

केन्द्रीय भूमिजल बोर्ड

जल शक्ति मंत्रालय, जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

भारत सरकार

Central Ground Water Board

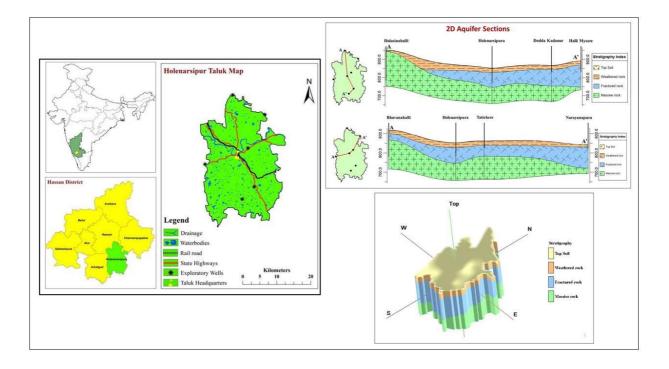
Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPPING AND MANAGEMENT PLAN

Holenarasipura Taluk, Hassan District, Karnataka

> दक्षिण पश्चिमी क्षेत्र, बेंगलुरु South Western Region, Bengaluru


भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास एवं गंगा संरक्षण विभाग <u>केन्द्रीय भूमिजल बोर्ड</u> दक्षिण पश्चिमी क्षेत्र, बेंगलुरु

Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation <u>Central Ground Water</u> <u>Board</u> South Western Region, Bengaluru

Aquifer Maps and Management Plan, Holenarasipura Taluk, Hassan District, Karnataka State

(AAP: - 2021-2022)

By

A. Sakthivel, Scientist 'B', CGWB, SWR, Bengaluru

SEPTEMBER 2022

Aquifer Maps and Management Plan, Holenarasipura Taluk, Hassan District, Karnataka State

(AAP: - 2021-2022)

Contents

1.	SALIENT FEATURES	1
	1.1 Study area	1
	1.2 Population	2
	1.3 Rainfall and Climate	2
	1.4 Agriculture & Irrigation	3
	1.5 Geomorphology, Physiography & Drainage	5
	1.6 Soil	6
	1.7 Groundwater resource availability and extraction	7
	1.8 Total Groundwater resource availability	7
	1.9 Water level behavior	8
2.	AQUIFER DISPOSITION	9
	2.1 Aquifer Types	9
3. (GROUNDWATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER	
	ISSUES	
	ISSUES	
		11
4.	 3.1 Comparison of Groundwater Resource and Extraction 3.2 Chemical quality of groundwater and contamination	11 11 T
4.	3.1 Comparison of Groundwater Resource and Extraction3.2 Chemical quality of groundwater and contamination	11 11 T
4.	 3.1 Comparison of Groundwater Resource and Extraction	11 11 T 15 15
	 3.1 Comparison of Groundwater Resource and Extraction	11 11 T 15 15 17
4.	 3.1 Comparison of Groundwater Resource and Extraction	11 T 15 15 17 17
4.	 3.1 Comparison of Groundwater Resource and Extraction	11 T 15 15 17 17 17
4.	 3.1 Comparison of Groundwater Resource and Extraction	11 T 15 15 17 17 17 18
4.	 3.1 Comparison of Groundwater Resource and Extraction	11 11 T 15 17 17 17 18 18
4.	 3.1 Comparison of Groundwater Resource and Extraction	11 11 T 15 17 17 17 18 18
4.	 3.1 Comparison of Groundwater Resource and Extraction	11 11 T 15 17 17 17 18 18 18

AQUIFER MANAGEMENT PLAN FOR HOLENARASIPURA TALUK, HASSAN DISTRICT, KARNATAKA STATE

1. SALIENT FEATURES

Name of the Taluk	: Holenarasipura
District	: Hassan
State	: Karnataka
Area	: 599 sq.km
Population (Census 2011)	: 182187
Normal annual rainfall	: 1142 mm

1.1 Study area

Aquifer mapping studies have been carried out in Holenarasipura taluk, Hassan district, Karnataka State under National Aquifer Mapping Project. Holenarasipura covering an area of 599sq.km is situated between latitudes 12°36'34.92″N - 12°56'26.88″N and longitudes 76°9'33.12 ″E - 76°22'26.76″E. The area is bounded on the north by Hassan and Channarayapatna taluks of Hassan district, on the south by Krishnarajanagara taluk of Mysore district, on the east by the Mandya taluk of Mandya district, and on the west by Arkalgud taluk of Hassan district. The taluk has 03 hoblies, 26 Gram Panchayaths and 249 villages. Holenarasipura is the taluk headquarters. The location map of the Holenarasipura taluk is presented in

Fig-1.

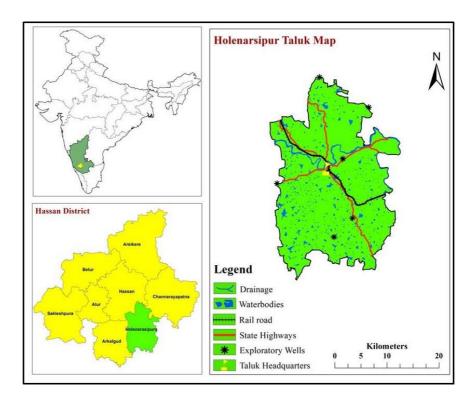


Fig 1: Location Map

1.2 Population

According to 2011 census, the human population in Holenarasipura taluk is 182187 out of which 17% constitutes the urban population and 83% constitutes the rural population. The taluk has an overall population density of 306 persons per sq.km. In Holenarasipura taluk, the decadal variation in population from 2001-2011 is 3.96 %. The population details are given in **Table-1**.

Total	Male	Female	Share of the district population	Rural population	Urban population	Decadal change in population	Decadal change in rural population	Decadal change in urban population
182187	91565	90622	10.25	152213	29974	3.96	2.62	9.84

Table-1: Population details

Source: District at a glance 2019-20, Govt. of Karnataka

1.3 Rainfall and Climate

Holenarasipura taluk enjoys semi-arid climate. Dryness and hot weather prevails in major part of the year. The area falls under Southern Dry agro-climatic zone of Karnataka state and is categorized as drought prone.

The climate of the study area is quite agreeable and free from extremes. The year is usually divided into four seasons: summer from March to May; rainy season or south-west monsoon season from June to September; post-monsoon season covering the months of October and November and dry or winter Season from December to February.

The data from the year 1981 to 2010 is analysed and presented in **Table2**. The data pertaining to these rain gauges is of long term nature and are well maintained. It is presumed that they are representative of the taluks and the same is used for analysis. Normal annual rainfall in Holenarasipura taluk for the period 1981 to 2010 is **791 mm**. The 10 years average monthly, seasonal and annual rainfall data of Holenarasipura taluk is given in **Table 3**. The Holenarasipura taluk has received less than normal annual rainfall during the last 10 years (2010 to 2019) except 2010.

Та	able 2 :	STATI	STICAL	ANAL	SIS OF	NORMAL ANN	IUAL R	AINFA	LL OF	HOLEN	ARASIPURA T	ALUK, H	IASSAN		RICT (1981-201	.0)
	Jan	Feb	Mar	Apr	May	PRE MONSOON	Jun	Jul	Aug	Sep	SOUTH WEST MONSOON	Oct.	Nov	Dec	NORTH EAST MONSOON	Annual
NRM	2	3	15	46	96	162	86	106	84	122	397	158	63	11	233	791
STDEV	6	11	29	34	59	81	62	87	52	84	153	127	65	17	156	242
CV%	371	353	187	75	62	50	72	82	62	69	39	80	102	154	67	31

		Та	ble 3: A		L RAINF		F HOLE	NARA	SIPURA	, HASS	AN DIST	RICT (2	2010 to	2019)		
Year	Jan.	Feb.	Mar.	Apr.	May.	PRE	Jun.	Jul.	Aug.	Sep.	MON	Oct.	Nov.	Dec.	POST	Annual
2010	0	0	1	45	111	157	68	88	138	161	455	180	221	2.0	403	1015
2011	0	0	27	58	100	185	55	43	50	35	183	184	111	0	295	663
2012	0	0	0	130	91	221	91	38	58	32	219	32	28	2	62	502
2013	0	36	22	52	0	110	91	38	58	32	219	32	28	2	62	391
2014	0	0	3	23	73	99	53	121	75	156	405	116	1	28	145	649
2015	0	0	15	134	103	252	97	1	67	54	219	65	101	8	174	645
2016	0	0	0	17	93	110	123	89	28	30	270	8	24	30	62	442
2017	0	0	12	45	110	167	14	35	63	229	341	89	9	28	126	634
2018	0	0	25	5	112	142	169	91	81	48	389	145	0	0	145	676
2019	0	0	0	51	69	120	65	27	209	99	400	140	30	11	181	701

1.4 Agriculture & Irrigation

Agriculture is the main occupation in Holenarasipura taluk. Major Kharif crops are, Ragi, Paddy, Maize, Jowar, Pulses and vegetables. Important crops of Rabi season are Maize, vegetables and oilseeds **(Table-4)**. Water intensive crops like sugarcane grown in 3.97 % of the total crop area. Coconuts and Arecanut grown in 12.44 % and oil seeds in 2.6% of total crop area in the taluk. Pulses are grown in 9.40% of the total area. Paddy is grown in 9880 Ha (23.57 %) and short duration crop vegetables are grown in 2870 Ha (6.85 %) of the crop area which requires groundwater during post monsoon season especially during summer.

Table-4: Cropping pattern 2018-2019 (Ha)

Crop	Paddy	Maize	Jowar	Ragi	Pulses	Pulses Fruits t		Oil seeds	Sugar cane	Flower crops	Coconuts/ Arecanut	Total crop
Area(ha)	9880	4855	1142	10275					1663	301		41914
Area %	23.57	11.58	2.72	24.51	9.40	2.91	6.85	1.31	3.97	0.72	12.44	100

Source: District at a glance 2019-20, Govt. of Karnataka

About 6.05% of the geographical area is covered by forest. It is observed that net sown area accounts for 54.58% and area sown more than once is 16.88 % of total geographical area in Holenarsipura taluk. Area not available for cultivation, the other uncultivable land and fallow land cover are 27.63%, 1.44% and 10.29 % respectively of total geographical area. About 60.77 % of net area irrigated is from bore/ tube wells, 28.99 % are from canals and 10.24 % from tanks constituting 39.23 % of irrigation is from surface water and 60.77 % from groundwater. Thus major source of irrigation is groundwater (**Fig.-2**). The details of land use and the details of Irrigation are given in **Table 5 and 6** respectively. The land use pattern is given in **Fig.-3**.

Total Geographical Area	Area under Forest	Area not available for cultivation	Other uncultivable land	Fallow land	Net sown area	Area sown more than once	Gross sown area
59524	3604	16447	860	6123	32490	10045	42535
% of the area	6.05	27.63	1.44	10.29	54.58	16.88	71.46

Table-5: Details of land use 2018-2019 (Ha)

Source: District at a glance 2019-20, Govt. of Karnataka

Table-6: Details of Irrigation

Source of Irrigation	Length in Km/No of structures	Gross area Irrigated (Ha)	Net area Irrigated (Ha.)	% of area
Canals	205	5891	5750	28.99
Tanks	333	2081	1610	10.24
Wells	5	0	0	0.00
Tube wells	2482	12349	9622	60.77
Lift Irrigation	10	0	0	0.00
Other Sources	0	0	0	0.00
Total	205/2830	20321	16982	100

Source: District at a glance 2019-20, Govt. of Karnataka

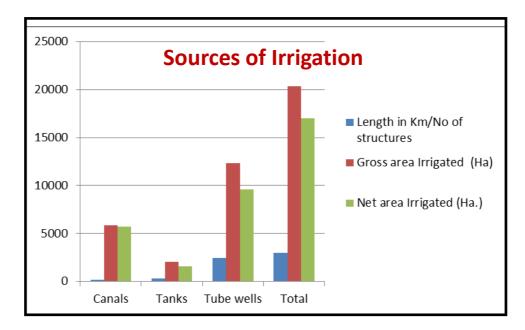


Fig 2-Sources of Irrigation

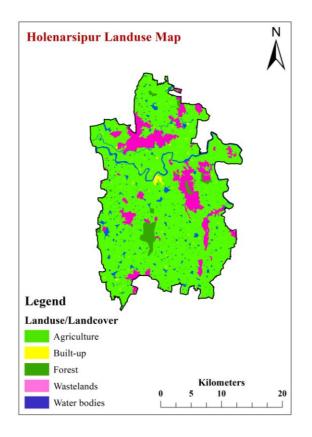


Fig. 3: Land use/land cover map

1.5 Geomorphology, Physiography & Drainage

The geomorphology of an area is the external appearance of landforms that gives a reliable picture of the underground strata and its physio-chemical condition. The different formations and the layer confirms and cogent to its geomorphology. The major part of the taluk area is occupied by plains followed by hills and pediments. The general slope of the area is towards south direction (**Fig.4**).

Hemavathi River is the major river draining the taluk which flows from west to east with the tributary streams. The taluk falls in the Cauvery basin. The tank system is well developed in the Taluk. The general drainage pattern is dendritic to sub-dendritic in nature (**Fig.5**).

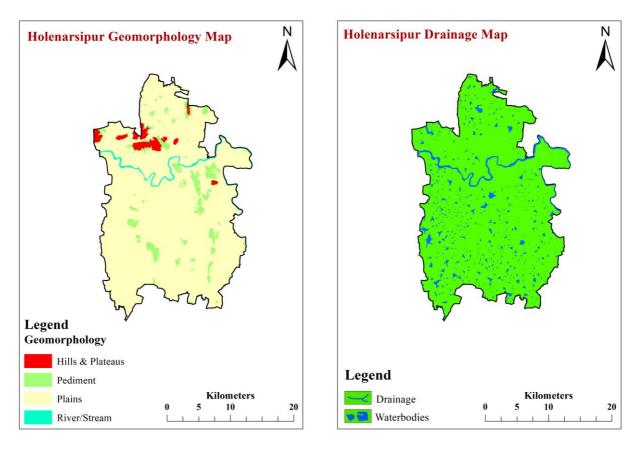


Fig. 4: Geomorphology map

Fig. 5: Drainage map

1.6 Soil

Soils play a major role in hydrologic control of the infiltrating water. Soils are generally classified by taking their color, texture, fertilities and chemical combinations includes salts, minerals and the solution effect over them. Most of the area consists of clayey and clayey skeletal soils. Clayey mixed soil is noticed in eastern part of the taluk **(Fig.6)**.

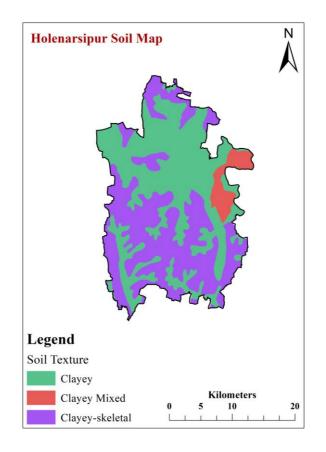


Fig. 6: Soil map

1.7 Groundwater resource availability and extraction

As per the groundwater resource estimation 2020 (**Table 7a**), the data on groundwater resources shows that the Net annual extractable groundwater resource **10539** ham. The existing gross groundwater extraction for irrigation is **5544** ham. The stage of groundwater development is **57%** and falling under '**Safe'** category.

Net Annual Annual Extractable Groundwat er Resource	Existing Groundwa ter Extraction for Irrigation Use	Existing Groundw ater Extraction for Industrial Use	GW Extraction for Domestic Use	Total Extracti on	Annual GW Allocation for Domestic Use as on 2025	Net Ground Net Groundwater Availability for future use	Stage of GW Extraction (%)	Category
10539	5544	0	515	6059	566	5326	57	SAFE

Table.7(a) Dynamic Groundwater Resource, (March 2020 Figures in Ham)

1.8 Total Groundwater resource availability

Aquifer wise total ground water resources up to 200 m depth as on March 2017 are given in **Table.7 (b)** below.

Taluk	Annual	Annual Fresh In-storage GW					
	Replenishable	re	sources	fresh GW			
	GW resources		resources				
		Phreatic	Fractured	Dynamic +Fresh in-			
			(Down to 200m)	storage			
Holenarasipura	9449	6539	1083	17070			

Table.7 (b): Total GW Resources (2017) (Ham)

(Source: Report of Groundwater Resources of Karnataka - March-2017)

1.9 Water level behavior

The water level data have been monitored from the representative dug wells and borewells under ground water level monitoring programme for both pre and post monsoon seasons during 2019 in Aquifer I. During pre-monsoon, the decadal average water level ranges from 1.46 to 19.10 mbgl (Fig.7), whereas in post-monsoon it varies from 1.39 to 16.04 mbgl (Fig.8). Whereas in Aquifer II, the water level ranges from 17.65 to 66.5 mbgl in premonsoon and 3.5 to 28.7 mbgl during post monsoon as per Groundwater Department, Govt of Karnataka data. However, the most frequent depth to water level range during the pre-monsoon period is 2 to 10 m.

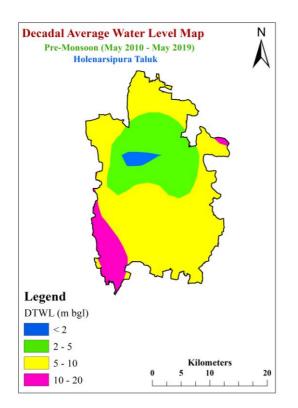


Fig.7:Pre-monsoon decadal average water level

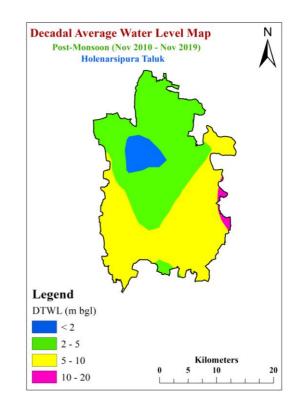


Fig.8:Post-monsoon decadal average water level

2. AQUIFER DISPOSITION

The occurrence and movement of water in the subsurface is broadly governed by geological frameworks i.e., nature of rock formations including their porosity (primary and secondary) and permeability. The principal aquifers in the area are Banded Gneissic Complex, Schist and Ultramafic rocks and the occurrence and movement of groundwater in these rocks is controlled by various factors and it primarily depends on the degree of interconnection of secondary pores/voids developed by fracturing and weathering in the hard rock.

2.1 Aquifer Types

In Holenarasipura Taluk, there are mainly two types of aquifer systems

- i. Aquifer-I (Phreatic aquifer) comprising Weathered Banded Gneissic Complex /Ultramafic/ Schist
- ii. Aquifer-II (Fractured aquifer) comprising Fractured Banded Gneissic Complex / Ultramafic/ Schist

In Holenarasipura Taluk, Banded gneissic complex occupies major part of the taluk area, Schist and Ultramafic formations are noticed as a isolated pocket. (**Fig.9**). Groundwater occurs within the weathered and fractured gneisses, schist and ultramafic under water table condition and semi-confined condition. In the Taluk, bore wells were drilled from a minimum depth of 115 mbgl to a maximum of 200 mbgl. Depth of weathered zone (Aquifer-I) ranges from 12 mbgl to 30 mbgl. Groundwater exploration reveals that aquifer-II, fractured formation was encountered between the depths of 12 to 181 mbgl. The yield of this aquifer unit II ranges from 0.5 to 2.4 lps and dry at some places. Tranmissivity ranges from 10 to 46 m^{2/}day. During monsoon period the wells tapping this aquifer zone sustains for 2 to 4 hrs /day of pumping, while during non-monsoon period (May to July) sustains for 1 to 3 hour/day of pumping. In general groundwater in fractured aquifer is potable. 2D and 3D aquifer disposition maps are shown in **Figure.10 and 11**.

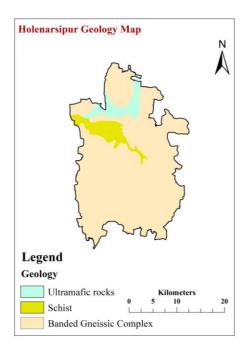


Fig.9: Geology map

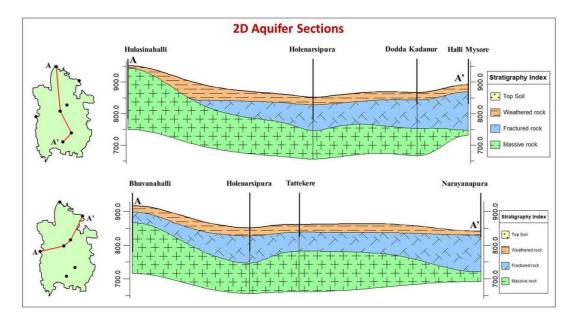


Fig. 10: 2D Aquifer section

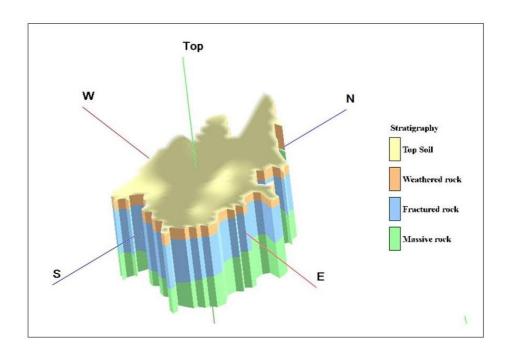


Fig.11: 3D Aquifer model

3. GROUNDWATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES

The main groundwater issues are limited Aquifer Thickness/ Sustainability, deeper water levels especially in Aquifer II, declining water level trend which are all inter-related or inter dependent. Hence, ground water dependedant areas and pockets get affected due to shortage in supply, particularly during the summer.

3.1 Comparison of Groundwater Resource and Extraction

The Dynamic Groundwater Resource 2017 and as on 2020 have been summarized and are shown in **Table.8**. It is observed that the groundwater availability in 2020 is more compared to 2017 due to water conservation measures and also groundwater extraction has for irrigation has increased in 2020. Groundwater resource availability and extraction over the years given in **Fig.12**.

Holenarasipura taluk	•		GW Extraction for all uses	Stage of GW Extraction %
March 2017	9449	5245	5611	59
March 2020	10539	5544	6059	57

 Table 8: Comparison of groundwater availability and draft scenario (in ham)

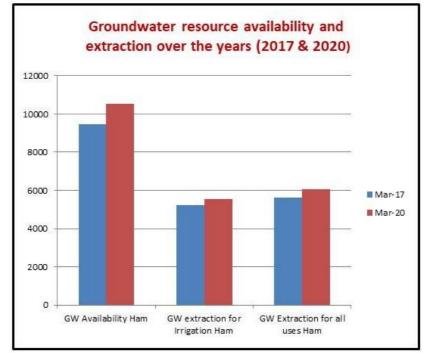


Fig.12: GW resource over the years

3.2 Chemical quality of groundwater and contamination

The quality of phreatic and of fractured aquifer in Holenarsipura taluk has been evaluated from wells inventoried during the field survey as monitoring wells of CGWB and State representing fractured aquifer is inadequate. Total 20 samples were collected, 10 each from phreatic aquifer and fractured aquifer. The well wise chemical analysis data of the samples representing the phreatic and fractured aquifer are given in the **Table.9**.

Electrical conductivity is the indicator of the total mineral content of water and hence it indicates the total dissolved solids (TDS) present in water. TDS of water determines its usefulness to various purposes. Generally, water having TDS <500 mg/L is good for drinking and other domestic uses. However, in the absence of alternative sources TDS up to 2000 mg/L may be used for drinking purposes. In phreatic aquifer groundwater quality is fresh and ranging from 507 to 1860 (μ S/cm at 25°C). Map showing the EC distribution in ground water is shown in **Fig.13**.

Nitrate ranges from 4 to 141 mg/l. In phreatic aquifer 80 % of wells analyzed have recorded nitrate greater than the permissible limit of 45 mg/l. In general, the groundwater quality of phreatic aquifer is potable. All the groundwater samples of phreatic aquifer generally have recorded the chemical parameters within the desirable limit. Map showing the nitrate distiribution in ground water is presented in **Fig.14.** In fractured aquifer 20 % of wells analysed have recorded nitrate greater than the permissible limit of 45 mg/l.

Chloride and Fluoride are within desirable limit (Figure 12). In general, groundwater quality in Holenarsipura taluk is good for drinking purpose except in some areas, where nitrate is found to be greater than the permissible limit as per Indian Standard IS 10500: 2012 for Drinking Water specification. Map showing the fluoride distribution in ground water is presented in **Fig.15**.

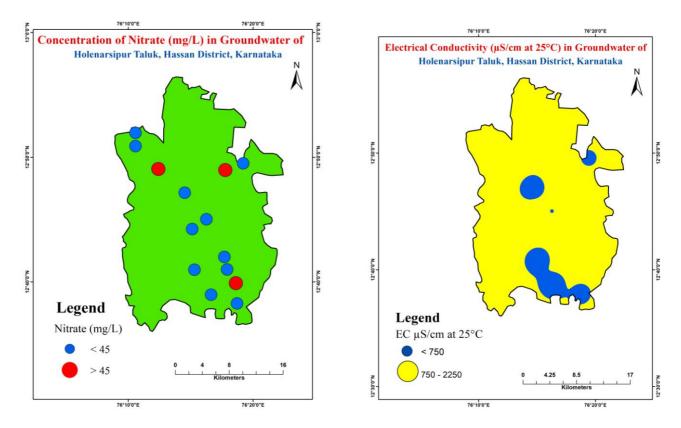


Fig.13: EC distribution map

Fig.14: Nitrate distribution map

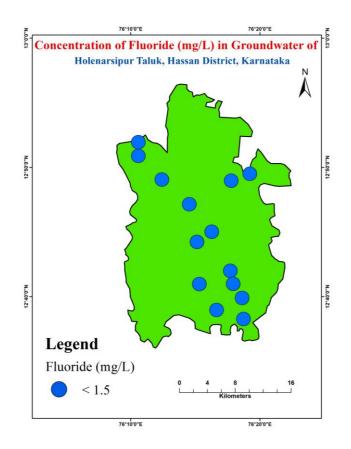
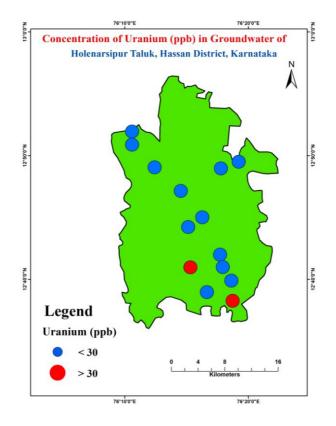
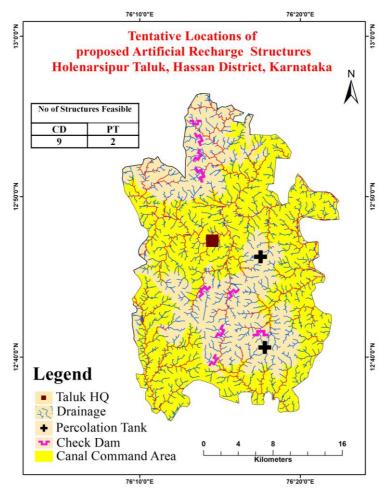



Fig.15. Map showing the nitrate distribution

Uranium is found in fractured aquifer of three groundwater samples exceeding the WHO Guideline values of 30 ppb. The Indian Standard IS 10500: 2012 for Drinking Water specification has specified the maximum acceptable limits for radioactive residues as alpha and beta emitters, values in excess of which render the water not suitable. These requirements take into account all radioactive elements including Uranium. No individual radioactive elements have been specifically identified. Uranium exceeds 30 ppb in Hirenahallikoppalu, Tejur and Hanekannambadi villages. It is the localized occurrence of Uranium concentration and detailed specific studies have to be carried out regarding Uranium behavior during rock water interaction. Further, repeat sample collection for Uranium studies will give the accurate and precise results to further ascertain the pre ence of Uranium in ground water which is very much needed in view of the above results.Map showing the Uranium distribution in the three presently reported pockets are shown in **Fig.16**.

Fig.16. Map showing the concentration of Uranium in ground water

S.no	Location	Source of	PH	EC	TH	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F	U
		GW		μS/cm						m	g/L					ppb
1	Jakavalli Koppal	BW	7.72	636	305	46	46	10	2.5	0	290	32	15	13	0.70	1.25
2	Mudalahippe	DW	7.96	1423	275	52	35	71	199.6	0	439	171	57	76	1.30	1.58
3	Holenarsipur	DW	7.93	507	125	28	13	29	59.6	0	244	21	ND	4	0.70	1.08
4	Bedanahalli	BW	7.67	745	225	52	23	58	7.5	0	293	36	37	45	0.50	18.23
5	Doddakadanuru	BW	7.9	1074	305	48	45	109	2.6	0	494	36	87	8	0.80	14.32
6	Kabburu Basaveswara	BW	7.57	1012	275	40	42	99	2.5	0	403	43	45	43	0.70	15.34
7	Yedagowdanahalli	BW	8.25	1053	575	26	123	29	3.2	0	580	57	21	54	0.60	2.79
8	Hanekannambadi	BW	8	664	310	32	56	32	2.9	0	397	21	19	12	0.50	39.47
9	Jogikoppalu	HP	7.68	635	205	38	27	59	4.8	0	258	36	46	16	0.60	0.81
10	Tejur	BW	7.95	624	150	20	24	77	4.5	0	268	36	38	12	0.70	48.80
11	Lakkur	BW	7.97	990	285	54	36	95	6.4	0	415	64	52	39	1.00	24.80
12	Yalleshpura	DW	8.17	1554	355	76	40	64	107.5	0	287	188	85	141	0.70	1.06
13	Halekote	DW	7.96	1398	330	70	38	105	129.2	0	409	146	78	45	0.70	3.02
14	Nyamanahalli	BW	7.85	894	350	50	54	52	4.0	0	311	75	49	33	0.80	0.98
15	Кирре	DW	7.32	1860	505	104	60	185	8.3	0	354	280	115	50	0.89	4.21
16	Hirenahallikoppalu	BW	7.71	1270	375	80	43	115	12.8	0	317	177	122	13	0.63	175
17	Odanahalli	НР	8.03	1690	565	120	64	118	10.4	0	482	188	117	49	0.46	0.35
18	Haragowdanahalli	НР	8.04	1620	155	32	18	125	287.2	0	525	149	87	48	1.07	11
19	Ichanahalli	НР	7.7	1500	185	42	19	155	169	0	488	167	87	48	1.14	3.11
20	Hariharapura	HP	7.99	1180	370	88	36	92	7.1	0	464	71	55	51	0.65	BDL


Table 9: Groundwater quality	v of Holenarasi	oura taluk (2022)
Table 5. Groundwater quant	y or moremunusi	

4. GROUNDWATER RESOURCE ENHANCEMENT AND PROPOSED MANAGEMENT STRATEGY

4.1 Resource Enhancement by Supply Side Interventions

The Master Plan for Artificial recharge to ground water prepared by CGWB (2020) recommended to recharge the de-saturated and dried-up phreatic aquifer r(Aq-I) in the taluk, through construction of artificial recharge structures such as Check dams and Percolation tanks **(Table.10)**. As of now, recharging dried-up phreatic aquifer in the taluk, through construction of artificial recharge and watershed treatment structures has already been taken up by state Government agencies and are being implemented under MGNREGA. The choice of recharge structures should be site specific and such structures need to be constructed in areas already identified as feasible for artificial recharge. The structures proposed in the taluk through utilizing the uncommitted surface runoff of 2.484MCM (CGWB 2020) is also presented in Table 11. By constructing 9 check dams and 2 percolation tanks, 0.002 lakhs hectares of additional irrigation potential is likely to be created. Area feasible for artificial recharge and the tentative location of the recharge structures in Holenarasipur taluk is shown in **Fig.17**. The tentative list of the proposed Percolation tanks and Check dams are listed **in Table 11a & 11b**.

Geographical area	602
Area feasible for AR	389
Non committed monsoon runoff available (MCM)	2.484
Number of Check Dams	9
Number of Percolation Tanks	2
Tentative total cost of the project (Rs. in lakhs)	138.541
Expected likely recharge (MCM)	1.863
Additional likely irrigation Potential (Lakh hectares)	0.002

Fig.17 Tentative Locations of AR Structures

Table.11 (a) Tentative Locations of Proposed Check Dams,
Holenarasipur Taluk, Hassan District.

SL.	Longitude	Latitude	Village	Grama Panchayat	Taluk
No					
1	76.24375000	12.66000000	H.Hindalahalli	Kytanahalli	Holenarasipur
2	76.25137655	12.68949379	T.Mayagondanahalli	Tatanahalli	Holenarasipur
3	76.29177833	12.69189000	Bachanahalli	Doddakadanur	Holenarasipur
4	76.26083333	12.73333333	Menaganahalli	Doddakadanur	Holenarasipur
5	76.23250000	12.73500000	Haralahalli	Ichanahalli	Holenarasipur
6	76.22984538	12.85787801	J.I.Shigaranahalli	Hariharapura	Holenarasipur
7	76.22846910	12.87583333	J.I.Thavanandhi	Hariharapura	Holenarasipur
8	76.22958333	12.89500000	Theranya	Malali	Holenarasipur
9	76.22449566	12.90885938	Karaganahalli	Malali	Holenarasipur

(Source: Master Plan, CGWB, 2020. It is likely that the number of structures proposed may vary depending upon the ground truth verification and feasibility criteria)

Table.11 (b) Tentative Locations of Proposed Percolation Tanks, Holenarsipura Taluk, Hassan District.

SL. NO	Longitude	Latitude	Village	Grama Panchayat	Taluk
1	76.29648996130	12.67647877000	Ragihalli Kaval	Nagaranahalli	Holenarsipura
2	76.29201939820	12.77078226650	Srimatadha Kaval	Mudalahippe	Holenarsipura

(Source: Master Plan, CGWB, 2020. It is likely that the number of structures proposed may vary depending upon the ground truth verification and feasibility criteria)

4.2 Demand Side Interventions

4.2.1 Advanced irrigation practices

Principal crops in the area are Ragi, Paddy, Maize, Jowar, Pulses and vegetables. About 60.77 % of net area irrigated is from bore through ground water source. In view of this, Water Use Efficiency (WUE) practices like Drip irrigation needs to be strengthened to save irrigation water by way of precision farming mechanism. This ultimately enhances the area under irrigation potential. The details of the resource enhancement through water conservation and artificial recharge taluk and also through Water Efficiency practices in Irrigation are shown in Table.12

SI. No.	Resource Details	As per 2020
		Estimation
1	Net Ground Water Availability in Ham	10539
2	Existing ground water draft for all uses in Ham	6059
3	Existing Stage of Ground Water Development in percentage %	57
4	Expected Recharge from Artificial Recharge sources in Ham	186
5	Cumulative Ground water availability in Ham	10725
6	Expected improvement in stage of ground water development %	56
8	Saving due to adopting Water Use Efficiency in Ham	1108
9	Ground water availability after AR & WUE in Ham	11833
10	Expected improved stage of ground water development after implementation of AR & WUE %	51
12	Cumulative improved stage of ground water development after all implementation %	6%

Table 12:	Details (of Resource	Enhancement
TONIC IL.	Details	01 110000100	Linunechich

4.2.2 Change in cropping pattern

Farmers are facing inadequacy of groundwater for agriculture during summer and can opt for more rain-fed millets and water efficient Pulses for agricultural production.

4.3 Ground Water Development Plan

In Holenarasipura taluk, the present stage of ground water extraction (2020) is 57 % with net ground water availability for future use is 5326 ham and total extraction is 6059 ham(2020) The ground water draft for irrigation purpose is 5544 ham, thus indicating that ground water irrigation needs to be encouraged in the area after considering the "Safe" level of extraction of 70%. As per the statistical data of 2019-20, about 60.77 % of net area irrigated is from bore/ tube wells, 28.99 % are from canals and 10.24 % from tanks constituting 39.23 % of irrigation is from surface water and 60.77 % from groundwater.

For this, it is imperative to have a robust ground water resource development plan for the area, which can be implemented in scientific manner. The implementation of the plan needs to be based on site specific detailed hydrogeological, geophysical and scientific surveys for pinpointing the sites for construction of dug wells and bore wells.

As per the conservative estimate and after considering the average unit draft figure for the taluk, about 400 dug wells (10-15 m depth; 3 to 5 m diameter) are recommended to be constructed in feasible areas. Further. as per the estimate about, 1500 bore wells (100 to 200 m depth; 150 mm dia) are also recommended to be drilled in feasible areas so as to maintain the safe category of the taluk. The likely additional irrigation potential which can be created considering prevailing crop water requirement for the area is will be 2280 ha.

4.4 Conjunctive use plan in water logged area

About 352 sk.km (35200 hectares) of the taluk is covered by canal command area of Hemavathi/Harangi/Lift Irrigation Projects. As of now, the command area is free from water logged and associated issues (Source: CADA as on March 2021). In spite of this condition, conjunctive use plan is also recommended to benefit the water deficit and tail end area of the irrigation command.

4.5 Regulation and Control

As per the resource estimation – 2020, Holenarasipura taluk falls under **Safe** category with the stage of ground water extraction of 57%. However, the mandatory guidelines like rainwater harvesting and artificial recharge issued by Karnataka Ground Water Authority needs to be strictly implemented in the taluk, so that quality of ground water will improve in due course of time.

4.6 Other interventions proposed

- Remedial measures need to be adopted in the areas affected by Nitrate rich groundwater through artificial recharge and water conservation etc.
- The choice of recharge structures should be site specific and such structures need to be constructed in areas already identified as feasible for artificial recharge.
- Periodical maintenance of artificial recharge structures should be incorporated in the Recharge

Plan.

- Augmenting surface water supply from feasible and dependable source..
- Intense monitoring of water level is recommended to keep an eye on water level trend in the Taluk.
- Awareness programmes and practice of participatory approach needs to be strengthened with the involvement of all the stake holders for sustainable management.

5. SUMMARY AND RECOMMENDATIONS

- Holenarasipura taluk enjoys semi-arid climate. Dryness and hot weather prevails in major part of the year. The area falls under Southern Dry agro-climatic zone of Karnataka state and is categorized as drought prone.
- As per the resource estimation 2020, Holenarasipur taluk falls under "safe" category with the stage of ground water extraction is 57 %. However, there is need to formulate management strategy to tackle the water scarcity related issues in ground water dependent pockets and ground water quality affected villages. It is suggested to adopt a scientific and multi-pronged ground water management strategy covering supply side and demand side interventions aspects as mentioned in the management plan suggested above.
- Ground water resource enhancement by supply side interventions: Quantity of surface water available through non-committed surface run-off is estimated to be 2.484 MCM. This can be used to recharge the aquifer mainly through check dams and percolation tanks. The volume of water expected to be recharged is 1.863 through these AR structures. The approximate cost estimate for construction of these AR structures is Rupees 138 lakhs. However, the figures given are tentative and pre-field studies / DPR are recommended prior to implementation of these recharge structures.

- Ground water resource enhancement by demand side interventions: At present about 60.77
 % of the irrigated area is by dug wells and bore wells (ground water). It is proposed to adopt micro irrigation (drip) techniques in fruits and vegetables which is likely to save about 1108 ham of ground water and thus enhancing the cumulative net availability of ground water as discussed above.
- Ground Water Development Plan: As per the conservative estimate and after considering the average unit draft figure for the taluk, about 400 dug wells (10-15 m depth; 3 to 5 m diameter) are recommended to be constructed in feasible areas. Further. as per the estimate about, 1500 bore wells (100 to 200 m depth; 150 mm dia) are also recommended to be drilled in feasible areas so as to maintain the safe category of the taluk. The likely additional irrigation potential which can be created considering prevailing crop water requirement for the area is will be 2280 ha.
- Conjunctive use plan in water logged area: About 352 sk.km (35200 hectares) of the taluk is covered by canal command area of Hemavathi/Harangi/Lift Irrigation Projects. As of now, the command area is free from water logged and associated issues(Source: CADA as on March 2021). In spite of this condition, conjunctive use plan is also recommended to benefit the water deficit and tail end area of the irrigation command.
- **Drinking water Supply:** In view of ground water contamination with mainly higher Nitrate, drinking water supply from surface water needs to be explored/ ensured.
- Uranium mitigation measures: Uranium is found in fractured aquifer of three groundwater samples exceeding the WHO Guideline values of 30 ppb. Repeat sample collection for Uranium studies will give the accurate and precise results to further ascertain the pre ence of Uranium in ground water which is very much needed
- **Regulation and control:** Holenarasipura taluk is categorized as "**Safe**" (as per 2020 estimations). However, the mandatory guidelines like rainwater harvesting and artificial recharge issued by Karnataka Ground Water Authority needs to be strictly implemented in the taluk so that quality of ground water will improve in due course of time.
- Participatory management: Awareness programmes and practice of participatory approach needs to be strengthened with the involvement of all the stake holders for sustainable management.

- Other Management Options proposed:
 - o Scientific disposal of sewage water by the concerned agency
 - Periodical maintenance of artificial recharge structures is recommended for better recharge and long life of the structure
 - RTRWH from each building and in-situ storage and use /mixing with surface water supply or groundwater in urban areas.
 - Priority to promote recycle and reuse of grey water effectively in urban pockets.
- Water Linkages with other Activities: Water sector has strong linkages with other developmental activities. Hence, the proposed management plans cannot be considered as static and needs to be reviewed and improved from time to time.