

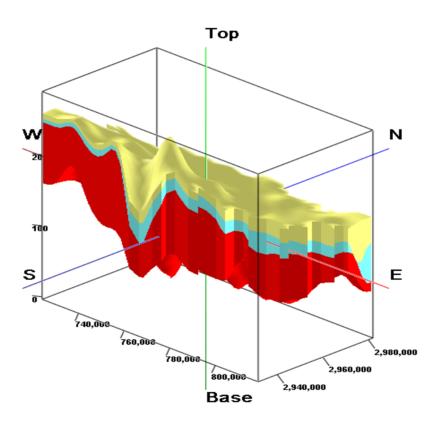
# केंद्रीय भूमि जल बोर्ड

# जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

# **Central Ground Water Board**

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India


Report on AQUIFER MAPPING AND GROUND WATER MANAGEMENT

## **Dholpur District, Rajasthan**

पश्चिमी क्षेत्र जयपुर Western Region, Jaipur



## Report on AQUIFER MAPPING AND GROUND WATER MANAGEMENT DISTRICT DHOLPUR, RAJASTHAN (UNDER XII PLAN)



CENTRAL GROUND WATER BOARD MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVANATION GOVERNMENT OF INDIA WESTERN REGION, JAIPUR

JULY, 2017

## **Contents**

| 1. Introduction                                                                         | 4  |
|-----------------------------------------------------------------------------------------|----|
| 1.1 Objectives                                                                          | 4  |
| 1.2 Scope of the study                                                                  | 4  |
| 1.3 Approach & Methodology                                                              | 4  |
| 1.4 Data availability                                                                   | 4  |
| 1.5 Data Adequacy                                                                       | 5  |
| 1.6 Data Gap Analysis                                                                   | 5  |
| 1.7 Area details                                                                        | 5  |
| 1.8 Rainfall and Climate                                                                | 6  |
| 1.9 Physiography, Drainage and Soils                                                    | 8  |
| 1.10 Landuse and irrigation practices                                                   | 10 |
| 2. Aquifer System                                                                       | 11 |
| 2.1 Geology                                                                             | 11 |
| 2.2 Hydrogeology                                                                        | 11 |
| 2.3 Ground Water Scenario                                                               | 16 |
| 3. Chemical Quality of Ground Water                                                     | 19 |
| 4. Ground Water Resources                                                               | 21 |
| 5. Ground Water Related Issues                                                          | 21 |
| 6. Management Strategy                                                                  | 22 |
| 6.1 Supply Side Management                                                              | 22 |
| 6.1.1 Artificial recharge to ground water through interventions of various structures   | 22 |
| 6.2 Demand Side Management                                                              | 23 |
| 6.2.1 Change in cropping pattern                                                        | 23 |
| 6.2.2 Adoption of modern practice of sprinkler irrigation/improved irrigation practices | 23 |

## List of Tables

| Table 1: Administrative set up of Dholpur district                                           | 5  |
|----------------------------------------------------------------------------------------------|----|
| Table 2: Salient features of ground water exploration                                        | 6  |
| Table 3: Annual Rainfall and Departure (%) From Mean                                         | 7  |
| Table 4: Basin wise area covered                                                             | 10 |
| Table 5: Land use pattern (2010-11)                                                          | 10 |
| Table 6: Source wise area irrigated (2010-11)                                                | 11 |
| Table 7: Long term trends (2005-2014) for selected hydrograph stations                       | 17 |
| Table 8: Chemical constituents in ground water                                               | 19 |
| Table 9: Block wise ground water resources (As on 31.03.2013)                                | 21 |
| Table 10: Block-wise details of feasible recharge structures                                 | 22 |
| Table 11: Block-wise water saving through change in cropping pattern and irrigation practice | 23 |
| Table 12: Summary of expected benefit of management strategies, Dholpur district             | 24 |

## List of Figures

| Figure 1: Administrative Divisions                       | 6  |
|----------------------------------------------------------|----|
| Figure 2: Bar Diagram of Rainfall Data, Dholpur district | 8  |
| Figure 3: Hydrogeological map of Dholpur district        | 12 |
| Figure 4: Aquifer Geometry and Characterization Model    | 13 |
| Figure 5: Fence Diagram of Aquifer Disposition           | 13 |
| Figure 6: Map showing Cross Sections                     | 14 |
| Figure 7A: Section A - B                                 | 14 |
| Figure 7B: Section C - D                                 | 15 |
| Figure 7C: Section E-F                                   | 15 |
| Figure 8: Depth to Water Level Map (May 2014)            | 16 |
| Figure 9: Depth to Water Level Map (November, 2014)      | 17 |
| Figure 10: Hydrographs of Dholpur district               | 18 |
| Figure 11: Iso Electrical Conductivity Map (May, 2014)   | 19 |
| Figure 12: Fluoride Map (May, 2014)                      | 20 |
| Figure 13: Nitrate Distribution Map (May, 2014)          | 20 |

## Part B

| <b>Block wise Aquifer Maps and Management Plans</b> | 25-27 |
|-----------------------------------------------------|-------|
|-----------------------------------------------------|-------|

**Report on National Aquifer Mapping Programme** 

(Based on Available Data)

## **District Dholpur, Rajasthan**

## **1. Introduction**

## **1.1 Objectives**

Various developmental activities over the years have adversely affected the groundwater regime in the state. There is a need for scientific planning in development of groundwater under different hydrogeological situation and to evolve effective management practices with involvement of community for better ground water governance. In view of emergent challenges in the ground water sector in the state there is an urgent need for comprehensive and realistic information pertaining to various aspects of groundwater resource available in different hydrogeological setting through a process of systematic data collection, compilation, data generation, analysis and synthesis. Hence, aquifer mapping of the study area is the need of the hour.

## **1.2 Scope of the study**

Aquifer mapping can be understood as a scientific process wherein a combination of geological, Geophysical, hydrological and chemical fields and laboratory analyses are applied to characterized the quantity, quality, and sustainability of ground water in aquifers. Aquifer mapping is expected to improve our understanding of the geological framework of aquifer, their hydrologic characteristics, water level in aquifer and how they changes over time and space and the occurrence of natural and anthropogenic contaminants that affect the portability of groundwater. Results of these studies will contribute significantly to resource management tools such as long term aquifer monitoring network and conceptual and quantitative regional groundwater flow models to be used by planners, policy makers and other stake holders. Aquifer mapping at appropriate scale can help to prepare, implement, and monitor the efficacy of various management interventions aimed at long term sustainability of our precious groundwater recourses, which in turn will help to achieve drinking water scarcity, improved irrigation facilities and sustainability of water resource in the state.

## 1.3 Approach & Methodology

As mentioned above, aquifer mapping is an attempt to integrate the geological, Geophysical, hydrological and chemical field and laboratory analyses are applied to characterize the quality, quantity and sustainability of groundwater in aquifer. Under the National aquifer Programme, it is proposed to generate Aquifer maps on 1:50000 scale, which basically aims at characterizing the aquifer geometry, behavior of groundwater levels and status of groundwater development in various aquifer system to facilitate planning of their suitable management. The major activities involved in this process include compilation of existing data, identification of data gaps, generation of data for feeling data gaps and preparation of different aquifer layers.

## 1.4 Data availability

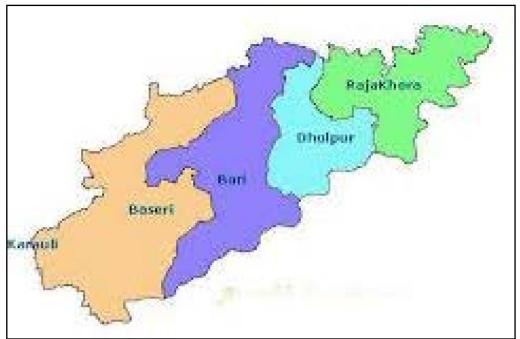
Groundwater availability, monitoring (water level and chemical quality), exploration had been carried out by CGWB and state Ground water Department. A total of 18 nos of NHS has been monitored by CGWB, WR, Jaipur and 114 Key observation wells have been monitored by State GWD, Government of Rajasthan. A total of 33 nos. of EW & OW have been constructed by CGWB and 33 nos. have been constructed by State GWD, Rajasthan.

## 1.5 Data Adequacy

The data collected from State GWD and CGWB WR Jaipur have been compiled and analysed. It has been observed that validation and georeferncing of the location coordinates, lithologs and hydrogeological data is needed and State GWD data is lacks in aquifer parameters. Geophysical data collected needs georeferncing of the hydrogeological interpretations. It has been observed that available data are limited largely to State highways and main roads only. Hence, to get a clear 3D hydrogeological geometry of the aquifer system and its behaviour, we need to generate data by Groundwater Exploration and to establish more numbers of monitoring stations for better understanding of the groundwater regime behavior in terms of both quantity and quality.

## **1.6 Data Gap Analysis**

Data collected from State GW agencies and CGWB has been brought to a standard format and integrated location maps has been prepared regarding groundwater monitoring, exploration, surface water and agriculture data. Based on these maps and hydrogeological conditions in the area. Dholpur district further needs generation of data in the gap areas.


### 1.7 Area details

Dholpur district comprises of 3033 sq km geographical area having 54.30 sq km hilly area and 2486 sq.km. mappable area. Administratively, the district comprises of 4 blocks and 805 villages. It is located in the easternmost side of the state of Rajasthan and is situated within 26°21'19" and 26°57'33" North latitudes and 77°13'06" and 78°16'45" East longitudes. It is bounded by Bharatpur district in the northwest, Sawai Madhopur and Karauli districts in southwest and rest of the boundaries are bordered by Agra district of Uttar Pradesh and Bhind & Morena districts of Madhya Pradesh. The administrative set up of the district is given in Table 1 and map showing administrative divisions is presented in Figure 1.

| Name of Block | Geographical area (sq.km.) | Tehsil covered (Area in sq.km.)  |  |  |
|---------------|----------------------------|----------------------------------|--|--|
| Baseri        | 1001.42                    | Baseri/ 998.04                   |  |  |
| Rajakhera     | 583.07                     | Raja Khera 387.02, Sepau/ 304.06 |  |  |
| Dholpur       | 609.32                     | Dholpur/ 509.71                  |  |  |
| Bari          | 816.24                     | Bari / 810.61                    |  |  |

### Table 1: Administrative set up of Dholpur district

The population of the district as per 2011 census is 1206516 persons including 653647 males and 552869 females.



**Figure 1: Administrative Divisions** 

Ground water investigations were carried out for the first time by S.K. Sinha, Geological Survey of India in the year 1969-70 in Rajakhera Panchayat Samiti. Systematic Hydrogeological surveys to map the district on the scale of 1": 4 miles was carried out in the district by Shri S.K. Jain, N.H. Reddy and S. Datta of Central Ground Water Board during 1979 – 81. Based on the results of hydrogeological mapping, ground water exploration in alluvial part of the district was taken up by CGWB during 1983 to 1985. Between 1969 and 1972, water levels from National Hydrograph Stations in the district were monitored by GSI and since 1973; these are being monitored by CGWB four times in a year.

As on date, 5 exploratory wells, 5 observation wells. 4 slim holes and 11 piezometers have been drilled in the district. Salient features of ground water exploration in the district are given in Table 2.

| Type of<br>well | No. | Depth drilled<br>(m) | SWL (m)         | Transmissivity<br>(m²/day) | Discharge<br>(lpm) | EC<br>(micromhos/cm<br>) at 25°C |
|-----------------|-----|----------------------|-----------------|----------------------------|--------------------|----------------------------------|
| EW              | 5   | 39.5 – 159.55        | 4.13 –<br>19.10 | 70 - 277                   | 440 - 727          | 620 - 1995                       |
| PZ              | 11  | 19.78 – 126.7        | 3.5 –<br>37.27  | -                          | 234 - 1200         | 665 - 7680                       |
| SH              | 4   | 52.50 - 110          | -               | -                          | 120 - 300          | 1145 - 6225                      |

 Table 2: Salient features of ground water exploration

### **1.8 Rainfall and Climate**

Climate of the district can be classified as semi arid type. The summers are very hot & dry and winters are very cold. The summer season prevails from March to mid June after which the rainy

season starts with the onset of monsoon rains lasting till the end of September. During May/ June months, the mean daily temperature is about 40°C. The potential evapotranspiration is 1780.0 mm annually.

The mean annual rainfall of the district is 563.94 mm (2001-2011). The long term normal annual rainfall (1951-2000) is 722.1mm. The occurrence of mild droughts is highest in the district. Normal drought occurs sometimes where as severe type of drought occurs rarely. The rainfall data of Dholpur district is shown in Table 3 and the Bar diagram is presented in Figure 2.

| YEAR | Dholpur | <b>Dep(%)</b> | Sepau  | Dep(%) | Rajakhera | <b>Dep(%)</b> | Bari   | Dep(%) | Baseri | <b>Dep(%)</b> | Sarmathra | Dep(%) |
|------|---------|---------------|--------|--------|-----------|---------------|--------|--------|--------|---------------|-----------|--------|
| 71   | 771.0   | 16.2          | 720.0  | 14.2   | 881.5     | 35.5          | 886.5  | 16.8   | 617.0  | 12.8          | 829.4     | 42.1   |
| 72   | 494.0   | -25.5         | 458.0  | -27.3  | 417.7     | -35.8         | 1190.0 | 56.7   | 565.7  | 3.4           | 978.0     | 67.6   |
| 73   | 631.7   | -4.8          | 739.1  | 17.3   | 624.9     | -4.0          | 940.0  | 23.8   | 607.6  | 11.0          | 474.0     | -18.8  |
| 74   | 428.0   | -35.5         | 455.0  | -27.8  | 724.2     | 11.3          | 734.0  | -3.3   | 612.0  | 11.8          | 548.0     | -6.1   |
| 75   | 543.0   | -18.2         | 749.0  | 18.8   | 486.9     | -25.2         | 998.1  | 31.5   | 739.1  | 35.1          | 587.8     | 0.7    |
| 76   | 759.4   | 14.5          | 1168.0 | 85.3   | 763.5     | 17.3          | 1114.3 | 46.8   | 662.8  | 21.1          | 862.0     | 47.7   |
| 77   | 540.0   | -18.6         | 1064.2 | 68.8   | 936.1     | 43.9          | 1148.2 | 51.2   | 530.8  | -3.0          | 746.8     | 28.0   |
| 78   | 629.5   | -5.1          | 648.0  | 2.8    | 416.0     | -36.1         | 914.8  | 20.5   | 338.0  | -38.2         | 414.4     | -29.0  |
| 79   | 171.8   | -74.1         | 138.6  | -78.0  | 399.6     | -38.6         | 534.0  | -29.7  | 349.8  | -36.1         | 295.0     | -49.5  |
| 80   | 491.9   | -25.9         | 515.0  | -18.3  | 412.5     | -36.6         | 874.8  | 15.2   | 491.6  | -10.2         | 484.0     | -17.1  |
| 81   | 432.4   | -34.8         | 434.0  | -31.1  | 840.8     | 29.2          | 752.5  | -0.9   | 448.0  | -18.1         | 495.0     | -15.2  |
| 82   | 744.5   | 12.2          | 471.0  | -25.3  | 551.8     | -15.2         | 773.8  | 1.9    | 517.3  | -5.5          | 737.4     | 26.4   |
| 83   | 736.6   | 11.0          | 675.0  | 7.1    | 506.0     | -22.2         | 553.2  | -27.1  | 428.2  | -21.7         | 551.0     | -5.6   |
| 84   | 553.7   | -16.5         | 1063.0 | 68.6   | 331.3     | -49.1         | 366.0  | -51.8  | 292.4  | -46.6         | 497.1     | -14.8  |
| 85   | 897.9   | 35.3          | 1044.0 | 65.6   | 775.0     | 19.1          | 628.0  | -17.3  | 381.0  | -30.4         | 644.0     | 10.3   |
| 86   | 266.0   | -59.9         | 513.0  | -18.6  | 394.0     | -39.4         | 529.0  | -30.3  | 361.0  | -34.0         | 450.0     | -22.9  |
| 87   | 371.0   | -44.1         | 474.5  | -24.7  | 268.0     | -58.8         | 469.5  | -38.2  | 283.5  | -48.2         | 337.5     | -42.2  |
| 88   | 835.8   | 26.0          | 574.0  | -8.9   | 459.0     | -29.5         | 772.5  | 1.8    | 310.0  | -43.3         | 512.4     | -12.2  |
| 89   | 521.6   | -21.4         | 377.0  | -40.2  | 322.0     | -50.5         | 503.0  | -33.7  | 178.0  | -67.5         | 383.0     | -34.4  |
| 90   | 836.1   | 26.0          | 739.0  | 17.2   | 586.0     | -9.9          | 889.3  | 17.1   | 576.5  | 5.4           | 743.0     | 27.3   |
| 91   | 360.8   | -45.6         | 323.0  | -48.8  | 647.0     | -0.6          | 588.2  | -22.5  | 255.5  | -53.3         | 413.0     | -29.2  |

#### Table 3: Annual Rainfall and Departure (%) From Mean

| YEAR | Dholpur | Dep(%) | Sepau | Dep(%) | Rajakhera | Dep(%) | Bari   | Dep(%) | Baseri | Dep(%) | Sarmathra | Dep(%) |
|------|---------|--------|-------|--------|-----------|--------|--------|--------|--------|--------|-----------|--------|
| 92   | 992.7   | 49.6   | 644.0 | 2.2    | 1511.0    | 132.2  | 754.0  | -0.7   | 564.5  | 3.2    | 772.0     | 32.3   |
| 93   | 429.7   | -35.2  | 484.0 | -23.2  | 720.0     | 10.7   | 704.6  | -7.2   | 254.0  | -53.6  | 463.0     | -20.7  |
| 94   | 612.4   | -7.7   | 467.0 | -25.9  | 481.0     | -26.1  | 565.0  | -25.6  | 422.3  | -22.8  | 408.0     | -30.1  |
| 95   | 1008.3  | 52.0   | 805.0 | 27.7   | 677.0     | 4.0    | 1145.9 | 50.9   | 652.0  | 19.2   | 647.0     | 10.9   |
| 96   | 993.2   | 49.7   | 950.0 | 50.7   | 959.0     | 47.4   | 1104.9 | 45.5   | 764.0  | 39.6   | 675.0     | 15.7   |
| 97   | 915.2   | 37.9   | 668.0 | 6.0    | 675.0     | 3.7    | 704.1  | -7.3   | 467.0  | -14.7  | 874.5     | 49.8   |
| 98   | 884.5   | 33.3   | 781.0 | 23.9   | 818.0     | 25.7   | 811.0  | 6.8    | 556.0  | 1.6    | 873.0     | 49.6   |
| 99   | 698.1   | 5.2    | 768.0 | 21.8   | 635.0     | -2.4   | 636.1  | -16.2  | 529.0  | -3.3   | 454.0     | -22.2  |
| 2k   | 549.6   | -17.2  | 451.0 | -28.4  | 415.0     | -36.2  | 555.0  | -26.9  | 448.0  | -18.1  | 468.0     | -19.8  |
| 01   | 409.0   | -38.4  | 695.5 | 10.3   | 669.0     | 2.8    | 939.0  | 23.7   | 717.0  | 31.0   | 561.0     | -3.9   |
| 02   | 454.2   | -31.5  | 446.0 | -29.2  | 703.0     | 8.0    | 576.0  | -24.1  | 404.0  | -26.2  | 212.0     | -63.7  |
| 03   | 728.1   | 9.7    | 552.1 | -12.4  | 521.0     | -19.9  | 705.0  | -7.1   | 525.0  | -4.1   | 735.5     | 26.0   |
| 04   | 773.0   | 16.5   | 633.0 | 0.4    | 1086.0    | 66.9   | 877.0  | 15.5   | 711.0  | 29.9   | 461.0     | -21.0  |
| 05   | 784.1   | 18.2   | 673.0 | 6.8    | 754.0     | 15.9   | 607.5  | -20.0  | 609.0  | 11.3   | 418.0     | -28.4  |
| 06   | 301.4   | -54.6  | 394.0 | -37.5  | 466.0     | -28.4  | 513.0  | -32.4  | 455.0  | -16.8  | 282.0     | -51.7  |
| 07   | 620.0   | -6.6   | 357.0 | -43.4  | 475.0     | -27.0  | 598.0  | -21.2  | 472.0  | -13.7  | 336.0     | -42.4  |
| 08   | 1319.6  | 98.9   | 804.0 | 27.6   | 1080.0    | 66.0   | 1047.0 | 37.9   | 1093.0 | 99.7   | 900.1     | 54.2   |
| 09   | 495.0   | -25.4  | 433.0 | -31.3  | 511.0     | -21.5  | 472.0  | -37.8  | 457.0  | -16.5  | 558.0     | -4.4   |
| 10   | 978.5   | 47.5   | 693.0 | 9.9    | 798.0     | 22.6   | 712.0  | -6.2   | 566.0  | 3.4    | 691.0     | 18.4   |
| 11   | 751.0   | 13.2   | 646.0 | 2.5    | 610.0     | -6.3   | 633.0  | -16.6  | 658.0  | 20.2   | 483.0     | -17.2  |
| 12   | 728.0   | 9.7    | 744.0 | 18.0   | 839.0     | 28.9   | 826.0  | 8.8    | 1167.0 | 113.3  | 801.0     | 37.3   |
| 13   | 1133    | 70.8   | 880   | 39.6   | 984       | 51.2   | 1105   | 45.5   | 1171   | 114.0  | 1085      | 85.9   |
| 14   | 620     | -6.6   | 424   | -32.7  | 502       | -22.9  | 652    | -14.1  | 867    | 58.4   | 539       | -7.6   |
| Mean | 663.5   | 0.0    | 630.3 | 0.0    | 650.7     | 0.0    | 759.2  | 0.0    | 547.2  | 0.0    | 583.6     | 0.0    |

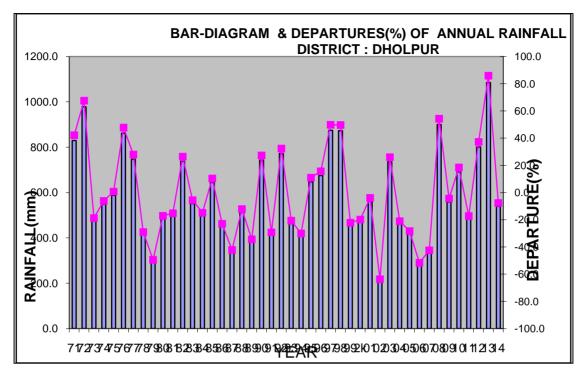



Figure 2: Bar Diagram of Rainfall Data, Dholpur district

## **1.9** Physiography, Drainage and Soils

Physiography:

The district comprises of alluvial plains and ravines in the eastern part and small flat topped hills in the western part. These hills are spread over 378.33 sq km area attaining altimetric variation of about 174 m from plains. The district is also known for ravines covering about 272 sq km area developed mainly on the banks of Chambal river.

The highest peak (the Gurjar Pahar) in the district is about 357 m above mean sea level (amsl) and is located in the southwest of the district. The eastern plain lies at altitude between 163 and 171 m amsl. The central part of the district lies between altitude of 232 and 177 m amsl.

Geomorphologically, the district can be divided into following four main morphological units:

- Western hilly areas.
- Central undulating plains.
- The eastern plain (east of Dholpur Maina) alignment.
- About 3 to 10 km wide strip of plateau about the southern boundary demarcated by Chambal River. Ravines are very common and prominent physiographic features in the district.

## Drainage:

Dholpur district is covered in part by three river basins namely Parbati, Chambal and Gambhiri. The river Parbati flows from west to east and is located in the central part of the district whereas river Chambal and river Gambhiri flow in the southern and northern extremities of the district respectively. Both these rivers flow in the southwest - northeast direction.

Drainage system of the district is quite well developed and is represented by Chambal, Gambhir and Parbati rivers and their various tributaries. The entire district falls under the Yamuna basin as both Chambal and Gambhir rivers are the tributaries of Yamuna river. Major part of the district comes under Gambhir and Parbati sub basins and a narrow strip of the plateau part of the district running in NE-SW direction falls under Chambal sub basin. The details of basin wise area covered in the district are given in Table 4.

| Table 4: Basin | wise area | covered |
|----------------|-----------|---------|
|----------------|-----------|---------|

| Basin   | Area sq. km | % of district | % of Basin |
|---------|-------------|---------------|------------|
| Parbati | 1950.70     | 64.50         | 81.70      |
| Gambhir | 203.50      | 17.80         | 4.90       |
| Chambal | 869.40      | 28.80         | 2.80       |

## Soil Types:

Soils of the district have been classified into the following six categories:

- Sandy soil: It is restricted within a small NE-SW trending lenticular patch in the western part of the district.
- Loamy sandy soil: This type of soil occurs in a very small patch of the area in the western vicinity of Bari town.
- Sandy loamy soil: It occurs in two small patches, one located to the west of the district adjoining the sandy soil patch and the other around Turripura village in the western part of the district.
- Clayey soil : This variety of soil occurs in the eastern part of the district about 5 km southwest of Rajakhera and in the northwestern part about 5 km north of Turripura village.
- Sandy clayey loam soil: This type of soil occurs in four isolated patches, two in northwestern part and two in the central part of the district.
- Sandy clayey soil: This type of soil is the most prevalent in the district.

## **1.10 Landuse and irrigation practices**

The land use statistics of the district are furnished in Table 5. Out of total reporting area of 300913 ha, 27173 ha (9%) is covered by forests. Fallow lands cover 5.25% of the total area occupying 15795 ha and other uncultivated land occupy 26728 ha area covering 8.9% of the total area. About 74744 ha (24.84%) land is not available for cultivation.

#### Table 5: Land use pattern (2010-11)

| Particulars                                   | Area (in ha) |
|-----------------------------------------------|--------------|
| Area not available for cultivation            | 74744        |
| Forest                                        | 27173        |
| Other uncultivated land excluding fallow land | 26728        |
| Fallow land                                   | 15795        |
| Net area sown                                 | 156473       |
| Total cropped area                            | 226210       |

| Area sown more than once | 69737  |
|--------------------------|--------|
| Total reporting area     | 300913 |

The total sown area is 226210 has (including area sown more than once) and net sown area is 156473 ha out of which net irrigated area is 110900 ha forming nearly two third of the net area sown. Agriculture activity is spread over both Kharif and Rabi cultivation. Kharif cultivation is rain fed and Rabi cultivation is mostly based on ground water. Details of source wise area irrigated in the district are given in Table 6.

#### Table 6: Source wise area irrigated (2010-11)

| Source      | Net irrigated area (ha) | Gross irrigated area (ha) |
|-------------|-------------------------|---------------------------|
| Canal       | 6634                    | 6641                      |
| Tank        | 128                     | 2312                      |
| Tubewells   | 98478                   | 99027                     |
| Other wells | 566 0                   | 5660                      |
| Total       | 110900                  | 111456                    |

## 2. Aquifer System

## 2.1 Geology

The rock formations exposed in Dholpur district are sedimentary in nature belonging to Vindhyan Super Group and are overlain in most part of the district by the Quaternary alluvium. The stratigraphic succession of different types of formations in the district is as follows:

| Quaternary           | Recent to sub recent    | Alluvium      | Clay, silt, sand, kankar, gravel and rock fragments                               |
|----------------------|-------------------------|---------------|-----------------------------------------------------------------------------------|
| Upper<br>Proterozoic | Vindhyan<br>Super Group | Bhander Group | Upper Bhander sandstone.<br>Sirbhu shale with bands of siltstone and<br>limeStone |

## 2.2 Hydrogeology

In Dholpur district, ground water occurs in mainly four hydrogeological formations. These hydrogeological formations are alluvium, sandstone, shale and limestone and among these formations, alluvium is the most important formation as it covers the maximum area and also it is the most potential among different hydrogeological formations. Hydrogeological map of the district is shown in Figure 3. The ground water bearing characteristics of the various formations are described below:

### Sirbhu shale

Sirbhu shales occur as water bearing formation in isolated patches located along the southern contact of upper Bhander sandstone with alluvium. As shale gets easily weathered into clayey products, its water storing capacity is very poor. Within shales generally ground water moves

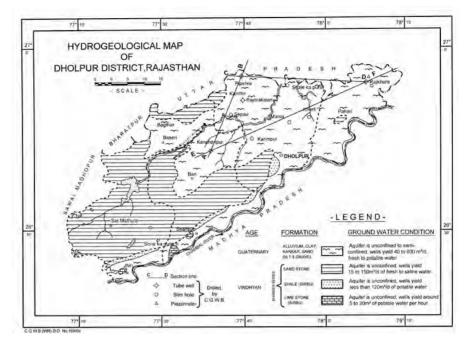



Figure 3: Hydrogeological map of Dholpur district

through joints and fractures, which do not persist much downwards or laterally and further the joints are filled with secondary materials making the shales a poor aquifer.

### Sirbhu limestone

Sirbhu limestone as a hydrogeological formation occurs in the extreme corner of the district near Chambal river. The investigation indicates that the cavernous nature of limestone is not properly developed and aerial distribution of this formation is very limited. Ground water occurs under water table conditions and yield from the open wells ranges from 5 to 20 m3/hr individually.

### Upper Bhander sandstone

Upper Bhander sandstone occurring in the central, southern and western part of the district is the second important hydrogeological formation in the district and in the aerial coverage it is next to alluvium. Ground water occurs under water table conditions. Sandstone is very hard compact, fine grained, devoid of secondary porosity and very much resistant to weathering and as such water holding capacity of sandstone is very poor. In general, the yield of wells tapping this aquifer is very poor. However, good yielding wells have been observed where extent and spacing of joints and fractures are more. The yield of wells tapping sandstone ranges from 15 to 150 m3/day and recuperation is markedly slow.

### Alluvium

Alluvium is the most important hydrogeological formation in the district and it covers maximum area. Ground water occurs under unconfined condition. In the district mainly sandy clay, silty clay, sand and gravel type of aquifers have been observed. In some of the area clay with kankar also forms aquifers, which is generally very poor aquifer. Whenever, aquifers contain mainly sand/ sand and gravel, it becomes the potential aquifer and yield from open wells ranges from

200 to 800  $\text{m}^3$ /day and discharge from tubewells as high as 726 lpm (Piphera) and 632 lpm (Rajakhera). The open wells tapping clay and kankar as aquifer have poorest yield and recuperation is also slow in these wells. The intermediate yields are obtained from the aquifer comprised of silty clay and sandy clay.

Three dimension aquifer geometry and characterization model has been prepared using Rock Works Software which is given in Figure 4.

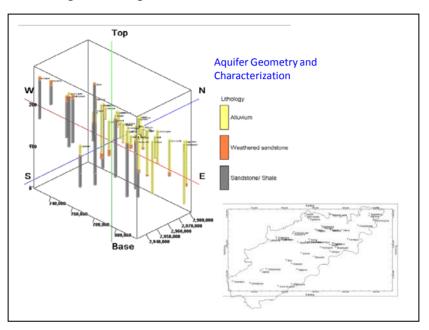
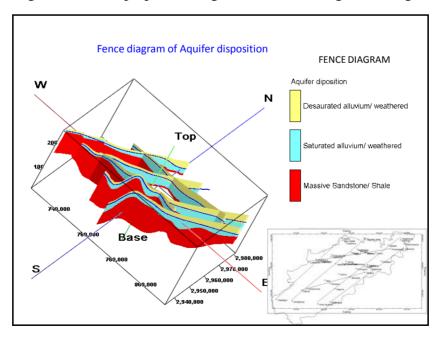




Figure 4: Aquifer Geometry and Characterization Model

The 3-D Fence diagram has been prepared using the said software given in Figure 5.



**Figure 5: Fence Diagram of Aquifer Disposition** 

The hydrogeological sections showing aquifer disposition have been prepared and depicted in Figures 7A to 7C and cross section is given in Figure 6.

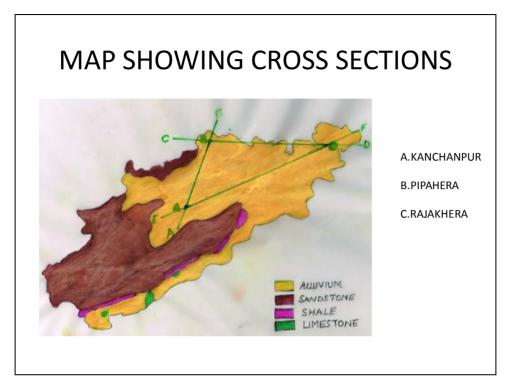



Figure 6: Map showing Cross Sections

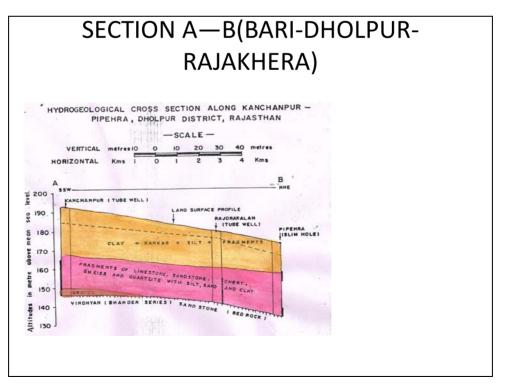



Figure 7A: Section A - B

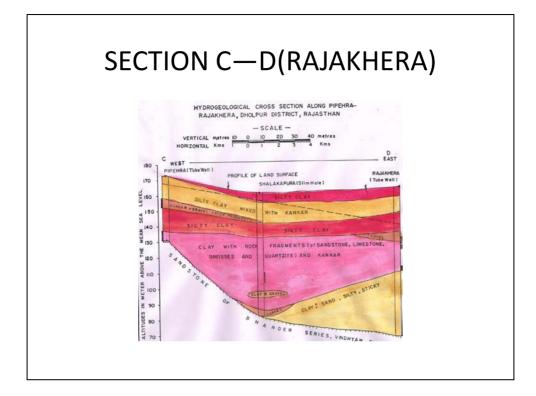
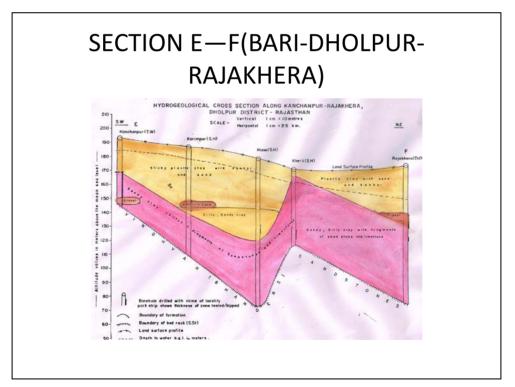




Figure 7B: Section C - D



**Figure 7C: Section E-F** 

### 2.3 Ground Water Scenario

Central Ground Water Board periodically monitors the National Hydrograph Network Stations (NHNS) in the district, four times a year i.e. in January, May (Premonsoon), August and November (Postmonsoon).

### Depth to Water Level – Pre-monsoon (May-2014):

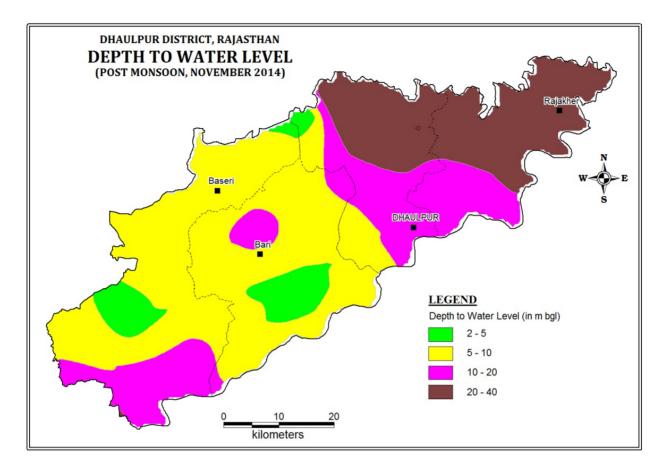
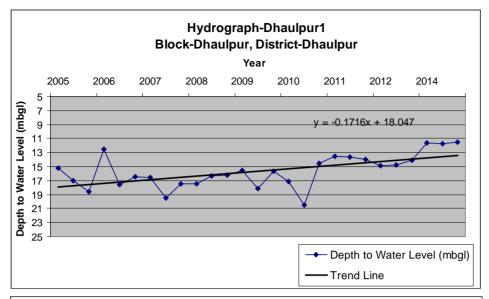
During pre-monsoon (May, 2014), the depth to water level in the district varied from 4.97 to 35.10 mbgl. Majority of wells monitored (64.29%) have registered water levels in the range of 5 to 20 mbgl. Deeper water levels (> 20 mbgl) were recorded in 28.57% wells monitored in northern and northwestern parts of the district. The Depth to water level map for pre-monsoon 2014 is given in Figure 8.

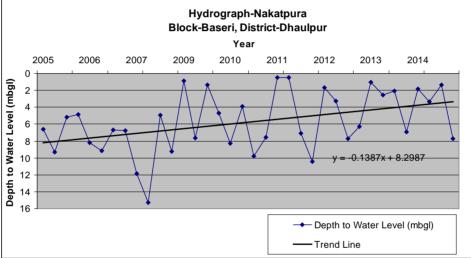
### Depth to Water Level – Post-monsoon (November, 2014):

During post-monsoon period (November, 2014), the depth to water level varied from 3.07 to 39.90 mbgl. Depth to water level in the range of 2 to 5 mbgl was recorded in 30.77% of the wells monitored in parts of Bari, Baseri and Dholpur blocks. Depth to water level in the range of 5 to 20 mbgl were recorded in 45.45% wells in the district. Deeper water levels (>20mbgl) were reported from southwestern, northern and northeastern parts of the district. Depth to water level map of the district during post-monsoon period is shown in Figure 9.



Figure 8: Depth to Water Level Map (May 2014)



Figure 9: Depth to Water Level Map (November, 2014)

Analysis of long term water level data of selected hydrograph stations for the last ten years (2005-2014) indicates that most of the selected representative wells from each block have shown rising water levels. The Badh Gajpura station of Bari Block, Nakatpura station of Baseri Block and Dholpur1 station of Dholpur Block have shown water level rises of 0.09, 0.14, 0.17 m/year, respectively. The water level falls of 0.36 m/year at Pipehera station of Dholpur Block and 0.11 m/year at Sikronda station of Rajakhera Block have been observed during this period. The long term trends of selected stations are given below in table 7 and hydrographs for these are given in Figure 10.

| Table 7: Long term trends (2005-2014) for selected hydrograph stations |  |
|------------------------------------------------------------------------|--|
|                                                                        |  |

| Name of Station | Block     | Trend (m/year) |
|-----------------|-----------|----------------|
| Gajpura         | Bari      | -0.09          |
| Nakatpura       | Baseri    | -0.14          |
| Dholpur1        | Dholpur   | -0.17          |
| Pipehera        | Dholpur   | 0.36           |
| Sikronda        | Rajakhera | 0.11           |





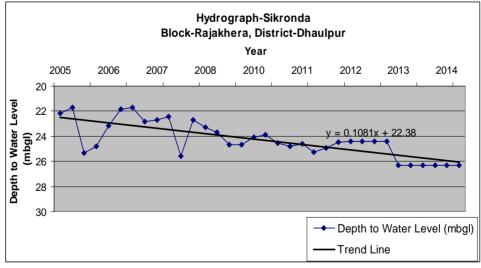



Figure 10: Hydrographs of Dholpur district

## **3.** Chemical Quality of Ground Water

The range of chemical constituents of ground water in Dholpur district during pre-monsoon 2014 is furnished in Table 8.

| Chemical constituent      | Range     |
|---------------------------|-----------|
| pH                        | 7.60-8.48 |
| EC in µS/cm at 25°C       | 150-3200  |
| Bicarbonate HCO 3 in mg/l | 207-927   |
| Chloride in mg/l          | 43-426    |
| Nitrate NO 3 in mg/l      | 5.1-202.5 |
| Fluoride in mg/l          | 0.35-2.93 |

### Table 8: Chemical constituents in ground water

In general, quality is good for drinking, irrigation and industrial use in the shallow water. The deeper aquifer also shows that quality is good except at localized places and there is little change in the quality of ground water with depth.

## Electrical Conductivity

The electrical conductivity (EC) of ground water in the district varies from 150-3220  $\mu$ S/cm at 25°C. Quality of ground water is generally fresh with EC below 3000  $\mu$ S/cm at 25°C in major parts of the district (Figure 11). EC above 3000  $\mu$ S/cm at 25°C has been observed in some localised pockets in Dholpur block.

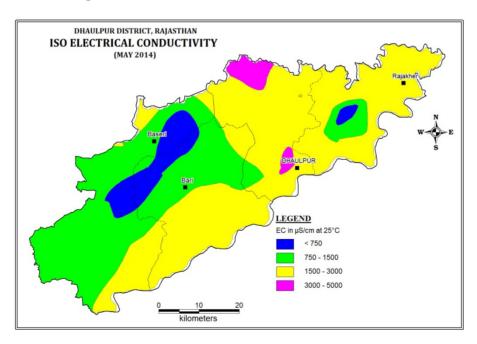



Figure 11: Iso Electrical Conductivity Map (May, 2014)

Fluoride

Fluoride concentration in ground water has been found to vary from 0.33 to 2.93 mg/l. Fluoride above its permissible limit of 1.5 mg/l has been observed in Bari, Baseri and Rajakhera Blocks (Figure 12).

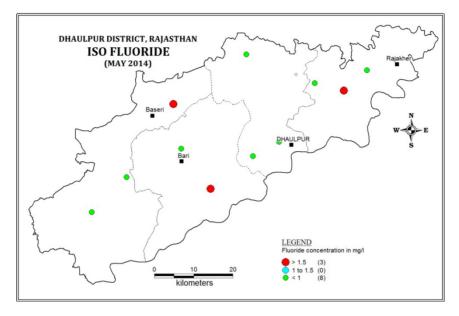



Figure 12: Fluoride Map (May, 2014)

#### Nitrate

Nitrate concentration in ground water varies from 5.1 to 202.5 mg/l. Nitrate concentration in excess of maximum permissible limit of 45 mg/l prescribed by BIS in drinking water has been reported from Bar, Baseri and Dholpur Blocks (Figure 13). In rest of the blocks, nitrate content in ground water is well within the maximum permissible limit.

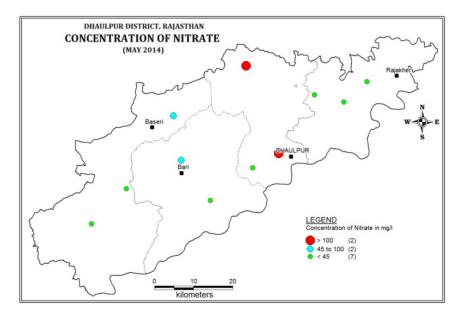



Figure 13: Nitrate Distribution Map (May, 2014)

## 4. Ground Water Resources

Central Ground Water Board and Rajasthan State Ground Water Department have jointly estimated the ground water resources of Dholpur district as on 31.03.2013 based on GEC-97 methodology (Table 9). Ground Water Resource estimation was carried out for 2486.14 sq.km. area, out of which 51.5% area comprises of older alluvium as aquifer and in the remaining area, sandstone forms the potential aquifer. The potential zone of command area in the district is around 81.11 sq km covering about 36.44 sq km area under dams and bundhs. The area in command is well connected by about 95.99 km length of main and about 67.48 km length of minor canals. The rest of the area falls under non-command area.

| Block         | Total<br>Annual<br>Ground<br>Water<br>Recharg<br>e | Natural<br>Discharg<br>e During<br>Non-<br>Monsoo<br>n Season | Net<br>Annual<br>Ground<br>Water<br>Availabilit<br>y | Existin<br>g Gross<br>Ground<br>Water<br>Draft<br>For All<br>Uses | Allocation<br>For Dom.<br>& Ind.<br>Requireme<br>nt | Net G.W.<br>Availabilit<br>y For<br>Future<br>Irrigation<br>Dev. | Stage Of<br>G.W.<br>Developme<br>nt | Categor<br>y Of<br>Block |
|---------------|----------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|-------------------------------------|--------------------------|
| Bari          | 74.4954                                            | 5.1386                                                        | 69.3568                                              | 63.4091                                                           | 8.3457                                              | 6.8405                                                           | 91.42                               | Semi<br>critical         |
| Baseri        | 82.4505                                            | 5.5754                                                        | 76.8751                                              | 73.1102                                                           | 7.7803                                              | 10.6754                                                          | 95.1                                | Semi<br>critical         |
| Dholpur       | 77.5335                                            | 6.9686                                                        | 70.5649                                              | 126.014<br>1                                                      | 13.4111                                             | 0                                                                | 178.58                              | Over<br>Exploite<br>d    |
| Rajakher<br>a | 65.0262                                            | 6.5026                                                        | 58.5236                                              | 76.1335                                                           | 6.24                                                | 0                                                                | 130.09                              | Over<br>Exploite<br>d    |
| Total         | 299.505<br>6                                       | 24.1852                                                       | 275.3204                                             | 338.666<br>9                                                      | 35.7771                                             | 17.5159                                                          | 123.01                              | Over<br>Exploite<br>d    |

| Table 9: Block wise ground water resources (As on 31.03.2013) | Table 9: Block | wise ground | water resources | (As on 31.03.2013) |
|---------------------------------------------------------------|----------------|-------------|-----------------|--------------------|
|---------------------------------------------------------------|----------------|-------------|-----------------|--------------------|

The total annually replenishable resource of the district has been assessed to be 299.505 MCM and net annual ground water availability has been estimated to be 275.3204 MCM. The Gross annual ground water draft for all uses has been estimated to be 338.6669 MCM. The overall stage of ground water development in the district is 123.01%. Out of total 4 Blocks, 2 fall under Overexploited category and 2 under Semi critical category. The block wise details of replenishable ground water resource assessment in the district are given in Table 10.

## 5. Ground Water Related Issues

Out of total 4 blocks, 2 blocks in the district are over-exploited, where stage of ground water development has exceeded 100%, leaving no further scope for ground water development. These blocks require judicious development of ground water. Quality of ground water is generally potable, except for a few pockets, where high Electrical Conductivity, Nitrate and Iron have been reported.

## 6. Management Strategy

Out of total 4 blocks, 2 no. of blocks of this district are over exploited, thereby, leaving limited scope of further ground water development for various consumptions and area is devoid of sustained surface water bodies. In order to manage the ground water resources and to control further decline in water levels, a management plan has been proposed. In order to manage the ground water resources and to control further decline in water levels, a management plan has been proposed. In order to manage the ground water resources and to control further decline in water levels, a management plan has been proposed. The management plan comprises two components- supply side management and demand side management. Since there is very little surplus surface water available in this district, very little intervention in the form of supply side management could be proposed.

### 6.1 Supply Side Management

The supply side management of ground water resources can be done through the artificial recharge of surplus runoff available within river sub basins and micro watersheds. Also it is necessary to understand the unsaturated aquifer volume available for recharge. The unsaturated volume of aquifer for the Dholpur district is computed based on following; the area feasible for recharge, unsaturated depth below 5 m bgl and the specific yield of the aquifer.

6.1.1 Artificial recharge to ground water through interventions of various structures

The following parameters are inevitable for planning of artificial recharge to ground water.

- Availability of sufficient storage space to accommodate recharged water
- Availability of surplus water to recharge
- Feasibility of sub-surface geological formations

In case of Dholpur district, sufficient sub-surface storage space is available to accommodate the recharged water. Details of feasible recharge structures to recharge the surplus water in respective block are given in Table 10.

| Block     | Usable Surplus<br>Water (MCM) | Recharge<br>Shafts<br>proposed | Percolation<br>Tanks<br>Proposed | Recharge<br>from<br>Recharge<br>Shaft<br>(MCM) | Recharge<br>from<br>Percolation<br>Tanks<br>(MCM) | Total<br>Recharge<br>(MCM) | Effective<br>Recharge<br>(MCM) |
|-----------|-------------------------------|--------------------------------|----------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------|--------------------------------|
| Bari      | 44.16                         | 76                             | 66                               | 2.28                                           | 13.20                                             | 15.48                      | 12.38                          |
| Baseri    | 30.32                         | 72                             | 38                               | 2.16                                           | 7.60                                              | 9.76                       | 7.81                           |
| Dhaulpur  | 29.52                         | 53                             | 22                               | 1.59                                           | 4.40                                              | 5.99                       | 4.79                           |
| Rajakhera | 49.66                         | 41                             | 45                               | 1.23                                           | 9.00                                              | 10.23                      | 8.18                           |

 Table 10: Block-wise details of feasible recharge structures

It can be observed that 33.168 MCM of effective recharge is possible through Supply side Management.

### **6.2 Demand Side Management**

Though not much augmentation can be done through supply side management due to less availability of surplus water, applying the techniques of demand side management can save large amount of water. Demand side management has been proposed through two interventions – changing the more water intensive wheat crop to gram (chick pea) and use of sprinkler irrigation in the areas where rabi crop is being irrigated through ground water.

### 6.2.1 Change in cropping pattern

In view of the alarming decline of water level, drastic reduction in saturated thickness of aquifer and resulting of depletion of aquifer, there is need to bring paradigm change/shift in cropping pattern in the area. It is proposed to grow low water requirement crop like gram in the instead of wheat. Growing of gram will save the water to the tune of about 100 mcm per annum @ 0.1m (Table 11).

### 6.2.2 Adoption of modern practice of sprinkler irrigation/improved irrigation practices

Data indicate that flooding method of irrigation is still in practice in many parts of the district which causes wastage of ample quantity of water. In view of this, it is proposed to bring about 50% of total irrigated area under sprinkler irrigation which may save water to the tune of about 64.67mcm/annum @0.08m (Table 11).

| Block     | Irrigated<br>Area (ha) | Irrigated<br>Area<br>proposed for<br>irrigation<br>through<br>sprinkler (ha) | Water Saving<br>by sprinkler in<br>MCM (@0.08<br>m) | Irrigated<br>Area (ha) | Irrigated Area<br>under wheat<br>proposed for<br>Gram cultivation<br>(ha) | Water Saving by<br>change in cropping<br>pattern in MCM<br>@0.1 m | Total Water saving<br>in MCM |
|-----------|------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|
| Bari      | 18325                  | 9163                                                                         | 7.33                                                | 18325                  | 4348                                                                      | 4.35                                                              | 11.68                        |
| Baseri    | 20180                  | 10090                                                                        | 8.07                                                | 20180                  | 5069                                                                      | 5.07                                                              | 13.14                        |
| Dholpur   | 29107                  | 14554                                                                        | 11.64                                               | 29107                  | 6072                                                                      | 6.07                                                              | 17.71                        |
| Rajakhera | 34758                  | 17379                                                                        | 13.9                                                | 34758                  | 8077                                                                      | 8.08                                                              | 21.98                        |

#### Table 11: Block-wise water saving through change in cropping pattern and irrigation practice

Considerable saving of ground water can be achieved if the proposed supply side and demand side management plans are implemented. With the implementation of supply side management, additional 33.168 MCM/year can be recharged. It can be seen that not much augmentation in ground water resources can be achieved through artificial recharge due to constraints of availability of surplus/non-committed surface water. However, considerable improvement in ground water situation can be achieved with implementation of demand side management plans.

With the proposed use of sprinkler irrigation in the areas where rabi crop is being irrigated through ground water it is expected that 40.94 MCM/year can be saved due to reduction in pumping. The water saving under change in cropping pattern is expected to be 23.57 MCM/year. Therefore, total water saving through demand side management is 64.51 MCM/year. Block wise details of ground water recharged and saved along with expected improvement in stage of ground water development is given in Table 12.

| Block         | Net<br>Annual<br>Ground<br>Water<br>Availabili<br>ty | Additional<br>recharge<br>from<br>RWH &<br>conservati<br>on (mcm) | Total net<br>GW<br>availabilit<br>y after<br>interventi<br>on (mcm) | Existing<br>Gross<br>Ground<br>Water<br>Draft for<br>all uses | Saving<br>of GW<br>through<br>projects<br>(mcm) | Net GW<br>draft<br>after<br>interventi<br>ons<br>(mcm) | Present<br>stage of<br>GW<br>develop<br>ment<br>(%) | Projected<br>stage of<br>GW<br>developme<br>nt (%) |
|---------------|------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Bari          | 69.3568                                              | 12.38                                                             | 81.7368                                                             | 63.4091                                                       | 11.68                                           | 51.7291                                                | 91.42                                               | 63.29                                              |
| Baseri        | 76.8751                                              | 7.81                                                              | 84.6851                                                             | 73.1102                                                       | 13.14                                           | 59.9702                                                | 95.1                                                | 70.82                                              |
| Dholpur       | 70.5649                                              | 4.79                                                              | 75.3549                                                             | 126.0141                                                      | 17.71                                           | 108.3041                                               | 178.58                                              | 143.73                                             |
| Rajakhe<br>ra | 58.5236                                              | 8.18                                                              | 66.7036                                                             | 76.1335                                                       | 21.98                                           | 54.1535                                                | 130.09                                              | 81.19                                              |
| Total         | 275.3204                                             | 33.16                                                             | 308.4804                                                            | 338.6669                                                      | 64.51                                           | 274.1569                                               | 123.01                                              | 88.87                                              |

Table 12: Summary of expected benefit of management strategies, Dholpur district

## Part B

## Block wise Aquifer Maps and Management Plans

| Name Of The Block                                                  | BASERI      | BARI       | DHOLPUR    | RAJAKHERA  |
|--------------------------------------------------------------------|-------------|------------|------------|------------|
| Geographical Area (Km2)                                            | 816.24      | 1001.42    | 609.32     | 582.07     |
| Rainfall (1971-2014)                                               | 435.8289474 | 616.478947 | 531.186842 | 690.013158 |
| Groundwater Resource Availability And<br>Extraction                |             |            |            |            |
| Net G.W. Availability (Mcm)                                        | 69.3568     | 76.8751    | 70.5649    | 58.5236    |
| Irrigation Draft                                                   | 55.508382   | 66.546     | 118.1673   | 69.3       |
| Existing Water Demand                                              | 7.90079     | 6.56416    | 7.84677    | 6.83353    |
| Future Water Demad For Domestic &<br>Industries                    | 6.8405      | 10.6754    | 0          | 0          |
| Water Level Behaviour, DTW (M)                                     | 13.03       | 12.2       | 11.6       | 11.39      |
| Trend (M/Yr)                                                       | 25          | 0.5        | 0.64       | 0.56       |
| Aquifer Disposition                                                |             |            |            |            |
| Geology                                                            | Ao/Sc       | Ao/Sc      | Ao/Sc      | Ао         |
| Depth Of Occurrence                                                | 80          | 80         | 85         | 60         |
| Type Of Aquifer                                                    | Unc         | Unc        | Unc        | Unc        |
| Thickness Of Aquifer (Utilisable)                                  | 5.2         | 5.13       | 6.75       | 4.29       |
| Hydraulic Characters (Sp.Yield%)                                   | 0.006       | 0.006      | 0.006      | 0.0100     |
| Groundwater Resource Extraction,<br>Contamination And Other Issues |             |            |            |            |
| Aquifer Wise Resource Availability And<br>Extraction               | 33.5979     | 31.8262    | 23.6474    | 49.0335    |

| Name Of The Block                                                       | BASERI                                 | BARI                                   | DHOLPUR                                | RAJAKHERA                           |
|-------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|
| Whether Significant Decline Pre Monsoon/<br>Post Monsoon                | Yes                                    | Yes                                    | Yes                                    | Yes                                 |
| Categorisation                                                          | Semi Critical                          | Semi Critical                          | Over Explo.                            | Over Explo.                         |
| Chemical Quality Of Groundwater In General                              | Fresh                                  | Fresh                                  | Fresh                                  | Fresh                               |
| Other Issues                                                            | Inadequate<br>Space For<br>Groundwater | Inadequate<br>Space For<br>Groundwater | Inadequate<br>Space For<br>Groundwater | Inadequate Space<br>For Groundwater |
| Groundwater Resource Enhancements                                       |                                        |                                        |                                        |                                     |
| Aquifer Wise Space Available For Recharge<br>And Proposed Interventions | 150.352                                | 33.195                                 | 17.004                                 | 25.846                              |
| Other Interventions Proposed, If Any                                    |                                        |                                        |                                        |                                     |
| Surplus Available In The Zone (In Mm3)                                  | 0                                      |                                        | 0.10701256                             | 1.2458                              |
| Surplus Available Ins Zone As Per The Water<br>Level (In Mm3)           | 0                                      |                                        | 0.107                                  | 1.2458                              |
| No. Of RS 0.03 MCM/RS                                                   | 0                                      |                                        | 0.10701256                             | 0.872727                            |
| No Of RS Possible In Block (As Per Water<br>Bodies)                     | 0                                      | 0                                      | 3                                      | 29                                  |
| Demand Side Interventions                                               |                                        |                                        |                                        |                                     |
| Advanced Irrigation Practices                                           |                                        |                                        |                                        |                                     |
| Irrigated Area (Ha) Proposed For Irrigation<br>Through Sprinkler        | 10090                                  | 9162.5                                 | 14553.5                                | 17379                               |
| Change In Cropping Pattern                                              |                                        |                                        |                                        |                                     |
| Irrigated Area Under Wheat (Ha)                                         | 20180                                  | 18325                                  | 29107                                  | 34758                               |
| Irrigated Area (Ha) Under Wheat Proposed For<br>Gram Cultivation        | 5069                                   | 4348                                   | 6072                                   | 8077                                |
| Alternate Water Sources                                                 | NA                                     | NA                                     | NA                                     | NA                                  |

| Name Of The Block                                                | BASERI         | BARI           | DHOLPUR        | RAJAKHERA      |
|------------------------------------------------------------------|----------------|----------------|----------------|----------------|
| Regulation And Control                                           | To Be Notified | To Be Notified | To Be Notified | To Be Notified |
| Other Interventions Proposed, If Any                             |                |                |                |                |
| Surplus Available In The Zone (In Mm3)                           | 0              |                | 0.10701256     | 1.2458         |
| Surplus Available Ins Zone As Per The Water<br>Level (In Mm3)    | 0              |                | 0.107          | 1.2458         |
| No. Of RS 0.03 MCM/RS                                            | 0              |                | 0.10701256     | 0.872727       |
| No Of RS Possible In Block (As Per Water<br>Bodies)              | 0              | 0              | 3              | 29             |
| Net G.W. Availability (Mcm)                                      | 74.6204        | 45.1397        | 41.0252        | 52.4579        |
| Additional Recharge From RWH &<br>Conservation (Mcm)             | 0.00           | 0.00           | 0.07           | 0.87           |
| Total Net G.W. Availability After Intervention (Mcm)             | 74.62          | 45.14          | 41.10          | 53.33          |
| Existing G.W Draft For All Purpose (Mcm)                         | 194.56         | 77.41          | 100.29         | 88.38          |
| Saving Of Ground Water Through Projects<br>(Mcm)                 | 13.5446        | 12.0445        | 18.29694       | 22.67536       |
| Net GW Draft After Interventions (Mcm)                           | 181.0144       | 65.3701        | 81.99516       | 65.70894       |
| Present Stage Of G.W. Development (%)                            | 91.42          | 95.1           | 178.58         | 130.09         |
| Projected Stage Of G.W. Dev. (In %)                              | 63.29          | 70.89          | 143.73         | 81.19          |
| Irrigated Area Under Wheat (Ha)                                  | 20180          | 18325          | 29107          | 34758          |
| Irrigated Area (Ha) Under Wheat Proposed For<br>Gram Cultivation | 5069           | 4348           | 6072           | 8077           |
| Water Saving By Change In Cropping Pattern<br>In Mcm @0.1 M      | 5.07           | 4.35           | 6.07           | 8.08           |
| Water Saving By Sprinkler In Mcm @0.08 M                         | 8.072          | 7.33           | 11.6428        | 13.9032        |
| Water Saving By Land Levelling In Mcm<br>@0.02 M                 | 0.4036         | 0.3665         | 0.58214        | 0.69516        |