

केन्द्रीय भूमिजल बोर्ड

जल शक्ति मंत्रालय, जल संसाधन, नदी विकास

और गंगा संरक्षण विभाग

भारत सरकार

Central Ground Water Board

Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPPING AND MANAGEMENT PLAN

T.Narasipura Taluk, Mysore District, Karnataka

दक्षिण पश्चिमी क्षेत्र, बेंगल्रु

South Western Region, Bengaluru

भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास एवं गंगा संरक्षण विभाग <u>केन्द्रीय भूमिजल बोर्ड</u> दक्षिण पश्चिमीक्षेत्र, बेंगलुरु

FOR OFFICIAL USE ONLY No. SWR/RP/NQM/2022-23/30

Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation <u>Central Ground Water Board</u> South Western Region, Bengaluru

AQUIFER MAPS AND MANAGEMENT PLAN, T.NARASIPURA TALUK, MYSURU DISTRICT, KARNATAKA STATE

(AAP: - 2021-2022)

By V.HEMALATHA, Assistant Hydrogeologist, CGWB, SWR, Bengaluru

AUGUST 2022

AQUIFER MANAGEMENT PLAN OF T. NARASIPURA TALUK, MYSORE DISTRICT, KARNATAKA STATE

Contents

1	SALIE	NT FEATURES	1				
	1.1	Study area	. 1				
	1.2 Po	opulation	. 2				
	1.3 Ra	ainfall	. 2				
	1.4	Agriculture & Irrigation	. 3				
	1.5 G	eomorphology, Physiography & Drainage:	. 4				
	1.6 G	eology, Soil and Landuse	. 5				
	1.7 G	round water resource availability and extraction	. 6				
	1.8 Existing and future water demands (as per GWRA-2017 and 2020)						
	1.9	Water level behavior	. 7				
2	AC	UIFER DISPOSITION	7				
	2.1	Aquifer Types	. 8				
	2.2	3D Aquifer disposition, Aquifer Fence Diagram and 2D Cross-Sections	. 8				
3	GR	OUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES	.10				
	3.1	Comparison of Ground Water Resource and Extraction	10				
	3.2	Chemical quality of ground water and contamination	10				
4	GR	OUND WATER RESOURCE ENHANCEMENT	.12				
	4.1	Resource Enhancement by Supply Side Interventions	12				
	4.1	.1 Benefit of Artificial recharge scheme	13				
	4.2	Resource Savings by Demand Side Interventions	14				
	4.2	2.1 Advanced irrigation practices	14				
	4.2	2.2 Change in cropping pattern	14				
	4.2	2.3 Regulation and Control	14				
	4.2	2.4 Other interventions proposed	14				
5	SU	MMARY AND RECOMMENDATIONS	.15				

AQUIFER MAPS AND MANAGEMENT PLAN, T. NARASIPURA TALUK, MYSURU DISTRICT, KARNATAKA STATE

1 SALIENT FEATURES

Name of the Taluk:T.NARASIPURA District: Mysuru State: Karnataka Area: 600Sq.Kms. Population: 2,92,035 Annual Normal Rainfall: 738 mm

1.1 Study area

Aquifer Mapping Studies have been carried out in T.Narasipura taluk, Mysore district of Karnataka, covering an area of 600 Sq.Kms under National Aquifer Mapping Project. The T.Narasipura taluk is located between North Latitudes 12°10′00″ and 12°30′20″ and East Longitudes between 76° 52′30″ to 76°52′40″. The study area is bounded on the East by Malavalli taluk of Mandya District, on the North by Mandya Taluk of Mandya District, on the South by Chamarajanagara taluk of Chamarajanagara District, on the West by Mysore Taluk of Mysore district. Location map of T.Narasipura taluk of Mysore district is presented in **Fig-1.**T.Narasipura is taluk headquarters. There are 130 villages and 36 Gram Panchayats in this taluk.

Fig. 1: Location Map

1.2Population

According to 2011 census, the population in T.Narasipura taluk is 2,92,035, in which 1,46,258 male population and 1,45,777 is the female population . The taluk has an overall population density of 488 persons per Sq.Kms. The decadal variation in population from 2001-2011 is 4.67% in T.Narasipura taluk.

Total	Male	Female	Share of the	Rural	Urban	Decadal	Decadal	Decadal
			district	population	population	change in	change in	change in
			population			population	rural	urban
							population	population
2,92,035	1,46,258	1,45,777	9.73	2,40,540	51,495	4.67	-2.15	55.26

Table-1:	Pon	ulation	details
Table-1.	FUP	ulation	uctans

Source: District at a Glance 2020-21, Govt. of Karnataka

1.3Rainfall

T.Narasipura taluk enjoys semi-arid climate. The normal annual rainfall in T.Narasipura taluk for the period 1961 to 2010 is 738 mm. The year is usually divided into four seasons: summer from March to May; rainy season or south-west monsoon season from June to September; post-monsoon season covering the months of October and November and dry or winter Season from December to February.

Table-2Actual Annual rainfall (mm) in rain gauge station from 2010 to 2020

Year	2010	2011	2012	2013	2014	2015	2016	20017	2018	2019	2020
Rainfall (mm)	864	559	422	535	762	825	314	1036	700	778	916

Source: District at a Glance 2020-21, Govt. of Karnataka

Fig. 2: Rainfall Trend Analysis

1.4 Agriculture & Irrigation

Agriculture is the main occupation in T.Narasipura taluk. Major crops are Paddy, Maize, Ragi Tur, Pulses, Tobacco, Fruits and Vegetables. Water intensive crops like SugarcaneandPaddy are grown in T.Narasipura Taluk **(Table 3).**

	Cereals (Area in Ha)				Pulses (Area in Ha)						
Crops	Paddy	lowar	Ragi	Maiza	Tur	Horse	Black	Green	Avare	Cownea	Bengal
	rauuy	JOWAI	Nagi	wiaize	i ui	gram	gram	gram	Avaie	compea	gram
	21,515	226	598	1,263	17	3,416	2,203	389	25	250	5
Total	Total 23,621			6035							
	1			To	tal Foc	d grains	- 29.656				

Table-3: Cropping pattern in T.Narasipura taluk as per 2019-2020 (Ha)

			lotal F	ood grain	s – 29,65	b				
	Fruits (Area in Ha)	Veg (Area in Ha)	Oil seeds (Area in Ha)				Commercial crops (Ha)			
			Groundnuts	Sun flower	Castor	Sesame	Cotton	Sugarcane	Tobacco	
	2013	754	833	135	2	145	6	4,334	0	
			Total Oil seeds – 1,115				Total - 4,340			

Source: District at a Glance 2020-21, Govt. of Karnataka

It is observed that net sown area accounts 35,205 (Ha) and area sown more than once is 10,938 (Ha) of total geographical area 58,672 (Ha) in T.Narasipura taluk **(Table-4).** Area under Forest is 154(Ha) Area not available for cultivation and Fallow land cover 6,268 (Ha) and 14,241 (Ha) of total geographical area respectively. 24,785 (Ha) of net area is irrigated from surface water and are irrigated from Groundwater is 4,685 (Ha) **(Table-5).**

Table-4: Details of land use in T.Narasipura Taluk as per 2019-2020 (Ha)

TotalGeographicalArea	AreaunderForest	Area	Other	Fallowland	Netsownarea	Area	Gross
		notavailable	uncultivable			sownmore	sown
		forcultivation	land			than once	area
58,672	154	6,268	2,804	14,241	35,205	10,938	46,143

Source: District at a Glance 2020-21, Govt. of Karnataka

Table-5: Irrigation details in T.Narasipura taluk as per 2019-2020 (Ha)

SI No	Source		Length in Km/No	Gross area	Net area
31.110			of structures	of structures irrigated	
1	1 Surface water Cana		272	25,029	22,422
		Tanks	35	2,929	2,363
		Lift irrigation	0	0	0

		T	otal	27,958	24,785
2	Ground water	Dug wells	156	1,080	51
		Bore wells	6,320	5,080	4,634
		Total		6,160	4,685
		Grand Total		34,118	29,470

Source: District at a Glance 2020-21, Govt. of Karnataka

1.5 Geomorphology, Physiography & Drainage:

The geomorphology of the T.Narasipura is formed by various land forms like hills and plateaus, piedmont zone, plains and river/stream, etc. Hilly area in central part and plain region in covered all over the taluk. The elevation in the taluk varies from 640m to 670m in the taluk. The taluk is endowed with a number of perennial and non-perennial rivers/streams. The rivers/streams which flow towards North West to South East direction. The drainage system is well developed in the taluk. The differential altitude is significant because, it is likely to cause irregular ground water flow patterns on the microscale (Fig.-4). Topography is dominantly controlled by geological structures. The entire T.Narasipura taluk falls in Cauvery river basin. The Drainage pattern is dendritic to subdendritic (Fig.-5).

Fig-4: Geomorphology Map

1.6 Geology, Soil and Landuse

Geologically, the taluk is mainly composed of igneous and metamorphic rocks of Pre-Cambrian age either exposed at the surface or covered with a thin mantle of residual and transported soils. The rock formation in the taluk falls into two groups, gneissic complex and schistose formation. The geology map has been given in **Fig. 6**.

The soils of T.Narasipura taluk can broadly be classified into Clayey soils and Clayey Skeletal soilsand Loamy soils. These soils vary in depth and texture, depending on the parent rock type, physiographic settings and climatic conditions (Fig-7) and mainly this taluk covered by agricultural land. Land Use and Land Cover map also included (Fig.8).

Fig-6: Geology Map

Fig-7: Soil Map

Fig-8: Land use Map

1.7 Ground water resource availability and extraction

As per the ground water resource estimation 2017 **(Table 6a),** the data on ground water resources shows that the net annual ground water availability is 10,244ham. The existing gross groundwater for irrigation Domestic and Industrial is 4,978ham. The stage of groundwater development is 48.59% and falling under 'Safe' category.

						,	
Annual	GW Extraction	GW Extraction	Total	Annual GW	Net GW	Stage of	Categorization
Extractable	for Irrigation	for Domestic and	Extraction	Allocation for	Availability for	GW	
GW Resource	Use (Ham)	Industrial Use	(Ham)	Domestic and	future Irrigation	Extraction	
<i>(</i> , , ,)		(h.)			_	(2)	
(Ham)		(Ham)		Industrial Use for	Development	(%)	
				next 25Yaers	(Ham)		
				(Ham)			
10,244	4,615	363	4978	610	5172	48.59	Safe

Table-6a. Detail of Dynamic Ground Water resource, (March 2017 Ham)

Aquifer-wise total ground water resources down to 160 m depth are given in **Table-6b** below as per 2017 estimations.

Table-6b: Total Gro	ound Water Resources (2017) (Ham)	

Taluk	Annual replenishable GW	Fresh In-sto	orage GW resources	Total availability of fresh
	resources			GW resources
T.Narasipura	10244	Phreatic	Fractured(Down to	Dynamic + Phreatic in-
			160m)	storage + fractured
		8212	1403	19860

1.8 Existing and future water demands (as per GWRA-2017 and 2020)

As per the GWRA 2017, the net ground water availability is 10,244 ham and the total ground water draft for all uses is 4,978 ham with stage of development at 48.59% and the taluk falls in Safe category. The domestic (Industrial sector) demand for next 25 years is estimated at 610 Ham.

The details of dynamic (Phreatic) ground water resources for T.Narasipura taluk as on March 2020 is shown in Table-7. It is observed that the stage of ground water extraction is slightly gone up in the taluk from 48.59 % to 56.09 % from 2017 to 2020.

Annual	GW Extraction	GW	GW	Total	Annual GW	Net GW	Stage of	Categorization
Extractable	for Irrigation	Extraction	Extraction for	Extraction	Allocation for	Availability	GW	
GW Resource	Use (Ham)	for	Domestic Use	(Ham)	Domestic Use	for future	Extraction	
(Ham)		Industrial	(Ham)		as on 2025	use (Ham)	(%)	
		Use (Ham)			(Ham)			
9037.47	4503.82	0	565.70	5069.53	710.97	4020.45	56.09	Safe

Table-7. Detail of Dynamic Ground Water resource, (as on March 2020)

1.9 Water level behavior

The water level data have been monitored from the representative dug wells monitoring for both pre and post monsoon seasons in Aquifer I (Table 8). During Pre-Monsoon season water level ranges from 2.97 to 17.47 mbgl, whereas in Post Monsoon it varies from 0.71 to 16.2 mbgl and the maps shown in Fig 9 and 10.

	Pre Mo	onsoon	Post Monsoon				
	Aquifer-I	Aquifer-II	Aquifer-I	Aquifer-II			
Range	2.97-17.47	-	0.71-16.2	-			

Fig-9: Pre-monsoon Depth to Water Level

Fig-10: Post-monsoon Depth to Water Level

AQUIFER DISPOSITION 2

The occurrence and movement of water in the subsurface is broadly governed by geological frameworks i.e., nature of rock formations including their porosity (primary and secondary) and permeability. The principal aquifers in the area are Gneisses and Schist and the occurrence and movement of ground water in these rocks is controlled by various factors and it primarily depends on the degree of interconnection of secondary pores/voids developed by fracturing and weathering in the hard rock.

2.1 Aquifer Types

In T.Narasipurataluk, there are mainly two types of aquifer systems;

- Aquifer-I (Phreatic aquifer) comprising weathered Gneisses and Schistose.
- Aquifer-II (Fractured aquifer) comprising fractured Gneisses and Schistose.

In T.Narasipura taluk, Schist and Granitic gneiss are the main water bearing formations. Ground water occurs within the weathered and fractured Schist, Granite and Granitic gneiss under water table condition and semi-confined condition. In T.Narasipura taluk bore wells were drilled from a minimum depth of 100mbgl to a maximum of 160mbgl. Depth of weathered zone ranges from 5mbgl to 25mbgl. Ground water exploration reveals that aquifer-II fractured formation was encountered between the depths of 80 to 160mbgl. Yield ranges from Negligible to 4.5lps. The basic characteristics of each aquifer are summarisedin **Table-9**.

The 3D aquifer disposition models, 2D aquifer sections and 3D aquifer fence diagrams have been prepared and presented in **Fig. 11a, b and c.**

Aquifers	Weathered Zone (AqI)	Fractured Zone (AqII)
Prominent Lithology	Weathered Granitic gneiss	Fractured Granitic gneiss
Thickness range (mbgl)	5-25	Fractures upto 160 mbgl
Depth range of occurrence of fractures (mbgl)	-	80-160
Range of yield potential (lps)	-	<1 – 4.5

Table-9: Basic characteristics of each aquifer

2.2 3D Aquifer disposition, Aquifer FenceDiagram and 2DCross-Sections

Fig-11a: 3D Aquifer Dispositions

Fig-11b: 2D Cross sections in different directions

Fig-11c: 3D Aquifer Fence Diagram

3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION ANDOTHER ISSUES

The main ground water issues are over exploitation, Limited Ground Water Potential / Limited Aquifer Thickness / Sustainability, deeper water levels especially in Aquifer II, declining water level trend and urbanized areas of T.Narasipura city thereby reducing the ground water recharge worthy areas which are all inter-related or inter dependent.

3.1 Comparison of Ground Water Resource and Extraction

The Dynamic Ground Water Resource 2017 and as on 2020 have already been summarised above and are shown in Table 10.It is observed that the ground water availability in 2020 is less compare to 2017 due to decrease in rainfall and in water table. It is attributable to the improvement in the irrigation practice, influence of command area and also due to the water conservation / recharge activities carried out in the taluk by various state govt. and other agencies.

			-		-	
Taluk	GW availability	GW draft	Stage of GW	GW availability	GW draft	Stage of GW
	(in ham)	(Extraction)	development	(in ham)	(Extraction)	development
		(in ham)			(in ham)	
T. Narsipura		2017			2020	
	10244	4978	48.59% 9037.47		5069.53	56.09%

Table-10Comparison of ground water availability and draft scenario in T.Narasipura taluk

3.2 Chemical quality of ground water and contamination

The water samples were collected in different parts of T.Narasipura taluk and the data is given below in **Table 11** and **Fig 12**.

The results of quality parameters show that:

- Electrical Conductivity: EC values range from 520 to 1760μ S/cm at 25° C.
- Nitrate: Nitrate concentration inground water ranges from 2 to 127 mg/l.

The villages which have more nitrate value than the permissible limit are

B.Seehalli, Rangasamudra, Ramanathapura Hundi, Alagodu, Muguru, B.Bettahalli and Ganiganakoppalu.

• Fluoride: Fluoride concentration in ground water ranges between 0.09 to 1.10 mg/l.

SI. No	Location	Taluk	Distr ict	рН (6.5- 8.5)	Ε C in μS /cm	TH (600)	Ca (200)	Mg (100)	N a	к	CO 3	HC O₃	Cl (100 0)	SO₄ (400)	N O ₃ (4 5)	F (1.5)	TDS ^{&}
												mg/L					
1	Chindrovalli	T.Naras	Mys	7.4	600	17	42	17	БЭ	17	0	226	21	70	10	1.1	257
1	Chinavani	ipura	uru	0	000	5	42	17	22	1.7	0	220	21	70	12	0	557
2	Chikkakalku	T.Naras	Mys	7.3	790	28	69	20	24	1 1	0	201	95	75	15	0.7	420
2	ni	ipura	uru	5	780	5	00	20	54	1.1	U	201	05	75	12	7	429

Table-11Groundwater Quality data

3	Banagavadi	T.Naras ipura	Mys uru	7.5 7	750	24 0	60	22	62	5.0	0	281	46	60	15	1.1 0	442
4	Menasekyat	T.Naras	Mys	7.4	550	15	54	4	52	1.8	0	98	43	10	31	0.9	346
5	Yadahalli	T.Naras	Mys	7.3	860	35	12	12	32	1.6	0	275	46	80	37	0.6	496
		ipura	uru	5		0	0		_	_	_	_				7	
6	Hanumanalu	inura		7.7	900	38	74	47	25	0.9	0	299	78	70	16	0.5	494
_		T.Naras	Mys	7.7		18				10.	-					0.2	
7	Bannurdw	ipura	, uru	6	720	5	36	23	76	7	0	287	53	45	11	6	430
8	Madigaballi	T.Naras	Mys	7.8	520	17	50	11	37	12	0	207	28	35	2	0.1	291
	Widdigariani	ipura	uru	7	520	0	50		57	1.2	Ŭ	207	20	55		3	231
9	B Seehalli	T.Naras	Mys	7.7	700	26	58	29	32	2.9	0	183	60	55	53	0.3	403
		T Naras	Mys	9		22				12						9	
10	B Seehalli	ipura	uru	1	950	5	74	36	42	42.	0	336	71	65	21	3	556
	Rangasamud	T.Naras	Mys	7.6	102	38	20		22			424	<i>с</i> л	16	12	0.0	5.62
11	ra	ipura	uru	8	0	0	20	80	33	1.6	0	134	64	0	1	9	562
12	Ramnathapu	T.Naras	Mys	7.7	660	20	62	11	55	2.6	0	153	43	90	47	0.2	403
12	ra hundi	ipura	uru	5	000	0	02		55	2.0	Ŭ	100	43	50	-17	9	-105
13	Gargeshwari	T.Naras	Mys	7.9	104	40	40	73	49	1.5	0	378	82	70	8	0.1	554
		Ipura T Narac	uru Muc	5	0	25										06	
14	T.Narasipura	ipura	uru	8	990	0	44	58	59	9.6	0	323	92	60	32	3	553
4.5	Bannahalli	T.Naras	Mys	7.4		39	60						11			0.6	
15	hundi	ipura	uru	9	990	0	68	53	43	3.1	0	256	7	80	55	8	576
16	Alagodu	T.Naras	Mys	7.9	113	31	80	27	62	98.	0	427	64	75	55	0.1	721
	,	ipura	uru	9	0	0	00	/	02	7	Ŭ	,	0.	/ 5	55	5	/
17	Alagodu	T.Naras	Mys	7.8	700	24	52	27	43	12.	0	336	28	30	5	0.4	402
		T Naras	uru Mys	5 78	176	21				4 271			27	11		8 03	
18	Vattalu	ipura	uru	8	0	0	88	22	90	.2	0	384	7	0	40	6	1133
10		T.Naras	Mys	8.3		20			10							1.0	= 4 6
19	Adibettahalli	ipura	uru	0	860	0	30	30	8	7.6	0	336	64	55	15	0	516
20	Muguru	T.Naras	Mys	7.7	162	52	10	63	11	23.	0	427	17	90	12	0.5	948
	magara	ipura	uru	6	0	0	4	00	0	1	Ŭ	,	0	50	7	0	5.0
21	Charnnahalli	T.Naras	Mys	7.7	640	22	58	19	35	1.4	0	195	50	65	17	0.3	365
		T Naras	Mys	3 77	173	53	11		12	21			26	16		0 9	
22	B Bettahalli	ipura	uru	3	0	0	2	61	9	8	0	293	20 9	0	90	7	1033
22	A I. III:	T.Naras	Mys	7.5	113	31		24	10	1.0		266	11	60	10	0.4	624
23	Attanalli	ipura	uru	4	0	5	92	21	4	1.9	0	366	0	60	19	4	631
24	Ganiganako	T.Naras	Mys	7.8	127	29	96	12	15	23	0	305	17	10	44	0.1	768
	ppalu	ipura	uru	2	0	0	50		6	2.5	Ŭ		0	0		9	,
25	Ganiganako	I.Naras	Wiys	/.9	115	31	76	29	11 F	2.4	0	250	15 6	90	45	0.4	667
	рраги	T Naras	Mvs	9 74	0	29			5	10			0 14			07	
26	Kethupura	ipura	uru	4	950	0	64	32	74	8	0	275	2	30	13	8	533
77	Somanathap	T.Naras	Mys	7.8	050	28	C A	20	60	10	^	254	F 0	45	n	0.6	460
27	ura	ipura	uru	1	850	5	64	30	60	1.0	0	354	50	45	2	0	469
28	Horalahalli	T.Naras	Mys	8.0	580	15	38	15	53	1.5	0	183	53	40	2	0.4	312
20		ipura	uru	2	500	5	50	1.5		1.5		100	55	-0	~	1	512

Aquifer 1 (Phreatic Aquifer)

Figure-12. Groundwater Quality Maps

4 GROUND WATER RESOURCE ENHANCEMENT

4.1 Resource Enhancement by Supply Side Interventions

Recharge dry **phreatic aquifer (Aq-I)** in the taluk, through construction of artificial recharge structures, viz; check dams, percolation tanks & Sub surface dyke **(Table-12).** The choice of recharge structures should be site specific and such structures need to be constructed in areas already identified as feasible for artificial recharge. **(Fig.13).**

	Details of Artificial Recharge structures in T.Narasipura Taluk										
SI.No	Artificial recharge structures available/proposed										
1	Non committed monsoon runoff available in (MCM)	2.766									
2	No of sub surface dykes	0									
3	No of Check Dams	0									
4	No of percolation tanks	2									
5	Filter Beds	0									
6	Tentative total cost of the project (Rs in lakhs)	51.268									
7	Expected Recharge in (MCM)	0.42									

Гable-12: Quantity of non-comr	nitted surface runoff & expect	ted recharge through AR Structures
--------------------------------	--------------------------------	------------------------------------

Fig-13.Area feasible for Artificial Recharge structures

4.1.1 Benefit of Artificial recharge scheme

Artificial recharge structures namely check dams, percolation tanks, Filter Beds and Nala bunds can be taken up on large scale in the over-exploited areas as a management plan to tackle falling ground water levels.

- These structures have proved in building-up of ground water levels and sustainability of ground water abstraction structures, mainly in bore wells.
- An increase in the area irrigated by ground water source is also observed in the area of influence.
- Such activities help in providing sustainable drinking water to the rural population. The qualitative result from farmer's perception indicates that, there is rising trend in ground water levels in the area of influence, productivity of crops enhanced and improvement in yield is observed in bore wells.
- The cropping pattern has shown that farm households have resumed growing crops such as grapes which were not previously grown in the area.

4.2 Resource Savings by Demand Side Interventions

4.2.1 Advanced irrigation practices

It is observed that surface water is the major source for irrigation in the taluk. 16% of the irrigation through ground water and thus, by adopting the below mentioned techniques will contribute in ground water resource enhancement in the long run.

- Efficient irrigation practices like Drip irrigation & sprinkler needs to be adopted by the farmers in the existing gross irrigated area.
- Efficient irrigation techniques will contribute in saving ground water and thus will improve stage of development.

4.2.2 Change in cropping pattern

Agriculture is the main occupation in T.Narasipura taluk. Water intensive crops like sugarcane is grown in 4,334 ha of net cropped area of 37,878 ha. However, oil seeds are grown during kharif and rabi period and sugarcane grown only in 4,334 ha of the cropped area. At present (2020), the stage of ground water extraction is @ 56.09% and taluk has been categorised as Safe, thus change in cropping pattern has not been suggested.

4.2.3 Regulation and Control

T.Narasipura taluk has been categorized as **Safe**, since the stage of ground water development has reached 56.09% (GEC 2020), it may be encouraged to extract the ground water with care so that further ground water exploitation should not happen in the taluk However mandatory guideline issued by Government of Karnataka like rain water harvesting and Artificial recharge structures should be constructed. Ground water recharge component needs to be made mandatory in the non-command area of the taluk for further development of ground water.

4.2.4 Other interventions proposed

- Periodical maintenance of artificial recharge structures should also be incorporated in the Recharge Plan.
- Excess nitrate concentration is found in ground water samples require remedial measures viz.
 - Dilution of nitrate rich ground water through artificial recharge & water conservation.
- Roof top rain water harvesting.

5 SUMMARY AND RECOMMENDATIONS

The main ground water issues are Limited Ground Water Potential / Limited Aquifer Thickness / Sustainability, deeper water levels particularly in Aquifer II in some parts, hilly and plateau areas which are all inter-related or inter dependent. The summary of ground water management plan of T.Narasipurataluk is given in **Table-13**.

Stage of GW Extraction and Category (2020)	56%, Safe
Annual Extractable GW Resource (Ham)	9037.47
Total Extraction (Ham)	5069.53
Ground Water Draft for Irrigation (Ham)	4503.82
Ground Water Resource Enhancement by Supply side Interventions	
No of Proposed AR structures	
SSD	0
PT	2
CD	0
FB	0
Expected Additional Recharge to GW due to AR (Ham)	42
Additional Irrigation Potential that can be created (Lakh Ha)	0.002
Total Estimated Expenditure (Rs. in Lakhs.)	51.268
Change in Stage of GW Extraction (%)	56 to 55

Table	13:	Summary	of	Manag	zement	plan
10010		Samary	U .	i i i a i a g	501110110	Pian

- Ground water resource enhancement: Continuous drought, increase in agricultural activity, subjected to excessive ground water withdrawal leading to depletion of ground water level, reduction in yield and deterioration of ground water quality etc., suggests a need for proper ground water management and enhancement of storage capacity of aquifers, protection of ground water quality and proper utilization of ground water. To enhance the storage capacity of aquifers, the dewatered aquifers are to be recharged, for which the artificial recharge structures like Check dams, percolation tanks, point recharge structures etc have to be constructed.
- Ground Water resource: As per the resource estimation 2020, T.Narasipura taluk falls under Safe category with the stage of ground water extraction of 56.09 %. However, there is need to formulate management strategy to tackle the water scarcity related issues in the taluk during the summer and scarcity of water during the future days.

- Ground water resource enhancement: Increase in agricultural activity, excessive ground water withdrawal, depletion of ground water levels, reduction in yield and ground water quality related issues etc., suggests the need for scientific ground water management, enhancement of storage capacity of the aquifers and protection of ground water quality.
- Quantity of water available through non-committed surface run-off: The surplus noncommitted monsoon run off is estimated to be approximately 2.766 MCM. This can be used to recharge the aquifer mainly through percolation tanks (about 2) (CGWB, 2020).
- Advanced irrigation practices: The important crops grown are Paddy, Ragi, Maize, gram, tur, groundnut, sunflower and sugarcane About 178.95 sq.km area is being by canal irrigation and the remaining part of the irrigated area is fed by ground water. In view of this, Water Use Efficiency (WUE) practices like Drip needs to be strengthened to save irrigation water by way of precision farming mechanism. This ultimately enhances the area under irrigation potential.
- **Conjunctive use plan in water logged area:** Out of the total 538 sq.km of the canal command area in the taluk, about 3268 ha is water logged. About 191 ha of this is reclaimed and 3071 ha is yet to be reclaimed since inception. (Source: CADA as on March 2021). In addition to this reclamation, conjunctive use plan is also recommended to benefit the tail end area of the irrigation command.
- Change in cropping pattern: Farmers are facing inadequacy of groundwater for agriculture during summer and can opt for more rain-fed millets and water efficient Pulses for agricultural production.
- Drinking water Supply: In view of ground water contamination with mainly higher concentration Nitrate and fluoride, drinking water supply from surface water needs to be explored/ensured.
- **Regulation and control:** Taluk is categorized as "Safe". However, the mandatory guidelines like rainwater harvesting and artificial recharge issued by Karnataka Ground Water Authority needs to be strictly implemented in the taluk, so that quality of ground water will improve in due course of time.
- Participatory management: Awareness programmes and practice of participatory approach needs to be strengthened with the involvement of all the stake holders for sustainable management.