and quantity. In order to address the upcoming challenges, it has become imperative to delineate the aquifers and formulate Aquifer Management Plan to establish the priorities of ground water use with community involvement at various levels of implementation.

Central Ground Water Board, Central Region, Nagpur has been engaged in collection of hydrogeological data and preparation of reports since last 50 years on various aspects of groundwater. In the recent past the focus has shifted from development to management of ground water. The various aquifer systems, which are repository of groundwater, shall have to be developed scientifically. This warrants that the management of the ground water has to be focused on the aquifer and incidentally these are not evenly distributed throughout the Country/State. Aquifer mapping itself is an improved form of groundwater management - recharge, conservation, harvesting and protocols of managing groundwater. These protocols are the real derivatives of the aquifer mapping exercise and will find a place in the output (the map) and the outcome (changes within social behaviour that reflects these protocols). Some important socio-economic information at the scale of well have been form the basic sample of groundwater information and are collected as part of the aquifer mapping effort to define the aquifer geometry, type of aquifers, ground water regime behaviours, hydraulic characteristics and geochemistry of Multi-layered aquifer systems on 1:50,000 scale. Thus, the project was undertaken with broad objectives of the pilot project and the aquifer geometry is defined with precise lateral and vertical demarcation including hydraulic characteristics of both shallow and deeper aquifers down to the depth of 200 m. Followed by, preparation of Aquifer Maps indicating dispositions of aquifers along with their characterization for formulation of the Aquifer Management Plans for sustainable development and management of ground water resources.

During the project, apart from the hydrogeological and traditional geophysical surveys by CGWB, the Electrical Resistivity Tomography (ERT), Ground Transient Electromagnetic (TEM) and SkyTEM (Time-domain heli-borne electromagnetic system) methods have also been applied first time in basaltic terrain to delineate the aquifer system up to 200 m depth. These advanced

geophysical investigations and their interpretation has been carried out through National Geophysical Research Institute (NGRI), which is a premier research organisation under CSIR (Ministry of Science and Technology).

This report has clearly brought out the precise mapping of aquifers on 1:50,000 scale for studying of aquifer-based activities. One of the main objective of the Pilot Project on Aquifer Mapping was also to upscale the aquifer mapping activity across entire length and breadth of the Maharashtra State and UT of Dadra & Nagar Haveli. Based on the experiences of Pilot Project, the National Aquifer Mapping (NAQUIM) was also initiated in the 12th five year Plan (2012-17) and so far the water stressed areas of about 18,000 sq.km has been completed under NAQUIM.

The data requirements for compiling the report were met earnestly and efficiently by the respective departments especially, CGWB, CSIR-NGRI, GSDA, GSI, MRSAC. I will also like to place on record, the whole hearted efforts put in by all the contributors in carrying out the field work and compiling this report especially Dr. P.K. Jain, Superintending Hydrogeologist and Nodal officer, Sh. S. D. Waghmare, Assistant Hydrogeologist, Sh. P. Narendra, Sc-D (GP), Dr. Bhushan R. Lamsoge, Senior Hydrogeologist, from CGWB, CR, Nagpur. Sh. M. K. Rafiuddin, Sc-D, CGWB, SR, Hyderabad, Dr. V. Arulprakasam, Sc- D (GP), SECR, Chennai, and Dr. N. C. Nayak, Sc-D, SER, Bhubaneshwar. My sincere thanks are also due towards Sh. Avanish Kant, Senior hydrogeologist, MoWR, RD & GR for his constant follow up and the World Bank and their representatives for their strategic inputs.

Sh. K. B. Biswas, Chairman, Dr. Dipankar Saha, Member (SAM), have been the moving spirit for preparation of this report. Dr. S. C. Dhiman and Sh. Sushil Gupta and Dr. R. C. Jain, Chairman then CGWB have been the constant source of guidance and inspiration. Their efforts to arrange for timely approvals of financial inputs has provided much needed support for implementation of the project. The officers at CHQ, CGWB, Faridabad in HP and pilot project cell have time to time provided necessary inputs for successful completion of the project.

I am sure that this report will provide better insight into the groundwater regime with its all ramifications and a foundation for evolving scientific and viable strategies for efficient management of aquifers with sustainability for the benefit of policy makers and stake holders.

SI . If wolkid

Regional Director

ACKNOWLEDGEMENT

The authors express their sincere thanks to Er. K. B. Biswas, Chairman, CGWB, Faridabad for his continuous guidance and extending all possible support for successful completion of this flagship project of MoWR, RD & GR, Govt. of India.

The authors also express their sincere thanks to Dr. S. C. Dhiman, Sh. Sushil Gupta and Dr. R. C. Jain former Chairman, CGWB, Faridabad under whose tenure the project was conceptualized, initiated. Sharing their valuable expertise is gratefully acknowledged.

The authors also express thanks to the, Dipankar Saha, Member (SAM), Dr. S. Kunar, Sh. Ashish Chakravarti, Dr. Varadaraj, Dr. R. C. Jain and Sh. K. C. Naik former Members; Sh. B. Jayakumar, Sh. Pradeep Dube, former Regional Directors and Sh. P. K. Parchure, then Superintending Hydrogeologist, Sh. Avanish Kant, Senior Scientist MoWR, RD & GR, for their abiding interest and encouragement during the study period.

The authors also acknowledged their sincere thanks to the expert team of officers from CGWB, CHQ, Faridabad especially Dr. Sunil Kumar, Regional Director & then Director (Admin), Sh. Sanjay Marwah, Regional Director (HP), Dr. S. Suresh, Scientist D, Sh. S. K. Sinha, Scientist D, Sh. Sh. K. R. Biswas, Superintending Engineer, K. V. Kumar, Superintending geophysicist (Retd.), Sh. A. K. Madhukar, Superintending geophysicist, Sh. Pankaj Kumar, Assistant Hydrogeologist, for their time to time support and scientific guidance during the project work.

Thanks are also due to the team of officers constituting of Dr. Subhash Chandra, Dr. Sahebrao Sonkamble, N. C. Mondal, Dr. Murlidharan from NGRI, Hyderabad under the competent leadership of Dr. Sakeel Ahmad, Chief Scientist, NGRI for providing useful geophysical input for compilation of this report. Dr. Satish Wate, Director, NEERI Dr. Paras Pujari, Scientist, Sh. Padmakar and other officers from NEERI, Nagpur are also thankful for their useful support during geophysical survey.

The authors also acknowledge their sincere thanks to World Bank and its representatives, especially Dr. Anju Gaur and Dr. P. C. Chandra for their field visit during SkyTEM and valuable guidance and sharing his experience to complete the herculean task.

The expert and consultants from Aarhus University, Denmark and SkyTEM team members are also acknowledged for their valuable support to this project.

The authors also acknowledge their sincere thanks to all nodal officers of five pilot projects and officers concerned for their vigorous technical discussions during the meetings especially, S/Sh. GRC Reddy, Scientist D, Rana Chaterjee, Scientist D, Dr. Gyansundar, Scientist C, R. R. Shukla, Scientist C, Dr. M. Senthilkumar, Scientist C, S. N. Dwivedi, Scientist C, H. P. Jayaprakash, Scientist C (HM), Dr. L. K. Mathur, Scientist C (GP), Rameshkumar, AHG, H. S. Namdeo, Dr. Krishnamurthi Gawda, Dr. Vittala, AHG, Fakrey Alam, STA (HG) and all other concerned officers from various Regions of the Board.

Thanks are also due to various State and Central Govt. agencies viz., GSDA, CMPDI, GSI, Irrigation Department, Agriculture Department etc. providing valuable data and suggestions.

Last but not the least the authors express their thanks to every person involved in this project and the villagers from project area Chandrabhaga watershed.

REPORT ON

PILOT PROJECT ON AQUIFER MAPPING IN CHANDRABHAGA WATERSHED (WGKKC-2), NAGPUR DISTRICT, MAHARASHTRA

TABLE OF CONTENTS

1	INTROD	UCTION	. 1
	1.1 Objecti	ves and Scope	2
	1.1.1	Scope	2
	1.2 Approc	h	
	1.3 Locatio	n	4
2	DATA AV	/AILABILITY AND DATA GAP ANALYSIS	. 5
	2.1 Climate	e and Rainfall	5
	2.2 Soil		9
	2.3 Land us	se	9
	2.4 Geomo	prphology and Drainage	10
		y and Lineaments	
	2.6 Geophy	ysics	13
	2.7 Sub Sui	rface Lithological Information	15
		eology	
	2.9 Aquifer	Disposition	18
	2.10 Grour	nd Water Level	18
	2.11 W	/ater Quality	21
	2.12 G	round Water Resources, Recharge Parameters and Discharge Parameters	23
	2.13 D	ata gap analysis	25
3	DATA GI	ENERATION	.29
	3.1 Geomo	prphology	29
		ysics	
	3.2.1		
	3.2.1.1		
	3.2.1.2		
	3.2.1.3	Spatial distribution of resistivities with depth	38
	3.2.1.4	Inferences from Electrical Resistivity survey	
	3.2.1.5	Geophysical Logging	48
	3.2.2	Geophysical Survey by NGRI	
	3.2.2.1	Vertical Electrical Sounding (VES)	
	3.2.2.2	Electrical Resistivity Tomography (ERT)	
	3.2.2.3	Ground Transient Electromagnetic (TEM) methods	
		Geophysical Inferences by NGRI	
	3.3 Sub Sui	rface Information	94
	3.3.1	Ground Water Exploration	94
	3.3.2	Ground water level	
	3.3.2.1	Key Well Inventory 1	00

	3.3.2.2	Weathered Thickness	101
	3.3.2.3	Ground water level Monitoring	102
	3.3.2.4	Ground Water Table	114
	3.3.3	Water Quality	
	3.3.3.1		
	3.3.3.2	, , , , , , , , , , , , , , , , , , , ,	
	3.3.4	Ground Water Resources, Recharge Parameters and Discharge Param	
	3.3.5	Infiltration tests	
_	3.3.6	Pumping Tests	
4	DATA IN	ITEGRATION	154
	4.1 Integra	tion of data from Conventional and Advanced Techniques	157
	4.1.1 va	alidation by ground based results and refinement	160
	4.1.1.1 Se	ection wise validation of SkyTEM data	161
	4.1.1.2 Val	idation of SkyTEM data by resistivity sections in grid fashion	169
	4.2 Value A	Addition from Geophysical Studies	173
	4.2.1	Estimation of Basalt thickness and Gondwana topography	173
	4.2.2	HeliMag results	
	4.2.3	Geophysical Parameters Characterization	
	4.2.4	Three-dimensional resistivity section	181
	4.3 Efficacy	y of various Geophysical Techniques for different Hydrogeological terr	rain 183
	4.4 Protoco	ol for Geophysical Investigations in Aquifer Mapping	185
5	GENERA	TION OF AQUIFER MAPS	187
		^r Disposition	107
	-	•	
		D Aquifer Maps	
	•	r Characterisation	
6	AQUIFE	R RESPONSE MODEL AND AQUIFER MANAGEMENT PLAN FORMULATION .	196
	6.1 AQUIFE	ER RESPONSE MODEL-AQMAH	196
	6.1.1	Introduction	196
	6.1.2	Scope and Objective of Ground Water Modeling	197
	6.1.3	Numerical model Design	197
	6.1.3.1	Methodology	
	6.1.4	About Visual Modflow	
	6.1.5	Conceptual Model	
	6.1.6	Grid Design	
	6.1.7	Assumptions Used in the Conceptual Model	
	6.1.8	Geometry and Boundary Conditions	
	6.1.9	Distribution of Conductivity Values	
	6.1.10	Distribution of Storage parameters	
	6.1.11	Recharge	
	6.1.12	Discharge Data	
	6.1.13	Model Calibration	
		L Steady State Calibration	
		2 Transient State Calibration	
		3 Cumulative Budget	
		l Sensitivity Analysis	
	o.1.13.5	5 Model Verification	219

	6.2 AQUIFER MANAGEMENT PLAN FORMULATION	220
	6.2.1 Predictive Model Results (Management Strategies)	
	6.2.1.1 Scenario 1- Construction of check dam on Chandrabhaga river	
_	6.2.1.2 Scenario 2- Construction of recharge wells	
7	IMPLEMENTATION PLAN AND RECOMMENDATIONS	225
8	CONCLUSIONS	230
	REFERENCES	245
	ANNEXURES	247
	ANNEXURE-I: VES Results in Chandrabhaga Watershed WGKKC-2, Nagpur District	t 247
	ANNEXURE-II: VES Curvrs, obtained after Geophysiacl Survey by CGWB, Chandra	bhaga
	Watershed (WGKKC-2), Nagpur District	260
	ANNEXURE-III: VES Curvrs, obtained after Geophysiacl Survey by NGRI, Chandrab	haga
	Watershed (WGKKC-2), Nagpur District	289
	ANNEXURE-IV: TEM Plot, Chandrabhaga watershed (WGKKC-2), (NGRI, 2015a)	292
	ANNEXURE-V: Well wise Salient features of Ground Water Exploration	333
	ANNEXURE-VI: Pumping test data analysis	408
	ANNEXURE-VII: Details of well inventory data of Key Observation wells, Chandral	ohaga
	Watershed (WGKKC-2), Nagpur district, Maharashtra	413
	ANNEXURE-VIII: Details of Irrigation well inventory data, Chandrabhaga Watersh	ed
	(WGKKC-2), Nagpur District	415
	ANNEXURE-IX: Monthly ground water level data of Key Observation Wells, Aquif	er-l,
	Chandrabhaga Watershed (WGKKC-2), Nagpur district, Maharashtra	418
	ANNEXURE-X: Monthly ground water level data of Exploratory Wells, Aaquifer-II,	,
	Chandrabhaga Watershed (WGKKC-2), Nagpur District	421
	Annexure-XI: Analysis of water sample of Aquifer –I, Chandrabhaga Watershed (WGKKC-
	2), Post monsoon- Nov 2011	422
	Annexure-XII: Analysis of water sample (Ground water Exploration) Aquifer –II,	
	Chandrabhaga Watershed (WGKKC-2), Post monsoon- May 2014	424
	Annexure-XIII: %Na, SAR, SSP, RSC, KR, MR and CR in groundwater samples from	•
	Basalt and Sandstone (dugwells)	
	Annexure-XIV: %Na, SAR, SSP, RSC, KR, MR and CR in groundwater samples from	•
	Basalt and Sandstone (Ground water explortation)	
	ANNEXURE-XV: HeliTEM SCI section in grid fashion (NGRI, 2015b)	
	ANNEXURE-XVI: Mean Resistivity maps, Chandrabhaga Watershed (NGRI, 2015b)	
	ANNEXURE-XVII: Georeferenced elevation of the principal hydrogeological layers	
	node of the grids of the AQMAH study area (NGRI, 2015b)	
	ANNEXURE-XVIII: Details of Aquifer System and Aquifer Management Plan, Chan	-
	Watershed (WGKKC-2), Nagpur District	
	PHOTOGRAPHS	474
	Aquifer Map, Aquifer Management Plan and 3D Aquifer Disposition	

Figure No.	e Title of Figure	
1.1	Administrative and location map of Chandrabhaga Watershed (WGKKC-2)	
2.1 a	Rainfall trend (1998-2014) at Katol, Chandrabhaga Watershed (WGKKC-2)	
2.1 b	Rainfall trend (2005-2014) at Katol, Chandrabhaga Watershed (WGKKC-2)	
2.1 c	Rainfall trend (1998-2014) at Kalmeshwar, Chandrabhaga Watershed (WGKKC-2)	
2.1 d	Rainfall trend (2005-2014) at Kalmeshwar, Chandrabhaga Watershed (WGKKC-2)	
2.3	Soil, Chandrabhaga Watershed (WGKKC-2)	
2.4	Land use, Chandrabhaga Watershed (WGKKC-2)	
2.5	Digital Elevation Model, Chandrabhaga Watershed (WGKKC-2)	
2.6	Geomorphology, Chandrabhaga Watershed (WGKKC-2)	
2.7	Drainage, Chandrabhaga Watershed (WGKKC-2)	
2.8	Geology and lineament, Chandrabhaga Watershed (WGKKC-2)	
2.9	Data availability, VES by CGWB, Chandrabhaga Watershed (WGKKC-2)	
2.10	Bouguer Gravity Anomaly Map (part of the map after T.S. Ramakrishna, et al, 1990)	
2.11	Residual Gravity Anomaly Map (part of the map after T.S. Ramakrishna, et al, 1990)	
2.12	Ground Water Exploration (CGWB), Chandrabhaga Watershed (WGKKC-2)	
2.13	Hydrogeology, Chandrabhaga Watershed (WGKKC-2)	
2.14a	Hydrograph of GWMW located at Kalmeshwar(1982-2012), Chandrabhaga Watershed (WGKKC-2)	
2.14b	Hydrograph of GWMW located at Kalmeshwar(2001-2010), Chandrabhaga Watershed (WGKKC-2)	
2.15a		
2.15b	Hydrograph of GWMW located at Chargaon (2001-2010), Chandrabhaga Watershed (WGKKC-2)	
2.16a	Time series plot for Water Quality (NO ₃ , F, EC, TDS & TH) of GWMW located at Kalmeshwar (1982-2013), Chandrabhaga Watershed (WGKKC-2)	
2.16b		
2.17a	Time series plot for Water Quality (NO ₃ , F, EC, TDS & TH) of GWMW located at Chargaon (1989-2013), Chandrabhaga Watershed (WGKKC-2)	
2.17b		
2.18	Aquifer wise data gap analysis for aquifer disposition, ground water level and water quality, Chandrabhaga Watershed (WGKKC-2)	
3.1	Locations of VES conducted by CGWB, Chandrabhaga Watershed (WGKKC-2)	
3.2	Generation of Subsurface Disposition, Geoelectrical layers translated to lithological layers	
	using Rockworks, Chandrabhaga Watershed (WGKKC-2)	
3.3	Gradient Resistivity Profiles and Contours at Ghorad, Chandrabhaga watershed (WGKKC-2)	
3.4	Gradient Resistivity Profiles & Contours at Ghorad, Chandrabhaga watershed (WGKKC-2)	
3.5	Contour Maps generated based on Parallel VLF Profiles at Ghorad, Chandrabhaga Watershed (WGKKC-2)	
3.6	Spatial Distribution of Top Layer Resistivity, Chandrabhaga Watershed (WGKCC-2)	
3.7	Resistivity variation at 150 m amsl, Chandrabhaga Watershed (WGKCC-2)	
3.8	Resistivity variation at 200 m amsl, Chandrabhaga Watershed (WGKCC-2)	
3.9	Resistivity variation at 250 m amsl, Chandrabhaga Watershed (WGKCC-2)	
3.10	Resistivity variation at 300 m amsl, Chandrabhaga Watershed (WGKCC-2)	
3.11	Resistivity variation at 350 m amsl, Chandrabhaga Watershed (WGKCC-2)	
	3.12 Resistivity variation at 400 m amsl, Chandrabhaga Watershed (WGKCC-2)	

Figure No.	Title of Figure	
3.13	Pseudo Depth Section and Resistivity Cross Sections along Section 1-1', Chandrabhaga Watershed (WGKCC-2)	
3.14	3D view of the resistivity images at different elevations generated based on VES.	
3.15	Electrical Log at Dorli, Chandrabhaga Watershed (WGKCC-2)	
3.16	Geophysical logs with drilling lithologs, Chandrabhaga Watershed (WGKCC-2)	
3.17	Consolidated lithology of CGWB drilled wells, Chandrabhaga Watershed (WGKCC-2)	
3.18	Geophysical Investigations by NGRI, Chandrabhaga Watershed (WGKKC-2)	
3.19	Area covered under Heliborne Sky-TEM geophysical survey, Chandrabhaga Watershed (WGKKC-2)	
3.20a	Joint Inversion Profile Orientation (A-B) in Chandrabhaga Watershed (WGKKC-2)	
3.20b	Fixing of end points 'A' (north) and 'B' south for proposed line in the presence of NGRI, CGWB and NEERI staff at Nagpur study area	
3.21a	Resistivity Image with altitude from TEM, Chandrabhaga Watershed (WGKCC-2)	
3.21b	ERT data pattern, Chandrabhaga Watershed (WGKCC-2)	
3.21c	ERT Image, Chandrabhaga Watershed (WGKCC-2)	
3.21d	derived hydrogeological map from showing basaltic flow of N-S profile along AB line, Chandrabhaga Watershed (WGKCC-2)	
3.22	Mean Resistivity Maps at different depths, Chandrabhaga Watershed (WGKCC-2)	
3.23	Decay Curve of TEM and Inverted Layers at Dhapewada, Chandrabhaga Watershed (WGKCC-2)	
3.24	Layered Model from Dhapewada, Geophysical log and Litholog, Chandrabhaga Watershed (WGKCC-2)	
3.25a	VES 3 curve at Raulgaon village, Chandrabhaga Watershed (WGKCC-2)	
3.25b	Drilling lithologs, Chandrabhaga Watershed (WGKCC-2)	
3.26	Integration of 1D sounding (VES-21) and 2D profiling (ERT 8) at Waroda village, Chandrabhaga Watershed (WGKCC-2)	
3.27	Ground Water Exploration (CGWB and Outsourced), Chandrabhaga Watershed (WGKKC-2)	
3.28	Hydrograph of GWMW located at Kalmeshwar (2004-2014), Chandrabhaga Watershed (WGKKC-2)	
3.29	Hydrograph of GWMW located at Chargaon (2004-2014), Chandrabhaga Watershed (WGKKC-2)	
3.30	Hydrograph of GWMW located at Fetri (2011-2014), Chandrabhaga Watershed (WGKKC-2)	
3.31	Depth of weathering, Aquifer – I (Basalt & Sandstone), Chandrabhaga watershed (WGKKC- 2)	
3.32a	Pre monsoon Depth to Water Level – BASALT (Aquifer – I), May - 2012	
3.32b	Pre monsoon Depth to Water Level – BASALT (Aquifer – I), May - 2013	
3.32c	Pre monsoon Depth to Water Level – BASALT (Aquifer – I), May - 2014	
3.33a	Pre monsoon Depth to Water Level – SANDSTONE (Aquifer – I), May - 2012	
3.33b	Pre monsoon Depth to Water Level – SANDSTONE (Aquifer – I), May - 2013	
3.33c	Pre monsoon Depth to Water Level – SANDSTONE (Aquifer – I), May - 2014	
3.34a	Post monsoon Depth to Water Level - BASALT (Aquifer – I), November-2011	
3.34b	Post monsoon Depth to Water Level - BASALT (Aquifer – I), November-2012	
3.34c	Post monsoon Depth to Water Level - BASALT (Aquifer – I), November- 2013	
3.34d	Post monsoon Depth to Water Level - BASALT (Aquifer – I), November-2014	
3.35a	Post monsoon Depth to Water Level - SANDSTONE (Aquifer – I), November-2011	
3.35b	Post monsoon Depth to Water Level - SANDSTONE (Aquifer – I), November-2012	
3.35c	Post monsoon Depth to Water Level - SANDSTONE (Aquifer – I), November-2013	
3.35d	5d Post monsoon Depth to Water Level - SANDSTONE (Aquifer – I), November- 2014	

Figure No.	Title of Figure		
3.36	Short-term DTWL trend (Oct 2011 to Nov 2014), Aquifer - I		
3.37a			
3.37b	Pre monsoon Depth to Water Level (Aquifer –II), Sandstone, May-2014		
3.38a	Post monsoon Depth to Water Level (Aquifer – II), Basalt, November-2014		
3.38b	Post monsoon Depth to Water Level (Aquifer – II), Sandstone, November-2014		
3.39	Pre monsoon Water Table (Aquifer – I), May-2014		
3.40	Post monsoon Water Table (Aquifer – I), Nov-2014		
3.41	Pre monsoon Water Table (Aquifer –II), May-2014		
3.42	Post monsoon Water Table (Aquifer – II), Nov-2014		
3.43	Chemical classification of ground water samples from dugwells, Aquifer-I		
3.44	Chemical classification of ground water samples from bore wells, Aquifer-II		
3.45	Suitability for Drinking and Domestic purpose with spatial distribution of nitrate, Nov- 2011, Aquifer – I and II (Basalt and Sandstone)		
3.46	Spatial Distribution of Electrical Conductance, May-2014, Aquifer – I (Basalt)		
3.47	Spatial Distribution of Electrical Conductance, May-2014, Aquifer – I (Sandstone)		
3.48	Spatial Distribution of Electrical Conductance, May-2014, Aquifer – II based on ground water exploration		
3.49	SAR vs. conductivity plot of ground water samples from Aquifer-I (shallow aquifer)		
3.50	SAR vs. conductivity plot of ground water samples from Aquifer-II (Deeper aquifer)		
3.51	Suitability for irrigation purpose, Aquifer – I and II (Basalt and Sandstone)		
3.52	Field infiltration test, Chandrabhaga Watershed (WGKKC-2)		
3.53	Site locations of field test conducted i.e., Soil Infiltration Test, Pumping test (dug well and		
	exploratory well)		
3.54	Pumping Test Analysis- Papadopulos Cooper Method (Fig a to u)		
4.1	The airborne SkyTEM system (NGRI, 2015)		
4.2	Instrument setup for the SkyTEM system used. HE 1 and 2 is laser altimeters, TL 1 and 2 inclinometer, GPS 1 and 2 GPS sensors, Tx the transmitter (NGRI, 2015).		
4.3	Instrument setup for the SkyTEM system used. HE 1 and 2 is laser altimeters, TL 1 and 2 inclinometer, GPS 1 and 2 GPS sensors, Tx the transmitter (NGRI, 2015).		
4.4	The survey area, the flight lines and tie are shown as black lines (NGRI, 2015)		
4.5	Location of SkyTEM sections in different orientations in the AQMAH pilot area (NGRI, 2015).		
4.6	Heli TEM section 1-1 ⁷ in NW-SE orientation covering exploratory well at Dhapewada and Gowari villages (NGRI, 2015)		
4.7	Heli TEM section 2-2 [/] in SW- NE orientation covering exploratory well at kohli		
4.8	and Dhapewada villages (NGRI, 2015). Heli TEM section 3-3 ⁷ in E-W orientation covering exploratory well at Kohli and Gowari villages (NGRI, 2015).		
4.9	Gowari villages (NGRI, 2015)Heli TEM section 4-4 [/] in NW-SE and NE-SW orientation covering exploratory well at Sonkhamb, Pardi Deshmukh and Mohagaon (NGRI, 2015).		
4.10	Heli TEM section 5-5 [/] in W-E orientation covering exploratory well at Malegaon, Ramgiri and Mohgaon villages (NGRI, 2015).		
4.11	Heli TEM section 6-6 ⁷ in W-E orientation covering exploratory well at Ramgiri and Pardi (D) villages, and VES 3 curve at Raulgaon village (NGRI, 2015).		
4.12	Heli TEM resistivity sections in grid fashion in SW-NE and NW-SE orientation (NGRI, 2015).		
4.13	Resistivity model, lithological model and aquifer zones derived from Heli TEM resistivity section of HeliTEM section-III (NGRI, 2015).		
4.14	Estimated basalt thickness derived from the HeliTEM and ground geophysical methods		
7.17	Estimated basar unexness derived nom the nem fin and ground geophysical methods		

Figure No.	e Title of Figure		
	(NGRI, 2015)		
4.15	Estimated Gondwana elevation (m, AMSL) derived from the HeliTEM and ground		
	geophysical methods (NGRI, 2015)		
4.16	3D map showing the estimated Gondwana paleo topography (m , AMSL) (NGRI, 2015)		
4.17	HeliMAG map of the AQMAH pilot area (NGRI, 2015)		
4.18	Geophysical parameters characterization by integration method (using WellCAD software)		
	in Trap covered Gondwanas at Ramgiri village (NGRI, 2015).		
4.19	Geophysical parameters characterization by integration method (using WellCAD software) in exposed Gondwanas at Khairi Lakhmaji village (NGRI, 2015).		
4.20	3D map showing the Heli TEM sections of the AQMAH study area, Nagpur, (NGRI, 2015).		
4.21	Upscaling of findings of geophysical surveys (SkyTEM) to Deccan Trap Basaltic Terrain (NGRI, 2015a)		
5.1	Isopach of Aquifer – I (Thickness of Shallow Basaltic & Sandstone Aquifer)		
5.2	Isopach of Aquifer – II (Thickness of Deeper Basaltic Aquifer)		
5.3	Isopach of Aquifer – II (Thickness of Deeper Sandstone Aquifer)		
5.4	Isopach of Aquifer – III (Thickness of Deeper Sandstone Aquifer) Trap covered Gondwana (TCG)		
5.5	3D Disposition of Basaltic Aquifer-I (Shallow, unconfined)		
5.6	3D Disposition of Aquifer-II (deeper, unconfined)		
5.7	Aquifer disposition with lithological fence diagram of the area based on ground water		
	exploration		
5.8	Aquifer wise yield potential, Chandrabhaga Watershed (WGKKC-2)		
6.1	Flow chart for modeling process (after Aderson and Woessner, 1992)		
6.2a	Conceptualization of area based on geology		
6.2b	Conceptualization of area based on major litho-unit		
6.3c			
6.3	Model grids with active (white) and inactive (green) cells and land elevation contours superimposed		
6.4a	The conceptual model Layer -1 plan view (Green, white, blue and red cells are inactive, active,		
	River boundary, CHB cells respectively). The surface elevation contour with an interval of 25		
	meter is shown as red line. The green points are monitoring well locations.		
6.4b	The conceptual model sectional view on row 7 showing two layer model (Green, white,		
	grey and red cells are inactive, active, drain, CHB cells respectively). The pink cells are		
	active cells of the second layer.		
6.5	Zone wise distribution of hydraulic conductivity and storage in the modeled area		
6.6	Zone wise distribution of recharge rates in the modeled area		
6.7	Goodness of fit of water table contours and computed head potential for June 2012		
6.8	Goodness of fit of water table contours and computed head potential for Nov 2012		
6.9	Goodness of fit of calibrated vs observed head for October 2012		
6.10	Goodness of fit of calibrated vs observed head for November 2012		
6.11	Error reduction by inserting actual recharge rate into the model		
6.12	Time series plots of some of the well calibrated monitoring stations		
6.13	Ground water budget for August		
6.14	Ground water budget for Mid November		
6.15	Ground water budget for Mid -April		
6.16	Sensitivity analysis for hydraulic conductivity		
6.17	Sensitivity analysis for Specific yield		

Figure Title of Figure		
No.		
6.18	Sensitivity analysis for recharge rate	
6.19	Water table contour map after the modification of river stage	
6.20	Location of proposed recharge wells (25 recharge wells)	
6.21	Impact of the improved recharge on the predicted water table of November	
6.22	Impact of the improved recharge on the predicted water table of June	
7.1	Area vulnerable for ground water quantity / Ground water stress area, Chandrabhaga	
	watershed (WGKCC-2)	
7.2	Aquifer management plan, Chandrabhaga watershed (WGKCC-2)	

Table No.		
2.1	General geological succession of Chandrabhaga Watershed (WGKKC-2)	
2.2	Details of ground water exploration (by CGWB, Nagpur), Chandrabhaga Watershed (WGKKC-2)	
2.3	Chemical analysis of GWMW located at Kalmeshwar and Chargaon, 2013	
2.4	Ground water resources (2004), Chandrabhaga Watershed (WGKKC-2)	
2.5	Data gap analysis, Chandrabhaga Watershed (WGKKC-2)	
3.1	Resistivity ranges and inferred lithology, Chandrabhaga Watershed (WGKKC-2)	
3.2	VES location by NGRI and NEERI, Chandrabhaga Watershed (WGKKC-2)	
3.3	Geo-electrical parameters of VES in Chandrabhaga Watershed (WGKKC-2)	
3.4	Locations of ERT with their geo references and type of geology, in Chandrabhaga Watershed (WGKKC-2)	
3.5	Location details of TEM in Chandrabhaga watershed (WGKKC-2)	
3.6	Salient feature of ground water exploration through outsourcing, Chandrabhaga watershed (WGKKC-2)	
3.7	Short-term ground water level trend (2011 to 2014) Aquifer-I	
3.8	Aquifer wise ranges of different constituents in ground water, Chandrabhaga watershed (WGKKC-2), Nagpur	
3.9	Aquifer wise ground water quality for drinking purpose and ionic concentration range (BIS: 2012)	
3.10	Classification of groundwater samples from Aquifer I and II based on %Na, SAR, SSP, RSC, EC, KR, MR and CR ratio	
3.11	Heavy metal analysis of water sample, Chandrabhaga Watershed (WGKKC-2), Aquifer –I and II	
3.12	Ground water resources (2011), Chandrabhaga Watershed (WGKKC-2)	
3.13	Salient Features of infiltration tests, Chandrabhaga Watershed (WGKKC-2)	
3.14	Salient features of pumping tests – shallow aquifer (dug well) using Popadopulous & cooper method	
4.1	Geophysical methods/ Techniques employed in Chandrabhaga watershed (WGKKC-2) (NGRI, 2015)	
4.2	Details of SkyTEM survey AQMAH 2013, Chandrabhaga watershed (WGKKC-2) (NGRI, 2015)	
4.3	Data acquired in AQMAH pilot area by NGRI (NGRI, 2015)	
4.4	Integration of Integration of geophysical parameters in Trap covered Gondwanas at Ramgiri village (NGRI, 2015).	
4.5	Integration of geophysical parameters in exposed Gondwanas at Khairi Lakhmaji village (NGRI, 2015).	
4.6	Performance Matrix of various geophysical methods applied in Pilot Aquifer mapping (AQMAH) in Chandrabhaga Watershed (WGKKC-2) (NGRI, 2015a)	
4.7	The cost effectiveness considering ground vs airborne geophysical survey (NGRI, 2015a)	
6.1	Estimated monthly actual recharge, Chandrabhaga Watershed (WGKKC-2)	
6.2	The detailed ground water budget, Chandrabhaga Watershed (WGKKC-2)	
6.3	Change in recharge rate, scenario-1, Stress period 150 days, Chandrabhaga Watershed (WGKKC-2)	
6.4	Change in recharge rate, scenario-1, Stress period 315 days, , Chandrabhaga Watershed (WGKKC-2)	
6.5	Improvement in the river leakage, Scenario 1, Chandrabhaga Watershed (WGKKC-2)	
6.6	Ground water budget, after construction of recharge wells, Chandrabhaga Watershed (WGKKC-2)	

Abbreviations

CGWB	Central Ground Water Board
GSI	Geological Survey of India
GSDA	Groundwater Surveys and Development Agency
ET	Evapotranspiration
К	Hydraulic Conductivity
Т	Transmissivity
Sy	Specific Yield
S	Storativity
EC	Electrical Conductivity
μS/Cm	Micro Siemens/Centimeter
MCM	Million Cubic Meters
GHB	General Head Boundary
msl	Mean Sea Level
bgl	Below Ground Level
a msl	above mean sea level
m bgl	Meters below ground level
m agl	Meters above ground level
RMSE	Root Mean Square Error
EW	Exploratory Well
OW	Observation Well
KOW	Key Observation Well
DTWL	Depth to Water Level
TCG	Trap Covered Gondwana
BG contact	Basalt-Gondwana contact

Executive Summary

Aquifer mapping is a multi-disciplinary holistic scientific approach for aquifer characterization and it leads to comprehensive aquifer-based groundwater management plans. The pilot project on aquifer mapping representing a type locality of hard rock Basalt i.e., Chandrabhaga watershed (WGKKC-2) has been selected, occupying an area of 360 sq. km., and situated in the north western part of Nagpur district covering about 60 villages in parts of Nagpur (rural), Kalmeshwar and Katol talukas. The major part is occupied by Deccan trap basalt (313 sq. km) of Upper Cretaceous to Eocene age. A small part (47 sq.km.) is occupied by Gondwana formation of Permian age and exposed in the NE part and also a small linear stretch south of area. The outcomes of the project are envisaged to establish the efficacy of various hydrogeological and geophysical techniques considering different hydrogeological conditions and to establish a protocol for hydrogeological and geophysical investigations when aquifer mapping shall be up-scaled for the entire country in general and for basaltic terrain in specific. The erratic rainfall pattern; limited aquifer thickness of unconfined aquifer (up to 15-20 m bgl); drying up of aquifer after January; existence of unknown and unpredictable deeper aquifer systems of basalt, failure of dug wells/bore wells due to unscientific selection and delineation of boundary between Deccan Trap basalt and Gondwana sandstone, were the major issues tackled during the project.

During the project period 2011-2014, data gap analysis has been carried out and then the data has been generated with systematic planning. The ground water exploration and advance geophysical survey has been outsourced while rest of the activities viz, micro-level hydrogeological survey, ground water regime monitoring, infiltration tests, pumping tests on dug wells, water quality analysis, geophysical survey for VES, VLF, GRP etc., has been carried out by the team of hydrogeologist and geophysicists of CGWB, CR, Nagpur.

Physiographically, Chandrabhaga watershed forms the Moderately Dissected Plateau (MDB) of Deccan trap (basaltic terrain) where four sets of lineaments are interpreted, which trending in NE-SW, NW-SE, N-S and E-W directions.

The area is drained by the ephemeral Chandrabhaga River and its tributaries are Saptadhara River, Mortham Nala. The drainage is dendritic and the flow direction of main stream i.e., Chandrabhaga is from west to east and its tributary from south to north, the main stream ultimately joins the Kolar river outside the watershed.

Major part of the watershed is occupied by clayey soil known as Black Cotton Soil followed by clayey loam observed along the northern fringe of the watershed. The soil infiltration rate ranges from 4 mm/hr at Tondakhiri for the sandy loam to clay loam soil type to 40.02 mm/hr at Dhapewada for clay loam soil type.

The normal annual rainfall at Kalmeshwar and Katol is 985.4 mm and 973 mm respectively.

Major part of the watershed is having depth of weathering in the range of 3 to 6 m bgl, followed by < 3 m bgl and 6 to 9 mbgl depth range, which increases from west to east and towards the north-eastern part it is maximum near to the confluence of Chandrabhaga river with local tributary.

Agricultural activity especially orange cultivation is prominent followed by pulses and cotton. The wasteland, notified and un-notified forests are mostly observed in the western part of the watershed, which is mostly hilly.

14 exploratory and two observation wells upto 200 m depth have been constructed, in addition to existing 9 wells in the Chandrabhaga watershed to decipher the lateral and vertical disposition of the aquifer system prevailing in the area and ground water potential of Gondwana formation occurring below Basalt.

The north-eastern part of the watershed is extensively covered by rocks of Gondwana Supergroup comprises of Kamthi Sandstone and Shales. The central part is consisting of Trap Covered Gondwana Formation where the thickness of traps ranges from 62.00 m bgl (Waroda) to 195.00 mbgl (Sonkhamb). Towards extreme south-eastern part, Archaean gneisses occur below the traps (Dahegaon), whereas towards the extreme western part of the watershed thickness of the Deccan trap is observed more than 200 mbgl.

Extensive study of the ground water exploration indicated that there are three aquifer system exist in the pilot project area, and are.

- a. *Aquifer I* Unconfined aquifer. Occurring in major part of the area occupied by basaltic formation and Gondwana Supergroup in the northeastern part. This aquifer generally occurs to the depth of 20 to 30 m bgl and mostly tapped by the shallow dug wells.
- b. Aquifer II Semi-confined to confined aquifer. Generally occurs below 30 mbgl Deccan trap basalt occupied by major parts and Gondwana Supergroup in the notheastern part. The thickness of aquifer varies from 0.50 cm to 6 meters in Basaltic formation and 3m to 34 m in Gondwana formation and are mostly tapped by the deep bore/tube wells.
- c. Aquifer III It is mostly 'Trap Covered Gondwanas in major parts and Trap Covered Gneisses' (TCG) in southeastern part. Generally occurs as semi-confined to confined conditions at places, they also exhibit unconfined condition and occur at

shallow depth where the thickness of basalt is less, and are tapped by the dug wells. Otherwise, tapped by deep bore/tube wells in the major parts of the area covered by basaltic formation at the top.

Pumping tests were conducted on seven exploratory wells to determine the parameters of deeper aquifers. The drawdown ranges between 6.34 and 36.97 m and recorded Transmissivity (T) of aquifer in basalts is $30 \text{ m}^2/\text{day}$ (Sonkhamb) whereas in Gondwana sandstone transmissivity varies from 15 m²/day (Khairi Lakhmaji) to 173 m²/day (Kohli). The storativity (S) 0.001 is estimated at Dhapewada. In addition, 21 pumping tests have been conducted on open dug wells to determine the parameters of the shallow aquifer. The analytical results of the tests indicated the transmissivity (T) for basaltic aquifer ranges between 1.04 and 72.56 m²/day whereas the transmissivity (T) for sandstone aquifer ranges between 3.64 and 11.37 m²/day.

Advanced geophysical techniques viz., Electrical Resistivity Tomography (ERT), Ground Transient Electromagnetic (TEM) and SkyTEM (Time-domain heli-borne electromagnetic system) methods have also been applied to delineate the aquifer system up to 200m depth. National Geophysical Research Institute (NGRI), Hyderabad a premier research organisation under CSIR (Ministry of Science and Technology) has provided the technical consultancy to carry out the advance geophysical investigations. These techniques have been used first time in basaltic terrain which are rapid, time saving, and found very effective for covering larger and inaccessible area with closed spaced data.

Application of ERT shows significant signatures of structural controls like lineaments and to delineate layered nature of flows but the results are not effective enough to distinguish between two successive lava flows. The findings from TEM and VES are found complementing each other, and are further validated by available borehole lithologs. However, TEM provides significant information of shallow depth up to 90 m bgl. Ground TEM data have not shown good result/information in basaltic terrain especially for shallow aquifers.

Heliborne or SkyTEM investigation has revealed fascinating results on the aquifer systems and its spatial characteristics covering Gondwana, Trap covered Gondwana and Trap covered Gneiss formations present in the study area. The results, in general, helped in mapping the litho-units in 3-Dimension. Besides, it helped in reconstructing the concealed subsurface spatial disposition of structures controlling the groundwater dynamics. SkyTEM survey is useful to demark the different litho-units having significant difference in conductance of the material.

The integration of Heli-TEM data with ground geophysical survey and inputs from borehole lithologs has been to derive the precise basaltic flow thickness and various layers of Gondwana formation. However, the SkyTEM data fails to identify or demarcate red/grey/green bole layer of significant thickness. Aquifer disposition could not be made precisely, especially the fracture in basaltic terrain saturated with ground water.

In Aquifer-I, shallow ground water levels (3 to 6 m bgl) are observed as isolated patches in southwestern and northern parts whereas the moderate ground water levels of 6 to 9 mbgl are observed in major parts of the watershed. Deeper ground water levels 9 to 12 and more than 12 mbgl are observed in north eastern and eastern parts of the watershed in a area occupying by Gondwana formation.

The ground water level in Aquifer-II and III in major central part range from 50 to 73 m bgl. The eastern and western part of the watershed shows gradual decrease in ground water level i.e., up to 20 m bgl while in the Sandstone (Aquifer-II) ground water level is observed shallow i.e., up to 7 m bgl. The deeper ground water levels are due to the potential zones encountered at depth between 45 and 197 m bgl.

The ground water resources (2011) indicate that the stage of ground water development is about 80%. Compared with 2004, the recharge has been increased by about 5% and draft has increased by about 22%. The ground water is mainly used for irrigation purpose (about 5368 ham) out of total draft of 5545 ham.

Ground water in Aquifer-I is affected by nitrate contamination as about 79% of samples show higher nitrate concentration (more than 45 mg/L) while the nitrate in deeper Aquifer-II has been found beyond permissible limit at few places only. In Aquifer-II, fluoride occur below MPL of 1.5 mg/l. Heavy metal analysis indicted that Aquifer-I is more contaminated as compared to deeper ground water Aquifer-II where the presence of Fe and Pb noticed. However, ground water from Aquifer – I and II is good and potable for drinking, domestic and irrigation purpose, except at one or two locations, where nitrate contamination is observed and at places the salinity hazard due to excess of magnesium is recorded.

A two layer ground water flow model has been generated using Visual MODFLOW software to resolve the issues/problems in the Chandrabhaga watershed. Four boundary conditions i.e., Constant Head Boundary, Linear Gradient River Boundary and No Flow Boundary and Drain have been assigned to the model area at different parts as per requirement and suitable values of different parameters are assigned considering the local hydrogeological conditions. The unit draft as deciphered from the field observation is considered. A uniform rate of pumping is assigned to the region for the whole non-monsoon season of 215 days (November to May).

For transient state calibration ground water level data from June-2012 to October-2014 of 52 observation wells has been used. The approximate water table data as deciphered from the premonsoon depth to water level map is considered as initial head values for running the transient model. Multiple stress periods were included into the model and data for each stress period was entered separately. After entering all the input parameters for each stress period, the model was run for the transient state calibration. With the convergence of the transient model, scenario of different stress period is generated for 30, 60, 90, 120, 150, 165, 190, 215, 265, 315 and 365 days. The normalized root mean square error is calculated for each stress period and found to be between 6.8% to 8.78%. Transient calibration shows a good agreement to the actual field condition. The sensitivity analysis indicates that it is less sensitive to specific yield and gives only slight change in head value. The model is found to be quite sensitive to changes in hydraulic conductivity. The parameters determined during transient calibration and verification is used to predict the response of the system to future events by running the model for predictive simulation. Considering issues/problems in the Chandrabhaga watershed, and to achieve the objectives, two scenarios were suggested for shallow unconfined Aquifer-I.

The Aquifer Management Plan, thus, generated has been found more realistic for the Aquifer-I comprising of Basalt and Sandstone,

Scenario-1: construction of check dam on Chandrabhaga river- This will raise the ground water level in the area. The total improvement will be around 289273 m³, which is 9 % of the total recharge from the river to the aquifer before construction of the structures. The Chandrabhaga watershed (WGKCC-2) has a heavy ground water withdrawal for agriculture especially for orange cultivation, this will of immense help during the dry seasons.

Scenario-2: Construction of recharge wells to enhance ground water recharge and dilution of pollution - The specially designed recharge wells tapping the full thickness of the aquifer (20-30 meters) to obtain maximum transmissivity so as to accept maximum amount of harvested water. 25 recharge wells can be added on the river grids with a recharge rate of 300 m³/day for the full rainy season and zero recharge rate for the rest of the period. This will enhance the ground water resources of the area by 1125000 m³ annually.

Site-specific ground water management plans has been suggested for ground water stress area. Unconventional measures like fracture seal cementation (FSC), Hydro-fracturing, Well jacketing (WJ), Borewell Blasting Technique (BBT) etc.; soil and water conservation methods such as gabion structures, farm ponding, nala widening and bunding, Under Ground *Bandhara* (UGB) etc., along with rooftop rain water harvesting are also recommended to enhance the water quantity. Besides this adoption of modern irrigation practices like drip irrigation, sprinkler etc., in place of traditional irrigation will further reduce the groundwater draft up to 30 % to 40 %. Change the cropping pattern by low water intensive crop would also help in ground water management. Considering the local physiographical and hydrogeological set up and source water availability to augment the ground water the following artificial recharge methods are suggested for individual villages

- a. Construction of Percolation tanks and check dams on 2nd and 3rd order stream
- b. Construction of KT weir and UGB at mini and micro-watershed level and
- c. Periodic maintenance by repair and desilting of existing water conservation structures before onset of monsoon is also proposed

The major quality vulnerable area is restricted to industrial area of Kalmeshwar town. The suggested Aquifer Management plan is if the area would be recharged with fresh water through 25 recharge wells, then it could be possible to dilute the ground water pollution. This will, in turn, reduces the contamination and also enhance the ground water level in the area. However, there is need to enforced to regulatory measures to stop the untreated/semi-treated disposal of industrial effluent to the ground water system.

The experiences gained from the pilot project on aquifer mapping (AQMAH) in Chandrabhaga watershed helps to develop a protocol for upscaling the various activities of the NAQUIM area of Maharashtra and UT of Dadra and Nagar Haveli. Following are the protocols for aquifer mapping in the State as well as in the Country may be adopted

STEP 1: Acquiring Heli TEM and Heli MAG through Advance geophysical
surveySTEP 2: Validation by ground geophysical, hydrogeological studies and
exploratory drilling.STEP 3: Data integration and interpretation for 3D aquifer model and
characteristics

1 INTRODUCTION

The Working Group on 'Sustainable Groundwater Management' constituted by the Planning Commission to prepare the 12th Five Year Plan has recommended that the 'Aquifer Mapping' shall be taken up as a co-ordinated effort for sustainable management of ground water. The primary objective of the Aquifer Mapping Exercise is "Know your Aquifer, Manage your Aquifer". As per the recommendations of the Working Group, "It is imperative to design an aquifer mapping programme with a clear-cut groundwater management purpose". This will ensure that aquifer mapping does not remain an academic exercise and that it will seamlessly flow into a participatory groundwater management programme. In short, Aquifer mapping is a multi-disciplinary holistic scientific approach for aquifer characterization and it leads to comprehensive aquifer-based groundwater management plans. As a first step, the need for precise mapping of aquifers on 1:50,000 scale should be initiated for studying of aquifer-based activities at a large scale to develop a strategy for improved and sustainable management of groundwater.

In pursuance of the above, the CGWB has launched the National Project on Aquifer Mapping & Management (NAQUIM) in its 12th Plan for mapping and managing the entire aquifer systems in the country. To establish a methodology for the National Project on Aquifer Management, the CGWB has undertaken a pilot study of six areas in different hydrogeological terrains. The pilot project areas are in the States of Bihar (AQBHR), Karnataka (AQKAR), Maharashtra (AQMAH), Rajasthan (AQRAJ & AQDRT), and Tamil Nadu (AQTND). Groundwater over-exploited areas and water quality vulnerable areas are being given priority in the NAQUIM.

The pilot project envisages revisiting aquifers by understanding them better through the aquifer mapping programme with a clear-cut forward link to participatory groundwater management. Comprehensive plan for participatory groundwater management based on the understanding and outcome of aquifer mapping shall be taken up. Stakeholders should be motivated through appropriate mechanisms by exploring the possibility of a dedicated programme on groundwater or implementation through other appropriate programmes.

The pilot project of Aquifer mapping programme in the State of Maharashtra (AQMAH) is been taken up in the Chandrabhaga Watershed (WGKKC-2) of Nagpur district, Maharashtra. As per CGWB and GSDA's watershed, in nomenclature of **WGKKC-2**, 'WG' stands for Wainganga river, 'K' for Kanhan river, again 'K' for Kolar river and 'C' for Chandrabhaga river. The Pilot Project has been taken up to study the complex aquifer system of the basalt which occupies more than 82% of the state area and also the various other formations exposed or occur above and below basalt. Thus, the experience gained from multidisciplinary micro-level aquifer mapping on pilot basis shall be utilized to map the aquifers in the whole country.

1.1 Objectives and Scope

The objectives of the pilot project are

- To define the aquifer geometry, type of aquifers, ground water regime behaviors, hydraulic characteristics and geochemistry of Multi-layered aquifer systems on 1:50,000 scale.
- ii. Intervention of new geophysical techniques and establishing the utility, efficacy and suitability of these techniques in different hydrogeological setup.
- iii. Finalizing the approach and methodology on which National Aquifer mapping programme of the entire country can be implemented.
- iv. The experiences gained can be utilized to upscale the activities to prepare micro level aquifer mapping.

1.1.1 Scope

The activities of the Pilot Project on Aquifer Mapping can be envisaged as follows

1. Data Compilation & Data Gap Analysis: One of the important aspect of the aquifer mapping programme was the synthesis of the large volume of data already collected during specific studies carried out by Central Ground Water Board and various Government organizations with a new data set generated that broadly describe an aquifer system. The data were assembled, analysed, examined, synthesized and interpreted from available sources. These sources were predominantly non-computerized data, which was converted into computer based GIS data sets. On the basis of available data, Data Gaps were identified.

2. **Data Generation**: There was also a strong need for generating additional data to fill the data gaps to achieve the task of aquifer mapping. This was achieved by multiple activities such as exploratory drilling, geophysical techniques, hydro-geochemical analysis, remote sensing, besides detailed hydrogeological surveys. CSIR-NGRI has been hired as consultant to carry out geophysical studies including advance Heliborne Transient Electro Magnetic Method (Heli-TEM) to delineate

multi aquifer system; to bring out the efficacy of various geophysical techniques and a protocol for use of geophysical techniques for aquifer mapping in different hydrogeological environs.

3. Aquifer Map Preparation: On the basis of integration of data generated from various studies of hydrogeology & geophysics, aquifers have been delineated and characterized in terms of quality and potential. Various maps have been prepared bringing out Characterization of Aquifers, which can be termed as Aquifer maps providing spatial variation (lateral & vertical) in reference aquifer extremities, quality, ground water level, potential and vulnerability (quality & quantity).

4. Aquifer Response Model: On the basis of aquifer characterization, issues pertaining to sustainable aquifer management in the area have been identified. Initially, a conceptual model has been developed for the pilot area and subsequently, a mathematical model has been formulated simulating the field situation, which was calibrated and validated with the field data. Various scenarios have been tested in the model to study the response of the aquifer to various stress conditions and predictive simulations have been carried out up to the year 2025.

5. **Aquifer Management Plan Formulation**: Aquifer response Model has been utilized to identify a suitable strategy for sustainable development of the aquifer in the area.

Aquifer mapping is a multidisciplinary study wherein a combination of geological, geophysical, hydrological, hydrogeological, meteorological and hydro-chemical information is integrated to characterize the spatial and temporal variation of quantity and quality of the aquifer system. In the pilot project area of Chandrabhaga Watershed (WGKKC-2) of Nagpur district, the following are the main issues and challenges.

- Paucity of rains with long dry spells
- Limited aquifer thickness of unconfined aquifer
- Drying up of aquifer
- Failure of dugwells/borewells due to unscientific selection
- Industrial & agriculture pollution

To resolve such issues and also to firm up the approach and methodology for National Aquifer Mapping Programme, the pilot study for aquifer mapping has been taken up in Chandrabhaga Watershed (WGKKC-2) with following broad objectives

- > To define the aquifer geometry with precise lateral and vertical demarcation.
- > To define Ground water regime behaviour in time and space.
- > To study the hydraulic characteristics of both shallow and deeper aquifer.
- To study the Geochemistry of aquifer systems down to the depth of 200 m.

- To assess the efficacy and efficiency of advanced geophysical techniques like ERT, SKY-TEM etc., for type area.
- To prepare Aquifer Maps indicating three dimensional dispositions of aquifers along with their characterization.
- > To develop the Aquifer Response Model.
- To formulate the Aquifer Management Plans for sustainable management of ground water resources.
- > To upscale the activities to the other similar parts of the country.

1.2 Approch

Geologically, the major parts of the State of Maharashtra is occupied by the rock of basaltic lava flows (Deccan Traps), which covers an area of about 2,49,934 sq km (81.2 % of the geographical area of State). It is present in almost all the districts of the State except Bhandara and Gadchiroli. Other major geological formations are Archaeans occupying an area of about 32,235 sq km (10.5 %), Precambrian (Purana) formations occurring over an area of 6,217 sq km (2 %), Gondwanas over an area of 4,800 sq. km (1.6 %), and Alluvium covers over an area of about 14,526 sq. km (4.7 %) in the state. Nagpur district of Maharashtra state known for its orange orchards is located in eastern part of the state. The main occupation is agriculture and major part of the district is covered by hard rocks having limited availability of ground water due to heterogeneity of formation. Thus, the demand of water for its various requirements put the ground water resources under tremendous pressure resulting in decline of ground water level in many parts of the district. Therefore, it was envisaged to formulate a proactive "Aquifer Management Plan". The Chandrabhaga watershed of Godavari basin in Nagpur District was chosen as the area for the pilot project on "Micro Level Aquifer Mapping and Management". The major parts of the Chandrabhaga Watershed (WGKKC-2 is represented by the Deccan Trap Basaltic terrain where the Basalt is followed by the Sandstone (Gondwana Supergroup) forming a regional aquifer system. To study the spatio-temporal behaviour of aquifers of Deccan Trap Basalt as well as Gondwana Sandstone where the multiple aquifer systems exist, the approach of the management of aquifer is challenging.

1.3 Location

Chandrabhaga Watershed (WGKKC-2), occupy an area of 360 sq. km. is situated in the north western part of Nagpur district covering about 60 villages in parts of Nagpur (rural), Kalmeshwar and Katol talukas. It lies between north latitudes 21°10' and 21°10' and east longitudes 78°42' and 78°59' and falls in parts of Survey of India toposheets 55 K-11, 12, 15 & 16. The watershed is well connected by all season motorable roads (Fig.1).

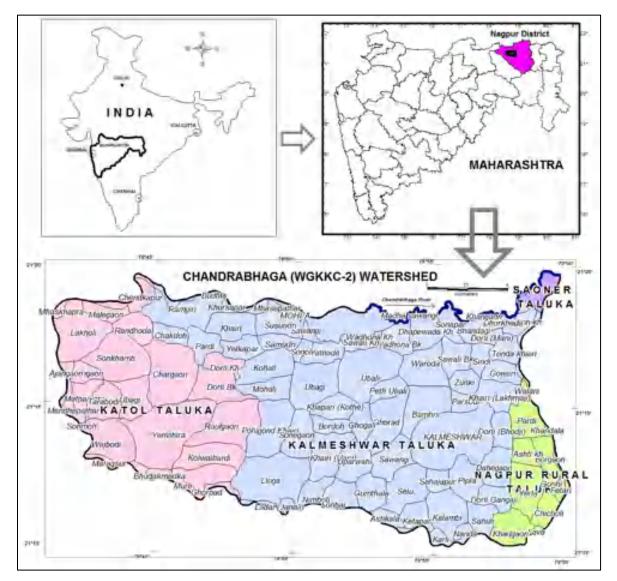


Fig. 1.1: Administrative and location map of Chandrabhaga Watershed (WGKKC-2)

2 DATA AVAILABILITY AND DATA GAP ANALYSIS

2.1 Climate and Rainfall

The climate of the watershed is characterized by a hot summer and general dryness throughout the year, except during the south-west monsoon season, i.e., June to September. The mean minimum temperature is around 12°C and mean maximum temperature is more than 45°C. There are two rain gauge stations located at Tahsil Offices at Kalmeshwar and Katol taluka headquarters. The rainfall data for last 17 years was available with the State Government. The analysis of rainfall data for Kalmeshwar and Katol rain gauge stations is presented in Fig. 1.2a,

1.2b, 1.2c and 1.2d. The normal annual rainfall recorded at Kalmeshwar and Katol rain gauge is 985.4 mm and 973 mm respectively. The rainfall trend for Katol is falling significantly @ -43.26 mm/year during 2005-2014, and marginally @ -13.13 mm/year during 1998-2014. Likewise, it has been observed that, the rainfall trend for Kalmeshwar is significantly rising @ +34.88 mm/year during 2005-2014, and falling marginally @ -14.83 mm/year during 1998-2014.

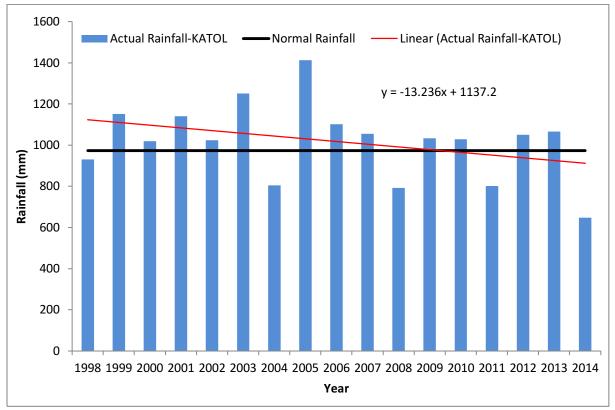
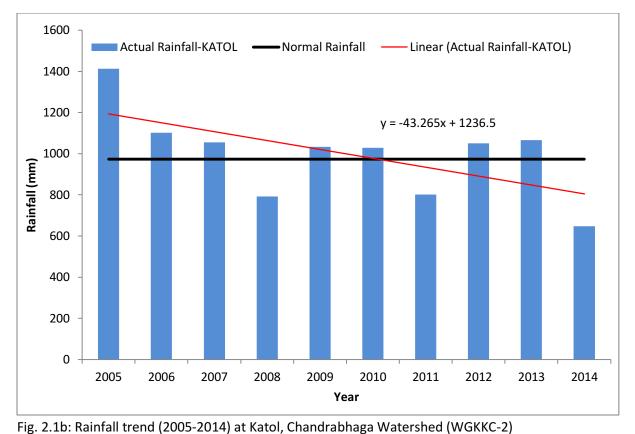



Fig. 2.1 a: Rainfall trend (1998-2014) at Katol, Chandrabhaga Watershed (WGKKC-2)

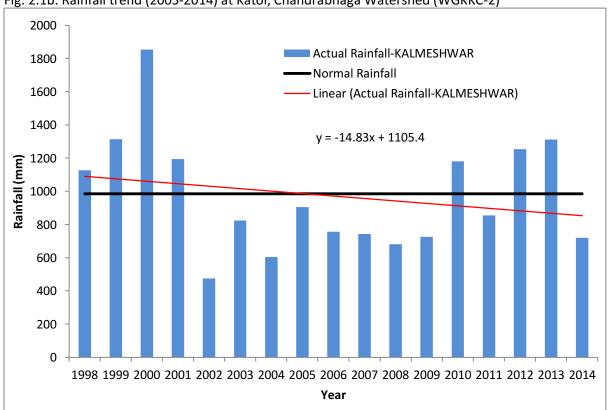


Fig. 2.1c: Rainfall trend (1998-2014) at Kalmeshwar, Chandrabhaga Watershed (WGKKC-2)

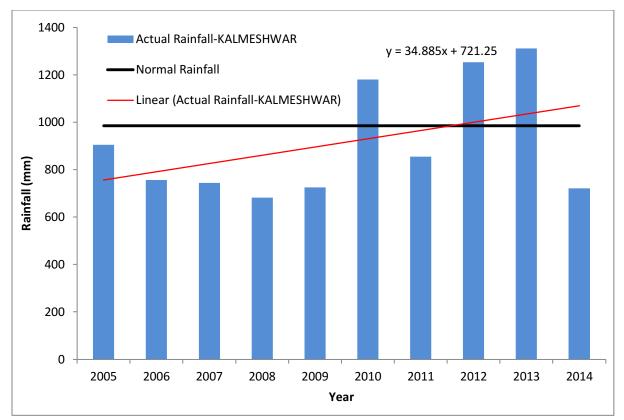


Fig. 2.1d: Rainfall trend (2005-2014) at Kalmeshwar, Chandrabhaga Watershed (WGKKC-2)

2.2 Soil

The soil data and the thematic map of the pilot study area available with the GSDA, Nagpur has been collected and studied on GIS platform. It has been observed that the major part of the watershed is occupied by clayey soil followed by clayey loam observed along the northern fringe of the watershed. The small portion of the area in eastern and southern part is occupied by sandy loam to sandy clay type of soil whereas sandy loam also occurs in very small patch in western boundary of the area. The thematic map on the soil distribution in the study area is shown in Fig.2.3

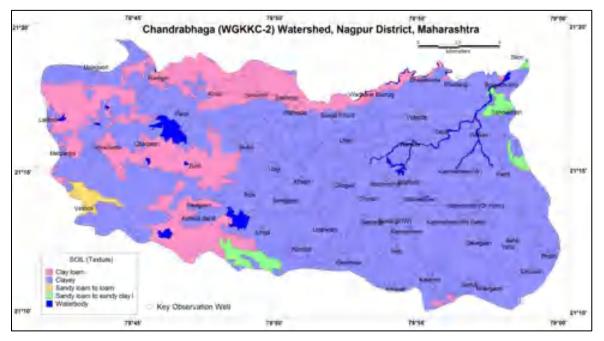


Fig. 2.3: Soil, Chandrabhaga Watershed (WGKKC-2)

2.3 Land use

The landuse details and the thematic map available with the GSDA, Nagpur has been collected and analysed with reference to the present agricultural practices, various land use etc. It has been observed that the major parts of the area are covered by agricultural land. The wasteland, notified and un-notified forests are mostly observed in the western part of the watershed. The built up area is reflected wherever settlements have come up. The thematic map on land use/land cover is shown in Fig 2.4.

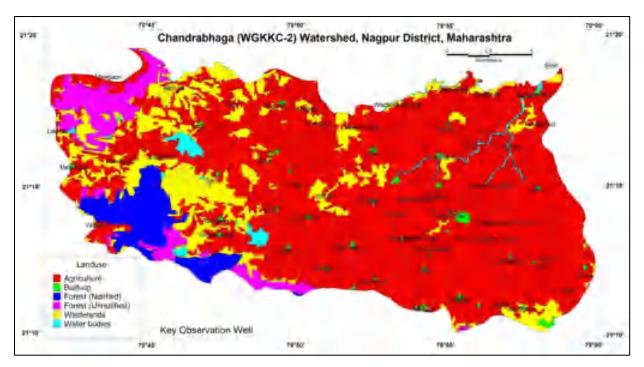


Fig.2.4: Land use, Chandrabhaga Watershed (WGKKC-2)

2.4 Geomorphology and Drainage

The relief and slope studies were carried out by compiling the topographical maps of the study area and the downloaded SRTM data of study area available on website of United States Geological Survey (http:// dds.cr.usgs.gov/ SRTM / Version2_1/ SRTM3/ Eurasia/) on GIS platform. The area has an undulating terrain with highest elevation around 509 m amsl in the north-western part and the lowest about 310 m amsl in the north eastern part (Fig.2.5).

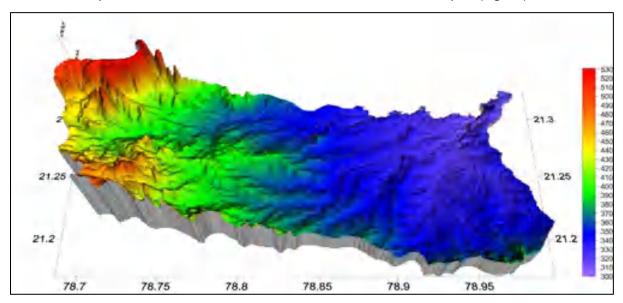


Fig. 2.5: Digital Elevation Model, Chandrabhaga Watershed (WGKKC-2)

The analysis of geomorphological data and thematic map collected from GSDA, Nagpur reveals that almost entire area of watershed forms the Moderately Dissected Plateau (MDB),

which can be broadly divided in to three units depending on extent of weathering and thickness of soil cover viz. 1) MDP-a, in north central and north eastern part of the area having very thick soil cover. 2) MDP-b, occupying central and southern parts of the area with moderate soil cover and 3) MDP-c, mostly occurs in western and north western part of the area with very thin soli cover and exposure of rocks. Whereas a small portion in North West and south western parts of the area is occupied by outer fringes of upper plateau (denudational hills). The north eastern part of the area forms the moderately weathered and moderately buried pediplains of Kamthis. The geomorphology of the area is shown in Fig. 2.6

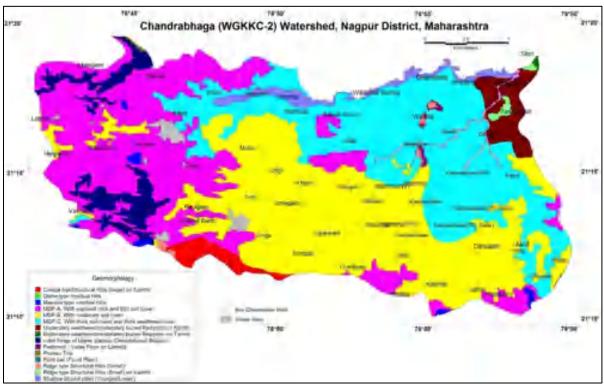


Fig. 2.6: Geomorphology, Chandrabhaga Watershed (WGKKC-2)

The ephemeral Chandrabhaga River is flowing from a height of 334.333 m above MSL at village Wadhona (Bk) to 299.69 m above MSL at village Sillori. It has a course of about 20.74 km and forms northern boundary of the watershed. The area is also drained by tributaries of the Chandrabhaga river viz., Saptadhara River, Mortham Nala. The drainage is dendritic and the flow direction of main stream i.e., Chandrabhaga is from west to east and its tributary from south to north, the main stream ultimately joins the Kolar river outside the watershed in the eastern part. The drainage map is shown in Fig. 2.7.

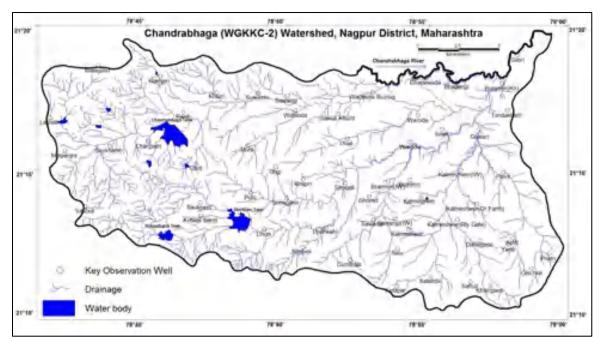


Fig. 2.7: Drainage, Chandrabhaga Watershed (WGKKC-2)

2.5 Geology and Lineaments

Major part of the area (about 313 sq. km) is occupied by Basaltic lava flows of Upper Cretaceous to Eocene age. A total of 12 basaltic flows above ground level have been mapped/ identified in the area by Geological Survey of India (GSI). The area is dotted with small isolated patches of outcrops of basaltic residual ridges often attaining a height of 2 to 3 meters above ground level. The Gondwana formation of Permian age occupy an area of 47 sq.km and it is mainly exposed in the north-eastern part and also occur as a small linear patch south of Kotwalbardi and Linga villages along the southern boundary. In Gondwanas, the major litho-unit is Kamthi formation which is followed by Barakars. The Kamthi is a ferruginous, reddish yellow to buff colored, medium to coarse grained hard and compact sandstone with shale. The geology and lineament map is shown in 2.8. The general geological succession of the area is given in Table 2.1.

Table 2.1:General geological succession of Chandrabhaga Watershed (WGKKC-2)

Formation	Age
Soil/ Alluvium	Recent
Deccan basaltic lava flows with	Lower Eocene to Upper
associated Inter-trappean sediments	Cretaceous
Lameta beds	Cretaceous
Gondwana Supergroup	Permian to Carboniferous
Kamthi Stage	
Barakar Stage	
Granitic gneisses, Sausar and Sakoli	Archean
Series of metasediments	

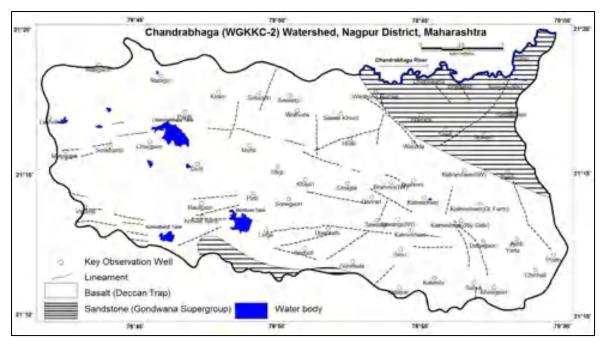


Fig.2.8: Geology and lineament, Chandrabhaga Watershed (WGKKC-2)

The primary data of lineament has been taken from the old CGWB reports and the lineament map is prepared for the study area and shown in Fig.2.8. In the study area, four sets of lineaments are interpreted which trends in NE-SW, NW-SE, N-S and E-W directions. The E-W trending lineament is predominantly seen in the southern part of the study area.

2.6 Geophysics

Prior to the commencement of the pilot project in Chandrabhaga watershed, CGWB has carried out 19 VES to decipher the vertical and horizontal extensions of basaltic aquifer (Fig. 2.9). Beside this, NGRI/NEERI has also carried out geophysical investigations in parts of the study area. The interpreted results published in various scientific journals are discussed below:

The 2D inverse models of resistivity variation with depth suggest that the potential aquifers mostly occur in weathered/fractured zones within the traps or below it. The interpreted results have been verified by a bore well drilled at a site near Ghogali village. A potential water-bearing aquifer was struck at a depth of 35 m, which was in good agreement with the interpreted results (Ratna Kumari et al, 2012). The Electrical Resistivity Tomography (ERT) survey has proved the occurrence of groundwater potential zones in hard rock (a heterogeneous environment). Resistivity models have ascertain presence or potential groundwater zones at several sites in this top alluvium and weathered mantle which can be explored for groundwater. Similarly, resistivity models have also deciphered groundwater potential zones at deeper level within and below traps in the Lameta/Gondwana formations (Ratna Kumari et al, 2012).

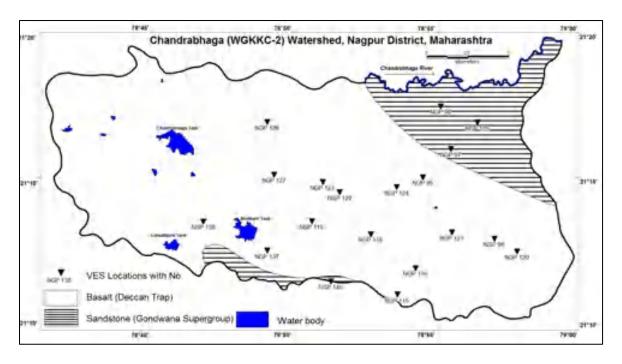


Fig.2.9: Data availability, VES by CGWB, Chandrabhaga Watershed (WGKKC-2)

The gravity maps prepared by GSI based on gravity survey carried out in parts of study area prior to the pilot project indicate that the positive contours southeast of Kalmeshwar in the residual Gravity map (Fig. 2.10 and 2.11) infer that the high-density granitic basement is shallow and the Gondwanas are absent in this area (T.S. Ramakrishna, et al, 1990).

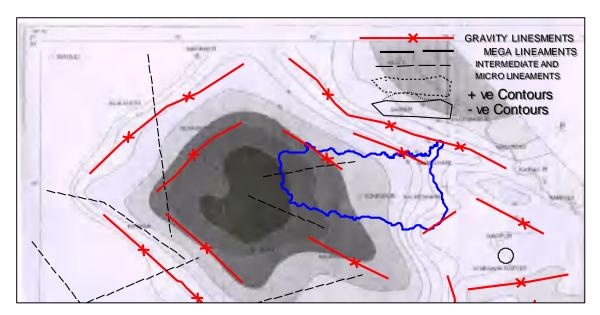


Fig.2.10: Bouguer gravity anomaly map (part of the map after T.S. Ramakrishna, et al, 1990)

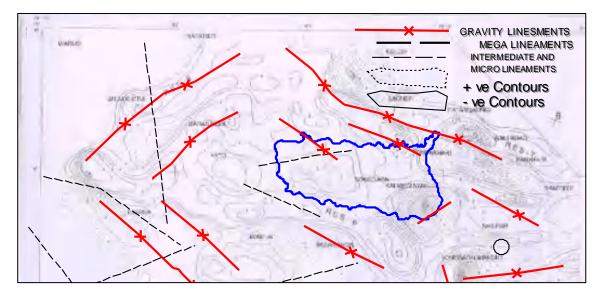


Fig.2.11: Residual gravity anomaly map (part of the map after T.S. Ramakrishna, et al, 1990)

2.7 Sub Surface Lithological Information

Prior to pilot study, CGWB has drilled 6 exploratory wells (EW), 1 observation well (OW) and 3 piezometers in the watershed (Fig. 2.12). The details of the wells drilled are presented in Table 2.2. The depth of the wells ranged from 40 to 202m bgl, the water bearing zones were encountered in the depth range of 7-15m bgl and 183.5-186.5m bgl. The discharge of the wells ranged from negligible to 13.96 lps. The ground water quality is good except nitrate, which is found above permissible limits of 45 mg/L.

The study of lithologs of the exploratory and observation wells indicate that Gondwana sandstone was encountered at 123 and 111m bgl respectively at Dorli in the western part of the watershed. Whereas the same sandstone was encountered at very shallow depth i.e., 27m bgl in eastern part of the watershed at Jhunki (Shindi), and at Borgaon (Khurd). Whereas, at Pardi piezometers site located at eastern corner, the Gondwana sandstone is exposed at ground level. Thus it inferred that the thickness of Basalt is increasing from east to west. The lithology of EW drilled at Yerla shows that the basalts underlain by Lameta beds which is then followed by Archaean Gneisses below 59 m bgl.

Tabl	e 2.2: Details	of ground v	water e	xploration	(by CGWB)	, Nagpur),	Chandrabh	aga Water	shed
(WG	KKC-2)								

S. N	o. Location	Latitude Longitude	Depth Drilled (m bgl)	Zones Tapped/ Encountered (m bgl)	Discharge (lps)	Transmissivity (m ^{2/} day)		Basalt- Gondwana contact (m bgl)
1.	Dorli EW	21°18'00"; 78°58'00"	153.50	30.50 – 33.50, 115.50 – 125.00, 131.10–140.30	13.96	7.11	5.50x 10 ⁻⁵	123.00
1a	Dorli OW	-do-	125.00	36.60 –39.60 88.40 – 100.60	1.37	-	-	111.00

S. No.	Location	Latitude Longitude	Depth Drilled (m bgl)	Zones Tapped/ Encountered (m bgl)	Discharge (lps)	Transmissivity (m ^{2/} day)	Storativity	Basalt- Gondwana contact (m bgl)
2.	Metpanjara EW	21°15′30"; 78°42′00"	122.00	Abandoned	-	-	-	-
3.	Jhunki (Shindi) EW	21°16'00" 78°55'45"	132.00	7-15, 36-52, 71-75	1.37	5.55		27.00
4.	Tondakhairi EW	21°16'50" 78°57'47"	201.80	93-99, 104-107, 111-113, 118-124, 128-136, 156.5-159.5, 162.5-164.5, 167.5-173.5, 183.5-186.5	1.37	3.14	-	Entire formation- sandstone
5.	Selu EW	21°12′00″ 78°54′00″	140.30	-	-	-	-	137.20 Abandoned
6.	Yerla EW	21°13'00" 78°58'00"	159.45	29.75, 55.00	4.45	-	-	Basalt down to 59 m followed by Lameta and Gr. Gneiss
7.	Borgaon Khurd Pz	21°17′58″ 78°57′55″	127.00	24-29, 45-51, 70-74, 91-94	3.75	21.80	-	Entire formation- sandstone
8.	Pardi Pz	21°14'46" 78°57'48"	101.36	22-26, 38-46, 55-60	0.14	-	-	Entire formation- sandstone
9.	Fetri Pz*	21°12'21" 78°59'17"	40.00	11.50	Negligible	-	-	Entire formation- Basalt

Note-* Constructed through outsourcing (pre-project).

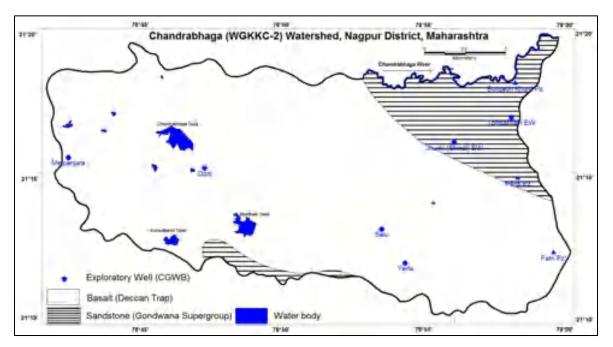


Fig.2.12: Ground water exploration (CGWB), Chandrabhaga Watershed (WGKKC-2)

2.8 Hydrogeology

The major part of the area is occupied by Deccan trap basalt (313 sq. km) of Upper Cretaceous to Eocene age. A small part of the watershed (47 sq.km.) is occupied by Gondwana formation of Permian age and exposed in the NE part and also a small linear stretch south of Kotwal Bardi, Linga and Nimboli villages. The area occupied by basaltic terrain is followed by Gondwana formation at different depths. Ground water occurs under phreatic conditions in the exposed lava flows and in semi-confined to confined state in the subsurface flows. Ground water is present in interconnected pore spaces of vesicular unit and in the jointed and fractured portions of massive unit of each flow. However, secondary porosity and permeability that developed on account of weathering, fracturing and joints play a very important role in storage and movement of ground water and constitute the important water bearing formations (aquifer) in hard rock of basalt. Weathering not only produces granular materials but also widens the fractures, joint and shear zones. In Deccan Trap Basalt, the depth of the phreatic aquifer ranges from 6.25 to 21.3 m bgl. The thickness of the weathered mantle ranges between 0.80 and 12.7 mbgl. In Gondwana Sandstone, the thickness of the weathered part ranges between 3.00 and 10.40 mbgl. The depth of the phreatic aquifer has been recorded between 8.5 and 19.1 m bgl. Hydrogeological map of the area is shown in Fig.2.13.

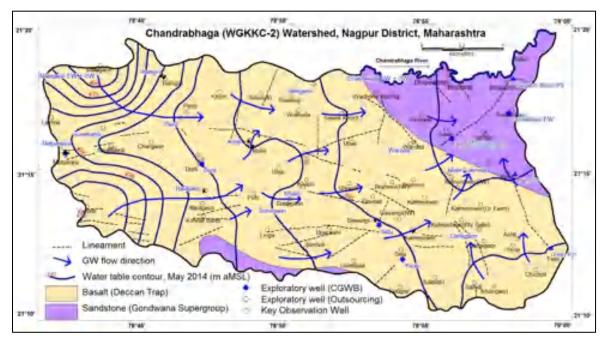


Fig.2.13: Hydrogeology, Chandrabhaga Watershed (WGKKC-2)

Among the Gondwana group of formation, the Barakars and Kamthis generally consist of medium to coarse-grained friable sandstone. These granular rocks constitute the important water bearing formations in the watershed. Ground water occurs under both phreatic and confined conditions. Sandstone is usually friable and possesses primary porosity due to its granular nature. However, the storage and movement of ground water in this formation depend upon the size and shape of grains, there arrangements and degree of cementation. But when these formations are subjected to other tectonic activity, secondary porosity develops and its ground water potential increases substantially. The occurrence of sufficient thickness of shale and other impervious unit above and below the sandstone simulate the confining condition in the sandstone aquifer.

2.9 Aquifer Disposition

Based on the historical data on ground water exploration, three types of aquifer systems are deciphered:

- 1. Aquifer I Unconfined aquifer. Occurs in Deccan trap basalt which is exposed in major parts and Gondwana Supergroup in the NE part. This aquifer generally occurs to the depth of 20 to 30m bgl and mostly tapped by the shallow dug wells in area occupied by basaltic and sandstone terrain.
- Aquifer II Semi-confined to confined aquifer. Generally occurs in Deccan trap basalt which is exposed in major parts and Gondwana Supergroup in the NE part. The thickness of aquifer varies from 0.50 cm to 6 meters in Basaltic formation and 3m to 34 m in Gondwana formation and mostly tapped by the deep bore/tube wells in area occupied by basaltic and sandstone terrain.
- 3. Aquifer III It is mostly 'Trap Covered Gondwanas or Gneisses' (TCG). Generally occurs as semi-confined to confined conditions but at places, they exhibit unconfined condition and occur where the thickness of basalt is less, and tapped by the shallow dug wells or deep bore/tube wells in area occupied by basaltic and sandstone terrain.

The detailed study of the data indicates that the major parts of the area are occupied by trap covered Gondwana formation. The thickness of the Basalt increases from east to west i.e. from ground level near village Gowari in the northeast to 110.0m bgl around Dorli in the west. At western boundary near Metpanjra, the thickness of Trap is observed down to 122.0 m bgl. As none of the well tapped the Gondwana formation occurring below basalt in the area, the ground water potential of trap covered Gondwana was not ascertained based on existing data. Hence, drilling and construction equally distributed exploratory bore/tube well tapping basaltic aquifer, sandstone aquifer and aquifer occurring below basalt was proposed.

2.10 Ground Water Level

Two Ground Water Monitoring Wells (GWMW) located at Kalmeshwar and Chargaon were studied for the analysis of long-term water level. Since 1982 these wells were monitored

four times a year. Both the GWMW are representing the unconfined basaltic aquifer. There is no GWMW in Gondwana formation; hence the ground water scenario in the area occupied by Sandstone formation was not available. The ground water level data of existing wells were analyzed and it has been observed that it is not reflecting the true ground water scenario of entire watershed. Hence, establishment of more observation wells were proposed.

The long-term (1982-2012) hydrograph analysis indicates the rise in ground water level during both pre monsoon and post monsoon seasons. The GWMS located at Kalmeshwar shows rise of 0.12 m/year in pre monsoon season, whereas in post monsoon it shows rise of 0.05 m/year (Fig. 2.14a). Whereas, the decadal trend analysis (2001-2010) indicates negligible rise during post monsoon while moderate rise of 0.10 m/year has been recorded (Fig. 2.14b).

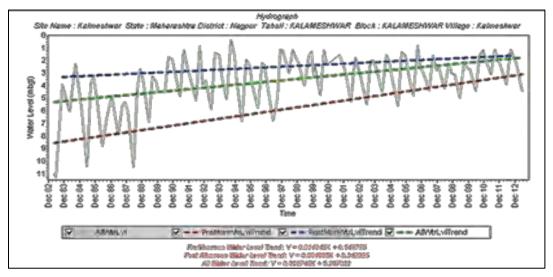


Fig.2.14a: Hydrograph of GWMW located at Kalmeshwar(1982-2012), Chandrabhaga Watershed (WGKKC-2)

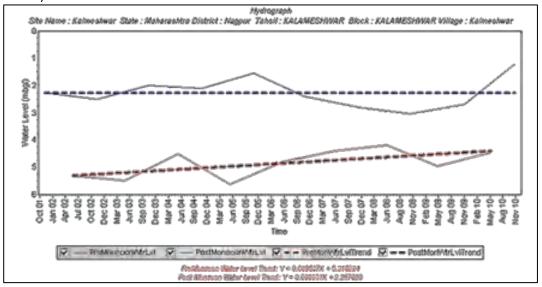


Fig.2.14b: Hydrograph of GWMW located at Kalmeshwar(2001-2010), Chandrabhaga Watershed (WGKKC-2)

The log-term ground water level trend (1982-2012) at GWMW located at Chargaon shows negligible rise in pre monsoon season, whereas in post monsoon it shows rise of 0.012 m/year (Fig. 12a). Whereas, the decadal ground water level trend (2001-2010) indicates appreciable rise of 0.096 m/year (Fig. 12b) during post monsoon while moderate rise of 0.14 m/year has been observed.

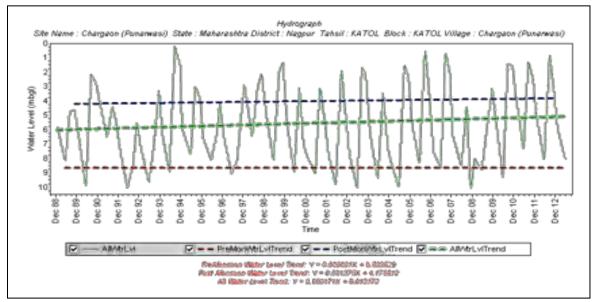


Fig.2.15a: Hydrograph of GWMW located at Chargaon (1988-2012), Chandrabhaga Watershed (WGKKC-2)

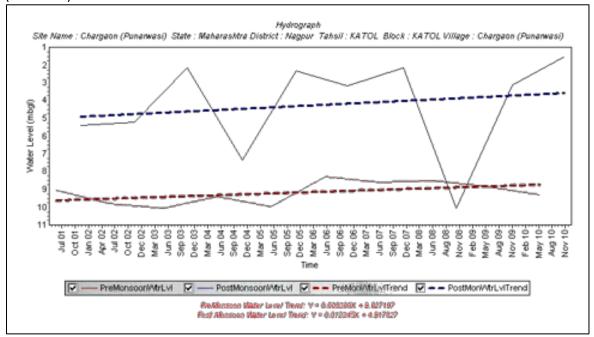


Fig.2.15b: Hydrograph of GWMW located at Chargaon (2001-2010), Chandrabhaga Watershed (WGKKC-2)

2.11 Water Quality

8.2

8.0

899

359

584

233

430

185 46

168 2

Kalmeshwar

Chargaon

The water quality data from GWMW located at Kalmeshwar and Chargaon were studied for the analysis of long-term water quality. The chemical analysis of the water sample collected from GWMW (representing shallow aquifer) during the year 2013 is presented as Table 2.3. The parameters like Nitrate, Fluoride, Electrical Conductivity, TDS and Total Hardness have been studied for the period 1989 to 2013 and for last decade i.e., 2000 to 2010 (Fig. 13a & b, 14 a & b).

rubie																
GWMW	рΗ	EC	TDS	TH	Са	Mg	Na	К	CO ₃	HCO ₃	Cl	SO_4	NO_3	F	SAR	RSC
location		μS/cm														

0.3 0

0.0 0

6

2

17

Table 2.3: Chemical analysis of GWMW	located at Kalmeshwar and Chargaon, 2013
--------------------------------------	--

293	132	b	9	1.59	0.04	-3.8
214	21	2	BDL	0.09	0.02	-0.2

All are in mg/l except pH & EC

A perusal of the above table indicates that the overall quality of ground water is potable and fit for both irrigation and domestic purpose. However, the analysis data from Kalmeshwar GWMW shows the presence of Fluoride above MPL i.e., 1.59 mg/l.

Beside this, the long-term trends for Nitrate, Fluoride, Electrical Conductivity, TDS and Total Hardness indicate that the EC and TDS shows significant rise since year 2000 at GWMW located at Kalmeshwar. The area around monitoring well at Kalmeshwar is prone for ground water pollution as it is located in the heart of city and surrounded by the industrial belt. The long-term trend analysis indicated the rise in EC @ 21.13 μ S/cm per year; rise in TDS @ 34.21 mg/l and rise in Nitrate 0.63 mg/l since year 2000. It seems that the anthropogenic activity in and around the monitoring well may be responsible for rise in EC, TDS and nitrate. Thus, the analysis of long-term trend on ground water quality gives the indications of contamination due to various factors like urbanization, industrialization etc., on ground water quality.

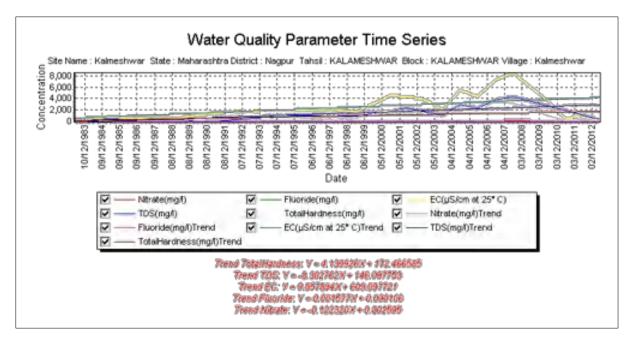


Fig.2.16a: Time series plot for Water Quality (NO_3 , F, EC, TDS & TH) of GWMW located at Kalmeshwar (1982-2013), Chandrabhaga Watershed (WGKKC-2)

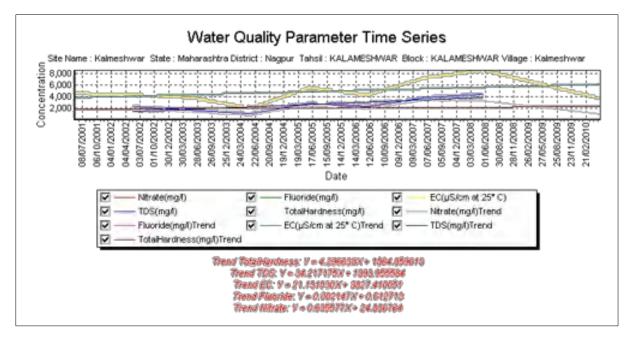


Fig.2.16b: Time series plot for Water Quality (NO_3 , F, EC, TDS & TH) of GWMW located at Kalmeshwar (2000-2010), Chandrabhaga Watershed (WGKKC-2)

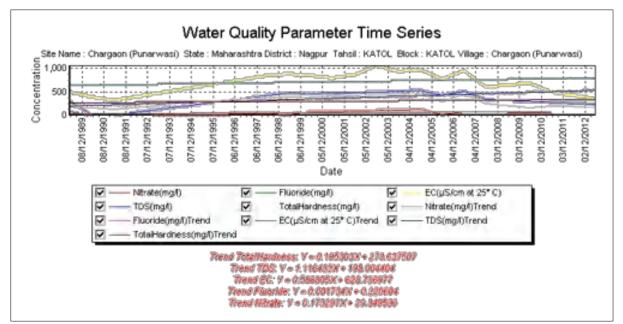


Fig.2.17a: Time series plot for Water Quality (NO_3 , F, EC, TDS & TH) of GWMW located at Chargaon (1989-2013), Chandrabhaga Watershed (WGKKC-2)

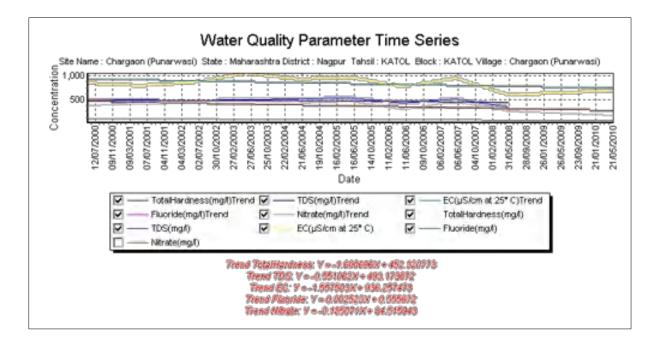


Fig.2.17b: Time series plot for Water Quality (NO₃, F, EC, TDS & TH) of GWMW located at Chargaon (2000-2010), Chandrabhaga Watershed (WGKKC-2)

2.12 Ground Water Resources, Recharge Parameters and Discharge Parameters

The ground water resource assessment of the Chandrabhaga watershed has been computed jointly by the CGWB, CR, Nagpur and GSDA, GOM, Pune (Table 2.4). The ground water resources for the year 2004 indicate that the stage of ground water development is about 80%.

However, the long-term ground water level trend was raising thus the watershed was categorised as "Safe". As such, it becomes more pertinent to develop a sustainable water resource management plan for the watershed, which is one of the objectives of the project.

S.	Particulars	Command	Non-Command		
No.					
1	Area (sq. kms)	37.26	284.25		
2	Annual Ground Water Recharge (ham)	623.80	5585.12		
3	Net Ground Water Availability (ham)	592.61	5305.86		
4	Total Gross Draft (ham)	494.04	4047.46		
5	Domestic + Industrial Allocation (ham)	46	54.83		
6	Net Ground Water Available for Irrigation (ham)	686.83			
7	State of Ground Water Development (%)	80.48			
8	Category of Watershed	S	afe		

Table 2.4. Ground water resources (2004), Chandrabhaga Watershed (WGKKC-2)

No separate study was carried out earlier for the estimation of recharge and discharge parameters in Chandrabhaga watershed. However, the State Govt. agency i.e., GSDA has computed the resources based on the ground data of the respective year.

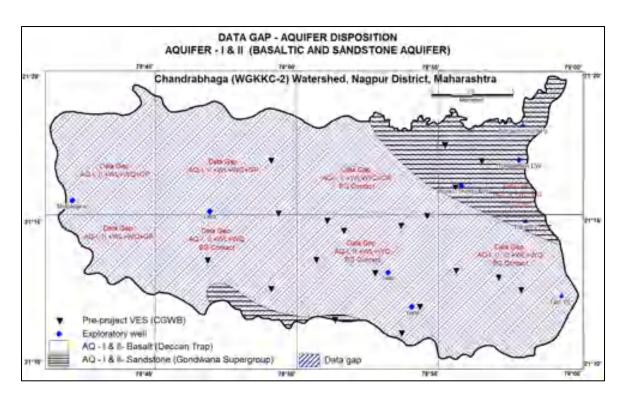
Estimation of In-Storage Ground Water Resources

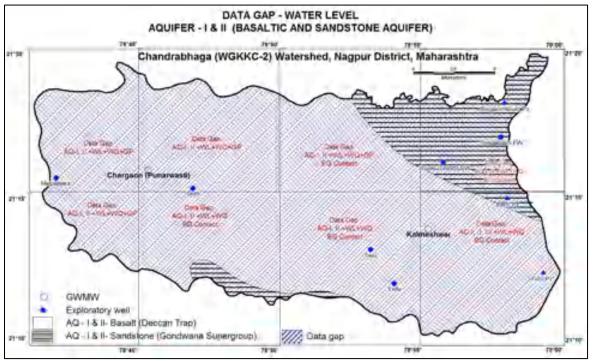
In the state of Maharashtra in-storage groundwater resources computation is limited to unconfined aquifer only and annually replenishable aquifer has been considered. The decline in groundwater level on long-term basis in many parts of the state clearly indicates that the development has gone beyond the extent of annual replenishable resources and excessive withdrawal is from in-storage groundwater resources. Based on the guidelines issued by GoI following formula has been used in the computation of the in-storage groundwater resources.

Thickness of Aquifer

(Granular/ productive zone) X Specific Yield X Area below zone of WTF

In the State, heterogeneous hard rock constitutes predominant aquifer and hence fracture porosity plays a very vital role in the aquifer geometry. Based on the data and the field experience of the hydro-geologists from GSDA and CGWB both the depth and the thickness of the shallow aquifer have been taken up for computation. However, in the WGKKC-2 watershed there is no granular zones exist below the pre-monsoon depth to water level. Hence, the in-storage ground water resources have not been estimated.


2.13 Data gap analysis


The careful study of all the available data, as discussed above, indicated that the data on aquifer disposition in all aquifers; ground water level both for unconfined and semi-/confined aquifers of Basalt and Sandstone; water quality for all the aquifers; sub-surface lithological information and aquifer parameters are very sparse. Therefore, after plotting all the available data on 1:50,000 scales, the aquifer wise, grid wise data gaps have been identified for the entire watershed (Table 2.5 and Fig. 2.18). Accordingly, the data generation plan considering the objective of the project has been prepared. Point wise details on data generation are discussed successive chapter.

SI. No.	ltems		Data av	vailable		Data required / Data gap identified			Data genera	tion		
		AQ-I	AQ-II	Tota	al	AQ-I	AQ-II	Total	AQ-I	AQ-II	Total	
1	Aquifer Disposition (GW exploration)	5	4	9 Basalt =4 EW+2 Pz Sandstone =2 EW+1 Pz	-	63/58	20/16	74	58 KOW	16 wells (outsource d)	Out of 16, Basalt= 5EW+1OW Sst= 4EW+1 OW TCG= 5EW Total= 74	
2	Ground water monitoring	2	NA	2		60/58	16	74	58 KOW	16 wells	74	
3	Ground water quality	2	NA	2		60/58	20/16	74	58 KOW	16 wells	74	
4	Geophysical survey (In-house) Geophysical survey Out sourced	19 VES wit	h DOI 160 ։	m bgl		upto 200 necessar 3D aquife	ial micro l m bgl de y to decip er geomet	oth is her the ry of	137 VES with DOI 200 m bgl 1 GRP (300 line m) with DOI 40 m bgl 5 VLF with DOI 30 to 40 m bgl 21 VES with DOI			
	(carried out by NGRI, Hyderabad)					complex hydrogeological system exists in the study area.		99 GTEM with DOI upto 32 to 250 m 19 ERT (17.6 LKM) with DOI upto 90 m bgl SkyTEM (954 LKM) with DOI 30 to 50 m bgl (shallow depth) DOI 200 m upto 300 m bgl (deeper depth)				
5	Infiltration test	1	NA	NA	NA	9		9	9		9	
6	Pumping test	1	NA	4	4	20	10/6	26	21 on DW	7 on E	W 28	
7 8	Landuse/Land cover Geomorphology		NA			Required for entire study area			GIS output acquired from GSDA, Govt. of Maharashtra			
9	Climate	No Data Ga	ар			Not requ	Not required			No Data Gap		

Table 2.5: Data gap analysis, Chandrabhaga Watershed (WGKKC-2)

NA=Not available

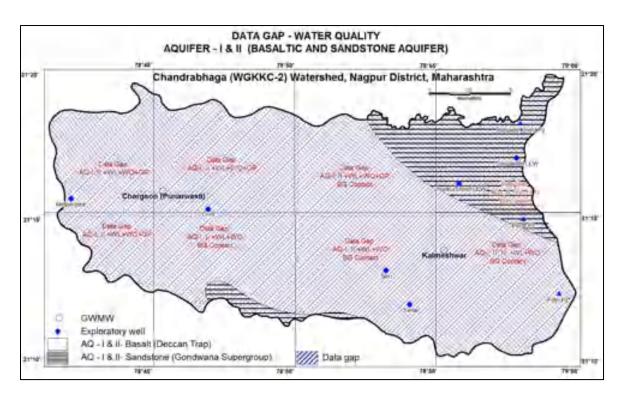


Fig.2.18: Aquifer wise data gap analysis for aquifer disposition, ground water level and water quality, Chandrabhaga Watershed (WGKKC-2)

3 DATA GENERATION

3.1 Geomorphology

The lineaments demarcated earlier on map have been verified based on the visual interpretation of IRS-ID, LISS-III satellite data and the lineament map were modified. These lineaments are surface manifestation of underlying structural features like fractures, joints, faults and dykes. Lineaments are also seen as straight alignment of drainage and vegetation. A perusal of the lineament map indicates that there are four sets of lineaments exist in the watershed trending NE-SW, NW-SE, N-S and E-W directions. E-W trending lineaments are predominant in the southern parts of the study area.

3.2 Geophysics Geophysical Survey by CGWB (In-House)

The study of the terrain below the earth's surface can be possible only by integration of the data obtained from the borehole or mining. Geophysical investigations provide the basis for the extension of such knowledge in the unknown area. Surface Geophysical methods are very useful tools for constructing a subsurface picture of the geological/ structural/ hydrogeological condition of the virgin area or the area where very little subsurface borehole data are available. Thus, the prime objective of geophysical investigation is to unravel the hidden sub-surface hydrogeological information to save money and time, which would otherwise have been spent on drilling of test boreholes.

The major objectives of surface geophysical investigation in the pilot project area are as follows:

- I. Delineation of aquifer geometry, water bearing horizons and fracture/fault zones and precise demarcation of trap cover Gondwana/Archaean boundary up to 200 m below ground level,
- II. Application of modern geophysical techniques to offer precise data with reduced uncertainty and ambiguity about shallow and deep aquifers with their geometry,
- III. Establishment of efficacy of various geophysical techniques under different hydrogeological conditions,
- IV. Formulation of a protocol for geophysical investigations to be taken up as an aid to aquifer mapping,
- V. Toning up the capacity of CGWB, state authorities and stakeholders in advance geophysical techniques and modelling through outreach programs.

In addition to the surface geophysical investigations, subsurface borehole logging was also carried out in the bore wells drilled in the area and the primary objectives of subsurface geophysical logging are:

- i. For validation of geophysical parameters derived from the data acquired from various advanced surface and airborne geophysical techniques,
- ii. To identify distinct boundaries between different hydrogeological units,
- To select the proper setting of the screen depths against productive aquifers and casing against the collapsible formations and also sealing bad quality of water bearing formation,
- iv. To determine and delineate the aquifer geometry and its framework in space and time.
- v. To differentiate the different lava flows in Basaltic rock formation

For estimation of the ground water potential, it is necessary to have an accurate delineation of the aquifer disposition, their extension and thickness; and this can be assessed only through generation of the micro-level data from the field. Thus, in order to draw the precise picture of the aquifer geometry in the area, heliborne geophysical investigations (SKYTEM) were taken up with the following objectives

- 1. To delineate aquifers, understand the dispositions of the lava flows separated by red boles and depth to Gondwanas and/or Archaeans up to 250 m depth in the context of the occurrence of aquifers,
- To generate a new and comprehensive three-dimensional picture of the subsurface clearly indicating the aquifer disposition and to form the best possible basis for the subsequent hydrogeological and geological modeling with distinct demarcation of Basalt-Gondwana margin and individual basaltic flows.

A systematic electrical resistivity survey was carried out by ABEM SAS 300C Terrameter by employing Schlumberger configuration with maximum current electrode separation (AB) of 600 m depending on the available spread length. A total of 138 VES including 52 VES for exploratory drilling (Fig.3.1) (Annexure-I) were carried out to estimate the thickness of the top basaltic formation or depth of Gondwana formations. In addition to this, 300 line meters of Gradient Resistivity Profiling and 610 line meters of Very Low Frequency (VLF) electromagnetic profiling were also carried out to locate the fractures/lineaments in Chandrabhaga Watershed. The VES data acquired was interpreted by IPi2Win software and analyzed to infer the subsurface geoelectric layers. The same are presented as Annexure-II.

The VES results were standardized based on the local Geology, Hydrogeology and existing borehole data (Table3.1). Each geo-electric layer obtained from the investigations is not exactly the response from the individual litho-units, but it is the equivalent resistivity or the weighted average of the two or more numbers of the subsurface layers.

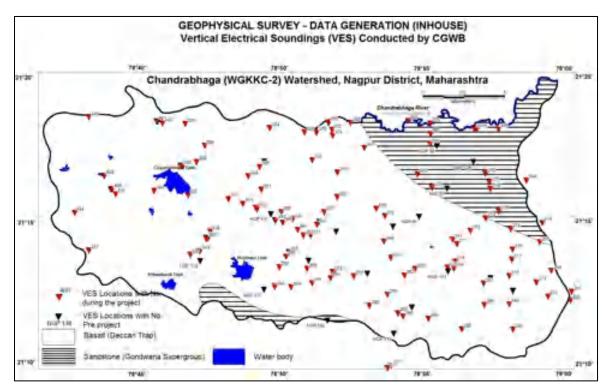


Fig 3.1: Locations of VES conducted by CGWB Chandrabhaga Watershed (WGKKC-2)

	ivity range 0hm.m)	Lithology	Thicknes	s range (m)
3.2	181	Top Soil	0.2	2
1	6	Clay	1.1	27.7
1.8	5	Shale	1.1	82.9
6	9	Sandy Clay	3	11.3
11	34	Sand	4.3	11.3
10	14	Sandstone + Shale	2.3	114
16	87	Sandstone	3.5	79.3
152	1343	Compact sandstone	0.9	84
3.5	35	Weathered Basalt	0.6	39.5
30	43	Moderately Weathered	3.5	8.6

Table 3.1: Resistivity ranges and inferred lithology, Chandrabhaga Watershed (WGKKC-2)

Resistivity range (Ohm.m)		Lithology	Thickness range (m)			
		Basalt				
40.5	58	Vesicular Basalt	1.1	125		
6.7	40	Fractured Basalt	1.3	144		
More tha	an 60	Massive Basalt	1.1	102		
-	12	Fracture Granitic Gneiss	Bottom n	nost layer		
More t	More than 554 Massive Granitic Gneiss Bott		Bottom n	most layer		
10		Lameta bed	Limited data from literature	5		

It is inferred from VES data that the thickness of the basalt is increasing from east to west. It is measured around 60m at village Yerla in the eastern part, around 108 m at village Dorli, and more than 150 m in the western and northern part of the watershed. However, Gondwanas are seen at shallow depths, approximately 30 to 40m depths around village Raulgaon. Occurrence of Gondwana at shallow level could be attributed to reverse faulting (?) at this place or the extension of Gondwana of southern part. All the data generated using various geophysical surveys conducted in the watershed were utilized to generate various 2D, 3D sections and maps of the basins and the results of the same are discussed below.

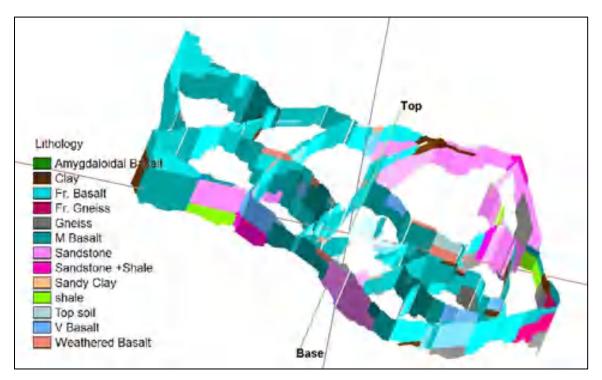
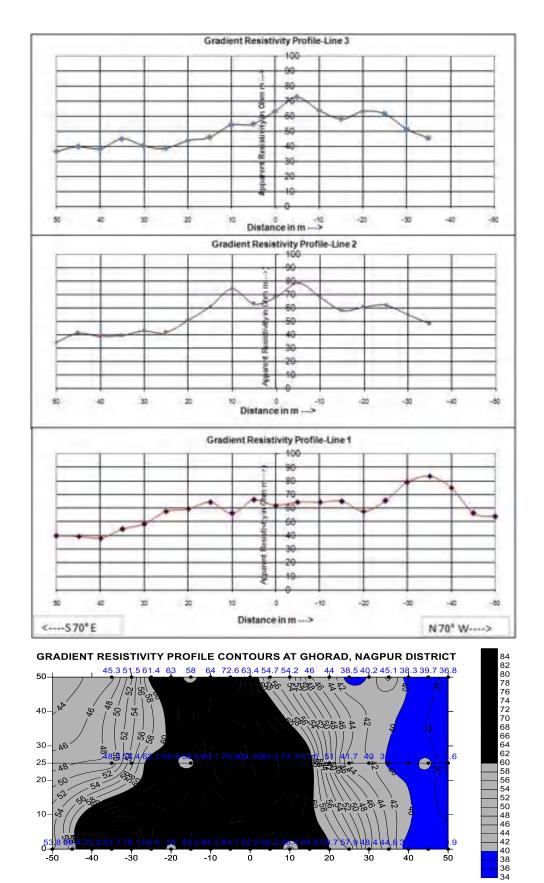


Fig.3.2: Generation of Subsurface disposition, geoelectrical layers translated to lithological layers using Rockworks, Chandrabhaga Watershed (WGKKC-2)

The Gondwana formations are extending more than 150m depth in the NE part of the area. The Gondwanas are absent in the SE part of the area and it was confirmed from the existing borehole data at Yerla. In this area, the Archaeans are encountered below basaltic formation at depths around 60 mbgl. In the northern and western parts of the area, the thickness of the top basaltic formation is more than 150m but in the SW part of the area around Raulgaon, the Gondwana formation occur at shallow depths. The various contour maps, 2D, 3D figures generated based on VES results and geophysical logs are discussed below.


3.2.1.1 Gradient Resistivity Profiling:

Three parallel gradient resistivity profiles – Line 1, Line 2 and Line 3 were carried out in S 70° E – N 70° W direction at village Ghorad for exploratory drilling and the apparent resistivity values are plotted on linear scale against the distance from the central point of the profiles. The length taken for GRP at Line 1 is about 100 m, whereas for Lines 2 and 3 are about 85 m each. Apparent resistivity contours were also generated using SURFER software based on the GRP data. The results of analysis indicates that in the SE Side, the apparent resistivity values are moderate, ranging from 40-60 Ω m, in the central part, the apparent resistivity values are high, ranging from 60-80 Ω m and in the NW part, the apparent resistivity values are low, less than 40 Ω m. In the NW part of the profile, the low apparent resistivities may indicate fracture zone (Fig. 3.3).

In the Gradient Resistivity Profiles, the apparent resistivities in the NW part were recorded low, despite the locations of the apparent resistivity measuring of points nearer to the current electrodes of the profiles. The comparative analysis of the GRP and VLF profiles, infer that the fractures in the NW part of the profiles are productive.

One GRP on the VLF profile 3, at 60 m from the starting point of the VLF profile was also carried out. The VES results of earlier surveys in the same site indicate that the top geo-electric layer of 70 Ω m resistivity and 0.9 m thickness represents top soil. The second geo-electric layer of 24 Ω m resistivity and 1.0 m thickness represents weathered basalt, the third and fourth geo-electric layers of 13 and 6 Ω m resistivities up to 8.8 m depth represents fractured basalt, the fifth layer with 46 Ω m resistivity up to 40 m depth may represent moderately fractured or vesicular basalt. The bottom most layer with 216 Ω m resistivity represents massive basalt.

The low apparent resistivities values obtained from GRP Line 1, low apparent resistivity contours generated from parallel GRP of less than 40 Ω m apparent resistivity and high Fraser derivative values infer potential fracture zone in NW part of the area surveyed.

N 70° W---->

3.2.1.2 Very Low Frequency (VLF) Electromagnetic Profiling

Five parallel VLF profiles, Line 1, Line 2, Line 3, Line 4 and Line 5 were carried out in N85°E-S85°W direction at village Ghorad for exploratory drilling. Line 1 is of 110 m length, Line 2, 4 and 5 are of 125 m length and line 3 is of 120 m length had been taken. The data on Tilt and ellipticity were plotted on linear scale against distance from the starting point of the profile. Fraser derivatives of the Tilt were also computed and plotted along with Tilt on linear scale against distance from the starting point of the profile. Ellipticity and Fraser Derivatives (Fig. 3.4).

On the tilt angle profile, a maximum followed by a minimum separated by an inflection point located above the top of the conductive body. In the present case, the conductive body is a potential ground water bearing fracture zone. In order to give an easier correlation between the anomaly and the structure, Fraser derivatives of tilt angles were used. The expression for the Fraser Derivative is (a+b) - (c+d) where a, b, c, and d, are the rough values of the tilt angle measured at four successive stations separated by the same spacing. The values of the Fraser Derivatives are plotted at the middle of the stations b and c. In the case of a fracture, the maximum of this Fraser curve is located just above the position of the fracture.

The ellipticity used to distinguish highly conductive structures (the ellipticity value is less than the tilt value and has an opposite sign) from poorly conductive structures or geological contacts (the ellipticity value is of the same order as the tilt value and has an same sign). As per the thumb rule of the method to determine the top of the conductive body, the depth is approximately half the distance between the positions of the minimum and the maximum on the rough value of tilt curve.

Contour maps for Fraser derivatives, Tilt angle and Ellipticity were generated. Tilt angle and Ellipticity curves are highly fluctuating, 3 point moving average has been computed for them. VLF Profiling data are presented as graphs of variation of tilt, ellipticity and Fraser derivatives plotted against distance from the starting point of each profile and along 5 profiles. The tilt and ellipticity are highly fluctuating, may be due to noise. The maximum of this Fraser curve is located just above the position of the fracture and these points are joined to get the orientation of the fracture. Five fractures (Fr.1, Fr.2, Fr.3, Fr.4 and Fr.5) were delineated from combined analysis of the VLF profiles and they are oriented in approximately N - S direction. The tilt, ellipticity and Fraser derivative values are plotted against distance at all points in the area and then contour lines are drawn by using SURFER 9 software. From the combined analysis of the VLF profiles (Fig. 3.4) and the contour maps (Fig. 3.5) of the Fraser derivatives, five fractures (Fr.1, Fr.2, Fr.3, Fr.4 and Fr.5) were delineated and found that they are oriented in approximately N - S direction.

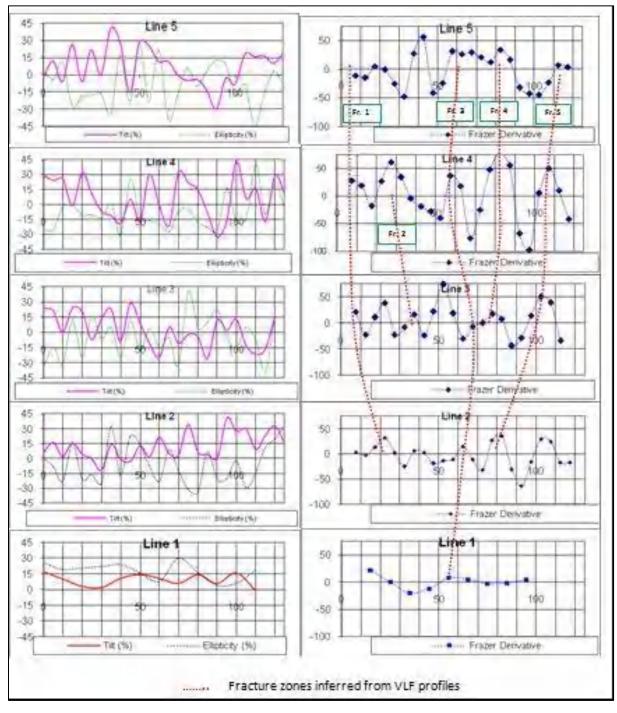
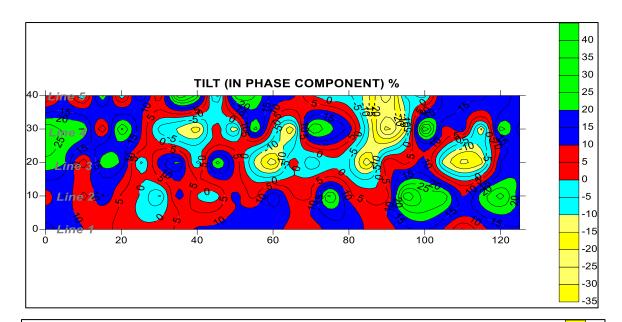
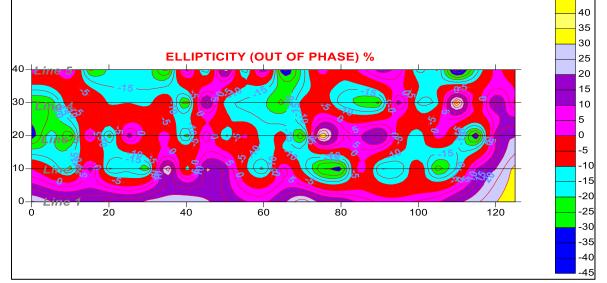




Fig.3.4. VLF profiles at Ghorad, Chandrabhaga Watershed (WGKKC-2)

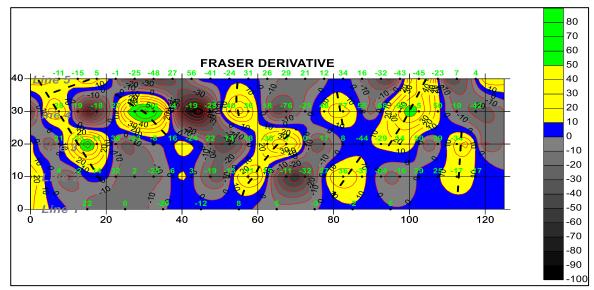


Fig.3.5 Contour Maps generated based on Parallel VLF Profiles at Ghorad, Chandrabhaga Watershed (WGKKC-2)

3.2.1.3 Spatial distribution of resistivities with depth

Using resistivity data top layer resistivity contour maps was prepared and presented as Fig. 3.6. It is inferred from this Figure that the high resistivities between 40 and 60 Ohm m in the western and in some isolated patches in the watershed area may represent vesicular basaltic formation whereas the resistivities more than 60 Ohm m represents massive basaltic formation. The moderately low resistivities between 20 and 40 Ohm m are seen from central to eastern part of the area along the river/ stream courses represent alluvial soil. However, the same resistivities in the western part of the area represent weathered basaltic formation. The low resistivities ranging between 5 and 20 Ohm m in the northern, southern, north-eastern, south-eastern and small portions of the eastern, north western, south-western and west central parts of the area represent highly weathered basaltic formation.

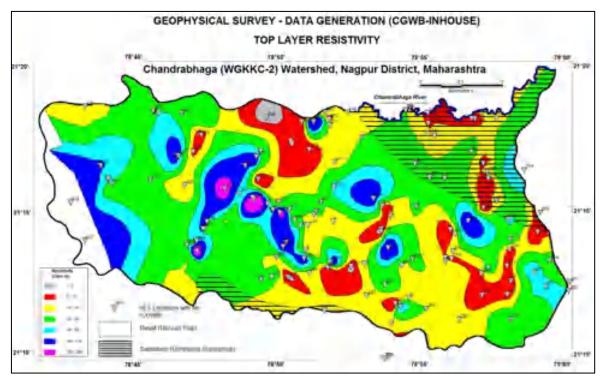


Fig. 3.6: Spatial Distribution of Top Layer Resistivity, Chandrabhaga Watershed (WGKCC-2)

Elevations at the VES locations were recorded through GPS and checked from the Toposheets. Depth slicing has been done by generating the contour maps for resistivity values at different elevations based on the VES results. These depth slice are ranging from 400 m amsl to 150 m amsl at every 50 m interval. The western part of the area is highly elevated with 400 to 500 m amsl

The perusal of Fig. 3.7 indicates that the high resistivity values more than 200 Ω m in the eastern part of the study area at 150m amsl could be attributed to Granitic Gneiss (specifically in SE

parts) and by Gondwana sandstones in other areas. The resistivities less than 200 Ω m represent Gondwana formation with different degrees of compactness and saturation. The higher resistivities represent compactness of the formation. It is seen from the Fig. 3.7 that from central to western part of the area, the VES results could not give the information below 150 m amsl because of the limited spread length (current electrode separation AB) available for carrying out VES. The resistivities with > 200 Ω m in the central part of the area represent massive basaltic formations of different nature. The elongation of the resistivity contours in N-S direction with resistivities < 200 Ω m may be due to the influence of the lineament in the same direction and the low resistivities < 40 Ohm m represents the fractures extending in the same direction. The small isolated patches of low resistivities of < 5 Ohm m in the central and southern parts of the area represent clay or Lameta bed.

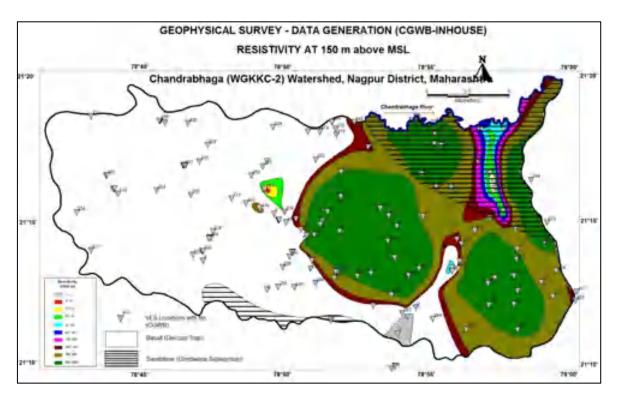


Fig. 3.7: Resistivity variation at 150 m amsl, Chandrabhaga Watershed (WGKCC-2)

The resistivity values at 200m amsl (Fig.3.8), indicate that the south-eastern part of the study area, the high resistivities more than 200 Ω m represent Granitic Gneiss. The resistivities less than 200 Ω m in the north eastern part represent Gondwana formation with different degrees of compactness and saturation. The northeast elongation of the contours in this region represents influence of the lineament in the same direction. The same resistivities in the south eastern part represent fractured gneiss with different degrees of fracturing. In the central and southwestern parts of the area, the high resistivities more than 200 Ω m represent massive basaltic formations. The low resistivities < 200 Ω m in the central and north western parts of the area represent basaltic

formations of different nature may correspond to different flow. The elongation of the contours with resistivities less than 40 Ω m in the western part south of Sonkhamb in EW direction, in the central part south of Dorli in NE-SW direction represents lineament-controlled areas in this direction. The elongation of the contours in NW-SE direction with resistivities less than 40 Ω m in the central part of the area may represent highly weathered / fractured basaltic formation.

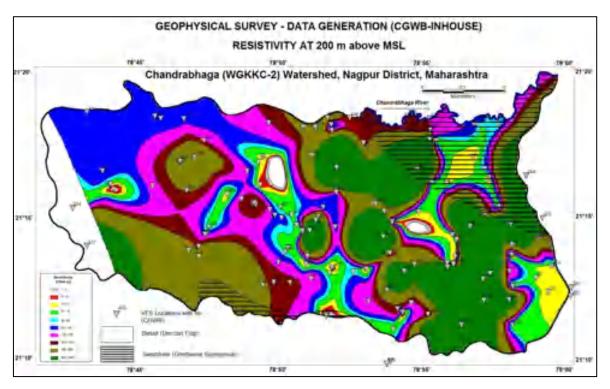


Fig.3.8: Resistivity variation at 200 m amsl, Chandrabhaga Watershed (WGKCC-2)

The resistivity values at 250 m amsl (Fig.3.9) indicate that the south eastern part of the study area, the high resistivities more than 200 Ω m represent Granitic Gneiss whereas the same resistivities in the north eastern part of the area represent compact sandstone. The resistivities less than 200 Ω m in the south eastern part of the study area represent fractured gneiss with different degrees of fracturing. The direction of the elongation of the contours (NW-SE and NE-SW) represents the orientation of the lineament / fracture system in the respective directions. These directions are matching with the directions of the lineaments mapped and presented in the lineament map. The area from central to western part, the high resistivities > 60 Ω m represent massive basaltic formation. However, the distribution of the resistivities < 200 Ω m from central to north western part may represent the basaltic formation of different flow. The horizontal extent of this flow is increasing as the elevation increases (5-8 km at 200 m amsl and I6-10 km at 250 m amsl). In the central to western part of the area, the resistivities between 40 and 60 Ω m represent vesicular/

basalts. The isolated patch of low resistivities < 5 Ω m in the central portion of the area represent associated clayey layers. The ENE-WSW orientation of the resistivity contours between 5 and 40 Ω m resistivity west of Dorli, represents the orientation of the system of Lineaments/fractures in the same direction and it is matching with the lineament map. The NW-SE orientation of the resistivity contours of same range northeast of Dorli, represent the orientation of the system of Lineaments/fractures in the same direction. The E-W orientation of the resistivity contours of same resistivity range southeast of Dorli, represent the orientation of the system of Lineaments/fractures in the same direction. The NE-SW orientation of the resistivity contours of same resistivity range southeast of Dorli, represent the orientation of the system of Lineaments/fractures in the same direction. The NE-SW orientation of the resistivity contours of same resistivity range south of Dorli, represent the orientation of the system of Lineaments/ fractures in the same direction. The contact between basalt with gneisses and Gondwanas is clearly predicted by the contour maps extending from east of Selu in NE-SW direction through Kalmeshwar.

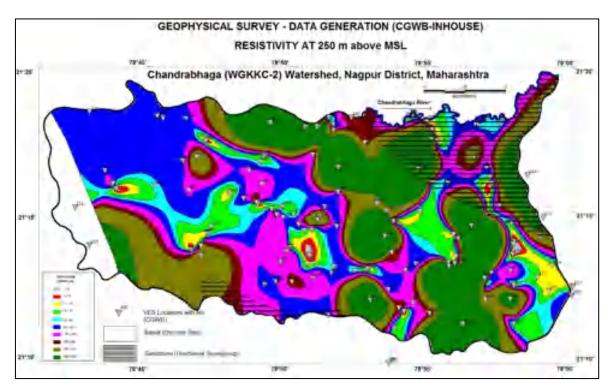


Fig3.9: Resistivity variation at 250 m amsl, Chandrabhaga Watershed (WGKCC-2)

The resistivity values at 300 m amsl (Fig.3.10) indicate that the south eastern, central and western parts of the study area, the high resistivities more than 60 Ω m represent massive basaltic formation. The boreholes drilled by CGWB at Yerla up to 159.45m bgl, at Selu up to 140.3m bgl and Dorli up to 153.5 m bgl encountered Gneisses at a depth of 59m at Yerla, clay at 140.3 m depth at Selu and Gondwanas at 123m depth at Dorli, (CGWB, 2001). However, the distribution of the resistivities < 200 Ω m from central to north western part may represent the basaltic formation of different flow. The horizontal thickness of this flow (5 to 16 km) is increasing as the elevation

increases. In the southwestern and western parts of the area, the low resistivities ranging from 20 to 40 Ω m represent weathered / fractured basaltic formation. In the western part, the elongation of the contours in NE-SW direction around Rawalgaon and Kotwalbardi, represent Lineament (s) extending in the same direction. Whereas in the northeast part of the area, the resistivities more than 200 Ω m may represent compact sandstone, the resistivities between 10 and 200 Ω m may represent sand stone with different degrees of saturation and compactness. However, the resistivities ranging from 10 to 20 Ω m along the river courses in this part of the area represent river alluvium. The resistivities between 5 and 10 Ω m may represent sandstone with shale intercalations.

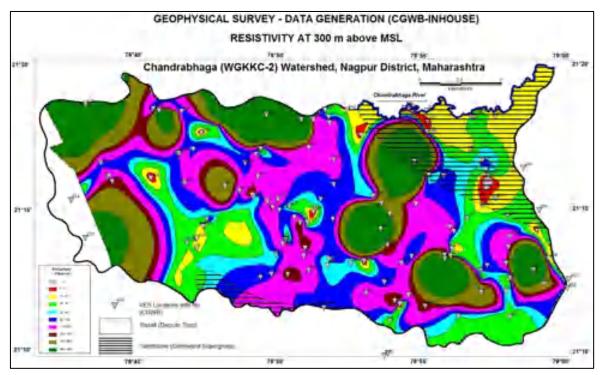


Fig. 3.10: Resistivity variation at 300 m amsl, Chandrabhaga Watershed (WGKCC-2)

The resistivity values at 350 m amsl (Fig 3.11) indicate that the resistivity information is available only from the central to western part of the study area, since the elevations are less than 350m amsl in this area. The high resistivities more than 200 Ω m in the NW part of the area represent massive basaltic formation. The low resistivities less than 200 Ohm m in the southern and central parts of the area may correspond to basaltic flow of different nature. The low resistivities ranging between 20 and 40 Ohm m in the west central part of the area may represent fractured basaltic formation. In the southern part of the area, the resistivities ranging from 5 to 20 Ohm m may represent weathered/ fractured formation. The very low resistivities less than 5 Ohm m in this area represent clay. Based on the borehole data Gondwana formation is encountered at 336 and 351 m amsl at Rawalgaon and Kotwlbardi (NGRI 2011) respectively. Correlating this borehole data with VES results it is inferred that in this area, the resistivities ranging from 60 to 300 Ω m represent Gondwana formation.

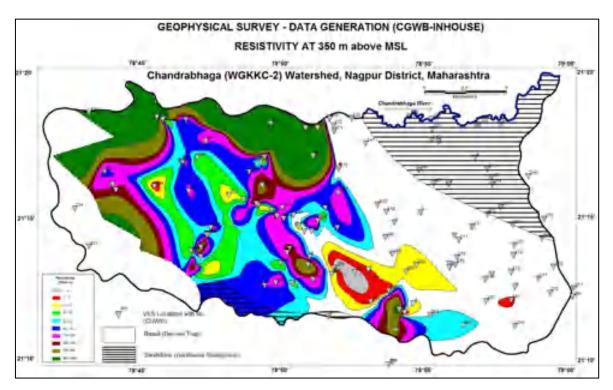
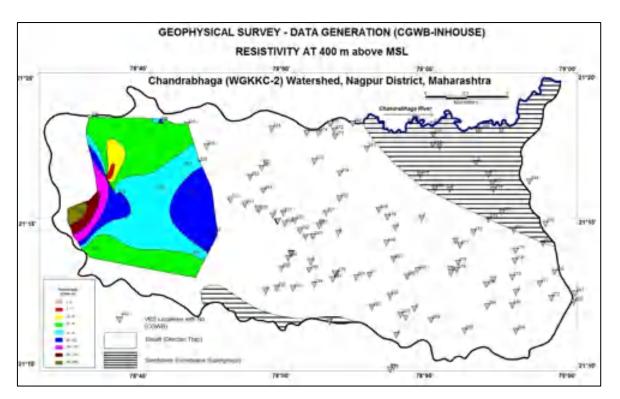
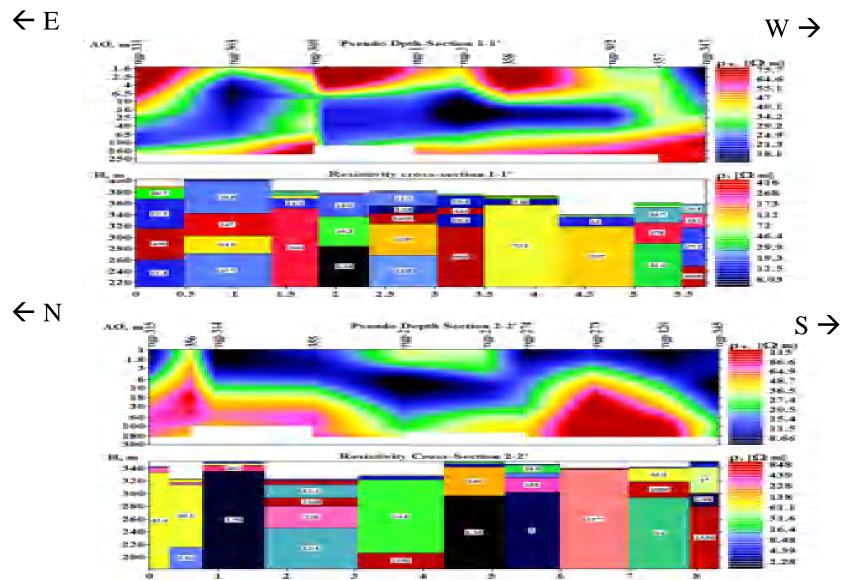


Fig. 3.11: Resistivity variation at 350 m amsl, Chandrabhaga Watershed (WGKCC-2)

The western part of the watershed is highly elevated land. The high resistivities more than 60 Ohm m around Dorli, Sonkhamb and Metpanjra villages, represent massive basaltic formation, the resistivities ranging between 40 and 60 Ohm m around Chargaon and Pardi Deshmukh may represent vesicular basalt and the low resistivities ranging between 20 and 40 Ohm m around Rawalgaon, Wasbodi, Malegaon, and Ramgiri may represent fractured basaltic formation (Fig.3.12).




Fig. 3.12: Resistivity variation at 400 m amsl, Chandrabhaga Watershed (WGKCC-2)

Pseudo Depth and Resistivity cross sections (Fig. 3.13) were generated using IPI2Win software along Section 1-1' of 5.7 Km length, passing through the villages Kohli, Mohli, (VES No. Ngp 331, 303, 360, 330, 127), Ubgi (NGP 390, 358), Khapri (NGP 302, 357, 347). The low resistivity zone with less than 30 Ohm m resistivity in the pseudo Depth section may correspond to a system of lineaments or fractures at pseudo depths (AB/2) ranging from 5 to 100 m.

The resistivity cross section (Fig. 3.13) also depicts fractures at VES No. NGP303, 360, 127, 390, 358, 357 and 347. Whereas the low resistivity of 4.6 Ω m at VES no. NGP 330 may correspond to the bole bed below 284 m amsl or 94 m bgl. The Gamma log in the borehole drilled in Kohli village shows relatively a rise in gamma at this depth.

Along Section 2-2' also Pseudo Depth and Resistivity cross sections (Fig. 3.13) were generated using IPI2Win software of 8.3 Km length, passing through the villages Gowari (VES No. NGP 315,356,314), Khairi (NGP 356), Pardi (NGP 276), Ashti (NGP 275,274), Yerla (NGP 270,120,345). The low resistive layer with resistivities below 20 Ohm m in the Pseudo Depth section north of VES 356 i.e. N of Gowari corresponds to the Gondwana group of formations. Whereas the same resistivity range in southern part of the section beyond Gowari village correspond to the weathered/ fractured basaltic formation. The higher order of the resistivities N of the Gowari village correspond to Sandstone and the south of this village (VES 356) may correspond to the Archaeans.

In the resistivity cross section 2-2' (Fig. 3.13) the resistivity ranges between 60 and 70 Ohm m North of Gowari Village (VES 356) correspond to the Sandstone formation. The low resistivity layer of 9.6 Ωm at VES 356 corresponds to the alternate layers of sandstones and shale/clay layers. This has been confirmed with the geophysical log and litholog of the borehole drilled in Gowari village. The resistivity log shows high resistivities up to 80m depth (240m amsl) indicating the sandstones with a thin clay layer between 40 and 45 m depths (280 and 285m amsl). The very low resistive layer South of the Gowari village may correspond to the clay layer. The low resistive layer of 1.8 Ohm m at VES No. NGP 314 may correspond to the clay. At VES 355 near Khairi village, the layer with 12 Ω m from 8.9 to 30 m depth (314 to 293m amsl) and the layer with 13.6 Ω m resistivity below 77 m depth (246 mamsl) to the fractured Sandstone. The low resistive layer of less than 2 Ω m resistivity at NGP 275 and 274 below 55 and 44 m depths respectively near Asta village correspond to the clay / lameta bed which is lying above the Archaean formation and below the Deccan Trap formation. At VES 273 near Yerla Village the contact of the Basalt and the Archaean formations could not be delineated may be due to the minimal resistivity contrast. However the litholog of the borehole drilled during the pre-project period in Yerla village shows basaltic formation up to a depth of 59m bgl followed by lametas and granitic gneisses. The low resistivity of 14 Ωm below 48 m depth (294m amsl) at NGP 120 corresponds to the fractures gneiss. The high resistivity layers overlying this layer correspond to the compact basaltic formations.

Pilot Project on Aquifer Mapping, Chandrabhaga Watershed (WGKKC-2), Nagpur, Maharashtra, December 2015

Fig. 3.13: Pseudo Depth Section and Resistivity Cross Sections along Section 1-1', Chandrabhaga Watershed (WGKCC-2)

An attempt has been made to generate the geo-electric 3D maps (Fig. 3.14) based on VES conducted. The resistivities at different elevations have been use to generate these maps. The resistivities at ground level, 150 m amsl, 200 m amsl, 250 m amsl, 300 m amsl and 350m m amsl elevation have been used. The sliced 3D geo-electrical maps, thus, generated has been found near to the actual lithological units and the aquifer exist in the area.

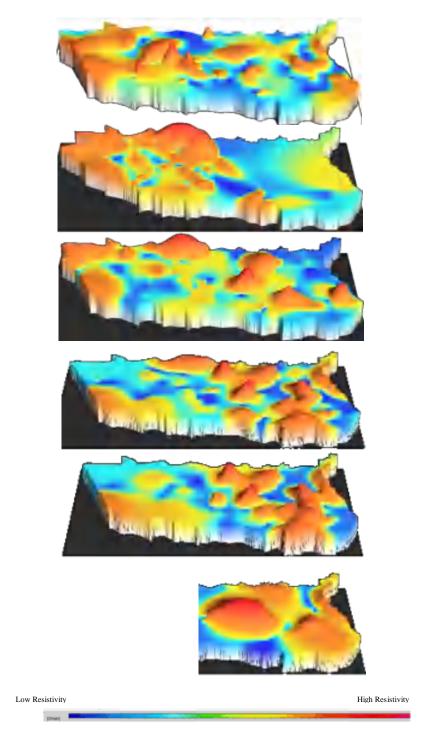


Fig. 3.14. 3D view of the resistivity images at different elevations generated based on VES.

3.2.1.4 Inferences from Electrical Resistivity survey

- Based on the VES results, it is inferred that the thickness of the basalt is increasing from east to west. In the eastern part of the area, approximately 60 m around Yerla where as in the mid-western part it is 108 m around Dorli, and more than 150 m northern and extreme western parts. However, Gondwanas are inferred at shallow depths, approximately 30 to 40m depths around Raulgaon in the SW prt of the area. This result predicts the undulating nature of the paleo-topography on which Deccan lavas were poured out.
- 2. Interpreted VES results infer that the Gondwana formations are extending more than 150m depth in the NE part of the area. The Gondwanas are absent in the SE part of the area and was conformed from the existing borehole data at Yerla. In this area, Achaeans are encountered below basaltic formation at depths around 60m bgl. In the northern and western parts of the area, the thickness of the top basaltic formation is more than 150m but in the SW part of the area around Raulgaon, the Gondwana formation occur at shallow depths.

The VLF and GRP were carried out to infer the location and orientation of the fractures/ lineaments in the area. Based on combine results of various geophysical surveys carried out in the area 15 sites were selected and recommended for exploratory drilling. The details of recommended sites are given below.

- 1. Khairi or Gowari and Dhapewada in the area occupied by Gondwanas
- 2. Kohli-Mohli, Ubgi, Pardi Deshmukh, Ramgiri and Ghorad in the area occupied by basalts and
- 3. Rawalgaon, Sonegan and Uperwahi in the Trap Covered Gondwana area.

3.2.1.5 Geophysical Logging

During the previous surveys CGWB has carried out geophysical logging in borewells/tubewells drilled at Borgaon, Junkishindi, Tondakhairi, Pardi, Yerla and Dorli Villages. Since only the point resistance log was carried out earlier in Dorli, a SP, Short and Long Normal resistivity loggings were carried out by ABEM Terrameter with SAS 200 Attachment in July 2012 down to a depth of 151.4m. Since the ground water level was 54 mbgl, electrical logging could be done from 54.4 mbgl only. Electrical logging at Dorli (Fig. 3.15) infers that the thickness of the top basaltic formation upto 108m. This basaltic formation is underlain by a clay layer of 4 m thickness followed by Gondwana formation.

Village: DORLIDepth drilled:155.5 mDepth Logged: 151.4 mInstrument: ABEM Terrameterwith SAS 200 attachmentDate: 19-07-2012Logged by: Shri P. Narendra, Sc- 'C' & Vijesh V K , Sc-'B'

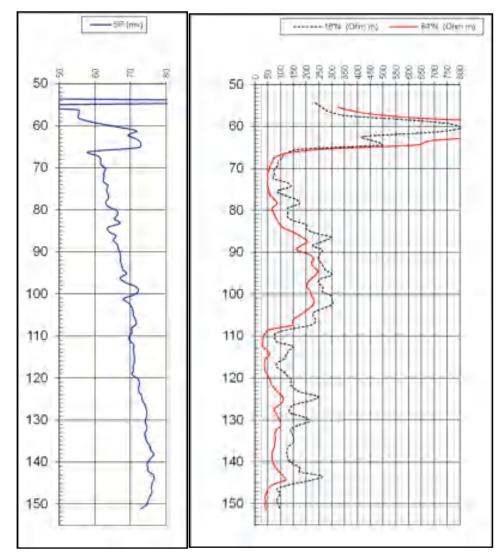
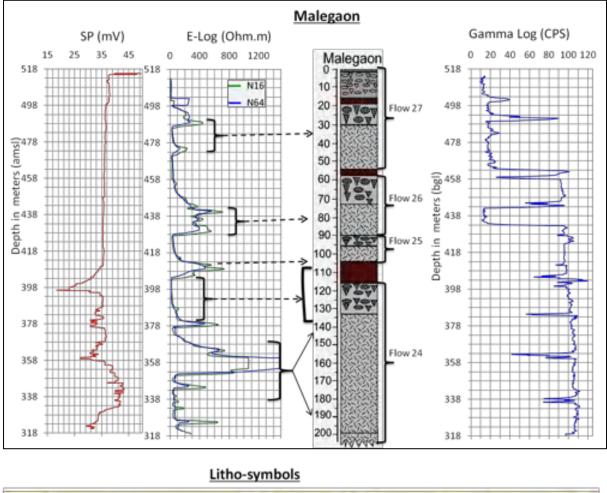
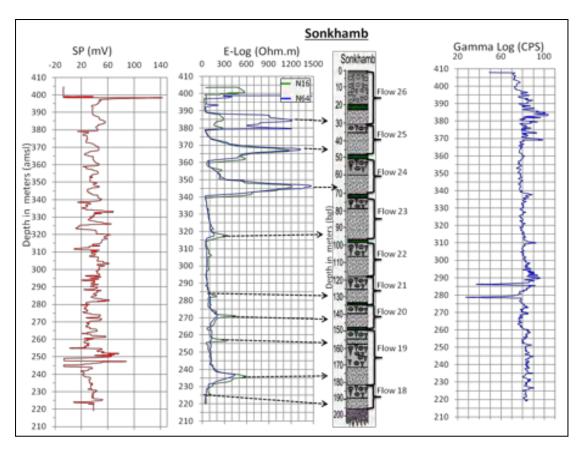
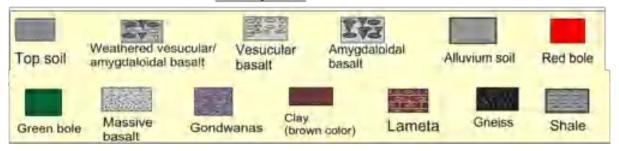
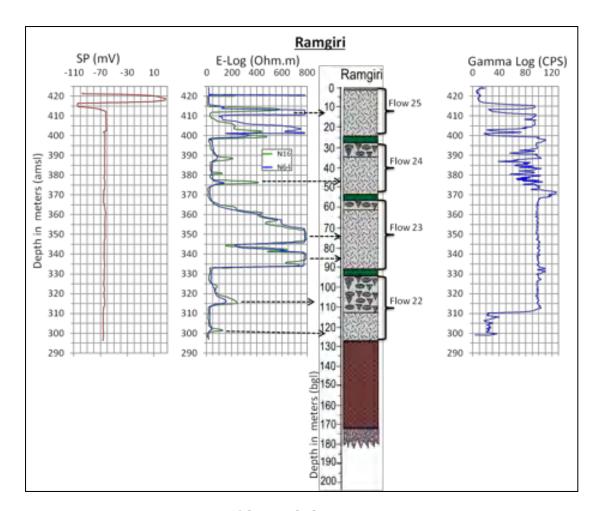
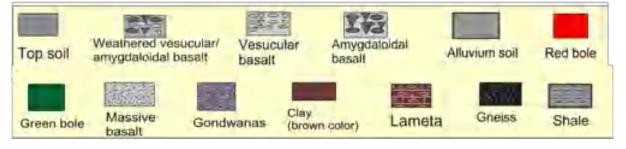



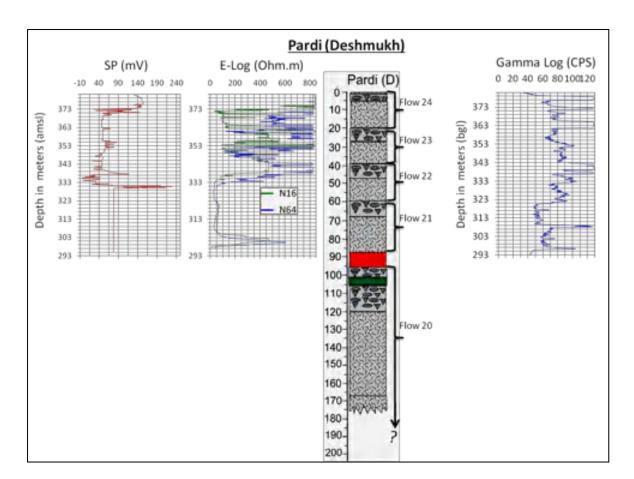
Fig. 3.15: Electrical Log at Dorli, Chandrabhaga Watershed (WGKCC-2)

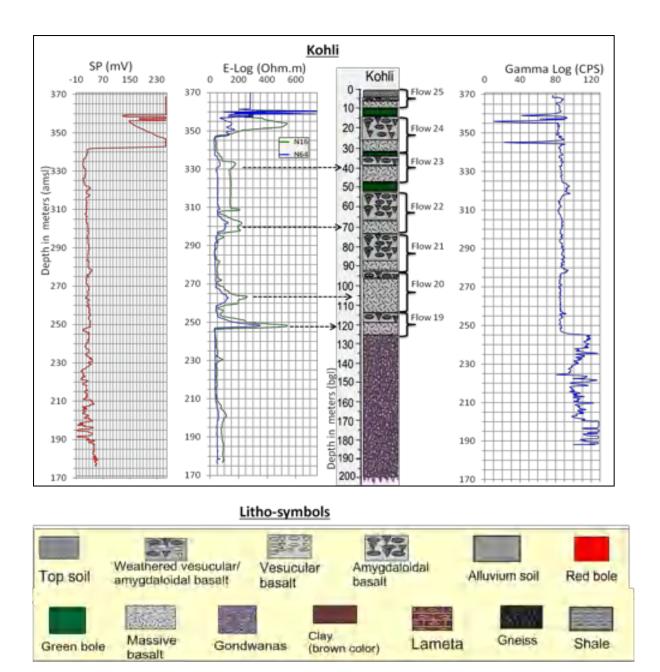

During the project period 16 exploratory wells were drilled. These 16 boreholes, including observation wells were geophysically logged by UPTRON Logger. Geophysical logging carried out includes Electrical, SP, and Gamma. The logging depth varies from 65 m to 199 m bgl. At couple of places, the geophysical logging has been restricted up to shallow depth due to the collapse of the drilled wells prior to the logging.

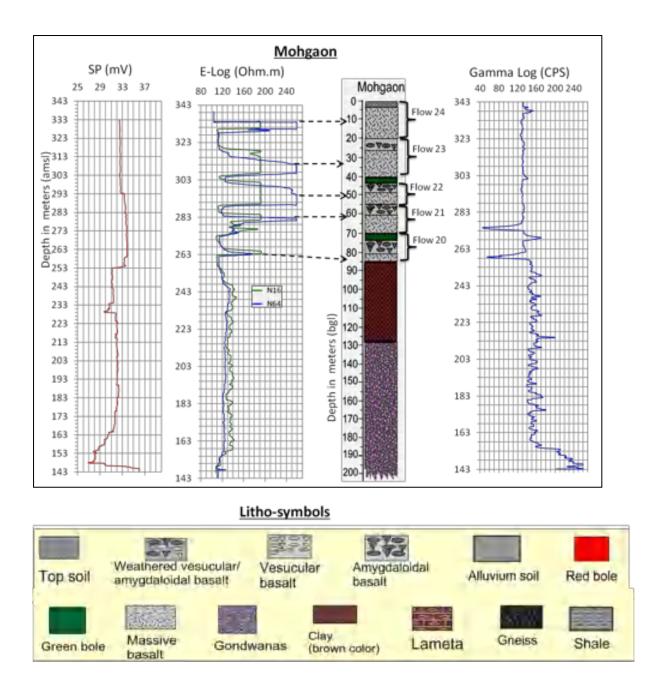

NGRI, Hyderabad has digitized the geophysical log sheets and matched with the drilling lithologs of the corresponding well. The correlative study of the lithology and geophysical logs

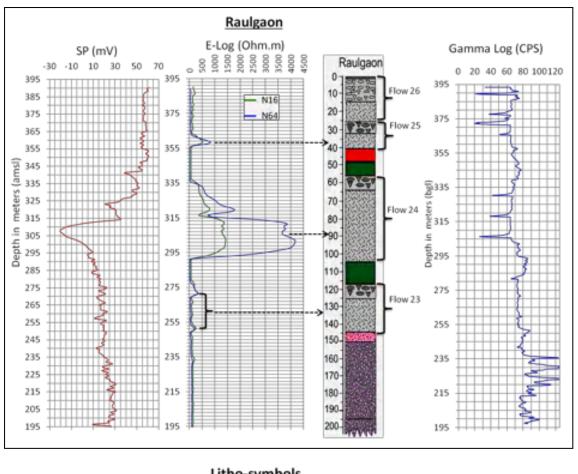

indicates that the resistivity signatures in E-logs corresponds to the basaltic flows as shown in the below images (Fig. 3.16 and 3.17)

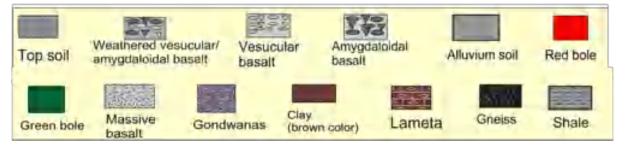


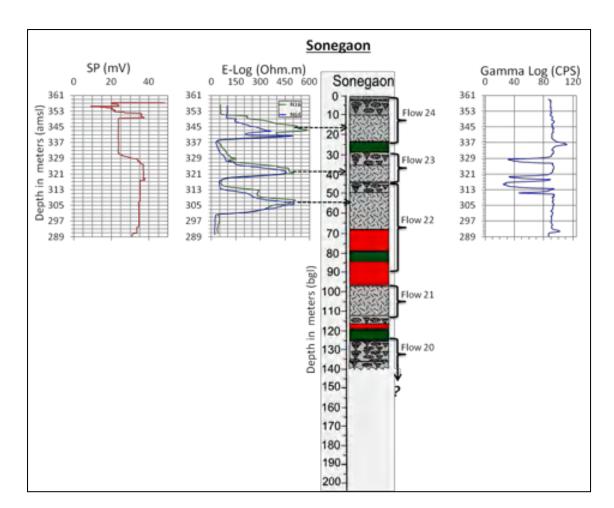

22 Weathered vesucular/ Vesucular Amygdatoldal Top soil Alluvium soil Red bole amygdaloidal basalt basalt basalt Clay Massive Gneiss Lameta Shale Green bole Gondwanas (brown color) basalt

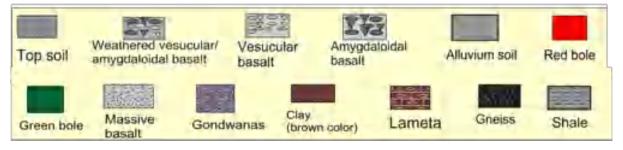


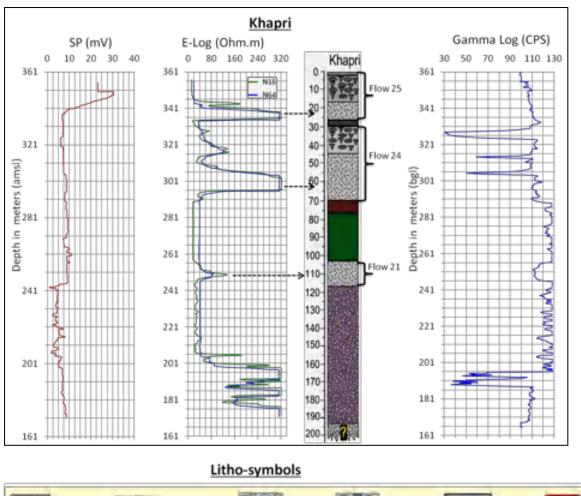


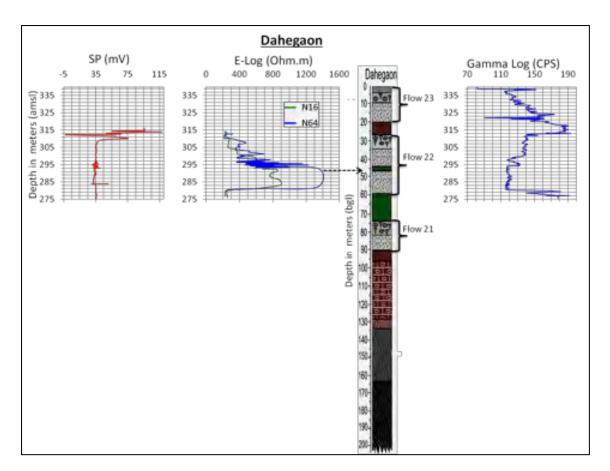


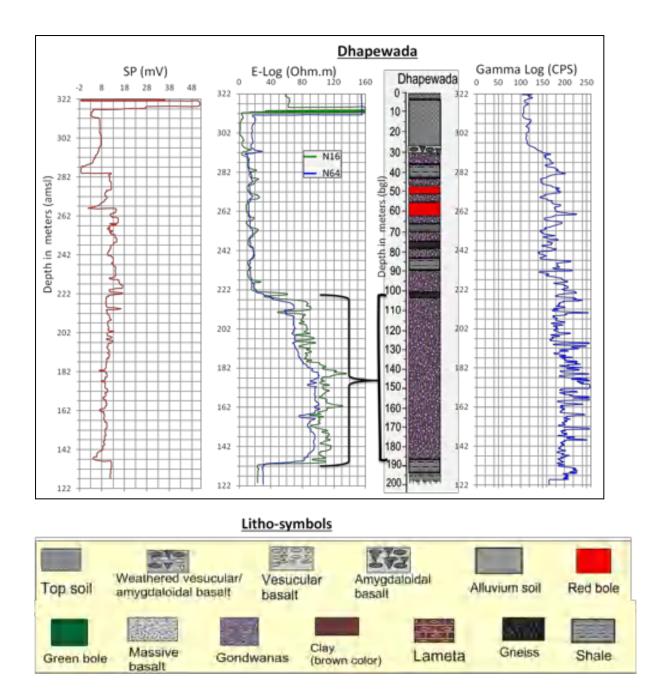


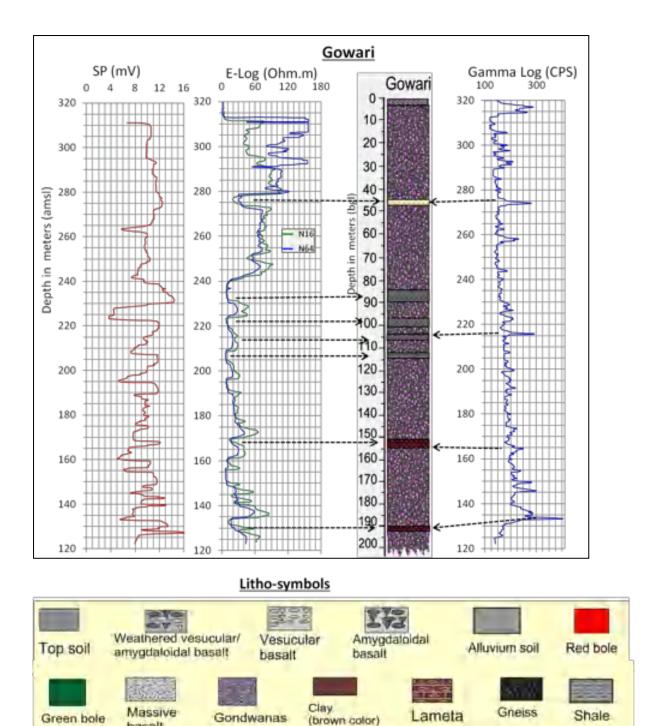












basalt

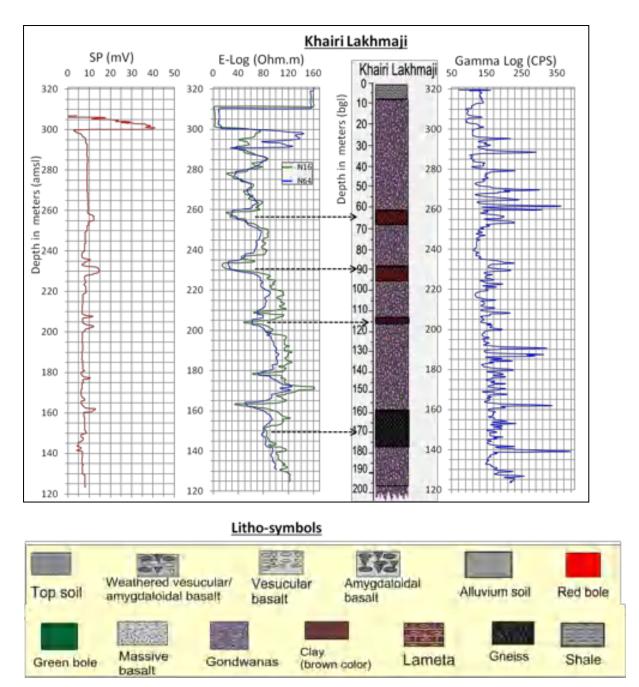


Fig. 3.16: Geophysical logs with drilling lithologs, Chandrabhaga Watershed (WGKCC-2)

SKYTEM NON FLOWN ZO BASALTIC TERRAIN BASALTIC TERRAIN BASALTIC TERRAIN CONDWANAS BASALTIC TERRAIN CONDWANAS BASALTIC TERRAIN CONDWANAS BASALTIC TERRAIN CONDWANAS BASALTIC TERRAIN CONDWANAS CONDWANA	Selu Dahegaon E
0 0	0 10 20 30 40
10 10 <td< th=""><th>20 30 40</th></td<>	20 30 40
30 40 40 <td< td=""><td>20- 30- 40-</td></td<>	20- 30- 40-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40-
50 60 60<	ABARA TA ANALY
5 70 70 70 70 70 70 70 70 70 70 70 70 70	60
	70-
	80-10-22
	90
	TOT O
110 110 <td>193393</td>	193393
120 120 120 120 120 120 120 120 120 120	120-
	140-
150 150 150 150 150 150 150 150 150 150	150-
160 160 160 160 160 160 160 160 160 160	160-
170 170 170 170 170 170 170 170 170 170	170-
180- 190- 190- 190- 190- 190- 190- 190- 19	180-
	DEFENSION OF THE OWNER O
MAAAA AAAAA I I I I I I I I I I I I I I	
Lotho-symbols	
Top soil weathered vesucular/ Vesucular Amygdaloidal Alluvium soil Red bole Green bole Massive Basalt Gondwanas Clay (brown color) Lameta Gneiss	And and a state of the state of

Fig. 3.17: Consolidated lithology of CGWB drilled wells, Chandrabhaga Watershed (WGKCC-2)

3.2.2 Geophysical Survey by NGRI

The geophysical survey work has been carried out by CSIR-NGRI, Hyderabad to establish the protocol of geophysical methods for delineating the aquifer disposition in terms of geoelectric layers. During the project period, the NGRI has carried out geophysical survey including data acquisition, processing and interpretation by Resistivity survey (VES, 2D Resistivity Imaging survey), Ground Electromagnetic survey (G-TEM), Heliborne TEM (SkyTEM) and geophysical logging of bore-holes drilled for precisely delineating the potential aquifer zones along with its continuity both vertically and laterally to an extent of ~200 m in hard rock areas. The details of geophysical investigations carried out is presented in Fig.3.18 while the data acquisition with brief remark on instrument used and system parameters is presented as Table 3.2.

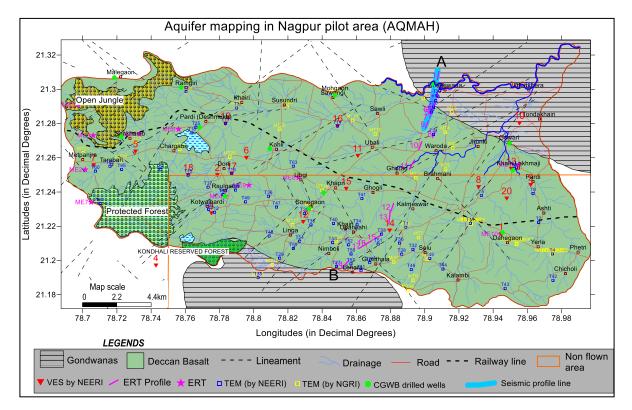


Fig. 3.18: Geophysical investigations by NGRI, Chandrabhaga Watershed (WGKKC-2)

Data summa	ary at Chandra	bhaga wa	atershed (V	/KCC-2), AG	QMAH area	, Nagpu	r (Maharashtra)
Name of Ad	Name of Activity			SkyTEM	Post SkyTEM	Total	Remarks
	VES (no.)	100	21		-	21	Syscal (IRIS)
1-D GEOPHYSICS	TEM (no.)	20	42		57	99	TEM fast 48 HPC system & TerraTEM with 40m x 40m loop size, 1 and 4 A current were used
2-D GEOPHYSICS	ERT (LKM)	20	17.6			17.6	Syscal (IRIS)
	HRSS (LKM)	-	6		-	6	
Borehole Logging	Wells (No.0	0	0		0	0	-
HeliTEM	Sky	TEM (LKN	1)	954		954	TEM and Magnetic data using Line/Tie line spacing : 200/2000 ms

Table 3.2: Data acquired in AQMAH pilot area by NGRI (NGRI, 2015)

The helicopter borne transient electromagnetic measurement method, SkyTEM is the leading geophysical methods for ground water mapping. The target of altitude in open terrain is approximate 30 m with fluctuations ranging from 25 to 45 m. The altitude will increase by the height of the objects over flown. The Heliborne SkyTEM investigation has been carried out in areas approved by MoD from 13/11/2013 to 16/11/2013 covered by 946 line km.'s (Fig. 3.19)

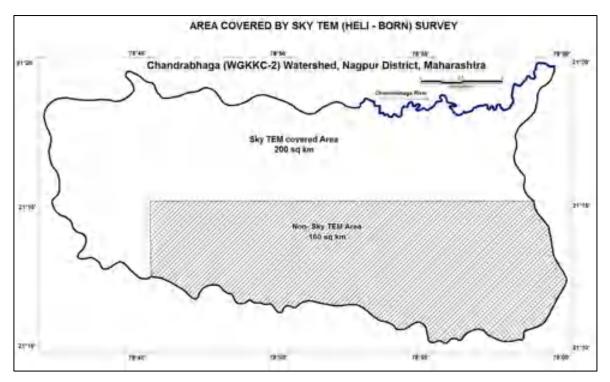


Fig. 3.19: Area covered under Heliborne Sky-TEM geophysical survey, Chandrabhaga Watershed (WGKKC-2)

3.2.2.1 Vertical Electrical Sounding (VES)

The objective of the VES is to decipher the disposition of the aquifer system in the study area. In the central portion of the study area, the objective is to decipher the contacts between the flow units as well as the contact between the Basalts and the underlying Gondwanas. VES have been carried out at different locations in the study area. Attempt has been made to cover the maximum Current Electrode (AB) spacing. In view of the field limitations, the maximum AB/2 which could be attained in the field was 500m. The VES data were collected using the SSR-MPA AT Resistivity meter (IGIS-Hyderabad make). To ensure QA/QC of the data, the equipment was tested against known resistance in a resistance box before the initiation of the survey. The repeatability of the measurements was also tested in the field. The field observations like the well cuttings and ground water level were noted to strengthen the geophysical interpretation. The resistivity data were interpreted using the IX-1D software (Version 2.06). The VES curves were presented in the **Annexure-III** and the VES results are presented in Table 3.3.

Sl. No.	ID	Village /Location	Lat/long	Elevation (m a MSL)	AB/2 (m)	Terrain	Layer No	Resistivity (Ωm)	Thickness (m)	Depth (m)	Inferred Lithology	Remarks
1	VES -1	Dahegaon	78°56'41.8"	343	400	Basalt	Ι	4.35	0.49	0.49	Soil	
			21°12'5.4"				Π	2.11	2.64	3.13	Weathered	
							III	22.33	3.1	6.23	Clay/Vesicular	
							IV	226.47	8.59	14.82	Compact basalt	
							V	12.03	24.86	39.68	Clay/Vesicular	
							VI	130.36	51.45	91.13	Compact basalt	
							VII	3758.6			Granitic Gneiss	
2	VES -2	Dorli	78°46'43.4"	398	300	Basalt	Ι	30.68	0.31	0.31	Soil	In view of
			21°14'59.5"				II	333.2	6.91	7.22	Compact basalt	the limited
							III	574.26	12.31	19.53	Compact basalt	AB, no
							IV	68.89	11.81	31.34	Vesicular Basalt	conclusive
							V	135	68.49	99.83	Compact basalt	evidence can
							VI	39.29				be cited for the bottom most layer.
3	VES -3	Raulgaon	78°46'31.3"	402	300	Basalt	Ι	110	1	1	Vesicular and	
		e	21°13'39.5"				II	150	3	4	Massive Basalts	
							III	400	7	11		
							IV	200	5	16		
							V	130	10	26		
							VI	20	45	71	Bole bed	
							VII	80	72	143	Compact basalt	
							VIII	10			Gondwana	
4	VES -4	Murli	78°44'34.2"	407	250	Gondwana	Ι	18.91	3.44	3.44	Soil + Sand	
			21°11'49.6"				Π	9.86	3.2	6.64	Clay	
							III	165.86	2.65	9.29	Compact Sst]
							IV	72.18	6.27	15.56	Sandstone with	
							V	43.74	99.76	115.32	different nature,	
							VI	43.18	1.39	116.71	texture and	
							VII	27.48			saturation	

Table 3.3: Geo-electrical parameters of VES in Chandrabhaga Watershed (WGKKC-2) (NGRI, 2014) $[\rho = resistivity (\Omega m), h = thickness of layer (m) \& H = total thickness (m)]$

SI. No.	ID	Village /Location	Lat/long	Elevation (m a MSL)	AB/2 (m)	Terrain	Layer No	Resistivity (Ωm)	Thickness (m)	Depth (m)	Inferred Lithology	Remarks
5	VES -5	Sonkhamb	78°43'51.8"		400	Basalt	Ι	18.64	5.24	5.24	Soil	Gondwana
			21°15'49.1"				II	497.98	9.54	14.78	Compact basalt	encountered
							III	133.68	108.36	123.14		in Sonkhumb
							IV	31.7			Fractured Basalt	village at 195m depth.
6	VES -6	Kohli	78°47'44.6"	387	400	Basal	Ι	49.66	1.83	1.83	Soil	EW drilled at
			21°15'36.0"				II	221.9	3.87	5.7	Compact basalt	Kohli
							III	3.67	6.69	12.39	Clay / Bole bed	(approx. 1.5
							IV	17.71	72.36	84.75	Weathered / fractured basalt	km from VES 6)
							V	380.32	88.12	172.87	Compact basalt	encountered
							VI	20.53			Gondwana	bole bed at 10m depth and Gondwana encountered at 125 m depth
7	VES -7	Tarabodi	78°42' 22.9"	412	125	Basalt	Ι	64.28	0.38	0.38	Soil	
			21°15'20.4"				II	59.68	1.04	1.42	Weathered Basalt	
							III	699.73	2.44	3.86	Compact basalt	
							IV	23.69	4.75	8.61	Fractured Basalt	
							V	126.27	3.53	12.14	Compact basalt	
							VI	140.25				
8	VES -8	Kalmeshwar	78°55'53.3"	321	500	Basalt	Ι	5.27	3.51	3.51	Soil	This site is
			21°14'34.3"				Π	4.39	3.84	7.35	Clay	locatedNE of
							III	3.95	3.48	10.83		the
							IV	294.99	24.43	35.26	Compact basalt	Kalmeswar
							V	32.5	40.18	75.44	Sandstone	Village and S
							VI	9.1			Clay	of the contact between Deccan Traps and

Sl. No.	ID	Village /Location	Lat/long	Elevation (m a MSL)	AB/2 (m)	Terrain	Layer No	Resistivity (Ωm)	Thickness (m)	Depth (m)	Inferred Lithology	Remarks
				, , , , , , , , , , , , , , , , , , ,								Gondwanas
9	VES -9	Pardi	78°57'43.1"	327	300	Gondwana	Ι	13.74	0.9	0.9	Soil	This site is
			21°14'38.9"				II	4.76	7.4	8.3	Clay	located close
							III	4.18	1.72	10.02		to Pardi
							IV	74.45	3.74	13.76	Compact basalt	village, in the
							V	108.13	2.88	16.64		vicinity of
							VI	12.29	36.3	52.94	Clay	the contact
							VII	62.01				between the Basalts and Gondwanas.
10	VES -10	Tondakairi	78°57'19.5"	318	500	Gondwana	Ι	469.18	0.88	0.88	Soil	This site is
			21°16'48.6"				II	68.97	3.72	4.6	Sandstone with	close to
							III	27.74	2.69	7.29	different nature,	Tondakhairi
							IV	47.44	23.43	30.72	texture and saturation	Village falling on the
							V	413.02	44.71	75.43	Compact Sandstone	Gondwana
							VI	20.75	109.05	184.48	Sandstone	formations.
							VI	17.32	109.05	104.40	Sandstone	Tormutions.
11	VES -11	Ubali	78°51'39.2"	344	500	Basalt	I	107.42	0.4	0.4	Soil	This site is
	125 11	obuli	21°15'40.1"	511	200	Dubuit	II	90.65	2.61	3.01	Compact basalt	falling in the
							III	293.8	2.71	5.72	e ompare casare	Basaltic
							IV	13.46	4.22	9.94	Clay	terrain
							V	77.27	116.25	126.19	Compact basalt	-
							VI	223.97	69.16	195.35	1	
							VII	14.64			Gondwana ?	1
12	VES -12	Sonegaon	78°49'44.2"	362	500	Basalt	Ι	53.91	0.25	0.25	Soil	This site is at
		C	21°13'21.2"				II	41.66	6.87	7.12	Weathered /	the
											vesicular basalt	Saonegaon
							III	331.36	3.76	10.88	Compact basalt	village
							IV	29.23	2.13	13.01	Fractured Basalt	falling in the
							V	72.02	40.22	53.23	Basalt	basaltic
							VI	48.44	43.39	96.62	Basalt+Bole	formations.
							VII	41.66			Basalt	

SI. No.	ID	Village /Location	Lat/long	Elevation (m a MSL)	AB/2 (m)	Terrain	Layer No	Resistivity (Ωm)	Thickness (m)	Depth (m)	Inferred Lithology	Remarks
13	VES -13	Khari	78°57'2"	323	250	Gondwana	Ι	5.58	1.43	1.43	Soil	This site is
		Lakhanji	21°15'13"				II	8.98	2.55	3.98	Clay	near Khairi
							III	2.18	8.17	12.15		Lakmaji
							IV	22.67			Sand	Village falling in Gondwana formations as per the borehole data at this village.
14	VES -14	Linga	78°52'46"	338	300	Basalt	Ι	43.42	0.37	0.37	Soil	
	~	8	21°13'3"				II	4.6	0.47	0.84	Clay	-
							III	23.27	10.09	10.93	Vesicular Basalt	-
							IV	447.86	19.24	30.17	Compact Basalt	-
							V	25.82	20.76	50.93	Fractured Basalt	
							VI	37.28			Gondwana ?	
15	VES -15	Ghogli	78°51'14.8"	401	200	Basalt	Ι	18.81	0.68	0.68	Soil	
		-	21°14'30.8"				II	9.77	4.52	5.2	Weathered Basalt	
							III	29.86	21.76	26.96	Fractured Basalt	
							IV	75.2	22.32	49.28	Amy. Basalt	
							V	184.4	24.14	73.42	Compact Basalt	
							VI	11.27			Clay / Bole bed	
16	VES -16	Wathoda,	78°50'56.8"	416	200	Basalt	Ι	4.15	0.48	0.48	Soil	North of this
			21°16'42.7"				Π	8.25	1.09	1.57	Weathered Basalt	village,
							III	146.8	27.61	29.18	Compact Basalt	Gondwana
							IV	33.55	47.25	76.43	Vesicular Basalt	encountered
							V	278.29	42.53	118.96	Compact Basalt	at 85m in
							VI	18.7			Gondwana	Mohgaon and at 116 m at Khapri which is S. Of the village

Sl. No.	ID	Village /Location	Lat/long	Elevation (m a MSL)	AB/2 (m)	Terrain	Layer No	Resistivity (Ωm)	Thickness (m)	Depth (m)	Inferred Lithology	Remarks
17	VES -17	Dorli	78°47'13.6"	397	200	Basalt	Ι	39.51	1.34	1.34	Soil	This site is
			21°15'2.8"				II	15.1	3.92	5.26	Weathered Basalt	nearer to
							III	241.67	12.83	18.09	Compact Basalt	Dorli Village
							IV	33.2	29.38	47.47	Vesicular Basalt	where
							V	298.35	43.15	90.62	Compact Basalt	Gondwanas
							VI	17.75			Clay/Gondwana	are encountered at 125m Depth
18	VES -18	Dorli to	78°45'42.0"	410	200	Basalt	Ι	64.39	0.55	0.55	Soil	This site is
		Tadabori	21°14'59.7"				II	526.36	30.51	31.06	Compact Basalt	nearer to
							III	47.15	31.96	63.02	Vesicular Basalt	Dorli Village
							IV	258.92	38.57	101.59	Compact Basalt	where
							V	18.65			Gondwana	Gondwanas are encountered at 125m Depth
19	VES -19	Pardi	78°47'0.6"	361	200	Basalt	Ι	31.28	2.63	2.63	Soil	Redbole
			21°16'47.8"				II	96.1	33.54	36.17	Compact Basalt	encountered
							III	18.35	35.59	71.76	Fractured Basalt	at 87m depth
							IV	369.18	30.16	101.92	Compact Basalt	in Pardi
							V	25.59			Bole Bed	Deshmukh village
20	VES -20	Deshmukh	78°56'52.6"	341	200	Basalt	Ι	6.74	4.79	4.79	Soil	
		Badduji	21°14'10.3"				II	475.38	22.61	27.4	Compact Basalt	
		Dorli					III	6.1	19.31	46.71	Clay	
							IV	13.27	40.67	87.38	Weathered/Fractured Basalt	
							V	143.16	12.2	99.58	Compact Basalt	
							VI	13.1	T		Clay / Bole bed	1
21	VES -21	Waroda	78°54'19.7"	341	300	Basalt	Ι	5.4	0.59	0.59	Soil	This site is
			21°16'25.6"				II	71.31	2.53	3.12	Compact Basalt	almost lying

Sl.	ID	Village	Lat/long	Elevation	AB/2 (m)	Terrain	Layer No	Resistivity	Thickness	Depth	Inferred Lithology	Remarks
No.		/Location		(m a				(Ωm)	(m)	(m)		
				MSL)								
							III	5.32	7.2	10.32	Weathered/	on the ERT8
											Vesicular Basalt	profile. It
							IV	103.33	29.8	40.12	Compact Basalt	was done to
							V	3.5	29.89	70.01	Clay/Bole +	cross check
											Vesicular/jointed	the data and
											Basalt	the
							VI	36.68			Gondwana	subsequent
												interpretation

3.2.2.2 Electrical Resistivity Tomography (ERT)

The central objective of the ERT is to decipher the disposition of the intertrappeans, and vertical contact of basalts and underlain Gondwana formation, which are thought to be potential aquifer zone. To meet the objective of the proposal, a joint inversion includes High Resolution Seismic (HRS) and Electrical Resistivity Tomography has been planned to cover a common profile of about 15 km in North-South direction (Fig. 3.20a, and 3.20b).

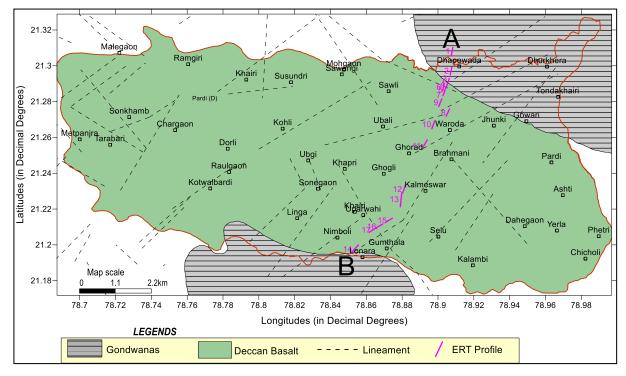


Fig.3.20a. Joint inversion profile orientation (A-B) in Chandarbhaga Watershed (WGKKC-2)

Fig.3.20b. Fixing of end points 'A' (north) and 'B' (south) for proposed line in the presence of NGRI, CGWB and NEERI staff at Nagpur study area

The field survey plan to cover the profile A-B (Fig.3.20a) of about 15 km line was finalized by NGRI Scientists in the presence of CGWB, Central Region, Nagpur officials (Fig.3.20b). ERT points (Table 3.4) have been followed the proposed line with maximum possible extent. Few windows between the ERT profiles were left due to the inaccessibility or transport lines such as roads, railway tracks etc.

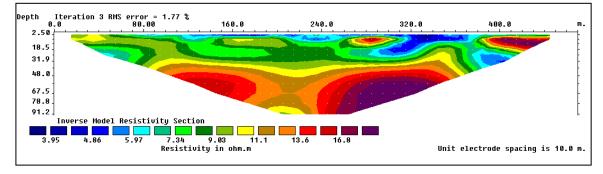
ERT No.	Longitudes	Latitudes	Terrain
'A' Point	78.90956	21.30989	Gondwana
ERT1	78.90797	21.30811	Gondwana
ERT2	78.90729	21.29717	Gondwana
ERT3	78.9063	21.29285	Gondwana
ERT4	78.9052	21.28977	Gondwana
ERT5	78.90393	21.28667	Basalts
ERT6	78.90302	21.288	Basalts
ERT7	78.90289	21.28356	Basalts
ERT8	78.9055	21.27381	Basalts
ERT9	78.90137	21.27947	Basalts
ERT10	78.89746	21.26725	Basalts
ERT11	78.892	21.25522	Basalts
ERT12	78.8811	21.23115	Basalts
ERT13	78.8794	21.22542	Basalts
ERT14	78.85337	21.19761	Basalts
ERT15	78.87264	21.2136	Basalts
ERT16	78.86678	21.21023	Basalts
ERT17M	78.8637	21.20835	Basalts
'B' Point	78.85136	21.19556	Gondwana

Table 3.4: Locations of ERT with their geo references and type of geology, in Chandrabhaga Watershed (WGKKC-2).

The field geology along the proposed line shows basaltic terrain with Gondwana formation exposed to surface as patches in the north and south of the study area. In the basaltic terrain the black cotton soil admixed with calcret (lime) and chert (silica) were observed. Based on the dug well cuttings existing along the proposed line A-B, the sequence of the soil profile from top to bottom as > top soil > weathered basalt > vesicular basalt (mostly amygdaloidal silica filled) > massive basalt > intertrappeans with white clay. Vesicles in the basalts are filled with well-developed crystal form of silica called as Geoids.

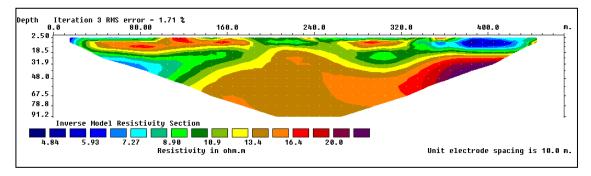
The field environmental condition shows dry top soil, post harvested agriculture lands, tractor ploughed lands, patches of orange and sugar cane forms, barren land. Mostly flat topography was found with gentle slope towards north. The average atmospheric temperature is noted 47° C. During the fieldwork, the geological and hydrological evidences such as rock

sample collection from well cuttings and groundwater water table measurements were noted to enhance the precision of geophysical data interpretation.

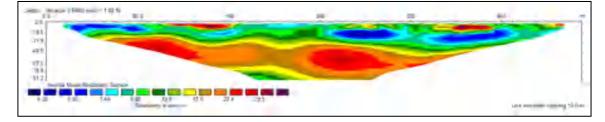

A total of 17 ERT profiles have been carried out using Wenner Schlumberger configuration with the help of Syscol Jr Switch 48 Meter (France make). The ERT profiles were performed in N-S orientation where 1st electrode at north and 48th at south is followed. The accuracy of the instrument was verified with other instruments of Super Sting and IGIS which matched closely, hence it is proceeded the data acquisition to accomplish the target. The geo coordinates were noted for each electrode of field lay out. The details of the each ERT profile is discussed as below.

ERT 1 & 2

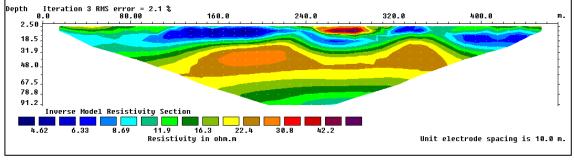
This ERT 1 is carried out in the north at 'A' point, located 600 m north of the Dhapewada village and north of the Chandrabhaga River. The orientation of profile is as 1st electrode at south and 48th at north. Geologically this area belongs to Gondwana formation (Sandstone). Flat topography, loose dry surface with ploughed land post harvested open farm land. Black cotton soil (clay) mixed with coarse sand. Dug well cutting (5m east of 12th electrode) indicates ground water level 8m bgl. ERT 2 is carried out in the south of the Dhapewada village (south of Chandrabhaga River) belong to Gondwana formation. The area shows flat topography, black cotton soil, dry loose surface, post harvested farmland and orange farm. Depth to water level is noted 20 m bgl.


ERT 3

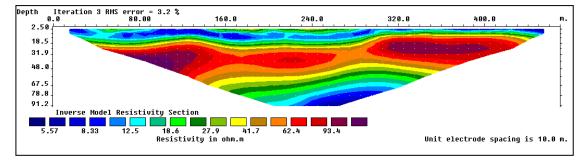
The profile is performed in the south of Dhapewada village. Gondwana formation, black cotton soil were found. Ground water level was recorded 18 m bgl.


ERT 4

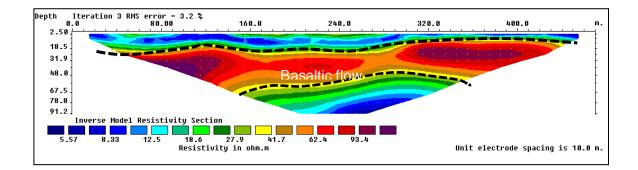
It is carried out in the Gondwana formation. This profile's 1-12 electrodes overlaps 37-48 electrodes of ERT 3. Top soil as black cotton soil, loose dry soil with ploughed land, flat topography is found in the area. Dug well found at 40m in the east from 40th electrode. Water level in dug well is found 12m depth, even long duration of pumping no change in ground water level variation was found indicates potentiality of the well.


ERT 5

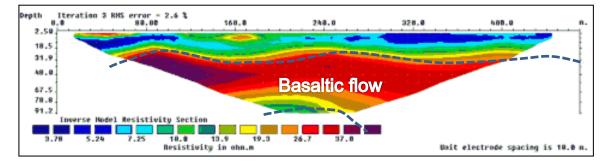
The area belongs to basaltic terrain. Dug well cuttings (40m in the west from 30th electrode) shows basaltic traps with two different flows separated with intertrappeans (white clay material). Probably the top flow is composed of compact massive basalt up to 10m depth followed by 30-60cm intertrappeans. Ground water level in the dug well is found 13.4 m bgl. As per farmer's information the well get empty within two hours using 3HP pump.


ERT 6

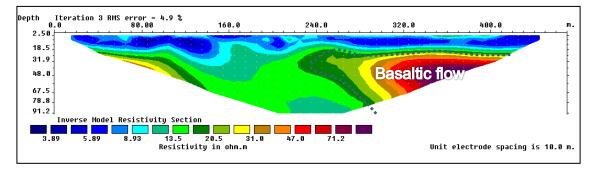
It is carried out parallel to ERT 5, 80m in the western side close to the dug well south of Dhapewada village. This area belong to basaltic terrain as dug well cutting of shows top black cotton soil with calcret up to 1.5 m depth followed by massive basalt up to 10 m depth. Below massive basalt a thin layer of intertrappeans (~1m thick) with white greyish mostly clay is noted below which weathered vesicular basalt and amygdaloidal filled with mostly silicate and occasionally calcite is recorded in the dug well cutting. Ground water level is 13.4m bgl in the dug well.


ERT 7

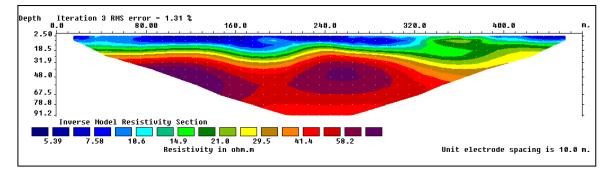
It is performed in the south of Dhapewad village. The survey land is post irrigated, dry loose soil with calcret belong to basaltic terrain. This profile's 1-12 electrodes are overlapping the 37-48 electrodes of ERT 5. A Dug well is observed at 4 m west from 20th electrode. The dug well cutting shows top loose soil, lined up to 2.5 m depth below which weathered and semi weathered basalt is noted. Ground water level in the dug well is recorded 13m bgl but as per farmer's information 7HP pump runs 4 hours then then the well recovers within two hours. Well casing is up to 7m bgl. The Weathered basalt is further noted below 7m depth.


ERT 8

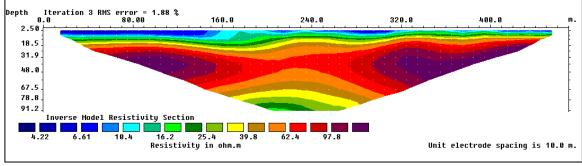
This profile is carried out in the north of Waroda village. The ERT point is performed over the Dr. S. N. Rai's P7 ERT profile (Current Sc. Jour) in the same orientation. The area belongs to basaltic terrain with black cotton soil, dry loose soil admixed with clacrete particles. The ERT 8 profile is ~800m shifted towards east hence not falling in the A-B proposed line of survey. Dug well (4m west of 5th electrode) cutting shows up to 30m depth (total depth) compact basalts. Below 30m occurrence of intertrappeans is recorded. Excavated well material shows vesicular and compact basalt. Ground water level in the well is noted 10m bgl. As per farmer's information, 3 HP pump will empty the well within one hour 3 hour well recovers in 3 hours. To get lateral connectivity the well has been horizontal drilling to 3 directions in the well to increase the well yield. The trend in the P7 image of S. N. Rai is approximately matched with the ERT 8 but resistivity range is noted low in ERT 8 (Wenner Schlumber array) in comparison with P7 (Wenner array). Hence, it is also assured that the Syscol instrument is functioning.


ERT 9

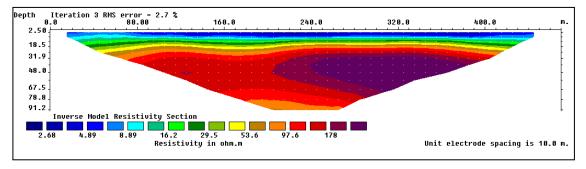
This profile is carried out in the south of Dhapewada village and continuation of proposed line of survey from ERT 7. The area belong to basaltic terrain with black cotton soil admixture with calcret and chert. Flat topography, dry loose surface, post harvested farm land with tractor ploughed. Dug well (20 m west of 48th electode) cutting shows Quaternary medium up to 10m depth due to the reverine/alluvium deposit of Saptadhara River passing (W-E) nearby 30 m south of the 48th electrode. Weathered basalt is noted below 10m depth. Ground water level in the dug well is noted 13m bgl. Saptadhara River is found close to mature stage since it shows 10-15m thick sediments deposited over the banks. It might have spread up to 50-30m either side. Hence the resistivity is noted low up to 15m bgl in ERT 9 image.


ERT 10

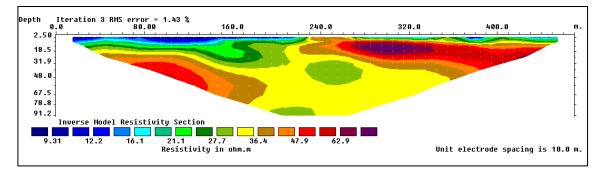
This profile is done in the west of Waroda village belong to basaltic terrain with black cotton soil on top. Flat topography, post harvested farm land with tractor ploughed. Black cotton soil admixed with calcret. Electrode from 16-18 are grounded in the wet (veg. farm) surface. As per farmers information the water striking depth in this area is 17-20m bgl.


ERT 11

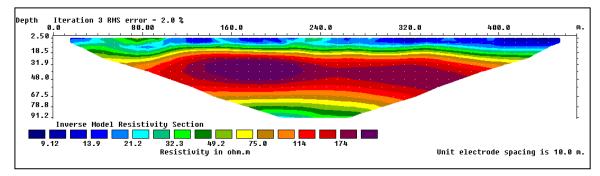
The profile is at north of Ghorad village belong to basaltic terrain. Dug well (3m south of 26 electrode) show ground water level 8m bgl. Weathered basalt up to 10 m depth followed by vesicular and massive basalt observed in the well cuttings excavated material.


ERT 12

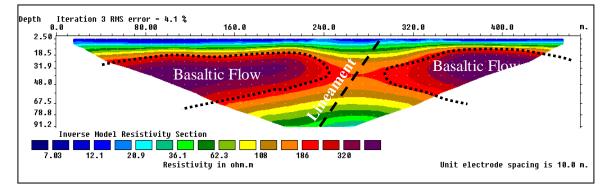
It is carried out in the southwest of Kalmeshwar town belong to basaltic terrain. Massive basalt start at 4-5m depth. Above massive basalt, vesicular basalt with well-developed crystallized Geo is noted in vesicles.


ERT 13

It is carried out at Sawangi village belong to basaltic terrain. Dug well 10m from east from 11 electrode shows ground water level 5m bgl. Weathered formation up to 3-4 m followed by vesicular basalt underlying the massive basalt. The area is rich in black cotton soil with calcrete (CaCO₃), ploughed farmland.

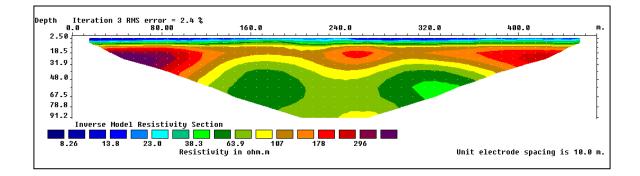

ERT 14

It is performed in the west of Sawangi village, extreme south 'B' point belong to Gondwana formation (Sandstone) (Plate 2A). Well-developed compact sandstone with laminated, bedding planes are clearly visible. The cementing material siliceous. Ground water level in dug well (30 m east of 36 electrodes) is 6 m bgl.


ERT 15

The location of the profile is at west of Gumthala village belong to basaltic terrain. The black cotton soil is dominated with calcrete. Ground water level in the dug well (50m east of 36 electrode) is 3m bgl. Weathered basalt is found up to 4 m depth. Flat topography, dry loose surface with calcrete.

ERT 16


The ERT profile is carried out in the western side of Gumthala village belong to basaltic terrain continuation of ERT. Ground water level nearby dug well (15m SE 3electrode) is 3.5m bgl. It is indicating the fringe zone of basalt and sandstone of lateral variations. It indicates the fringe zone between lateral contact of Gondwana and basalts, shows potential for groundwater. Excavated material of dug well shows top soil + Morrum followed by intertrappeans underlying massive basalt with Geod.

ERT 17

This profile is continuation of ERT 16 belong to basaltic terrain. This profile's 1-12th electrodes overlaps the 36-48th electrodes of ERT16. The excavation material of shows top soil

(1m thick) followed by intertrappeans (white clay) followed by weathered basalt. Black cotton soil mixed with calcrete and chert is found at the survey point. Maximum current sent by the resistivity is noted 400 volts.

The ERT ME 3 and 4 show low resistivity up to 20 Ω m indicating Gondwana sediments that was verified by dug well rock cuttings. Investigated resistivity is found varying in range of 5 to 20 Ω m. However ME14 that falls on other side of the profile reveals completely different resistivity range varying from 10 to70 Ω m. Such differences are a clear indication of either different mineralogical compositions or different hydrogeological set up. Looking at the megascopic hand specimens it is evident that the northern part of Gondwanas consists of mainly coarse grained Ferruginous sandstone. The low order of resistivity might be the result of Fe elements, water contents, water quality, etc. which needs to be further verified. The Motur Gondwana in south is composed of fine to coarse grained sandstone with inclusion of mudstone as seen in the rock cutting in a dug wells. Higher order of resistivity in this portion still need to be understood by more investigations and would be important from the point of groundwater dynamics.

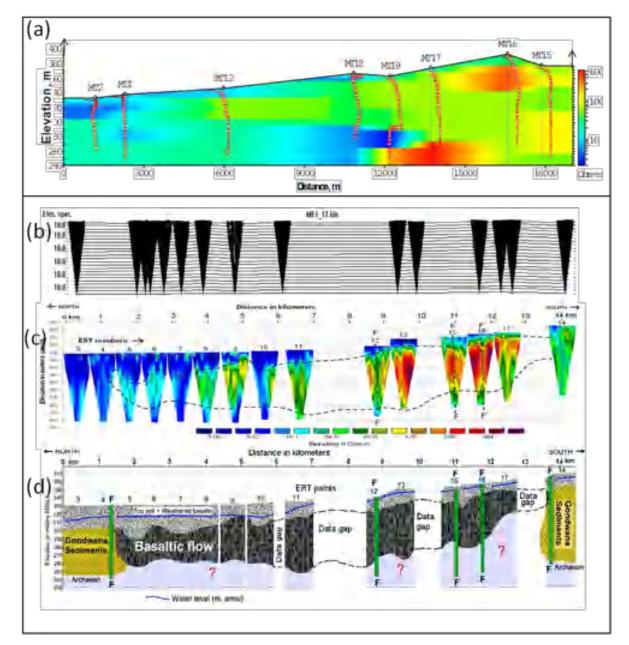


Fig. 3.21 (a) Resistivity image with altitude from TEM; (b) ERT data pattern; (c) ERT image and (d) derived hydrogeological map from showing basaltic flow of N-S profile along AB line

The ERT images, further in south from ERT 5 onward, exhibits basaltic flow pattern as marked by dotted lines lying roughly between 30-80 m depths (ERT 5). Resistivity range, though observed low, indicates increasing trend towards south and reaches up 400 Ω m. theoretically such flow is expected to be continuous. However, observed low resistivity breaks within the ERT profile over basaltic terrain could be inferred as weak zone as an indicative of lineament. Occurrence of such lineaments could be taken as associated potential groundwater bearing zones. The inferred lineaments are marked in the respective ERTs.

3.2.2.3 Ground Transient Electromagnetic (TEM) methods

Transient Electromagnetics, (also Time-Domain Electromagnetics / TDEM), is a geophysical exploration technique in which electric and magnetic fields are induced by transient pulses of electric current and the subsequent decay response measured. TEM / TDEM methods are generally able to determine subsurface electrical properties, but are also sensitive to subsurface magnetic properties. TEM/TDEM surveys area very common surface EM technique for mineral exploration, groundwater exploration, and for environmental mapping, used throughout the world in both onshore and offshore applications. Two fundamental electromagnetic principles are required to derive the physics behind TEM surveys: Faraday's law of induction and Lenz's Law. A loop of wire is generally energized by a direct current. At some time (t_0) the current is cut off as quickly as possible. Faraday's law dictates that a nearly identical current is induced in the subsurface to preserve the magnetic field produced by the original current (eddy currents). Due to ohmic losses, the induced surface currents dissipate this causes a change in the magnetic field, which induces subsequent eddy currents. The net result is a downward and outward diffusion of currents in the subsurface which appear as an expanding smoke ring (Nabighian, 1979) when the current density is contoured (Nabighian and Macnae, 1991). These currents produce a magnetic field by Faraday's law. At the surface, the change in magnetic field (flux) with time is measured. The way the currents diffuse in the subsurface is related to the conductivity distribution in the ground (McNeill, 1980). When conductive bodies are present, the diffusion of the transients is changed. In addition, transients are induced in the conductive bodies as well (NGRI, 2014).

NGRI has carried 99 Ground TEM using TEM fast 48 HPC system & TerraTEM with 40m x 40m loop size, 1 and 4 A current. The representative TEM plots generated have been presented in **Annexure-IV**.

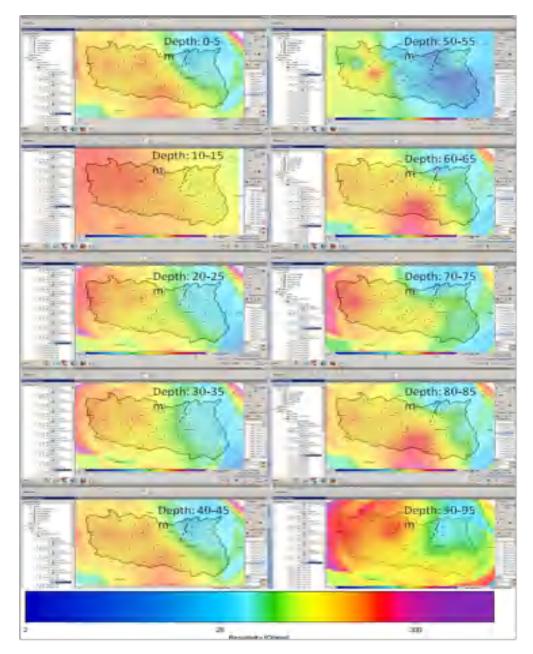


Fig. 3.22: Mean resistivity maps at different depth, Chandrabhaga Watershed (WGKCC-2)

Hydro-geophysical thematic maps are prepared representing mean resistivity distribution for depth interval 0-5 m, 10-15 m, 20-25 m and so on upto 80-90 m depths (Fig. 3.22). This shows the change in the resistivity pattern as an effect of lithological /hydrogeological changes. The Gondwana in the NE appears to be of low resistivity compared to Basaltic terrain. Even within the NE zone resistivity varies with depth e.g. resistivity around 25 Ω m at 0-5 m depth changed to around 80 Ω m at 10-15 m depth and reaches back to 25 Ω m at 20-25 m giving a layered model. It is important to note that the above themes are prepared with the sparse data network for demonstration purpose only. Its full utilization will be done after SkyTEM survey to clearly demarcate the lithological and hydrogeological interfaces and units etc precisely.

3.2.2.4 Geophysical Inferences by NGRI

Geophysical investigations VES, ERT and TEM have been carried out in the study area covering the northern Gondwana (Kampthi), Trap covered Gondwana and southern Gondwana (Motur).

In northern Gondwana, VES technique is able to delineate between different Gondwana litho-units like compact sandstone (~400 Ω -m) and shale (~20 Ω -m). ERT investigations showing single layer of low resistivity but failed to delineate between shale and sandstone. TEM is able to delineate various litho-units up to shallow depth (~90 m) which is further correlating with electrical logs.

In the trap covered Gondwana VES method has successfully distinguished the Trap-Gondwana contact, however, it is unable to distinguish between successive lava flows separated by bole beds. ERT shows significant signatures of structural controls like lineaments and also layered nature of flows could be delineated. But difficult distinguish between two successive lava flows. TEM provides significant information of shallow depth up to 50 m bgl. Gondwana occurring in southern part (Motur) shows high resistive values as compared to Gondwanas found in NE part which is observed in ERT and VES surveys. The reasons for high resistivity formation could be due to the mineralogical composition and grain size. ERT fails to delineate between the different litho units of Gondwana.

The ERT investigation shows that in basaltic terrain the low resistivity up to 60 Ω -m is attributed to the vesicular basalt followed by massive basalt with resistivity range 60-125 Ω -m. But in Gondwana formation the resistivity of saturated sandstone falls in the range of 18-35 Ω -m.

A) Comparative analysis of Litholog vs. VES, TEM, ERT

Correlation of TEM with the Geophysical log and Litholog at Dhapewada

TEM sounding has been varied out using a 40 m × 40 m loop close to Dhapewada (Fig. 3.23). The layered inversion indicates top layer (soil) of 2.3 m thickness having approximate resistivity of 567 ohm-m. Further below a low resistivity formations (<8 ohm-m) up to a depth of 35 m was noted. The resistivity and depth are well resolved. Subsequently, we have resistivity increasing up to 35 ohm-m at a depth of 133 m. The thin red bole (5 m and more) beds at a depth > 50 m are not reflected distinctly in the TEM model. However, the low resistive formations (typical Gondwana, bole beds) throughout the 90 m depth (bgl) in the litholog are in agreement with the TEM response. The E-log at the site also indicates almost uniform response of 10-20 ohm-m throughout the 100 m depth (bgl) and the TEM is in agreement with the E-log response. A comparison of the TEM response, E-log and litholog at the site indicates that E-log

and TEM response are indicating low resistivity formations upto 90 m and it is reflected in the litholog (Fig. 3.24). Beyond 90 m, the TEM response indicates resistivity of 35 ohm-m and it is not resolved fully. It needs to be mentioned that with the 40 m by 40 m loop, the depth of investigation will be typically 80 m - 120 m and hence the resolution suffers at greater depth.

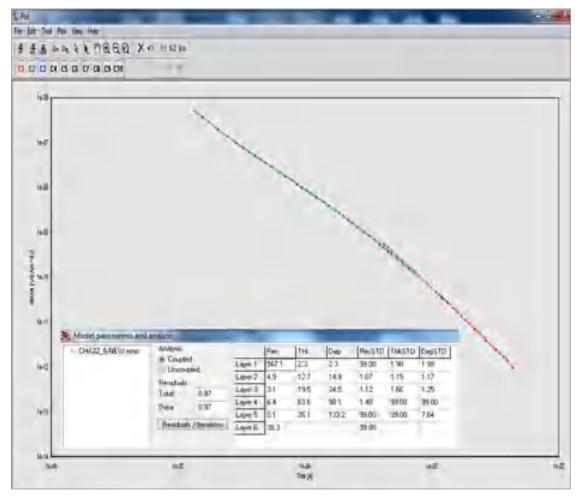


Fig. 3.23: Decay curve of TEM and inverted layers at Dhapewada, Chandrabhaga Watershed (WGKCC-2)

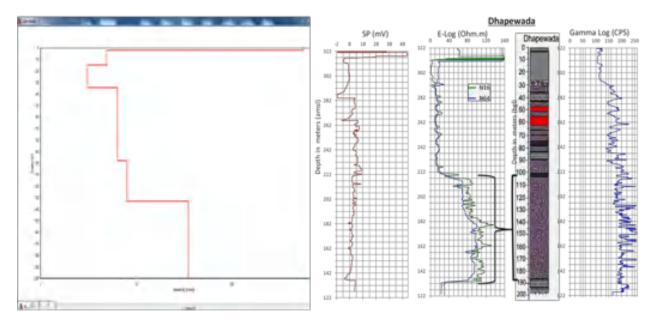


Fig. 3.24: Layered model from Dhapewada, Geophysical log and Litholog, Chandrabhaga Watershed (WGKCC-2)

Correlative study at Raulgaon:

At Raulgaon the 1D investigations (VES 3) has shown the top layer resistivity ranges from 110 to 400 Ω -m attributed to various litho units of vesicular and massive basalts up to a depth of about 26 m bgl. Further below, the low resistivity 20 Ω -m for considerable thickness indicates the bole bed of about 25 m and weathered vesicular basalt of 8 m up to a depth of 71 m bgl. A thick layers of 72 m bearing the resistivity of about 80 Ω -m can be attributed to massive basalt and bole bed up to a depth of 135 m bgl (Fig. 3.25). Beneath 135 m bgl, the resistivity drops to 10 Ω -m corresponding to Gondwana rocks.

The correlation of ID sounding with drilling lithologs reveals that the VES is able to decipher the Trap-Gondwana contact. It is also observed that VES tool is unable to distinguish the two consecutive lava flows separated by bole beds. It could be due to the equivalence problem where different layers having different resistivity generate same electrical field on the surface.

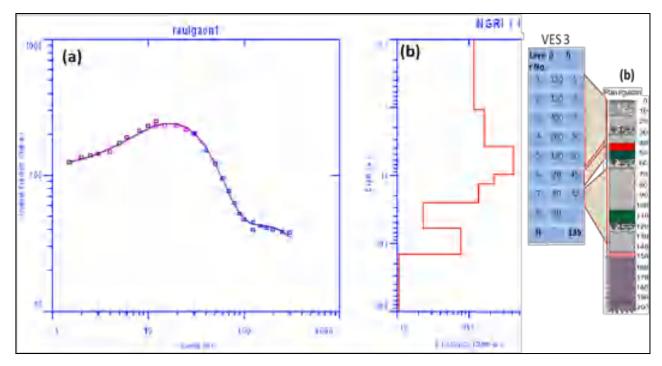


Fig. 3.25:(a) VES 3 curve, and (b) Drilling lithologs at Raulgaon village, Chandrabhaga Watershed (WGKCC-2)

Correlative study at Waroda:

A typical sounding undertaken at a Waroda village where ERT is also undertaken (ERT8) is presented here for a comparison. The sounding data has been collected with AB/2 spacing of 300m. The data has been stacked 4 times to check the repeatability. The data has been interpreted using the IX1D software (version 2.08). The sounding location is in the area characterized by basalts. The interpreted geolectrical model (Fig. 3.26) indicates 100 ohm-m varying from 10m to approximately 50m, which is followed by lower resistivity 5 ohm-m (extending up to 100m). The non-availability of litholog near the sounding location makes a direct comparison with the sounding date difficult. However, the high resistivity zone of approximately 100 ohm-m (10m to 50m) approximately matches the high resistivity zone, which can correspond to the basalt flow. As in the ERT8, the high resistivity zone is underlain by lesser resistivity continuing from 50m to 100m. Unlike the ERT8, the VES not able to completely resolve the low resistivity vescicular formations from the massive basalts.

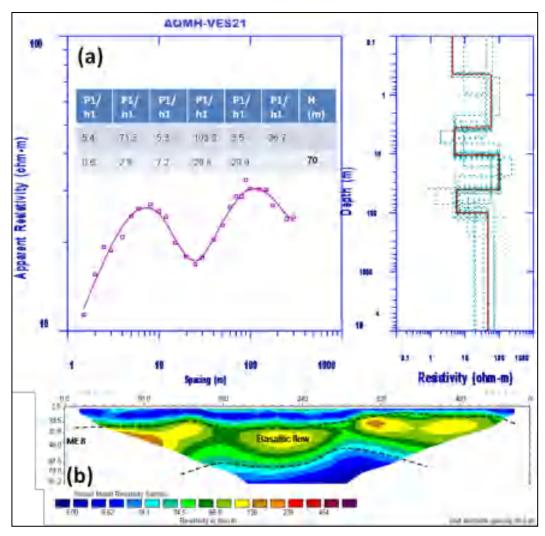


Fig. 3.26: Integration of **(a)** 1D sounding (VES-21) and **(b)** 2D profiling (ERT 8) at Waroda village, Chandrabhaga Watershed (WGKCC-2)

front of temple LHS to
is same
e turning unpaved road at hill
road 400 m inside

Table 3.5: Location details of TEM in Chandrabhaga watershed (WGKKC-2)

Longitude	Latitude	TEM ID	Sample code	Village Name	Elevation (m)	Soil type	location details
8.76386	21.27458	T18	CHA 18	Pardi deshmukh lake	377	Lake side bold like basalt on surface very	
				side		less sand on bank	
78.90642	21.29342	T19	CHA 19		334		
78.90514	21.28972	T20	CHA 20		335		
78.90514	21.27364	T21	CHA 21		342		
78.90881	21.29919	T22	CHA 22		340		
78.90722	21.29653	T23	CHA 23		337		
78.90397	21.28672	T24	CHA 24		337		
78.76622	21.27789	T25	CHA 25	Padri Deshmukh	365		
78.86783	21.19878	T26	CHA 26	Gumthala Village	370		
78.84836	21.19653	T27	CHA 27		363		
78.88653	21.20372	T28	CHA 28		369		Towards linga village LHS of the road just adjesent to Mr. Agrawal tike wood farm
							about 300 acre No power lines till 300 m
78.81514	21.20136	T29	CHA 29	Linga before hill area	376	Before boundry line of Gondwana trap	Approx 400 to 450 m away from high tention line on barren land, and approx 110 to
						Barren land, bold like basalt on surface	140 m away from the domestic electric line
						Weathered with yellow colur soil	
78.78939	21.24114	T30	CHA 30	Rahulgaon barren land	406	Barren land, Red colour with bold like	In cotton farm, from loop approx 500 + m away from high tention line and approx 100
				LHS before village T		basalt on surface Weathered and massive	m away from the domestic electric line
				point		black basalt in well	
78.86275	21.19411	T31	CHA 31	Lonara village near	359	black cotton soil	No electric as well as high tenshition line near by. On the way to gumthala RHS before
				poltry farm			nala
78.89306	21.20647	T32	CHA 32	selu after the village	351	black cotton soil near nala	After sawangi village LHS of the road approx 200 m in side from main road, 100 + m
				towards gumtala -			electric pole near orange farm
				lonara road end RHS			
78.87478	21.21544	T33	CHA 33	Sawangi before	345	Black cotton soil	Cotton farm Mr. vastant sakhare, nala is near by approx 50 m away from loop, no
				jagdamba mil			electric poles near by
78.86042	21.22089	T34	CHA 34	Uparwahi after village	348	black cotton soil	Mr. Bhimrao Khandekar farm, cotton and soyabean farming, approx 2 km from khari
				near kabrasthan			to sonegaon road, 300 m no electric line and any vihiculer movment
78.83344	21.22083	T35	CHA 35	mid of linga and	368	black cotton soil with bolt	Near camp of rajasthani people near by dargaha, approx 600 m barren land no
				sonegaon LHS 300 m			electric poles near by 200 m

Longitude	Latitude	TEM ID	Sample code	Village Name	Elevation (m)	Soil type	location details
				away from road side			
78.80858	21.23756	T36	CHA 36	Pohi gond Khairi	375	Barren land, Red colour with bold like	after dorlli village beside school on RHS of very long exposed black besalt rock terren,
						basalt on surface Weathered	approx 700 m from dorlli village and approx 500 m away from high tenstion line
78.77333	21.24283	T37	CHA 37	Dorlli RHS Mukund	401	Barren land with bold like basalt hill slope	Orange farm, approx 100 m away from electric pole, no electricity that time, well
				baba road			containg till 6 m bolted shape loose rock formation, near by nala having rade yahoow
							colour kampthi sand stone approx 200 m from loop
78.80247	21.18997	T38	CHA 38	Linga before nala	374	bolted shape of white colour rock of	near weat farm before sonegaon village electric poles 100 +m away from loop
				orange farm		gondwana	
78.82961	21.22756	Т39	CHA 39	Sonegaon after linga	366	black cotton soil	approx 200 m away from electric pole, from khari to sonegaon on RHS. Near orange
				village approx 876 m			farm
78.84664	21.22169	T40	CHA 40	khari and sonegaon mid	364	black cotton soil and litil bit bolt of black	approx 100 m away from electric line, toward paper mill after orange farm very small
				CHA 34 and CHA 35		besalt	unpaved local road, before cotton farm and orange farm survey has done
78.86322	21.23622	T41	CHA 41	Ghogli village	351	Black cotton soil	Approx 150 m away from DP box, and approx 500 m from high tenstion line of Fetri
							village. In side the Mr. Thakur farm, no culivation seens 2 year, before that cotton
							farming had done
78.97494	21.18844	T42	CHA 42	Chicholi village after	363	black cotton soil	near by Stone crusher, in front of exposed besalt rock on hill side
				fetri to wadi outer road			
				LHS			
78.94703	21.18378	T43	CHA 43	Sahuli village from fetri	360	black cotton soil	Near CMPDI drilling site where Gondwana stuck at 90m.
				to ketapar road			
78.91061	21.19508	T44	CHA 44	Kalambi Village	351m	black cotton soil	In barren land on LHS road towards Kalambi from Selu. Electric pole 100m and above .
							Open well near the site.
78.90294	21.20125	T45	CHA 45	Selu village	357m	Barrel land	In barren land On RHS road towards Khapri, Behind the factory
78.89211	21.19481	T46	CHA 46	Sellu Village	352m	Barren land	
78.81331	21.23122	T47	CHA 47	Pohi gond Khairi Village	359m		
78.80903	21.21431	T48	CHA 48	Linga Village	374m		approx 200m from transformer
78.79525	21.23431	T49	CHA 49	Near Raulgoan	381m		In farm near cricket ground, electric pole is approx 100 m and above
78.77364	21.22986	T50	CHA 50	Near Raulgoan	406m	Black Cottan soil	In Orange farm, approx 100m away from electric pole on south. Small cements stacks
							(without wire loop) on all side of farm.
78.87278	21.20961	T51	CHA51	Uparwahi, Kothari Farm	352m	Black Cotton Soil	In Orange farm on road towards Lonara from Uparwahi. approx 100m away from

Longitude	Latitude	TEM ID	Sample code	Village Name	Elevation (m)	Soil type	location details
							electric pole on south.
78.8555	21.20919	T52	CHA52	Uparwahi, Badage Farm	365m	Black Cotton Soil	Paytode farm on RHS road towards Niboli village. Behind farm house, nearby electric
							pole is approx 100m from site.
78.84617	21.21056	T53	CHA53	Nimboli (Gadkari),	350m	Black Cotton Soil	An orange farm on LHS of road towards Linga from Kalmeshwar. Nearby electric pole
				Paytode farm house			is approx 150m above
78.82686	21.21128	T54	CHA54	Linga Village	362m	Black Cotton Soil	An barren land beside new basti of raulgoan. Electric pole on approx 150m above
78.78203	21.23847	T55	CHA55	Raulgoan New Basti	400m	barren land	A farm on RHS of Road to sawangi from Selu. Electric pole is on north side approx
							100m.
78.88525	21.21017	T56	CHA56	Sawangi Village	355m	Black Cotton Soil	A farm on LHS road towards uparvahi from Lonara. Near Lonara village Electric pole on
							North side approx 150m and above.
78.85686	21.19806	T57	CHA57	lonara village Surendra	365m	Barren Land of farm	Barran land on RHS on Lonara - Uparwahi unpaved road. Electric pole is approx 150m
				Mahalle farm			and above.
78.85689	21.20383	T58	CHA58	Lonara Village	359m	Barren Land with black cotton soil	Barren land of village on east side of linga village after canal. High tention line on
							south approx 250m and above.
78.82314	21.20703	T59	CHA59	Linga Village	378m	Barren Land	In barren land on LHS road towards Vajbodi village. High tention line on south approx
							500m and above
78.70744	21.25219	Т60	CHA60	Metpanjara village	424m	Barren land	An barren forest land on LHS road towards Vajboldi village.
78.71019	21.23331	T61	CHA61	Near Vajbodi village	487m	Forrest Land	On barren land behind Tarabodi village. High tention line and on south around 500m.
							Ston
78.71592	21.25508	T62	CHA62	Tarabodi Village	408m	Barren Land,	In farm on LHS of Ashok baba peer road from Chargaon.
78.82314	21.25508	T63	CHA63	chargoan Village, Ashok	422m	Yellow color soil	On forest land after Ashok baba peer near chargoan village
				baba peer road			
78.74525	21.25308	T64	CHA64	chargoan Village, Ashok	450m	Barren land of forest	On barren land after Ganesh thakre farm. An unpaved road towards forest from
				baba peer			Tarabodi village.
78.72275	21.25322	T65	CHA65	Tarabodi Village	413m	Barren land with exosure of black basalt	LHS of the road in front of Tantra Vidyalaya sawangi, the place is belongs to Tantra
						rock	Vidyalaya sawangi

3.3 Sub Surface Information

3.3.1 Ground Water Exploration

Ground water exploration down to the depth of 200 m bgl in the parts of Chandrabhaga watershed (WGKKC-2) has been taken up in the area where the data gap exists and accordingly 16 exploratory wells have been constructed. The major objective of ground water exploration in the study area was

- I. To understand aquifer geometry of the area.
- II. Precise demarcation of Basalt (Hard rock) Gondwana (Soft rock) contact and lateral& vertical disposition of various aquifer layers existing below the surface.
- III. Estimation of various aquifer parameters required for ground water modelling and formulation the aquifer management plan.
- IV. Assessment of ground water quality in various aquifers system occurring up to 200 m depth for ensuring its suitability for various uses.
- V. Estimation of different geophysical parameters by conducting various subsurface loggings for data integration with surface geophysics applied in the area and,
- VI. To draw 3D cross section of the area.

Pinpointing of Sites:

In general, the process of ground water exploration commences with selection of sites in identified data gap for drilling and construction of exploratory wells. As the study area has complex hydrogeological setup thus, 3 exploratory wells in area tapping entire thickness of basalt, 3 exploratory wells in area tapping entire thickness of Gondwana and 7 exploratory wells in area tapping trap (basalt) cover Gondwana and 1 exploratory well in basalt tapping gneissic formation have been drilled and constructed. Beside this 2 observation well have also been constructed at Malegaon and Dhapewara villages for estimation of aquifer parameters of basaltic formation and Gondwana sandstone respectively. Sites for drilling are selected in consultation with the team of geophycist from CGWB and NGRI for ensuring its suitability from data integration point of view. Beside this the drilling operator has also been involved for insuring placement of rig unit considering the accessibility of the site and capacity of rig for drilling and testing operations. The explorative drilling sites/village locations are shown in Fig. 3.27. The detail of ground water exploration is presented in Table 3.6. The well wise drilling details are presented as **Annexure-V**.

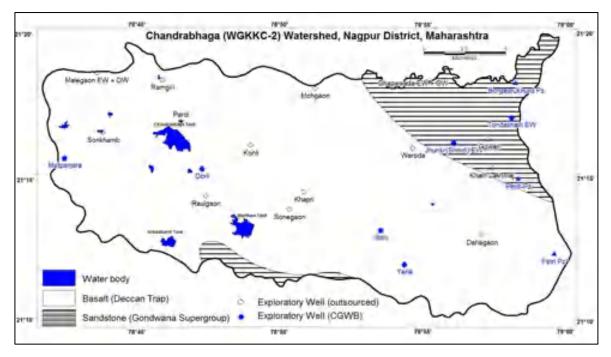


Fig.3.27: Ground water exploration (CGWB and Outsourced), Chandrabhaga Watershed (WGKKC-2)

In Deccan Trap Basaltic formation 6 wells (5 EW & 1 OW) are drilled down to the depth varies from 135 mbgl (Sonegaon) to 200 mbgl (Malegaon). The depth of casing in these wells ranges from 6.00 m bgl to 29.80 m bgl. The ground water potential zones encountered in these wells ranges from 11.10 -11.20 to 160.00 - 161.00 mbgl. The Static Water Level varies from 11.27 mbgl (Sonkhamb) to more than 100 mbgl (Malegaon OW) and the discharge measured ranges from 0.14 to 4.30 lps.

The fractured jointed vesicular basalt and massive basalt when overlain by red or green bole beds of considerable thickness develops semi-confined to confined conditions. Hence, the red or green bole beds acts as a confining layer in basaltic terrain. The bole beds, being clayey in nature, acts as a barrier for downward movement of groundwater. The collapsable red bole occurred at several locations in the watershed i.e. at Pardi (Deshmukh) it was encountered at depth from 87 to 96 & 101 to 104 m bgl, in Ramgiri collapsable red boles occurs at 127 m bgl, while in Sonegaon collapsable red boles and green boles occurs at various depths.

The Gondwana sandstone due to its granular nature constitutes potential aquifer and when it is subjected to tectonic disturbances, the fracture and joints developed increases the yield of well substantially. Four wells (3 EW & 1 OW) are drilled in Gondwana formation down to the depth of 200 mbgl and the maximum discharge measured is 14.88 lps at Gowri. The construction depth of exploratory wells ranges from 149.17 m bgl (Gowri) to 190.63 m bgl

(Khairi lakhmaji). The Static Water Level recorded in exploratory well is varies from 6.01 m bgl (Khairi Lakhmaji) to 12.42 mbgl (Dhapewada OW). The ground water potential zones are ranges from 33.00-39.05 to 174.69 - 186.85 mbgl.

In Trap Covered Gondwana formation 5 wells have been drilled upto the depth of 200 mbgl. The depth of exploratory wells ranges from 151.00 m bgl (Khapri) to 200.00 m bgl (Mohgaon). The Gondwanas were encountered at 133 m bgl in Khapri and at 90.40 m bgl in Mohgaon. The Static Water Level varies from 14.90 mbgl (Waroda) to 78.12 mbgl (Kohli). The discharge ranges from 1.05 lps (Khapri) to 5.94 lps (Mohgaon). The ground water potential zones are ranges from 120.49 - 126.55 to 195.72 - 198.72 mbgl.

The area is traversed by large number of faults. The Basalt-Sandstone contact is observed at various depths varying in the range of 62 mbgl (Waroda) to 195.10 mbgl (Sonkhamb) from east to west of the watershed. Towards eastern part of the watershed the Gondwana sandstone is exposed on the surface, as we moves from east to west the thickness of traps is increasing in the range of 90.40 m bgl (Mohgaon) to 144.00 m bgl (Raulgaon). The deepest Basalt- Gondwana contact is reported at Sonkhamb i e 195.10 m bgl. The contact between Basalt -Achaean Gneiss is reported in the southeastern part of the watershed i.e. at Dahegaon at the depth of 129.95 mbgl.

To estimate the deeper aquifer parameters pumping tests were conducted on seven exploratory wells drilled in the Chandrabhaga watershed. The drawdown recorded during pumping test ranges between 6.34 and 36.97 m, whereas aquifer parameters viz Transmissivity (T) ranging from aquifer in basalts is 30 m²/day (Sonkhamb) and in Gondwana sandstone 15 m²/day (khairi Lakhmaji) to 173 m²/day (Kohli). The storativity (S) of 0.001 is measured at Dhapewada. The site wise plot depicting RDD Vs T/T' are presented graphs as **Annexure-VI**.

Sr. No	Location	Type of Well	Latitude Longitude	RL (m A MSL)	Drilling Depth (m bgl)	Well completi on depth (m bgl)	Casing (m bgl)	Zones (mbgl)	Aquifer	SWL (m bgl)	Disch arge (lps)	Draw down (m)	T (m ² / day)	S	Basalt- Gondwana Contact
1	Pardi (Deshmukh)	EW	21°16'40.2" 78°46'05.7"	381	173	173	6.00	152.00 - 152.55, 160.00 - 161.00	FMB	Filled Up	4.30	-	_	-	-
2	Sonkhamb	EW	21°16'20.1" 78°43'21.1"	411	197.75	197.75	11.20	11.10 - 11.20, 22.60 - 23.00, 76.45 - 79.10, 195.1-197.75	WB & FMB	11.27	5.15	15.43	30.00	-	195.10
3	Sonegaon	EW	21°13'49.0" 78°49'56.0"	358	135	135	12.00	6.00 - 7.00, 14.30 - 15.00	WB & FMB	Filled Up	0.14	-	-	-	-
4	Ramgiri	EW	21°18'04.0" 78°45'27.1"	416	179	179	11.53	7.00 - 8.00	FWB	Filled Up	0.78	-	-	-	172.50
5	Malegaon	EW	21°18'24.9" 78°43'06.7"	518	200	200	17.64	7.00 - 8.00, 127.30 - 129.95	FAB	11.74	1.37	-	-	-	Entire Basalt
6	Malegaon	OW	21°18'25.4" 78°43'06.7"	518	200	200	21.00	7.00 - 8.00, 79.10 - 82.10, 139.00 - 140.00	WB & FMB	> 100	Traces	-	-	-	Entire Basalt
7	Raulgaon	EW	21°14'15.2" 78°46'59.3"	394	200	199.8	59.37	150.34 - 162.45, 174.55 - 198.80	sst	36.52	3.00	12.55	42.83	_	144.00
8	Mohgaon	EW	21°17'47.4" 78°50'51.2"	343	200	200	59.50	144.23 - 162.38, 180.53 - 186.60, 195.72 - 198.72	sst	63.00	5.94	-	_	-	90.40
9	Khapri	EW	21°14'22.8" 78°50'26.9"	359	200	151	60.00	120.49 - 126.55, 134.60 - 140.66, 144.60 - 150.72	WB & FMB	68.00	1.05	-	-	-	133.00
10	Dahegaon#	EW	21°12'58.8" 78°56'43.9"	340	200	200	29.80	14.30 - 16.95, 22.60 - 25.60, 62.15 - 65.15, 116.00 - 118.65	FWB	Filled Up	0.38	-	-	-	# Basalt- Gneiss contact- 129.95

Table 3.6: Salient features of Ground Water Exploration through Outsourcing, Chandrabhaga Watershed (WGKKC-2)

Sr. No	Location	Type of Well	Latitude Longitude	RL (m A MSL)	Drilling Depth (m bgl)	Well completi on depth (m bgl)	Casing (m bgl)	Zones (mbgl)	Aquifer	SWL (m bgl)	Disch arge (lps)	Draw down (m)	T (m ² / day)	S	Basalt- Gondwana Contact
11	Dhapewada	EW	21°18'11.9" 78°54'18.4"	323	200	187.3	78.00	78.00 - 84.05, 114.30 - 120.30, 138.42 - 144.48, 153.53 - 161.58, 173.71 - 185.80	sst	11.47	7.76	15.62	64.82	_	Entire Sandstone
12	Dhapewada	ow	21°18'11.6" 78°54'18.3"	322	200	188.35	78.02	78.02 - 84.07, 114.33 - 120.38, 138.54 - 144.59, 156.52 - 162.60, 174.69 - 186.85	sst	12.42	9.84	6.64	69.60	0.001	Entire Sandstone
13	Gowri	EW	21°16'06.8" 78°56'58.5"	322	200	149.17	33.00	33.00-39.05, 48.10- 60.20, 72.28-78.33, 117.63-123.68, 135.67-147.67	sst	7.90	14.88	7.71	119		Entire Sandstone
14	Khairi Lakhmaji	EW	21°15'10.1" 78°57'05.8"	320	200	190.63	72.00	72.00-84.29, 98.29- 110.44, 128.44- 140.56	sst	6.01	5.94	36.97	15.00	-	Entire Sandstone
15	Kohli	EW	21°15'54.9" 78°48'33.8"	371	200	193.37	96.56	127.64-145.28, 153.28-169.28, 185.28-191.37	FMB & sst	78.12	2.16	6.34	173.00	_	122.00
16	Waroda	EW	21°15'48.8" 78°54'17.4"	349	200	188	98.37	62.00-68.00, 99.00- 117.00, 126.00- 138.00, 164.00- 186.00	sst	14.9	2.16	_	-	_	62

Here- FMB- Fracture Massive Basalt, WB-Weathered Basalt, FWB-Fractured Weathered Basalt, FAB-Fractured Amygdular Basalt sst-Sandstone

3.3.2 Ground water level

To ascertain the long-term behaviour of ground water level in the area, long-term ground water level analysis of CGWB's GWMW located (Fig. 2.7 and 2.18) in the area were conducted.

The hydrograph analysis of GWMW located at Kalmeshwar shows that there is moderate rise of ground water level @ 0.12 m/year and 0.50 m/year for both pre and post monsoon season respectively for the period between 2004 and 2014 (Fig.3.28). While GWMW located at Chargaon shows that there is insignificant to moderate rise of ground water level @ 0.19 m/year and 0.01 m/ for both pre and post monsoon season respectively for the period between 2004 and 2014 (Fig.3.29). However, the shallow piezometer drilled at Fetri in the year 2011 shows insignificant fall in ground water level @ 0.05 m/year in pre-monsoon and significant fall in ground water level @ 0.26 m/year during post-monsoon for the period 2011 to 2014 (Fig.3.30). Hence, to study the ground water level scenario of the area and its long-term behaviour, 58 Key Observation Wells have been established for monthly measurement of ground water levels. The details of well inventory are presented as **Annexure-VII**.

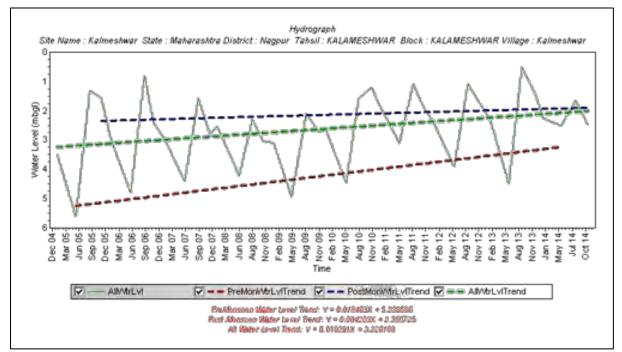


Fig.3.28: Hydrograph of GWMW located at Kalmeshwar (2004-2014), Chandrabhaga Watershed (WGKKC-2)

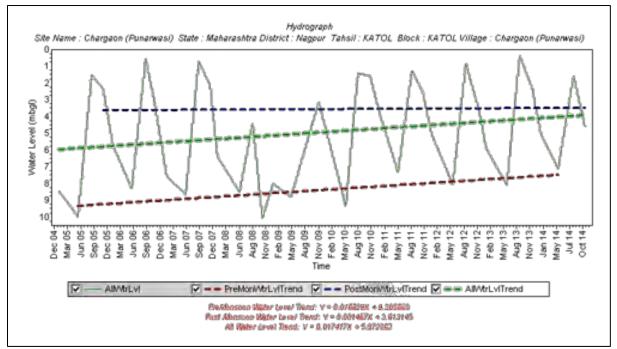


Fig.3.29: Hydrograph of GWMW located at Chargaon (2004-2014), Chandrabhaga Watershed (WGKKC-2)

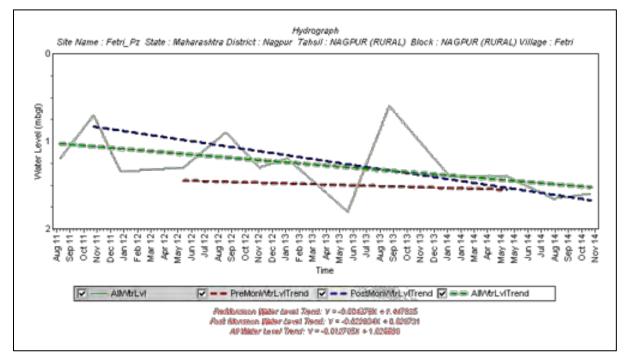


Fig.3.30: Hydrograph of GWMW located at Fetri (2011-2014), Chandrabhaga Watershed (WGKKC-2)

3.3.2.1 Key Well Inventory

As a part of hydrogeological investigation, a total of 120 dugwells were inventoried tapping the unconfined aquifer and all the possible data by measurement and discussion with owner/ user have been recorded in well inventory form for its detailed analysis for various purposes. During well inventory 112 wells tapping Deccan Trap (Basalt) and 8 wells tapping Gondwana group of rocks have been inventoried. The analysis of well inventory data indicates that Basalt and Gondwana sandstone is forming the phreatic aquifer in the study area as described below. The details of well inventory are presented as Annexure-VIII.

- 1. Deccan Trap Basalt: The depth of the wells in Basaltic aquifer ranges from 6.50 to 21.90 m bgl. The weathered and fractured basalt is forming the phreatic aquifer which is normally encountered between 5 and 20 m bgl. In most of the cases the aquifer is tapped between 8 and 14 m bgl with the thickness of 1.00 to 11.00 m, but in majority of wells the aquifer thickness varies between 4 and 6 m. The ground water level in phreatic aquifer ranges from 0.50 to 15.60 m bgl. The yield ranges between 10.80 and 23.40 m³/hr, however in majority of wells it is ranging from 12 to 18 m³/hr.
- 2. Gondwana Group of Rocks: Weathered and fractured feldspathic sandstone of Kamthi and Barakar sub-groups forming the major aquifers in the area covered by soft rocks of Gondwana. The depth of the wells in these area ranges from 10.20 to 22.00 m bgl. The main aquifer is encountered between 3 and 16 m bgl and the thickness of the aquifer ranges from 2.50 to 13 m. The ground water level in these aquifesr ranges from 3.80 to 15.70 m bgl. The yield of this aquifer ranges from 16.20 to 21.60 m³/hr.

3.3.2.2 Weathered Thickness

Based on the well inventory data, depth of weathering map has been prepared and presented in Fig. 3.31. A perusal of Fig. 3.31 Indicates that the depth of weathering increases from west to east and towards the northeastern part it is maximum near to the confluence of Chandrabhaga river with local tributary. Major part of the watershed is having depth of weathering in the range of 3 to 6 m bgl, followed by < 3 m bgl and 6 to 9 mbgl depth range. The weathered thickness contour generated is shown in Fig.3.31.

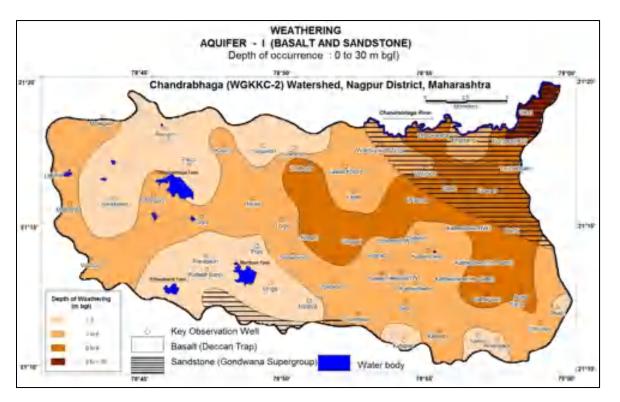


Fig.3.31: Depth of weathering, Aquifer – I (Basalt & Sandstone), Chandrabhaga watershed (WGKKC-2)

3.3.2.3 Ground water level Monitoring

To decipher the ground water level scenario in both time and space, 58 Key Observation Wells (KOW) have been established in the area tapping the unconfined aquifer (Aquifer-I) for monthly monitoring of ground water levels (Annexure-IX). The DTWL of KOW has been analysed for pre-monsoon (May) and post- monsoon for the year 20111, 2012, 2013 and 2014. However, the ground water level of Aquifer – II (Deeper Basaltic and Sandstone aquifer) was available from May-2014 onwards (Annexure-X). Hence, the ground water level of deeper aquifers have been analysed for the year 2014.

3.3.2.3.1 Pre monsoon Depth to Water Level (May) in Aquifer-I

Rocks of both basalt and Gondwana formation are forming the phreatic aquifer in the area, hence the DTWL data for both the aquifers have been analysed. The depth to water levels (DTWL) during May ranges between 5.25 (Gowari) and 16.75 mbgl (Tondakhairi) in the Gondwana formation whereas in the basaltic terrain, it is ranging between 1.7 (Kotwalbardi) and 14.8 m bgl (Kalmeshwar). The perusal of the Fig.3.32a, b, c, d and Fig. 3.33a, b, c, d indicates that in shallow ground water levels in the range of 3 to 6 m bgl are observed as isolated patches in southwestern and northern parts of the watershed. The moderate ground water levels ranging from 6 to 9 mbgl are observed in major parts of the watershed occupying south eastern fringe areas, central and western parts.

Whereas deeper ground water levels in the range of 9 to 12 m bgl and more than 12 mbgl are observed in north eastern and eastern parts of the watershed.

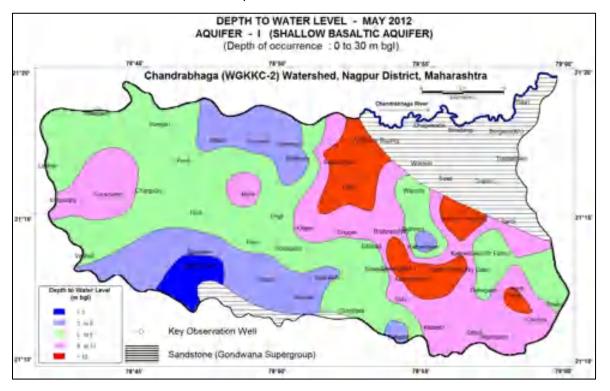


Fig. 3.32a: Pre monsoon Depth to Water Level - BASALT (Aquifer - I), May - 2012

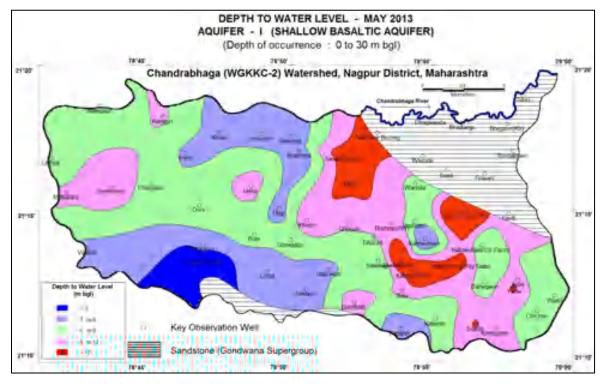


Fig. 3.32b: Pre monsoon Depth to Water Level – BASALT (Aquifer – I), May - 2013

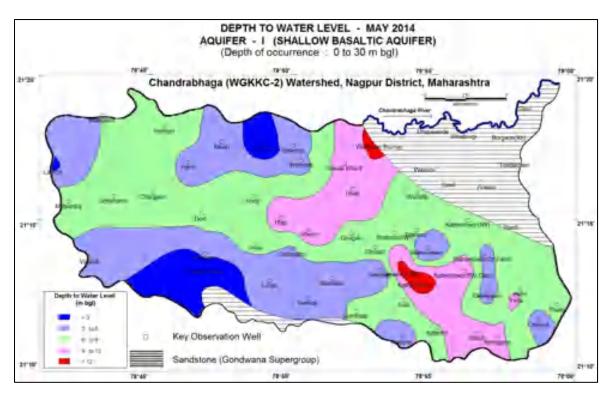


Fig. 3.32c: Pre monsoon Depth to Water Level – BASALT (Aquifer – I), May - 2014

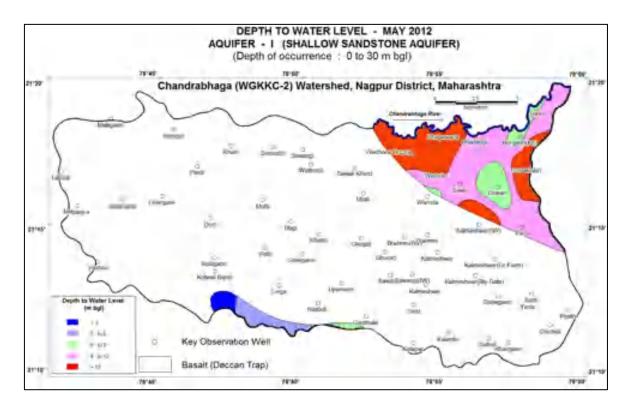


Fig. 3.33a: Pre monsoon Depth to Water Level – SANDSTONE (Aquifer – I), May - 2012

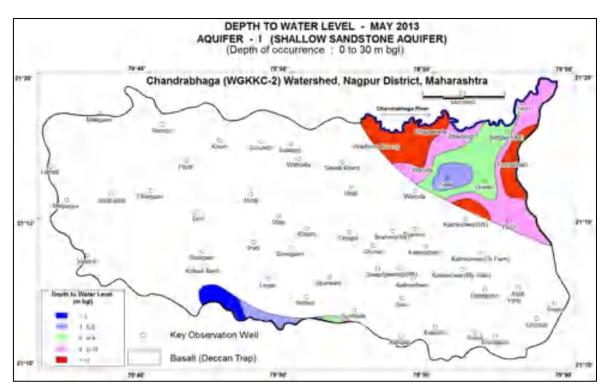


Fig. 3.33b: Pre monsoon Depth to Water Level – SANDSTONE (Aquifer – I), May - 2013

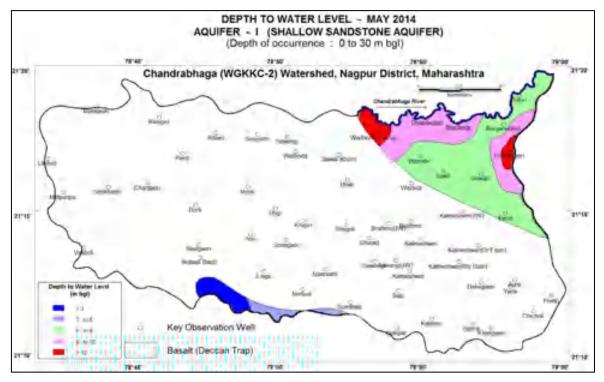


Fig. 3.33c: Pre monsoon Depth to Water Level – SANDSTONE (Aquifer – I), May - 2014

3.3.2.3.2 Post monsoon Depth to Water Level (November) in Aquifer-I

The depth to water levels during November ranges between GL (Dahegaon) and 14.3 mbgl (Tondakhairi) in the Gondwana formation whereas in the basaltic terrain it is ranging between 0.60 – (Vasboli) and 15.7 mbgl (Brahmni). The perusal of the Fig.3.34a, b, c, d and 3.35a, b, c, d indicates that in southern, western and central part of the watershed the ground water levels are shallow and

ranging from 0 to 6 mbgl. The ground water level in the range of 6 to 9 m bgl is observed in the north eastern part of the watershed, whereas the deeper ground water levels 9 to 10 m bgl has been recorded in village Wadhone BK, Ghorad, Brahmni in central part of the area.

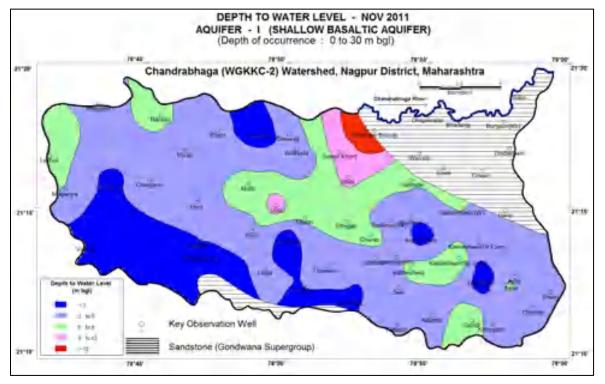


Fig. 3.34a: Post monsoon Depth to Water Level - BASALT (Aquifer - I), November-2011,

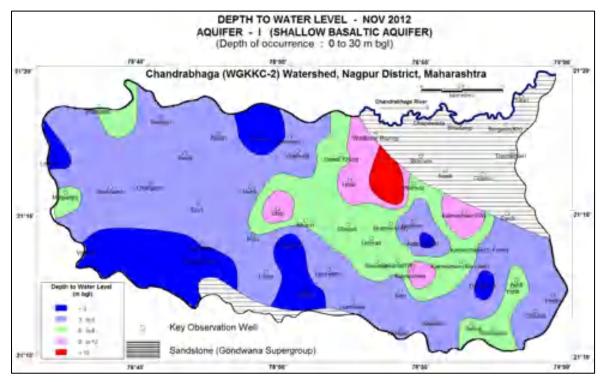


Fig. 3.34b: Post monsoon Depth to Water Level - BASALT (Aquifer - I), November- 2012

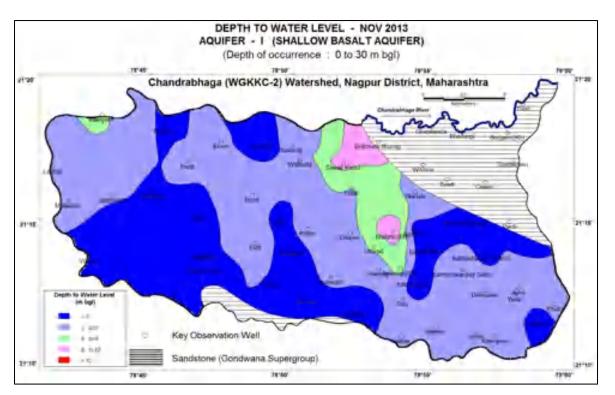


Fig. 3.34c: Post monsoon Depth to Water Level - BASALT (Aquifer - I), November-2013

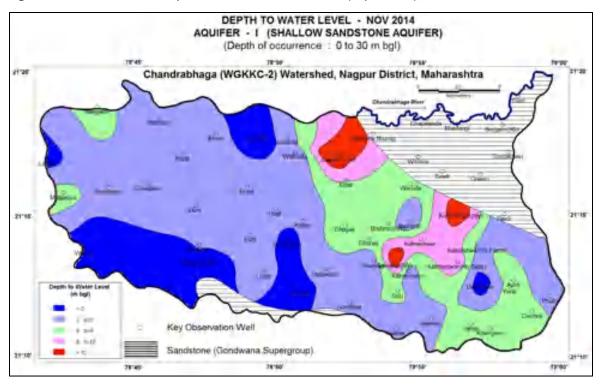


Fig. 3.34d: Post monsoon Depth to Water Level - BASALT (Aquifer - I), November-2014

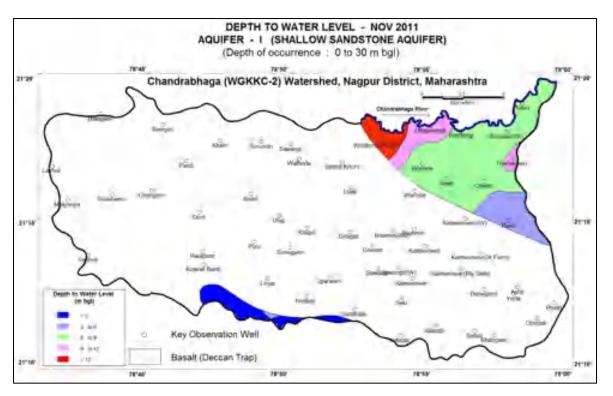


Fig. 3.35a: Post monsoon Depth to Water Level - SANDSTONE (Aquifer - I), November-2011

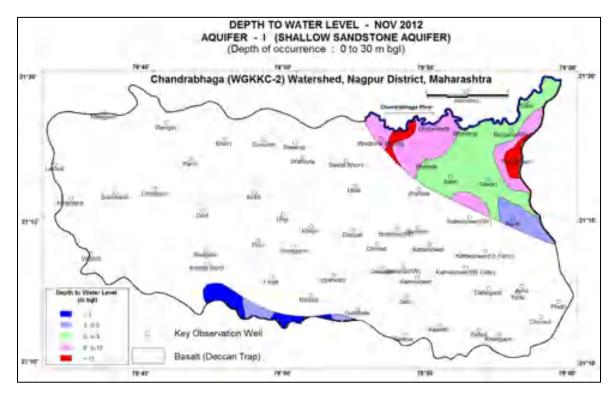


Fig. 3.35b: Post monsoon Depth to Water Level - SANDSTONE (Aquifer - I), November-2012

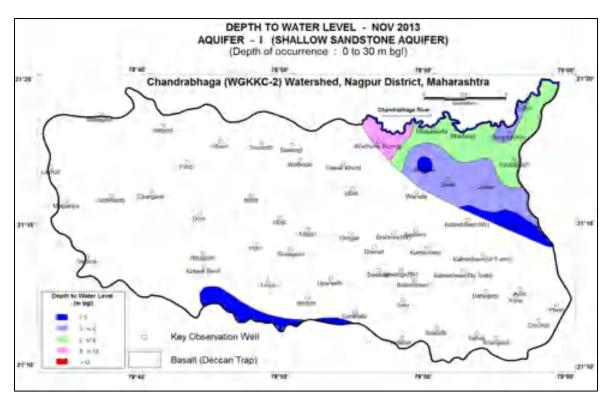
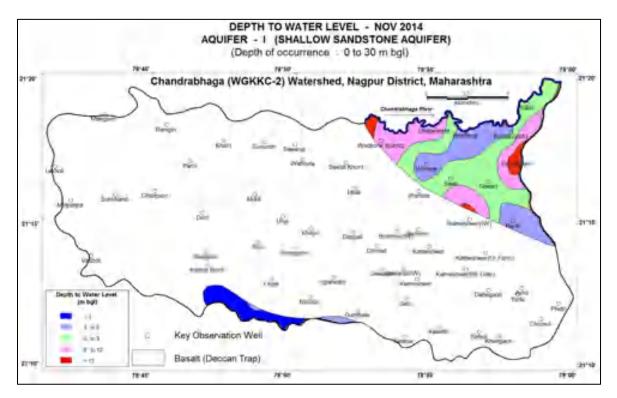



Fig. 3.35c: Post monsoon Depth to Water Level - SANDSTONE (Aquifer - I), November-2013

3.3.2.3.3 Short term ground water level trend (2011 to 2014) Aquifer - I

To study the long-term behaviour of ground water level in the basin monthly ground water level data collected from 58 KOW's has been analysed. However, the DTWL of Aquifer – I is available

for 3 years only i.e., from October 2011 to November- 2014. The same has been analysed and short term DTWL trend has been work out (Table 3.7). It has been observed from analysis that almost all wells except two KOW in the Chandrabhaga watershed are showing rise in ground water level trend, ranging from 0.005 m/month to 0.28 m/month (Fig.3.36). Fall in ground water level trend ranging from -0.01 m/month (Wathoda) to -0.03 m/month (Kalmeshwar) are seen at two KOW's. However, the rise in ground water level observed in the watershed is insignificant but it is matching with long-term trend of CGWB's GWMW.

Sl. No.	Well No.	Village	WL Trend (m/month)	Rise/Fall
1	DW1	Phetri	0.0503	Rise
2	DW2	Khairgaon	0.0552	Rise
3	DW3	Kalambi	0.0214	Rise
4	DW4	Selu	0.0636	Rise
5	DW5	Kalmeshwer (RH)	-0.0113	FALL
6	DW6	Dahegaon	0.0644	Rise
7	DW7	Ashti	0.0349	Rise
8	DW8	Pardi	0.0723	Rise
9	DW9	Gowari	0.0134	Rise
10	DW10	Tondakhairi	0.0511	Rise
11	DW11	Borgaon(Kh)	0.2802	Rise
12	DW12	Silori	0.0404	Rise
13	DW13	Dhapewada	0.0674	Rise
14	DW14	Bhadangi	0.0853	Rise
15	DW15	Warode(IW)	0.1368	Rise
16	DW16	Brahmni	0.0199	Rise
17	DW17	Sawli	0.1025	Rise
18	DW18	Ketapar	0.0187	Rise
19	DW19	Sahuli	0.0839	Rise
20	DW20	Gumthala	0.0196	Rise
21	DW21	Sawangi (IW)	0.0204	Rise
22	DW22	Uparwahi	0.0058	Rise
23	DW23	Nimboli	0.0125	Rise
24	DW24	Linga	0.0226	Rise
25	DW25	Sonegaon	0.0514	Rise
26	DW26	Khapri	0.0455	Rise
27	DW27	Ghogali	0.0201	Rise
28	DW28	Brahmni(IW)	0.0151	Rise
29	DW29	Ghorad	0.0319	Rise
30	DW30	Ubali	0.0893	Rise
31	DW31	Wadhone Buzrug	0.0619	Rise
32	DW32	Sawali Khurd	0.0517	Rise
33	DW33	Wathoda	-0.0305	FALL
34	DW34	Sawangi (Anganwadi)	0.0093	Rise
35	DW35	Susundri	0.0413	Rise
36	DW36	Khairi	0.0222	Rise
37	DW37	Pardi	0.0247	Rise

Sl. No.	Well No.	Village	WL Trend (m/month)	Rise/Fall
38	DW38	Ramgiri	0.0674	Rise
39	DW39	Dorli	0.0430	Rise
40	DW40	Ubgi	0.0558	Rise
41	DW41	Kohli	0.0486	Rise
42	DW42	Kotwali Bardi	0.0343	Rise
43	DW43	Raulgaon	0.0228	Rise
44	DW44	Chargaon	0.0312	Rise
45	DW45	Sonkhamb	0.0912	Rise
46	DW46	Metpanjra	0.0410	Rise
47	DW47	Malegaon	0.0195	Rise
48	DW48	Vasboli	0.0393	Rise
49	DW49	Pohi	0.0245	Rise
50	DW50	Yerla	0.0997	Rise
51	DW51	Chicholi	0.0754	Rise
52	DW52	Kalmeshwer (NE of Selu)	0.1307	Rise
53	DW53	Sawangi (SW of Kalmeshwar)	0.0392	Rise
54	DW54	Kalmeshwer (South of Gowari)	0.1068	Rise
55	DW55	Kalmeshwer (Ashti Road	0.0430	Rise
56	DW56	Waroda	0.0226	Rise
57	DW57	Lakholi	0.0768	Rise
58	DW58	Kalmeshwar(Rly Gate)	0.0953	Rise

-ve values indicate fall in ground water level trend.

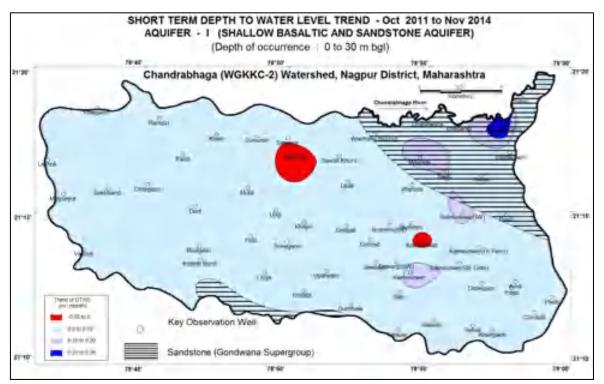


Fig.3.36: Short-term DTWL trend (Oct 2011 to Nov 2014), Aquifer – I

3.3.2.3.4 Pre monsoon Depth to Water Level (May-2014) in Aquifer-II

The ground water level data of Aquifer – II is available from May-2014, hence, the ground water level maps have been prepared for the year 2014. The close study of pre monsoon ground water level map of deeper aquifer in Basaltic terrain reveals that major central part of the watershed indicates the ground water level range from 50 to 73 m bgl. The eastern and western part of the watershed shows gradual decrease in ground water level i.e., up to 20 m bgl while in the Sandstone (Aquifer-II) ground water level is observed shallow ie up to 7 m bgl (Fig.3.37 a and b). The deeper ground water levels are due to the potential zones encountered at depth more than 45 m bgl upto 197 m bgl.

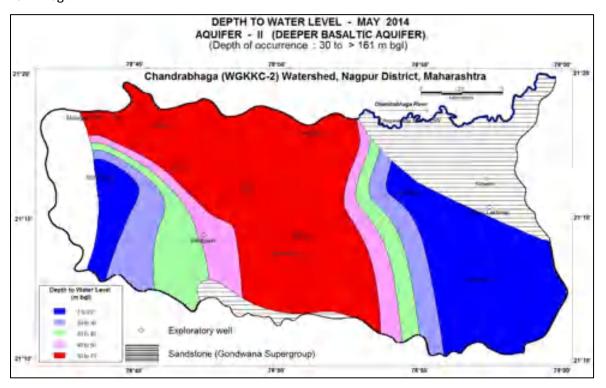


Fig. 3.37a: Pre monsoon Depth to Water Level (Aquifer -II), Basalt, May-2014

3.3.2.3.5 Post monsoon Depth to Water Level (November-2014) in Aquifer-II

The close study of post monsoon ground water level map of deeper aquifer indicates the post monsoon ground water level does not show much variation as compare pre monsoon scenario. Ground water level map of deeper aquifer in Basaltic terrain reveals that major central part of the watershed indicates the ground water level range from 50 mbgl to 79 m bgl. However, the area occupied by deeper ground water level is much less as compare to pre monsoon. This indicates that the Aquifer – and II in basaltic terrain are interconnected and getting recharge from Aquifer I. The eastern and western part of the watershed shows gradual decrease in ground water level i.e., upto 20 m bgl while in the Sandstone (Aquifer-II) ground water level is observed shallow i.e., up to 6 m bgl I which is almost similar to pre monsoon scenario (Fig.3.38).

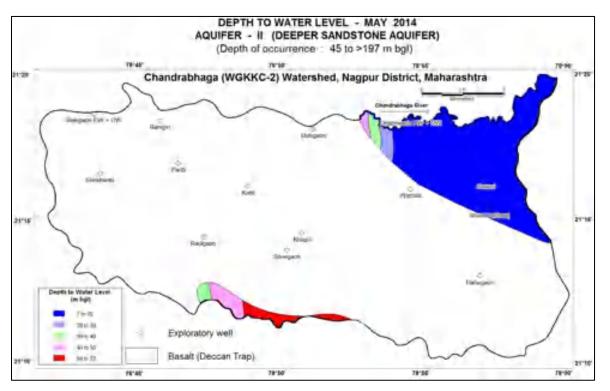


Fig. 3.37b: Pre monsoon Depth to Water Level (Aquifer -II), Sandstone, May-2014

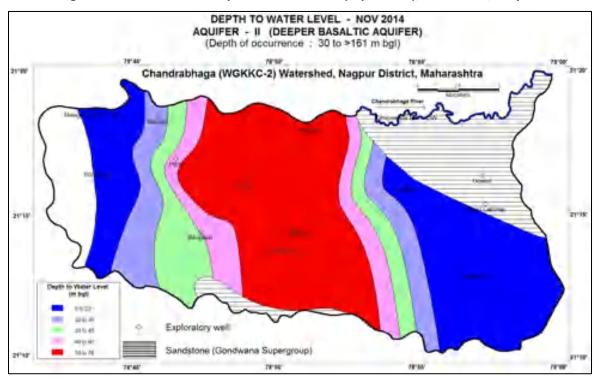


Fig. 3.38a: Post monsoon Depth to Water Level (Aquifer - II), Basalt, November-2014

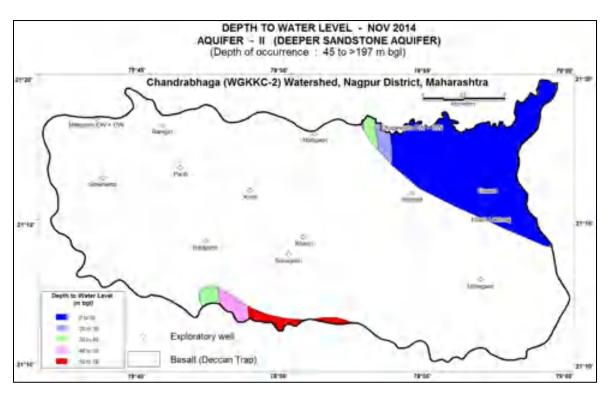


Fig. 3.38b: Post monsoon Depth to Water Level (Aquifer - II), Sandstone, November-2014

3.3.2.4 Ground Water Table

In order to decipher, the ground water flow direction in the watershed water table contour map for Aquifer-I and II during the pre and post-monsoon period (2014) has been prepared using the reduced levels (RL) of the wells and presented as Fig. 3.39, 3.40, 3.41 and 3.42. A perusal of ground water contour map reveals that

- 1) The pre-monsoon water table (May-2014) in Chandrabhaga watershed ranging from 295.030 m above MSL at Sillori in northeast end of the watershed to 511.080 m above MSL at Malgaon in the northwest corner of the watershed. While the post-monsoon water table (May-2014) ranging from 294.530 m above MSL at Sillori in northeast end of the watershed to 510.22 m above MSL at Malegaon in the northwest corner of the watershed. Overall, average minimum water table elevation is 294 m above MSL while average maximum water table elevation is 511 m above MSL.
- 2) The movement of groundwater is from southwest to northeast direction, which ultimately converges with the Chandrabhaga River. This indicates that the ground water flow in the watershed fallow the topographic control.
- 3) Comparatively close water table contours in the elevated areas reveal low permeability of the water bearing formations for example, hilly area located at northwest and southwest of watershed.

- 4) The groundwater divides, marked by the divergence of flow lines, almost coincide with the topographic divides, indicating the importance of the geomorphic features in demarcating the areas of groundwater development and management.
- 5) The areas marked by total convergence of flow lines are indicative of higher transmissibility and thus form 'hydraulic troughs' in the area. The ground water levels in these areas are relatively deeper (>9 m)
- 6) The areas marked by divergent flow lines are indicative of poor transmissibility. The ground water level in this area is relatively shallower (< 9 m).
- 7) The convergence of flow lines indicates zone of higher transmissivity while the areas of flow line divergence show zones of poor transmissivity.
- 8) The ephemeral Chandrabhaga River is flowing from a height of 334.333 m above MSL at village Wadhona (Bk) to 299.69 m above MSL at village Sillori. The Chandrabhaga river is gaining water from ground water in its upper reaches in-and-around villages Wadhona (Bk)-Dhapewada-Bhadangi and acts as a *Effluent River*. While in lower reaches, it is losing water to the groundwater and acts as a *Influent River* in-and-around Bhadangi Borgaon (Kh) Sillori villages. Thus, Chandrabhga river is ephemeral effluent as well as influent river.

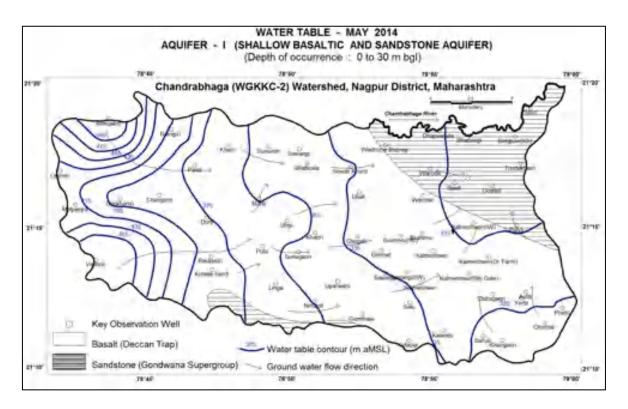


Fig. 3.39: Pre monsoon Water Table (Aquifer - I), May-2014

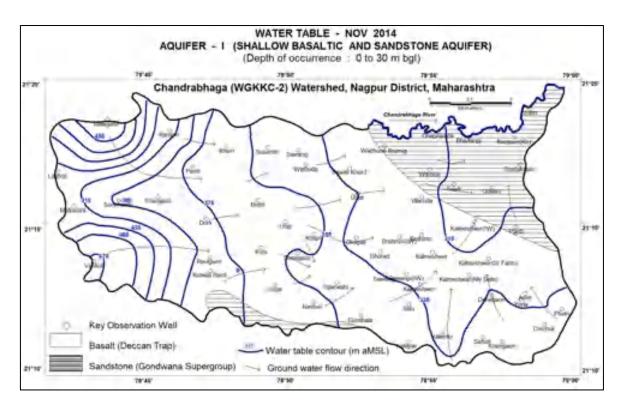


Fig. 3.40 Post- monsoon Water Table (Aquifer – I), Nov-2014

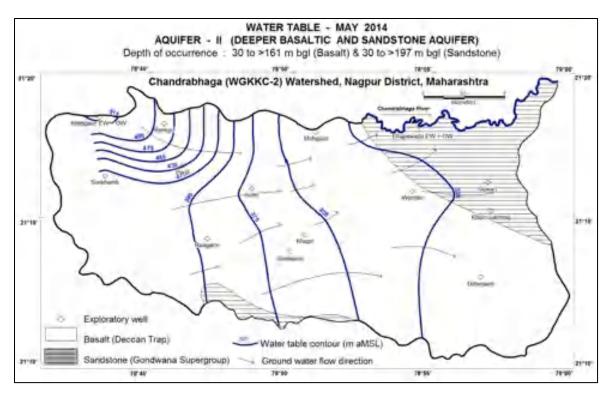


Fig. 3.41: Pre monsoon Water Table (Aquifer -II), May-2014



Fig. 3.42: Post- monsoon Water Table (Aquifer - II), Nov-2014

3.3.3 Water Quality

The suitability of ground water for drinking/irrigation/industrial purposes is determined keeping in view the effects of various chemical constituents present in water on the growth of human being, animals, various plants and also on industrial requirement. Though many ions are very essential for the growth of plants and human body but when present in excess, have an adverse effect on health and growth. The standards proposed by the Bureau of Indian Standards (BIS-2012) were used to decide the suitability of ground water for various purposes. For estimation of the quality of ground water, ground water samples from 57 KOW's (shallow dug wells representing phreatic aquifer) have been collected during pre-monsoon and post monsoon season. Similarly for deeper Aquifer – II representing basalt and sandstone, the ground water samples were collected during the drilling and pumping test activities of 16 exploratory constructed in the watershed. The ground water samples were analysed for major chemical constituents and analytical results are presented in Annexure-XI and Annexure-XII for Aquifer-I and Aquifer-II respectively. The aquifer wise ranges of different chemical constituents present in ground water are given in Table 3.8.

The study area of Chandrabhaga watershed, basalt is the main water bearing formation. The basaltic rock is usually composed of chain silicates, pyroxene (partly amphibole) and the feldspars group of minerals. The dissolution of these minerals mainly yields Ca, Mg and Na ions to the groundwater. The concentration of HCO₃ ion in groundwater is mainly influenced by the amount of CO_2 dissolved in water from atmosphere and decay of organic matter. The concentration of K⁺ in groundwater of basaltic aquifer is generally very low. It is liberated with great difficulty from K-feldspars, which are the main sources of potassium in the basalt, and has a strong tendency to be reincorporated into the solid weathering product. The K-feldspars are very resistant to the attack by water. In basalts, there is no apparent source of Cl, SO₄ and NO₃. The groundwater in basaltic terrain of the study area which is rich in these ions is indicative of anthropogenic contamination.

SI.	Constituents		Aqu		Aquifer - II					
No.		Basalt		Sandstone		Bas	salt	Sandstone		
		Min	Max	Min	Max	Min	Max	Min	Max	
1	рН	7.30	9.00	7.40	8.10	7.90	8.50	7.20	8.60	
2	EC	420.00	2353.00	710.00	2532.00	445.00	857.00	470.00	2211.00	
	⊡mhos/cm									
3	TDS as ppm	252.00	1412.00	426.00	1519.00					
4	ТА	83.61	531.97	151.64	540.16	55.00	300.00	60.00	290.00	

Table 3.8: Aquifer wise ranges of different constituents in ground water, Chandrabhaga watershed (WGKKC-2), Nagpur

SI.	Constituents		Aqu	ifer - I			Aqı	ifer - II	
No.		Basalt Sandstone Basalt		Sand	stone				
		Min	Max	Min	Max	Min	Max	Min	Max
5	TH (as CaCO₃) ppm	96.00	768.00	256.00	792.00	205.00	400.00	110.00	960.00
6	Calcium ppm	16.00	138.00	35.00	130.00	8.02	52.10	12.02	246.49
7	Magnesium ppm	13.00	149.00	22.00	114.00	26.73	81.42	31.60	140.96
8	Sodium ppm	18.00	178.00	35.00	247.00	3.73	16.27	2.39	26.07
9	Potassium ppm	0.00	112.00	1.00	135.00	0.07	0.41	0.04	17.94
10	Carbonate ppm	0.00	12.00	0.00	0.00	0.00	12.00	0.00	15.00
11	Bicarbonate ppm	102.00	649.00	185.00	659.00	67.10	366.00	73.20	353.80
12	Chloride ppm	16.00	340.00	40.00	782.00	24.82	159.53	39.00	556.57
13	Sulphate ppm	11.00	236.00	4.00	145.00	3.30	189.00	4.50	340.00
14	Nitrate ppm	7.00	320.00	14.00	271.00	1.60	65.00	0.75	47.00
15	Fluoride ppm	0.11	0.65	0.16	0.53	0.28	1.40	0.12	1.46

The chemical constitution of ground water is controlled by various factors like composition and frequency of precipitation, lithology, soil composition, resident time and prevailing physicochemical conditions. The samples representing the Aquifer-I and II comprises of Basalt and Sandstone have been classified on the basis of piper diagram/plot.

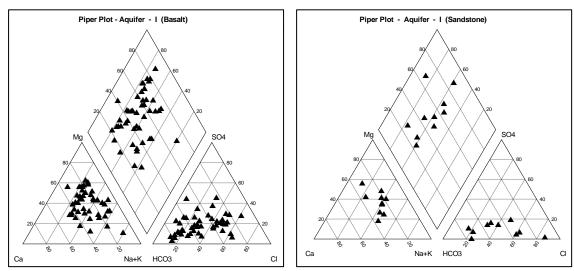


Fig. 3.43: Chemical classification of ground water samples from dugwells, Aquifer-I

Piper plot (Fig. 3.43) for ground water samples from Aquifer-I (shallow aquifer) shows that the alkaline earths (Ca+Mg) exceed alkalis (Na+K) and weak acids (CO₃+HCO₃) exceed strong acids (Cl+SO₄+NO₃) in majority of groundwater samples. The groundwater is predominately of Ca-Mg-

HCO₃ type and represents the water from basaltic aquifer. Only few samples were found to have fallen in the category of mixed type of water. This change in the type of water in the groundwater samples of the study area may be attributed to the influence of surface activities. The percolation of waste/wastewater, from the surface, rich in alkalis and strong acids might have caused such changes in groundwater.

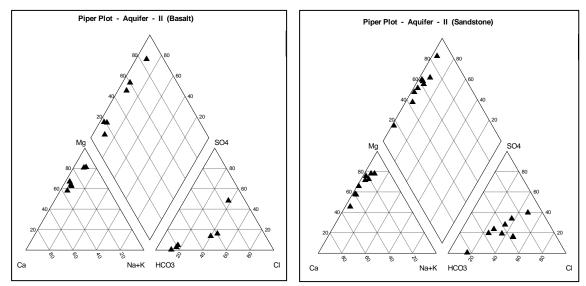


Fig. 3.44: Chemical classification of ground water samples from bore wells, Aquifer-II

Piper plot (Fig. 3.44b) for ground water samples from Aquifer-II (deeper aquifer) shows that the groundwater in deeper aquifer is also dominated by alkaline earths (Ca + Mg) over alkalis (Na+K) and weak acids (CO_3 +HCO₃) over strong acids (Cl+SO₄). The groundwater spends more time in deeper aquifer leading to exchange of Ca and Na ion in groundwater. However, the change in water type is indicating that either the water is not regularly getting recharged or the strong percolation of any effluent has taken place from the surface activities.

3.3.3.1 Suitability of ground water for drinking and domestic purposes

The physical and chemical quality of groundwater is important in deciding its suitability for drinking purposes. As such, the suitability of groundwater for potable uses with regard to its chemical quality has to be deciphered and defined based on some vital characteristics of the water. On this basis of Bureau of Indian Standards (BIS) classification, the natural groundwater of India has been categorized as desirable, permissible and unfit for human consumption considering the drinking and domestic use of water. In the present study, the groundwater quality assessment for drinking purpose was carried out based on the drinking water standards, prescribed by Bureau of Indian Standards (BIS, 2012). The aquifer wise ground water quality for drinking and domestic purpose is presented as Table 3.9.

Table 3.9: Aquifer wise ground water quality for drinking purpose and ionic concentration range (BIS: 2012)

Parameters	DL	PL	Undesirable effect	mples >PL			
	in	in	outside limit	Aq	uifer-l	Aq	uifer-II
	ppm	ppm		Basalt (47 sample)	Sandstone (10 sample)	Basalt (12 sample)	Sandstone (23 sample)
Calcium	75	200	Encrustation in water supply structure and adverse effects on domestic use.	0	0	0	1
Magnesium	30	100	Encrustation in water supply structure and adverse effects on domestic use.	7	1	0	5
Chloride	250	1000	Taste, Corrosion palatability are affected	0	0	0	0
Sulphate	200	400	May cause gastro intestinal problems	0	0	0	0
Hardness (as CO ₃)	300	600	Encrustation in water supply structure and adverse effects on domestic use.	0	0	0	0
Total dissolved Solids	500	2000	Palatability decrease and may cause gastro intestinal problems	0	0	-	-
Nitrate	45	No Relaxation	May cause Methanoglobineimia	41	6	1	3
рН	6.5- 8.5	No Relaxation	The water will affect the mucous membrane and water supply system.	7	0	0	1
Fluoride	<1.5	>1.5	Excessive fluoride causes mottling of tooth enamel and skeletal deformation	0	0	0	0

Here, DL- Desirable Limit, PL – Permissible Limit

A perusal of above table and piper plots reveals that the ground water quality in the Aquifer-I comprises of Basalt and Sandstone is mainly affected by nitrate contamination as most of samples show higher nitrate concentration (more than 45 mg/L) (Fig. 3.45). The field observations during the study have indicated that the anthropogenic activities in the vicinity of groundwater sampling source like open unlined sewers, improper disposal of cow dung for manure, excessive use of fertilizer in the agriculture field for orange cultivation etc. are the main reasons for the nitrate contamination in the ground water of the study area. At some places problem of hard water has been observed where the Magnesium at 13 locations where found beyond permissible limit. However, the ground water from Aquifer – I and II in the study area is suitable for drinking and domestic purpose, except at few places where nitrate is beyond permissible limit.



Fig. 3.45: Suitability for Drinking and Domestic purpose with spatial distribution of nitrate, Nov-2011, Aquifer – I and II (Basalt and Sandstone)

3.3.3.2 Suitability of ground water for irrigation purpose

In the present study, Salinity hazard, sodium hazard as Soluble Sodium Percentage (SSP) and Percent Sodium (%Na), Sodium Absorption Ratio (SAR), Residual Sodium Carbonate (RSC), Magnesium Ratio (MR) and Kelly's ratio (KR), are discussed to determine the quality of groundwater for irrigation purpose while Corrosivity ratio (CR) is used to find suitability of water for transportation through metallic pipes (Table 3.10) (**Annexure-XIII** and **Annexure-XIV** for Aquifer-I and Aquifer-II respectively). In addition to this the spatial distribution of electrical conductance for Aquifer – I and II has been prepared and presented as Fig. 3.46, 3.47 and 3.48. The level of salinity hazard based on EC and sodium hazard based on SAR value was assessed using U.S. Salinity diagram(Wilcox diagram) (Fig. 3.49 and 3.50).

Ratio/Parameter	Formulae	Significance
Percent Sodium (%Na)	$\% Na = \left[\frac{Na}{Ca + Mg + Na + k}\right] x100$	suitability for irrigation , as Na reduces permeability

Ratio/Parameter	Formulae	Significance
Sodium Absorption Ratio (SAR)	$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$	Relative proportion of Na to Ca & Mg
Soluble Sodium Percentage (SSP)	$SSP = \frac{Na^{+} \times 100}{Ca^{++} + Mg^{++} + Na^{+}}$	Na replaces Ca & lowers soil permeability
Residual Sodium Carbonate (RSC)	$RSC = (HCO_3^- + CO_3^{}) - (Ca^{++} + Mg^{++})$	Excess HCO3, NA, Ca, Mg affects the yield of crops
Kelly's Ratio (KR)	$KR = \frac{Na^+}{Ca^{++} + Mg^{++}}$	The level of sodium measured against calcium and magnesium
Magnesium Ratio (MR)	$MR = \frac{Mg^{++} \times 100}{Ca^{++} + Mg^{++}}$	excess amount of magnesium over calcium and magnesium
Corrosivity Ratio (CR)	$CR = \frac{(Cl^{-}/35.5) + 2(SO_{4}^{}/96)}{2(HCO_{3}^{-} + CO_{3}^{-}/100)}$	to know whether the water can be transported in metallic pipes or not

Table 3.10: Classification of groundwater samples from Aquifer I and II based on %Na, SAR, SSP, RSC, EC, KR, MR and CR ratio

Rati o	Range (meq/L)	Category	Aquifer-I (Basalt)		-	Aquifer-I (Sandstone)		-II (Basalt)	Aquifer-II (Sandstone)	
			No. of Sampl es	Percenta ge	No. of Sampl es	Percenta ge	No. of Sampl es	Percenta ge	No. of Sampl es	Percenta ge
%Na	< 20	Excellent	2	4	2	4	12	100	23	100
	20-40	Good	38	81	38	81	0	0	0	0
	40-60	Permissib le	7	15	7	15	0	0	0	0
	60-80	Doubtful	0	0	0	0	0	0	0	0
	> 80	Unsuitabl e	0	0	0	0	0	0	0	0
SAR	< 10	Excellent	47	100	47	100	12	100	23	100
	10-18	Good	0	0	0	0	0	0	0	0
	18-26	Fair	0	0	0	0	0	0	0	0
	> 26	Unsuitabl e	0	0	0	0	0	0	0	0
SSP	< 50	Good	44	94	44	94	12	100	23	100
	> 50	Unsuitabl	3	6	3	6	0	0	0	0

Rati o	Range (meq/L)	Category	Aquifer	-I (Basalt)	(San	uifer-I dstone)	Aquifer	-II (Basalt)	Aquifer-II (Sandstone)	
			No. of Sampl es	Percenta ge	No. of Sampl es	Percenta ge	No. of Sampl es	Percenta ge	No. of Sampl es	Percenta ge
		е	63							
RSC	< 1.25	Safe	45	96	45	96	12	100	23	100
	1.25-2.5	Suitable	2	4	2	4	0	0	0	0
	> .5	Unsuitabl e	0	0	0	0	0	0	0	0
EC	<250	Excellent	0	0	0	0	0	0	0	0
	250-750	Good	5	11	5	11	8	67	9	39
	750-	Permissib	40	85	40	85	4	33	13	57
	2000	le								
	2000- 3000	Doubtful	2	4	2	4	0	0	1	4
	>3000	Unsuitabl e	0	0	0	0	0	0	0	0
KR	< 1	Good	44	94	44	94	12	100	23	100
	>1	Unsuitabl e	3	6	3	6	0	0	0	0
MR	< 50	Suitable	11	23	11	23	0	0	2	9
	> 50	Unsuitabl e	36	77	36	77	12	100	21	91
CR	< 1	Good	5	11	5	11	3	25	0	0
	>1	Unsuitabl e	42	89	42	89	9	75	23	100

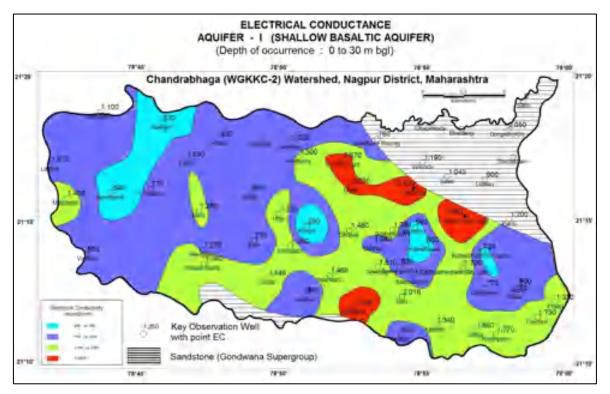


Fig. 3.46: Spatial Distribution of Electrical Conductance, May-2014, Aquifer – I (Basalt)

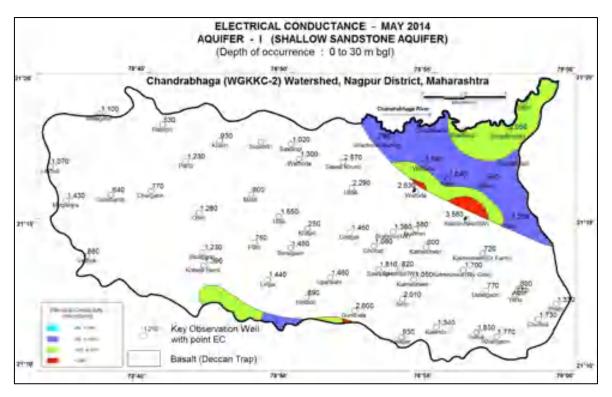


Fig.3.47: Spatial Distribution of Electrical Conductance, May-2014, Aquifer - I (Sandstone)

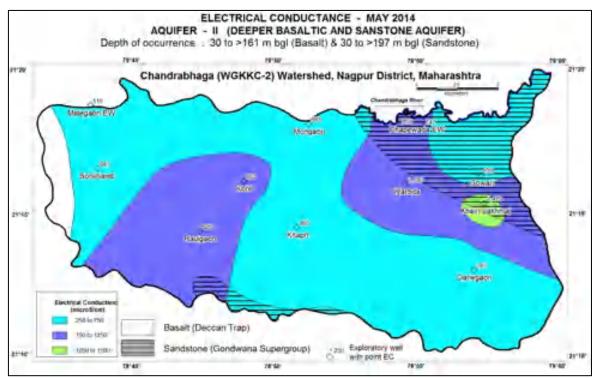


Fig. 3.48: Spatial Distribution of Electrical Conductance, May-2014, Aquifer – II based on ground water exploration

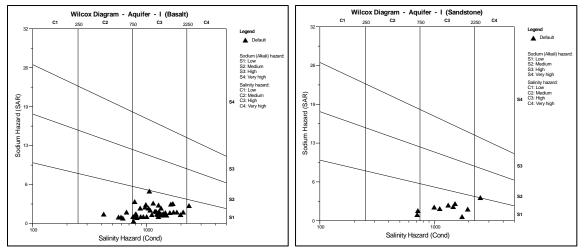


Fig. 3.49: SAR vs. conductivity plot of ground water samples from Aquifer-I (shallow aquifer)

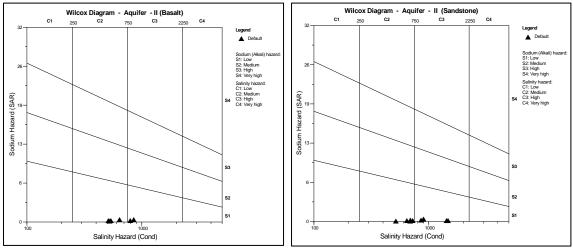


Fig. 3.50: SAR vs. conductivity plot of ground water samples from Aquifer-II (Deeper aquifer)

The analysis of various ratios, maps and plots indicates that

- In Aquifer-II, the fluoride ranges from 1.23 to 1.46 mg/l i.e., marginally high but below MPL of 1.5 mg/l and has been observed in Sonkhamb (22.60-23m), Raulgaon (127.3-129.95m), Raulgaon (135.6-138.6m), Khapri (48.2-50.85m), and Dhapewada (Zone-I).
- Likewise in Aquifer-II, the nitrate has been found beyond permissible limit at Ramgiri (65 mg/l), Gowri (47 mg/l) and Raulgaon (46 mg/l).
- 3. From the analysis of salinity hazard, sodium hazard as Soluble Sodium Percentage (SSP) and Percent Sodium (%Na), Sodium Absorption Ratio (SAR), Residual Sodium Carbonate (RSC), Magnesium Ratio (MR), Kelly's ratio (KR), indicates that except high Magnesium Ratio all the ratios are found suitable category.
- 4. The Corrosivity Ratio (CR) indicates that the ground water from all Aquifer- I and II should not be transported in metallic pipes due its corrosive nature. It is suggested that the metal

pipes should be avoided for water transportation especially for irrigation and industrial purposes.

- 5. The perusal of spatial distribution of Electrical Conductivity (EC) map indicates that major part of the area is having EC in the range between 750 and 1250 μmhos/cm. The presence of high EC is observed mainly around Kalmeshwar town, which is probably due to industrial pollution. EC is ranging from 250 to 750 μS/cm in major parts except in south-western and south-eastern part of the watershed were it observed in the range of 750 to 1250 μS/cm. The deeper sandstone Aquifer-II, it shows gradual zonation from 1250 to 750 to 250 towards north east end of watershed.
- 6. The Wilcox diagram for Aquifer-I and II indicates that the possibility of sodium hazard to the soil is low (S1) as the SAR values of the ground water samples from Aquifer-I and II are less than 10 (Fig. 3.49 and 3.50). However, EC values of most of the samples fall under the category of medium (C2) and high (C3) salinity hazard zone indicating that special crop and water management practices are required for utilizing such water for irrigation purpose (Fig. 3.49 and 3.50).

Overall, the ground water quality of Aquifer- I and II is good and suitable for irrigation purpose (Fig. 3.51) except at few places of salinity hazard to soil.

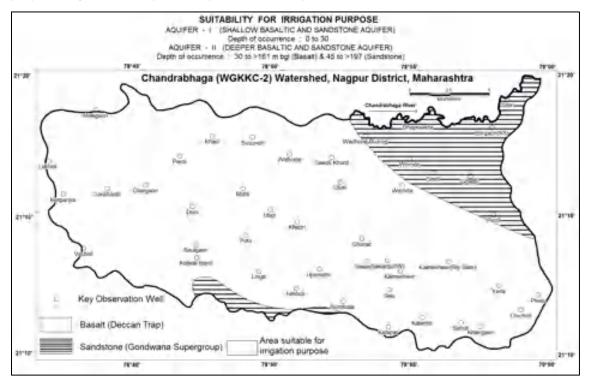


Fig. 3.51: Suitability for irrigation purpose, Aquifer – I and II (Basalt and Sandstone)

3.3.3.2.1 Analysis of Trace Elements

Trace elements in natural or contaminated ground water with the exception of Iron almost invariably occur at concentrations well below 1 mg/l. Concentrations are low because of constraints imposed by solubility of minerals or amorphous substances and adsorption on clay minerals or on hydrous oxide of iron and magnesium. Isomorphous substitution or co-precipitation with minerals or amorphous substitution or co-precipitation with minerals or amorphous solids can also be important as far as the occurrence of trace elements in natural water is concerned. The solubility of cationic trace elements increases as pH decreases particularly at pH < 5. In the area under investigation, 25 water samples were analysed for trace elements like Mn Pb, Cu, Zn and Fe and the analysis results (Table 3.11) reveals that ground water contamination may occurred due to the presence of lead. The results of the analysis of trace elements are discussed below.

Manganese (Mn): The major forms of Manganese in nature are oxides, silicates and carbonates. It is widely distributed in soil and an essential plant micronutrient element in plant metabolism and is expected that the organic circulation of Manganese can influence its occurrence in natural water. The sugarcane plant, which is used as raw material in sugar industry, may be possible source of Mn in ground water as the effluent generated from sugar and allied industries contains high amount of Mn. The desirable limit of Mn in drinking water is 0.1 mg/L and max. permissible limit is 0.3 mg/L as per BIS standard for drinking water. The concentration of Manganese found in the ground water of study area are in the range of 0.001 to 0.098 ppm. In deeper water the concentration of Manganese found in the range of 0.001to 0.06 ppm.

Iron (Fe): Iron in ground water generally exists as Fe (II) but may oxidised to Fe (III) when ground water is under aerobic condition. On land, major sources of Iron are the effluents of industries related with the manufacture of Iron or Steel and units in which Iron is one of the raw materials. Inspite of heavy discharge of Iron in the atmosphere and land, solubility controls restrict migration of the Iron to the saturated zone. In the study area of WGKKC-2 watershed, the iron content in content in the samples of ground water is in the range of 0.034 to 7.69 mg/l. In surface water the concentration of Iron found in the range of BDL to 1.733 mg/l.

Lead (Pb): The natural lead content of lake and river water worldwide is in the range of 0.001 to 0.01. Lead content of ground water is generally low due to solubility control and capacity of soils to absorb lead. The higher values of lead have been found where the contamination has occurred particularly from industrial sources. The chemical analysis results of ground water from WGKKC-2

watershed indicate that the lead content is in the range of BDL to 0.061 mg/l. In surface water the concentration of Lead found in the range of 0.031 to 0.089 mg/l.

Copper (Cu): The copper found in ground water of WGKKC-2 watershed varies from BDL to 0.064 mg/L and in surface water, it is observed below detectable limit. This is also essential micronutrient and very likely to come through the spent wash of distillery or other industrial effluents.

Zinc (Zn): The zinc content in WGKKC-2 watershed varies from BDL to 0.0712mg/L. However, in surface water samples zinc concentration observed below the desirable limit of BIS (5 mg/L).

Selenium (Se): The selenium content in WGKKC-2 watershed found <0.1 mg/L in all the ground water as well as surface water samples collected.

Chromium (Cr): The Chromium content in WGKKC-2 watershed varies from <0.004 to 0.009mg/L in all the ground water as well as surface water samples collected.

Arsenic (As): The Arsenic content in WGKKC-2 watershed varies from <0.001 to 0.005 mg/L in all the ground water as well as surface water samples collected.

Cadmium (Cd): The Cadmium content in WGKKC-2 watershed varies from 0.0001 to 0.0006 mg/L in all the ground water as well as surface water samples collected.

The analysis of water samples for trace elements indicates that

- The ground water samples collected from dugwells representing shallow Aquifer- I indicate that Lead contaminated ground water has been observed in and around Kalmeshwar town while iron contamination is seen in Ubgi and around Kalmeshwar town.
- Analysis of water samples collected from bore well and hand pump representing the deeper Aquifer – I and II indicates that iron has been found more than Permissible Limit (MPL) in and around Ubgi, Sonkhamb and Kalmeshwar area while lead has been observed in Kalmeshwar area.

Based on BIS standards for drinking water it has been observed that shallow ground water Aquifer-I is more contaminated as compare to deeper ground water Aquifer-II in respect of heavy metals iron and lead. Except at one or two locations, ground water from shallow as well as form deeper aquifer is good and potable for drinking and domestic purpose

Sample	Site Name	Type of Well	Cr	Fe	Zn	Se	Pb	Mn	Cu	As	Cd
No											
1	Khairgaon	Dug Well	0.005	0.14	0.02	<0.1	<0.0005	0.001	0.002	0.001	0.0006
2		Hand Pump	0.005	0.27	0.22	<0.1	0.001	0.018	0.006	0.002	0.0004
3	Kalambi	Dug Well	0.009	0.18	0.01	<0.1	<0.0005	0.098	0.003	0.002	0.0001
4		Bore Well	0.005	0.12	0.03	<0.1	0.001	0.003	0.002	0.002	0.0002
5	Kalmeshwar	Dug Well	<0.004	0.16	0.12	<0.1	0.008	0.011	0.005	0.001	0.0003
6	Ubali	Dug Well	0.007	0.27	0.01	<0.1	0.001	0.001	0.002	0.003	0.0003
7		Hand Pump	<0.004	0.21	0.01	<0.1	<0.0005	0.001	0.001	0.002	0.0001
8	Ubgi	Dug Well	<0.004	0.37	0.20	<0.1	0.007	0.020	0.007	0.002	0.0002
9		Hand Pump	<0.004	0.43	0.21	<0.1	0.003	0.013	0.006	0.002	0.0001
10	Sonkhamb	Dug Well	< 0.004	0.19	0.02	< 0.1	0.002	0.009	0.002	<0.001	0.0003
11		Hand Pump	<0.004	1.07	0.75	< 0.1	0.002	0.051	0.007	<0.001	0.0003
12	Kalmeshwar(Sawangi)	Dug Well	<0.004	0.22	0.06	<0.1	0.005	0.010	0.003	< 0.001	0.0005
13	Kalmeshwar (S of Gowri)	Dug Well	<0.004	0.23	0.09	<0.1	0.005	0.017	0.005	0.005	0.0004
14	Kalmeshwar	Dug Well	<0.004	0.26	0.47	<0.1	0.012	0.098	0.011	0.001	0.0002
15	(Eastern Rlygate)	Hand Pump	<0.004	1.17	0.01	<0.1	0.030	0.060	0.015	<0.001	0.0003
16	Kalmeshwar	Dug Well	<0.004	0.23	0.02	<0.1	0.002	0.030	0.004	0.004	0.0001
17	(Western Rly gate)	Hand Pump	<0.004	0.28	0.33	<0.1	0.002	0.010	0.005	0.004	0.0002
18	Kalmeshwar	Dug Well	<0.004	0.41	0.17	<0.1	0.005	<0.0005	0.005	0.003	0.0002
19	- (Gajanan Maharaj Devshtan)	Hand Pump	<0.004	0.46	0.01	<0.1	0.004	0.013	0.003	0.003	0.0001
20	Kalmeshwar	Dug Well	<0.004	0.33	0.22	<0.1	0.012	<0.0005	0.019	0.002	0.0001
21	(Zenda Chowck)	Hand Pump	<0.004	0.46	0.22	<0.1	0.001	<0.0005	0.002	0.002	0.0001
22	Kalmeshwar (Agri Farm on Gowri Rd)	Dug Well	<0.004	0.47	0.60	<0.1	0.002	0.018	0.003	<0.001	0.0001
23	Brahmni (W)	Dug Well	<0.004	0.12	0.01	<0.1	0.001	0.018	0.002	0.002	0.0002
24	Kalmeshwar (Chilla Darbar)	Dug Well	<0.004	0.93	0.16	<0.1	0.003	0.062	0.013	0.001	0.0002
25	Kalmeshwar (market yard)	Dug Well	<0.004	0.40	0.14	<0.1	0.004	0.020	0.004	0.002	0.0001

Table 3.11: Heavy metal analysis of water sample, Chandrabhaga Watershed (WGKKC-2), Aquifer –I and II

All values in ppm

3.3.4 Ground Water Resources, Recharge Parameters and Discharge Parameters

The ground water resources for the year 2011 had been finalized and salient feature is presented as Table 3.12. As compared to 2004 scenario the recharge has increased by about 5% and draft has increased by about 22%. The ground water is mainly used for irrigation purpose i.e., about 5368 ham out of total draft of 5545 ham.

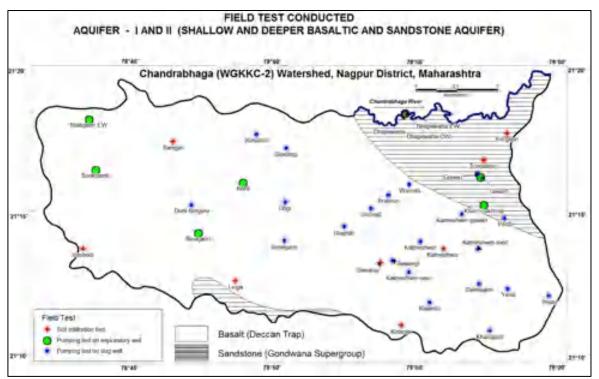
S. No.	Particulars	Command	Non-Command	
1	Area (Sq. km.)	37.26	284.25	
2	Annual Ground Water recharge (ham)	1234	5316	
3	Net Ground Water Availability (ham)	1172	5050	
4	Domestic & Industrial Draft (ham)	76	101	
5	Irrigation Draft (ham)	2589	2779	
6	Total Gross Draft (ham)	2665	2880	
7	Domestic + Industrial Allocation (ham) 354			
8	Net Ground Water Available for Irrigation (ham)	500		
9	State of Ground Water Development (%)	89.2		
10	Category of Watershed	S	afe	

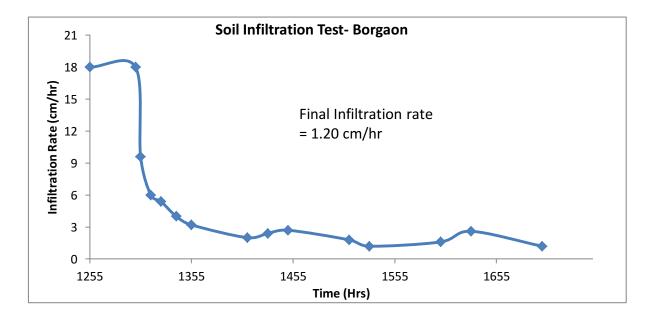
Table-3.12: Ground water resources (2011), Chandrabhaga Watershed (WGKKC-2)

3.3.5 Infiltration tests

To estimate the actual rate of infiltration of various soil cover and their impact on recharge to ground water, 9 infiltration tests have been conducted on various soil types (Fig. 3.52 and 3.53). The data has been analyzed and the salient features of the infiltration tests are presented in Table 3.13. The duration of the test was 30 min, the cumulative time of the test ranges from 150 min to 245 min. The final infiltered water depth varies from 0.20 cm to 2.01 cms. The final infiltration rate in the area ranges from 4 mm/hr at Tondakhiri for the sandy loam to clay loam soil type to 40.02 mm/hr at Dhapewada for clay loam soil type.

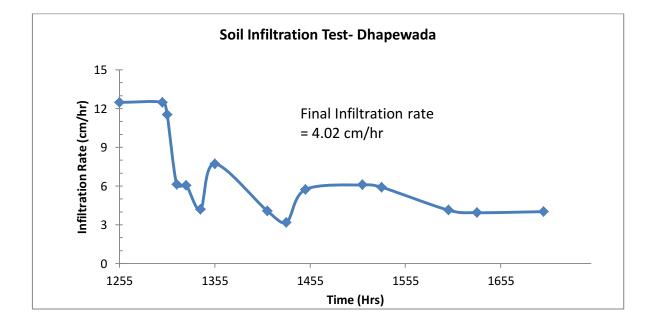
Fig.3.52: Field infiltration test, Chandrabhaga Watershed (WGKKC-2)



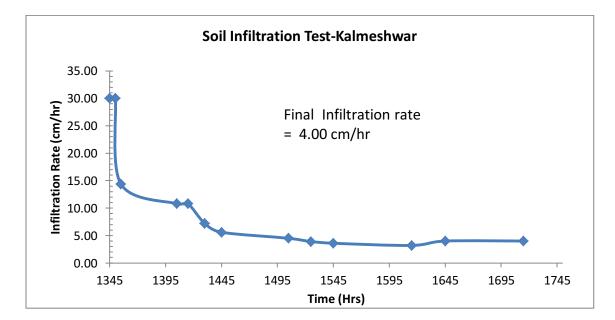

Fig.3.53: Site locations of field test conducted i.e., Soil Infiltration Test, Pumping test (dug well and exploratory well)

SL. No.	Village	Geology	Soil Type	Duration	Cumulati ve Time	Ground water level	Final Infilter ed Water Depth	Final Infiltrati on Rate
				(min)	(min)	(cm agl)	(cm)	mm/hr
1	Borgaon	Sandstone	Sandy Loam to sandy clay	30	245	11	0.60	12.0
2	Dhapewada	TCG	Clayey Loam	30	245	11	2.01	40.2
3	Kalmeshwar	Basalt	Clayey	30	150	10	1.60	40.0
4	Ketapar	Basalt	Clayey	30	185	7	1.93	38.6
5	Linga	Basalt	Clayey	20	152	3	1.30	39.0
6	Sawangi	Basalt	Clayey	30	175	11	1.90	38.0
7	Tondakhairi	Sandstone	Sandy loam to clayey loam	30	235	11	0.20	4.0
8	Vasboli	Basalt	Sandy Loam to loam	30	235	12	0.40	8.0
9	Ramgiri	Basalt	Clayey Loam	30	165	12	1.10	40.0

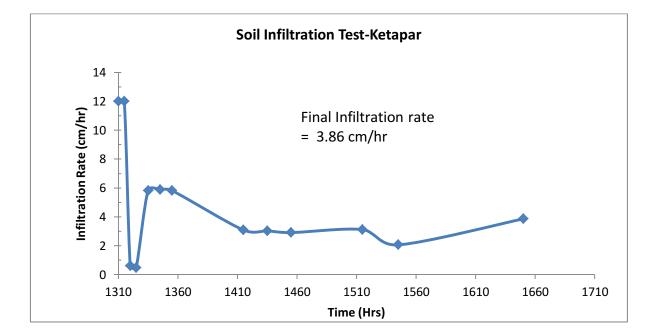
Table	3.13: Salient Fe	atures of infi	iltration tests,	Chandrabhaga	a Watershe	ed (WGKKC	-2)


Site	:	Borgaon
Location	:	In the field of Sanjay Annaji Wagh
Coordinates & Elevation	:	21°17''32.2" & 78°57''55.1"; 330 m amsl
Date	:	30/04/2013
Initial Ground water level	:	11.00 cm
Geology	:	Gondwana Sandstone
Soil type	:	Sandy clayey

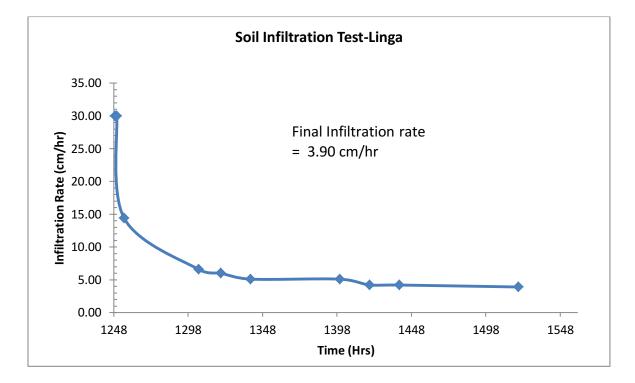
Sl. No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate (cm/hr)	Remarks
1	12.55	0	0	11.00	0.00	0.00	
2	13.00	5	5	12.50	1.50	18.00	
3	13.05	5	10	13.30	0.80	9.60	
4	13.15	10	20	14.30	1.00	6.00	
5	13.25	10	30	15.20	0.90	5.40	
6	13.40	15	45	16.20	1.00	4.00	
7	13.55	15	60	17.00	0.80	3.20	
8	14.10	15	75	17.50	0.50	2.00	
9	14.30	20	95	18.30	0.80	2.40	
10	14.50	20	115	19.20	0.90	2.70	
11	15.10	20	135	19.80	0.60	1.80	
12	15.30	20	155	20.20	0.40	1.20	
13	16.00	30	185	21.00	0.80	1.60	
14	16.30	30	215	16.30	1.30	2.60	filled upto 15 cm
15	17.00	30	245	16.90	0.60	1.20	


Site	:	Dhapewada
Location	:	In the premises of Kolbaswami School.
Coordinates & Elevation	:	21°18'20" & 78°54'00" , 324m amsl
Date	:	11/03/2013
Initial Ground water level	:	11.00 cm
Geology	:	Gondwana Sandstone
Soil type	:	clayey Loamy

Sl.No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth	Infiltration rate cm/hr)	Remarks
1	1255	0		11.00	(cm) 0		
2	1300	5	5	12.04	1.04	12.48	
3	1305	5	10	13.00	0.96	11.52	
4	1315	10	20	14.02	1.02	6.12	
5	1325	10	30	15.03	1.01	6.06	
6	1340	15	45	16.08	1.05	4.2	
7	1355	15	60	18.01	1.93	7.72	
8	1410	15	75	19.03	1.02	4.08	
9	1430	20	95	20.09	1.06	3.18	
10	1450	20	105	22.00	1.91	5.73	
11	1510	20	135	13.03	2.03	6.09	
12	1530	20	155	15.00	1.97	5.91	
13	1600	30	185	17.07	2.07	4.14	
14	1630	30	215	19.04	1.97	3.94	
15	1700	30	245	21.05	2.01	4.02	


Site	:	Kalmeshwar
Location	:	In the premises of PWD Rest House.
Coordinates & Elevation	:	21°174''01" & 78°57''55.1", 338 m amsl
Date	:	11/03/2013
Initial Ground water level	:	11.00 cm
Geology	:	Gondwana Sandstone
Soil type	:	clayey

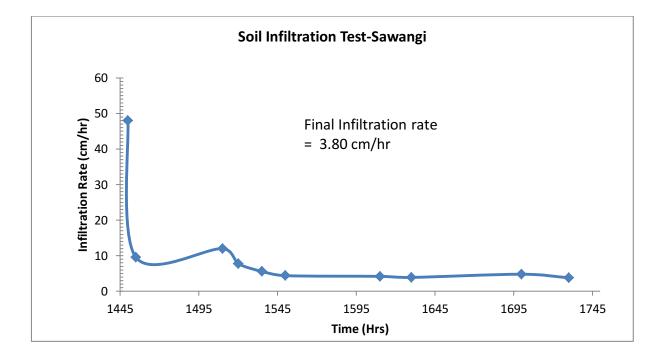
Sl.No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate cm/hr)	Remarks
1	13.45	0	0	10.00	0.00		
2	13.50	5	5	12.50	2.50	30.00	
3	13.55	5	10	13.70	1.20	14.40	
4	14.05	10	20	15.50	1.80	10.80	
5	14.15	10	30	16.70	1.80	10.80	
6	14.30	15	45	18.50	1.80	7.20	
7	14.45	15	60	19.90	1.40	5.60	
8	15.05	20	80	21.40	1.50	4.50	
9	15.25	20	100	22.70	1.30	3.90	
10	15.45	20	120	23.90	1.20	3.60	
11	16.15	30	150	25.50	1.60	3.20	
12	16.45	30	180		2.00	4.00	
13	17.15	30	210		2.00	4.00	


Site	:	Ketapar
Location	:	In the field of Pilaji Asole
Coordinates & Elevation	:	21°11'1.5"& 78°53'00"'', 363m amsl
Date	:	26/04/13
Initial Ground water level	:	11.00 cm
Geology	:	Gondwana Sandstone
Soil type	:	clayey

Sl. No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate (cm/hr)	Remarks
1	13.10	0	0	7.00	0		
2	13.15	5	5	8.00	1	12	
3	13.20	5	10	8.05	0.05	0.6	
4	1325.00	5	15	8.09	0.04	0.48	
5	13.35	10	25	9.06	0.97	5.82	
6	13.45	10	35	10.04	0.98	5.88	
7	13.55	10	45	11.01	0.97	5.82	
8	14.15	20	65	12.04	1.03	3.09	
9	14.35	20	85	13.05	1.01	3.03	
10	14.55	20	105	14.02	0.97	2.91	
11	15.15	20	125	15.06	1.04	3.12	
12	1545.00	30	155	16.09	1.03	2.06	
13	16.15	30	185	18.02	1.93	3.86	

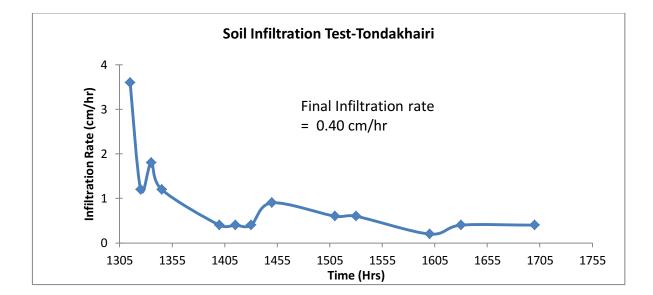
Location	:	Linga
Coordinates	:	21 [°] 12' 39.3" N; 78 [°] 48' 18" E: Ele:374 m amsl
Date	:	11/3/2013
Initial Ground water level	:	3.00 cm agl
Geology	:	Gondwana Sandstone
Soil type	:	Clay

SI. No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate (cm/hr)	Remarks
1	1248	0	0	3	3	0.00	
2	1249	1	1	3.5	0.5	30.00	
3	1250	1	2	3	0.5	30.00	
4	1255	5	7	4.2	1.2	14.40	
5	1305	10	17	4.1	1.1	6.60	
6	1320	15	32	4.5	1.5	6.00	
7	1340	20	52	4.7	1.7	5.10	
8	1400	20	72	4.7	1.7	5.10	
9	1420	20	92	4.4	1.4	4.20	
10	1440	20	112	4.4	1.4	4.20	
11	1520	20	152	4.3	1.3	3.90	


Site	:	Sawangi
Location	:	Near the house of Yeshu Sitaram Dabre
Coordinates & Elevation	:	21°16'00" & 78°51'00", 360 m amsl
Date	:	03/05/2013
Initial Ground water level	:	11.00 cm
Geology	:	Basalt

:

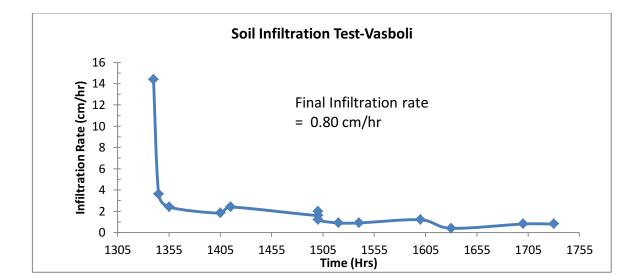
Soil type


SI. No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate (cm/hr)	Remarks
1	14.45	0	0	11.00	0.00	0.00	
2	14.50	5	5	15.00	4.00	48	
3	14.55	5	10	15.80	0.80	9.6	
4	15.10	10	20	17.80	2.00	12	
5	15.20	10	30	19.10	1.30	7.8	
6	15.35	15	45	20.50	1.40	5.6	
7	15.50	15	60	21.60	1.10	4.4	
8	16.10	20	80	23.00	1.40	4.2	
9	16.30	20	100	24.30	1.30	3.9	
							filled upto
10	17.00	30	140	17.40	2.40	4.8	15 cm
11	17.30	30	175	19.30	1.90	3.8	

Loamy Sandy

Site	:	Tondakhairi
Location	:	Near Water Supply tank in open land
Coordinates & Elevation	:	21°16''38.7" & 78°57''05.5", 311 m amsl
Date	:	02/05/2013
Initial Ground water level	:	11 cm agl
Geology	:	Gondwana Sandstone
Soil type	:	Sandyclay

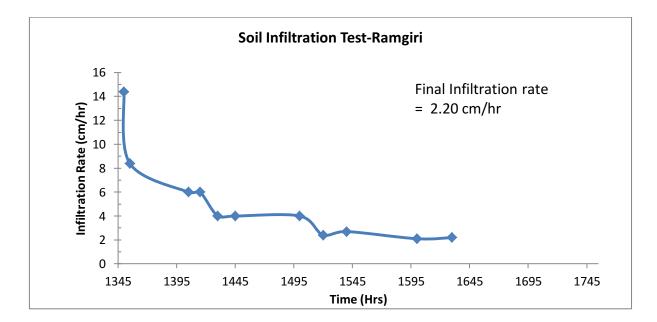
Sl. No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate (cm/hr)
1	13.05	0	0	11.00	0	0
2	13.10	5	5	11.05	1.5	18
3	13.15	5	10	11.80	0.3	3.6
4	13.25	10	20	12.00	0.2	1.2
5	13.35	10	30	12.30	0.3	1.8
6	13.45	10	40	12.50	0.2	1.2
7	14.00	15	55	12.60	0.1	0.4
8	14.15	15	70	12.70	0.1	0.4
9	14.30	15	85	12.80	0.1	0.4
10	14.50	20	105	13.10	0.3	0.9
11	15.10	20	125	13.30	0.2	0.6
12	15.30	20	145	13.50	0.2	0.6
13	16.00	30	175	13.60	0.1	0.2
14	16.30	30	205	13.80	0.2	0.4
15	17.00	30	235	14.00	0.2	0.4


Sandy loamy to Loamy

Site	:	Vasboli
Location	:	In open space 15 m west of Vasboli KOW.
Coordinates & Elevation	:	21°13''45" & 78°42''45.6" , 320 m amsl
Date	:	8/05/2013
Initial Ground water level	:	11.00 cm
Geology	:	Deccan Trap

:

Soil type

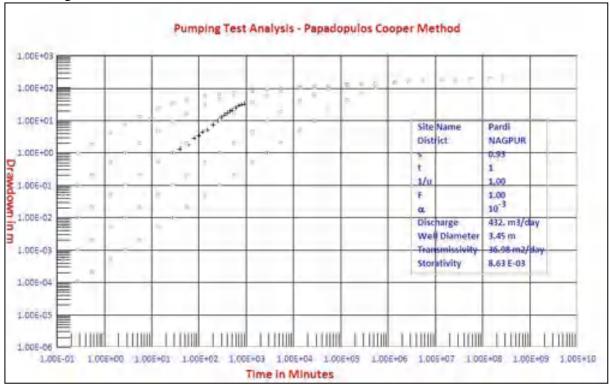

Sl. No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate (cm/hr)	Remarks
1	13.35	0	0	12.00	0.00		
2	13.40	5	5	13.20	1.20	14.4	
3	13.45	5	10	13.50	0.30	3.6	
4	13.55	10	20	13.90	0.40	2.4	
5	14.05	10	30	14.20	0.30	1.824	
6	14.15	10	40	14.60	0.40	2.4	
7	15.00	15	55	15.00	0.40	1.6	
8	15.00	15	70	15.50	0.50	2	
9	15.00	15	85	15.80	0.30	1.2	
10	15.20	20	105	16.10	0.30	0.9	
11	15.40	20	125	16.40	0.30	0.9	
12	16.00	20	145	16.80	0.40	1.2	
13	16.30	30	175	17.00	0.20	0.4	
14	17.00	30	205	17.40	0.40	0.8	
15	17.30	30	235	17.80	0.40	0.8	

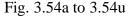
Site	:	Ramgiri
Location	:	In the field of Sh Sashikant Shrikhande.
Coordinates	:	21 [°] 17'15.7" & 78 [°] 46'5"
Date	:	7/05/2013
Initial Ground water level	:	11.00 cm
Geology	:	Basalt
Soil type	:	Clayey Loamy

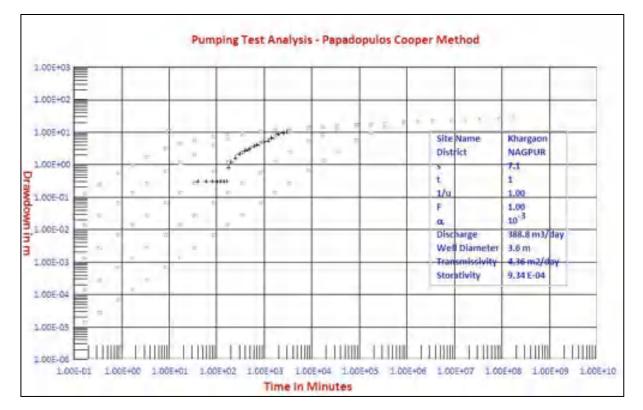
Soil	type
5011	cype

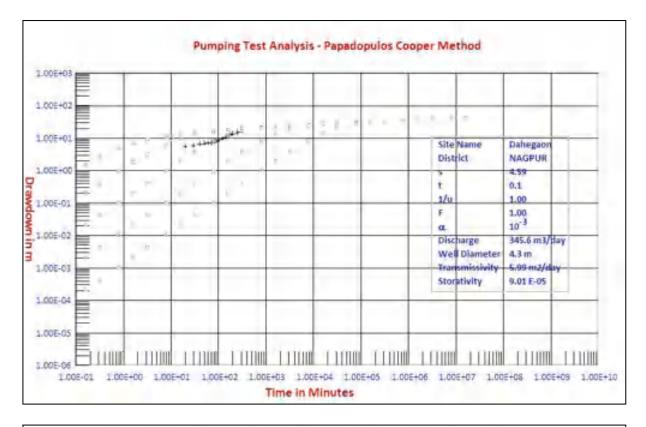
Sl. No.	Clock time	Duration (m)	Cumulative Time (m)	Water level (cm)	Infiltrated water Depth (cm)	Infiltration rate (cm/hr)	Remarks
1	13.45	0	0	12.00	0.00		
2	13.50	5	5	12.80	0.80	9.6	
3	13.55	5	10	13.50	0.70	8.4	
4	14.05	10	20	14.50	1.00	6	
5	14.15	10	30	15.50	1.00	6	
6	14.30	15	45	16.50	1.00	4	
7	14.45	15	60	17.50	1.00	4	
8	15.00	15	75	18.50	1.00	4	
9	15.20	20	95	19.30	0.80	2.4	
10	15.40	20	115	20.20	0.90	2.7	
11	16.00	20	135	20.90	0.70	2.1	
12	16.30	30	165	22.00	1.10	2.2	

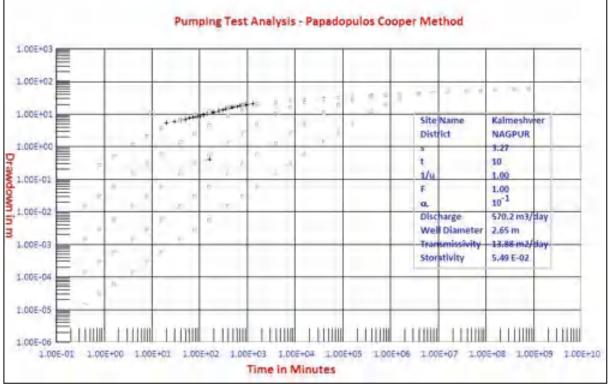
3.3.6 **Pumping Tests**

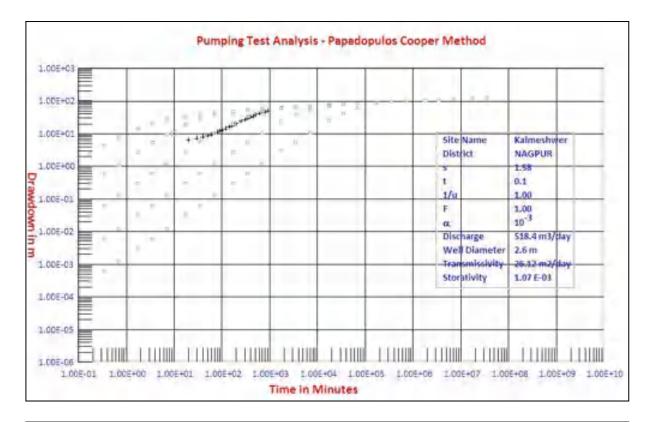

To estimate the aquifer parameters of shallow aquifer system in the watershed 21 pumping tests on open dug wells have been conducted (Fig3.54a to 3.54u). The data has been analyzed by various methods, the salient features of pumping tests are given in Table 3.14.

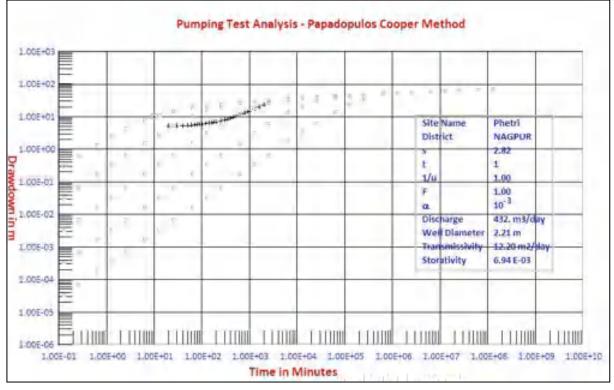

Table 3.14: Salient features of pumping tests – shallow aquifer (dug well) using Popadopulous
and Cooper method

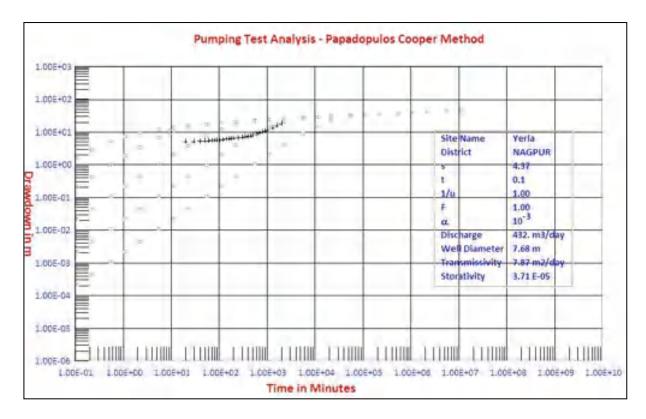

S.	Village	Aquifer	Dia	Depth	SWL	Q	Pt	Rt	D/D	RDD	Т	S
No.	-		(m)	(m bgl)	(m bgl)	(LPM)	(min)	(min)	(m)	(m)	m²/day)	
1	Pardi	Basalt	3.45	12.8	9.47	300	90	300	3.2	2.09	36.98	8.63×10 ⁻³
2	Khargaon	Basalt	3.6	17.2	11.43	270	300	60	1.01	0.25	4.36	9.34x10 ⁻⁴
3	Dahegaon	Basalt	4.3	17.1	15.75	240	30	300	1.05	0.59	5.99	9.01x10 ⁻⁵
4	Kalmeshwer	Basalt	2.65	14.3	5.27	396	130	200	1.59	0.07	13.88	5.49x10 ⁻²
5	Kalmeshwer-	Basalt	2.6	14	9.4	360	90	300	4.4	3.55	26.12	1.07x10 ⁻³
	east											
6	Phetri	Basalt	2.21	13.67	10.55	300	200	130	1.78	1.49	12.20	6.94x10 ⁻³
7	Yerla	Basalt	7.68	9.7	7.9	300	200	200	1.3	1.01	7.87	3.71x10 ⁻⁵
8	Kalmeshwer	Basalt	3.8	13.44	10.67	280.8	200	200	1.89	0.88	11.42	2.20x10 ⁻³
	gowari											
9	Kalambi	Basalt	3.3	19.25	9.58	321	200	200	2.97	1.72	18.31	4.67x10 ⁻³
10	Kalmeshwer	Basalt	3.9	13.1	9.5	240	200	200	2	1.35	11.28	2.06x10 ⁻³
	selu											
11	Sawangi	Basalt	4.55	15	11.55	316.8	70	160	1.44	1.1	10.0	1.35x10 ⁻⁴
12	Ubgi	Basalt	4.7	14.3	6.66	324	130	160	3.08	2.56	16.73	2.10x10 ⁻³
13	Brahmni	Basalt	4.65	14.6	12.52	78	240	130	0.51	0.36	1.04	1.33x10 ⁻⁵
14	Gowari	Sandstone	5	20.3	14.23	132	200	200	1.46	1.01	3.64	4.04x10 ⁻⁴
15	Waroda	Basalt	2.75	15.9	11.1	283.8	90	180	2.33	0.59	10.46	3.84x10 ⁻³
16	Ghorad	Sandstone	3.4	25	17.05	308.4	60	200	1.93	0.05	11.37	2.73x10 ⁻⁴
17	Goghali	Basalt	3.35	17.2	6.08	462	180	200	8.73	6.67	72.56	1.80x10 ⁻²
18	Sonegaon	Basalt	5.24	14.4	9.38	348	180	180	2.58	1.32	14.61	1.48x10 ⁻³
19	Dorli-Bingare	Basalt	3.35	13.05	8.82	858.6	180	180	2.44	0.08	36.59	9.06x10 ⁻²
20	Susundri	Basalt	3.25	13	7.78	327	110	180	4.27	1.07	20.60	5.42x10 ⁻³
21	Sawangi	Basalt	5.8	11.25	7.69	392.4	180	180	1.63	0.41	18.44	1.52x10 ⁻²

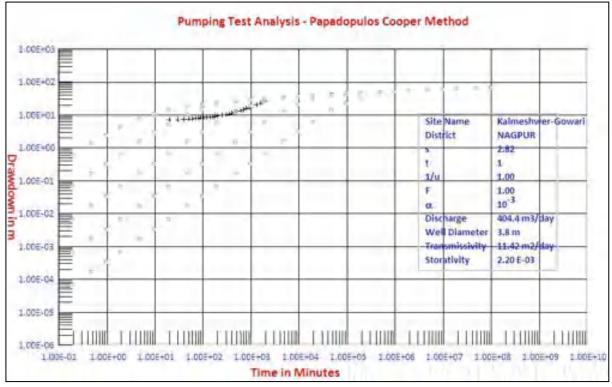

Here, Q=Discharge in liter per minute (LPM), Pt=Pumping duration in Minutes, Rt= Recovery duration in Minutes

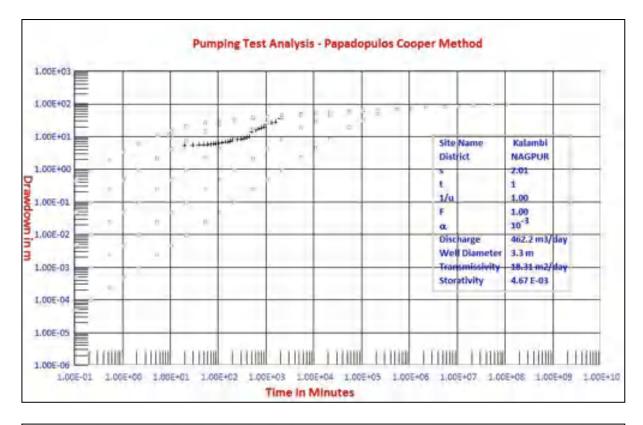

It is to note that all the pumping tests were conducted on medium to high discharge dug wells, as no dug wells having low discharge were found fitted with power pump to conduct such test. It has been observed from analytical data that the transmissivity (T) for basaltic aquifer varies from 1.04 to 72.56 m²/day whereas for sandstone aquifer it varies from 3.64 to 11.37 m²/day. The graphs depicting the calculus part of Popadopulous and cooper method are presented below. The aquifer parameters derived from the pumping test of large diameter wells are used for ground water modelling.

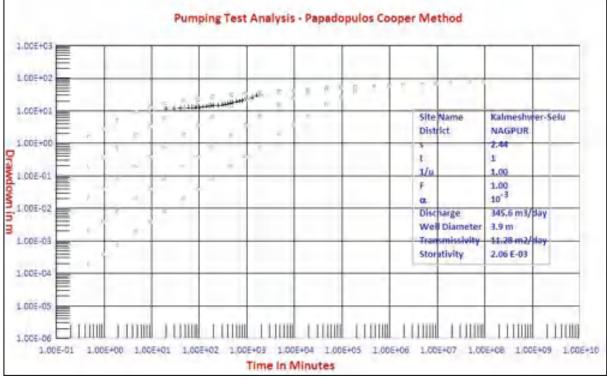


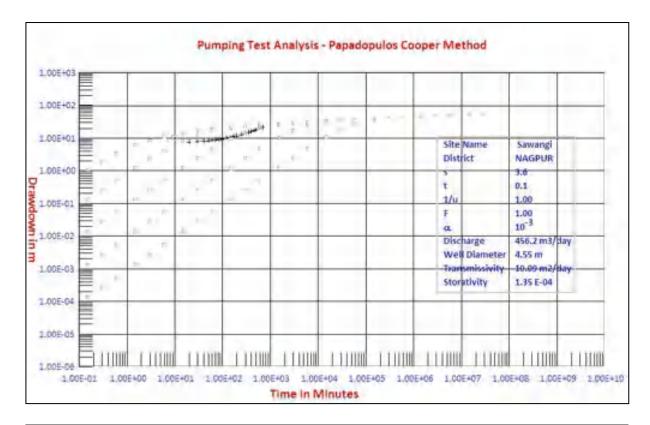


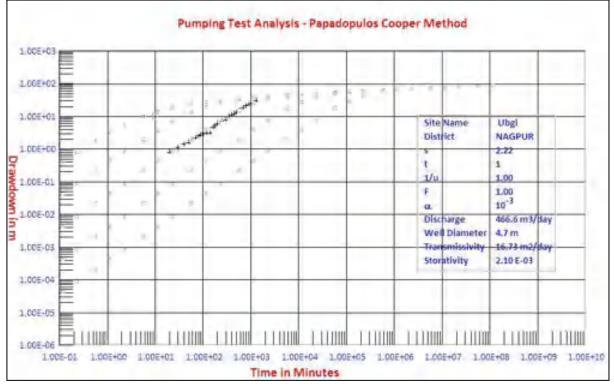


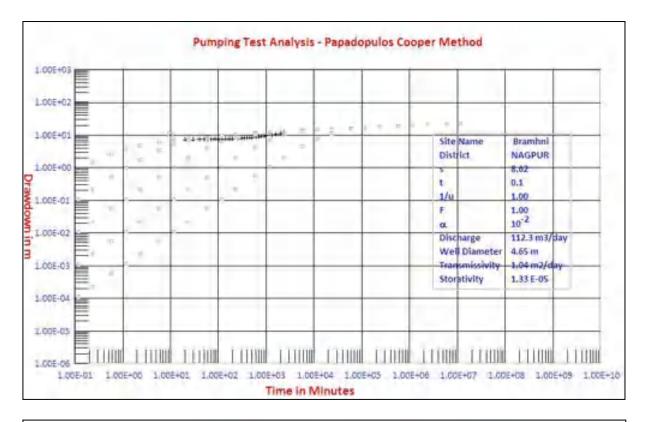


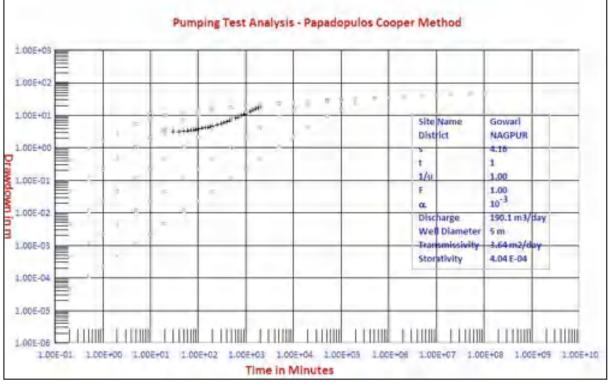


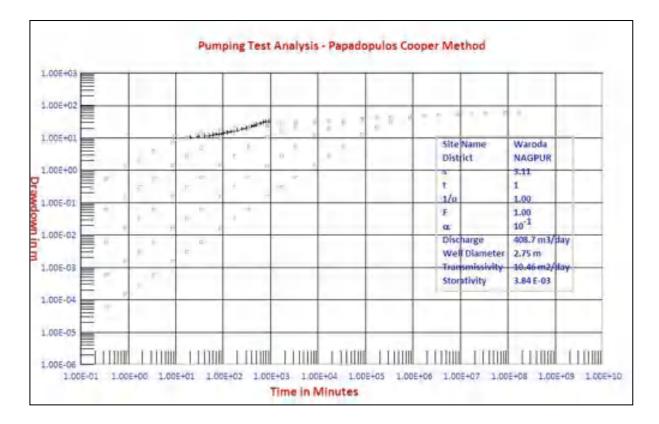


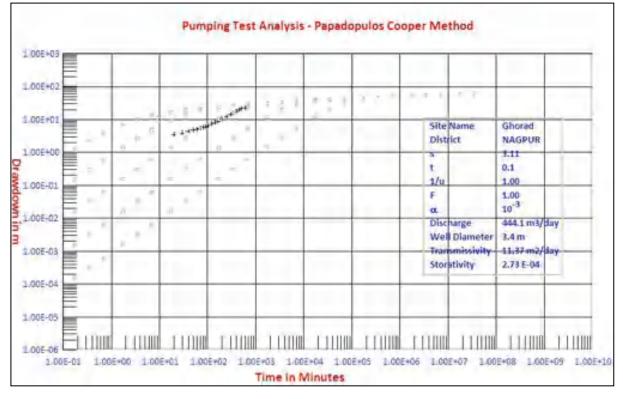


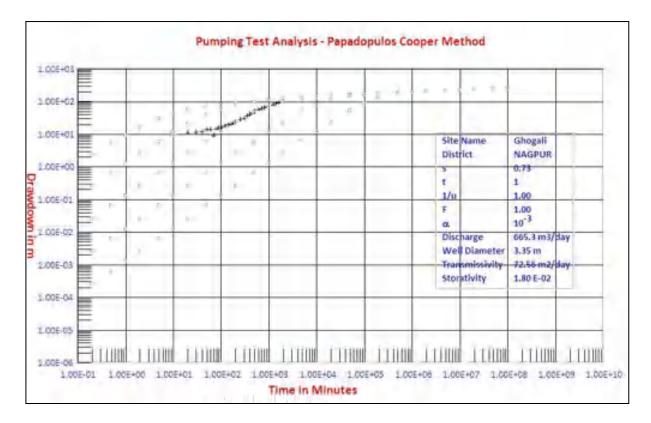


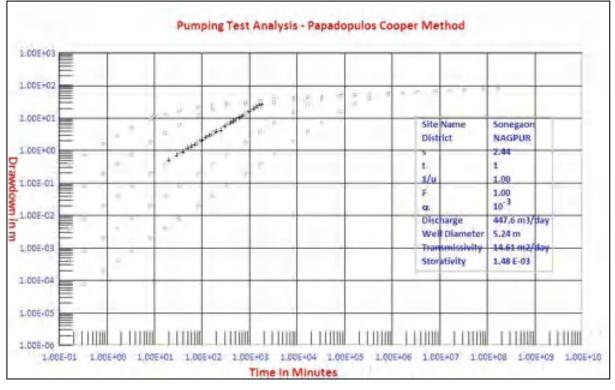


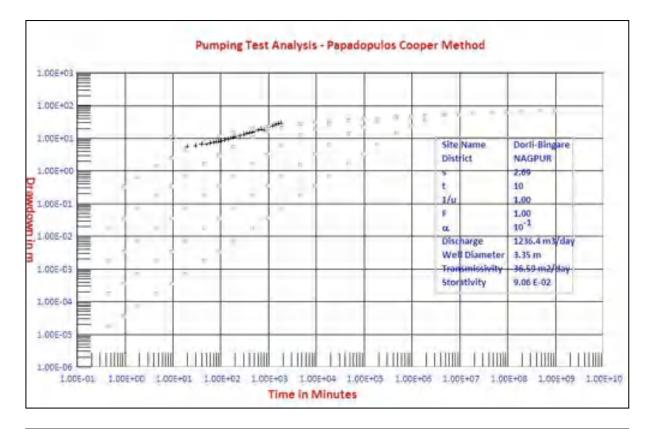


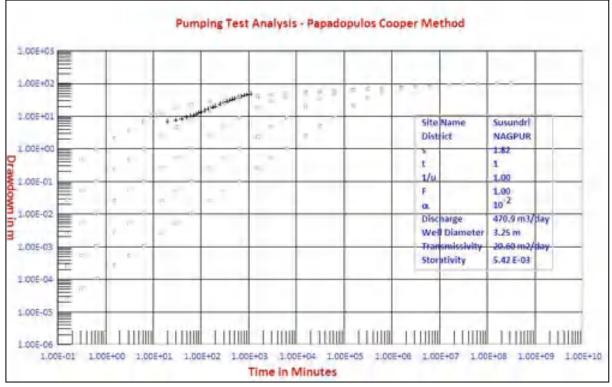


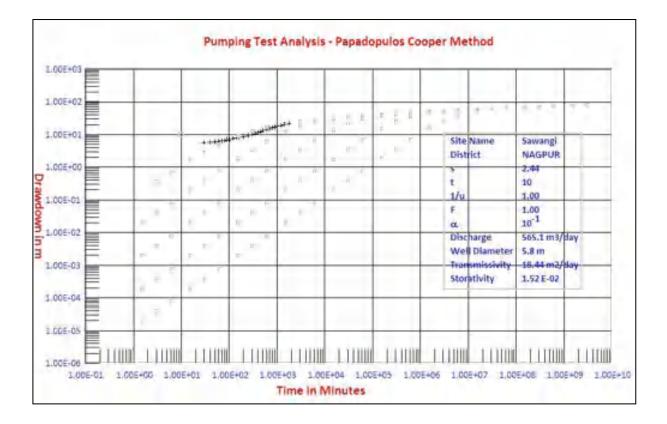












4 DATA INTEGRATION

To cover the entire area of Chandrabhaga Watershed (WGKKC-2) through geophysical surveys, the survey work has been outsourced to NGRI, Hyderabad. Modern state of art Heliborne Geophysics, the major component of the AQUIM project, has been done by NGRI, Hyderabad in collaboration with Aarhus University, Denmark using dual moment SkyTEM system developed at Aarhus University, operated, and owned by SkyTEM Survey Aps, Denmark. Dual moment ensures high-resolution information from top to deeper level by means of low and high moments. Originally, it was planned to carry out SkyTEM surveys first and followed by its ground truth by ground-based investigation. However, due to too tight time schedule and complicated and lengthy administrative procedures; it could be flown during month of November 2013 over Chandrabhaga Watershed (WGKKC-2) Nagpur area. Focus of the survey is to map the principal aquifers within intertrappeans, fractured vesicular/ amygdaloidal basalt and transition zone of Basalt-Gondwanas up to maximum 200 m depth. The result of this project is also aimed to set the road map by establishing efficient, cost effective, and fast methodology for high-resolution aquifer mapping that could be up scaled to nationwide aquifer mapping programme (NAQUIM) (NGRI, 2015).

Overview of the SkyTEM system

SkyTEM is a time-domain helicopter borne electromagnetic system designed for hydrogeophysical, environmental and mineral investigations. The following contains a general introduction to the SkyTEM system. The SkyTEM system with the hexagonal frame below the helicopter. The lengths of the frame sides are approximately 11 m. The transmitter loop is mounted on the frame in an octagonal polygon configuration. The receiver loop is placed approximately 2 m above the frame in what is roughly a central loop configuration with a vertical offset. Two lasers placed on the frame measure the distance to terrain continuously while flying, and two inclinometers measure the tilt of the frame. Power is supplied by a generator placed between the helicopter and the frame. The positions of the different devices on the frame (Fig. 4.1). The configuration of the system is customized for each survey. Measurements are carried out with one or two transmitter moments, depending on the target geology. The standard configuration uses a low and a high transmitter moment applied sequentially. Each sequence has between 100 and 200 individual transient measurements. Background noise is measured for each 20 sec. The flight altitude is depending on flight speed, topography, etc. A typical nominal flight altitude is 30-50 m. Over forested areas, the altitude is increased to maintain a necessary safety distance to the treetops. The operating speed is customized to the survey area and target. A typical nominal flight speed is 45-90 km/h, depending on the target. Apart from GPS-, altitude-and TEM data, a number of instrument parameters are monitored and stored digitally in order to be used for quality control when the data are processed. The penetration depth for the SkyTEM system depends on the moment, the geological conditions, the level of the background noise and the speed and altitude of the frame. The influence of the latter is important, and in order to achieve good data, the altitude should normally be less than 50 m. A penetration depth of approximately 200-250 m can normally be achieved in hard rock geology. During the inversion a depth of investigation is estimated for each resistivity model (NGRI, 2015).

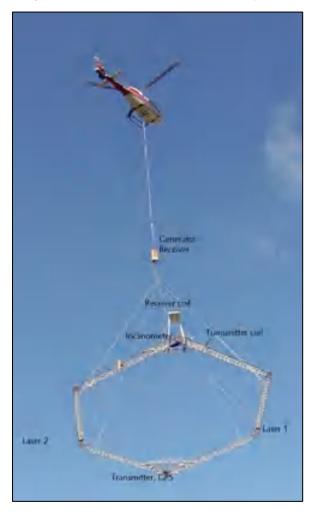


Fig. 4.1: The airborne SkyTEM system (NGRI, 2015)

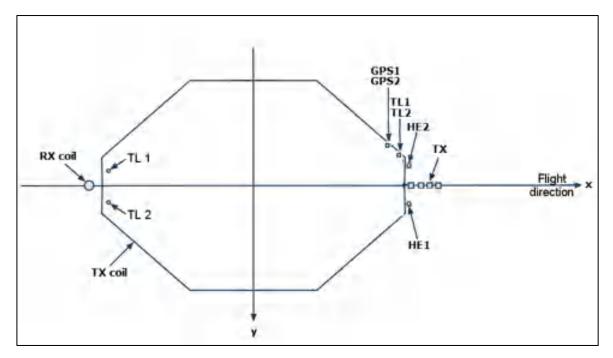


Fig. 4.2: Instrument setup for the SkyTEM system used. HE 1 and 2 is laser altimeters, TL 1 and 2 inclinometer, GPS 1 and 2 GPS sensors, Tx the transmitter (NGRI, 2015).

Survey was influenced by Nagpur airport and permission was not given for 171 km2 (48%) to fly during flights landing or take off from Nagpur airport. Hence, only 189 km2 (52%) area was covered among total study area of 360 km2. The actual field survey took place from the November 10th to 18th, 2013 for nine days; where in total 954-line km of data were acquired. The details of nine days heliborne survey are: total survey days are seven, non-flown/off days are one and test flown days are one while the total flying time is 28 Hrs 17 min. The individual flight lines were closely spaced with only 200 m of separation and the average flight speed of the helicopter was 17 m/s with an average flight altitude (frame height) of 35 m above the ground. Even though the survey area is influenced by man-made installations, the general data quality of the acquired data is good (NGRI, 2015).

The collected SkyTEM data were subsequently processed with state of the art processing schemes to remove couplings arising from roads and man-made installations such as iron pipes, buried cables and possibly also closed iron sheep fences. Afterwards the data were inverted with preliminary inversion to make sure all the coupled and noisy data had been removed, and furthermore to establish a suitable starting model for the entire survey area. The preliminary inversions thus suits as a quality check of the previous processing. Finally the data were inverted with a smooth model using the spatially constrained inversion (SCI) approach (NGRI, 2015).

4.1 Integration of data from Conventional and Advanced Techniques

The geophysical methods adapted in the AQMAH pilot area, i.e., Chandrabhaga watershed (WGKKC-2) have been described in the Table 4.1. The ground based and air borne geophysical methods have been validated and integrated to acquire the data gaps. The integration has assisted in deciphering the disposition of geological formations and their extension on lateral scale. The demarcation of geological formation such as individual flows separated by intertrappeans has been useful information in delineating the aquifer systems. Thus the geophysical data base has been transformed into lithological model and subsequently in to hydrogeological model. The geophysical methods employed in the pilot area have been shown in Table 4.1 (NGRI, 2015).

Table 4.1: Geophysical methods/ Techniques employed in Chandrabhaga watershed (WGKKC-2) (NGRI, 2015)

Methods			Techniques	Geophysical	Applications	
Air-borne		Electromagnetic (Time Domain)		parameters layer conductivity (inverse of resistivity) and thickness	Almost continuous information on Aquifer geometry in 3D	
	1-D Geophysics	Resistivity,	Vertical electrical soundings	layer resistivity and thickness	Aquifer/aquitard characteristics and thickness	
		Transient Electromagnetic	sounding	layer conductivity and thickness	Aquifer/aquitard characteristics and thickness	
Surface	2-D Geophysics	Resistivity	Electrical resistivity tomography	Spatial distribution of resistivity and thickness	Aquifer geometry	
		Seismic	High Resolution Seismic	Formation velocity	Depth of basement	
Sub-surface		Borehole Logging	Short Normal, Long Normal, Lateral, SP and natural Gamma	In-situ physical property measurements	Precise delineation of aquifer and well design	

At the outset, it was planned (Fig. 4.3) to carry out the heliborne geophysical data acquisition just after the compilation of existing data in the area and conceptualization of the existing aquifer system. Followed by its validating by ground based measurements such as VES,

TEM, ERT, drilling, borehole logs, etc., and then integration and inversion of all the data depending on their sensitivity leading into realistic aquifer models and their characteristics. However, management and time constraints forced to modify the original plan broadly in three phases i.e. pre-SkyTEM, SkyTEM and post-SkyTEM. SkyTEM survey took place in the month of Sept-Oct., 2013. Detailed activity vs. time chart is given in Figure 4.3 and Table 4.1.

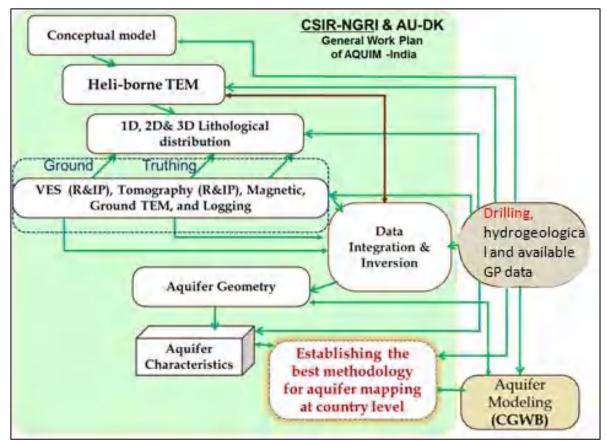


Fig. 4.3: Original work plan conceived at start of the project, Chandrabhaga watershed (WGKKC-2) (NGRI, 2015)

Table 4.2: Details of SkyTEM survey AQMAH 2013, Chandrabhaga watershed (WGKKC-2) (NGRI, 2015)

Locality	Chandrabhaga watershed (WGKKC-2), AQMAH,
	India
Field Period	November 10 th - 18 th , 2013
Line km planned	954 km
Line km acquired	954 km
Flight Line separation	200 m
Tie Line separation	2000 m
Average flight speed	~17 m/s
Average flight altitude (frame height)	35 m above the ground

In order to achieve one of the main objectives of mapping the aquifers, an approach has been established to translate the geophysical results into the hydrogeological models through the steps as follows:

- SkyTEM results are calibrated against the drilling lithologs, ground and borehole geophysical results and then integrated lithological log at each borehole are prepared.
- b. Equivalent litho-units of the integrated logs are converted into principal lithounits as proxy of principal aquifer and aquitard.
- c. The principal lithologs are imported to the Arhus Workbench and incorporated with the individual sections prepared at each 2 km x 2 km grid line.
- d. The principal litho-facies are interpolated and extrapolated along the SkyTEM sections using the calibrated resistivity values.
- e. The principle lithological units are finally attributed into principal aquifers, confining layers and Basalt-Gondwana interface.

Lithological layer boundaries are prepared for all possible SCI model separated ~25 m from each other along the grid lines. This is followed by gridding using the kriging interpolation scheme. Of course, the interpolation has averaged out some of the sharp anomalies indicating smooth variation. In order to retain the small-scale variation, it is desired to do the digitization and demarcation of lithological boundaries for all the flight lines (NGRI, 2015).

The HeliTEM survey was carried out in the period November 10th - 18th, 2013. The survey area is located near to city Nagpur city in central India (Fig. 4.4). The full survey holds 954-line km and covers an area of 189 km2. The line spacing is 200 m. The average flight speed was approximately 17 m/s with an average flight altitude of 30 m (frame height) (NGRI, 2015).

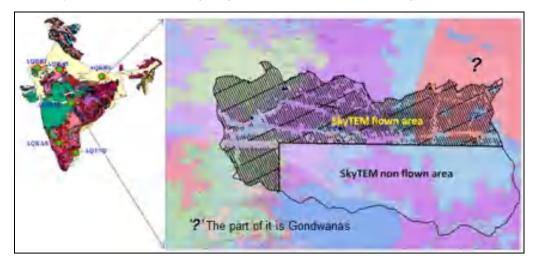


Fig. 4.4. The survey area, the flight lines and tie are shown as black lines (NGRI, 2015)

Ground geophysical data (i.e. VES, ERT, G-TEM, and borehole) collection was done during pre and post SkyTEM phases. The locations of the geophysical investigations have been shown in Figure 4.5.

Calibration of remotely sensed resistivity sections with the collateral (ground truth) information has been imperative in order to understand the subsurface geological features and enhance the precision. Heliborne survey has been taken up in the Nagpur pilot area applying transient electromagnetic parameters to cover an area of 189 km². The heliborne survey is therefore adapted for its rapid and large areal coverage with high density data focusing aquifer exploration and characterizing saturated formations for about 200 m depth in basaltic traps underlain by Gondwanas (NGRI, 2015).

4.1.1 validation by ground based results and refinement

To understand and calibrate the SkyTEM generated subsurface maps, various profile sections covering exploratory wells (logs) have been chosen within the SkyTEM flown region of Nagpur pilot area (Fig. 4.5). A total of six profile sections with different directions and georeferenced elevation have been selected for calibration with collateral data. The HeliTEM derived resistivity sections were calibrated /compared with the borehole lithology, e-logs and gamma logs of exploratory wells, considering lineaments and ground geophysics such as VES. Efforts have been put to characterize the saturated and unsaturated zones by means of resistivity parameters and also to decipher the resistivity range for aquifers within basalts, transition zone of Basalt-Gondwanas and within Gondwanas (NGRI, 2015).

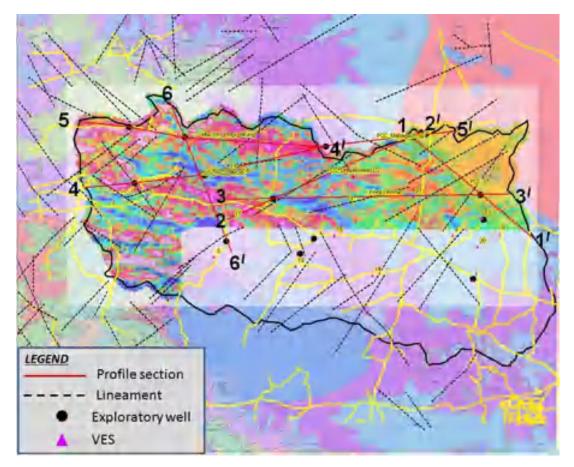


Fig. 4.5: Location of SkyTEM sections in different orientations in the AQMAH pilot area (NGRI, 2015).

4.1.1.1 Section wise validation of SkyTEM data

1. Section 1-1[/] (Dhapewada to Gowari villages)

This section extends for 10.5 LKM in NW-SE orientation in the NE part of the study area covering the area between exploratory wells Dhapewada to Gowari (Fig. 4.5 & 4.6). This section is traversed by four lineaments trending NE-SW orientation and near perpendicular to the section. The section at Dhapewada exploratory well shows resistivity 5-15 Ω -m up to 27 m bgl corresponds to thick pile of alluvium soil admixture with kankar, sand and clay. Groundwater struck (Aq1) in this zone from 22.6 to 25.6 m, bgl with discharge 0.14 lps reflects in resistivity profile with 10-12 Ω -m (Fig. 4.6). Basalts has been noted between depth zone 27.0-30.5 m bgl followed by alternate layers of sandstone, shale and sandy clay which extends up to 104 m, bgl. The second aquifer zone (Aq2) with discharge 2.16 lps has been found between 62.15-65.15 m, bgl with resistivity 20-25 Ω -m between clay underlain by sandstone. Third aquifer zone (Aq3) was noticed in the fractured sandstone at 116.0-118.6 m, bgl with discharge 4.43 lps

corresponds to resistivity 5-8 Ω -m. The alternate layers of dipping bands designated with resistivity 10-20 Ω -m and 30-100 Ω -m from 4 km onwards could be attributed to textural and digenetic variations in the sandstone. The exploratory well at Gowari shows sandstone up to 200 m drilled depth with thin bands of 2-5 m clay lens between 85-105 m depth zone (Fig. 4.6). The compact sandstone up to 85 m depth is well reflected with resistivity range 50-80 Ω -m followed by clay layers with of resistivity 10-12 Ω -m. The general observation in this section is that the resistivity of various litho-units in sandstones of Gondwans has been well resolved up to 200 m depth and aquifer zones at different depth are deciphered. Apart from, the four lineaments traversing the Dhapewada-Gowari profile are well reflected in the Heli TEM section where significant distributions in litho-disposition were noticed in the hydrogeological nature of the aquifer system.

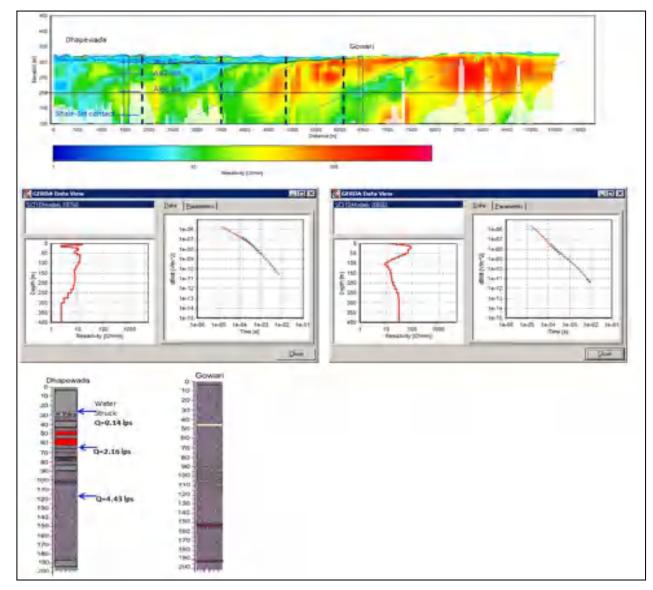


Fig. 4.6:Heli TEM section 1-1[/] in NW-SE orientation covering exploratory well at Dhapewada and Gowari villages (NGRI, 2015)

2. Section 2-2[/] (Kohli to Dhapewada villages)

This section trends in SW-NE orientation and covers exploratory well at Kohli and Dhapewada extending up to 14.5 line kilometres (Fig. 4.5 & 4.7). The bore hole lithologs of exploratory well at Kohli shows various flows having alternate vesicular and massive basalts extended up to 125 m bgl designated with resistivity range 30-40 Ω -m. Gondwana sandstone characterized with fine to medium grains, and rich in ferruginous and quartz material, was struck at 125 m, depth corresponds litho resistivity range 110-120 Ω -m (Fig. 4.7). In this section the vertical contact between basalt and Gondwanas has been deciphered with the resistivity contrast. However, it is unable to detect the aquifer zones tapped at depths 127.6-145.3 m, 153.3-169.3 m, and 185.3-191.4 m within the fractured Gondwanas. In this profile the horizontal bands of the lava flows and lineaments are clearly deciphered (Fig. 4.7). The lateral contact between basalts and Gondwanas are clearly demarcated with the resistivity contrast.

3. Section 3-3[/] (Kohli to Gowari villages)

The section trends W-E direction covering a distance of 19.0 LKM (Fig. 4.5). The exploratory wells located at Kohli and Gowari villages (Fig. 4.8). Four lineaments traverse across this section at various locations. These NE-SW lineaments which could be the areas for groundwater recharge in basaltic flow and sandstone of probably of Motur stage are well reflected along the section. The Basalt-Gondwanas contact with resistivity variations as evidenced from the drilling lithologs was traced (Fig. 4.8). The Gondwanas hold thick (~100 m) compact sandstone underlain by clay/shale in the western and central parts of the section. In the eastern part Deccan Traps thin out near Gowari (Fig. 4.8). There is a lateral facies change in the Gondwanas from west to east. The Gondwanas hold low (4-5 Ω -m) resistivity sediments in the east central part.

The bore hole lithology of Kolhi and Gowari matches satisfactorily with the Heli TEM section. The VES 11 and VES 21 fall between Kohli and Gowari exploratory wells also matches satisfactorily with the Heli TEM section. The Deccan Trap is about 150m thick in the western part and it tappers towards east-central part of the section. The massive basalt (Flow Nos. 24 & 23) is up to a depth of 100 m followed by a thick (30 m) vesicular, amygdaloidal, fractured basalts. The extent of the Gondwanas in east central part is probably controlled by the two parallel NE-SW lineaments resulting into horst type of faulting system (Fig. 4.8). The inferred line of Basalt- Gondwana contact has been overlaid on this section based on the controlled point of exploratory well at Kohli.

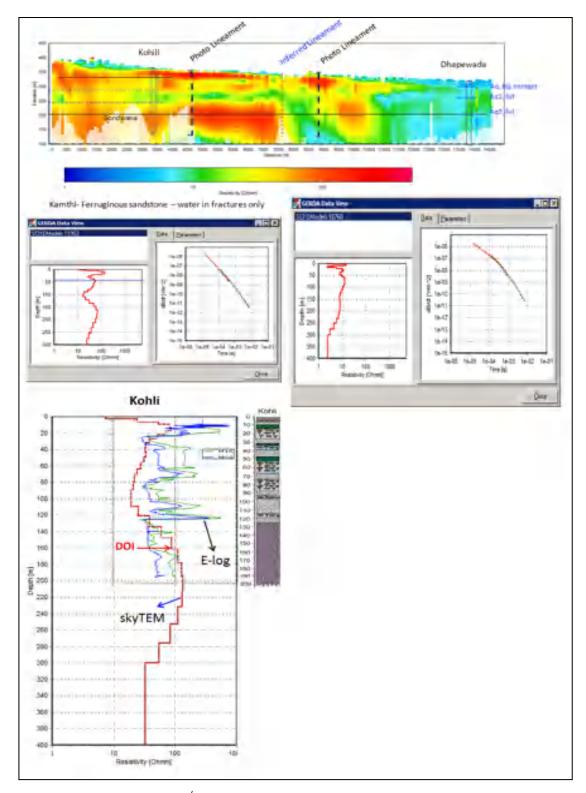


Fig. 4.7: Heli TEM section $2-2^{/}$ in SW- NE orientation covering exploratory well at kohli and Dhapewada villages (NGRI, 2015).

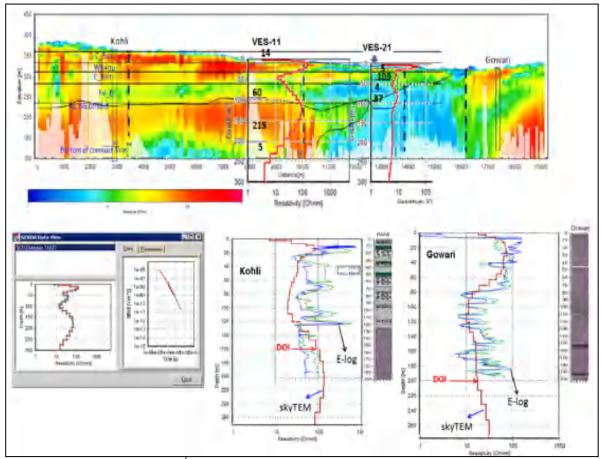


Fig. 4.8: Heli TEM section 3-3⁷ in E-W orientation covering exploratory well at Kohli and Gowari villages (NGRI, 2015)

4. Section 4-4[/] (Sonkhamb, Pardi Deshmukh and Mohagaon)

The orientation of the section is W-E which covers the exploratory wells at Sonkhamb, Pardi Deshmukh and Mohagaon (Fig. 4.5 & 4.9). Five lineaments with NW-SE and NE-SW orientation are cutting across in the section (Fig. 4.9). It is possible to delineate the different flows with vesicular and massive basalts units. The bore hole lithology at Sonkhamb depicts first aquifer (Aq1) struck at 22 m bgl corresponding the resistivity 10-15 Ω -m with Q=0.78 lps followed by second aquifer (Aq2) at 50-60 m bgl in fractured amygdaloidal basalt increased the yield to Q= 1.73 lps holding corresponding resistivity range 35-40 Ω -m in the section (Fig.4. 9). The third aquifer (Aq3) zone was met at the Basalt-Gondwana contact at 195 m bgl with ultimate yield of 5.15 lps. The resistivity of the high yielding aquifer zone in Heli TEM was noted between 15-20 Ω -m (Fig. 4.9). The contact of Basalt-Gondwanas has been clearly delineated over this section using the bore hole control points and TEM signatures. Similarly at Pardi exploratory well, the lithology indicates alternate layers of different flows up to 87 m bgl which are satisfactorily matching with the Heli TEM section on broad way. A thick bole bed from 87-105 m bgl has been reflected in the section with resistivity range 20-25 Ω -m followed by amygdaloidal basalt up to 120 m depth (Fig. 4.9). Two aquifer zones between152.0-152.55 m (Aq1, Q=0.8 lps) and 160-161 m (Aq2) depth with Q=4.3 lps were recorded within thick pile of massive basalts with fracture. The corresponding resistivity of these two aquifers were noted 25-30 Ω -m.

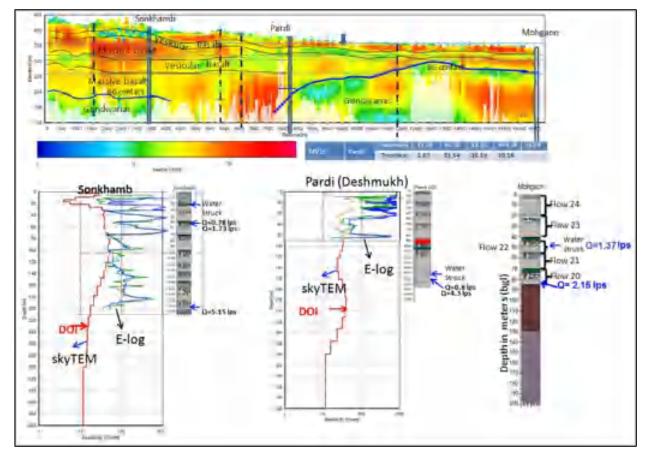


Fig. 4.9: Heli TEM section 4-4⁷ in NW-SE and NE-SW orientation covering exploratory well at Sonkhamb, Pardi Deshmukh and Mohagaon (NGRI, 2015).

At Mohagaon the drilling lithology shows alternate layers of different flows with two potential aquifers which is satisfying the corresponding resistivity in the Heli TEM section. The first aquifer (Aq1) zone is found within fractured vesicular filled with secondary minerals at 42-45 m, depth with Q=1.37 lps and falls in resistivity range 25-30 Ω -m (Fig. 4.9). The second aquifer (Aq2) zone is noted at basalt-Gondwana contact at 82-85 m depth with Q= 2.16 lps with corresponding resistivity range of 20-30 Ω -m (Fig. 4.9). Based on the Heli TEM section and bore hole lithology, the Gondwana formation has been characterized with the resistivity parameter which in turn helped in inferring the Basalt-Gondwana contact in this section. The lineaments, which are the potential aquifers, have clearly been visualized from the Heli TEM results.

5. Section 5-5[/] (Malegaon, Ramgiri and Mohgaon villages)

The section trends W-E orientation for 16.5 LKM covering the exploratory wells at Malegaon, Ramgiri and Mohgaon villages (Fig. 4.5 & 4.10). Five lineaments (NE-SW & N-S) traverse across the section. The exploratory well at Malegaon village indicates, top weathered vesicular soil up to 16 m depth with water struck of Aq1 with yield Q = 0.38 lps at 10 m depth followed by red bole, weathered amygdaloidal basalt and massive basalt up to 55 m depth which constitutes a single flow (Flow No. 27) (Fig. 4.10). The resistivity parameters of Occum inversion (TEM) and bore hole e-logs varies but follows the trend. The second aquifer (Aq2) with Q = 1.37 lps yield met at 126 m, depth in amygdaloidal basalt zone corresponds the resistivity 10-20 Ω -m in TEM section. The extension of these two aquifers (Aq1 & Aq2) was observed further in the west to Malegaon village with the resistivity 10-20 Ω -m (Fig. 4.10). The lineament at the western end of the Flow no. 27 has been clearly demarcated in the TEM section. The Basalt-Gondwana contact at this well was not noted up to a drilled depth of 200 m bgl (Fig. 4.10).

Further, at Ramgiri exploratory site, the two aquifers were noted at 10 m (Aq1) and 175 m (Aq2) depth with yield Q = 0.78 lps and 6.18 lps, respectively. The Aq1 struck in the fractured basalt with corresponding resistivity in TEM 30-50 Ω -m. The Aq2 was met at Basalt-Gondwana contact at 175 m depth with noted resistivity 10-15 Ω -m in TEM section (Fig. 4.10).

The Basalt-Gondwana contact and its extension towards east up to Mohgaon village with elevation variations have been clearly identified in the TEM section (Fig. 4.10). This Basalt-Gondwana contact could be the potential aquifer (Aq2) in hydrogeological point of view. The rapid change in elevation of the Basalt-Gondwana contact at 11-12.5 km distance of the section has been by the two lineaments traverse through the section. Similarly, Mohgaon village the exploratory well lithologs indicates two potential aquifers at 42-48 m depth (Aq1) in the vesicular basalt and 82-85 m depth (Aq2) at the Basalt-Gondwana contact zone (Fig. 4.10). The Aq1 with yield Q = 1.37 lps corresponds the resistivity 20-30 Ω -m in the TEM section and this aquifer zone extension was noted clearly towards east (Fig. 10). The Aq2 is noted at the Basalt-Gondwana contact holding the resistivity 15-25 Ω -m with the yield Q = 2.16 lps. Its extension is noted fairly continuing towards east up to Ramgiri village except at two lineaments (Fig. 4.10) where vertical displacement took place.

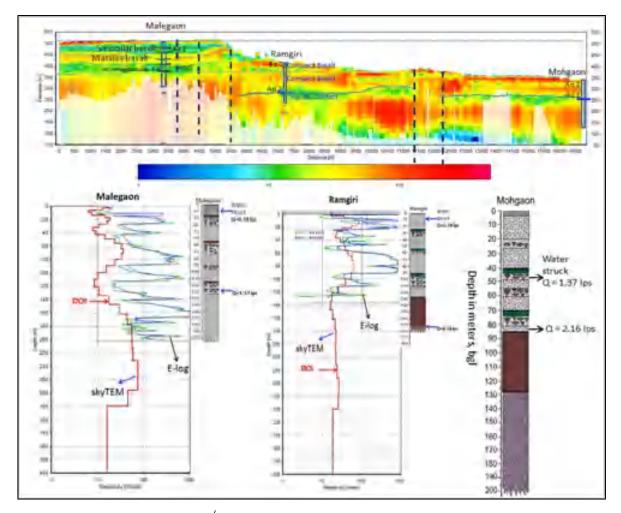


Figure 4.10: Heli TEM section 5-5[/] in W-E orientation covering exploratory well at Malegaon, Ramgiri and Mohgaon villages (NGRI, 2015).

6. Section 6-6[/] (Ramgiri, Pardi (Deshmukh) and Raulgaon villages)

The section trends in NW-SE orientation for 11 LKM covering the exploratory wells at Ramgiri, Pardi and Raulgaon villages (Fig. 4.5 & 4.11). Raulgaon falls in non-flown zone of Heli TEM (Fig.4.5) therefore to fill the data gaps ground geophysics such as TEM and VES have been carried out at this location. In this Heli TEM section a significant topographic elevation variations has been observed in the west of Ramgiri village where Flow Nos 27 & 26 ends there itself (Fig. 4.5). Ramgiri village situated over Flow no. 25 wherein the first aquifer (Aq1) is struck in fractured basalt at 7-8 m depth with yield Q = 0.78 lps holding the resistivity 25-35 Ω -m in Heli TEM section (Fig. 4.11). The second aquifer (Aq2) was met at Basalt-Gondwana contact between 172-179 m depth with yield Q = 6.18 lps which holds resistivity range 10-15 Ω -m (Fig. 4.11). The extension of the B-G contact towards east has not been observed, it could be due to the lineaments traversing across the section. Based on the resistivity range obtained by the Heli TEM for of B-G contact, the predicted B-G contact is demarcated about 200 m below surface

from the distance 3 LKM of the section up to 7.8 LKM in the section covering Pardi village (Fig. 4.11). The bore hole lithology at Pardi village show two aquifers in fractured basalts. The first aquifer (Aq1) met at 152 m depth and second aquifer (Aq2) at 160 m depth with yield Q is 0.8 lps and 4.30 lps, respectively. The resistivity range for both the aquifers falls within the range of 25-35 Ω -m in Heli TEM section (Fig. 4.11). The Aq2 is probably continued towards east since the resistivity band of the 25-35 Ω -m show its extension in the east ward.

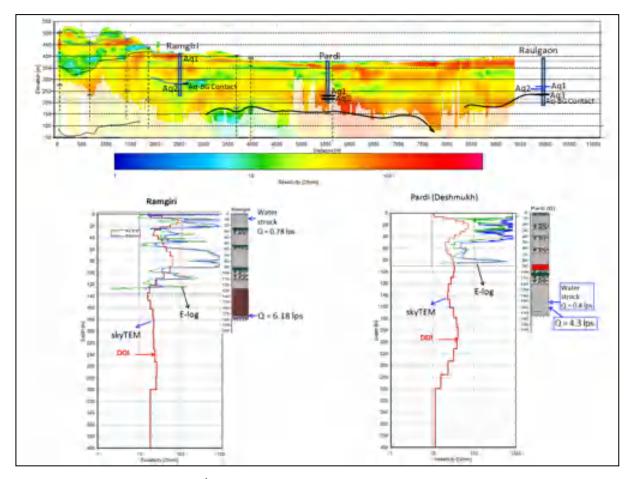


Fig. 4.11: Heli TEM section 6-6⁷ in W-E orientation covering exploratory well at Ramgiri and Pardi (D) villages, and VES 3 curve at Raulgaon village (NGRI, 2015).

4.1.1.2 Validation of SkyTEM data by resistivity sections in grid fashion

The study area has been studied by establishing grids of size 2000 m x 2000 m in SW-NE and NW-SE orientations. The orientation of SW-NE is therefore chosen to avoid the sharp changes in topographic variations and to cover the various basaltic flows. The reason for choosing NW-SE orientation is that the flight lines of Heli TEM survey falls in this orientation. Since, the dipping of northern part Gondwanas are towards SW direction and the strike in NW-SE direction, the resistivity section of NW-SE grids would be useful in understanding the dispositions of subsurface geological formations. The grid map of size 2 km x 2 km has been shown in Figure 4.12. A total of 12 Heli TEM resistivity sections in SW-NE grids have been coded with I – IX (X-XII non flown zone), similarly 14 Heli TEM resistivity sections shown in NW-SE are indicated with 1 – 14 (**Annexure- XV**).

Fig. 4.12: Heli TEM resistivity sections in grid fashion in SW-NE and NW-SE Orientation (NGRI, 2015).

Heli TEM section – III:

A patch of resistivity section **III** has been interpreted calibrating with the lithologs of Sonkhamb village exploratory well. Figure 13 shows a patch of Heli TEM resistivity section between 1700 m to 5400 m distances. In this section, the control point of Sonkhamb village exploratory well lithologs is at 4600 m distance. There are two lineaments fall at 3200 m and 4600 m distances. This sections falls on the Basaltic Flow Nos. 26, 25 and 27 (Source: GSI) from SW to NE direction (Fig. 4.12). The aquifers can be mapped precisely by transforming the resistivity parameter into lithological model and subsequently into aquifer zones with geological perception. To accomplish the mapping of aquifer zones, a series of inter related maps such as Heli TEM derived resistivity model and lithological model have been generated using control points. In the litho profile of Sonkhamb village site, a total of nine flows from flow no. 26 -16 in sequence have been recorded. The top flow up to a depth of 30 m bgl have been identified with the resistivity range 8-40 Ω -m (Fig. 13). It includes topsoil, weathered vesicular basalt followed by massive basalt. Saturated zones noted at 11 m and 22 m could be the reasons of resistivity below 20 Ω -m in the top weathered zone. The top flow extends horizontally towards SW and NE directions till the lineaments where an uplift in the zone is noted. The signatures of lineaments have been clearly identified in this section. The second flow with resistivity trend is observed for the rest of the subsequent flows. It is noted that the gradual increase in resistivity ranges for basaltic flow as the depth increases. It could be due to the massive basalt and reduction in vesicles. Another aquifer is recorded in the saturated fracture of amygdaloidal basalt between 76-79 m bgl with resistivity range 60-70 Ω -m. A potential aquifer recorded at Basalt-Gondwana (B-G) contact with resistivity range 25-40 Ω -m. The resistivity of Gondwana sandstone is noted in the range of 15-25 Ω -m.

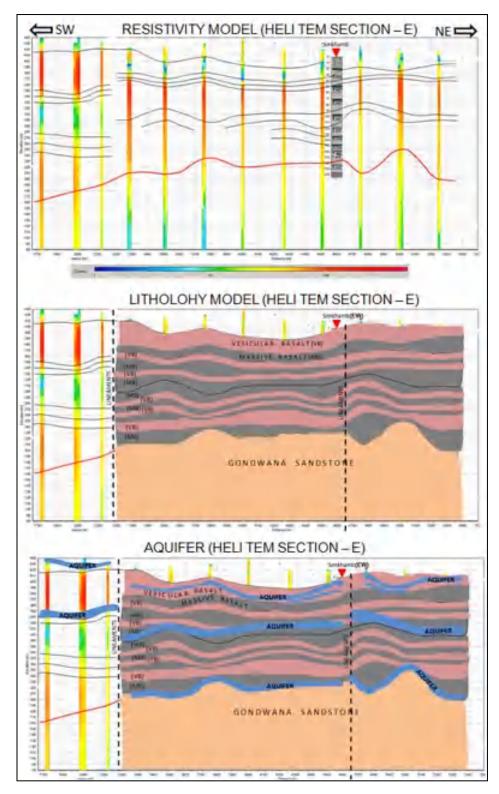


Fig. 4.13: Resistivity model, lithological model and aquifer zones derived from Heli TEM resistivity section of HeliTEM section-III (NGRI, 2015).

4.2 Value Addition from Geophysical Studies

4.2.1 Estimation of Basalt thickness and Gondwana topography

The integration of HeliTEM data base with ground geophysics and controlled points such as bore hole lithologs has been useful to derive the basaltic trap thickness and Gondwana topography. To derive these thematic maps the study area have been made into grids of 2 km x 2 km size, then the vertical information available at the node of the grid has been considered for the interpolation. Figure 4.14 indicates the variations in thickness of lava flows (~400 m) in the NW part and its thinning towards SE of the study area. The NW-SE part of the study area indicates the valley of Gondwanas as evidenced by the 3D map of Gondwana topography (Fig. 4.16). Further, in the SE part the basaltic traps are underlain by Archaean base as confirmed from the bore hole lithologs (at Dahegaon village) and higher order of resistivity at 90 m below ground level (Fig. 4.15). In addition to the basaltic aquifer, the interface of Basalt-Gondwana can be considered as potential aquifer. The elevated topography can be found in the NE and southern part of the study area and also documented by the filed verifications.

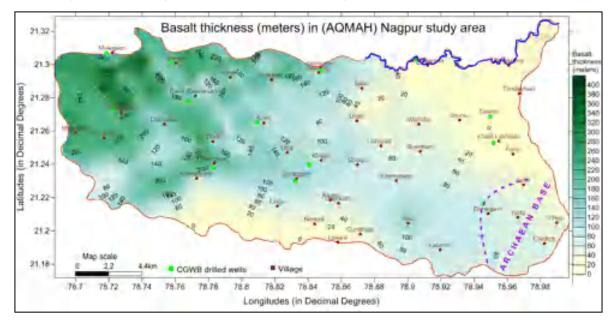


Fig. 4.14: Estimated basalt thickness derived from the HeliTEM and ground geophysical methods (NGRI, 2015)

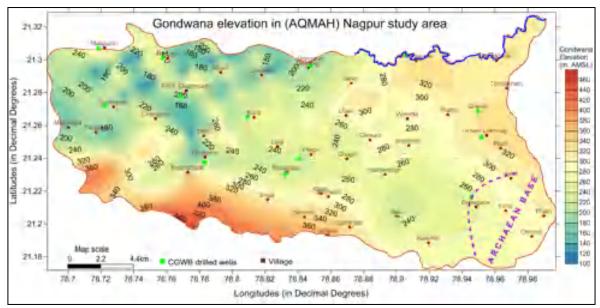


Fig. 4.15: Estimated Gondwana elevation (m, AMSL) drived from the HeliTEM and ground geophysical methods (NGRI, 2015)

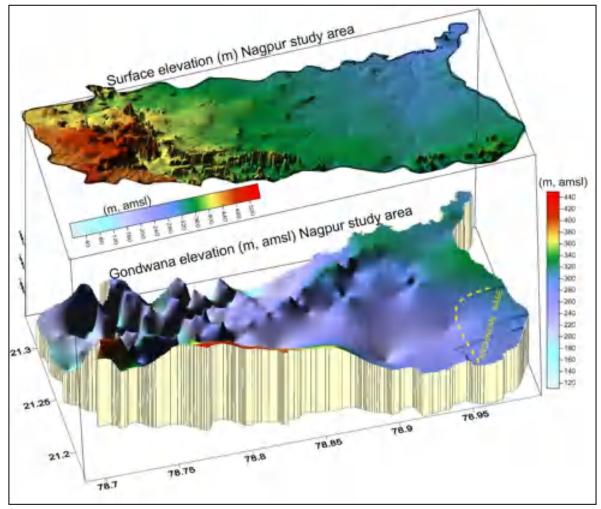


Fig. 4.16: 3D map showing the estimated Gondwana paleo topography (m , AMSL) (NGRI, 2015)

4.2.2 HeliMag results

HeliMag survey was carried out along with HeliTEM using Geometrix Caesium vapour type having sensitivity 0.1 nT. Magnetic sensor was synchronized with TEM measurements. The position of the magnetometer sensor is placed at the front panel. There is another base station used for continuous magnetic measurement to record the temporal changes, which is applied for correcting the magnetic data recorded by the by main magnetometer attached with HeliTEM transmitter. Final processing of the magnetic data involved the application of traditional corrections to compensate for diurnal variation and heading effects prior to gridding. Advanced full processing of magnetic data was implemented in Geosoft's Oasis Montaj software as follows:

- Processing of static magnetic data acquired on magnetic base station
- Pre-processing of airborne magnetic data
- Stacking of data to 10 Hz in SkyLab (SkyTEM in-house software).
- Moving positions to the center of the sensor in SkyLab.
- Processing and filtering of airborne magnetic data
- \circ Standard corrections to compensate the diurnal variation and heading effect
- IGRF correction
- Statistical and full levelling
- o Micro levelling
- o Gridding

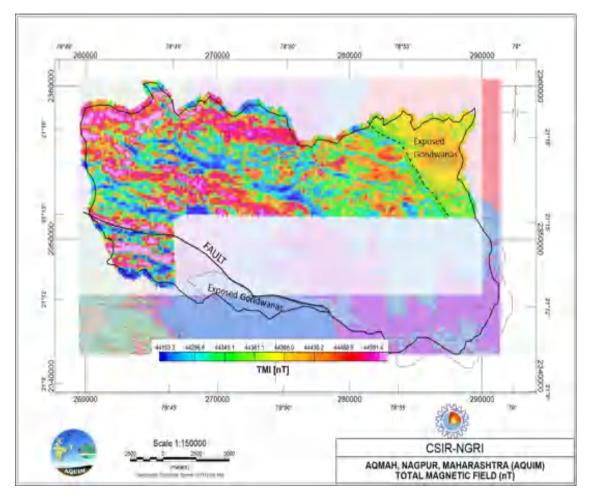


Fig. 4.17: HeliMAG map of the AQMAH pilot area (NGRI, 2015)

Finally, total magnetic field intensity map has been prepared after all correction and data levelling (Fig.4.17). Magnetic data is found varying from 44153 nT to 44591 nT. The high magnetic field intensity corresponds with the followings observations

- The lateral contact between Deccan Traps-Gondwanas exposed in the north east has been very clearly demarcated.
- Overall the average magnetic field intensity (nT) is found relatively low magnitude over Gondwana compared to the traps
- It is also found very effective in delineating the structural feature such as fault which is reflected as low resistivity band elongated in WNW-ESE. Such band is also aligned with the strike of the Gondwana palaeo-topography referred from the literature study. The fault and Gondwanas are also reflected in the mean resistivity maps provided in Annexure-XVI.

4.2.3 Geophysical Parameters Characterization

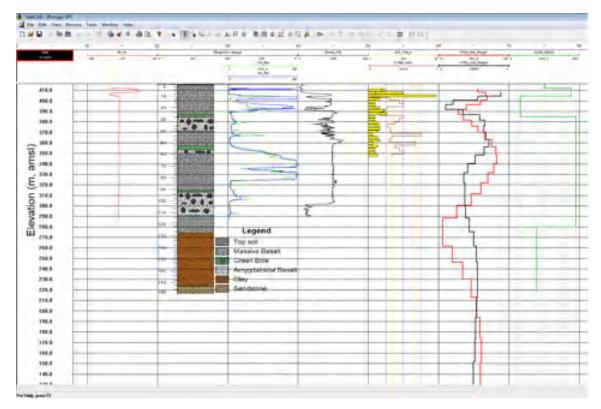
Geophysical parameter characterization is imperative in view of understanding the subsurface geological formations as well as their geometry. It is therefore essential to place the multiple geophysical parameters obtained through various investigations at a particular point, on single platform. Comparative study of various parameters such as ground based VES, TEM, ERT, electric log, gamma logs, SP logs, bore hole lithologs, drilling time, penetration rate, and remote sensed electromagnetic (EM) surveys such as Heli TEM and Heli MAG investigations are significant to standardize the geophysical parameters for a particular geological formation. WellCAD is a PC based composite log package, which combines comprehensive graphic editing mechanisms and data processing tools and handles a wide range of geophysical data with advanced depth matching tools. All data are numerical and can be edited in a separate spread sheet view. Hence the geophysical data acquired at exploratory wells at AQMAH study area have been integrated and interpreted on WellCAD platform. To represent the study area, two cases at Trap covered Gondwanas and exposed Gondwanas have been explained in detail on WellCAD software. The similar interpretation approach can be applied for the rest of the cases.

4.2.3.1 Integration at Ramgiri village (Trap covered Gondwanas)

The main objective to select Ramgiri site as a typical example for integration of geophysical parameters is that, the basalts underlain by Gondwanas separated by Infratrappeans. The exploratory well lithologs at Ramgiri village shows basaltic flows with Flow No. 25 to 22 from top with green earth layers of 2-3 meters. Gondwana sandstone struck at 172.5 m depth below ground level (bgl). The geophysical parameters such as SP logs, E-logs, gamma logs, resistivity from Heli TEM, gradient of Heli TEM resistivity and VES, and drilling time and penetration rate have been studied in comparative and integrated manner validating with ground truth information such as bore hole lithologs (Fig. 4.18). The integrated interpretation reveals that the top basaltic flow (no. 25) extends up to 25.6 m bgl (390.4 m, amsl) with saturated fractures, shows the resistivity range 25-50 Ω -m obtained in Heli TEM with negative gradient. The same resistivity range is well correlated with resistivity peaks in e-logs and CGWB VES (No. 402), and low gamma. This flow is underlain by a thin layer (2.4 m) of Green Bole and well resolved by low resistivity in Heli TEM and e-logs, and high gamma counts. The transition zone between flow no. 25 and Green Bole is clearly indicated by the positive gradient in Heli TEM resistivity. The second flow (Flow no. 24) occurs between 388 to 363 m, amsl consisting fractured amygdaloidal basalt and massive basalt bearing the resistivity range 20-40 Ω-m in Heli TEM with positive gradient (Table 4.4). Low resistivity and moderately high gamma with no

deflections in SP are noted for fractured amygdaloidal basalt. Similar trend has been observed for the subsequent basaltic flows. A thick (45.5 m) pile of red sticky clay below 127 m depth bgl (289-243 m, amsl) is falling in the resistivity range of 20-30 Ω -m in Heli TEM survey. This clay with friable chips could be the lametas. Further, the Gondwana sandstone encountered at 172.5 m bgl (243.5 m, amsl) is reflected with the resistivity range 20-40 Ω -m in Heli TEM.

Overall in the basaltic flows, it is observed that the Heli TEM acquired resistivity for amygdaloidal basalt varies between 20-30 Ω -m, whereas the resistivity range 20-70 Ω -m corresponds to massive basalt. Further, the resistivity gradient of Heli TEM was found to be supportive to demarcate the vertical variations in litho-units. Thus, the integrated interpretation of various geophysical parameters clearly indicates the relative efficacy of Heli TEM survey with more resolution in demarcating the fractures in amygdaloidal and massive basalts, intertrappeans, and Basalt-Gondwana vertical boundary which are the potential aquifers.



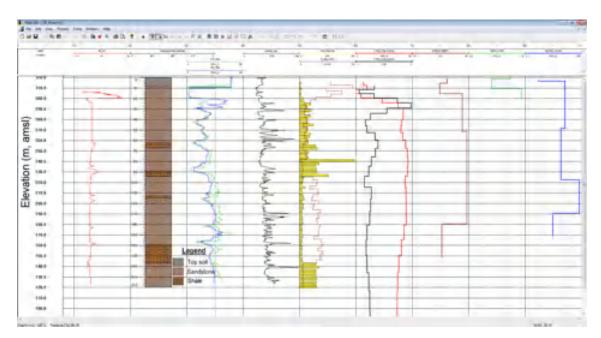

Fig. 4.18. Geophysical parameters characterization by integration method (usingn WellCAD software) in Trap covered Gondwanas at Ramgiri village (NGRI, 2015).

Table 4.4: Integration of Integration of geophysical parameters in Trap covered Gondwanas atRamgiri village (NGRI, 2015).

Depth			Heli TEM	HeliTEM	_	CGWB VES-		
(m, am	nsl)	Lithology	Resistivity	Res	Flow No.	402 Resistivity	Remarks	
From	То		Ω-m	gradient		Ω-m		
419	391	Basalt: Fractured and massive	25-50	-ve	25	50-100	Top soil up to 0.5m, water zone 408- 409 m (amsl)	
391	388	Green bole:	20	+ve	-	9	Low resistivity , High Gamma, no significant SP	
388	382	Basalt: Fractured Amygdaloidal	20-30	+ve	24	9	Moderately high Gamma, Low resistivity, no SP deflection	
382	364	Basalt: Fractured massive	20-40	+ve	24	9	Significant gamma fluctuations	
364	360	Green bole:	50-60	+ve	-	9	Significant high gamma, low resistivity	
360	356	Basalt: Fractured Amygdaloidal	60	-ve	23	9	Moderate-high gamma	
356	325	Basalt: Fractured and massive	70	-ve	23	9 And 2200	337-333 high fracture indicated by resis-log, No variation in gamma.	
325	322	Green bole:	50	-ve	-	2200	High gamma, low resis.	
322	300	Basalt: Fractured Amygdaloidal	30	Normal	22	2200	High gamma, low resis.	
300	289	Basalt: Massive & Fractured	18	+ve	22	2200	Low gamma with fluctuations	
289	262	Clay	20-30	+ve		46	VES Resis reduces from 2200 to 46 @ 250 m amsl	
262	172	Sandstone	20	+ve				

4.2.3.2 Integration at Khairi Lakhmaji village (Exposed Gondwanas)

The exploratory well located at Khairi Lakhmaji village beset on Gondwana formation has been selected in order to represent the Gondwana terrain of the study area (Fig. 4.12). At this site, the litho profile consists top soil mixed with clay up to a depth of 8 m bgl (312 m, amsl) with the corresponding low order of resistivity range 3-8 Ω -m in Heli TEM, 5 -10 Ω -m in ground TEM and 2-9 Ω -m in VES by NGRI (VES No. 13) (Fig. 4.19 and Table 4.5). The relative low resistivity could be due to the soil composed clay materials. This clay is also reflected by the corresponding gamma peaks. The top soil is followed by the Sandstone of fine to medium grain and extends to a depth of 62 m, bgl (258 m, amsl). The Heli TEM resistivity range 5-8 Ω -m up 20 m bgl (300 m, amsl) with positive gradient and high gamma peaks correspond to the fine grain with intercalation. Whereas, it shows the relative high order of resistivity range 6-38 Ω -m for the medium to coarse grain sandstone in the same zone from 20 to 62 m bgl. The high gamma peaks matching with low resistivity in e-logs at 289 m, 269 m, & 259 m amsl depth could be due to clay intercalations. Sandy clay layer of 5 m thick lies between 62-67 m bgl (258-253) is reflected by the Heli TEM resistivity about 38 Ω -m with high gamma counts and SP peak. Similar trend has been observed for the sandstone below 67-200 m bgl separated by the clay/shale layers at various depth. Based on the Heli TEM observation in the Gondwana terrain in the entire study area, the ranges of resistivity varies due to the compositional variations in the Gondwanas sediments. The cementing matrix such as calcite, ferruginous and siliceous which binds the sediments during the diagenesis process also alters the resistivity of greater magnitudes. However, the signatures attributed to clay/shale layers in the Gondwana formations has been noted with distinct resolution in the Heli TEM resistivity surveys.

<u>Fig.</u> 4.19: Geophysical parameters characterization by integration method (using WellCAD software) in exposed Gondwanas at Khairi Lakhmaji village (NGRI, 2015).

Table 4.5. Integration of	of geophysical	parameters in	exposed	Gondwanas	at Khairi	Lakhmaji
village (NGRI, 2015).						

Depth	(m)	Litholog	HTEM	HTEM	GTEM (Res)	VES13_NGRI	VES371_CGWB	Remarks
From	То		Resistivity	Resistivity	. ,	Resistivity	Resistivity	
			(Ω-m)	Gradient		(Ω-m)	(Ω-m)	
320	312	Top soil	3-8	-ve	5-10	2-9	6-52	Top soil mixed with clay is reflecting by low resistivity ranges and gamma peak corresponds to clay
312	300	Sandstone	5-8	+ve	5-36	2-22	52	Gamma peaks at 306-300 m (amsl) could be due to fine grain with clay intercalations.
300	258	Sandstone	6-38	+ve to -ve	36-51	22	37-52	High gamma peaks matching with low resistivity in e-logs at 289m, 279m, 269m, & 259m (amsl) depth could be due to clay intercalations.
258	253	Sandy Clay	38	normal	51	No information	37	High gamma and SP peak could be the reasons for sandy clay
253	231	Sandstone	38-41	-ve	51	No information	37	Low gamma and high resistivity corresponds to medium to coarse grain with quartz nad clay intercalcations are reflected by gamma peaks and low resistivity at 234- 230m (amsl)
231	226	Clay/Shale	37-41	-ve	51	No information	37	Shale/clay is reflected by gamma peaks
226	207	Sandstone	37-41	-ve	51	No information	37-168	Sandstone fine to coarse grain corresponds to high resistivity peaks in e-logs
207	205	Clay/Shale	37-41	-ve	51	No information	168	Gamma peaks, SP deflection and low resistivity peaks in e-logs could be due to Clay/Shale
205	161	Sandstone	36-38	-ve	9-51	No information	168-20	High gamma fluctuations could be due to the shale intercalations also reflected in SP deflections
161	143	Clay	29-32	+ve	7	No information	No information	Clay lens are indicated by gamma peaks and SP fluctuations, and with low resistivity in e-logs
143	120	Sandstone	25-28 (Below DOC)	+ve	No information	No information	No information	The progress in the resistivity value in e-logs are the signatures of sandstone. The high gamma at 137-140m (amsl) could be due to changing litho units form clay to sandstone

4.2.4 Three-dimensional resistivity section

The main aim to present the 3D maps of Heli TEM sections has been to understand the basaltic flows directions and their extension on vertical and lateral scale. The Figure 20 has been generated using the Heli TEM sections in W_E and SW-NE orientation. The W-E section shows individual flows in the west and their extension towards east their ending. Further, on the same

section the vertical contact of between Basalt-Gondwana (B-G) has been clearly demarcated with distinct variations in the resistivity. The B-G contact can also be seen its smooth merging with the SW-NE Heli TEM section. The aquifer systems in basalts and Gondwanas and their extensions are also clearly demarcated in the 3D map (Fig. 4.20)

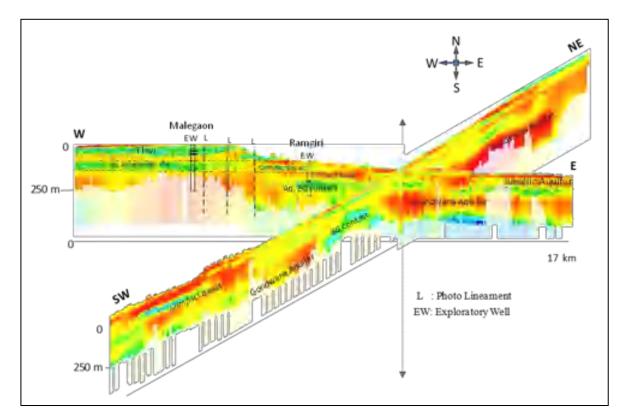


Fig. 4. 20: 3D map showing the Heli TEM sections of the AQMAH study area, Nagpur, (NGRI, 2015b).

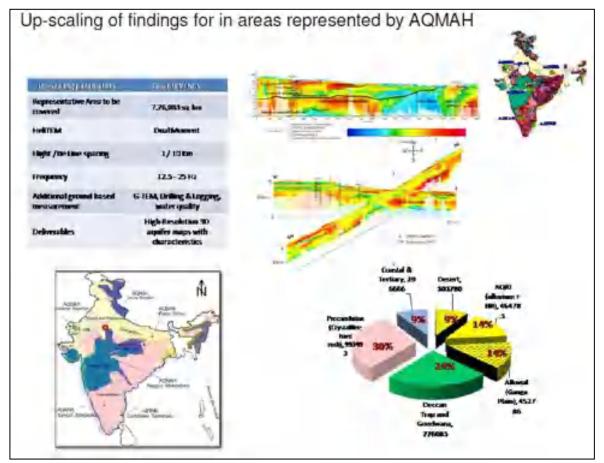
Thus, data generated has been integrated and georeferenced. Georeferenced elevation of the principal hydrogeological layers at each node of the grids of the AQMAH study area is presented in **Annexure-XVII** (NGRI, 2015b).

4.3 Efficacy of various Geophysical Techniques for different Hydrogeological terrain

The present pilot project on aquifer mapping (AQMAH), in Chandrabhaga watershed (WGKKC-2) is a prestigious project where the advance geophysical techniques have been used first time in the country. Also it is a pilot project to establish the methodology for various divergent geological and hydrogeological settings of the country, additional conclusion both scientific and managerial have to be discussed and used for replicating them in up-scaling. Two important aspects viz., the degree of performance of various methods in a particular case as well as the cost-effectiveness of the employed methodology have been discussed based on the present experiences (NGRI, 2015a).

The performance matrix of various geophysical methods applied in Pilot Aquifer mapping (AQMAH) in Chandrabhaga Watershed (WGKKC-2) is presented in Table 4.6. Also, the cost effectiveness considering ground vs airborne geophysical survey has been carried out and presented in Table 4.7 (NGRI, 2015a).

SI.	Hydrogeological	Geophysical	Performance of Geophysical Method used						
No.	Objective	Objective	Surface			Helibo	Borehole		
			VES	GRP	TEM	TEM	MAG	logging	
1	Aquifers in weathered zone	Moderately resistivity layers	1	NA	1	1	NA	1	
2	Aquifers in vesicular and fractured zone	Moderately resistive layer underlying highly resistive (massive basalt) layer	4	NA	3	2	NA	1	
3		Geological structures	5	NA	5	3	1	NA	
4	Basalt-Gondwana contact	deeper moderately resistive (Gondwana sandstone) layer	3	NA	4	3	NA	1	
5	(maximum depth 200m)		Depth of investigation depends on			NA	NA	NA	


Table 4.6: Performance Matrix of various geophysical methods applied in Pilot Aquifer mapping (AQMAH) in Chandrabhaga Watershed (WGKKC-2) (NGRI, 2015a)

SI.	Hydrogeological	Geophysical	P	al Method	ethod used					
No.	Objective	Objective	Surface			Heliborne		Borehole		
			VES GRP TEM			TEM	MAG	logging		
			subsurface							
			resistivity							
			distribution							
Where Index on 5-point Scale is										
1: Excellent, 2: Very Good, 3: Good, 4: Fair, 5: Poor, NA: Not Applicable										

Table 4.7: The cost effectiveness considering ground vs airborne geophysical survey (NGRI, 2015a)

COST EFFECTIVENESS VES SkyTEM G-TEM Models / Flight Charges model/sq.km Rate Rate (INR) Rate (INR) Size (INR) Line(LKM) (INR) Soundings Area sq.km AQRAJ 598 3499 25356910 80602 135 315 AQDRT 600 94492 261 3400 24639467 157 269 AQMAH 216 954 6913544 25673 119 303 AQBHR 150 5551127 18307 122 766 376 20602942 AQKAR 2843 AQTND 234 2337 16936010 13287 11780 287 Average Cost including survey, processing and Cost Ground/ interpretation and resolution of results 46 41 Ratio air ♦ Measurement density AEM : 500 measurements/ sq km ♦ Measurement Time 300 measurement per hour ī

It is difficult to indicate an optimal area but with general perception it can be understood that large is the area, more cost-effective will be heliborne survey. It depends on the objectives of the project. If high-resolution regional picture of the aquifer is required, obviously the heliborne geophysical survey will be many folds less expensive and faster. If a detailed investigation on local scale is required, ground survey will be cost-effective. Overall for up-scaling the heliborne geophysical survey including processing and interpretation, the cost will be several ten times less than the classical methods of ground geophysical survey, which is about 46 times less than a VES and 41 times less than one ground TEM(Table 4.7) (NGRI, 2015a).

4.4 **Protocol for Geophysical Investigations in Aquifer Mapping**

Fig.4.21. Upscaling of findings of geophysical surveys (SkyTEM) to Deccan Trap Basaltic Terrain (NGRI, 2015a)

An area of about 7,76,083 sq. km. in central India is represented by Deccan trap Basaltic terrain. NGRI, Hyderabad suggested that, the heliborne (HTEM & HMAG) survey could be carried out with the above mentioned parameters. In addition, following ground survey could complete the task in this terrain (NGRI, 2015a).

- 1. A few G-TEM to cover the non-flown area as well as supplement the HTEM survey.
- 2. A few traverses of HRSS clearly delineate boundaries of various flows.
- 3. Selected drilling for validation and calibration of heliborne survey.
- 4. Water quality measurement to apply suitable corrections.

NGRI, 2015a has suggested the following protocol for covering entire area of aquifer mapping in the State as well as in the Country.

STEP 1

Heli TEM and Heli MAG

STEP 2

Validation by ground geophysical, hydrogeological studies and exploratory drilling.

STEP 3

Data integration and interpretation for 3D aquifer model and characteristics.

CGWB agreed with the protocol suggested by NGRI, Hyderabad for covering entire area of aquifer mapping in the State. However, the cost component may vary based on the actual ground situation at the time of implementation.

5 GENERATION OF AQUIFER MAPS

5.1 Aquifer Disposition

Basalt is the main rock type of the area and comprises two distinct units viz, upper vesicular unit and lower massive unit. The massive basalt is hard, compact and does not have primary porosity and hence impermeable. Weathering, jointing and fracturing induces secondary porosity in massive unit of basalt. In vesicular basalt, when vesicles are interconnected constitutes good primary porosity and when the vesicles are filled/ partly filled the porosity is limited. Ground water occurs under phreatic/ unconfined to semi-confined conditions in basalts.

Based on extensive analysis of historical data, micro level hydrogeological survey data generated and ground water exploration carried out during project study, the following three types of aquifers can be demarcated in the Chandrabhaga watershed as detailed below:

- Aquifer I Unconfined aquifer. Occurs in Deccan trap basalt which is exposed in major parts and Gondwana Supergroup in the NE part. This aquifer generally occurs to the depth of 20 to 30m bgl and mostly tapped by the shallow dug wells in area occupied by basaltic and sandstone terrain.
- Aquifer II Semi-confined to confined aquifer. Generally occurs in Deccan trap basalt which is exposed in major parts and Gondwana Supergroup in the NE part. The thickness of aquifer varies from 0.50 cm to 6 meters in Basaltic formation and 3m to 34 m in Gondwana formation and mostly tapped by the deep bore/tube wells in area occupied by basaltic and sandstone terrain.
- 3. Aquifer III It is mostly 'Trap Covered Gondwanas or Gneisses' (TCG). Generally occurs as semi-confined to confined conditions but at places, they exhibit unconfined condition and occur where the thickness of basalt is less, and tapped by the shallow dug wells or deep bore/tube wells in area occupied by basaltic and sandstone terrain.

The Aquifer-I in the area predominantly consist of weathered, fractured and jointed basalt and sandstone in north east part of the watershed. The data collected during detailed well inventory have been used to understand the thickness of Aquifer-I i.e., unconfined shallow basaltic and sandstone aquifer. Isopach of Aquifer-I reveals that the thickness of basaltic Aquifer-I ranges from 0 to 2 m. In the southeast part of the watershed at isolated patches, the aquifer thickness upto 4m has been observed especially in and, around villages Kalmeshwar,

Khairgaon, Dahegaon and Phetri. However, in NE part of the watershed thickness of sandstone aquifer encountered from 2 to 4 and up to 6m, having thick aquifer zones (Fig. 5.1).

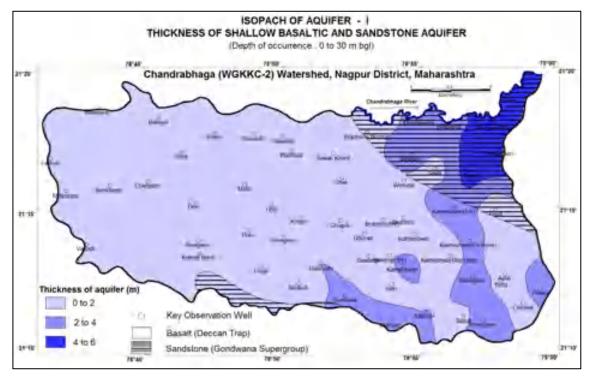


Fig.5.1: Isopach of Aquifer – I (Thickness of Shallow Basaltic & Sandstone Aquifer)

Similarly, using the historical data of CGWB on ground water exploration and data generated during drilling and construction of exploratory wells in the project area, an attempt has been made to decipher the deeper aquifer disposition in WGKCC-2 watershed. Isopach map of Aquifer-II and Aquifer-III both for basalt and Sandstone has been prepared based on the zones encountered during the drilling of ground water wells (Fig. 5.2, 5.3 and 5.4).

The study of lithological logs generated during ground water exploration indicates the existence of Gondwana formation at various depths below basaltic terrain in major parts of the area. The ground water in basaltic terrain occurs under phreatic conditions in the exposed lava flows and in semi-confined to confined state in the subsurface flows. Ground water is present in pore spaces in the vesicular unit of each flow and in the jointed and fractured portions of massive unit. However, secondary porosity and permeability that has been developed because of weathering, fracturing and joints play a very important role in the storage and movement of ground water. Weathering not only produces granular materials but also widens the fractures, joint and shear zones and constitute ground water potential aquifers in the area.

The Basaltic aquifer-II has been observed between the depth range of 30 m to >161 m bgl (Fig. 5.2). The south west part of the area and small part around village Pardi has Basaltic aquifer thickness upto 2m. The central part, around village Khapri, has aquifer thickness 4m to 6m while most of the area has Basaltic aquifer thickness ranges from 2m to 3m.

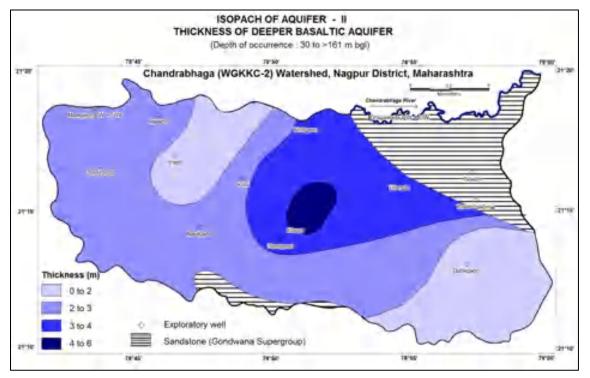


Fig.5.2: Isopach of Aquifer – II (Thickness of Deeper Basaltic Aquifer)

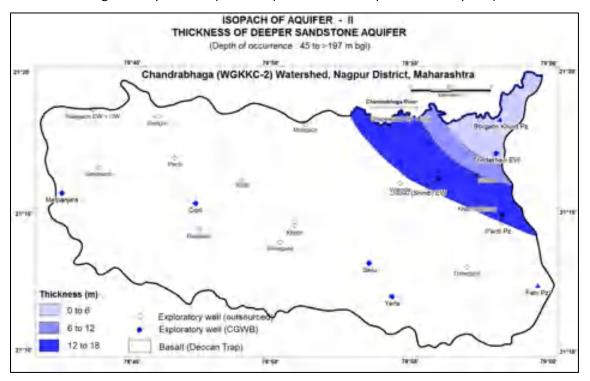


Fig.5.3: Isopach of Aquifer – II (Thickness of Deeper Sandstone Aquifer)

North eastern part of the watershed is covered by rocks of Gondwana Supergroup and consists mainly of Kamthi Sandstone and Shales. In this area, the outcrops of sandstone formation are prominently exposed. The Sandstone Aquifer-II has been encountered at a depth 45m bgl to > 197 m bgl (Fig. 5.3). The maximum thickness of aquifer ranges from 12m to 16m which is gradually reduces to 0m to 6m towards north-eastern end of the watershed.

The Trap covered Gondwana form Aquifer-III and widely distributed over the area (Fig. 5.4). It has been observed that the Sandstone Aquifer-III, covered with Basaltic flows, has maximum thickness upto 24m. It observed at isolated patches in and around villages Mohgaon, Waroda and Raulgaon. The central part of Trap Covered Gondwana formation has aquifer thickness ranges from 18 to 22m, while overall thickness is ranges from 12 to 18m. Towards extreme southeastern part, gneissic formation occur below the traps (Dahegaon), (Fig.5.2).

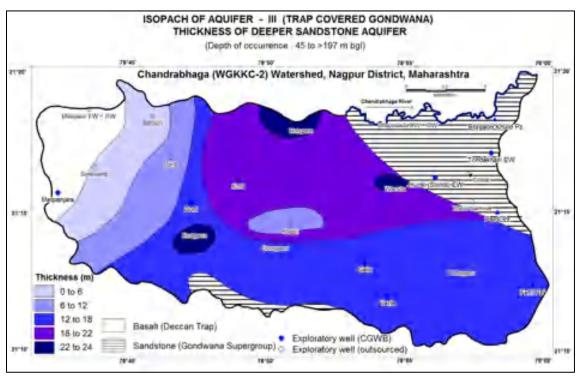


Fig.5.4: Isopach of Aquifer – III (Thickness of Deeper Sandstone Aquifer) Trap covered Gondwana (TCG)

5.1.1 3D Aquifer Maps

The well inventory data for phreatic aquifer was analysed using Rockworks software and 3D disposition of phreatic aquifer was generated (Fig.5.5). It has been observed that the basaltic terrain has typical lithological sequence in Aquifer-I, as top soil followed by highly weathered to moderately weathered basalt, fractured basalt and massive basalt. The unconfined basaltic aquifer-I is mostly restricted to fractured basalt and moderately weathered basalt.

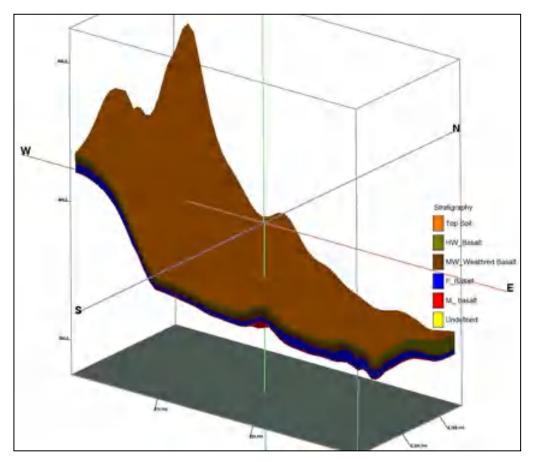


Fig. 5.5: 3D Disposition of Basaltic Aquifer-I (Shallow, unconfined)

Likewise, for Aquifer –II, the ground water exploration data has been used to generate the 3D disposition of deeper basaltic and sandstone aquifers. Using Rockworks software, a composite 3D aquifer system of the area has been generated and presented as Fig. 5.6. It comprises of all existing litho-units and the zones tapped during the ground water exploration, forming an aquifer. However, it has been observed that the true picture of the subsurface aquifer system could not be generated due to lack of data, hence the litho-units and the aquifer has been extrapolated in the model. The marker horizons like red/green and grey boles were not truly representing the subsurface disposition.

Based on the ground water exploration and micro-level hydrogeological survey lithological Fence diagram has been generated (Fig. 5.7). The Gondwana sandstone is exposed in the NE part of the watershed while the basaltic lava flows covers the rest of the watershed. The thickness of the basaltic lava flows decreases from SW to NE. It could be concluded that the central part of the watershed has Trap covered Gondwana formation, while the western part has entire Basalt and on the eastern part entire Sandstone is encountered. The SE part of the watershed has trap covered Archaean formation i.e. Gneisses.

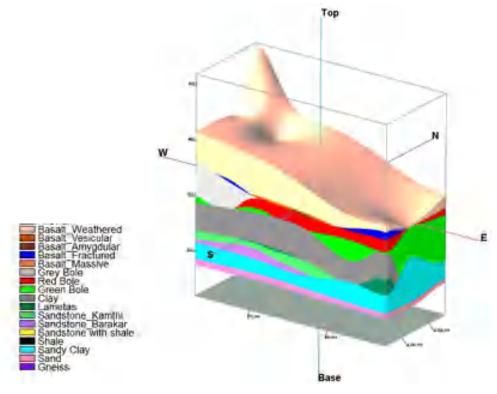


Fig. 5.6: 3D Disposition of Aquifer-II (deeper, unconfined)

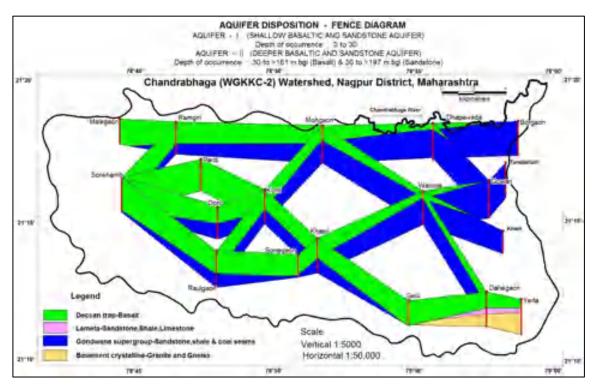


Fig. 5.7: Aquifer disposition with lithological fence diagram of the area based on ground water exploration

5.2 Aquifer Characterisation

The primary aquifer system in the Chandrabhaga watershed is unconfined Basaltic Aquifers and classified as Aquifer-I. It occurs in entire area except in northeastern part of the area where the Sandstone of Gondwana formation constituting the unconfined aquifer. The rest two aquifers i.e., Aquifer II and Aquifer –III, are semi-confined to confined in nature and spread all over the area. Based on the ground water exploration, the yield potential of these aquifers has been generated and presented as Fig. 5.8. Thus, based on hydro-geological and geophysical surveys the characteristics of aquifers in Chandrabhaga watershed has been generated as **Annexure XI**.

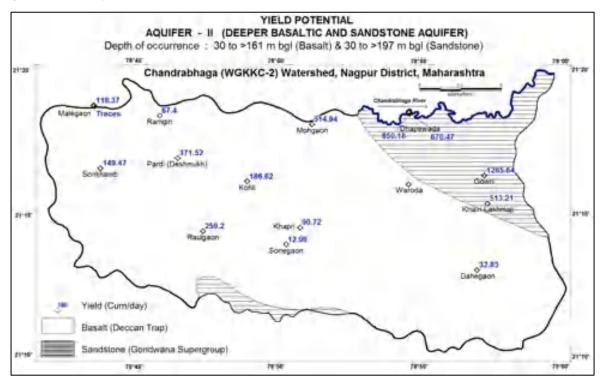


Fig.5.8: Aquifer wise yield potential, Chandrabhaga Watershed (WGKKC-2)

The Aquifer-I in area occupied by Basalt is comprises of typical lithological sequence, top soil followed by highly weathered to moderately weathered basalt, fractured basalt and massive basalt. The unconfined basaltic aquifer-I is mostly confined to fractured basalt and moderately weathered basalt. The weathering of basaltic flows exposed at surface plays a key role in recharging of the Aquifer-I. It is observed that more the depth of weathering, more will be the chances of getting shallow ground water level and vice versa. The north-western part of the watershed is hilly and hence less susceptible to weathering as compared to central and northern part. Another controlling factor for occurrence and movement of ground water is fractures in basalt as well as in sandstone. These fractures/joints are of secondary origin. The density of fractures encountered varies place to place and controls the discharge of the wells. It has been observed that in Basaltic flows the fracture in vesicular basalt helps to connect pore spaces, which ultimately creates more space for storage of ground water in unconfined aquifer. However, in massive Basalt, the width of the fracture plays a key role. The more widen the fracture more will be yield of the aquifer. Besides this, length, orientation, and width of the fracture also plays vital role in occurrence and movement of ground water when these fractures are exposed to surface, facilitate the recharge to deeper aquifer.

The Aquifer-I (Sandstone) is mainly characterised by the interconnected voids/pore spaces, cementing material and secondary fracture and joints. It is observed that the Aquifer-I in the study area is represented by the Sandstone of Gondwana formation. The weathering thickness is recorded more than 6m to 9m in the area. The presence of weathered Sandstone, its thickness, and areal extent are playing main role in recharging of the Aquifer –I (sandstone).

The pre-monsoon depth to water level of Aquifer –I (Basalt) is varying from 3 to 9 m bgl almost uniformly distributed in the watershed, except central and central eastern part where the deeper ground water level upto 12 m bgl has been observed. In Sandstone formation, the DTWL is vary from 6 to 12 m bgl.

The Aquifer-II consists of Basalt and Sandstone are characterised by Semi-confined nature. The area occupied by Basalt Aquifer-II of mostly confined to western and Southwestern, and north-western part of the watershed. Whereas in the areas occupied by Sandstone Aquifer-II is restricted in northeast part of the watershed. The sandstone of Gondwana formation is found to be most yield potential formation in the Aquifer-II followed by the jointed, fractured massive basalt. The discharge of exploratory wells constructed at Sandstone was 5 lps to maximum upto 14.88 lps. The ground water potential zones encountered at 33.00- 39.05 to 174.69 -186.85 m bgl. This indicates that though the potential zones are less in occurrence but the yield of the Sandstone formation is more. In Basaltic Aquifer-II, the ground water potential zones encountered at 11.10 -11.20 to 160.00 - 161.00 m bgl and the discharge is ranges from 0.14 to 4.30 lps.

The occurrence of bole beds is one of the major issues of Aquifer-II (Basalt). If the bole beds of sufficient thickness is encountered then it is not possible to drill the well further due to its collapsible nature by DTH drilling rig. The collapsable red bole occur at several locations in the watershed, for instance at Pardi (Deshmukh) it occurs at 87 to 96 & 101 to 104 m bgl, at

Ramgiri collapsable red boles occurs at 127 m bgl, and at Sonegaon collapsable red boles and green boles occur at various depths. As a result construction of wells in these area restricted above red bole beds only.

The third aquifer type, Aquifer-III, observed in the Chandrabhaga watershed is Trap covered Gondwana and Archaean Gneisses formations (TCG). The trap covered Archaean Gneisses exist only in the south-eastern part of the watershed near Yerla and Dahegaon. The Aquifer-III are characterised by the thin/thick cover of Basaltic flows having thickness from 27 m to 195.10 m. Most of the area of the Chandrabhaga watershed falls in Aquifer-III, covering central, southern central part of the watershed. However, the trap covered Archaean Gneiss is seen in the southeastern part of the watershed i.e., at Dahegaon at the depth of 129.95 mbgl. The construction of tube wells in such terrains is always a challenging task.

The upper hard formation (Basalt) is followed by the soft formation (Sandstone), which is a reversal of the formation in terms of ground water well construction. Due to which most of the people in the Chandrabhaga watershed have difficulties to tap the potential of Sandstone aquifer occupying below Basalt as it is very costly to construct tube well penetrating huge pile of hard rock. During the ground water exploration, it has been observed that the thickness of hard basalt encountered from 59.50 m bgl (Mohgaon), 62 m bgl (Waroda), 96.56 m bgl (Kohli) to 195.1 m bgl (Sonkhamb) while the ground water potential zones encountered 62-68 m bgl to 195.72 - 198.72 mbgl. The deeper ground water level is another issue of Aquifer-III. The ground water level in these tube wells is observed from 11.27 mbgl (Sonkhamb) to 78.12 mbgl (Kohli). The yield of the Aquifer-III is recorded moderate to high and the discharge recorded ranges from 1.05 lps (Khapri) to 5.94 lps (Mohgaon).

6 AQUIFER RESPONSE MODEL AND AQUIFER MANAGEMENT PLAN FORMULATION

6.1 AQUIFER RESPONSE MODEL-AQMAH

6.1.1 Introduction

Groundwater is an important resource so it must be managed prudently. However, there are several difficulties associated with understanding a groundwater system. Its invisibility and highly heterogeneity nature has made it very difficult to accurately characterize the media in which the groundwater is stored. One way of improving our understanding of these highly complex systems is to build and experiment with models which replicate them.

Fetter (1988) defines a model as "any representation of a real system". Bedient et al (1997) stated that "a ground water model is a tool designed to represent a simplified version of a real field site". Anderson and Woessner (2002) agree, defining a model as "any device that represents an approximation of a field situation". The overriding concept is that a model enables the user to use limited field data to find the (approximate) answers to questions posed.

There are two principle drivers behind most modeling exercises. First, to gain an understanding of why a system behaves as it does and second to predict future behaviour (Fetter, 1988; Anderson and Woessner, 2002). Anderson and Woessner (2002) add a third dimension as a tool to provide solution and regulatory guidelines for improvements and corrective measures. Models can help the designer to understand a system's behaviour through the iterative process by which the model is modified until the results generated match field results (known as calibration, see later).

It is important to clearly establish the purpose of the model. Anderson and Woessner (2002) recommend that the following questions must be asked constructing a model:

- What do you want to learn from the model?
- What questions do you want the model to answer?
- Is a modelling exercise the best way to answer the question(s)?"

Addressing these questions helps the modeller to decide if a model is needed, what type of model is appropriate, and what the data requirements might be.

6.1.2 Scope and Objective of Ground Water Modeling

The watershed is characterized by high ground water withdrawal for agricultural and industrial uses with the stage of ground water development touching 89%. No declining trend is observed in the well hydrographs of the region. However if ground water withdrawal goes abated at this pace then, the ground water condition in the watershed will become critical in near future. Thus, the purpose of this study is

- 1. to understand the behavior of the aquifer system in the watershed
- to evaluate the effects of the Chandrabhaga river flowing along the northern border of the watershed

For improving the ground water resource position, possible scenarios like

- 1. The effect of raising the river stage by the construction of two to four check weirs on River Chandrabhaga on the ground water regime and quantifying the benefits accrued out of it.
- Improving the recharge in the highly stressed aquifers underlying the Kalmeshwar Industrial Area by series of check dams and recharge wells and quantifying the increase in recharge

6.1.3 Numerical model Design

Developing a model concept is the initial and the most important part of every modeling effort. It requires a thorough understanding of hydrogeology, hydrology and dynamics of groundwater flow in and around the area of interest. A computerized data base and simplified maps and cross sections are being used in the model design. A model that simulates groundwater flow is the simplified representation of the aquifer system, which may be used to predict aquifer response to various input/ output stresses.

Mathematical models use equations to represent the processes occurring in a field situation and include analytical, numerical and stochastic models (Fetter, 1988). Numerical models are exact solutions but can be used in simple cases with homogeneous condition and simplified boundary condition. However numerical solutions for complex solutions are not available. Numerical models are based on a computer program approximating the controlling partial differential equations as simultaneous equations expressed in matrix form. The power of numerical modeling reflects the efficiency of computers in solving large numbers of simultaneous equations. Numerical models all start with the equation of flow. At its most basic, this can be represented as the Laplace equation shown below (Fetter, 1988):

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = 0$$
 for steady state condition where *h* represents

head

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = \frac{S}{T} \frac{\partial h}{\partial t} \qquad \text{for transient or unsteady state condition.}$$

Anderson and Woessner (2002) give a more general form:

$$\frac{\partial}{\partial x}\left(K_{x}\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K_{y}\frac{\partial h}{\partial y}\right) + \frac{\partial}{\partial z}\left(K_{z}\frac{\partial h}{\partial z}\right) = S_{s}\frac{\partial h}{\partial t} - R^{*}$$

Where K is the hydraulic conductivity, S_s is the specific storage and R^* is a source/sink term. This version of the governing equation allows for temporal variation of head.

The above equation, when combined with boundary and initial conditions, describes the groundwater flow under non-equilibrium conditions in a heterogeneous and anisotropic medium, provided the principle axis of hydraulic conductivity is aligned with the x-y Cartesian co-ordinate axes. Generally, numerical methods are used to solve the groundwater flow equations. The groundwater flow process solves above equation using the finite-difference method in which the groundwater flow system is divided into a grid of cells. For each cell, there is a single point, called a node, at which head is calculated. The set of computer commands used to solve these governing equations on a computer forms the computer program or code. The code is generic, where as a model includes a set of boundary and initial conditions as well as site specific nodal grids and site specific parameter values and hydrologic stresses. A code is written once but a model can be designed for each modeling applications. (McDonald and Harbaugh, 1984; 1988). The finite-difference computer code MODFLOW developed by McDonald and Harbaugh 1988, embedded in the VISUAL MODFLOW Package is used to simulate the groundwater flow in the study area.

6.1.3.1 Methodology

Groundwater modeling for the hard rock area of Deccan Trap Basalt is always a challenging task as it is very difficult to run the model because of the heterogeneity in the aquifer parameters and unpredictable basaltic aquifer geometry. For successful groundwater modeling, there are some modeling protocols have to be followed. A protocol for modeling includes model design, calibration, sensitivity analysis and finally prediction as presented in flow chart for modeling process (Fig. 6.1) (Aderson and Woessner 1992).

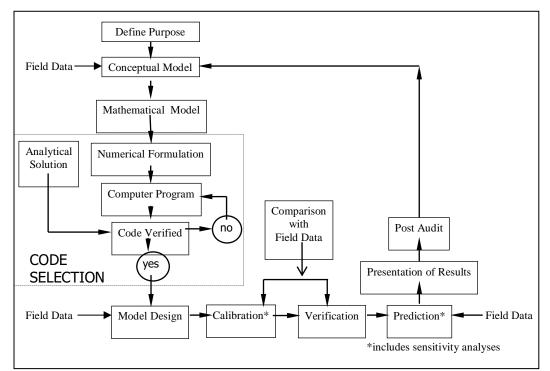


Fig. 6.1: Flow chart for modeling process (after Aderson and Woessner, 1992)

First of all the **purpose** of the model must be defined as discussed in the earlier section. This can consist of a list of questions for the model to answer.

A **conceptual model** is developed in any situation involving groundwater. It describes the best understanding of what is present under the ground from the available data. It can consist of text and/or diagrams, but usually includes a plan view and a cross-section.

The "**mathematical model**" box on the flowchart indicates choosing the relevant governing equation. The governing equation of flow in a porous media was discussed earlier but other governing equations may be required for other modeling purposes, e.g. solute transport for the migration of a contaminant plume. A published computer **code** will usually have been used by other modelers (unless it is very new). Successful use of a computer code indicates that most bugs have been corrected and the code gives reasonable and reliable results. The more a code has been used by other modelers and shown to work, the greater the trust that will be put into new models built using the same code. It is therefore usual to use a well-established computer code.

The computer model is **designed** using information from the conceptual model. Usually a map is uploaded and features such as aquifers, aquitards and surface water bodies are added with their properties specified according to the conceptual model.

Calibration is the process by which the properties of features in the model are adjusted until the model produces heads and flows which match those measured in the field. A sensitivity analysis is carried out to assess the effect of uncertainties in the data. In some cases properties in the calibrated model (e.g. hydraulic conductivities) may be different to those measured in the field (Hill and Tiedeman, 2007) and it is necessary to make a professional judgment about whether this is appropriate. For example, hydraulic conductivity cannot be accurately measured so if the modeled hydraulic conductivity is within half an order of magnitude of the field value this is usually considered acceptable.

Verification can be confused with calibration but it is a separate stage. The calibrated model is run and should reproduce a set of field data which was not used in the calibration process. This is a "final check". (Note: the term "verification" is also used to refer to the process of checking the computer code works correctly. To avoid confusion, the term "validation" is used elsewhere in this report to refer to the process of running a calibrated model with a new set of data.)

The model is then used to make the **predictions** required. A sensitivity analysis should also be performed at this stage to estimate the uncertainties associated with the answers generated by the model.

Models which are kept for a long time, such as those developed for aquifer management can undergo a process called "**post audit**". The model was used to make predictions, for example ten years, into the future. In ten years' time, the field data measured

over the intervening period can be compared to the predictions made by the model and used to assess the model's performance. Discrepancies can be used to inform changes to the model.

During the project period, available data pertains to study area was complied, data gap analysis was carried out and data generated to fill these gaps. The various thematic maps like drainage, soil, geomorphology, landuse/landcover, hydrology, lineaments, geology etc. prepared based on data available using software like Arcmap, Mapinfo discover, Rockworks etc. Extensive hydrogeological surveys have been carried out. A total 16 exploratory wells were constructed through outsourcing to decipher the aquifer geometry, its lateral and vertical extend and determination of deeper aquifer parameters. All the boreholes were logged upto drilled depth through gamma logging to get the accurate disposition of fracture geometry. The entire data has been used to formulate the ground water flow model using MODFLOW code.

6.1.4 About Visual Modflow

Over the last few decades, U.S. Geological Survey's modular finite-difference groundwater flow model, which is commonly known as MODFLOW, is significantly used for the description and prediction of the behaviour of groundwater systems. The original version of MODFLOW-88 or MODFLOW-96 can simulate the effects of wells, rivers, drains, headdependent boundaries, recharge and evapo-transpiration. MODFLOW can simulate underground flow under steady and unsteady conditions in anisotropic and non-homogeneous porous media. It is designed to simulate aquifer systems in which saturated flow conditions exists, Darcy's Law applies, density of groundwater remains constant and the principal directions of horizontal hydraulic conductivity or transmissivity do not vary within the system (McDonald and Harbaugh, 1984 and 1988). In MODFLOW, an aquifer system is replaced by a discretized domain consisting of an array of nodes and associated finite difference blocks. Groundwater simulation modeling is a powerful management tool to study such problematic areas. At present, the most investigations related to groundwater modeling are carried out by MODFLOW (Anderson and Woessner, 1992). Many new capabilities have been added to the original model. MODFLOW-2005 is the most current release of MODFLOW. MODFLOW-2005 (Harbaugh, 2005) simulates steady and non-steady flow in an irregularly shaped flow system in which aquifer layers can be confined, unconfined, or a combination of confined and unconfined.

Presently, Visual MODFLOW is the most complete, and user-friendly, modeling environment for practical applications in three-dimensional groundwater flow and contaminant

transport simulation. Visual MODFLOW Premium is a three-dimensional groundwater flow and contaminant transport modeling application that integrates MODFLOW-2005, SEAWAT, MODPATH, MT3DMS, MT3D99, RT3D, VMOD 3D-Explorer, WinPEST, Stream Routing Package, Zone Budget, MGO, SAMG, and PHT3D. Applications include well head capture zone delineation, pumping well optimization, aquifer storage and recovery, groundwater remediation design, simulating natural attenuation, and saltwater intrusion Flow from external stresses, such as flow to wells, areal recharge, evapotranspiration, flow to drains, and flow through river beds, can be simulated.

6.1.5 Conceptual Model

The field survey, ground water exploration study and geophysical surveys in the study area has been used to conceptualized model area based on geology (Fig. 6.2a), based on major lithounit (Fig. 6.2b) and based on aquifer type (Fig. 6.2c). In the present study, conceptual models were developed assuming different boundary conditions specially for hilly area in western end and river boundary in northeast of the study area (Bredehoeft J., 2005).

Weathered and fractured residuum underlain by massive basaltic flow serves as the main aquifer system in the area. Ground water occurs under unconfined condition and the head is reflected as ground water level in the dug wells. Though the dug wells are of 10 to 15 meters of depth, they have not fully tapped the phreatic aquifer. Hence, the thickness of the aquifer is taken as 20 to 35 meter as deciphered from the geophysical and well inventoried data and is considered as first layer in the model. Similarly, the top weathered and fractured zone on the Gondwana sandstone present in the north eastern part is also included in the first layer. Ground water exploration carried down to depth of 200 m, shows number of basaltic flows with ground water contribution mainly from fractures and contact of different flows. Similar is the condition in the Gondwana sandstone and thus a second layer comprising of basalt, Gondwana sandstone and trap covered sandstone is conceptualized to the depth of 200 meter with very low permeability value unless until good fractures are encountered. However due to paucity of data the second layer is not being modeled. There is a scope for refinement of model as per the requirement of aquifer management plan.

Parameters	Layer-I	Layer-II					
Formation	Zone-I Hilly Basalt (Deccan Trap) Zone-II Basalt(Deccan Trap) & Sandstone (Gondwana)	As per availability of data in future					
Layer Type	Unconfined, Type-1	Semi-confined to Confined, Type-2					
Layer thickness (m)	Varying (GL to 20 to 35m)	145-180(20 mbgl to 200 m bgl)					
Grid size	1000m x 1000m	1000m x 1000m					

Conceptual model I

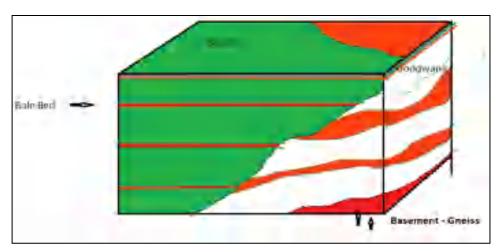


Fig. 6.2a. Conceptualization of area based on geology

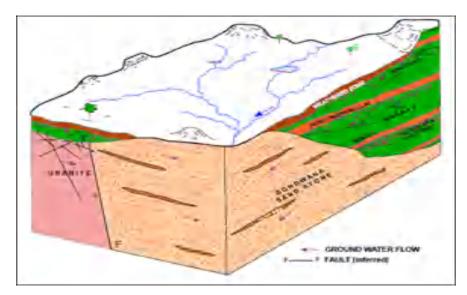


Fig. 6.2b. Conceptualization of area based on major litho-unit

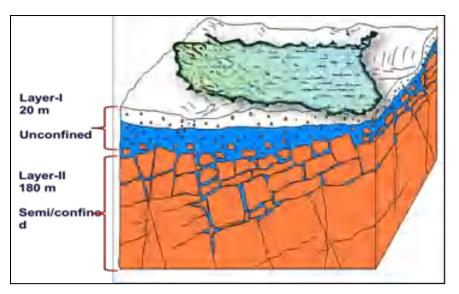


Fig. 6.2c. Conceptualization of area based on aquifer type

6.1.6 Grid Design

Under this backdrop, a two layer model is generated for the watershed. Based on the available data, a coarse uniform grid of 1000 ×1000 m is designed and the layer top elevation of the model is imported from the SRTM data after refining to accommodate to the model grid size. A perusal of the well depth and geophysical data hints the depth of the phreatic aquifer varies from 20 to 35 meter below ground level. Thus, the thickness of the phreatic aquifer is taken from well depth data by contouring and calculating the depth at each grid and adding another 15 meter to that value. The 2nd layer bottom is taken as the layer top elevation minus 70 meter.

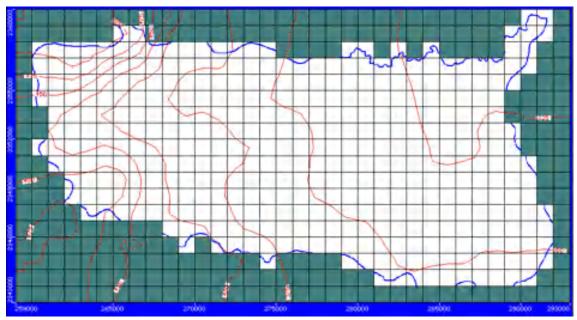


Fig.6.3: Model grids with active (white) and inactive (green) cells and land elevation contours superimposed

6.1.7 Assumptions Used in the Conceptual Model

To translate the aquifer system in the area into mathematical model, the following assumptions are made;

- 1. Most part of the watershed boundary serves as hydrological boundary for the modeled area and thus contributes negligible flow to or from the modeled area.
- 2. The river Chandrabhaga flowing along the northern part of the study area contains good amount of surface water in the form of flow so that it can be treated as a source of water at least for part of its course.
- 3. Rainfall is the only source of recharge for the top phreatic aquifer. Recharge due to the return flow from irrigation is not considered.
- 4. The ground water flow system in the western hilly area is local and is confined to small valleys interspersed in hills and is nothing to do with the regional flow system depicted in the model. Hence ground water draft from these areas is not considered in the model.
- 5. Due to the limited size and extent of the river flowing through the watershed, its contribution to the model is limited to a drain.

6.1.8 Geometry and Boundary Conditions

Based on geologic information including geologic maps, The Lithological data, cross sections, well logs, VES data the horizontal and vertical disposition of aquifers in the study area to a depth of 70 m bgl is translated into the model. The boundary as assumed in the earlier section is also discretised in the model. The planar and sectional view is shown in the Figure (Fig. 6.4a & 6.4b).

Assigning Boundary

The area is discretized into 612 grids of 1000 × 1000 meter grid size. A total 18 rows and 34 columns were considered. Out of 612 grids, 392 grids are kept active following the watershed boundary. By making the rest of the grids inactive, the no flow boundary is created at the watershed boundary.

The river flowing along the north-eastern part is modeled as a linear gradient river assigning river stage of 332 to 305 m amsl at the western and eastern part respectively. The

width of the river is 20 meter in the western part and widened to 30 meter in the eastern part. The permeability of the river bottom is high compared to the aquifer and hence is taken as 2 m/day with its thickness below the river bottom as 1 meter.

To simulate the large reservoirs present in the eastern part of the watershed, a constant head boundary is assigned to the cells underlain by reservoirs. Three big reservoirs are considered for the purpose. To simulate the river draining the watershed, a drain boundary is revoked so that it will imitate an ephemeral stream. All these boundaries are shown in the Figure 6.4a & b.

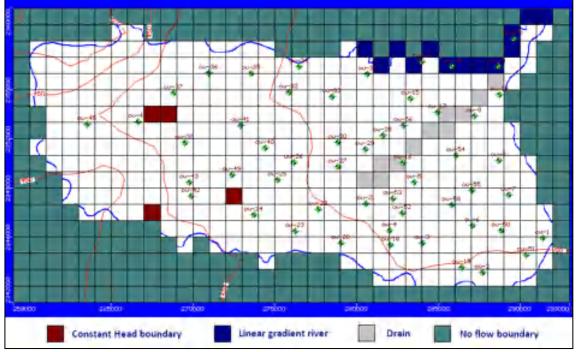


Fig. 6.4a: The conceptual model Layer -1 plan view, the surface elevation contour with an interval of 25 meter is shown as red line. The green points are monitoring well locations.

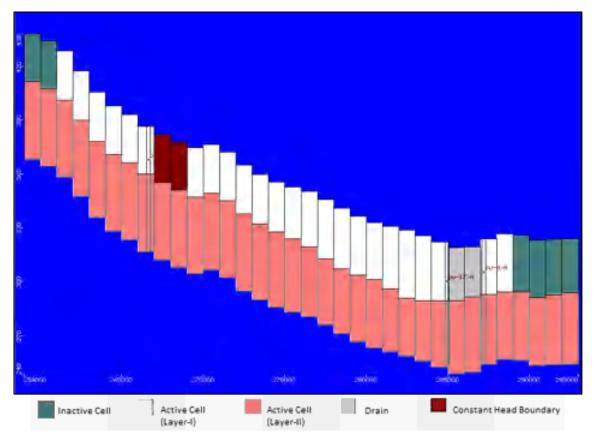


Fig.6.4b: The conceptual model sectional view on row 7.

6.1.9 Distribution of Conductivity Values

Pumping tests in 21 numbers of dug well are conducted to know the permeability of the phreatic aquifer. The range of hydraulic conductivity for this layer varies from 6 to 100 meter/day. Thus, conductivity of around 12 m/day was considered for most part of the phreatic aquifer. Vertical hydraulic conductivity has been taken as 10% of the horizontal hydraulic conductivity. From geophysical data, massive basaltic horizons underlain by fractured basalt are found in the top aquifer at some localized patches. Since the same fractured aquifer is considered foe modelling, same permeability value is assigned to the local changes in the aquifer. The hilly area in the western part is highly sloping and is not practically considered for modeling purpose. Thus, to simulate the area in the model, a very low permeability value of 0.01 m/day is assigned. The 2nd layer is also considered to be massive and non-productive and hence conductivity value of 0.0001m/day is assigned.

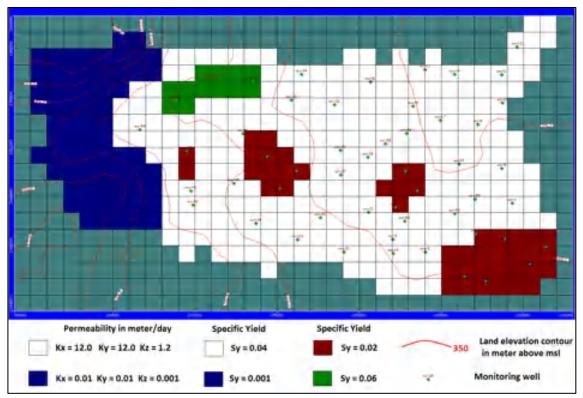


Fig. 6.5: Zone wise distribution of hydraulic conductivity and storage in the modeled area

6.1.10 Distribution of Storage parameters

Since the weathered and fractured zone is very productive and devoid of much clay content, a specific yield value of 0.04 is considered for the major part of the model area. Though the range of specific yield value for fractured basalt varies between 0.02 – 0.03 as per GEC-1997 recommendations; however in local parlance it may be higher than that. Presence of good yielding dug wells sustaining to long duration of pumping indirectly indicates high conductivity and storage value of the phreatic aquifer. However the storage value of massive basaltic horizons underlain by fractured basalt as deciphered from geophysical investigation is low and is taken as 0.02. The hilly area present in the western part is underlain by massive basalt and hence a very low storage value of 0.0001 is assigned to this zone.

6.1.11 Recharge

The recharge to the watershed is only from precipitation and thus vertical recharge is the only source of ground water in the basin. The actual rainfall data of Kalmeshwar rain gauge station of 2012, 2013 & 2014 is used whereas the normal monsoonal rainfall is considered for predicted period. Studied conducted in the Sina & Man basin during 1982 shows a recharge value of around 23.7% and 18.5% for Sina & Man basin respectively. However due to more rainfall in the watershed under study, a low recharge value of around 16% is considered for most part of the study area. The western hilly area is assigned a very low recharge value of only 1% (Fig. 13). A somewhat lower recharge of 13% is assigned to the valley area since they fall

 16 % recharge during monsoon period

 13 % recharge during monsoon period

under ground water discharge zone at least during peak monsoon season. A less recharge of 8% is assigned to the north-western part which is characterized by undulating hills and valleys.

Fig. 6.6: Zone wise distribution of recharge rates in the modeled area

6.1.12 Discharge Data

Generally pumping from the aquifer occurs during the Rabi season and hence ground water draft is considered after November. The village wise well census data is first distributed grid wise to arrive at the numbers of wells falling in each grid. The unit draft as deciphered from the field observation is considered as 50 m³/day. Though the pumping varies during the different period of the crop growth, a uniform rate of pumping is assigned to the region for the whole non-monsoon season of 215 days (November to May). Thus, pumping rate equivalent to the number of wells multiplied by unit draft is inserted into the respective grids to simulate draft from the grids. Since the annual increase in draft is 3%, for predictive calculations 3% draft is increased every year in the withdrawal. As the ground water flow in the hilly area is local, so localized pumping has nothing to do with the regional aquifer system. Hence, ground water withdrawal from these cells falling under the hilly region is not used in the model.

6.1.13 Model Calibration

Calibration of a flow model refers to a demonstration that the model is capable of producing field measured head and flows, which are the calibration values. Calibration is accomplished by finding a set of parameters, boundary conditions, and stress that produce simulated heads and fluxes that matches field measured values within a pre-established range of errors (Aderson and Woessner, 1992). During the study, the strategy for calibration of model applied is 'vary the best-known parameters as little as possible, and vary the poorly known or unknown values the most'. It is done by sequential adjustment of the model parameters until the closed match found between the observed and the calculated heads (Anderson and Woessner, 1992).

6.1.13.1 Steady State Calibration

Groundwater flow is said to be under steady state when the magnitude and direction of specific discharge remain constant with time. Steady state flow implies that the position of potentiometric surface and the hydraulic gradient remains unchanged. There is no addition or withdrawal from the storage of the aquifer and equilibrium conditions have been reached between recharge and discharge (Karanth, 1999). The steady state condition is existed in the aquifer before any development had occurred. Matching the initial heads observed for the aquifer with the hydraulic heads simulated by MODFLOW is called steady state calibration (Anderson and Woessner, 1992).

As recharge and ground water withdrawal occurs at different periods, the steady state condition is not applicable for the present study. Hence, it is imperative to design a transient model to accommodate different periods of recharge and discharge and to get the ground water scenario and budget at different stress periods.

6.1.13.2 Transient State Calibration

The groundwater flow is said to be transient or unsteady or in non-equilibrium state when the magnitudes or direction of specific discharge changes with time. Change in the storage of the aquifer is involved in non-steady flow. Transient state flow is described with respect to boundary and initial conditions (Karanth, 1999). Successful transient calibration depends mainly on the good estimation of hydraulic conductivities and boundary conditions obtained from the steady state calibration. Generally, specific yield for unconfined aquifers and storage coefficient for confined aquifers are the main parameters that are changed during the transient calibration (Anderson and Woessner, 1992).

For the purpose of calibration 52 observation wells out of 58 established wells were selected excluding wells in hilly areas. The ground water level data of these well is available from October 2011 onwards on monthly basis. Hence, for transient state calibration ground water level data from June-2012 to October-2014 has been used. The approximate water table data as deciphered from the pre-monsoon depth to water level map is considered as initial head values for running the transient model and the computed head for the pre-monsoon

period is taken as initial head for successive model run. Multiple stress periods were included into the model and data for each stress period was entered separately. After entering all the input parameters for each stress period, the model was run for the transient state calibration. Then the parameter values were adjusted judiciously in order to obtain a good match between the observed and calibrated head. With the convergence of the transient model, scenario of different stress period is generated for 30, 60, 90, 120, 150, 165, 190, 215, 265, 315 and 365 days.

The head condition calculated by the model is to be tested against the monitoring data for different stress periods is an essential part of model calibration. This is done by plotting head potential contours and water table contours in the map and visually interpreting the goodness of matching. Figure 6.7 and 6.8 shows the goodness of matching for the month of June and November 2012.

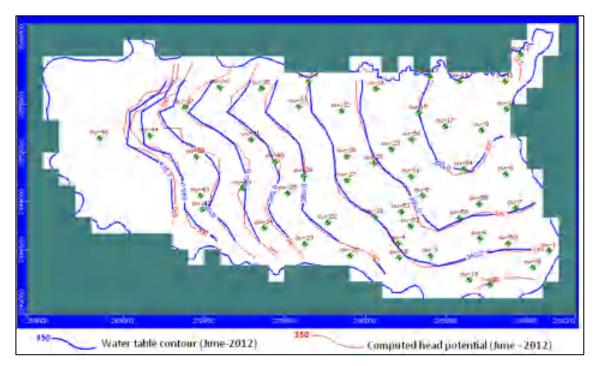


Fig. 6.7: Goodness of fit of water table contours and computed head potential for June

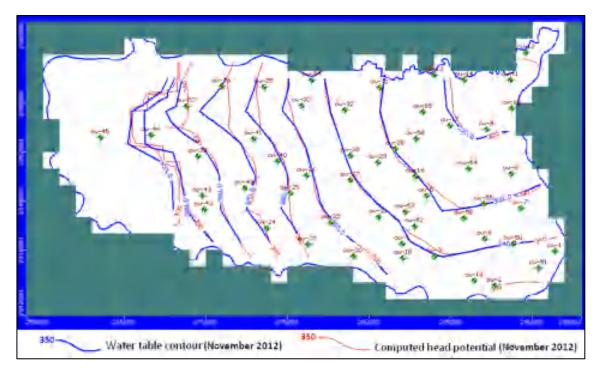


Fig. 6.8: Goodness of fit of water table contours and computed head potential for November

However, statistical fitting of observed and computed heads gives a quantitative approach to the calibration. The root mean square error which is a computation of departure of data can be taken as a measure of fitting between both the heads. However, root mean square divided by the range of data expressed in percentage also known as normalized RMS is a better tool for measuring the goodness of fit and departure. The normalized root mean square error is calculated for each stress period and found to be between 6.8% and 8.78% (Fig. 6.9. and 6.10). Thus, transient calibration shows a good agreement to the actual field condition. Generally, good matching is observed during June & July while the calibration is poor during September & October. This can be explained by the fact that the aquifer is saturated upto the maximum level during August and hence is not taking much recharge as expected by the model. During December to February the assumed ground water withdrawal from the aquifer for the standing Rabi crop satisfies with the field condition, hence the good match between observed and calculated head.

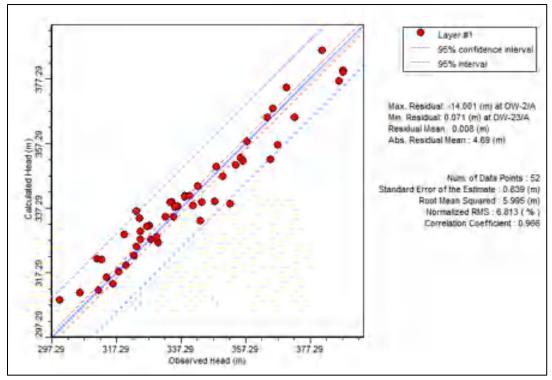


Fig. 6.9: Goodness of fit of calibrated vs observed head for pre-monsoon (June)

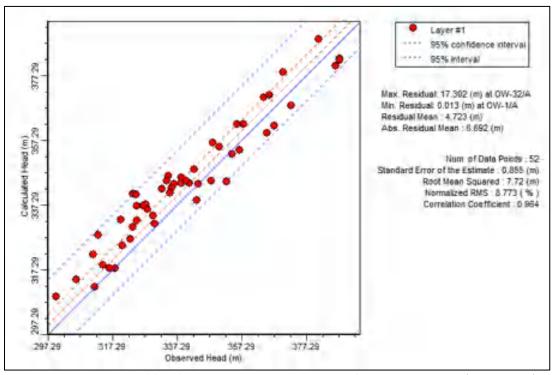


Fig. 6.10: Goodness of fit of calibrated vs observed head for post-monsoon (November)

Most of the calibrated wells generally show more or less similar trends of recharge and ground water withdrawal. However, peak water table is not matching with the modeled one (Fig. 6.12) due to the fact that most of the phreatic aquifers get full recharge and water table

reaches its peak at the end of August in humid tropical regions of India. Most of the ill calibrated plots have high calculated head as compared to that of the observed head and shows a constant head during the whole year. These head observation wells are adjacent to the river and falling in the river grids and since river is assigned a constant head for the full year, the calculated head at grid containing the river as well as the head observation well remains constant and is much above the observed water level in the aquifer.

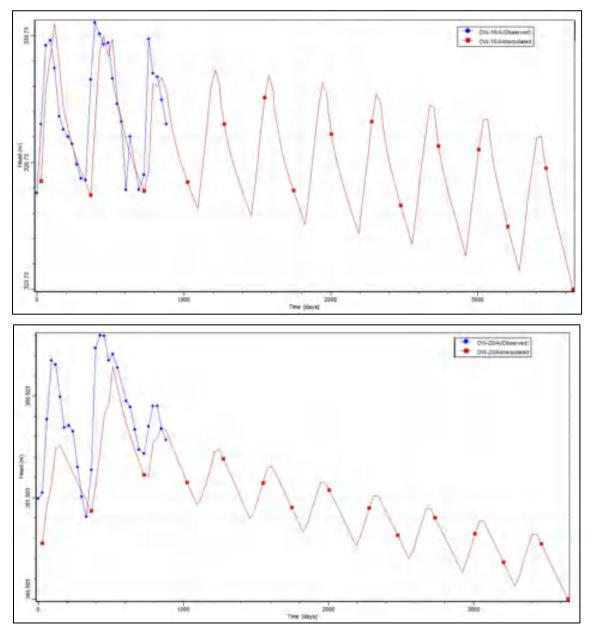


Fig. 6.11: Time series plots of some of the well calibrated monitoring stations (well -16 & 20)

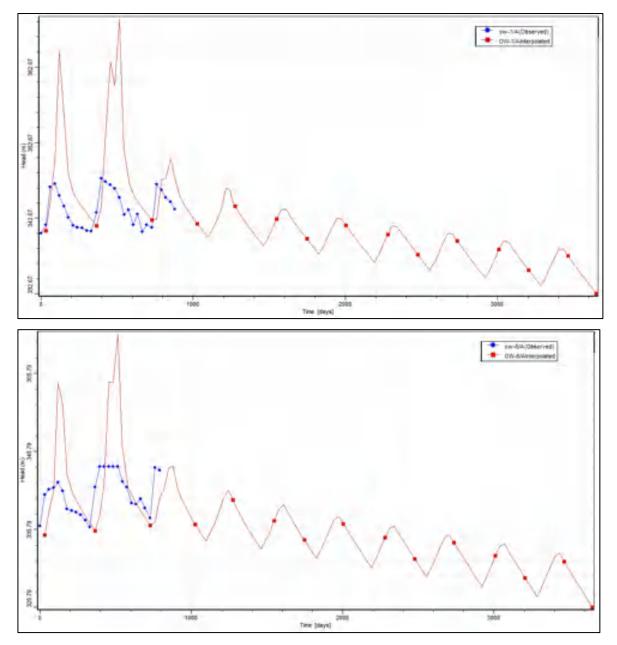


Fig. 6.12: Time series plots of some of the well calibrated monitoring stations (well – 1 & 6)

From the hydrographs it is clear that most of the area experiences of a rise of around 5 to 6 meter in ground water level during August month and matches well with the predicted recharge (Figure-11). However, the mismatch of peaks of hydrographs shown in figure-6.12 is due to less storage space in the aquifer attributed by the low specific yield as shown in figure - 6.5. Since draft is increasing at a rate of 3% annually, decline in ground water level is observed in the hydrograph. However as there was 20 % excess rainfall during 2012 & 2013, a rise in ground water level is observed in both actual and model calculated hydrograph.

6.1.13.3 Cumulative Budget

In the study area recharge is observed from June to October (0-150 days) and is shown as an illustration in the Fig. 6.13. Part of the constant head cells and river are both working as source and sink in different reaches.

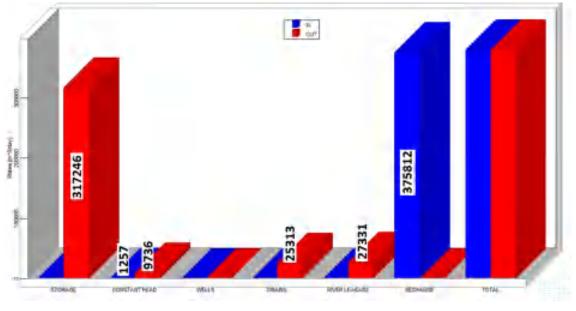


Fig. 6.13: Ground water budget for August

Once rain subsides, pumping generally starts in the area. Though rate of pumping varies with the different period of crop growth, however for simplicity, a uniform withdrawal rate for individual grids derived from village well census data is inserted into the model for the whole summer period (150-365 days). The following is the water budget for middle of November (Fig. 6.14). It is interesting to note that the well withdrawal is more compared to the contribution from ground water during peak summer and thus river plays a great role in alleviating the water demand of the area in an indirect way.

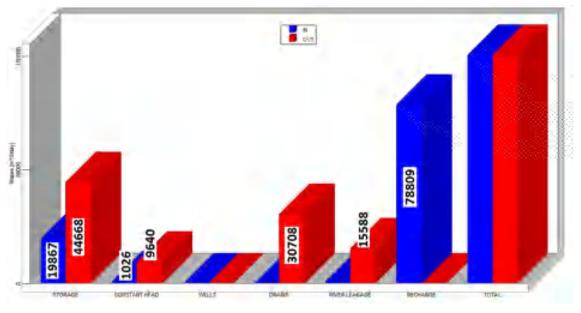


Fig. 6.14: Ground water budget for Early November

As ground water head declines with time after November, the contribution of aquifer towards draft is reduced and is compensated by the river which is flowing in the north-eastern part of the watershed. The summer month ground water level (stage) of the river if maintained by creating a check dam/weir, then it will prove very helpful in maintaining the water balance in the area (Fig. 6.15).

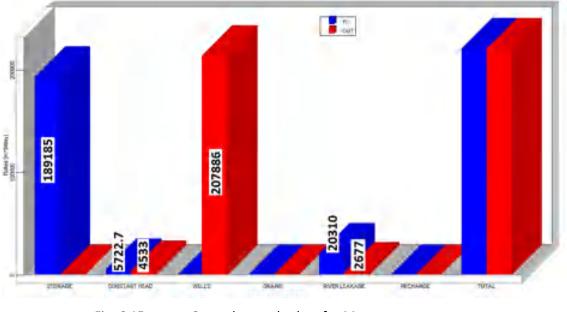


Fig. 6.15: Ground water budget for May

The drain package is invoked for the small stream flowing through the area. Sufficient amount of ground water releases through this stream during peak recharge as shown in figure-

6.14. However due to moderately deep water table condition during post monsoon seasons, the ground water leakage to the drain is virtually nil beyond January month.

Items	Stress Period (Days) June to May									
	30	60	90	120	150	180	210	255	320	365
Storage in	2720	2612	2585	2583	19867	220690	210862	202957	196554	193704
Storage out	269365	338970	317246	258005	44668	58	38	36	36	35
Const. Head in	3816	2324	1257	325	1027	3326	4008	4691	5592	6133
Const. Head out	6000	7794	9736	11196	9640	7457	6668	5700	4706	4181
Well in	0	0	0	0	0	0	0	0	0	0
Well out	0	0	0	0	0	214112	214112	214112	214112	214112
River Leak. In	2806	249	0	0	867	11117	13490	16065	19248	21176
River Leak. out	12652	21880	27331	30230	15588	4751	3761	2834	2674	2640
Recharge in	280915	374113	375812	334523	78810	0	0	0	0	0
Recharge out	0	0	0	0		0	0	0	0	0
Drain out	2213	10640	25313	37966	30708	8753	3828	985	0	0

Table 6.1: The detailed ground water budget, Chandrabhaga Watershed (WGKKC-2)

Note: Values are given in meter³/day

6.1.13.4 Sensitivity Analysis

The purpose of a sensitivity analysis is to quantify the uncertainty in the calibrated model caused by uncertainty in the estimates of aquifer parameters, stress, and boundary conditions. A sensitivity analysis is an essential step in all modeling applications. During the sensitivity analysis, calibrated values of hydraulic conductivity, storage parameters, recharge and boundary conditions are systematically changed, one parameter value at a time, within the previously established plausible range (Aderson and Woessner, 1992). Sensitivity Analysis was used to identify the input parameters that have maximum influence on the output for both the historical and predictive simulations. Model verification will help to establish greater confidence in the calibration. It is often impossible to verify a model because usually only one set of field data is available (Aderson and Woessner, 1992).

To carry out the sensitivity analysis of the model under study, hydraulic conductivity value has been changed and the errors obtained in each calibration are plotted for all the stress periods. It is found to be quite sensitive (Fig.6.16) to changes in hydraulic conductivity as per the expected line. With a permeability value of 14 m/day, the model is not at all converging.

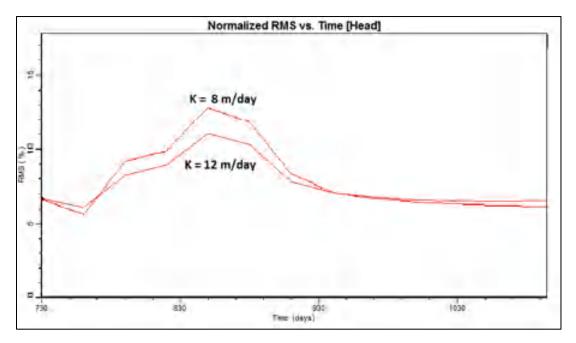


Fig.6.16: Sensitivity analysis for hydraulic conductivity

Similarly, the process is repeated for specific yield and is shown in Fig.6.17. The model is found to less sensitive to specific yield and gives only slight change in head value.

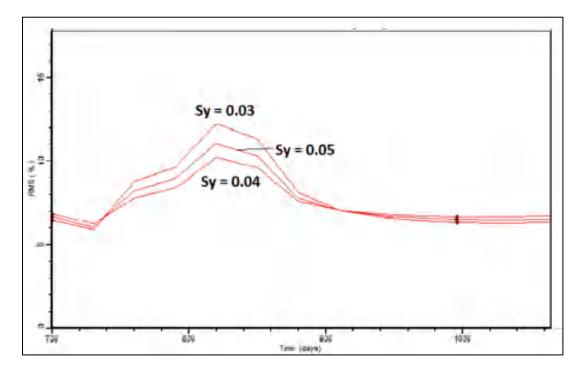


Fig.6.17: Sensitivity analysis for Specific yield

6.1.13.5 Model Verification

This is done by observing the response of heavy rainfall or heavy ground water withdrawal in a time period in the aquifer system and verifying that in the model. It is often impossible to verify a model because usually only one set of field data used to be available (Aderson and Woessner, 1992). However, model verification will help to establish greater confidence in the calibration. Since monitoring is going on for the year of 2015, model verification will be tried utilizing these data.

6.2 AQUIFER MANAGEMENT PLAN FORMULATION EVOLVING MANAGEMENT STRATEGIES AS PREDICTIVE SCENARIOS

In predictive simulation, the parameters determined during calibration and verification is used to predict the response of the system to future events. An important task in predictive modeling is to determine the length of time for which the model will accurately predict the future (Aderson and Woessner, 1992). A predictive simulation should not to be extended for more than twice the period for which calibration data is available. During the present modeling exercise, one set of data for the period 2012-2014 was collected and being used. The model in present form can be a helpful for prediction of future groundwater scenario, as transient state calibration had an appreciable result.

6.2.1 Predictive Model Results (Management Strategies)

The primary objective of this work was to study the present stress on aquifers and action to be taken for the sustainability of the aquifer system present in the area. Though, presently the watershed falls under safe category with stage of ground water development is about 89 % and categorized as 'safe' watershed, however, there is very limited groundwater availability for irrigation & other activities after April of every year. As compared to 2004 scenario, the recharge has increased by about 5% and draft has increased by about 22%. Thus, the stress on the phreatic aquifer needs to be analysed and proper groundwater management plan is to be advocated.

Considering the above-mentioned facts, the calibrated model has been used to assess the impact of recharge improvement and enhancement on the aquifer system so that the aquifer can sustain to the ever increase in ground water demand for agriculture and industries situated in the watershed.

The following two hypothetical scenarios have been generated for the watershed;

Scenario -1: Construction of check dam/weirs on Chandrabhaga river at selected locations to raise the river stage so as to reduce base flow and to increase recharge to the aquifer.

Scenario - 2: Construction of check dams and recharge wells along the ephemeral river and its tributaries draining through the watershed to enhance ground water recharge

6.2.1.1 Scenario 1- Construction of check dam on Chandrabhaga river

Management strategy-1: The Chandrabhaga river plays a major role in supplying water to the underneath aquifer and thus if its stage is improved at certain conducive locations by means of the construction of suitable check weirs, then recharge to the aquifer will improve and the aquifer contribution to the river will be reduced. This concept is tried to be replicated in the model by increasing the river stage by 1.5 meters at grids where during post monsoon season the river is out flowing or else is contributing very little recharge. The model was re-run and the improvement in the grids is tabulated below (Table 6.2):

River	Row	Column	Original	Recharge	Modified	Recharge
Reach			River Stage	Rate m ³ /day	River Stage	Rate m ³ /day
			(m amsl)		(m amsl)	
1	3	22	332.0	-1939	333.5	-1954
2	4	23	328.8	-1966	328.8	-1947
3	3	24	325.5	-618	327	-632
4	4	25	323.2	-198	323.2	-258
5	3	26	320.9	-444	320.9	-461
6	4	27	318.6	-422	318.6	-1697
7	4	28	316.0	-1132	<u>317.5</u>	1595
8	4	29	314.0	-825	314.0	-3271
9	4	30	312.0	-2596	<u>313.5</u>	181
10	3	31	310.5	867	310.5	-1096
11	2	31	308.0	-2294	<u>309.5</u>	-454
12	1	32	306.6	-124	306.6	-1958
13	1	33	305.0	-3031	<u>306.5</u>	-1483

Table 6.2: Change in recharge rate, November scenario, Chandrabhaga Watershed (WGKKC-2)

*The underlined values are the improvement of river stage at suitable location

Reduction of ground water seepage to the river is reduced to the tune of 1288 m³/day during November season by raising the river stage with the construction of 4 check dams. Moreover, during peak summer around 559 m³/day of ground water recharge will take place and will support the summer draft adjacent to the river.

There will be little change in the contours when compared with the earlier, as there is no overall change in the modeled area except near to the river. However, discernible change in ground water scenario is observed in the water budget with the overall improvement in the river leakage as observed in the Table 6.3 below:

Parameters	Days									
Farameters	30	60	90	120	150	180	210	256	320	365
River Leak. In	2806	248	0	0	867	11117	13490	16065	19248	21176
River Leak. out	12652	21880	27331	30230	15588	4751	3761	2834	2674	2640
<u>River Leak. In</u>	<u>3440</u>	<u>767</u>	<u>441</u>	<u>370</u>	<u>1776</u>	<u>11764</u>	<u>14132</u>	<u>16734</u>	<u>19474</u>	<u>21109</u>
<u>River Leak. out</u>	<u>13090</u>	<u>21892</u>	<u>27237</u>	<u>29742</u>	<u>15209</u>	<u>3850</u>	<u>3069</u>	<u>2541</u>	<u>2196</u>	<u>2014</u>
Ground water Improvement	634	19	441	370	909	647	642	669	226	-67
mprovement	-438	-12	94	488	379	901	692	293	478	626
Overall improvement	196	7	535	858	1288	1548	1334	962	704	559

Table 6.3: Improvement in the river leakage, Scenario 1, Chandrabhaga Watershed (WGKKC-2)

Nb: 1. Values are given in meter³/day

2. The underlined values are the predicted values for the management strategy-1 as compared to the existing scenario given in the row above

The total improvement will be around 289273 m³, which is 9 % of the total recharge from the river to the aquifer before construction of the structures. Though the improvement seems to be quite low, but as the area is falling in a heavy ground water withdrawal zone, this will of immense help during the dry seasons. However, more perfect calculation using the actual river stage data at each grid is necessary prior to the field implementation of this management strategy.

6.2.1.2 Scenario 2- Construction of recharge wells

Management strategy-2: The river draining the watershed is ephemeral in nature and flow exists till the end of monsoon season. Hence, a second strategy can be adopted by harvesting the run off generated during the rainy season with the construction of check dams/weirs at suitable locations and to divert the harvested water to the phreatic aquifer by means of recharge wells. The specially designed recharge wells are to be gravel packed tapping the full thickness of the aquifer (20-30 meters) to obtain maximum transmissivity so as to accept maximum amount of harvested water. 25 recharge wells can be added on the river grids with a recharge rate of 300 m³/day for the full rainy season and zero recharge rate for the rest of the period (Fig. 6.18). This will enhance the ground water resources of the area by 1125000 m³ annually.

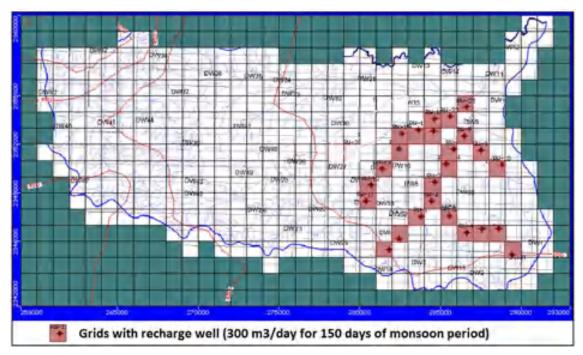


Fig. 6.18: Location of proposed recharge wells (25 recharge wells)

The impact of the improved recharge on the predicted water table of November and June is shown in the Fig. 6.19 and 6.20. Appreciable change is not observed in the overall pattern; however slight down gradient movement of 320 & 330 meter water table contours indicates the improvement of water table by the extra recharge.

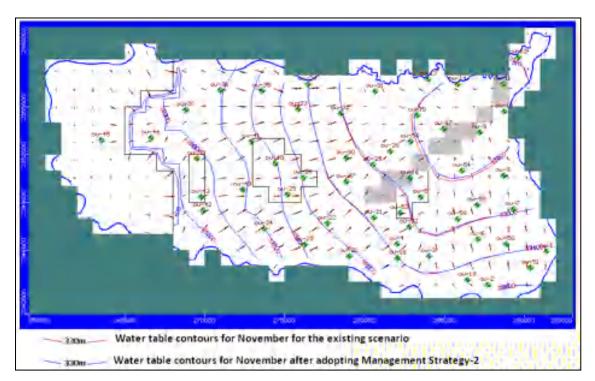


Fig. 6.19: Impact of the improved recharge on the predicted water table of November

Fig. 6.20: Impact of the improved recharge on the predicted water table of June

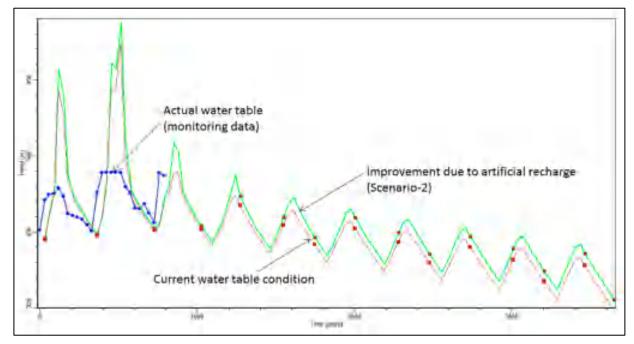


Fig. 6.21: Impact of the improved recharge on the predicted water table of well-6

However, a significant change in ground water level is observed as shown in figure 6.21. Though the decline trend in ground water level is not reversed, but its slope has been improved. Since this is an area with heavy ground water draft, more and more recharge structures can be created subject to the availability of surface water so that the ground water regime can be improved.

7 IMPLEMENTATION PLAN AND RECOMMENDATIONS

The Pilot study for aquifer mapping has been taken up with certain objectives which were already listed out in Chapter 1, however, it was conceptualized to develop a common implementation plan for all similarly problematic areas of Basaltic terrain of Maharashtra. In the Chandrabhaga watershed (WGKCC-2), the following issues were considered for formulation of management plan to effectively understand and manage groundwater resources at regional and local level.

- 1 Facilitate Central/State Government Organizations, Institutes and other stakeholders in the preparation of Aquifer Management Plan and supporting tools while taking into consideration the quantity and quality aspects of ground water.
- 2 Development of Aquifer Information and Management System (AIMS).
- 3 Articulate and share information across hydrological units for crop planning, drinking water security and urban water security, as the case may be. It is important to consider these three because some aquifers might transect ruralurban divides and may require an integrated management plan that includes both types of requirement.

During the study, a mammoth data has been collected, generated and analysed to know the root of the problems and some of the data is being collected/generated considering the future ground water necessities. All these data has been analysed on GIS platform and various thematic maps were prepared. After careful study of the all available thematic layers and data generated during the hydrogeological investigation, the area vulnerable for ground water pollution, stress area and area identified for artificial recharge area have been demarcated (Fig. 7.1). Before formulation of management plan these areas were considered. The detailed Aquifer wise maps, its disposition, management plan are produced as final output. The aquifer wise details are tabulated and presented as **Annexure-XVIII**. The major aspects are discussed below.

7.1 Area vulnerable for ground water quantity / Ground water stress area

These areas were demarcated based on local hydrogeological, physiographical setup, prevailing summer water scarcity situations and low yielding capacity of aquifers down to 80 m depth (Fig.7.1). The areas are as under,

- Area around villages located in north western boundary of the watershed, i.e.,
 Malegaon, Chendkapur, Ramgiri, Khursapar, Mhasepur, Mohpa
- b. Area around village Metpanjra which is severely affected by water scarcity during summer.
- c. Area around Upparwahi village in southern-central parts of the watershed also experience stress during major part of the year.
- d. Falling short-term DTWL trend in-and-around Wathoda and Kalmeshwar villages has been recorded indicating the future ground water scarcity areas.
- e. Deeper DTWL (>12 m bgl) during post-monsoon season in-and-around Wadhona and Sawangi villages in Basaltic Aquifer-I and Tondakhairi in Sandstone Aquifer-I.

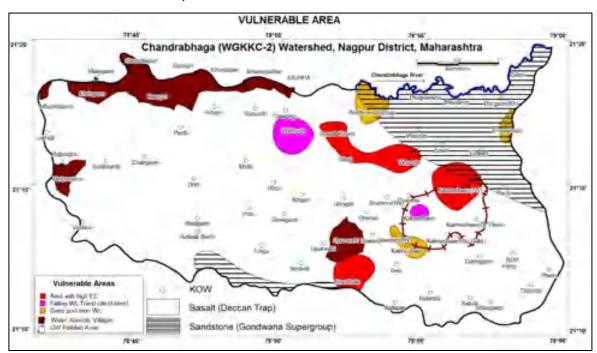


Fig.7.1: Area vulnerable for ground water quantity / Ground water stress area, Chandrabhaga watershed (WGKCC-2)

7.1.1 Suggested Management Plan for Ground water stress area

The ground water modeling has suggested the remedial measures to tackle these issues by construction of check dam across Chandrabhaga river and construction of 25 recharge wells as shown in the Fig.6.19 and 6.20. This will be enhancing the ground water levels of the unconfined Aquifer-I as shown in Fig. 6.20 and 6.21. However, considering the local hydrogeological and physiographical setup site-specific solutions has been suggested. Unconventional measures like fracture seal cementation (FSC), Hydro-fracturing, Well jacketing (WJ), Borewell Blasting Technique (BBT) etc., which are commonly practiced in the basaltic terrain of Maharashtra are the most appropriate techniques to enhance the yield properties of the aquifer. The soil and water conservation methods such as gabion structures, form ponding, nala widening and bunding, Under Ground *Bandhara* (UGB) etc., along with rooftop rain water harvesting in these villages are also recommended to improve the water availability and to tackle the summer water scarcity (Fig. 7.2).

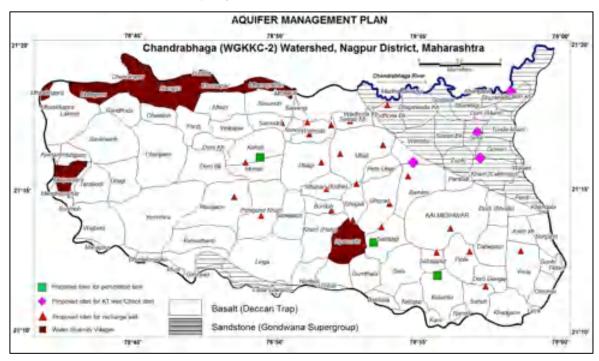


Fig.7.2: Aquifer management plan, Chandrabhaga watershed (WGKCC-2)

7.2 Area vulnerable for ground water quality

The Kalmeshwar town has industrial area under the policy of 'Maharashtra Industrial and Development Corporation (MIDC)'. The Kalmeshwar town and its surrounding area has been contaminated with the industrial pollution specially in high EC, Chlorides, Calcium, Magnesium, Trace metal, Lead and low pH (CGWB, 1999). Thus, the major quality vulnerable area is restricted to industrial area of Kalmeshwar town. In addition to this, it has been observed that area in-and around Sawali khurd, Ubali, Waroda villages in central part of the watershed and Gumthala village in southern part of the watershed has ground water salinity problem where the electrical conductance (EC) encountered more than 2000 µS/cm.

7.2.1 Suggested Management Plan for area vulnerable for ground water quality

To overcome the deterioration to aquifer system due to industrial pollution, the restoration of aquifer is most feasible option by using artificial recharge practices in the area. The result of ground water flow modeling (Fig. 6.20, 6.21 and 6.22) shows that if the area would

be recharged with fresh water through 25 recharge shafts/wells, then it could be possible to dilute the ground water pollution. This will, in turn, reduces the contamination and also enhance the ground water level in the area (Fig. 7.2). However, there is need to enforced to regulatory measures to stop the untreated/semi-treated disposal of industrial effluent to the ground water system. It is also recommended that the industrial effluent must be treated before it released to the *nalas*. All the industries should follow the norm set by the CPCB and MPCB for effluents.

7.3 Site specific management plan and recommendations

The concept of Integrated Water Resources Management (IWRM) is widely debated and an unambiguous and unanimously agreed definition but yet to be finalised. However, the 'technical advisory committee of global water partnership' has adopted the following definition that 'IWRM is a process, which promotes the co-ordinate development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems' (Kjelds et al., 2010). The highly diversified occurrence and considerable variations in the availability and utilization of groundwater in India makes its management a challenging task. Scientific development and management strategy for groundwater has become imperative to avert the looming water crisis. In this regard, various issues such as, prioritization of areas for development of groundwater resources vis-a-vis its availability, augmentation of groundwater through rainwater harvesting and artificial recharge, pricing and sectoral allocation of resources and participation of the stakeholders must be considered. The community based groundwater management, for example, initiatives in Andhra Pradesh and Maharashtra, offers tremendous scope for sustainable management of groundwater resources of India, especially, in hard rock areas (Bansal, 2010). Moreover, Govt. of India has formulated Common Guidelines for Watershed Development Projects in coordination with the Planning Commission (2008), in order to have a unified perspective by all Ministries to make all the watershed development programme more participatory, sustainable and equitable. These guidelines are therefore applicable to all watershed development projects in all Departments / Ministries of Govt. of India.

In view of the above, the present pilot study area of Chandrabhaga watershed (WGKCC-2) emphasizes to adopt a systematic, economically sound and politically feasible framework for groundwater management. However, technical, institutional, and socio-economic factors that govern the occurrence, availability, development and management of groundwater resources make the process of groundwater management relatively complex.

Considering the local physiographical and hydrogeological set up and source water availability to augment the ground water the following artificial recharge methods are suggested for individual villages (Fig. 7.2).

- Construction of Percolation tanks and check dams on 2nd and 3rd order stream
- Construction of KT weir and UGB at mini and micro-watershed level

These should be clubbed with the desilting of existing water conservation structures.

Apart from this, it is suggested to adopt groundwater management strategies, particularly for irrigation sector. The demand side intervention should also be encouraged by adopting modern irrigation techniques. During the fieldwork, it was observed that most of groundwater is being utilized for irrigating orange orchard by using traditional water spread method. If modern irrigation practices like drip irrigation, sprinkler etc. will be use, in place of traditional, then it is possible to reduce the groundwater draft up to 30 % to 40 % (PKV, 2009). Also, there is urgent need to change the cropping pattern by adopting crops from heavy water requirement types such as orange, banana, rice etc. to low water requirement types, such as cotton, oil seeds, pulses, vegetables etc., so that the groundwater draft could be reduced, without any financial losses to the farmers. Stakeholders, people, administrators should come forward for the above-referred interventions by strengthening collaboration and increasing confidence amongst them, before the system deteriorates. It is strongly recommended that the archive of groundwater model should be prepared for similarly problematic areas in Maharashtra State covering Deccan trap basalt. This will helpful to solve the critical problems of these areas before worsening the conditions by updating the groundwater models regularly.

8 CONCLUSIONS

1. The pilot study area of aquifer mapping i.e., Chandrabhaga watershed (WGKKC-2) is a type locality of hard rock Basalt. The basaltic hydrogeology has peculiar behaviour, as the different basaltic lava flows co-exist and acts as multi-aquifer system aquifer or as single aquifer only when fracture/ joints are connected to each other. The major part is occupied by Deccan trap basalt (313 sq. km) of Upper Cretaceous to Eocene age. A small part (47 sq.km.) is occupied by Gondwana formation of Permian age and exposed in the NE part and also a small linear stretch south of Kotwal Bardi, Linga and Nimboli villages.

2.	The achievement against the objectives of the pilot project are tabulated below:
----	--

Objectives	Achievement during the project
To define the aquifer geometry, type	Based on the ground water exploration and geophysical
of aquifers, ground water regime	surveys the aquifer geometry have been defined, and
behaviors, hydraulic characteristics	existing aquifers are categorized into shallow and
and geochemistry of Multi-layered	deeper aquifer in Basaltic formation, Sandstone
aquifer systems on 1:50,000 scale.	(Gondwana) formation and in Trap covered Sandstone
	(Gondwana) [TCG] formation (AQ-I, II and III). The
	ground water regime behaviour, aquifer parameter and
	geochemistry of respective aquifers have been deduced
	and the aquifer maps on 1:50,000 scale have been
	generated on GIS environment.
Intervention of new geophysical	Besides the traditional geophysical techniques,
techniques and establishing the	advanced geophysical techniques viz., Electrical
utility, efficacy and suitability of	Resistivity Tomography (ERT), Ground Transient
these techniques in different	Electromagnetic (TEM) and SkyTEM (Time-domain heli-
hydrogeological setup.	borne electromagnetic system) methods have also been
	applied to delineate the aquifer system up to 200m
	depth. These techniques have been used first time in
	basaltic terrain. These new techniques are rapid, time
	saving, and found very effective for covering larger and
	inaccessible area with closed spaced data, but unable to
	delineate the various basaltic flows occurring below the
	ground level.

Objectives	Achievement during the project							
Finalizing the approach and	The experience gained during the project is very useful							
methodology on which 'National	for upscaling the target oriented approach and							
Aquifer Mapping programme' of the	methodology for 'National Aquifer mapping programme'							
entire country can be implemented.	particularly for Deccan trap basaltic terrain. It has been							
The experiences gained can be	observed that the intensive hydrogeological data							
utilized to upscale the activities to	acquisition, ground water exploration along with							
prepare micro level aquifer	geophysical investigations are suitable for Deccan trap							
mapping.	basaltic terrain. However, for inaccessible areas Sky TEM							
	survey is suitable technique. However, before its							
	application the clearance from various authorities must							
	be ensured.							

- 3. There are three aquifer system in the pilot project area exist i.e., Aquifer-I represented by shallow unconfined; Aquifer-II and III represented by deeper semi-confined to confined aquifers occur in Deccan trap basaltic area and Sandstone of Gondwana formation. Apart from these challenging hydrogeological aspects, the occurrence of Gondwana sandstone and Archaean gneisses below basaltic trap is again a controlling factor in the watershed. The analysis of ground water exploration data also infers the existence of three types of aquifer in the area.
 - a. *Aquifer I* Unconfined aquifer. Occurs in Deccan trap basalt which is exposed in major parts and Gondwana Supergroup in the NE part. This aquifer generally occurs to the depth of 20 to 30m bgl and mostly tapped by the shallow dug wells in area occupied by basaltic and sandstone terrain.
 - b. Aquifer II Semi-confined to confined aquifer. Generally occurs in Deccan trap basalt which is exposed in major parts and Gondwana Supergroup in the NE part. The thickness of aquifer varies from 0.50 cm to 6 meters in Basaltic formation and 3m to 34 m in Gondwana formation and mostly tapped by the deep bore/tube wells in area occupied by basaltic and sandstone terrain.
 - c. Aquifer III It is mostly 'Trap Covered Gondwanas or Gneisses' (TCG). Generally occurs as semi-confined to confined conditions but at places, they exhibit unconfined condition and occur where the thickness of basalt is less, and tapped by the shallow dug wells or deep bore/tube wells in area occupied by basaltic and sandstone terrain.

- 4. The erratic rainfall pattern; limited aquifer thickness of unconfined aquifer (up to 15-20 m bgl); drying up of aquifer after January; existence of unknown and unpredictable deeper aquifer systems of basalt, failure of dugwells/borewells due to unscientific selection and delineation of boundary between Deccan Trap basalt and Gondwana sandstone, were the major issues tried to tackled during the project.
- 5. The only source of recharge to ground water level in the area is the south-west monsoon rainfall. The normal annual rainfall recorded at Kalmeshwar and Katol rain gauge is 985.4 mm and 973 mm respectively. The rainfall trend for Katol is falling significantly @ -43.26 mm/year during 2005-2014, and marginally @ -13.13 mm/year during 1998-2014. Likewise, it has been observed that, the rainfall trend for Kalmeshwar is significantly raising @ +34.88 mm/year during 2005-2014, and indicating falling trend marginally @ -14.83 mm/year during 1998-2014.
- 6. Chandrabhaga watershed forms the Moderately Dissected Plateau (MDB) of Deccan trap (basaltic terrain) where four sets of lineaments are interpreted, which trending in NE-SW, NW-SE, N-S and E-W directions. The E-W trending lineament is predominantly observed in the southern part of the watershed. Major part of the watershed is having depth of weathering in the range of 3 to 6 m bgl, followed by < 3 m bgl and 6 to 9 mbgl depth range, which increases from west to east and towards the north-eastern part it is maximum near to the confluence of Chandrabhaga river with local tributary. Major part of the watershed is occupied by clayey soil known as Black Cotton Soil followed by clayey loam observed along the northern fringe of the watershed. The land use is indicates most of the area falls in agricultural land where orange cultivation is prominent followed by pulses and cotton. The wasteland, notified and un-notified forests are mostly observed in the western part of the watershed, which is mostly hilly.</p>
- 7. The area is drained by the ephemeral Chandrabhaga River and its tributaries Saptadhara River, Mortham Nala. The drainage is dendritic and the flow direction of main stream i.e., Chandrabhaga is from west to east and its tributary from south to north, the main stream ultimately joins the Kolar river outside the watershed.

- 8. During the project period, data gap analysis has been carried out and then the data has been generated with systematic planning. The ground water exploration and geophysical survey has been outsourced while rest of the activities viz, micro-level hydrogeological survey, ground water regime monitoring, infiltration tests, pumping tests on dug wells, water quality analysis, geophysical survey for VES, VLF, GRP etc., has been carried out by the team of hydrogeologist and geophysicists of CGWB, CR, Nagpur.
- 9. To decipher the lateral and vertical disposition of the aquifer system prevailing in the area and ground water potential of Gondwana formation occurring below Basalt, 14 exploratory and two observation wells upto 200 m depth have been constructed through outsourcing in four different geological formations. Out of which 6 wells are drilled in Deccan Trap basaltic formation, 5 wells in Trap covered Gondwana Formation, 4 wells in Gondwana formation and one well in Trap covered Gneissic formation. These wells were constructed in addition to existing 9 wells in the Chandrabhaga watershed.
- 10. North-eastern part of the watershed is extensively covered by rocks of Gondwana Supergroup comprises of Kamthi Sandstone and Shales. The central part is consisting of Trap Covered Gondwana Formation where the thickness of traps ranges from 62.00 m bgl (Waroda) to 195.00 mbgl (Sonkhamb). Towards extreme south-eastern part, Archaean gneisses occur below the traps (Dahegaon), whereas towards the extreme western part of the watershed thickness of the Deccan trap is observed more than 200 mbgl.
- 11. To determine the parameters of deeper aquifers, pumping tests were conducted on 7 exploratory wells. During the tests, the drawdown ranges from 6.34 to 36.97 m and recorded Transmissivity (T) of aquifer in basalts is 30 m²/day (Sonkhamb) whereas in Gondwana sandstone transmissivity varies from 15 m²/day (Khairi Lakhmaji) to 173 m²/day (Kohli). The storativity (S) 0.001 is estimated at Dhapewada.
- 12. In addition, to determine the parameters of the shallow aquifer, 21 pumping tests has been conducted on open dug wells. It has been observed that the transmissivity (T) for basaltic aquifer ranges between 1.04 and 72.56 m²/day whereas for sandstone aquifer it ranges between 3.64 and 11.37 m²/day.

- 13. The results of infiltration test conducted at 9 different soil types revealed the infiltration rate in the area ranges from 4 mm/hr at Tondakhiri for the sandy loam to clay loam soil type to 40.02 mm/hr at Dhapewada for clay loam soil type.
- 14. The In-House geophysical survey comprising 138 VES including 52 VES for exploratory drilling were carried out to estimate the thickness of the top basaltic formation and depth of Gondwana formations. In addition to this, 300 line meters Gradient Resistivity Profiling and 610 line meters Very Low Frequency (VLF) electromagnetic profiling were carried out.
- 15. Based on the VES results, it is inferred that the resistivities ranging from 16 to 87 Ω m represent the aquifer zone in the Gondwana formations, whereas the resistivities ranging from 7 to 40 Ω m represent the aquifer zone in the Deccan Trap formations. However, in the Archaean formations, the fractured Gneiss has been delineated with 12 Ω m resistivity, at only one VES location.
 - a. Interpretation of VES in Chandrabhaga watershed area infers that the Gondwana formations are extending more than 150m depth in the NE part of the area. They are absent in the SE part of the area and was conformed from the existing borehole data at Yerla. In this area, the Achaeans are encountered below basaltic formation at depths around 60m bgl. The thickness of the basalt is increasing from east to west. In the eastern part of the area, approximately 60 m around Yerla whereas in the western part, it is 195m around Sonkhamb in the western part. However, it varies from 80 m at Mohgaon to 127m at Ramgiri in the northern part of the study area. In the SW part of the area Gondwanas are inferred at shallow depths, approximately 30 to 40m depths around Raulgaon. Occurrence of Gondwana at shallow level could be attributed to reverse faulting (?) at this place or the extension of Gondwana of southern part. This infers the undulating nature of the paleo-topography of Gondwana over which basaltic lavas were poured out. The VES results could not demarcate the individual basaltic flow tops since the resistivity contrast between two flows is minimal. This is one of the limitations of the 1D resistivity survey.
 - b. The VLF and GRP were carried out to infer the location and orientation of the fractures/ lineaments in the area and also based on the VES carried out in the

area. 15 sites were selected for exploratory drilling. The details of sites are given below.

- i. Khairi or Gowari and Dhapewada in the area occupied by Gondwanas
- ii. Kohli-Mohli, Ubgi, Pardi Deshmukh, Ramgiri and Ghorad in the area occupied by basalts and
- iii. Raualgaon, Sonegan and Uperwahi in the Trap Covered Gondwana area.
- c. Geophysical logging infers that the thickness of the top basaltic formation is increasing from east (59 m at the village Yerla, as per the CGWB data acquired before Pilot Project) to west (145m at Raulgaon in the SW of the study area and 127 m at Ramgiri in the NW of the study area). The Trap-Gondwana contact and Trap-Gneiss contact were clearly demarcated in the Fence diagram generated based on the consolidated lithologs prepared from the integration of the geophysical log and litholog prepared from drilling samples. Very thin layers of clay/bole beds and fractured zones were resolved with high accuracy from Gamma Log.
- d. ERT shows significant signatures of structural controls like lineaments and layered nature of flows could be delineated but difficult to distinguish between two successive lava flows. The ERT investigation shows that in basaltic terrain the low resistivity up to 60Ω -m is attributed to the vesicular basalt followed by massive basalt with resistivity range $60-125 \Omega$ -m. However, in Gondwana formation the resistivity of saturated sandstone range from 18 to 35Ω -m. Thus, *ERT fails to delineate between the different litho units of Gondwana*.
- e. The findings from TEM and VES are found complementing each other, which are further validated by available borehole lithologs. TEM is able to resolve the relatively conductive Gondwanas at 50-60m depth with a loop size 40m x 40m. Based on the interpretation the estimated depth to Gondwana from TEM and VES are closer to the borehole information at Raulgaon and Kotwalbardi. At Raulgaon the 1D investigation have shown the highly conductive layer (2.3 Ω m) at ~50m depth obtained from TEM data and the conductive layer (20 Ω m) at ~ 44m depth obtained from VES data. The borehole information at Raulgaon indicates the presence of Gondwana at 45.7m depth strengthening and validating the TEM and VES results and its suitability for aquifer mapping. Similarly, at Kotwalbardi village, the layer with resistivity 21.3 Ω m at ~50.6m

depth was obtained from TEM data and layer with resistivity 27 Ω m at 29 m depth was acquired from VES data. The borehole litholog indicated the presence of Gondwana at 47.2m validating the TEM and VES data at Kotwalbardi.

- f. The resistivity sections generated based on the 8 TEM soundings corrected for elevation and geological cross section aligned in NS following the same alignment as ERT. The individual ERT images found well corroborating with TEM results. Since both the measurement is limited within 100 m depth of investigation, thus the basaltic flow at deeper level could not be mapped. However, both the measurements indicated relatively low order of resistivity at the extremities responding to Gondwanas and alternate layering of low, high and low resistivity due to basaltic flows, associated with alterations and the intertrappeans. *However, TEM provides significant information of shallow depth up to 90 m bgl.*
- g. Heliborne Transient Electromagnetic investigation has revealed fascinating results on the aquifer systems and its spatial characteristics covering Gondwana, Trap covered Gondwana and Trap covered Gneiss formations present in the study area. The results, in general, helped in mapping the lithounits in 3-Dimension. Besides, it helped reconstructing the concealed subsurface spatial disposition of structures controlling the groundwater dynamics. The main advantages of the heliborne geophysical surveys are that they are fast (~2000 measurements/hour), highly dense data, precise and economical. Moreover, they can be carried out in remote and inaccessible areas. It helped getting a clear insight into the prevailing hydrogeological conditions; identify the aquifers and also delineating the subsurface structures. The unique advantage of such investigation is that it doesn't suffer from the uncertainty of interpolation. Concurrent measurements of the magnetic field (HeliMAG) provide valuable information on the geological structures that control the occurrence of the groundwater.
- h. The integration of Heli-TEM data with ground geophysics and controlled points such as borehole lithologs has been useful to derive the basaltic trap thickness and Gondwana topography. The lateral contact between Trap-Gondwanas exposed in the north east has been very clearly demarcated in the Heli-MAG map. It is also found very effective in delineating the structural feature such as

fault, which is reflected as low resistivity band elongated in WNW-ESE. The integrated interpretation of various geophysical parameters clearly indicates the relative efficacy of Heli-TEM survey with more resolution in demarcating the fractures in amygdaloidal and massive basalts, inter-trappean and Basalt-Gondwana vertical boundary which are the potential aquifers.

i. The SkyTEM data gives a new and comprehensive three-dimensional picture of the subsurface. This method incorporates the unique feature of using dual (low and high) moments for the transmitter. The low moment data ensured the high resolution mapping of near surface and high moment data to the deeper level. Thus, the dual moment provided high resolution mapping of subsurface from top to ~ 250 m depths. The results revealed a clear contrast between the Basalt-Gondwana (B-G) zone bearing the resistivity range 10-15 Ω m with groundwater yield 6-8 lps. It is also noted that, deeper (> 150 m) the Basalt-Gondwana contact greater is the groundwater yield (> 6 lps) and relative low resistivity range. The resistivity of aquifers in vesicular basalt ranges from 20-25 Ω m, wherein fractured vesicular basalts it ranges from 15-25 Ω m. Apart, the lava flows separated by intertrappeans layers are clearly demarcated by the SkyTEM sections. The potential aquifer zones such as intertrappeans, fractures in vesicular basalts and Basalt-Gondwana contact are mapped in the resistivity section of SkyTEM. The regional fault (potential aquifer) which is abutting in the SW part with its orientation SE-NW is successfully delineated in the mean resistivity maps of below 486 m amsl with corresponding resistivity range 8-10 Ω m. The aquifer systems in basalts and Gondwanas and their extensions are also clearly demarcated on the 3D map using HeliTEM data. The HeliMAG maps was useful in delineating, i) the lateral contact between Deccan Traps-Gondwanas exposed in the north east, and ii) the structural feature such as fault which is reflected as low resistivity band elongated in WNW-ESE. The integration on WellCAD has been fruitful for the geophysical parameter characterization, where resistivity gradient as first derivative provided sharp contacts on vertical scale. The spatial maps of mean resistivity of 10 m interval on vertical scale would help in understanding the depth of the fractures and faults. Grid wise vertical information was generated to assist the groundwater modeling and further groundwater management aspects.

- j. The interpretation of mean resistivity maps denotes that the flow no. 27 and 26 in the western part extends up to 50 m depth, which covered in mean resistivity maps of 476-526 m, amsl. Similarly, the subsequent flows are also identified with each flow thickness range 20-40 m. The depth wise mean resistivity maps also follow the step like topography on regional scale sloping towards north-east. Moreover, the exposed Gondwanas in the north-east of study area is clearly demarcated from its lateral basalt contact with the relative low resistivity obtained on the mean resistivity maps of 306-326 m, amsl. This elevation is also well correlates with the topographic elevation of surface Gondwanas in the N-E part.
- k. The regional fault which is abutting in the SW part with its orientation SE-NW is successfully delineated in the mean resistivity maps of below 486 m. amsl. The relative high resistivity anomaly trending in NW-SE direction in the central part has been observed at the depth of 216-116 m, amsl which is also matching with the maps of gravity and magnetic anomalies has to be resolved. The depth wise spatial variations acquired in the mean resistivity maps have been imperative in view of mapping aquifer zones which corresponds the relative low resistivity.
- I. The SkyTEM data fails to identify or demarcate red/grey/green bole layer of significant thickness.
 - i. It has been observed that 1.5 m thick clay at a depth of 11.5 m depth and 1m clay bed at depth of 31.5 m are not revealed by SkyTEM at KOHLI EW site
 - *ii.* Similarly, the 8.3 m thick red bole at a depth of 87.75m is not detectable by SkyTEM at Pardi (Deshmukh).
 - iii. Aquifer disposition could not be made precisely especially the fracture in basaltic terrain saturated with ground water are not shown in SkyTEm results.
- 16. Ground TEM data have not shown good result/information in basaltic terrain especially for shallow aquifers.
- 17. To monitor shallow aquifer ground water levels 58 KOW were established tapping the unconfined aquifer (Aquifer-I) and monitored periodically including 2 existing GWMW at Kalmeshwar and Chargaon. While for deeper aquifer 16 exploratory wells tapping the semi-confined/confined aquifers (Aquifer-II and III) monitored periodically. The aquifer wise ground water levels have been analysed. It has been observed that in aquifer I, shallow ground water levels in the range of 3 to 6 m bgl are observed as isolated

patches in southwestern and northern parts of the watershed. The moderate ground water levels ranging from 6 to 9 mbgl are observed in major parts of the watershed occupying south eastern fringe areas, central and western parts. Whereas deeper ground water levels in the range of 9 to 12 m bgl and more than 12 mbgl were observed in north eastern and eastern parts of the watershed.

- 18. However, ground water level in Aquifer-II and III reveals that major central part of the watershed observed in the range from 50 to 73 m bgl. The eastern and western part of the watershed shows gradual decrease in ground water level i.e., up to 20 m bgl while in the Sandstone (Aquifer-II) ground water level is observed shallow i.e., up to 7 m bgl. The deeper ground water levels are due to the potential zones encountered at depth more than 45 m bgl upto 197 m bgl.
- 19. Aquifer-I is affected by nitrate contamination as about 79% of samples show higher nitrate concentration (more than 45 mg/L) while the nitrate in deeper Aquifer-II has been found beyond permissible limit at Ramgiri (65 mg/l), Gowri (47 mg/l) and Raulgaon (46 mg/l). In Aquifer-II, fluoride occur in the range from 1.23 to 1.46 mg/l i.e., marginally high but below MPL of 1.5 mg/l has been observed in Sonkhamb (22.60-23m), Raulgaon (127.3-129.95m; 135.6-138.6m), Khapri (48.2-50.85m), and Dhapewada (Zone-I). Heavy metal analysis indicted that Aquifer-I is more contaminated as compared to deeper ground water Aquifer-II where the presence of Fe and Pb noticed.
- 20. However, ground water from Aquifer I and II is good and potable for drinking, domestic and irrigation purpose, except at one or two locations, where nitrate contamination is observed and at places the salinity hazard due to excess of magnesium is recorded.
- 21. The movement of groundwater is from southwest to northeast direction, which ultimately converges with the Chandrabhaga River. This indicates that the ground water flow in the watershed fallow the topographic control. Overall, average minimum water table elevation is 294 m above MSL while average maximum water table elevation is 511 m above MSL. The groundwater divides, marked by the divergence of flow lines, almost coincide with the topographic divides, indicating the importance of the

geomorphic features in demarcating the areas of groundwater development and management.

- 22. The Chandrabhaga river is gaining water from ground water in its upper reaches in-andaround villages Wadhona (Bk)-Dhapewada-Bhadangi and acts as a *Effluent River*. While in lower reaches, it is losing water to the groundwater and acts as an *Influent River* inand-around Bhadangi – Borgaon (Kh) – Sillori villages. Thus, Chandrabhaga river is ephemeral effluent as well as influent river.
- 23. The ground water resources (2011) indicate that the stage of ground water development is about 80%. As compared to 2004 scenario the recharge has been increased by about 5% and draft has increased by about 22%. The ground water is mainly used for irrigation purpose i.e., about 5368 ham out of total draft of 5545 ham.
- 24. All the data thus generated has been used to generate a *ground water flow model* to resolve the issues/problems in the Chandrabhaga watershed. The data for Aquifer-I, i.e., shallow/unconfined phreatic aquifer is available and hence used. However, there is very less data available for 2nd layer, i.e., for Aquifer-II and III, deeper semi/confined aquifer. A two layer model is generated for the watershed. Based on the available data, the area is discretized into 612 grids (392 active grids) of 1000 × 1000 meter grid size. A total 18 rows and 34 columns were considered. Four boundary conditions i.e., Constant Head Boundary, Linear Gradient River Boundary and No Flow Boundary and Drain have been assigned to the model area at different parts as per requirement.
 - a. Conductivity of around 12 m/day was considered for most part while at places
 7.5 m/day considering local hydrogeological conditions and for hilly area 0.01 m/day has been considered.
 - b. The Specific yield value of 0.04 is considered for most of the area and for hilly area 0.001 value has been considered. Like conductivity, specific yield of 0.02 and 0.06 is assigned to isolated areas considering the local hydrogeological conditions.
 - c. A low recharge value of around 16% of actual rainfall is considered for most part of the study area. The western hilly area is assigned a very low recharge value of only 1%. A somewhat lower recharge of 13% is assigned to the valley

area since they fall under ground water discharge zone at least during peak monsoon season. A less recharge of 8% is assigned to the north-western part which is characterized by undulating hills and valleys.

- d. The unit draft as deciphered from the field observation is considered as 50 m³/day. Though the pumping varies during the different period of the crop growth, a uniform rate of pumping is assigned to the region for the whole non-monsoon season of 215 days (November to May).
- e. For transient state calibration ground water level data from June-2012 to October-2014 of 52 observation wells has been used. The approximate water table data as deciphered from the pre-monsoon depth to water level map is considered as initial head values for running the transient model. Multiple stress periods were included into the model and data for each stress period was entered separately. After entering all the input parameters for each stress period, the model was run for the transient state calibration.
- f. With the convergence of the transient model, scenario of different stress period is generated for 30, 60, 90, 120, 150, 165, 190, 215, 265, 315 and 365 days. The normalized root mean square error is calculated for each stress period and found to be between 6.8% to 8.78%. Thus, transient calibration shows a good agreement to the actual field condition.
- g. The sensitivity analysis indicates that it is less sensitive to specific yield and gives only slight change in head value. However, the model is found to be quite sensitive to changes in hydraulic conductivity, as it is not at all converging after changing the hydraulic conductivity.
- h. Thus, the parameters determined during transient calibration and verification is used to predict the response of the system to future events and model was run for predictive simulation. Considering issues/problems in the Chandrabhaga watershed, and to achieve the objectives, two scenarios were suggested for shallow unconfined Aquifer-I.
- i. The Aquifer Management Plan, thus, generated has been found more realistic for the Aquifer-I comprising of Basalt and Sandstone, as under

Scenario-1: construction of check dam on Chandrabhaga river

This will raise the ground water level in the area. The total improvement will be around 289273 m^3 , which is 9 % of the total recharge from the river to the

aquifer before construction of the structures. The Chandrabhaga watershed (WGKCC-2) has a heavy ground water withdrawal for agriculture especially for orange cultivation, this will of immense help during the dry seasons.

Scenario-2: Construction of recharge wells to enhance ground water recharge and dilution of pollution

The specially designed recharge wells tapping the full thickness of the aquifer (20-30 meters) to obtain maximum transmissivity so as to accept maximum amount of harvested water. 25 recharge wells can be added on the river grids with a recharge rate of $300 \text{ m}^3/\text{day}$ for the full rainy season and zero recharge rate for the rest of the period. This will enhance the ground water resources of the area by 1125000 m³ annually.

- 25. Area vulnerable for ground water quantity / Ground water stress area has been identified and site-specific ground water management plans has been suggested. Unconventional measures like fracture seal cementation (FSC), Hydro-fracturing, Well jacketing (WJ), Borewell Blasting Technique (BBT) etc.; soil and water conservation methods such as gabion structures, form ponding, nala widening and bunding, Under Ground *Bandhara* (UGB) etc., along with rooftop rain water harvesting are recommended. Also, modern irrigation practices like drip irrigation, sprinkler etc. will be use, in place of traditional, then it is possible to reduce the groundwater draft up to 30 % to 40 %. Also, there is urgent need to change the cropping pattern by low water intensive crop.
- 26. Considering the local physiographical and hydrogeological set up and source water availability to augment the ground water the following artificial recharge methods are suggested for individual villages
 - a. Construction of Percolation tanks and check dams on 2nd and 3rd order stream
 - b. Construction of KT weir and UGB at mini and micro-watershed level
 - c. Besides this periodic desilting of existing water conservation structures before onset of monsoon is also proposed
- 27. Area vulnerable for ground water quality / Ground water stress area have been identified and it has been observed that the major quality vulnerable area is restricted to industrial area of Kalmeshwar town. The suggested Aquifer Management plan is if the area would be recharged with fresh water through 25 recharge wells, then it could be possible to dilute the ground water pollution. This will, in turn, reduces the

contamination and also enhance the ground water level in the area. However, there is need to enforced to regulatory measures to stop the untreated/semi-treated disposal of industrial effluent to the ground water system. It is also recommended that the industrial effluent must be treated before it released to the nalas. All the industries should follow the norm set by the CPCB and MPCB for effluents discharge.

- 28. Apart from this, it is also suggested to adopt groundwater management strategies, particularly for irrigation sector as the main activity of the people in the Chandrabhaga watershed (WGKKC-2) is agriculture.
- 29. The experiences gained from the pilot project on aquifer mapping (AQMAH) in Chandrabhaga watershed helps to develop a protocol to be adopted in rest of the NAQUIM area of Maharashtra and UT of Dadra and Nagar Haveli. It is suggested that following protocol for aquifer mapping in the State as well as in the Country may be adopted
 - **STEP 1** : Acquiring Heli TEM and Heli MAG through Advance geophysical survey
 - **STEP 2** : Validation by ground geophysical, hydrogeological studies and exploratory drilling.
 - **STEP 3** : Data integration and interpretation for 3D aquifer model and characteristics.
- 30. It is recommended that the ground water monitoring of wells (DW and EW/Pz) should be continued in future to test the various strategies of the modeling.
- 31. The ground water modeling is very important tool to precisely assess the problem related to quantity and quality issues. It also helps to suggest the appropriate plan to address the issues. However, it requires herculean task of collecting data on micro level for all the hydrogeological parameters with high level of accuracy to run the model. In order to accomplish the task, it is suggested that site specific/problematic area for modeling may be taken up.

Principal Authors

1	Dr. P. K. Jain	Nodal Officer	Superintending Hydrogeologist,
2	Sh. M. K. Rafiuddin	Principal field officer (Hydrogeology)	CGWB, CR, Nagpur Junior Hydrogeologist, CGWB, SR, Hyderabad
3	Sh. S. D. Waghmare	Principal field officer (Hydrogeology)	Assistant Hydrogeologist, CGWB, CR, Nagpur
4	Sh. P. Narendra	Principal field officer (Geophysics)	Junior Geophysicist, CGWB, CR, Nagpur
5	Dr. V. Arulprakasam	Principal field officer (Geophysics)	Junior Geophysicist, CGWB, CR, Nagpur
6	Dr. Bhushan R. Lamsoge	Ground Water Modeling, GIS data input and Report compilation	Senior Hydrogeologist, CGWB, CR, Nagpur
Autho	ors		
7	Dr. N. C. Nayak	Ground Water Modeling	Senior Hydrogeologist, CGWB, SER, Bhubaneshwar
8	Sh. Rahul Shende	Hydrogeological input & Technical correspondence	Assistant Hydrogeologist, CGWB, CR, Nagpur
9	Sh. Kartik Dongre	Hydrogeological input	Junior Hydrogeologist,

8	Sh. Rahul Shende	Hydrogeological input	Assistant Hydrogeologist
		& Technical	CGWB, CR, Nagpur
		correspondence	
9	Sh. Kartik Dongre	Hydrogeological input	Junior Hydrogeologist,
			CGWB, CR, Nagpur
10	Smt. Nilofar	Hydrogeological input	Junior Hydrogeologist,
			CGWB, CR, Nagpur
11	Sh. Vijesh V. K.	Hydrogeological input	Junior Hydrogeologist,
			CGWB, CR, Nagpur
12	T. R. Mathure	Survey work	Officer Surveyor (Retd.)
			CGWB, CR, Nagpur
13	Smt. Usha Kamde	Drawing	Draughtsman

CGWB, CR, Nagpur

REFERENCES

- Anderson Mary P. and Woessner William W. (1992), Applied Groundwater Modeling-simulation of Flow and Advective Transport, Text book, Harcourt Brace Jovanovich Publishers, New York, P.381.
- Bansal, P.K. (2010) Report on 'Deep Wells and Prudence: Towards Pragmatic Action for addressing Groundwater Over-exploitation in India', New Delhi, India.
- Bredehoeft John (2005), The conceptualization model problem—surprise, Hydrogeology Journal, 13:37–46, DOI 10.1007/s10040-004-0430-5.
- CGWB (1994), Hydrogeology of Maharashtra, Report No. 597/STT/94, By R.M Agashe, Central Ground Water Board, Central Region, Nagpur, Ministry of Water Resources, Govt. of India. pp.14 -15.
- CGWB (1999) Impact of Industrial Pollution on Ground Water Quality, Kalmeshwar Area, Nagpur District, Central Ground Water Board, Central Region, Nagpur
- CGWB and GSDA (2009), Report on dynamic groundwater resources of Maharashtra as on March 2008. Central Ground Water Board, Central Region, Nagpur and Groundwater Surveys and Development Agency, 228p.
- CGWB and GSDA (2011), Report on dynamic groundwater resources of Maharashtra as on March 2008. Central Ground Water Board, Central Region, Nagpur and Groundwater Surveys and Development Agency.
- Karanth, K.R. (1999) Ground Water Assessment, Development and Management.Textbook by Mc-Graw Hill publication Ltd New Delhi. 720p.
- Kjelds, J., Jacobsen, T, Hughes, J. and Kreicik, J. (2010) Decision support tools for integrated water resources management. *In*: Int. Congress on 'River Basin Management', pp. 512-527.
- McDonald, M.G. and Harbaugh, A.W. (1984) A modular three-dimensional finite-difference ground-water flow model: U.S.G.S. Open-File Report No. 83-875, 528p.
- McDonald, M.G. and Harbaugh, A.W. (1988) A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, Chapter A1, 586p.
- NGRI (2013), Aquifer Characterization using Advanced Geophysical Techniques in Representative Geological Terrains of India, 'Interim Report on AQMAH', Sponsored by CGWB-MoWR, Govt. of India under HP-II project funded by Word Bank, CSIR-National Geophysical Research Institute, June 2013, p25.

- NGRI (2015a), Aquifer Characterization using Advanced Geophysical Techniques in Representative Geological Terrains of India, 'Heliborne geophysical investigation in India: an innovative accomplishment in 3d aquifer mapping', Sponsored by CGWB-MoWR, Govt. of India under HP-II project funded by Word Bank, CSIR-National Geophysical Research Institute, March 2015, p50.
- NGRI (2015b), Aquifer Characterization using Advanced Geophysical Techniques in Representative Geological Terrains of India, 'AQUIM-Final Report, AQMAH, Nagpur District, Maharashtra', Sponsored by CGWB-MoWR, Govt. of India under HP-II project funded by Word Bank, CSIR-National Geophysical Research Institute, March 2015, p50.
- PKV (2009) 'Krushisanvadini', Dr. Panjabrao Deshmukh Krushi Vidyapith, Akola, Director, PKV Extention Education, Aug-2009, pp. 213-345.
- Planning Commission (2008) Common guidelines for watershed development projects. Planning Commission, Govt. of India, 58p.
- Ratnakumari, Y, Rai, S. N, Thiagarajan, S and Dewashish Kumar(2012) 2D Electrical resistivity imaging for delineation of deeper aquifers in a part of the Chandrabhaga river basin, Nagpur District, Maharashtra, India, Current Science, Vol. 102, No. 1, 10 January 2012.
- Ramakrishna T.S., M S V Rama Rao, K V S Bhaskara Rao, ans D V Punekar (1999) Geophysical Study of the Gondwana Basin of Eastern Maharashtra, Geological Survey of India Technical report, Special Publication No. 47, December 1999.

ANNEXURES

ANNEXURE-I: VES Results in Chandrabhaga Watershed WGKKC-2, Nagpur District

Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
1	Brahmani/NGP	33	400	Ι	21	0.5	0.5	335.5	Top Soil	>160m Basalt
	96	6		II	43	3.5	4	332	Mod. weathered	
				III	33	26.6	30.6	305.4	basalt Fr. Basalt	-
				IV	115	32	62.6	273.4	M Basalt	
				V	20	88	150.6	185.4	Fr. basalt	
				VI	58	8.1	158.7	177.3	V basalt	
				VII	595				M basalt	
2	1/2 Km W of	32	400	Ι	27	2	2	320	Top Soil	21 m Basalt,
	Junki / NGP 97	2		II	3.7	2.4	4.4	317.6	Clay	below more
				III	11.8	16.5	20.9	301.1	W basalt	than 200 m Gondwana
				IV V	64 19	79.3	100.2	221.8	Sandstone	Goliuwalia
3	2Km from	32	400	V I	19	2.5	2.5	320.5	Top Soil	Up to 81m
5	Dhapewada on	3	400	I	22	7.2	9.7	313.3	Sandstone	Gondwana,
	Kalmeshwar	_		III	2.6	4.7	14.4	308.6	Shale	below 81m
	road / NGP 98			IV	14	66.1	80.5	242.5	Sandstone	gneiss
				V	31				Fr. Gneiss	
4	On	34	400	Ι	26	0.6	0.6	341.4	Top Soil	>125m basalt
	Kalmeshwar-	2		II	37	0.6	1.2	340.8	W basalt	_
	Nagpur Road, 200 m E of Rly			III	9 55	1.3 2.8	2.5 5.3	339.5 336.7	Fr. basalt V basalt	
	gate / NGP 99			IV V	10	2.8 5.8	5.5	330.9	Fr. basalt	-
	8			VI	91	5.0	11.1	550.7	M basalt	_
5	Ketapar on	36	400	I	13	0.9	0.9	360.1	Top Soil	Up To 48 m
	Kalmeshwar- Gondkhairi road	1		п	30	8.6	9.5	351.5	Mod.weathered basalt	basalt, 48 to approx. 125 m
	/ NGP 115			III	353	38	47.5	313.5	M basalt	Gondwana
				IV	28				Sandstone	
6	Selu, On Selu-	34	400	Ι	18	0.9	0.9	346.1	Top Soil	More than
	Kalambe Road /	7		II	43	3.4	4.3	342.7	V Basalt	125m Basalt
	NGP 116			III IV	155 63	16.5 24.8	20.8 45.6	326.2 301.4	M basalt	
				V	189	24.0	45.0	301.4		
7	Sawangi, On	34	400	I	18	0.9	0.9	348.1	Top Soil	More than
	Sawangi-Linga	9		II	14	3.4	4.3	344.7	W Basalt	150m Basalt
	Road / NGP 118			Ш	53	16.5	20.8	328.2	V basalt	
				IV	450	24.8	45.6	303.4	M basalt	
				V	6.7				Fra. Basalt	
8	Kinga, On	36	400	I	13	0.9	0.9	360.1	Top Soil	Up To 46 m
	Linga- Uparwadi Road	1		II	9.6	3.4	4.3	356.7	W Basalt	Basalt, 46 to approx. 125 m
	/ NGP 119			III IV	23 57	5.2 11.3	9.5 20.8	351.5 340.2	V basalt	Clay
	/ 1101 112			V	394	24.8	45.6	315.4	M basalt	(Gondwana ?)
				VI	1.7	21.0	13.0	515.1	Clay	
9	On Nagpur-	34	400	I	6.4	2	2	340	Top Soil	Up to 50m
	katol Road /	2		II	66	21.5	23.5	318.5	M basalt	Basalt, Below
	NGP 120			III	1885	24.8	48.3	293.7		50 m Gneiss
				IV	14				Fra.Basalt	
10	On Kalmeshwar	33	400	I	19	0.7	0.7	329.3	Top Soil	More Than
	bypass road /	0		II	4	5.3	6	324	Clay	150m Basalt
	NGP 121			III	1.5 4136	9.3	15.3	314.7	M Basalt	-
11	Ghogali,	34	400	IV I	4136 13	2.7	2.7	344.3	Top Soil	Up to 70 m
11	Kalmeshwar-	54 7	400	I II	43	2.7	5.6	344.3	V Basalt	Basalt, below
	Katol Road /	,		III	9.4	5	10.6	336.4	W.Basalt	70 m
	NGP 122			IV	83	5	10.0	555.4	M Basalt	Gondwana
12	Khapri, on Rly	35	400	I	31	2.1	2.1	352.9	Top Soil	Up to 88 m
	gate road / NGP	5		II	8.9	2.5	4.6	350.4	W.Basalt	Basalt, More
	123			III	222	20.4	25	330	M Basalt	than 88 m

SI. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
				IV V	13.4 817	63.2	88.2	266.8	Fra. Basalt M Basalt	Gneiss ?
13	On	33	400	V I	12	0.9	0.9	333.1	Top Soil	> 150m basalt
	Kalmeshwar-	4		Π	8	1.1	2	332	W Basalt	
	Mohpa Road / NGP 124			III	21	19	21	313	M Basalt	_
	NOI 124			IV V	281 9	83	104	230	Fra. Basalt	-
14	Ubali, on Ubali-	31	400	I	25	0.9	0.9	316.1	Top Soil	>150m
	Mohpa Road, 1	7		Π	50	3.5	4.4	312.6	Sandstone	Gondwana
	Km from Ubali / NGP 125			III	8.7 18	5.2 11.3	9.6 20.9	307.4 296.1	Sandy clay Sandstone	-
	/ 1001 125			IV V	356	84	104.9	290.1	Compact	-
				•	200	0.	10115	21211	Sandstone	
				VI	11				Sandstone + Shale	
15	Mohpa, On	35	400	I	31	2.2	2.2	353.8	Top Soil	> 150m basalt ?
	Mohpa-Katol Road / NGP 126	6		II III	3.3 9873	4.4 5.4	6.6 12	349.4 344	Clay M Basalt	4
				IV	18	5.4	12	544	Fr.Basalt	
16	Near Moholi-	38	400	Ι	59	1.6	1.6	380.4	Top Soil	> 150m basalt ?
	Koholi, On Katol-Nagpur	2		II	21	25.4	27	355	W. Basalt	
	road / NGP 127			III IV	8 1430	12.5 18.3	39.5 57.8	342.5 324.2	M basalt	
				V	119	55.7	113.5	268.5	ivi ousuit	
				VI	24				Fr. basalt	
17	Linga, On Linga-	37 1	400	I	20.8 60.7	0.9	0.9	370.1 366.67	Top Soil M basalt	>150m Basalt
	Bazargaon Road	1		II III	12.7	3.43 5.16	4.33 9.49	361.51	Fr. basalt	
	/ NGP 137			IV	90.6	0110	7.1.7	001101	M. basalt	
18	In between	39	400	Ι	157	1.3	1.3	369.7	Top Soil	Up to 84m
	Rawalgaon & Kotwalbardi /	6		II III	366 54	4.4 78.4	5.7 84.1	365.3 286.9	M Basalt V Basalt	basalt, 84 to 138m
	NGP 138			IV	11	53.9	137.9	233.1	SST +Shale(Gondwan a)	Gondwana, below 138 m Gneiss
				v	554				Massive Basalt	
19	Lonara / NGP	36	400	Ι	11	1.9	1.9	364.1	Top Soil	> 150m
	140	6		II	308	0.9	2.9	363.1	Compact Sandstone	Gondwna
				III IV	30 66	42.0 75.2	44.9 120.1	321.1 245.9	Sandstone	
				V	2	15.2	120.1	243.7	Shale	
20	Phetri / NGP	34	400	Ι	44	1.0	1.0	343.0	Top Soil	Up to 70m
	266	4		II III	513 86	8.7	9.7	334.3	M Basalt	basalt, Below 70 m Gneiss ? (Curve break)
21	Phetri / NGP	35	400	I	30	3.5	3.5	347.5	Top Soil	Up to 158m
	267	1		II	142	26.4	29.9	321.1	M basalt	basalt, Below
				III IV	16 269	128	157.9	193.1	Fr. basalt Gneiss	158m gneiss
22	E. of Borgaon /	35	400	IV	269	0.9	0.9	349.1	Top Soil	Up to 150m
	NGP 268	0		Π	17	3.2	4.1	345.9	W. basalt	Basalt
				III	501	14.3	18.4	331.6	M basalt	4
				IV V	3 93	22.4	40.8	372.4	Fr. basalt M. basalt	-
23	N of Borgaon /	34	400	V I	5	2.4	2.4	339.6	Top Soil	Up to 22 m
	NGP 269	2		II III	425 8	20	22.4	319.6	M basalt SST + Shale	Basalt
24	SW of	33	400	I	5	0.9	0.9	337.1	Top Soil	Up to 150m
	Khandala / NGP 270	8		II	42 4	1.1 2.5	2 4.5	336 333.5	Sandstone	Gondwana
	1101 270			III IV	4 1343	2.5 5.5	4.5 10	333.5	Compact Sandstone	-
				V	37			1	Sandstone	1
25	N. of Shri	34	400	Ι	50	0.8	0.8	347.2	Top Soil	Up to 33m
	Asharam Bapu	8		II	208	19.1	19.9	328.9	M Basalt	Basalt, Below

SI. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
	Ashram / NGP 271			III IV	18 6651	13.1	33	315	Fr. basalt Gneiss	33m Gneiss
26	Gondni / NGP	35	400	I	44	0.45	0.45	350.55	Top Soil	Up to 53m
	272	1		II	3.7	6.5	6.95	344.05	Clay	Basalt, below
				III	374	45.9	52.85	298.15	M Basalt	53m fra. Gneiss
			100	IV	12			000 4	Fra. Gneiss	
27	N of Yerla / NGP 273	34 0	400	I II	7 4200	0.9	0.9	339.1 338	Top Soil M Basalt	Up to 150m Basalt
	NGI 275	0		III	197	1.1	2	330	WI Dasan	Dasan
28	Ashti / NGP	34	400	I	6	0.8	0.8	345.2	Top Soil	Up to 74 m
	274	6		II	18	26.6	27.4	318.6	W Basalt	Basalt Below
				III	176	46.9	74.3	271.7	M Basalt	74m
				IV	2				Clay (Gondwana)	Clay(Gondwan a) ?
29	Between Ashti	35	400	I	31	1.9	1.9	348.1	Top Soil	Up to 54 m
	& pardi / NGP	0	.00	II	13	2	3.9	346.1	W Basalt	Basalt Below
	275			III	3	4.3	8.2	341.8	Clay	74m Clay
				IV	149	45.8	54	296	M Basalt	(Gondwana)?
				V	1.35				Clay (Gondwana)	
30	Pardi / NGP 276	32	400	I	42	1.2	1.2	327.8	Top Soil	Up to 122m
20	1 4 4 7 1 6 1 2 7 0	9	.00	П	4.3	6.3	7.5	321.5	Clay	SST, Below
				III	25	115	122.5	206.5	Sandstone	122m Gneiss
				IV	2330				Gneiss	
31	Kalmeshwar / NGP 277	33 8	400	I	14	0.9	0.9	337.1	Top Soil	Up to 82m Basalt, Below
	NGP 277	0		II III	40.5 350	10 71	10.9 81.9	327.1 256.1	V.Basalt M basalt	82 m Gneiss
				IV	38	/1	01.9	230.1	Fr. Gneiss	02 11 010135
32	1.2 Km SE of	33	400	I	17	1	1	333	Top Soil	Up to 125m
	Kalmeshwar on	4		II	3	3.4	4.4	329.6	Clay	Basalt
	Kalmeawar-			III	3190	7.5	11.9	322.1	M basalt	
	Nagpur road / NGP 278			IV	12				Fr. basalt	
33	Kalmeshwar /	32	400	I	5	5.7	5.7	316.3	Top Soil	Up to 125m
	NGP 279	2		II	37	5.2	10.9	311.1	W Basalt	Basalt
				III	3.4	10	20.9	301.1	Clay	
34	Kalmeshwar /	33	400	IV	37 21	1.7	1.7	335.3	Fra Basalt Top Soil	Up to 111m
34	NGP 280	33 7	400	I II	88	2.5	4.2	332.8	M basalt	Basalt, Below
	1101 200			III	7	5.1	9.3	327.7	W Basalt	111m Gneiss
				IV	77	102	111.3	225.7	M basalt	
				V	885				Gneiss	
35	Kalmeshwar /	34	400	I	83	1	1	340	Top Soil	Up to 150m
	NGP 281	1		II III	3 520	3 4.4	4 8.4	337 332.6	Clay M basalt	Basalt
				IV	19	31.8	40.2	300.8	Fr. basalt	
				V	251				M basalt	
36	Kalmeshwar /	35	400	Ι	18	0.8	0.8	353.2	Top Soil	Up to 106m
	NGP 282	4		II	14	17	17.8	336.2	W.Basalt	Basalt, elow
				III IV	104 1862	88.5	106.3	247.7	M Basalt Gneiss	106m Gneiss
37	Selu / NGP 283	36	400	I	5	0.9	0.9	360.1	Top Soil	Up to 125m
		1		II	12	3.5	4.4	356.6	W.Basalt	Basalt
				III	777	5.2	9.6	351.4	M Basalt	
				IV	31	37.1	46.7	314.3	Fr. basalt	_
38	Khargaon /	35	400	V I	271 28	0.7	0.7	351.3	M Basalt Top Soil	Up to 125m
20	NGP 284	35 2	400	I	3	0.7	1.5	350.5	Clay	Basalt
				III	1121	5.2	6.7	345.3	M basalt	
				IV	24				Fr. basalt	
39	Dahegaon /	34	400	Ι	5	1.3	1.3	339.7	Top Soil	Up to 116m
	NGP 285	1		II	574	115	116.3	224.7	M Basalt	Basalt, Below 116m Gneiss
40	Dahegaon /	34	400	III I	5916 3.2	0.6	0.6	339.4	Gneiss Top Soil	Up to 139m
40	NGP 286	54 0	400	I	13	1.9	2.5	337.5	W Basalt	Basalt, Below
		l –	1	III	107	136	138.5	201.5	M Basalt	139m Gneiss

SI. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m) 5278	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology Gneiss	Consolidated thickness of the Litho-unit
41	Phetri / NGP	32	400	IV	4.5	0.9	0.9	326.1	Top Soil	Up To 42m
41	287	7	400	I	31	3.2	4.1	322.9	W Basalt	Basalt, Below
	207			III	55	4.7	8.8	318.2	V basalt	42m Clay/
				IV	92				M Basalt	Fr.Gneiss?
42	E. of Kalambi /	34	400	Ι	14	1.1	1.1	342.9	Top Soil	Up to 89m
	NGP 288	4		II	48	6.7	7.8	336.2	V basalt	Basalt, Below
				III	820	10.7	18.5	325.5	M basalt	89m Gneiss
				IV	40	70.8	89.3	254.7	V basalt	
43	W. of Kalambi /	34	400	V I	3666 20	0.9	0.9	341.1	Gneiss Top Soil	> 100m Basalt
45	NGP 289	2	400	I	699	1.1	2	340	M basalt	> 100iii Dasait
	1101 209	2		III	184	18.8	20.8	321.2	ivi basart	
				IV	218					
44	Selu / NGP 290	36	400	Ι	29	0.3	0.3	361.7	Top Soil	> 100m Basalt
		2		Π	7	7.3	7.6	354.4	W. basalt	
				III	80				M basalt	
45	Sawangi / NGP	37	400	I	15	1	1	371	Top Soil	Up to 83m
	291	2		II	63	0.5	1.5	370.5	M basalt	Basalt, Below
				III	4.2 73	1	2.5 5.2	369.5	W Basalt	83m Gneiss
				IV V	73	2.7 5	5.2	366.8 361.8	M basalt Fra. Basalt	
				VI	77	73.3	83.5	288.5	M basalt	
				VII	4254	15.5	05.5	200.5	Gneiss	
47	Sawangi / NGP	34	400	I	6.2	2.3	2.3	341.7	Top Soil	> 125m Basalt
	292	4		II	7.5	8.8	11.1	332.9	W Basalt	
				III	180				M basalt	
48	W of Sawangi /	36	400	Ι	4.1	4.2	4.2	355.8	Top Soil	> 125m Basalt
	NGP 293	0		II	7.4	12.9	17.1	342.9	W Basalt	
10			100	III	55	1.0	1.0	252.0	V basalt	105 D 1
49	3Km E of Linga / NGP 294	37 5	400	I II	18 3.6	1.2 5.8	1.2 7	373.8 368	Top Soil	> 125m Basalt
	/ NOF 294	5		III	3.0 165	5.8	/	308	Clay M basalt	
50	3Km E of Linga	38	400	I	4	3.9	3.9	378.1	Top Soil	> 125m Basalt
50	/ NGP 295	2	100	II	34	25.8	29.7	352.3	W basalt	> 125m Busart
				III	230				M basalt	
51	1Km E of Linga	38	400	Ι	38	0.9	0.9	387.1	Top Soil	> 125m Basalt
	/ NGP 296	8		II	142	0.8	1.7	386.3	M basalt	
				III	17	12.8	14.5	373.5	W. basalt	
				IV	213	22.6	37.1	350.9	M basalt	
52	Uperwahi /	35	200	V I	72	0.9	0.9	356.1	Top Soil	> 70m basalt
54	NGP 297	55 7	200	I	12	1.1	2	355	W basalt	
		ĺ		III	6	2.5	4.5	352.5	Clay	\neg
				IV	15	5.5	10	347	Fr. basalt	
				V	162	12.4	22.4	334.6	M basalt	
				VI	41				V basalt	
53	SW of	37	200	I	17.4	0.9	0.9	369.1	Top Soil	> 70m basalt
	Sonegaon on	0		II	10.4	1.1	2	368	W basalt	_
	Linga-Sonegaon Road / NGP 298			III	23.3	20.5	22.5	347.5	Fr. basalt	_
54	Sonegaon /	36	400	IV I	50.5 70	4.8	4.8	362.2	V basalt Top Soil	Up to 125m
54	NGP 299	30 7	100	I	488	4.8 5	4.8 9.8	357.2	M basalt	Basalt
		l .		III	34	12.1	21.9	345.1	Fr. basalt	
				IV	127	69.1	91	276	M basalt	
				V	11				Fr. basalt	
55	S of Sonegaon /	36	300	Ι	71	0.9	0.9	360.1	Top Soil	Up to 100m
	NGP 300	1		II	199	3	3.9	357.1	M basalt	Basalt, Below
				III	16.1	4.3	8.2	352.8	Fr. basalt	100m Gneiss
56	Khapri, 1Km E	32	200	IV	194	0.8	0.8	322.2	M basalt	> 70m basalt
50	of the Village /	32 3	200	I II	14.5 11.1	0.8 8.7	9.5	313.5	Top Soil W Basalt	
	NGP 301			III	213	42.1	51.6	271.4	M basalt	
				IV	5.7				Fr. basalt	-
57	Khapri, 1Km W	34	400	Ι	27	0.9	0.9	339.1	Top Soil	Up to 100 m
	of the Village /	0		Π	49	3.4	4.3	335.7	M basalt	Basalt, below

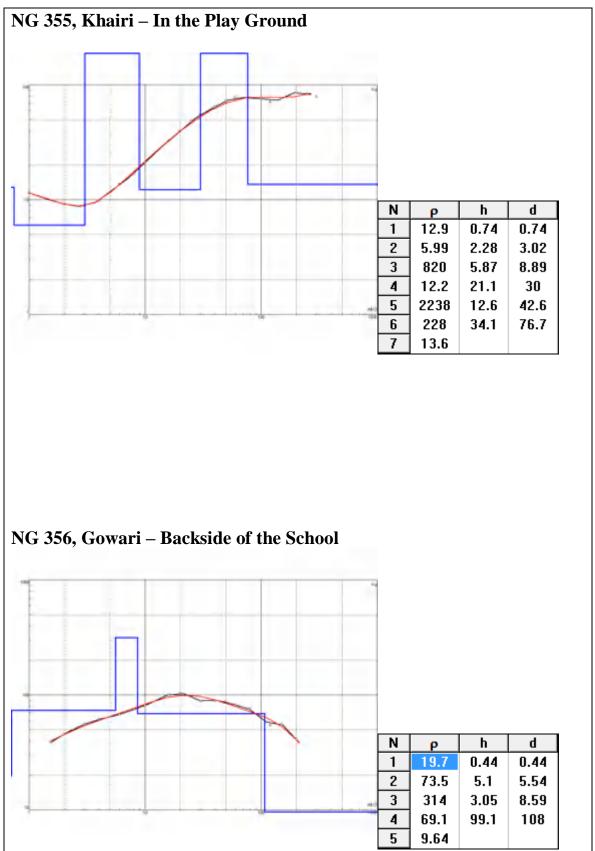
Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
	NGP 302			III	13	16.5	20.8	319.2	Fr. basalt	100m Gneiss
58	Mohli / NGP	40	400	IV I	107 48	1	1	401	M basalt Top Soil	(curve break) Up to 131m
50	303	2	400	I	12.5	2.6	3.6	398.4	W Basalt	Basalt, below
				III	20	55.8	59.4	342.6	Fr. basalt	131m
				IV	347	40	99.4	302.6	M basalt	Gondwana
				V	95 20	31.6	131	271	Sandstone	-
59	Chargaon /	42	300	VI I	20 23	0.2	0.2	426.8	Top Soil	> 100m Basalt
57	NGP 304	7	500	II	52	3.7	3.9	423.1	V basalt	> Toom Busurt
				III	7.3	6	9.9	417.1	W Basalt	
				IV	96	17.6	27.5	399.5	M basalt	
(0)	D I' ON C	4.1	100	V	6.7	17	17	412.2	Fr. basalt	11 / 120
60	Dorli, SW of the Lake / NGP	41 5	400	I II	10 15	1.7 2.1	1.7 3.8	413.3 411.2	Top Soil W Basalt	Up to 130m Basalt
	305	5		III	7	4.8	8.6	406.4	w Dasan	Dusan
				IV	102				M basalt	1
61	Waroda / NGP	32	400	Ι	28	7.9	7.9	317.1	Top Soil	up to 20m Gon
	306	5		II	8	11.2	19.1	305.9	W Basalt	dwana, below
62	Dhapewada /	32	400	III I	4485 9	1	1	322	Gneiss Top Soil	20 m Gneiss > 150 m
02	NGP 307	32	400	I	1.6	0.9	1.9	321.1	Clay	Gondwana
	1101 207	5		III	5.8	25.7	27.6	295.4	Chuy	Condividud
				IV	60	15.4	43	280	Sandstone	
				V	5	50	93	230	Shale	
				VI	203				Compact Sandstone	
63	Bhadangi / NGP	35	400	I	5	1.2	1.2	352.8	Top Soil	>150m
05	308	4	400	I	20	2.4	3.6	350.4	Sandstone	Gondwana
				III	4	3.3	6.9	347.1	Shale	
				IV	41				Sandstone	
64	Borgaon / NGP	34	400	I	18	0.6	0.6	339.4	Top Soil	>150m
	309	0		II III	3.9 14	1.7 21	2.3 23.3	337.7 316.7	Clay Sandstone+Shale	Gondwana
				IV	45	21	23.3	510.7	Sandstone	
65	Bhadangi / NGP	34	400	I	8.2	0.9	0.9	348.1	Top Soil	>150m
	310	9		II	3.4	1.1	2	347	Clay	Gondwana
				III	10.7	7.5	9.5	339.5	Sandy clay	
				IV V	19.9 87	36.1	45.6	303.4	Sandstone	
66	Kalmeshwar /	27	400	V I	6	4.8	4.8	273.2	Top Soil	Up to 80m
00	NGP 311	8		II	10	8.8	13.6	264.4	W Basalt	Basalt, below
				III	123	30	43.6	234.4	M Basalt	80m Gneiss ?
				IV	18.5				Fr. basalt	(Curve break)
67	Kalmeshwar / NGP 312	34 3	400	I II	80 7	0.4 6.7	0.4 7.1	342.6 335.9	Top Soil W Basalt	Up to 68m Basalt, below
	NOF 512	3		III	35	60.6	67.7	275.3	Fr.Basalt	68m Gneiss
				IV	6923	00.0	07.7	213.5	Gneiss	
	IZI · · / NICID	25	400	Ι	5	1.6	1.6	350.4	Top Soil	Up to 123m
68	Khairi / NGP	35								
68	313	2 2		II	2.3	7.5	9.1	342.9	Clay	Gondwana,
68				II III	2.3 10		9.1 123.1	342.9 228.9	Sandstone+Shale	below 123m
	313	2		II III IV	2.3 10 311	7.5 114	123.1	228.9	Sandstone+Shale Gneiss	below 123m Gneiss
68 69			200	II III IV I	2.3 10 311 6	7.5 114 2	123.1 2	228.9 348	Sandstone+Shale Gneiss Top Soil	below 123m
	313 Gowari / NGP	2 35		II III IV	2.3 10 311	7.5 114	123.1	228.9	Sandstone+Shale Gneiss	below 123m Gneiss > 100m
	313 Gowari / NGP	2 35		II III IV I II III	2.3 10 311 6 50 432	7.5 114 2 3.8	123.1 2 5.8	228.9 348 344.2	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone	below 123m Gneiss > 100m
69	313 Gowari / NGP 314	2 35 0	200	II III IV I II III IV	2.3 10 311 6 50 432 1.8	7.5 114 2 3.8 9.3	123.1 2 5.8 15.1	228.9 348 344.2 334.9	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone Shale	below 123m Gneiss > 100m Gondwana
	313 Gowari / NGP 314 Gowari / NGP	2 35 0 34		II IV I II II IV I I	2.3 10 311 6 50 432 1.8 7	7.5 114 2 3.8 9.3 2	123.1 2 5.8 15.1 2	228.9 348 344.2 334.9 341	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone Shale Top Soil	below 123m Gneiss > 100m Gondwana >150m
69	313 Gowari / NGP 314	2 35 0	200	II III IV I II III IV	2.3 10 311 6 50 432 1.8	7.5 114 2 3.8 9.3	123.1 2 5.8 15.1	228.9 348 344.2 334.9	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone Shale Top Soil Compact	below 123m Gneiss > 100m Gondwana
69	313 Gowari / NGP 314 Gowari / NGP 315	2 35 0 34	200	II IV I II II IV I I	2.3 10 311 6 50 432 1.8 7	7.5 114 2 3.8 9.3 2	123.1 2 5.8 15.1 2	228.9 348 344.2 334.9 341	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone Shale Top Soil	below 123m Gneiss > 100m Gondwana >150m
69	313 Gowari / NGP 314 Gowari / NGP 315 Khapri / NGP	2 35 0 34 3 37	200	П III IV I II II II II II II II	2.3 10 311 6 50 432 1.8 7 257 62 9	7.5 114 2 3.8 9.3 9.3 2 7.6 3.5	123.1 2 5.8 15.1 2 9.6 3.5	228.9 348 344.2 334.9 341 333.4 366.5	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone Shale Top Soil Compact Sandstone Sandstone Top Soil	below 123m Gneiss > 100m Gondwana >150m
69 70	313 Gowari / NGP 314 Gowari / NGP 315	2 35 0 34 3	200	II III IV I III IV I III III II	2.3 10 311 6 50 432 1.8 7 257 62 9 87	7.5 114 2 3.8 9.3 2 7.6	123.1 2 5.8 15.1 2 9.6	228.9 348 344.2 334.9 341 333.4	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone Shale Top Soil Compact Sandstone Sandstone Top Soil M Basalt	below 123m Gneiss > 100m Gondwana >150m Gondwana
69 70	313 Gowari / NGP 314 Gowari / NGP 315 Khapri / NGP	2 35 0 34 3 37	200	П III IV I II II II II II II II	2.3 10 311 6 50 432 1.8 7 257 62 9	7.5 114 2 3.8 9.3 9.3 2 7.6 3.5	123.1 2 5.8 15.1 2 9.6 3.5	228.9 348 344.2 334.9 341 333.4 366.5	Sandstone+Shale Gneiss Top Soil Sandstone Compact Sandstone Shale Top Soil Compact Sandstone Sandstone Top Soil	below 123m Gneiss > 100m Gondwana >150m Gondwana

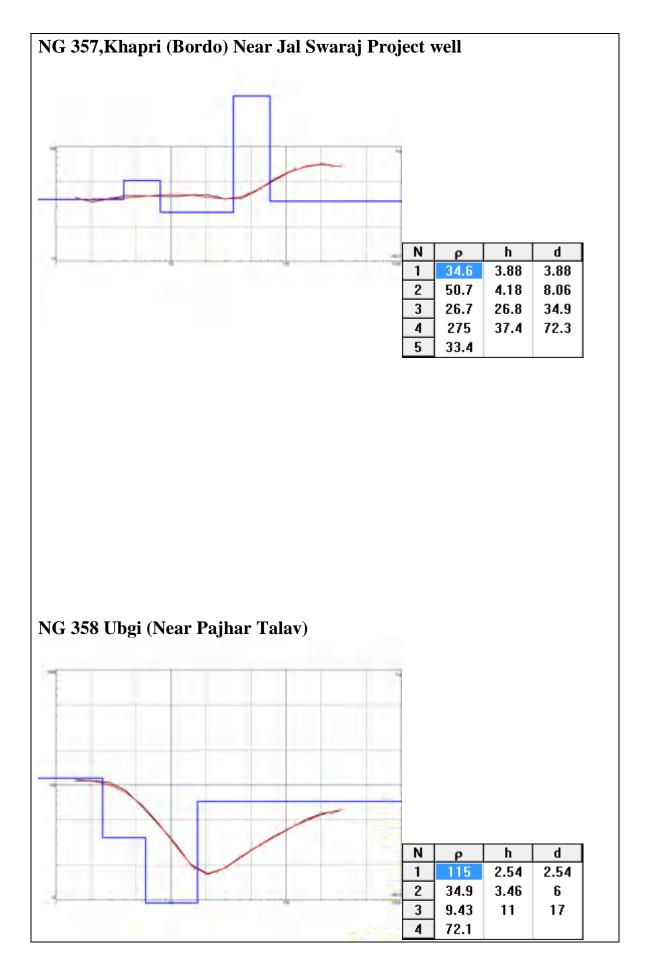
Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
				III IV V	103 25 1	3.5 71	7.1 78.1	362.9 291.9	M Basalt Fr. basalt Clay/Shale	78m Gondwana
73	Gharad / NGP 318	33 0	400	I II III	7 16 872	1.5 7.6	1.5 9.1	328.5 320.9	Top Soil W basalt M Basalt	> 100 m Basalt
74	Ubali / NGP 319	35 9	400	I II III IV	15 48 9.7 112	0.6 1.8 10.9 60.8	0.6 2.4 13.3 74.1	358.4 356.6 345.7 284.9	Top Soil V basalt W.basalt M basalt	Up to 74 m Basalt, below 74m Gneiss
75	Mohgaon / NGP 320	40 0	300	V I III IV	8304 7 1 490 8 4851	0.7 0.9 1.4 5.9	0.7 1.6 3 8.9	399.3 398.4 397 391.1	Gneiss Top Soil Clay M Basalt Fr. Basalt	> 100 m Basalt
76	Khapri / NGP 321	35 3	400	V I II III	20 55 5	0.9 1.1 2.4	0.9 2 4.4	352.1 351 348.6	M Basalt Top Soil V Basalt Fr.Basalt	Up to 80m basalt, Below 80m Gneiss
77	Ubali / NGP 322	36 4	400	IV I III III IV	64 44 131 34 98	0.9 8.6 11.3	0.9 9.5 20.8	363.1 354.5 343.2	M Basalt Top Soil M Basalt Fr. basalt M Basalt	> 125m Basalt
78	Wathoda / NGP 323	35 7	400	I II III IV V	6.7 3.6 8.6 3.4 109 573	0.9 1.1 2.4 5.2 103.5	0.9 2 4.4 9.6 113.1	356.1 355 352.6 347.4 243.9	Top Soil Clay Sandy clay Clay M Basalt	Up to 103 m Basalt, below 103m Gneiss ?
79	Susundri / NGP 324	38 8	200	VI I II III	4 7 6904	0.9 8.7	0.9 9.6	387.1 378.4	Gneiss Top Soil W Basalt M basalt	> 80m basalt
80	Kohli / NGP 325	37 8	240	I II III	85 262 41	1.9 2.4 11.9	1.9 4.3 16.2	376.1 373.7 361.8	Top Soil M Basalt V Basalt	> 80m basalt
81	Waroda / NGP 326	31 3	300	IV I II III IV	167 30 8 37 860	1 10.6 122	1 11.6 133.6	312 301.4 179.4	M Basalt Top Soil Sandy clay Sandstone Gneiss	Up to 134 m Gondwana, below 134m Gneiss
82	Pardi / NGP 328	38 3	400	I I III IV V VI	9 5 14 27 95 465	0.9 1.1 7.6 11.3 80.5	0.9 2 9.6 20.9 101.4	382.1 381 373.4 362.1 281.6	Top Soil Clay W basalt Fr.Basalt M Basalt Compact Sandstone	Up to 101 m basalt, below 101m Gondwana ?
83	Khairi / NGP 329	37 8	300	I II III IV V	6.5 3.2 165 31 5	0.6 4.1 21.5 115	0.6 4.7 26.2 141.2	377.4 373.3 351.8 236.8	Top Soil Clay M Basalt Fr.Basalt Clay	Up to 141m Basalt, Below 141m Clay (Gondwana)
84	Mohli / NGP 330	37 8	240	I II III IV	181 19 40 4.6	1.9 39.5 52.5	1.9 41.4 93.9	376.1 336.6 284.1	Top Soil Fr. basalt V Basalt Clay	Up to 94 m Basalt, below 94 m Gondwana
85	Kohli / NGP 331	39 0	600	IV II III IV V	113 37 13 495 13	3.2 19.2 52.2 55.1	3.2 22.4 74.6 129.7	386.8 367.6 315.4 260.3	Top Soil W Basalt Fr. basalt M basalt Sandstone+Shale	Up to 130 m Basalt, below 130m Gondwana
86	Kalmeshwar / NGP 332	33 1	600	I II III IV	6.7 3.6 82 10	0.8 10.1 3.3 8.9	0.8 10.9 14.2 23.1	330.2 320.1 316.8 307.9	Top Soil Clay M Basalt Fr. Basalt	Up to 159 m Basalt, below 159m Gneiss

Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
				V	575	16.2	39.3	291.7	M Basalt	-
				VI	11 361	32.5	71.8	259.2	Fr. Basalt M Basalt	-
87	Sonkhamb /	40	600	VII I	31	1.4	1.4	407.6	Top Soil	Up to 135 m
07	NGP 333	9	000	П	64	34.7	36.1	372.9	M Basalt	Basalt, below
				III	271	98.8	134.9	274.1		135m
				IV	2.8				Clay (Gndwana)	Gondwana
88	Metpanjra / NGP 334	42 1	600	I II	107 31	0.9	0.9 1.8	420.1 419.2	Top Soil W Basalt	Up to 72 m Basalt, below
	1101 334	1		III	496	5.6	7.4	413.6	M Basalt	72m Gondwana
				IV	20	7.6	15	406	Fr. basalt	?
				V	322	56.6	71.6	349.4	M Basalt	
				VI	1.3				Clay	
89	Ramgiri / NGP 335	40 1	600	I	34 3224	1.9	1.9 3.9	399.1	Top Soil	> 150m Basalt
	555	1		II III	3224 89	2	3.9	397.1	M Basalt M Basalt	-
90	Malegaon /	51	600	I	13	0.8	0.8	517.2	Top Soil	Up to 154m
	NGP 336	8		II	119	4	4.8	513.2	M Basalt	Basalt, Below
				III	775	5.3	10.1	507.9		154m Gneiss?
				IV	27	144	154.1	363.9	Fr. basalt	4
91	Wasbodi / NGP	47	600	V I	2411 88	1	1	471	Gneiss ? Top Soil	Up to 300m
91	337	2	000	I	779	0.7	1.7	470.3	M Basalt	Basalt
				III	48	1.7	3.4	468.6	V basalt	
				IV	930	5	8.4	463.6	M Basalt	
				V	6.4	4.6	13	459	Fr. basalt	-
				VI VII	393 21	18.1 62.2	31.1 93.3	440.9 378.7	M Basalt Fr.Basalt	-
				VII	1424	02.2	95.5	576.7	M Basalt	
92	Dorli / NGP 338	39	600	I	92	2.9	2.9	396.1	Top Soil	Up to 130m
		9		II	1412	6.1	9	390	M Basalt	Basalt, Below
				III	33				Fr. basalt	130 m Gondwana (Curve break and Borehole information
93	Kotwalbordi /	40	600	Ι	39	2.9	2.9	399.1	Top Soil	Up to 24m
	NGP 339	2		II	154	21.3	24.2	377.8	M Basalt	Basalt, below
				III IV	27 8.6	79.5	103.7	298.3	Sandstone	24 m Gondwana
				V	8.0 366	82.9	186.6	215.4	Shale Compact SSt	Gondwana
94	Uibgi / NGP	37	600	I	38	3	3	371	Top Soil	Up to 200m
	340	4		II	2.6	1.6	4.6	369.4	Clay	Basalt, below
				III	110	3.3	7.9	366.1	M basalt	200m
				IV V	4.4 33	6.3 209	14.2 223.2	359.8 150.8	Clay Fr.Basalt	Sandstone
				VI	269	209	223.2	130.8	Compact	
				•1	209				Sandstone	
95	Wadhona Bz /	33	600	Ι	20	0.5	0.5	331.5	Top Soil	Up to 36 m
	NGP 341	2		II	166	0.9	1.4	330.6	M basalt	Basalt, below
				III IV	7.8 279	34.9	36.3	295.7	Fr. basalt Compact SST	36m Gondwana
96	Pipla / NGP	34	600	I	11	1.2	1.2	338.8	Top Soil	Up to 57m
-	342	0		Ī	47	2.2	3.4	336.6	V basalt	Basalt, below
				III	6	2.4	5.8	334.2	W basalt	57m Gondwana
				IV	18	50.7	56.5	283.5	Fr. basalt	4
97	Dhapewada /	32	600	V I	265 14	1.7	1.7	324.3	Compact SST Top Soil	Up yo 72 m
71	NGP 343	6	000	I	31	5.1	6.8	319.2	Sandstone	Gondwa Below
				III	7.3	65.6	72.4	253.6	Sandstone+Shale	72m Gneiss?
				IV	1940				Compact]
00	Mala: ANOD	22	(00	T	57	07	07	220.2	SSt/Gneiss	. Ha a. 42
98	Valni / NGP 344	33 9	600	I II	57 13	0.7 2.3	0.7	338.3 336	Top Soil Sandstone+Shale	Up yo 43 m Gondwa Below
		9					3 8.9			e Gondwa Below 43m Gneiss ?
				III	5.4	5.9	8.9	330.1	Clay	45m Gneiss ?

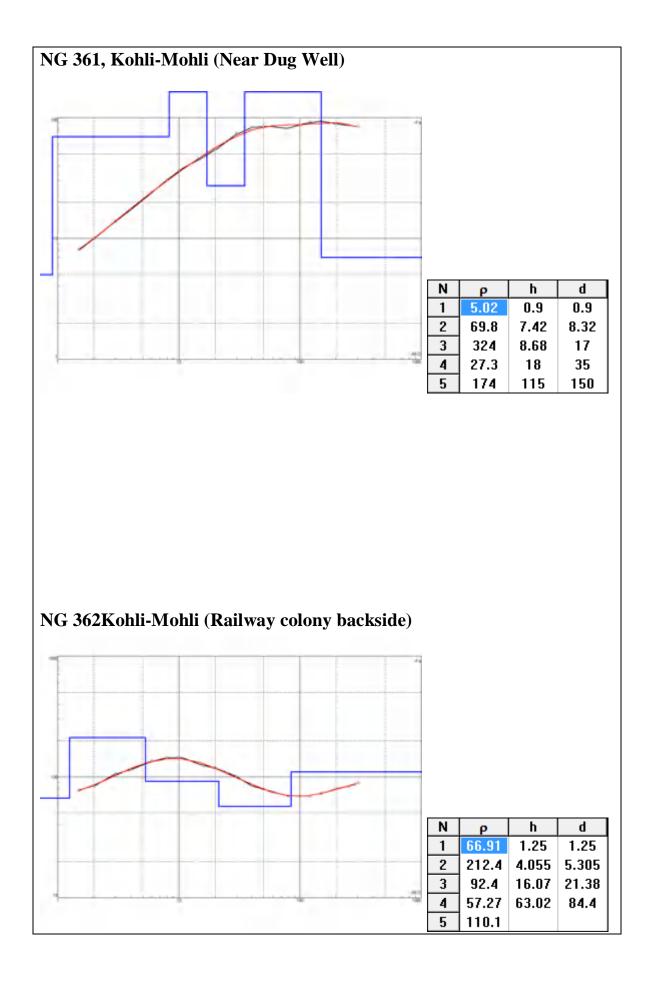
SI. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
				V	16	25.9	42.5	296.5	Sandstone	_
99	Yerla / NGP	35	600	VI I	3097 7.7	0.8	0.8	349.2	Gneiss Top Soil	Up to 50m
,,	345	0	000	I	30	0.6	1.4	348.6	W Basalt	Basalt, Below
				III	3.8	6.6	8	342	Clay	71m Gneiss
				IV	47	41.7	49.7	300.3	V Basalt	
				V VI	2 1339	21	70.7	279.3	Clay Gneiss	
10	Selu / NGP 346	35	600	I	56	0.9	0.9	355.1	Top Soil	Up to 150 m
0		6		II	20	3	3.9	352.1	W basalt	Basalt, below
				III	6.6	4.2	8.1	347.9	Fr. Basalt	150m Gondwana
				IV V	604 11	26.7	34.8	321.2	M Basalt Fr. basalt	(curve break, Inverse slope and borehole data)
10	Khapri / NGP	35	600	Ι	11	0.9	0.9	358.1	Top Soil	Up to 110m
1	347	9		II	26	16.87	17.77	341.23	W basalt	Basalt, below 110m Gneiss
				III IV	252 17	24 68.3	41.77 110.07	317.23 248.93	M Basalt Fr. basalt	110in Gileiss
				V	3008	00.5	110.07	210.95	Gneiss	
10	Kalmeshwar /	33	600	Ι	4.2	1.5	1.5	337.5	Top Soil	Up to 200m
2	NGP 348	9		II	12	13	14.5	324.5	W basalt M.Basalt	Hard rock (Basalt/Gneiss)
10	Khairi/NGP 355	32	600	III I	8583 13	0.74	0.74	322.26	Top Soil	Approx. upto
3	inimit i to i 555	3	000	II	6	2.28	3.02	319.98	Clay	200m
				III	820	5.9	8.92	314.08	Compact/dry Sst	Sandstone
				IV	12	21.1	30.02	292.98	Sandstone	
				V VI	2238 228	12.6 34.1	42.62 76.72	280.38 246.28	Compact/dry Sst	
				VII	14	54.1	10.12	240.20	Sandstone	
10	Gowari/NGP	32	400	Ι	20	0.4	0.4	322.6	Top Soil	Approx. upto
4	356	3		II	74	5.1	5.5	317.5	Sandstone	130m Sandstone
				III IV	314 69	3 99.1	8.5 107.6	314.5 215.4	Compact/dry Sst Sandstone	Sandstone
				V	9.6	<i>))</i> .1	107.0	215.4	Sandstone	
10	Bordo(Khapri)/	36	600	Ι	35	3.9	3.9	357.1	Top Soil	Approx. upto
5	NGP 357	1		II	51	4.2	8.1	352.9	V basalt	200m Basalt
				III IV	27 275	26.8 37.4	34.9 72.3	326.1 288.7	F.Basalt M Basalt	_
				V	33	37.4	12.5	200.7	F.Basalt	
10	Ubigi/NGP 358	37	600	Ι	115	2.5	2.5	371.5	Top Soil	Upto 150 m
6		4		II	35	3.5	6	368	W.Basalt	Basalt
				III IV	9.4 72	11	17	357	M Basalt	4
10	Ubigi/NGP 359	37	900	I	18	0.8	0.8	378.2	Top Soil	1
7	-	9		II	6.3	3.4	4.2	374.8	W.Basalt]
				III	107	2.8	7	372	M Basalt	4
				IV V	8.4 142	16.9 75.2	23.9 99.1	355.1 279.9	F.Basalt M Basalt	1
				VI	38	13.2	77.1	2.7.7	F.Basalt	1
10	Kohli-	38	600	Ι	79	0.9	0.9	381.1	Top Soil	Approx. upto
8	Mohli/NGP 360	2		II	30 57	8.2 8.9	9.1 18	372.9	W.Basalt	130m Basalt
				III IV	57	8.9	18 30.5	364 351.5	V.Basalt F.Basalt	1
				V	311	12.3	50.5	551.5	M Basalt	1
10	Kohli-	36	600	Ι	5	0.9	0.9	381.1	Top Soil	1
9	Mohli/NGP 361	4		II	70	7.4	8.3	373.7	M Basalt	
				III IV	324 27	8.7 18	17 35	365 347	F.Basalt	4
				V	174	18	150	232	M Basalt	1
				VI	7				F.Basalt]
11	Kohli-	36	600	I	67	1.3	1.3	365.7	Top Soil	4
0	Mohli/NGP 362	7		II III	212 92	4.1 16.1	5.4 21.5	361.6 345.5	M Basalt M Basalt	4
			1	IV	92 57	63	84.5	282.5	V.Basalt	4

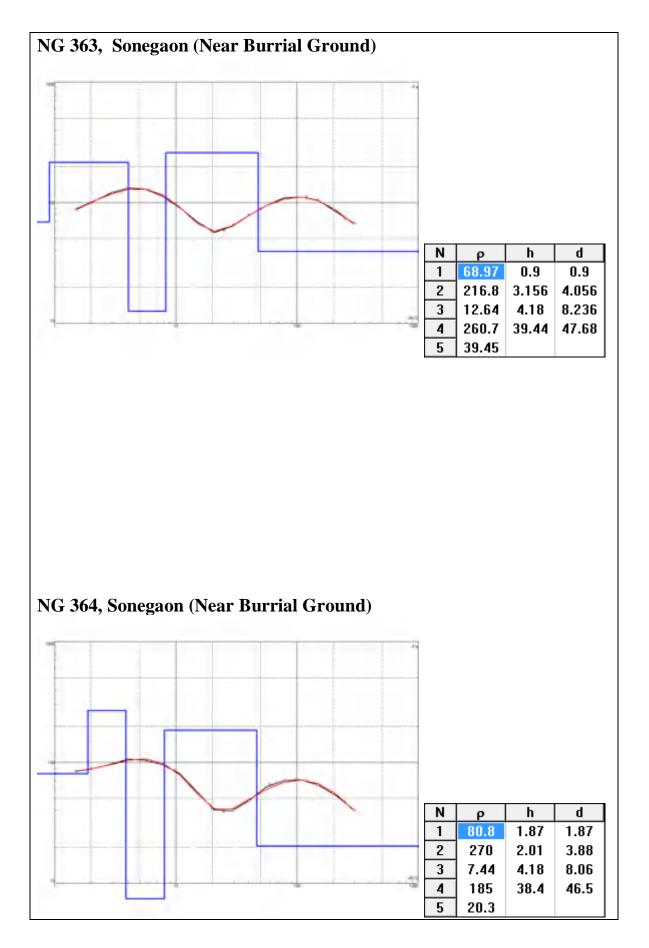
SI. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m) 110	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology M.Basalt	Consolidated thickness of the Litho-unit
11	Sonogaon /	35	600	V I	69	0.9	0.9	357.1	Top Soil	Approx. upto
1	NGP 363	8	000	I	217	3.2	4.1	353.9	M.Basalt	150m Basalt
-	1101 000	0		III	13	4.2	8.3	349.7	W.Basalt	- Dubant
				IV	261	39.4	47.7	310.3	M.Basalt	_
				V	40				V.Basalt	
11	Sonogaon /	35	600	Ι	81	1.9	1.9	356.1	Top Soil	
2	NGP 364	8		II	270	2	3.9	354.1	M.Basalt	
				III	7.4	4.2	8.1	349.9	W.Basalt	
				IV	185	38.4	46.5	311.5	M.Basalt	_
11	Sanagaan /	35	300	V	20 95	1.5	1.5	256.5	F.Basalt Top Soil	Annex veto
11 3	Sonogaon / NGP 365	8	500	I II	468	1.3	1.5 3.3	356.5 354.7	M.Basalt	Approx. upto 150m Basalt
5	NOI 505	0		III	12	4.1	7.4	350.6	W.Basalt	150III Dasan
				IV	661	21.5	28.9	329.1	M.Basalt	_
				V	3	21.5	20.9	527.1	F.Basalt	
11	Mohgaon / NGP	34	400	I	9.4	0.9	0.9	346.1	Top Soil	Approx. upto
4	366	7		Π	5.2	3.4	4.3	342.7	W.Basalt	200m Basalt
				III	3.5	5.2	9.5	337.5		
				IV	34	11.3	20.8	326.2	F.Basalt	
				V	14	84.8	105.6	241.4		_
			100	VI	688				Comp.Sst	_
11	Mohgaon / NGP	34	400	I	10	1.1	1.1	345.9	Top Soil	_
5	367	7		II	4	1.9	3	344	W.Basalt	
				III IV	7.5 34	12	15	332	Fr.Basalt	_
11	Mohgaon / NGP	34	300	I	16	0.8	0.8	346.2	Top Soil	_
6	368	7	300	I	7	3.6	4.4	342.6	W.Basalt	_
0	500	,		III	10	12.2	16.6	330.4	w.Dasan	
				IV	41	125	141.6	205.4	V.Basalt	-
				V	472	-			Comp.Sst	_
11 7	Dhapewade / NGP 369	32 4	300	I	20	0.9	0.9	323.1	Top Soil (Alluvium)	Approx. upto 200m
				п	6.4	3	3.9	320.1	Sandy Clay(Alluvium)	Gondwana
				III	19	4.3	8.2	315.8	Sand	
				IV	4.4	27.7	35.9	288.1	Clay	_
1.1		22	200	V	16	-		202	Sandstone	_
11 8	Dhapewade / NGP 370	32 4	200	I	9 11	2 8.1	2	322	Top Soil	_
0	NOF 570	4		II III	2	12.4	10.1 22.5	313.9 301.5	Sand Clay	-
				IV	18	12.7		501.5	Sandstone	-
11	Dhapewade /	32	300	I	13	3.4	3.4	320.6	Top Soil	1
9	NGP 371	4		II	34	7.9	11.3	312.7	Sand	1
				III	2	14.7	26	298	Clay	1
				IV	18				Sandstone	
12	Mohgaon / NGP	34	300	Ι	8	1.7	1.7	341.3	Top Soil	Approx. upto
0	372	3		II	17	27	28.7	314.3	W.Basalt	200m Basalt
10	Maha (MOD	24	200	III	51	0.9	0.0	242.2	V.Basalt	
12 1	Mohgaon / NGP 373	34 3	200	I	19 4.3	0.8	0.8	342.2	Top Soil	-
1	515	5		II III	4.3	0.8 35.7	1.6 37.3	341.4 305.7	W.Basalt F.Basalt	-
				IV	12	55.1	51.5	303.7	M.Basalt	-
12	Mohgaon / NGP	34	300	I	89	0.8	0.8	342.2	Top Soil	-
2	374	3		I	37	2	2.8	340.2	W.Basalt	
				III	195	43.4	46.2	296.8	M.Basalt	
				IV	40	30	76.2	266.8	V.Basalt	
				V	3491				M.Basalt	
12	Mohgaon / NGP	34	200	Ι	119	2.2	2.2	340.8	Top Soil	
3	375	3		Π	21	1.5	3.7	339.3	W.Basalt	
				III	276	2.6	6.3	336.7	M.Basalt	_
		0.5	200	IV	28.5		0.1	0.52 5	F.Basalt	
10	Uperwadi / 35	35	300	Ι	78	0.4	0.4	352.6	Top Soil	Approx. upto
12			200			2.2	27	240.2	W Docolt	125m Decelt
12 4	Uperwadi / NGP 376	3	200	II III	3 73	3.3	3.7	349.3	W.Basalt M.Basalt	125m Basalt

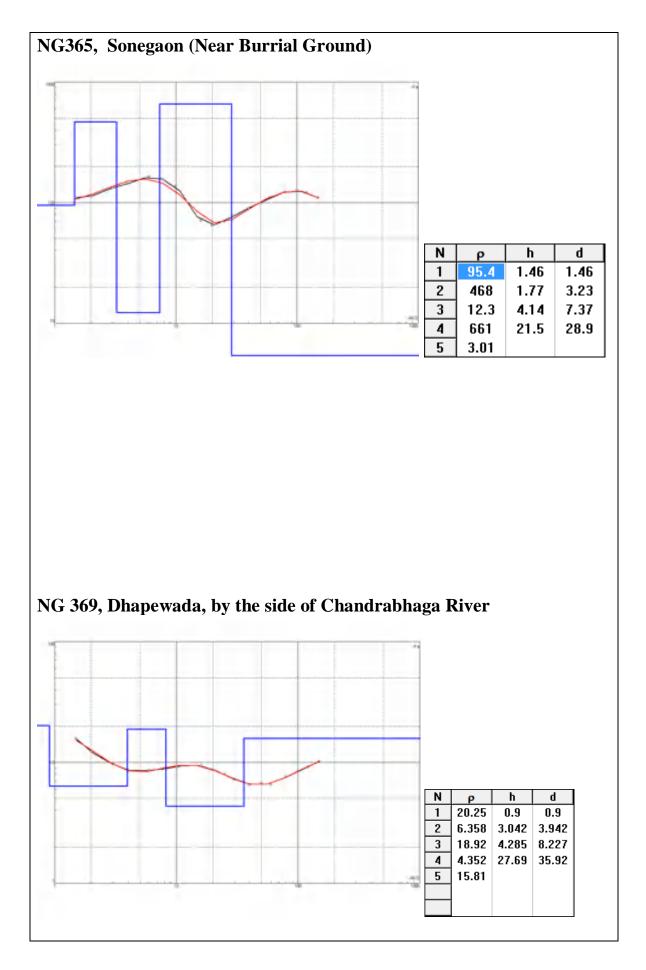

Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit											
5	NGP 377	3	0()	Π	8	2.1	4	349	W.Basalt												
1.2			200	III	66				M.Basalt												
12 6	Uperwadi / NGP 378	35 3	300	I II	37 11	0.8	0.8 7.9	352.2 345.1	Top Soil W.Basalt	Approx. upto 125m Basalt											
0	NOI 578	5		III	67	121	128.9	224.1	M.Basalt	125111 Dasan											
				IV	7.5	121	120.7	224.1	F.Basalt												
12	Uperwadi /	35	300	Ι	21	1.9	1.9	351.1	Top Soil												
7	NGP 379	3		II	7	2.1	4	349	W.Basalt												
				III	29	13.5	17.5	335.5													
				IV V	451 3.2	19	36.5	316.5	M.Basalt F.Basalt												
12	Rawalgaon /	39	200	V I	29	1.5	1.5	393.5	Top Soil	Upto 45 m											
8	NGP 380	5	200	п	50	6.5	8	387	V.Basalt	Basalt											
				III	2.2	18.5	26.5	368.5	F.Basalt												
				IV	640				M.Basalt												
12	Rawalgaon /	39	160	I	30	1.9	1.9	392.1	Top Soil												
9	NGP 381	4		II III	54 1.3	6.9 10	8.8 18.8	385.2 375.2	V.Basalt clay	4											
				III IV	468	10	10.0	515.2	M.Basalt	1											
13	Rawalgaon /	39	200	I	35	2.5	2.5	391.5	Top Soil	1											
0	NGP 382	4		II	44	6.4	8.9	385.1	V.Basalt												
				III	1.4	11.8	20.7	373.3	clay												
1.2		D 1 (D 1 (D 1 (IV	682		0.0	2011	M.Basalt	-								
13 1	Rawalgaon / NGP 383	39 5	180	I II	47 17	0.9	0.9	394.1 390.6	Top Soil W.Basalt												
	NOI 385	5		III	32	16.3	20.7	390.0	F.Basalt												
				IV	3.9	24.4	45.1	349.9	Clay												
				V	848				Comp.Sst												
13	U	39	400	Ι	47	1.9	1.9	393.1	Top Soil												
2		5		II	846	2.6	4.5	390.5	M.Basalt												
				III IV	40 20	40	44.5	350.5	V.Basalt Sandstone												
13	Rawalgaon /	39	39	30	39	39	400	IV	63	1.1	1.1	392.9	Top Soil								
3	NGP 385	4	100	II	494	3.3	4.4	389.6	M.Basalt												
				III	124	29.2	33.6	360.4													
				IV	28				Sandstone												
13	Rawalgaon /	39 4	39											400	I	46	0.8	0.8	393.2	Top Soil	
4	NGP 386			II	1071 92	1.6 41.4	2.4 43.8	391.6 350.2	M.Basalt												
				III IV	23	41.4	43.8	550.2	Sandstone												
13	Rawalgaon /	39	400	I	97	0.8	0.8	393.2	Top Soil												
5	NGP 387	4		II	61	0.8	1.6	392.4	V.Basalt												
					III	1046	2.4	4	390	M.Basalt	-										
					IV	13	4.9	8.9	385.1	F.Basalt											
				V	138	13.7	22.6	371.4	M.Basalt	4											
								VI VII	47 13	15.2	37.8	356.2	V.Basalt Sandstone+Shale	1							
13	Rawalgaon /	39	400	I	61	0.8	0.8	393.2	Top Soil	1											
6	NGP 388	4		II	156	6.4	7.2	386.8	M.Basalt	1											
				III	64	41.8	49	345		ļ											
10	TTT : /		400	IV	9.2	0.5	0.5	275 1	Sandstone+Shale	11.4.150											
13 7	Ubgi / NGP 389	37 6	400	І	12 119	0.6	0.6	375.4 374.4	Top Soil M.Basalt	Upto 150 m Basalt											
'	NGP 389	0	6	II III	1.4	3.1	4.7	374.4 371.3	Clay	Dasalt											
				IV	65.2	5.1	/	571.5	M.Basalt	1											
13	Ubgi /	37	67 400	I	42	2.4	2.4	373.6	Top Soil]											
8	NGP 390	6		II	11	21.8	24.2	351.8	W.Basalt	ļ											
				III	434	10.9	35.1	340.9	M.Basalt	4											
				IV	10	22.5	57.6	318.4	F.Basalt	{											
		37	400	V I	565 141	0.9	0.9	375.1	M.Basalt Top Soil	Upto 150 m											
13	Ubgi / NGP 391	37	400	-				372.6	W.Basalt	Upto 150 m Basalt											
13 9	Ubg1 / NGP 391	6		II	38	2.5	3.4	572.0	w.Dasan												
				II III	38 8.3	2.5 12	3.4 15.4	360.6	w.basan	Dasan											
			600						M.Basalt Top Soil	Dasan											

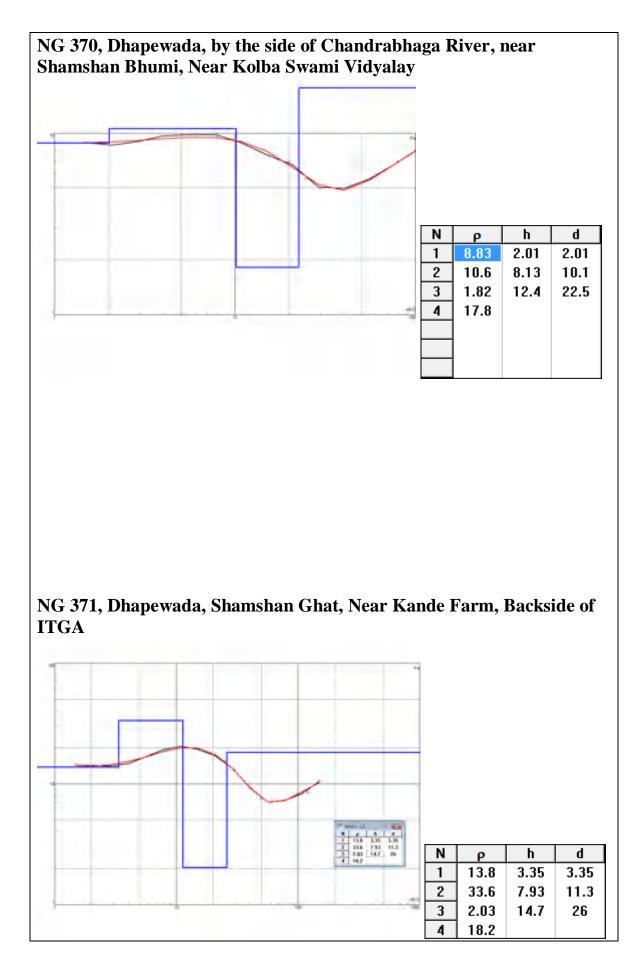

Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit												
				III	3	4.4	8	368	W.Basalt													
14	Pari Deshmukh	37	400	IV I	80 63	0.9	0.9	378.1	M.Basalt Top Soil	Approx 200m												
2	/ NGP 393	57 9	400	I	85	7.3	8.2	370.8	M.Basalt	Approx.200m basalt												
_	,			III	41	28.2	36.4	342.6	V.Basalt													
				IV	93				M.Basalt													
14	Pari Deshmukh	37	240	Ι	65	0.9	0.9	378.1	Top Soil													
3	/ NGP 394	9		II	105 22	10.4 14.7	11.3 26	367.7 353	M.Basalt F.Basalt													
				III IV	87	14.7	20	333	M.Basalt													
14	Pari Deshmukh	37	200	I	82	2.1	2.1	375.9	Top Soil													
4	/ NGP 395	8		II	319	2.7	4.8	373.2	M.Basalt													
				III	29	23.2	28	350	F.Basalt													
1.4	D D 1 11	27	200	IV	76	0.0	0.0	276.0	M.Basalt													
14 5	Pari Deshmukh / NGP 396	37 7	200	I II	48 121	0.8 7.6	0.8 8.4	376.2 368.6	Top Soil M.Basalt													
5	/ 1101 570	,		III	121	8.7	17.1	359.9	F.Basalt													
		L		IV	124				M.Basalt													
14	Pari Deshmukh	37	160	Ι	42	1.9	1.9	375.1	Top Soil													
6	/ NGP 397	7		II	392	2.2	4.1	372.9	M.Basalt													
				III	4.4 113	4.7	8.8	368.2	W.Basalt M.Basalt													
14	Ramgiri / NGP	41	400	IV I	35	0.8	0.8	418.2	Top Soil	Approx. 200m												
7	398	9	400	II	216	7	7.8	411.2	M.Basalt	basalt												
				III	1972	5.3	13.1	405.9														
				IV	111																	
14 8	Ramgiri / NGP	41 9	400	I	29	1	1	418	Top Soil	_												
0	399	9		II III	610 134	8.5 76.8	9.5 86.3	409.5 332.7	M.Basalt													
				IV	37	70.0	00.5	552.1	F.Basalt	_												
14	Ramgiri / NGP	41	300	Ι	32	1.4	1.4	417.6	Top Soil													
9	400	9		II	3605	2.2	3.6	415.4	M.Basalt													
1.5	D	4.1	200	III	71	0.0	0.0	410.1	T O 1	_												
15 0	Ramgiri / NGP 401	9	41 o		300	I II	45 178	0.9 3	0.9 3.9	418.1 415.1	Top Soil M.Basalt											
0	401			III	764	14.3	18.2	400.8	M.Dasan													
				IV	10	18.7	36.9	382.1	F.Basalt	_												
				V	3927				M.Basalt													
15	Ramgiri / NGP	41 9	300	I	47	0.9	0.9	418.1	Top Soil													
1	402	9		II III	54 78	2.1	1.9 4	417.1 415	V.Basalt M.Basalt													
				IV	237	4.3	8.3	410.7														
				V	926	9	17.3	401.7														
																VI	25	59.8	77.1	341.9	F.Basalt	_
1-		10	100	VII	2321		2.1	007.0	M.Basalt	26.5												
15 2	Sonkhamb / NGP 403	40 0	400	I II	84 1834	2.1	2.1 4.8	397.9 395.2	Top Soil M.Basalt	appox.200m basalt												
4				0	0	0			III	1834 92	2.7	4.8 27.1	395.2	m.Dasan	Jasan							
				IV	192																	
15	Sonkhamb /	40	400	Ι	49	1.2	1.2	399.8	Top Soil	appox.200m												
3	NGP 404	1		II	2075	1.1	2.3	398.7	M.Basalt	basalt												
				III	36 1243	3.3 4.7	5.6 10.3	395.4 390.7	W.Basalt													
				IV V	93	4./	10.5	390.7	M.Basalt M.Basalt	—												
15	Sonkhamb /	40	400	I	20	1.3	1.3	399.7	Top Soil													
4	NGP 405	1	l	II	1330	3.5	4.8	396.2	M.Basalt													
				III	13	5.7	10.5	390.5	W.Basalt													
15	Sonkhamb /			IV	114 52	2.5	25	408.5	M.Basalt Top Soil													
15 5	Sonkhamb / NGP 406	41	41 600 1	I II	52 155	2.5 9.8	2.5 12.3	408.5 398.7	Top Soil M.Basalt													
5	NGP 406	1		III	15	39.2	51.5	359.5	F.Basalt													
5							t i i i i i i i i i i i i i i i i i i i	1	M.Basalt													
5				IV	109				m.Dubut													
15	Sonkhamb /	40	600	Ι	51	1.9	1.9	407.1	Top Soil													
	Sonkhamb / NGP 407	40 9	600			1.9 11.5 15.2	1.9 13.4 28.6	407.1 395.6 380.4														

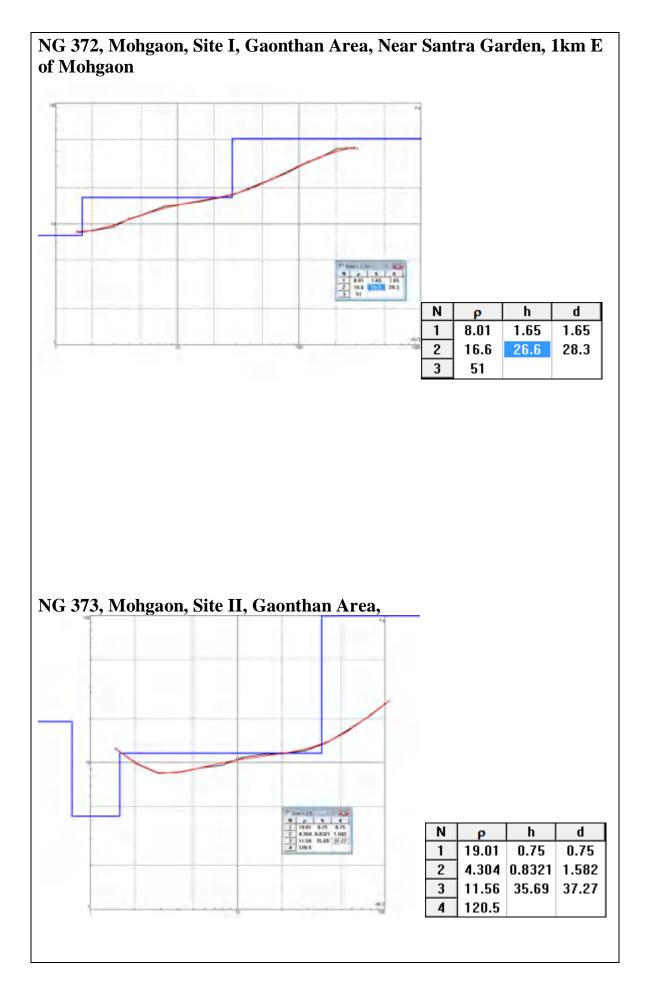

Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
15 7	Sonkhamb / NGP 408	40 9	600	I II III IV V	81 18 725 5.3 84	0.7 0.8 2.1 15.3	0.7 1.5 3.6 18.9	408.3 407.5 405.4 390.1	Top Soil W.Basalt M.Basalt F.Basalt M.Basalt	
15 8	Ghoard / NGP 409	33 5	160	I II IV V VI	70 24 13 6.4 46 216	0.9 1 2.2 4.7 31.3	0.9 1.9 4.1 8.8 40.1	334.1 333.1 330.9 326.2 294.9	Top Soil W.Basalt M.Basalt W.Basalt V.Basalt M.Basalt	appox.200m basalt
15 9	Kotwalbardi / N 1	39 9		I II III IV	18 119 58 19	1.5 22.9 33.1	1.5 24.4 57.5	397.5 374.6 341.5	Top Soil M.Basalt V.Basalt Sandstone	Up to 58 m Basalt, below 58m Gondwana
16 0	Kotwalbardi / N 2	40 1		I II III IV V	20 66 257 105 10	1.6 34.8 23.7 9.5	1.6 36.4 60.1 69.6	399.4 364.6 340.9 331.4	Top Soil V.Basalt M.Basalt M.Basalt Lameta bed	Up to 70 m Basalt, below 70m Lameta bed
16 1	Kotwalbardi / N 3	39 7		I II III IV V	10 37 8 138 10 31	1.6 4.4 34.6 5	1.6 6 40.6 45.6	395.4 391 356.4 351.4	Top Soil W.Basalt M.Basalt Lameta bed Sandstone	Up to 40 m Basalt, below 70m Lameta bed
16 2	Kotwalbardi / N 4	39 5		I II III IV	113 328 59 31	0.4 4.4 57.7	0.4 4.8 62.5	394.6 390.2 332.5	Top Soil M.Basalt V.Basalt Sandstone	Up to 62.5 m basalt, below that Gondwana
16 3	Raulgaon / N 5	38 8		I III IV V	30 15 42 13 46	8 3.1 22.4 5.7	8 11.1 33.5 39.2	380 376.9 354.5 348.8	Top Soil W.Basalt V.Basalt F.Basalt V.Basalt/Sandsto ne	Upto 45 m Basalt
16 4	Raulgaon / N 6	39 1		I II III IV	11 271 65 15.6	0.6 1.8 50.6	0.6 2.4 53	390.4 388.6 338	Top Soil M.Basalt V.Basalt Sandstone	
16 5	Raulgaon / N 7	39 7		IV II III IV V VI	13.0 33 330 633 182 116 75	1 7.4 12.4 13.6 20.4	1 8.4 20.8 34.4 54.8	396 388.6 376.2 362.6 342.2	Top Soil M.Basalt	Upto 45 m Basalt
16 6	Raukgaon / N 8	40 3		I II III IV V	66 235 103 68 54	1.5 31.2 12.6 44	1.5 32.7 45.3 89.3	401.5 370.3 357.7 313.7	Top Soil M.Basalt V.Basalt	
16 7	Raukgaon / N 9	38 4		I II III IV V	19 54 192 75 117	1.3 3.5 10.7 3.7 5.2	1.3 4.8 15.5 19.2 24.4	382.7 379.2 368.5 364.8 359.6	Top Soil W.Basalt M.Basalt	
16 8	Raukgaon / N 10	38 3		VI I II IV V VI VI	30 34 121 78 191 18 200	0.6 6.4 2 23.7 4.4 8.6	0.6 7 9 32.7 37.1 45.7	382.4 376 374 350.3 345.9 337.3	F.Basalt Top Soil M.Basalt F.Basalt M.Basalt	
16 9	Raukgaon / N 11	38 2		VII I II III	23 26.8 52 122	1.1 3 7.2	1.1 4.1 11.3	380.9 377.9 370.7	Sandstone Top Soil V.Basalt M.Basalt	

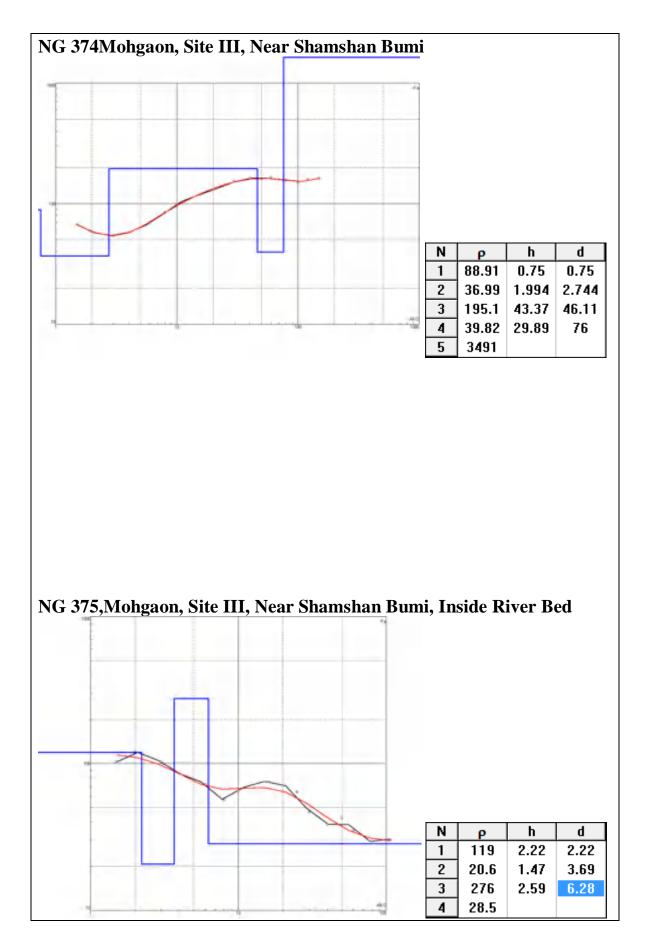

Sl. No	Village / VES No.	R L	Max. Current Electro de separati on (m)	Lay er No.	Resistivi ty (Ohm m)	Thick ness (m)	Depth (m)	Elevati on to the bottom of the Layer	Anticipated Lithology	Consolidated thickness of the Litho-unit
				IV	94	45.7	57	325		
				V	37				Sandstone	
17	Pohi /	39		Ι	30	2.2	2.2	388.8	Top Soil	Upto 45 m
0	N 12	1		II	90	11.8	14	377	M.Basalt	Basalt
				III	44	34.5	48.5	342.5	V.Basalt	
				IV	16				Sandstone	

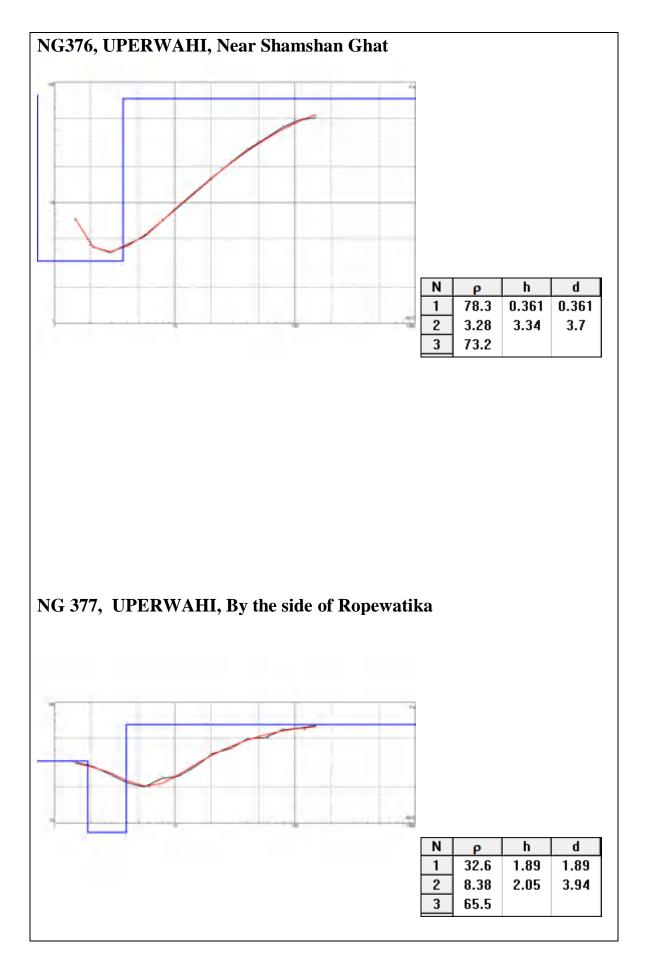

ANNEXURE-II: VES Curvrs, obtained after Geophysiacl Survey by CGWB, Chandrabhaga Watershed (WGKKC-2), Nagpur District

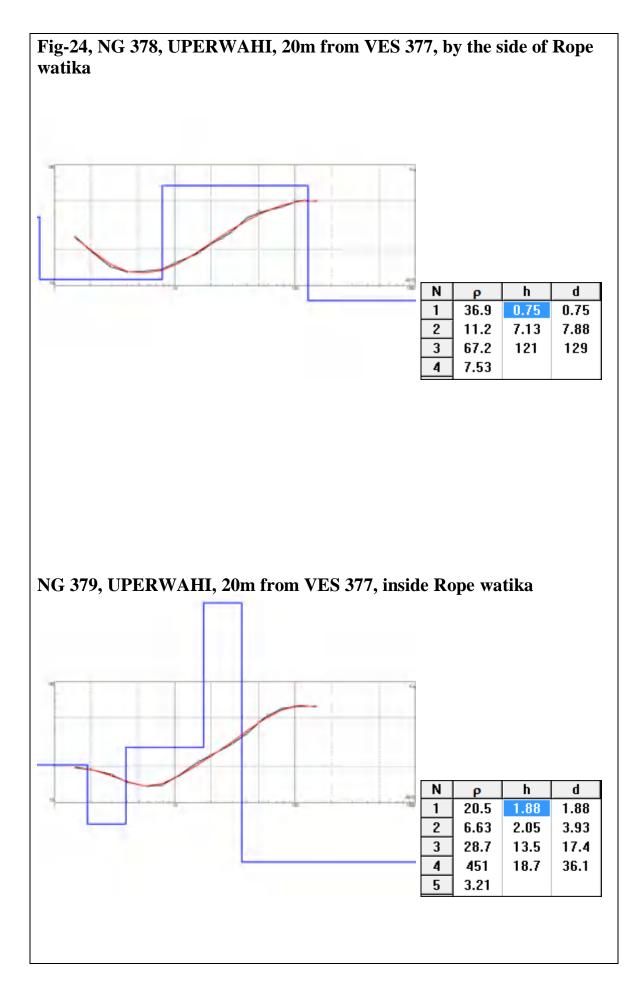


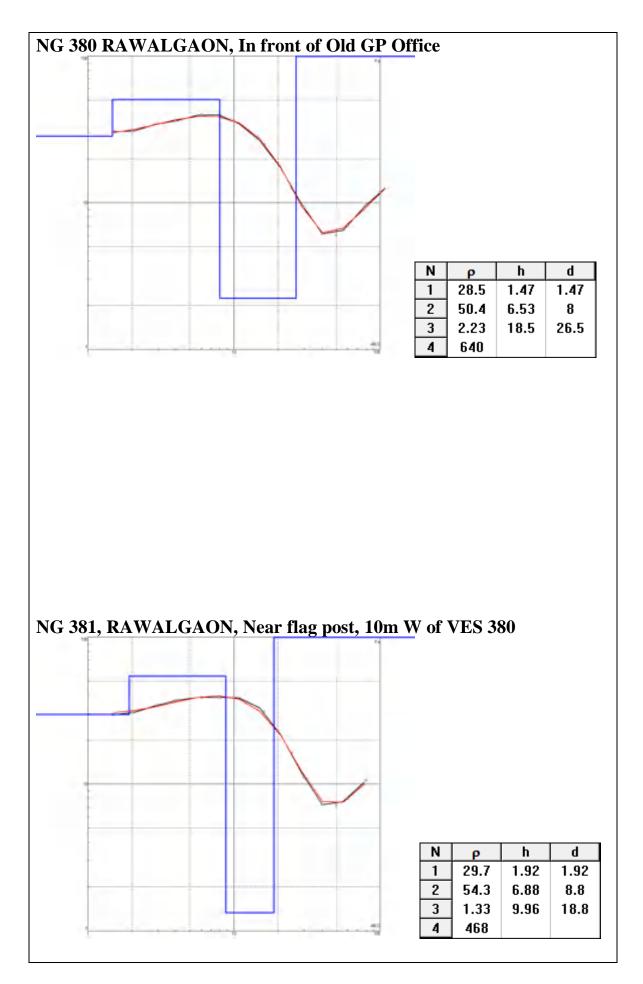


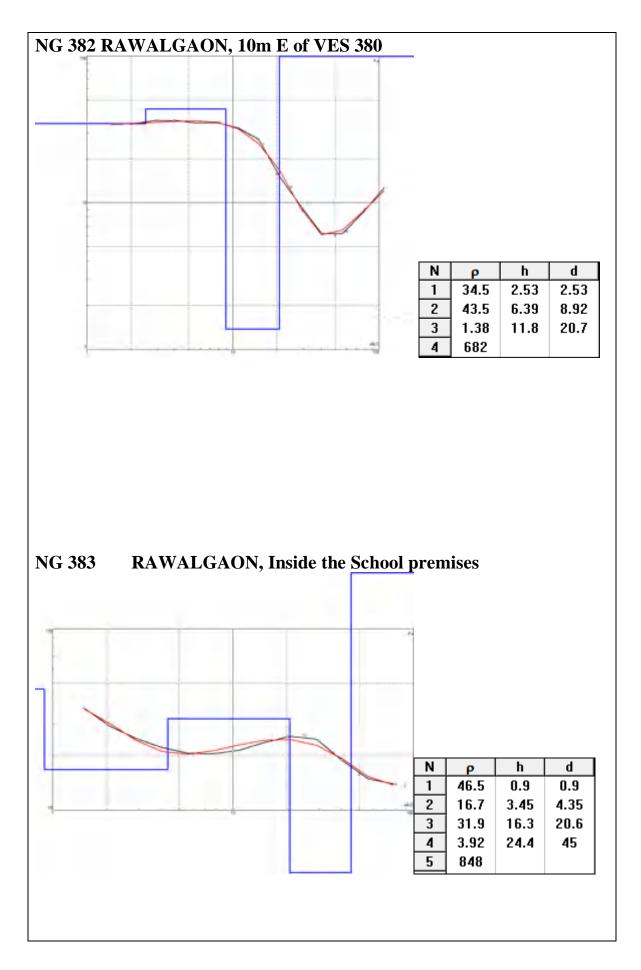


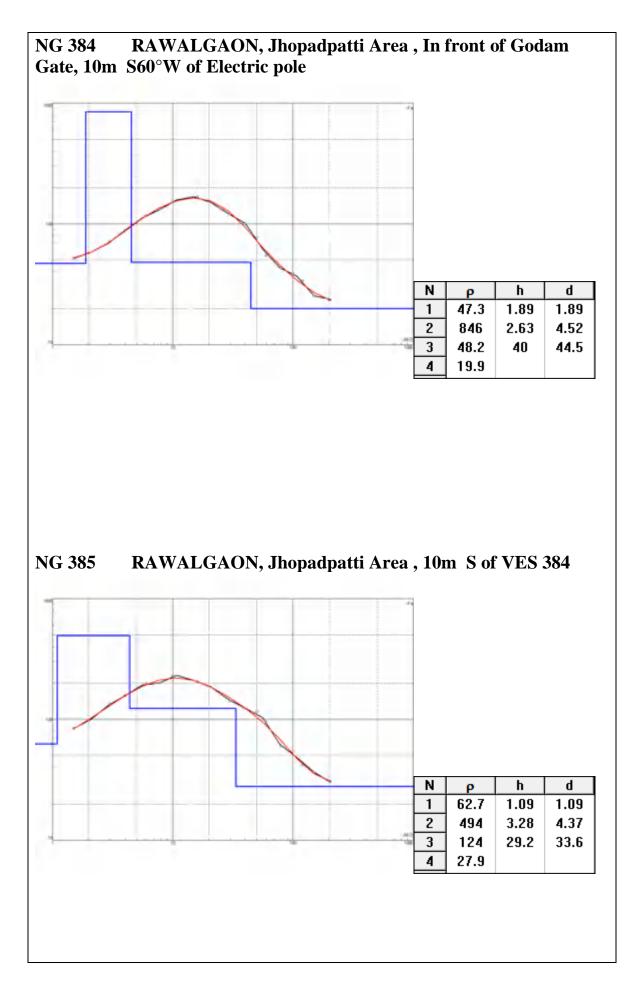


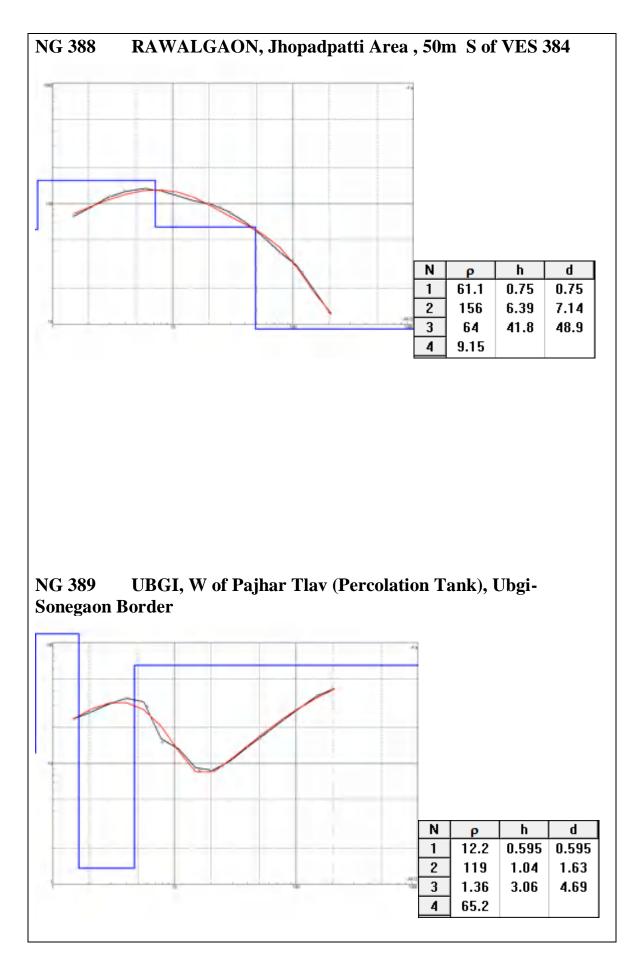


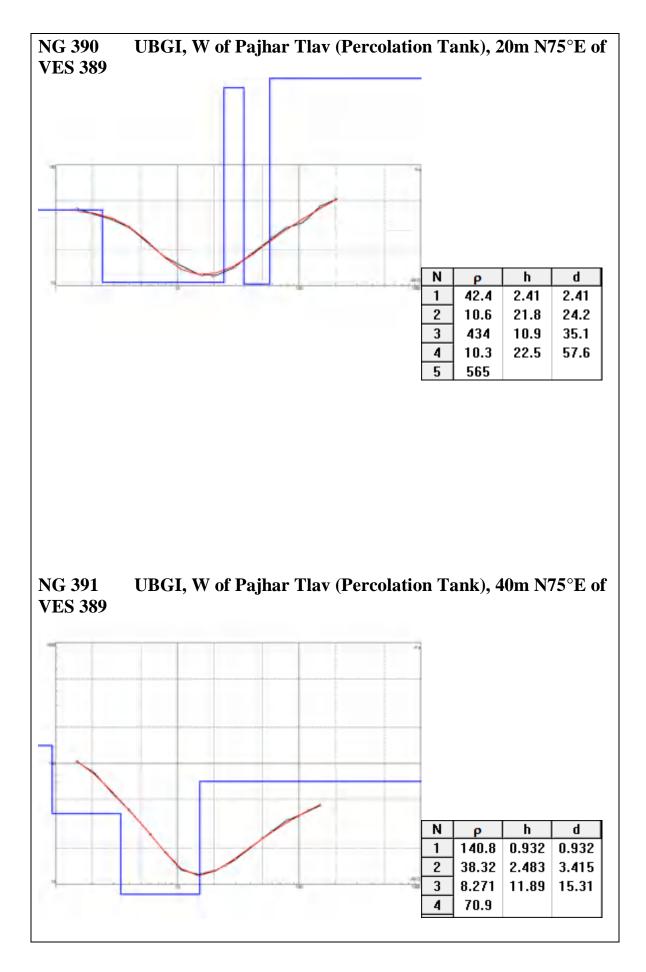


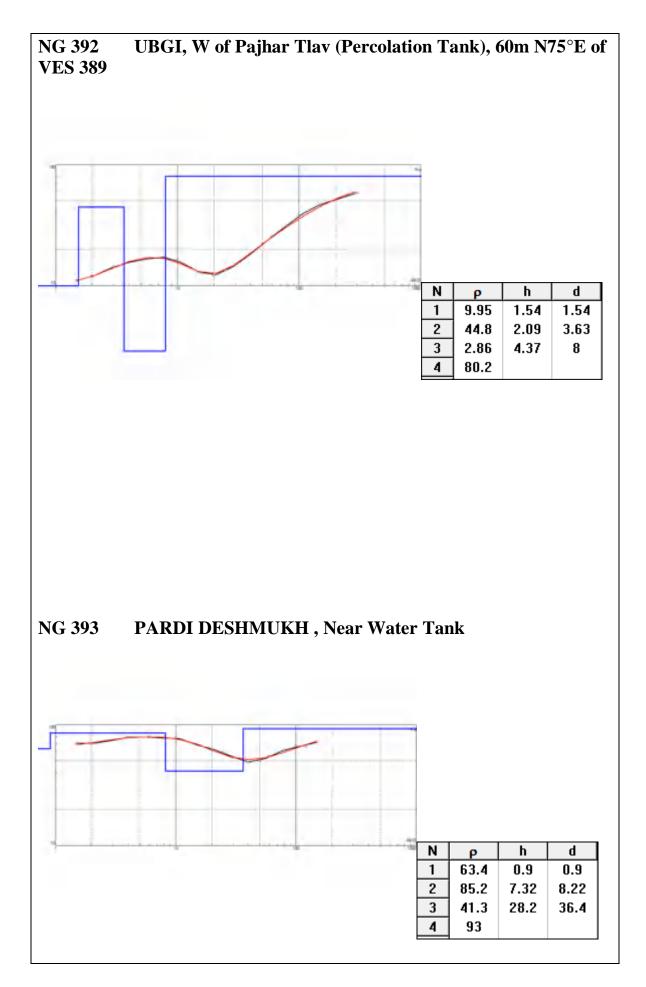


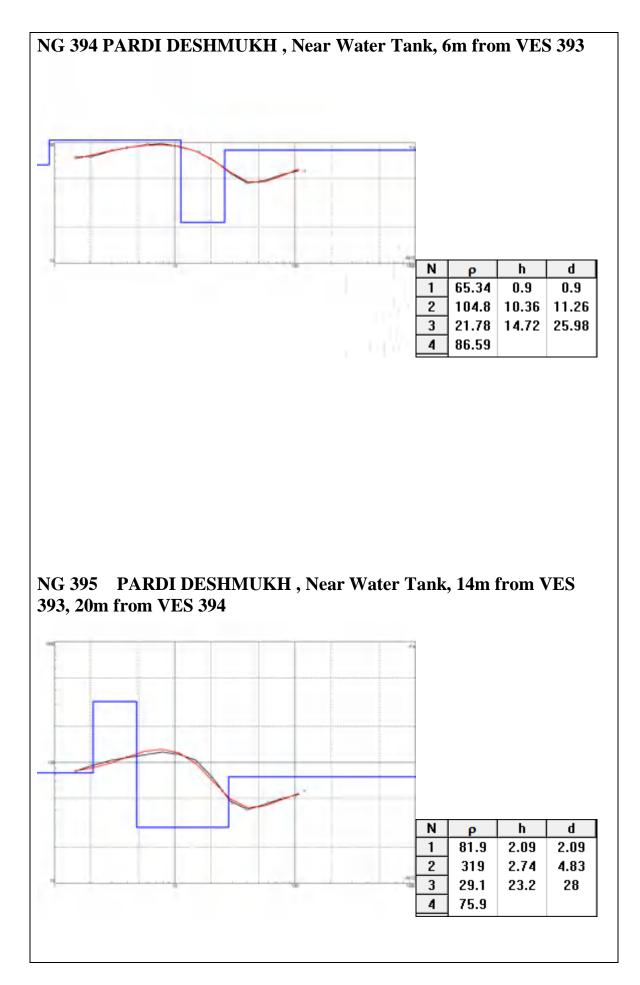


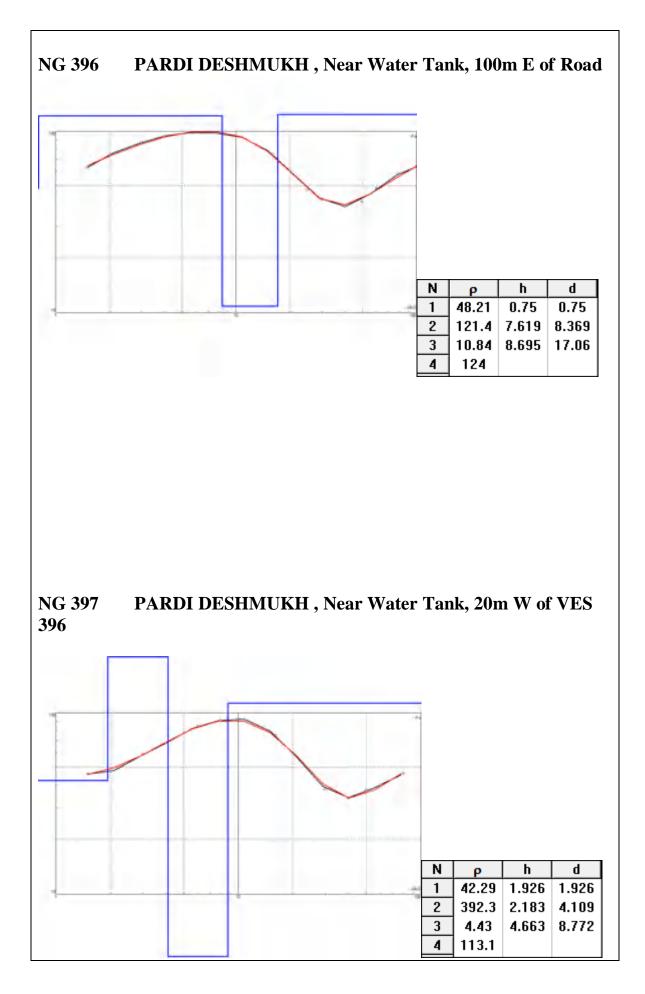


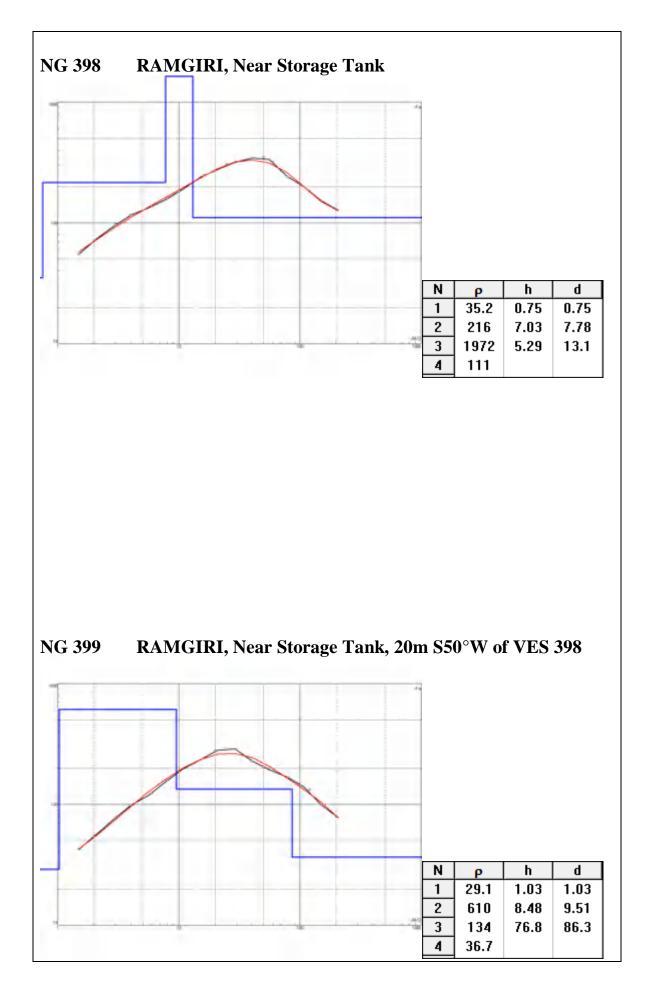


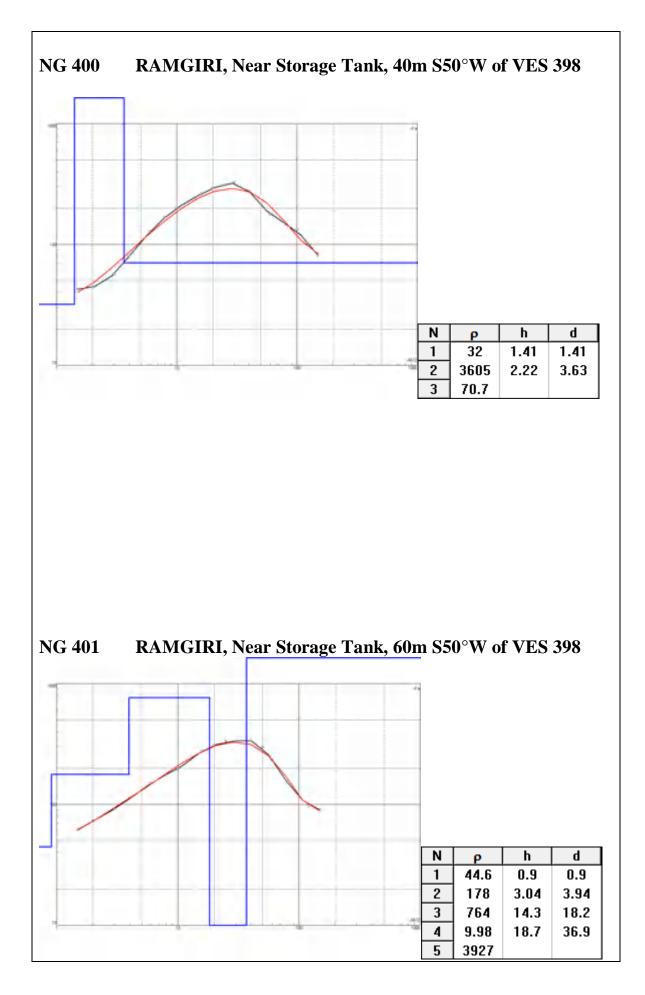


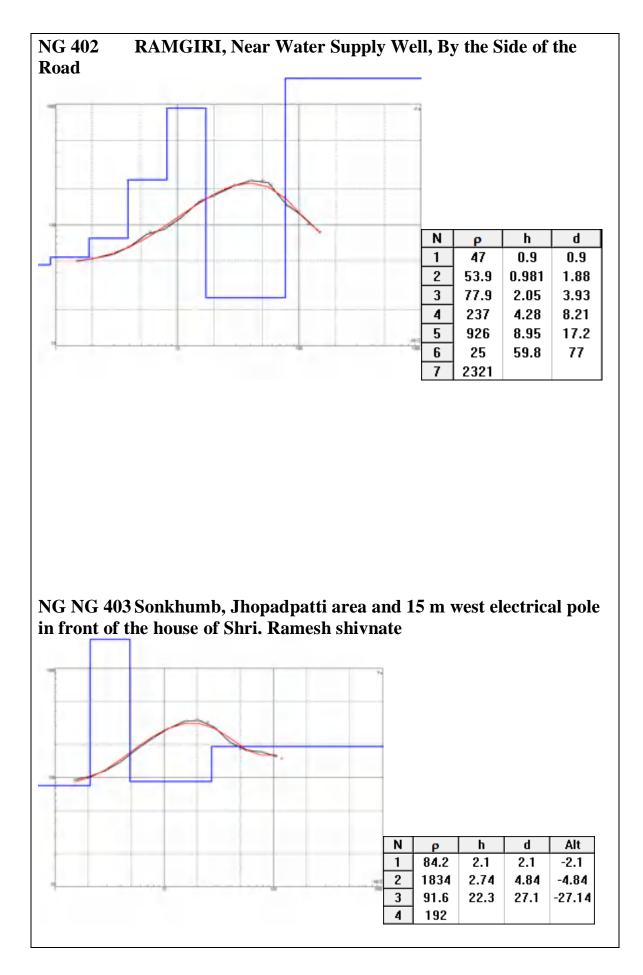


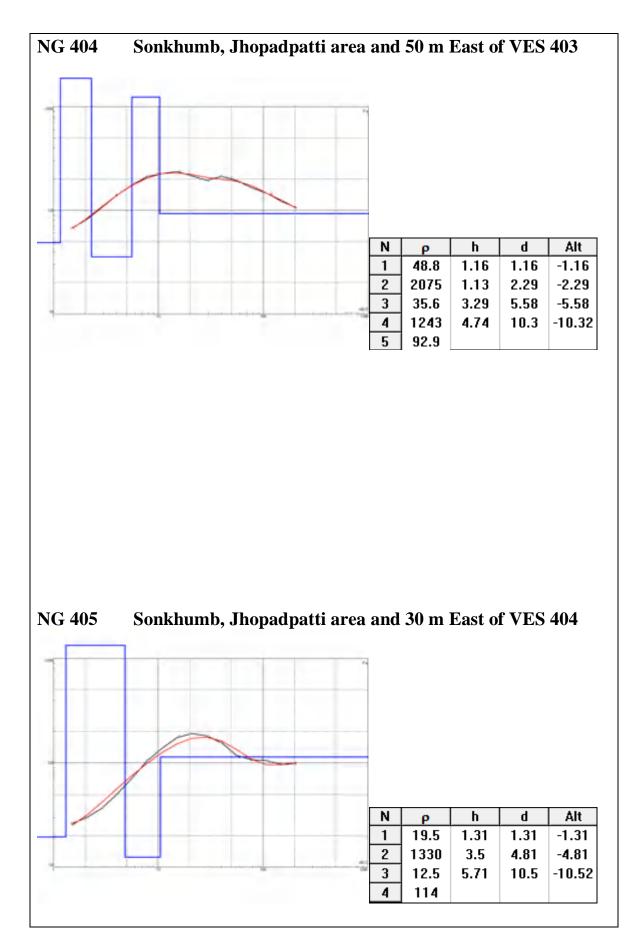


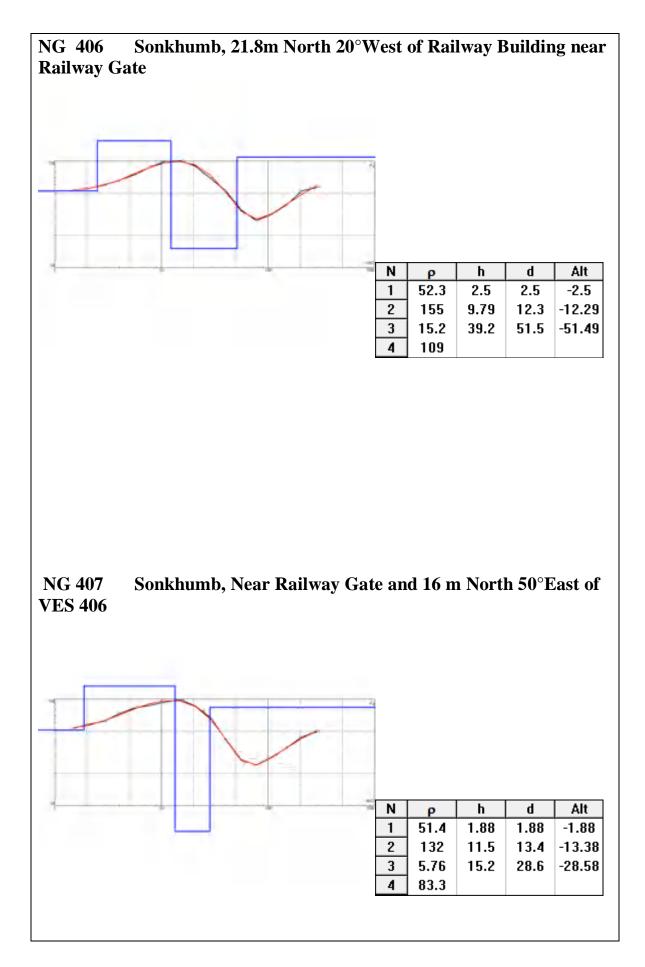


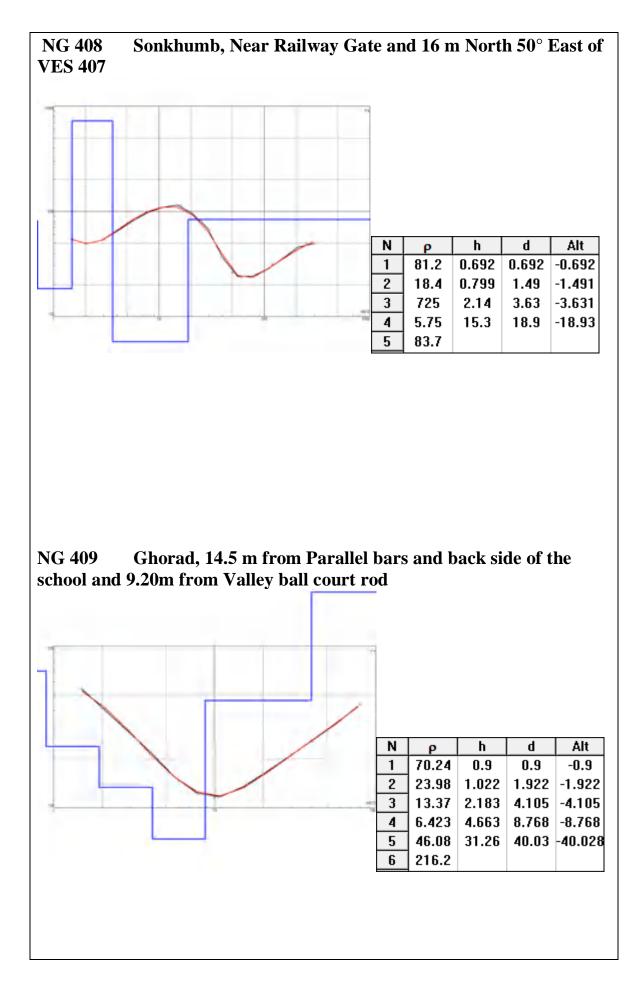


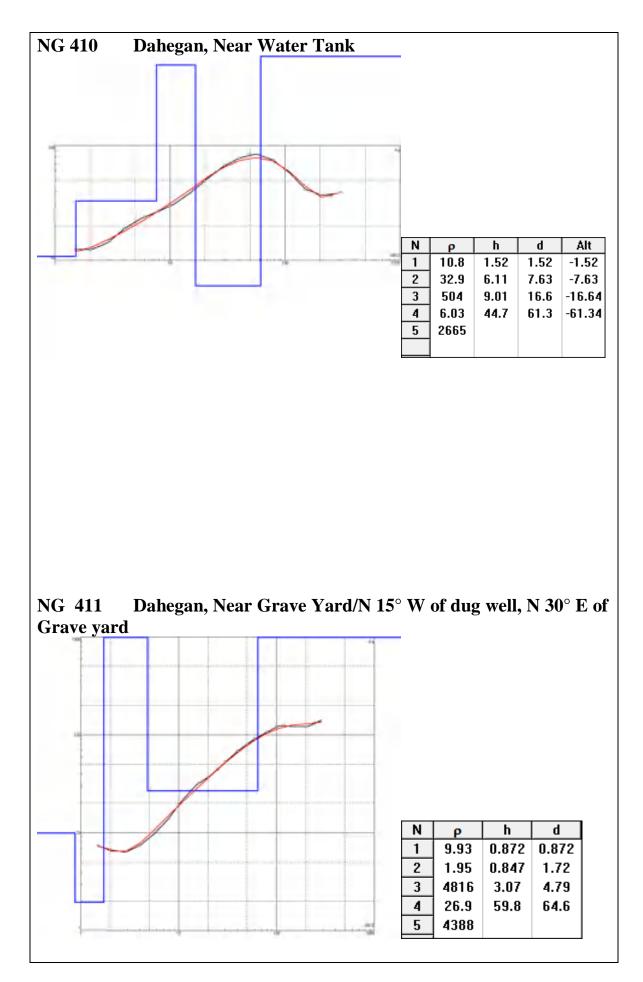


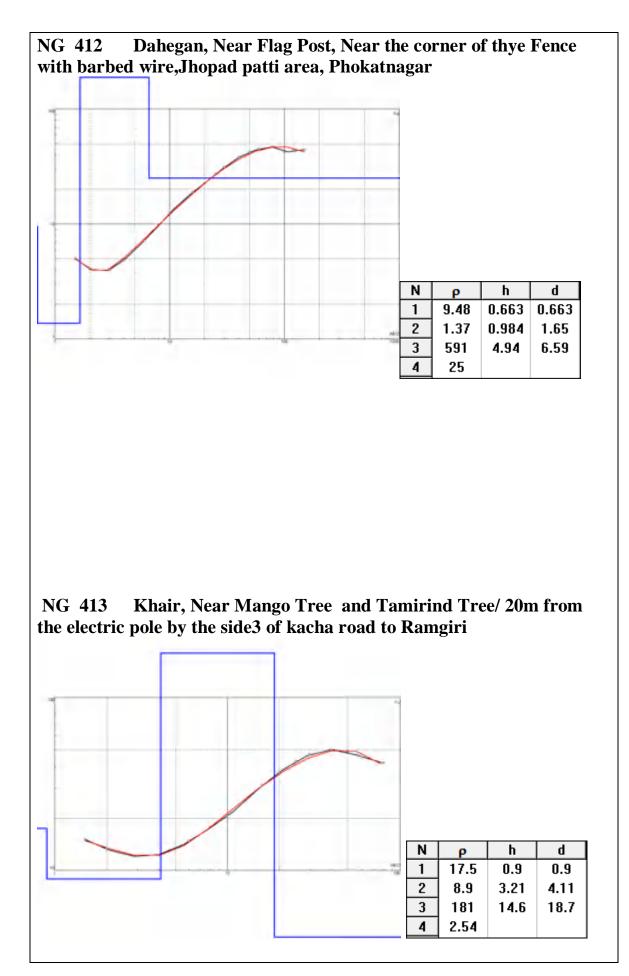


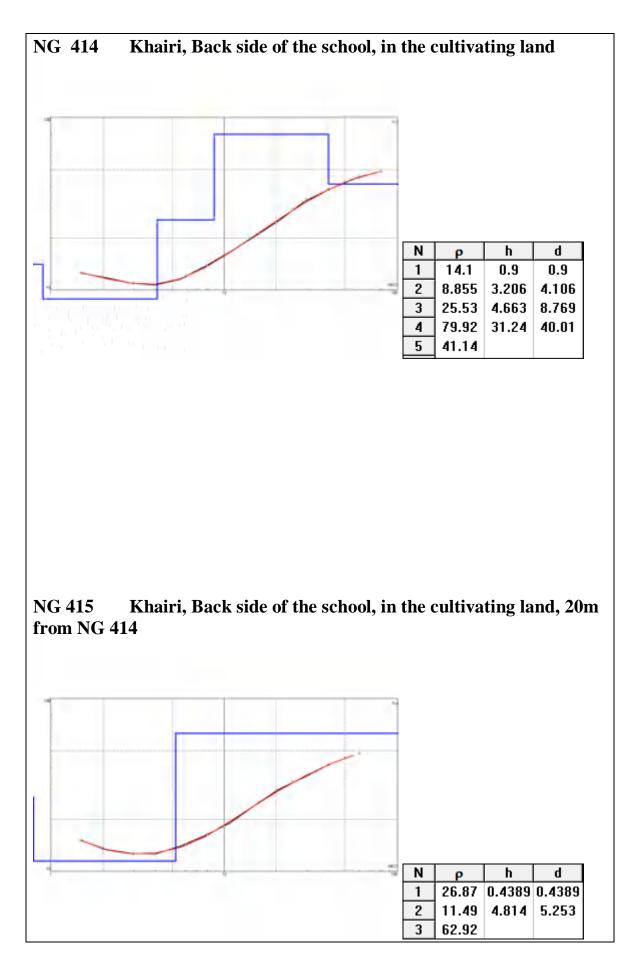


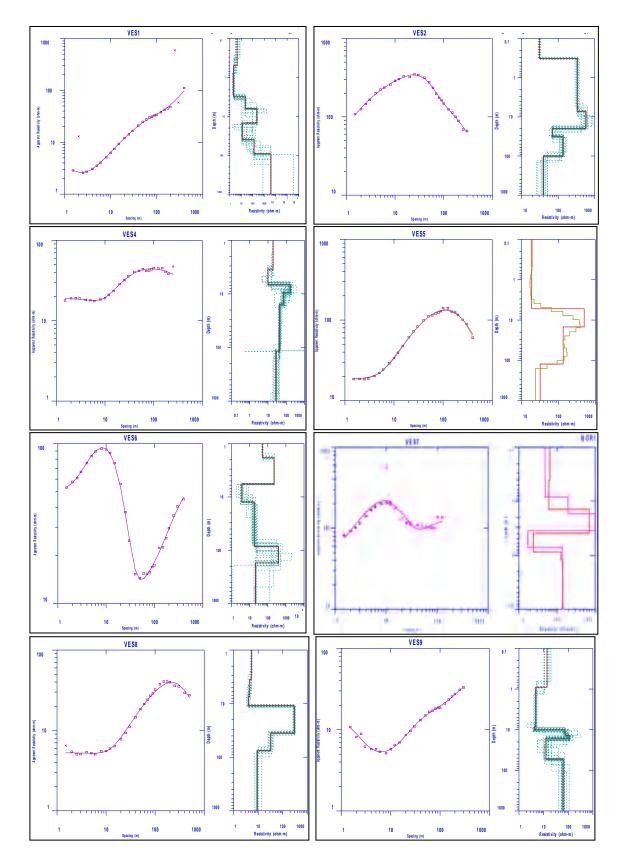


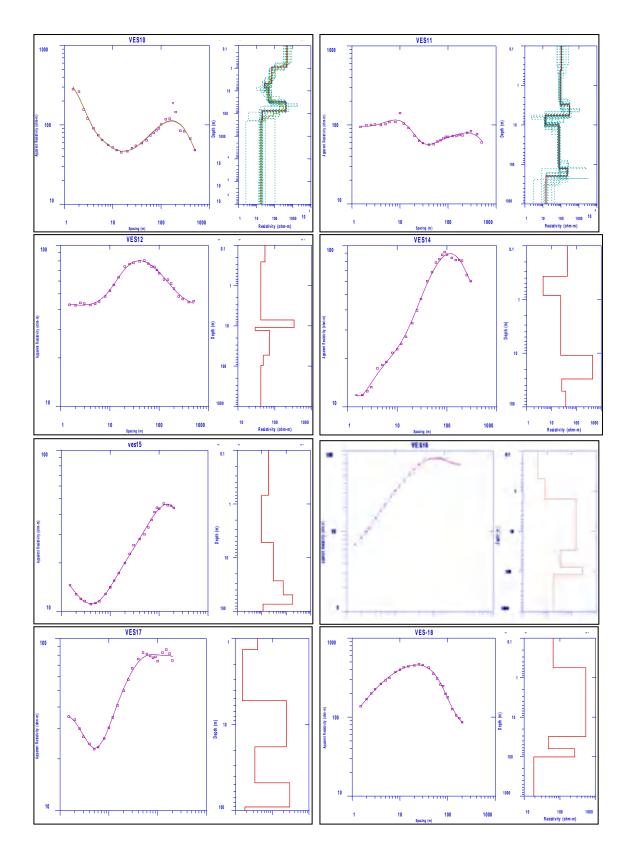








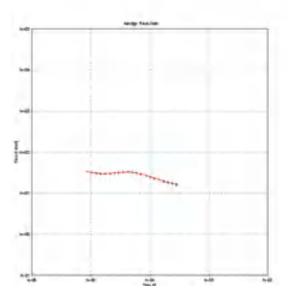


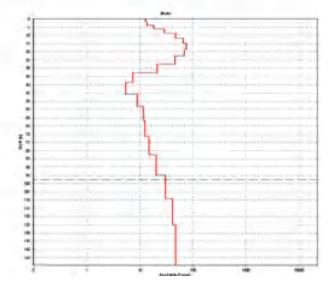


ANNEXURE-III: VES Curvrs, obtained after Geophysiacl Survey by NGRI, Chandrabhaga Watershed (WGKKC-2), Nagpur District

ANNEXURE-IV: TEM Plot, Chandrabhaga watershed (WGKKC-2), (NGRI, 2015a)

MT_1

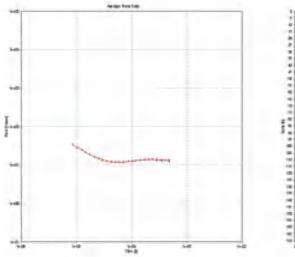

int Date:	02.05.2014		Sec	Sec51D	The	ThisTO	Tep.	Depi 10
tabase Name:	AQMAH.odb	1	31	1.22	2.45	1.001	2.65	1.001
MX:	282051	3	\$11	134	2.99	1.001	5.64	1 001
	2010.21	3	7.14	1.26	3.37	1.001	9.01	1.001
MY:	2356205	4	748	12	3.82	1.001	12.8	1.000
9G:	32644=UTM Zone 44N (WGS 84)	8	7.14	12	4.3	1.001	173	1.000
nber of		8	898	1.85	4.80	1.001	27.5	1.000
a Points:	0 points in use	3	9.25	14	4.19	1.001	33.6	1.000
t Gate:	4.060E-06 sec		11.8	14	1.00	1.001	41.6	1.000
t Gate:	7.652E-03 sec	24	-	141	7.89	1.001	48.5	1.000
			11.8	144	1.2	1.001	57.4	1.000
a Residual:	0.4	22	32.4	148	30.1	1.001	67.5	1.000
of Layers:	20		9.82	14	314	1.001	78.8	1.000
E:	157m		14.9	1.14	32.8	1,064	90.6	1.000
grame	ViewTEM.ene, version 1.0.1.19		13.8	1.39	34.5	1.001	106	1.000
-grann-	VIEW LEVENCE VELOCITIENTS		17.8	127	163	1.001	122	1.000
			359	99.00	184	1.001	141	1.000
			22.2	98.00	25.5	1.001	142	1.000
			18.4	99.00	295	1.00	100	100
	way hor to							
	mig horito	1						
		· · · · · · · · · · · · · · · · · · ·						

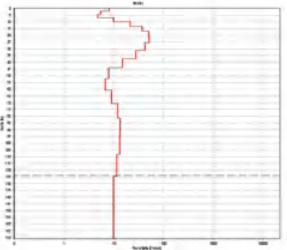

rint Date:	02.05.2014		Rei	ReSTR	TM	TMISTD	Dep	DepSTD
atabase Name:	AQMAH.gdb	3	12.3	1.32	2.17	1.001	1.07	1000
MX:	283071	2	11.6	1.39	2.45	1001	4.61	1001
MV:	2356645	4	8,39	138	2.76	1.001	7.41	1000
			407	1.22	2.52	1001	34	1000
G:	32644=UTM Zone 44N (WGS 84)		418	127	3.47	1.001	18	1000
nber of		7	418	139	449	1.001	22.5	1000-
a Points:	0 points in use	5	471	1.33	5.07	1.001	27.3	1.000
t Gate:	4.060E-06 six	1.0	834	2,44	3.72	1.001	19.3	1.000
Gate:	7.652E-03 sxc	38	13.1	1.9	5.46	1.001	銀?	1.000
a Residual:	0.2	13	174	1.9	7.29	1.001	0	1.000
		12	29.1	1.6	\$23	1.001	48.2	1.000
of Layers:	20	13	17.9	18	929	1.001	64.5	1.000
6	124m	34	12.4	1.90	11.8	1.001	10	1.000
gram:	ViewTEM.exe, version 1.0.1.19	24	10.6	1.0	13.4	100	100	1.000
		17	0.01	2.64	181	1.001	113	1000
		38	69	3.29	17	1.001	182	1.000
		19	30.1	3.97	19.2	1.001	10	1.000
		28	9.81	4.58	1-			-
-	Away file file			- C				
000000000000000000000000000000000000000	Annual from the			-	1			
	Army first lat	-		-	1			
	Army for the	-		-	}			
	Army first for			-	}			
0	Army first like			ſ	}			
0				ſ	}			
		A A A A A A A A A A A A A A A A A A A		5				
	Prog. Do 10.			5				
				5				
				5				

i-m

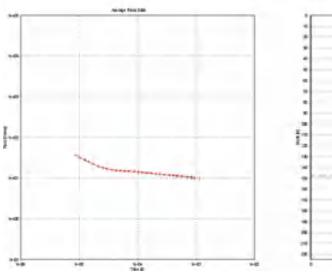
194 E

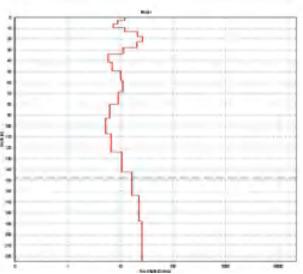
Print Date:	02.05.2014	- W -	15m	Rec51D	The	IMESTO	Dep
Database Name:	AOMAH atta	1	42.7	99/30	1.78	1.000	1.78
UTMX:	283783	2	13.7	1.40	2.00	1.001	379
		2	18.6	1.48	2.27	1.001	637
UTMY:	2355315	*	29.6	1.50	257	1.002	143
EPSG:	32644-UTM Zone 44N (WGS 84)	5	42	1.60	2.9	1.005	11.5
Number of	and a construction of the state	6	457	1.69	5.27	1.000	14.8
	ALL OF AL	-	75\$	112	3.49	1,065	38.5
Data Points:	0 points in use	8	-48.8	1.00	4,17	1.008	22.7
First Gate:	4.060E-06 sec.	*	-46.3	1.58	47	1.001	22.4
Last Gate:	3.826E-03 sec	10	21.5	1.45	531	1.000	立门
Data Residual:	0.3	11	. 7.55	1.27	8	1.002	38.7
		12	545	1.21	6.77	1.001	45.4
No. of Layers:	20	31	3.14	1.36	7.64	1000	55.1
DOI:	98m	14	11.6	1.37	8.63	1.000	817
	10	-19	12.6	1.48	8.74	1.000	71.5
Program:	ViewTEM.exe, version 1.0.1.19	- AE	190	99:00	11	1.900	125
		17	20.8	99:00	12.4	1.006	94.9
		18	30.7	99:00	34	1.000	308
		19	41.9	99:00	158	1.000	125
		20	47.9	99:00			




Dep510 1.001 1.001 1.001 1.001 1.005 1.005

1300 1300 1300


Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UTMX:	283352
UTMY:	2354007
EPSG:	32644 = UTM Zone 44N (WGS 84)
Number of Data Points:	0 points in use
First Gate:	4,060E-06 sec
Last Gate:	1.530E-02.sec
Data Residual:	0,3
No. of Layers:	20
DOI:	124m
Program:	ViewTEM.exe, version 1.0.1.19

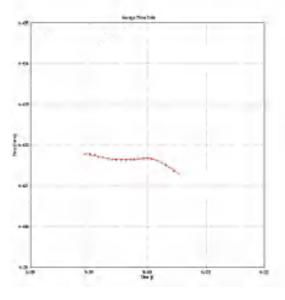

	Rec	ResTD	This	ThESTD	Dep	Dept 1D
1	8-07	99.00	2.04	3,000	2.04	3.004
7	1.00	1.34	23	1.001	434	1.001
8	4.5	1.38	.26	1004	1.91	1.001
4	9.83	1.41	2:93	1,001	9.86	0001
5	21.6	143	331	1.004	19.2	1.060
6	37.5	1.90	3.74	1:004	36.9	1.000
7	59.1	1.97	422	1.001	21.1	1,000
8	:02	1.59	4.76	1.001	3.3	2,000
	42.9	1.74	3.55	1001	31.3	1.000
18	29.8	244	607	1.000	373	1.000
II.	148	4.01	6.83-	3 004	44.2	1.000
12	7.84	182	2.54	1.001	51.8	1,000
15	671	1.49	8.73	1.004	1007	1000
14	条约	3,82	9.86	1.001	30.5	1.080
15	11.9	3.09	11.1	1.01	417.	1,000
14	13.5	99.00	12.6	1.001	194.2	1.000
17	13.1	99.00	342	1.001	108	1,000
18	11.5	99.00	36	1.001	154	1.000
15	0.80	4.06	18.1	1.00	345	1.000
28	9.80	2.90	-			

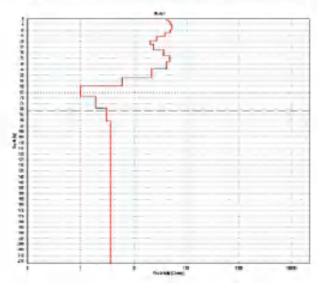
Print Date:	02.05.2014		Res	RetSID	Thk.	This Th	Dep
Database Name:	AQMAH.gdb	4	12.1	99.00	2.68	1.009	2.68
		2	£.96	134	3.02	1.000	5.7
UTMX:	283804	3	744	1.25	3.41	1.000	9.11
UTMY:	2352982	-4	12.2	1.36	3.85	1.000	13
EPSG:	32644=UTM Zone 44N (WGS 84)	5	21.5	1.44	-4,35	1.000	12.1
	and the party made that firsts party	-6	38.7	1.50	-491	1.000	22.2
Number of	A COLOR OF COLOR	121	31.2	1.49	5.54	1.000	27.8
Data Points:	0 points in use		11.2	1.40	6.26	1.006	.54
First Gate:	4.060E-05 sec		5.9	1.38	747	1.001	-41.1
Last Gate:	3.826E-03 sec	.50	765	1.35	798	LON	-411
Data Residual:	0.3	.11	10.3	1.60	专用	E 005	.981
		.1.2	11.3	2.10	10.2	1.000	-58.2
No. of Layers:	20	1.5	919	1.90	10.5	1.001	79.7
DOI:	148m	14	6.41	1,39	10	1.001	927
		1.5	\$37	1.53	24.6	1.001	157
Program:	ViewTEM.exe, version 1.0.1.19	.16	645	7.54	16.5	LOFE	634
		87	10.8	99.00	18.0	1001	842
		15	168	99.00	21.1	1.006	1.64
		2.9	29	3.45	23.8	1.006	102
		28	281	2.00		-	-

Dep5.ID 1.001 1.001 1.001

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

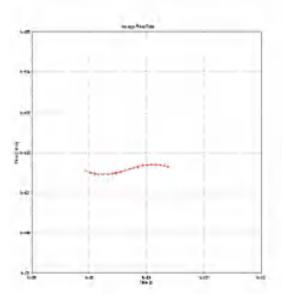
	02.05.2014		Re:	ReSTR	THE.	DESTD	Dep	Dept To
atabase Name:	AQMAH.odb	1	179	99.00	145	1.005	1.96	1.001
TMX:	283342	2	34.3	145	1.13	1.001	4,21	1.001
		1	12.6	142	2.0	1.004	479	1.001
MV:	2351624	-4	56	134	18	1.004	9,58	1.000
SG:	32644=UTM Zone 44N (WGS 84)	5	145 201	139	33	1.064	12.8	1 000
mber of		4	101	154	4)	1001	30.5	1.000
ata Points:	6 points in use		647	130	46	1.001	28.3	1.000
rst Gate:	4.060E-06 sec	8	60.2	1.10	8.25	1.001	30.4	1.000
		13	43.4	1.50	1.80	1.001	385	1.000
st Gate:	3.826E-03 sec	13		140	6.65	1.000	-6.6	1,000
ata Residual:	0.2	12		125	1.51	1.000	50.4	1.000
o. of Layers:	20		9,54	1.15	1.41	2.000	58.9	1.000
DE:	116m	11	12.3	1.11	9.10	1,000	60.5	1.000
		15		155	10.8	1.004	1913	1,000
ogram:	ViewTEM.exe, version 1.0.1.19	15		99.00	\$2.2	1.001	91.5	1.000
		27	20.1	99.00	13.8	1.001	105	1.000
		13		99.00	15.0	1001	121	1.000
		19	29.3	99.00	17.6	1.001	138	1.000
		79	39.3	99.00		_		_
						5		
		-				3		
		*****				3		
						2		
						5		
		NAME OF A DESCRIPTION OF A				5		
		TA CRASS OF TALE AND						
		AND				2		
		AN S & S & S & S & S & S & S & S & S & S						
		THE PASSAGE PASSAG						
		289866698869888888888888888888888888888						
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

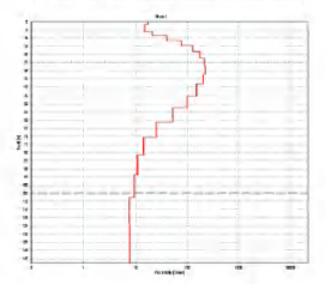

Print Date:	02.05.2014		Ret.	BatATD	TIA	TAANTD	Dig-	DepETD
atabase Name:	AQMAH.gdb	1	121	39.00	2.13	D-HD	111	1.012
TMX:	281641	2	34.9	3.34	2.39	1.40	43	Line
		3	83	134	200	140	72	1002
MV:	2347222	4	2/06	129	3.04	1.00	0.7	1.000
56:	32644=UTM Zone 44N (WGS 84)	5	1.13	129	10-	1.40	174	1,000
mber of		7	17	142	4.38	Lan	21.9	1.000
ta Points:	0 points in use		22.5	1.59	494	1.00	36.0	Long
st Gate:	4.060E-06 sec	2	48.7	140	3.54	Lan	12.5	1.000
t Gate:	3.826E-03 sec	34	48.5	3.67	6.3	1.000	31.0	1.000
ta Residual:	0.5	15	48.4	99134	7.11	Like	-45.9	1.000
the state of the s		12		10.00	8.03	1.40	.52.9	1.000
of Layers:	20	14		12	967	1:00	-0	1.000
II:	141m	34		100 E	115	1.00	10.3 Hell	1,000
grant	ViewTEM.exe, version 1.0.1.19	26	9.79 11.6	3.46	11.5	1.00	-121	1.000
		17	10.0	10.00	14/-	140	110	Lon
		28	2.9	200	16.5.	1.40	(29	LOID
		29		247	18.8	1.00	Lei	LIND
		24	_	3.82		-		-
	aug Rolar			¢,	~		- 1	
	ang forter			K	ې . سر	1		
	ang fortar			¢,	د. سر	3		
	angs Rool ar			K		}		
	ang Rola			4		}		
	ang Rola			4		}		
	ang for lar			<		}		
	ang for lar			¢		}		
	ang for lar			4)		
	ang finite			4		}		
		1		<		}		
				4		}		
-				4		}		
	sep forte	The last of the state of the st		4		}		
)		
						}		
						}		
				4		}		


Print Date:	02.05.2014		Ra	Hest/ID/	136	IMANTO	Day	10q61
Database Name:	AQMAH.gdb	3	22.4	Webb	3.28	100	3.28	1 001
ITMX	282152	2	26.7	191	37	1 ant	4.99	1.001
JTMY:	2345809	4	17	141	418	1.001	11.2	1.00
		4	427	1.45	533	1.001	15/9	1.000
EPSG:	32644=UTM Zone 44N (WG5 84)			140	6.02	100	172	1100
Number of		7	45.5	1.47	4.8	1.04	14	1.000
Data Points	0 points in use		32.7	145	7.67	3.081	41.7	1.480
First Gate:	4.060E-06 sec		39.5	1.47	1.01	1.041	50.4	1.002
Last Gate:	3.826E-03 sec		6.7	1.91	FN	2,001	60.1	1.000
Data Residual:	0.4	35		1.9	11	106	11.1	1.000
No. of Lavers:	20	12	12.4 54.6	18	12.5	3.001	83.6	1.000
			34.7	143	15.9	3.064	134	1.000
:100	197m	24	22.4	1.10	17.5	Lon	152	1.000
Program:	ViewTEM.exe, version 1.0.1.19		18.3	1.0	20.1	1.001	142	1.000
		37		\$49	22.9	1.001	125	1.008
		1.0	16.5	2.09	21.8	1.004	296	1.006
		3.8	14.5	\$42	211	1.081	439	1.008
		28	101	1.12				
					2	ų –		
						}		
						}		
			-			}		
					4	}		
					4	}		
2		2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4	}		

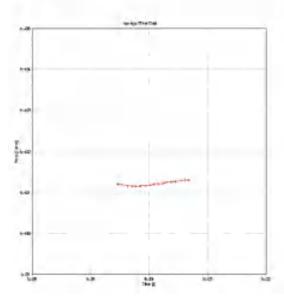
	02.05.2014	. 6	Res	ReSTD	TM	TASTP	Dep	Depti TI
tabase Name:	AQMAH.gdb		31	99.00	2.14	1.00	3,14	1.00
IX:	281270	2	59.7	1.49	3.95	1.001	6.67	1.000
A: Y:		3	118- 108-	1.52	4.0	1,90	187	1.00
	2344470	4	108-	1.60	3.11	1.901	263	1.000
	32644=UTM Zone 44N (WGS 84)	4	144	1.59	3.78	1.00	21	100
of		7	77.2	1.90	6.51	1.001	124	1.000
ints	0 points in use	*	307	1.29	7.25	1.001	29.9	1.900
ite:	4.060E-06 sec	5	38.0	1.37	1.29	1.001	48.2	1.000
tet	7.652E-03 sec	10	974	1.50	V.Iat	1.001	57.6	1/800
sidual:	0.7	33	133	1.82	111.6	1-091	64.2	1.00
ayers	20	12	72.5	2.27	11.9	1.00	811 93.6	1/00
ayers:		13	22.6	141	13.5	1.001	109	100
	181m	34	217	18	172	1001	125	1000
112	ViewTEM.exe, version 1.0.1.19	16	471	117	184	1001	145	100
		17	10.5	-96.00	21.9	1.001	167	1.000
		18	76.8	99.00	24.7	1.001	192	100
		10	72.5	1.15	279	1001	228	100
		20	-49.1	2.00				
					5	5	-	
					5	5	-	
					5	5		
					5			
					5			
					5			
	******	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			5			
					5			
		D R R R R R R R R R R R R R R R R R R R			5			
	******	a a a a a a a a a a a a a a a a a a a						
		2 2 2 2 2 2 2 2 4 4 4 4 4 2 2 2 2 2 4						

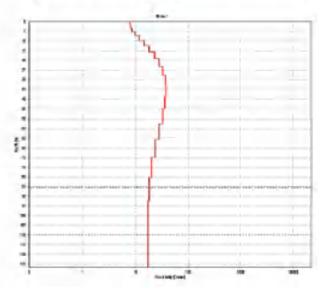
Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UTMX:	276720
UTMY:	2356534
EPSG	32644=UTM Zone 44N (WGS 84)
Number of	
Data Points:	0 points in use
First Gate:	4.060E-06 sec
Last Gate:	7.652E-03 sec
Data Residual:	0.4
No. of Layers:	20
DOI:	82m
Program:	ViewTEM.exe, version 1.0.1.19


	Res	RUSTR	The	TASTD	Dep	Dept-TD
1	44.5	96.00	1.42	100	149	1.00
3	46.9	1.54	1.18	2.000	3.37	1.00
3	318	1.58	1.9	1.006	3,07	1.00
4	34.1	1.89	2.14	3,084	721	100
10	54.5	172	2.42	1.00	863	1.000
Δ.	41.7	1.00	270	1.00	12.4	1.000
7	78.5	1.57	3.04	1.008	15.4	1.000
	27.9	149	2.48	1.005	18.2	1.000
9	21.9	141	3.48	1.00	22.9	1.000
18	263	145	4.46	1.00	27.3	1,000
ш	373	1.60	581	1.001	32.3	1.000
12	45.4	1.90	5.66	1.008	78	1.080
11	42.6	196	6.79	1005	46.4	1,000
14	22.6	345	721	LODE	51.6	1.000
15	AD.	674	8.34	1.001	59.7	1,000
14	1.81	1.62	9.29	2.001	58.9	1.000
11	1.91	415	314	1.008	79.3	1.080
18	3.47	2.00	31.7	1.008	31	1.000
19	147	2.67	15.2	1.008	104	1.000
28	347	3.32				

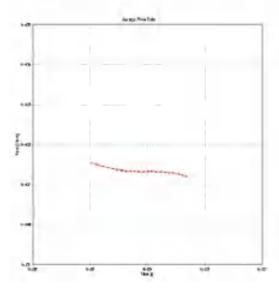


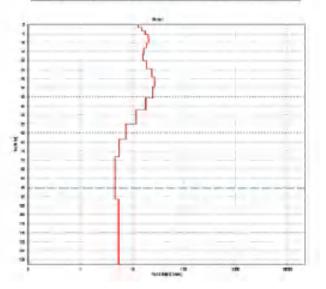
Print Date:	02.05.2014			
Database Name:	AQMAH.gdb			
UTMX:	277753			
UTMY:	2354855			
EPSG:	32644=UTM Zone 44N (WGS 84)			
Number of Data Points:	0 points in use			
First Gate:	4.060E-06 sec			
Last Gate:	1.913E-03 sec			
Data Residual:	0.4			
No. of Layers:	20			
DOI:	104m			
Program	ViewTEM.exe, version 1.0.1.19			


#	Bar	ApSTD-	TIA	TMASTIP	Dept	DoptTD
1	174	38:30	3.26	1.000	1.79	2.001
1	15	1.04	1:99	1.001	1.75	1.001
¥.	34.8	1.76	2.34	1.000	5.99	2.006
a . /	2.7	1.82	2:50	1.601	8.52	1.000
80)	40	1.54	236	1/001	11.4	2.000
s	2.5	236	3.25	1.000	14.6	1,000
1	126	3.60	344	1/003	18.3	1.000
	129	547	4.11	1.000	22.4	1,000
	218	178	4.45	1.001	27	1.000
t#:	238	4.88	3.24	1.000	31.8	1.000
11	205	4.08	5.92	1.001	38.2	1.000
12	155	3.56	6.68	1.001	44.9	1.000
0	09	2.77	7.55	1101	52.4	1.900
14.	\$1	4.75	8.52	1/80	4019	1.000
15	21.6	5.55	9.62	1001	70.6	1.040
16	141	3.95	30.9	1.001	11.4	1.900
17	11.9	99.00	12.5	0.000	91.7	1.000
18.	9.4	130	13.8	1:001	100	1.900
19	7.56	2.00	15.6	1.001	123	1.000
19/	7.69	2.67				



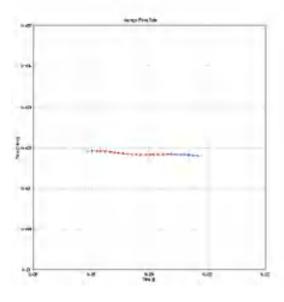
Print Date:	02.05.2014
Database Name:	A/QMAH.gdb
UTMX:	279121
UTMV:	2353953
EPSG:	32644=UTM Zone 44N (WGS 84)
Number of	
Data Points:	0 points in use
First Gate:	4.060E-06 sec
Last Gate:	4.781E-04 sec
Data Residual:	0.1
No. of Layers:	20
DOI:	85m
Program	ViewTEM.exe, version 1.0.1.19
-	

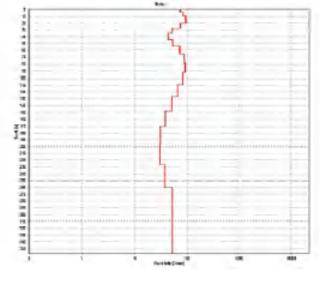

	Nes.	ResSTD	TM	TMANTID	Bep	Depi/TB
1	738	1.76-	1.53	1.001	1.51	1.001
:	1.36-	1.50	1.71	7.001	7.00	1.00
1	A70	1.56	1.92	1.001	2.14	1.00
4	2.4	1.66-	2.17	1.001	7.0	1,000
8	11.7	1.64	2.45	1.003	9.77	1.000
18.1	14.5	1.6	2.77	1101	12.5	1,000
	11.4	185	3.13	1:001	15.7	1,000
	014	1.70	2.53	1.001	78.2	1,000
9	24.7	1.75	3.99	1.001	23.2	1.000
18	-8.7	1.78	42	1.003	27.7	1.000
11	171	1.79	1.00	1000	12.0	1000
41	182	1.07	5.74	1001	16.5	1.000
U	34	1.74	1.46	6.000	15	1.000
14	01.0	1.00	7.84	1.000	\$2.0	1,000
LE:	21.5	141	4.25	\$1003	60.5	1.000
14	24	1.57	8.22	1.001	01	1.08
11	214	5.68	10.5	\$1001	814	1 000
18	184	2.09	10.0	1.009	91.5	1.06
18.	179	247	124	1.001	11m	1.000
24	175	3.32				



Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UTMX:	281533
UTMY:	2351067
EPSG:	32644=UTM Zone 44N (WG5 84)
Number of Data Points:	0 points in use
First Gate:	4.060E-06 sec
Last Gate:	4.781E-04 sec
Data Residual:	0.4
No. of Layers:	20
DOI:	91m
Program:	ViewTEM.exe, version 1.0.1.19

8	Re	RectTD	This	TASTO	Dep	Daysett
2	15.2	96.00	1.58	1.001	1.54	1.001
1	14.3	-141	1.78	1.001	1.6	1.00
11	18.3	1.79	210	1.001	1.77	1 001
4	217	1.42	1.27	1.001	7/4	1.008
1.	21	1.54	2.17	1.001	11.5	1.000
8	17	1.50	2.9	1.04	10,1	1,000
3	164	1.47	11.27	1.001	11.4	1.000
81	16	1.40	2.0	100	20.1	1.000
1	1941	1.42	-4.17	3.000	36.2	1.008
34	247	1.0	47	100	28.9	1.000
11.	27.3	1.50	531	1.064	342	1.000
12	25.1	1.29		2.068	40.2	1.000
11	38.6	113	6.77	1084	47	1.000
14	11.8	3.41	7.64	1001	54.7	1.000
15	7.59	29:00	4.63	1.001	613	1.000
16	540	1.30	16.74	1.001	D	1.000
17	4.71	29:06	11	1 ant	14	1.008
18	4.71	39:06	12.4	1.084	16.4	1.000
19	541	200	14	1.001	130	1.008
26	54	247				

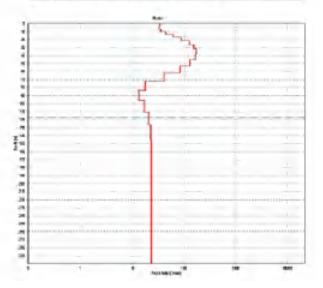




Print Date:	02.05.2014		Res.	Back (D	The	DASTD	Dep	Depe TD
Database Name:	AQMAH.gdb	1.31	71.3	16/36	6.75	1.001	0.707	1.00
UTMX:		12	#19	2.9	4.78	1.005	11	1.048
	280953	1.0	18	2.36	6.96	1.001	2.40	1.001
UTMY:	2343792	4	-674	2,08	1.44	1.002	1.42	1.040
EPSG:	32644=UTM Zone 44N (WGS 84)		64.6	152	114	1.00	4.57	1.005
Number of		14.1	404	1.84	0	1.80	5.87	1.040
Data Points:	0 points in use	121	34.7	1.86	1.46	1.005	7.87	1.041
	4.060E-06 sec		472	1.00	145	1 100	8.58	1.040
First Gate:		. 19	38.2	1.8-	2.0	1.001	.11/0	1.00
Last Gate:	2,308E-04 sec	1.0		1.59	2.30	1.80	101-	1.040
Data Residual:	0.3			142	2.0	1.005	18	1.00
No. of Layers:	20	12	341	1.10	10	int	101	1.000
		14		1.25	141	100	24.3	1.000
DOI:	39m	110		1.0	1.80	int	tai-	1 kim
Program:	ViewTEM.exe, version 1.0.1.19	36		1.0	4.36	100	10.1	1.000
		17		18-00	410	1.001	176	Lon
		1.0		10.00	1.50	Look	40.7) data
		10		100.00	4.28	1,005	415	Low
			140	100.007	-	-	-	-
					1			
				5			_	_
			an (4, an	£.		1,		
				£.			-	-
					-			
4			- H					
		New A D R R R R R R R R R R R R R R R R R R						

Print Date:	02.05.2014		Ro	1
Database Name:	ACMAH.odb	1	28.7	
		2		1
			_	- P
UTMY:	2344706	4		1
EPSG:	32644=UTM Zone 44N (WG5 84)	8		-
Number of	and the second sec			- 11
	O points in use	7		-
				-11
First Gate:	4.060E-06 (ec.			- 1
Last Gate:	3.826E-03 sec			-1
Data Residual:	0.3			- 12
			_	+
				- 13
DOI:	250m			+
Programs	ViewTEM.exe, version 1.0.1.19			- 13
			_	+3
				-13
	Database Name: UTMX: UTMY: EPSG: Number of Data Points: First Gate: Last Gate: Data Residual: No. of Layers: DOI:	Database Name:AQMAH.gdbUTMX:271837UTMY:2344706EPSG:32644=UTM Zone 44N (WGS 84)Number ofData Points:0 points in useFirst Gate:4.060E-06 secLast Gate:3.826E-03 secData Residual:0.3No. of Layers:20DOI:250m	Database Name: AQMAH.gdb I UTMX: 271837 3 UTMY: 2344706 4 EPSG: 32644=UTM Zone 44N (WG5 84) 8 Number of 7 7 Data Points: 0 points in use 8 First Gate: 4.060E-06 sec 9 Last Gate: 3.826E-03 sec 9 Data Residual: 0.3 82 No. of Layers: 20 81 DOI: 250m 84 Program: ViewTEM.exe, version 1.0.1.19 15	Database Name: AQMAH.gdb I 237 UTMX: 271837 I 832 UTMY: 2344706 I 944 EPSG: 32644=UTM Zone 44N (WGS 84) I 944 EPSG: 32644=UTM Zone 44N (WGS 84) I 933 Number of 7 446 944 Data Points: 0 points in use I 344 First Gate: 4.060E-06 sec II 972.9 Last Gate: 3.826E-03 sec III 987 Data Residual: 0.3 III 92.7 No. of Layers: 20 III 97.4 DOI: 250m III 97.4 Programi: ViewTEM.exe, version 1.0.1.19 III 97.4


4	Ro	Bes521F	This	TRASTIC	Dep	Departo
1	25.7	99/30	4.15	1,008	425	1.000
2	852	1.40	4.1	1001	\$.06	1.001
1	959	150	5.43	1000	14.5	1.001
4	96.4	140	6.12	1001	20.6	1.000
8	253	5.28	6.91	1000	27.5	1.000
6	527	1.0	7.8	1000	.28.3	1.000
7	44.8	1.29	8.82	1000	-44.1	1.008
	344	1.34	0.94	1001	54.1	1.000
9	72.9	140	11.2	1,900	42.3	1.000
14	88.9	1.45	(2.7	1961	78	1.000
11	92.7	146	141	1.00	97.3	1.008
12	40.4	1.47	162	1968	108	1.0087
U	47.4	1.51	18,2	LOOP.	127	1.000
14	51.7	140	214	1.010	147	1.0087
15	243	1.45	23.2	1001	17)	1.000
15	114	5.40	56.1	1.010	197	1.008
11	264	2.37	296	1100	726	1.000
18	38.2	2.06	115	1998	294	1 008
14	52.4	2.67	378	1981	2/8	1.000
21	114	5.12				



Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UTMX:	272753
UTMV:	2345587
EPSG:	32644=UTM Zone 44N (WGS 84)
Number of	
Data Points:	0 points in use
First Gate:	4,060E-06 sec
Last Gate:	1.913E-03 sec
Data Residual:	0.2
No. of Layers:	20
DOI:	117m
Program	ViewTEM.exe, version 1.0.1.19

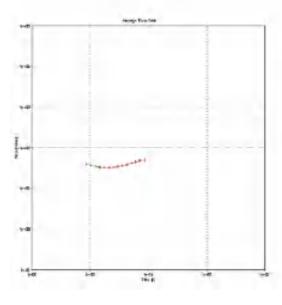
	Rev	BesSTD-	The	TMSTD.	Dep	Begin 12
1.	19.1	(44) (40)	2.08	EXCE.	2.08	.1.00
2	14	1.41	2.34	1.004	4.43	1.001
1	12.4	137	2.64	LOOP	7.06	1.00
4	»	1.52	2.99	1.004	10	1000
۹.,	44.7	1.41	3.32	E00t	13.4	1000
£	42.1	1.54	181	1001	17.2	1.000
10	-901	10	43	1.004	21.5	1.000
8	126	1,0	485	1.04	28.4	1.000
1	159	LTS	5.48	1.064	11.9	1.000
10	177	LTV	0.16	1001	.38	1,900
u	147	1.54	6.58	1.001	45	1.000
12	111	1.05	7.88	100	519	1.000
U	123	1.65	8.9	1.001	62.8	1.000
14	41.2	1.62	24	1011	71.4	1.000
15	18.3	1.42	11.5	1008	812	1.000
14	12.4	245	12.8	1.005	16	1.000
17	17	-411	145	1001	110	1.000
58.	11.2	2.00	16.3	1001	127	1.000
15	13	2.87	18.4	LOOK	142	1.000
24	23.6	332				

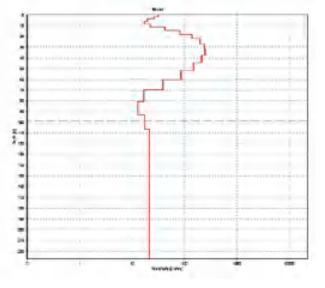
vint Date:	02.05.2014		Ret	ReiSTD	Thi:	Thisto	Dep	Depi 11
atabase Name:	AQMAH.odb	1	15.5	199.00	3.48	1.001	3.42	1.001
MX:	274010	2	40.3	1.45	3.87	1001	73	1.001
		4	13.4	146	437	1.001	11.7	1.001
MV:	2348148	4	85.6	1.50	438	1.001	186	1.000
SG:	32644=UTM Zone 44N (WGS 84)	*	19/8 47.5	144	8.39	1.001	325	1.000
mber of		4	37.1	1.38	11	1.01	35.0	1.000
ta Points:	0 points in use	8	45	1.39	8.02	1001	41.8	1.000
st Gate:	4.060E-06 sec		16.1	145	\$ 05	1.001	:28	1.000
st Gate:	1.913E-03 sec	10	72.1	1.52	10.2	1001	62.8	1.000
		11	12.2	1.54	\$1.5	1.001	744	1.000
ta Residual:	0.2	11		1.98	21	1.001	\$74	1.000
of Layers:	20	13		1.64	34.7	1.001	182	1.005
1:	206m	3.6		1.64	35.6	1.001	119	1.005
ogram:	ViewTEM.exe, version 1.0.1.19	15		149	18.7	1.001	137	1.000
	transferrent to be a second	16		118	21.2	1.001	199	1.000
		17		9.40	17	1.001	339	1:00
		19		10.45	30.4	1.001	340	1.000
		39		190.00	24.7	1.90		3.000
	- seage flat lot				-	2		
	n manga Rash lab	-			4			
	- serge finities				4			
	an anaga Rus Lob		(-)+1+()+()					
			1 1 + 1 +					
								()*(*)***
						1		•()•()•()•()
						1		
						1		*(10)101

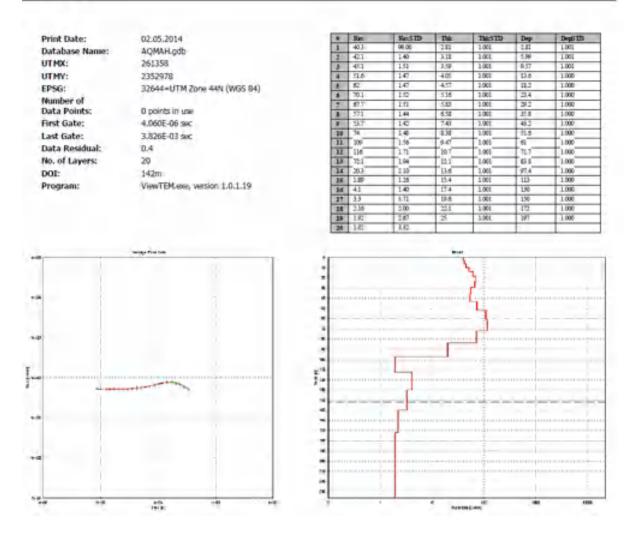
Print Date:	02.05.2014		Re:	ReiSTD	Thic	TRISTD	Dep	Dep5 TD
atabase Name:	AQMAH.oth	1	10.7	99-00	244	5.000	2.46	1.001
MCC:	275833	2	111	1,54	277	3.001	529	1.001
		3	143 1171	1.3	345	5.005	11.00	1.001
ev:	2350355	4	123	1.46	1.00	5.005	11#	1.000
G:	32644=UTM Zone 44N (WGS 84)	5	20.0	1.5	43	1.000	204	1.000
aber of		5	373	134	5.09	1.000	25.5	1.000
a Points:	0 points in use	8	30.6	139	354	5.005	71.5	1.000
t Gate:	4.060E-06 sec	8	301	134	648	0.004	311	1000
Gate:	1.913E-03 sec	30	343	1.94	17.35	0.000	at.	1.000
a Residual:		- 63	30	1.19	8.26	0.000	193	1.000
de la suglisia consegura d	0.3	82	201	1.19	9.39	0.000	42.6	1.000
of Layers:	20	D	14	1.6	TH-	0.000	73.1	1.000
1:	137m	84	7:59	1.90	11.4	0.000	85	1.000
granic	ViewTEM.exe, version 1.0.1.19	1.0	3.77	L28	13.4	1,000	9E.4 134	1.000
	and a state of the	30	3.55	3.81	19.2	1,000	134	1,000
		17	11.7	2.00	19.3	1.000	130	1.000
		1.0	23.4	2.67	21.8	1,000	172	1.000
		10	301	3.12	100			
	Annual Alia Annu			5	۲.)			
		2			-			
					-			
					-			
				- F-	-		-	
				- [-		-	
				ء 	-		-	
				ء - [-		-	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- [-			
		A A A A A A A A A A A A A A A A A A A			-			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ء 	-			
					-			
					-			
					-			
		R R L R R R R R R R R R R R R R R R R R			-			
					-			

THE

-

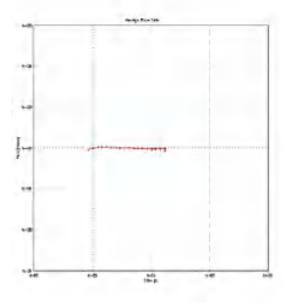

10

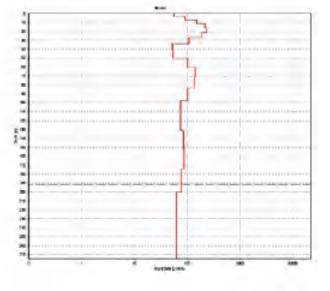

05.2014				Rei.	RetSTD	Thir	TAKSTD	Dep	DepSTI
MAH.odb			1	18.	1.3	3.15	1.001	3.12	1,001
121			2	8	1.44	3.52	1.001	6.M	1.061
			3	61.8 78.4	150	3.99	1.002	30.6	1.001
9180	-		4	71.1	1.50	1.49	1,001	362	1,000
44=UTM Z0	one 44N (WGS B	4)	3	46.4	1.40	5.72	1.001	39	1.000
			7	30.8	1.34	6.46	1.001	32.4	1.000
oints in use			8	12.5	142	1.9	1.001	39.2	1.000
60E-06 sec				305	1.8	4.5	1.001	479	1.000
13E-03 sec			24	114	1.61	0.3	1.001	372	1,000
101 00 MC			11	38.4	1.54	38.5	1.001	\$7.7	1.000
			12	4.71	1.10	11.9	1.001	79.5	1.000
				143	1.05	13.4	1.005	92.9	1.000
ier i			34	15.6 30.6	1.9	121	1.001	108	1.000
TEM. exer.	version 1.0.1.19		15	30.5	1.92	10.3	1001	144	1.000
			37	21.4	2.76	3.7	1.001	396	1.000
			28	18.7	3.0	24.5	E.061	191	1.000
			2.8	1.36	4.12	22.7	E.001	218	1.000
			26	1.16	4.82				-
						C	2	000	
			:						
							2		
							2 _ 1		
							2 1		
/							2		
-							2	And a second sec	
1			*****************		<u></u>		2		


INFREE OF

Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UT MX:	273305
UTMV:	2354340
EPSG:	32644-UTM Zone 44N (WGS 84)
Number of	the second se
Data Points:	0 points in use
First Gate:	4.060E-06-sx
Last Gate:	3.826E-03 sec
Data Residual:	0.5
No. of Layers:	20
DOI:	98m
Program:	ViewTEM.exe, version 1.0.1.19

*	Rec	ReSTO	This	ThisTD	Dep	DepSID
1	.32	-99-00	1.74	1.001	1.74	1.001
ł	28.4	141	1.97	1.001	1.71	1,000
8	19.7	140	2.22	1.001	18	1,000
4	16.9	1.44	2.0	1.001	14	1.000
5	22.4	140	2.63	1.001	11.3	1,000
6	41.5	1.57	3.2	1.001	345	1.000
T	42.1	1.71	3.61	1.001	121	1.000
B.	140	1.82	4.07	1.601	35.1	1,000
9	300	1.90	4.6	1.661	367	1,000
10	346	1.94	3.16	1.004	31.9	1,000
11	210	1.94	1380	1.000	37.8	1.000
12	213	1.91	6.62	1.001	44.4	1.000
11	150	1.85	1.0	1.001	51.9	1.000
3.0	34.7	1/79	3.44	1.000	10.3	1,000
15	36.6	3.45	9.52	1.001	199.9	1.000
18	166	2.40	30.8	1.000	8.08	1.000
17	12.8	3.96	117	1.001	80.8	1,000
11	123	2.00	13.7	1.001	306	1,000
19	316	2,67	15.5	3.663	323	1,000
29	216	330				





Print Date:	02.05.2014	
Database Name:	A/QMAH.gdb	
UTMX:	263671	
UTMY:	2352440	
EPSG:	32644=LITM Zone 44N (WGS 84)	
Number of		
Data Points:	0 points in use	
First Gate:	4.060E-06 sec	
Last Gate:	9.565E-04 sec	
Data Residual:	0.4	
No. of Layers:	20	
DOE	192m	
Program:	ViewTEM.exe, version 1.0.1.19	

K	Rei	ReiSTD	Dk	DASTD	Dep	DepSTD
1	-961	100 00	3.27	1.000	3.27	1.005
ż.	90.6	1.46	3.69	1.000	4.91	1.001
3.	138	1.66	-4.17	1.065	11.1	1.064
4	220	171	4.71	1.064	114	1.000
5	239	1.dl	3.32	1.004	21.2	1.000
6	190	1.96	4	1.000	37.2	1,000
7	108	14	1.5	1.001	33.9	1,000
8	1.22	1.38	7.65	1.001	-41.6	1,000
9	54.5	1.30	DH.	1:000	.50.2	1,000
38	102	1.45	\$15	1.000	-50	2.000
11	148	140	п	1,005	71	1,000
11	139	146	12.4	1.000	11.4	1,000
11	106	2.44	34	1.000	97.1	2.000
14	78.1	1.8	15.8	1.006	113	2.000
15	74.5	1.45	17.9	1:001	134	1.000
18	817	107	20.2	1.000	151	1.000
17	98.9	-99.00	22.0	1.000	174	1,000
18	76.P	199.00	25.7	1.000	200	1,000
15	43.4	199.00	39.1	1.001	229	1.000
26	45.4	99.00				

Print Date:	02.05.2014		Rei	ReiSTD	Thic	TAKSTD	Dep	Depi 10
Database Name:	AOMAH.gdb	T	31	99.00	2.49	1.064	2.4	1.00)
UTMX:	264513	2	564	131	2.74	1.001	3.11	1.00
		3	343	1.9	34	1.001	8.37	1.001
UT MV:	2353619	4	56.5	152	15	1.001	11.8	1.000
EPSG:	32644=UTM Zone 44N (WGS 84)	5	278	191	446	1.001	302	1.000
Number of		17	374	199	5.00	1.001	282	1,000
Data Points:	0 points in use	8	34	199	5.60	1.000	30.9	1:000
First Gate:	4.060E-05 sec		312	1.82	6.40	1001	373	1.000
Last Gate:	1.913E-03 sec	84	110	178	7.54	LOR	44.5	1.000
and a state of the		11	00.8	1.58	8.17	1.001	517	1,000
Data Residual:	0.6	.12	17.1	1.36	8.23	1001	41.9	1.000
No. of Layers:	20	1.1.5	27	1.34	384	1.085	12.4	1.000
DOI:	124m	1.4	54.4	1.0	11.8	1.001	841	1.000
Program:	ViewTEM.exe, version 1.0.1.19	1.0	100	130	13.	1.001	37.4	1.000
	and the second contract a second	18	130	2.60	15-	1005	112	1,000
		10	137	4.50	191	1005	348	1.000
		10	100	1:34	21.8	1001	170	1.000
		20	103	612	-		-	
		-			Ł			
•		1						
•								
•		*						
10 50	eds and and	*				-		

int Date:	02.05.2014		Res	ReiSTD	The	TMISTD	Dep	DepSTD
tabase Name:	AQMAH.odb	1	60.6	99.00	3.13	1.001	3:02	1.000
MX:	267230	2	65.5	141	3.53	1.001	5.65	1000
			67.0	1.55	1,99	1.001	10.5	1.000
MV:	2353130	4	54.1 27.1	1.47	45	1.001	15.1	1.005
SG;	32644=UTM Zone 44N (WGS 84)		14.6	1.00	5.74	1.001	28	1000
mber of		8	53.0	146	6.41	1.001	124	1000
ta Points:	0 points in use		132	1.61	7,31	1.001	81	1000
st Gate:	4.060E-06 sec	5	15	1.67	1.26	1.001	4	1000
d Gate:	1.913E-03 sec	3.0	133	1.64	932	1001	573	1.000
		13	67.3	1.0	10.5	1.051	67.8	1000
ta Residual:	0.4	12	3L4	1.90	11.9	1.001	28.7	1300
. of Layers:	20	1.1		1.39	13.4	1.061	951	1.000
il:	186m	84		1.92	15.1	1.001	108	1.900
ogram:	ViewTEM.exe, version 1.0.1.19	15	D.4	134	17.1	1.001	125	1.000
- Juane	Contraction of the sector of the	1.6		1.39	29.3	1.001	145	3,000
		17	64.7 39.4	430	21.8	1.001	196	3 800
		15		5.0	27.8	1.001	209	3 000
		20		612	41.8	1.001		1000
							-	
					T	1		
					E			
					E			
			unterrin					

THE OWNER WATER

ł

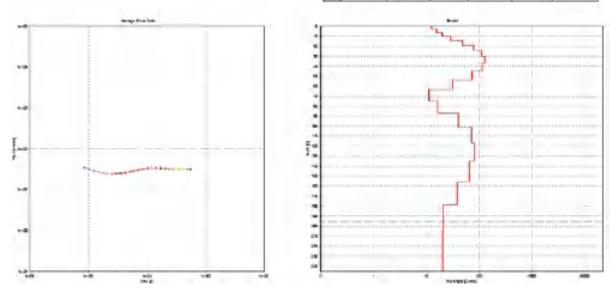
við

6-0

10.9

Print Date:	02.05.2014		Bri	ReSTD	The	TMSTD	Dep	Dept ID
Database Name:	AQMAH.odb	1	30.4	99.00	1.34	1.001	124	2.002
IT MX:	270257	2	28.5	1.50	1.4	1001	2.66	2.008
		5	19.2	1.50	1.51	1:001	422	1.005
UTMV:	2352577		11.5	1.52	1.79	1.001	601	1.000
EPSG:	32644=UTM Zone 44N (WGS 84)	5	5.73	130	2.02	1.001	10	1000
Number of		5	2.94	1.24	2.28	1.001	203	1.000
Data Points:	0 points in use		10.5	146	2.9	1.001	15.8	1.000
First Gate:	4.060E-06-sec	9	38	1.60	3.28	1.001	39	1.000
Last Gate:	1.913E-03 sec	10	92.3	1.83	37	1.001	22.7	1.000
and the second		33	109	214	438	1.001	24.9	1 100
Data Residual:	0.3	32	367	2.53	471	1.001	31.6	1 000
No. of Layers:	20	10	65	2.99	5.32	1.001	37	1 000
DOI:	37m	34	\$12	3.9	6.01	1.001	45	1,000
Program	ViewTEM.exe, version 1.0.1.19	18	12300	413	470	1.001	-49.7	1.000
Programs.	VIEW I EPICENC, VEISION 1.0.1.15	18	1.06ED09	-4.90	7.66	1.001	.57.4	1,000
		17	2.058009	5,54	2.65 9.76	1.001	66.1	1.000
		18	2.375003	4.34 716		1.001	75.9	1.000
		19	2.728069	109	11	1.005	90.8	1000
			1.	1.0	-	-	-	-
	way frates							
e	and page	10			Bage P			
		*						
					- L	1		
		*					1 m	
•	1						T.	
	i							
	1	-					1	
	1					-	-	1
	-							5
		- N.						
	ê.							
		-						

1.4.2.4.2


.....

.

THE PARTY OF

Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UTMX:	273782
UTMV:	2355809
EPSG:	32644=UTM Zone 44N (WGS 84)
Number of	
Data Points:	0 points in use
First Gate:	4.060E-06 sec
Last Gate:	9.565E-04 sec
Data Residual:	0.3
No. of Layers:	20
DOI:	195m
Program:	ViewTEM.exe, version 1.0,1.19

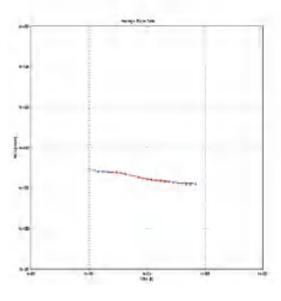
	Re:	ReSTD	THE:	DESTD	Dep	Dept TD
1	12.6	1.20	1.42	1.065	2.93	1.065
Z .	25.5	1,39	33	3.004	4.22	1.064
3	30.1	1.36	3.12	5.000	9.94	1.064
4	20.5	1.44	-4.2	2.000	043	1.000
5	48.4	1.58	4.10	1.000	14.9	1.000-
6	79	1.60	5.36	2.000	34.2	1.000
7	111	1.67	-605	2.000	30.3	1.000
8	127	172	-5,83	1.000	.57.1	1,000
y	113	1.10	1.71	1.000	-++1	1.000
18	72.6	1.42	11	1.000	52.5	1.000
п	72	140	9.53	1.005	42.4	1.000
11	11.2	1.26	11.1	1.005	74.5	1.000
11	16.1	1.37	12.5	1.005	17	1.000
14	-4[1	1.19	143	1.000	101	1,000
15	71.6	1.70	15	1 000	117	1.000
18	#1.9	2.08	13	1.000	135	1.000
17	45.7	2,90	20.3	1.000	135	1.000
13	38.9	1.56	-25	1.000	178	1.000
19	21.1	4.25	25.9	L 000	204	1.000
30	20.0	-497				

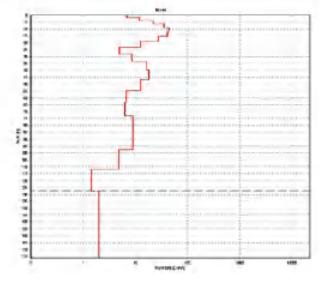
rint Date:	02.05.2014		Set.	Re:STD	Thic	TMISTO	Dep	Depi 13
atabase Name:	AQMAH.pdb	1	152	1.34	2.21	1.001	2.21	1.001
TMX:	289773	2	13.3	1.38	2.49	1.001	4.7	1.001
		3	141	138	242	1.001	7.52	1.001
MY;	2346060	8	22.2	140	3.18	1.001	327	1.000
25G:	32644=UTM Zone 44N (WGS 84)	5	57.8	1.57	415	1.001	143	1.000
mber of		6	60.5	1.64	4:0	1.011	22.9	1.000
ata Points:	Ú points in use	2 8	63	1.62	5.36	1.011	201	1000
rst Gate:	4.060E-06 sec		36.5	1.9	5.83	1.011	33.9	1.000
		10	42.6	154	8.98	1.001	40.5	1.000
st Gate:	3.826E-03 sec	11	31.5	140	145	1.011	429	1.000
ata Residual:	0.4	12	34.9	140	6.39	1.001	1903	1.000
o. of Layers:	20	10	197	1.40	9.47	1.011	65.8	1.000
DI:	128m	14		1.57	10.7	1.011	78.5	1,000
ogram:	ViewTEM.exe, version 1.0.1.19	15	9.58	134	12.1	1.001	105	1.000
ografii.	A 1044 Elercited' Apr 2011 110'1'1A	16	П3-	1.0	13.6	1.001	302	1.000
		17	18.5	2.95	15.4	1.001	118	1.000
		18	27.8	2.00	17.4	1.001	18	1.000
		19	40.5	1.30	34.0	1.001	420	1,000
						-	-	
						2		
		4 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						
		A B B B B B B B B B B B B B B B B B B B						

MT_27.1

rint Date:	02.05.2014			Res	Be-STD	The	TMESTD	Drp	DepEID
atabase Name:	AQMAH.odb	1		32	99.00	1.13	1.001	1,33	1.000
TMX:	289719	2	_	187	160	15	1.001	243	1.005
MY:	2346020	5		99.	178	1.7	1.001	459	1.005
		8		8.5	1.85	2.18	100	2.44	100
G:	32644=UTM Zone 44N (WGS	34) 5		N 5	1.80	2.44	1.001	U.	1.000
nber of		1		9.9	1.90	275	1.001	13.8	1.000
a Points:	D points in use	8		27	1.55	3.11	1.001	18.9	1000
Gate:	4.060E-06 sec	9	4	25	1.04	125	1.001	20.4	1,000
Gate:	9.565E-04 sec	10		0.5	1.73	3.96	1.004	.24.4	1.005
Residual:	0.7	11		7.2	137	445	1.001	22.8	1,000
		23		0.1	1.40	5.05	1.008	33.9	1,000
of Layers:	20	1.5		154	131	57	1.001	39.6	1,000
	83m	14		49	134	6.44	1.001	-40	1,000
ram:	ViewTEM.exe, version 1.0.1.19	15		135	135	2,27	1.065	533	1,000
	the state of the state of the state	10		139	99-00	4.21	1.005	70.8	1,000
		17		23	2.00	10.5	100	81.2	1,000
		19	_	82	2.67	11.4	1.005	35	1,000
		20	_	08	132		L'ALL	~	1.000
	lange from the					-			
2		1				-			
1							3		
-						-	2		
							2		
		-				,	>		1111
						, ,,,,,,	>		
					Ę		>		
					ſ	, , , , , , , , , , , , , , , , , , , ,	>		
		2 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			ſ		>		
		2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			f		>		
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			ſ	, ,, ,	>		
		2444 2444 2444 2444 2444 2444 2444 244			ſ		>		
	-	antij Bild do Bild do kie vilo			ť		>		
		2444 2444 2444 2444 2444 2444 2444 244			ſ		>		
		A B B B B B B B B B B B B B B B B B B B			4		>		
	- Aleman	1 2 2 2 2 4 4 0 0 2 3 0 0 4 0 0 4 0 0 4 0 0 4 0 0 1 1 1 1 1 1					>		
	a and a second se	A B B B B B B B B B B B B B B B B B B B			ſ		>		
	and and a second se	a a a a a a a a a a a a a a a a a a a			ł,		>		
		10 10 10 10 10 10 10 10 10 10 10 10 10 1					>		
		a a a a a a a a a a a a a a a a a a a					>		
an a							>		
	a and a state of the	a to					>		

MT_27.2

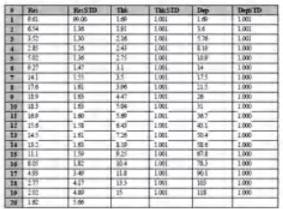

Print Date:	02.05.2014		Re:	ReSTD	The	THISTO	Dep	Depti TD
Database Name:	AQMAH.odb	3	19.8	95-00	2,38	1.002	238	1.00
T MX:	289719	2	3.95	1.25	2.67	1.002	5.03	1.000
CALCULATION OF THE OWNER OWNER OF THE OWNER OWNE			. 11.1	1.38	3.01	1.002	5.05	1.000
ITMY:	2346020	*	-41	1.65	3.54	1.001	15.3	1.000
EPSG:	32644=UTM Zone 44N (WGS 84)	5	140	1.05	434	1.002	19.6	1.000
Number of		7	140	1.75	49	1.002	24.5	1.000
Data Points:	0 points in use	8	100	1.60	5.93	1.001	301	1.000
First Gate:	4.060E-06 sec		51.9	1.57	6.34	3.000	36.1	1.000
Last Gate:	9.565E-04 sec	30	22.4	1.40	7.05	1.001	41.5	1.000
		11	20.4	1.34	7.95	1.000	\$1.3	1.000
Data Residual:	0.5	12	20.6	1.44	1.95	1.000	603	1.000
No. of Layers:	20	13	15.5	1.18	10.1	1.000	70.4	1.000
DOI:	143m	14	197	1.46	114	1.001	\$1.9	1.000
Programi:	ViewTEM.exe, version 1.0.1.19	18	4.93	1.3	12.9	1000	94.8	1.000
riogram.	A 1844 (512-5006, Anil 3004) 310-312.	16	790	1.95	346	1000	100	1.000
		17	1.0	-4.)4	342	1000	126	1.000
		18	111	2.00	18.6	1001	146	1.000
		19	203	267.	21	1001	145	1.000
	and the second sec					-		
						-		
		New States of the States of States o		1				
				- [ſ			
		Na Rassa and San			ſ			
		A C B B B B B B B B B B B B B B B B B B						

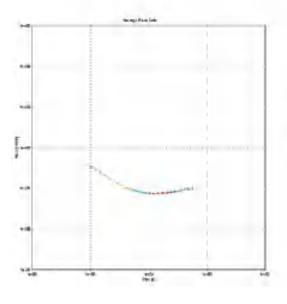

MT_27.3

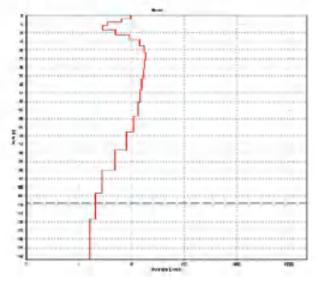
rint Date:	02.05.2014		Rei	ReSTR	Thk	TRASTD	Dep	Dep5 TD
tabase Name:	AQMAH.odb	1	345	396-00	2.17	1.464	2.57	1,000
MX:	289719	2	13.3	137	2.0	1.001	547	1401
		3	14.6	134	3.24	1.001	1.5	1001
IV:	2346020	4	214	1.46	1.3.7	1.001	123	1000
G:	32644=UTM Zone 44N (WGS 84)	5	41 63.5	1.57	411	1.001	21.3	1909
iber of		5	68.9	1.60	332	1.001	21.3	1900
Points:	0 points in use		61.5	130	6.00	100	32.7	1900
Gate:	4,060E-06 sec		47.4	154	6.72	1.001	39.5	1900
Gate:	3.826E-03 sec	-34	743	140	7.61	1.005	471	1.900
		11	3.1	1.44	8.65	1.000	55.8	1300
a Residual:	0.3	12	19.9	1.38	9.72	1.001	\$5.5	1.000
of Layers:	20	2.0	13.4	131	11	3.000	78.6	1.000
	147m	-24	362	1.30	124	1.004	8	1.000
gram:	ViewTEM.exe, version 1.0.1.19	15	12.4	118	343	1000	201	1900
for some for	A loss i multiplicated also should may an east	34	183	134	15.9	1000	119	1300
		17	21.6	99.00	119	1.001	117	1300
		38	31.9	99.00	20.2	1.001	197	1.900
		28	5.4	96.00		1.000	380	1.000
	Manage Road Late	1			4	-		
	Series Restate	A NA COL			<u> </u>			
	Beinge Hanlick				5	>		
	Jacogo Rico Labo				5	<u>}</u>		
	- 1000				5	<u>}</u>		
		T EX F. SUB F B B F B B F B B B B B B B B B B B B			5	<u>}</u>		
	- 1000	S B N R A S N R A S A S A S A S A S A S A S A S A S A			5	<u>}</u>		
	- 1000	neve sub			5	<u>}</u>		
	- 1000				5	<u>}</u>		

Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UTMX:	287585
UTMY:	2346707
EPSG:	32644=UTM Zone 44N (WGS 84)
Number of	and the second second second
Data Points:	0 points in use
First Gate:	4.060E-06 sec
Last Gate:	1.913E-03 sec
Data Residual:	0.4
No. of Layers:	20
DOL	127m
Program:	ViewTEM.exe, version 1.0.1.19

e (Res	ReSTD	This	TRASTD	Dep	Dep5 TD
K.	T	199.00	1.63	1.001	1.83	1.001
2	12	145	206	1.001	3.89	1.001
4	22.4	1.55	2.30	1.001	8.22	1.001
1	35.8	1.50	2.63	1.001	5.85	1,000
F	44.5	1.45	2.97	1.001	11.6	1.000
6	42	1.84	3.35	1.001	25.2	1.000
ŧ.	27.9	1.18	3.78	1.001	19	1.000
8	12.5	1.41	427	1.001	23.2	1,000
	36	124	482	1.000	12	1,000
10	8.19	1.38	345	1.001	33.5	1,000
u	163	1.40	615	1.001	39.8	1,000
LI	11.4	1.51	6.94	1.001	46.6	1,000
U	12.5	1.53	7.84	1.001	544	1,000
LA	6.74	1.34	1.15	1.001	41.3	1,000
Lá 🛛	638	1.54	0.94	34005	.01	1.000
16	105	1.54	11.2	34005	MS	1.000
17	8.05	542	127	34005	97.3	1.000
LS	494	#29	14.8	34005	112	1.000
24	1.41	147	162	3.005	128	1.000
28	1.98	197	1			

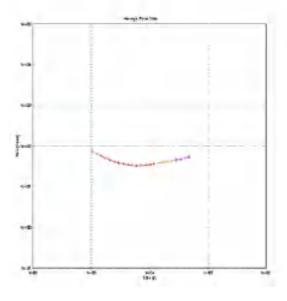


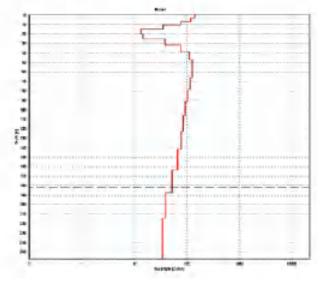



MT_28.1

	02.05.2014		Rei	ReiSTD	This	THEFTD	Dep	Depti TI
atabase Name:	AQMAH.otb	1	14	98.00	14	1,005	14	1.000
MX:	287602	2	9.25	141	1.51	1,008	2.90	1,000
		8	121	1.50	179	1,001	4.77	1.001
MV:	2346732	-4	178	1.50	210	1,001	675	1400-
SG:	32644=UTM Zone 44N (WGS 84)	.8	391	161	2.47	1,001	9.08	1400-
mber of		6	24.5	1.60	2.0	1.001	11.0	1000-
ta Points:	0 points in use	8	13.3	1.47	114	1.001	178	1000-
st Gate:	4,060E-06 sec	9	445	1.27	17	1.001	21.5	100
		10	3.78	1.8	418	1.001	25.7	1.000-
st Gate:	1.913E-03 sec	11		146	472	1.001	304	1.000-
ta Residual:	0.5	13	11.5	14	5.82	1.061	36.7	1.000
. of Layers:	20	18		145	6.00	1.001	40.7	1.000
11:	74m	34	5.35	1.36	6.79	1.001	41.5	1.000
		18	10.1	1.44	7.66	1.001	562	1.000
granic	ViewTEM.exe, version 1.0.1.19	16		1.96	8.65	1.001	04.5	1.000
		3.7	581	3.25	9.77	1.001	74.6	1.000
		18	102	3.92	11	1.001	\$1.6	1.000
		38	150	4.63	114	1.001	98.1	1.000
		.20	177	5.38				_
		-						
					1	1		
					1	1		
		A R R R R R R R R R R R R R R R R R R R			1	1		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1		
					1	1		
		A S S S S S S S S S S S S S S S S S S S			1	1		

Print Date:	02.05.2014		Ret
Database Name:	AOMAH.odb	1	841
UTMX:	284815	2	\$54
		3	法等
UTMV:	2348107	4	28
EPSG:	32644=UTM Zone 44N (WGS 84)	5	3.82 9.27
Number of			
Data Points:	0 points in use	2	34
First Gate:	4.060E-06 sec		18.9
Last Gate:	1.913E-03 sec	10	383
Data Residual:	0.4	2.8	16.9
a have exercised		12	15.6
No. of Layers:	20	13	34.5
DOI:	109m	34	18.2
Program:	View/TEM.exe, Version 1.0.1.19	15	11.1
	a contraction of the second stores she	16	\$25
		17	4.04


MT_29.1

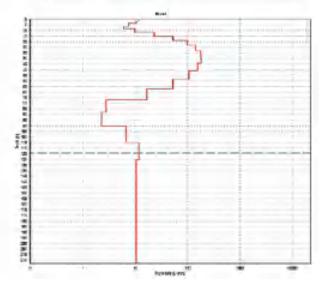

	02.05.2014	14	Sec	BetSTD	Thic	TMSTD	Dep	Depi 1D
atabase Name:	AQMAH.odb	1	10.2	1.69	1.04	3.001	104	1.001
MX:	284852	2	-8.57	149	1.8	1.001	2.22	1.001
		3	6.07	1.49	1,39	1.001	3.55	1.061
IV:	2348042	Æ	3.87	2.64	15	1.001	5.06	1.000
G:	32644=UTM Zone 44N (WGS 84)	5	2.81 3.27	1.82	17	1.001	1.5	1.000
aber of		6	3.27	1.8	2.16	1.00	10.8	1.000
Points:	0 points in use	7	145	1.53	2.10	1.00	108	1.000
Gate:	4.060E-06 sec	*	12.6	1.60	2.76	1.00	18	1000
	1000100 100000	30	162	1.60	3.11	1.001	191	1.000
Gate:	9.565E-04 sec	11	10.7	1.70	3.9	1.001	21.7	1.000
Residual:	0.2	12	20.1	1.74	3.97	1.00	368	1.000
of Layers:	20	13	20.4	1.74	441	1.001	314	1.000
	63m	34	20.2	1.70	5.06	1.001	362	1.000
		15	19.8	1.70	3.71	1.001	41.9	1.000
ram:	ViewTEM.exe, version 1.0.1.19	16	19.2	2.00	6.45	1.000	48.3	1.000
		17	18.4	2.96	7.58	1.001	25.6	1.000
		18	17.1	3.62	8.22	1.001	63.8	1.000
		39	15.4	4.32	9.35	1.001	73.1	1.000
		310	15.4	5.04				
			-	5	7			
				5	1			
			Ξ.	5	1			
			-	~	1			
]			

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]			
-								
/								
/		A R R R R R R R R R R R R R R R R R R R						
1		Net a take a take a take a take a take						
/		A B S S S S S S S S S S S S S S S S S S						
1								
/		New New Address and the state of the state o						
/								

MT_29.2

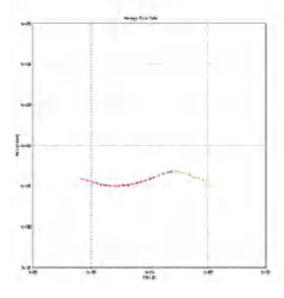
Print Date:	02.05.2014
Database Name:	AQMAH.gdb
UTMX:	284852
UTMV:	2348042
EPSG:	32644=UTM Zone 44N (WGS 84)
Number of	
Data Points:	0 points in use
First Gate:	4.060E-06 sec
Last Gate:	9.565E-04 sec
Data Residual:	0.3
No. of Layers:	20
DOI:	182m
Program:	ViewTEM.exe, version 1.0.1.19

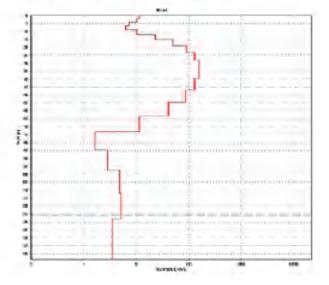

	Res	ReSTD	This	THESTD	Dep	Dep5TD
x	145	99.00	3.07	1.001	3.07	1.001
£.	119	1.69	3.46	1.001	4.53	1,001
1	783	1.50	3.91	1.001	10.4	1,001
4	38.6	1.47	4.41	1,001	34.9	1.000
5	13.2	1.28	4.85	1,000	19.8	1.000
¥	144	1.59	3.45	1.000	25.5	1.000
τ.	383	148	\$.25	1.001	21.1	1.000
8	78.4	145	2.32	1.001	30	1.000
8	151	1.15	1.19	1.001	47.5	1.000
18	121	1.75	9.54	1,004	582	1.000
11	127	1.66	30.3	1.000	66.5	1.000
12	127	141	11.6	1,000	78.2	1.000
12	100	2.17	13.1	1.000	913	1.000
34	942	2.32	14.8	1.000	106	1.000
16	961	1.79	38.8	1,000	123	1.000
18	71	2.34	11.9	1,001	142	1.000
17	\$7.1	99.00	31.4	1.000	163	1.000
38	12.9	99,00	341	1.001	187	1.000
28	341	99.00	27.2	1.001	213	1.000
20	36.2	99.00				



Print Date:	02.05.2014
Database Name:	AQMAH.odb
UTMX:	280683
UTMY:	2347091
EPSG:	32644=UTM Zone 44N (WGS 84)
Number of	
Data Points:	0 points in use
First Gate:	4.060E-06 sec
Last Gate:	9.565E-04 sec
Data Residual:	0.4
No. of Layers:	20
DOE	119m
Program:	ViewTEM.exe, version 1.0.1.19

	Mart	BriSTD	The	TIASTD	Dep	Depi 10
1	11.7	99.00	1.79	1.001	1.79	1.001
2	10.5	1.41	2.02	1.001	3.42	1.001
5	7.61	1.47	2.39	1.001	63	1.661
ĸ	4.06	1.28	2.98	1.001	1.68	3.000
\$	378	E-84	2.91	1.001	31.6	1.000
ő	23.6	1.71	3.29	1.001	14.9	1,000
5	58.1	1.78	3.71	1.001	38.6	1.000
1	37.5	1.80	438	1.001	218	1.000
ÿ	148	3.27	4.73	1.001	27.5	1,000
10	180	3.36	3.34	1.001	319	1.000
11	185	5.13	6.03	1.001	38.9	1.000
12	157	7.46	681	1.001	45.7	1.000
13	106	9.16	7.66	1.001	53.4	1,900
14	52.6	8.05	1.62	1.001	些1	1,000
15	16.5	3.40	98	1.001	71.9	1.000
16	2.86	3.29	11.1	1.001	129	1,000
17	2.25	4.21	12.5	1.001	\$5.4	1.000
18	6.78	2.00	14.1	1.001	.110	1.000
19	11.8	2.67	11.9	1.001	125	1,000
310	10.5	3.32				-

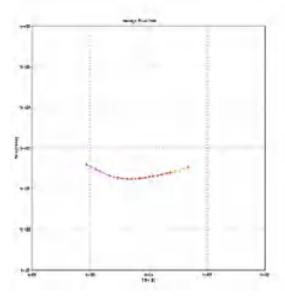


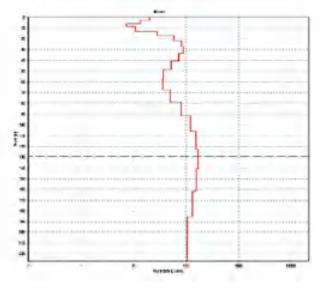


MT_30.1

Print Date:	02.05.2014	
Database Name:	AQMAH.gdb	1
UTMX:	280683	2
UTMV:	2347891	4
EPSG:	32644-UTM Zone 44N (WGS 84)	5
Number of	and the second sec	
Data Points:	0 points in use	
First Gate:	4.060E-06 sec	
Last Gate:	9.565E-04 sec	19
Data Residual:	0.4	33
No. of Layers:	20	15
DOL	126m	3.4
Program:	ViewTEM.exe, version 1.0.1.19	15

	Res	SeiSTD .	This	ThisTD	Dep	Dept TD
1	313	99.00	110	1.001	1.0	1,000
2	30.3	1.39	2.67	1.001	1.0	1.000
3	1.47	1.54	2.33	1.001	6.23	1,000
4	\$39	1.28	149	1.001	1.16	1,000
5	50.3	1.54	2.97	1.001	11.8	1,000
	23.7	1.02	3.76	1.001	15.2	1,000
7	41	1.16	3.79	1.005	18	1,000
8	912	148	4.34	1.001	13.3	1,000
2	133	1,00	4.83	1.00	31	1,000
10	160	188	5.46	1.00	385	1,000
11	101	2.12	616	1.001	39.7	1.000
11	134	2.8	6.95	1.001	46.7	1.000
18	\$7.8	3.07	1.85	3.001	DAG	1,000
34	413	3.40	8.36	1.001	63.4	1,000
15	315	164	10	1.001	73.4	1,000
16	1.45	1.57	713	1.001	347	1,000
17	2.89	4.18	12.0	1.001	97.4	1.000
15	4.9	2,00	54.4	1.001	112	7.900
19	5.14	2.67	,163	1.001	134	7.900
28.	33	3.32		-	-	





Print Date:	02.05.2014		Rei	RISTO	Thi:	DASTD	Dep	Deptit
atabase Name:	AQMAH.gdb	1	39.5	1.35	144	1.005	3.44	1.000
TMX:	276653	.2	-45.9	142	3.49	1.000	1.13	1.000
		3	-46.6	138	4,79	1.000	11.7	1.000
FTMY:	2347031	4	31	1.55	4,96	1,000	253	1,000
EPSG:	32644=LITM Zone 44N (WGS 84)	5	-40.1	140	632	1,000	38.6	1,000
Number of		7	181	1.95	7.13	2,005	35.7	2,000
Data Points:	0 points in use		112	1.99	EB	1.005	45.8	1.000
First Gate:	4.060E-06 sec		71.5	1.51	2.09	2.000	12.9	1000
Last Gate:	3.826E-03 sec	34	38.7	1.17	10.3	1.000	63.1	1.000
		31	11.2	12	11.6	1005	74,7	1000
Data Residual:	0,4	32	17.9	1.40	11.1	2.005	47.1	2,000
No. of Layers:	20	13	22.6	1.47	14.5	2.006	109	2.000
DOD	189m	34	21.4	1.45	16.7	1.005	119	2.000
Program:	ViewTEM.exe, version 1.0.1.19	38	21.6	145	11.1	2.000	135	2,000
e tolligun	Alexi Fukeyet Abrowni 1/0/1/12	38	22.9	1.52	21.3	2,000	150	2.000
		17	41.1	5.41	24	1.000	ID-	2.000
		18	40.0	6.30	30.6	2.005	210	1000
		35	90.7	108	30.0	2.00%	249	1900
	Namp For Int				2	5		
		-				5		
a		2 8 1 5 5 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						
						1		
a a a								

Print Date:	02.05.2014		3hr.
Database Name:	AOMAH.odb	1	367
UTMX:	280119	2	135
UTMY:	2345660	4	129
EPSG:	32644=UTM Zone 44N (WGS 84)	5	3
Number of		8	-9 844
Data Points:	0 points in use		873
First Gate:	4.060E-06 sec		74
Last Gate:	9.565E-04 sec	38	-52.3
Data Residual:	0.4	11 12	313
No. of Layers:	20	11	324
DOL	129m	34	E4
Program:	ViewTEM.exe, version 1.0.1.19	15	122
r rograms	FIRST CLOSERY, VELOCIT FIGURE F	36	158

¥	3ht.	BeiSTD.	736	TM:STD	Dep	Deptito
1	307	1.40	2.45	1.001	2.65	1.001
2	18.5	135	2.00	1.001	5.64	1.001
3.	7.39	1.25	3.37	1.001	9.03	1.001
Ł	329	1.35	381	1.001	12.8	1000
5	3	1.40	43	1.001	17.3	1.000
5	9	1.62	4.16	1.001	22	1.000
9	\$4.4	1.71	5.48	1.001	27.5	1.000
1	873	13	6.19	1.001	53.6	1.000
*	74	1.68	6.00	1.001	40.6	1.000
38	-52.3	1.49	7.50	1.001	453	1.000
11	31.7	1.51	1.9	1.001	57.4	1.000
12	384	1.0	30.1	1.001	67.5	1.000
11	324	1.51	11.4	1.000	71.1	1.000
14	12.4	1.68	12.8	1.001	91.6	1.000
15	122	1.89	345	1.001	106	1.000
16	150	2.45	36.5	1.001	122	1.000
37	171	3.44	384	1.001	341	1.000
38	180	411	30.8	1.001	162	1.000
38	195	434	23.5	1.001	185	1.000
28	106	3.60				

Test in

i.

--

-

.....

401 1918

Dep Dep5 11	TRASTID	This	ReSTD.	Sec	
34 1.005	1.003	3.4	99.00	346	1
125 1905	1.001	3.84	142	£2.4	2
11.6 1.005	1.003	434	1.58	823	3
05.5 1.000	1.001	49	131	.85	. 4
22 1000	1.001	44	146	101	5
28.3 1.000- 35.3 1.000	1.064	6.34 7.05	1.34	51.9	
48.3 1,000	1.001	7.96	1.9	21	7
511 1000	LOOL	3.90	137	205	
f14 1.000	1.001	101	142	313	10
73.6 1.000	1.001	11.5	1.44	22	11
85.5 1.000	1.001	12.9	1.45	443	12
101 2.000	2.001	14.6	1.2	32.7	13
118 1.000	1.001	165	1.61	37.7	14
138 1.000	1001	12.5	1.36	10	15
157 1.000	1.001	21	140	6.85	16
101 1.000 208 1.000	1.001	217	414	R:14 12.9	17
234 1.000	1.065	30.2	2.62	13.9	15
-29 1.997	1.041	204	3.8	349	29
	V				-
		Ę			
	, X	7			:

Sec. Web

rint Date:	02.05.2014		Ret	BerSTD	Thé	ThisTD	Dep	Deg6 TD
atabase Name:	AQMAH.odb	1	8.9	-99.00	4.22	1001	4.22	1.001
MX:	270749	.2	14.5	L28	4.78	1.001	2.95	1.061
			251	1.38	3.38	1.001	34.4	1.061
MY:	2355800	4	22.5	140	6.02	1.001	20.4	1.000
5G:	32644=UTM Zone 44N (WGS 84)	5	253	1.38	6.96	1.001	223	1.080
mber of	The state of the first of the		25.6	140	7.34	1.001	10	1.080
ta Points:	0 points in use	T.	12.5	1.44	874	1.001	48.8	1,000
st Gate:	4.060E-06 sec		46.5	1.9	940	1.001	01.8	L 080
			792	1.47	12.6	1.001	77.3	1.000
st Gate:	3.826E-03 sec	20	78.5	1.71	142	1.001	8.5	1.000
ta Residual:	0.3	12	74.0	1.0	16	1.001	108	1.000
of Layers:	20	1.0	61.1	1.61	111	1.001	126	1.000
		14	43.5	1.55	204	1.001	146	1000
)E	261m	15	22.6	1.9	21.1	1.001	150	1.000
ogram:	ViewTEM.exe, version 1.0.1.19	16	16.5	148	28	1.001	195	1.000
		17	20.1	2.99	34	1.001	125	1.000
		13	64	2.00	33.2	1.001	258	1.000
		19	4.63	2.67	37.5	1.001	295	1,000
		29	8.46	3.32	-	-	-	-
					2	1		
					Ĵ			
					2			
1++()+++()++()+++	(4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
	(
		en e a e e e e e e e e e e e e e e e e e						
		A P S U S S S S S S S S S S S S S S S S S						
		A THE REPORT OF A DESCRIPTION OF A DESCRIPANTO OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCR						

ANNEXURE-V: Well wise Salient features of Ground Water Exploration

1. EXPLORATORY WELL DRILLED AT PARDI (DESHMUKH)

Location of Site

The village Pardi lies between north latitude 21°16'40.7" and east longitude 78°46'05" and falls in the Survey of India Toposheet No. 55 K/15. It is situated at about 25 kms from Kalmeshwar on Ramgiri road and the site is located near overhead tank of village.

History of Drilling Operations:

The exploratory well was drilled by DTH cum Rotary rig. The rig unit was shifted on 25/7/13 to well site. The drilling started on 25/7/13 at 1246 hrs and completed on 25/7/13 at 1959 hrs.

Details of Drilling:

- a) Rock Formation : Basalt
- b) Type : Deccan Traps
- c) Total depth drilled : 173.00 m.
- d) Drilling started on : 25/7/13 at 1246 hrs
- e) Drilling completed on : 25/7/13 at 1959 hrs
- f) Total depth drilled in Weathered Formation (with 279.4mm; Button Bit): 6.00 m.
- g) Total depth drilled in Hard rock Formation (with 165.1 mm Button Bit):167.00 m.
- h) Length of casing : 6.00 m bgl and 0.60 m agl = 6.60 m
- i) Diameter of Casing : 203mm (8")
- j) Gauge of casing pipe :7.5mm
- k) Material of Casing pipe : M.S. Pipe

Drilling was stopped at Pardi on 25/7/13 at 173 m bgl due to sudden drop of penetration and also due to falling of strata from Collapsible red bole encountered at 87 to 96 m bgl. **Geological Data:**

The village Pardi in general comprises of basaltic formation of Deccan traps. Thickness of top soil is 1 m bgl while the thickness of weathered basalt is 6.00 mbgl. The collapsible red bole encountered at 87 to 96 m bgl.

Table1.1: Drill Time log of the	Exploratory well drilled	🗆 at village Pardi,	, Kalmeshwar taluka,
Nagpur district.			

Date	Depth range (m)		Thick- ness(m)		Drilling time(min)		-		Penetration rate.
	From	То		From	То	(min)	min/m		
25/07/2013	0	5.65	5.65	12.46	13.04	8	1.42		
	5.65	11.3	5.65	13.46	13.51	5	0.88		
	11.3	16.95	5.65	13.53	14.02	9	1.59		
	16.95	22.6	5.65	14.04	14.11	7	1.24		
	22.6	28.25	5.65	14.13	14.21	8	1.42		
	28.25	33.9	5.65	14.23	14.32	9	1.59		
	33.9	39.55	5.65	14.34	14.43	9	1.59		
	39.55	45.2	5.65	14.45	14.54	10	1.77		
	45.2	50.85	5.65	14.56	15.05	9	1.59		
	50.85	56.5	5.65	15.06	15.15	9	1.59		
	56.5	62.15	5.65	15.17	15.28	11	1.95		
	62.15	67.8	5.65	15.3	15.41	11	1.95		
	67.8	73.45	5.65	15.43	15.54	11	1.95		

Date	Depth range (m)		Thick-	Dr	illing	Total	Penetration
			ness(m)	time	e(min)	time	rate.
	From	То		From	То	(min)	min/m
	73.45	79.1	5.65	15.56	16.04	8	1.42
	79.1	84.75	5.65	16.04	16.18	12	2.12
	84.75	90.4	5.65	16.2	16.29	9	1.59
	90.4	96.05	5.65	16.31	16.41	10	1.77
	96.05	101.7	5.65	16.43	16.52	9	1.59
	101.7	107.35	5.65	16.54	17.04	10	1.77
	107.35	113	5.65	17.06	17.16	10	1.77
	113	118.65	5.65	17.18	17.9	12	2.12
	118.65	124.3	5.65	17.32	17.42	10	1.77
	124.3	129.95	5.65	17.44	17.54	10	1.77
	129.95	135.6	5.65	17.56	18.05	11	1.95
	135.6	141.25	5.65	18.07	18.17	10	1.77
	141.25	146.9	5.65	18.19	18.29	10	1.77
	146.9	152.55	5.65	18.31	18.41	10	1.77
	152.55	158.2	5.65	18.43	18.55	12	2.12
	158.2	163.85	5.65	18.58	19.08	10	1.77
	163.85	169.5	5.65	19.1	19.49	10	2.86
	169.5	173	3.5	19.52	19.59	7	2.00

Table1.2: Consolidated	lithological	log	of	the	Exploratory	well	drilled	at	village	Pardi,
Kalmeshwar taluka, Nag	pur district.									

Depth ra	nge	Thickness	Consolidated Lithology
(m)		(m)	
From	То		
0	1.5	1.5	Top Soil: Grey mixed with silt and sand grains.
1.5	4.5	3	Basalt: Weathered; brownish grey and black; irregular pebbles.
4.5	19	14.5	Basalt: Fresh; hard; black with irregular chips
19	27	8	Basalt: Vesicular; hard; compact; partially filled with Green Earth Minerals.
27	39	12	Basalt: Massive; fresh; hard and compact with irregular chips.
39	47	8	Basalt: Amygdular; fresh; hard filled with secondary minerals.
47	60	13	Basalt: Massive; fresh; hard and compact with irregular chips.
60	67	7	Basalt: Amygdular; dark, fresh, hard and partially filled with secondary minerals.
67	87.5	20.5	Basalt: Massive; fresh; hard and compact with irregular chips.
87.5	96.05	8.55	Red bole: Red; pure, sticky mixed with friable irregular pebbles.
96.05	101.7	5.65	Basalt: Amygdular, brown, hard mixed with secondary minerals.
101.7	104.7	3	Green bole: green, sticky friable pebbles of 10-15cm, with negligible basalt chips.
104.7	118.65	13.95	Basalt: Amygdular, dark brown, hard fresh mixed/filled with

Depth rangeThicknessConsolidated Lithology(m)(m)			Consolidated Lithology
From	То	(,	
			secondary minerals.
118.7	152	33.35	Basalt: Massive, dark, fresh, compact medium grained with negligible chips.
152	152.55	0.55	Fractured Basalt: brown, medium grained mixed with friable chips.Q:0.8 lps
152.6	160	7.45	Basalt: Massive, dark, fresh medium to fine grained
160	161	1	Fractured Basalt : brown, medium grained mixed with friable chips;Q:4.30 lps
161	173	12	Basalt: Massive, dark, fresh, compact medium grained with negligible chips.

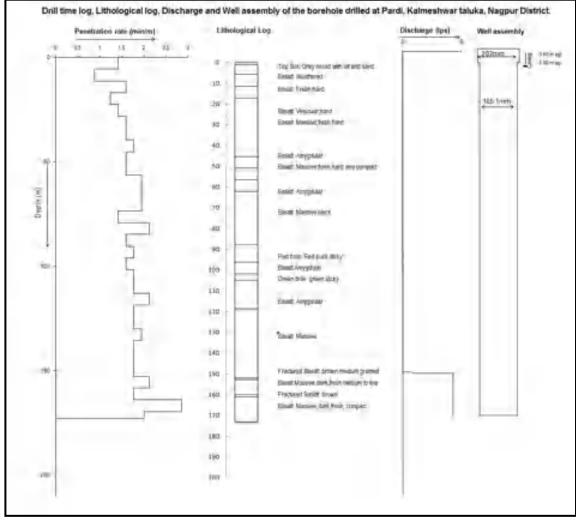


Fig. 1.1: Composite Log of Exploratory Well Drilled at Pardi, Chandrabhaga Watershed (WGKKC-2)

S.No	Zones encountered		Cumulative Discharge	Lithology
	From	То		
1	152	152.55	0.8 lps	Fractured Basalt: brown, medium grained mixed with friable chips.
2	160	161	4.30 lps	Fractured Basalt: brown, medium grained mixed with friable chips.

Table1.3: Fracture Zones encountered

Well Hydraulics and water quality

The well at village Pardi has been filled up just after the removal of drill rods due to encounter of collapsible formation at different depths. Therefore no pumping test has been conducted and no water sample has been collated for ascertaining the water quality.

2. EXPLORATORY WELL DRILLED AT SONKHAMB

Location of Site

The village Sonkhamb lies between north latitude 21°16'21.1" and east longitude 78°43'22.1" and falls in the Survey of India Toposheet No. 55 K/12. It is situated at about 20 kms from Kalmeshwar on Katol road and the site is located north of village near railway track., locally known as "Kund of Village".

History of Drilling Operations:

The exploratory well was drilled by DTH cum Rotary rig. The rig unit was shifted on 26/7/13 to well site. The drilling started on 26/7/13 at 1140 hrs and completed on 26/7/13 at 2040 hrs. The drilling details and drilling time log is as follows

Details of Drilling:

- a) Rock Formation: Basalt
- b) Type: Deccan Traps
- c) Total depth drilled: 197.75 m.
- d) Drilling started on 26/7/13 at 1140 hrs
- e) Drilling completed on 26/7/13 at 2040 hrs
- f) Total depth drilled in Weathered Formation (with 279.4mm; Button Bit): 11.20 m.
- g) Total depth drilled in Hard rock Formation (with 165.1 mm Button Bit):186.55 m.
- h) Length of casing: 11.20 m.bgl and 0.51m.agl=11.71
- i) Diameter of Casing: 203mm(8")
- j) Gauge of casing pipe:7.5mm
- k) Material of Casing pipe: M.S.Pipe

Drilling stopped at Sonkhamb on 26/7/13 at 197.75 mbgl as normal rate of penetration drops due to encounter of Gondwana Sandstone.

Geological Data:

The village Sonkhamb in general comprises of basaltic formation of Deccan traps. Thickness of top soil is 1 m bgl while the thickness of weathered basalt is 11.20 mbgl. The green bole encountered at 20.00 to 22.5 m bgl.

Drilling Depth range (m) Total penetration rate time (min) DATE time(min) min/m From То From То 26/07/2013 0 5.65 11.40 11.55 15 2.65 11.3 12.10 0.88 5.65 11.56 5 13 2.30 11.3 16.95 13.56 14.09 16.95 22.6 14.36 14.39 0.53 3 22.6 28.25 14.40 14.49 9 1.59 28.25 33.9 14.50 14.58 8 1.42 33.9 14.59 6 39.55 15.07 1.06 39.55 45.2 15.08 15.18 10 1.77 15.19 45.2 50.85 15.31 12 2.12 50.85 56.5 15.32 15.41 9 1.59 56.5 62.15 15.42 15.54 12 2.12 62.15 67.8 15.55 16.08 13 2.30 7 67.8 73.45 16.20 1.24 16.09 73.45 79.1 16.21 16.27 6 1.06 79.1 84.75 16.28 16.34 6 1.06 84.75 90.4 16.37 7 1.24 16.44 90.4 13 96.05 16.45 16.58 2.30 96.05 101.7 17.00 17.08 8 1.42 101.7 107.35 17.10 17.17 7 1.24 113 17.25 1.06 107.35 17.19 6 113 118.65 17.26 17.34 8 1.42 118.65 124.3 17.36 17.49 13 2.30 124.3 7 1.24 129.95 17.51 17.58 129.95 135.6 18.00 18.10 10 1.77 135.6 141.25 18.13 18.24 11 1.95 141.25 146.9 18.28 13 2.30 18.41 146.9 152.55 18.45 18.53 8 1.42 152.55 158.2 18.57 19.06 9 1.59 158.2 163.85 19.10 19.17 7 1.24 163.85 169.5 19.19 19.26 7 1.24 169.5 175.15 19.29 19.37 8 1.42 175.15 180.8 19.41 19.55 14 2.48 180.8 19.58 20.10 12 2.12 186.45 186.45 192.1 20.14 20.22 8 1.42 192.1 197.75 20.26 20.40 14 2.48

Table 2.1: Drill Time log of the Exploratory well drilled at village Sonkhamb, Katol taluka, Nagpur district.

Depth		Thickness	Consolidated Lithology
range(m) (m)			consolidated Ethology
	1	1.0	Top Soil: Dark brown, loose, silt mixed with chips
1	6	5.0	Basalt: Weathered, brownish-black, mixed with coarse grains and
-		0.0	friable chips
6	13	7.0	Basalt: Dark-brown, fresh, hard with irregular chips. Fracture
	-		between:11.10-11.20:Q; Traces
13	20	7.0	Basalt: Grey, fractured friable chips mixed with coarse grains.
20	22.5	2.5	Green Bole: Green, clayey, sticky, plastic mixed with fragile chips
			and negligible basaltic grains; fracture between
22.6	31	8.4	Massive Basalt: Dark grey, fresh, hard compact mixed with grains
			and chips fracture 22.60-23.0 m. with Q:0.78 lps
31	34	3.0	Amygdaloidal Basalt: Pinkish-grey, vesicles filled with secondary
			minerals
			fragile and friable chips and grains.
34	48	14.0	Massive Basalt: Dark grey, fresh, hard compact mixed with grains
			and chips
48	50.5	2.5	Green Bole: Green, clayey, sticky, plastic
50.5	60	9.5	Fractured Basalt: Light grey, mixed with hard and friable irregular
			chips and pebble; Q:1.73 lps.
60	70	10.0	Massive Basalt: Dark grey, fresh, hard compact mixed with grains
			and chips
70	71.5	1.5	Green Bole: Green, clayey, sticky, plastic
71.5	78	6.5	Amygdaloidal Basalt: Light green, filled with secondary friable
			minerals and irregular chips.
78	96	18.0	Massive Basalt: Dark brown, fresh, hard compact mixed with
			coarse grains and irregular chips.
96	98	2.0	Green Bole: Green, clayey, sticky, plastic
98	106	8.0	Amygdaloidal Basalt: Light green, filled with secondary friable
			minerals and irregular chips.
106	118	12.0	Massive Basalt: Dark brown, fresh, hard compact mixed with
110	4.95	7.0	coarse grains and irregular chips.
118	125	7.0	Amygdaloidal /vesicular Basalt: Light green, filled with secondary
125	132.5	7.5	minerals Massive Basalt: Dark brown, fresh, hard compact mixed with
125	152.5	7.5	coarse grains and irregular chips.
133	135	2.5	Green Bole: Green, clayey, sticky, plastic
135	139	4.0	Amygdaloidal /vesicular Basalt: Light green, filled with secondary
122	133	4.0	
139	147	8.0	
133	147	0.0	
147	149	2.0	
TAN	1.55	J.U	
153	156	3.0	
100			
156	171	15.0	
			minerals
133 139 147 149 153 156	133 147 149 153 156 171	 4.0 8.0 2.0 4.0 3.0 15.0 	minerals Massive Basalt: Dark brown, fresh, hard compact mixed with coarse grains and irregular chips. Green Bole: Green, clayey, sticky, plastic Amygdaloidal /vesicular Basalt: Light green, filled with second minerals Massive Basalt: Dark brown, fresh, hard compact mixed with coarse grains and irregular chips. Amygdaloidal /vesicular Basalt: Light green, filled with second

Table 2.2: Consolidated lithological log of the Exploratory well drilled at village Sonkhamb, Katol taluka, Nagpur district.

Depth Thickness		Thickness	Consolidated Lithology
range(m) (m)		(m)	
171	171 182 11.0		Massive Basalt: Dark brown, fresh, hard compact mixed with
			coarse grains and irregular chips.
182	189	7.0	Amygdaloidal /vesicular Basalt: Light green, filled with secondary
			minerals
189	195	6.0	Massive Basalt: Dark brown, fresh, hard compact mixed with
			coarse grains and irregular chips.
195	197.75	2.8	Sand stone: Grey, permeable, medium to coarse grains; Q:5.15 lps

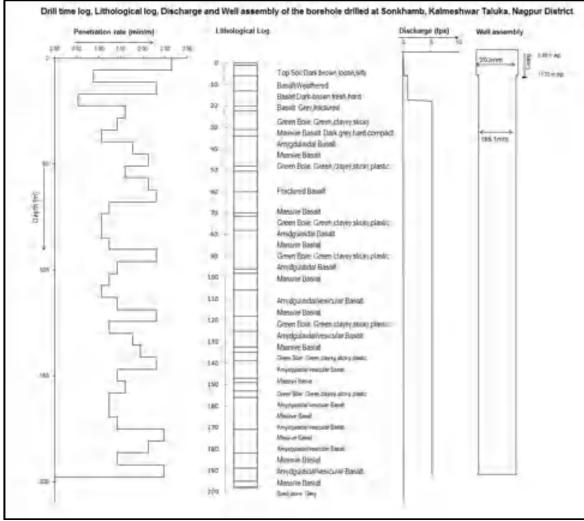


Fig.2.1: Composite Log of Exploratory Well Drilled at Sonkhamb, Chandrabhaga Watershed (WGKKC-2)

S.No	Zones end	countered	Cumulative Discharge	Lithology
	From	То		
1	11.20	12.20	Traces	Basalt: Dark-brown, fresh, hard with irregular chips .Fractured
2	22.60	23.00	0.78	Fractured Basalt
3	76.45	79.1	1.73	Fractured Basal t: Light grey, mixed with hard and friable irregular chips and pebble;

S.No	Zones end	Zones encountered		Lithology
	From	То		
4	195.1	197.75	5.15	Sand stone: Grey, permeable, medium to coarse grains.

Development

The well was developed using air compressor for 15 hrs till the water was free from sand particles and Discharge measured was 5.15 lps.

Well Hydraulics:

Aquifer Performance Test (APT)

For estimation of aquifer parameters, APT conducted on exploratory well for 1000 minutes duration and 90% recuperation recorded.

Table 2.4: The details of the Aquifer Performance Test (APT) Conducted on Exploratory Well at Sonkhamb, Kalmeshwar Taluka, Nagpur District.

Date	28/12/13
Static Water Level (SWL)	11.27 mbgl
Discharge (Q)	2.25 lps
Drawdown (Δs)	1.177 m
Transmissivity (T)	30 m²/day
Specific Capacity	166.15 m³/day/m

Chemical Quality

During drilling of exploratory well, water sample was collected for determination of Chemical quality. The Sample is analyzed in the chemical laboratory of CGWB,CR, Nagpur.

Location	Turne	pН	Ec μS/cm	тн	Ca	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F
Location	Туре			ppm										
	Zone-I (22.60-23 m)	8.3	857	400	26	81	16	0.23	3	128	160	147	11	1.40
Sonkhamb	Zone- I(76.45- 79.10)	8.2	641	285	8	64	15	0.26	0	354	25	5	2	0.76
	Pumping Test	8.2	525	250	30	43	4	0.07	0	244	28	9	29	0.6

Table 2.5: Results of the chemical analysis of Exploratory Well

Chemical analysis of water sample collected from the Zone-I of the exploratory well reveals that the range of concentration in parameters viz TH, Mg are more than desirable limit while the concentration of F is more than desirable limit. In Zone-II of the exploratory well the analysis revealed that the range of concentration in parameters viz Mg, HCO₃ are more than desirable limit while all other parameters are within the desirable limit. While In the sample collected during pumping test of the exploratory well representing cumulative discharge, the analytical results reveals that the range of concentration in parameters viz Mg is more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" laid down by Bureau of Indian Standards (BIS 10500-2013).

3. Exploratory well drilled at Sonegaon

Location of Site

The village Sonegaon lies north latitude $21^{\circ}13'49.1"$ and east longitude $78^{\circ}49'54.7"$ and falls in the Survey of India Toposheet No. 55 K/16. It is situated at about 12 kms from Kalmeshwar on Linga road and the site is located 20 m South of Village in the premises of Smashanbhumi.

History of Drilling Operations:

The exploratory well was drilled by DTH cum Rotary rig. The rig unit was shifted on 28/7/13 to well site. The drilling started on 28/7/13 at 1014 hrs and completed on 28/7/13 at 1836 hrs . The drilling details and drilling time log is as follows

Details of Drilling:

- a) Rock Formation: Basalt
- b) Type: Deccan Traps
- c) Total depth drilled: 135.60 m.
- d) Drilling started on 28/7/13 at 1014 hrs
- e) Drilling completed on 28/7/13 at 1836 hrs
- f) Total depth drilled in Weathered Formation (with 279.4mm; Button Bit): 12.00 m.
- g) Total depth drilled in Hard rock Formation (with 165.10 mm Button Bit):123.60 m.
- h) Length of casing: 12.00 m.bgl and 0.60m.agl=12.60
- i) Diameter of Casing: 203mm(8")
- j) Gauge of casing pipe:7.5mm
- k) Material of Casing pipe: M.S.Pipe

Drilling was stopped at Sonegaon on 28/7/13 at 135.60 mbgl as normal rate of penetration drops due to Collapsible red boles at various depths.

Geological Data:

The village Sonegaon in general comprises of basaltic formation of Deccan traps. Thickness of top soil is 0.5 m bgl while the thickness of weathered basalt is 12.00 mbgl. The collapsible green bole and red bole beds are encountered at 23.5 to 26.5 & 70.00 to 79.00 m bgl and 79 to 84.75 and 84.75 to 96.05 m bgl. And 116 to 118.65 and 118.65 to 124.3 mbgl.

Table3.1: Drill Time log of the Exploratory well drilled at village Sonegaon, Kalmeshwar taluka, Nagpur district.

Date	Depth range (m)		Thick- ness(m)	Drilling time(min)	Drilling time(min)		Penetration rate. min/m
	From	То		From	То		
28/07/2013	0	5.65	5.65	10.14	10.30	16	0.35
	5.65	11.3	5.65	10.31	10.44	13	0.43
	11.3	16.95	5.65	12.55	13.03	8	0.71
	16.95	22.6	5.65	13.04	13.15	11	0.51
	22.6	28.25	5.65	13.16	13.25	9	0.63
	28.25	33.9	5.65	13.26	13.31	5	1.13
	33.9	39.55	5.65	13.33	13.38	5	1.13
	39.55	45.2	5.65	13.39	13.51	12	0.47
	45.2	50.85	5.65	13.52	13.57	5	1.13
	50.85	56.5	5.65	13.58	14.06	8	0.71
	56.5	62.15	5.65	14.07	17.19	12	0.47
	62.15	67.8	5.65	14.23	14.29	6	0.94

Date	Depth range (m)		Thick- ness(m)	Drilling time(min)		Total time (min)	Penetration rate. min/m
	From	То		From	То		
	67.8	73.45	5.65	14.30	14.38	8	0.71
	73.45	79.1	5.65	14.39	14.46	7	0.81
	79.1	84.75	5.65	14.47	14.56	9	0.63
	84.75	90.4	5.65	14.57	15.04	7	0.81
	90.4	96.05	5.65	15.06	15.13	7	0.81
	96.05	101.7	5.65	15.14	15.30	16	0.35
	101.7	107.35	5.65	15.37	15.43	6	0.94
	107.35	113	5.65	15.46	15.58	12	0.47
	113	118.65	5.65	16.00	16.08	8	0.71
	118.65	124.3	5.65	16.10	16.20	10	0.56
	124.3	129.95	5.65	16.22	17.02	40	0.14
	129.95	135.6	5.65	17.55	18.36	41	0.14

Table 3.2: Consolidated lithological log of t	he Exploratory wel	ell drilled at vil	lage Sonegaon,
Kalmeshwar taluka, Nagpur district.			

Depth ra	inge (m)	Thickness	Consolidated Lithology
From	То	(m)	
0	2	2	Top Soil: light grey, weathered silt
2	9.2	7.2	Basalt: Light grey; weathered and fractured friable irregular chips and grains.
9.2	23.5	14.3	Massive Basalt: Dark grey, fresh, hard, compact mixed with irregular chips. Minor Facture between:6.0-7.0 mt. with Q:0.14 lps and 14.30-15.30 m. Q:0.14 lps
23.5	26.5	3	Green Bole: green, clayey ,sticky with friable boles(Chips)
26.5	34	7.5	Amygdaloidal Basalt: Light grey, vesicles filled with sec minerals and friable irregular chips
34	44	10	Massive Basalt: Greyish-brown, fresh, hard, compact with irregular chips and grains.
44	50	6	Vesicular Basalt: Vesicular, Greyish brown, filled with sec. minerals and fragile grains and chips
50	68	18	Massive Basalt: Greyish-brown, fresh, hard, compact with irregular chips and grains.
70	79	9	Red Bole: Red, sticky and plastic clayey with friable boles.
79	84.75	5.75	Green Bole: green, clayey ,sticky with friable boles(Chips)
84.75	96.05	11.3	Red Bole: Red, sticky and plastic clayey with friable boles.
96.05	113	16.95	Massive Basalt: Greyish-brown, fresh, hard, compact with irregular chips and grains.
113	116	3	Amygdaloidal Basalt: Light grey, vesicles filled with green sec. minerals and friable irregular chips
116	118.65	2.65	Red Bole: Red, sticky and plastic clayey with friable boles.
118.65	124.3	5.65	Green Bole: green, clayey ,sticky with friable boles(Chips)
124.3	135.6	11.3	Amygdaloidal Basalt: Light and dark grey friable green boles and sec minerals.

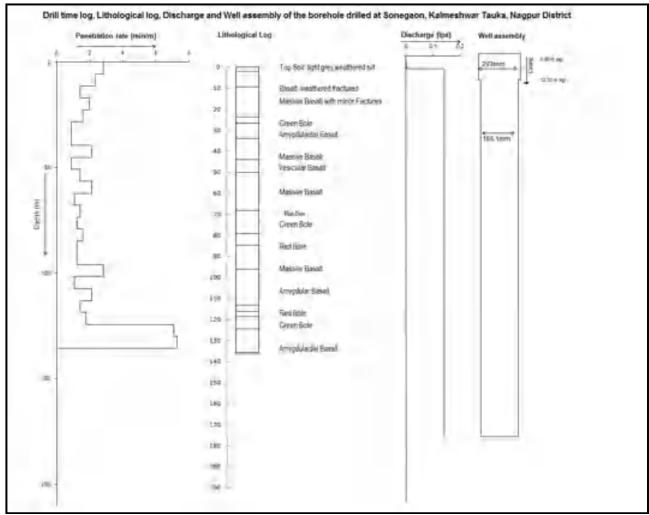


Fig.3.3: Composite Log of Exploratory Well Drilled at Sonegaon, Chandrabhaga Watershed (WGKKC-2)

Table3.3: Fracture Zones encountered

S.No	Drilling Depth		Cumulative Discharge	Lithology and Zones encountered
	From	То		
1	5.65	25.6	0.14 lps	Massive Basalt: Dark grey, fresh, hard, compact mixed with irregular chips. Minor Facture between: 6.0-7.0 mt. with Q:0.14 lps and 14.30-15.30 m. Q:0.14 lps

Well Hydraulics Chemical Quality

The well at village Sonegaon has been filled up just after the removal of drill rods due to encounter of collapsible formation at different depths. Therefore no pumping test has been conducted and no water sample has been collated for ascertaining the water quality.

4. EXPLORATORY WELL DRILLED AT RAMGIRI

Location of Site

The village Ramgiri lies north latitude $21^{\circ}18'4.2"$ and east longitude $78^{\circ}45'27.2"$ and falls in the Survey of India Toposheet No. 55 K/15. It is situated at 28 kms from Kalmeshwar on Pardi road and the site is located near water supply dug well 15 m west of village.

History of Drilling Operations:

The rig unit was shifted to well site on 30/7/13. The drilling started on 30/7/13 at 1403 hrs and completed on 31/7/13 at 1650 hrs. The drilling details and drilling time log is as follows Details of Drilling:

- a) Rock Formation: Basalt
- b) Type: Deccan Traps
- c) Total depth drilled: 179.00 m.
- d) Drilling started on 30/7/13 at 1403 hrs
- e) Drilling completed on 31/7/13 at 1650 hrs
- f) Total depth drilled in Weathered Formation (with 279.4mm; Button Bit): 11.53 m.
- g) Total depth drilled in Hard rock Formation (with 165.10 mm Button Bit):167.47 m.
- h) Length of casing: 11.53 m.bgl and 0.60m.agl=12.13
- i) Diameter of Casing: 203mm(8")
- j) Gauge of casing pipe:7.5mm
- k) Material of Casing pipe: M.S.Pipe

Drilling is stopped at Ramgiri on 31/7/13 at 179.00 mbgl as normal rate of penetration drops due to Collapsible red boles occurred from 127 m bgl. The Gondwana sandstone encountered at 172.5 m bgl.

Geological Data:

The village Ramgiri in general comprises of basaltic formation of Deccan traps. Thickness of top soil is 0.5 m bgl, which followed by massive basaltic formation. The remarkable Red Sticky and plastic Clay with friable chips have been encountered at the depth between 127.30 and 172.50 m bgl, which is 45 m thick.

Table 4.1: Drill Time log of the Exploratory well drilled at village Ramgiri, Kalmeshwar taluka,
Nagpur district.

DATE	Depth r	ange (m)	Thickness(m)	Time		Total	Penetration rate
	-			taken(r	nin)	time	min/m
	From	То		From	То	(min)	
30/07/2013	0	3	3	1403	1408	5	1.67
	3	5.65	2.65	1408	1415	7	2.64
	5.65	8.65	3	1418	1433	15	5.00
	8.65	11.3	2.65	1433	1502	29	10.94
31/07/2013	11.3	14.3	3	1144	1149	5	1.67
	14.3	16.95	2.65	1149	1152	3	1.13
	16.95	19.95	3	1153	1156	3	1.00
	19.95	22.6	2.65	1156	1201	5	1.89
	22.6	25.6	3	1202	1209	7	2.33
	25.6	28.25	2.65	1209	1217	8	3.02
	28.25	31.25	3	1217	1220	3	1.00
	31.25	33.9	2.65	1220	1223	3	1.13
	33.9	36.9	3	1224	1228	4	1.33
	36.9	39.55	2.65	1228	1233	5	1.89
	39.55	42.65	3.1	1236	1241	5	1.61
	42.65	45.2	2.55	1243	1247	4	1.57
	45.2	48.2	3	1249	1251	2	0.67

From 48.2 50.85 53.85 56.5	To 50.85 53.85		taken(r From		time	min/m
48.2 50.85 53.85	50.85	0.07		То	(min)	
50.85 53.85	-	2.65	1251	1255	4	1.51
53.85		3	1256	1301	5	1.67
	56.5	2.65	1301	1303	2	0.75
1 56 5	59.5	3	1301	1308	4	1.33
59.5	62.15	2.65	1304	1308	3	1.13
	-					1.00
		-				1.51
						1.67
						2.26
						1.33
		-				
						2.26
						4.33
						3.77
						3.00
						3.77
		-				1.67
						3.02
	-					0.67
99.05	101.7		1451	1455		1.51
101.7	104.7	3	1456	1459	3	1.00
104.7	107.35	2.65	1459	1505	6	2.26
107.35	110.35	3	1507	1511	4	1.33
110.35	113	2.65	1511	1517	6	2.26
113	116	3	1520	1523	3	1.00
116	118.65	2.65	1523	1526	3	1.13
118.65	121.65	3	1528	1530	2	0.67
121.65	124.3	2.65	1530	1533	3	1.13
124.3	127.3	3	1535	1539	4	1.33
127.3	129.95	2.65	1539	1544	5	1.89
129.95	132.95	3	1547	1551	4	1.33
132.95	135.6	2.65	1551	1555	4	1.51
135.6		3	1558		2	0.67
		2.65			2	0.75
		3				0.67
		-				1.13
						1.00
						1.13
						1.33
						0.75
						0.67
						1.15
		-				1.33
	-					0.38
						0.67
	104.7 107.35 110.35 113 116 118.65 121.65 124.3 127.3 129.95	65.15 67.8 67.8 70.8 70.8 73.45 73.45 76.45 76.45 79.1 79.1 82.1 82.1 84.75 84.75 90.4 90.4 93.4 90.4 93.4 90.4 93.4 90.4 93.4 96.05 99.05 96.05 99.05 96.05 99.05 90.4 101.7 101.7 104.7 101.7 104.7 101.7 107.35 107.35 110.35 110.35 113 111 116 118.65 121.65 121.65 124.3 121.65 124.3 124.3 127.3 129.95 132.95 132.95 135.6 133.6 141.25 144.25 144.25 144.25 144.25 144.25	65.1567.82.6567.870.8370.873.452.6573.4576.45376.4579.12.6579.182.1382.184.752.6584.7587.75387.7590.42.6590.493.4393.496.052.6596.0599.05399.05101.72.65101.7104.73104.7107.352.65107.35110.353110.351132.65101.7104.73104.7107.353110.351132.651131163116118.652.65118.65121.653121.65124.32.65129.95132.953132.95135.62.65135.6138.63138.6141.252.65144.25146.92.65144.25146.92.65144.9149.93144.25146.92.65144.9149.93144.25146.92.65155.553155.55158.22.65158.2163.852.65158.2163.853166.85166.853166.85169.52.65169.5166.853169.5169.52.65	65.1567.82.65131467.870.83131970.873.452.65132473.4576.453133276.4579.12.65133679.182.13134582.184.752.65135884.7587.753141487.7590.42.65142390.493.43143593.496.052.65144096.0599.053144999.05101.72.651451101.7104.731456104.7107.352.65151111311631507110.351132.65151111311631520116118.652.651523124.3127.331535127.3129.952.651530129.5135.62.651531135.6138.631558138.6141.252.651551135.6138.631558138.6141.252.651607146.9149.931612144.25146.92.651607144.25146.92.651607144.25146.92.651607144.25146.92.651607144.25146.92.651615155.531612144.25146.9	65.1567.82.651314131867.870.831319132470.873.452.651324133073.4576.4531332133676.4579.12.651336134279.182.131345135882.184.752.651358140884.7587.7531414142387.7590.42.651423143390.493.431435144093.496.052.651440144896.0599.0531449145199.05101.72.6514511455101.7104.7314561459104.7107.352.6514591505107.35110.35315071511110.351132.6515231526116118.652.6515231526118.65121.65315281530121.65124.32.6515301533124.3127.3315351539127.3129.952.6515511555135.6138.6315581560138.6141.252.6516071610144.25144.25316051607144.25144.25316121615135.6138.6315581560138.6141.25 </td <td>65.15 67.8 2.65 1314 1318 4 67.8 70.8 3 1319 1324 5 70.8 73.45 2.65 1324 1330 6 73.45 76.45 3 1322 1336 4 76.45 79.1 2.65 1336 1342 6 79.1 82.1 3 1345 1358 13 82.1 84.75 2.65 1358 1408 10 84.75 87.75 3 1414 1423 9 87.75 90.4 2.65 1423 1433 10 90.4 93.4 3 1435 1440 5 93.4 96.05 2.65 1440 1448 8 96.05 99.05 3 1449 1451 2 99.05 101.7 2.65 1459 3 1047 107.35 2.65 1511 4 110.3</td>	65.15 67.8 2.65 1314 1318 4 67.8 70.8 3 1319 1324 5 70.8 73.45 2.65 1324 1330 6 73.45 76.45 3 1322 1336 4 76.45 79.1 2.65 1336 1342 6 79.1 82.1 3 1345 1358 13 82.1 84.75 2.65 1358 1408 10 84.75 87.75 3 1414 1423 9 87.75 90.4 2.65 1423 1433 10 90.4 93.4 3 1435 1440 5 93.4 96.05 2.65 1440 1448 8 96.05 99.05 3 1449 1451 2 99.05 101.7 2.65 1459 3 1047 107.35 2.65 1511 4 110.3

Depth r	ange	Thickness	Consolidated Lithology
(m)		(m)	
From	То		
0	0.5	0.5	Top Soil: Grey, silty and sandy.
0.5	25.6	25.1	Massive Basalt: Dark gritty, fresh, hard, compact
			mixed with friable irregular chips with minor Fr:7.0-8.0:Q:0.78 LPS
25.6	28	2.4	Green Bole: Green, clayey, sticky, plastic
28	33.9	5.9	Amygdular Basalt: Light green, fresh mixed with irregular and friable chips and secondary green minerals.
33.9	53	19.1	Massive Basalt: Dark gritty, fresh, hard, compact and mixed with friable irregular chips.
53	56	3	Green Bole: Green, clayey, sticky, plastic
56	59.6	3.6	Amygdular Basalt: Light green, fresh mixed with irregular and friable chips and secondary green minerals.
59.6	91	31.4	Massive Basalt: Dark grey, fresh, hard, compact and mixed with irregular chips
91	92.5	1.5	Green Bole: Green, clayey, sticky, plastic
92.5	112	19.5	Amygdular Basalt: Light green, fresh mixed with irregular and friable chips and secondary green minerals.
112	127	15	Massive Basalt: Dark grey, fresh, hard, compact and mixed with irregular chips
127	172.5	45.5	Clay: Red. Sticky and plastic with friable chips.
172.5	179	6.5	Sand Stone: Grey, medium to fine grained, quartz feldspathic; Q:6.18

Table4.2: Consolidated lithological log of the Exploratory well drilled at village Ramgiri, Kalmeshwar taluka, Nagpur district.

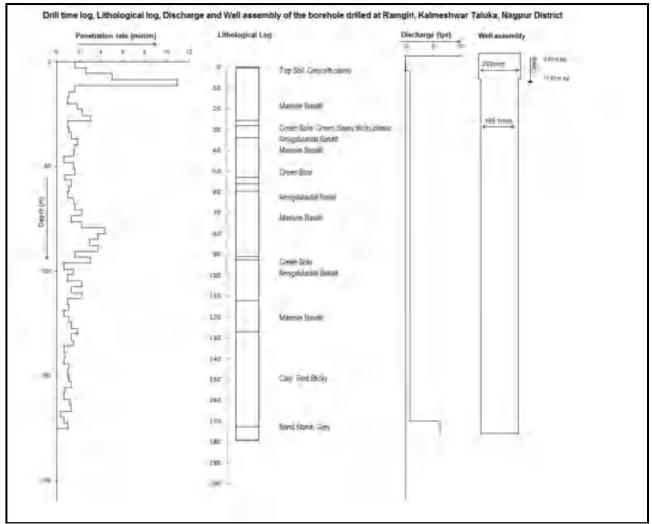


Fig.4.1: Composite Log of Exploratory Well Drilled at Ramgiri, Chandrabhaga Watershed (WGKKC-2)

Table 4.3: Fracture Zones encountered

S.No	Drilling	Depth	Cumulative Discharge	Lithology and Zones encountered
	From	То		
1	7.00	8.00	0.78 lps	Fractured Massive Basalt: Dark gritty, fresh, hard, compact mixed with friable irregular chips.

Well Hydraulics

The well at village Ramgiri has been filled up just after the removal of drill rods due to encounter of collapsible formation at different depths. Therefore no pumping test has been conducted

Chemical Quality

During drilling of exploratory well, water sample was collected for determination of Chemical quality. The Sample is analyzed in the chemical laboratory of CGWB,CR, Nagpur.

Locati on	Туре	р Н	Ec μS/c m	тн	Са	M g	N a	к	CO 3	HCO 3	Cl	SO 4	NO 3	F
							••••••	••••••	•••••	.ppm	•••••	•••••		
	Zone-l (7-8m)	8. 2	798	32 5	48	50	6	0.1 9	0	128	8 9	95	65	0.5 0
Ramgir i	Cum. Dischar ge	8. 1	642	29 0	10	64	1 5	0.2 6	0	366	3 2	3	2	0.6 4

Table 4.4: Results of the chemical analysis of Exploratory Well

Chemical analysis of water sample collected from the Zone-I (7-8 mbgl) of the exploratory well revealed that the range of concentration in parameters viz TH is more than desirable limit while the concentration of all other parameters are within the desirable limit. While sample representing cumulative discharge from both the aquifers, the analysis result revealed that the range of concentration of parameters viz Mg, HCO3 have found more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

5. EXPLORATORY WELL DRILLED AT MALEGAON

Location of Site

The village Malegaon lies between north latitude 21°13'49.1" and east longitude 78°49'54.7" and falls in the Survey of India Toposheet No. 55 K/11. It is situated at 6 kms North of Metpanjra, which is 15 kms from Kalmeshwar on Katol road and the site is located 10 m northwest of railway gate in the primises of kund of village.

History of Drilling Operations:

The rig unit shifted to well site on 16/9/13. The drilling started on 16/9/13 at 14.11 hrs and completed on 17/9/13 at 14.56 hrs. The drilling details and drilling time log is as follows Details of Drilling:

- a) Rock Formation: Basalt
- b) Type: Deccan Traps
- c) Total depth drilled: 200.00 m.
- d) Drilling started on 16/9/13 at 14.11 hrs
- e) Drilling completed on 18/9/13 at 9.44 hrs
- f) Total depth drilled in Weathered Formation (with 279.4mm; Button Bit): 17.64 m.
- g) Total depth drilled in Hard rock Formation (with 190.5 mm Button Bit):182.36 m.
- h) Length of casing: 17.64m.bgl and 0.60m.agl=18.24
- i) Diameter of Casing: 203mm(8")
- j) Gauge of casing pipe:7.5mm
- k) Material of Casing pipe: M.S.Pipe

Geological Data:

The village Malegaon in general comprises of basaltic formation of Deccan traps. Thickness of top soil is 0.5 m bgl. The collapsible bole beds are encountered at 16.90 to 19.95 m bg. The water bearing zones are encountered at 7.0 -8.0 m. with Cumulative Discharge:0.38 lps and 127.3 to129.95 m. With Cumulative Discharge:1.37 lps during drilling.

 Table 5.1: Drill Time log of the Exploratory well drilled at village Malegaon, Katol taluka,

 Nagpur district.

DATE	Depth		Thickness	Time ta	aken	Total	Penetration
	range(m)		ESS(m)	(min)		time (min)	rate m/min
	From	То		From	То		
16/09/2013	0	3	3	1411	1422	11	3.67
	3	5.65	2.65	1422	1434	12	4.53
	5.65	8.65	3	1438	1501	13	4.33
	8.65	11.3	2.65	1501	1524	23	8.68
	11.3	14.3	3	2044	2104	20	6.67
	14.3	16.95	2.65	2104	2122	18	6.79
	16.95	19.95	3	2124	2139	15	5.00
	19.95	22.6	2.65	2139	2150	11	4.15
17/09/2013	22.6	25.6	3	900	911	11	3.67
	25.6	28.25	2.65	911	929	18	6.79
	28.25	31.25	3	931	943	12	4.00
	31.25	33.9	2.65	2006	2014	8	3.02
	33.9	36.9	3	2016	2020	4	1.33
	36.9	39.55	2.65	2020	2024	4	1.51
	39.55	42.65	3.1	2026	2029	3	0.97
	42.65	45.2	2.55	2029	2033	4	1.57
	45.2	48.2	3	2035	2039	4	1.33
	48.2	50.85	2.65	2039	2044	5	1.89
	50.85	53.85	3	2046	2050	4	1.33
	53.85	56.5	2.65	2050	2054	4	1.51
18/09/2013	56.5	59.5	3	930	933	3	1.00
	59.5	62.15	2.65	933	935	2	0.75
	62.15	65.15	3	936	940	4	1.33
	65.15	67.8	2.65	940	944	4	1.51
	67.8	70.8	3	946	951	5	1.67
	70.8	73.45	2.65	951	957	6	2.26
	73.45	76.45	3	958	1004	6	2.00
	76.45	79.1	2.65	1004	1010	6	2.26
	79.1	82.1	3	1012	1018	6	2.00
	82.1	84.75	2.65	1018	1024	6	2.26
	84.75	87.75	3	1026	1034	8	2.67
	87.75	90.4	2.65	1034	1039	5	1.89
	90.4	93.4	3	1041	1044	3	1.00
	93.4	96.05	2.65	1044	1049	5	1.89
	96.05	99.05	3	1052	1055	3	1.00
	99.05	101.7	2.65	1055	1058	3	1.13
	101.7	104.7	3	1100	1105	5	1.67
	104.7	107.35	2.65	1105	1110	5	1.89

DATE	Depth range(m)			Time ta (min)	aken	Total time (min)	Penetration rate m/min
	From	То		From	То		
	107.35	110.35	3	1113	1121	8	2.67
	110.35	113	2.65	1121	1128	7	2.64
	113	116	3	1130	1135	5	1.67
	116	118.65	2.65	1135	1140	5	1.89
	118.65	121.65	3	1144	1147	3	1.00
	121.65	124.3	2.65	1147	1149	2	0.75
	124.3	127.3	3	1151	1155	4	1.33
	127.3	129.95	2.65	1155	1158	3	1.13
	129.95	132.95	3	1159	1203	4	1.33
	132.95	135.6	2.65	1203	1209	6	2.26
	135.6	138.6	3	1211	1216	5	1.67
	138.6	141.25	2.65	1216	1224	8	3.02
	141.25	144.25	3	1227	1231	4	1.33
	144.25	146.9	2.65	1231	1235	4	1.51
	146.9	149.9	3	1237	1242	5	1.67
	149.9	152.55	2.65	1242	1250	8	3.02
	152.55	155.55	3	1253	1258	5	1.67
	155.55	158.2	2.65	1258	1306	8	3.02
	158.2	161.2	3	1308	1316	8	2.67
	161.25	163.85	2.6	1316	1325	9	3.46
	163.85	166.85	3	1328	1335	7	2.33
	166.85	169.5	2.65	1335	1342	7	2.64
	169.5	172.5	3	1343	1347	4	1.33
	172.25	175.15	2.9	1347	1353	6	2.07
	175.15	178.15	3	1356	1400	4	1.33
	178.15	180.8	2.65	1400	1405	5	1.89
	180.8	183.8	3	1407	1408	1	0.33
	183.8	186.45	2.65	1409	1413	4	1.51
	186.45	189.45	3	1418	1422	4	1.33
	189.45	192.1	2.65	1422	1426	4	1.51
	192.1	195.1	3	1429	1436	7	2.33
	195.1	197.75	2.65	1436	1441	5	1.89
	197.75	200	2.25	1444	1456	12	5.33

Table5.2: Consolidated	lithological	log of	the	Exploratory	well	drilled	at	village	Malegad	on,
Katol taluka, Nagpur dis	strict.									

Depth ra (m)	ange	Thickness (m)	Consolidated Lithology
From	То		
0	0.5	0.5	Top soil: Buff coloured; silty and lose sandy soil
0.5	16.5	16	Basalt: Light grey; Weathered and fractured; fragile chips of 3-

Depth r (m)	ange	Thickness (m)	Consolidated Lithology						
From	То								
			6mm. Fracture between 7.0 -8.0 m. with Cumulative Discharge:0.38 lps.						
16	18.5	2.5	Bole: brownish to light green ; friable pieces of 5-8 mm. mixed with angular chips and coarse grains and with sticky material.						
18.5	30	11.5	Amygdaloidal Basalt: light green; vesicular, moderately hard; vesicles filled with Sec minerals.						
30	54	24	Massive Basalt: Dark brown; fresh; hard; angular chips of 2-5 mm. with coarse to fine grains.						
54	57	3	Bole: brownish to light grey;						
57	72	15	Amygdaloidal Basalt: light grey to dark grey; moderately hard; fresh vesicles filled with Quartz and green Sec minerals.						
72	90	18	Massive Basalt: Dark grey; hard; fresh; angular chips of 3-6 mm. mixed with medium grains. Fracture between 72.5 to 74.5 m						
90	95	5	Amygdaloidal Basalt: Light green; fresh; moderately hard; vesicles filled with green Sec. minerals.						
95	114	19	Massive Basalt: Dark grey and Blackish; fresh; hard; angular chips of 3-7 mm. Fracture between 112 to 114 m						
114	116	2	Bole: brownish to light greyish green						
116	133	17	Amygdaloidal Basalt: Light grey and green; fresh; moderately hard; friable chips of green friable negligible 'bole'. Fracture between 127.3 to129.95 m. With Q:1.37 lps						
133	155	22	Massive Basalt: Dark grey; fresh; hard; with angular chips of 3-6mm						
155	158	3	Fracture Massive Basalt Dark grey and Blackish; fresh; hard; angular						
158	178.15	20.15	Massive Basalt: Dark grey; fresh; hard; angular with negligible quartz grains.						
178.15	200	21.85	Massive Basalt: Dark grey; fresh; hard; and angular/irregular chips of 2-6mm						

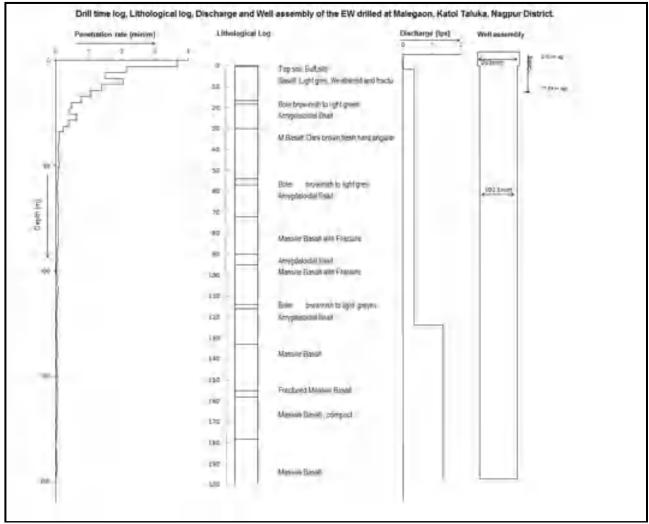


Fig.3.32: Composite Log of Exploratory Well Drilled at Malegaon, Chandrabhaga Watershed (WGKKC-2)

S.No	Drilling	Depth	Cumulative Discharge	Lithology and Zones encountered
	From	То	(lps)	
1	0.5	16.5	0.38	Basalt: Light grey; Weathered and fractured; fragile chips of 3-6mm. Fracture between 7.0 -8.0 m. with Cumulative Discharge:0.38 lps.
2	116	133	1.37	Amygdaloidal Basalt: Light grey and green; fresh; moderately hard; friable chips of green friable negligible 'bole'. Fracture between 127.3 to129.95 m. With Q:1.37 lps

Well Development

The well was developed using air compressor for 15 hrs till the water was free from sand particles and final cumulative discharge measured 1.37 lps. **Well Hydraulics:**

Aquifer Performance Test (APT)

For estimation of aquifer parameters APT conducted on exploratory well for 100 minutes duration and 90% recuperation recorded.

Table 5.4: The details of the Aquifer **Performance Test (APT)** Conducted on Exploratory Well atMalegaon, Katol Taluka, Nagpur District.

Date	28/12/13				
Static Water Level	11.74 mbgl				
Discharge (Q)	1.00 lps				
Drawdown	22.32m				
Transmissivity (T)	0.90 m2/day				
Specific Capacity	2.81 Lpm/m				

Chemical Quality

During drilling of exploratory well, water sample collected for determination of Chemical quality. The Sample is analyzed in the chemical laboratory of CGWB, CR, Nagpur. The results of the analysis are presented in the Table 5.5

Locatio n	Туре	р Н	Ec μS/c	тн	Са	M	N a	к	CO 3	HCO 3	Cl	SO 4	NO 3	F
			m			••••	••••••			ppm	•••••			
Malega on	Zone-l (7-8 m)	8	519	23 5	42	32	5	0.3 1	0	171	46	21	42	0.4 6
Malega on	Pumpi ng Test	7. 9	795	35 0	52	53	1 0	0.1 7	0	189	12 4	64	17	0.2 8

Chemical analysis of water sample collected from the Zone-I (7-8 mbgl) of the exploratory well revealed that the range of concentration in all the parameters are within the desirable limit as well as maximum permissible limit. While sample representing cumulative discharge from both the aquifers, the analysis result revealed that the range of concentration of parameters viz TH and Mg, have found more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

6. OBSERVATION WELL (OW) DRILLED AT MALEGAON

Location of Site

In view of determining the aquifer parameter an observation well (OW) at Malegaon has been constructed about 10 m northwest of railway gate and 10 m away from exploratory well in the same premises.

History of Drilling Operations:

The rig unit was shifted OW site on 19/9/13. The drilling details and drilling time log is presented as below

Details of Drilling:

- a) Rock Formation: Basalt
- b) Type: Deccan Traps

- c) Total depth drilled: 200.00m.
- d) Drilling started on 19/9/13 at 13.10 hrs
- e) Drilling completed on 20/9/13 at 13.43 hrs
- f) Total depth drilled in Weathered Formation(with 279.4 mm Button Bit): 21.00 m.
- g) Total depth drilled in Hard rock Formation (with 190.5 mm Button Bit):179.00 m.
- h) Length of casing: 21.00 mbgl+0.60 m agl=21.60 m.
- i) Diameter of Casing: 203mm(8")
- j) Gauge of casing pipe:7.5mm
- k) Material of Casing pipe: M.S.Pipe

Geological Data:

In the OW the thickness of top soil was recorded 0.5 m bgl. Whereas 3 water bearing zones were recorded in the well at 7.0 -8.0 m. with of discharge:0.38 lps and 79.10 to 82.10 m. with cumulative discharge of traces and between 139.00 -140.00 m bgl with cumulative discharge:0.38 lps.

Table 6.1: Drill Time log of the Observation well drilled at village Malegaon, Katol taluka,
Nagpur district

Date	Depth range (m)		Thick- ness(m)	Drilling Time(m	in)	Total time	Penetration rate.
	From	То	inc35(iii)	From	То	(min)	min/m
19/09/2013	0	3	3	1310	1320	10	3.33
	3	5.65	2.65	1320	1332	12	4.53
	5.65	8.65	3	1334	1345	11	3.67
	8.65	11.3	2.65	1345	1358	13	4.91
	11.3	14.3	3	1400	1412	12	4.00
	14.3	16.95	2.65	1412	1432	20	7.55
	16.95	19.95	3	1520	1530	10	3.33
	19.95	22.6	2.65	1530	1540	10	3.77
	22.6	25.6	3	1542	1550	8	2.67
	25.6	28.25	2.65	1552	1601	9	3.40
	28.25	31.25	3	1603	1608	5	1.67
	31.25	33.9	2.65	1609	1616	7	2.64
	33.9	36.9	3	2038	2044	6	2.00
	36.9	39.55	2.65	2043	2047	4	1.51
	39.55	42.65	3.1	2048	2052	4	1.29
	42.65	45.2	2.55	2052	2056	4	1.57
	45.2	48.2	3	2058	2102	4	1.33
	48.2	50.85	2.65	2102	2106	4	1.51
	50.85	53.85	3	2108	2112	4	1.33
	53.85	56.5	2.65	2112	2117	5	1.89
	56.5	59.5	3	2119	2123	4	1.33
	59.5	62.15	2.65	2123	2128	5	1.89
	62.15	65.15	3	2130	2134	4	1.33
	65.15	67.8	2.65	2134	2139	5	1.89
	67.8	70.8	3	2141	2144	3	1.00
	70.8	73.45	2.65	2144	2148	4	1.51
	73.45	76.45	3	2150	2156	6	2.00
	76.45	79.1	2.65	2156	2201	5	1.89
	79.1	82.1	3	2203	2206	3	1.00
	82.1	84.75	2.65	2208	2214	6	2.26
	84.75	87.75	3	2216	2222	6	2.00

Date	Depth range (m)	Thick- ness(m)	Drilling Time(m	in)	Total time	Penetration rate.
	From	То		From	То	(min)	min/m
	87.75	90.4	2.65	2222	2226	4	1.51
	90.4	93.4	3	2228	2235	7	2.33
	93.4	96.05	2.65	2235	2239	4	1.51
	96.05	99.05	3	2241	2246	5	1.67
	99.05	101.7	2.65	2246	2253	7	2.64
	101.7	104.7	3	2255	2301	6	2.00
	104.7	107.35	2.65	2301	2307	6	2.26
	107.35	110.35	3	2309	2315	6	2.00
	110.35	113	2.65	2315	2321	6	2.26
	113	116	3	2323	2329	6	2.00
	116	118.65	2.65	2329	2335	6	2.26
	118.65	121.65	3	2337	2343	6	2.00
	121.65	124.3	2.65	2343	2348	5	1.89
	124.3	127.3	3	2350	2355	5	1.67
	127.3	129.95	2.65	2355	2359	4	1.51
20/09/2013	129.95	132.95	3	2402	2406	4	1.33
	132.95	135.6	2.65	2408	2410	2	0.75
	135.6	138.6	3	1134	1140	6	2.00
	138.6	141.25	2.65	1140	1144	4	1.51
	141.25	144.25	3	1148	1152	4	1.33
	144.25	146.9	2.65	1152	1157	5	1.89
	146.9	149.9	3	1159	1203	4	1.33
	149.9	152.55	2.65	1203	1211	8	3.02
	152.55	155.55	3	1213	1218	5	1.67
	155.55	158.2	2.65	1218	1223	5	1.89
	158.2	161.2	3	1225	1232	7	2.33
	161.25	163.85	2.6	1232	1238	6	2.31
	163.85	166.85	3	1240	1245	5	1.67
	166.85	169.5	2.65	1245	1249	4	1.51
	169.5	172.5	3	1251	1254	3	1.00
	172.25	175.15	2.9	1254	1258	4	1.38
	175.15	178.15	3	1300	1303	3	1.00
	178.15	180.8	2.65	1303	1306	3	1.13
	180.8	183.8	3	1308	1312	4	1.33
	183.8	186.45	2.65	1312	1315	3	1.13
	186.45	189.45	3	1317	1321	4	1.33
	189.45	192.1	2.65	1321	1324	3	1.13
	192.1	195.1	3	1325	1330	5	1.67
	195.1	197.75	2.65	1330	1335	5	1.89
	197.75	200	2.25	1337	1340	3	1.33

Table 6.2: Consolidated lithological log of the Observation well drilled at village Malegaon,Katol taluka, Nagpur district

Depth ra	ange (m)	Thickness (m)		Consolidated Lithology					
From	То								
0.00	0.50	0.50	Top Soil:	Buff to Dark grey; fine silty lose soil					

Depth ra	ange (m)	Thickness (m)	Consolidated Lithology
From	То		
0.50	8.65	8.15	Basalt: Weathered and fractured: Dark grey; irregular pebbles with fragile chips; Fracture:7.0-8.0 m., Q; 0.38 lps
8.65	50.85	42.20	Massive Basalt: Dark grey; fresh; hard angular/irregular chips 2-5mm mixed with medium grains.
50.85	67.80	16.95	Amygdaloidal Basalt: Light green, moderately hard; vesicles filled with green and Quartz sec minerals.
67.80	96.05	28.25	Massive Basalt: Dark grey; fresh; hard; irregular and angular chips of 2-5 mms. Mixed with medium grains.Fracture:79.1- 82.1 m.,Q:traces.
96.05	104.70	8.65	Amygdaloidal Basalt : Light green and black: moderately hard with quartz and green sec. minerals.
104.70	127.30	22.60	Massive Basalt: Dark grey; fresh; hard angular chips of 2-4 mm. mixed with medium grains.
127.30	141.25	13.95	Amygdaloidal Basalt: Light grey; moderately hard; angular chips of 2-4 mm. with green and Quartz minerals. Fracture:139.0-140 m.,Q: Traces
141.25	200.00	58.75	Massive Basalt: Dark grey; fresh; moderately hard; very coarse angular chips.

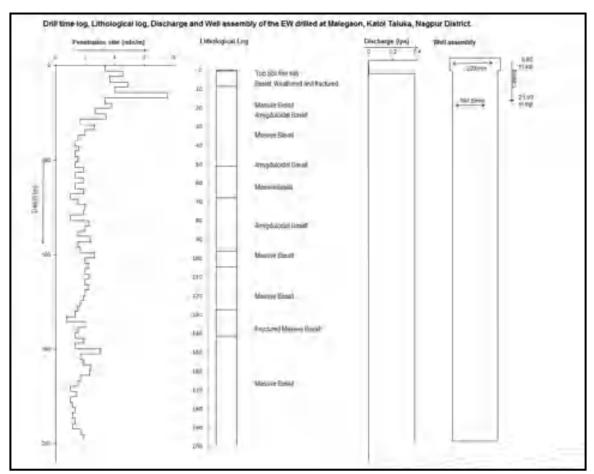


Fig. 3.33: Composite Log of Observation Well Drilled at Malegaon, Chandrabhaga Watershed (WGKKC-2)

Table 6.3: Fracture Zones encountered, Observation Well Drilled at Malegaon, Chandrabhaga Watershed (WGKKC-2)

S.No	Drilling	Depth	Cumulative Discharge	Lithology and Zones encountered				
	From	То						
1	0.50	8.65	8.15	Basalt:Weathered and fractured: Dark grey;irregular pebbles with fragile chips; Fracture:7.0-8.0 m.,Q; 0.38 lps				
2	67.80	96.05	28.25	Massive Basalt: Dark grey; fresh; hard; irregular and angular chips of 2-5 mms. Mixed with medium grains.Fracture:79.1- 82.1 m.,Q: traces.				
3	127.30	141.25	13.95	Amygdaloidal Basalt: Light grey; moderately hard; angular chips of 2-4 mm. with green and Quartz minerals. Fracture:139.0-140 m.,Q: Traces				

Development

The well was developed using air compressor for 15 hrs till the water was free from sand particles and measurement of Cumulative Discharge was done which is found to be 1.37 lps. !

Chemical Quality

During drilling of observation well, water sample collected for determination of Chemical quality. The Sample is analyzed in the chemical laboratory of CGWB, CR, Nagpur.

Table 6.4: Results of the chemical analysis of Exploratory Well

Location	Туре	Type pH	Ec	тн	Ca	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F
Location		рп	μS/cm		ppm									
Malegaon	Zone-l (127.30- 129.95)	8.1	445	205	38	27	4	0.29	0	171	35	9	44	0.36

Chemical analysis of water sample collected from the Zone-I (127.30-129.95 mbgl) of the exploratory well revealed that the range of concentration in all the parameters are within the desirable limit as well as maximum permissible limit as per "Drinking Water Standards" laid down by Bureau of Indian Standards (BIS 10500-2013).

7. Exploratory Well drilled at Raulgaon

Location of Site

The village Raulgaon lies between north latitude $21^{\circ}14'17.4''$ and east longitude 78°47'04" and falls in the Survey of India Toposheet No. 55 K/15. It is situated at 30 kms from Nagpur on Katol road via Dorli and the site is located in Jhopadpatti area on the eastern outskirts of village.

History of Drilling Operations:

The rig unit was shifted to well site on 24/09/13. The drilling started on 24/09/13 at 1005 hrs and completed on 27/09/13 at 1755 hrs. The drilling details and drilling time log is presented as below.

Details of Drilling:

- a) Rock Formation: Trap Covered Gondwana
- b) Type: Basalt & Sandstone
- c) Drilling Started on 24/09/2014 at 10.05 hrs
- d) Drilling Completed on 27/09/13 at 17.55 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in Hard rock Formation (with 184.00 mm Button Bit):144.00 m.

- g) Total depth drilled in soft rock Formation (with 254.00 mm Button Bit):59.75 m.
- h) Depth of reaming (with 254.00 mm Button Bit) : 144.25 m

(with 254.00 mm Button Bit) : 144.25 to 200.00 m

- i) Well construction Depth : 199.80 m
- j) Length of pipes
 - a. Blank Pipes: (152.4 mm) 6" pipes = 59.37 m (101.6 mm) 4" pipes = 104.07 m
 - b. Slotted pipes : (101.6 mm) 4" pipes = 36.36 m

:

- c. Slot Size : 1.5 mm
- k) Diameter of Pipe
 - d. Blank Pipes : 152.4 mm
 - e. Slotted Pipes : 101.6 mm
- I) Gauge of Pipes
 - f. Blank Pipes : 7.1 mm
 - g. Slotted pipes : 5.0 mm
 - h. Material of Pipes (Blank & slotted): MS

Geological Data:

Geologically the site is located in Trap covered Gondwana area. The basalt and Gondwana contact at site was encountered at 143 m bgl.

Table 7.1: Drill Time log of the Exploratory well drilled at village Raulgaon, Kalmeshwartaluka, Nagpur district.

DATE	Depth ra	ange (m)	Thickness(m)	Time tak	en (min)	Total time	Penetration
	From	То		From	То	(min)	min/m
24/09/2013	0	3	3	1005	1007	2.00	0.67
	3	5.65	2.65	1007	1008	1.00	0.38
	5.65	8.65	3	1008	1011	3.00	1.00
	8.65	11.3	2.65	1011	1014	3.00	1.13
	11.3	14.3	3	1015	1018	3.00	1.00
	14.3	16.95	2.65	1018	1021	3.00	1.13
	16.95	19.95	3	1022	1024	2.00	0.67
	19.95	22.6	2.65	1024	1028	4.00	1.51
	22.6	25.6	3	1029	1032	3.00	1.00
	25.6	28.25	2.65	1032	1035	3.00	1.13
	28.25	31.25	3	1036	1040	4.00	1.33
	31.25	33.9	2.65	1040	1045	5.00	1.89
	33.9	36.9	3	1046	1053	7.00	2.33
	36.9	39.55	2.65	1053	1100	7.00	2.64
	39.55	42.65	3.1	1101	1102	1.00	0.32
	42.65	45.2	2.55	1102	1105	3.00	1.18
	45.2	48.2	3	1107	1109	2.00	0.67
	48.2	50.85	2.65	1109	1113	4.00	1.51
	50.85	53.85	3	1114	1118	4.00	1.33
	53.85	56.5	2.65	1118	1122	4.00	1.51
	56.5	59.5	3	1122	1133	11.00	3.67
	59.5	62.15	2.65	1133	1155	22.00	8.30
	62.15	65.15	3	1156	1203	7.00	2.33
	65.15	67.8	2.65	1203	1213	10.00	3.77
	67.8	70.8	3	1214	1225	11.00	3.67

DATE	Depth ra	ange (m)	Thickness(m)	Time tak	en (min)	Total time	Penetration	
	From	То		From	То	(min)	min/m	
	70.8	73.45	2.65	1225	1232	7.00	2.64	
	73.45	76.45	3	1234	1242	8.00	2.67	
	76.45	79.1	2.65	1242	1253	11.00	4.15	
	79.1	82.1	3	1254	1306	12.00	4.00	
	82.1	84.75	2.65	1306	1316	10.00	3.77	
	84.75	87.75	3	1317	1328	11.00	3.67	
	87.75	90.4	2.65	1328	1340	12.00	4.53	
	90.4	93.4	3	1341	1350	9.00	3.00	
	93.4	96.05	2.65	1350	1404	4.00	1.51	
	96.05	99.05	3	1406	1416	10.00	3.33	
	99.05	101.7	2.65	1416	1426	10.00	3.77	
	101.7	104.7	3	1428	1431	3.00	1.00	
	104.7	107.35	2.65	1431	1435	4.00	1.51	
	107.35	110.35	3	1436	1438	2.00	0.67	
	110.35	113	2.65	1438	1441	3.00	1.13	
	113	116	3	1443	1447	4.00	1.33	
	116	118.65	2.65	1447	1453	6.00	2.26	
	118.65	121.65	3	1455	1503	8.00	2.67	
	121.65	124.3	2.65	1503	1514	11.00	4.15	
	124.3	127.3	3	1517	1522	5.00	1.67	
	127.3	129.95	2.65	1522	1527	5.00	1.89	
	129.95	132.95	3	1530	1535	5.00	1.67	
	132.95	135.6	2.65	1535	1540	5.00	1.89	
	135.6	138.6	3	1543	1551	8.00	2.67	
	138.6	141.25	2.65	1551	1556	5.00	1.89	
	141.25	144.25	3	1558	1606	8.00	2.67	
	144.25	146.9	2.65	1606	1612	6.00	2.26	
	146.9	149.9	3	1615	1618	3.00	1.00	
	149.9	152.55	2.65	1618	1621	3.00	1.13	
	152.55	155.55	3	1623	1627	4.00	1.33	
	155.55	158.2	2.65	1627	1630	3.00	1.13	
	158.2	161.2	3	1632	1634	2.00	0.67	
	161.25	163.85	2.6	1634	1638	4.00	1.54	
	163.85	166.85	3	1640	1642	2.00	0.67	
	166.85	169.5	2.65	1642	1643	1.00	0.38	
	169.5	172.5	3	1646	1648	2.00	0.67	
	172.25	175.15	2.9	1648	1654	6.00	2.07	
	175.15	178.15	3	1657	1706	9.00	3.00	
	178.15	180.8	2.65	1706	1716	10.00	3.77	
	180.8	183.8	3	1722	1747	25.00	8.33	
	183.8	186.45	2.65	1705	1753	8.00	3.02	
	186.45	189.45	3	1755	1810	15.00	5.00	
27/09/2013	189.45	192.1	2.65	1605	1635	30.00	11.32	

DATE	Depth range (m)		Thickness(m)	Time taken (min)		Total time	Penetration
	From	То		From	То	(min)	min/m
	192.1	195.1	3	1640	1701	21.00	7.00
	195.1	197.75	2.65	1701	1735	34.00	12.83
	197.75	200	2.25	1735	1755	20.00	8.89

Table 7.2: Consolidated lithological log of the Exploratory well drilled at village Raul	gaon,
Kalmeshwar taluka, Nagpur district.	

Depth range Thickness (m) (m)		Thickness	Consolidated Lithology
From	То		
0	0.5	0.5	Top Soil: Gritty; silty, lose material.
0.5	15.5	15	Vesicular Basalt: light grey to Dark grey, weathered, friable chips, vesicles filled with sec minerals
15.5	24	8.5	Massive Basalt: Dark grey, moderately hard angular chips, fracture 16.95-19.95 with negligible water, mixed with sec. minerals.
24	28	4	Vesicular Basalt: Dark grey, fresh; mod hard, angular chips 2-6 mm. vesicles filled with sec. minerals.
28	40	12	Massive Basalt: Dark grey; fresh, hard, irregular/angular chips of 2-5mm mixed with coarse grains.
40	48.2	8.2	Red Bole : Red to greyish red, irregular shape friable pieces, with sticky clayey material.
48.2	56.5	8.3	Green Bole: Light green to brown, irregular firable pieces if 3-8mm, mixed with sticky material.
56.5	62.15	5.65	Amygdular Basalt: light grey and green mod. hard; angular chips vesicle filled with sec. minerals.
62.15	101	38.85	Massive Basalt: light grey fresh hard irregular/angular chips of 2- 5 mm. with coarse grains.
101	112	11	Green bole : light green, fresh, friable irregular pieces of 3-8mm with sticky material
112	123.5	11.5	Vesicular Basalt: light green to grey vesicle filled with sec. minerals angular chips of 3-5mm
123.5	143	19.5	Massive basalt: Reddish brown to Dark grey fresh hard irregular chips of 2-5mm,fracture between:127.3 to129.95, with Q:0.78 LPS.Fracture:135.60-138.60 m., with Q:3.0 lps mixed with occasional sec. minerals
143	149.9	6.9	Sand Stone: Pinkish Red, ferruginous; fine to medium grained Quartzfeldspathic angular to sub rounded; Water struck between144.25 to 146.9 with Q:8.0 LPS
149.9	200	50.1	Sandstone: Greyish and pink Quartz feldspathic fine to medium grained.

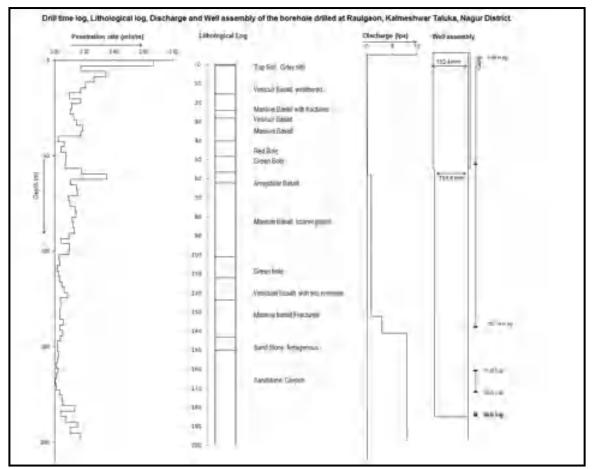


Fig. 7.1: Composite Log of Exploratory Well Drilled at Raulgaon, Chandrabhaga Watershed (WGKKC-2)

S.No	Drilling Depth		Cumulative Discharge	Lithology and Zones encountered
	From	То		
1	15.5	24	Traces	Massive Basalt: Dark grey, moderately hard angular chips, fracture 16.95-19.95 with negligible water, mixed with sec. minerals.
2	123.5	143	3.0	Massive basalt: Reddish brown to Dark grey fresh hard irregular chips of 2-5mm,fracture between:127.3 to129.95, with Q:0.78 LPS.Frecture:135.60-138.60 m., with Q:3.0 lps mixed with occasional sec. minerals
3	143	149.9	8.0	Sand Stone: Pinkish Red, ferruginous; fine to medium grained Quartzfeldspathic angular to sub rounded; Water struck between144.25 to 146.9 with Q:8.0 LPS

WELL DESIGN

Based on the interpretation of litholog and Electrical log the following well assembly was recommended and lowered for construction of exploratory tube well. The details of well assembly is given in Table

Table 7.4: Recommended well design, Exploratory Well Drilled at Raulgaon, Chandrabhaga Watershed (WGKKC-2)

S/N	Depth Range (mbgl)		Thickness	Description of Pipes
	From To (m bgl)		(m bgl)	
1	0.00	0.6 (magl)	0.60	6" (152.4 mm) dia M S Blank MS pipe
2	0.00	59.37	59.37	6" (152.4 mm) dia M S Blank MS pipe
3	59.37	59.50	0.13	6" (152.4 mm) dia M S Blank reducer
4	59.50	150.34	90.84	4" (101.6 mm) dia M S Blank MS pipe
5	150.34	174.59	24.25	4" (101.6 mm) dia M S Slotted MS pipe
6	174.59	186.69	12.10	4" (101.6 mm) dia M S Blank MS pipe
7	186.69	198.80	12.11	4" (101.6 mm) dia M S Slotted MS pipe
8	198.80 199.80 1		1.00	4" (101.6 mm) dia M S Blank MS pipe with bail blug

Development

The well was developed using air compressor for 15 hrs on 8/10/13 from 16.40 hrs to 21.40 hrs and on 9/10/13 from 8.00 hrs to 18.00 hrs. till the water was free from sand particles. Cumulative Discharge recorded was 8.0 lps.

WELL HYDRAULICS

Aquifer Performance Test (APT)

 Table 7.5: The details of the Aquifer Performance Test (APT) Conducted on Exploratory Well at Raulgaon, Kalmeshwar Taluka, Nagpur District.

Date	1/3/2014
Static Water Level	36.52
Discharge (Q)	4.50
Drawdown (∆s)	2.030
Transmissivity (T)	35.05
Specific Capacity	21.51

Chemical Quality

Table 7.6: Results of the chemical analysis of Exploratory Well

Location	Туре	pН	Ec μS/cm	тн	Ca	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F
Location		рп			ppm									
Raulgaon	Zone-l (127.30- 129.95)	8	1503	690	44	141	26	0.28	0	73	351	239	18	1.25
Raulgaon	Zone-II (135.60- 138.60)	8.3	920	430	12	97	20	0.29	6	183	181	72	46	1.46
Raulgaon	Pumping Test	8.2	904	395	22	83	17	0.23	0	146	110	139	46	1.23

Chemical analysis of water sample collected from the Zone-I (127.30-129.95) revealed that the range of concentration of parameters viz Ec, TH, Mg, Cl, SO4 and F are found more than desirable limit. Whereas in Zone-II the range of concentration of parameters viz TH, Ca, Mg, NO₃ are found more than desirable limit while all other parameters are within the desirable limit. While sample collected during well development and representing cumulative discharge from Gondwana sandstone aquifers, the analysis result revealed that the range of concentration of parameters viz TH, Ca, Mg and NO₃ have found more than desirable limit while all other parameters are within the desirable and representing cumulative discharge from Gondwana sandstone aquifers, the analysis result revealed that the range of concentration of parameters viz TH, Ca, Mg and NO₃ have found more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

8. Exploratory Well drilled at Mohgaon

Location of Site

The village Mohgaon lies between north latitude $21^{\circ}15'54.9"$ and east longitude 78°48'33.8" and falls in the Survey of India Toposheet No. 55 K/15. It is situated at 12 kms from kalmeshwar on Mohpa road and the site is located in 5 m North of Madhuganga River, southeast of the village.

Details of Drilling:

- a) Rock Formation: Trap Covered Gondwana
- b) Type: Basalt & Sandstone
- c) Drilling Started on 13/10/2013 at 13.02 hrs
- d) Drilling Completed on 13/10/2013 at 24.00 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in Hard rock Formation (with 190.50 mm Button Bit):90.40 m.
- g) Total depth drilled in soft rock Formation (with 190.50 mm Button Bit):109.60 m.
- h) Depth of reaming (with 254.00 mm Button Bit) : 90.40 m

(with 254.00 mm Button Bit) : 90.40 m to 200.00 m

- i) Well construction Depth 200.00 m
- j) Details of Casing
 - 1) Length of pipes
 - a. Blank Pipes : (152.4 mm) 6" pipes = 59.50 m

	а.	Blank Pipes : (152.4 mm) 6" pipes = 59.50 m							
			(101.6 mm) 4" pipes = 113.28 m						
	b.	Slotted pipes	: (101.6 mm) 4" pipes = 27.22 m						
	с.	Slot Size	: 1.58 mm						
2)	Dia of F	Pipe	:						
	a.	Blank Pipes	:152.4 mm						
	b.	Slotted Pipes	:101.6 mm						
3)	Gauge	of Pipes							
	a.	Blank Pipes	:7.1 mm						
	b.	Slotted pipes	:5.0 mm						
4)	Materia	al of Pipes							
	a.	Blank Pipes	:MS						
	b.	Slotted pipes	:MS						

Geological Data:

Geologically the site is located in Trap covered Gondwana area. The contact between basalt and Gondwana encountered at 85 m bgl.

Table 8.1: Drill Time log of the Exploratory well drilled at village Mohgaon, Kalmeshwar taluka, Nagpur district.

DATE	Depth range(m)		Thickness	Time tak (min)	ken	Total time	Penetration rate min/m
	From	То	ESS(m)	From	То	(min)	
13.10.13	0	3	3	13.02	13.06	4	0.75
	3	5.65	2.65	13.06	13.12	6	0.44
	5.65	8.65	3	13.40	13.50	10	0.30
	8.65	11.3	2.65	13.50	14.05	15	0.18
	11.3	14.3	3	14.07	14.15	8	0.38
	14.3	16.95	2.65	14.15	14.22	7	0.38
	16.95	19.95	3	14.24	14.27	3	1.00

DATE	Depth rar	nge(m)	Thickness	Time ta (min)	ken	Total time	Penetration rate min/m	
	From	То	ESS(m)	From	То	(min)		
	19.95	22.6	2.65	14.27	14.31	4	0.66	
	22.6	25.6	3	14.33	14.34	1	3.00	
	25.6	28.25	2.65	14.34	14.37	3	0.88	
	28.25	31.25	3	14.39	14.49	10	0.30	
	31.25	33.9	2.65	14.49	14.59	10	0.27	
	33.9	36.9	3	15.02	15.09	7	0.43	
	36.9	39.55	2.65	15.09	15.14	5	0.53	
	39.55	42.65	3.1	15.16	15.21	5	0.62	
	42.65	45.2	2.55	15.21	15.28	7	0.36	
	45.2	48.2	3	15.30	15.37	7	0.43	
	48.2	50.85	2.65	15.37	15.43	6	0.44	
	50.85	53.85	3	15.45	15.50	5	0.60	
	53.85	56.5	2.65	15.50	15.59	9	0.29	
	56.5	59.5	3	16.04	16.07	3	1.00	
	59.5	62.15	2.65	16.07	16.10	3	0.88	
	62.15	65.15	3	16.12	16.18	6	0.50	
	65.15	67.8	2.65	16.18	16.23	5	0.53	
	67.8	70.8	3	16.25	16.30	5	0.60	
	70.8	73.45	2.65	16.30	16.34	4	0.66	
	73.45	76.45	3	16.37	16.40	3	1.00	
	76.45	79.1	2.65	16.40	16.42	2	1.32	
	79.1	82.1	3	16.44	16.50	6	0.50	
	82.1	84.75	2.65	16.50	16.54	4	0.66	
	84.75	87.75	3	16.56	17.00	4	0.75	
	87.75	90.4	2.65	17.00	17.03	3	0.88	
	90.4	93.4	3	17.05	17.06	1	3.00	
	93.4	96.05	2.65	17.06	17.08	2	1.33	
	96.05	99.05	3	17.09	17.10	1	3.00	
	99.05	101.7	2.65	17.10	17.12	2	1.33	
	101.7	104.7	3	17.13	17.16	3	1.00	
	104.7	107.35	2.65	17.16	17.19	3	0.88	
	107.35	110.35	3	17.19	17.20	1	3.00	
	110.35	113	2.65	17.20	17.21	1	2.65	
	113	116	3	17.22	17.23	1	3.00	
	116	118.65	2.65	17.23	17.26	3	0.88	
	118.65	121.65	3	17.27	17.29	2	1.50	
	121.65	124.3	2.65	17.29	17.30	1	2.65	
	124.3	127.3	3	17.31	17.32	1	3.00	
	127.3	129.95	2.65	17.32	17.34	2	1.33	
	129.95	132.95	3	17.35	17.36	1	3.00	
	132.95	135.6	2.65	17.36	17.38	2	1.33	
	135.6	138.6	3	17.39	17.40	1	3.00	

DATE	Depth range(m)		Thickness	Time taken (min)		Total time	Penetration rate min/m
	From	То	ESS(m)	From	То	(min)	
	138.6	141.25	2.65	17.40	17.41	1	2.65
	141.25	144.25	3	17.43	17.44	1	3.00
	144.25	146.9	2.65	17.44	17.46	2	1.33
	146.9	149.9	3	17.50	17.52	2	1.50
	149.9	152.55	2.65	17.52	17.54	2	1.33
	152.55	155.55	3	17.57	18.00	3	1.00
	155.55	158.2	2.65	18.00	18.01	1	2.65
	158.2	161.2	3	18.03	18.06	3	1.00
	161.25	163.85	2.6	18.06	18.09	3	0.87
	163.85	166.85	3	18.12	18.15	3	1.00
	166.85	169.5	2.65	18.15	18.18	3	0.88
	169.5	172.5	3	18.21	18.25	4	0.75
	172.25	175.15	2.9	18.25	18.29	4	0.73
	175.15	178.15	3	18.33	18.38	5	0.60
	178.15	180.8	2.65	18.38	18.44	6	0.44
	180.8	183.8	3	18.47	18.55	8	0.37
	183.8	186.45	2.65	18.55	19.13	8	0.33
	186.45	189.45	3	19.17	19.47	30	0.10
	189.45	192.1	2.65	21.30	22.00	30	0.09
	192.1	195.1	3	22.10	22.40	30	0.10
	195.1	197.75	2.65	22.40	23.00	20	0.13
	197.75	200	2.25	23.90	24.00	10	0.22

Table 8.2: Consolidated lithological log of the Exploratory well drilled at village Mohga	on,
Kalmeshwar taluka, Nagpur district.	

Depth ra (m)	ange	Thickness (m)	Consolidated Lithology
From	То		
0	3	3	Top Soil, sandy mixed with basalt massive, compact, coarse, black.
3	19.5	16.5	Basalt, Black, hard compact.
19.5	26	6.5	Vesicular Basalt, Black filled with green earth minerals.
26	39	13	Basalt, Black, hard compact.
39	42	3	Green Bole: Green, clayey, sticky, plastic
42	48	6	Basalt minutely vesicular filled with green earth and secondary minerals. Fracute: 42.55-48.70 m.,Q:1.37 lps
48	55	7	Basalt, Black, hard compact.
55	61	6	Amygdular basalt filled with secondary minerals.
61	70.5	9.5	Basalt, Black, hard compact.
70.5	72	1.5	Green Bole: Green, clayey, sticky, plastic
72	80	8	Vesicular filled with green earth and secondary minerals.

Depth ra (m)	Depth range Thickness (m) (m)		Consolidated Lithology
From	То		
80	85	5	Basalt compact black mixed with sand fine to medium (Yellowish); Fracture:82.0 to 85m m.,Q:2.16 lps
85	101.7	16.7	Clay, brownish black mixed with very fine sand.
101.7	113	11.3	Clay, brownish yellow, mixed with very fine sand.
113	127.3	14.3	Clay, brownish black mixed with very fine sand , yellow
127.3	129.95	2.65	Sand medium grained, yellow
129.95	132.95	3	Sand fine grained, yellow
132.95	135.6	2.65	Sand medium grained, yellow
135.6	138.6	3	Sand very fine, yellow
138.6	141.25	2.65	Sand coarse grained, yellow
141.25	152.55	11.3	Sand medium to coarse grained, yellow
152.55	178.15	25.6	Sand medium grained, yellow
178.15	189.45	11.3	Sand, very fine to medium, yellow
189.45	200	10.55	Sand, very fine to medium, yellowish brown

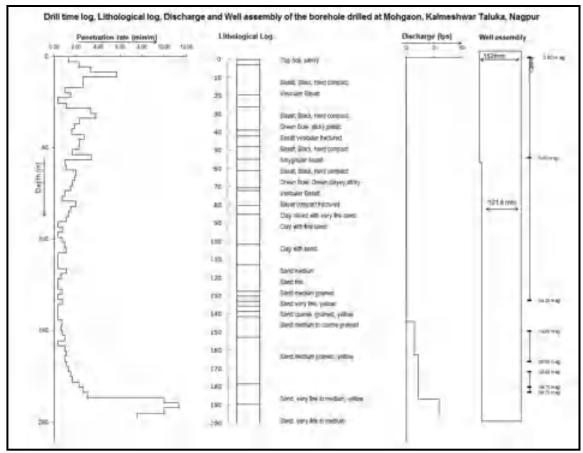


Fig.8.1: Composite Log of Exploratory Well Drilled at Mohgaon, Chandrabhaga Watershed (WGKKC-2)

S.No	Drilling Depth		Cumulative	Lithology and Zones encountered						
	From	То	Discharge							
1	42	48	1.37	Basalt minutely vesicular filled with green earth and						
				secondary minerals.Fracute:42.55-48.70 m.,Q:1.37 lps						
2	80	85	2.16	Basalt compact black mixed with sand fine to medium						
				(Yellowish); Fracture:82.0 to 85m m.,Q:2.16 lps						
3	127.3	200	5.94	Sand Stone: Pinkish Red, ferruginous; fine to medium						
				grained						

Table 8.3: Fracture Zones encountered

Table 8.4: Well Assembly of Exploratory Well at at MOHGAON EW,Kalmeshwar Taluka, Nagpur District.

S/N	•	h Range (Thickness	Description of Pipes
	r	nbgl)		
	From	То	(m bgl)	
1	0.00	0.6 (m agl)	0.60	6" (152.4 mm) dia M S Blank pipe
2	0.00	59.50	59.50	6" (152.4 mm) dia M S Blank pipe
3	59.50	144.23	84.73	4" (101.6 mm) dia M S Blank pipe
4	144.23	162.38	18.15	4" (101.6 mm) dia M S Slotted pipe
5	162.38	180.53	18.15	4" (101.6 mm) dia M S Blank pipe
6	180.53	186.60	6.07	4" (101.6 mm) dia M S Slotted pipe
7	186.60	195.72	9.12	4" (101.6 mm) dia M S Blank pipe
8	195.72	198.73	3.01	4" (101.6 mm) dia M S Slotted pipe
9	198.72	200.00	1.28	4" (101.6 mm) dia M S Blank pipe with bail plug.

Development

The well was developed using air compressor for 15 hrs till the water was free from sand particles and cumulative discharge measured was 5.94 lps.

WELL HYDRAULICS

Pumping Test could not conducted at Mohgaon due to encounter of deep ground water level ie is more than 63.00 mbgl.

Chemical Quality

During drilling of exploratory well water samples were collected for Chemical analysis. The Samples were analyzed in the chemical laboratory of CGWB,CR, Nagpur. The results of the analysis are presented in the Table 8.5

Table8.5: Results of the chemical analysis of Exploratory Well

Location	Туре	pН	Ec	TH	Са	Mg	Na	к	CO3	нсоз	Cl	SO4	NO3	F
Location		рп	μS/cm	ppm										
Mohgaon	Zone-I (42.55- 48.70m)	8.4	563	275	50	36	3	0.34	9	207	57	26	21	0.36
Mohgaon	Zone-II (79.10- 87.75m)	7.9	693	335	44	55	2	0.13	0	354	39	5	10	0.73

Chemical analysis of water sample collected from the Zone-I (42.55-48.70m bgl) revealed that the range of concentration of Mg is found more than desirable limit and all other

parameters are within desirable limit. In Zone-II (79.10-87.75m) the analysis revealed that the range of concentration of parameters viz TH, Mg, HCO_3 are more than desirable limit while all other parameters are within the desirable limit. as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

9. Exploratory Well drilled at Khapri

Location of Site

The village KHAPRI lies between north latitude 21°14'22"and east longitude 78°58'26" and falls in the Survey of India Toposheet No. 55 K/16. It is situated at 7 kms from kalmeshwar on Katol road and the site is located near Jalswaraj Dug Well of the village.

Details of Drilling:

- a) Rock Formation: Trap Covered Gondwana
- b) Type: Basalt & Sandstone
- c) Drilling Started on 22/10/2013 at 07.10 hrs
- d) Drilling Completed on 22/10/2013 at 16.30 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in Hard rock Formation (with 254 mm Button Bit):160.00 m.
- g) Total depth drilled in soft rock Formation (with 190.50 mm Button Bit):40.00 m.
- h) Depth of reaming (with 254.00 mm Button Bit) : 160.00 m

(with 254.00 mm Button Bit) : 160.00 m to 200.00 m

- i) Well construction Depth 200.00 m
- j) Details of Casing
 - 1) Length of pipes
 - a. Blank Pipes : (152.4 mm) 6" pipes = 60.60 m
 - (101.6 mm) 4" pipes = 73.54 m
 - b. Slotted pipes : (101.6 mm) 4" pipes = 18.18 m
 - c. Slot Size :1.58 mm
 - 2) Dia of Pipe
 - a. Blank Pipes 152.4 mm
 - b. Slotted Pipes :101.6 mm
 - 3) Gauge of Pipes
 - a. Blank Pipes :7.1 mm
 - b. Slotted pipes :5.0 mm
 - 4) Material of Pipes
 - a. Blank Pipes :MS
 - b. Slotted pipes :MS

Geological Data:

Geologically the site is located in Trap covered Gondwana area. The contact between basalt and Gondwana encountered at 116 m bgl.

Table 9.1: Drill Time log of the Exploratory well drilled at village Khapri, Kalmeshwar taluka,
Nagpur district.

Date	Depth ra	ange (m)	Thick-	Drilling		Total	Penetration
			ness(m)	time(min)	time(min)		rate min/m
	From	То		From	То	(min)	
22/10/2013	0	3	3	710	713	3	1.00
	3	5.65	2.65	715	716	1	0.38
	5.65	8.65	3	800	805	5	1.67
	8.65	11.3	2.65	805	806	1	0.38
	11.3	14.3	3	807	809	2	0.67
	14.3	16.95	2.65	809	810	1	0.38

Date	Depth ra	ange (m)	Thick-	Drilling		Total	Penetration
	From	То	ness(m)	(m) time(min) From To		time (min)	rate min/m
			2				1 (7
	16.95	19.95	3	811	816	5	1.67
	19.95	22.6	2.65	816	822	6	2.26
	22.6	25.6	3	822	832	10	3.33
	25.6	28.25	2.65	832	839	7	2.64
	28.25	31.25	3	840	842	2	0.67
	31.25	33.9	2.65	842	845	3	1.13
	33.9	36.9	3	846	850	4	1.33
	36.9	39.55	2.65	850	853	3	1.13
	39.55	42.65	3.1	854	859	5	1.62
	42.65	45.2	2.55	859	905	6	2.35
	45.2	48.2	3	906	910	4	1.33
	48.2	50.85	2.65	910	914	4	1.51
	50.85	53.85	3	915	920	5	1.67
	53.85	56.5	2.65	920	926	6	2.26
	56.5	59.5	3	927	935	8	2.67
	59.5	62.15	2.65	935	940	5	1.89
	62.15	65.15	3	941	945	4	1.33
	65.15	67.8	2.65	945	950	5	1.89
	67.8	70.8	3	951	956	5	1.67
	70.8	73.45	2.65	956	1003	7	2.64
	73.45	76.45	3	1003	1006	3	1.00
	76.45	79.1	2.65	1006	1009	3	1.13
	79.1	82.1	3	1010	1014	4	1.33
	82.1	84.75	2.65	1014	1020	6	2.2
	84.75	87.75	3	1020	1026	6	2.00
	87.75	90.4	2.65	1026	1029	3	1.13
	90.4	93.4	3	1030	1033	3	1.00
	93.4	96.05	2.65	1033	1035	2	0.7
	96.05	99.05	3	1036	1039	3	1.00
	99.05	101.7	2.65	1039	1041	2	0.7
	101.7	104.7	3	1042	1046	4	1.33
	104.7	107.35	2.65	1046	1049	3	1.13
	107.35	110.35	3	1050	1054	4	1.33
	110.35	113	2.65	1054	1059	5	1.89
	113	116	3	1100	1104	4	1.33
	116	118.65	2.65	1104	1108	4	1.52
	118.65	121.65	3	1108	1112	4	1.33
	121.65	124.3	2.65	1112	1115	3	1.13
	124.3	127.3	3	1116	1118	2	0.6
	127.3	129.95	2.65	1118	1120	2	0.75
	129.95	132.95	3	1123	1125	2	0.67
	132.95	135.6	2.65	1125	1130	5	1.89

Date	Depth ra	epth range (m) Thick- ness(r		Drilling time(min)		Total time	Penetration rate min/m
	From	То	11633(111)	From	То	(min)	Tate miny m
	135.6	138.6	3	1133	1135	2	0.67
	138.6	141.25	2.65	1135	1138	3	1.13
	141.25	144.25	3	1140	1143	3	1.00
	144.25	146.9	2.65	1143	1147	4	1.51
	146.9	149.9	3	1150	1153	3	1.00
	149.9	152.55	2.65	1153	1156	3	1.13
	152.55	155.55	3	1159	1206	7	2.33
	155.55	158.2	2.65	1206	1214	8	3.02
	158.2	161.2	3	1217	1225	8	2.67
	161.25	163.85	2.6	1225	1234	9	3.46
	163.85	166.85	3	1237	1248	11	3.67
	166.85	169.5	2.65	1248	1259	11	4.15
	169.5	172.5	3	1302	1314	12	4.00
	172.25	175.15	2.9	1314	1326	12	4.14
	175.15	178.15	3	1329	1344	15	5.00
	178.15	180.8	2.65	1344	1359	15	5.66
	180.8	183.8	3	1402	1416	14	4.67
	183.8	186.45	2.65	1418	1426	8	3.02
	186.45	189.45	3	1428	1436	8	2.67
	189.45	192.1	2.65	1436	1501	25	9.43
	192.1	195.1	3	1503	1517	14	4.67
	195.1	197.75	2.65	1517	1537	20	7.55
	197.75	200	2.25	1538	1548	10	4.44

Table 9.2:	Consolidated	lithological	log	of the	Exploratory	well	drilled	at	village	Khapri,
Kalmeshwa	r taluka, Nagpı	ur district.								

Depth r	Depth range Thickness		Consolidated Lithology
(m)		(m)	
From	То		
0	0.5	0.5	Top Soil: brown; sandy and silty lose material.
0.5	16.95	16.45	Amygdular Basalt : brown, highly weathered ; vesicles filled with pink secondary minerals.
16.95	26	9.05	Massive Basalt: greyish black fresh moderately hard; irregular chips of 2-8 mm mixed with clay
26	29	3	Clay : Grey sticky plastic mixed with gravelly Amygdular basaltic friable chips
29	44.5	15.5	Amygdular Basalt : brown, highly weathered ; vesicles filled with pink secondary minerals.
44.5	70	25.5	Massive Basalt: Dark grey; fresh; moderately hard; gravelly 3-10 mm slightly fractured filled with quartz minerals and clay material. Fracture at 44.8 to 50.4m Q:1.05 lps
70	76	6	Clay: Bole Brownish red friable pieces mixed with grey irregular basaltic chips
76	103	27	Bole: Green to reddish green friable pieces mixed with about 10%

Depth range (m)		Thickness (m)	Consolidated Lithology				
From	То						
			of irregular chips.				
103	116	13	Massive Basalt: Dark grey; fresh; moderately hard; irregular chips of 3-6 mm				
116	119	3	Grave I: Grey hard; sub rounded to rounded ;4-5mm very coarse to gravelly mixed with quartz crystels. Q:3.17 lps				
119	154	35	Sand Stone: Fresh greyish white to white; fine to medium grained; sub rounded , siliceous.Q:6.0 lps				
154	158.5	4.5	Sand Stone: Fresh greyish white to white; fine to medium grained; sub rounded , siliceous. Q:6.0 lps				
158.5	200	41.5	Basement : Dark grey; fresh; hard; malenocratic, crystalline rock, mixed with sand grains and bole pieces.				

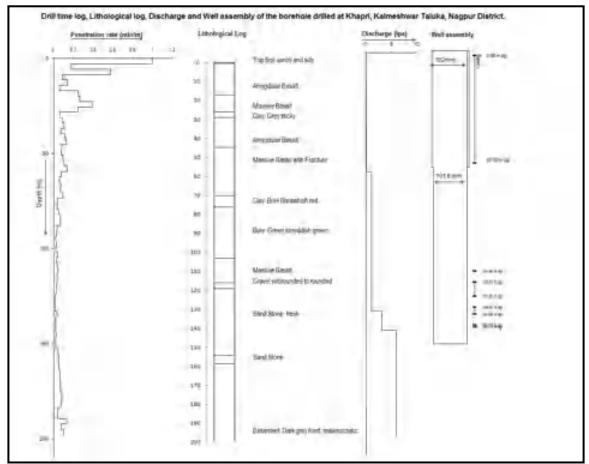


Fig.3.36: Composite Log of Exploratory Well Drilled at Khapri, Chandrabhaga Watershed (WGKKC-2)

Table 9.3: Fracture Zones encountered

S.No	Drilling Depth		Cumulative Discharge	Lithology and Zones encountered
	From To			
1	44.5 70		1.05	Massive Basalt: Dark grey; fresh; moderately hard; gravelly 3-10 mm slightly fractured filled with quartz

S.No	Drilling Depth		Cumulative Discharge	Lithology and Zones encountered			
				minerals and clay material. Fracture at 44.8 to 50.4m			
2	116 118.85 3 .		3.17	Grave I: Grey hard; sub rounded to rounded ;4-5mm very coarse to gravelly mixed with quartz crystals.			
3	118.85 158.5 12.0						

WELL DESIGN

Table 9.3: Recommended well design

S/N	Depth Range (mbgl)		Thickness	Describtion of Pipes
	From	То	(m bgl)	
1	0.00	0.6 (magl)	0.60	6" (152.4 mm) dia M S Blank MS pipe
2	0.00	60.00	60.00	4" (101.6 mm) dia M S Blank MS pipe with reducer
3	60.00	120.49	60.49	4" (101.6 mm) dia M S Blank MS pipe
4	120.49	126.55	6.06	4" (101.6 mm) dia M S slotted (1/16") pipe
5	126.55	134.60	8.05	4" (101.6 mm) dia M S Blank MS pipe
6	134.60	140.66	6.06	4" (101.6 mm) dia M S slotted (1/16") pipe
7	140.66	144.66	4.00	4" (101.6 mm) dia M S Blank MS pipe
8	144.66	150.72	6.06	4" (101.6 mm) dia M S slotted (1/16") pipe
9	150.72	151.72	1.00	4" (101.6 mm) dia M S Blank MS pipe with bail plug

Development

The well was developed using air compressor for 15 hrs till the water was free from sand particles and cumulative discharge measured was 1.05 lps.

WELL HYDRAULICS

Pumping Test could not be conducted at KHAPRI due to deep ground water level condition, which is more than 68.00 mbgl.

Chemical Quality

Table 9.4: Results of the chemical analysis of Exploratory Well

Location	Туре	5 4	Ec	TH	Ca	Mg	Na	к	CO3	нсоз	Cl	SO4	NO3	F
uS/cm				ppm										
Khapri	Zone-I (48.2- 50.85m)	8.5	492	225	12	47	9	0.33	12	226	25	7	21	1.31
Khapri	Zone-II(67.8- 70.8m)	8.4	512	240	30	40	7	0.22	12	232	28	13	17	0.94

Chemical analysis of water sample collected from the Zone-I (48.2-50.85m bgl) revealed that the range of concentration of Mg and F is found more than desirable limit and all other parameters are within desirable limit. In Zone-II (67.8-70.8m bgl) the analysis revealed that the range of concentration of parameters viz Mg is more than desirable limit while all other parameters are within the desirable limit. as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

10. Exploratory Well drilled at Dahegaon

Location of Site

The village DAHEGAON lies between north latitude 21°15'48.8" and east longitude 78°54'17.4" and falls in the Survey of India Toposheet No. 55 K/16. It is situated at 13 kms from Nagpur on Klameshwar road, and the site is located premises of smashanbhumi... Details of Drilling:

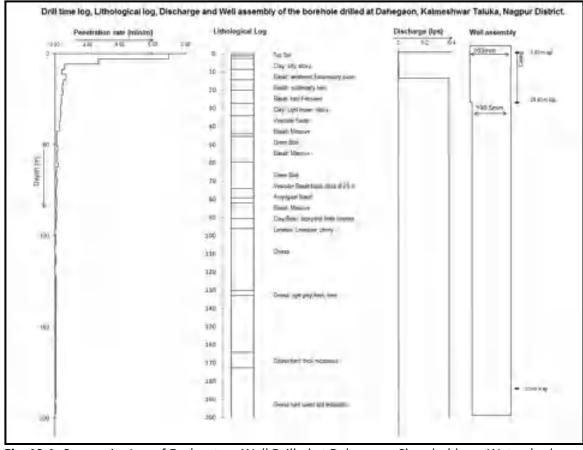
- a) Rock Formation: Trap Covered Gneiss
- b) Type: Basalt & Gneiss
- c) Drilling Started on 30/10/2013 at 1936 hrs
- d) Drilling Completed on 31/10/2013 at 13.30 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in Weathered Formation (with 279.4 mm Button Bit):29.80m.
- g) Total depth drilled in Hard rock Formation (with 190.5 mm Button Bit):170.20 m.
- h) Assembly Details:
 - a) Length of Casing : 29.80 mbgl and 0.63 magl= 30.43 m
 - b) Diameter of Casing : 8" (203 mm)
 - c) Material of Casing Pipe : M S Pipe

Geological Data:

The village Dahegaon in general comprises of basaltic formation of Deccan traps fallowed by lameta and Archean formation. Thickness of top soil is 1 m bgl, which further followed by clay of 1.5 m thick. The collapsible clay formation (bole bads) encountered at various depth of 1-2.5, 20-27, 44-45.5, 59.5-74 and 90.4-96.5 m bgl, which ultimately filled up the well.

Table 10.1: Drill Time log of the Exploratory well drilled at village Dahegaon, K	almeshwar
taluka, Nagpur district.	

Date	Depth ran	nge (m)	Thick-	Drilling ti	me(min)	Total	Penetration
	From	То	ness(m)	From	То	time (min)	rate. min/m
30/10/2013	0	3	3	1936	1957	21	7.00
	3	5.65	2.65	2000	2015	15	5.66
	5.65	8.65	3	2015	2220	5	1.67
	8.65	11.3	2.65	2021	2226	5	1.89
	11.3	14.3	3	2028	2038	10	3.33
	14.3	16.95	2.65	2038	2047	9	3.40
	16.95	19.95	3	2050	2059	9	3.00
	19.95	22.6	2.65	2059	2110	11	4.15
	22.6	25.6	3	2112	2122	10	3.33
	25.6	28.25	2.65	2122	2133	11	4.15
	28.25	31.25	3	2135	2145	10	3.33
	31.25	33.9	2.65	2145	2157	12	4.53
	33.9	36.9	3	2159	2211	12	4.00
	36.9	39.55	2.65	2211	2222	11	4.15
	39.55	42.65	3.1	2224	2235	11	3.55
	42.65	45.2	2.55	2235	2240	5	1.96
	45.2	48.2	3	2240	2245	5	1.67
	48.2	50.85	2.65	2245	2250	5	1.89
	50.85	53.85	3	2250	2300	10	3.33


Date	Depth rar	nge (m)	Thick-	Drilling ti	me(min)	Total	Penetration	
	From	То	ness(m)	From	То	time (min)	rate. min/m	
	53.85	56.5	2.65	2300	2306	6	2.26	
31/10/2013	56.5	59.5	3	2400	2407	7	2.33	
	59.5	62.15	2.65	2407	2420	13	4.91	
	62.15	65.15	3	2422	2429	7	2.33	
	65.15	67.8	2.65	2429	2435	6	2.26	
	67.8	70.8	3	2436	2447	11	3.67	
	70.8	73.45	2.65	2447	2456	9	3.40	
	73.45	76.45	3	130	136	6	2.00	
	76.45	79.1	2.65	136	142	6	2.26	
	79.1	82.1	3	144	154	10	3.33	
	82.1	84.75	2.65	154	203	9	3.40	
	84.75	87.75	3	205	211	6	2.00	
	87.75	90.4	2.65	211	222	11	4.15	
	90.4	93.4	3	235	242	7	2.33	
	93.4	96.05	2.65	242	250	8	3.02	
	96.05	99.05	3	511	513	2	0.67	
	99.05	101.7	2.65	513	517	4	1.51	
	101.7	104.7	3	518	523	5	1.67	
	104.7	107.35	2.65	523	526	3	1.13	
	107.35	110.35	3	527	530	3	1.00	
	110.35	113	2.65	530	535	5	1.89	
	113	116	3	536	540	4	1.33	
	116	118.65	2.65	540	543	3	1.13	
	118.65	121.65	3	544	547	3	1.00	
	121.65	124.3	2.65	547	551	4	1.51	
	124.3	127.3	3	552	556	4	1.33	
	127.3	129.95	2.65	556	601	5	1.89	
	129.95	132.95	3	602	607	5	1.67	
	132.95	135.6	2.65	607	613	6	2.26	
	135.6	138.6	3	615	621	6	2.00	
	138.6	141.25	2.65	621	630	9	3.40	
	141.25	144.25	3	632	639	7	2.33	
	144.25	146.9	2.65	639	647	8	3.02	
	146.9	149.9	3	648	655	7	2.33	
	149.9	152.55	2.65	655	704	9	3.40	
	152.55	155.55	3	705	710	5	1.67	
	155.55	158.2	2.65	710	720	10	3.77	
	158.2	161.2	3	1330	1335	5	1.67	
	161.25	163.85	2.6	1335	1342	7	2.69	
	163.85	166.85	3	1344	1350	6	2.00	

Date Depth range (m)			Thick-	Drilling tir	me(min)	Total	Penetration
	From	То	ness(m)	From	То	time	rate. min/m
						(min)	
	166.85	169.5	2.65	1350	1358	8	3.02
	169.5	172.5	3	1400	1410	10	3.33
	172.25	175.15	2.9	1410	1416	6	2.07
	175.15	178.15	3	1418	1426	8	2.67
	178.15	180.8	2.65	1426	1434	8	3.02
	180.8	183.8	3	1436	1444	8	2.67
	183.8	186.45	2.65	1444	1454	10	3.77
	186.45	189.45	3	1456	1510	14	4.67
	189.45	192.1	2.65	1510	1514	4	1.51
	192.1	195.1	3	1518	1528	10	3.33
	195.1	197.75	2.65	1528	1534	6	2.26
	197.75	200	2.25	1536	1546	10	4.44

Table 10.2: Consolidated lithological log of the Exploratory well drilled at village Dahegaon,Kalmeshwar taluka, Nagpur district.

Depth range(m)		Thickness	Consolidated Lithology
From	То	(m)	
0	1	1	Top Soil: Light grey and brown; silty and clayey lose material.
1	2.5	1.5	Clay: Light yellow and grey, silty and clayey sticky
2.5	8.65	6.15	Basalt: Yellowish-grey, highly weathered and fractured;
			silty; loose material with angular 3-5 mm chips.
8.65	14.13	5.48	Basalt: Dark grey; fresh; moderately hard; angular chips of 3-5
			mm., with coarse grains.
14.13	20	5.87	Basalt: Dark grey; fresh ; hard; irregular/angular chips of 2-4
			mm. mixed with 10% clay material. Fractured bet5ween; 14.3-
			19.65 with Q:0.38 LPS
20	27	7	Clay: Light brown; sticky; plastic like "dough"
27	34	7	Vesicular Basalt: Dark grey to light grey; moderately hard;
			vesicular chips of 3-6mm
34	44	10	Basalt: Massive ; Dark grey; fresh; hard; chips of 1-3 mm.
			mixed with green clay bole.
44	45.5	1.5	Green Bole: Green to light green sticky plastic with friable
			pieces;
41	59.5	18.5	Basalt: Dark grey; Massive fresh; hard; chips of 2-6 mm.
59.5	74	14.5	Green Bole: Green to light green sticky plastic like with friable
			pieces;
74	79.1	5.1	Vesicular Basalt: Vesicular; fresh; moderately hard; light grey;
			fragile chips of 2-6 mm with coarse grains
79.1	82.1	3	Amygdular Basalt: Amygdular light grey; fresh; moderately
			hard chips; the vesicles filled with secondary minerals.
82.1	90.4	8.3	Basalt: Massive; dark grey; fresh; hard; compact medium to
			fine grained
90.4	96.05	5.65	Clay(Bole): Reddish-brown, sticky; plastic; like "dough" mixed
			with brittle limestone chips of 3-5 mm
96.05	129.95	33.9	Lametas: Limestone; cherty; light brown to light grey; brittle

Depth ra	ange(m)	Thickness	Consolidated Lithology			
From	То	(m)				
			chips of 2-6 mm			
129.95	132.95	3	Gneiss: light brown; fresh; Quartz and micaceous mixed with 20% of brittle chips of Limestone.			
132.95	163.85	30.9	Gneiss: light grey; fresh; hard; thick micaceous flakes mixed with quartz minerals.			
163.85	172.5	8.65	Gneiss: Dark grey; fresh; hard; thick micaceous flaked with malenocratic minerals.			
172.5	200	27.5	Gneiss: light grey to dark grey; fresh; hard quartz and feldspathic coarse grains with 10% mica flakes.			

Fig. 10.1: Composite Log of Exploratory Well Drilled at Dahegaon, Chandrabhaga Watershed (WGKKC-2)

S.No	Zones encountered		Zones encountered		Cumulative	Lithology		
			Discharge					
	From	То						
1	14.13	20	0.38 Lps	Basalt: Dark grey; fresh ; hard; irregular/angular chips				
				of 2-4 mm. mixed with 10% clay material. Fracture				
				between; 14.3-19.65 m bgl.				

Table 10.3: Fracture Zones encountered

Well Hydraulics

Pumping Test could not be conducted at Dahegaon site due to well have been collapsed at various depths.

Chemical Quality

Locatio n	Туре	р Н	Ec μS/c	тн	Са	M g	N a	К	CO 3	HCO 3	CI	SO 4	NO 3	F
			m	ppm										
Dahega	Zone-I													0.6
on	(14.3-	8.	540	23	30	39	8	0.4	9	134	6	33	28	8
	16.95	3	540	5	30	29	0	1	9	134	7	22	20	0
	m)													

Chemical analysis of water sample collected during drilling operation revealed that the range of concentration in all the parameters are found within desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

11. Exploratory Well drilled at Dhapewada

Location of Site

The village Dhapewada lies between north latitude 21°18'15.7"and east longitude 78°54'18" and falls in the Survey of India Toposheet No. 55 K/15. It is situated at about 10 km distance from Kalmeshwar on Saoner road, and the site is located in the the open space on the road to grave yard behind" kade" farm.

History of Drilling Operations:

The rig unit was shifted to well site on 01/11/13. The drilling started on on 01/11/13 at 17.00 hrs and completed on 02/11/13 at 14.35 hrs. The drilling details and drilling time log are presented below.

Details of Drilling:

- a) Rock Formation: Gondwana
- b) Type: Sandstone
- c) Drilling Started on 01/11/2013 at 17.00 hrs
- d) Drilling Completed on 02/11/2013 at 14.35 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in soft rock Formation (with 190.5mm Button Bit):200.00 m.
- g) Depth of reaming : (with 304.8 mm Drag Bit) :187.50 m
- h) Well Construction Depth : 187.30 m bgl

Details of Casing

1)	Length of pipes		
	a. Blank Pipes	:	151.65 m
	b. Slotted pipes	:	36.25 mbgl
	c. Slot Size	:	1.58 mm
2)	Dia of Pipe	:	
	a. Blank Pipes	:	152.4 mm
	b. Slotted Pipes	:	152.4 mm
3)	Gauge of Pipes		
	a. Blank Pipes	:	7.1 mm

b. Slotted pipes : 7.1mm

4) Material of Pipes

a.	Blank Pipes	:	MS
b.	Slotted pipes	:	MS

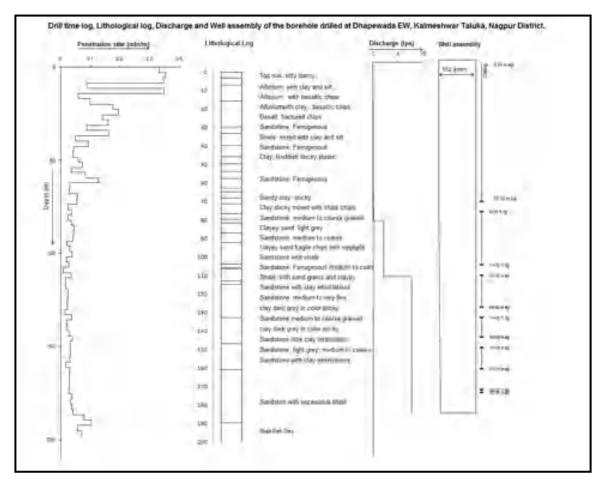
Geological Data:

Geologically, the area is underlined by Gondwana group of rocks. These formations are exposed in the surface as well as seen in well sections

Drill Time log:

During drilling lithological samples were collected , washed and preserved in the labelled sample box for detailed examination. The samples were collected at every 3 m interval or wherever there is change in lithology and the drill time log is prepared during drilling and shown in table-1.

Table 11.1: Drill Time log of the Exploratory well drilled at village Dhapewada, Kalmeshwar taluka, Nagpur district.


DATE	Depth range (m)		Thick- ness(m)	Drilling time (min)		Time taken	Penetration rate min/m
	From	То	11035(111)	From	То	(min)	
	0	3	3	1700	1701	1	0.33
11-01-2013	3	5.65	2.65	1701	1703	2	0.75
	5.65	8.65	3	1730	1733	3	1.00
	8.65	11.3	2.65	1733	1734	1	0.38
	11.3	14.3	3	1735	1740	5	1.67
	14.3	16.95	2.65	1740	1741	1	0.38
11-02-2013	16.95	19.95	3	800	802	2	0.67
	19.95	22.6	2.65	802	806	4	1.51
	22.6	25.6	3	808	813	5	1.67
	25.6	28.25	2.65	813	817	4	1.51
	28.25	31.25	3	908	913	5	1.67
	31.25	33.9	2.65	913	916	3	1.13
	33.9	36.9	3	917	923	6	2.00
	36.9	39.55	2.65	923	925	2	0.75
	39.55	42.65	3.1	926	930	4	1.29
	42.65	45.2	2.55	930	932	2	0.78
	45.2	48.2	3	932	934	2	0.67
	48.2	50.85	2.65	934	9.37	3	1.13
	50.85	53.85	3	938	942	4	1.33
	53.85	56.5	2.65	942	944	2	0.75
	56.5	59.5	3	945	950	5	1.67
	59.5	62.15	2.65	950	958	8	3.02
	62.15	65.15	3	1000	1002	2	0.67
	65.15	67.8	2.65	1002	1004	2	0.75
	67.8	70.8	3	1005	1009	4	1.33
	70.8	73.45	2.65	1009	1013	4	1.51
	73.45	76.45	3	1014	1016	2	0.67
	76.45	79.1	2.65	1016	1019	3	1.13
	79.1	82.1	3	1020	1022	2	0.67

DATE	Depth ra (m)	Depth range (m)		Drilling t	ime (min)	Time taken	Penetration rate min/m	
	From	То		From	То	(min)		
	82.1	84.75	2.65	1022	1025	3	1.13	
	84.75	87.75	3	1026	1030	4	1.33	
	87.75	90.4	2.65	1030	1034	4	1.51	
	90.4	93.4	3	1035	1039	4	1.33	
	93.4	96.05	2.65	1039	1041	2	0.75	
	96.05	99.05	3	1043	1046	3	1.00	
	99.05	101.7	2.65	1046	1050	4	1.51	
	101.7	104.7	3	1051	1053	2	0.67	
	104.7	107.35	2.65	1053	1056	3	1.13	
	107.35	110.35	3	1057	1058	1	0.33	
	110.35	113	2.65	1058	1102	4	1.51	
	113	116	3	1103	1105	2	0.67	
	116	118.65	2.65	1105	1107	2	0.75	
	118.65	121.65	3	1108	1111	3	1.00	
	121.65	124.3	2.65	1111	1114	3	1.13	
	124.3	127.3	3	1115	1118	3	1.00	
	127.3	129.95	2.65	1118	1121	3	1.13	
	129.95	132.95	3	1122	1124	2	0.67	
	132.95	135.6	2.65	1124	1129	5	1.89	
	135.6	138.6	3	1130	1133	3	1.00	
	138.6	141.25	2.65	1133	1136	3	1.13	
	141.25	144.25	3	1137	1141	4	1.33	
	144.25	146.9	2.65	1141	1147	6	2.26	
	146.9	149.9	3	1150	1155	5	1.67	
	149.9	152.55	2.65	1155	1200	5	1.89	
	152.55	155.55	3	1200	1205	5	1.67	
	155.55	158.2	2.65	1205	1210	5	1.89	
	158.2	161.2	3	1213	1216	3	1.00	
	161.25	163.85	2.6	1216	1221	5	1.92	
	163.85	166.85	3	1223	1228	5	1.67	
	166.85	169.5	2.65	1228	1233	5	1.89	
	169.5	172.5	3	1220	1235	5	1.67	
	172.25	175.15	2.9	1230	1241	5	1.72	
	175.15	178.15	3	1241	1256	7	2.33	
	178.15	180.8	2.65	1256	1302	6	2.26	
	180.8	183.8	3	1304	1311	7	2.33	
	183.8	186.45	2.65	1311	1319	8	3.02	
	186.45	189.45	3	1321	1315	15	5.02	
	189.45	192.1	2.65	1336	1356	20	7.55	
	192.1	195.1	3	1406	1417	11	3.67	
	192.1	195.1	2.65	1400	1417	11	5.28	
	195.1	200	2.05	1417	1431	14	5.78	

Table 11.2: Consolidated lithological log of the Exploratory well drilled at village Dhapewada,
Katol taluka, Nagpur district.

Depth range Thickness		Thickness	Consolidated Lithology				
(m)		(m)	0,				
From	То	(,					
0	3	3	Top soil : Grey; silty; loamy; loose material				
0.5	4.5	4	Alluvium : Greyish; loose; mixed with kankar with clay and silt.				
4.5	13	8.5	Alluvium: Dark grey to black loose sand mixed with basaltic chips				
ч.5	15	0.5	of 3-5 mm				
13	27	14	Alluvium: Dark grey to black loose sand mixed with clay and				
13	27	14	basaltic chip sand of 3-5 mm 22.6-25.6 mts. Q:0.14 lps				
27	30.5	3.5	Basalt : light grey-dark grey; fractured chips, mixed with				
27	50.5	5.5	negligible sand grains.				
30.5	36.9	6.4	Sandstone: Ferruginous; light pink to grey; very coarse grain to				
50.5	50.9	0.4					
36.9	43	6.1	gravelly with quartz particles; angular to sub rounded				
			Shale: light pink mixed with clayey and silt material				
43	47	4	Sandstone: Ferruginous; light pink to grey; medium to coarse				
47	54		grain to gravelly with quartz particles; angular to sub rounded				
47	51	4	Clay: Reddish -pink, sticky plastic like "dough"				
51	55	4	Sandstone: Ferruginous; light pink to grey; medium to coarse				
			grain to gravelly with quartz particles; angular to sub rounded				
55	60	5	Sandy clay: Reddish pink; sticky mixed with fine sand grains.				
60	62.15	2.15	Clay : Pinkish grey; sticky; plastic mixed with fragile shale chips.				
62.15	65.5	3.35	Sandstone: Light grey to pink; medium to course grained angular				
			to subrounded. Cumulative Discharge between: 62.15-65.15				
			m.,2.16 lps				
65.5	68.6	3.1	Clayey sand: light grey; fine grained mixed with 10% clayey				
			material.				
68.6	74	5.4	Sandstone: light pink; medium to coarse grained angular to sub				
			angular. With little clay intercalation				
74	77	3	clayey sand: Dark grey; 2-3 mm fragile chips with negligible sand				
			grains.				
77	79.1	2.1	Sandstone: Dark grey; medium to coarse grains mixed with 30%				
			shale chips of 2-3 mm				
79.1	84.5	5.4	Sandstone: light pink; Ferruginous medium to coarse gained				
			angular to sub rounded				
84.5	89.5	5	Shale: light grey to dark grey mixed with sand grains and clayey				
			material.				
89.5	101	11.5	Sandstone: Light grey; medium very fine grained; sub angular to				
			angular with clay intercalations				
101	103	2	Sandstone: light grey; medium to very fine grained; angular to				
			sub rounded				
103	104	1	clay dark grey in color sticky				
104	110.35	6.35	Sandstone; light grey; medium to coarse grained; angular to sub				
			angular.				
110.35	112	1.65	clay dark grey in color sticky				
112	129.95	17.95	Sandstone: light grey; medium to fine grained; angular to				
			subrounded. Cumulative Discharge between 116.0 -118.65 m.,				
			4.43 lps With little clay intercalation				
129.95	144.25	14.3	Sandstone: light grey; medium to coarse grained; ferruginous				
l		1					

			angular to sub rounded
144.25	158.2	13.95	Sandstone: light grey; medium to fine grained; siliceous; angular
			to sub angular. With little clay intercalation
158.2	187	28.8	Sandstone: light grey; medium to coarse grained; angular to sub
			rounded mixed with occasional shale chips. With little clay
			intercalation
187	197.75	10.75	Shale: Dark grey; fragile chips of 3-5 mm. mixed with 20% sand
			grains.

Fig.11.3: Composite Log of Exploratory Well Drilled at Dhapewada, Chandrabhaga Watershed (WGKKC-2)

WELL DESIGN

Table 11.3: Recommended Well design

TUNK	C 11.5. NC			
S/N	Depth Range		Thickness	Description of Pipes
	(mbgl)			
	From To		(m bgl)	
1	0.00	0.6 (magl)	0.60	6" (152.4 mm) dia M S Blank MS pipe
2	0.00	78.00	78.00	6" (152.4 mm) dia M S Blank MS pipe with reducer
3	78.00	84.85	6.85	6" (152.4 mm) dia M S slotted (1/16") pipe
4	84.85	114.30	29.45	6" (152.4 mm) dia M S Blank MS pipe
5	114.30	120.30	6.00	6" (152.4 mm) dia M S slotted (1/16") pipe
6	120.30	138.42	18.12	6" (152.4 mm) dia M S Blank MS pipe

S/N	Depth Range		Thickness	Description of Pipes
	(mbgl)			
	From To (m bgl)		(m bgl)	
7	138.42	144.48	6.06	6" (152.4 mm) dia M S slotted (1/16") pipe
8	144.48	155.53	11.05	6" (152.4 mm) dia M S Blank MS pipe
9	155.53	161.58	6.05	6" (152.4 mm) dia M S slotted (1/16") pipe
10	161.58	173.71	12.13	6" (152.4 mm) dia M S Blank MS pipe
11	173.71	185.80	12.09	6" (152.4 mm) dia M S slotted (1/16") pipe
12	185.80	187.30	1.50	6" (152.4 mm) dia M S Blank MS pipe with bail blug

The well was developed using air compressor for 15 hrs on 10/11/13 to 11/11/13 till the water was free from sand particles and cumulative discharge measured 7.76 lps.

WELL HYDRAULICS

Aquifer Performance Test (APT)

 Table 11.4: The details of the Aquifer Performance Test (APT) Conducted on Exploratory Well at DHAPEWADA, Kalmeshwar Taluka, Nagpur District.

Date	15/12/13		
Static Water Level	11.37 mbgl		
Discharge (Q)	7.76 lps		
Drawdown (∆s)	1.897		
Transmissivity (T)	65m²/day		
Specific Capacity	28.18 lpm/m		

CHEMICAL QUALITY

The ground water sample collected during the pumping test was analysed at the Regional Chemical Laboratory of CGWB (CR) Nagpur. The analytical results are given in Table

Location	Туре	рН	Ec µS/cm	TH	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F
			μoγeni							ppm				
Dhapewada	PT	8.2	859	330	22	67	9	0.19	0	250	64	72	24	0.44

The analytical result of water sample collected during pumping test revealed that the range of concentration of parameters viz TH, Mg are more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

12. Observation Well drilled at Dhapewada

Location of Site

In view of determining the aquifer parameter an observation well (OW) at Dhapewara has been constructed about 12 m away from exploratory well in the same premises. Details of Drilling:

- a) Rock Formation: Gondwana
- b) Type: Sandstone
- c) Drilling Started on 13/11/2013 at 13.50 hrs
- d) Drilling Completed on 14/11/2013 at 22.17 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in soft rock Formation (with 190.5mm Button Bit):200.00 m.
- g) Depth of reaming : (with 318.00 mm Drag Bit) :188.50 m
- h) Well Construction Depth : 188.35 m bgl

i) Details of Casing

1) Length of pipes

±)	Lengui	or hihe?		
	a.	Blank Pipes	:	152.56 m
	b.	Slotted pipes	:	36.39 mbgl
	с.	Slot Size	:	1.58 mm
2)	Dia of I	Pipe	:	
	a.	Blank Pipes	:	152.4 mm
	b.	Slotted Pipes	:	152.4 mm
3)	Gauge	of Pipes		
	a.	Blank Pipes	:	7.1 mm
	b.	Slotted pipes	:	7.1mm
4)	Materi	al of Pipes		
	a.	Blank Pipes	:	MS
	b.	Slotted pipes	:	MS
			-	

Table 12.1: Drill Time log of the Observation well drilled at village Dhapewada, Kalmeshwar taluka, Nagpur district.

Date	Depth ra	ange (m)	Thick-	Drilling		Total	Penetration	
	_	_	ness(m)	time(min)		time	rate. min/m	
	From	То		From	То	(min)		
13.11.2013	0	3	3	13.50	13.52	2	0.67	
	3	5.65	2.65	13.52	13.55	3	1.13	
	5.65	8.65	3	14.11	14.12	1	0.33	
	8.65	11.3	2.65	14.12	14.14	2	0.75	
	11.3	14.3	3	14.15	14.19	4	1.33	
	14.3	16.95	2.65	14.19	14.23	4	1.51	
	16.95	19.95	3	14.33	14.36	3	1.00	
	19.95	22.6	2.65	14.36	14.41	5	1.89	
	22.6	25.6	3	14.42	14.46	4	1.33	
	25.6	28.25	2.65	15.20	15.21	1	0.38	
	28.25	31.25	3	15.22	15.26	4	1.33	
	31.25	33.9	2.65	15.26	15.30	4	1.51	
	33.9	36.9	3	15.41	15.43	2	0.67	
	36.9	39.55	2.65	15.43	15.46	3	1.13	
	39.55	42.65	3.1	15.47	15.50	3	0.97	
	42.65	45.2	2.55	15.50	15.53	3	1.18	
	45.2	48.2	3	15.55	16.00	5	1.67	
	48.2	50.85	2.65	16.00	16.03	3	1.13	
	50.85	53.85	3	16.04	16.08	4	1.33	
	53.85	56.5	2.65	16.08	16.11	3	1.13	
	56.5	59.5	3	16.12	16.14	2	0.67	
	59.5	62.15	2.65	16.14	16.17	3	1.13	
	62.15	65.15	3	16.18	16.22	4	1.33	
	65.15	67.8	2.65	16.22	16.27	5	1.89	
	67.8	70.8	3	16.28	16.30	2	0.67	
	70.8	73.45	2.65	16.30	16.32	2	0.75	
	73.45	76.45	3	16.33	16.35	2	0.67	
	76.45	79.1	2.65	16.35	16.39	4	1.51	
	79.1	82.1	3	16.40	16.42	2	0.67	
	82.1	84.75	2.65	16.42	16.44	2	0.75	
	84.75	87.75	3	16.46	16.50	4	1.33	

Date	Depth ra	ange (m)	Thick- ness(m)	U U		Total time	Penetration rate. min/m
	From	То		From	То	(min)	-
	87.75	90.4	2.65	16.50	16.53	3	1.13
	90.4	93.4	3	16.54	16.57	3	1.00
	93.4	96.05	2.65	16.57	17.00	3	1.13
	96.05	99.05	3	17.00	17.04	4	1.33
	99.05	101.7	2.65	17.04	17.08	4	1.51
	101.7	104.7	3	17.09	17.12	3	1.00
	104.7	107.35	2.65	17.12	17.16	4	1.51
	107.35	110.35	3	17.17	17.24	7	2.33
	110.35	113	2.65	17.24	17.26	2	0.75
	113	116	3	17.27	17.35	8	2.67
	116	118.65	2.65	17.35	17.39	4	1.51
	118.65	121.65	3	17.40	17.43	3	1.00
	121.65	124.3	2.65	17.43	17.49	6	2.26
	124.3	127.3	3	17.50	17.54	4	1.33
	127.3	129.95	2.65	17.54	18.01	7	2.64
	129.95	132.95	3	18.02	18.08	6	2.00
	132.95	135.6	2.65	18.08	18.14	6	2.26
	135.6	138.6	3	18.16	18.21	5	1.67
	138.6	141.25	2.65	18.21	18.26	5	1.89
	141.25	144.25	3	18.28	18.33	5	1.67
	144.25	146.9	2.65	18.33	18.39	6	2.26
	146.9	149.9	3	18.41	18.47	6	2.00
	149.9	152.55	2.65	18.47	18.55	8	3.02
	152.55	155.55	3	18.57	19.04	7	2.33
	155.55	158.2	2.65	19.04	19.10	6	2.26
	158.2	161.2	3	19.10	19.18	8	2.67
	161.25	163.85	2.6	19.18	19.25	7	2.69
	163.85	166.85	3	19.26	19.34	8	2.67
	166.85	169.5	2.65	19.34	19.44	10	3.77
	169.5	172.5	3	19.46	19.55	9	3.00
	172.25	175.15	2.9	19.55	20.09	14	4.83
	175.15	178.15	3	20.11	20.22	11	3.67
	178.15	180.8	2.65	20.22	20.33	11	4.15
	180.8	183.8	3	20.35	20.48	13	4.33
	183.8	186.45	2.65	20.48	21.01	53	20.00
	186.45	189.45	3	21.03	21.21	18	6.00
	189.45	192.1	2.65	21.21	21.39	18	6.79
	192.1	195.1	3	21.42	21.52	10	3.33
	195.1	197.75	2.65	21.52	21.59	7	2.64
	197.75	200	2.25	22.00	22.17	17	7.56

Table 12.2: Consolidated lithological log of the Observation well drilled at village Dhapewada,Katol taluka, Nagpur district.

Depth r (m)	ange	Thickness (m)	Consolidated Lithology
From	То		
0	3	3	Top soil: Grey; silty; loamy; loose calcareous material (kankar)

Depth range		Thickness	Consolidated Lithology
(m)	-	(m)	
From	То		
3	19.95	16.95	Alluvium mixed with predominant argillaceous and calcareous
			material.
19.95	28.25	8.3	Alluvium with few chips of basalt, medium chips, hard compact
28.25	33.9	5.65	Basalt , black hard compact mixed with secondary minerals,
			medium grained
33.9	62.15	28.25	Clay, red, fine
62.15	65.15	3	Sand, light brown medium to coarse grained
65.15	67.8	2.65	Sandstone mixed with shale blakish brown
67.8	70.8	3	Sandstone blakish brown, medium grained
70.8	76.45	5.65	Sand fine to medium, blakish brown
76.45	79.1	2.65	Sandstone with shale, yellow
79.1	84.75	5.65	sand, fine to medium grained
84.75	93.4	8.65	Sand, light brown, medium mixed with shale yellow
93.4	99.05	5.65	Sandstone medium grained mixed with shale, brownish red.
99.05	101.7	2.65	Shale, brownish red
101.7	110.35	8.65	Sandstone whitish brownish medium grained
110.35	144.25	33.9	Sandstone light yellow, medium grained
144.25	155.55	11.3	Sandstone medium grained mixed carbonaceous shale
155.55	158.2	2.65	Sandstone, light yellow, fine grained
158.2	161.2	3	Sandstone medium to coarse grained mixed with carbonaceous
			shale
161.2	166.85	5.65	Sandstone fine to medium mixed with shale, yellow
166.85	169.5	2.65	Sand, light yellow very fine
169.5	172.5	3	Shale mixed with sand fine to medium
172.5	180.8	8.3	Sandstone light yellow, medium grained mixed with shale
180.8	183.8	3	Shale very fine yellow
183.8	186.45	2.65	Sandstone, fine to medium grained mixed with shale.
186.45	189.45	3	Sandstone, fine to medium grained mixed with shale argillaceous
189.45	192	2.55	Shale argillaceous yellow
192	197.1	5.1	Sandstone medium mixed with shale

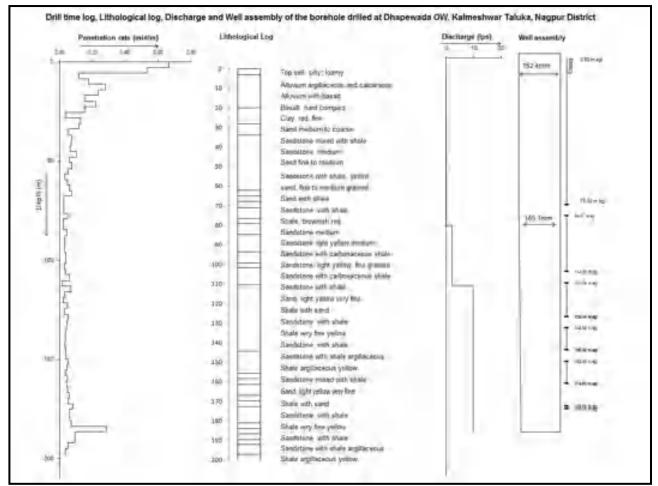


Fig.12.1: Composite Log of Observation Well Drilled at Dhapewada, Chandrabhaga Watershed (WGKKC-2)

Table 12.3: Granular Zones encountered

S.No	Drilling	Depth	Cumulative	Lithology and Zones encountered
	From	То	Discharge	
1	78.02	84.07		Sand fine to medium, blackish brown
2	114.33	120.38		Sandstone light yellow, medium grained
3	138.54	144.59	9.84 lps	Sandstone light yellow, medium grained
4	156.52	162.60		Sandstone medium to coarse grained
5	174.69	186.85		Sandstone light yellow, medium grained

WELL DESIGN

Table 12.4: Recommended well assembly

	Depth R	ange (Description of Pipes
S/N	mbgl)	bgl) Thickness		
	From To (m bgl)		(m bgl)	
1	0.00	0.6 (m agl)	0.60	6" (152.4 mm) dia M S Blank MS pipe
2	0.00	78.02	78.02	6" (152.4 mm) dia M S Blank MS pipe with reducer
3	78.02	84.07	6.05	6" (152.4 mm) dia M S slotted (1/16") pipe
4	84.07	84.07 114.33		6" (152.4 mm) dia M S Blank MS pipe

	Depth R	ange (Description of Pipes
S/N	mbgl)		Thickness	
	From	То	(m bgl)	
5	114.33	120.38	6.05	6" (152.4 mm) dia M S slotted (1/16") pipe
6	120.38	138.54	18.16	6" (152.4 mm) dia M S Blank MS pipe
7	138.54	144.59	6.05	6" (152.4 mm) dia M S slotted (1/16") pipe
8	144.59	156.52	11.93	6" (152.4 mm) dia M S Blank MS pipe
9	156.52	162.60	6.08	6" (152.4 mm) dia M S slotted (1/16") pipe
10	162.60	174.69	12.09	6" (152.4 mm) dia M S Blank MS pipe
11	174.69	185.85	11.16	6" (152.4 mm) dia M S slotted (1/16") pipe
12	185.85	188.35	2.50	6" (152.4 mm) dia M S Blank MS pipe with bail blug

The well was developed using air compressor for 15 hrs on 18/11/13 to 19/11/13 at 19.30 hrs till the water was free from sand particles and cumulative discharge measured was 9.84 lps.

CHEMI CAL QUALITY

	-														
Location	Туре	рH	Ec	TH	Ca	Mg	Na	к	CO3	нсоз	Cl	SO4	NO3	F	
Location		рп	μS/cm							.ppm					
Dhapewada	OW	8.1	747	330	58	45	6	0.25	0	250	78	41	32	0.53	
			1. 6										11		

The analytical result of water sample collected during pumping test revealed that the range of concentration of parameters viz TH, Mg are more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

13. Exploratory Well drilled at Gowri

Location of Site

The village Gowri lies between The north latitude 21°16'06.8" and east longitude 78°56'58.5" and falls in the Survey of India Toposheet No. 55 K/15. It is situated at about 7 km distance from Kalmeshwar on Kalmeshwar – Jhunki – Saoner road, and the site is located 2 m west of Z.P. School and 10 m north of village road in school premises.

History of Drilling Operations:

The rig unit was shifted to well site on 20/11/13, The drilling started on 20/11/14 at 16.16 hrs and completed on 16/12/13 at 15.00 hrs. The drilling details and drilling time log are presented below.

Details of Drilling:

- a) Rock Formation: Gondwana
- b) Type: Sandstone
- c) Drilling Started on 20/11/2013 at 16.16 hrs
- d) Drilling Completed on 16/12/2014 at 3.00 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in soft rock Formation (with 215 mm Button Bit):200.00 m.
- g) Details of Casing
 - 5) Length of pipes

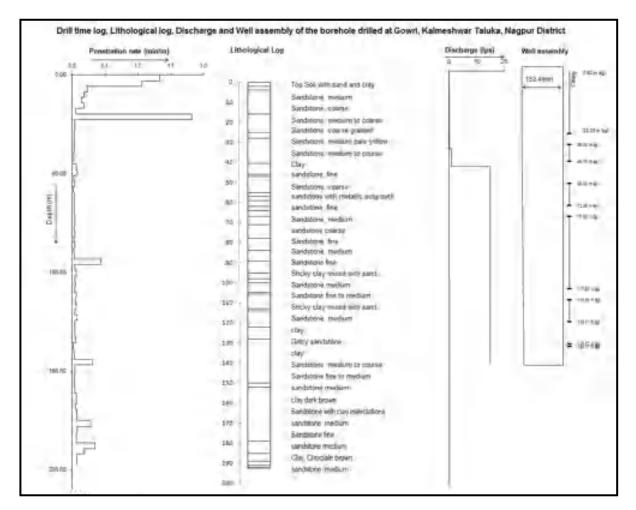
a.	Blank Pipes	:	0.60 m agl + 106.92 m bgl =107.52 m
b.	Slotted pipes	:	42.25 mbgl
с.	Slot Size	:	1.5 mm

6) Dia of Pipe

ς,	Dia ori	ipe		
	a.	Blank Pipes	:	152.4 mm
	b.	Slotted Pipes	:	152.4 mm
7)	Gauge	of Pipes		
	a.	Blank Pipes	:	7.1 mm
	b.	Slotted pipes	:	7.1mm
8)	Materi	al of Pipes		
	a.	Blank Pipes		MS
	b.	Slotted pipes	:	MS

Geological Data:

Geologically, the area is underlained by Gondwana group of rocks. These formations are exposed in the surface as well as seen in well sections


Table 13.1: Drill Time log of the Exploratory well drilled at village Gowri, Kalmeshwar taluka, Nagpur district.

DATE	Depth ra	inge (m)	Thick- ness(m)	Drilling t	time (min)	Time taken	Penetration rate min/m
	From	То		From	То	(min)	
20.11.2013	0	3	3	16.16	16.20	4	1.33
	3	5.65	2.65	16.40	16.46	6	2.26
	5.65	8.65	3	16.47	16.49	2	0.67
	8.65	11.3	2.65	16.49	16.51	2	0.75
	11.3	14.3	3	16.52	16.54	2	0.67
	14.3	16.95	2.65	16.54	16.57	3	1.13
	16.95	19.95	3	16.58	16.59	1	0.33
	19.95	22.6	2.65	16.59	17.00	41	15.47
	22.6	25.6	3	17.01	17.02	1	0.33
	25.6	28.25	2.65	17.02	17.03	1	0.38
	28.25	31.25	3	17.03	17.04	1	0.33
	31.25	33.9	2.65	17.04	17.05	1	0.38
	33.9	36.9	3	17.06	17.07	1	0.33
	36.9	39.55	2.65	17.07	17.08	1	0.38
	39.55	42.65	3.1	17.09	17.10	1	0.32
	42.65	45.2	2.55	17.10	17.11	1	0.39
	45.2	48.2	3	17.12	17.15	3	1.00
	48.2	50.85	2.65	17.15	17.19	4	1.51
	50.85	53.85	3	17.20	17.21	1	0.33
	53.85	56.5	2.65	17.21	17.23	2	0.75
	56.5	59.5	3	17.24	17.25	1	0.33
	59.5	62.15	2.65	17.25	17.27	2	0.75
	62.15	65.15	3	17.27	17.29	2	0.67
	65.15	67.8	2.65	17.29	17.31	2	0.75
	67.8	70.8	3	17.32	17.34	2	0.67
	70.8	73.45	2.65	17.34	17.37	3	1.13
	73.45	76.45	3	17.38	17.41	3	1.00
	76.45	79.1	2.65	17.41	17.43	2	0.75
	79.1	82.1	3	17.44	17.47	3	1.00

DATE	Depth ra	nge (m)	Thick- ness(m)	Drilling t	ime (min)	Time taken	Penetration rate min/m
	From	То		From	То	(min)	
	82.1	84.75	2.65	17.47	17.49	2	0.75
	84.75	87.75	3	17.50	17.53	3	1.00
	87.75	90.4	2.65	17.53	17.55	2	0.75
	90.4	93.4	3	17.56	17.59	3	1.00
	93.4	96.05	2.65	17.59	18.01	42	15.85
	96.05	99.05	3	18.02	18.06	4	1.33
	99.05	101.7	2.65	18.06	18.12	6	2.26
	101.7	104.7	3	18.14	18.18	4	1.33
	104.7	107.35	2.65	18.18	18.23	5	1.89
	107.35	110.35	3	18.25	18.29	4	1.33
	110.35	113	2.65	18.29	18.36	7	2.64
	113	116	3	18.37	18.42	5	1.67
	116	118.65	2.65	18.42	18.49	7	2.64
21.11.2013	118.65	121.65	3	7.10	7.15	5	1.67
	121.65	124.3	2.65	7.15	7.24	9	3.40
	124.3	127.3	3	7.25	7.30	5	1.67
	127.3	129.95	2.65	7.30	7.35	5	1.89
	129.95	132.95	3	7.36	7.41	5	1.67
	132.95	135.6	2.65	7.41	7.48	7	2.64
	135.6	138.6	3	7.49	7.51	2	0.67
	138.6	141.25	2.65	7.51	7.54	3	1.13
	141.25	144.25	3	7.55	7.59	4	1.33
	144.25	146.9	2.65	7.59	8.04	45	16.98
	146.9	149.9	3	8.08	8.13	5	1.67
	149.9	152.55	2.65	8.13	8.19	6	2.26
	152.55	155.55	3	8.23	8.28	5	1.67
	155.55	158.2	2.65	8.28	8.33	5	1.89
	158.2	161.2	3	8.38	8.44	6	2.00
	161.25	163.85	2.6	8.44	8.54	10	3.85
	163.85	166.85	3	9.00	9.10	10	3.33
	166.85	169.5	2.65	9.10	9.18	8	3.02
	169.5	172.5	3	9.24	9.36	12	4.00
	172.25	175.15	2.9	9.36	9.48	12	4.14
	175.15	178.15	3	9.52	10.02	50	16.67
	178.15	180.8	2.65	10.02	10.16	14	5.28
	180.8	183.8	3	10.20	10.31	11	3.67
	183.8	186.45	2.65	10.31	10.43	12	4.53
	186.45	189.45	3	10.50	11.15	65	21.67
	189.45	192.1	2.65	11.15	11.49	34	12.83
	192.1	195.1	3	12.00	12.13	13	4.33
	195.1	197.75	2.65	12.00	12.26	13	4.91
	197.75	200	2.05	12.13	13.05	75	33.33

Table13.2:	Consolidated	lithological	log	of	the	Exploratory	well	drilled	at	village	Gowri,
Kalmeshwa	ar taluka, Nagp	our district.									

Depth r	ange	Thickness	Consolidated Lithology
(m)		(m)	
From	То		
0	2	2	Top Soil mixed with sand and clay
2	4	2	Sandstone, medium grained, yellowish brown
4	16	12	Sandstone, coarse grained, yellowish brown
16	25	9	Sandstone, medium to coarse
25	28	3	Sandstone, coarse grained, yellowish brown
28	40.5	12.5	Sandstone, medium pale yellow
40.5	46	5.5	Sandstone, medium to course, brown.
46	47	1	Clay yellowish in color
47	55	8	sandstone, fine pale yellow.
55	57	2	Sandstone, coarse grained, yellowish brown
57	59	2	sandstone with metallic outgrowth
59	62	3	sandstone, fine pale yellow.
62	64	2	Sandstone, medium, Pale yellow.
64	67	3	sandstone course grained pale yellow.
67	71	4	Sandstone, fine, Pale yellow.
71	78	7	Sandstone, medium grained, Chocolate brown.
78	84	6	Sandstone fine
84	89	5	Sticky clay mixed with sand.
89	95	6	Sandstone, medium, pinkish grey.
95	98	3	Sandstone fine to medium
98	100	2	Sticky clay mixed with sand.
100	104.7	4.7	Sandstone, medium, ill sorted.
104.7	105.7	1	clay
105.7	113	7.3	Gritty sandstone medium grained
113	114	1	clay
114	122	8	Sandstone medium to course
122	128	6	Sandstone fine to medium
128	150	22	sandstone medium .
150	152	2	clay dark brown
152	179	27	Sandstone whitish grey, with clay intercalations
179	185	6	sandstone medium, grey.
185	189	4	Sandstone fine .
189	191	2	sandstone medium .
191	192	1	Clay, Chocolate brown.
192	200	8	sandstone medium, grey.

Fig.13.1: Composite Log of Exploratory Well Drilled at Gowari, Chandrabhaga Watershed (WGKKC-2)

WELL DESIGN

Table 13.3: Well Assembly of Exploratory Well at Gowri, Kalmeshwar Taluka,Nagpur District.

Sl. No.	Depth Ra	ange (mbgl)	Thickness	Description of Pipes
	From	То	(m bgl)	
1	0.00	0.6 (m agl)	0.60	6" (152.4 mm) dia M S Blank pipe
2	0.00	33.00	33.00	6" (152.4 mm) dia M S Blank pipe
3	33.00	39.05	6.05	6" (152.4 mm) dia M S Slotted pipe
4	39.05	48.10	9.05	6" (152.4 mm) dia M S Blank pipe
5	48.10	60.20	12.10	6" (152.4 mm) dia M S Slotted pipe
6	60.20	72.28	12.08	6" (152.4 mm) dia M S Blank pipe
7	72.28	78.33	6.05	6" (152.4 mm) dia M S Slotted pipe
8	78.33	117.63	39.30	6" (152.4 mm) dia M S Blank pipe
9	117.63	123.68	6.05	6" (152.4 mm) dia M S Slotted pipe
10	123.68	135.67	11.99	6" (152.4 mm) dia M S Blank pipe
11	135.67	147.67	12.00	6" (152.4 mm) dia M S Slotted pipe
12	147.67	149.17	1.50	6" (152.4 mm) dia M S Blank pipe with bail plug.

The well was developed using air compressor for 15 hrs till the water was free from sand particles and Cumulative Discharge recorded was 14.88 lps.

WELL HYDRAULICS

Aquifer Performance Test (APT)

Table 13.4: The details of the Aquifer Performance Test (APT) Conducted on Exploratory Wellat GOWRI, Kalmeshwar Taluka, Nagpur District.

Date	20/12/13
Static Water Level	8.03 mbgl
Discharge (Q)	5.50 lps
Drawdown (∆s)	0.729 m
Transmissivity (T)	119 m2/day
Specific Capacity	37.45 lpm/m

CHEMICAL QUALITY

The ground water sample collected during the pumping test was analysed at the Regional Chemical Laboratory of CGWB (CR) Nagpur. The analytical results are given in Table

Location	Typ e	рН	Ec μS/c	TH	C a	M g	N a	К	CO 3	HCO 3	Cl	SO 4	NO 3	F
			m		ppm									
Gowri(PT	EW	8.	648	27	5	32	5	0.5	0	122	9	44	47	0.4
)		1		0	6			1			2			3

The analytical result of water sample collected during pumping test revealed that the range of concentration of parameters viz Mg, NO3 are more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

14. Exploratory Well drilled at Kohli

Location of Site

The village Kohli lies between north latitude 21°15'54.9"and east longitude 78°48'33.8" and falls in the Survey of India Toposheet No. 55 K/15. It is situated at 1 on kms from Kohli Phata which is located kalmeshwar - Katol road and the site is located in 10 m North of Z P primary School.

Details of Drilling:

- a) Rock Formation: Trap Covered Gondwana
- b) Type: Basalt & Sandstone
- c) Drilling Started on 31/12/13 at 23.15 hrs
- d) Drilling Completed on 8/1/14 at 11.50 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in Hard rock Formation (with 184.00 mm Button Bit):125.00 m.
- g) Total depth drilled in soft rock Formation (with 254.00 mm Button Bit):75.00 m.
- h) Depth of reaming (with 254.00 mm Button Bit) : 125.00 m
 - (with 254.00 mm Button Bit) : 125.00 to 195.00 m
- i) Well construction Depth 193.37 m
- j) Details of Casing
 - 1) Length of pipes
 - a. Blank Pipes : (152.4 mm) 6" pipes = 97.16 m

(101.6 mm) 4″ pipes = 57.08 m

b. Slotted pipes : (101.6 mm) 4" pipes = 39.73 m

	c.	Slot Size	:	1.5 mm
2)	Dia of I	Pipe	:	
	a.	Blank Pipes	:	152.4 mm
	b.	Slotted Pipes	:	101.6 mm
3)	Gauge	of Pipes		
	a.	Blank Pipes	:	7.1 mm
	b.	Slotted pipes	:	5.0 mm
4)	Materi	al of Pipes		
	a.	Blank Pipes	:	MS
	b.	Slotted pipes	:	MS

Geological Data:

Geologically the site is located in Trap covered Gondwana area. The basalt and Gondwana contact at site was encountered at 125 m bgl.

Table 14.1: Drill Time log of the Exploratory well drilled at village Kohli, Kalmeshwar taluka, Nagpur district.

Date		ange (m)	Thick ness(m)	Drilling ti	me(min)	Total time	Penetration rate. min/m
	From	То		From	То	(min)	
31-12-2014	0	3	3	23.15	23.35	20	6.67
	3	5.65	2.65	23.35	23.55	20	7.55
	5.65	8.65	3	23.56	23.58	2	0.67
	8.65	11.3	2.65	23.58	24.00	42	0.75
	11.3	14.3	3	24.00	24.06	6	2.00
	14.3	16.95	2.65	24.06	24.11	5	1.89
	16.95	19.95	3	24.12	24.16	4	1.33
	19.95	22.6	2.65	24.16	24.19	3	1.13
	22.6	25.6	3	24.20	24.23	3	1.00
	25.6	28.25	2.65	24.23	24.28	5	1.89
	28.25	31.25	3	24.29	24.33	4	1.33
	31.25	33.9	2.65	24.33	24.37	4	1.51
	33.9	36.9	3	24.38	24.42	4	1.33
	36.9	39.55	2.65	24.42	24.46	4	1.51
	39.55	42.65	3.1	24.49	24.53	4	1.29
	42.65	45.2	2.55	24.53	24.59	6	2.35
	45.2	48.2	3	1.02	1.04	2	0.67
	48.2	50.85	2.65	1.06	1.14	8	3.02
	50.85	53.85	3	1.20	1.23	3	1.00
	53.85	56.5	2.65	1.23	1.26	3	1.13
	56.5	59.5	3	1.27	1.33	6	2.00
	59.5	62.15	2.65	1.33	1.38	5	1.89
	62.15	65.15	3	1.40	1.46	6	2.00
	65.15	67.8	2.65	1.46	1.52	6	2.26
	67.8	70.8	3	1.56	2.10	54	4.67
	70.8	73.45	2.65	2.10	2.16	6	2.26
	73.45	76.45	3	2.23	2.30	7	2.33
	76.45	79.1	2.65	2.30	2.40	10	3.77
	79.1	82.1	3	2.45	2.50	5	1.67

Date	Depth ra	ange (m)	Thick ness(m)	Drilling ti	me(min)	Total time	Penetration rate. min/m
	From	То		From	То	(min)	-
	82.1	84.75	2.65	2.50	2.55	5	1.89
	84.75	87.75	3	2.58	3.03	45	1.67
	87.75	90.4	2.65	3.03	3.06	3	1.13
	90.4	93.4	3	3.08	3.12	4	1.33
	93.4	96.05	2.65	3.12	3.17	5	1.89
	96.05	99.05	3	3.20	3.26	6	2.00
	99.05	101.7	2.65	3.26	3.32	6	2.26
	101.7	104.7	3	3.34	3.40	6	2.00
	104.7	107.35	2.65	3.40	3.44	4	1.51
	107.35	110.35	3	3.45	3.49	4	1.33
	110.35	113	2.65	3.49	3.52	3	1.13
	113	116	3	3.52	3.57	5	1.67
	116	118.65	2.65	3.57	4.00	43	1.13
	118.65	121.65	3	4.01	4.03	2	0.67
	121.65	124.3	2.65	4.03	4.06	3	1.13
	124.3	127.3	3	4.07	4.09	2	0.67
	127.3	129.95	2.65	4.09	4.11	2	0.75
	129.95	132.95	3	4.12	4.14	2	0.67
	132.95	135.6	2.65	4.14	4.17	3	1.13
	135.6	138.6	3	4.18	4.20	2	0.67
	138.6	141.25	2.65	4.20	4.24	4	1.51
	141.25	144.25	3	4.25	4.30	5	1.67
	144.25	146.9	2.65	4.30	4.35	5	1.89
	146.9	149.9	3	4.38	4.40	2	0.67
	149.9	152.55	2.65	4.40	4.43	3	1.13
	152.55	155.55	3	4.44	4.46	2	0.67
	155.55	158.2	2.65	4.46	4.48	2	0.75
	158.2	161.2	3	4.49	4.51	2	0.67
	161.25	163.85	2.6	4.51	4.53	2	0.77
	163.85	166.85	3	4.54	4.56	2	0.67
	166.85	169.5	2.65	4.56	4.58	2	0.75
31-12-2013	169.5	172.5	3	5.00	5.02	2	0.67
	172.25	175.15	2.9	5.02	5.03	1	0.34
08-01-2014	175.15	178.15	3	21.30	21.41	11	3.67
	178.15	180.8	2.65	21.41	22.10	69	10.94
	180.8	183.8	3	23.25	23.55	30	10.00
	183.8	186.45	2.65	23.55	24.55	100	22.64
	186.45	189.45	3	1.10	2.10	100	20.00
	189.45	192.1	2.65	2.10	3.15	105	24.53
	192.1	195.1	3	3.31	4.32	101	20.33
08-01-2014	195.1	197.75	2.65	4.32	6.33	201	45.66
	197.75	200	2.25	7.10	8.30	120	44.44

Depth range (m) Thickness		Thickness	Consolidated Lithology
From	То	(m)	
0	4	4	Top soil mixed with Basalt, weathered
4	5.2	1.2	Basalt black, Amygdular with very small grains of secondary
			minerals, fractured
5.2	10.5	5.3	Basalt black compact with secondary minerals minutely
			vesicular.
11.5	13	1.5	Clay grey
13	27	14	Basalt, Amygdular black hard compact with sec. minerals.
27	31.5	4.5	Basalt black hard compact.
31.5	32.4	0.9	Clay grey
32.4	37	4.6	Amygdular vesicular basalt, black with secondary minerals.
37	46	9	Basalt black hard with veins of metallic growth.
46	52	6	Grey Bole.
52	59.5	7.5	Basalt Vesicular filled with sparse secondary fillings.
59.5	62	2.5	Basalt black hard compact. with very few Vesicles filled with
			secondary fillings
62	65	3	Basalt black hard compact. with vary few Vesicles filled with
			secondary fillings and fracture.
65	73	8	Basalt black hard compact.
73	81	8	Basalt vesicular black filled with secondary minerals.
81	87	6	Basalt with vary few Vesicles filled with secondary fillings
87	90.4	3.4	Basalt, very fine, black hard.
90.4	93.4	3	Amygdular basalt black hard mixed with secondary minerals.
93.4	113	19.6	Basalt black hard with very coarse grains, jointed.
113	117	4	Basalt Amygdular black compact.
117	125	8	Basalt, steel black, massive hard compact.
125	135.6	10.6	Sand, gritty, medium, dark brown, with medium to coarse
			grains of quartz.
135.6	141.25	5.65	Sand, gritty, medium to coarse, brown to reddish brown
141.25	144.25	3	Sandstone, brown, medium to coarse, with quartz grains
			predominantly medium grained.
144.25	145	0.75	sand, fine to coarse, with qtz pebbles of pale brown colour.
145	151	6	sand, pale brown, fine to medium
151	160	9	sand, very fine, light brown to yellow.
160	164	4	sand, medium, yellow
164	170	6	sand, medium to coarse, pale yellow
170	183	13	sand fine to medium with argillaceous material like silt or clay
183	200	17	sand, medium with clay intercalations

Table 14.2: Consolidated lithological log of the Exploratory well drilled at village Kohli, Kalmeshwar taluka, Nagpur district.

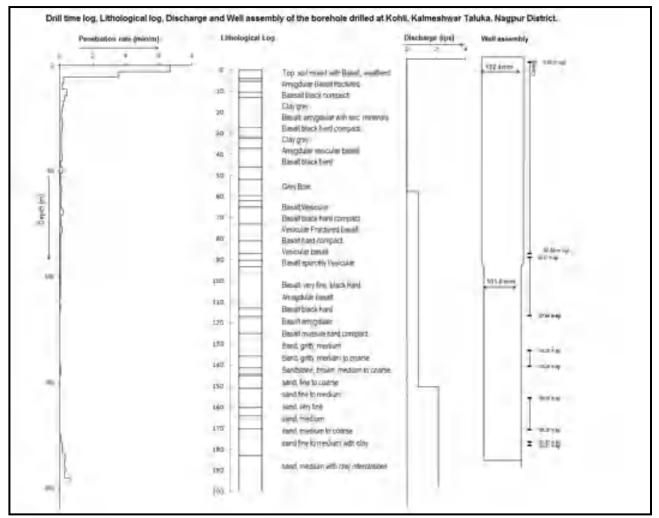


Fig.14.1: Composite Log of Exploratory Well Drilled at Kohli, Chandrabhaga Watershed (WGKKC-2)

WELL DESIGN

Table 14.3: Well Assembly of Exploratory Well at vKohli, KalmeshwarTaluka, Nagpur District.

Sl. No.	Depth Ra	nge (mbgl)	Thickness	Describtion of Pipes
	From	То	(m bgl)	
1	0.00	0.6 (magl)	0.60	6" (152.4 mm) dia M S Blank pipe
2	0.00	96.56	96.56	6" (152.4 mm) dia M S Blank pipe
3	96.56	127.64	31.08	4" (101.6 mm) dia M S Blank pipe
4	127.64	145.28	17.64	4" (101.6 mm) dia M S Slotted pipe
5	145.28	153.28	8.00	4" (101.6 mm) dia M S Blank pipe
6	153.28	169.28	16.00	4" (101.6 mm) dia M S Slotted pipe
7	169.28	185.28	16.00	4" (101.6 mm) dia M S Blank pipe
8	185.28	191.37	6.09	4" (101.6 mm) dia M S Slotted pipe
9	191.37	193.37	2.00	6" (152.4 mm) dia M S Blank pipe with bail plug.

Development

The well was developed using air compressor for 15 hrs till the water was free from sand particles Cumulative Discharge measured was 4.00 lps.

WELL HYDRAULICS

Aquifer Performance Test (APT)

For estimation of aquifer parameters APT conducted on exploratory well for 1000 minutes duration and 90% recuperation recorded.

Table 14.4: The details of the **Aquifer Performance Test (APT)** Conducted on Exploratory Well at GOWRI, Kalmeshwar Taluka, Nagpur District.

Date	23/01/14				
Static Water Level	78.12 mbgl				
Discharge (Q)	4.00 lps				
Drawdown (∆s)	0.366 m				
Transmissivity (T)	172.93 m2/day				
Specific Capacity	50.63 lpm/m				

CHEMICAL QUALITY

Location	Туре	pН	Ec	TH	Ca	Mg	Na	к	CO3	нсоз	Cl	SO4	NO3	F
Location		pii	μS/cm						ppm					
Kohli-Zone-1	EW	7.7	917	175	84	55.9	5.2	0.12	0	214	92	116.2	37.2	0.18
Kohli-Zone-2	EW	8.3	886	150	38	80.2	7.3	0.16	0	183	113	73.5	34.7	0.16
Kohli-(PT)	EW	7.9	1436	250	60	130	7.8	0.22	0	305	227	110.8	36.6	0.27

The analytical result of water sample collected from the Zone-I of the Exploratory well revealed that the range of concentration of parameters viz Ca, Mg are more than desirable limit and all other parameters are within desirable limit. In Zone-II of the Exploratory well the analytical result revealed that the range of concentration of parameters viz Mg is more than desirable limit while all other parameters are within the desirable limit. While In sample collected during pumping test the analytical result of water sample collected revealed that the range of concentration of parameters viz EC, Mg, HCO3 are more than desirable limit while all other parameters viz EC, Mg, HCO3 are more than desirable limit while all other parameters are within desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

15. Exploratory Well drilled at Khairi (lakhmaji)

Location of Site

The village Khairi (Lakhmaji) loies between north latitude 21°15'10.1"and east longitude 78°57'05.8" and falls in the Survey of India Toposheet No. 55 K/15. It is situated at about 5 km distance from Kalmeshwar on Tondakhairi road, and the site is located in th premises of Smashanbhumi of the village.

Details of Drilling:

- a) Rock Formation: Gondwana
- b) Type: Sandstone
- c) Drilling Started on 20/12/2013 at 19.02 hrs
- d) Drilling Completed on 26/12/2013 at 8.33 hrs
- e) Total depth drilled: 200.00 m.
- f) Total depth drilled in soft rock Formation (with 215 mm Button Bit):200.00 m.
- g) Details of Casing
 - 1) Length of pipes

	a.	Blank Pipes	:	136.65 m
	b.	Slotted pipes	:	54.62 mbgl
	с.	Slot Size	:	1.58 mm
2)	Dia of I	Pipe		
	a.	Blank Pipes	:	152.4 mm
	b.	Slotted Pipes	:	152.4 mm
3)	Gauge	of Pipes		
	a.	Blank Pipes	:	7.1 mm
	b.	Slotted pipes	:	7.1mm
4)	Materi	al of Pipes		
	a.	Blank Pipes	:	MS
	b.	Slotted pipes	:	MS

Geological Data:

Geologically, the area is underlined by Gondwana group of rocks. These formations are exposed in the surface as well as seen in well sections

Table	15.1:	Drill	Time	log	of	the	Exploratory	well	drilled	at	village	Khairi	Lakhmaji,
Kalme	shwar	taluka	a, Nagi	our d	istr	ict.							

Date	Depth r	ange	Thick	Drilling	time(min)	Total time	Penetrati
	(m)		ness (m)			(min)	on rate.
	From	То	-	From	То		min/m
20/12/13	0	3	3	19.02	19.06	4	1.33
	3	5.65	2.65	19.06	19.12	6	2.26
	5.65	8.65	3	19.13	19.17	4	1.33
	8.65	11.3	2.65	19.17	19.24	7	2.64
	11.3	14.3	3	19.25	19.30	5	1.67
	14.3	16.95	2.65	19.3	19.36	6	2.26
	16.95	19.95	3	19.37	19.50	13	4.33
	19.95	22.6	2.65	19.5	20.07	17	6.42
	22.6	25.6	3	20.5	21.30	40	13.33
	25.6	28.25	2.65	24.12	24.40	28	10.57
	28.25	31.25	3	24.47	1.30	43	14.33
	31.25	33.9	2.65	1.30	1.50	20	7.55
	33.9	36.9	3	2.00	2.40	40	13.33
	36.9	39.55	2.65	2.40	3.10	30	11.32
	39.55	42.65	3.1	3.12	3.40	28	9.03
	42.65	45.2	2.55	3.40	4.30	50	19.61
	45.2	48.2	3	4.30	5.00	30	10.00
	48.2	50.85	2.65	5.00	5.30	30	11.32
	50.85	53.85	3	10.15	10.55	40	13.33
	53.85	56.5	2.65	10.55	11.30	35	13.21
	56.5	59.5	3	11.31	12.01	30	10.00
	59.5	62.15	2.65	12.01	12.33	32	12.08
	62.15	65.15	3	12.34	13.31	57	19.00
	65.15	67.8	2.65	13.31	14.34	63	23.77
22.12.2013	67.8	70.8	3	16.57	17.30	33	11.00
	70.8	73.45	2.65	17.3	17.58	28	10.57
	73.45	76.45	3	17.58	18.30	32	10.67
	76.45	79.1	2.65	18.3	21.45	195	73.58
	79.1	82.1	3	23	24.10	70	23.33
	82.1	84.75	2.65	24.1	1.10	60	22.64

(m) From 84.75	-	ness (m)	1		(min)	Penetrati on rate.	
			-	-	(min)		
84 /5		2	From	To	<u></u>	min/m	
	87.75	3	1.11	2.12	61	20.33	
87.75	90.4	2.65	2.12	3.13	61	23.02	
90.4	93.4	3	3.14	5.00	104	34.67	
						5.66	
			-			4.00	
				-		4.15	
		-	-	-		7.00	
			-	-		3.77	
						3.67	
			-	-		5.28	
						6.00	
116	118.65	2.65	24.3	24.40	10	3.77	
118.65	121.65	3	24.42	24.56	14	4.67	
121.65	124.3	2.65	24.56	1.10	14	5.28	
124.3	127.3	3	1.12	1.22	10	3.33	
127.3	129.95	2.65	1.22	1.32	10	3.77	
129.95	132.95	3	1.36	1.47	11	3.67	
132.95	135.6	2.65	1.47	1.58	11	4.15	
135.6	138.6	3	2	2.12	12	4.00	
138.6	141.25	2.65	2.12	2.21	9	3.40	
141.25	144.25	3	2.23	2.34	11	3.67	
144.25	146.9	2.65	2.34	2.44	10	3.77	
146.9	149.9	3	2.46	2.57	11	3.67	
149.9	152.55	2.65	2.57	3.10	13	4.91	
152.55	155.55	3	3.12	3.22	10	3.33	
155.55	158.2	2.65	3.22	3.30	8	3.02	
158.2	161.2	3	3.32	3.42	10	3.33	
		2.6	3.42	3.52	10	3.85	
		3			9	3.00	
166.85	169.5	2.65	4.03	4.12	9	3.40	
169.5	172.5	3	4.14	4.24	10	3.33	
				4.36	12	4.14	
			-			20.00	
				-		26.42	
			-	-		20.00	
				-		22.64	
			-	-		20.33	
			-			23.40	
						20.33	
						22.26	
			-	-		27.11	
	93.4 96.05 99.05 101.7 104.7 107.35 110.35 113 116 118.65 121.65 124.3 124.3 127.3 129.95 132.95 132.95 135.6 138.6 141.25 138.6 144.25 144.25 144.25 144.25 145.55 158.2 155.55 158.2 163.85 163.85	93.496.0596.0599.0599.05101.7101.7104.7104.7107.35107.35110.35107.35110.35110.35113113116116118.65118.65124.3121.65124.3124.3127.3127.3129.95132.95135.6135.6138.6135.6144.25144.25144.25144.25144.25144.25155.55155.55158.2155.55158.2163.85166.85166.85169.5166.85169.5175.15178.15175.15178.15175.15178.15175.15178.15175.15178.15180.8183.8183.8186.45189.45192.1192.1195.1195.1197.75	93.496.052.6596.0599.05399.05101.72.65101.7104.73104.7107.352.65107.35110.353110.351132.651131163116118.652.65118.65121.653121.65124.32.65124.3127.33127.3129.952.65129.95132.953132.95135.62.65135.6138.63138.6141.253144.25146.92.65144.25144.253144.9152.553155.55158.22.65158.2161.23161.25158.53166.85169.52.65169.5172.53172.15175.153175.15178.153175.15180.82.65180.8186.452.65180.8186.453183.8186.452.65186.45189.453189.45189.453189.45192.12.65192.1195.13	93.496.052.6522.396.0599.05322.4799.05101.72.6522.59101.7104.7323.12104.7107.352.6523.33107.35110.35323.45110.351132.6523.56113116324.12116118.652.6524.3118.65124.32.6524.3118.65124.32.6524.56124.3127.331.12127.3129.952.651.22129.95132.9531.36132.95135.62.651.47135.6138.632138.6141.252.652.12141.25144.2532.23144.25146.92.652.34146.9149.932.46149.9152.553.653.12155.55158.22.653.22158.2161.233.22158.2161.233.22158.5166.8533.54166.85169.52.654.03169.5172.534.14172.5175.152.94.24175.15180.82.652.25183.8186.452.652.25186.45189.4533.27189.45189.4533.27189.45189.453 <t< td=""><td>93.496.052.6522.322.4596.0599.05322.4722.5999.05101.72.6522.5923.10101.7104.7323.1223.33104.7107.352.6523.3323.43107.35110.35323.4523.56110.351132.6523.5624.10113116324.1224.30116118.652.6524.324.40118.65121.65324.4224.56121.65124.32.6524.561.10124.3127.331.121.22127.3129.952.651.221.32127.3132.9531.361.47132.95135.62.651.471.58135.6138.6322.12138.6141.252.652.122.21141.25144.2532.232.34144.25146.92.652.573.10152.55155.533.123.22155.55158.22.653.223.30158.2161.233.243.52163.85166.8533.544.03166.85169.52.654.034.12169.5172.534.144.24172.55175.152.94.244.36175.15178.1533.274.28</td></t<> <td>93.496.052.6522.322.451596.0590.05322.4722.591299.05101.72.6522.5923.1011101.7104.7323.1223.3321104.7107.352.6523.3323.4310107.35110.35323.4523.5611110.351132.6523.5624.1014113116324.4224.5614116.5124.32.6524.324.4010118.65124.53324.4224.5614121.65124.32.6524.561.1014124.3127.331.121.2210127.3129.952.651.221.3210129.95132.9531.361.4711132.95135.62.651.471.5811135.6138.6322.1212138.614.1252.652.122.219141.25144.2532.232.3411144.25146.92.652.573.1013152.55155.2533.123.2210152.55155.2533.123.2210155.55158.22.653.523.08158.2161.233.223.08158.2165.533.2</td>	93.496.052.6522.322.4596.0599.05322.4722.5999.05101.72.6522.5923.10101.7104.7323.1223.33104.7107.352.6523.3323.43107.35110.35323.4523.56110.351132.6523.5624.10113116324.1224.30116118.652.6524.324.40118.65121.65324.4224.56121.65124.32.6524.561.10124.3127.331.121.22127.3129.952.651.221.32127.3132.9531.361.47132.95135.62.651.471.58135.6138.6322.12138.6141.252.652.122.21141.25144.2532.232.34144.25146.92.652.573.10152.55155.533.123.22155.55158.22.653.223.30158.2161.233.243.52163.85166.8533.544.03166.85169.52.654.034.12169.5172.534.144.24172.55175.152.94.244.36175.15178.1533.274.28	93.496.052.6522.322.451596.0590.05322.4722.591299.05101.72.6522.5923.1011101.7104.7323.1223.3321104.7107.352.6523.3323.4310107.35110.35323.4523.5611110.351132.6523.5624.1014113116324.4224.5614116.5124.32.6524.324.4010118.65124.53324.4224.5614121.65124.32.6524.561.1014124.3127.331.121.2210127.3129.952.651.221.3210129.95132.9531.361.4711132.95135.62.651.471.5811135.6138.6322.1212138.614.1252.652.122.219141.25144.2532.232.3411144.25146.92.652.573.1013152.55155.2533.123.2210152.55155.2533.123.2210155.55158.22.653.523.08158.2161.233.223.08158.2165.533.2	

Depth range (m) Thickness			Consolidated Lithology						
From	To	(m)							
0	8	8	Top soil, mixed with clay, yellowish black						
8	14	6	Sand, light yellow, very fine,						
14	20	6	Sand, light yellow, very fine, with clay intercalations						
20	62	42	Sand dark brown, medium to coarse, with prominent quartz						
			grains. with little at various depths clay intercalations						
62	67	5	Sandy clay dark brown,						
67	85	18	Sand dark brown, coarse, with prominent quartz grains. with						
			little clay intercalations						
85	89	4	Sand, medium medium to coarse, dark brown.						
89	94	5	clay / shale chocolate brown .						
94	113	19	sand, dark brown, fine to coarse						
113	115	2	clay / shale greyish brown .						
115	120	5	Sandstone, light grey, fine grained, mixed with black shale						
			intercalations.						
120	144	24	Sandstone dark grey, mixed with black shale, with intercalated						
			ferruginous sandstone.						
144	159	15	Sand, light grey mixed with coarser chips of fine grained black						
			shale intercalations.						
159	161	2	Clay black						
161	177	16	clay blackish with Sand light pink to grey						
177	180	3	sand, light grey, fine mixed with shale						
180	200	20	sandstone, hard compact, light pink to dark pink, fine to						
			medium.						
0	8	8	Top soil, mixed with clay, yellowish black						
8	14	6	Sand, light yellow, very fine,						
14	20	6	Sand, light yellow, very fine, with clay intercalations						
20	62	42	Sand dark brown, medium to coarse, with prominent quartz						
			grains. with little at various depths clay intercalations						
62	67	5	Sandy clay dark brown,						
67	85	18	Sand dark brown, coarse, with prominent quartz grains .with						
			little clay intercalations						
85	89	4	Sand, medium medium to coarse, dark brown.						
89	94	5	clay / shale chocolate brown .						
94	113	19	sand, dark brown, fine to coarse						
113	115	2	clay / shale greyish brown .						
115	120	5	Sandstone, light grey, fine grained, mixed with black shale						
			intercalations.						
120	144	24	Sandstone dark grey, mixed with black shale, with intercalated						
			ferruginous sandstone.						
144	159	15	Sand, light grey mixed with coarser chips of fine grained black						
450	4.55		shale intercalations.						
159	161	2	Clay black						
161	177	16	clay blackish with Sand light pink to grey						
177	180	3	sand, light grey, fine mixed with shale						
180	200	20	sandstone, hard compact, light pink to dark pink, fine to medium.						

Table 15.2: Consolidated lithological log of the Exploratory well drilled at village Khairi Lakhmaji, Kalmeshwar taluka, Nagpur district.

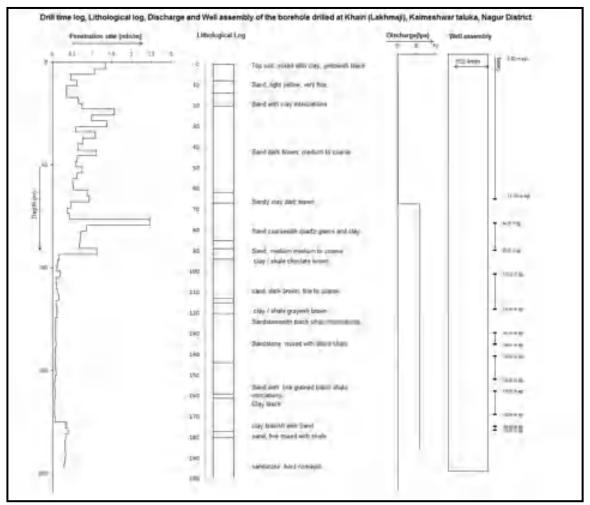


Fig. 15.1: Composite Log of Exploratory Well Drilled at Khairi(Lakhamaji), Chandrabhaga Watershed (WGKKC-2)

WELL DESIGN

Table 15.3: Well Assembly of Exploratory Well at Khairi (Lakhmaji), Kalmeshwar Taluka, Nagpur District.

Sl. No.	Depth R	ange (mbgl)	Thickness	Description of Pipes
	From	То	(m bgl)	
1	0.00	0.6 (magl)	0.60	6" (152.4 mm) dia M S Blank pipe
2	0.00	72.00	72.00	6" (152.4 mm) dia M S Blank pipe
3	72.00	84.29	12.29	6" (152.4 mm) dia M S Slotted pipe
4	84.29	98.29	14.00	6" (152.4 mm) dia M S Blank pipe
5	98.29	110.44	12.15	6" (152.4 mm) dia M S Slotted pipe
6	110.44	128.44	18.00	6" (152.4 mm) dia M S Blank pipe
7	128.44	140.56	12.12	6" (152.4 mm) dia M S Slotted pipe
8	140.56	146.61	6.05	6" (152.4 mm) dia M S Blank pipe
9	146.61	152.66	6.05	6" (152.4 mm) dia M S Slotted pipe
10	152.66	164.66	12.00	6" (152.4 mm) dia M S Blank pipe
11	164.66	170.63	5.97	6" (152.4 mm) dia M S Slotted pipe
12	170.63	182.59	11.96	6" (152.4 mm) dia M S Blank pipe

Sl. No.	Depth R	h Range (mbgl) Thickn		Description of Pipes
	From	То	(m bgl)	
13	182.59	188.63	6.04	6" (152.4 mm) dia M S Slotted pipe
14	188.63	190.63	2.00	6" (152.4 mm) dia M S Blank pipe with bail plug.

The well was developed using air compressor for 15 hrs on 30/12/13 at 11.00 hrs to31/12/13 at 2.00 hrs till the water was free from sand particles and Cumulative Discharge measured was 5.94 lps.

WELL HYDRAULICS

Aquifer Performance Test (APT)

For estimation of aquifer parameters APT conducted on exploratory well for 1000 minutes duration and 90% recuperation recorded.

Table-4 The details of the Aquifer Performance Test (APT) Conducted on Exploratory Well at KHAIRI (LAKHMAJI), Kalmeshwar Taluka, Nagpur District.

Date	15-1-2014
Static Water Level	6.01 mbgl
Discharge (Q)	5.50 lps
Drawdown (∆s)	5.682 m
Transmissivity (T)	15 m2/day
Specific Capacity	58.07 lpm/m

CHEMICAL QUALITY

The ground water samples collected during the pumping test were analysed at the Regional Chemical Laboratory of CGWB (CR) Nagpur. The analytical results are given in Table

Location	Туре	Ha	Ec	TH	Ca	Mg	Na	к	CO3	НСОЗ	Cl	SO4	NO3	F
Location		211	μS/cm							.ppm				
Khairi lakhmaji	(PT)	7.9	1233	535	58	95	9	0.74	0	171	216	132	41	0.33

The analytical result of water sample collected during pumping test revealed that the range of concentration of parameters viz TH, Mg, are more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).

16. Exploratory Well drilled at Waroda

Location of Site

The village Waroda lies between north latitude 21°15'48.8" and east longitude 78°54'17.4" passes through this village and falls in the Survey of India Toposheet No. 55 K/15. It is situated at 28 kms from Nagpur, 3 Kms from Klameshwar on Dhapewada road, and the site is located 5 m east Grampanchayat Bhavan and 5 m north of village road in Grampanchayat premises.

Details of Drilling

Rock Formation: Trap Covered Gondwana

- a) Type: Basalt & Sandstone
- b) Drilling Started on 5.02.14 at 18.50 hrs
- c) Drilling Completed on 5.02.14 at 23.05 hrs
- d) Total depth drilled: 200.00 m.
- e) Total depth drilled in Hard rock Formation (with 215 mm Button Bit):62.15 m.
- f) Total depth drilled in soft rock Formation (with 215 mm Button Bit):137.85 m.
- g) Details of Casing

1) Length of pipes

	-	• •		
	a.	Blank Pipes : (1	.52.4 mm) 6'	" pipes = 0.60 magl + 92.29 m bgl =92.89 m
			(101.6	5 mm) 4" pipes = 37.15 m
	b.	Slotted pipes	: (152.4	4 mm) 6" pipes = 6.08 m
			(101.6	5 mm) 4" pipes = 52.48 m
	с.	Slot Size	:	1.5 mm
2)	Dia of I	Pipe	:	
	a.	Blank Pipes	:	152.4 mm
	b.	Slotted Pipes	:	152.4 mm & 101.6 mm
3)	Gauge	of Pipes		
	a.	Blank Pipes	:	7.1 mm
	b.	Slotted pipes	:	7.1mm
4)	Materi	al of Pipes		
	a.	Blank Pipes	:	MS
	b.	Slotted pipes	:	MS

Geological Data:

Geologically the site is located in Trap covered Gondwana area. The contact between basalt and Gondwana encountered at 62.00 m bgl.

Table 16.1: Drill Time log of the Exploratory well drilled at village Waroda, Kalmeshwar taluka,

Nagpur district.

Date	Depth r	ange (m)	Thickness(m)	Drilling ti	me(min)	Total	Penetration
	From	То		From	То	time	rate.
						(min)	min/m
5.02.2014	0	3	3	18:50	19:00	10	3.3
	3	5.65	2.65	19:00	19:06	6	2.3
	5.65	8.65	3	19:40	19:47	7	2.3
	8.65	11.3	2.65	19:47	19:52	5	1.9
	11.3	14.3	3	19:53	20:02	9	3.0
	14.3	16.95	2.65	20:02	20:12	10	3.8
	16.95	19.95	3	20:13	20:18	5	1.7
	19.95	22.6	2.65	20:18	20:25	7	2.6
	22.6	25.6	3	20:26	20:30	4	1.3
	25.6	28.25	2.65	20:30	20:35	5	1.9
	28.25	31.25	3	20:36	20:40	4	1.3
	31.25	33.9	2.65	20:40	20:44	4	1.5
	33.9	36.9	3	20:45	20:50	5	1.7
	36.9	39.55	2.65	20:50	20:55	5	1.9
	39.55	42.65	3.1	20:56	21:04	8	2.6
	42.65	45.2	2.55	21:04	21:14	10	3.9
	45.2	48.2	3	21:15	21:20	5	1.7
	48.2	50.85	2.65	21:20	21:25	5	1.9
	50.85	53.85	3	21:26	21:28	2	0.7
	53.85	56.5	2.65	21:28	21:30	2	0.8
	56.5	59.5	3	21:30	21:35	5	1.7
	59.5	62.15	2.65	21:35	21:39	4	1.5

Date	Depth ra	ange (m)	Thickness(m)	Drilling ti	me(min)	Total	Penetration
	From	То	1	From	То	time	rate.
						(min)	min/m
	62.15	65.15	3	21:40	21:44	4	1.3
	65.15	67.8	2.65	21:44	21:47	3	1.1
	67.8	70.8	3	21:48	21:50	2	0.7
	70.8	73.45	2.65	21:50	21:53	3	1.1
	73.45	76.45	3	21:54	21:57	3	1.0
	76.45	79.1	2.65	21:57	22:00	3	1.1
	79.1	82.1	3	22:01	22:03	2	0.7
	82.1	84.75	2.65	22:03	22:06	3	1.1
	84.75	87.75	3	22:07	22:10	3	1.0
	87.75	90.4	2.65	22:10	22:13	3	1.1
	90.4	93.4	3	22:14	22:16	2	0.7
	93.4	96.05	2.65	22:16	22:19	3	1.1
	96.05	99.05	3	22:20	22:23	3	1.0
	99.05	101.7	2.65	22:23	22:26	3	1.1
	101.7	104.7	3	22:27	22:30	3	1.0
	104.7	107.35	2.65	22:30	22:32	2	0.8
	107.35	110.35	3	22:33	22:35	2	0.7
	110.35	113	2.65	22:35	22:38	3	1.1
	113	116	3	22:39	22:42	3	1.0
	116	118.65	2.65	22:42	22:44	2	0.8
	118.65	121.65	3	22:45	22:47	2	0.7
	121.65	124.3	2.65	22:47	22:51	4	1.5
	124.3	127.3	3	22:52	22:55	3	1.0
	127.3	129.95	2.65	22:55	22:58	3	1.1
	129.95	132.95	3	22:59	23:03	4	1.3
	132.95	135.6	2.65	23:03	23:05	2	0.8
	135.6	138.6	3	23:06	23:09	3	1.0
	138.6	141.25	2.65	23:09	23:13	4	1.5
	141.25	144.25	3	23:14	23:19	5	1.7
	144.25	146.9	2.65	23:19	23:23	4	1.5
	146.9	149.9	3	23:24	23:29	5	1.7
	149.9	152.55	2.65	23:29	23:35	6	2.3
	152.55	155.55	3	23:36	23:42	6	2.0
	155.55	158.2	2.65	23:42	23:48	6	2.3
	158.2	161.2	3	23:50	23:59	9	3.0
	161.25	163.85	2.6	00:06	00:10	4	1.5
	163.85	166.85	3	00:10	00:16	6	2.0
	166.85	169.5	2.65	00:16	00:21	5	1.9
	169.5	172.5	3	00:22	00:27	5	1.7
	172.25	175.15	2.9	00:27	00:33	6	2.1

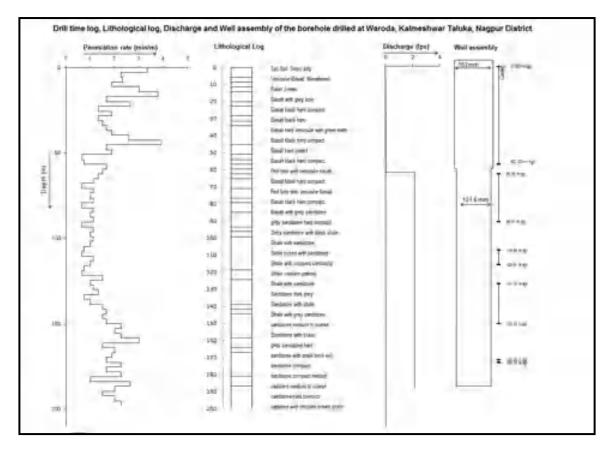

Date	Depth range (m)		Thickness(m)	Drilling ti	me(min)	Total	Penetration
	From	То		From	То	time	rate.
						(min)	min/m
	175.15	178.15	3	00:34	00:39	5	1.7
	178.15	180.8	2.65	00:39	00:45	6	2.3
	180.8	183.8	3	00:46	00:49	3	1.0
	183.8	186.45	2.65	00:49	00:56	7	2.6
	186.45	189.45	3	00:57	01:03	6	2.0
	189.45	192.1	2.65	01:03	01:07	4	1.5
	192.1	195.1	3	01:08	01:14	6	2.0
	195.1	197.75	2.65	01:14	01:20	6	2.3
	197.75	200	2.25	01:21	01:26	5	2.2

Table 16.2: Consolidated lithological log of the Exploratory well drilled at village Waroda, Kalmeshwar

taluka, Nagpur district.

Depth ra	nge (m)	Thickness (m)	Consolidated Lithology
From	То		
0	5.65	5.65	Top Soil: Gritty; silty, lose material.
5.65	8.65	3	Vesicular Basalt, Weathered brownish black.
8.65	11.3	2.65	Basalt, Black, Jointed with chips of quartz.
11.3	14.3	3	Basalt, black, medium to coarse with grey bole
14.3	19.95	5.65	Basalt black hard compact
19.95	22.6	2.65	Basalt black hard compact with few chips of Secondary Minerals.
22.6	28.25	5.65	Basalt black hard vesicular with sparse green earth.
28.25	31.25	3	Basalt black hard compact
31.25	33.9	2.65	Basalt hard jointed with few chips of secondary minerals.
33.9	45.2	11.3	Basalt black hard compact.
45.2	50.85	5.65	Red bole bed mixed with vesicular basalt.
50.85	53.85	3	Basalt black hard compact.
53.85	56.5	2.65	Red bole bed mixed with vesicular basalt.
56.5	59.5	3	Basalt black hard compact.
59.5	62.15	2.65	Basalt brownish black mixed with gritty sandstone of brownish
			red colour.
62.15	65.15	3	gritty sandstone blackish brown hard compact.
65.15	70.8	5.65	Gritty sandstone brownish black micaceous mixed with black
			shale
70.8	76.45	5.65	Shale black mixed with sandstone blackish brown micaceous.
76.45	79.1	2.65	Shale, blackish brown mixed with greyish brown sandstone
			which is micaceous.
79.1	84.75	5.65	Shale, black mixed with dark grey sandstone compact.
84.75	93.4	8.65	Shale black medium grained.
93.4	96.05	2.65	Shale mixed with dark grey sandstone.
96.05	99.05	3	Sandstone dark grey, micaceous with few quartz chips.
99.05	118.65	19.6	Sandstone grey medium grained mixed with shale dark brown.
118.65	124.3	5.65	Shale brownish red mixed with gray sandstone.
124.3	138.6	14.3	Sandstone dark grey medium to coarse.
138.6	141.25	2.65	Sandstone dark grey gritty mixed with shale.
141.25	144.25	3	gritty sandstone, dark brownish grey, hard

Depth range (m)		Thickness (m)	Consolidated Lithology
From	То		
144.25	158.2	13.95	Sandstone dark grey mixed with shale brick red.
158.2	163.85	5.65	sandstone dark grey compact coarser chips.
163.85	166.85	3	sandstone dark grey with few chips of brick red sandstone which is compact medium grained
166.85	180.8	13.95	sandstone dark grey mixed with brownish red sandstone medium to coarse
180.8	186.45	5.65	sandstone dark grey hard compact micaceous.
186.45	200	13.55	sandstone dark grey with chocolate brown shale.

Fig.16.1: Composite Log of Exploratory Well Drilled at Waroda, Chandrabhaga Watershed (WGKKC-2)

WELL DESIGN

Table 16.3: Well Assembly of Exploratory Well at at Waroda EW, Kalmeshwar Taluka, Nagpur District.

SI. No.	Depth R	ange (mbgl)	Thickness	Description of Pipes					
	From	То	(m bgl)						
1	0.00	0.6 (magl)	0.60	6" (152.4 mm) dia M S Blank MS pipe					
2	0.00	62.00	62.00	6" (152.4 mm) dia M S Blank MS pipe					
3	62.00	68.08	6.08	6" (152.4 mm) dia M S Slotted MS pipe					
4	68.08	98.37	30.29	6" (152.4 mm) dia M S Blank MS pipe					
5	98.37	116.56	18.19	4" (101.6 mm) dia M S Slotted MS pipe					
6	116.56	125.57	9.01	4" (101.6 mm) dia M S Blank MS pipe					

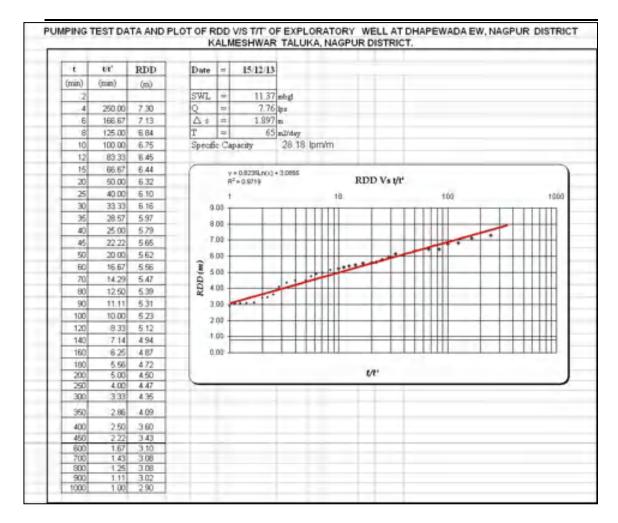
Sl. No.	Depth Range (mbgl)		Thickness	Description of Pipes
	From	То	(m bgl)	
7	125.57	137.76	12.19	4" (101.6 mm) dia M S Slotted MS pipe
8	137.76	163.09	25.33	4" (101.6 mm) dia M S Blank MS pipe
9	163.09	186.00	22.91	4" (101.6 mm) dia M S Slotted MS pipe
10	186.00	188.00	2.00	4" (101.6 mm) dia M S Blank MS pipe with bail blug

The well was developed using air compressor for 15 hrs till the water was free from sand particles. Cumulative Discharge measured was 2.16 lps.

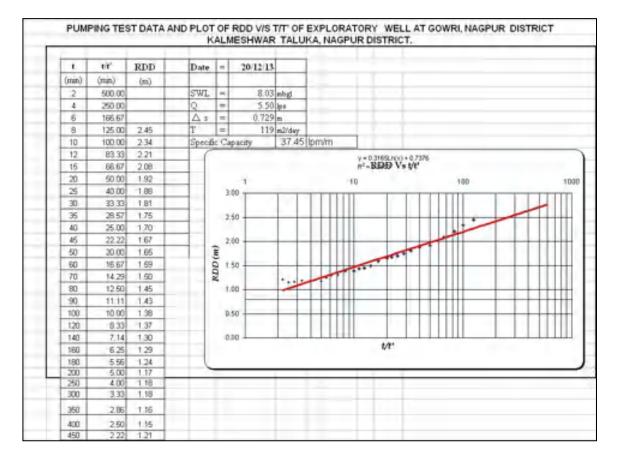
WELL HYDRAULICS

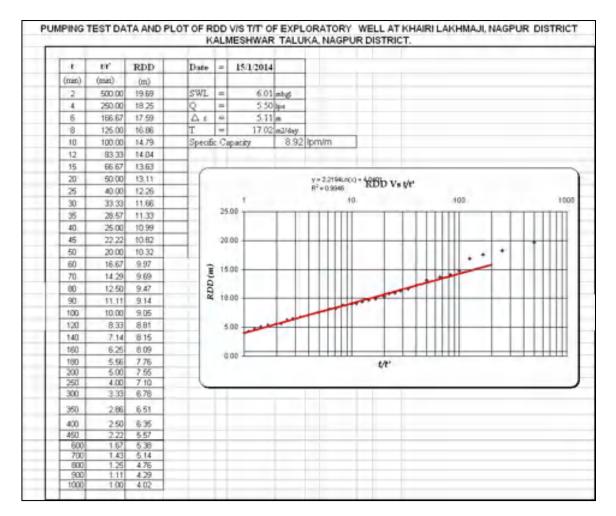
No pumping test was conducted due to low discharge.

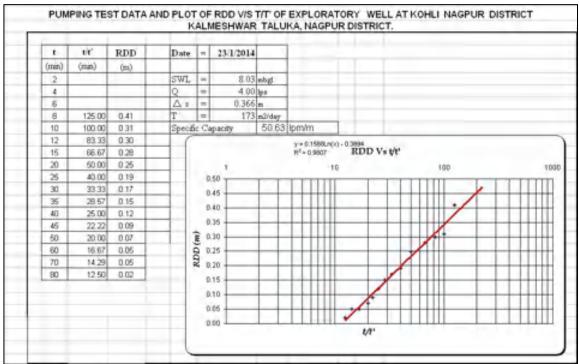
CHEMICAL QUALITY

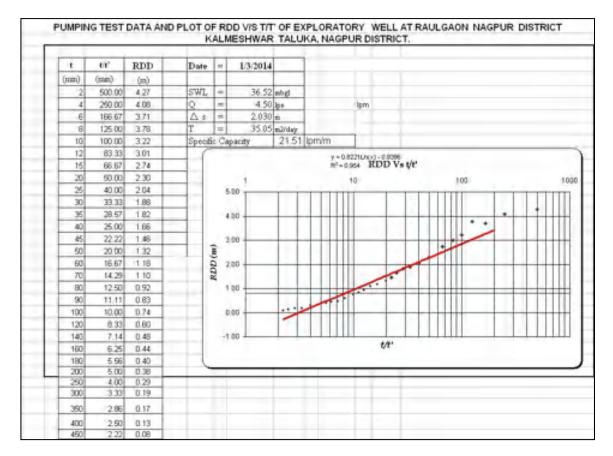

The ground water samples collected during the well development and the PYT test were analysed at the Regional Chemical Laboratory of CGWB (CR) Nagpur. The analytical results are given in Table

Location	Туре	рН	Ec μS/cm	TH	Са	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F
				ppm										
Waroda	Well development	8.1	519	110	40	36.5	2.5	0.04	0	134	43	51.9	32.6	0.12


The analytical result of water sample collected during pumping test revealed that the range of concentration of parameters viz Mg, are more than desirable limit while all other parameters are within the desirable limit as per "Drinking Water Standards" of Bureau of Indian Standards (BIS 10500-2013).


ANNEXURE-VI: Pumping test data analysis


To estimate the deeper aquifer parameters pumping tests were conducted on seven exploratory wells drilled in the Chandrabhaga watershed. The drawdown recorded during pumping test ranges between 6.34 and 36.97 m, whereas aquifer parameters viz Transmissivity (T) ranging from aquifer in basalts is 30 m²/day (Sonkhamb) and in Gondwana sandstone 15 m²/day (khairi Lakhmaji) to 173 m²/day (Kohli). The storativity (S) of 0.001 is measured at Dhapewada. The site wise plot depicting RDD Vs T/T' are presented graphs as under


1	n'	RDD	Date		15/12/13										
(min)	(min)	(m)		-		-		1.7	1						
2	500.00	8.33	SWI	1=	12.42	abat		-							
4	250.00	8.44	0	-	.9.84										
6	166.67	7.47	A 1	_	2.243	<u> </u>	-								
8	125.00	6.38	T	-	-	m2/day									
10	100.00	7.21		-	apacity		lpm/m		- 1						
12	83.33	5.98	- Open	-	di suit	rear	-	-		2.11				_	_
15	66.67	5.98						R-181	DiDeVs t	2.354					
20	50.00	6.00						10				00			
25	40.00	5.78			10.00			10				00			
30	33.33	5.71		1					11	11	ПП	1			
35	28.67	5.67			9.00			11			Ш				
40	25.00	5.60			8.00	+ +	+++++			++			-	-	Ŧ+
45	22 22	5.53			7.00	+ +	+++++		++	++		-	-	++	++-
50	20.00	5.48		1	6.00	+			-	-	11	•	-	++	+++
60	16.67	5.40		RDD (m)	5.00			1	-		1111	_	-		++-
70	14.29	5.30		22	4.00						1111	<u> </u>			
80	12.50	5.19		1	3.00	-									
-90	11.11	5.07									Ш				T
100	10.00	5.34			2.00	+ +				++	++++	-	-	++	+++
120	8.33	5.11			1.00	+ +	+++++	#	++	++	****		-		++
140	7.14	5.10			0.00		1111	11	_		Ш	_			11
160	6.25	4.17							1/1"						
180	5.56	3.77													
200	5.00	3 30		-	_			1.1							_
250	4.00	3.26						1.1.1	-						
300	3.33	2.96	_												
350	2.86	3.18													

-			-										_
t	tit'	RDD	Date	-	25/12/2013								
(min)	(min)	(m)			1								
2	50.00	63.26	SWL	=	11.74	mbgl							
4	25.00	61.93	Q	=	1.00		1						
6	16.67	69.36	Δs	-	22.320	m							
8	12.60	67.31	T	-	1	m2/day							
10	10.00	54.05	Speci	fic C	apacity		lpm/m						
12	6.33	53.08	1	-				78.404					-
15	6.67	51.09					y+9.5941Ln(x)+ R ² +0.983	RDD	Vs t/t*				
20	5.00	48.20			0				10		100		
25	4.00	45.85				90.0			1.0				
30	3.33	44.46				1111						111	Ш
35	2.06	42.40				80.0							Π
40	2.50	41.04				70.0	P					+++	Ħ
45	2.22	39.75				60.0	0	++++++		+		+++	++
50	2.00	38.93		RDD (m)		50.0							Ш
60	1.67	37.54		õ		1.11							Π
70.	1.43	35,68		2		40.0	1 100 m					+++	Ħ
80	1.25	34.39				30.0				+++++		+++	╢
90	1.11	32.74				20.0						+++	1
100	1.00	31.54										111	
120	0.83	27.74				10.0	1						Ħ
140	0.71	26.61				0.0	941-1-1						
160	0.63	25.26	1.1.1					1/2"					
180	0.96	24.38											
200	0.50	23 34 21.45		-		_			-				=
20	0.40	21.89											

								1.11	1					
t.	t't'	RDD	Date	=	28/12/13									
(min)	(min)	(m)		П										
2			SWL	-	11.27	mbgd								
4			Q	-	2.25	lps	135	i Ipm						
6	166.67	2.77	A s	=	1.177	n								
8	125.00	2.56	T	=	30	m2/day								
10	100.00	2.43	Specif	ic Ca	pacity	7.23	lom/m							
12	83.33	2.34	10	-			A Print Prin	0.0 + 0.051	,					
15	66.67	2.24					y=0.5100Lm R ² =0.9913	RDI	D Vs t/t					
20	50.00	2.00			1		10	0			100			
25	40.00	1.92		3	50									
30	33 33	1.84					111111		111	111				11
36	28.57	1.81		- 3	00	+ +	++++++					-		+++
40	25.00	1.73					111111							111
45	22.22	1.65		2	50									111
50	20.00	1.54		ĩ,	00									11
60	16.67	1.41		RDD (m)	~			1	-	TIII				
70	14.29	1.31		21	50	++	++++++	-	-			-	+++	+++
80	12.50	1.28		۰.,				-	<u>~ </u>	1111	11			111
-90	11.11	1.21		1.	60									-
100	10.00	1.15		n	50	-								
120	8.33	1.09												
140	7.14	1.01		0.	10		111111			ш	11	_	ш	11
160	6.25	0.94						t/	't'					
180	5.66	0.92												
200	5.00	D.83												
250	4.00	0.83												
300	3.33	0.65		1		-			-					
350	2.86	0.60							_					
400	2.50	0.54												
450	2.22													
600	1.67	0.47												

Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>	SI. No.	Well No.	Village	Taluka	District	Toposheet No.		Latitude	9	I	Longitud	e	Elevation	Lining	Basin	Sub-basin	Minor basin	Geology	Aquifer	MP	Dia	Total Depth
1 OM1 Frein Hegu Negur SSC11 21 12 13 12							Deg	Min	Sec	Deg	Min	Sec	m A MSL	(m bgl)	1					(magl)	(m)	(mbgl)
1 DW1 Lauralise Lauralise Regure 95 (7/6) 21 18 196 75 15 11 110	1	DW1	Phetri	Nagpur	Nagpur	55K/16	21	12	162	78	59	354	342.6700		Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.55	3	10.41
4 0944 Sub. Exhanchev (King)	2	DW2	Khairgaon	Nagpur	Nagpur	55 K/16	21	11	93	78	57	248	342.7000	2.88	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.5	2.1	12.8
S NW Lamentume (Hg) Lamentume (Hg) <thlamentume (hg)<="" th=""> Lamentume (Hg) <thlamentume (hg)<="" th=""> <thlamentume (hg)<="" th=""> Lam</thlamentume></thlamentume></thlamentume>	3	DW3	Kalambi	Kalmeshwer	Nagpur	55 K/16	21	11	396	78	55	131	337.0900	4.05	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.25	2.21	11.05
6 99% Dahagan Falmehure Nagur 55 1/16 21<	4	DW4	Selu	Kalmeshwer	Nagpur	55 K/16	21	12	334	78	53	934	351.7600	4.66	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.7	3.02	10.28
6 OWS Datagon Latinchur Nager SN/16 21 <td>5</td> <td>DW5</td> <td>Kalmeshwer (RH)</td> <td>Kalmeshwer</td> <td></td> <td>55 K/16</td> <td>21</td> <td>14</td> <td>50</td> <td>78</td> <td>54</td> <td>765</td> <td>329.1050</td> <td>4.7</td> <td>Godavari</td> <td></td> <td>Kanhan</td> <td>Decan Traps</td> <td>Basalt</td> <td>0.5</td> <td>2.5</td> <td>10.35</td>	5	DW5	Kalmeshwer (RH)	Kalmeshwer		55 K/16	21	14	50	78	54	765	329.1050	4.7	Godavari		Kanhan	Decan Traps	Basalt	0.5	2.5	10.35
B Purdi Camenhover Naguri 55 K/15 21 44 88 70 55 Caluari Numpring Kahnan Condwara Sandbare 0.0 0.2 64.5 10 DW10 Fordshalth Candbare Kapuri Condwara Sandbare 0.5 6.3	6	DW6	Dahegaon	Kalmeshwer		55 K/16	21	12	611	78	56	873	338.1100	6.75	Godavari	Wainganga	Kanhan	Gondwana	Sandstone	0.65	3.7	8.55
B Purdi Camenhover Naguri 55 K/15 21 44 88 70 55 Caluari Numpring Kahnan Condwara Sandbare 0.0 0.2 64.5 10 DW10 Fordshalth Candbare Kapuri Condwara Sandbare 0.5 6.3	7	DW7	Ashti	Kalmeshwer	Nagpur	55 K/16	21	12	677	78	58	57	328.0050	8.65	Godavari	Wainganga	Kanhan	Gondwana	Sandstone	0.35	2.7	13.25
9 Own Containant Charlesheer Nagur 55 V/16 21 16 917 75 56 75 78 78 Conduct Kinhan Condences Samatore 0.75 0.5 0.2 10 OW1 Fordakaran Candeneer Nagur S5 V/15 21 17 18 77 57 58 73 50 1.8 Godawi Winginga Kinhan Condwana Samatore 7.8 1.2 10 OV13 Objectwolds Kahan Condwana Samatore 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 7.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	8		Pardi																			10.2
10 OW10 Tordshult Kamelyer Nagur 55 V/16 71 76 76 76 78 Godawn Wargang Eahn Gondwana Sandtone 5.6 6.2 10 DW12 Sign Table mode Eahn Gondwana Sandtone 5.7 3.0 12 DW12 Sign Table mode Eahn Gondwana Sandtone 5.7 3.0 7.8 Sandtone Sandtone Sandtone Sandtone 5.7 3.0 7.8 Sandtone Sandtone <td>9</td> <td>DW9</td> <td>Gowari</td> <td>Kalmeshwer</td> <td></td> <td>55 K/15</td> <td>21</td> <td>16</td> <td>197</td> <td>78</td> <td>56</td> <td>878</td> <td>318.1150</td> <td>8.25</td> <td>Godavari</td> <td>Wainganga</td> <td>Kanhan</td> <td>Gondwana</td> <td>Sandstone</td> <td>0.45</td> <td>3</td> <td>8.55</td>	9	DW9	Gowari	Kalmeshwer		55 K/15	21	16	197	78	56	878	318.1150	8.25	Godavari	Wainganga	Kanhan	Gondwana	Sandstone	0.45	3	8.55
11 OW11 Source(h) Kamerlywe Nagur 55 (x) 11 87 57 58 233 Ocloared Wangenge Kamtan Gondwara Soundome 0,72 1 12 W12 Slot	10	DW10	Tondakhairi	Kalmeshwer	0		21	16	941		57	867	319.0050	7.8	Godavari		Kanhan	Gondwana	Sandstone	0.5	6.2	19.1
12 OW12 Stain Kahnelver Nage 55/15 21 12 12 10 OUT Stain Stain Condown Stain <		DW11							836													9.95
13 OW13 Dispended Kamesheer Nagur 55 //15 21 17 78 56 603 180 Condram Wanginga Kamba Genderan Sandtome 0.8 23 15 DW15 Worde Kamesheer Nagur 55 //15 21 16 773 78 56 603 232 Condram Wanginga Kamba Decan Trags Baalt 0.8 3. 16 UW15 Serde Kamba Kamba Version Serde Serde Godava Wanginga Kamba Decan Trags Baalt 0.6 3.5 17 UW17 Serde Catage Serde Version Serde Godava Wanginga Kamba Decan Trags Baalt 0.6 3.5 18 UW13 Sandt Catage Version Version <t< td=""><td>12</td><td></td><td></td><td>Kalmeshwer</td><td>0</td><td></td><td></td><td>18</td><td></td><td></td><td></td><td>233</td><td>302,9100</td><td></td><td>Godavari</td><td></td><td></td><td></td><td>Sandstone</td><td></td><td>2.65</td><td>10.53</td></t<>	12			Kalmeshwer	0			18				233	302,9100		Godavari				Sandstone		2.65	10.53
14 DVI14 Bisdang Kalmeshwer Naggur 55 K/15 21 17 FV 78 56 60 310.4800 3.5 Gedwart Manggarg Enhan Decampage Standtom 0.5 2.3 15 DVI15 Brahmi Kalmeshwer Naggur 55 K/15 21 16 24 78 56 664 with Manggarg Kahna Decampage Basalt 0.65 31.5 10 Swid Kahneshwer Naggur 55 K/16 21 11 81 78 55 833 355.000 1.55 Godwari Manggarg Kahna Decampage Basalt 0.5 3.5 10 W19 Sahuli Campage Kahna Decampage Basalt 0.6 3.0 3.5 3.5 2.0 Manggarg Kahna Decampage Basalt 0.6 3.0 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5																						14.25
1b OW1S Warede Kalmeshver Nagpur 55 K/JS 21 16 723 78 54 66 22170 5.25 Godawari Wanagnag Kanhan Decan Trags Basalt 0.8 4.4 10 OV1S Savul Kalmeshver Nagpur 55 K/JS 21 16 255 530 318.100 8.55 Godawari Wanagnag Kanhan Decan Trags Basalt 0.55 3.55 18 OV18 Sahul Kalmeshver Nagpur 55 K/JS 21 11 28 78 55 0.55<					0.																-	11.85
10 DWLG Brahmin Kalmenhver Nagur 55 K/15 21 14 624 78 54 381 322:000 5.45 Godawni Wangang Kanhan Decan Trags Baakt 0.65 315 18 DVU18 Ketapar Kilmehwer Nagur 55 K/16 21 11 81 78 55 55 55 55 55 55 55 55 55 55 55 56 55 55 50 60dawni Wangang Kanhan Decan Trags Baakt 0.65 1.6 21 OVC2 Sawmif (W) Kalmenhver Nagur 55 K/16 21 13 35 78 135 338.200 2.55 Godawni Wangang Kanhan Decan Trags Baakt 0.65 1.6 1.2 1.2 1.3 35 78 1.5 37.3 356.2700 5.55 Godawni Wangang Kanhan Decan Trags Baakt 0.65 3.15 <td></td> <td></td> <td>*</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21.3</td>			*		0									-								21.3
12 DW17 Swell Exhensiver Nagur 55 k/7 11 16 295 530 318.1300 8.95 Godown Wainganga Kanhan Decan Trage Baalt 0.55 3.05 18 DW13 Sahuli Kahnan Decan Trage Baalt 0.4 3.05 20 DW20 Gunthale Kahnan Decan Trage Baalt 0.6 3.05 20 DW20 Gunthale Kahnen Decan Trage Baalt 0.6 3.6 21 DW21 Swang (W) Kahnen Decan Trage Baalt 0.6 3.6 22 DW22 Uparwahi Kahnen Decan Trage Baalt 0.5 3.5 Godawn Wainganga Kanhan Decan Trage Baalt 0.5 3.5 Godawn Wainganga <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15.85</td></td<>																						15.85
13 DW18 Fetapar Falmeshver Nagpur 55 k/16 21 11 81 82 835 600 1.95 Godaven Waingange Kahhan Decan Trags Basult 0.5 4.4 19 DW120 Summthus Kahmen Maingange Kahhan Decan Trags Basult 0.4 4.3 20 DW120 Summthus Kahmen Decan Trags Basult 0.65 1.6 21 DW12 Uparwahi Kahmen Decan Trags Basult 0.5 3.5 22 DW12 Uparwahi Kahmen Decan Trags Basult 0.5 3.5 23 DW12 Uparwahi Kahmen Decan Trags Basult 0.6 2.9 24 DW12 Uparwahi Kahnen Decan Trags Basult 0.6 2.9 25 DW12 Songoan Kahnen Decan Trags Basult 0.6 4.6 25 Songoan Kahne	-				0																	15.5
19 DW19 Schult Kalmeshver Nigpart 55 //16 21 11 228 787 55 545 551 251 Codvart Waingrage Kanhan Decan Traps Basilt 0.64 15 20 DW20 Suruhal Kalmeshver Nagor 55 //15 21 13 305 338.8500 3.62 Godvart Waingrage Kanhan Decan Traps Basilt 0.65 1.6 22 DW23 Ninboli Kalmeshver Nagor 55 //16 21 12 387 355.5 55.5 Godvart Waingrage Kanhan Decan Traps Basilt 0.6 4.6 24 DW24 Linga Kalmeshver Nagor 55 //16 21 1.4 64 78 49 979 356.8050 5 Godvart Waingrage Kanhan Decan Traps Basilt 0.6 4.5 26 DW25 Kongrade Kalmeshver Nagor 55 //16 21 4 64 78 55 64.61 604vart Waingrage Ka					0.																	10.1
DV20 Fummhain Kalmeshwer Nagor SS K/15 21 11 193 25 237 359,700 4.35 Godarn Wanganga Kahnah Decan Trags Basali 0.65 1.6 21 DVX2 Ugarvahin Kahneshwer Nagor SS K/15 21 33 305 78 51 372 356,2700 5.55 Godarni Wanganga Kahnah Decan Trags Basali 0.55 3 23 DVX3 Nimbol Kahneshwer Nagor SS K/16 21 23 78 78 50 542 356,2700 2.5 Godarni Wanganga Kahnah Decan Trags Basali 0.6 4.6 25 DVX3 Songonon Kahneshwer Nagor 55 K/16 21 4 46 78 50 Godarni Wanganga Kahnah Decan Trags Basali 0.6 1.75 26 DVX3 Brahmin(W) Kahneshwer Nagor 55 K/																						12.2
12 DW21 Swang(W) Kalmeshwer Naggur 55/1/5 21 13 305 339 550 3.62 Godward Wainganga Kanhan Decan Traps Basalt 0.53 3.5 22 Uyava Nimboli Kalmeshwer Naggur 55/1/6 21 12 387.70 55.2 Godward Wainganga Kanhan Decan Traps Basalt 0.5 3.5 24 DW24 Linga Kalmeshwer Naggur 55/1/6 21 12 966 7.8 49.71 364100 0.8 Godward Wainganga Kanhan Decan Traps Basalt 0.6 4.6 25 DW25 Songaon Kalmeshwer Nagur 55/1/6 21 14 50 59 34100 6.8 Godward Wainganga Kanhan Decan Traps Basalt 0.7 4.55 29 DW29 Ghodward Wainganga Kanhan Decan Traps Basalt 0.7 1.25					0																-	11.6
22 DW22 Uganvahi Kalmeshver Nagpur 55 K/16 21 12 137 36 2700 5.55 Godwari Wainganga Kanhan Decan Traps Basalt 0.5 2.9 24 DW24 Linga Kalmeshver Nagpur 55 K/16 21 12 387 36 2.00 5.5 Godwari Wainganga Kanhan Decan Traps Basalt 0.6 4.6 25 DW25 Sonegaon Kalmeshver Nagpur 55 K/16 21 14 464 78 50 560 364.1100 6.8 Godwari Wainganga Kanhan Decan Traps Basalt 0.6 4.7 28 DW28 Raham(W) Kalmeshver Nagpur 55 K/15 21 14 54 78 50 Godwari Wainganga Kanhan Decan Traps Basalt 0.7 4.5 28 DW28 Brahm(W) Kalmeshver Nagpur 55 K/15 21 15 333.0100					0																	9.9
23 DW23 Nimboli Kalmeshver Nagur 55 K/16 21 12 266 324 308 2000 2.5 Godawari Wanganga Kanhan Decan Traps Basalt 0.6 4.6 24 DW24 Linga Kanhan Decan Traps Basalt 0.6 4.6 25 DW25 Songaon Kalmeshver Nagur 55 K/16 21 14 464 78 49 971 366.800 5 Godawari Wanganga Kanhan Decan Traps Basalt 0.6 4.6 26 DW26 Khapin Kanhan Decan Traps Basalt 0.7 4.55 28 DW28 Brahm(IM) Kalmeshver Nagur 55 K/15 21 15 790 335 Godawari Wanganga Kanhan Decan Traps Basalt 0.7 1.26 20 DW29 Ghorad Kalmeshver Nagur 55 K/15 21 15 790 78 52					0.																	8.55
24 0W24 Linga Kalmeshver Nagpur 55 K/16 21 12 966 78 49 171 364.100 0.8 Godavni Wainganga Kanhan Decan Traps Basalt 0.6 4.6 25 0W25 Khapri Kalmeshver Nagur 55 K/16 21 14 666 78 50 56 63davni Wainganga Kanhan Decan Traps Basalt 0.6 4.5 27 0W27 Ghogali Kalmeshver Nagur 55 K/16 21 14 646 78 59 333.0150 6.4 Godavni Wainganga Kanhan Decan Traps Basalt 0.7 4.55 28 DW28 Brahmi(W) Kaimeshver Nagur 55 K/15 21 15 90 78 52 32 333.050 4.64 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 4.55 20 DW23 Swainkinuer Kaineshver <td></td> <td></td> <td></td> <td></td> <td>0.</td> <td></td> <td>-</td> <td>6.37</td>					0.																-	6.37
25 DW25 Sonegon Kalmeshver Nagpur 55 K/16 21 14 10 78 49 979 35 68050 5 Godavari Wainganga Kahnan Decan Traps Basalt 0 6.4 27 DW27 Ghogali Kaimeshver Nagpur 55 K/16 21 14 54 76 53 696 64.100 6.8 Godavari Wainganga Kahnan Decan Traps Basalt 0.7 2.95 28 DW28 Brahmmi(W) Kaimeshver Nagpur 55 K/16 21 14 54 78 52 76 338.050 7.65 Godavari Wainganga Kahnan Decan Traps Basalt 0.7 1.455 29 DW20 Oblati Kaimeshver Nagpur 55 K/15 21 17 78 52 133 338.150 3.8 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 1.55 30 DW30 VainoheB	-				0																	
126 OW26 Khapri Kalmeshwer Nagpur 95 K/16 21 14 646 78 50 569 364.100 6.8 Godavari Wainganga Kahnan Decan Traps Basalt 0.7 175 27 DW27 Ghogali Kalmeshwer Nagpur 55 K/16 21 14 554 78 53 58 333.0150 6.4 Godavari Wainganga Kahnan Decan Traps Basalt 0.7 1.4 0 DW30 Ubali Kalmeshwer Nagpur 55 K/15 21 15 97 78 52 92 323.0500 4.65 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 1.6 30 DW31 Wachone Buzrug Kalmeshwer Nagpur 55 K/15 21 16 831 78 53 56 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 1.5 20 DW33 Wachoda			*		0																	7.8
27 DW27 Ghogali Kalmeshwer Nagur 55 K/16 21 14 519 78 52 76 338.0050 7.65 Godavari Wainganga Kanhan Decan Traps Basalt 0.75 2.25 28 DW28 Brahmni(W) Kalmeshwer Nagur 55 K/15 21 15 74 78 52 922 332.050 6.4 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 4.65 29 OW30 Ubali Kalmeshwer Nagur 55 K/15 21 15 74 78 52 133 338.1050 5 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 1.26 31 OW30 Ubali Kalmeshwer Nagur 55 K/15 21 16 831 78 51 831 338.100 7.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 4.05 33 DW32 Sawali Khurd Kalmeshwer Nagur 55 K/15 21 16 8			-											-						-		8.3
28 DW28 Brahmn(IW) Kalmeshwer Nagpur 55 K/16 21 14 554 78 53 598 332.090 6.4 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 4.65 29 DW29 Ghorad Kalmeshwer Nagpur 55 K/15 21 15 74 78 52 922 332.090 3.95 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 4.65 30 DW30 Ubali Kalmeshwer Nagpur 55 K/15 21 17 541 78 53 333.090 4.55 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 4.05 32 DW33 Wathoda Kalmeshwer Nagpur 55 K/15 21 16 932 78 50 50 344.6100 7.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 6.0 1.35 34 <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>12.3</td>					0																	12.3
PM29 Ghorad Kalmeshver Nagpur S5 K/15 P1 F7 F8 S2 P22 P33 P20 P35 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 1.26 30 DW30 Ubali Kalmeshver Nagpur 55 K/15 21 15 990 78 52 133 338.1050 5 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 1.6 31 DW31 Wadhone Buzrug Kainhan Kanhan Decan Traps Basalt 0.4 1.5 32 DW32 Sawali Khurd Kalmeshver Nagpur 55 K/15 21 16 932 78 50 384 384.100 7.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 405 34 DW34 Sawangi (Anganwadi) Kalmeshver Nagpur 55 K/15 21 17 515 78 44 937 352.7000 2					0																	12.15
30 DW30 Ubali Kalmeshwer Nagpur 55 k/15 21 15 990 78 52 133 338.1050 5 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 1.6 31 DW31 Wadhone Burrug Kalmeshwer Nagpur 55 k/15 21 17 541 78 53 56 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 4.0 32 DW33 Wathoda Kalmeshwer Nagpur 55 k/15 21 16 932 78 50 288 348.100 7.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 4.0 34 DW34 Sawandi (Anganwadi) Kalmeshwer Nagpur 55 k/15 21 17 78 50 50 344.6100 2.25 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 1.1 36 DW36 Khaini																						10.85
31 DW31 Wadhone Buzrug Kalmeshwer Nagpur 55 K/15 21 17 541 78 53 56 33.0900 4.65 Godavari Wainganga Kahnan Decan Traps Basalt 0.4 1.5 32 DW32 Sawali Khurd Kalmeshwer Nagpur 55 K/15 21 16 831 78 50 288 384.100 7.2 Godavari Wainganga Kahnan Decan Traps Basalt 0.4 4.0 34 DW34 Sawangi (Anganwadi) Kalmeshwer Nagpur 55 K/15 21 17 42 78 50 50 344.6100 2.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 0.55 35 DW35 Susundri Kalmeshwer Nagpur 55 K/15 21 17 515 78 47 461 363.100 3.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 1.1 <tr< td=""><td>-</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.45</td></tr<>	-				0																	9.45
32 DW32 Sawali Khurd Kalmeshwer Nagpur 55 k/15 21 16 831 78 51 831 338.3150 3.8 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 4.05 34 DW34 Sawangi (Anganwadi) Kalmeshwer Nagpur 55 k/15 21 17 42 78 50 288 348.1100 7.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 0.55 35 DW35 Susundri Kalmeshwer Nagpur 55 k/15 21 17 515 78 48 937 352.7000 2 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 1.9 36 DW37 Pardi Kalmeshwer Nagpur 55 k/15 21 17 78 46 277 78.45 451 422.1650 2.1 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 5.05					0.			-														14
33 DW33 Wathoda Kalmeshwer Nagpur 55 k/15 21 16 932 78 50 288 348.1100 7.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.95 1.35 34 DW34 Sawangi (Anganwadi) Kalmeshwer Nagpur 55 k/15 21 17 42 78 50 50 344.6100 2.25 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 0.55 35 DW35 Susundri Kalmeshwer Nagpur 55 k/15 21 17 515 78 44 461 363.8100 3.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.65 1.1 37 DW37 Pardi Kalmeshwer Nagpur 55 k/15 21 16 877 78 46 71 382.150 2.1 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 5.05			0		0															-		16.25
34 DW34 Sawangi (Anganwadi) Kalmeshwer Nagpur 55 k/15 21 17 42 78 50 50 344.6100 2.25 Godavari Wainganga Kanhan Decan Traps Basalt 0.7 0.55 35 DW35 Susundri Kalmeshwer Nagpur 55 k/15 21 17 515 78 48 937 352.7000 2 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 1.1 36 DW36 Khairi Kalmeshwer Nagpur 55 k/15 21 16 877 78 46 277 374.990 2.17 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 5.05 39 DW39 Dorli Katol Nagpur 55 k/15 21 15 52 78 49 581 369.900 4.75 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.2 41 </td <td></td> <td></td> <td></td> <td></td> <td>Nagpur</td> <td></td> <td>Wainganga</td> <td></td> <td>Decan Traps</td> <td></td> <td></td> <td></td> <td>18</td>					Nagpur											Wainganga		Decan Traps				18
35 DW35 Susundri Kalmeshwer Nagpur 55 K/15 21 17 515 78 48 937 352.7000 2 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 1.9 36 DW36 Khairi Kalmeshwer Nagpur 55 K/15 21 17 551 78 47 461 363.8100 3.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.65 1.1 37 DW37 Pardi Kalmeshwer Nagpur 55 K/15 21 16 877 78 46 277 374.9900 2.17 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 5.05 39 DW39 Dorli Katol Nagpur 55 K/15 21 15 166 78 46 741 382.1150 12.7 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 41					0																	10.4
36 DW36 Khairi Kalmeshwer Nagpur 55 K/15 21 17 551 78 47 461 363.8100 3.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.65 1.1 37 DW37 Pardi Kalmeshwer Nagpur 55 K/15 21 16 877 78 46 277 374.9900 2.17 Godavari Wainganga Kanhan Decan Traps Basalt 0.23 1.5 5.05 38 DW39 Dorli Katol Nagpur 55 K/15 21 15 166 78 46 741 382.1150 12.7 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 40 DW40 Ubgi Kalmeshwer Nagpur 55 K/15 21 15 52 78 49 581 369.9000 4.75 Godavari Wainganga Kanhan Decan Traps Basalt 0.65 2.3	-		Sawangi (Anganwadi)	Kalmeshwer	Nagpur									2.25	Godavari	Wainganga	Kanhan		Basalt		0.55	7.3
37 DW37 Pardi Kalmeshwer Nagpur 55 k/15 21 16 877 78 46 277 374.9900 2.17 Godavari Wainganga Kanhan Decan Traps Basalt 0.23 1.17 38 DW38 Ramgiri Kalmeshwer Nagpur 55 k/15 21 18 70 78 45 451 422.1650 2.1 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 5.05 39 DW30 Dorli Katol Nagpur 55 k/15 21 15 166 78 46 711 382.1150 12.7 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.0 40 DW40 Ubgi Kalmeshwer Nagpur 55 k/15 21 15 773 78 48 587 361.0050 4 Godavari Wainganga Kanhan Decan Traps Basalt 0.45 2.8 42			Susundri	Kalmeshwer	Nagpur			17							Godavari	Wainganga	Kanhan	Decan Traps	Basalt		1.9	7.8
38 DW38 Ramgiri Kalmeshwer Nagpur 55 k/15 21 18 70 78 45 451 422.1650 2.1 Godavari Wainganga Kanhan Decan Traps Basalt 0.5 5.05 39 DW30 Dorli Katol Nagpur 55 k/15 21 15 166 78 46 741 382.1150 12.7 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 40 DW40 Ubgi Kalmeshwer Nagpur 55 k/15 21 15 72 78 49 581 369.9000 4.75 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 41 DW41 Kohli Kalmeshwer Nagpur 55 k/15 21 15 72 78 48 587 6.0davari Wainganga Kanhan Decan Traps Basalt 0.5 5.05 42 DW42 KotvaliBardi					0																	6.75
39 DW39 Dorli Katol Nagpur 55 k/15 21 15 166 78 46 741 382.1150 12.7 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 40 DW40 Ubgi Kalmeshwer Nagpur 55 k/15 21 15 52 78 49 581 369.9000 4.75 Godavari Wainganga Kanhan Decan Traps Basalt 0 2.3 41 DW41 Kohli Kalmeshwer Nagpur 55 k/15 21 15 773 78 48 587 361.0050 4 Godavari Wainganga Kanhan Decan Traps Basalt 0.45 2.8 42 DW42 Kotvali Bardi Katol Nagpur 55 k/16 21 13 481 78 46 983 396.1100 2.6 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 443 <td< td=""><td></td><td></td><td>Pardi</td><td></td><td>Nagpur</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Godavari</td><td>Wainganga</td><td></td><td>Decan Traps</td><td></td><td></td><td></td><td>8.12</td></td<>			Pardi		Nagpur										Godavari	Wainganga		Decan Traps				8.12
40 DW40 Ubgi Kalmeshwer Nagpur 55 k/15 21 15 52 78 49 581 369,9000 4.75 Godavari Wainganga Kahnan Decan Traps Basalt 0 2.3 41 DW41 Kohli Kalmeshwer Nagpur 55 k/15 21 15 773 78 48 587 361.0050 4 Godavari Wainganga Kanhan Decan Traps Basalt 0.45 2.8 42 DW42 Kotwali Bardi Katol Nagpur 55 k/16 21 13 431 78 46 909 389.2050 2.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.45 2.8 43 DW44 Chargaon Katol Nagpur 55 k/16 21 13 868 78 46 833 396.1000 3.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3.6 44			Ramgiri		Nagpur											Wainganga						8.85
41 DW41 Kohli Kalmeshwer Nagpur 55 K/15 21 15 773 78 48 587 361.0050 4 Godavari Wainganga Kanhan Decan Traps Basalt 0.45 2.8 42 DW42 Kotwali Bardi Katol Nagpur 55 K/16 21 13 431 78 46 909 389.2050 2.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.3 4 43 DW43 Raulgaon Katol Nagpur 55 K/16 21 13 868 78 46 883 396.100 2.6 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 44 DW44 Chargaon Katol Nagpur 55 K/15 21 15 888 78 45 43 396.100 3.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3.6 45 DW			Dorli	Katol	Nagpur										Godavari	Wainganga	Kanhan	Decan Traps	Basalt			12.7
42 DW42 Kotwali Bardi Katol Nagpur 55 k/16 21 13 431 78 46 909 389.2050 2.2 Godavari Wainganga Kanhan Decan Traps Basalt 0.3 4 43 DW43 Raulgaon Katol Nagpur 55 k/16 21 13 868 78 46 883 396.1100 2.6 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 44 DW44 Chargaon Katol Nagpur 55 k/15 21 15 888 78 45 43 396.1000 3.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 45 DW45 Sonkhamb Katol Nagpur 55 k/11 21 15 578 78 43 464 403.080 1.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.3 4.3 46 DW4	40	DW40	Ubgi	Kalmeshwer	Nagpur	55 K/15	21	15	52	78	49	581	369.9000	4.75	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	-	2.3	14.05
43 DW43 Raulgaon Katol Nagpur 55 K/16 21 13 868 78 46 883 396.1100 2.6 Godavari Wainganga Kanhan Decan Traps Basalt 0.6 3.6 44 DW44 Chargaon Katol Nagpur 55 K/15 21 15 888 78 45 43 396.1000 3.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3.6 45 DW45 Sonkhamb Katol Nagpur 55 K/11 21 15 761 78 43 648 403.0800 1.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3.6 46 DW45 Metpanjra Katol Nagpur 55 K/11 21 15 578 78 42 46 426.1600 6.42 Godavari Wainganga Kanhan Decan Traps Basalt 0.38 4.15 47 D	41	DW41	Kohli	Kalmeshwer	Nagpur	55 K/15	21	15	773	78	48	587	361.0050	4	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.45	2.8	11.25
44 DW44 Chargaon Katol Nagpur 55 K/15 21 15 888 78 45 43 396.1000 3.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3.6 45 DW45 Sonkhamb Katol Nagpur 55 k/11 21 15 761 78 43 648 403.0800 1.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.3 4.3 46 DW46 Metpanjra Katol Nagpur 55 k/11 21 15 578 78 42 46 426.1600 6.42 Godavari Wainganga Kanhan Decan Traps Basalt 0.38 4.15 47 DW47 Malegaon Katol Nagpur 55 k/11 21 18 426 78 43 236 517.1100 3.25 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3 43 36 5			Kotwali Bardi	Katol	Nagpur										Godavari	Wainganga	Kanhan	Decan Traps	Basalt			6.25
45 DW45 Sonkhamb Katol Nagpur 55 k/11 21 15 761 78 43 648 403.0800 1.5 Godavari Wainganga Kanhan Decan Traps Basalt 0.3 4.3 46 DW46 Metpanjra Katol Nagpur 55 k/11 21 15 578 78 42 46 426.1600 6.42 Godavari Wainganga Kanhan Decan Traps Basalt 0.3 4.3 47 DW47 Malegaon Katol Nagpur 55 k/11 21 15 578 78 42 46 426.1600 6.42 Godavari Wainganga Kanhan Decan Traps Basalt 0.38 4.15 47 DW47 Malegaon Katol Nagpur 55 k/11 21 18 42 73 433 236 517.1100 3.25 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3 43 517.1100	43	DW43	Raulgaon	Katol	Nagpur	55 K/16	21	13	868	78	46	883	396.1100	2.6	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.6	3.6	9.25
46 DW46 Metpanjra Katol Nagpur 55 K/11 21 15 578 78 42 46 426.1600 6.42 Godavari Wainganga Kanhan Decan Traps Basalt 0.38 4.15 47 DW47 Malegaon Katol Nagpur 55 K/11 21 18 426 78 43 236 517.1100 3.25 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3 48 DW48 Vasboli Katol Nagpur 55 K/12 21 13 750 78 42 73 433.160 3.4 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3 48 DW48 Vasboli Katol Nagpur 55 K/16 21 14 189 78 42 73 46.150 2.8 Godavari Wainganga Kanhan Decan Traps Basalt 0.75 3.65 49 DW49 <td>44</td> <td>DW44</td> <td>Chargaon</td> <td>Katol</td> <td>Nagpur</td> <td>55 K/15</td> <td>21</td> <td>15</td> <td>888</td> <td>78</td> <td>45</td> <td>43</td> <td>396.1000</td> <td>3.5</td> <td>Godavari</td> <td>Wainganga</td> <td>Kanhan</td> <td>Decan Traps</td> <td>Basalt</td> <td>0.4</td> <td>3.6</td> <td>10.5</td>	44	DW44	Chargaon	Katol	Nagpur	55 K/15	21	15	888	78	45	43	396.1000	3.5	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.4	3.6	10.5
47 DW47 Malegaon Katol Nagpur 55 K/11 21 18 426 78 43 236 517.100 3.25 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3 48 DW48 Vasboli Katol Nagpur 55 K/12 21 13 750 78 42 773 483.1600 3.4 Godavari Wainganga Kanhan Decan Traps Basalt 0.4 3 49 DW49 Pohi Kalmeshwer Nagpur 55 K/16 21 14 189 78 48 694 366.1150 2.8 Godavari Wainganga Kanhan Decan Traps Basalt 0.75 3.65	45	DW45	Sonkhamb	Katol	Nagpur	55 k/11	21	15	761	78	43	648	403.0800	1.5	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.3	4.3	11.8
48 DW48 Vasboli Katol Nagpur 55 K/12 21 13 750 78 42 773 483.1600 3.4 Godavari Wainganga Kanhan Decan Traps Basalt 0.8 3 49 DW49 Pohi Kalmeshwer Nagpur 55 K/16 21 14 189 78 48 694 366.1150 2.8 Godavari Wainganga Kanhan Decan Traps Basalt 0.75 3.65	46	DW46	Metpanjra	Katol	Nagpur	55 K/11	21	15	578	78	42	46	426.1600	6.42	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.38	4.15	12.17
48 DW48 Vasboli Katol Nagpur 55 K/12 21 13 750 78 42 773 483.1600 3.4 Godavari Wainganga Kanhan Decan Traps Basalt 0.8 3 49 DW49 Pohi Kalmeshwer Nagpur 55 K/16 21 14 189 78 48 694 366.1150 2.8 Godavari Wainganga Kanhan Decan Traps Basalt 0.75 3.65	47	DW47	Malegaon	Katol	Nagpur	55 K/11	21	18	426	78	43	236	517.1100	3.25	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.4	3	7.35
49 DW49 Pohi Kalmeshwer Nagpur 55 K/16 21 14 189 78 48 694 366.1150 2.8 Godavari Wainganga Kanhan Decan Traps Basalt 0.75 3.65	48	DW48	Vasboli	Katol	Nagpur	55 K/12	21	13	750	78	42	773	483.1600	3.4	Godavari		Kanhan	Decan Traps	Basalt	0.8	3	13.55
		DW49																			3.65	7.25
	50	DW50	Yerla	Kalmeshwer	Nagpur	55 K/16	21	12	475	78	57	917	339.0800	6.2	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0	4.6	13.75
51 DW51 Chicholi Nagpur Nagpur 55 K/16 21 11 674 78 58 725 348.7100 5.77 Godavari Wainganga Kanhan Decan Traps Basalt 0.45 3.15		DW51			0			11	674			725	348.7100						Basalt	0.45		12.25

ANNEXURE-VII: Details of well inventory data of Key Observation wells, Chandrabhaga Watershed (WGKKC-2), Nagpur district, Maharashtra

SI.	Well	Village	Taluka	District	Toposheet		Latitude	3		Longitud	le	Elevation	Lining	Basin	Sub-basin	Minor	Geology	Aquifer	MP	Dia	Total
No.	No.				No.											basin					Depth
						Deg	Min	Sec	Deg	Min	Sec	m A MSL	(m bgl)						(magl)	(m)	(mbgl)
52	DW52	Kalmeshwer (NE of SELU)	Kalmeshwer	Nagpur	55 K/16	21	12	976	78	54	338	334.3400	8.4	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.5	4.3	16
53	DW53	Sawangi (SW of Kalmeshwar)	Kalmeshwer	Nagpur	55 K/16	21	13	332	78	53	866	344.1150	5.2	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0	2.75	18
54	DW54	Kalmeshwer (S of Gowari)	Kalmeshwer	Nagpur	55 K/16	21	14	916	78	56	217	319.7700	9	Godavari	Wainganga	Kanhan	Trap covered Gondwanas	Basalt/Sandstone	0.75	3.24	17.9
55	DW55	Kalmeshwer (Ashti Road	Kalmeshwer	Nagpur	55 K/16	21	13	826	78	56	774	327.0050	5.8	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.5	2.9	13.55
56	DW56	Waroda	Kalmeshwer	Nagpur	55 K/15	21	15	891	78	54	397	326.0150	7.5	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.8	1.93	10.72
57	DW57	Lakholi	Katol	Nagpur	55 K/11	21	16	696	78	41	508	433.0100	3.6	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.5	3.5	8.8
58	DW58	Kalmeshwar (Rly Gate)	Kalmeshwer	Nagpur	55 K/16	21	13	304	78	56	84	328.9100	8.45	Godavari	Wainganga	Kanhan	Decan Traps	Basalt	0.55	3.05	12.85

ANNEXURE-VIII: Details of Irrig	gation well inventory of	data. Chandrabhaga	a Watershed (N	WGKKC-2), Nagpur District
		autu) onanarabitabi	a materonea (

SI. No.	Village	Taluka		La	atitute		Lon	gitude	Topo sheet wise well No.	Elevation	Depth of well	DTWL	Top Soil	Thickness	of weathering	Depth to Fractures	Thickness of fracture	Geology
			D	м	5	D	м	S		m a MSL	m bgl	m bgl	m bgl	Highly	Moderately	m bgl		1
1	Phetri	Nagpur	21	12	25	78	59	7	55K/16-01	330	13.67	6.67	00-1.0	3.5	3.5-9.0	12.0-13.0	9.0-13.0	Basalt
2	Phetr-East	Nagpur	21	12	30	78	51	15	55K/16-02	295	14	9.4	00-1.0	6.95	106.95-9.0	13.0-14.0	9.0-14.0	Basalt
3	Phetri-South	Nagpur	21	12	24	78	59	20	55K/16-03	296	14.3	5.9	00-1.0	2.15	2.5-6.3	8.0-10.0	6.3-13.0	Basalt
4	Chicholi	Nagpur	21	11	22	78	58	30	55K/16-04	317	19.7	15.6	00-1.0	3	3.0-8.0	18.0-19.0	8.0-19.0	Basalt
5	Yerla	Nagpur	21	11	30	78	58	6	55K/16-05	363	13.3	10	00-1.0	3	3.0-6.7	11.0-12.0	6.7-12.0	Basalt
6	Khargaon	Nagpur	21	11	18	78	57	45	55K/16-06	375	10.85	9.8	00-1.0	2	2.0-8.0	8.0-10.0	8.0-10.0	Basalt
7	Khargaon	Nagpur	21	11	12	78	57	17	55K/16-07	372	10.00	6.5	00-1.0	2.4	2.5-7.0	7.0-8.0	7.0-9.0	Basalt
8	Khargaon	Nagpur	21	10	55	78	57	30	55K/16-08	374	17.2	10.6	00-1.0	2.5	8	15.0-16.0	8.0-16.0	Basalt
9	Khargaon	Nagpur	21	11	4	78	56	52	55K/16-09	369	14.5	7.35	00-1.0	4	8	12.0-13.0	8.0-13.0	Basalt
10	Chicholi	Nagpur	21	11	47	78	58	34	55K/16-10	367	14.5	15.4	00-1.0	6.4	8	11.0-12.0	8.0-15.0	Basalt
11	Bhorgaon	Nagpur	21	13	27	78	38	47	55K/16-11	319	16	9.85	00-1.0	6.65	8.6	11.0-13.0	8.06-14.0	Basalt
12	Gondini	Nagpur	21	12	38	78	58	49	55K/16-12	342	16.05	12.9	00-1.0	4.55	8.5	11.0-12.0	8.5-14.0	Basalt
12	Yerla	Nagpur	21	12	57	78	57	58	55K/16-13	342	10.05	6	00-1.0	3.2	5.6	6.0-8.0	5.6-10.0	Basalt
14	Ashti	Nagpur	21	13	40	78	58	1	55K/16-14	336	15.9	10.4	00-1.0	9.55	10	1013.0	10.0-15.0	Basalt
14	Pardi	Nagpur	21	14	40	78	57	56	55K/16-15	333	13.5	8.6	00-1.0	5.35	5.35	8.0-9.0	5.35-10.0	Basalt
15	Pardi		21	14	52	78	57	48	55K/16-16	331	12.5	11.05	00-1.0	6.4	6.4	9.0-10.0	6.4-11.0	Sandstone
10		Nagpur Kalmeshwer	21	14	42	78	56	48 57	55K/16-17	374	12.4	11.05	00-1.0	2.75	8.5	8.75-10.0	8.5-15.0	Basalt
17	Dahegaon Yerla	Nagpur	21	12	42 25	78 78	56	57	55K/16-17	374	9.7	7	00-1.0	2.75	3	8.0-9.0	3.0-9.0	Basalt
18	Dahegaon	Kalmeshwer	21	12	25 4	78	57	2	55K/16-18	346	9.7	5.5	00-1.0	3.1	5	7.5-8.0	5.0-8.0	Basalt
20			21	12	4 20	78 78	57		55K/16-19 55K/16-20	354	8.2	9.15	00-1.0	3.1	9.15	10.13-12.0	9.015-15.5	
20	Kalmeshwer-Bypass	Kalmeshwer						2 35		336	13.5	9.15		4 9.7				Basalt
21	Kalmeshwer-East	Kalmeshwer	21	13	35	78	53 55	35 57	55K/16-21	336	14		00-1.0	9.7	10 8	12.0-13.0	1013.0	Basalt
	Kalmeshwer-NE	Kalmeshwer	21	13	58	78			55K/16-22		-	13.5	00-1.0		-	14.0-15.0	8.0-16.0	Basalt
23	Kalmeshwer-Ashti	Kalmeshwer	21	13	40	78	55	16	55K/16-23	328	14.3	5.4	00-1.0	3.6	10	12.0-13.0	10.0-14.0	Basalt
24	Kalmeshwer-Pardi	Kalmeshwer	21	14	11	78	56	41	55K/16-24	370	16	13.2	00-1.0	9.05	9	14.0-15.0	9.0-15.0	Basalt
25	Kalmeshwer-Khairi	Kalmeshwer	21	14	28	78	56	16	55K/16-25	350	15	9.1	00-1.0	8	11	13.0-14.0	11.0-14.0	Basalt
26	Kalmeshwer-Gowari	Kalmeshwer	21	14	18	78	55	48	55K/16-26	352	13.44	10.67	00-1.0	7.3	10	12.0-13.0	10.0-13.0	Basalt
27	Kalambi	Kalmeshwer	21	11	52	78	55	17	55K/16-27	337	19.25	9.58	00-1.0	3.9	8	14.0-15.0	8.0-16.0	Basalt
28	Selu-Kalmeshwer	Kalmeshwer	21	13	8	78	54	14	55K/16-29	337	13.15	10	00-1.0	3.2	7	12.0-12.50	0.50	Basalt
29	Sahuli	Kalmeshwer	21	11	10	78	56	15	55K/16-31	380	16.2	14.6	00-1.0	3.1	11.5	14-16.20	2.2	Basalt
30	Kalambi-East	Kalmeshwer	21	11	11	78	55	25	55K/16-32	353	13.65	11.985	00-1.0	3	5.5	12.80-13.00	5.5-13.0	Basalt
31	Kalambi-NE	Kalmeshwer	21	11	59	78	56	13	55K/16-33	351	14.1	11.35	00-1.0	5.1	8.2	9.0-13.0	8.2-13.0	Basalt
32	Selu	Kalmeshwer	21	11	59	78	54	22	55K/16-34	374	14.3	9.3	00-1.0	2.25	9	13	9.0-13.5	Basalt
33	Selu-SW	Kalmeshwer	21	11	51	78	53	29	55K/16-35	375	12.35	11.9	00-1.0	2.8	10	11	11.0-12.0	Basalt
34	Selu	Kalmeshwer	21	12	23	78	53	37	55K/16-36	348	14.2	9.5	00-1.0	4.1	7.4	10.0-11.0	7.4-13.0	Basalt
35	Gumthala	Kalmeshwer	21	12	20	78	52	28	55K/16-37	350	15.3	8.1	00-1.0	7.7	10	11.0-12	10.0-14.0	Basalt
36	Sawangi	Kalmeshwer	21	13	3	78	52	31	55K/16-38	355	15.7	14.65	00-1.0	5.3	7.5	14.0-15.0	7.5-15.0	Basalt
37	Sawangi-South	Kalmeshwer	21	12	45	78	53	4	55K/16-39	355	16.05	12.85	00-1.0	2.8	9	13-14.0	9.0-16.0	Basalt
38	Selu	Kalmeshwer	21	12	11	78	53	2	55K/16-40	364	17.05	13.3	00-1.0	2.4	9.4	14.0-15.0	9.4-16.0	Basalt
39	Nimboli	Kalmeshwer	21	12	20	78	50	25	55K/16-41	358.7	9.5	5.2	00-1.0	3.5	6.2	8.0-9.0	6.2-9.0	Basalt
40	Uperwahi	Kalmeshwer	21	12	43	78	50	14	55K/16-42	356.27	10.3	6.95	00-1.0	6.7	8	9.30-10.0	8.0-10.0	Basalt
41	Linga	Kalmeshwer	21	12	17	78	48	57	55K/16-43	364.11	8.3	8.05	00-1.0	3.5	6.1	7.6	6.1-8.0	Basalt
42	Tarabudi	Kalmeshwer	21	13	19	78	49	59	55K/16-44	371	14.8	10.4	00-1.0	3.9	9.4	11.3	9.4-14.0	Basalt
43	Sonegaon	Kalmeshwer	21	14	10	78	50	2	55K/16-45	356.8	15.6	14.7	00-1.0	1.2	9.8	13.0-14.0	9.8-15.0	Basalt
44	Ghorad	Kalmeshwer	21	14	31	78	52	58	55K/16-46	392	19.7	11.32	00-1.0	12.1	12	15-18 mts.	12.0-19.0	Basalt
45	Ghogali	Kalmeshwer	21	14	42	78	51	58	55K/16-47	338	11.8	4	00-1.0	4.8	4.80-7.00	9.00-11.00	2	Basalt
46	Khapri	Kalmeshwer	21	14	34	78	50	35	55K/16-48	384	12	3.08	00-1.0	5.3	5.30-7.0	9.50-11.00	1.5	Basalt
47	Kohli	Kalmeshweer	21	15	11	78	48	22	56K/15-49	395	16.83	2.7	00-1.0	8.1	12	12.00-14.00	12.0-16.0	Basalt
48	Raulgaon	Katol	21	14	2	78	48	49	55K/16-50	403	10.3	1	00-1.0	2	6	6.0-10.0	6.0-10.3	Basalt
49	Dorli	Katol	21	15	40	78	46	35	55K/15-59	399	11.9	1.8	00-1.0	5.2	9	9.0-11.	9.0-11.0	Basalt
50	Chargaon	Katol	21	15	47	78	45	21	55K/15-52	414	12.4	3.45	00-1.0	1.5	8	11.0-12.0	8.0-12.0	Basalt
51	Tarabudi	Katol	21	15	31	78	42	57	55K/11-53	400	10	0.5	00-1.0	3	8	8.0-9.0	8.0-10.0	Basalt
52	Metpanjra	Katol	21	15	30	78	42	2	55K/11-54	458	13.38	2.24	00-1.0	4	8	11.0-12.0	8.0-13.0	Basalt
53	Sonekhamb	Katol	21	15	50	78	43	47	55K/11-55	422	10.1	0.56	00-1.0	2	7	9.0-10.0	7.0-10.0	Basalt
54	Dorli	Katol	21	15	42	78	47	4	55K/11-56	386	13.81	3.74	00-1.0	3.74	8	10.0-12.0	8.0-13.0	Basalt

SI. No.	Village	Taluka		L	atitute		Lon	gitude	Topo sheet wise well No.	Elevation	Depth of well	DTWL	Top Soil	Thickness	of weathering	Depth to Fractures	Thickness of fracture	Geology
			D	м	S	D	М	S		m a MSL	m bgl	m bgl	m bgl	Highly	Moderately	m bgl		
55	Kohli	Kalmeshwer	21	16	12	78	48	49	55K/15-57	374	10.3	1.1	00-1.0	2	7	7.0-9.0	7.0-10.0	Basalt
56	Susundri	Kalmeshwer	21	16	45	78	48	54	55K/15-58	366	14.5	3	00-1.0	5	9	10.0-12.0	9.0-14.0	Basalt
57	Khairi	Kalmeshwer	21	17	36	78	48	8	55K/15-59	364	13	3.52	00-1.0	6.2	9	11.0-13.0	9.0-13.0	Basalt
58	Khairi-Deshmukh	Kalmeshwer	21	17	20	78	47	21	55K/15-60	366	10.96	4.05	00-1.0	4.12	8.5	8.50-10.0	8.05-10.0	Basalt
59	Pardi-Deshmukh	Kalmeshwer	21	17	9	78	46	33	55K/15-61	158	17.88	5.6	00-1.0	6	8	10.0-12.0	8.0-17.0	Basalt
60	Pardi-Deshmukh	Kalmeshwer	21	16	30	78	46	5	55K/15-62	390	12	2.5	00-1.0	5.5	9	10.0-11.0	9.0-12.0	Basalt
61	Chakdo	Katol	21	16	42	78	45	24	55K/15-63	404	9.05	1.12	00-1.0	2.6	6	6.0-9.0	6.0-9.0	Basalt
62	Pardi-Deshmukh	Kalmeshwer	21	17	31	78	45	47	55K/15-64	399	12.6	1.5	00-1.0	2.5	8	9.0-11.0	8.0-12.0	Basalt
63	Susundri	Kalmeshwer	21	17	41	78	48	47	55K/15-65	385	9.4	2.58	00-1.0	3	7	7.0-9.40	7.0-9.40	Basalt
64	Sawangi	kalmeshwer	21	17	36	78	50	43	55K/15-66	352	10.62	3.38	00-1.0	4.3	8	8.0-10.0	8.0-10.0	Basalt
65	Wathoda	Kalmeshwer	21	17	7	78	51	6	55K/15-67	358	10	6.5	00-1.0	6.75	9	9.0-10.0	9.0-10.0	Basalt
66	Wathoda	Kalmeshwer	21	16	53	78	50	27	55K/15-68	353	11.46	3.1	00-1.0	4.3	8	8.0-9.0	8.0-11.0	Basalt
67	Ghorad	Kalmeshwer	21	15	26	78	52	54	55K/15-69	333	15.2	6.2	00-1.0	6.2	10	10.0-13.0	10.0-15.0	Basalt
68	Ubali	Kalmeshwer	21	15	46	78	52	15	55K/55-70	342	16.9	8.5	00-1.0	6.4	10	12.0-15.0	1016.0	Basalt
69	Khapri	kalmeshwer	21	15	8	78	51	10	55K/15-71	362	12.1	3.2	00-1.0	9	9	9.0-12.0	9.0-12.0	Basalt
70	Sawli Khurd	Kalmeshwer	21	16	31	78	51	44	55K/15-72	353	15.4	2.1	00-1.0	7	10	11.0-14.0	1015.0	Basalt
70	Sawali Khurd	Kalmeshwer	21	16	52	78	51	57	55K/15-73	345	16.1	6	00-1.0	, 5.4	8	12.0-13.0	8.0-15.0	Basalt
72	Wadhana Buzruk	Kalmeshwer	21	17	14	78	52	39	55K/15-74	338	18.5	9.4	00-1.0	3.35	7	16.0-18.0	7.0-18.0	Basalt
73	Susundri	Kalmeshwer	21	17	13	78	49	37	55K/15-75	360	10.5	7.8	00-1.0	5.6	9	9.0-11.0	9.0-12.0	Basalt
74	Wathoda	Kalmeshwer	21	16	48	78	50	9	55K/15-76	344	7.2	1.6	00-1.0	3	5	6.0-7.0	5.07.0	Basalt
75	Malegaon	Katol	21	18	2	78	43	7	55K/11-77	509	16.3	0.5	00-1.0	8	10	10.0-14.0	10.0-15.0	Basalt
76	Tarabudi	Katol	21	14	59	78	42	23	55K/12-78	434	15.4	1.9	00-1.0	4.1	8.5	11.0-12.0	8.5-15.0	Basalt
77	Wasboli	Katol	21	13	45	78	42	38	55K/12-79	478	17	3.1	00-1.0	3.1	8	15.0-17.0	8.0-17.0	Basalt
78	Sonekhamb	Katol	21	16	18	78	43	35	55K/11-80	409	9.5	2.05	00-1.0	2.1	6	9	6.0-9.0	Basalt
70	Brahmni	Kalmeshwer	21	14	47	78	54	29	55K/16-81	322	10.3	4.7	00-1.0	5.55	8	9.0-10.0	8.0-10.0	Basalt
80	Waroda	Kalmeshwer	21	15	45	78	54	38	55K/15-82	314	17.5	3.5	00-1.0	6	6.0-7.50	12.0-16.0	7.50-16.0	Basalt
81	Waroda	Kalmeshwer	21	15	55	78	53	41	55K/15-83	348	21.9	12.7	00-1.0	14.5	00-16.0	16.0-20	16.0-21.0	Basalt
82	Ubali	Kalmeshwer	21	16	0	78	52	14	55K/15-84	338	16	12.8	00-1.0	6.5	00-8.0	100-13.0	8.0-15.0	Basalt
83	Sawali	Kalmeshwer	21	16	7	78	55	27	55K/15-85	323	17	3.3	00-1.0	8	8.0-10.0	12.0-14.0	10.0-16.0	Basalt
84	Waroda	Kalmeshwer	21	16	31	78	54	36	55K/15-86	336	16.2	11.5	00-1.0	12	00-12.0	12.0-15.0	12.0-16.0	Basalt
85	Kalmeshwer-sindi	Kalmeshwer	21	14	38	78	55	21	55K/16-87	321	14.1	7	00-1.0	8.3	8.3-10.0	11.0-13.0	10.0-14.0	Basalt
86	Sindi	Kalmeshwer	21	16	20	78	56	19	55K/16-88	322	12	3.8	00-1.0	11	00-11.00	11.0-12.0	11.0-12.0	Sandstone
87	Jhunki	Kalmeshwer	21	15	41	78	56	0	55K/15-89	327	17	7.4	00-1.0	7.4	7.4-9.0	10-14.0	9.0-16.0	Basalt
88	Dhapewada Khurd	Kalmeshwer	21	17	23	78	54	57	55K/15-90	341	16	7.3	00-1.0	9	9	10.0-12.0	10.0-12.0	Basalt
89	Dhapewada Khurd	Kalmeshwer	21	18	5	78	55	10	55K/15-91	333	17.8	11.5	00-1.0	11	11.0-12.0	12.0-16.0	12.0-16.0	Basalt
90	Dhapewada Khurd	Kalmeshwer	21	17	28	78	54	12	55K/15-92	324	18.5	14.9	00-1.0	7.2	7.2-9.0	16.0-17.0	9.0-17.0	Basalt
91	Badangi	Kalmeshwer	21	17	49	78	55	53	55K/15-93	336	16.9	11	00-1.0	15.3	15.3-15.5	15.5-16.5	15.5-16.5	Basalt
92	Durkheda	Kalmeshwer	21	17	54	78	57	29	55K/15-94	325	16.7	14	00-1.0	12.95	0012.95	13.00-16.0	13.0-16.0	Sandstone
93	Bhadangi	Kalmeshwer	21	17	56	78	56	37	55K/15-95	332	10.7	14.3	00-1.0	13.2	14	14.0-16.50	14.0-16.5	Sandstone
94	Ton dakhairi	Kalmeshwer	21	17	11	78	15	50	55K/15-96	326	14.8	12.5	00-1.0	6.7	6.7	7.0-14.0	7.0-14.0	Feldspathic
95	Gowari	Kalmeshwer	21	16	26	78	56	53	55K/15-97	316	14.0	5.7	00-1.0	2.7	3	3.0-10.0	3.0-10.0	Feldspathic
96	Gowari	Kalmeshwer	21	15	59	78	57	26	55K/15-98	302	22	15.7	00-1.0	6.7	7	7.0-20.0	7.0-20.0	Feldspathic
97	Khairi-Lakma	Kalmeshwer	21	15	31	78	57	13	55K/15-99	297	13.2	10	00-1.0	12	12	12.0-13.0	12.0-1300	Feldspathic
98	Khairi-Lakma	Kalmeshwer	21	15	6	78	55	6	55K/15-100	320	13.2	15.5	00-1.0	11	11.0-12.0	12.0-13.0	12.0-17.0	Basalt
99	Yerla	Kalmeshwer	21	12	23	78	58	48	55K/15-101	345	18	13.4	00-1.0	8.4	8.4-10.0	15.50-16.50	10.0-16.50	Basalt
100	Yerla	Kalmeshwer	21	12	40	78	57	31	55K/16-102	353	13.4	13.4	00-1.0	6	6.0-8.0	11.0-12.0	8.0-12.0	Basalt
100	Dahegaon	Kalmeshwer	21	13	12	78	56	60	55K/16-103	353	10.5	5.3	00-1.0	1.8	9	9.0-10.0	9.0-10.0	Basalt
101	Kalmeshwer	Kalmeshwer	21	13	13	78	55	48	55K/16-104	340	16.2	8.5	00-1.0	9	9.0-11.0	12.0-13.50	11.0-15.50	Basalt
102	Kalmeshwer	Kalmeshwer	21	13	13	78	54	48 51	55K/16-105	338	10.2	10.7	00-1.0	3	3.0-7.0	11.0-12.0	7.0-13.0	Basalt
103	Kalmeshwer	Kalmeshwer	21	13	15	78	54	13	55K/16-106	345	14	7.45	00-1.0	5.1	5.1-8.0	11.0-12.0	8.0-12.0	Basalt
104	Kalmeshwer	Kalmeshwer	21	13	55	78	53	24	55K/16-107	343	8.25	2.4	00-1.0	4	4.0-6.0	6.0-8.0	6.0-8.0	Basalt
105	Ghorad	Kalmeshwer	21	15	11	78	52	24 35	55K/16-107	348	8.23 17	13	00-1.0	4 10.7	10.7-12.0	15.0-16.0	12.0-16.0	Basalt
108	Khapri	Kalmeshwer	21	14	26	78	52	22	55K/16-108	348	17	10.7	00-1.0	4	4.0-6.0	9.0-11.0	6.0-11.00	Basalt
107	Khapri	Kalmeshwer	21	14	20 58	78	50	58	55K/16-110	352	7.4	4.8	00-1.0	4	4.0-6.0	5.0-6.0	5.0-7.0	Basalt
108	Waroda	Kalmeshwer	21	14	56	78	50	47	55K/15-111	325	15.9	4.8	00-1.0	8.65	8.65-10.0	12.0-14.0	10.0-15.0	Basalt
109	Ghogali	Kalmeshwer	21	15	33	78	54	21	55K/15-111 55K/16-112	325	15.9	6.08	00-1.0	8.65	7.0-8.0	8.0-9.0 & 12.0-13.0	8.0-15.0	Basalt
110	Gilugali	Kannestiwei	21	14	6.3	78	52	35	55K/16-112	329	17.2	10.9	00-1.0	4.5	4.5-6.0	11.0-13.0	6.0-13.0	Basalt

Sl. No.	Village	Taluka		La	atitute		Lon	gitude	Topo sheet wise well No.	Elevation	Depth of well	DTWL	Top Soil	Thickness	of weathering	Depth to Fractures	Thickness of fracture	Geology
			D	М	S	D	М	S		m a MSL	m bgl	m bgl	m bgl	Highly	Moderately	m bgl		
112	Khairi	Kalmeshwer	21	13	14	78	50	28	55K/15-114	332	11	6.3	00-1.0	4.25	4.25-6.50	8.00-10.0	6.5-10.0	Basalt
113	Uparwahi	Kalmeshwer	21	12	38	78	50	39	55K/16-115	349	6.5	3.3	00-1.0	1.3	1.3-2.0	5.0-6.0	1	Basalt
114	Linga	Kalmeshwer	21	12	40	78	49	34	55K/16-116	358	12.6	6.3	00-1.0	3.3	3.0-7.0	8.0-9.0 & 10.0-11.0	7.0-11.0	Basalt
115	Pohi	Kalmeshwer	21	14	55	78	48	33	55K/16-117	366	15.25	7.25	00-1.0	1.5	1.5-6.0	8.0-9.0 & 13.0-14.0	7.0-14.0	Basalt
116	Sonegaon	Kalmeshwer	21	14	11	78	49	39	55K/16-118	359	13.4	8.8	00-1.0	2.3	2.30-8.08	9.0& 12.0	8.0-12.0	Basalt
117	Pohi	Kalmeshwer	21	14	8.7	78	48	44	55K/16-119	371	9.2	6.15	00-1.0	2.4	2.4-7.0	7.0m&8.50	7.0-9.0	Basalt
118	Chargaon	Katol	21	15	50	78	45	1.2	55K/16-120	401	15.5	10.15	00-1.0	4.8	4.8-6.0	11.0-12.0 & 15	6.0-15.0	Basalt

ANNEXURE-IX: Monthly ground water level data of Key Observation Wells, Aquifer-I, Chandrabhaga Watershed (WGKKC-2), Nagpur district, Maharashtra

SI. No.	Well No.	Village	lat deci	long_deci	RL (m A MSL)	Oct-11	Nov-11	Dec-11	Jan-12	Feb-12	Mar-12	Apr-12	May-12	Jun-12	Jul-12	Aug-12	Sep-12	Oct-12	Nov-12	Dec-12
1	DW1	Phetri	21.2027	78,9892	342.6700	2.45	4.45	5.95	6.95	7.85	7.60	8.25	8.20	8.07	6.95	1.95	1.55	3.10	4.50	5.95
2	DW2	Khairgaon	21.1849	78.9541	342.7000	3.44	4.50	7.90	7.90	9.30	9.90	10.05	10.50	10.88	7.75	2.70	1.75	3.65	6.70	7.70
3	DW3	Kalambi	21.1899	78.9189	337.0900	3.00	5.00	5.63	5.80	6.75	6.75	9.55	10.75	7.03	3.85	2.25	1.65	2.90	5.05	6.25
4	DW4	Selu	21.2056	78.8989	351.7600	3.43	5.20	7.10	7.60	9.30	9.15	9.65	9.80	9.95	7.80	2.60	1.35	3.05	5.00	6.20
5	DW5	Kalmeshwer (RH)	21.2342	78.9128	329.1050	1.92	2.35	2.70	2.75	3.30	3.50	3.80	4.30	4.11	1.95	1.50	1.20	1.85	2.40	2.80
6	DW6	Dahegaon	21.2102	78.9479	338.1100	1.10	1.90	3.65	4.75	7.35	6.55	7.45	8.05	7.60	3.60	0.10	0.10	0.10	1.85	5.45
7	DW7	Ashti	21.2113	78.9676	328.0050	2.75	4.66	6.25	6.65	8.15	8.65	9.05	9.45	9.00	8.35	3.25	1.40	3.35	5.75	6.95
8	DW8	Pardi	21.2481	78.9621	321.7050	2.75	3.65	6.20	7.00	8.50	8.25	10.00	9.80	10.00	4.65	2.60	2.25	2.70	4.40	6.20
9	DW9	Gowari	21.2700	78.9480	318.1150	5.55	6.75	6.85	6.70	6.85	6.85	6.95	6.60	6.62	6.70	6.35	4.75	6.80	6.25	7.15
10	DW10	Tondakhairi	21.2824	78.9645	319.0050	9.10	9.50	9.62	12.50	15.20	16.50	16.10	16.10	15.82	15.40	14.10	10.80	13.50	14.30	10.20
11	DW11	Borgaon(Kh)	21.2973	78.9612	305.7100	5.55	6.02	6.25	6.10	6.55	6.65	7.25	8.15	7.25	6.25	5.45	4.85	5.80	6.50	6.55
12	DW12	Silori	21.3130	78.9706	302.9100	6.28	7.43	8.38	8.38	8.48	8.53	8.78	8.93	8.96	8.33	6.98	5.33	7.18	8.68	8.68
13	DW13	Dhapewada	21.3003	78.9161	328.1100	9.50	10.45	11.20	11.10	12.00	12.15	12.30	12.80	12.37	12.05	10.90	9.05	10.00	11.70	12.70
14	DW14	Bhadangi	21.2979	78.9343	310.4300	8.10	8.60	8.50	8.70	9.10	9.30	10.50	11.80	9.65	9.75	8.60	7.80	8.50	NA	0.00
15	DW15	Warode(IW)	21.2796	78.9111	322.1750	6.25	7.05	8.00	7.60	9.20	10.50	11.48	12.80	12.73	12.95	9.20	6.80	7.25	8.90	9.10
16	DW16	Brahmni	21.2437	78.9064	322.0000	2.35	3.25	4.35	4.95	5.05	6.45	6.95	7.25	6.97	4.25	1.15	0.95	2.05	3.95	4.45
17	DW17	Sawli	21.2716	78.9255	318.1300	7.35	7.95	8.45	8.65	13.45	9.80	10.65	10.65	10.98	10.65	8.85	7.30	7.85	8.06	9.35
18	DW18	Ketapar	21.1847	78.8982	358.6000	4.45	4.85	5.00	4.90	5.00	4.95	5.30	5.30	5.28	3.90	3.40	2.70	3.95	5.20	5.30
19	DW19	Sahuli	21.1871	78.9424	351.2900	4.00	8.10	8.30	9.50	11.10	11.40	11.80	11.80	12.10	10.95	3.50	2.30	4.25		7.60
20	DW20	Gumthala	21.1992	78.8706	359.7000	2.25	2.85	4.85	4.45	7.75	6.65	8.00	8.45	8.77	8.45	4.85	1.95	2.15	3.75	5.25
21	DW21	Sawangi (IW)	21.2218	78.8847	339.8500	3.60	4.20	6.45	5.70	6.50	5.60	6.55	6.30	6.30	5.40	3.20	1.90	4.00	7.05	7.90
22	DW22	Uparwahi	21.2174	78.8562	356.2700	3.70	4.20	4.85	4.95	5.15	5.35	5.75	5.85	6.12	5.90	4.65	3.60	3.66	4.65	5.15
23	DW23	Nimboli	21.2065	78.8424	358.7000	2.25	3.00	3.00	2.55	3.30	2.80	4.05	5.10	5.17	3.10	1.50	1.20	2.10	2.60	2.40
24	DW24	Linga	21.2161	78.8195	364.1100	2.85	3.14	3.30	3.30	3.40	3.50	3.90	4.40	4.20	3.20	2.90	2.40	2.80	3.40	3.60
25	DW25	Sonegaon	21.2335	78.8330	356.8050	1.30	2.35	3.00	3.75	5.50	7.30	7.65	8.00	8.10	7.20	0.80	0.25	1.30	2.10	2.70
26	DW26	Khapri	21.2441	78.8428	364.1100	4.70	6.27	7.95	8.85	9.80	10.25	10.80	10.90	11.20	9.60	5.60	3.38	4.76	6.30	8.20
27	DW27	Ghogali	21.2420	78.8679	338.0050	6.30	7.10	8.05	8.25	8.95	9.05	9.35	9.35	9.25	8.80	7.35	5.70	6.45	8.15	8.75
28	DW28	Brahmni(IW)	21.2426	78.8933	333.0150	3.30	4.50	6.70	8.90	5.30	11.45	7.95	11.60	14.30	5.70	3.90	2.50	4.40	15.00	9.80
29	DW29	Ghorad	21.2346	78.8820	332.0900	7.00	7.32	7.60	7.60	8.00	8.20	8.85	9.00	9.27	9.24	8.30	7.15	7.20	8.10	8.20
30	DW30	Ubali	21.2665	78.8689	338.1050	7.60	9.21	9.70	10.20	12.00	12.25	13.30	13.70	13.35	12.60	9.00	7.05	7.70	9.10	9.80
31	DW31	Wadhone Buzrug	21.2924	78.8843	333.0900	11.60	13.82	12.20	12.10	12.30	12.30	13.30	13.30	13.26	12.40	11.70	10.85	11.25	11.90	11.80
32	DW32	Sawali Khurd	21.2805	78.8639	338.3150	7.90	10.00	10.80	10.90	9.50	15.10	14.20	14.50	14.10	13.65	8.90	5.40	8.00	8.80	9.50
33	DW33	Wathoda	21.2822	78.8381	348.1100	4.30	4.30	4.45	4.40	4.55	4.45	4.80	4.85	4.67	3.45	3.85	2.75	4.45	4.85	4.95
34	DW34	Sawangi (Anganwadi)	21.2903	78.8333	344.6100	4.25	4.60	4.75	4.55	5.95	5.00	5.45	5.20	5.08	4.20	3.90	2.95	4.10	4.80	4.80
35	DW35	Susundri	21.2919	78.8156	352.7000	1.85	1.90	2.00	1.90	2.50	2.70	3.10	4.65	3.18	2.15	1.90	1.00	1.80	NA	0.00
36	DW36	Khairi	21.2925	78.7911	363.8100 374.9900	3.20	3.55	3.95	4.25	4.80	5.25	5.55	5.65	5.73	3.90	2.55	1.85	3.10	3.75	4.15
37	DW37	Pardi	21.2813	78.7713	422.1650	2.97 3.60	3.57	3.97	4.67	4.97	6.17	6.07	6.37	6.04	4.57	2.87	1.67	2.87	3.77	3.97
38 39	DW38 DW39	Ramgiri	21.3012 21.2528	78.7575 78.7790	382.1150	3.60	6.30 5.50	5.60 5.20	4.10 5.65	8.70 6.40	8.70 4.80	7.75	7.50 7.60	6.87 7.14	1.75 4.50	2.10	0.80	3.00 2.90	4.90 3.70	5.20 5.00
40	DW39 DW40	Dorli Ubgi	21.2528	78.7790	369.9000	8.95	9.70	3.90	3.70	4.00	4.80	5.25	6.50	7.14	2.90	1.40	1.00	4.00	3.70	6.30
40	DW40 DW41	Kohli	21.2509	78.8264	361.0050	6.80	9.70 6.50	6.25	3.70 6.15	6.85	4.50 7.05	9.05	9.75	10.30	7.35	4.25	3.95	4.00	5.05	5.65
41 42	DW41 DW42	Konii Kotwali Bardi	21.2629	78.8098	389.2050	1.80	1.80	1.90	1.60	1.45	1.45	7.05	2.50	2.38	6.35	4.25	0.30	4.75	2.00	2.10
42	DW42 DW43	Raulgaon	21.2239	78.7814	396.1100	2.10	3.00	3.35	3.40	3.70	3.90	4.65	4.70	4.50	3.05	1.10	0.30	1.84	3.10	3.50
43	DW43 DW44	Chargaon	21.2511 21.2648	78.7507	396.1000	2.10	4.40	5.40	5.40	6.90	7.40	8.00	8.30	7.64	4.10	1.10	0.60	2.40	4.10	5.90
44	DW44 DW45	Sonkhamb	21.2627	78.7275	403.0800	3.00	2.55	4.30	6.20	10.60	9.40	9.90	11.10	11.42	7.15	1.00	0.55	3.15	4.60	6.80
45	DW45 DW46	Metpanjra	21.2596	78.7008	426.1600	4.82	5.97	6.82	7.32	8.22	8.52	9.07	9.22	9.47	8.47	3.92	3.27	5.17	6.62	7.42
40	DW40 DW47	Malegaon	21.3071	78.7206	517.1100	3.65	5.70	7.20	6.20	6.30	7.50	6.95	7.35	6.84	1.30	1.40	0.95	3.60	6.50	6.60
48	DW48	Vasboli	21.2292	78.7129	483.1600	0.60	1.00	2.30	3.00	4.70	5.00	5.60	6.55	5.30	2.65	0.80	0.50	0.90	2.20	3.20
48	DW48 DW49	Pohi	21.2252	78.8116	366.1150	4.95	5.60	6.18	6.35	6.55	6.65	7.10	6.95	6.85	5.15	3.15	2.55	4.46	5.75	6.05
50	DW49 DW50	Yerla	21.2303	78.9653	339.0800	5.15	6.22	8.00	9.15	12.30	11.20	13.90	13.10	12.20	9.00	3.30	2.50	4.40	6.85	7.70
51	DW51	Chicholi	21.1944	78.9788	348.7100	NA	3.75	4.45	5.35	7.45	7.60	7.95	11.95	8.58	5.10	2.25	2.05	2.65	3.85	4.25
52	DW51	Kalmeshwer (NE of Selu)	21.2163	78.9055	334.3400	NA	6.40	6.65	8.35	12.30	10.50	15.70	15.00	11.25	14.51	1.57	2.00	NA	11.30	11.40
53	DW52 DW53	Sawangi (SW of Kalmeshwar)	21.2203	78.8977	344.1150	NA	5.55	9.10	9.10	12.30	13.20	14.40	15.40	16.10	13.10	5.10	0.90	3.40	6.70	9.70
54	DW53	Kalmeshwer (South of Gowari)	21.2222	78.9369	319.7700	NA	6.05	13.05	7.15	6.85	12.45	14.40	15.65	14.90	8.45	4.60	3.95	11.76	11.95	9.65
55	DW55	Kalmeshwer (Ashti Road	21.2305	78.9461	327.0050	NA	3.60	5.10	5.30	6.40	12.50	6.85	7.05	7.10	5.73	4.10	2.00	5.39	5.50	6.20
56	DW56	Waroda	21.2505	78.9066	326.0150	NA	6.40	6.50	6.50	6.70	7.00	7.55	7.80	7.68	6.80	6.20	5.45	6.20	6.90	7.00
57	DW57	Lakholi	21.2783	78.6916	433.0100	NA	6.85	3.10	3.85	7.00	6.10	8.60	6.20	4.02	3.35	4.80	1.50	5.30	2.70	3.30
58	DW58	Kalmeshwar (Rly Gate)	21.2705	78.9347	328.9100	NA	7.20	8.65	10.00	11.25	11.65	12.45	12.65	12.75	10.25	5.55	3.30	6.55	7.45	8.75
	51150	itaniconwar (niy Gate)	21.2210	/0.554/	- 20.7100	110	7.20	0.05	10.00	11.23	11.05	12.75	12.05	12.75	10.23	5.55	5.50	0.55	7.45	0.75

Continued

Monthly ground water level data of Key Observation Wells...continued

SI. No. 1 2 3 4 5 6 7	Well No. DW1 DW2	Village Phetri	lat_deci 21.2027	long_deci 78.9892	RL (m A MSL) 342.6700	Jan-13	Feb-13	Mar-13	Apr-13	May-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13	Jan-14	Feb-14	Mar-14	Apr-14	May-14
3 4 5 6	DW2		21.2027							7.00	5.25	0.07	1.00		0.15	0.05	F / F	Z 00	6.07	~ ~ ~ ~		
3 4 5 6						7.05	7.35	7.40	7.75	7.80	5.35	0.85	1.25	1.65	2.15	3.35	5.65	5.00	6.95	5.55	7.90	6.95
4 5 6		Khairgaon	21.1849	78.9541	342.7000	8.55	8.70	9.25	10.00	9.90	6.00	0.80	1.00	2.20	2.60	4.20	6.30	7.30	8.30	8.10	8.55	9.26
5	DW3	Kalambi	21.1899	78.9189	337.0900	5.95	5.15	6.15	6.25	6.45	2.55	0.65	1.15	1.90	2.55	4.10	5.69	6.25	6.45	6.65	9.65	8.95
6	DW4	Selu	21.2056	78.8989	351.7600	6.80	7.55	8.40	8.70	9.20	3.95	0.60	0.94	1.75	2.45	3.55	4.95	5.60	6.80	6.40	7.00	8.1
	DW5	Kalmeshwer (RH)	21.2342	78.9128	329.1050	2.60	2.80	3.20	3.40	4.00	1.20	0.70	1.10	1.35	1.50	1.90	2.15	2.30	2.40	2.20	2.65	3.12
7	DW6	Dahegaon	21.2102	78.9479	338.1100	5.65	5.85	6.15	6.85	7.70	2.65	0.00	0.00	0.00	0.00	0.00	1.85	2.65	4.65	4.78	4.15	5.25
	DW7	Ashti	21.2113	78.9676	328.0050	7.45	8.20	8.75	8.95	9.35	5.50	0.45	0.55	1.45	3.85	4.35	5.50	6.15	7.55	6.60	7.25	7.62
8	DW8	Pardi	21.2481	78.9621	321.7050	7.55	8.35	9.30	9.50	10.20	2.40	0.90	1.82	2.00	2.30	2.60	3.50	5.10	5.10	5.35	7.50	7.82
9	DW9	Gowari	21.2700	78.9480	318.1150	6.85	6.55	6.85	6.70	6.65	3.20	1.75	2.70	3.05	3.15	4.85	6.05	7.65	6.65	7.55	7.15	6.58
10	DW10	Tondakhairi	21.2824	78.9645	319.0050	17.30	14.35	15.51	15.95	16.20	15.35	9.90	8.20	7.65	6.60	8.65	10.80	10.50	11.50	11.90	12.80	13.14
11	DW11	Borgaon(Kh)	21.2973	78.9612	305.7100	6.25	6.20	6.25	6.90	7.05	4.80	2.25	3.85	4.20	4.65	5.35	5.75	5.85	6.05	6.05	6.35	7.51
12	DW12	Silori	21.3130	78.9706	302.9100	8.38	8.38	8.48	8.53	9.28	6.73	1.98	3.00	4.03	3.63	5.98	7.08	6.78	7.38	7.48	7.28	7.88
13	DW13	Dhapewada	21.3003	78.9161	328.1100	11.40	11.70	11.25	11.85	12.45	11.45	9.90	7.00	6.95	1.70	8.25	8.80	12.00	9.90	9.50	10.30	10.55
14	DW14	Bhadangi	21.2979	78.9343	310.4300	NA	9.45	NA	10.00	NA	10.10	6.00	6.10	7.00	7.33	7.65	7.30	7.19	7.17	7.29	10.10	9.8
15	DW15	Warode(IW)	21.2796	78.9111	322.1750	9.05	9.20	7.00	11.15	12.30	11.80	5.50	3.20	2.75	1.45	2.40	3.90	4.70	6.00	6.10	7.00	8.05
16	DW16	Brahmni	21.2437	78.9064	322.0000	4.75	5.05	5.85	6.40	6.45	2.50	0.25	0.70	1.10	1.05	2.45	3.45	4.15	6.85	4.75	9.45	6.85
17	DW17	Sawli	21.2716	78,9255	318.1300	9.30	8.95	8.85	10.65	4.05	10.60	4.55	4.65	4.70	3.65	5.05	5.80	6.25	6.85	6.90	7.55	7.85
18	DW18	Ketapar	21.1847	78.8982	358.6000	4.60	4.80	5.90	4.90	4.50	3.55	0.55	2.21	3.10	3.50	4.40	4.90	4.70	4.70	4.65	4.75	4.82
19	DW19	Sahuli	21.1871	78.9424	351.2900	9.20	10.20	10.90	11.60	12.10	9.25	1.35	1.80	2.50	2.60	3.75	7.10	7.30	9.10	8.70	6.80	10.15
20	DW20	Gumthala	21.1992	78.8706	359,7000	5.15	5.45	7.20	8.65	9.65	7.35	1.35	0.72	0.75	1.95	1.65	2.30	11.45	3.95	4.25	5.35	6.35
21	DW21	Sawangi (IW)	21.2218	78.8847	339.8500	5.30	6.90	8.40	8.10	6.50	4.60	1.20	1.85	1.95	2.40	5.05	6.35	6.49	4.00	4.20	5.00	4.58
22	DW22	Uparwahi	21.2174	78.8562	356.2700	5.20	4.95	5.35	5.35	5.75	5.45	1.35	2.72	3.25	3.05	3.55	4.25	4.45	4.65	4.70	5.00	5.2
23	DW23	Nimboli	21.2065	78.8424	358.7000	1.95	2.00	2.00	2.50	4.00	1.75	0.44	0.82	1.25	1.40	1.90	1.75	1.70	2.00	2.15	3.20	3.8
24	DW23	Linga	21.2005	78.8195	364.1100	3.40	3.30	3.40	3.30	3.94	2.95	1.16	1.80	2.30	2.50	2.80	3.25	3.20	3.40	3.30	3.65	3.67
25	DW25	Sonegaon	21.2335	78.8330	356.8050	3.50	5.60	7.10	6.20	7.00	5.10	0.15	0.00	0.10	0.90	1.50	1.75	2.75	4.30	5.20	5.70	5.07
26	DW25 DW26	Khapri	21.2333	78.8428	364.1100	8.90	9.40	10.20	10.40	10.65	9.94	2.37	2.30	3.00	3.40	4.80	6.55	7.71	8.90	9.30	10.00	11.03
20	DW20 DW27	Ghogali	21.2441 21.2420	78.8679	338.0050	8.55	8.35	8.95	8.85	9.25	8.60	5.55	5.10	5.40	4.75	5.75	6.55	6.85	7.45	7.45	8.25	8.25
27	DW27 DW28	Brahmni(IW)	21.2420	78.8933	333.0150	8.25	8.20	9.70	11.45	11.20	4.60	1.30	1.75	2.85	2.60	10.40	4.40	7.80	5.60	6.50	11.30	7.77
28	DW28 DW29	Ghorad	21.2420	78.8833	332.0900	7.85	7.90	8.20	8.55	8.90	8.45	6.70	5.35	5.90	5.30	6.10	6.40	6.90	7.20	8.15	7.60	7.84
30	DW29 DW30	Ubali	21.2346	78.8689	338,1050	10.00	10.30	11.30	12.10	12.60	11.70	5.10	4.65	5.30	4.50	6.00	6.70	6.90	8.20	8.30	9.70	11.15
30	DW30 DW31		21.2003	78.8843	333.0900	11.50	11.55	11.30	12.10	12.00	11.00	10.80	10.48	10.60	10.80	10.80	11.20	11.40	11.10	8.30 11.40	8.90	12.4
	DW31 DW32	Wadhone Buzrug		78.8639	338.3150	9.60	10.45	10.25	12.13	12.80	12.95	6.10	3.70	4.00	3.50	9.90	10.80	7.00	8.20	8.15	7.90	12.4
32 33	DW32 DW33	Sawali Khurd Wathoda	21.2805 21.2822	78.8639	348.1100	4.55	4.55	4.65	4.60	4.85	2.40	2.15	3.35	3.95	5.05	9.90 4.30	4.15	4.25	5.05	4.25	4.85	5.51
					344.6100	4.55	4.55	4.65	4.60		3.45	2.13	3.05	3.93	3.60	4.50	4.15	4.23	4.40	4.23		
34	DW34	Sawangi (Anganwadi)	21.2903	78.8333	344.6100	4.75	4.55	4.85	4.95 2.25	5.10 NA	3.45 1.80	2.30	3.05	3.70	3.60	4.00	4.00	4.30	4.40	4.60	4.80	4.9
35	DW35	Susundri	21.2919	78.8156																	NA	NA
36	DW36	Khairi	21.2925	78.7911	363.8100	4.20	4.20	4.60	4.80	5.25	3.80	1.31	2.00	2.50	2.75	3.25	3.55	3.65	4.05	3.70	4.35	4.82
37	DW37	Pardi	21.2813	78.7713	374.9900	3.87	4.17	7.07	5.22	5.67	4.92	1.67	1.67	1.97	2.07	3.27	3.12	3.62	4.07	4.27	4.97	5.12
38	DW38	Ramgiri	21.3012	78.7575	422.1650	5.50	4.30	6.50	7.75	9.10	0.70	0.26	1.85	1.60	2.30	2.85	3.80	5.20	4.00	6.20	8.10	8.7
39	DW39	Dorli	21.2528	78.7790	382.1150	5.20	5.25	6.00	6.10	7.40	1.65	0.67	1.00	1.00	1.70	2.50	1.75	4.20	4.90	6.10	5.50	6.97
40	DW40	Ubgi	21.2509	78.8264	369.9000	9.55	10.60	11.30	5.00	5.40	2.10	0.52	1.00	1.25	1.50	2.10	2.75	3.10	10.80	5.20	11.30	10.72
41	DW41	Kohli	21.2629	78.8098	361.0050	5.75	5.75	7.25	7.80	9.55	5.40	3.80	4.35	4.60	4.35	5.15	4.85	5.35	5.85	6.05	6.55	7.37
42	DW42	Kotwali Bardi	21.2239	78.7818	389.2050	1.85	1.50	1.20	1.67	2.10	0.15	0.10	0.55	0.60	1.30	1.15	1.40	1.30	1.30	1.40	1.35	1.7
43	DW43	Raulgaon	21.2311	78.7814	396.1100	3.00	3.10	3.70	3.65	4.50	1.25	0.07	0.20	0.45	0.80	1.90	2.80	2.90	3.00	2.80	3.50	3.8
44	DW44	Chargaon	21.2648	78.7507	396.1000	5.70	5.30	6.50	6.45	8.20	2.20	0.32	0.65	0.90	1.30	2.90	4.70	5.10	6.20	5.25	7.50	7.65
45	DW45	Sonkhamb	21.2627	78.7275	403.0800	8.90	6.00	7.70	8.55	10.60	2.10	0.27	0.45	0.65	3.30	3.20	2.90	4.30	5.50	5.60	6.60	7.5
46	DW46	Metpanjra	21.2596	78.7008	426.1600	7.57	7.97	8.92	9.00	9.22	7.62	1.32	2.12	3.32	3.62	5.07	6.32	6.62	7.52	7.42	8.12	8.39
47	DW47	Malegaon	21.3071	78.7206	517.1100	6.10	5.85	6.20	6.40	7.30	2.20	0.84	1.15	1.30	2.30	6.10	6.25	6.29	6.00	6.90	6.60	6.03
48	DW48	Vasboli	21.2292	78.7129	483.1600	3.60	3.65	4.40	4.55	5.50	0.45	0.20	0.55	0.10	0.60	0.60	1.80	2.80	3.90	2.70	3.70	4.23
49	DW49	Pohi	21.2365	78.8116	366.1150	6.20	6.30	6.55	6.65	6.80	5.15	0.73	2.00	2.90	3.85	4.85	5.30	5.45	6.05	6.25	6.60	6.59
50	DW50	Yerla	21.2079	78.9653	339.0800	9.05	9.70	11.20	11.50	12.20	5.80	1.30	2.33	2.75	3.20	5.00	5.75	6.60	8.20	7.35	8.50	9.5
51	DW51	Chicholi	21.1944	78.9788	348.7100	4.85	5.40	6.35	7.15	7.65	4.05	1.35	1.73	2.01	2.15	2.60	3.25	3.85	4.55	4.25	4.75	5.45
52	DW52	Kalmeshwer (NE of Selu)	21.2163	78.9055	334.3400	9.70	9.40	13.25	12.70	14.80	5.00	3.85	1.14	1.70	1.91	1.82	1.05	1.11	1.29	10.60	12.80	13.4
53	DW53	Sawangi (SW of Kalmeshwar)	21.2222	78.8977	344.1150	9.90	9.90	8.90	11.70	14.20	9.50	0.70	1.10	4.30	5.30	6.40	8.05	7.10	9.80	9.60	10.50	12.57
54	DW54	Kalmeshwer (South of Gowari)	21.2494	78.9369	319.7700	14.55	13.95	17.20	16.75	16.75	9.30	1.05	1.45	1.60	2.25	2.39	1.99	2.26	2.99	4.25	13.65	8.45
55	DW55	Kalmeshwer (Ashti Road	21.2305	78.9461	327.0050	5.60	6.10	7.30	9.30	7.20	4.15	2.90	1.00	2.10	2.23	2.47	2.68	2.79	2.98	15.15	6.40	5.7
56	DW56	Waroda	21.2647	78.9066	326.0150	6.60	6.40	4.80	7.30	8.50	6.65	4.80	4.90	5.00	4.90	5.60	5.70	5.90	6.30	5.90	6.20	6.77
57	DW57	Lakholi	21.2783	78.6916	433.0100	6.35	3.75	8.00	3.85	7.50	2.80	1.22	1.90	2.05	2.70	5.50	2.15	2.46	2.70	3.65	3.60	NA
58	DW58	Kalmeshwar (Rly Gate)	21.2216	78.9347	328.9100	8.20	10.35	11.25	11.75	12.45	5.90	1.45	2.16	3.10	3.85	5.25	6.45	7.75	9.05	8.65	9.55	10.5

SI. No.	Well No.	Village	lat_deci	long_deci	RL (m A MSL)	June-14	July-14	Aug-14	Sept-14	Oct-14	Nov-14
1	DW1	Phetri	21.2027	78.9892	342.6700	7.35	1.60	2.40	3.40	3.90	4.95
2	DW2	Khairgaon	21.1849	78.9541	342.7000	8.80	2.20	3.45	3.90	5.00	7.20
3	DW3	Kalambi	21.1899	78.9189	337.0900	5.75	1.75	3.30	4.10	4.95	5.55
4	DW4	Selu	21.2056	78.8989	351.7600	7.60	2.45	3.75	4.30	5.60	6.10
5	DW5	Kalmeshwer (RH)	21.2342	78.9128	329.1050	3.30	1.35	1.85	2.20	2.75	10.10
6	DW6	Dahegaon	21.2102	78.9479	338.1100	6.55	0.10	0.45	filled up	filled up	filled up
7	DW7	Ashti	21.2113	78.9676	328.0050	7.95	3.40	4.05	4.30	5.20	7.05
8	DW8	Pardi	21.2481	78.9621	321.7050	7.40	2.25	2.50	3.50	3.30	4.90
9	DW9	Gowari	21.2700	78.9480	318.1150	6.65	5.10	5.90	6.20	7.05	7.35
10	DW10	Tondakhairi	21.2824	78.9645	319.0050	13.70	12.00	11.70	11.60	13.20	13.30
11	DW11	Borgaon(Kh)	21.2973	78.9612	305.7100	5.85	4.35	5.00	5.90	6.30	5.85
12	DW12	Silori	21.3130	78.9706	302.9100	8.08	6.13	6.58	6.55	8.10	8.38
13	DW13	Dhapewada	21.3003	78.9161	328.1100	10.40	9.25	8.35	9.35	10.90	10.90
14	DW14	Bhadangi	21.2979	78.9343	310.4300	9.10	5.95	7.90	6.05	6.15	-0.50
15	DW15	Warode(IW)	21.2796	78.9111	322.1750	8.00	6.85	6.05	5.00	5.40	4.81
16	DW16	Brahmni	21.2437	78.9064	322.0000	6.25	0.90	2.25	2.40	3.30	4.25
17	DW17	Sawli	21.2716	78.9255	318.1300	8.05	7.10	7.35	4.30	7.90	7.95
18	DW18	Ketapar	21.1847	78.8982	358.6000	4.50	1.50	4.00	4.15	4.80	5.70
10	DW19	Sahuli	21.1871	78.9424	351.2900	10.80	5.25	3.95	4.20	5.85	7.90
20	DW20	Gumthala	21.1992	78.8706	359.7000	6.55	5.20	4.20	4.20	5.30	5.85
20	DW21	Sawangi (IW)	21.2218	78.8847	339.8500	6.70	2.90	3.20	7.30	5.75	5.41
22	DW22	Uparwahi	21.2174	78.8562	356.2700	5.65	4.85	5.60	5.00	5.20	4.75
23	DW22	Nimboli	21.2065	78.8424	358.7000	4.00	5.05	2.05	2.70	2.60	2.40
24	DW24	Linga	21.2161	78.8195	364.1100	3.70	2.90	3.00	3.80	3.70	3.40
25	DW25	Sonegaon	21.2335	78.8330	356.8050	7.70	1.40	1.05	1.80	3.30	2.60
26	DW26	Khapri	21.2333	78.8428	364.1100	10.20	5.65	5.95	6.30	7.30	3.60
20	DW20	Ghogali	21.2441	78.8679	338.0050	8.55	7.20	7.40	7.70	9.00	8.45
28	DW27	Brahmni(IW)	21.2426	78.8933	333.0150	5.80	7.85	5.00	7.35	10.80	6.50
20	DW20	Ghorad	21.2346	78.8820	332.0900	7.70	7.40	7.30	7.40	7.70	6.60
30	DW20	Ubali	21.2665	78.8689	338.1050	10.40	7.95	8.10	7.70	8.70	9.00
31	DW30	Wadhone Buzrug	21.2003	78.8843	333.0900	12.10	11.50	11.30	5.10	12.20	11.80
32	DW31 DW32	Sawali Khurd	21.2924	78.8639	338.3150	10.80	8.10	9.60	7.75	13.10	15.70
33	DW32	Wathoda	21.2822	78.8381	348.1100	4.45	3.75	4.00	11.80	5.30	4.45
34	DW33	Sawangi (Anganwadi)	21.2903	78.8333	344.6100	5.00	3.90	4.30	4.50	5.10	5.10
35	DW35	Susundri	21.2903	78.8156	352.7000	1.90	1.10	filled up	1.15	1.21	-0.60
36	DW35	Khairi	21.2915	78.7911	363.8100	4.85	2.20	2.85	3.70	3.95	3.75
30	DW30	Pardi	21.2323	78.7713	374.9900	5.17	2.20	3.27	3.40	3.95	4.17
37	DW37	Ramgiri	21.3012	78.7575	422,1650	8.30	0.65	0.20	1.50	2.40	3.10
30	DW38 DW39	Dorli	21.3012	78.7790	382.1150	7.20	1.00	1.85	2.80	3.70	5.30
40	DW39 DW40	Ubgi	21.2528	78.8264	369.9000	5.90	1.80	1.85	1.90	2.40	4.20
40	DW40 DW41	Kohli	21.2509	78.8098	361.0050	5.45	5.65	5.95	5.20	5.80	5.05
41	DW41 DW42	Kotwali Bardi	21.2029	78.7818	389.2050	2.50	0.70	1.40	1.40	2.00	1.79
42	DW42 DW43	Raulgaon	21.2239	78.7818	396.1100	3.90	0.70	1.40	1.40	3.60	3.70
43	DW43 DW44		21.2311 21.2648	78.7814	396.1000	7.70	0.80	1.80	2.60	5.30	5.50
44	DW44 DW45	Chargaon Sonkhamb	21.2648	78.7275	403.0800	9.20	0.90	0.80	3.10	2.80	4.60
45 46	DW45 DW46	Sonkhamb Metpanjra	21.2627	78.7275	405.0800	9.20	2.92	4.62	3.10 4.90	2.80 6.10	4.60 6.82
46	DW46 DW47	Malegaon	21.2596	78.7008	517.1100	7.30	1.25	1.70	3.00	7.15	6.82
47	DW47 DW48	Vasboli	21.3071 21.2292	78.7206	483.1600	4.50	0.55	0.70	1.30	1.40	1.70
48	DW48 DW49	Pohi			366.1150		2.35	4.10		5.70	
49 50	DW49 DW50	Yerla	21.2365 21.2079	78.8116 78.9653	339.0800	6.45 10.30	3.25	4.10	5.50 4.40	6.35	5.85 6.55
50					348.7100					4.05	
	DW51 DW52	Chicholi Kalmashwar (NE of Solu)	21.1944	78.9788		6.05	1.95	2.25	2.70		6.85
52		Kalmeshwer (NE of Selu)	21.2163	78.9055	334.3400	17.10	3.77	4.55	5.81	5.99	5.63
53	DW53	Sawangi (SW of Kalmeshwar)	21.2222	78.8977	344.1150	14.65	4.50	6.05	7.30	11.60	13.30
54	DW54	Kalmeshwer (South of Gowari)	21.2494	78.9369	319.7700	7.95	11.95	5.35	11.90	8.70	12.65
55	DW55	Kalmeshwer (Ashti Road	21.2305	78.9461	327.0050	6.10	2.88	4.25	3.88	5.70	5.90
56	DW56	Waroda	21.2647	78.9066	326.0150	6.80	5.75	5.85	6.55	7.00	6.50
57	DW57	Lakholi	21.2783	78.6916	433.0100	3.90	3.05	1.80	6.20	2.75	2.49
58	DW58	Kalmeshwar (Rly Gate)	21.2216	78.9347	328.9100	3.25	5.00	7.55	6.55	8.00	10.05

SI	Village	Aquifer	North	East	Elevati	Dec-13	Jan-	Feb-14	Mar-	Apr-14	May-	Jun-	Jul-	Aug-	Sept-	Oct-	Nov-	Dec-	Jan-
Ν			Latitude	Longitude	on (m		14		14		14	14	14	14	14	14	14	14	15
0					a MSL)														
1	Pardi	Basalt	21°16'40.2"	78°46'05.7"	381							Filled U	p						
2	Ramgiri	Basalt	21°18'04.0"	78°45'27.1"	416							Filled U	p						
3	Sonegaon	Basalt	21°13'49.0"	78°49'56.0"	358							Filled U	р						
4	Malegaon OW	Basalt	21°18'25.4"	78°43'06.7"	518						m	ore than	100						
5	Dahegaon	TCG	21°12'58.8"	78°56'43.9"	340							Filled U	p						
6	Sonkhamb	Basalt	21°16'20.1"	78°43'21.1"	411	11.27	11.6	12.4	11.6	12.9	13.12	13.8	7.2	8.8	9.5	10.5	11.5	11.83	12.75
7	Malegaon EW	Basalt	21°18'24.9"	78°43'06.7"	518	11.74	12.2 6	14.85	15.15	69.5	70	14.55	1.45	35.1	3.9	7.3	11.01	14.67	15.8
8	Kohli	TCG	21°15'54.9"	78°48'33.8"	371	Drilling in Progress	78.3 6	Vi	llagers fixe	ed new loc	k	74.33	79.3 4	DRY	76.1	78.33	78.00	78.36	79
9	Mohgaon	TCG	21°17'47.4"	78°50'51.2"	343	63	63.7 9	58.7	62.7	69.2	73	70.2	67.6 8	75.5	66.1	66.13	66.7	65.1	72.2
10	Khapri	TCG	21°14'22.8"	78°50'26.9"	359	68	68.7 1	63.6	65.55	68.86	69.55	49.1	54.7		67	67.19	68	69	64.5
11	Raulgaon	TCG	21°14'15.2"	78°46'59.3"	394	36.21	37.1 9	38.05	37.55	39.8	40.77	41.85	40.4	39.3	38.16	39.12	40.1	39.32	40.3
12	Dhapewada EW	Sandstone	21°18'11.9"	78°54'18.4"	323	11.47	11.7	12.1	11.2	12.2	13.1	13.2	11.5	12.6	11.6	11.9	12.3	11.96	12.1
13	Dhapewada OW	Sandstone	21°18'11.6"	78°54'18.3"	322	11.51	11.8	12.3	11.4	12.45	13.5	13.5	11.7	12.4	12.1	12.35	12.7	12.13	12.45
14	Gowari	Sandstone	21°16'06.8"	78°56'58.5"	322	7.9	9.3	10.3	9.45	10.6	10.83	12.1	8.8	10.2	7.7	10.3	12.2	12.27	13.1
15	Khairi Lakhmaj	Sandstone	21°15'10.1"	78°57'05.8"	320	6	6.11	7.5	5.85	7.65	7.85	8.8	5.5	2.8	1.15	3.5	6.6	7.72	10.75
16	Waroda	TCG	21°15'48.8"	78°54'17.4"	349	Well Not Construct ed	Well Not Cons truct ed	14.9	12.3	14.05	15.07	14.5	11.8	12.2	12.2	13.8	15.2	12.06	12.2

ANNEXURE-X: Monthly ground water level data of Exploratory Wells, Aaquifer-II, Chandrabhaga Watershed (WGKKC-2), Nagpur District

TCG- Trap Covered Gondwana

Well No	Village	Aquifer-I (Lithology)	рН	EC	TDS	TA	TH	Са	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F
1	Phetri	Basalt	7.6	970	582	252	171	36	20	82	87	0	307	44	38	122	0.23
2	Khairgaon	Basalt	7.3	1390	834	176	508	125	48	78	4	0	215	158	112	203	0.11
3	Kalambi	Basalt	7.7	1303	782	300	526	96	69	74	4	0	366	146	41	116	0.33
4	Selu	Basalt	7.6	1603	962	400	640	136	73	102	6	0	488	152	142	101	0.26
5	Kalmeshwer	Basalt	7.4	1427	856	220	588	90	88	75	2	0	268	340	48	32	0.29
15	Warode	Basalt	7.7	1237	742	304	452	54	77	79	1	0	371	92	47	199	0.24
16	Brahmni	Basalt	7.7	667	400	296	272	56	32	71	5	0	361	38	11	7	0.18
17	Sawli	Basalt	7.8	1267	760	504	592	70	101	65	2	0	615	72	38	109	0.24
18	Ketapar	Basalt	7.7	807	484	151	272	67	25	57	2	0	184	62	68	72	0.19
19	Sahuli	Basalt	7.5	1273	764	340	308	91	19	120	44	0	415	68	65	150	0.56
20	Gumthala	Basalt	7.7	1142	685	300	292	54	38	131	21	0	366	102	66	91	0.44
21	Sawangi	Basalt	8.5	1697	1018	176	420	19	90	152	74	2.4	215	252	141	178	0.35
22	Uparwahi	Basalt	7.7	1630	978	320	348	37	62	136	112	0	390	146	107	181	0.52
23	Nimboli	Basalt	7.8	1038	623	248	312	32	56	101	2	0	303	94	75	78	0.6
24	Linga	Basalt	8.5	1287	772	128	320	29	60	80	85	0	156	132	81	228	0.25
26	Khapri	Basalt	8.1	767	460	184	376	56	57	18	1	0	224	56	48	112	0.4
27	Ghogali	Basalt	8.4	1253	752	532	600	59	110	81	1	0	649	104	69	7	0.51
28	Brahmni (IW)	Basalt	8.2	1187	712	212	444	48	79	100	5	0	259	232	78	30	0.35
29	Ghorad	Basalt	8.7	1340	804	392	350	60	49	110	84	7.2	478	108	46	60	0.37
30	Ubali	Basalt	8.3	2097	1258	84	768	62	149	119	8		102	330	204	320	0.15
31	Wadhone Buzrug	Basalt	8.6	1058	635	112	96	18	13	121	92	4.8	137	146	74	90	0.13
32	Sawali Khurd	Basalt	8.5	887	532	92	316	38	53	45	1	2.4	112	88	174	74	0.25
33	Wathoda	Basalt	7.6	1725	1035	190	492	138	36	95	91	0	232	242	126	183	0.21
34	Sawangi	Basalt	8.3	787	472	288	200	30	30	116	1	0	351	38	33	39	0.65
35	Susundri	Basalt	8.6	987	592	124	248	22	47	112	2	0	151	144	100	85	0.38
36	Khairi	Basalt	7.9	1113	668	148	396	96	38	65	1	0	181	172	94	109	0.23
37	Pardi	Basalt	8.2	937	562	248	412	45	73	54	1	0	303	106	46	74	0.34
38	Ramgiri	Basalt	8.2	567	340	184	236	35	36	36	0	0	224	16	59	40	0.26
39	Dorli	Basalt	7.8	1337	802	184	444	96	50	66	44	0	224	132	119	181	0.21
40	Ubgi	Basalt	8.4	1987	1192	188	720	110	108	92	49	0	229	274	236	200	0.27
41	Kohali	Basalt	8.9	760	456	116	316	24	62	47	1	9.6	142	88	48	107	0.37
42	Kolwali Bardi	Basalt	7.8	1338	803	148	468	110	47	77	1	0	181	111	178	177	0.16

Annexure-XI: Analysis of water sample of Aquifer –I, Chandrabhaga Watershed (WGKKC-2), Post monsoon- Nov 2011

Well No	Village	Aquifer-I (Lithology)	рН	EC	TDS	TA	тн	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F
43	Raulgaon	Basalt	7.9	1220	732	192	372	70	48	85	6	0	234	116	137	144	0.2
44	Chargaon	Basalt	8	620	372	212	272	21	53	34	1	0	259	32	34	68	0.26
45	Sonkhamb	Basalt	8.4	597	358	176	224	40	30	37	0	0	215	18	15	104	0.22
46	Metpanjra	Basalt	7.9	1497	898	168	576	114	71	76	3	0	205	254	59	171	0.22
47	Malegaon	Basalt	8.4	800	480	256	220	48	24	53	46	0	312	48	52	46	0.2
48	Vasboli	Basalt	8.2	1003	602	232	364	56	54	51	24	0	283	36	97	139	0.29
49	Pohi	Basalt	8.7	420	252	84	152	18	26	43	1	7.2	102	28	27	48	0.25
50	Yerla	Basalt	8.2	807	484	180	304	42	49	52	2	0	220	56	90	74	0.24
51	Chicholi	Basalt	8	1415	849	232	404	74	53	76	81	0	283	76	175	163	0.24
52	Kalmeshwer	Basalt	8.6	1075	645	256	352	40	61	96	1	4.8	312	48	108	114	0.48
53	Sawangi(IW)	Basalt	8.1	823	494	248	356	40	62	43	1	0	303	34	73	84	0.24
55	Kalmeshwer (Or. Farm)	Basalt	9	880	528	198	172	16	32	77	49	12	242	18	174	33	0.51
56	Waroda	Basalt	8	2353	1412	352	676	70	122	178	79	0	429	302	174	202	0.37
57	Lakholi	Basalt	7.9	1463	878	264	536	48	101	94	43	0	322	200	99	130	0.24
58	Kalmeshwer (Rly Gate)	Basalt	7.7	1843	1106	160	696	109	103	112	5	0	195	282	219	167	0.45
6	Dahegaon	Sandstone	7.6	710	426	248	296	53	40	40	1	0	303	40	36	46	0.27
7	Ashti	Sandstone	8.1	1467	880	252	404	85	47	108	100	0	307	308	34	45	0.53
8	Pardi	Sandstone	7.4	1520	912	222	440	93	51	136	28	0	271	315	49	46	0.28
9	Gowari	Sandstone	7.7	1000	600	248	264	69	22	83	31	0	303	114	79	50	0.25
10	Tondakhairi	Sandstone	7.5	720	432	252	256	35	41	60	15	0	307	56	26	43	0.4
11	Borgaon(Kh)	Sandstone	7.7	1750	1050	249	552	78	87	35	6	0	304	264	145	249	0.19
12	Silori	Sandstone	7.7	1962	1177	320	572	70	96	105	135	0	390	200	98	271	0.16
13	Dhapewada	Sandstone	8	1117	670	300	400	43	71	91	1	0	366	120	76	79	0.25
14	Bhadangi	Sandstone	7.7	1327	796	540	468	74	69	127	29	0	659	124	4	42	0.29
54	Kalmeshwer (IW)	Sandstone	7.8	2532	1519	152	792	130	114	247	6	0	185	782	24	14	0.26
		Min	7.30	420.00	252.00	83.61	96.00	16.00	13.00	18.00	0.00	0.00	102.00	16.00	11.00	7.00	0.11
'	Aquifer-I Basalt	Max	9.00	2353.00	1412.00	531.97	768.00	138.00	149.00	178.00	112.00	12.00	649.00	340.00	236.00	320.00	0.65
	Dasalt	Avg	8.08	1184.70	710.79	228.72	395.30	60.53	59.23	82.21	25.02	1.10	279.04	124.11	92.45	115.79	0.31
		Min	7.40	710.00	426.00	151.64	256.00	35.00	22.00	35.00	1.00	0.00	185.00	40.00	4.00	14.00	0.16
	Aquifer-I andstone	Max	8.10	2532.00	1519.00	540.16	792.00	130.00	114.00	247.00	135.00	0.00	659.00	782.00	145.00	271.00	0.53
5		Avg	7.72	1410.50	846.20	278.28	444.40	73.00	63.80	103.20	35.20	0.00	339.50	232.30	57.10	88.50	0.29

All values in mg/I except pH and EC

Annexure-XII: Analysis of water sample (Ground water Exploration) Aquifer –II, Chandrabhaga Watershed (WGKKC-2), Post monsoon- May 2014

Well No	Village	Aquifer-I	рН	EC	ТА	TH	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F
		(Lithology)														
1	Sonkhamb (22.60-23m)	Basalt	8.3	857	105	400	26	81	16	0.23	3	128	160	147	11	1.40
2	Sonkhamb (76.45-79.10m)	Basalt	8.2	641	290	285	8	64	15	0.26	0	354	25	5	2	0.76
23	Sonkhmab (PT)	Basalt	8.2	525	200	250	30	43	4	0.07	0	244	28	9	29	0.6
3	Ramgiri (7-8m)	Basalt	8.2	798	105	325	48	50	6	0.19	0	128	89	95	65	0.50
4	Ramgiri (final discharge)	Basalt	8.1	642	300	290	10	64	15	0.26	0	366	32	3	2	0.64
5	Malegaon (7-8m)	Basalt	8	519	140	235	42	32	5	0.31	0	171	46	21	42	0.46
6	Malegaon (127.30-129.95m)	Basalt	8.1	445	140	205	38	27	4	0.29	0	171	35	9	44	0.36
22	Malegaon (PT)	Basalt	7.9	795	155	350	52	53	10	0.17	0	189	124	64	17	0.28
28	Kohli (PT)	Basalt	8.1	852	55	375	16	81	16	0.23	0	67	106	189	44	1.4
13	Dahegaon (14.3-16.95m)	Basalt	8.3	540	110	235	30	39	8	0.41	9	134	67	33	28	0.68
9	Khapri (48.2-50.85m)	Basalt	8.5	492	185	225	12	47	9	0.33	12	226	25	7	21	1.31
10	Khapri (67.8-70.8m)	Basalt	8.4	512	190	240	30	40	7	0.22	12	232	28	13	17	0.94
11	Mohgaon (42.55-48.70m)	Sandstone	8.4	563	170	275	50	36	3	0.34	9	207	57	26	21	0.36
12	Mohgaon (79.10-87.75m)	Sandstone	7.9	693	290	335	44	55	2	0.13	0	354	39	5	10	0.73
14	Dhapewada (Zone-I)	Sandstone	8	1093	60	505	48	94	14	1.07	0	73	124	340	6	1.35
15	Dhapewada (Zone-II)	Sandstone	8.4	815	235	390	28	78	8	0.23	15	287	57	49	26	0.46
16	Dhapewada (Comp.Dvlpmt)	Sandstone	8.6	695	120	300	26	57	9	0.34	6	146	78	89	17	0.44
17	Dhapewada	Sandstone	8.1	747	205	330	58	45	6	0.25	0	250	78	41	32	0.53

Well No	Village	Aquifer-I	рН	EC	TA	TH	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F
NO		(Lithology)														
	(Drilling)															
18	Dhapewada	Sandstone	8.2	859	205	330	22	67	9	0.19	0	250	64	72	24	0.44
19	Gowri (Zone-l)	Sandstone	8.3	470	95	210	26	35	5	0.67	9	116	85	13	1	0.36
20	Gowri (Zone-II)	Sandstone	8.1	528	120	250	30	43	5	0.65	0	146	85	16	29	0.31
21	Gowri (Comp.Dvlpmt)	Sandstone	8.1	648	100	270	56	32	5	0.51	0	122	92	44	47	0.43
24	Khairi lakhmaji (Zone-I)	Sandstone	7.2	2211	110	960	246	84	10	17.94	0	134	557	187	31	0.9
25	Khairi lakhmaji (Drilling)	Sandstone	8.2	1479	85	645	64	118	8	6.71	0	104	241	276	43	0.43
27	Khairi lakhmaji (PT)	Sandstone	7.9	1233	140	535	58	95	9	0.74	0	171	216	132	41	0.33
7	Raulgaon (127.3-129.95m)	Sandstone	8	1503	60	690	44	141	26	0.28	0	73	351	239	18	1.25
8	Raulgaon (135.6-138.6m)	Sandstone	8.3	920	150	430	12	97	20	0.29	6	183	181	72	46	1.46
26	Raulgaon (PT)	Sandstone	8.2	904	120	395	22	83	17	0.23	0	146	110	139	46	1.23
29	Khairi (L)-development	Sandstone	7.8	728	160	160	56	51	5	0.25	0	195	92	69.2	2.6	0.57
30	Kohli Zone-1	Sandstone	7.7	917	175	175	84	55.9	5.2	0.12	0	214	92	116.2	37.2	0.18
31	Kohli Zone-2	Sandstone	8.3	886	150	150	38	80.2	7.3	0.16	0	183	113	73.5	34.7	0.16
32	Kohli Development	Sandstone	7.9	1436	250	250	60	130	7.8	0.22	0	305	227	110.8	36.6	0.27
33	Waroda Zone 1	Sandstone	8	1421	250	250	60	120.3	9.8	0.23	0	305	202	100.2	39.1	0.41
34	Waroda Zone 2	Sandstone	8.1	1430	195	195	74	122.7	9.5	0.23	0	238	149	226.3	39.1	0.99
35	Waroda Development	Sandstone	8.1	519	110	110	40	36.5	2.5	0.04	0	134	43	51.9	32.6	0.12
	Aquifer-I	Min	7.90	445.00	55.00	205.00	8.02	26.73	3.73	0.07	0.00	67.10	24.82	3.30	1.60	0.28
	Basalt	Max	8.50	857.00	300.00	400.00	52.10	81.42	16.27	0.41	12.00	366.00	159.53	189.00	65.00	1.40

Well	Village	Aquifer-I	рΗ	EC	ТА	тн	Ca	Mg	Na	К	CO3	НСОЗ	Cl	SO4	NO3	F
No																
		(Lithology)														
		Avg	8.15	786.08	156.40	350.00	44.01	58.38	8.34	1.31	3.00	190.81	101.53	75.40	25.97	0.66
		Min	7.20	470.00	60.00	110.00	12.02	31.60	2.39	0.04	0.00	73.20	39.00	4.50	0.75	0.12
	Aquifer-I Sandstone	Max	8.60	2211.00	290.00	960.00	246.49	140.96	26.07	17.94	15.00	353.80	556.57	340.00	47.00	1.46
	Sanastone	Avg	8.08	986.87	154.57	353.91	54.25	76.29	8.86	1.38	1.96	188.58	144.88	108.13	28.67	0.60

All values in mg/l except pH and EC

Well no.	Village/Location	Aquifer-I	%Na	SAR	SSP	RSC	KR	MR	CR
1	Phetri	Basalt	38.58	2.72	50.85	1.59	1.03	47.77	1.28
2	Khairgaon	Basalt	24.76	1.50	24.95	-6.68	0.33	38.73	4.53
3	Kalambi	Basalt	23.32	1.41	23.49	-4.48	0.31	54.19	4.16
4	Selu	Basalt	25.49	1.75	25.72	-4.81	0.35	46.91	4.52
5	Kalmeshwer	Basalt	21.66	1.35	21.73	-7.35	0.28	61.68	9.62
15	Warode	Basalt	27.48	1.62	27.54	-2.96	0.38	70.12	2.65
16	Brahmni	Basalt	35.69	1.87	36.23	0.48	0.57	48.47	1.08
17	Sawli	Basalt	19.24	1.16	19.31	-1.73	0.24	70.37	2.11
18	Ketapar	Basalt	31.22	1.51	31.43	-2.39	0.46	38.05	1.79
19	Sahuli	Basalt	41.88	2.98	46.04	0.69	0.85	25.58	2.01
20	Gumthala	Basalt	47.22	3.34	49.43	0.17	0.98	53.67	2.96
21	Sawangi	Basalt	39.19	3.23	44.16	-4.75	0.79	88.63	7.20
22	Uparwahi	Basalt	37.57	3.17	45.96	-0.56	0.85	73.39	4.26
23	Nimboli	Basalt	41.23	2.49	41.43	-1.24	0.71	74.23	2.73
24	Linga	Basalt	28.87	1.95	35.25	-3.83	0.54	77.30	3.76
26	Khapri	Basalt	9.43	0.40	9.46	-3.82	0.10	62.62	1.61
27	Ghogali	Basalt	22.65	1.44	22.68	-1.36	0.29	75.42	3.08
28	Brahmni (IW)	Basalt	32.50	2.06	32.81	-4.66	0.49	73.04	6.60
29	Ghorad	Basalt	34.24	2.55	40.48	1.04	0.68	57.34	3.12
30	Ubali	Basalt	24.94	1.87	25.19	-13.69	0.34	79.82	9.37
31	Wadhone Buzrug	Basalt	54.86	5.30	72.76	0.44	2.67	54.31	4.15
32	Sawali Khurd	Basalt	23.73	1.11	23.81	-4.35	0.31	69.66	2.55
33	Wathoda	Basalt	25.30	1.86	29.52	-6.06	0.42	30.04	6.92
34	Sawangi	Basalt	55.80	3.58	55.96	1.78	1.27	62.21	1.11
35	Susundri	Basalt	49.24	3.09	49.50	-2.49	0.98	77.86	4.11
36	Khairi	Basalt	26.22	1.42	26.28	-4.96	0.36	39.45	4.90
37	Pardi	Basalt	22.08	1.16	22.14	-3.29	0.28	72.75	3.03
38	Ramgiri	Basalt	24.93	1.02	24.93	-1.04	0.33	62.87	0.50
39	Dorli	Basalt	22.22	1.36	24.35	-5.24	0.32	46.16	3.81
40	Ubgi	Basalt	20.36	1.49	21.75	-10.63	0.28	61.78	7.90

Annexure-XIII: %Na, SAR, SSP, RSC, KR, MR and CR in groundwater samples from Aquifer-I Basalt and Sandstone (dugwells)

Well no.	Village/Location	Aquifer-I	%Na	SAR	SSP	RSC	KR	MR	CR
41	Kohali	Basalt	24.41	1.15	24.48	-3.66	0.32	80.96	2.51
42	Kolwali Bardi	Basalt	26.27	1.55	26.33	-6.40	0.36	41.29	3.24
43	Raulgaon	Basalt	32.70	1.91	33.16	-3.61	0.50	53.02	3.38
44	Chargaon	Basalt	21.37	0.90	21.45	-1.17	0.27	80.60	0.93
45	Sonkhamb	Basalt	26.47	1.08	26.47	-0.94	0.36	55.25	0.52
46	Metpanjra	Basalt	22.14	1.38	22.25	-8.18	0.29	50.62	7.20
47	Malegaon	Basalt	29.32	1.56	34.50	0.74	0.53	45.15	1.41
48	Vasboli	Basalt	22.00	1.17	23.44	-2.61	0.31	61.35	1.11
49	Pohi	Basalt	37.88	1.52	38.08	-1.13	0.62	70.39	0.80
50	Yerla	Basalt	26.77	1.29	26.94	-2.53	0.37	65.76	1.65
51	Chicholi	Basalt	24.58	1.65	29.07	-3.42	0.41	54.11	2.31
52	Kalmeshwer	Basalt	37.20	2.23	37.29	-1.75	0.59	71.51	1.47
53	Sawangi(IW)	Basalt	20.78	0.99	20.84	-2.14	0.26	71.84	1.03
55	Kalmeshwer (Or. Farm)	Basalt	41.65	2.56	49.37	0.93	0.97	76.70	0.67
56	Waroda	Basalt	33.21	2.97	36.37	-6.51	0.57	74.15	8.76
57	Lakholi	Basalt	25.70	1.77	27.62	-5.43	0.38	77.60	5.74
58	Kalmeshwer (Rly Gate)	Basalt	25.73	1.85	25.91	-10.73	0.35	60.87	8.09
6	Dahegaon	Sandstone	22.57	1.01	22.64	-0.97	0.29	55.40	1.16
7	Ashti	Sandstone	30.53	2.33	36.64	-3.09	0.58	47.65	8.71
8	Pardi	Sandstone	38.20	2.81	40.06	-4.40	0.67	47.44	8.92
9	Gowari	Sandstone	37.34	2.23	40.69	-0.29	0.69	34.42	3.29
10	Tondakhairi	Sandstone	32.14	1.63	33.73	-0.09	0.51	65.85	1.60
11	Borgaon(Kh)	Sandstone	11.95	0.65	12.09	-6.08	0.14	64.74	7.59
12	Silori	Sandstone	23.50	1.91	28.59	-5.01	0.40	69.30	5.76
13	Dhapewada	Sandstone	33.04	1.98	33.11	-1.99	0.49	73.10	3.48
14	Bhadangi	Sandstone	35.30	2.55	37.06	1.42	0.59	60.55	3.50
54	Kalmeshwer (IW)	Sandstone	40.11	3.81	40.34	-12.85	0.68	59.08	22.04

-2.20

-0.40

-0.60

-1.81

-0.91

-8.91

-2.60

-3.40

-2.51

-2.50

-2.00

-2.60

-3.41

0.07

0.09

0.06

0.03

0.02

0.06

0.05

0.06

0.04

0.06

0.05

0.05

0.04

68.05

86.65

68.71

54.50

67.12

76.20

82.02

78.30

56.02

83.31

69.01

69.96

48.10

1.91

0.71

0.81

1.62

1.10

3.58

1.65

2.25

2.23

1.86

2.40

2.40

2.61

(Ground water explortation) Aquifer-II CR Well no. Village/Location %Na SAR SSP RSC KR MR 1 Sonkhamb Basalt 8.01 0.35 8.02 -5.80 0.09 83.73 4.56 (22.60-23m) 2 Sonkhamb Basalt 10.20 0.38 10.22 0.10 0.11 92.97 0.71 (76.45-79.10m) 23 Sonkhmab (PT) Basalt 3.14 0.10 3.14 -1.00 0.03 69.96 0.81 3 Ramgiri (7-8m) 4.06 0.15 4.06 -4.41 0.04 63.03 2.54 Basalt 4 Ramgiri Basalt 9.96 0.38 9.97 0.20 0.11 91.36 0.90 (final discharge) Malegaon (7-8m) 55.27 5 Basalt 3.99 0.13 4.00 -1.90 0.04 1.31 6 Malegaon Basalt 4.50 0.14 4.51 -1.30 0.05 53.61 1.00 (127.30-129.95m) Malegaon (PT) 22 Basalt 5.75 0.23 5.75 -3.91 0.06 62.81 3.54 Kohli (PT) 3.04 28 Basalt 8.61 0.37 8.62 -6.40 0.09 89.32

0.22

0.27

0.19

0.09

0.06

0.27

0.18

0.22

0.13

0.21

0.16

0.14

0.13

6.81

8.16

5.87

2.66

1.53

5.65

4.42

5.98

3.56

5.38

5.11

4.32

3.81

6.79

8.15

5.86

2.66

1.53

5.64

4.42

5.97

3.56

5.37

5.09

4.31

3.80

Basalt

Basalt

Basalt

Sandstone

13

9

10

11

12

14

15

16

17

18

19

20

21

Dahegaon

Mohgaon

Mohgaon

(14.3-16.95m)

(42.55-48.70m)

79.10-87.75m) Dhapewada (Zone-I)

Dhapewada

Dhapewada

Gowri(Zone-I)

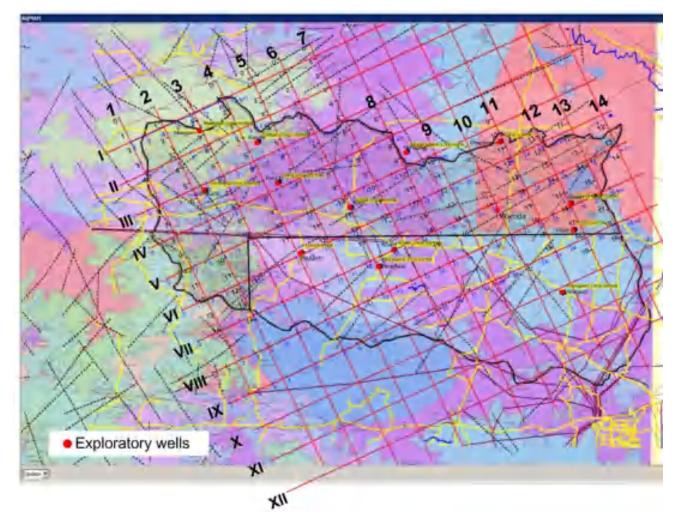
Gowri(Zone-II)

(Comp.Dvlpmt)

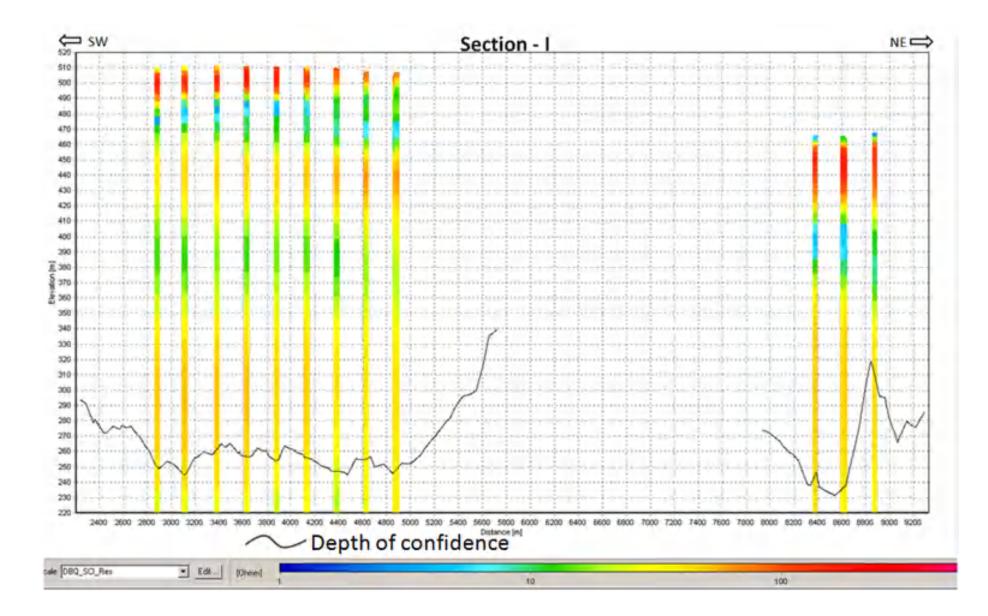
Khapri (48.2-50.85m)

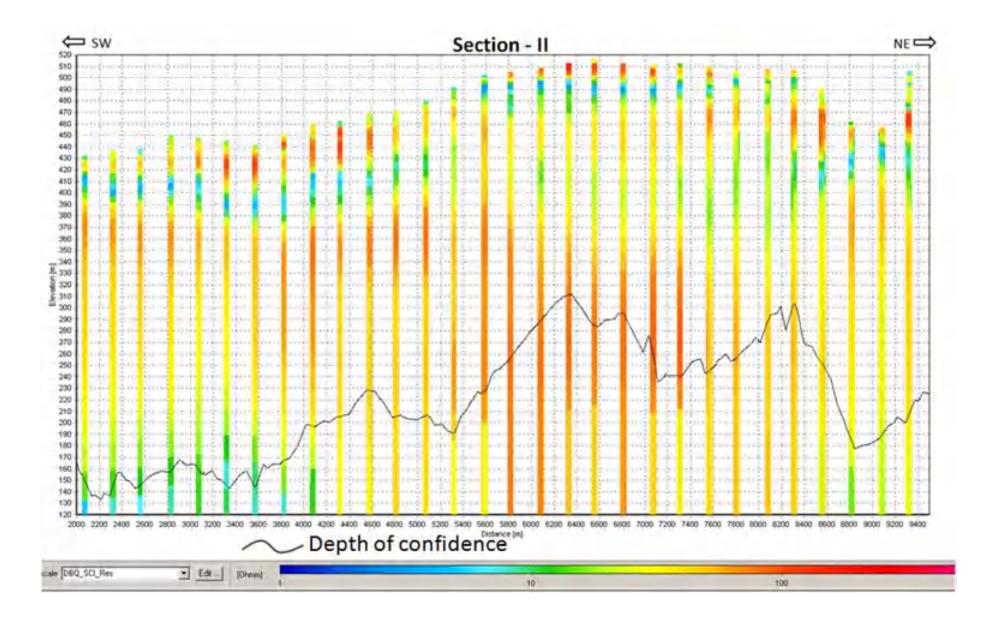
Khapri (67.8-70.8m)

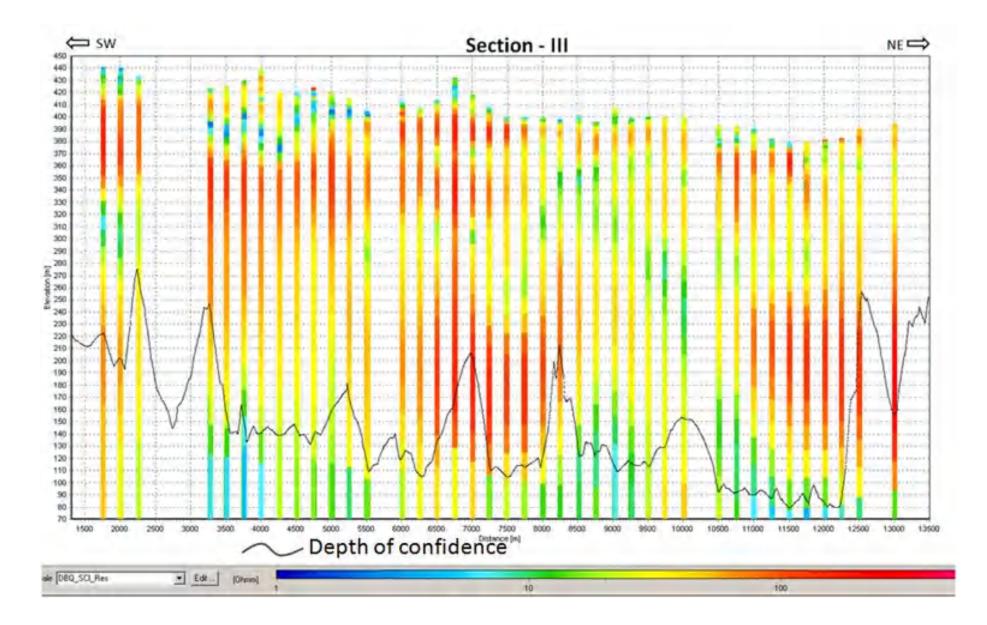
Dhapewada (Zone-II)

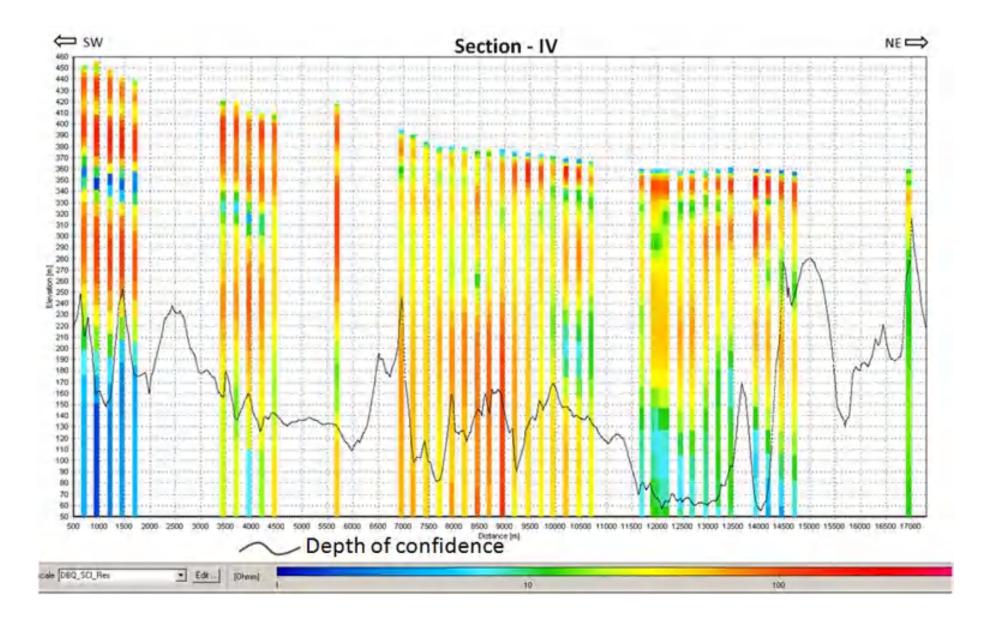

Dhapewada (Drilling)

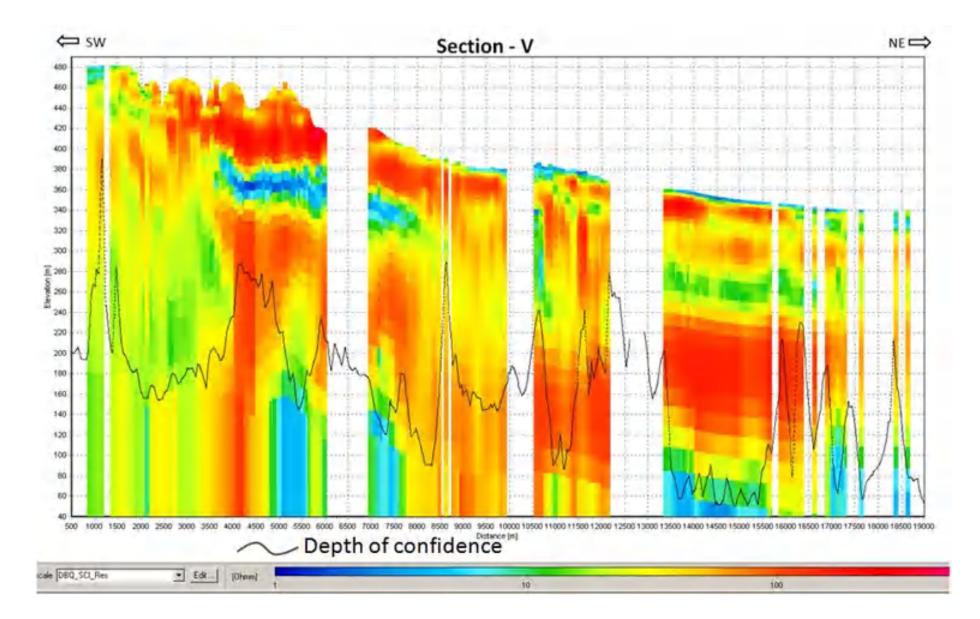
Gowri(Comp.Dvlpmt)

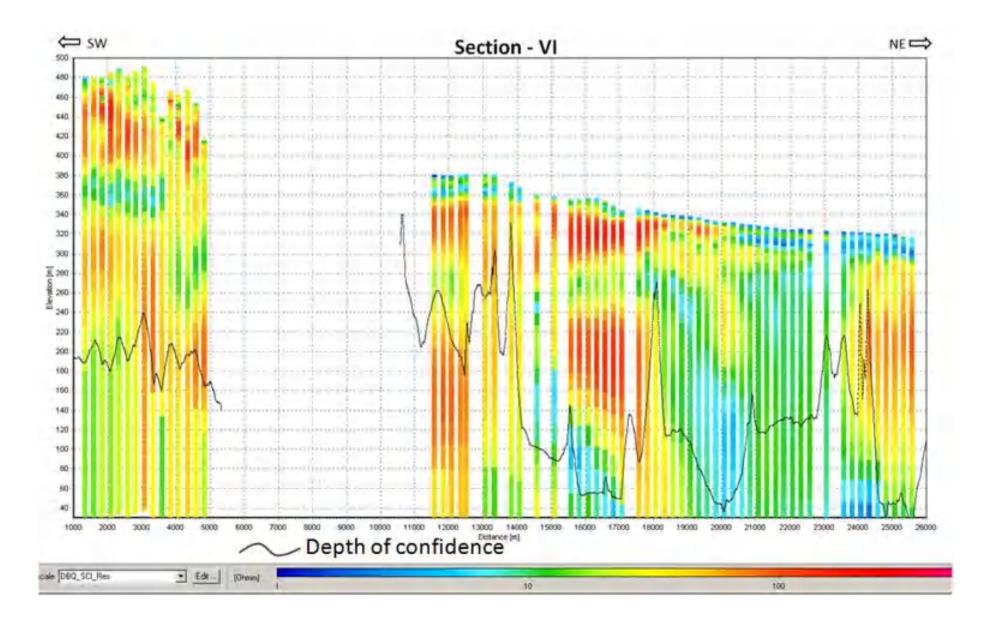

Annexure-XIV: %Na, SAR, SSP, RSC, KR, MR and CR in groundwater samples from Aquifer-II Basalt and Sandstone (Ground water explortation)

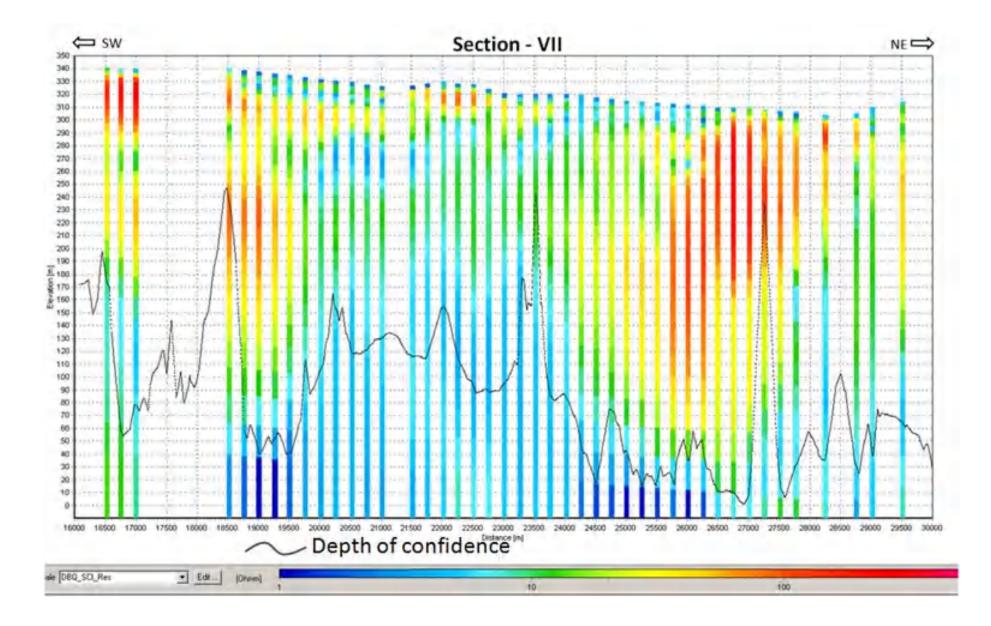

केंद्रीय	भूमि	जल	बोर्ड,	मध्य	क्षेत्र	,	नागपुर	
----------	------	----	--------	------	---------	---	--------	--

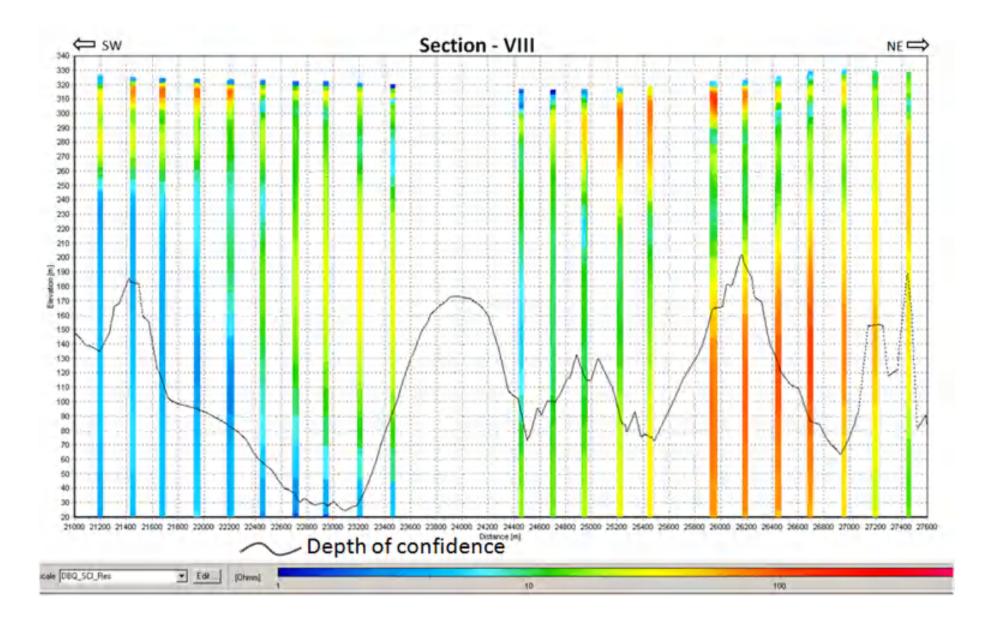

Well no.	Village/Location	Aquifer-II	%Na	SAR	SSP	RSC	KR	MR	CR
24	Khairi lakhmaji (Zone-I)	Sandstone	2.09	0.14	2.14	-17.03	0.02	35.90	15.76
25	Khairi lakhmaji	Sandstone	2.63	0.14	2.66	-11.21	0.03	75.16	6.89
	(Drilling)								
27	Khairi lakhmaji (PT)	Sandstone	3.65	0.18	3.65	-7.91	0.04	72.86	6.17
7	Raulgaon (127.3-	Sandstone	7.58	0.43	7.59	-12.61	0.08	84.03	9.95
	129.95m)								
8	Raulgaon (135.6-	Sandstone	9.23	0.42	9.24	-5.40	0.10	93.01	5.14
	138.6m)								
26	Raulgaon (PT)	Sandstone	8.55	0.37	8.56	-5.50	0.09	86.05	3.17
29	Khairi (L)-development	Sandstone	3.01	0.12	3.01	-3.80	0.03	59.99	2.64
30	Kohli-Zone-1	Sandstone	2.50	0.11	2.50	-5.29	0.03	52.28	2.68
31	Kohli-Zone-2	Sandstone	3.60	0.15	3.60	-5.50	0.04	77.65	3.23
32	Kohli-Development	Sandstone	2.41	0.13	2.42	-8.70	0.02	78.10	6.51
33	Waroda-Zone 1	Sandstone	3.20	0.17	3.20	-7.90	0.03	76.75	5.79
34	Waroda-Zone 2	Sandstone	2.91	0.16	2.91	-9.90	0.03	73.19	4.38
35	Waroda-Development	Sandstone	2.13	0.07	2.13	-2.81	0.02	60.03	1.24

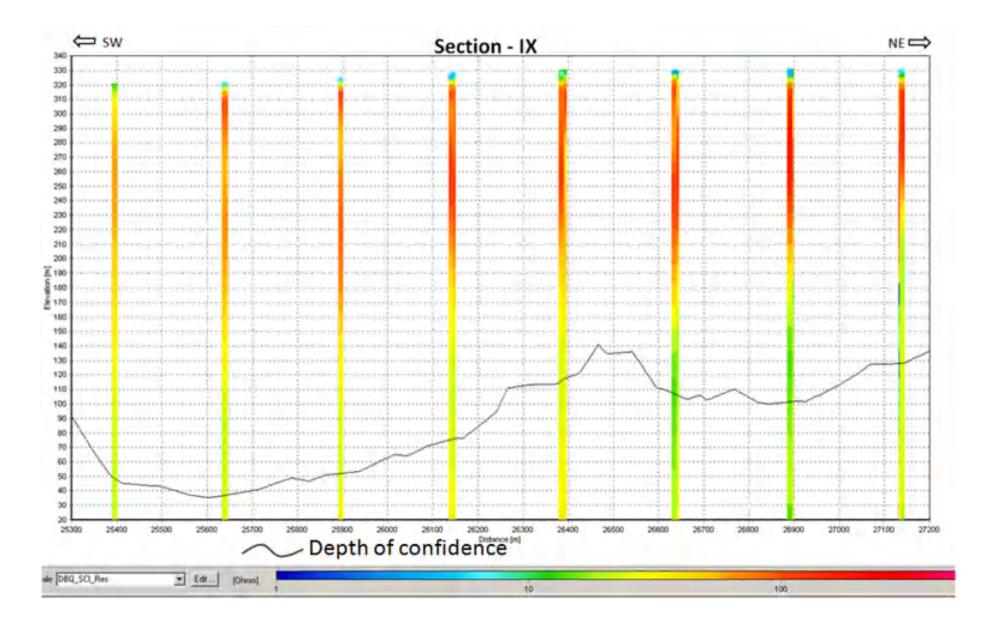


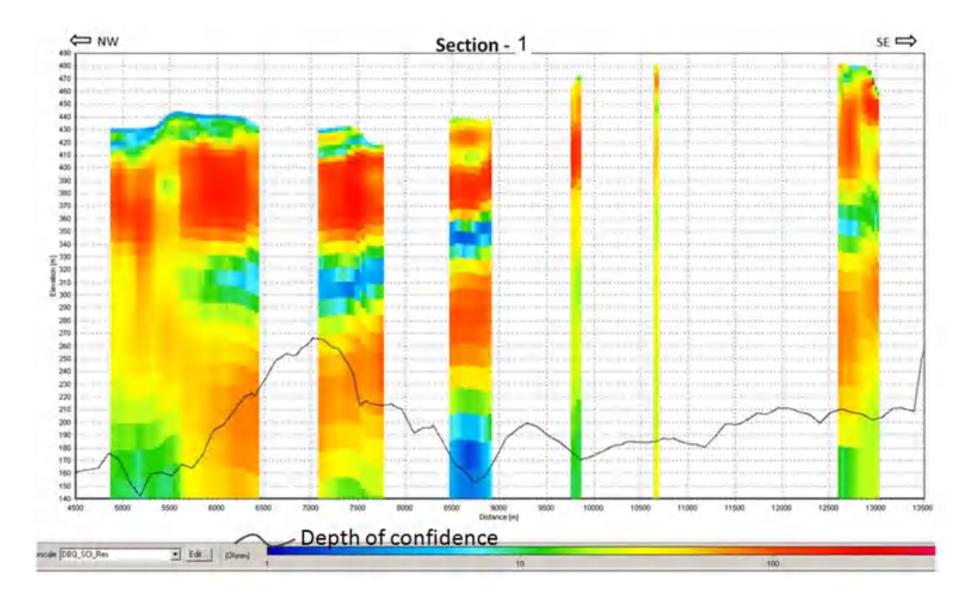

ANNEXURE-XV: HeliTEM SCI section in grid fashion (NGRI, 2015b)

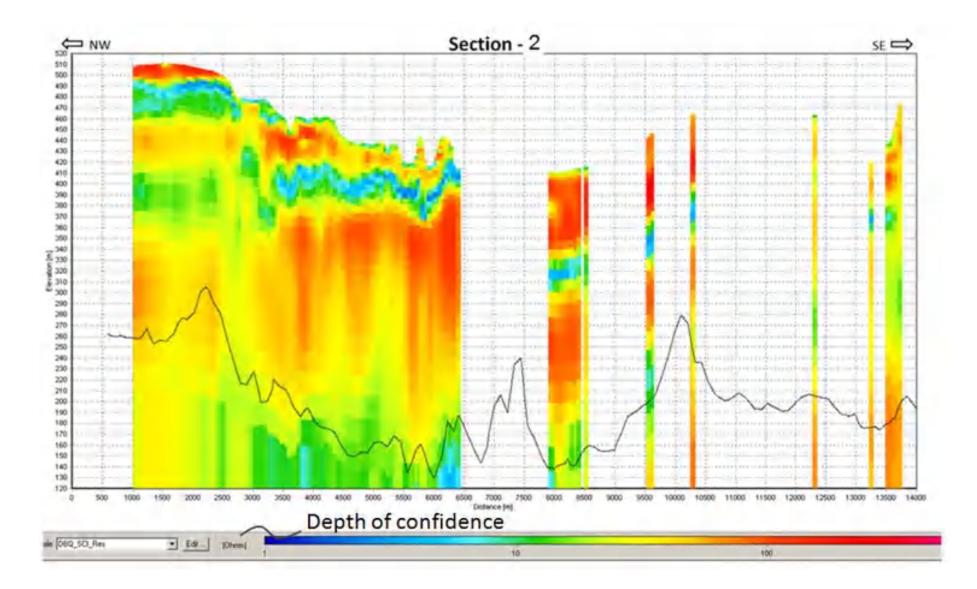


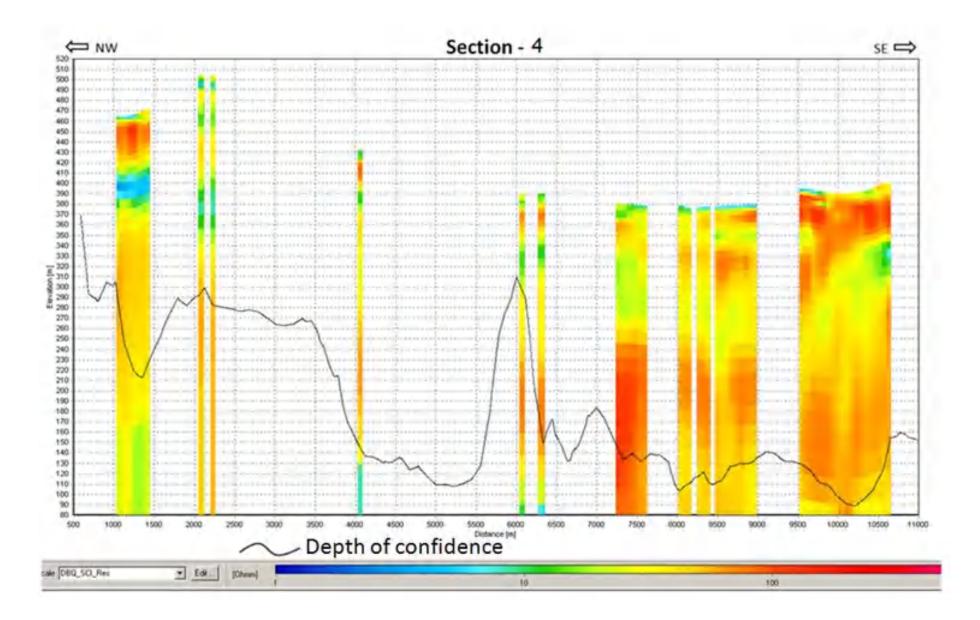


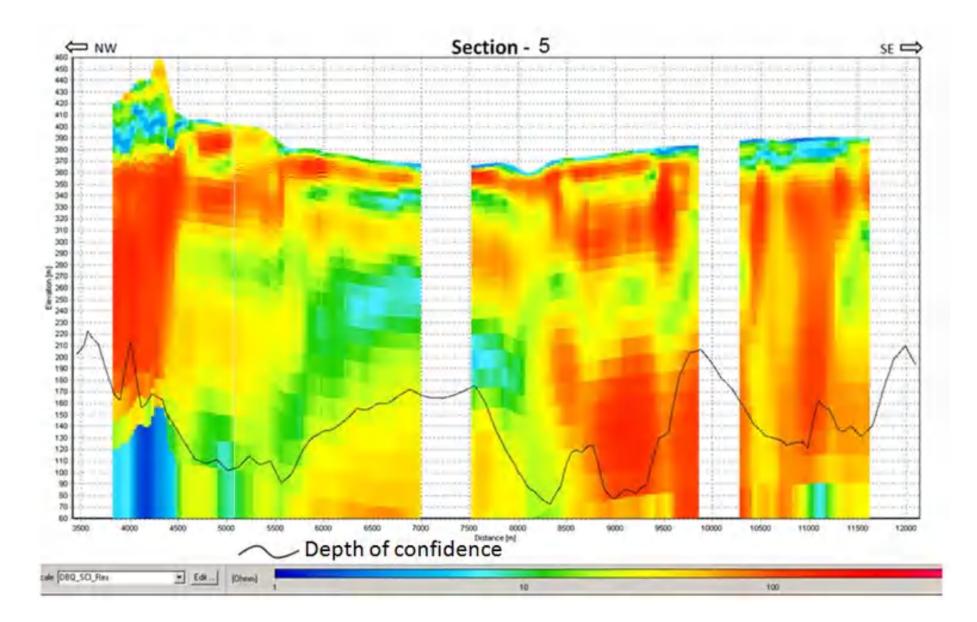


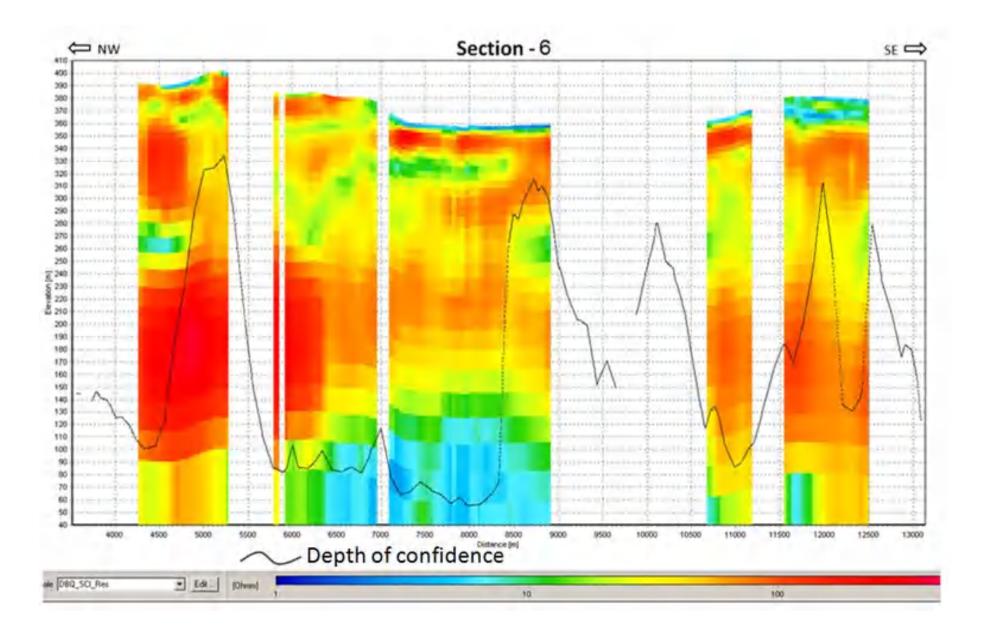


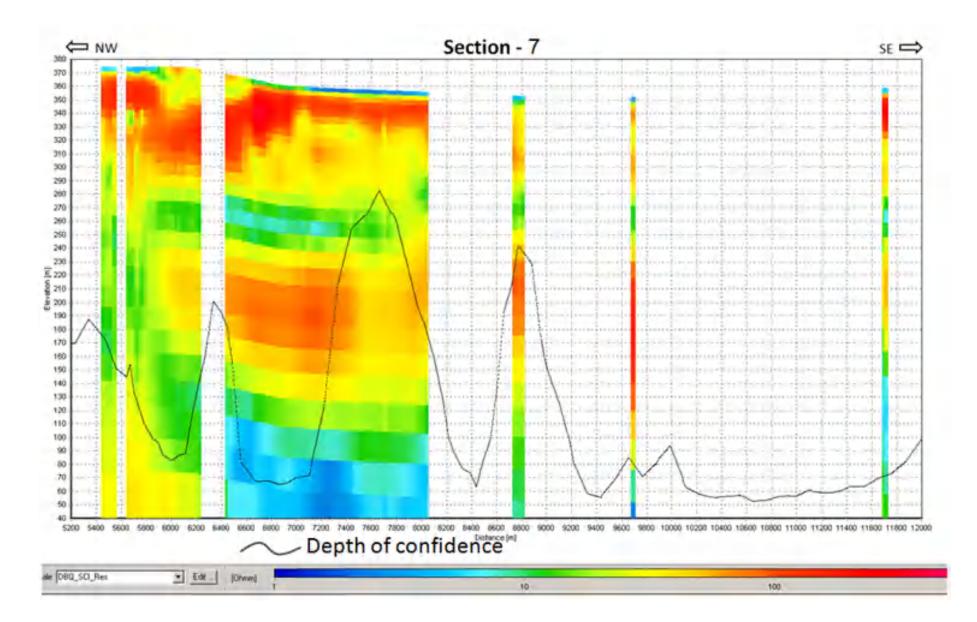


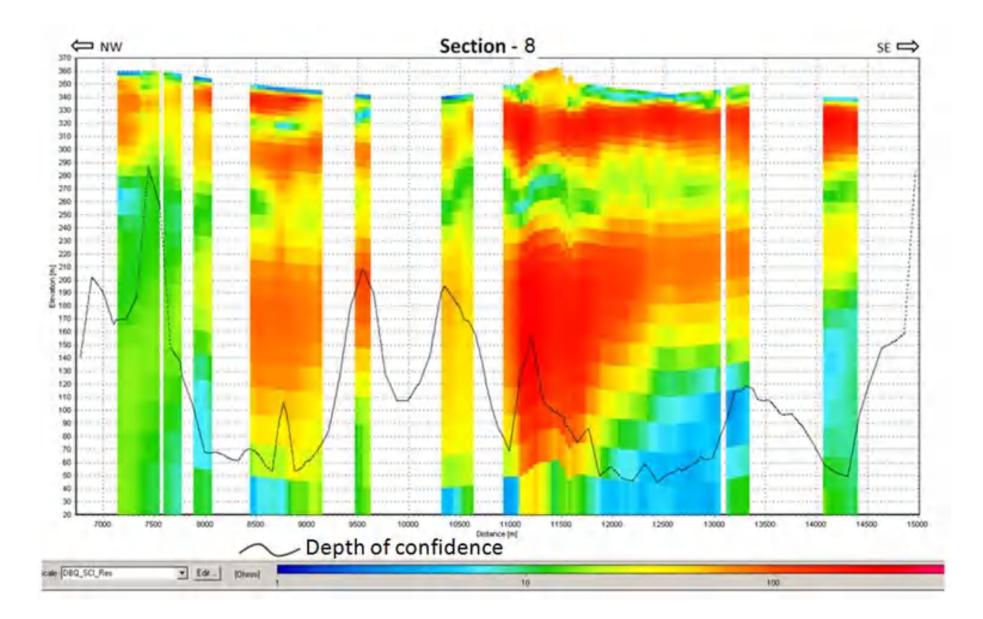


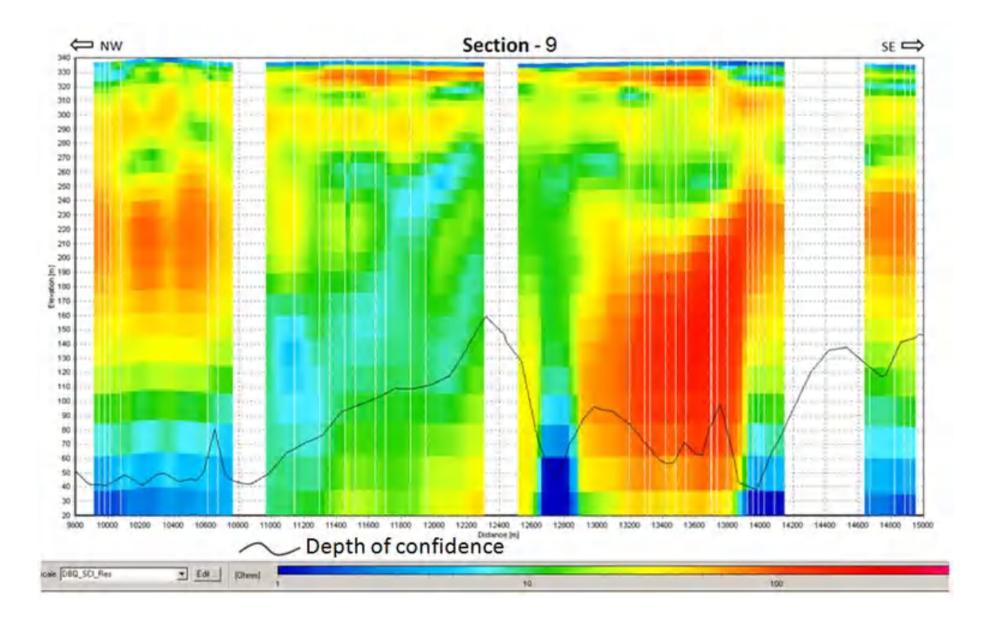


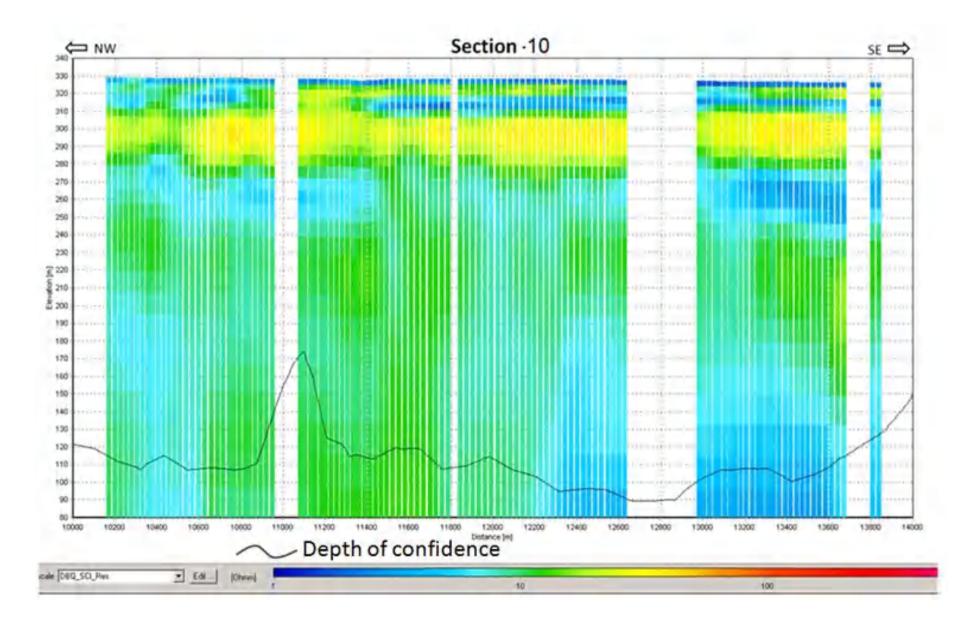


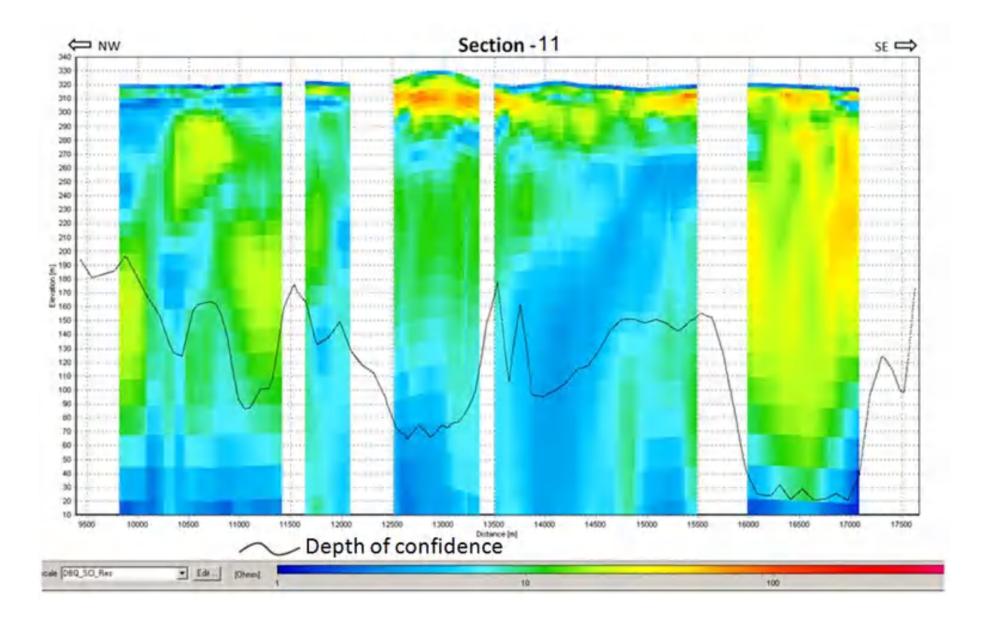


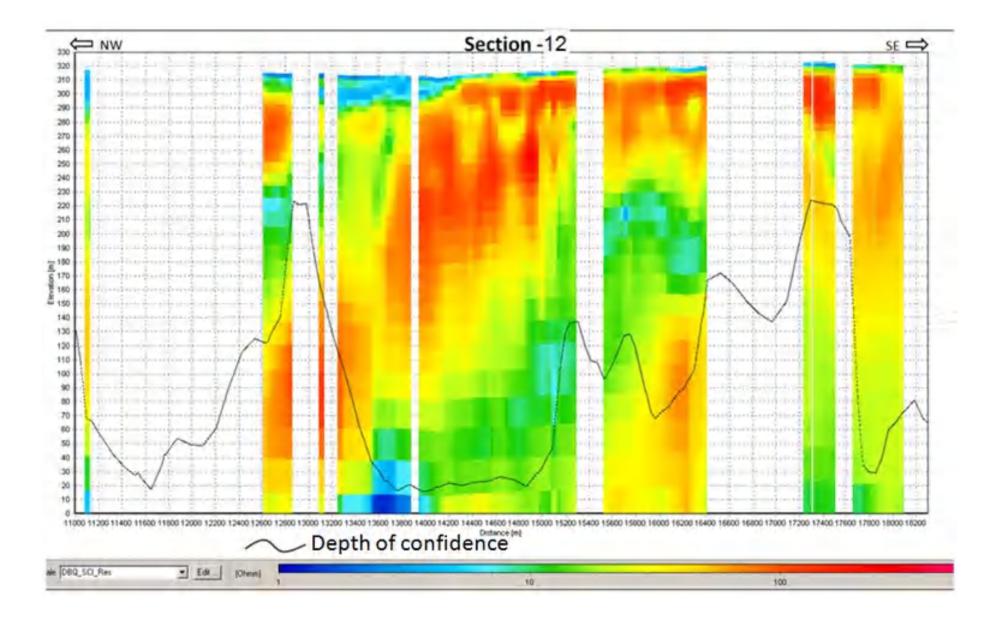


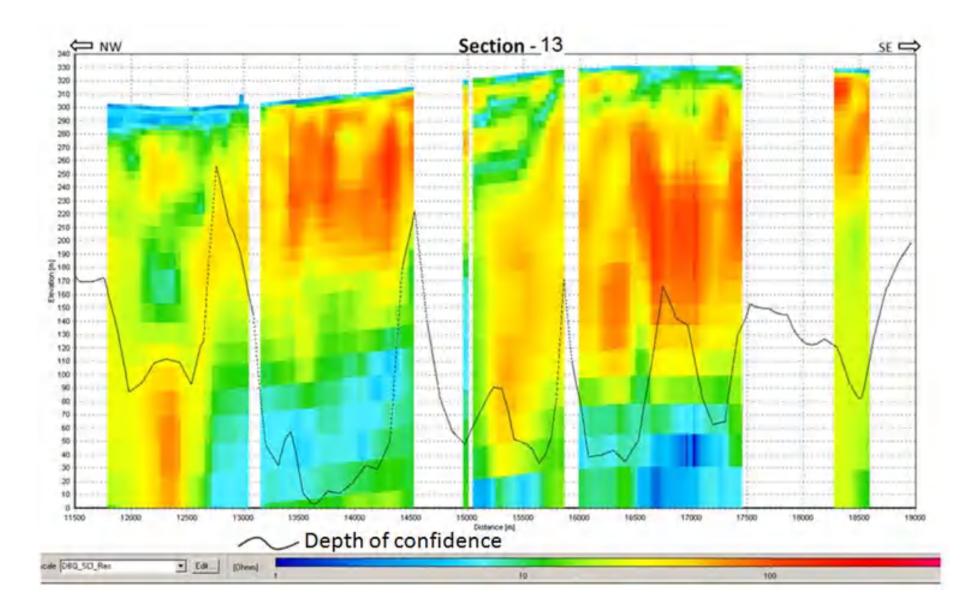


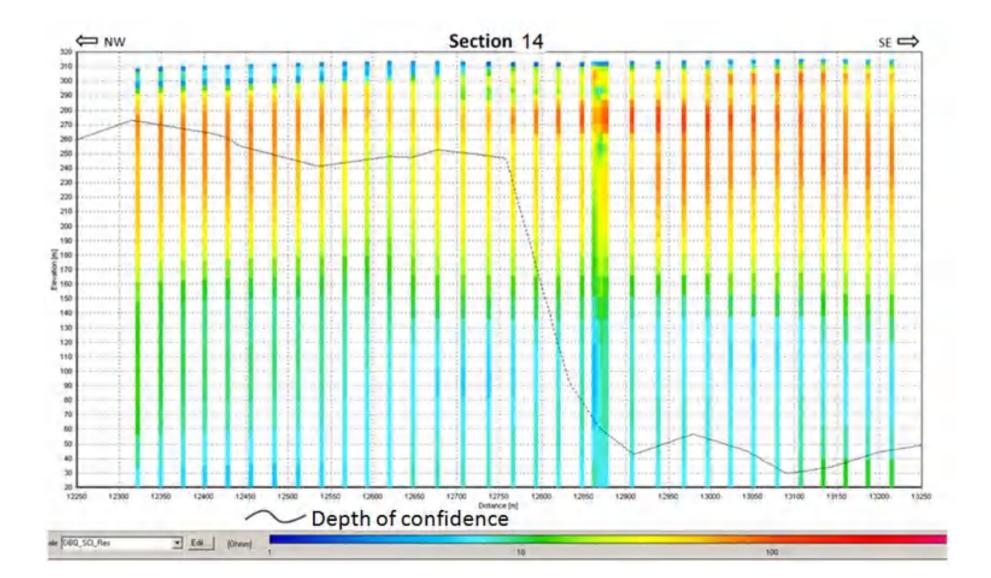


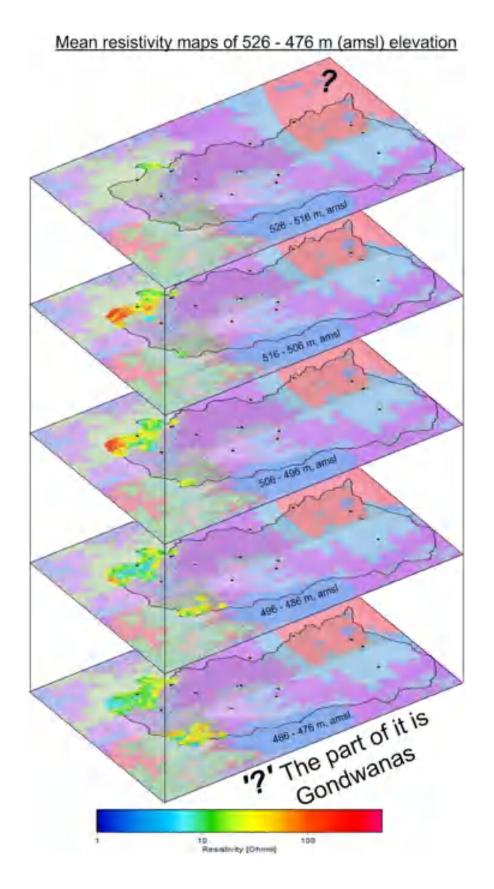


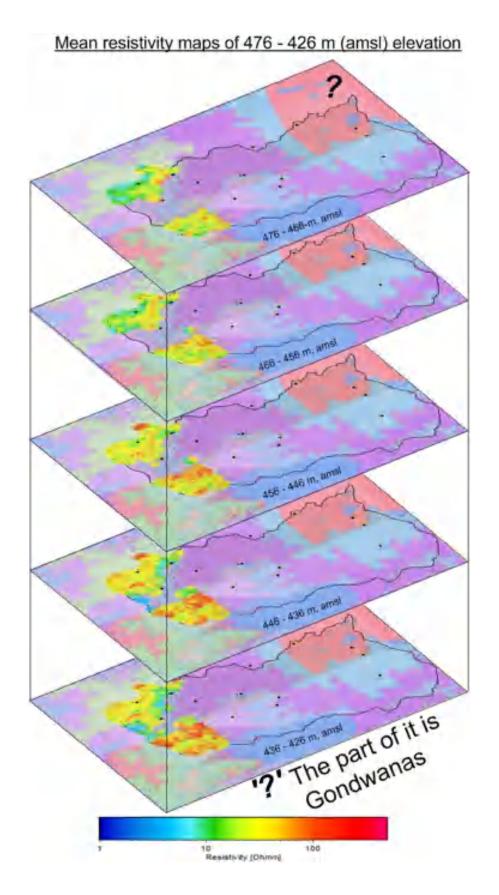


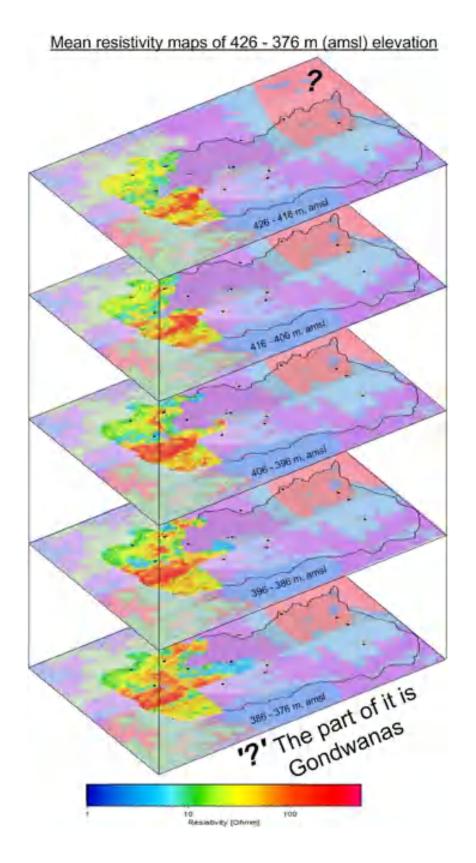


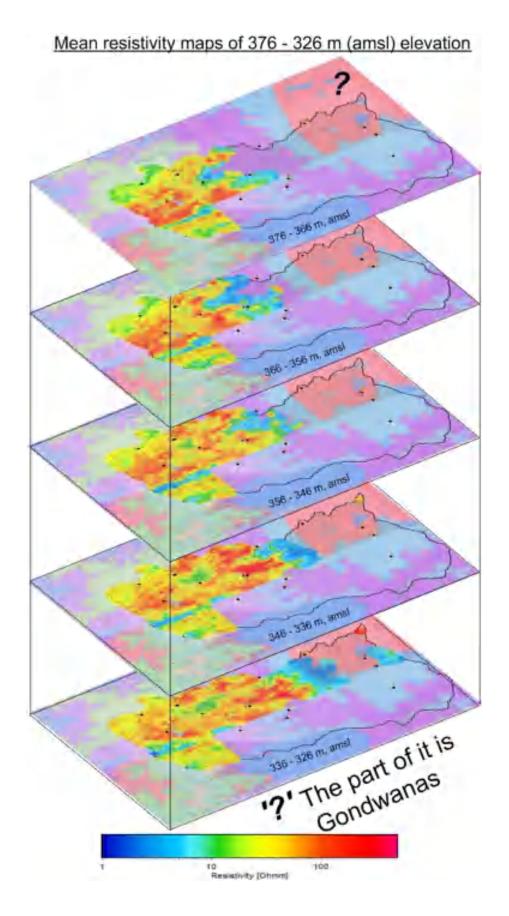


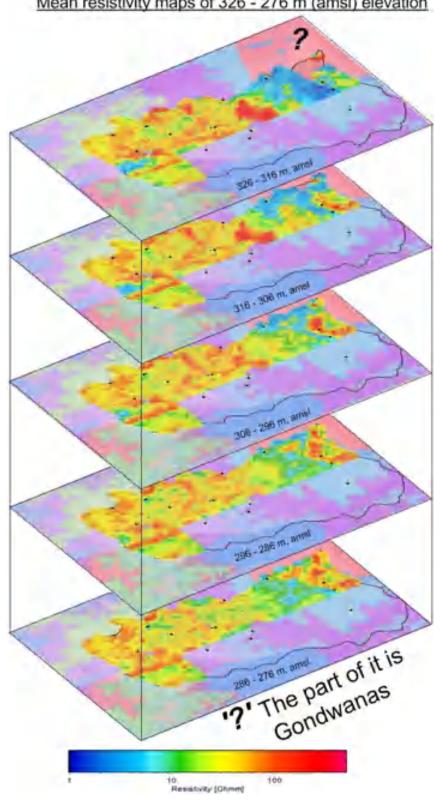


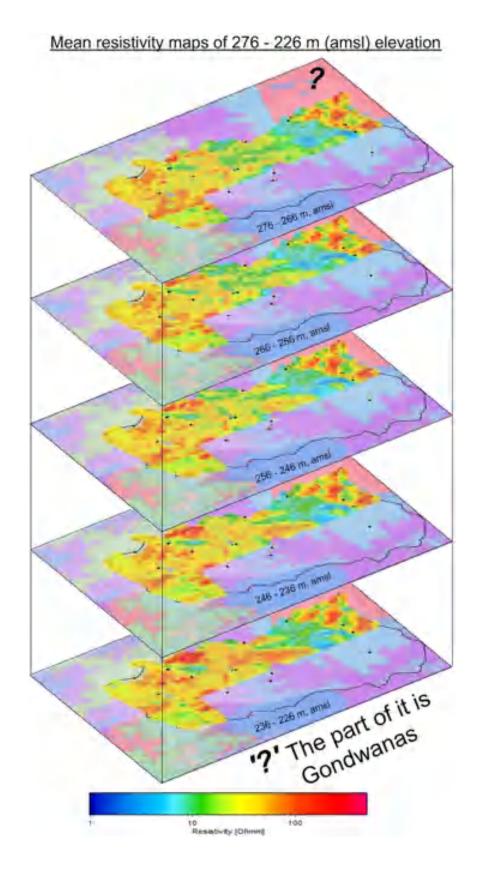

ANNEXURE-XVI: Mean Resistivity maps, Chandrabhaga Watershed (NGRI, 2015b)

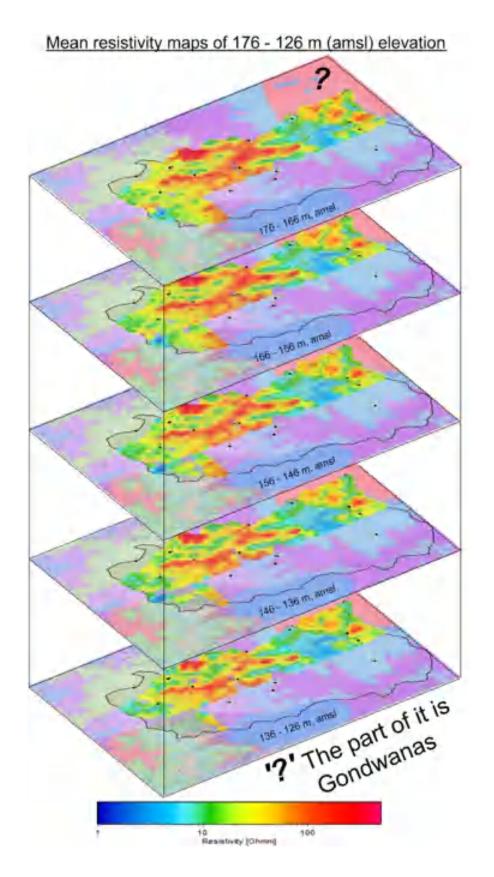

This appendix shows mean resistivity maps generated from the smooth model inversion result. The inversion result consists of a large number of 1D-models described by depth intervals (i.e. layers) and resistivities within each model. These are then normally used to calculate mean resistivities to obtain a visualization of the resistivity distribution in the mapping area.

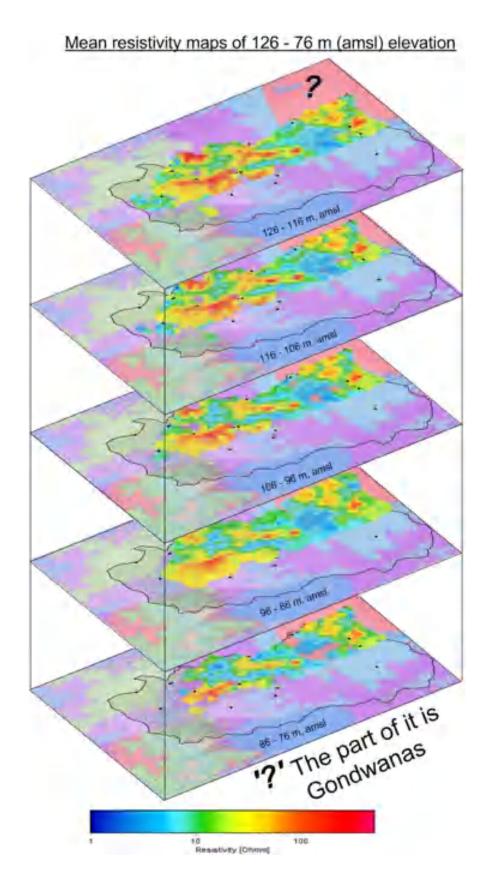

The mean resistivity maps have been generated with 10 m elevation intervals from 526 m top to 6 m down above mean sea level. Thus a total of 42 mean resistivity maps have been generated with 10 m interval and arranged one below another in descending order. Models below the DOC lower have been blinded. The gridding is done using the Kriging method, with a node spacing of 30 m and a search radius of 200 m. The nodes have further been subdivided by a factor of 3 to obtain the interpolated resistivity pixels for the bitmaps that make up the maps.

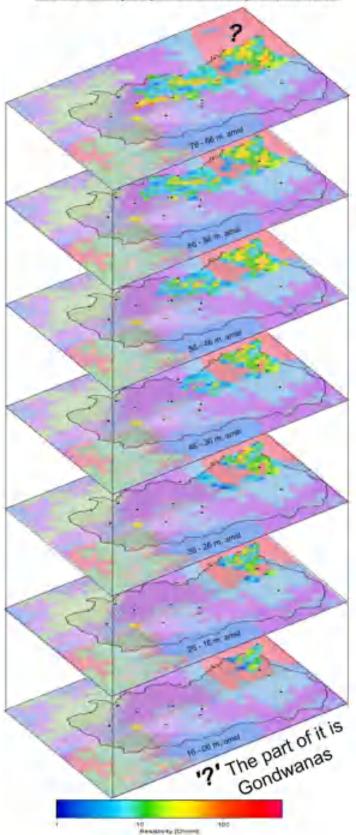

The interpretation of mean resistivity maps denotes that the flow no. 27 and 26 in the western part extends up to 50 m depth which covered in mean resistivity maps of 476-526 m, amsl. Similarly, the subsequent flows are also identified with each flow thickness range 20-40 m. The depth wise mean resistivity maps also follow the step like topography on regional scale sloping towards north-east. Moreover, the exposed Gondwanas in the north-east of study area is clearly demarcated from its lateral basalt contact with the relative low resistivity obtained on the mean resistivity maps of 306-326 m, amsl. This elevation is also well correlates with the topographic elevation of surface Gondwanas in the N-E part.


The regional fault which is abutting in the SW part with its orientation SE-NW is successfully delineated in the mean resistivity maps of below 486 m, amsl. The relative high resistivity anomaly trending in NW-SE direction in the central part has been observed at the depth of 216-116 m, amsl which is also matching with the maps of gravity and magnetic anomalies has to be resolved. The depth wise spatial variations acquired in the mean resistivity maps have been imperative in view of mapping aquifer zones which corresponds the relative low resistivity.








Mean resistivity maps of 326 - 276 m (amsl) elevation

Mean resistivity maps of 76 - 06 m (amsl) elevation

ANNEXURE-XVII: Georeferenced elevation of the principal hydrogeological layers at each node of the grids of the AQMAH study area (NGRI, 2015b)

SI.	Coordinates	(UTM)	Grid Info	Possible	Gondwana	Aquifer	Remarks
No	V	X	& RL	formation	depth	Thickness	
	х	Y	(m, AMSL)	thickness (m, AMSL)	(m, AMSL)	(m, AMSL)	
1	261350	2357786	1, 2	V & M Basalt	Below 311	Aq1 = 382-371	Aquifer in F.A.B
1	201350	2337780	RL= 511	= 511-311	Delow 511	Adi - 205-211	Aquiter III 1.A.D
				011 011			
2	265230	2359367	I, 4	V & M basalt	Below 266	Aq1 =378-369	Aquifer in F.A.B
			RL= 466	= 466-266			
3	260189	2355108	II, 1	V & M basalt	181	Aq1 = 389-383	Aquifer in F.A.B
			RL = 432	= 432-181			
4	262254	2355985	II, 2	V & M basalt	182	Aq1 = 380-371	Aquifer in F.A.B
			RL = 459	= 459-182			
5	264179	2356712	II, 3	V & M basalt	132	Aq1 = 386-379	Aquifer in F.A.B
		0057540	RL = 509	= 509-132			
6	266161	2357540	II, 4	V & M basalt	143	Aq1 = 340-323	Aquifer in F.A.B
7	201120	2353281	RL = 506	= 506-143	155	A = 1 420 422	Anuifanin F A D
7	261120	2353281	III, 1 RL = 441	V & M basalt = 441-155	155	Aq1 = 430-422	Aquifer in F.A.B.
8	263157	2354108	III, 2	V & M basalt	203	Aq2 = 360-353 Aq1 = 382-370	Aquifer in F.A.B. Aquifer in F.A.B.
0	203137	2334108	RL = 439	= 439-203	203	Aq2 = 326-315	Aquifer in F.A.B.
9	265084	2354911	III, 3	V & M basalt	156	Aq1 = 350-342	Aquifer in F.A.B.
9	203084	2334311	RL = 412	= 412-156	150	Aq1 - 550-542	Aquiter in F.A.B.
10	267037	2355664	, 4	V & M basalt	207	Aq1 = Non-	Non-aquifer A. B
10	20/03/	2333004	RL = 401	= 401-207	207	aquifer	Non aquiter A. D
11	268964	2356518	III, 5	V & M basalt	138	Aq1 = Non-	Non-aguifer A. B
	200001	2000010	RL = 395	= 395-138	200	aquifer	
12	270890	2357272	III, 6	V & M basalt	126	Aq1 = Non-	Non-aquifer A. B
			RL = 382	= 382-126		aquifer	
13	262051	2351429	IV, 1	V & M basalt	218	Aq1 = 399-396	Aquifer in F.A.B.
			RL = 402	= 402-218		Aq2 = 373-367	Aquifer in F.A.B.
						Aq3 = 331-325	Aquifer in F.A.B.
14	264088	2352281	IV, 2	V & M basalt	149	Aq1 = 374-373	Aquifer in F.A.B.
			RL = 378	= 378-149		Aq2 = 347-337	Aquifer in F.A.B.
						Aq3 = 307-297	Aquifer in F.A.B.
15	265987	2353059	IV, 3	V & M basalt	148	Aq1 = 342-336	Aquifer in F.A.B.
			RL = 368	= 368-148			
16	267969	2353888	IV, 4	V & M basalt	69	Aq1 = 195-194	Aquifer in F.B.
			RL = 344	= 344-69		Aq2 = 181-180	Aquifer in F.B
17	269785	2354618	IV, 5	V & M basalt	174	Aq1 = 224-223	Aquifer in F.B.
			RL = 336	= 336-174		Aq2 = 122-118	Aquifer in TCG
18	271766	2355421	IV, 6	V & M basalt	124	Aq1 = 113-108	Aquifer in TCG
10	272602	2256251	RL = 327	= 327-124	110	A = 1 02.05	
19	273693	2356251	IV, 7 RL = 325	V & M basalt = 325-110	110	Aq1 = 92-85	Aquifer in TCG
20	275591	2357005	IV, 8	V & M basalt	194	Aq1 = 167-148	Aquifer in TCG
20	275591	2337003	RL = 327	= 327-194	194	Aq2 = 128-122	Aquifer in TCG
			NE = 527	- 527-154		Aq2 = 128-122 Aq3 = 115-108	Aquifer in TCG
21	262960	2349590	V, 1	V & M basalt	416	Aq1 = 415-407	Aquifer in TCG
	202300	2373330	RL = 480	= 480-416	710	A41 - 413-407	
22	264985	2350435	V, 2	V & M basalt	333	Aq1 = 333-320	Aquifer in TCG
-			RL = 465	= 465-333		Aq2 = 314-299	Aquifer in TCG
						Aq3 = 289-278	Aquifer in TCG
23	266919	2351240	V, 3	V & M basalt	313	Aq1 = 313-295	Aquifer in TCG
			RL = 417	= 417-313		Aq2 = 289-274	Aquifer in TCG
24	268852	2352024	V, 4	V & M basalt	259	Aq1 = 259-213	Aquifer in TCG
			RL = 394	= 394-259		Aq2 = 202-178	Aquifer in TCG
25	270740	2352810	V, 5	V & M basalt	180	Aq1 = 183-166	Aquifer in TCG
			RL = 382	= 382-180		Aq2 = 158-148	Aquifer in TCG
						Aq2 = 141-133	Aquifer in TCG
26	272650	2353574	V, 6	V & M basalt	206	Aq1 = 205-189	Aquifer in TCG
			RL = 367	= 367-206		Aq2 = 183-174	Aquifer in TCG
						Aq3 = 168-159	Aquifer in TCG
27	274606	2354379	V, 7	V & M basalt +	231	Aq1 = 220-200	Aquifer in TCG

	n	n	-	-	1	-	
			RL = 353	Clay		Aq2 = 181-171	Aquifer in TCG
	070510	2255406		= 353-231	210	Aq3 = 153-139	Aquifer in TCG
28	276516	2355186	V, 8 RL = 341	V & M basalt +	219	Aq1 = 209-186	Aquifer in TCG
			KL = 341	Clay = 341-219		Aq2 = 168-158	Aquifer in TCG
20	262892	2247765	V/L 1	V & M basalt +	220	Aq3 = 150-142	Aquifer in TCG
29	263883	2347765	VI, 1 RL = 480		328	Aq1 = 322-297	Aquifer in TCG
			KL = 480	Clay = 480-328		Aq2 = 279-262	Aquifer in TCG
30	265908	2348569	VI, 2	V & M basalt +	323	Aq1 = 321-292	Aquifer in TCG
	200000	2010000	RL = 473	Clay	010	Aq2 = 236-216	Aquifer in TCG
				= 473-323		Aq3 = 172-158	Aquifer in TCG
31	267843	2349416	VI, 3	V & M basalt +	248	Aq1 = 247-235	Aquifer in TCG
			RL = 419	Clay		Aq2 = 214-197	Aquifer in TCG
				= 419-248		Aq3 = 179-170	Aquifer in TCG
32	269753	2350138	VI, 4	V & M basalt +	244	Aq1 = 244-230	Aquifer in TCG
			RL = 396	Clay		Aq2 = 221-194	Aquifer in TCG
				= 396-244		Aq3 = 179-171	Aquifer in TCG
33	271664	2350944	VI, 5	V & M basalt +	237	Aq1 = 237-215	Aquifer in TCG
			RL = 379	Clay		Aq2 = 212-196	Aquifer in TCG
				= 379-237		Aq3 = 181-171	Aquifer in TCG
34	273598	2351750	VI, 6	V & M basalt +	236	Aq1 = 235-217	Aquifer in TCG
			RL = 379	Clay		Aq2 = 210-197	Aquifer in TCG
				= 379-236		Aq3 = 183-175	Aquifer in TCG
35	275531	2352535	VI, 7	V & M basalt +	277	Aq1 = 272-264	Aquifer in TCG
			RL = 364	Clay		Aq2 = 230-217	Aquifer in TCG
				= 364-277		Aq3 = 181-174	Aquifer in TCG
36	277418	2353321	VI, 8	V & M basalt +	300	Aq1 = 295-290	Aquifer in TCG
			RL = 355	Clay		Aq2 = 248-236	Aquifer in TCG
				= 355-300		Aq3 = 163-149	Aquifer in TCG
37	279351	2354128	VI, 9	V & M basalt	319	Aq1 = 320-308	Aquifer in TCG
			RL = 339	= 339-319		Aq2 = 284-272	Aquifer in TCG
		2254000				Aq3 = 193-187	Aquifer in TCG
38	281283	2354893	VI, 10 RL = 334	V & M basalt	322	Aq1 = 322-314	Aquifer in TCG
			KL = 334	= 334-322		Aq2 = 247-223	Aquifer in TCG
39	283170	2355679	VI, 11	Exposed	324	Aq3 = 170-163	Aquifer in TCG
22	205170	2555079	RL = 324	Gondwana	524	Aq1 = 245-238 Aq2 = 209-203	Aquifer in F. G Aquifer in F. G
			NL - 524	(Alluvial soil		Aq2 = 209-203 Aq3 = 184-178	Aquifer in F. G
				+Sandstone +		Aq4 = 169-162	Aquifer in F. G
				Shale)		Aq5 = 151-137	Aquifer in F. G
				= 324 and		//45 151 15/	Aquiter in the
				below			
40	285125	2356507	VI, 12	Exposed	319	Non –Aquifer	Alternate layers
			RL = 319	Gondwana		zone	of Massive
				(Alluvial soil			Sandstone + Shale
				+Sandstone +			
				Shale) = 319 and			
				= 319 and below			
41	268743	2347509	VII, 3	Exposed	398	Aq1 = 259-238	Alternate layers
41	208743	2347303	RL = 398	Gondwana	338	Aq1 - 255-258	of Massive
			NE 550	(Alluvial soil			Sandstone + Shale
				+Sandstone +			
				Shale)			
				= 398 and			
				below			
42	270723	2348314	VII, 4	V & M basalt +	288	Non-Aquifer	Non Aquifer
			RL = 383	Clay			
				= 383-288	1		
43	272611	2349120	VII, 5	V & M basalt +	Below 220	Aq1 = 338-337	Aquifer in W. B
			RL = 379	Clay		Aq2 = 330-329	Aquifer in F. B
				= 379- below			
<u></u>	274477	2240040	\/!!	220	Polow 220	Aa1 - 252 254	Aquifer in M/ D
44	274477	2349948	VII, 6 RL = 365	V & M basalt + Clay	Below 220	Aq1 = 352-351	Aquifer in W. B
			NE - 303	= 365-below		Aq2 = 344-343	Aquifer in F. B
				220			
				-	-		1
45	276410	2350733	VII, 7	V & M basalt +	250	Aq1 = 239-232	Aquifer in TCG

				= 360-250		Aq3 = 214-208	Aquifer in TCG
46	278344	2351539	VII, 8	V & M basalt +	240	Aq1 = 238-228	Aquifer in TCG
10	270311	2331333	RL = 340	Clay	210	Aq2 = 218-201	Aquifer in TCG
				= 340-240		Aq3 = 191-178	Aquifer in TCG
47	280298	2352262	VII, 9	V & M basalt +	266	Aq1 =264-248	Aquifer in TCG
.,	200200		RL = 338	Clay	200	Aq2 = 144-134	Aquifer in TCG
				= 338-266		Aq3 = 126-117	Aquifer in TCG
48	282186	2353090				Aq4 =89-68	Aquifer in TCG
			VII, 10	V & M basalt +	280	Aq1 = 289-280	Aquifer in B-G
			RL = 327	bole beds			contact
				= 327-280		Aq2 = 252-231	Aquifer in TCG
						Aq3 = 221-207	Aquifer in TCG
						Aq4 =185-163	Aguifer in TCG
49	284096	2353898	VII, 11	V & M basalt +	294	Aq1 = 301-294	Aquifer in B-G
			RL = 320	bole beds			contact
				= 320-294		Aq2 = 266-252	Aquifer in TCG
						Aq3 = 214-199	Aquifer in TCG
						Aq4 =193-168	Aquifer in TCG
50	286028	2354705	VII, 12	Exposed	323	Aq1 = 40-19	F. Sandstone
			RL = 323	Gondwana			
				= 323			
51	287937	2355471	VII, 13	Exposed	306	Aq1 = 70-39	F. Sandstone
			RL = 306	Gondwana			
				= 306			
52	271602	2346470	VIII, 4	Exposed	391	Aq1 = 328-305	F. Sandstone
			RL = 391	Gondwana			
				= 391			
53	273491	2347276	VIII, 5	V & M basalt +	294	Aq1 = 294-290	Aquifer in B-G
			RL =371	bole beds			contact
				= 371-294			
54	275447	2348082	VIII, 6	V & M basalt +	Below 263	Aq1 = 352-351	Aquifer in W.B.
			RL =360	bole beds		Aq1 = 344-343	Aquifer in F.A.B.
				= 360- below			
				263			
55	277379	2348805	VIII, 7	V & M basalt +	Below 279	Aq1 = 279-274	Aquifer in B-G
			RL = 352	bole beds			contact
				= 352-below			
				279			
56	279223	2349675	VIII, 8	V & M basalt +	285	Aq1 = 285-281	Aquifer in B-G
			RL = 345	bole beds			contact
				= 345-285			
57	281246	2350439	VIII, 9	V & M basalt +	276	Aq1 = 276-274	Aquifer in B-G
			RL = 336	bole beds			contact
50	202122	2251104	V/III 10	= 336-276	200	A=1 200 204	A multan in D.C.
58	283133	2351184	VIII, 10	V & M basalt +	266	Aq1 = 266-264	Aquifer in B-G contact
			RL = 327	bole beds = 327-266			contact
59	285043	2352012	VIII, 11	V & M basalt	276	Aq1 = 276-272	Aguifer in B-G
29	265045	2552012	RL = 322	= 322-276	270	Aq1 - 270-272	contact
60	286908	2352799	VIII, 12	Exposed	319	Aq1 = 291-279	Alternate layers
00	200500	2332133	RL = 319	Gondwana	515	Aq1 = 291-279 Aq2 = 275-264	of Massive
			NE - 515	(Sandstone +		Aq2 = 275-264 Aq3 = 251-244	Sandstone + Shale
				Shale)		Aq3 = 251-244 Aq4 = 205-198	
							_
61	288840	2252607	VIII 12	= 319 and below	330	Aq5 = 186-175	Altornato lavoro
61	288840	2353607	VIII, 13 RI - 330	= 319 and below Exposed	330	Aq5 = 186-175 Aq1 = 298-293	Alternate layers
61	288840	2353607	VIII, 13 RL = 330	= 319 and below Exposed Gondwana	330	Aq5 = 186-175	of Massive
61	288840	2353607		= 319 and below Exposed Gondwana (Sandstone +	330	Aq5 = 186-175 Aq1 = 298-293	
61	288840	2353607		= 319 and below Exposed Gondwana (Sandstone + Shale)	330	Aq5 = 186-175 Aq1 = 298-293	of Massive
			RL = 330	= 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below		Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260	of Massive Sandstone + Shale
61 62	288840	2353607	RL = 330	= 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed	330	Aq5 = 186-175 Aq1 = 298-293	of Massive
			RL = 330	 = 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed Gondwana 		Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260	of Massive Sandstone + Shale
			RL = 330	= 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed Gondwana (Sandstone +		Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260	of Massive Sandstone + Shale
			RL = 330	= 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed Gondwana (Sandstone + Shale)		Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260	of Massive Sandstone + Shale
62	274415	2345432	RL = 330 IX, 5 RL = 380	 = 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed Gondwana (Sandstone + Shale) = 380 and below 	380	Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260 Aq2 = 376-372	of Massive Sandstone + Shale F. Sandstone
			RL = 330 IX, 5 RL = 380 IX, 6	 = 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed Gondwana (Sandstone + Shale) = 380 and below V & M basalt + 		Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260	of Massive Sandstone + Shale F. Sandstone Aquifer in B-G
62	274415	2345432	RL = 330 IX, 5 RL = 380	 = 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed Gondwana (Sandstone + Shale) = 380 and below V & M basalt + bole beds 	380	Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260 Aq2 = 376-372	of Massive Sandstone + Shale F. Sandstone
62	274415	2345432	RL = 330 IX, 5 RL = 380 IX, 6	 = 319 and below Exposed Gondwana (Sandstone + Shale) = 330 and below Exposed Gondwana (Sandstone + Shale) = 380 and below V & M basalt + 	380	Aq5 = 186-175 Aq1 = 298-293 Aq2 = 273-260 Aq2 = 376-372	of Massive Sandstone + Shale F. Sandstone Aquifer in B-G

				= 356-297			
65	280171	2347831	IX, 8 RL = 346	V & M basalt + bole beds = 346-287	287	Aq1 = 287-285	Aquifer in B-G contact
66	282126	2348595	IX, 9 RL = 351	V & M basalt + bole beds = 351-292	292	Aq1 = 292-287	Aquifer in B-G contact
67	283992	2349403	IX, 10 RL = 330	V & M basalt + bole beds = 330-254	254	Aq1 = 323-319 Aq2 = 254-250	Aquifer W. V. B Aquifer in B-G contact
68	285970	2350210	IX, 11 RL = 326	V & M basalt + bole beds = 326-250	250	Aq1 = 319-315 Aq2 = 250-254	Aquifer W. V. B Aquifer in B-G contact
69	287857	2350976	IX, 12 RL = 322	V & M basalt + bole beds = 322-305	305	Aq1 = 314-310 Aq2 = 305-301	Aquifer W. V. B Aquifer in B-G contact
70	289743	2351743	IX, 13 RL = 335	V & M basalt + bole beds = 335-330	330	Aq1 = 330-327	Aquifer in B-G contact
71	279185	2345138	X, 7 RL = 368	Exposed Gondwana (Sandstone + Shale) = 368 and below	368	Aq1 = 315-307	Aquifer in F. G
72	281141	2345924	X, 8 RL = 356	V & M basalt + bole beds = 356-215	215	Aq1 = 215-211	Aquifer in B-G contact
73	283052	2346752	X, 9 RL = 339	V & M basalt + bole beds = 339-221	221	Aq1 = 336-228 Aq1 = 221-217	Aquifer in W.V.B Aquifer in B-G contact
74	284939	2347518	X, 10 RL = 333	V & M basalt + bole beds = 333-245	245	Aq1 = 334-227 Aq1 = 245-242	Aquifer in W.V.B Aquifer in B-G contact
75	286918	2348345	X, 11 RL = 335	V & M basalt + bole beds = 335-245	245 Followed by Lametas (245-205) And Archaeans at 205 and below	Aq1 = 326-323 Aq1 = 318-314 Aq1 = 278-275 Aq1 = 224-221	Aquifer in F. W.B Aquifer in F. W.B Aquifer in F. W.B Aquifer in F. W.B
76	288805	2349112	X, 12 RL = 335	V & M basalt + bole beds = 335-290	290 followed by Lametas and Archaeans	Aq1 = 326-323 Aq1 = 318-314	Aquifer in F. W.B Aquifer in F. W.B
77	290692	2349920	X, 13 RL = 336	V & M basalt + bole beds = 336-328	328 followed by Lametas and Archaeans	Aq1 = 328-324	Aquifer in contact Basalt-Archaean
78	281977	2344164	XI, 8 RL = 355	V & M basalt + bole beds = 355-280	280	Aq1 = 340-336 Aq1 = 280-276	Aquifer in F. W.B Aquifer in B-G contact
79	283978	2344949	XI, 9 RL = 344	V & M basalt + bole beds = 344-270	270	Aq1 = 334-330 Aq1 = 270-267	Aquifer in F. W.B Aquifer in B-G contact
80	285821	2345737	XI, 10 RL = 342	V & M basalt + bole beds = 342-268	268 followed by Lametas and Archaeans	Aq1 = 330-326 Aq1 = 268-264	Aquifer in F. W.B Aquifer in Basalt - Gneiss contact
81	287799	2346544	XI, 11 RL = 347	V & M basalt + bole beds = 347-276	276 followed by Lametas and Archaeans	Aq1 = 335-334 Aq1 = 276-271	Aquifer in F. W.B Aquifer in Basalt - Gneiss contact
82	289687	2347331	XI, 12 RL = 337	V & M basalt + bole beds = 337-292	292 followed by Lametas and Archaeans	Aq1 = 292-288	Aquifer in Basalt - Gneiss contact
83	284881	2343023	XII, 9 RL = 374	V & M basalt + bole beds = 374-270	270	Aq1 = 270-265	Aquifer in B-G contact

84	286814	2343809	XII, 10	V & M basalt +	280	Aq1 = 280-76	Aquifer in Basalt -
			RL = 359	bole beds	followed by		Gneiss contact
				= 359-280	Lametas and		
					Archaeans		
85	288702	2344638	XII, 11	V & M basalt +	270	Aq1 = 270-67	Aquifer in Basalt -
			RL = 357	bole beds	followed by		Gneiss contact
				= 357-270	Lametas and		
					Archaeans		
86	290612	2345384	XII, 12	V & M basalt +	273	Aq1 = 273-269	Aquifer in Basalt -
			RL = 350	bole beds	followed by		Gneiss contact
				= 350-273	Lametas and		
					Archaeans		

F. A. B = Fractured Amygdaloidal Basalt; A. B = Amygdaloidal Basalt; F. B = Fractured Basalt; TCG = Trap Covered Gondwanas; F. G = Fractured Gondwanas; W. B = Weathered Basalt; B-G = Basalt-Gondwana; W. V. B = Weathered Vesicular Basalt; F. W. B = Fractured Weathered Basalt ANNEXURE-XVIII: Details of Aquifer System and Aquifer Management Plan, Chandrabhaga Watershed (WGKKC-2), Nagpur District

Aquifer (Prominent Lithology)	Depth Range of Occurrence (m bgl)	Thickness Range (m)	Range of Yield Potential (Cu. m / Day)	Range of Storage Characteristics	Range of Permeability (m/day)	Transmissivity (m ² /day)	DTWL (m bgl) Pre- mon	VES Resistivity (Ohm. m)	Suitability for Irrigation	Suitability for Domestic Purposes	Water quality
Aquifer I (Basalt)	8 to 14	0.5 to 6	12 to 432	1.33 x 10 ⁻⁵ 9.06 x 10 ⁻²	0.01 to 15	1.04 to 72.56	1.7 to 14.8	3.5 to 35	yes	yes	 Nitrate (> 45 mg/L) and
Aquifer I (Sandstone)	3 to 16	1 to 13	118 to 504	2.73 x 10 ⁻⁴ 4.4 x 10 ⁻⁴	0.59 to 15	3.64 to 11.37	5.25 to 16.75	3.80 to 15.70	yes	yes	 High EC (> 2000) Lead contaminatio n around Kalmeshwar town Iron contaminatio n around Kalmeshwar town and Ubgi village
Aquifer II (Basalt)	30 to 161	76-79 = 3 $116-118 = 2$ $127-130 = 3$ $139-140 = 1$ $152-153 = 1$ $160-161 = 1$	5 to 155	5.50x 10 ⁻⁵		7 to 30	13 to 70	7 to 40	yes	yes	
Aquifer II (Sandstone)	45 to >197	45 - 77 = 32 $82 - 109 = 27$ $111 - 125 = 14$ $127 - 137 = 10$ $142 - 146 = 4$ $156 - 160 = 4$ $162 - 165 = 3$ $167 - 178 = 11$ $183 - 187 = 4$ $193 - 197 = 4$	255 to 650	1 x 10 ⁻²		3.14 to 119	40.70 to 73	152 to 1343	yes	yes	

Aquifer (Prominent Lithology)	Depth Range of Occurrence (m bgl)	Thickness Range (m)	Range of Yield Potential (Cu. m / Day)	Range of Storage Characteristics	Range of Permeability (m/day)	Transmissivity (m²/day)	DTWL (m bgl) Pre- mon	VES Resistivity (Ohm. m)	Suitability for Irrigation	Suitability for Domestic Purposes	Water quality
Aquifer III Trap covered Gondwana (Sandstone)	27 to > 198	36-52 = 16 71-75 = 4 120-126 = 6 195-198 = 3	40 to 256			5.55 to 173		1.8 to 87	yes	yes	

Aquifer	Depth of	Thickness (m)	Current		Recommendati	ions for Aquifer	Development	:	Aquifer Management Plan
(Prominent Lithology)	Occurrence (m bgl)		Use	Туре	Zones/Depth to be tapped	HP of pump to be lowered	Pumping Hours	Yield (Cu. m / Day)	
Aquifer I (Basalt and Sandstone)	8 to 14 (Basalt) 3 to 16 (Sandstone)	0.5 to 6 (Basalt) 3 to 16 (Sandstone)	Drinking, domestic and irrigation	Dug well, Bore well	Depth Range of Zones : 6 – 15 m Depth : 15 - 25 m	3 to 5	1 to 8	10 to 400	 Construction of Recharge Wells-25 no's, Depth-20-30 m along the river / tributaries. Construction of 3 Percolation Tanks on 2nd & 3rd order stream. Construction of 4 KT weirs. Construction of check dams on Chandrabhaga River & tributaries. Desilting of existing water conservation and artificial recharge structures.
Aquifer II (Basalt)	30 to 161	76-79 = 3 116-118 = 2 127-130 = 3 139-140 = 1 152-153 = 1 160-161 = 1	Irrigation	Bore well	Depth : 60 to 90 m	3 to 5	3 to 8	50 to 150	 Occurrence of collapsible red bole at various depths necessitates construction of tube wells in some parts. Construction of Injection wells for artificial recharge.
Aquifer II (Sandstone)	Confined (45 to >197)	$\begin{array}{r} 45-77 &= 32\\ 82-109 &= 27\\ 111-125 &= 14\\ 127-137 &= 10\\ 142-146 &= 4\\ 156-160 &= 4\\ 162-165 &= 3\\ 167-178 &= 11\\ 183-187 &= 4\\ 193-197 &= 4 \end{array}$	Irrigation	Tube Well	45 - 77 = 32 $82 - 109 = 27$ $111 - 125 = 14$ $127 - 137 = 10$ $142 - 146 = 4$ $156 - 160 = 4$ $162 - 165 = 3$ $167 - 178 = 11$ $183 - 187 = 4$ $193 - 197 = 4$	5 to 15	3 to 12	250 to 500	 Development through Tube Well for domestic and irrigation purpose. Development of Regional Rural Water Supply Scheme for supply to cluster of villages, particularly for scarcity areas.

Aquifer	Depth of	Thickness (m)	Current		Recommendati	ons for Aquifer D	Aquifer Management Plan		
(Prominent	Occurrence		Use			HP of pump	Pumping	Yield	
Lithology)	(m bgl)				be tapped	to be lowered	Hours	(Cu. m / Day)	
Aquifer III Trap covered Gondwana (Sandstone)	27 to > 198	36-52 71-75 120-126 195-198	Irrigation	Tube Well	36-52 =16 71-75 = 4 120-126 = 6 195-198 = 3	5 to 15	3 to 12	50 to 200	 Development through Tube Well for domestic and irrigation purpose. Development of Regional Rural Water Supply Scheme for supply to cluster of villages, particularly for scarcity areas.

PHOTOGRAPHS

Fractured and jointed Massive Basalt (Aquifer-I) exposed in dug well section at Malegaon village, weathered basaltic zone has been lined by rock brick.

Weathered Basalt due to Spheroidal weathering exposed near Lakholi village.

Variagated Sandstone outcrop exposed at Tondakhairi

Outcrop of massive Basalt exposer at Raulgaon

Intertrappeans exposed near Dahpewada

Dr. P. K. Jain, Superintending Hydrogeologist, explaining the litho section exposed at Dhapewada.

Sh. M. K. Raffiuddin, Junior Hydrogeologist explaining hydrogeological set up near Chandrabhaga river bank, Dhapewada to Sh. B. Jayakumar, Word Bank representative & Regional Director, CGWB

Sh. Sandeep Waghmare, Assistant Hydrogeologist explaining KOW's behaviour, at Kalmeshwar to Sh. B. Jayakumar, Word Bank representative & Regional Director, CGWB

Ground Water Exploration - Various drilling activites during the project period

Double ring infiltrometer set up and collection of infiltration rate data.

Irrigation Prectices: Flood irrigation for pulses, papaya and seasonal vegitables during Rabi season.

Geophysical Survey (in-House) : Logging by UPTRON Logger

Geophysical Survey (in-House) VES by ABEM Terameter

SkyTEM survey

Sh. Pradeep Dubey, the then Regional Director, Dr. Shakeel Ahmad, Chief Scientist, NGRI and others during field along with experts from Dutch team

Sh. P. Narendra, Scientist C CGWB, Nagpur explaining geophysical findings of CGWB, Nagpur

Field visit and inspection of KOW at Kalmeshwar with experts from USGS, with officers from CGWB, NGRI and NEERI

Inspection of KOW at Kalmeshwar by experts from Dutch team

Discussion with field Hydrogeologist and expert team from USGS during field visit

Inspection of large diameter dug well by Sh. Pradeep Dubey, Regional Director and Dr. P. K. Jain Suptg. Hg. CGWB, CR, Nagpur.

Technical presentation to experts from USGS, at Technical discussion with experts from team Denmark CGWB, Nagpur

Technical meeting with experts from USGS, with officers from CGWB, NGRI and NEERI, at CGWB, Nagpur

Technical discussion with experts from USGS at CGWB, Nagpur

Pilot Project on Aquifer Mapping, Chandrabhaga Watershed (WGKKC-2), Nagpur District, Maharashtra **AQUIFER MAP** 11.12 1 -LITTLE I THE FULL OF T 78'45 78'60' 78*55 Taul Luch -8 21-20 21'20 -1 Α D Sort (Mari В Wathoda Chargeo 49111 Dori IN

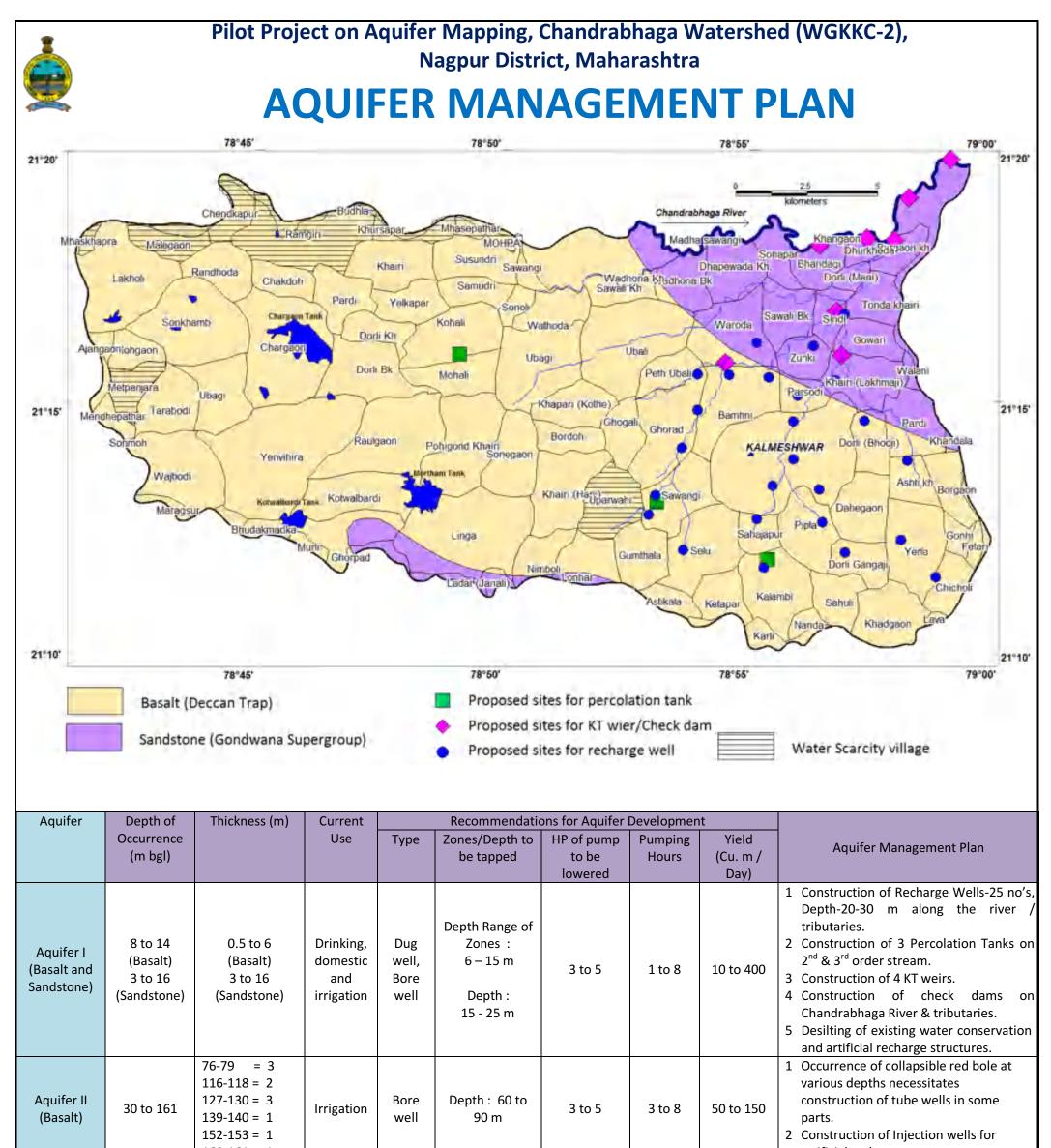
in the 21'15' 21*15 RH Cohit / RP KALMESHWAR С Khan Irtapparaans E -8 -8 21-10 21-10/ 78-45 78-50 78-55 79'0 Basalt Basalt (Deccan Trap) 1

Sandstone (Gondwana Supergroup)

Water table contour (May-2014, AQ-I)

High EC (AQ-I)

Lametas

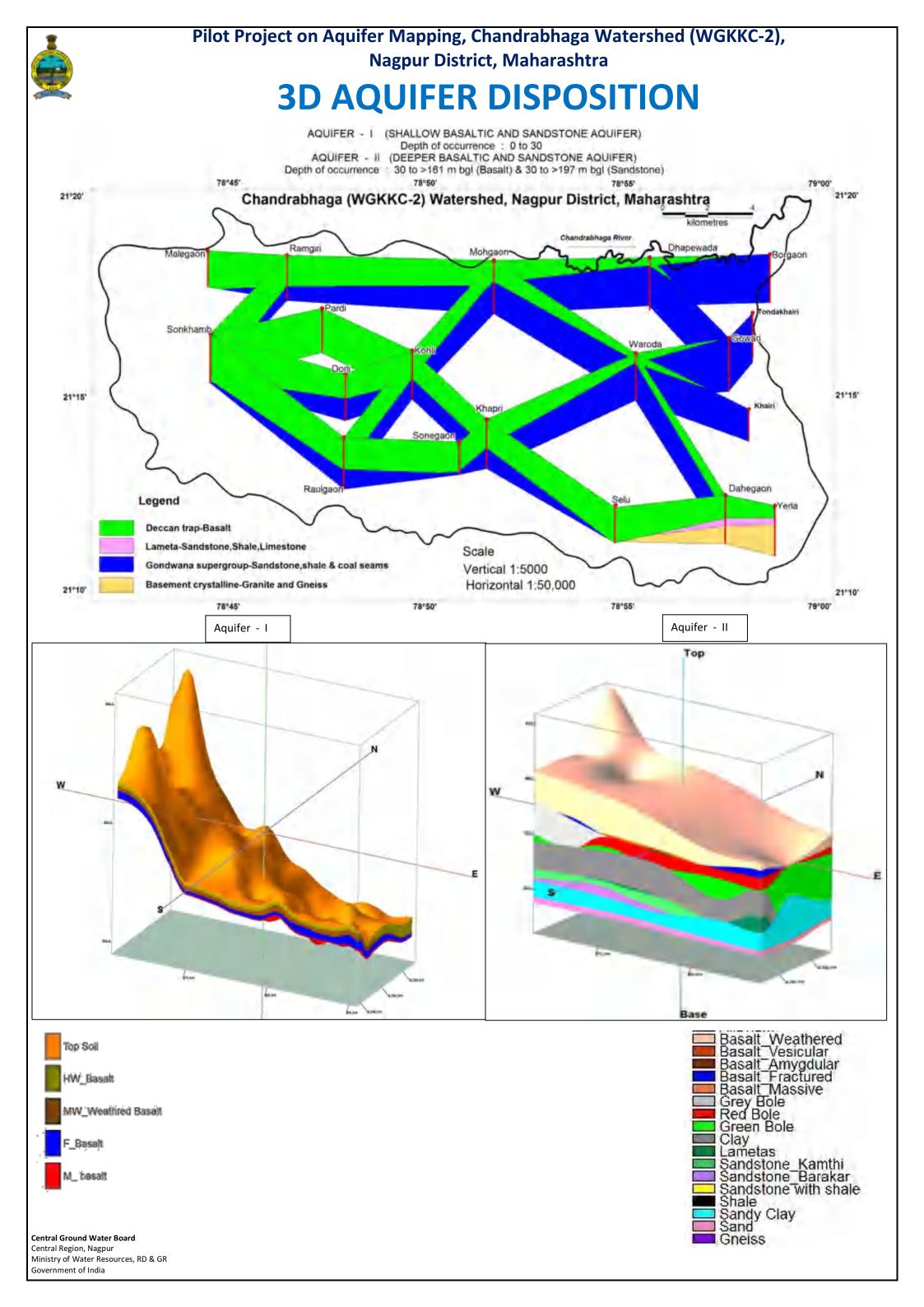

Gondwana

Aquifer	Prominent	Depth Range	Thickness Range (m)	Range of	Range of	Range of	Suitability	Suitability	Remarks
Aquiter	Lithology	of Occurrence (m bgl)	mickness kange (m)	Yield Potential (Cu. m / Day)	Storage Characteristics	Permeability (m/day)	for Irrigation	for Domestic Purposes	Nellia K3
Aquifer I	Basalt	8 to 14	0.5 to 6	43 to 432	1.33 x 10 ⁻⁵ 9.06 x 10 ⁻²	0.01 to 15	yes	yes	 Nitrate contamination (> 4 mg/L)in almost entire area and High EC (> 2000) Lead contamination around Kalmeshwar town
	Sandstone	3 to 16	1 to 13	118 to 504	2.73 x 10 ⁻⁴ 4.4 x 10 ⁻⁴	0.59 to 1.43	yes	yes	 Iron contamination around Kalmeshwar town and Ubgi village
	Basalt	30 to 161	76-79 = 3 116-118 = 2 127-130 = 3 139-140 = 1 152-153 = 1 160-161 = 1	43 to 155	5.50x 10 ⁻⁵		yes	yes	
Aquifer II	Sandstone	45 to >197	45 - 77 = 32 $82 - 109 = 27$ $111 - 125 = 14$ $127 - 137 = 10$ $142 - 146 = 4$ $156 - 160 = 4$ $162 - 165 = 3$ $167 - 178 = 11$ $183 - 187 = 4$ $193 - 197 = 4$	255 to 650	1 x 10 ⁻²		yes	yes	
Aquifer III Trap covered Gondwana	Sandstone	27 to > 198	36-52 = 16 71-75 = 4 120-126 = 6 195-198 = 3	40 to 256			yes	yes	

Central Ground Water Board

Central Region, Nagpur Ministry of Water Resources, RD & GR Government of India

1



		160-161 = 1							artificial recharge.
Aquifer II (Sandstone)	45 to >197	45 - 77 = 32 $82 - 109 = 27$ $111 - 125 = 14$ $127 - 137 = 10$ $142 - 146 = 4$ $156 - 160 = 4$ $162 - 165 = 3$ $167 - 178 = 11$ $183 - 187 = 4$ $193 - 197 = 4$	Irrigation	Tube Well	45 - 77 = 32 $82 - 109 = 27$ $111 - 125 = 14$ $127 - 137 = 10$ $142 - 146 = 4$ $156 - 160 = 4$ $162 - 165 = 3$ $167 - 178 = 11$ $183 - 187 = 4$ $193 - 197 = 4$	5 to 15	3 to 12	250 to 500	 Development through Tube Well for domestic and irrigation purpose. Development of Regional Rural Water Supply Scheme for supply to cluster of villages, particularly for scarcity areas.
Aquifer III Trap covered Gondwana (Sandstone)	27 to > 198	36-52 = 16 71-75 = 4 120-126 = 6 195-198 = 3	Irrigation	Tube Well	36-52 =16 71-75 = 4 120-126 = 6 195-198 = 3	5 to 15	3 to 12	50 to 200	 Development through Tube Well for domestic and irrigation purpose. Development of Regional Rural Water Supply Scheme for supply to cluster of villages, particularly for scarcity areas.

Central Ground Water Board

Central Region, Nagpur Ministry of Water Resources, RD & GR

Government of India

Principal Authors

1	Dr. P. K. Jain	Nodal Officer	Superintending Hydrogeologist,
2	Sh. M. K. Rafiuddin	Principal field officer (Hydrogeology)	CGWB, CR, Nagpur Junior Hydrogeologist, CGWB, SR, Hyderabad
3	Sh. S. D. Waghmare	Principal field officer (Hydrogeology)	Assistant Hydrogeologist, CGWB, CR, Nagpur
4	Sh. P. Narendra	Principal field officer (Geophysics)	Junior Geophysicist, CGWB, CR, Nagpur
5	Dr. V. Arulprakasam	Principal field officer (Geophysics)	Junior Geophysicist, CGWB, CR, Nagpur
6	Dr. Bhushan R. Lamsoge	Ground Water Modeling, GIS data input and Report compilation	Senior Hydrogeologist, CGWB, CR, Nagpur
Autho	ors		
7	Dr. N. C. Nayak	Ground Water Modeling	Senior Hydrogeologist, CGWB, SER, Bhubaneshwar
8	Sh. Rahul Shende	Hydrogeological input & Technical correspondence	Assistant Hydrogeologist, CGWB, CR, Nagpur
9	Sh. Kartik Dongre	Hydrogeological input	Junior Hydrogeologist,

8	Sh. Rahul Shende	Hydrogeological input	Assistant Hydrogeologist
		& Technical	CGWB, CR, Nagpur
		correspondence	
9	Sh. Kartik Dongre	Hydrogeological input	Junior Hydrogeologist,
			CGWB, CR, Nagpur
10	Smt. Nilofar	Hydrogeological input	Junior Hydrogeologist,
			CGWB, CR, Nagpur
11	Sh. Vijesh V. K.	Hydrogeological input	Junior Hydrogeologist,
			CGWB, CR, Nagpur
12	T. R. Mathure	Survey work	Officer Surveyor (Retd.)
			CGWB, CR, Nagpur
13	Smt. Usha Kamde	Drawing	Draughtsman

CGWB, CR, Nagpur