

# केंद्रीय भूमि जल बोर्ड

# जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on AQUIFER MAPPING AND MANAGEMENT PLAN

Faridkot District, Punjab

उत्तरी पश्चिम क्षेत्र, चंडीगढ़

North Western Region, Chandigarh



# AQUIFER MAPPING & MANAGEMENT PLAN OF FARIDKOT DISTRICT, PUNJAB

# **Central Ground Water Board**

North Western Region, Chandigarh Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India 2017

# AQUIFER MAPPING AND MANAGEMENT PLAN FARIDKOT DISTRICT (1418.60 Sq Km)

|         | DISTRICT TECHNICAL REPORT (PART – I)                 |          |
|---------|------------------------------------------------------|----------|
| SL. NO. | TITLE OF CONTENTS                                    | PAGE NO. |
| 1.0     | INTRODUCTION                                         | 1 - 8    |
| 2.0     | DATA COLLECTION AND GENERATION                       | 9 - 17   |
| 3.0     | DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING | 18 - 25  |
| 4.0     | GROUND WATER RESOURCES                               | 26 - 30  |
| 5.0     | GROUND WATER RELATED ISSUES                          | 31 - 33  |
| 6.0     | MANAGEMENT STRATEGIES AND AQUIFER MANAGEMENT PLAN    | 34 - 36  |
| 7.0     | CONCLUSIONS                                          | 37       |
|         | BLOCKWISE AQUIFER MAPS AND MANAGEMENT PLAN (PA       | RT – II) |
|         | I. FARIDKOT BLOCK                                    | 39 - 46  |
|         | II. KOT KAPURA BLOCK                                 | 47 - 54  |

# **LIST OF FIGURES**

- Fig.1: Base map of Faridkot District
- Fig.2: Fluvial Geomorphological Studies Carried out by Different Researchers to Understand the
- Subsurface Aquifer System in North Western Regions.
- Fig.3: Drainage and Water Bodies of Faridkot District
- Fig.4: Canal and Distributaries of Faridkot District
- Fig.5: Major Aquifers
- Fig.6: Depth to Pre Monsoon Water level (May, 2015)
- Fig.7: Depth to Post Monsoon Water level (November, 2015)
- Fig.8: Groundwater Quality, 2015
- Fig.9: VES Locations in Faridkot District
- Fig.10: Locations of Exploration Data Availability
- Fig.11: Locations of Validated Exploration Data
- Fig.12: Elevation Contour Map
- Fig.13: Locations of Validated Exploratory Wells with Lithology
- Fig.14: 3-Dimension Lithological Model
- Fig.15a,b: 2-Dimension Lithological Sections
- Fig.16: 3-Dimension Lithological Fence
- Fig.17: 3D Aquifer Disposition Model
- Fig.18: 3D Aquifer Disposition Fence Diagram
- Fig.19: Conceptual figure to Understand the Fresh and Saline Water Resources in the Aquifer up
- to 300 m for Resource Estimation in Unconfined and Confined Aquifer System.
- Fig.20: Long term Ground Water Table Variation
- Fig-21: Irrigation Tube Wells as per Depth wise Distributions in Faridkot District.

# LIST OF TABLES

Table.1: Land use pattern of Faridkot district, Punjab Table -2: Summary of Optimized Exploration Wells Table-3: Aguifer Grouping in Faridkot District Table-4: Dynamic Ground Water Resource & Development Potential (31.03.2013) in mcm Table-5: Block Wise In-Storage Ground Water Resources of Fresh Water Aquifers Upto Average Depth Table-6: Block Wise In-Storage Ground Water Resources of Saline Aquifers Upto 300 m Depth Table-7: Block Wise Total Availability of Fresh and Saline Groundwater Resources upto 300 m Depth and Volume of Unsaturated Granular Zone after 3m upto water level. Table-8: Distribution of Tube wells According to Well Owner's land holding Size Table-9: Distribution of Tube wells According to Depth Table-10: System of Ground water Distribution Device Table-11a: Scope of Quantitative Impact on Stage of Development after applying various Management Strategies in mcm Table-11b: Scope of Quantitative Impact on Stage of Development after applying various Management Strategies in percentage

#### **ANNEXURES**

Annexure-I: Results of Chemical Analysis of Water Samples from NHS in Faridkot, 2015 Annexure-II: Results of Chemical Analysis of Water Samples from NAQUIM studies in Faridkot (2014) Annexure-III: Lithological Data of Wells in Faridkot District

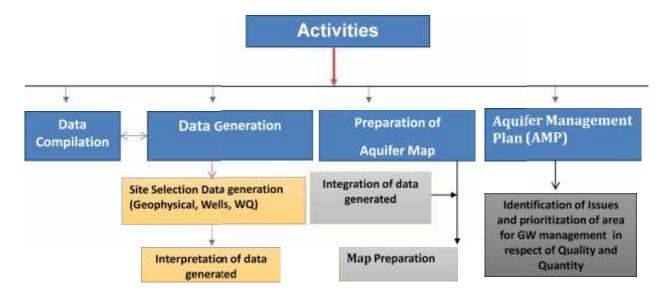
Annexure-IV: Aquifer Grouping of Well Locations in Faridkot District

#### **PHOTOGRAPHS**

# **PROJECT TEAM**

| <b>Regional Director</b>                                             | Dr S.K.Jain                                                       |                                 |
|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|
| Nodal Officer                                                        | Dr. Sunil Kumar ,<br>Scientist 'D'                                |                                 |
| <b>Executive Engineer</b>                                            | H.K. Manocha                                                      |                                 |
| <b>Report Compilation</b>                                            | Roopesh G.Krishnan ,<br>Scientist 'B'                             |                                 |
| Hydrogeology                                                         | Geophysics                                                        | <b>Chemical Quality</b>         |
| Rakesh Rana,<br>Scientist 'D'<br>G.P Singh,<br>Scientist 'D' (Retd.) | S.K Kapil,<br>Scientist 'D'<br>S.K Pali,<br>Scientist 'D' (Retd.) | Rishi Raj,<br>Assistant Chemist |
| Gyanendra Rai,<br>STA (HG)                                           |                                                                   |                                 |

# **1.0 INTRODUCTION**


The primary objective of the Aquifer Mapping can be summed up as "Know your Aquifer, Manage your Aquifer". Demystification of Science and thereby involvement of stake holders is the essence of the entire project. The involvement and participation of the community will infuse a sense of ownership amongst the stakeholders. This is an activity where the Government and the Community work in tandem. Greater the harmony between the two, greater will be the chances of successful implementation and achievement of the goals of the Project. As per the Report of the Working Group on Sustainable Ground Water Management, "It is imperative to design an aquifer mapping programme with a clear-cut groundwater management purpose. This will ensure that aquifer mapping does not remain an academic exercise and that it will seamlessly flow into a participatory groundwater management programme. The aquifer mapping approach can help integrate ground water availability with ground water accessibility and quality aspects.

## **1.2** Scope of the study:

Systematic mapping of an aquifer encompasses a host of activities such as collection and compilation of available information on aquifer systems, demarcation of their extents and their characterization, analysis of data gaps, generation of additional data for filling the identified data gaps and finally, preparation of aquifer maps at the desired scale. This manual attempts to evolve uniform protocols for these activities to facilitate their easy integration for the district as whole.

# 1.3 Approach and Methodology:

National Aquifer Mapping Programme basically aims at characterizing the geometry, parameters, behaviour of ground water levels and status of ground water development in various aquifer systems to facilitate planning of their sustainable management. The major activities involved in this process include compilation of existing data, identification of data gaps, and generation of data for filling data gaps and preparation of aquifer maps. The overall activities of aquifer mapping are presented in the flow chart below.



#### 1.4 Location and Geographical Units

Faridkot is located in South- Western part of Punjab State. The area lies between 30°21'59" to 30°49'52" North latitude and 74°28'12" to 75°03'22" East longitude and falls in the Survey of India Toposheet Nos. 44J/6, 9, 10, 11, 13, 14, 15 and 44N/3 covering an area of 1418.60 sq km (Fig.1). It shares common boundaries with Moga district in east, Ferozepur district in North & West and Muktsar and Bathinda districts in South. The highest elevation 213.3 m above m.s.l is near Jiwanwala in the eastern part whereas the minimum of 190m at Pind Balochan in the western part with a gentle gradient of 0.45m/km to the SSW.

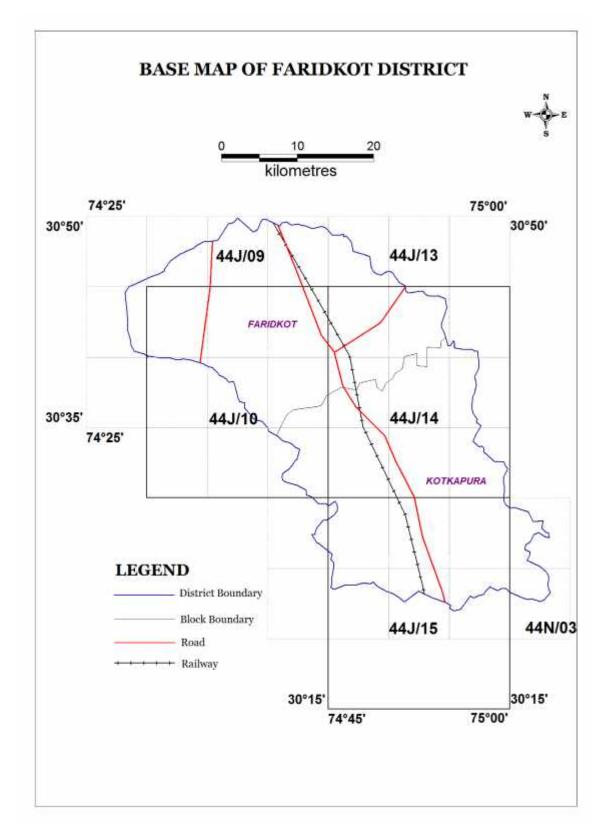
Faridkot district is the smallest district of Punjab State and has two Sub divisions/ Tehsils namely Faridkot and Jaito and two Sub Tehsils namely Kotkapura and Sadiq comprising 190 Gram Panchayats and 171 villages. Faridkot District has two administrative development blocks i.e., Faridkot and Kot Kapura.

Total Population of the district, as per the 2011 Census, is 6,18,008 out of which 3,27,121 are males and 2,90,887 are females. The total rural population in the district is 2,17,514 and the urban population is 4,00,494. The population density is 424 persons/ sq km against the state average of 550 persons/sq km.

## 1.5 Climatic Conditions: Rainfall and Climate

The climate of the district is classified as sub-topical steppe, semi-arid and hot which is mainly dry except in rainy months and characterized by intensely hot summer and cold winter.

The Normal Annual Rainfall is 449 mm in 24 days which is unevenly distributed over the district. Normal Monsoon Rainfall is 349 mm. The southwest monsoon sets in last week of June and withdraws towards end of September and contributes about 78% of annual rainfall. July and August are the wettest months. The remaining 22% of the annual rainfall occurs during non-monsoon months of the year in the form of thunder storm and western disturbances. Rainfall in the district increases from southwest to northeast.


# 1.6 Geomorphology & Soil Type

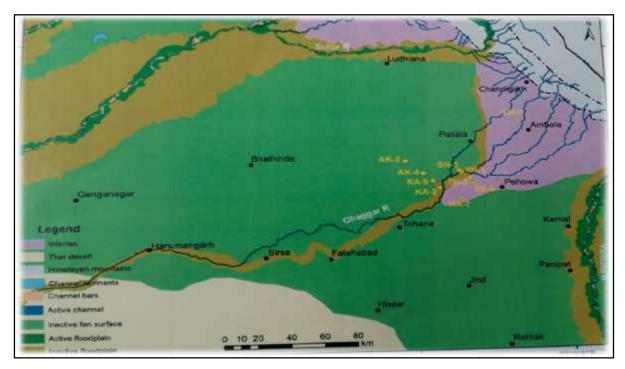
The study area forms a part of the Sutlej Basin and exhibits gradational landforms, mainly fluvial, formed by sediments. On the whole it exhibits a low-lying flat topography generally sloping towards southwest, except few linear depression occupied by palaeo-bluff and palaeo channel near Pakka and southeast of Kamiyana Villages and by sand dunes, which are concentrated in northwestern and southern part of the study area. Because of the exceptionally flat topography there is not much development drainage system.

The Study area forms a part of Punjab Plain and is sub-divided into the following three regions on the basis of soil, topography, climate and natural vegetation.

a. Faridkot Hathar- Sadiq- Sandy Plain: This part extends over Sadiq town part of the district commonly known as Hathar area. This part of the district has a large numbers of sand dunes and wind blown sand has its own effect on the fertility of soil.

# Fig.1: Base map of Faridkot District




- b. Faridkot Uttar- Dhudhi- sandy-loamy: This part of Faridkot district extends over Dhudhi, Kot Sukhia, Tehna and is known as Uttar area. The soil is sandy loam. Due to extension of agriculture and irrigation there is apparent disappearance of sand dunes to a great extent which have been leveled up generally.
- *c. Jaitu Area- Sandy Loam to Loam*: This region extends over and around Jaitu tehsil. The texture of the soil is sandy loam to loam. This area is known for the best staple of cotton. Most of the area is covered under sandy soil followed by clayey soil except some patches where there is appreciable thickness of top clay layer varying from 6.7 to 16.7m.

The study area is developed by Indo Gangetic Alluvium; main landforms are Alluvial Plain, Sand sheets, Sand dunes and Palaeo Channels. Alluvial plain forms the major part of the area followed by Sand Sheets and Sand dunes as patches. Palaeo channel is occurred in central part of the study area.

The soils classes are mainly loams, loamy sand, sandy to fine sandy loams and silty loams. Loamy sand is covered in major part of the study area.

The combined studies on fluvial geomorphology and Remote sensing studies in north western region are carried out by IITs and Delhi University. It has been observed that the huge flood depositions by River Ghaggar, Saraswati and other minor rivers at different time interval and channel migrations in different ages and also Aeolian depositions caused sand dunes in different time interval leads to difficulty in aquifer grouping. The studies are also conformed through sedimentological, core sampling analysis during the project. The observations are understood by regional geomorphology and channels migrations which shown in the below Fig.2.

Fig.2: Fluvial Geomorphological Studies carried out to understand the Subsurface Aquifer System in North Western Regions.



#### 1.7 Land Use/ Land Cover

Based on the visual interpretation of satellite data and topographical data, land use/land classes have been identified. The main classes are Built Up land, Agricultural land, forestland, Land under non agriculture use, current fallows and water bodies. The Land use patterns are given in below table.

| Type of Land use                    | Area (ha)    |  |  |  |  |  |
|-------------------------------------|--------------|--|--|--|--|--|
| 1. Total Geographical area          | 141900       |  |  |  |  |  |
| 2. Forest                           | 2004         |  |  |  |  |  |
| 3. Land put to non-agricultural use | 16719 (11%)  |  |  |  |  |  |
| 4. Current Fallows                  | 2239         |  |  |  |  |  |
| 5. Net area sown                    | 126678 (89%) |  |  |  |  |  |
| 6. Gross cropped area               | 252989       |  |  |  |  |  |
| 7. Cropping intensity               | 200%         |  |  |  |  |  |
|                                     |              |  |  |  |  |  |

#### 1.8 River System and Water Resources

No river is flowing through the area, but there are some drains which flow during heavy rains and serve as natural drainage. The main drains are Tarobri Drain, Mari Drain, Samadh Bhai Drain and Chand Bhan Drain (Fig.3). There is a good network of canals and these passes through the area. The main canals are Bikaner Canal, Sirhind Feeder, Rajasthan Feeder, Abohar and Bathinda branches of Sirhind Canal. Bikaner Canal and Bathinda Branch of Sirhind Canal passes through northwestern and southeastern margins of the district and Sirhind Feeder, Rajasthan Feeder, Rajasthan Feeder, Abohar Branch of Sirhind Canal run through the entire length of district in north-south and northeast-southwest directions respectively (Fig.4). Sirhind canal system has been serving the district for irrigation since long time. There are large water bodies near Khara, Panjgrain, Jaito Mandi, Wara daraka and in Faridkot Town. These water bodies generally dry in summer.

#### 1.9 Agriculture & Irrigation

Faridkot is mainly an agricultural district and 70% of the population resided in the rural areas depends up on agriculture. The two main crop seasons in a year are Kharif and Rabi which is locally known as 'Sauni'(Summer Harvest Season) and 'Harrhi' (Winter Harvest Season). The principle Kharif crops are Paddy, Maize, Bajra, Cotton, Moong, Mash, Moth, Arhar, Sugarcane, etc., while important Rabi crops are Wheat, Barley, Gram, Sarson, Taramera and Toria, etc.

Irrigation is carried out by surface water and ground water. As major parts of the area are underlain by saline water, so canal water is major source of irrigation. In some parts where ground water is available as fresh water lenses, than irrigation is covered by skimming wells known as multiple well point system. Kharif and Rabi is cultivated in study area under two types of soil i.e. loamy sand and sandy loam and the sources of irrigation are canal as well as tubewells. Conjunctive use of canal water and ground water for irrigation is being carried out efficiently in this area.

#### a. Canal Water Irrigation

Major source of irrigation is canal where water from Sirhind canal is utilized for irrigation. The other important distributaries are Abohar Branch, Dhulkot distributary system, Mari distributary system, Faridkot distributary, Kotkapura distributary, Jaitu distributary, Rupana and Doda distributary system. The total length of above distributaries which serve in Faridkot district is 228.44 km, out of which 206.49 km is lined and 21.85 km is unlined. Gross irrigated areas of all the channels are 90253.39 ha and cultural command area is 80266.56 ha with 294 no. of outlets. Intensity of irrigation is 140%.

## b. Ground Water Irrigation

With the advent of multiple well point systems, ground water irrigation is also playing an important role in development of agriculture economy of the study area. This is not only release the pressure mounted on the canal water supply but also creates the maximum storage in the unconfined aquifer for fresh ground water through return flow and canal seepage.

#### 1.10 Industries

There are no major industries in the area except rice mills in Deviwala village and few poultry farms in the district.

## 1.11 Mineral Resources

Since the entire area is occupied by Quaternary sediments, no minerals of significant industrial use are found. Alkaline soils contain saltpetre called *Kalmi Shora* in local language, which has application in chemical, oxide, glass, soap industry and leather tanning are found in this area. It is being extracted at Sirsari and Kot Sukhia villages. It occurs as thin slightly yellowish to dark brown encrustation on the ground surface and is found mostly over the old habitation sites 'Thehs' or over barren/ kallar lands and cattle sheds.

Saltpetre is an important source of Niter (KNO<sub>3</sub>), which is used in cracker industry, matchbox manufacture and as a fertilizer.

# 1.12 Water Conservation and Artificial recharge:

The north and eastern part of the area where water level is declining, artificial recharge structures may help in arresting the decline. Recharge Trench with injection well structure is the suitable for artificial recharge. Water conservation methods like change in cropping pattern, change in Irrigation policy, lining of unlined channels, timely plantation of paddy, promotion of sprinkler and drip irrigation etc. may be adopted to overcome the ground water decline in the area.

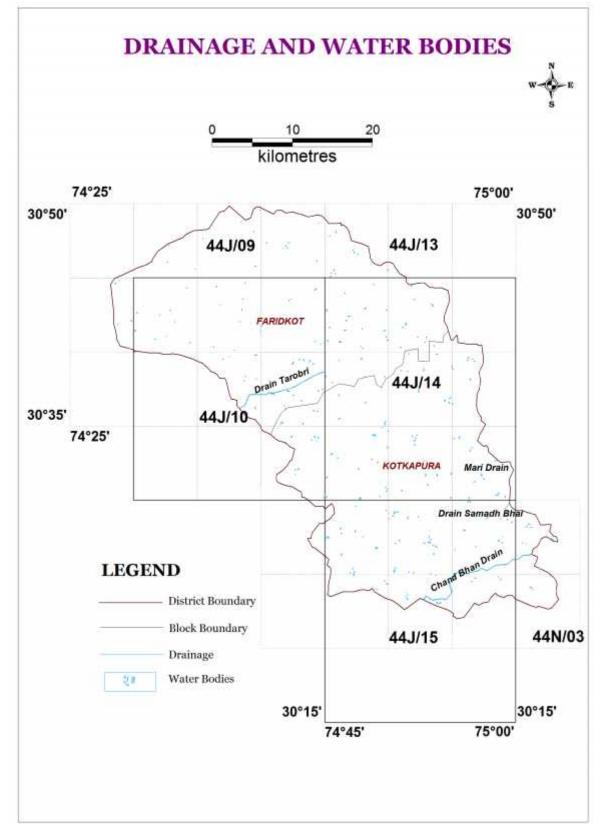
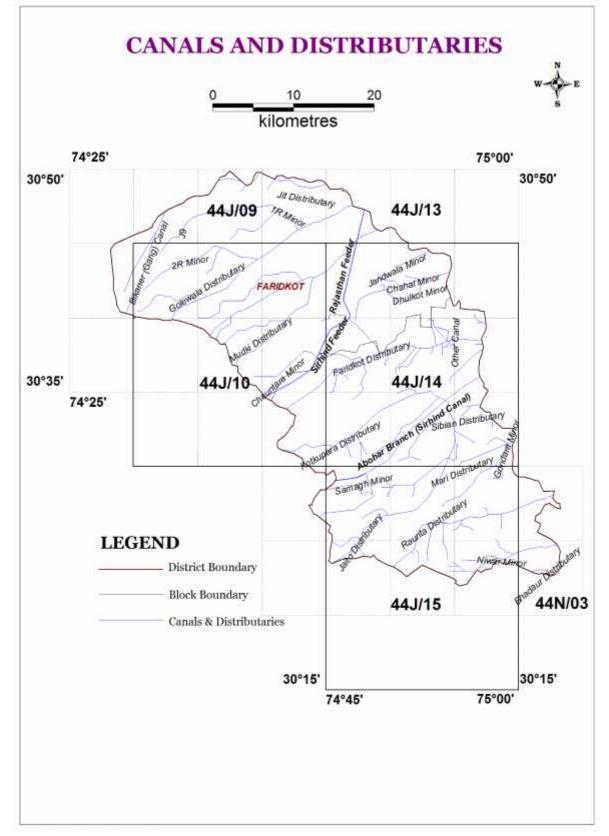




Fig.3: Drainage and Water Bodies of Faridkot District



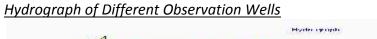


# 2.0 DATA COLLECTION AND GENERATION

## 2.1 Geology and Hydrogeological data:

The area lies in the central part of Satluj basin of Indo-Gangetic Alluvial plain. Geologically, the area is occupied by a thick sequence of Quaternary deposits of Mid-Pleistocene to Recent age. These comprise alternate sequence of fluvial and arid phases. The exposed Quaternary Sediments can be broadly classifies as- (i) Older Alluvium of Middle to Upper Pleistocene age overlain by (ii) Aeolian deposits of Holocene age. The provenance of Older Alluvium deposited by rivers originated from Himalayas and Aeolian deposits have been laid down by wind action from Thar Desert of Rajasthan in the southwest part of the area. The generalized stratigraphic sequence of the area are given below,

| Age                         | <u>Lithological Unit</u> | Lithological Characteristics                                                                                                                                                |
|-----------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Holocene                    | Aeolian Flat             | Unconsolidated thin veneer of Aeolian sand.                                                                                                                                 |
|                             | Newer Dunes              | Unconsolidated orange brown sand and silt.                                                                                                                                  |
|                             | Semi consolidated dunes  | Semi consolidated light to dark brown sand.                                                                                                                                 |
|                             | Older dune               | Dark brown, Aeolian sand and silt with some vegetal matter.                                                                                                                 |
| Mid to Upper<br>Pleistocene | Older Alluvium           | Multi-cyclic light grey to brown fine to<br>medium grained mixture of clay, silt and<br>sand with Kankar. Light grey to pink sticky<br>clay, grayish mica sand with kankar. |


Generalized Stratigraphy, Faridkot District (After Garg & Singh, 1993)

-----Basement not exposed-----

The Principle Aquifer in the study area is Alluvium and the Major Aquifers are Older Alluvium and Aeolian Alluvium (Fig.5). The Ground water occurs in unconfined (water table) and confined conditions.

#### 2.1.1 Water Level Behavior

*Twenty three* monitoring stations of Central Ground Water Board (CGWB) (7 Piezometers and 16 Dugwells) and Eighteen monitoring stations (18 Piezometers) of State Government represent the first aquifer. Second and third aquifer is represented by one monitoring station of CGWB. Depth to water level in the area ranges from 1.45 to 18.19 m bgl during pre-monsoon period (Fig.6) and 1.20 to 20.15 m bgl during post monsoon period (Fig.7). In eastern part water levels are in the range of 10 to 20 m, in central part the water levels are in the range of 5 to 10 m bgl and in western part the water levels are shallower in the range of 2 to 5 m. Seasonal water level fluctuation shows a rise and fall in the range of 1.10 to (-) 2.00 m in western and eastern part of the districts respectively during year 2015.



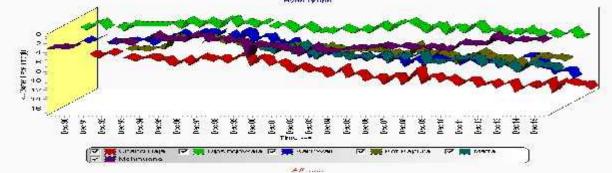
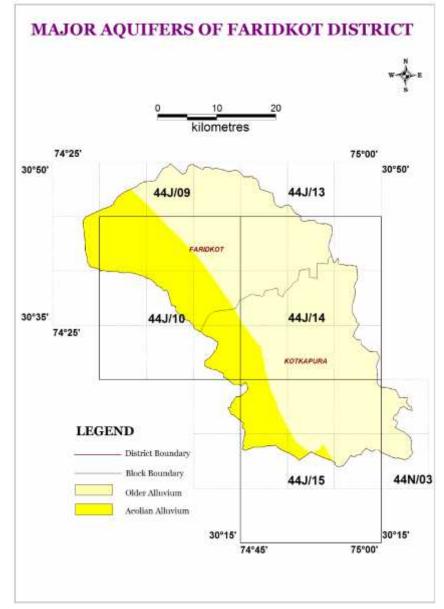
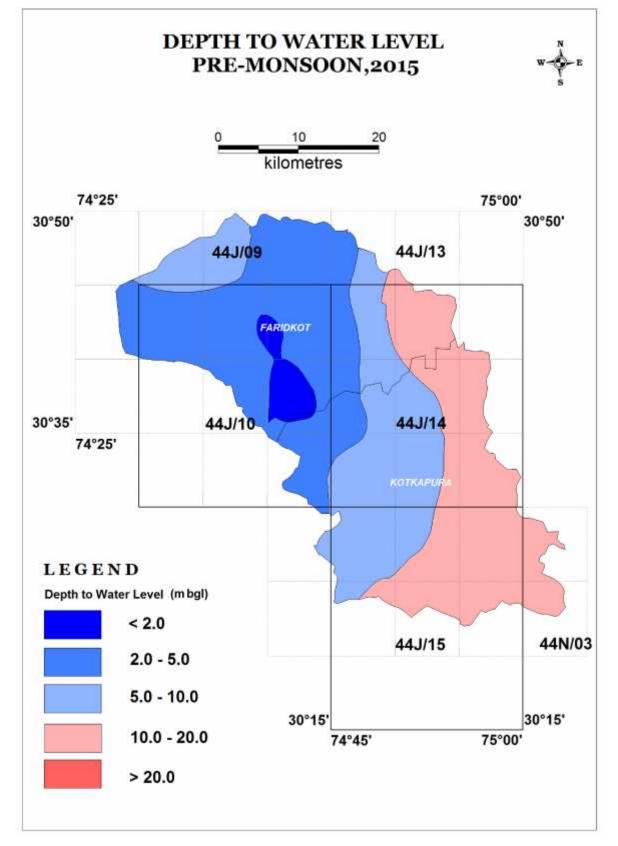
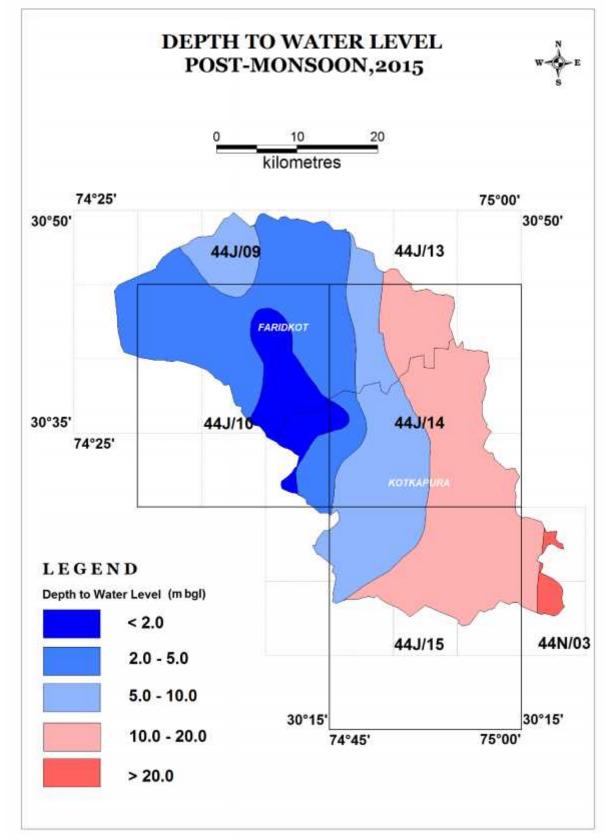





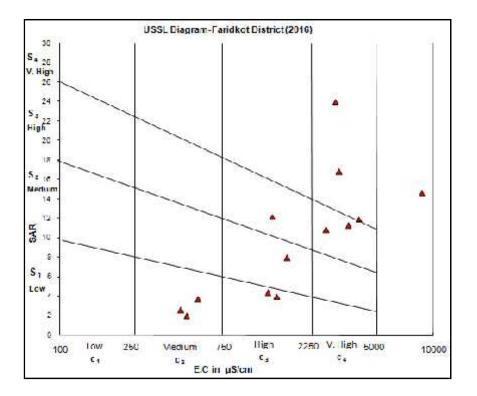

Fig.5: Major Aquifers







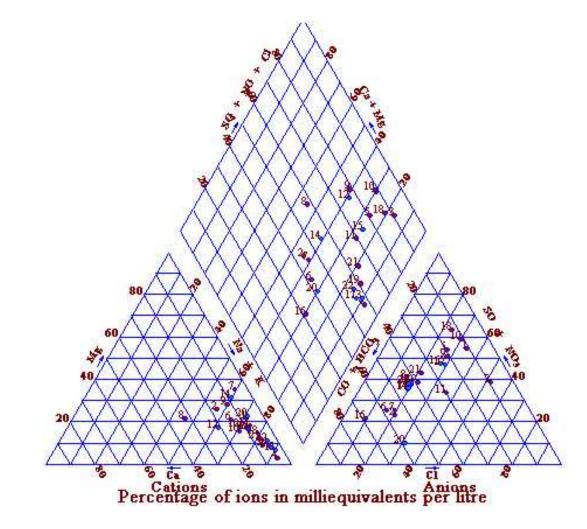



#### Fig.7: Depth to Water level Post Monsoon, 2015

#### 2.2 Water Quality Data:

Ground water quality of shallow aquifer (Aquifer-I) is assessed on the basis of chemical data of National Hydrograph Network stations i.e. NHNS monitored during Pre monsoon period. Twenty four groundwater samples are collected during NHNS, 2015 and chemical analysis is given in Annexure-I. The chemical quality of deeper aquifers has to be assessed during ongoing groundwater exploration programme under NAQUIM.

Chemical data of shallow aquifer indicates that ground water is alkaline in nature. The Electrical Conductivity (EC) values ranges from 444 to 8653  $\mu$ S/cm at 25°C indicating fresh to moderately saline. The EC values less than 1000  $\mu$ S/cm at 25°C have observed at four locations i.e. Jand Sahib (444), Devi wala (476), Mehmuana (550) and Arianwala (700) respectively. The EC values more than 3000  $\mu$ S/cm at 25°C have observed at six locations i.e; Tehna (8653), Baja Khana, (3988), Nangal (3487), Kot Kapura (3299), Mumara (3212) and Sukhanwala (3126). The ground water occurring in the central and south-eastern parts are marginally to highly saline and not suitable for drinking purposes.

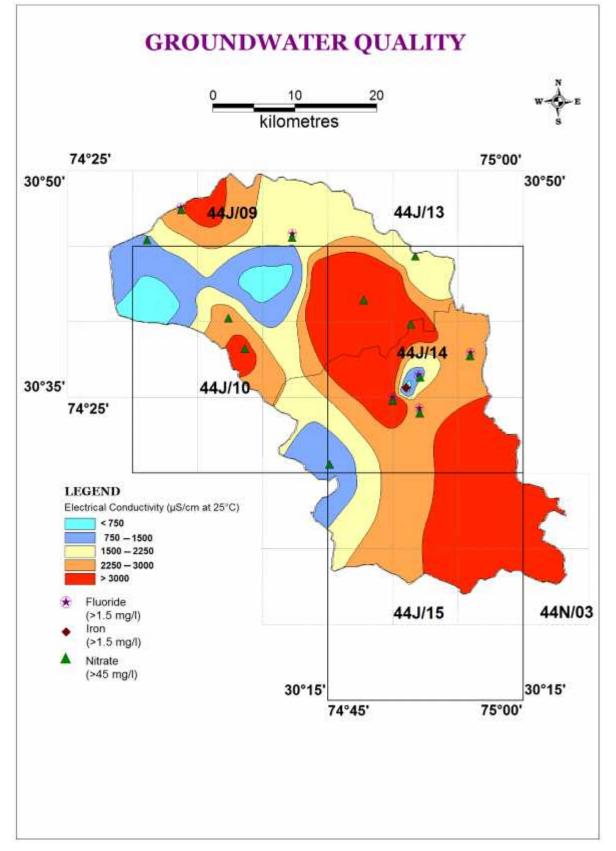

The chloride concentration in ground water varies broadly between 28 mg/l at Ariyanwala and also 1544 mg/l at Tehna. Ground water with fluoride above 1.5 mg/L are found mainly in Nathuwala (6.03), Killi (4.29), Kot Kapura (3.33), Dhilwan kalan (2.85), Moharewala (1.95) and Bir Sikhanwala (1.84) and Nitrate concentration in groundwater above permissible limit 1.5 mg/l are found in ,Kot kapura (144), Killi (140), Dal Singhwala (136),Tehna (118), Nangal (104), Bir Sikhan wala (89), Nathuwala (79), Chand baja (79), Wara Daraka (66) ,Sher singhwala (65) and Sukhanwala(46). The USSL diagrams used for classification of irrigation water based on EC and SAR, shown below observed that ground water occurring in Faridkot district falls under  $C_4S_3$ ,  $C_2S_1$ ,  $C_4S_4$ ,  $C_3S_1$ ,  $C_3S_3$  and  $C_3S_2$  classes of irrigation classification.



Such waters when used continuously for irrigation, they are likely to cause salinity hazards and lead to reduction in crop yields. Plot of USSL diagram indicates that ground waters fall under  $C_2S_1$  and  $C_3S_1$  classes of irrigation rating.

Analysing mechanism and equipments used for chemical analysis are given in table-1. Table-1: Analytical methods and equipments used for chemical analysis.

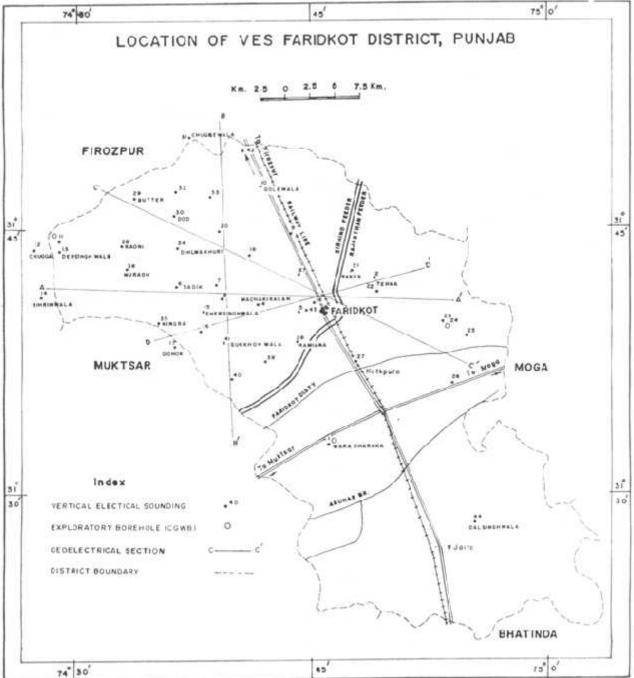
| S. No. | Parameters                                                   | Analytical Methods             |  |  |  |  |  |  |
|--------|--------------------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| А.     | Physico-chemical analysis                                    |                                |  |  |  |  |  |  |
|        |                                                              |                                |  |  |  |  |  |  |
|        | рН                                                           | Electrometric method           |  |  |  |  |  |  |
|        | Conductivity (EC)                                            | Electrical conductivity method |  |  |  |  |  |  |
|        | Carbonate & bicarbonate (CO <sub>3</sub> ,HCO <sub>3</sub> ) | Titrimetric method             |  |  |  |  |  |  |
|        | Chloride (Cl)                                                | Argenotometric method          |  |  |  |  |  |  |
|        | Sulphate (SO <sub>4</sub> )                                  | Nephloturbidity method         |  |  |  |  |  |  |
|        | Nitrate (NO <sub>3</sub> )                                   | Spectro-photometric method     |  |  |  |  |  |  |
|        | Fluoride (F)                                                 | Ion metric method              |  |  |  |  |  |  |
|        | Total hardness (T.H)                                         | EDTA-Titri metric method       |  |  |  |  |  |  |
|        | Calcium (Ca)                                                 | EDTA-Titri metric method       |  |  |  |  |  |  |
|        | Magnesium (Mg)                                               | By difference                  |  |  |  |  |  |  |
|        | Sodium (Na)                                                  | Flame photometric method       |  |  |  |  |  |  |
|        | Potassium (K)                                                | Flame photometric method       |  |  |  |  |  |  |
|        | Total Dissolved Solids (TDS)                                 | Gravimetric                    |  |  |  |  |  |  |
| В.     | Trace element                                                | ts/Heavy metals                |  |  |  |  |  |  |
|        | Copper (Cu)                                                  |                                |  |  |  |  |  |  |
|        | Cadmium (Cd)                                                 | Digestion followed by Atomic   |  |  |  |  |  |  |
|        | Chromium (Cr)                                                | Absorption Spectrophotometer   |  |  |  |  |  |  |
|        | Lead (Pb)                                                    | (AAS)                          |  |  |  |  |  |  |
|        | Manganese (Mn)                                               |                                |  |  |  |  |  |  |
|        | Nickel (Ni)                                                  |                                |  |  |  |  |  |  |
|        | Cyanide (Cn)                                                 |                                |  |  |  |  |  |  |
|        | Iron (Fe)                                                    | )<br>Spectrophotometer method  |  |  |  |  |  |  |






Dug Well

Tube Well


#### Fig.8: Groundwater Quality, 2015



#### 2.3 Geophysical data:

To delineate fresh water - saline water interface laterally as well as vertically, surface geophysical investigations have been carried out in alluvial tracts over parts of the study area. Under surface geophysical investigations, total 44 VES (Fig.9) in an area of 1800 sq km were conducted with current electrical separation of 600 to 1000 m.

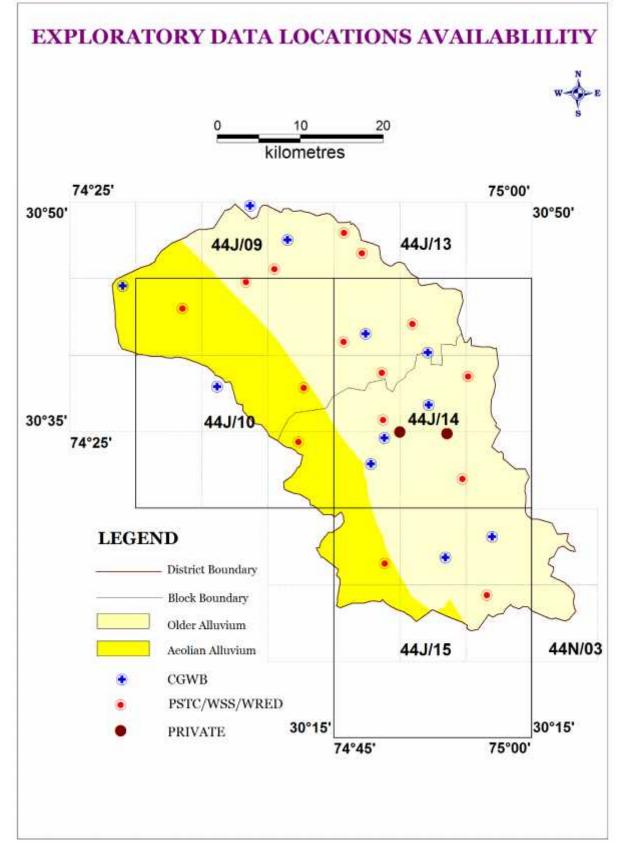




Subsurface geophysical investigations include borehole logging. The ground water quality data pertaining to the CGWB exploratory boreholes indicate vertical and lateral variation in EC values. Shallow ground water quality data shows clearly the existence of salinity at shallow depth in the many parts of study area such as Pakka, Mahmuana, Shirinwala, Shersinghwala, Dohak, Kamiyana, Kingra and many other places. Electrical conductivity (EC) of ground water is more than 2000  $\mu$ S /cm in major part of the area except at few places. Slight improvement in quality of ground water at deeper depth as compared to shallow depth, has been observed at few places. These places are Chuggewala, Golewalla, Nangal, Deepsinghwala where EC of ground water was found to be within 2000  $\mu$ S /cm within the depth range of 80 to 120 m.

## 2.4 Exploratory drilling State - Data Availability:

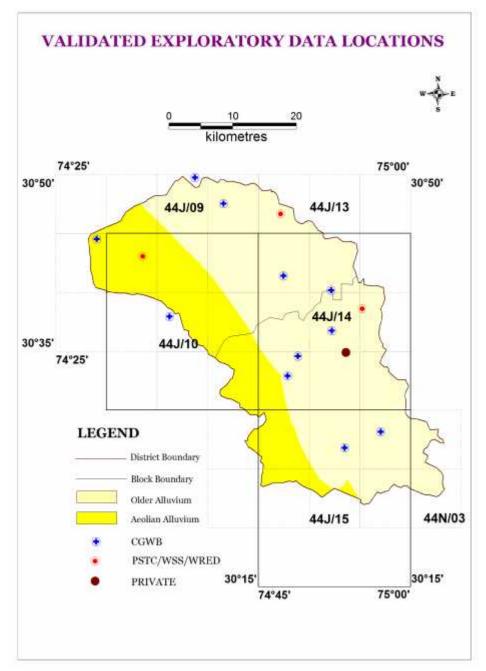
The Lithologs of Exploratory Well/ Observation well/ Piezometer/ productive wells of CGWB, Punjab State Tubewell Corporation (PSTC) now as Punjab Water Resources Development and Management (PWRDM), WRED (Water Resources and Environment Directorate), Water Supply and Sanitation (WSS) and Private Wells have been collected and those supported electrical logs have been validated for aquifer map preparation. The details are shown in Table-1.


| SI.No | Source of data |       | Total   |         |      |    |
|-------|----------------|-------|---------|---------|------|----|
|       |                | < 100 | 100-200 | 200-300 | >300 |    |
| 1     | CGWB           | 2     | 1       | 1       | 8    | 12 |
| 2     | WRED/PSTC/WSS  | 15    | 1       | 0       | 3    | 19 |
| 3     | PRIVATE WELLS  | 1     | 0       | 1       | 0    | 2  |
| Total |                | 18    | 2       | 2       | 11   | 33 |

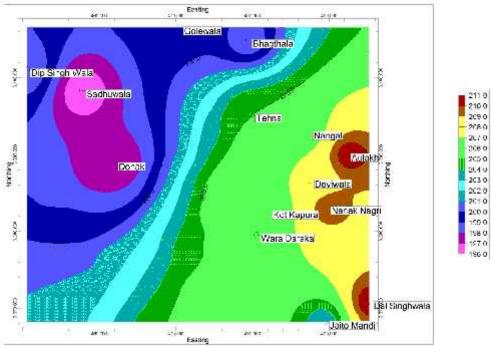
## Table-1: Data Availability of Exploration Wells of Faridkot district

# 2.5 Spatial Data Distribution

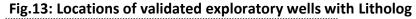
The actual data of all the wells in the area are plotted on the map of 1:50000 scale with 5'X5'grid (9 x 9) km (Fig. 10). Perusal of table shows that majority of tube wells falls in the shallow aquifer having depth less than 100m and deeper aquifer having depth more than 300m. The grids/ formations devoid of groundwater exploration are identified as data gaps and these are to be filled by data generation. The Physical record of the availability of exploration data are given in Annexure-II.

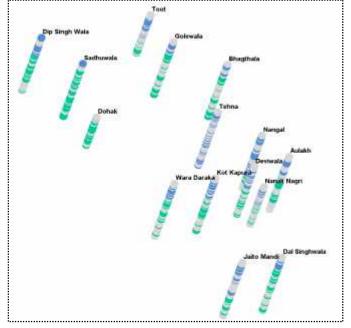






## **3.0 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING**

All the available data have been validated to generate aquifer map. The deepest well in each quadrant is selected and plotted on the map of 1.50000 scale with 5'X5'grid (9 x 9) km (Fig.11).




The optimized wells of CGWB, PWRDM, WRED, WSS and Private Wells have been used to prepare the elevation or collar elevation map to identify the topographic variations on ground surface so that it can give the synoptic picture of gradient variations in the water levels. The topographic elevation values have been plotted to prepare the elevation contour map (Fig.12). The locations of validated wells in quadrant and toposheet wise distributions in respective blocks are given in Table-2. Locations of validated exploratory wells with litholog are shown in Fig.13.



#### Fig.12: Elevation contour map







#### Table -2: Summary of optimized exploration wells

| Block      | Toposheet/Quadrant |                | Elevation<br>(m amsl) | Source of data |         |        |       |         |
|------------|--------------------|----------------|-----------------------|----------------|---------|--------|-------|---------|
|            |                    | Location       | < 100                 | 100-200        | 200-300 | >300   |       |         |
| Faridkot   | 1A 44J/06          | Dip Singh Wala | -                     | -              | -       | 350    | 201   | CGWB    |
| Faridkot   | 3C 44J/09          | Golewala       | -                     | -              | -       | 343.78 | 199.5 | CGWB    |
| Faridkot   | 1A 44J/14          | Tehna          | -                     | -              | -       | 300    | 205   | CGWB    |
| Faridkot   | 3A 44J/14          | Bhagthala      | -                     | -              | -       | 371.95 | 198   | PSTC    |
| Faridkot   | 1A 44J/10          | Sadhuwala      | -                     | -              | -       | 359.70 | 196   | PSTC    |
| Kot Kapura | 1C 44J/15          | Dal Singhwala  | -                     | -              | -       | 300    | 211   | CGWB    |
| Kot Kapura | 1B 44J/15          | Jaito Mandi    | -                     | -              | -       | 419.20 | 203   | CGWB    |
| Kot Kapura | 2A 44J/14          | Kot Kapura     | -                     | -              | -       | 421.90 | 206   | CGWB    |
| Kot Kapura | 3B 44J/14          | Nanak Nagri    | -                     | -              | 213.4   | -      | 210   | PRIVATE |
| Kot Kapura | 1B 44J/14          | Nangal         | -                     | -              | -       | 300    | 206   | CGWB    |
| Kot Kapura | 3A 44J/14          | Wara Daraka    | -                     | -              | -       | 300    | 205   | CGWB    |
| Kot Kapura | 2C 44J/14          | Aulakh         | -                     | -              | -       | 384.14 | 211   | PSTC    |
| Kot Kapura | 2B 44J/14          | Deviwala       | -                     | -              | 269     | -      | 207   | CGWB    |
| Muktsar    | 2B 44J/10          | Dohak          | -                     | 163            | -       | -      | 197   | CGWB    |
| Ghal khurd | 3B 44J/09          | Toot           | -                     | -              | 217     | -      | 196   | CGWB    |

Two exploratory wells from adjacent districts i.e: Dohak from Muktsar district and Toot from Ferozpur district have been incorporated for the preparation of lithological fence and cross sections.

#### 3.1 Sub Surface Disposition

#### 3.1.1 Previous Work:

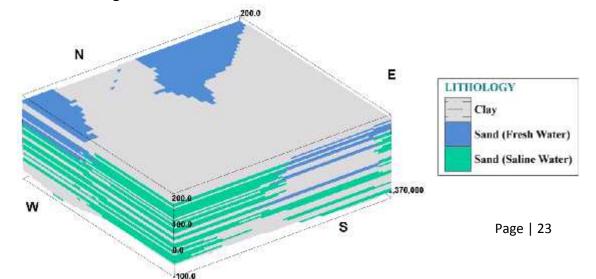
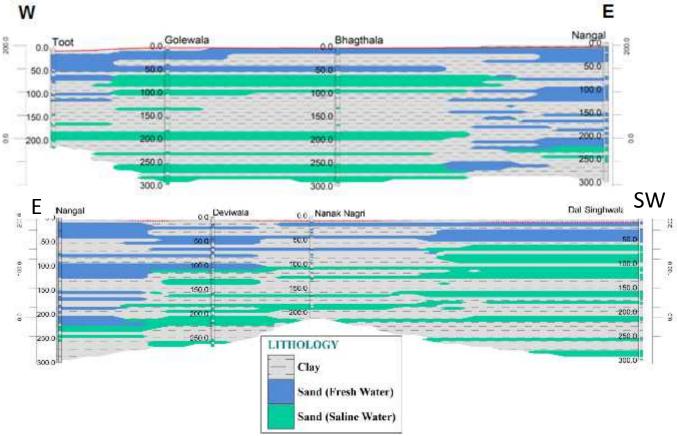
To delineate and determine the potential aquifer zones, evaluation of aquifer characteristics etc. Exploratory drilling was conducted by CGWB at 6 locations in the district includes 05 exploratory wells and 1 slim hole between 1975 to 2008 through in-house activities and 02 exploratory wells and 2 piezometers through outsourced by M/s WAPCOS Ltd. between 2011 to 2015 (Fig.10);. The drilling has been carried out to a maximum depth of about 408 m (Kot Kapura) and revealed the presence of 6 to 12 prominent permeable granular zones with aggregate thickness varying from 28 to 283 m. The granular zone consists of fine to medium sand. The slim hole at Golewala and exploratory well at Kot Kapura have abandoned due to poor quality of formation water upto depth of 350m bgl.

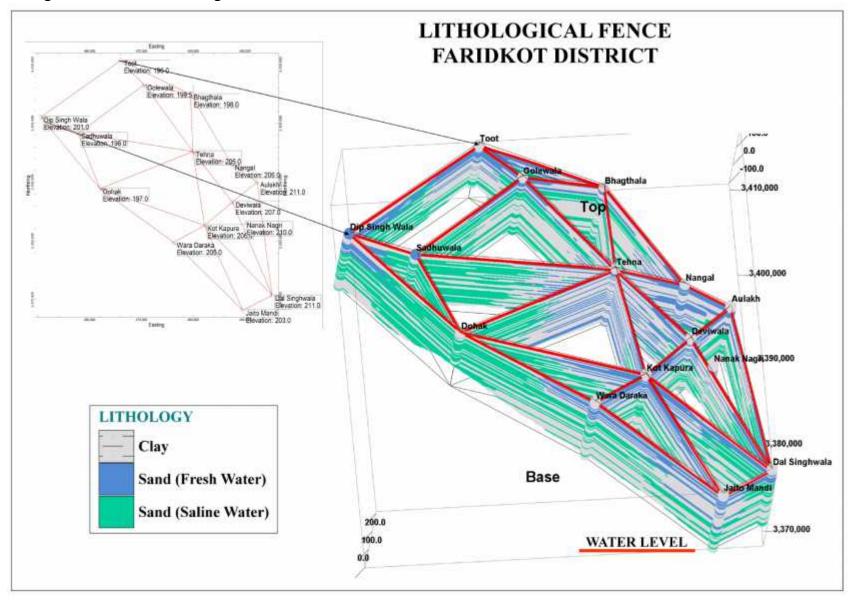
Further, the study of exploratory boreholes drilled in the district revealed the presence of multiple aquifer groups up to the maximum drilled depth of 408 m. The first aquifer group forms very shallow water table aquifer (IA) and occurs down to 57 m. Below that clay layer starts getting thickened to about 8-10m separating Aquifer IB down to 120 m. The below multi aquifers behaves as semi-confined to confined and consisting of thin sand layers alternating with thicker clay layers. Overall flow of ground water is towards south-west direction. Further, the study of exploratory boreholes drilled in the area revealed that the area is considered as a single aquifer system up to the maximum depth of 300 m.

#### 3.1.2 Present NAQUIM Study:

To understand the sub surface disposition in the study area, geological sections and fence diagram have been prepared by synthesizing the various sub-surface sections on the basis of study of the lithological logs and electrical logs of boreholes drilled by CGWB, WRED, PSTC and Private Agencies using the RockWorks15 software and a 3D lithological model has been prepared (Fig.14). The 2D lithology sections and 3D lithological fence diagram has been prepared using lithology model and are shown in Fig.15a, b & 16 respectively. The aquifers are composed of fine to medium sand with clay intercalations. The granular zones are extensive. The aquifer occurring below 252m depth are composed of very fine to medium sand with silt.

Based on geophysical borehole logging and use of resistivity profiling followed by the depth soundings at few selected places, fresh-saline water zones are demarcated. This analysis is extremely important for the present study and will be referred from time to time as it is obviously the higher resistivity beds represents freshwater zone in contrast in low resistive beds indicating saline groundwater zone.



Fig.14: 3-Dimension Lithological Model

The major aquifer system of the area is Quaternary alluvial deposits having Older and Aeolian alluvium which mainly comprises of sand, silt and clay. The top surface layer is mainly silty clay. The lithology along W-E direction shows the variation in lithological thickness i.e. thin clay layers inter bedded with sand except at Nangal where thick clay layers were identified at 55 m bgl. There is inter-layering of sand and clay with thick clay at Golewala and Bhagthala towards western side at a depth between 150m to 210m bgl. There is thick a inter-layering of sand and clay towards all lithologs except Nanak Nagri shows thin sequence of sand and clay towards SW Lithological data of wells are given in Annexure-III.

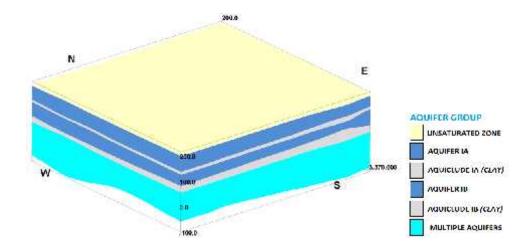


# Fig.15a,b: 2-Dimension Lithological Sections

Fig.16: 3-Dimension Lithological Fence



#### 3.2 Aquifer Geometry:


The aquifer group embodies a number of granular layers alternating with clay lenses. A few clay layers intervening these aquifer groups pinch out against the sand zones at few places. The marker horizons are traced all over the area by connecting their tops and bottoms. Sandy clay layer occurs at the surface covering the unconfined aquifer which is in turn underlain by prominent clay zone. It is composed of mainly of medium sand with thin beds of fine sand.

Aquifer IA (Very Shallow Aquifer) extends maximum upto 70 m of depth and below that clay layer starts getting thickened about 10-12m separating Aquifer IB to a maximum depth of 123 m. Multi layer aquifers are existing in the area each aquifer is separated by thick clay zones of 25 to 40 m upto 300m depth (Annexure IV). Based on the same criteria, to know the broad picture of the aquifer disposition, inter-relationship of granular zones, nature, geometry and extension of aquifers in the study area, the aquifer grouping has been carried out using the subsurface lithology and a 3-Dimensional aquifer model (Fig.17) and aquifer disposition 3D fence diagram has also been prepared using the aquifer model (Fig.18). Various groups identified in the area are given in Table-3. It is very difficult to differentiate the aquifer group system. The first aquifer is water table aquifer and extends all over the area. The aquifer is mainly composed of fine to coarse grained sand.

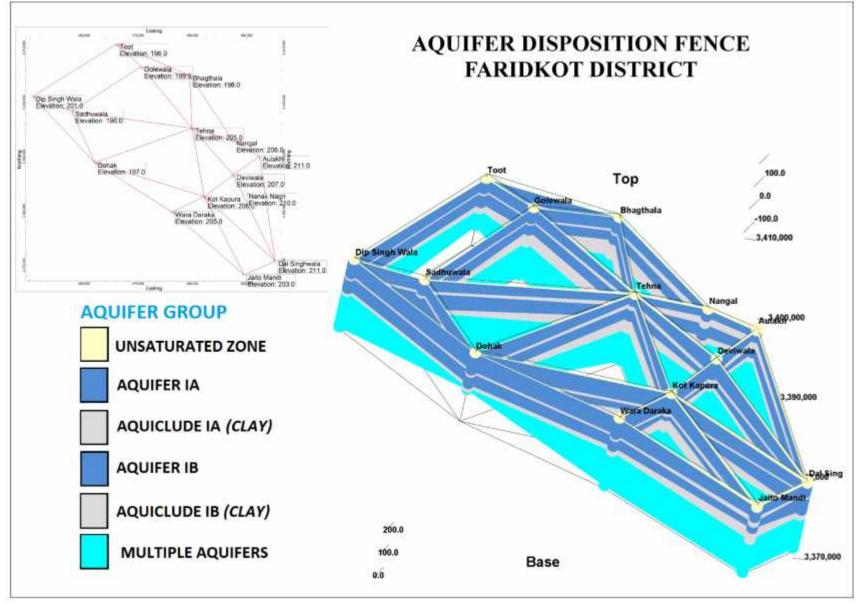

| Aquifer Group     | Ra   | ange | Thi | ckness |
|-------------------|------|------|-----|--------|
|                   | From | То   | Min | Max    |
| Aquifer IA        | 4    | 70   | 29  | 50     |
| Aquifer IB        | 64   | 123  | 21  | 52     |
| Multiple Aquifers | 133  | 300  | 21  | 85     |

Table-3: Aquifer Grouping in Faridkot District

#### Fig.17: 3D Aquifer Disposition Model







## 4.0 GROUND WATER RESOURCES

Ground water resource estimation of the area have been carried out by taking Dynamic and In-storage resources of unconfined aquifer and confined aquifer present upto 300m depth. The assessment of dynamic ground water Resources of the study area have been carried out jointly by CGWB and Water Resources and Environment Directorate (WRED), Department of Irrigation, Punjab on the basis of Ground Water Estimation Committee (1997) methodology.

The occurrence of potential aquifers (productive granular zones) upto 300 m depth has been demarcated on basis of aquifer wise subsurface mapping. The total saturated thickness of granular zones was derived from the exploratory borehole data of a particular block. The granular zones occurring below the zone of water level fluctuation up to the first confining layer has been considered as static unconfined zone. The specific yield value for the unconfined aquifer has been taken as 60% of 0.12 which comes as 0.072 whereas for the confined aquifer, the storativity value has been considered. Since the specific yield is likely to reduce with increase in depth due to compaction of overlying sediments.

Hence, the major data elements considered in this estimation are thickness of granular zones, specific yield/storativity, and area of both fresh water and saline/brackish water. It has been observed that in some of the blocks sufficient data on probable occurrence of granular zones was not available. In those cases, the existing exploratory data of adjoining block/district has been either extrapolated or interpolated to derive such parameters required for estimation. This assessment of total groundwater resources has been computed based on the available data with CGWB & WRED, Department of Irrigation, and Punjab.

#### 4.1 Groundwater Resources up to depth of 300m

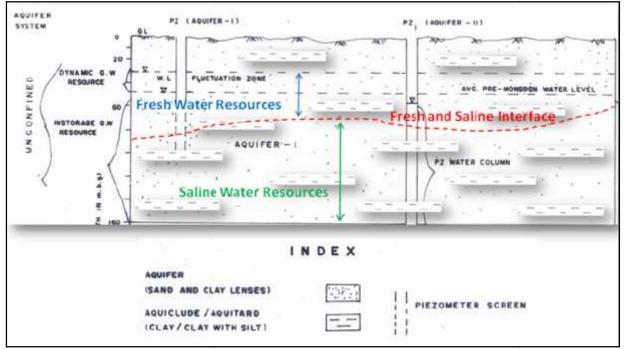
#### a. Dynamic Resources:

Block-wise ground water resource potential of the district has been assessed as per GEC-97 as on 31<sup>st</sup> March 2013. The primary source of recharge in the area is the rainfall. The ground water development in all the blocks has exceeded the available recharge, thus all the blocks have been categorized as over exploited. The overall stage of ground water development in the Faridkot district has been assessed to be 160%. The block wise details are given in below Table-4.

| TOTAL       | 614.53       | 948.80      | 33.13                      | 981.93              | 37.30             | -371.57                   | 160         | Over<br>Exploited |
|-------------|--------------|-------------|----------------------------|---------------------|-------------------|---------------------------|-------------|-------------------|
| Kot Kapura  | 268.21       | 420.20      | 14.02                      | 434.21              | 15.11             | -167.09                   | 162         | Over<br>Exploited |
| Faridkot    | 346.32       | 528.61      | 19.11                      | 547.71              | 22.19             | -204.48                   | 158         | Over<br>Exploited |
|             |              | irrigation  | industrial<br>water supply | All uses<br>(11+12) | supply to<br>2025 | development<br>(10-11-14) | 100}<br>(%) |                   |
|             | Availability | <b>J</b> -  | and                        | Draft for           | •                 | 5                         | {(13/10) *  |                   |
|             | Water        | Water Draft | for domestic               | Water               | industrial        | for future                | Development |                   |
|             | Ground       | Ground      | Water Draft                | Ground              | and               | Availability              | Water       |                   |
| Unit/ Block | Annual       | Gross       | Gross Ground               | Gross               | domestic,         | Water                     | Ground      |                   |
| Assessment  | Net          | Existing    | Existing                   | Existing            | Provision for     | Net Ground                | Stage of    | Category          |

#### Table 4: Dynamic Ground Water Resource & Development Potential (31.03.2013) in mcm

#### b. In-storage Ground Water Resources


As per revised guidelines recommended by the Central Level Expert Group on groundwater resources assessment, the resources are separately considered as dynamic and instorage unconfined. In case of alluvial area, in-storage resources of unconfined aquifer have been computed on the basis of specific yield of aquifer as detailed below.

| In-storage   |   | Thickness of the aquifer       |   |              |   |              |
|--------------|---|--------------------------------|---|--------------|---|--------------|
| Ground Water |   | (granular/productive zone)     |   |              |   |              |
| resources    | = | below the zone of water level  | х | Sp. Yield of | х | Areal extent |
| (Unconfined  |   | fluctuation down to the bottom |   | the aquifer  |   | of the       |
| Aquifer)     |   | layer of unconfined aquifer    |   |              |   | aquifer      |

The dynamic and in-storage ground water resource estimations have been calculated for single aquifer group upto 300m of each block of Faridkot district. In-storage ground water resources are estimated for fresh water and saline water resources based on the geophysical interpretations of depth to fresh and saline water interface for each block. The fresh and saline calculations are made on the basis of the assumptions on aquifer that is considered as unconfined aquifer so that the specific yield concept is used for resources estimations (Fig.19). The detailed resources estimations are calculated in detailed table for fresh and saline water resources in the below Table-5, 6& 7.

Total Availability of Ground Water Resources = Dynamic Resources + In-storage Resources.

Fig.19: Conceptual figure to understand the fresh and saline water resources in the aquifer up to 300 m for Resource Estimation in Unconfined and Confined Aquifer System.



(The clay lenses are more dominant in the aquifer and sometimes huge thickness of clay deposits are also observed in the lithologs)

Table-5: Block wise In-Storage Ground Water Resources of Fresh Water Aquifer

|           | GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OF DISTRICT FARIDKOT, PUNJAB STATE (2013) |                      |                                             |                                                     |                                                         |                                                                                                               |                                                                                                     |                                                                                                              |                                                                                                   |                                                                                                                                    |                              |                                                                                                                      |
|-----------|---------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Туре      | of Ground W                                                                                       | ater Assess          | ment Unit (                                 | Block): Faridk                                      | ot Blocks                                               |                                                                                                               |                                                                                                     |                                                                                                              |                                                                                                   |                                                                                                                                    |                              |                                                                                                                      |
| Sr.<br>No | Name of<br>Assessment<br>Unit                                                                     | Type of<br>formation | Areal ext<br>Total<br>Geograph<br>ical Area | ent (sq km)<br>Assessment<br>Area<br>Fresh<br>Water | Average<br>Pre-<br>monsoon<br>Water<br>Level<br>(m bgl) | Depth to<br>bottom of<br>Aquifer<br>based on<br>Geophysica<br>I Interface<br>& Borehole<br>logging<br>(m bgl) | Total<br>Thickness<br>of<br>formation<br>below<br>Pre-<br>monsoon<br>Water<br>Level<br>(m)<br>(7-6) | Total<br>thickness<br>of the<br>Granular<br>Zones up<br>to the<br>depth of<br>Fresh<br>Water<br>Zones<br>(m) | Thickness<br>of the<br>unsaturat<br>ed<br>granular<br>Zones up<br>to Pre-<br>monsoon<br>WL<br>(m) | Thickness<br>of the<br>saturated<br>granular<br>Zones up<br>to the<br>depth of<br>Fresh<br>water<br>aquifer<br>below (m)<br>(9-10) | Average<br>Specific<br>Yield | In-Storage<br>Ground<br>Water<br>Resources<br>up to the<br>depth of<br>Fresh<br>Water<br>Aquifer<br>(ham)<br>5*11*12 |
| 1         | 2                                                                                                 | 3                    | 4                                           | 5                                                   | 6                                                       | 7                                                                                                             | 8                                                                                                   | 9                                                                                                            | 10                                                                                                | 11                                                                                                                                 | 12                           | 13                                                                                                                   |
| 1         | Faridkot                                                                                          | Alluvium             | 75210                                       | 36710                                               | 4.50                                                    | 152                                                                                                           | 147.5                                                                                               | 72                                                                                                           | 2                                                                                                 | 69                                                                                                                                 | 0.072                        | 182375                                                                                                               |
| 2         | Kot<br>Kapura<br>Dist. Total (h                                                                   | Alluvium             | 66650<br><b>141860</b>                      | 61650<br>228406                                     | 10.69                                                   | 106                                                                                                           | 95.31                                                                                               | 51                                                                                                           | 3                                                                                                 | 48                                                                                                                                 | 0.072                        | 213062<br>395438                                                                                                     |
|           | Dist. Total (n                                                                                    | ncm)                 |                                             |                                                     |                                                         |                                                                                                               |                                                                                                     |                                                                                                              |                                                                                                   |                                                                                                                                    |                              | 3954                                                                                                                 |

ham : hectare metre

mcm: million cubic metre

#### Table-6: Block Wise In-Storage Ground Water Resources of Saline Aquifers upto 300 m Depth

| GEN        | GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OF DISTRICT FARIDKOT, PUNJAB STATE (2013) |                      |                 |                                                  |                                                                                                           |                                                                                                                      |                                                                                  |                                                                                                            |                              |                                                                                                            |
|------------|---------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------|
| Туре       | e of Ground W                                                                                     | ater Assessi         | ment Unit (Bloo | ck): Faridkot Blo                                | cks                                                                                                       |                                                                                                                      |                                                                                  |                                                                                                            |                              |                                                                                                            |
| Sr.<br>No. | Name of<br>Assessment<br>Unit                                                                     | Type of<br>formation | •               | xtent (ha)<br>Assessment<br>Area<br>Saline Water | Depth to<br>bottom of<br>Aquifer based<br>on Geophysical<br>Interface &<br>Borehole<br>logging<br>(m bgl) | Depth to<br>bottom of<br>Saline Water<br>Aquifer<br>based on<br>Geophysical<br>Interface &<br>Borelogging<br>(m bgl) | Total<br>thickness<br>of the<br>Saline<br>Water up<br>to the max<br>depth<br>(m) | Total<br>thickness of<br>the<br>Granular<br>Zones up to<br>the depth of<br>Saline<br>Water<br>Zones<br>(m) | Average<br>Specific<br>Yield | In-Storage<br>Ground<br>Water<br>Resources<br>up to the<br>depth of<br>Saline<br>Water<br>Aquifer<br>(ham) |
| 1          | 2                                                                                                 | 3                    | 4               | 5                                                | 6                                                                                                         | 7                                                                                                                    | 8                                                                                | 9                                                                                                          | 10                           | 5*10*11<br><b>11</b>                                                                                       |
| T          | -                                                                                                 | -                    | _               |                                                  |                                                                                                           | /                                                                                                                    | -                                                                                | -                                                                                                          |                              |                                                                                                            |
| 1          | Faridkot                                                                                          | Alluvium             | 75210           | 38500                                            | 152                                                                                                       | 300                                                                                                                  | 148                                                                              | 103                                                                                                        | 0.072                        | 285516                                                                                                     |
| 2          | Kot Kapura                                                                                        | Alluvium             | 66650           | 5000                                             | 106                                                                                                       | 300                                                                                                                  | 194                                                                              | 76                                                                                                         | 0.072                        | 27360                                                                                                      |
|            | Dist. Total (I                                                                                    | nam)                 | 141860          | 228406                                           |                                                                                                           |                                                                                                                      |                                                                                  |                                                                                                            |                              | 312876                                                                                                     |
|            | Dist. Total (r                                                                                    | ncm)                 |                 |                                                  |                                                                                                           |                                                                                                                      |                                                                                  |                                                                                                            |                              | 3129                                                                                                       |

ham : hectare metre

mcm: million cubic metre

Table-7: Block Wise Total Availability of Fresh and Saline Groundwater Resources upto 300 m Depth and Volume of unsaturatedgranular zone after 3m upto water level.

|        | BLOCK WISE AVAILABILITY OF TOTAL GROUNDWATER RESOURCES IN FARIDKOT DISTRICT |                                           |                                     |                                             |                                         |                                                   |        |                                       |  |  |  |
|--------|-----------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------------------------|--------|---------------------------------------|--|--|--|
| SI.No  | BLOCK                                                                       | Volume of<br>Unsaturated<br>Granular Zone | Dynamic<br>Groundwater<br>Resources | In-storage<br>Groundwater<br>Resources UPTO | Total Fresh<br>Groundwater<br>Resources | Total Saline<br>Groundwater<br>Resources[(3)+(4)] | Groun  | ilability of<br>dwater<br>s [(6)+(7)] |  |  |  |
|        |                                                                             | up to Pre-<br>monsoon WL                  | (2013)<br>AQUIFER-I                 | FRESHWATER                                  | [(4)+(5)] (HAM)                         | (HAM)                                             | ham    | mcm                                   |  |  |  |
| 1      | 2                                                                           | 3                                         | 4                                   | 5                                           | 6                                       | 7                                                 | 8      | 9                                     |  |  |  |
| 1      | Faridkot                                                                    | 10830                                     | 34632                               | 182375                                      | 217007                                  | 285516                                            | 502523 | 5025                                  |  |  |  |
| 2      | Kot Kapura                                                                  | 14396                                     | 26821                               | 213062                                      | 239883                                  | 27360                                             | 267243 | 2672                                  |  |  |  |
| Dist.T | otal (ham)                                                                  | 25227                                     | 61453                               | 395438                                      | 456891                                  | 312876                                            | 769767 | 7698                                  |  |  |  |
| Dist.T | otal (mcm)                                                                  | 252                                       | 615                                 | 3954                                        | 4569                                    | 3129                                              |        |                                       |  |  |  |

ham : hectare metre

mcm: million cubic metre

#### 5.0 **GROUND WATER ISSUES**

#### 5.1 **Ground Water Depletion**

The Study area is famous for its paddy and non paddy cultivation. The quality of ground water in the area is suitable for irrigation and drinking purposes, therefore, the ground water is constantly being pumped for the irrigation due to its easy access through tube wells at shallow depths and they are the main source of irrigation. This will lead to its deepening of ground water levels in blocks of Faridkot and Kot Kapura of Faridkot district as the recharge of the groundwater through rainfall and other sources are less than the overall extraction. The hydrographs also shows the declining water level trend over the years in the district (Fig.20) and is categorized as over-exploited. This declining water table trend, if not checked, would assume an alarming situation in the near future affecting agricultural production and thus economy. Ground Water Recharge and Conservation may be carried out in these areas to overcome the depletion. Other than the groundwater depletion, quality and rising water table are the other issues.

### Hydrograph 0 2 s-- Vider Level (inbul) 17 10 14 16

8

Dee

Dec

All

ጽ

Dec

🔽 ---- Diosinghwala 🔽 ---- Karirwal

Dec 38

#### Fig.20: Long term ground water table variation

Dec. Hi Dec 37

Dec

#### 5.2 **Rising Water table**

Dec 30

Dec 31

Dec 32 Dec 33 Dec 34

-- Chand Bala

Mchrruana

In western parts of the area water table is rising due to less withdrawal of ground water because of brackish / saline quality coupled with easy availability of canal water for domestic and irrigation purposes. As such, these areas are likely to get water logged in near future. There is an urgent need to arrest the rising water trend in western part and implement anti-water logging schemes.

Dec. Dec

Timo

tic bed 28

Doo

8

Dec . Dec

🔽 ---- Kot Kapura

Doo Dec 0°C Dec

🔽 --- Ivatta

Dec 000 0ec Dec 15

#### 5.3 Ground Water Quality

The ground water of the study area is alkaline in nature. Ground water in the area is generally fresh to marginally saline with fluoride concentration above permissible limit (1.5 mg/L) are found mainly in Nathuwala (6.03), Killi (4.29), Kot Kapura (3.33), Dhilwan Kalan(2.85) and Bir Sikhanwala (1.84), Nitrate concentration above permissible limit (45mg/l) are found in Sukhanwala (46), Sher singhwala (65), Wara Daraka (66), Dhilwan Kalan (72),Nathuwala (79), Chand Bhaja (79), Bir Sikhanwala (89), Nangal (104), Tehna (118), Dal Singhwala(136), Killi (140), and KotKapura (144) and iron concentration above permissible limit (1.5 mg/L)are observed in Deviwala (1.77) There is growing concern on deterioration of ground water quality due to geogenic and anthropogenic activities.

#### 5.4 Ground Water Irrigation Scenario

As per the data available from minor irrigation census 2005-06, the detailed number of shallow, deep, tube wells, lined, unlined water distribution system, land holdings of wells are given in Table-8,9 &10.

| Type of<br>Tube well<br>(TW) | Marginal<br>(0-1 ha) | Small<br>(1-2 ha) | Semi-<br>Medium<br>(2-4 ha) | Medium<br>(4-10ha) | Big<br>(>10ha) | Total |
|------------------------------|----------------------|-------------------|-----------------------------|--------------------|----------------|-------|
| Shallow TW                   | 1100                 | 4029              | 10069                       | 14576              | 5314           | 35088 |
| Deep TW                      | 29                   | 197               | 596                         | 1188               | 468            | 2478  |
| Total                        | 1129                 | 4226              | 10665                       | 15764              | 5782           | 37566 |

 Table-8: Distribution of Tube wells According to Well Owner's land holding Size

|--|

| Depth of Tubewells in metres |        |         |         |         |        |         |        |                                |  |
|------------------------------|--------|---------|---------|---------|--------|---------|--------|--------------------------------|--|
| Depth range                  | 0-20 m | 20-40 m | 40-60 m | 60-70 m | 70-90m | 90-150m | >150 m | Total depth<br>Range<br>0-150m |  |
| Tubewells                    | 3507   | 9947    | 9998    | 11636   | 543    | 1744    | 191    | 37566                          |  |
| Tubewells (%)                | 9      | 26      | 27      | 31      | 1      | 5       | 1      |                                |  |

#### Table-10: System of Ground water distribution device

|             | <b>Open Water Channels</b> |        |       |
|-------------|----------------------------|--------|-------|
| Lined/pucca | Unlined/kutcha             | Others | Total |
| 2093        | 35455                      | 18     | 37566 |

#### 6.0 MANAGEMENT STRATEGIES AND AQUIFER MANAGEMENT PLAN

Aquifer mapping is leads to groundwater management plans to be implemented by including demand side-management and Ground Water Use Efficiency.

An outline of the Aquifer Management Plan for each block is given in Part-II. This includes details regarding population, rainfall, average annual rainfall, agriculture and irrigation, water bodies, ground water resource availability, ground water extraction and water level behavior. Aquifer disposition and various cross sections have also been given. Ground water resources, extraction and other issues including ground water resource enhancement and demand side innervations have been given.

Artificial recharge plan is less feasible in the Faridkot District due to very low availability of volume of surplus water (9.59 mcm). Another focus has been given to minimize the gross draft by enhancing ground water use efficiency in irrigation system after replacing the water distribution system from unlined/kutcha channel to Under Ground Pipeline System (UGPS) in over exploited blocks of the district.

#### 6.1 Scope of Implementation

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the central or state govt. like MANERGA, IWSP, PMKSY (Prime Minister Krishi Sinchai Yojna), NABARD funded schemes, Urban Development schemes, departmentally funded projects etc. may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, engineering Collages, Academic and Research Institution, NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

#### 6.2 Potential of Enhancing the Ground Water Use Efficiency

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced in the state of Punjab, particularly in overexploited blocks.

There are around 35455 (out of 37566) tube wells (94.38 %) operated by farmers for irrigation through unlined/Kutcha open channel system in study area (Table-10) where water from the tube well is discharge to the agricultural field. In this process, huge (around 25 %) (RKVY, 2015) quantity of ground water is wasted in soil moisture and evaporation losses.

Around 95 % of the tube wells are of shallow depth (20 to 70m) and remaining wells are deeper depth (70 to >150 m) existed in the area (Table-9). Thus, majority of wells are tapping shallow aquifer which is under stress.

Dynamic ground water resources (2013) indicate that Gross ground water draft for irrigation in the district is estimated at 948.80 mcm. It is expected that around 25 % of over draft can be brought down by switching over to underground/surface pipeline based

distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to 224 mcm (Table-11a) assuming that there is no crop diversification by the farmers.

The benefit will lead to saving of precious ground water resources in overexploited blocks. The measure if implemented will bring down the ground water overdraft from 160 % to 123%. The category of the blocks will also improve resulting in boosting of agriculture and industrial development otherwise not sustainable in over-exploited blocks (Table-11b).

The tube wells also consume enormous electricity which is subsidized and government incur significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. It is expected to save 1% of the agricultural land occupied by open channels which can be utilized for cultivation purpose. Heavy ground water overdraft can be reduced by these efforts. This will ensure *more crops per drop.* 

#### 6.3 Water saving Potential from Crop Diversification-Change Paddy to Maize/Soya-bean:

As the requirement of water for paddy is much high therefore by changing paddy to maize/soya-bean will help in saving of water. For estimating the water saving by crop diversification it is assumed that **one mcm** of water will be saved in case of maize or soyabean planted in **one sq km** of land. In case of pulses even higher amount of ground water can be saved.

The block wise saving of water in mcm by applying various management strategies such as crop diversification, Under Ground Pipe lines (UGPL) in individual land and artificial recharge methods are given in tables 11.a, b.

|            |                                              |                                       | manage                                                           |                                                 |                                                                     |             |                                       |                          |                                                              |
|------------|----------------------------------------------|---------------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|-------------|---------------------------------------|--------------------------|--------------------------------------------------------------|
| Block      | Net Ground<br>Water<br>Availability<br>(mcm) | Total<br>Irrigation<br>Draft<br>(mcm) | Present<br>Stage of<br>draft<br>(SOD)<br>(%) (As<br>per<br>2013) | Reducti<br>Replace<br>water<br>courses<br>by UG | on in draft<br>saving r<br>Adopt<br>Artificial<br>recharge<br>(mcm) | by differer | nt water<br>Total<br>(mcm)<br>(2+3+4) | SOD<br>afterwards<br>(%) | Change of<br>paddy<br>cultivation<br>area (% of<br>existing) |
|            |                                              | -                                     | 1                                                                | Pipes<br>(mcm)<br>2                             | 3                                                                   | (mcm)<br>4  | 5                                     |                          |                                                              |
| Faridkot   | 346.32                                       | 528.61                                | 158                                                              | 124.72                                          | 4.84                                                                | 72.45       | 202.01                                | 99.69                    | -                                                            |
| Kot Kapura | 268.21                                       | 420.20                                | 162                                                              | 99.15                                           | 4.75                                                                | 62.64       | 166.54                                | 99.86                    | -                                                            |
| Total      | 614.53                                       | 948.80                                | 160                                                              | 223.87                                          | 9.59                                                                | 135.67      | 369.13                                | 99.48                    |                                                              |

#### Table-11a: Scope of Quantitative Impact on Stage of Development after applying various management strategies in mcm

| Block    | Present | Reduction  | Resultant   | Reduction in    | Resultant   | Reduction in     | Resultant   |
|----------|---------|------------|-------------|-----------------|-------------|------------------|-------------|
|          | SOD (%) | in SOD (%) | SOD (%)     | Stage of        | SOD (%)     | Stage of         | SOD (%)     |
|          | as on   | after      | $C_{2}$     | development     |             | development      | $C_{2}$     |
|          | 2013    | unlined    | Col.(2 - 3) | after crop      | Col.(2 - 5) | after Artificial | Col.(2 - 7) |
|          |         | channel    |             | diversification |             | recharge (%)     |             |
|          |         | (%)        |             | by              |             |                  |             |
|          |         |            |             | Maize/Soyabean  |             |                  |             |
|          |         |            |             | (%)             |             |                  |             |
| 1        | 2       | 3          | 4           | 5               | 6           | 7                | 8           |
| Faridkot | 158     | 36.01      | 121.99      | 20.90           | 137.10      | 1.40             | 156.60      |
| Kot      | 162     | 36.97      | 125.03      | 23.40           | 138.60      | 1.77             | 160.23      |
| Kapura   | ±92     | 20.57      | 120.00      | 23.10           | 100.00      | 1.77             | 100.20      |
| Total    | 160     | 36.64      | 123.36      | 22.10           | 137.90      | 1.78             | 158.22      |

### Table-11b: Impact on Stage of Development (SOD) after applying various managementstrategies in Faridkot District

By adopting all the management strategies resulting in total reduction in stage of groundwater development is 60.52%. Hence overall stage of development afterwards is 99.48 % and is given in Table.12.

Table-12: Overall Stage of Development (SOD) after reduction in Faridkot

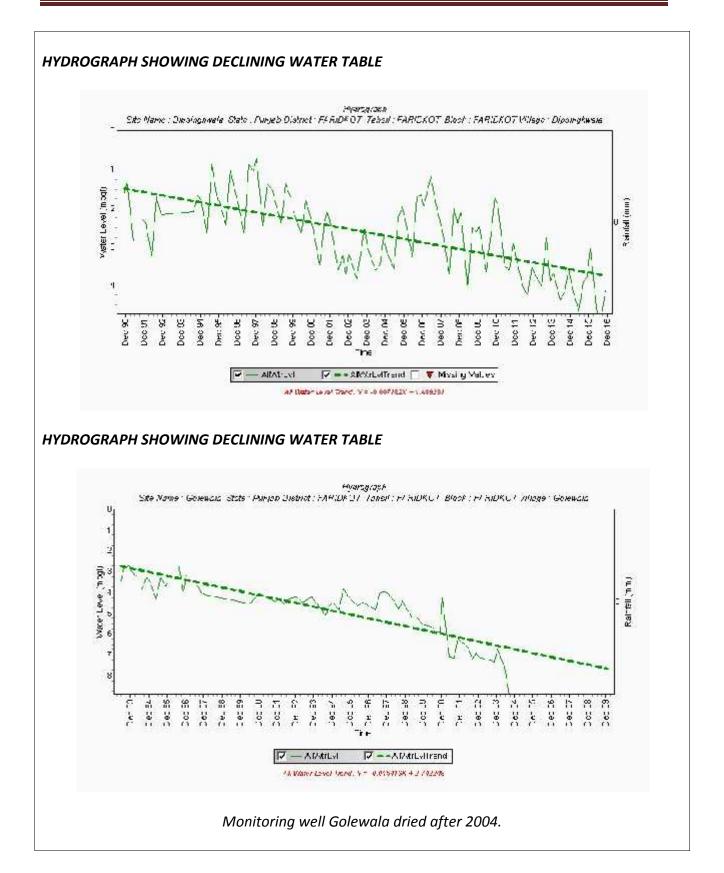
| Block      | Present     | Reduction in  | Reduction in                | Reduction in     | Total        | Stage of    |
|------------|-------------|---------------|-----------------------------|------------------|--------------|-------------|
|            | Stage of    | stage of      | Stage of                    | Stage of         | Reduction in | development |
|            | development | development   | development                 | development      | Stage of     | afterwards  |
|            | (%) as on   | after unlined | after crop                  | after Artificial | development  | (%)         |
|            | 2013        | channel (%)   | diversification             | recharge (%)     | (%)          |             |
|            |             |               | by<br>Maize/Soyabean<br>(%) |                  | (3 +4+5)     | (2-6)       |
| 1          | 2           | 3             | 4                           | 5                | 6            | 7           |
| Faridkot   | 158         | 36.01         | 20.90                       | 1.40             | 58.31        | 99.69       |
| Kot Kapura | 162         | 36.97         | 23.40                       | 1.77             | 62.14        | 99.86       |
| Total      | 160         | 36.64         | 22.10                       | 1.78             | 60.52        | 99.48       |

#### 7.0 CONCLUSIONS

- 1. The area lies in the central part of Satluj basin of Indo-Gangetic Alluvial plain. Geologically, the area is occupied by a thick sequence of Quaternary deposits of Mid-Pleistocene to Recent age.
- 2. The Principle Aquifer system in the study area is Alluvium and the Major Aquifers are Older Alluvium and Aeolian Alluvium.
- 3. Lithological characteristics of the area are Multi-cyclic light grey to brown fine to medium grained mixture of clay, silt and sand with Kankar.
- 4. Thick layering of clay with sand at many places can be observed towards south of the district at deeper depths. The Ground water occurs in unconfined (water table) and confined conditions.
- 5. Chemical data of ground water from shallow aquifer indicates that ground water is alkaline and fresh to moderately saline.
- 6. To delineate fresh water saline water interface laterally as well as vertically, surface geophysical investigations have been carried out in alluvial tracts.
- 7. To understand the sub surface disposition, geological sections and fence diagram have been prepared by synthesizing the various sub-surface sections on the basis of study of the lithological logs and electrical logs of boreholes drilled by CGWB, WRED, PSTC and Private Agencies using the RockWorks15 software.
- 8. Aquifer IA (Very Shallow Aquifer) extends maximum upto 70 m of depth and below that clay layer starts getting thickened about 10-12m separating Aquifer IB to a maximum depth of 123 m. Multi layer aquifers are existing in the area each aquifer is separated by thick clay zones of 25 to 40 m upto 300m depth. It is very difficult to differentiate the aquifer groups after Aquifer Group I, so the whole lithology is considered to be a single aquifer group system.
- 9. Stage of Ground Water Development of the district is 160% on the basis of Dynamic ground water resources, 2013. In- storage ground water resources has also been calculated up to a depth of 300 meters.
- 10. The fresh water resources are inadequate in aquifer upto maximum depth of 106m, whereas saline water is dominant resources below 106 m depth upto 300 m. In the north of the district towards Faridkot block fresh water is available upto 152m depth.
- 11. Dynamic ground water resources of the study area are 614.53 mcm, whereas In-storage ground water resources up to fresh water zones are 3954 mcm. Thus, total fresh ground water resources up to maximum depth of 152 m are 4569 mcm. Total saline water resources up to depth of 300 m are 3129 mcm.
- 12. Main groundwater issues in the area are groundwater depletion, quality and rising water table.
- 13. Considering the high ground water abstraction for irrigation (948.80 mcm) and overdraft (371.57 mcm), it is suggested that proposed artificial recharge measures (9.59 mcm), crop diversification measures (135.67 mcm) and conserving ground water through laying of underground pipe line (223.87 mcm) will be useful.
- 14. Other techniques of water saving and modern irrigation technology to be enforced to maximize per drop of water use in the district and also to think about the hidden saline water resources and for its utilizations.

# BLOCK WISE AQUIFER MAPS

# AND


# **MANAGEMENT PLAN**

# (PART-II)

### I .Salient Information of Faridkot Block

| Block Area<br>(in Km <sup>2</sup> ) | 752.10 sq km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District/ State                     | Faridkot, Punjab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Population                          | Urban Population: 2260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | Rural Population: 179432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     | Total population: 181692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rainfall                            | Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | Monsoon: 335 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                     | Non-monsoon Rainfall : 35 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                     | Annual Average Rainfall: 349 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Agriculture and Irrigation          | Principal crops: Wheat, Cotton and Paddy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     | Gross cropped area: 1195.62 sq km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | Net sown area: 591.80 sq km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | Irrigation practices: Canal and Tube well Irrigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     | Cropping intensity: 202%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     | <u>Area under</u><br>Ground water Irrigation: 61 50 cg km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | Ground water Irrigation: 61.59 sq km<br>Surface water irrigation: 511.43 sq km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                     | Number and types of abstraction structures: 20927, Tubewells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ground Water Resource               | Ground water Resources Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Availability and Extraction         | Total Ground Water Resources Availability<br>Total Ground Water Resources available is 5025 mcm (fresh and<br>saline water) up to the depth of 300m. The fresh water resources<br>are estimated up to the depth of 152 m on the basis of geophysical<br>interpretations. The potential granular zones available for fresh<br>water are calculated as 72 m. Saline water resources are estimated<br>on the basis of available well depth (up to 300 m) and the granular<br>zones are counted after depth of 152 m and available zones are 103<br>m. Block is categorized as Over-Exploited as per Dynamic<br>Groundwater Resources, 2013 assessment. |
|                                     | <u>Ground water Resources Extraction</u><br>Deeper aquifers are marginal to highly saline and not suitable for<br>irrigation purpose as such all users are tapping shallow aquifers.<br>Drinking water supply wells of State Government tapping shallow<br>aquifers Therefore, the ground water draft could not be assessed for<br>deeper aquifer.                                                                                                                                                                                                                                                                                                  |

| xisting and future water                                                                                     | Existing Gross Ground water Draft as on 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| emands                                                                                                       | Irrigation: 528.61 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                              | Domestic and industrial water supply: 19.11 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | <u>Future water demands</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                              | Irrigation development potential : (-)20.45 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | Domestic and industrial water supply up to 2025 years : 22.19 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vater level behavior                                                                                         | <u>Aquifer wise water level</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | Aquifer-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                              | Pre Monsoon: 1.45 – 15.22 m bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | Post Monsoon: 1.20 – 13.10 m bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              | Mean (10 yrs) : 1.00 – (-)1.01 m/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                              | Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                              | Pre Monsoon: 0.18 – (-)0.22 m/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              | Post Monsoon: 0.24 – (-)0.30 m/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                              | Aquifer-II:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                              | No Monitoring stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                              | Aquifer-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                              | No Monitoring stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IYDROGRAPH SHOWING D                                                                                         | DECLINING WATER TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                              | Hydrog <b>ra</b> wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SRe Name : Choka Baja Sto                                                                                    | Hydrog <b>ra</b> wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0<br>0<br>1<br>В К                                                                                           | Hydrograwh<br>Ite : Fundab Dietriot : FARIDKOT Tabell : FARIDKCT Eleck : FARIDKCT Village : Chahd Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0<br>0<br>1<br>В К                                                                                           | Hydrograwh<br>Ite : Fundab Dietriot : FARIDKOT Tabell : FARIDKCT Eleck : FARIDKCT Village : Chahd Baja<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>0<br>;<br>1<br>В К                                                                                      | Hydrogreenh<br>nte : Furdak Dietrioi : FARIDKOT Tahell : FARIDKCT Elevk : FARIDKST Village : Chahel Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SPe Nome : Cashe Baja Sta                                                                                    | Hydrogreenh<br>nte : Furdak Dietrioi : FARIDKOT Tahell : FARIDKCT Elevk : FARIDKST Village : Chahel Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SRe Name : Casha Baja Sta                                                                                    | Hydrograwh<br>Ite : Fundab Dietriot : FARIDKOT Tabell : FARIDKCT Eleck : FARIDKCT Village : Chahd Baja<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRe Nome: Capta Baja Sta<br>0<br>4<br>1<br>8<br>8<br>10<br>12<br>14<br>10<br>12<br>14<br>10                  | Hydrograwh<br>hte : Fundak Dietriot : FARIDKOT Taken : FARIDKCT Eleck : FARIDKST Village : Chand Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ste Name : Casta Baja Sta<br>0<br>1<br>1<br>8<br>8<br>10<br>12<br>14<br>10<br>12<br>14<br>10                 | Hydrograwh<br>hte : Fundak Dietriot : FARIDKOT Taken : FARIDKCT Eleck : FARIDKST Village : Chand Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SP6 Nome: Cash4 Baja Sta                                                                                     | Hydrograwh<br>hte : Fundak Dietriot : FARIDKOT Taken : FARIDKCT Eleck : FARIDKST Village : Chand Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ste Nome : Caste Baja Sta<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1              | Hydrograwh $http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT - FARIDKOT - FARIDKCT -$ |
| о                                                                                                            | Hydrograwh $http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT Taboli - FARIDKCT Elock - FARIDKCT Village : CALMA Bada http::Fundub District: FARIDKOT - FARIDKOT - FARIDKCT -$ |
| о<br><i>Ste Nome : Cuoted Baja</i> Sta<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Hydrograwh<br>hte : Furt(ch District : FARIDKOT Tabou : FARIDKCT Elocx · FARIDKCT V./kage : Chabel Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| о<br><i>Ste Nome : Cuoted Baja</i> Sta<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Hydrograwh<br>hte : Furt(ch District : FARIDKOT Tabou : FARIDKCT Elocx · FARIDKCT V./kage : Chabel Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                           | Hydrograwh<br>hte : Furt(ch District : FARIDKOT Tabou : FARIDKCT Elocx · FARIDKCT V./kage : Chabel Baja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### **Aquifer Disposition**

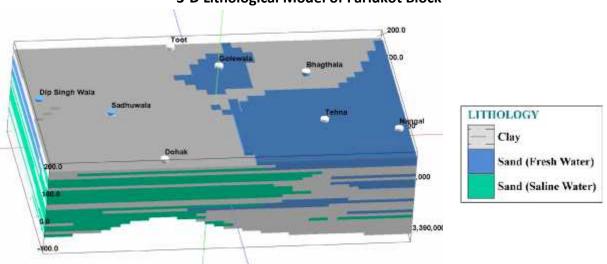
| Number of aquifers | 1                                |
|--------------------|----------------------------------|
| Principal aquifer  | Alluvium                         |
| Major Aquifer      | Older Alluvium, Aeolian Alluvium |

#### **Exploratory Data Availability**

| Source of Data | No. of e | Total                     |   |   |    |  |  |
|----------------|----------|---------------------------|---|---|----|--|--|
|                | <100     | <100 100-200 200-300 >300 |   |   |    |  |  |
| CGWB           | 1        | 0                         | 0 | 4 | 5  |  |  |
| WRED/PSTC/WSS  | 6        | 1                         | 0 | 2 | 9  |  |  |
| PRIVATE        | 0        | 0                         | 0 | 0 | 0  |  |  |
| TOTAL          | 7        | 1                         | 0 | 6 | 14 |  |  |

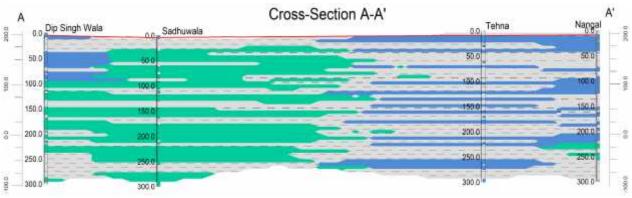
#### Aquifer wise Characteristics (CGWB, 2012)

| Aquifer | Geology  | Type of  | Thickness             | Transmissi | Yield/    | Specific | Storativity             |
|---------|----------|----------|-----------------------|------------|-----------|----------|-------------------------|
| Group   |          | Aquifer  | of                    | vity       | Discharge | Yield    |                         |
| *       |          |          | Granular<br>zones (m) | (m²/day)   | (m³/day)  |          |                         |
| Single  | Quarter- | Unconfin | 175                   | 474 - 2660 | 939 -     | 12 %     | 17.5 x 10 <sup>-3</sup> |
| Aquifer | nary     | ed to    |                       |            | 5594.4    | (0.072)  | -                       |
| System  | Alluvial | confined |                       |            |           |          | 1.8 x 10 <sup>-3</sup>  |
|         | deposits |          |                       |            |           |          |                         |

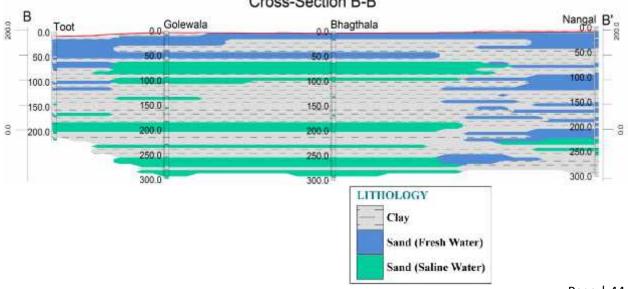

\* Well field proposed in adjacent block

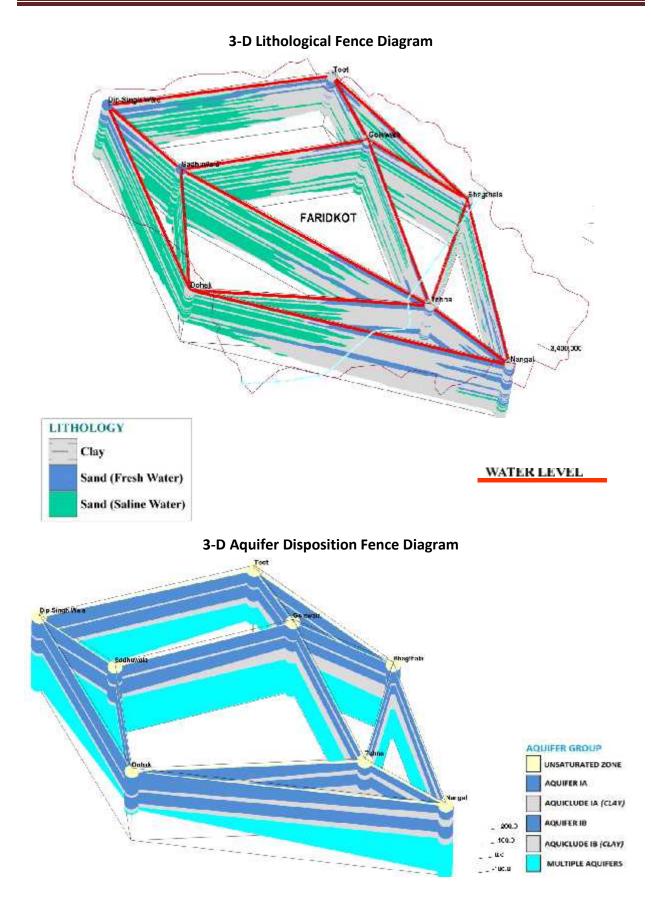
The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

#### Exploratory Data Validated


| Source of Data | No. of e | No. of exploration wells as per depth range (m) |                      |   |   |  |  |
|----------------|----------|-------------------------------------------------|----------------------|---|---|--|--|
|                | <100     | 100-200                                         | 100-200 200-300 >300 |   |   |  |  |
| CGWB           | 0        | 0                                               | 0                    | 4 | 4 |  |  |
| WRED/PSTC/WSS  | 0        | 0                                               | 0                    | 2 | 2 |  |  |
| PRIVATE        | 0        | 0                                               | 0                    | 0 | 0 |  |  |
| TOTAL          | 0        | 0                                               | 0                    | 6 | 6 |  |  |

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.





#### 3-D Lithological Model of Faridkot Block

Lithological Cross Section from Dip Singh Wala to Nangal



#### Lithological Cross Section from Toot to Nangal Cross-Section B-B'





| Ground Water                              | Dynamic Fresh water                 | 346.32 mcm                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Resources upto the                        | resources                           |                                                                                                                                                                                                                                                                                                                                                              |  |  |
| depth of 300m                             | In-storage Fresh water<br>resources | 1823.75 mcm                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                           | In-storage Saline water resources   | 2855.16 mcm                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                           | Total                               | 5025.23 mcm                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Ground Water<br>Extraction (as per 2013)  | Irrigation                          | 528.61 mcm                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                           | Domestic & Industrial               | 19.11 mcm                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Future Demand for do (2025) (as per 2013) | mestic & Industrial sector          | 22.19 mcm                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Stage of Groundwater De                   | evelopment                          | 158 %                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Chemical Quality of grou                  | nd water                            | Ground water in the area is alkaline and pH ranges between 7.94 to 9.17. Ground water in the area is fresh to marginal saline. EC value of ground water show wide variations and ranges from 444 $\mu$ S/cm to 8653 $\mu$ S/cm at 25 <sup>0</sup> C. RSC values vary from (–) 7.3 to 11.3 meq/L area is fit for irrigation.                                  |  |  |
| Ground water Contamina<br>Other issues    | ation Issues                        | Fluoride (mg/l):<br>Nathuwala (6.03), Killi(4.29)<br>Nitrate (mg/l):<br>Sukhanwala (46), Sher Singhwala (65),<br>Nathuwala (79), Chand Baja (79), Nangal<br>(104), Tehna (118), Killi (140)<br>Iron (mg/):<br>Devi wala (1.77)<br>Water level decline has been observed in<br>major parts of the block due to in<br>discriminate development of ground water |  |  |
|                                           |                                     | resources.<br>In shallow water level area, less<br>development of ground water resource<br>couple with recharge from canal irrigation<br>is causing water logging and inland salinity<br>problems.                                                                                                                                                           |  |  |

#### Ground water Resource, Extraction, Contamination and other issues in Faridkot Block

#### **Ground water Resource Enhancement Potential**

#### Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 108.30 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve 4.84 mcm volume of water* 

#### **Demand side interventions**

#### Advanced Irrigation Practices

Area proposed to be covered: Entire Block Faridkot (752.10 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel): 124.72 mcm

#### Required Change in cropping pattern

Proposed change in cropping pattern: *Paddy to Maize/ Soyabean. The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop.* Area coverage: *15 % of the total paddy area needs to change i.e.*72.45 sq km Anticipated volume of water to be saved: 72.45 mcm

| Net Annual<br>Ground<br>Water<br>Availability<br>2013<br>(mcm) | Total<br>Irrigatio<br>n Draft<br>(present)<br>(mcm) | Gross<br>Draft all<br>uses<br>(present)<br>(mcm) | Paddy<br>area<br>(Sq km) | Required<br>Area to<br>be<br>Change<br>from<br>Paddy to<br>Maize/ | Amount<br>of<br>Water<br>Saved<br>(mcm) | Gross<br>draft<br>after<br>saving<br>of water<br>(mcm) | Present<br>Stage of<br>developme<br>nt (%) | Reduction<br>in Stage of<br>developme<br>nt after<br>Maize/<br>soya bean<br>(%) | Crop<br>Diversified<br>area (%) |
|----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------|-------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|
|                                                                |                                                     |                                                  |                          | soya<br>bean<br>(Sq km)                                           |                                         |                                                        |                                            | ()                                                                              |                                 |
| 346.32                                                         | 528.61                                              | 547.71                                           | 483.00                   | 72.45                                                             | 72.45                                   | 456.16                                                 | 158                                        | 20.9                                                                            | 15                              |

#### Alternate Water sources

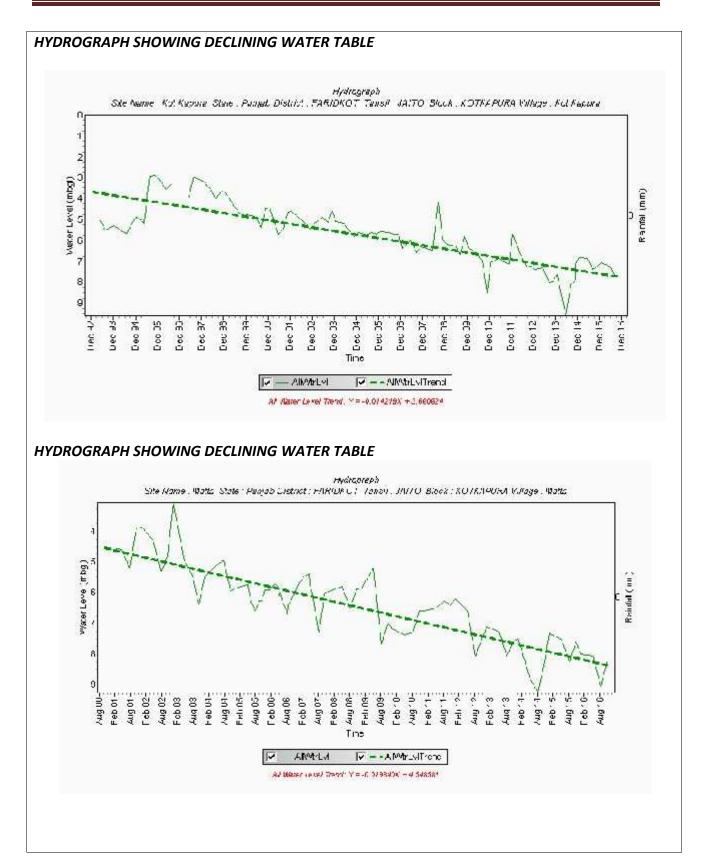
Surface water sources: Tanks, Ponds

Location, details and availability from such sources outside the area: Not Available *Regulation and Control:* 

Punjab Subsoil Act for delay in paddy plantation should continue in the area.

#### Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).


| SI.No | Techniques                              | Water Saving | Crops                               |
|-------|-----------------------------------------|--------------|-------------------------------------|
|       |                                         | (%)          |                                     |
| 1     | Mulching                                | 17           | Wheat                               |
| 2     | Bed Planting                            | 18-25        | Wheat                               |
| 3     | Use of Sprinkler and drip<br>Irrigation | 70-90        | Sugarcane, Cotton, Sunflower, Maize |

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

### II. Salient Information of Kot Kapura Block

| Block Area<br>(in Km <sup>2</sup> )                  | 666.50 sq km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| District/ State                                      | Faridkot, Punjab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Population                                           | Urban Population: 373<br>Rural Population: 221025<br>Total population: 221398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rainfall                                             | Normal Monsoon: 328 mm<br>Non-monsoon Rainfall : 61 mm<br>Annual Average Rainfall: 370 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Agriculture and Irrigation                           | Principal crops: Wheat, Cotton and Paddy<br>Gross cropped area: 1334.27 sq km<br>Net sown area: 674.98 sq km<br>Irrigation practices: Canal and Tube well Irrigation<br>Cropping intensity: 198%<br><u>Area under</u><br>Ground water Irrigation: 42.78 sq km<br>Surface water irrigation: 628.99 sq km<br>Number and types of abstraction structures: 16639, Tubewells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ground Water Resource<br>Availability and Extraction | Ground water Resources Availability<br>Total Ground Water Resources available is 2672 mcm (fresh and<br>saline water) up to the depth of 300 m. The fresh water resources<br>are estimated up to the depth of 106 m on the basis of geophysical<br>interpretations. The potential granular zones available for fresh<br>water are 51 m. Saline water resources are estimated on the basis of<br>well (up to 300 m) and the granular zones are counted after depth of<br>106 m and available zones are 76 m. Block is categorized as Over-<br>Exploited as per Dynamic Groundwater Resources, 2013 assessment.<br>Ground water Resources Extraction<br>Deeper aquifers are marginal to highly saline and not suitable for<br>irrigation purpose as such all users are tapping shallow aquifers.<br>Drinking water supply wells of State Government tapping shallow<br>aquifers Therefore, the ground water draft could not be assessed for<br>deeper aquifer. |

| Existing and future water                                   | Existing Gross Ground water Draft as on 2013                                                          |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| demands                                                     | Irrigation: 420.20 mcm                                                                                |
|                                                             | Domestic and industrial water supply: 14.02 mcm                                                       |
|                                                             | <u>Future water demands</u>                                                                           |
|                                                             | Irrigation development potential : (-)16.709 mcm                                                      |
|                                                             | Domestic and industrial water supply up to 2025 years : 15.11 mcm                                     |
| Water level behavior                                        | Aquifer wise water level                                                                              |
|                                                             | Aquifer-I                                                                                             |
|                                                             | Pre Monsoon: 2.35 – 16.00 m bgl                                                                       |
|                                                             | Post Monsoon: 1.55 – 18.20 m bgl                                                                      |
|                                                             | Mean (10 yrs) : 1.58 – (-)0.86 m/yr<br><i>Trends</i>                                                  |
|                                                             | Pre Monsoon: 0.16 – (-)0.26 m/yr                                                                      |
|                                                             | Post Monsoon: 0.15 – (-)0.29 m/yr                                                                     |
|                                                             | Aquifer-II (156m)                                                                                     |
|                                                             | Pre Monsoon: 7.72 m bgl                                                                               |
|                                                             | Post Monsoon: 8.05 m bgl                                                                              |
|                                                             | Aquifer-III (269m)                                                                                    |
|                                                             | Pre Monsoon: NA                                                                                       |
|                                                             | Post Monsoon: 8.20 m bgl                                                                              |
| HYDROGRAPH SHOWING DE                                       | CLINING WATER TABLE                                                                                   |
| Sto Nemo - Ferrineii                                        | нийсдгер)<br>Stato : Гилјер District : FARIDK CT. Телзи : JAITC. Block : КСТХАГОВА Viliago : Karimali |
|                                                             |                                                                                                       |
|                                                             | A TVIA                                                                                                |
| 841 1N.20                                                   |                                                                                                       |
| ξε v V                                                      |                                                                                                       |
|                                                             |                                                                                                       |
| Matar L                                                     | Vinterrough Mu                                                                                        |
| 10                                                          | V V V 4 2-2-2                                                                                         |
| 11                                                          | N1                                                                                                    |
|                                                             |                                                                                                       |
| 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | Тинс<br>                                                                                              |
|                                                             | 🔽 — APMALVI 🔽 — – APMALVIIrand 🔲 🔻 Missing Values                                                     |
| -                                                           | Al Vieber Level Trand. Y 6.019398X +2.944804                                                          |
|                                                             |                                                                                                       |
|                                                             |                                                                                                       |
|                                                             |                                                                                                       |
|                                                             |                                                                                                       |



#### **Aquifer Disposition**

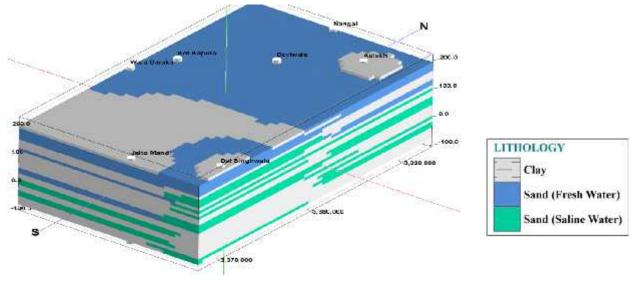
| Number of aquifers | 1                                |
|--------------------|----------------------------------|
| Principal aquifer  | Alluvium                         |
| Major Aquifer      | Older Alluvium, Aeolian Alluvium |

#### **Exploratory Data Availability**

| Source of Data | No. of e | Total                     |   |   |    |  |  |
|----------------|----------|---------------------------|---|---|----|--|--|
|                | <100     | <100 100-200 200-300 >300 |   |   |    |  |  |
| CGWB           | 2        | 1                         | 1 | 4 | 8  |  |  |
| WRED/PSTC/WSS  | 8        | 0                         | 0 | 1 | 9  |  |  |
| PRIVATE        | 1        | 0                         | 1 | 0 | 2  |  |  |
| TOTAL          | 11       | 1                         | 2 | 5 | 19 |  |  |

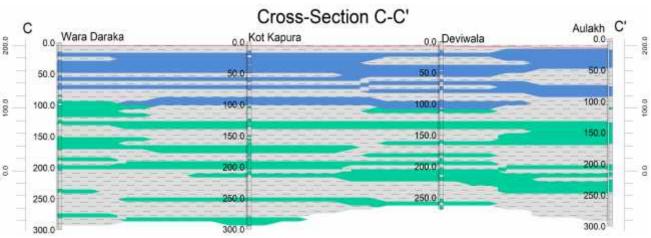
#### Aquifer wise Characteristics (CGWB,2015)

| Aquifer | Geology  | Type of     | Thickness | Transmi- | Yield    | Specific | Storativity          |
|---------|----------|-------------|-----------|----------|----------|----------|----------------------|
| Group   |          | Aquifer     | of        | ssivity  | (m³/day) | Yield    |                      |
| *       |          |             | Granular  | (m²/day) |          |          |                      |
|         |          |             | zones (m) |          |          |          |                      |
| Single  | Quatern  | Unconfined  | 127       | 547 -    | 3668     | 12 %     | 1                    |
| Aquifer | ary      | to confined |           | 2990     |          | (0.072)  | 7.2x10 <sup>-4</sup> |
| System  | Alluvial |             |           |          |          |          |                      |
|         | deposits |             |           |          |          |          |                      |

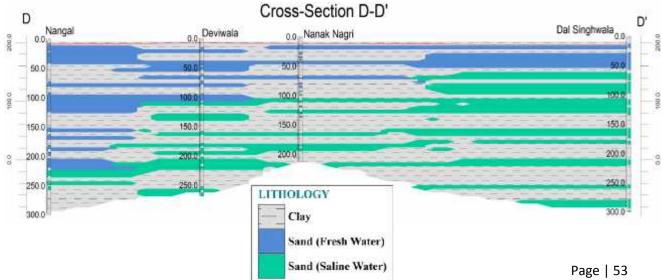

\* Well field proposed in this block (Site Location: Deviwala)

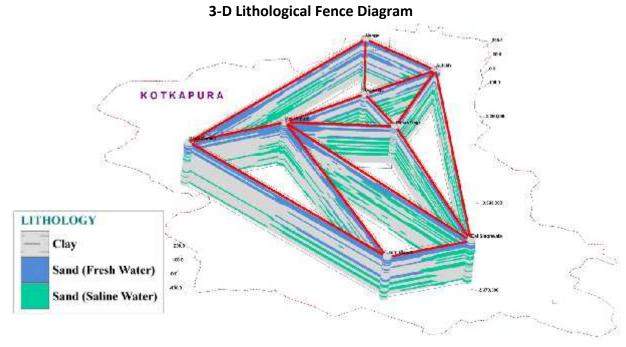
The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

#### Exploratory Data Validated

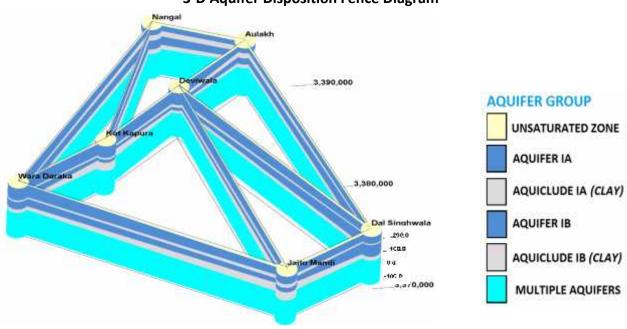

| Source of Data | No. of e | No. of exploration wells as per depth range (m) |         |      |   |  |  |
|----------------|----------|-------------------------------------------------|---------|------|---|--|--|
|                | <100     | 100-200                                         | 200-300 | >300 |   |  |  |
| CGWB           | 0        | 0                                               | 1       | 4    | 5 |  |  |
| WRED/PSTC/WSS  | 0        | 0                                               | 0       | 1    | 1 |  |  |
| PRIVATE        | 0        | 0                                               | 1       | 0    | 1 |  |  |
| TOTAL          | 0        | 0                                               | 2       | 5    | 7 |  |  |

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.





#### 3-D Lithological model of Kot Kapura Block

Lithological Cross section from Wara Daraka to Aulakh




### Lithological Cross section from Nangal to Dal Singhwala





WATER LEVEL



**3-D Aquifer Disposition Fence Diagram** 

| Ground Water<br>Resources upto the                 | Dynamic Fresh water resources        | 268.21 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| depth of 300m                                      | In-storage Fresh water<br>resources  | 2130.62 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                    | In-storage Saline water<br>resources | 273.60 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | Total                                | 2672.43 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ground Water<br>Extraction (as per 2013)           | Irrigation                           | 420.20 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Extraction (ds per 2015)                           | Domestic & Industrial                | 14.02 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Future Demand for do (2025) (as per 2013)          | mestic & Industrial sector           | 15.11 mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage of Groundwater De                            | evelopment                           | 162 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chemical Quality of grou<br>Ground water Contamina |                                      | Ground water in the area is alkaline and pH<br>ranges between 8.20 to 8.93. Ground water<br>in the area is slightly fresh to marginal<br>saline. EC value of the ground water show<br>wide variations and ranges from 1154<br>$\mu$ S/cm to 3988 $\mu$ S/cm at 25 <sup>0</sup> C.<br>RSC values are varies from -0.03 to 11.00<br>meq/L and the area is fit for irrigation.<br><i>Fluoride (mg/l):</i><br>Kot Kapura (3.33) , Dhilwan kalan (2.85),<br>Moharewala ( 1.95) Bir Sikhanwala ( 1.84)<br><i>Nitrate (mg/l):</i><br>Wara Daraka (66), Dhilwan Kalan (72),<br>Moharewala (78), Bir sikhan wala (89),<br>KotKapura (144), |
| Other issues                                       |                                      | Water level decline has been observed in<br>major parts of the block due to in<br>discriminate development of ground water<br>resources.<br>In shallow water level area, less<br>development of ground water resource<br>couple with recharge from canal irrigation is<br>causing water logging and inland salinity<br>problems.                                                                                                                                                                                                                                                                                                  |

#### Ground water Resource, Extraction, Contamination and other issues in Kot Kapura Block

#### **Ground water Resource Enhancement Potential**

#### Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 143.96 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve* 4.75 mcm volume of water

#### **Demand side interventions**

#### Advanced Irrigation Practices

Area proposed to be covered: Entire Kot Kapura Block (666.50 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 99.15 mcm

#### Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean .The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage: *12 % of the total rice area needs to change i.e.* 62.64 sq km Anticipated volume of water to be saved: 62.64 mcm

| Net Annual   | Total     | Gross     | Paddy   | Required   | Amount | Gross    | Present   | Reduction   | Crop        |
|--------------|-----------|-----------|---------|------------|--------|----------|-----------|-------------|-------------|
| Ground       | Irrigatio | Draft all | area    | Area to be | of     | draft    | Stage of  | in Stage of | Diversified |
| Water        | n Draft   | uses      | (Sq km) | Change     | Water  | after    | developme | developme   | area (%)    |
| Availability | (present) | (present) |         | from       | Saved  | saving   | nt (%)    | nt after    |             |
| 2013         | (mcm)     | (mcm)     |         | Paddy to   | (mcm)  | of water |           | Maize/      |             |
| (mcm)        |           |           |         | Maize/     |        | (mcm)    |           | soya bean   |             |
|              |           |           |         | soya bean  |        |          |           | (%)         |             |
|              |           |           |         | (Sq km)    |        |          |           |             |             |
| 268.21       | 420.20    | 434.21    | 522.00  | 62.64      | 62.64  | 357.56   | 162       | 23.4        | 12          |
|              |           |           |         |            |        |          |           |             |             |

#### Alternate Water sources

Surface water sources: Tanks, Ponds

Location, details and availability from such sources outside the area: Not Available *Regulation and Control:* 

Punjab Subsoil Act for delay in paddy plantation should continue in the area.

#### Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

| SI.No | Techniques                | Water Saving | Crops                               |
|-------|---------------------------|--------------|-------------------------------------|
|       |                           | (%)          |                                     |
| 1     | Mulching                  | 17           | Wheat                               |
| 2     | Bed Planting              | 18-25        | Wheat                               |
| 3     | Use of Sprinkler and drip | 70-90        | Sugarcane, Cotton, Sunflower, Maize |
|       | Irrigation                |              |                                     |

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

#### Annexure-I

|          | n:        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s of cl | nemical                                | ana | ysis o | f wat | er sar | nples           | from | NHS             | in Fa | ridko | ot (20) | 15) |                  |                             | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |       |
|----------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|-----|--------|-------|--------|-----------------|------|-----------------|-------|-------|---------|-----|------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| S.<br>No | Block     | Location     | Latitu<br>de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Longit<br>ude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | рН      | EC in<br>µS/cm<br>at 25 <sup>0</sup> C | CO3 | HCO3   | СІ    | SO4    | NO <sub>3</sub> | F    | PO <sub>4</sub> | Ca    | Mg    | Na      | К   | SiO <sub>2</sub> | T.H as<br>CaCO <sub>3</sub> | Arsenic<br>(As)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iron<br>(Fe) | RSC   |
| 1        | Faridkot  | Chand Baja   | 30,739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74 862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.52    | 1645                                   | 36  | 229    | 218   | 208    | 79              | 0.26 | 0.01            | 25    | 38    | 270     | 28  | 15               | 217                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BDL          | 0.5   |
|          | Faridkot  | Dalsinghwa   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 1451                                   | 18  | 157    | 155   | 270    | 136             | 0.24 | 0.01            | 37    | 53    | 162     | 85  | 18               | 309                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BDL          | -3.1  |
|          | Faridkot  | Devi Wala    | and the second data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 476                                    | nil | 145    | 35    | 106    | 6.9             | 0.11 | 0.02            | 37    | 15    | 57      | 5.3 | 9.3              | 155                         | and the second se | 1.77         | -0.7  |
|          | Faridkot  | Dipsinghwa   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 1293                                   | 71  | 253    | 84    | 130    | 24              | 1.21 | 0.01            | 12    | 52    | 157     | 13  | 16               | 247                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.28         | 1.6   |
| _        | Faridkot  | Mehmuana     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -       | 550                                    | 59  | 85     | 35    | 68     | 3.8             | 1.22 | 0.01            | 16    | 15    | 86      | 4.3 | 15               | 103                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BDL          | 1.3   |
| _        | Faridkot  | Sher Singh \ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 2657                                   | 36  | 254    | 274   | 690    | 65              | 0.89 | BDL             | 54    | 58    | 482     | 16  | 12               | 371                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17         | -2.2  |
|          | Faridkot  | Sukhanwala   | Contraction of the local division of the loc | and some diversity of the local diversity of | 8.69    | 3126                                   | 24  | 121    | 597   | 560    | 46              | 1.13 | BDL             | 45    | 35    | 618     | 10  | 15               | 258                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.19         | -2.4  |
| - 16     | Faridkot  | Jand Sahib   | 30,690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.71    | 444                                    | 24  | 109    | 35    | 50     | 3.8             | 0.28 | BDL             | 16    | 15    | 60      | 1.8 | 16               | 103                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.23         | 0.5   |
|          | Faridkot  | Nangal       | 30.664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.36    | 3487                                   | 36  | 181    | 484   | 950    | 104             | 0.70 | BDL             | 58    | 103   | 617     | 49  | 22               | 567                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL          | -7.3  |
| 10       | Faridkot  | Tehna        | 30.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.94    | 8653                                   | nil | 278    | 1544  | 3100   | 118             | 1.41 | BDL             | 371   | 328   | 1603    | 48  | 22               | 2276                        | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL          | -41.3 |
| 11       | Faridkot  | Sadig        | 30.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.56    | 1438                                   | 59  | 423    | 175   | 70     | 7.6             | 0.28 | 0.01            | 20    | 43    | 184     | 117 | 5.5              | 227                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL          | 4.3   |
| 12       | Faridkot  | Nathuwala    | 30.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.9     | 1683                                   | 59  | 290    | 140   | 260    | 79              | 6.03 | 0.01            | 16    | 20    | 349     | 7   | 9.9              | 124                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BDL          | 4.3   |
| 13       | Faridkot  | Mumara       | 30.793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.61    | 3212                                   | 47  | 157    | 295   | 1036   | 6.7             | 0.27 | BDL             | 41    | 60    | 626     | 6   | 15               | 350                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17         | -2.9  |
| 14       | Faridkot  | Arianwala    | 30.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74,702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.74    | 700                                    | 36  | 254    | 28    | 68     | 19              | 1.06 | 0.02            | 21    | 15    | 128     | 4.8 | 14               | 114                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15         | 3.1   |
| 15       | Faridkot  | Kilanau      | 30.647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.25    | 1759                                   | nil | 254    | 190   | 390    | 26              | 0.58 | BDL             | 78    | 38    | 256     | 7   | 13               | 350                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12         | -2.9  |
| 16       | Faridkot  | Killi        | 30.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.17    | 2978                                   | 131 | 567    | 237   | 480    | 140             | 4.29 | 0.04            | 25    | 13    | 594     | 194 | 4                | 114                         | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL          | 11.3  |
| 17       | Kotkapura | Baja Khana   | 30.454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.2     | 3988                                   | nil | 278    | 456   | 1200   | 29              | 0.91 | BDL             | 103   | 93    | 692     | 10  | 24               | 639                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL          | -8.3  |
| 18       | Kotkapura | Beed Sikhar  | 30.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.93    | 1367                                   | 59  | 362    | 63    | 194    | 89              | 1.84 | 0.02            | 16    | 18    | 299     | 5   | 5.9              | 114                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL          | 5.6   |
| 19       | Kotkapura | Dhilwan Kal  | 30.571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.54    | 2872                                   | 71  | 664    | 211   | 520    | 72              | 2.85 | 0.03            | 25    | 42    | 608     | 12  | 4.7              | 237                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BDL          | 8.5   |
| 20       | Kotkapura | Karirwali    | 30,406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.43    | 2680                                   | 59  | 507    | 225   | 576    | 32              | 1.1  | 0.03            | 37    | 43    | 542     | 8   | 4.7              | 266                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12         | 4.8   |
| 21       | Kotkapura | Kot Kapura   | 30.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.69    | 3299                                   | 59  | 809    | 253   | 486    | 144             | 3.33 | 0.05            | 29    | 33    | 603     | 186 | 1.4              | 206                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11         | 11.0  |
| 22       | Kotkapura | Matta        | 30.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.69    | 2447                                   | 47  | 290    | 246   | 580    | 2.6             | 0.5  | BDL             | 45    | 52    | 435     | 11  | 13               | 330                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03         | -0.3  |
| 23       | Kotkapura | Wara Dhara   | 30.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.59    | 1154                                   | 36  | 242    | 84    | 148    | 66              | 0.72 | 0.01            | 21    | 45    | 125     | 63  | 20               | 237                         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.13         | 0.4   |
| 24       | Kotkapura | Moharewal    | 30.645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.92    | 2777                                   | 83  | 580    | 211   | 488    | 78              | 1.95 | 0.03            | 16    | 25    | 617     | 10  | 20               | 144                         | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BDL          | 9.4   |

Nd: Not Determined, BDL: Below Detection Limit

#### Annexure-II

| Data Availability of Exploration Wells of Faridkot district |                      |           |          |       |           |            |            |  |  |
|-------------------------------------------------------------|----------------------|-----------|----------|-------|-----------|------------|------------|--|--|
| SI.No                                                       | LOCATION             | LONGITUDE | LATITUDE | DEPTH | ELEVATION | BLOCK      | DEPARTMENT |  |  |
| 1                                                           | Dal Singhwala        | 74.950    | 30.469   | 300   | 211       | Kot Kapura | CGWB       |  |  |
| 2                                                           | Dip Singh Wala       | 74.483    | 30.742   | 300   | 201       | Faridkot   | CGWB       |  |  |
| 3                                                           | Golewala             | 74.692    | 30.792   | 300   | 199.5     | Faridkot   | CGWB       |  |  |
| 4                                                           | Jaito Mandi          | 74.891    | 30.446   | 300   | 203       | Kot Kapura | CGWB       |  |  |
| 5                                                           | Kot Kapura           | 74.814    | 30.576   | 300   | 206       | Kot Kapura | CGWB       |  |  |
| 6                                                           | Nanak Nagri          | 74.893    | 30.581   | 200   | 210       | Kot Kapura | PRIVATE    |  |  |
| 7                                                           | Nangal               | 74.869    | 30.669   | 300   | 206       | Faridkot   | CGWB       |  |  |
| 8                                                           | Tehna                | 74.790    | 30.690   | 300   | 205       | Faridkot   | CGWB       |  |  |
| 9                                                           | Wara Daraka          | 74.797    | 30.548   | 300   | 205       | Kot Kapura | CGWB       |  |  |
| 10                                                          | Aulakh               | 74.920    | 30.643   | 300   | 211       | Kot Kapura | PSTC       |  |  |
| 11                                                          | Bhagthala            | 74.786    | 30.777   | 300   | 198       | Faridkot   | PSTC       |  |  |
| 12                                                          | Sadhuwala            | 74.559    | 30.717   | 300   | 196       | Faridkot   | PSTC       |  |  |
| 13                                                          | Deviwala             | 74.870    | 30.612   | 269   | 207       | Kot Kapura | CGWB       |  |  |
| 14                                                          | Deviwala-I           | 74.870    | 30.612   | 156   | 207       | Kot Kapura | CGWB       |  |  |
| 15                                                          | Kouni                | 74.675    | 30.760   | 60    | 194       | Faridkot   | WSS        |  |  |
| 16                                                          | Ghugiana             | 74.639    | 30.746   | 60    | 198       | Faridkot   | WSS        |  |  |
| 17                                                          | Pahluwala            | 74.763    | 30.799   | 60    | 203       | Faridkot   | WSS        |  |  |
| 18                                                          | Faridkot             | 74.763    | 30.681   | 60    | 203       | Faridkot   | WSS        |  |  |
| 19                                                          | Doda Bhundar         | 75.016    | 30.470   | 121   | 212       | Kot Kapura | WRED       |  |  |
| 20                                                          | Dhudi                | 74.849    | 30.700   | 60    | 207       | Faridkot   | WSS        |  |  |
| 21                                                          | Ratti Rori           | 74.811    | 30.647   | 60    | 208       | Faridkot   | WSS        |  |  |
| 22                                                          | Chak Kalyan          | 74.705    | 30.572   | 60    | 203       | Kot Kapura | WSS        |  |  |
| 23                                                          | Kot Kapura           | 74.812    | 30.596   | 60    | 208       | Kot Kapura | WSS        |  |  |
| 24                                                          | Behbal Kalan         | 74.913    | 30.531   | 60    | 210       | Kot Kapura | WSS        |  |  |
| 25                                                          | Rorian Kapura        | 74.815    | 30.439   | 60    | 207       | Kot Kapura | WSS        |  |  |
| 26                                                          | Panjgrain            | 74.914    | 30.608   | 70    | 211       | Kot Kapura | PRIVATE    |  |  |
| 27                                                          | Fatehgarh            | 74.943    | 30.405   | 60    | 208       | Kot Kapura | WSS        |  |  |
| 28                                                          | Bhurj Jawar<br>Singh | 74.987    | 30.535   | 60    | 211       | Kot Kapura | WRED       |  |  |
| 29                                                          | Dewarana             | 74.766    | 30.593   | 30    | 206       | Kot Kapura | WRED       |  |  |
| 30                                                          | Sher Singhwala       | 74.628    | 30.665   | 65    | 195       | Faridkot   | CGWB       |  |  |
| 31                                                          | Bir Sikhan wala      | 74.849    | 30.627   | 65    | 207       | Kot Kapura | CGWB       |  |  |
| 32                                                          | Dohak                | 74.603    | 30.632   | 163   | 197       | Muktsar    | CGWB       |  |  |
| 33                                                          | Toot                 | 74.645    | 30.829   | 217   | 196       | Ghal khurd | CGWB       |  |  |

Data Availability of Exploration Wells of Faridkot district

Two exploratory wells from adjacent districts i.e: Dohak from Muktsar district and Toot from Ferozpur district have been incorporated for the preparation of lithological fence and cross sections.

#### Annexure-III

| LITHOLOGICAL DATA OF WELLS IN FARIDKOT DISTRICT |            |          |             |           |  |  |  |  |
|-------------------------------------------------|------------|----------|-------------|-----------|--|--|--|--|
| Well Location                                   | Depth from | Depth to | Lithology   | Thickness |  |  |  |  |
|                                                 | 0          | 13       | Clay        | 13        |  |  |  |  |
|                                                 | 13         | 20       | Fresh Sand  | 7         |  |  |  |  |
|                                                 | 20         | 28       | Clay        | 8         |  |  |  |  |
|                                                 | 28         | 57       | Fresh Sand  | 29        |  |  |  |  |
|                                                 | 57         | 64       | Clay        | 7         |  |  |  |  |
|                                                 | 64         | 75       | Saline Sand | 11        |  |  |  |  |
|                                                 | 75         | 78       | Clay        | 3         |  |  |  |  |
|                                                 | 78         | 97       | Saline Sand | 19        |  |  |  |  |
|                                                 | 97         | 108      | Clay        | 11        |  |  |  |  |
|                                                 | 108        | 117      | Saline Sand | 9         |  |  |  |  |
|                                                 | 117        | 122      | Clay        | 5         |  |  |  |  |
| Dal Singhwala                                   | 122        | 134      | Saline Sand | 12        |  |  |  |  |
|                                                 | 134        | 157      | Clay        | 23        |  |  |  |  |
|                                                 | 157        | 173      | Saline Sand | 16        |  |  |  |  |
|                                                 | 173        | 179      | Clay        | 6         |  |  |  |  |
|                                                 | 179        | 184      | Saline Sand | 5         |  |  |  |  |
|                                                 | 184        | 211      | Clay        | 27        |  |  |  |  |
|                                                 | 211        | 219      | Saline Sand | 8         |  |  |  |  |
|                                                 | 219        | 253      | Clay        | 34        |  |  |  |  |
|                                                 | 253        | 259      | Saline Sand | 6         |  |  |  |  |
|                                                 | 259        | 278      | Clay        | 19        |  |  |  |  |
|                                                 | 278        | 293      | Saline Sand | 15        |  |  |  |  |
|                                                 | 293        | 298      | Clay        | 5         |  |  |  |  |
|                                                 | 298        | 300      | Saline Sand | 2         |  |  |  |  |
|                                                 | 0          | 8        | Fresh Sand  | 8         |  |  |  |  |
|                                                 | 8          | 36       | Clay        | 28        |  |  |  |  |
|                                                 | 36         | 68       | Fresh Sand  | 32        |  |  |  |  |
|                                                 | 68         | 75.5     | Clay        | 7.5       |  |  |  |  |
|                                                 | 75.5       | 80.5     | Fresh Sand  | 5         |  |  |  |  |
|                                                 | 80.5       | 83       | Clay        | 2.5       |  |  |  |  |
| Dip Singh Wala                                  | 83         | 92       | Fresh Sand  | 9         |  |  |  |  |
|                                                 | 92         | 93       | Clay        | 1         |  |  |  |  |
|                                                 | 93         | 109      | Saline Sand | 16        |  |  |  |  |
|                                                 | 109        | 113      | Clay        | 4         |  |  |  |  |
|                                                 | 113        | 116      | Saline Sand | 3         |  |  |  |  |
|                                                 | 116        | 120      | Clay        | 4         |  |  |  |  |
|                                                 | 120        | 132      | Saline Sand | 12        |  |  |  |  |

| Dip Singh Wala | 132   | 146   | Clay        | 14    |
|----------------|-------|-------|-------------|-------|
|                | 146   | 162   | Saline Sand | 16    |
|                | 162   | 168   | Clay        | 6     |
|                | 168   | 192   | Saline Sand | 24    |
|                | 192   | 195   | Clay        | 3     |
|                | 195   | 197   | Saline Sand | 2     |
|                | 197   | 201.5 | Clay        | 4.5   |
|                | 201.5 | 209   | Saline Sand | 7.5   |
|                | 209   | 213.5 | Clay        | 4.5   |
|                | 213.5 | 217.5 | Saline Sand | 4     |
|                | 217.5 | 221   | Clay        | 3.5   |
|                | 221   | 237   | Saline Sand | 16    |
|                | 237   | 286.5 | Clay        | 49.5  |
|                | 286.5 | 289.5 | Saline Sand | 3     |
|                | 289.5 | 293   | Clay        | 3.5   |
|                | 293   | 296   | Saline Sand | 3     |
|                | 296   | 300   | Clay        | 4     |
|                | 0     | 7.5   | Clay        | 7.5   |
|                | 7.5   | 28.85 | Fresh Sand  | 21.35 |
|                | 28.85 | 40    | Clay        | 11.15 |
|                | 40    | 52.5  | Fresh Sand  | 12.5  |
|                | 52.5  | 60    | Clay        | 7.5   |
|                | 60    | 88    | Saline Sand | 28    |
|                | 88    | 93    | Clay        | 5     |
|                | 93    | 103   | Saline Sand | 10    |
|                | 103   | 132.5 | Clay        | 29.5  |
|                | 132.5 | 137.5 | Saline Sand | 5     |
| Golewala       | 137.5 | 155   | Clay        | 17.5  |
|                | 155   | 157.5 | Saline Sand | 2.5   |
|                | 157.5 | 182   | Clay        | 24.5  |
|                | 182   | 203.5 | Saline Sand | 21.5  |
|                | 203.5 | 228.5 | Clay        | 25    |
|                | 228.5 | 234   | Saline Sand | 5.5   |
|                | 234   | 253   | Clay        | 19    |
|                | 253   | 272.5 | Saline Sand | 19.5  |
|                | 272.5 | 280   | Clay        | 7.5   |
|                | 280   | 297.5 | Saline Sand | 17.5  |
|                | 297.5 | 300   | Clay        | 2.5   |
| Jaito Mandi    | 0     | 15    | Clay        | 15    |
|                | 15    | 25    | Fresh Sand  | 10    |
|                | 25    | 28    | Clay        | 3     |

| Jaito Mandi | 28    | 42    | Fresh Sand  | 14   |
|-------------|-------|-------|-------------|------|
|             | 42    | 46    | Clay        | 4    |
|             | 46    | 59    | Fresh Sand  | 13   |
|             | 59    | 80    | Clay        | 21   |
|             | 80    | 91.5  | Fresh Sand  | 11.5 |
|             | 91.5  | 103   | Clay        | 11.5 |
|             | 103   | 107   | Fresh Sand  | 4    |
|             | 107   | 155.5 | Clay        | 48.5 |
|             | 155.5 | 171.5 | Fresh Sand  | 16   |
|             | 171.5 | 191   | Clay        | 19.5 |
|             | 191   | 213   | Saline Sand | 22   |
|             | 213   | 220   | Clay        | 7    |
|             | 220   | 223   | Saline Sand | 3    |
|             | 223   | 238   | Clay        | 15   |
|             | 238   | 255   | Saline Sand | 17   |
|             | 255   | 273   | Clay        | 18   |
|             | 273   | 278.5 | Saline Sand | 5.5  |
|             | 278.5 | 280.5 | Clay        | 2    |
|             | 280.5 | 283   | Saline Sand | 2.5  |
|             | 283   | 298.5 | Clay        | 15.5 |
|             | 298.5 | 300   | Saline Sand | 1.5  |
|             | 0     | 14    | Clay        | 14   |
|             | 14    | 21    | Fresh Sand  | 7    |
|             | 21    | 25    | Clay        | 4    |
|             | 25    | 35.5  | Fresh Sand  | 10.5 |
|             | 35.5  | 37    | Clay        | 1.5  |
|             | 37    | 50    | Fresh Sand  | 13   |
|             | 50    | 57    | Clay        | 7    |
|             | 57    | 64    | Fresh Sand  | 7    |
|             | 64    | 69    | Clay        | 5    |
|             | 69    | 77    | Fresh Sand  | 8    |
| Kot Kapura  | 77    | 88    | Clay        | 11   |
|             | 88    | 99    | Fresh Sand  | 11   |
|             | 99    | 103   | Clay        | 4    |
|             | 103   | 106   | Saline Sand | 3    |
|             | 106   | 123   | Clay        | 17   |
|             | 123   | 128.6 | Saline Sand | 5.6  |
|             | 128.6 | 130   | Clay        | 1.4  |
|             | 130   | 132.6 | Saline Sand | 2.6  |
|             | 132.6 | 134   | Clay        | 1.4  |
|             | 134   | 135.5 | Saline Sand | 1.5  |

|             | 135.5 | 149.2 | Clay        | 13.7 |
|-------------|-------|-------|-------------|------|
|             | 149.2 | 151.8 | Saline Sand | 2.6  |
|             | 151.8 | 155   | Clay        | 3.2  |
|             | 155   | 158.4 | Saline Sand | 3.4  |
|             | 158.4 | 161   | Clay        | 2.6  |
|             | 161   | 179.6 | Saline Sand | 18.6 |
|             | 179.6 | 181.2 | Clay        | 1.6  |
|             | 181.2 | 183.8 | Saline Sand | 2.6  |
| Kot Kapura  | 183.8 | 186.5 | Clay        | 2.7  |
|             | 186.5 | 204.5 | Saline Sand | 18   |
|             | 204.5 | 207   | Clay        | 2.5  |
|             | 207   | 212.5 | Saline Sand | 5.5  |
|             | 212.5 | 249   | Clay        | 36.5 |
|             | 249   | 254.5 | Saline Sand | 5.5  |
|             | 254.5 | 280   | Clay        | 25.5 |
|             | 280   | 294.4 | Saline Sand | 14.4 |
|             | 294.4 | 300   | Clay        | 5.6  |
|             | 0     | 13.6  | Clay        | 13.6 |
|             | 13.6  | 20.8  | Fresh Sand  | 7.2  |
|             | 20.8  | 26.5  | Clay        | 5.7  |
|             | 26.5  | 30.5  | Fresh Sand  | 4    |
|             | 30.5  | 34    | Clay        | 3.5  |
|             | 34    | 36.8  | Fresh Sand  | 2.8  |
|             | 36.8  | 38.8  | Clay        | 2    |
|             | 38.8  | 40    | Fresh Sand  | 1.2  |
|             | 40    | 42.8  | Clay        | 2.8  |
|             | 42.8  | 46    | Fresh Sand  | 3.2  |
|             | 46    | 69.5  | Clay        | 23.5 |
|             | 69.5  | 71.2  | Fresh Sand  | 1.7  |
| Nanak Nagri | 71.2  | 78.5  | Clay        | 7.3  |
|             | 78.5  | 81.5  | Fresh Sand  | 3    |
|             | 81.5  | 84    | Clay        | 2.5  |
|             | 84    | 87    | Fresh Sand  | 3    |
|             | 87    | 92    | Clay        | 5    |
|             | 92    | 93.6  | Saline Sand | 1.6  |
|             | 93.6  | 98.8  | Clay        | 5.2  |
|             | 98.8  | 100   | Saline Sand | 1.2  |
|             | 100   | 108.5 | Clay        | 8.5  |
|             | 108.5 | 111.5 | Saline Sand | 3    |
|             | 111.5 | 118   | Clay        | 6.5  |
|             | 118   | 120   | Saline Sand | 2    |

| Nanak Nagri | 120   | 128   | Clay        | 8    |
|-------------|-------|-------|-------------|------|
|             | 128   | 129.6 | Saline Sand | 1.6  |
|             | 129.6 | 130   | Clay        | 0.4  |
|             | 130   | 131.6 | Saline Sand | 1.6  |
|             | 131.6 | 135   | Clay        | 3.4  |
|             | 135   | 136.8 | Saline Sand | 1.8  |
|             | 136.8 | 165   | Clay        | 28.2 |
|             | 165   | 167.6 | Saline Sand | 2.6  |
|             | 167.6 | 184   | Clay        | 16.4 |
|             | 184   | 186.8 | Saline Sand | 2.8  |
|             | 186.8 | 190.5 | Clay        | 3.7  |
|             | 190.5 | 194.8 | Saline Sand | 4.3  |
|             | 194.8 | 213.4 | Clay        | 18.6 |
|             | 0     | 8     | Clay        | 8    |
|             | 8     | 20    | Fresh Sand  | 12   |
|             | 20    | 23    | Clay        | 3    |
|             | 23    | 28    | Fresh Sand  | 5    |
|             | 28    | 29    | Clay        | 1    |
|             | 29    | 41    | Fresh Sand  | 12   |
|             | 41    | 72    | Clay        | 31   |
|             | 72    | 80    | Fresh Sand  | 8    |
|             | 80    | 91    | Clay        | 11   |
|             | 91    | 124   | Fresh Sand  | 33   |
|             | 124   | 151   | Clay        | 27   |
|             | 151   | 158   | Fresh Sand  | 7    |
|             | 158   | 163   | Clay        | 5    |
| Nangal      | 163   | 171   | Fresh Sand  | 8    |
|             | 171   | 181   | Clay        | 10   |
|             | 181   | 187   | Fresh Sand  | 6    |
|             | 187   | 193   | Clay        | 6    |
|             | 193   | 199   | Fresh Sand  | 6    |
|             | 199   | 203   | Clay        | 4    |
|             | 203   | 219   | Fresh Sand  | 16   |
|             | 219   | 224   | Clay        | 5    |
|             | 224   | 233   | Saline Sand | 9    |
|             | 233   | 243   | Clay        | 10   |
|             | 243   | 249   | Saline Sand | 6    |
|             | 249   | 251   | Clay        | 2    |
|             | 251   | 257   | Saline Sand | 6    |
|             | 257   | 300   | Clay        | 43   |
| Tehna       | 0     | 8     | Clay        | 8    |

|             | 8   | 23  | Fresh Sand | 15 |
|-------------|-----|-----|------------|----|
|             | 23  | 28  | Clay       | 5  |
|             | 28  | 32  | Fresh Sand | 4  |
|             | 32  | 37  | Clay       | 5  |
|             | 37  | 41  | Fresh Sand | 4  |
|             | 41  | 59  | Clay       | 18 |
|             | 59  | 63  | Fresh Sand | 4  |
|             | 63  | 69  | Clay       | 6  |
|             | 69  | 72  | Fresh Sand | 3  |
|             | 72  | 102 | Clay       | 30 |
|             | 102 | 106 | Fresh Sand | 4  |
|             | 106 | 120 | Clay       | 14 |
|             | 120 | 123 | Fresh Sand | 3  |
|             | 123 | 133 | Clay       | 10 |
|             | 133 | 136 | Fresh Sand | 3  |
|             | 136 | 145 | Clay       | 9  |
| Tehna       | 145 | 150 | Fresh Sand | 5  |
|             | 150 | 158 | Clay       | 8  |
|             | 158 | 163 | Fresh Sand | 5  |
|             | 163 | 168 | Clay       | 5  |
|             | 168 | 172 | Fresh Sand | 4  |
|             | 172 | 176 | Clay       | 4  |
|             | 176 | 184 | Fresh Sand | 8  |
|             | 184 | 210 | Clay       | 26 |
|             | 210 | 215 | Fresh Sand | 5  |
|             | 215 | 221 | Clay       | 6  |
|             | 221 | 225 | Fresh Sand | 4  |
|             | 225 | 254 | Clay       | 29 |
|             | 254 | 264 | Fresh Sand | 10 |
|             | 264 | 267 | Clay       | 3  |
|             | 267 | 275 | Fresh Sand | 8  |
|             | 275 | 294 | Clay       | 19 |
|             | 294 | 300 | Fresh Sand | 6  |
|             | 0   | 15  | Clay       | 15 |
|             | 15  | 22  | Fresh Sand | 7  |
|             | 22  | 28  | Clay       | 6  |
|             | 28  | 48  | Fresh Sand | 20 |
| Wara Daraka | 48  | 52  | Clay       | 4  |
|             | 52  | 61  | Fresh Sand | 9  |
|             | 61  | 65  | Clay       | 4  |
|             | 65  | 75  | Fresh Sand | 10 |

|             | 75     | 84     | Clay        | 9     |
|-------------|--------|--------|-------------|-------|
|             | 84     | 86     | Saline Sand | 2     |
|             | 86     | 91     | Clay        | 5     |
|             | 91     | 97     | Saline Sand | 6     |
|             | 97     | 101    | Clay        | 4     |
|             | 101    | 119    | Saline Sand | 18    |
|             | 119    | 124    | Clay        | 5     |
|             | 124    | 129    | Saline Sand | 5     |
|             | 129    | 150    | Clay        | 21    |
| Wara Daraka | 150    | 172    | Saline Sand | 22    |
|             | 172    | 184    | Clay        | 12    |
|             | 184    | 188    | Saline Sand | 4     |
|             | 188    | 196    | Clay        | 8     |
|             | 196    | 205    | Saline Sand | 9     |
|             | 205    | 234    | Clay        | 29    |
|             | 234    | 239    | Saline Sand | 5     |
|             | 239    | 274    | Clay        | 35    |
|             | 274    | 281    | Saline Sand | 7     |
|             | 281    | 300    | Clay        | 19    |
|             | 0      | 18.29  | Clay        | 18.29 |
|             | 18.29  | 45.73  | Fresh Sand  | 27.44 |
|             | 45.73  | 76.21  | Clay        | 30.48 |
|             | 76.21  | 91.46  | Fresh Sand  | 15.25 |
|             | 91.46  | 109.75 | Clay        | 18.29 |
|             | 109.75 | 112.8  | Saline Sand | 3.05  |
|             | 112.8  | 134.14 | Clay        | 21.34 |
| Aulakh      | 134.14 | 167.68 | Saline Sand | 33.54 |
|             | 167.68 | 201.12 | Clay        | 33.44 |
|             | 201.12 | 210.36 | Saline Sand | 9.24  |
|             | 210.36 | 213.41 | Clay        | 3.05  |
|             | 213.41 | 219.51 | Saline Sand | 6.1   |
|             | 219.51 | 225.6  | Clay        | 6.09  |
|             | 225.6  | 245    | Saline Sand | 19.4  |
|             | 245    | 300    | Clay        | 55    |
|             | 0      | 3.5    | Clay        | 3.5   |
|             | 3.5    | 18.29  | Fresh Sand  | 14.79 |
|             | 18.29  | 41     | Clay        | 22.71 |
| Bhagthala   | 41     | 53     | Fresh Sand  | 12    |
|             | 53     | 63     | Clay        | 10    |
|             | 63     | 85.37  | Saline Sand | 22.37 |
|             | 85.37  | 92     | Clay        | 6.63  |

|           | 92     | 102    | Saline Sand | 10    |
|-----------|--------|--------|-------------|-------|
|           | 102    | 131.1  | Clay        | 29.1  |
|           | 131.1  | 134.15 | Saline Sand | 3.05  |
|           | 134.15 | 167.68 | Clay        | 33.53 |
|           | 167.68 | 170.73 | Saline Sand | 3.05  |
|           | 170.73 | 185    | Clay        | 14.27 |
|           | 185    | 203    | Saline Sand | 18    |
|           | 203    | 228.66 | Clay        | 25.66 |
|           | 228.66 | 234.76 | Saline Sand | 6.1   |
|           | 234.76 | 253    | Clay        | 18.24 |
|           | 253    | 273    | Saline Sand | 20    |
|           | 273    | 280    | Clay        | 7     |
|           | 280    | 294    | Saline Sand | 14    |
|           | 294    | 300    | Clay        | 6     |
|           | 0      | 6.1    | Fresh Sand  | 6.1   |
|           | 6.1    | 30.49  | Clay        | 24.39 |
|           | 30.49  | 52     | Saline Sand | 21.51 |
|           | 52     | 62.5   | Clay        | 10.5  |
|           | 62.5   | 72.5   | Saline Sand | 10    |
|           | 72.5   | 77     | Clay        | 4.5   |
|           | 77     | 84     | Saline Sand | 7     |
|           | 84     | 91     | Clay        | 7     |
|           | 91     | 107    | Saline Sand | 16    |
|           | 107    | 110    | Clay        | 3     |
|           | 110    | 114    | Saline Sand | 4     |
|           | 114    | 118    | Clay        | 4     |
| Sadhuwala | 118    | 130    | Saline Sand | 12    |
|           | 130    | 143.39 | Clay        | 13.39 |
|           | 143.39 | 164.63 | Saline Sand | 21.24 |
|           | 164.63 | 176.83 | Clay        | 12.2  |
|           | 176.83 | 207    | Saline Sand | 30.17 |
|           | 207    | 211.5  | Clay        | 4.5   |
|           | 211.5  | 215.5  | Saline Sand | 4     |
|           | 215.5  | 219    | Clay        | 3.5   |
|           | 219    | 235    | Saline Sand | 16    |
|           | 235    | 237    | Clay        | 2     |
|           | 237    | 256.24 | Saline Sand | 19.24 |
|           | 256.24 | 271.34 | Clay        | 15.1  |
|           | 271.34 | 300    | Saline Sand | 28.66 |
|           | 0      | 15     | Clay        | 15    |
| Deviwala  | 15     | 23     | Fresh Sand  | 8     |

|          | 23  | 38  | Clay        | 15 |
|----------|-----|-----|-------------|----|
|          | 38  | 46  | Fresh Sand  | 8  |
|          | 46  | 48  | Clay        | 2  |
|          | 48  | 53  | Fresh Sand  | 5  |
|          | 53  | 61  | Clay        | 8  |
|          | 61  | 65  | Fresh Sand  | 4  |
|          | 65  | 72  | Clay        | 7  |
|          | 72  | 78  | Fresh Sand  | 6  |
|          | 78  | 94  | Clay        | 16 |
|          | 94  | 106 | Fresh Sand  | 12 |
|          | 106 | 109 | Clay        | 3  |
|          | 109 | 112 | Saline Sand | 3  |
|          | 112 | 128 | Clay        | 16 |
|          | 128 | 140 | Saline Sand | 12 |
| Deviwala | 140 | 158 | Clay        | 18 |
|          | 158 | 163 | Saline Sand | 5  |
|          | 163 | 179 | Clay        | 16 |
|          | 179 | 183 | Saline Sand | 4  |
|          | 183 | 187 | Clay        | 4  |
|          | 187 | 196 | Saline Sand | 9  |
|          | 196 | 202 | Clay        | 6  |
|          | 202 | 213 | Saline Sand | 11 |
|          | 213 | 218 | Clay        | 5  |
|          | 218 | 223 | Saline Sand | 5  |
|          | 223 | 252 | Clay        | 29 |
|          | 252 | 258 | Saline Sand | 6  |
|          | 258 | 263 | Clay        | 5  |
|          | 263 | 269 | Saline Sand | 6  |
|          | 0   | 8   | Clay        | 8  |
|          | 8   | 10  | Fresh Sand  | 2  |
|          | 10  | 21  | Clay        | 11 |
|          | 21  | 33  | Saline Sand | 12 |
|          | 33  | 41  | Clay        | 8  |
|          | 41  | 79  | Saline Sand | 38 |
| Dohak    | 79  | 89  | Clay        | 10 |
|          | 89  | 95  | Saline Sand | 6  |
|          | 95  | 99  | Clay        | 4  |
|          | 99  | 112 | Saline Sand | 13 |
|          | 112 | 116 | Clay        | 4  |
|          | 116 | 139 | Saline Sand | 23 |
|          | 139 | 154 | Clay        | 15 |

|      | 154  | 163  | Saline Sand | 9    |
|------|------|------|-------------|------|
|      | 0    | 15   | Clay        | 15   |
|      | 15   | 19.8 | Fresh Sand  | 4.8  |
|      | 19.8 | 21   | Clay        | 1.2  |
|      | 21   | 47.4 | Fresh Sand  | 26.4 |
|      | 47.4 | 51   | Clay        | 3.6  |
|      | 51   | 55.2 | Fresh Sand  | 4.2  |
|      | 55.2 | 62.6 | Clay        | 7.4  |
|      | 62.6 | 76.6 | Fresh Sand  | 14   |
|      | 76.6 | 101  | Clay        | 24.4 |
| Tast | 101  | 104  | Fresh Sand  | 3    |
| Toot | 104  | 113  | Clay        | 9    |
|      | 113  | 116  | Fresh Sand  | 3    |
|      | 116  | 143  | Clay        | 27   |
|      | 143  | 146  | Saline Sand | 3    |
|      | 146  | 167  | Clay        | 21   |
|      | 167  | 170  | Saline Sand | 3    |
|      | 170  | 182  | Clay        | 12   |
|      | 182  | 204  | Saline Sand | 22   |
|      | 204  | 214  | Clay        | 10   |
|      | 214  | 217  | Saline Sand | 3    |

#### Annexure-IV

| AQUIFER GROUPING OF WELL LOCATIONS IN FARIDKOT DISTRICT |            |          |                   |           |          |          |  |  |
|---------------------------------------------------------|------------|----------|-------------------|-----------|----------|----------|--|--|
| Well location                                           | Depth from | Depth to | Aquifer           | Thickness | Fresh    | Saline   |  |  |
|                                                         |            |          |                   |           | Granular | Granular |  |  |
|                                                         | 0          | 45       | 11                | 45        | Zones    | Zones    |  |  |
|                                                         | 0          | 15       | Unsaturated Zone  | 15        | 2        |          |  |  |
|                                                         | 15         | 57       | Aquifer Group-IA  | 42        | 34       |          |  |  |
| Dal Singhwala                                           | 57         | 64       | Aquiclude-IA      | 7         |          |          |  |  |
| 5                                                       | 64         | 134      | Aquifer Group-IB  | 70        |          | 51       |  |  |
|                                                         | 134        | 157      | Aquiclude-IB      | 23        |          |          |  |  |
|                                                         | 157        | 300      | Multiple Aquifers | 143       |          | 52       |  |  |
|                                                         | 0          | 5        | Unsaturated Zone  | 5         | 5        |          |  |  |
|                                                         | 5          | 68       | Aquifer Group-IA  | 63        | 35       |          |  |  |
| Dip Singh Wala                                          | 68         | 75.5     | Aquiclude-IA      | 7.5       |          |          |  |  |
|                                                         | 75.5       | 132      | Aquifer Group-IB  | 56.5      | 14       | 31       |  |  |
|                                                         | 132        | 146      | Aquiclude-IB      | 14        |          |          |  |  |
|                                                         | 146        | 300      | Multiple Aquifers | 154       |          | 75.5     |  |  |
|                                                         | 0          | 4        | Unsaturated Zone  | 4         | 1        |          |  |  |
|                                                         | 4          | 52.5     | Aquifer Group-IA  | 48.5      | 33       |          |  |  |
|                                                         | 52.5       | 60       | Aquiclude-IA      | 7.5       |          |          |  |  |
| Golewala                                                | 60         | 103      | Aquifer Group-IB  | 43        |          | 38       |  |  |
|                                                         | 103        | 155      | Aquiclude-IB      | 52        |          |          |  |  |
|                                                         | 155        | 300      | Multiple Aquifers | 145       |          | 66.5     |  |  |
|                                                         | 0          | 14       | Unsaturated Zone  | 14        | 1        |          |  |  |
|                                                         | 14         | 59       | Aquifer Group-IA  | 45        | 37       |          |  |  |
|                                                         | 59         | 80       | Aquiclude-IA      | 21        |          |          |  |  |
| Jaito Mandi                                             | 80         | 107      | Aquifer Group-IB  | 27        | 15.5     |          |  |  |
|                                                         | 107        | 155.5    | Aquiclude-IB      | 48.5      |          |          |  |  |
|                                                         | 155.5      | 300      | Multiple Aquifers | 144.5     | 16       | 51.5     |  |  |
|                                                         | 0          | 9        | Unsaturated Zone  | 9         | 2        |          |  |  |
|                                                         | 9          | 77       | Aquifer Group-IA  | 68        | 45.5     |          |  |  |
|                                                         | 77         | 88       | Aquiclude-IA      | 11        |          |          |  |  |
| Kot Kapura                                              | 88         | 106      | Aquifer Group-IB  | 18        | 11       | 3        |  |  |
|                                                         | 106        | 155      | Aquiclude-IB      | 49        |          |          |  |  |
|                                                         | 155        | 300      | Multiple Aquifers | 145       |          | 68       |  |  |
|                                                         | 0          | 12       | Unsaturated Zone  | 12        | 1        |          |  |  |
|                                                         | 12         | 46       | Aquifer Group-IA  | 34        | 18.4     |          |  |  |
|                                                         | 46         | 69       | Aquiclude-IA      | 23        | 10.4     |          |  |  |
| Nanak Nagri                                             | 69         | 131      | Aquifer Group-IB  | 62        | 7.7      | 11       |  |  |
|                                                         | 131        | 165      | Aquiclude-IB      | 34        | /./      | **       |  |  |
|                                                         | 165        | 213.4    | Multiple Aquifers | 48.4      |          | 9.7      |  |  |
| Norsel                                                  |            |          | Unsaturated Zone  |           | 1        | 5.7      |  |  |
| Nangal                                                  | 0          | 9        | Unsaturated Zone  | 9         | 1        |          |  |  |

#### AQUIFER GROUPING OF WELL LOCATIONS IN FARIDKOT DISTRICT

| Nangal      | 9   | 41  | Aquifer Group-IA  | 32  | 29    |        |
|-------------|-----|-----|-------------------|-----|-------|--------|
|             | 41  | 72  | Aquiclude-IA      | 31  |       |        |
|             | 72  | 124 | Aquifer Group-IB  | 52  | 41    |        |
|             | 124 | 151 | Aquiclude-IB      | 27  |       |        |
|             | 151 | 300 | Multiple Aquifers | 149 | 43    | 21     |
|             | 0   | 10  | Unsaturated Zone  | 10  | 2     |        |
|             | 10  | 41  | Aquifer Group-IA  | 31  | 187   |        |
| Tahaa       | 41  | 59  | Aquiclude-IA      | 18  |       |        |
| Tehna       | 59  | 106 | Aquifer Group-IB  | 47  | 33    |        |
|             | 106 | 158 | Aquiclude-IB      | 52  |       |        |
|             | 158 | 300 | Multiple Aquifers | 142 | 50    |        |
|             | 0   | 4   | Unsaturated Zone  | 4   | 0     |        |
|             | 4   | 75  | Aquifer Group-IA  | 71  | 46    |        |
|             | 75  | 84  | Aquiclude-IA      | 9   |       |        |
| Wara Daraka | 84  | 129 | Aquifer Group-IB  | 45  |       | 31     |
|             | 129 | 150 | Aquiclude-IB      | 21  |       |        |
|             | 150 | 300 | Multiple Aquifers | 150 |       | 47     |
|             | 0   | 17  | Unsaturated Zone  | 17  | 2     |        |
|             | 17  | 46  | Aquifer Group-IA  | 29  | 26    |        |
|             | 46  | 76  | Aquiclude-IA      | 30  |       |        |
| Aulakh      | 76  | 113 | Aquifer Group-IB  | 37  | 15.25 | 3.05   |
|             | 113 | 134 | Aquiclude-IB      | 21  |       |        |
|             | 134 | 300 | Multiple Aquifers | 166 |       | 68.28  |
|             | 0   | 4   | Unsaturated Zone  | 4   | 1     |        |
|             | 4   | 53  | Aquifer Group-IA  | 49  | 24    |        |
|             | 53  | 63  | Aquiclude-IA      | 10  |       |        |
| Bhagthala   | 63  | 102 | Aquifer Group-IB  | 39  |       | 32.37  |
|             | 102 | 168 | Aquiclude-IB      | 66  |       |        |
|             | 168 | 300 | Multiple Aquifers | 132 |       | 61.15  |
|             | 0   | 5   | Unsaturated Zone  | 5   | 5     |        |
|             | 5   | 52  | Aquifer Group-IA  | 47  |       | 21.51  |
|             | 52  | 63  | Aquiclude-IA      | 11  |       |        |
| Sadhuwala   | 63  | 130 | Aquifer Group-IB  | 67  |       | 49     |
|             | 130 | 144 | Aquiclude-IB      | 14  |       |        |
|             | 144 | 300 | Multiple Aquifers | 156 |       | 119.31 |
|             | 0   | 8   | Unsaturated Zone  | 8   | 2     |        |
|             | 8   | 78  | Aquifer Group-IA  | 70  | 31    |        |
|             | 78  | 94  | Aquiclude-IA      | 16  |       |        |
| Deviwala    | 94  | 112 | Aquifer Group-IB  | 18  | 12    | 3      |
| _           | 112 | 128 | Aquiclude-IB      | 16  |       |        |
|             | 128 | 269 | Multiple Aquifers | 141 |       | 58     |

|       | 0   | 3   | Unsaturated Zone  | 3  | 0    |    |
|-------|-----|-----|-------------------|----|------|----|
|       | 3   | 79  | Aquifer Group-IA  | 76 | 2    | 50 |
| Dohak | 79  | 89  | Aquiclude-IA      | 10 |      |    |
| DONAK | 89  | 139 | Aquifer Group-IB  | 50 |      | 42 |
|       | 139 | 154 | Aquiclude-IB      | 15 |      |    |
|       | 154 | 163 | Multiple Aquifers | 9  |      | 9  |
| Toot  | 0   | 9   | Unsaturated Zone  | 9  | 1    |    |
|       | 9   | 55  | Aquifer Group-IA  | 46 | 35.4 |    |
|       | 55  | 63  | Aquiclude-IA      | 8  |      |    |
|       | 63  | 116 | Aquifer Group-IB  | 53 | 25   |    |
|       | 116 | 143 | Aquiclude-IB      | 27 |      |    |
|       | 143 | 217 | Multiple Aquifers | 74 |      | 31 |