

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on AQUIFER MAPPING AND MANAGEMENT PLAN

Ludhiana District, Punjab

उत्तरी पश्चिम क्षेत्र, चंडीगढ़

North Western Region, Chandigarh

AQUIFER MAPPING & MANAGEMENT PLAN

LUDHIANA DISTRICT PUNJAB

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India 2017

CONTENTS

- 1. INTRODUCTION
- 2. DATA COLLECTION AND GENERATION
- 3. HYDROGEOLOGY
- 4. GROUND WATER RESOURCES
- 5. GROUND WATER ISSUES
- 6. AQUIFER MANAGEMENT PLAN
- 7. BLOCKWISE AQUIFER MAPS AND MANAGEMENT PLAN
 - i. DEHLON BLOCK
 - ii. DORAHA BLOCK
 - iii. JAGRAON BLOCK
 - iv. KHANNA BLOCK
 - v. LUDHIANA BLOCK
 - vi. MACHIWRA BLOCK
 - vii. MANGAT BLOCK
 - viii. PAKHOWAL BLOCK
 - ix. RAIKOT BLOCK
 - x. SAMRALA BLOCK
 - xi. SIDWANBET BLOCK
 - xii. SUDHAR BLOCK

LIST OF FIGURES

- Fig 1: Base Map of Ludhiana District.
- Fig 2: Location of CGWB, PSTC, WRED, Private Wells.
- Fig 3: Validated Exploration Data of Ludhiana District.
- Fig 4: Elevation Contour Map-Ludhiana District.
- Fig 5: 3Dimension Lithological Model-Ludhiana District.
- Fig 6: 3Dimension Lithological Fence of Ludhiana District.
- Fig 7: Cross sections of Aquifer Map of Ludhiana District.
- Fig 8: Methodology for Resource Estimation in Unconfined and Confined Aquifer System.
- Fig 9: Irrigation tube wells as per depth.
- Fig 10: Ground water trend versus rainfall.

LIST OF TABLES

Table 1: Data availability of exploration wells in Ludhiana district.

Table 2: Summary of optimized exploration wells.

Table 3: Aquifer Group depth and thickness ranges of Ludhiana District

 Table 4: Dynamic Ground Water Resource & Development Potential (as on 31.03.2013)

Table 5: Block wise availability of Total Ground Water Resources up to 300 m

Table 6: Block wise total available ground water resources in aquifers up to 300m depth.

Table 7: Distribution of Tube wells according to owner's land holding size

Table 8: Distribution of Shallow Tube wells according to Depth

Table 9: Type of Ground Water Distribution Device

Table 10: Scope of quantitative impact on stage of development after applying various management strategies.

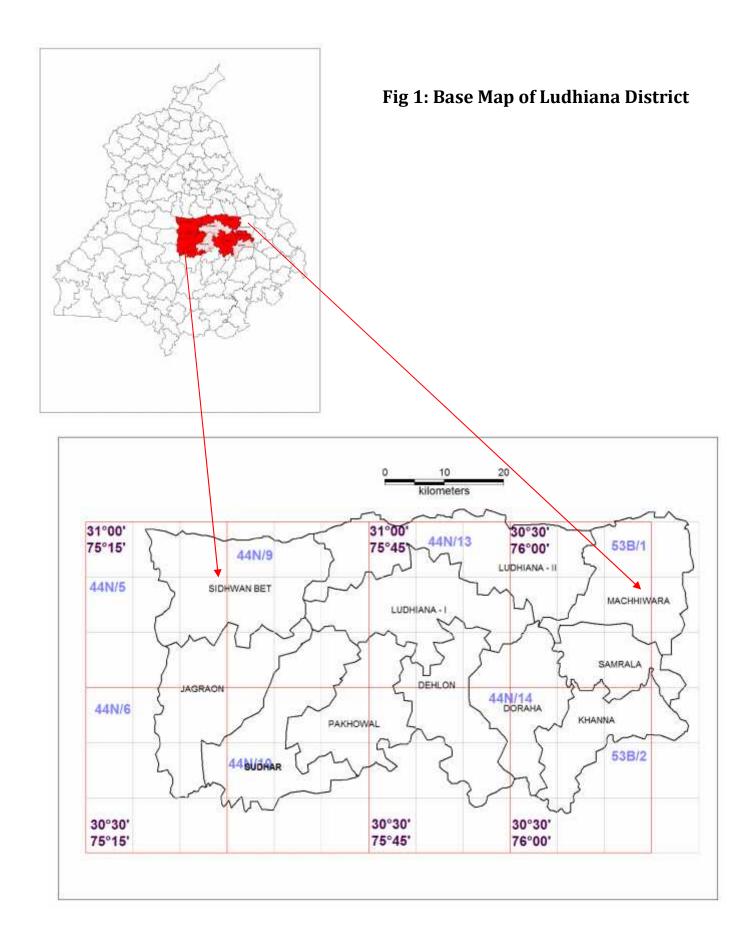
AQUIFER MAPPING AND GROUND WATER MANAGEMENT IN LUDHIANA DISTRICT, PUNJAB (3790 Sq. Km UNDER NAQUIFERUIM XII PLAN)

1.0 INTRODUCTION

There has been a paradigm shift from "groundwater development" to "groundwater management" in the past two decades in the country. An accurate and comprehensive microlevel picture of ground water through aquifer mapping in different hydrogeological settings would enable robust groundwater management plans in an appropriate scale. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical field and laboratory analyses are applied to characterize the quantity, quality and sustainability of ground water in aquifers. This would help achieving drinking water security, improved irrigation facility and sustainability in water resources development in large parts of rural India, and many parts of urban India.

Central Ground Water Board (CGWB) implemented the Aquifer Mapping Programme in Punjab in four phases (**Fig. 1**) with the broad objective of preparing an Aquifer-wise management plan for the region. Various multi–disciplinary geoscientific activities were undertaken in the study partly through in-house capacity of CGWB, DWRS, PSCTC and Private agencies for generation of additional micro-level hydrogeological data. This report primarily deals with Ludhiana district of Punjab State (**Fig. 1**), covered under Phase-II.

Ludhiana district falls in central part of Punjab. The district is bounded between North latitude 30^o 33' and 31^o 01' and East longitude 75^o 25' and 76^o 27'. The River Sutlej forms the border of the district in the North with Jalandhar and Hoshiarpur districts. Ropar and Fatehgarh Sahib Districts marks the eastern and south eastern boundaries. The western border is adjoining Moga and Ferozpur districts. The geographical area of the district is 3790 sq.kms.


Administratively Ludhiana district falls under Patiala division. The district has four sub-divisions viz-Ludhiana, Khanna, Samrala and Jagraon and eleven development blocks viz.- Ludhiana, Mangat, Doraha, Khanna, Dehlon, Pokhwal , Samrala , Machiwara, Jagraon, Sidhwanbet and Sudhar.

The district area is occupied by Indo-Gangetic alluvium. And there are no surface

features worth to mention except that area is plain and major drains are Satluj and its tributaries and Budha nala.

Soil is the end product of the parent material resulting from the consistent influence of climate, topography and the natural vegetation over a long period of time. In the district soil characteristics are influenced to a very limited extent by the topography, vegetation and parent rock. The variations in soil profile characteristics are much more pronounced because of the regional climatic differences. The soil of this zone has developed under semi-arid condition. The soil is sandy loam to clayey with normal reaction (pH from 7.8 to 8.5).

The climate of Ludhiana district can be classified as tropical steppe, hot and semi-arid which is mainly dry with very hot summer and cold winter except during monsoon season when moist air of oceanic origin penetrate into the district. There are four seasons in a year. The hot weather season starts from mid March to last week of the June followed by the south west monsoon which lasts upto September. The transition period from September to November forms the post-monsoon season. The winter season starts late in November and remains up to first week of March.

2. DATA COLLECTION AND GENERATION

2.1 Tube well Logs

The Lithologs of Exploratory Well/ Observation well/ Peizometer/ productive wells of CGWB, and private wells have been collected and those supported electrical logs have been validate for aquifer map preparation. The details are shown below.

	LUDHIANA DISTRICT											
Sl.No	Source of data	Depth Range (m)										
		< 100	100-200	200-300	>300							
1	CGWB	6	3	2	7							
2	WR&ED/WSS	4	11	3	5							
3	PRIVATE	0	23	6	1							
	Total	10	37	11	13							

Table-I Data availability of exploration wells in Ludhiana district

2.2 Ground Water Quality

Present data of chemical analysis of water samples collected from shallow aquifers (NHS-2006) indicates that ground water is slightly alkaline in nature (pH varies between 7.25-7.90). also ground water is fresh to moderate saline (Ec varies between 550-1320micromomhos/cm at 25^{0} C. All the chemical parameters are well with in the permissible limits for safe drinking water set by BIS 1991 revised in 2007 exfcept for NO₃ at Bhalolpur (52 mg/l), Muskabad (8 mg/l), Kohara (104 mg/l), Begowal (56mg/l), and Serian (57 mg/l).

Bicarbonate is the dominant anion while calcium or calcium along with magnesium is the dominant cation in he waters. By and large , quality ground water is suitable for drinking except at few places mentioned above due to high value of NO₃ exceeding 45 mg/l.

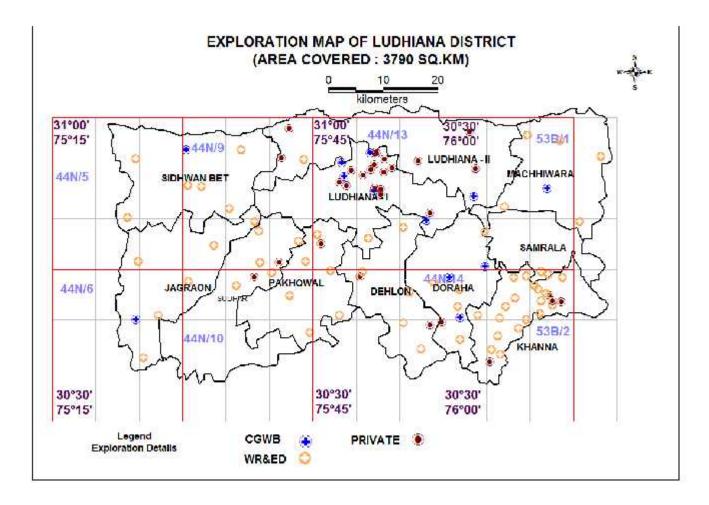
The suitability of ground water for Irrigation is generally assessed by the factors of salinity (EC), Sodium absorption ratio (SAR) & Residual Sodium carbonate (RSC). These parameters range between 550-1320 microsiemens /cm at 25^{0} C,

0.29-3.64 and (-) 1.68 to 4.08 respectively. Based upon the plot of EC Vs SAR on the USSL diagram for rating Irrigation Waters, C_{25} & C_3S_1 , classes of waters have been observed, Such waters will cause problems of neither salinity nor sodium hazard when used for customary Irrigation.

The shallow ground water is getting polluting by heavy metals like copper, lead, manganese and iron. However, in deeper aquifer the concentration of these heavy metals is low as compare to shallow aquifer. The overall review of trace elements analysis indicates that the presence of heavy metals in the ground water at shallow and deeper aquifers, which is due to industrial pollution.

Presence of chemical constituents more than the permissible limits:-

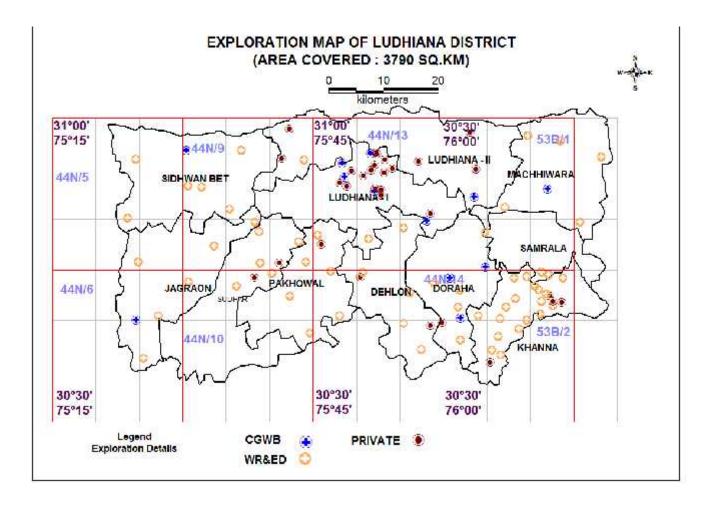
Δ	


Chemical Constituents	Total Wells	B15 Limit	Above Limits	Location with value in mg/l
NO3	8	45	5	Bhalopur (52) Muskabad (58) Kohara (104) Begowal (56) Sherian (57)
Fe	5	1.0 mg/l	Nil	
As	5	0.01 mg/l	Nil	

B. Type of water: - calcium bicarbonate

2.3 SPATIAL DATA DISTRIBUTION

Data Distribution


The actual data of all the wells in the area are plotted on the map of 1:50000 scale with 5 min x 5 min grid (9km x 9km) and is shown in Fig: 2.The exploration data shows that majority of tube wells falls in the II^{nd} Aquifer. After data validation, only selected the deepest well in each quadrant is plotted on the map of 1.50000 scale with 5 min x 5 min grid (9km x 9km) and is shown in Fig: II. The grids/ formations devoid of SH/PZ/EW are identified as data gaps and these are to be filled by data generation.

2.4 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

All the available data have been validated for consideration to generate aquifer map. The deepest well in each quadrant is selected and plotted on the map of 1.50000 scale with 5'X5'grid (9 x 9km) and is shown in Fig -3.

Fig 3: Validated Exploration Data of Ludhiana District

The topographic elevation values have been plotted to prepare the elevation contour map and is in fig 4.

The data is validated by selecting the deepest well in each quadrant with those supported electrical logs for preparation of aquifer map and is shown below

Fig 4: Elevation Contour Map-Ludhiana District

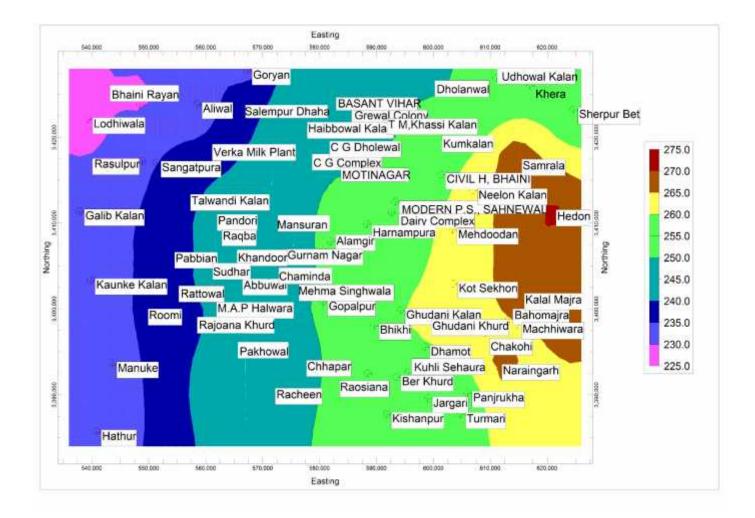
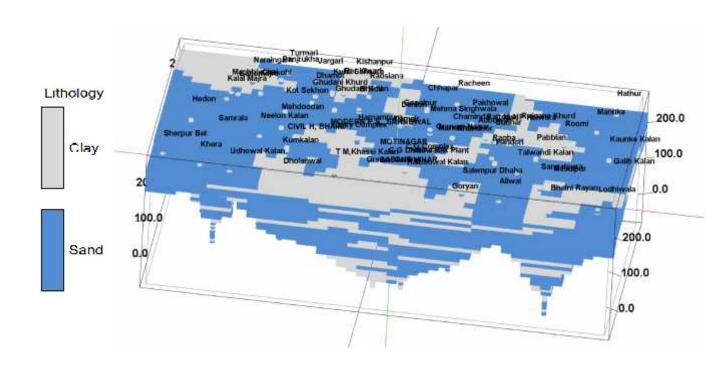


Table-3: Summery of Optimized Exploration WellsData Validated: The data is validated by selecting the deepest well in each quadrant with those supported electrical logs for preparation of aquifer map and is shown below;

Sl.No	Block	Toposheet and Grid number	Grid number							Elevation (m amsl)	Source of data		
				Location	< 100	Location	100-200	Location	200-300	Location	>300		
1	LUDHIANA-	44N/13, 53 B/1	2B										
	П								300	Janer		191	WR&ED
2	JAGRAON	44N/6, 44N/9	3A						285	Badni Khurd		194	CGWB
3	SUDHAR	44N/9,44N/10	3A						300	Nathuwala Jadid		199	CGWB
4	RAIKOT	44N/9, 44N/13, 53 B/1	2A						300	Rajoena		192	CGWB
5	PAKHOWAL	44N/9,44N/10, 44N/13	3A						247	Sosan		192	CGWB
6	LUDHIANA-I	44N/5	3A						300	Mehna		195	CGWB
7	DEHLON	44N/13, 44N/14											
8	DORAH												
9	SAMRALA												
10	SIDWANBET	44N/5, 44N/9											
11	KHANNA	44N/5	1A						300	Pandori Araen		193	WR&ED

3. HYDROGEOLOGY 3.1 PREVIOUS WORK


The district area is occupied by Indo-Gangatic alluvium of Quaternary age. The subsurface geological formations of the area comprise of sand, silt, clay and kankar in various proportions. In general the Ground water of the district is fresh except in and around Ludhiana city where the ground water is polluted due to industrial effluents. The aquifer disposition of the area is revealed by drilling data carried out down to 408 m by Central Ground Water Board and state govt. The lithological data of these boreholes indicate the presence of many sand beds forming the principal aquifers separated by clay beds at various depths.

The data indicates presence of about 5 prominent sand horizons down to 400 m depth separated by thick clay horizons. The first aquifer generally occurs between 10 and 30m. The second is between 50 and 120m. Third between 150-175m. For the forth between 200-250m and the fifth between 300-400m. The aquifers are giving discharge from 3-52 lps with $4.3X10^{-4}$ - $6.98X10^{-4}$ storativity and transvity is ranges between 628-1120 m²/day. The sand content in the aquifer in the district varies from 50 to 80%. Clay beds though thick at places occur mostly as lens and pinches out laterally. The granular material becomes coarser with depth. The aquifer at deeper levels acts as semi-confined to con fined.

The depth to water level in the area ranges between 9-26 m bgl. In the north eastern part 'Machhiwara' block area it ranges between 5-10 m bgl and 10-20 m in north central part of the district in Ludhiana city aqnd Bhaini raian . In rest of the area of the district it ranges between 20-30 meters. During the pre monsoon period depth to water level varies between 4.32 to 31.22 m bgl and in post monsoon it ranges between 2.89-27.30 m bgl. The long term water trend indicates that the water level showing decline ranges from 0.11 m/y -1.34 m/year.

3.2 Present NAQUIFERUIM study

To understand the sub surface lithology and its disposition, the lithological data of the optimized wells drilled by CGWB, PHED and Private Agencies is plotted using the RockWorks15 software and a lithological model has been prepared and is shown in fig. The 2D lithology map and 3D lithological fence diagram has been prepared using the lithology model and are shown in fig 5 & 6 respectively.

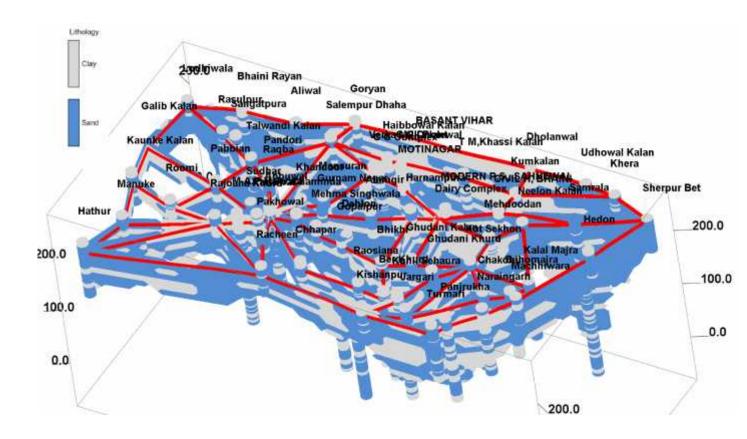
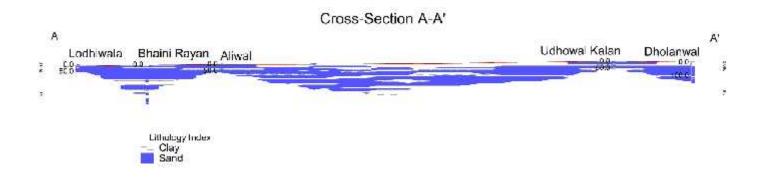
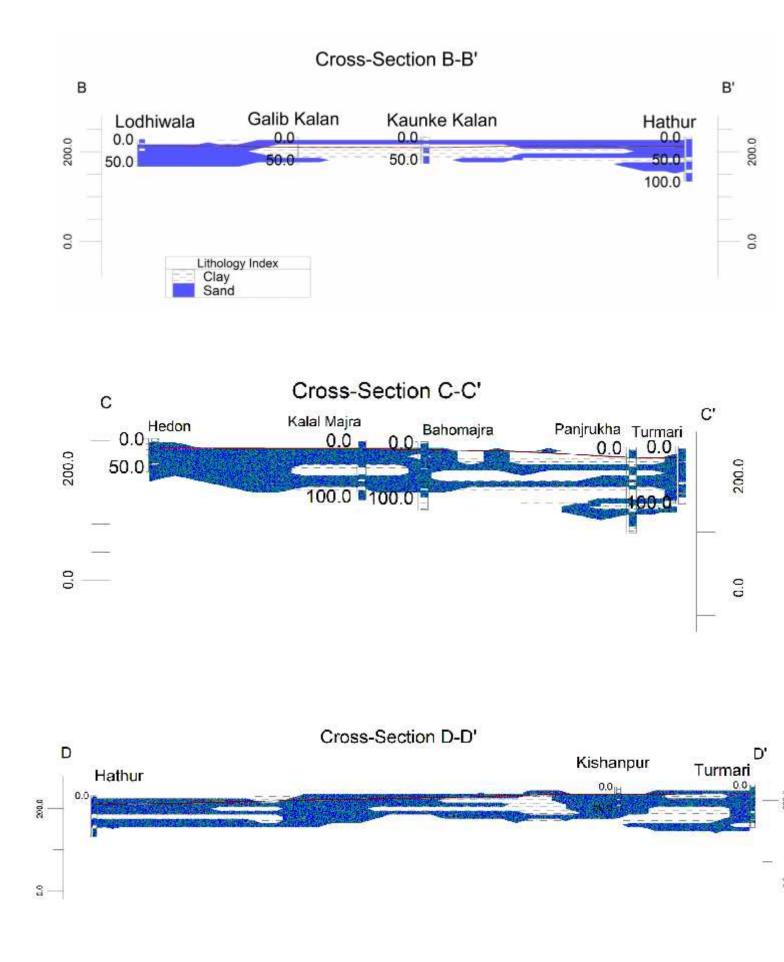


Fig 5: 3-Dimension Lithological Model of Ludhiana District

To present a three dimensional regional picture of the sub-surface conditions in the two districts a fence diagram was prepared by synthesizing the various sub-surface sections. The fence diagram thus drawn reveals broad picture of disposition, inter relationship of granular zones, nature, geometry and extension of aquifers of the entire district. The aquifer group embodies a number of granular layers alternating with thick or thin clay lenses. A few clay

layers intervening these aquifer groups pinch out against the sand zones at a few places. Sandy clay layer occurs at the surface covering the unconfined aquifer which is in turn underlain by prominent clay zone. It is composed of mainly of medium sand with thin beds of fine sand. The second and third aquifers are separated by a 8-10 m clay bed. Coarse sand beds occur as thin layers within medium sand. Fourth aquifer is again underlain by a clay zone of unknown thickness. Striplogs showing lithologs of exploration wells and various block diagrams based on Lithology and Aquifer Group .


Fig 6: 3 Dimension Lithological Fence of Ludhiana District



3.3 Aquifer Geometry

Ludhiana District forms central part of sate and is underlain by formations of Quaternary age comprising of alluvium deposits belonging to vast Indus alluvial plains; therefore it belongs to a multiple aquifer system up to 300m depth with alternate bands of medium to coarse sand and clay. To know the broad picture of the aquifer disposition, inter-relationship of granular zones, nature, geometry and extension of aquifers in the Ludhiana district, the aquifer grouping has been done using the sub-surface lithology and a three-dimensional aquifer model has been prepared. The 2D aquifer map was also prepared using the aquifer model. The aquifer grouping is done and given in Table. The first aquifer is water table aquifer and extends all over the area. The aquifer is mainly composed of fine to medium grained sand. The Aquifer grouping cannot be done in the district as fresh and saline water exist. The grouping of Aquifer is done as Fresh and Saline. The resources are calculated separately which are included in next chapter. The Lithological cross-section of Ludhiana district is given below:-

Fig 7: Cross Sections of Aquifer Map of Ludhiana District

Cross-Section E-E'

4. GROUND WATER RESOURCES

Ground water resource estimation of the area have been carried out by taking Dynamic and In-storage resources of unconfined aquifer and confined aquifers present up to 300m depth. The assessment of Dynamic and in storage Ground Water Resources of the study area have been carried out jointly by CGWB, Water Resources & Environment Directorate, Department of Irrigation, on the basis of Groundwater Estimation Committee (GEC) (1997) methodology based on data available and as per the revised methodology for the year 2013.

The occurrence of potential aquifers (productive granular zones) upto 300 m depth has been demarcated on basis of aquifer wise subsurface mapping. The total saturated thickness of granular zones was derived from the exploratory borehole data of a particular block. The granular zones occurring below the zone of water level fluctuation up to the first confining layer has been considered as static unconfined zone. The ground water resource of this zone has been calculated considering 12% specific yield of the formation. The specific yield value for the unconfined aquifer has been taken as 60% of 0.12 which comes as 0.072 whereas for the confined aquifer, the Storativity value has been considered. Since the specific yield is likely to reduce with increase in depth due to compaction of overlying sediments.

Hence, the major data elements considered in this estimation are thickness of granular zones, specific yield, Storativity and area of fresh water. It has been observed that in some of the blocks sufficient data on probable occurrence of granular zones was not available. In those cases, the existing exploratory data of adjoining block/district has been either extrapolated or interpolated to derive such parameters required for estimation. This assessment of total groundwater resources has been computed based on the available data with CGWB Water Resources & Environment Directorate, Department of Agriculture, and Punjab Water Resource Management & Development Corporation, Punjab

4.1 Unconfined aquifers

Dynamic Resources

As per Groundwater Resources Estimation 2013, the ground water development in all 5 blocks has exceeded the available recharge, thus 5 blocks have been categorized as **over exploited**. Stage of ground water development in the Ludhiana district has been assessed to be 207%.

Assessment Unit/ Block		Existing Gross Ground Water Draft for irrigation	Existing Gross Ground Water Draft for domestic and industrial water supply	Existing Gross Ground Water Draft for All uses	Provision for domestic, and industrial requirement supply to 2025	Net Ground Water Availability for future irrigation development	Stage of Ground Water Development (%)
DEHLON	18751	32868	538	33406	652	-14769	178
DORAHA	27298	29519	459	29978	568	-2789	110
JAGRAON	22502	30178	813	30991	1007	-8682	138
KHANNA	16238	32991	840	33831	1036	-17789	208
LUDHIANA	12503	26459	4520	30979	6060	-20016	248
MACHHIWA RA	26440	27284	355	27639	423	-1267	105
MANGAT	23152	34533	1162	35695	1408	-12789	154
PAKHOWAL	12618	24034	268	24302	340	-11756	193
RAIKOT	11978	26459	287	26746	394	-14876	223
SAMRALA	10152	19879	540	20419	641	-10367	201
SIDHWAN BET	21205	35052	480	35533	538	-14385	168
SUDHAR	9837	13974	342	14316	447	-4583	146
Total (ham)	212674	333230	10605	343835	13512	-134069	162

Table 4: Dynamic Ground Water Resource & Development Potential (as on 31.03.2013)

Instorage Ground Water Resources

As per revised guidelines recommended by the Central Level Expert Group on ground water resources assessment, the resources are separately considered as dynamic and in-storage unconfined. In case of alluvial area, the in-storage resources of unconfined aquifer have been computed based on specific yield of the aquifer as detailed below:

In-storage		Thickness of the aquifer				
Ground Water		(granular/productive zone)		Sp. Yield of		Areal extent
resources	=	below the zone of water level	х	the aquifer	v	of the
(unconfined		fluctuation down to the bottom			Х	aquifer
Aquifer)		layer of unconfined aquifer				

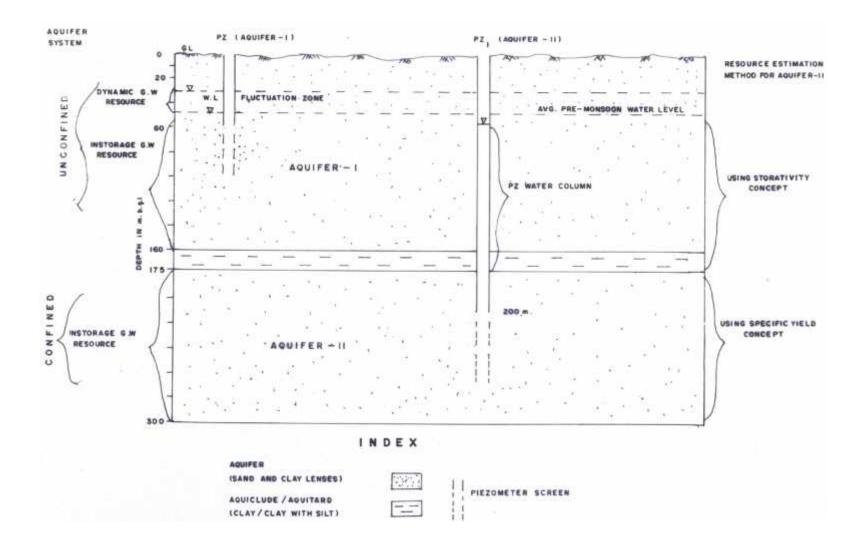
4.2 Confined Aquifer

The availability of ground water resources in confined aquifer have two components: Storage under pressure (using Storativity concept) and Storage under desaturated (gravity drainage) condition (using Specific Yield concept) (source: Assessment of Ground Water Resources; A Review of International Practices, 2014) and is shown in Fig 9. However, since ground water withdrawals from confined aquifer are known to have serious environmental degradation effects, the preliminary assessment of ground water resources in confined aquifer is restricted to the estimation of ground water storage under pressure conditions only but here the storage under de-saturation is also computed.

Storativity Concept:

ii)	In-storage Ground Water resources (within the Peizometer)	=	Thickness of the water column in Peizometer of particular confined aquifer up to the top layer of same confined aquifer	×	Storativity of the confined aquifer	×	Areal extent of the confined aquifer group
-----	--	---	---	---	--	---	--

Specific Yield Concept:


	In-storage		Thickness of the		Sp.		Areal
ii)	Ground Water	=	confined aquifer	×	Yield	×	extent of

resources (within the aquifer thickness) (granular/ productive zone) down to the bottom layer of confined aquifer or exploitable depth of 300 m of the con aquifer aqu grow

confined aquifer group

Preliminary assessment of the ground water resources in confined aquifer does not imply that the assessed resource is available for exploitation. The objective of this exercise is to have an overview of the ground water regime in the particular confined aquifer. It should be kept in mind that any significant ground water withdrawal from confined aquifer may invoke serious environmental degradation problem. Therefore, in case the preliminary assessment reveals that ground water is being withdrawn in significant quantity for any confined aquifer, that particular aquifer should be identified for detailed assessment using numerical modelling approach.

Total Availability of Ground Water Resources = Dynamic Resources + Instorage Resources.

Fig 8: Concept for Resource Estimation in Unconfined and Confined Aquifer System

		BLOCK	WISE INST	ORAGE G	ROUND WATER R	ESOURCES I		FINED AQUIFER	–I (ALLUVIUM	И)	
Sr.	Name of		Areal e	xtent (ha)		Average	Depth	Total	Thickness	Average	In-Storage
No.	Assessment	Total	Assessm	ent Area		Pre-	to	Thickness of	of the	Specific Yield	Ground Water
	Unit	Geographical Area (ha)	Total	Fresh Water	Brackish/Saline Water	monsoon Water Level (m bgl)	bottom of Aquifer Group I (m bgl)	formation below Pre- monsoon Water Level (m) (9-8)	Granular Zone in AQUIFER GROUP-I below Pre- monsoon WL (m)		Resources (ham) [(6)*(11)*(12)]
1	2	4	5	6	7	8	9	10	11	12	13
1	DEHLON	28560	28560	28560	0	16.51	72.21	55.70	33.75	0.072	69401
2	DORAHA	22480	22480	22480	0	16.28	94.24	77.96	51.91	0.072	84019
3	JAGRAON	34430	34430	34430	0	20.96	63	42.04	23.42	0.072	58057
4	KHANNA	36570	36570	36570	0	18.68	88	69.32	48.92	0.072	128808
5	LUDHIANA	31680	31680	31680	0	30.90	119.81	88.91	61.18	0.072	139549
6	MACHHIWARA	36570	36570	36570	0	5.26	60	54.74	37.57	0.072	98923
7	MANGAT	50730	50730	50730	0	9.49	105.87	96.38	67.36	0.072	246036
8	PAKHOWAL	21083	21083	21083	0	16.35	75.62	59.27	34.62	0.072	52552
9	RAIKOT	26620	26620	26620	0	22.24	60	37.76	24.5	0.072	46958
10	SAMRALA	15350	15350	15350	0	12.80	71.34	58.54	31.6	0.072	34924
11	SIDHWAN BET	40170	40170	40170	0	13.60	72.5	58.90	39	0.072	112797
12	SUDHAR	14447	14447	14447	0	18.09	71.56	53.47	31.82	0.072	33099
Dis	t. Total (ham)	358690	358690	358690							1105125
Dis	st. Total (mcm)	3586.9	3586.9	3586.9			<u></u>				11051

Table 5: BLOCK WISE AVAILABILITY OF TOTAL GROUNDWATER RESOURCES IN LUDHIANA DISTRICT UP TO DEPTH OF 300M

ham: hectare metre,

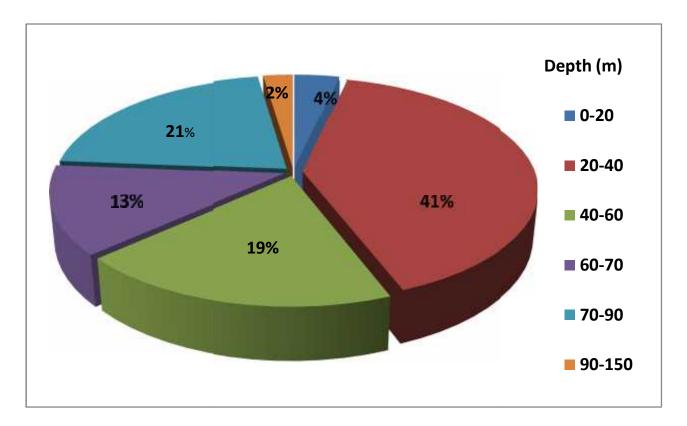
mcm: million cubic metre

					BLOCK V	ISE INST	DRAGE GROU	ND WATER RE	SOURCES -	CONFINED	(AQUIFER	: II)			
Sr. No.	Name of Assessment Unit	Total Geogra- phical Area	Areal (h	extent a) Fresh Water	Top Aquifer II (m bgl)	Depth to bottom of Aquifer II (m bgl)	Peizometer head value for Confined Aquifer-II (m bgl)	of piezometric level(m bgl)		Granular Zone in confined aquifer down to	Specific Yield	•	In-Storage Ground Water Resources (ham) (Specific yield concept) [(5)*(11)*(12)] FRESH	In-Storage Ground Water Resources (Storativity concept) [(5)*(9)*(13)]	Total in- Storage Ground Water Resources (ham) (15+16)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	DEHLON	28560	28560	28560	110	158	30	80	48	33	0.072	0.00195	67859	4455	72314
2	DORAHA	22480	22480	22480	124	169	30	94	45	29	0.072	0.00195	46938	4121	51059
3	JAGRAON	34430	34430	34430	0	0	0	0	0	0	0.072	0.00195	0	0	0
4	KHANNA	36570	36570	36570	110	162	30	80	52	37	0.072	0.00195	97422	5705	103127
	LUDHIANA	31680	31680	31680	147	194	30	117	47	30	0.072	0.00195	68429	7228	75657
	MACHHIWARA	36570	36570	36570	0	0	0	0	0	0	0.072	0.00195	0	0	0
	MANGAT	50730	50730	50730	114	164	30	84	50	40	0.072	0.00195	146102	8310	154412
	PAKHOWAL	21083	21083	21083	166	244	30	136	78	38	0.072	0.00195	57683	5591	63274
5	RAIKOT	26620	26620	26620	0	0	0	0	0	0	0.072	0.00195	0	0	0
6	SAMRALA	15350	15350	15350	112	169	30	82	57	48	0.072	0.00195	53050	2454	55504
7	SIDHWAN BET	40170	40170	40170	155	210	30	125	55	42	0.072	0.00195	121474	9791	131266
8	SUDHAR	14447	14447	14447	135	168	30	105	33	21	0.072	0.00043	21844	652	22496
Dis	st. Total (ham)	358690	358690	358690									680801	48308	729109
Dis	t. Total (mcm)	3586.9	3586.9	3586.9									6808	483	7291

				BLOC	K WISE IN	ISTORAGE	GROUND WA	TER RESOUF	RCES – CONF	INED (AQU	JIFER III)		
Sr. No.	Name of Assessment Unit	Total Geographical Area	Areal ex	tent (ha)	Top Aquifer III (m bgl)	Depth to bottom of Aquifer III (m bgl)	Thickness of piezometric level(m bgl)	Total Thickness of confined aquifer down to explored depth (m) (9-8)	Thickness of the Granular Zone in confined aquifer down to explored depth (m)	Average Specific Yield	Average value of Storativity	In-Storage Ground Water Resources (ham) (Specific yield concept) [(6)*(12)*(13)] FRESH	In-Storage Ground Water Resources (Storativity concept) [(6)*(10)*(14)]
			Total	Fresh Water									
1	2	4	5	6	8	9	10	11	12	13	14	15	16
1	DEHLON	28560	28560	28560	220	300	0	80	30	0.072	0.00195	61690	0
2	DORAHA	22480	22480	22480	0	0	0	0	0	0.072	0.00195	0	0
3	JAGRAON	34430	34430	34430	0	0	0	0	0	0.072	0.0038	0	0
4	KHANNA	36570	36570	36570	0	0	0	0	0	0.072	0.00195	0	0
	LUDHIANA	31680	31680	31680	207	258	0	51	27	0.072	0.00195	61586	0
	MACHHIWARA	36570	36570	36570	0		0	0		0.072	0.00195	0	0
	MANGAT	50730	50730	50730	0		0	0		0.072	0.00195	0	0
	PAKHOWAL	21083	21083	21083	255	300	0	45	25	0.072	0.00195	37949	0
5	RAIKOT	26620	26620	26620	0	0	0	0	0	0.072	0.00195	0	0
6	SAMRALA	15350	15350	15350	186	279	0	93	71	0.072	0.00195	78469	0
7	SIDHWAN BET	40170	40170	40170	235	300	0	65	51	0.072	0.00195	147504	0
8	SUDHAR	14447	14447	14447	193	220	0	27	9	0.072	0.00195	9362	0
	st. Total (ham)	358690	358690	358690								396560	0
Dis	st. Total (mcm)	3586.9	3586.9	3586.9								3966	0

Table 6: BLOCK WISE TOTAL AVAILABLE GROUND WATER RESOURCES IN AQUIFERS UP TO 300m DEPTH

		AVAIL	ABILITY OF TOTA	L FRESH GROUND	WATER RESOUR	CES IN LUDHIAN	A DISTRICT		
Sl.No	Block	Volume of	Dynamic	In-storage	Fresh	Fresh In-	Fresh In-	Total Ava	labilty of
		Unsaturated	Groundwater	Groundwater	Groundwater	storage	storage	Fresh Gro	undwater
		Zone up to	Resources	Resources	Resources	Groundwater	Groundwater	Resources [(6)+(7)+(8)]
		Pre-	(2013)	AQUIFER-I	AQUIFER-I	Resources	Resources		
		monsoon	AQUIFER-I		[(4)+(5)]	AQUIFER-II	AQUIFER-III		
		WL							
		(ham)						ham	mcm
1	2	3	4	5	6	7	8	9	10
1	DEHLON	44554	18751	69401	88151	72314	61690	222155	2222
2	DORAHA	24278	27298	84019	111317	51059	0	162376	1624
3	JAGRAON	61974	22502	58057	80559	0	0	80559	806
4	KHANNA	35107	16238	128808	145046	103127	0	248174	2482
5	LUDHIANA	41818	12503	139549	152052	75657	61586	289294	2893
6	MACHHIWARA	57049	26440	98923	125364	0	0	125364	1254
7	MANGAT	36526	23152	246036	269189	154412	0	423601	4236
8	PAKHOWAL	27830	12618	52552	65170	63274	37949	166394	1664
9	RAIKOT	31944	11978	46958	58935	0	0	58935	589
10	SAMRALA	18420	10152	34924	45077	55504	78469	179050	1790
11	SIDHWAN BET	81947	21205	112797	134003	131266	147504	412772	4128
12	SUDHAR	20804	9837	33099	42936	22496	9362	74793	748
Dis	t. Total (ham)	482250	212674	1105125	1317799	729109	396560	2443468	24435
Dis	t. Total (mcm)	4822	2127	11051	13178	7291	3966		


5. GROUND WATER RELATED ISSUES

Ludhiana is famous for its paddy cultivation and is also known as 'Rice Bowl' of Punjab. The quality of ground water in the district is potable for both the drinking and irrigation purposes therefore, the ground water is constantly being pumped for the irrigation due to its easy access through tube wells and they are the main source of irrigation.

This will lead to its major ground water issue which is deepening of ground water level as the recharge of the groundwater through rainfall and other sources are less than the overall extraction.

5.1 GROUND WATER IRRIGATION SCENARIO

As per the data available from minor irrigation census 2006-07, the number of shallow and deep, tube wells, lined, unlined water distribution system, land holdings of wells are given in Table 7,8 and 9

Fig 9: Irrigation tube wells as per depth.

No. of shallow tube wells by size class of individual owner							
Sr.no	district	Marginal	Small	Semi-Medium	Medium	Big	Total
		(0-1 ha)	(1-2 ha)	(2-4 ha)	(4-10ha)	(>=10 ha)	
1	Ludhiana	5474	12162	14761	15994	4135	52526

Table 8 -Distribution of Shallow Tube wells According to Depth of tube well

No. by the depth of shallow Tube well							
Sr.no	district	(0-20	(20-40	(40-60 mts)	(60-70	(>70 mts)	Total
		mts)	mts)		mts)		
1	Ludhiana	4271	48433	23011	15485	28319	119519

Table 9- Type of Ground water distribution device

Open Water Channel					
Lined/pucca Unlined/kutcha Total					
615	118905	119520			

6. AQUIFER MANAGEMENT PLAN

A summery outline of the artificial recharge plan for the entire district of each OE block is given at the beginning in tabular forms. This is followed by the salient features of each block along with the detailed structure-wise recharge plan and cost estimates. Details of the block wise type of suitable recharge structures and volume of water assured for annual recharge for each block in rural area, urban area and artificial recharge in agricultural farm are given in table and design of recharge structures are annexed at annexure I, II. More than 5 meter Mean decadal water level with falling trend is considered for block wise artificial recharge calculation. Another focus has been given to minimize the gross draft by enhancing ground water use efficiency in irrigation system after replacing the water distribution system from unlined/kutcha channel to Under Ground Pipeline System in the whole district.

6.1 SCOPE OF IMPLEMENTATION

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the Central or State Govt. like MANERGA, IWSP, PMKSY (Prime Minister Krishi Sinchai Yojna), NABARD funded schemes, Urban Development schemes, departmentally funded projects etc. may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, Engineering Collages, Academic and Research Institution and NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

6.2 POTENTIAL OF ENHANCING THE GROUND WATER USE EFFICIENCY

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced by the state of Punjab, particularly in overexploited blocks. There are around 119520 tubewells operated by farmers for irrigation through unlined/Katcha (99.48%) open channel system in Ludhiana district where water from the tube-well is discharge to the agricultural field. In this process huge quantity of ground water is wasted in soil moisture and evaporation losses.

Dynamic ground water resources (2011) indicate that Gross ground water draft for irrigation in Ludhiana district is estimated at 3332.30 MCM. It is expected that around 43.27% of over draft can be brought down by switching over to underground/surface pipeline based distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to the tune of 2525.24 MCM assuming there is no crop diversification by the farmers.

The benefit will lead to saving of precious ground water resources in overexploited blocks of Ludhiana Districts. The measure if implemented will bring down the ground water overdraft from 162% to 118.73 %. The category of the blocks will also improve drastically resulting in

boosting of agriculture and industrial development otherwise not sustainable in majority of the blocks in the state.

The tubewells also consume enormous electricity which is subsidized and government incurs significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. This will also be useful in the waterlogged/ shallow water table areas as the seepage losses in these areas also aggravate the water logging. Government should make/launch a mission mode program for installing the underground pipe lines instead of having *katcha* channel in the entire Punjab. Heavy ground water overdraft can be reduced by these efforts. This will ensure more crop per drop.

6.3 Water Saving Potential from Crop Diversification-Change Paddy to Maize/Pulses:

As the requirement of water for paddy is much high therefore by changing paddy to maize/Pulses will help in saving of water. For estimating the water saving by crop diversification it is assumed that one mcm of water will be saved in case of maize or pulses planted in one sq km of land. In case of pulses even higher amount of ground water can be saved

Block				Reduction in draft by different water saving method					
	Net Ground Water Availability (mcm)	Total Draft (mcm)	esent Stage of aft (SOD) (%) As per 2013	eplace water ourses by UG Pipes (mcm)	echarge	ge Paddy to Maize (mcm)	Total (mcm) (2+3+4)	SOD afterwards (%)	Change of paddy ltivation area (% of existing)
			1	2	3	4	5		
DEHLON	187.5	334.1	178	83.5	2.92	60.1	146.52	100	30
DORAHA	273.0	299.8	110	74.9	2.73	0.0	77.63	81	
JAGRAON	225.0	309.9	138	77.5	3.42	4.0	84.92	100	1
KHANNA	162.4	338.3	208	84.6	3.36	88.0	175.96	100	46
LUDHIANA	125.0	309.8	248	77.4	12.94	94.4	184.74	100	70
MACHHIWAR									
A	264.4	276.4	105	69.1	0.00	0.0	69.1	78	
MANGAT	231.5	357.0	154	89.2	3.70	32.5	125.4	100	10
PAKHOWAL	126.2	243.0	193	60.8	2.59	53.5	116.89	100	24
RAIKOT	119.8	267.5	223	66.9	2.54	78.3	147.74	100	37
SAMRALA	101.5	204.2	201	51.0	2.05	49.6	102.65	100	36
SIDHWAN									
BET	212.1	355.3	168	88.8	4.28	50.2	143.28	100	16
SUDHAR	98.4	143.2	146	35.8	1.31	7.7	44.81	100	3
Total	2126.7	3438.4	162	859.6	41.83	410.2	1311.63	119	

Table 10: Scope of Quantitative Impact on Stage of Development after applying various management strategies

7. BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

(I) LUDHIANA-II BLOCK (MANGAT) (507.3 SQ KM)

1. Salient Information

Population (2011)	Rural-218267
	Urban-24017
	Total-242284
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm

Average Annual Rainfall (Ludhiana-II block)	645 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
0	ther crops-Sugarcane, Potatoes, Pulses,
Ν	let Area Sown

Total Irrigated Area--

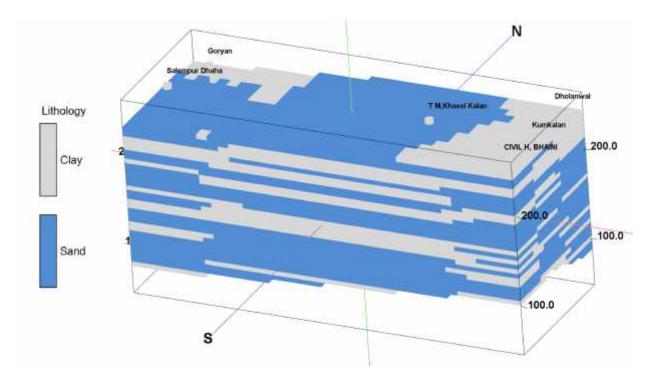
Water Bodies & Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Ludhiana-II block.

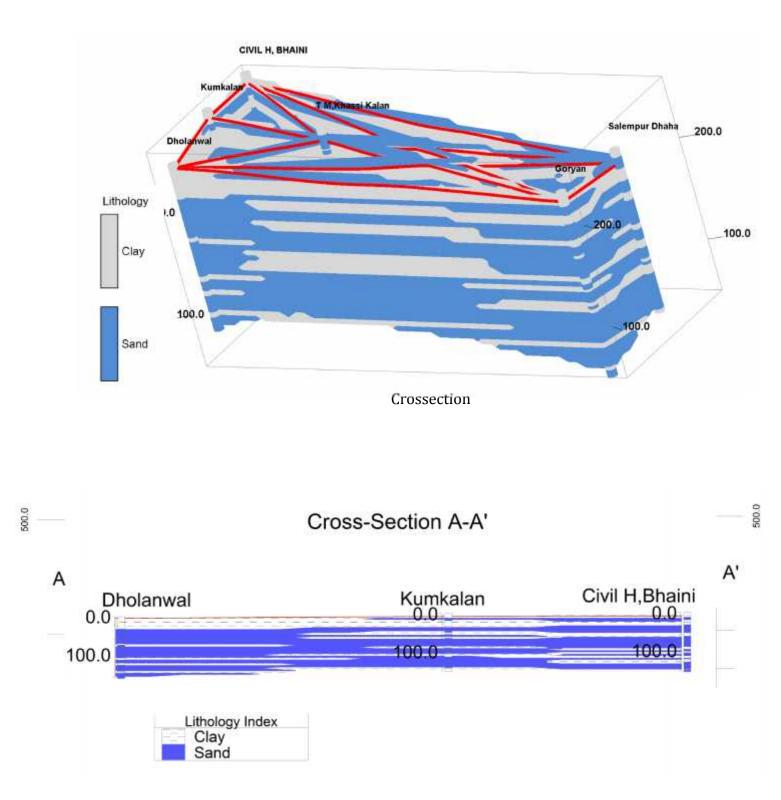
Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

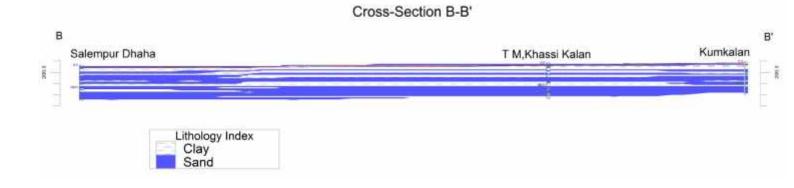
Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~10.00—40.00 (mbgl) &Post Monsoon-~9.50—38.75(mbgl)

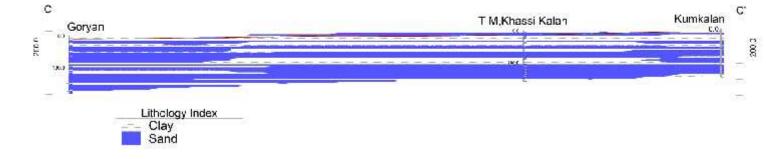

Aquifer	Geology	Type of Aquifer	Thickness of Granular	Transmis sivity	Specific Yield %	Storativity
Aquifer-I (10-106m)	aterna uvial	Unconfined	Zones (m) 67	(m²/day) 1120	0.072	4.3*10-3
Aquifer-II (113-164m)	Quat ry Alluv	Unconfined to Confined	40	-	NA	-

Aquifer Disposition: Combined Aquifer System


Aquifer comprises of freshwater only and the main aquifer material is sand.


The non-aquifer material comprise of clay.

3D Lithology model



3D Lithology Fence

Cross-Section C-C'

2. Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	187.51
wise Resource	In-storage Ground	4048.49
available (mcm)	Water Resources	
	Total	4236
Ground Water	Irrigation	345.33
Extraction (in	Domestic & Industrial	11.62
mcm)		
Provision for domest	tic & Industrial	14.08
requirement upto 20	25 (in mcm)	
Chemical Quality of g	round water &	Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

3. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average		
recharge and proposed interventions	depth to water level (6m).		
Other interventions proposed	Artificial Recharge, Roof top Rainwater		
	Harvesting, Farm recharge by constructing		
	pits will save 7.945 mcm volume of water		

4. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)
	will save 103.06 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy
	to maize/soyabean
	10 % of the total area needs to change the crop
	from paddy to maize/soyabean
	Anticipated volume of water to be saved by
	maize/soyabean is 32.50 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

(II) DEHLON BLOCK (285.60 SQ KM)

1. Salient Information

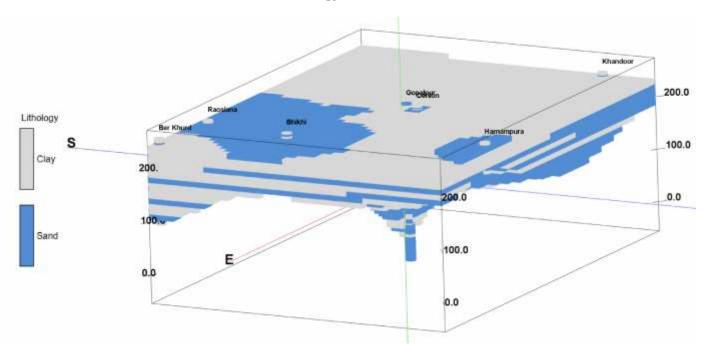
Population (2011)	Rural-129706
	Urban
	Total-1,29,706
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Dehlon block)	664 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 262.35 sq.km
	Total Irrigated Area- 537.26 sq.km

Water Bodies & Canal Irrigation

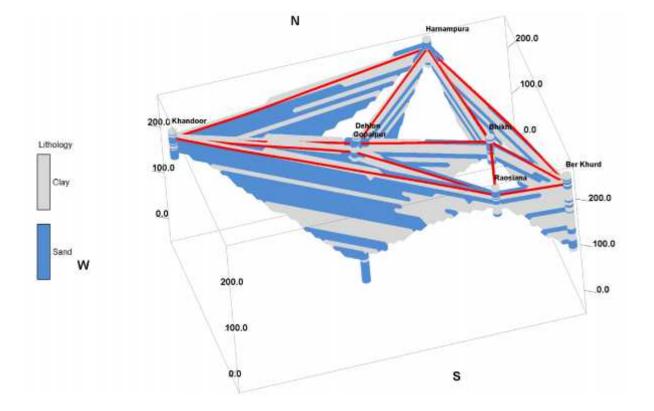
Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Dehlon block.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

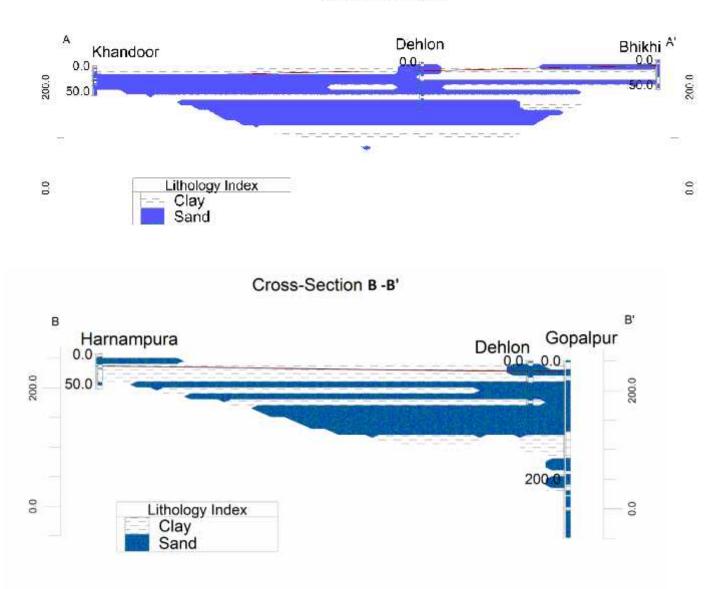
Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

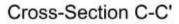

Water level Behavior (2015): Pre Monsoon-~6.75 – 25.30 (mbgl) Post Monsoon –

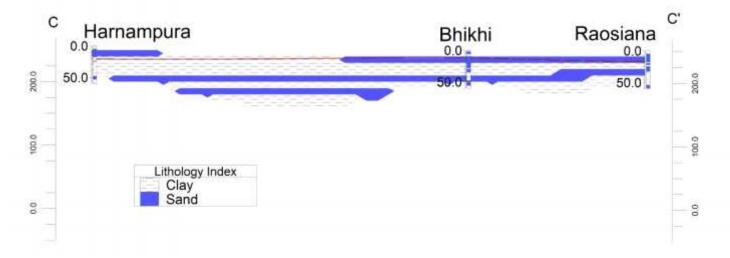
6.49 - 26.32(mbgl)


Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
			Zones (m)	(m ² /day)		
Aquifer-I		Unconfined	34	1120	0.072	4.3*10-3
(17-72m)	y		54	1120	0.072	4.5 10-5
Aquifer-II	nary l s	Unconfined	33		ΝΑ	
(109-160m)	ieri vial sit	to Confined	33	-	NA	-
Aquifer-III	Quaterna Alluvial deposits	Unconfined	20		NIA	
(240-300m)	Q de	to Confined	30	-	NA	-

Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.


3D Lithology model




3D Lithology Fence

Cross-Section A-A'

Combined Aquifer	Dynamic Aquifer	187.51	
wise Resource	In-storage Ground	2034.49	
available (mcm)	Water Resources		
	Total	2222	
Ground Water	Irrigation	328.68	
Extraction (in	Domestic & Industrial	5.38	
mcm)			
Provision for domest	ic & Industrial	6.52	
requirement upto 20	25 (in mcm)		
Chemical Quality of g	round water &	Suitable for drinking and irrigation	
contamination		purposes	
Other issues		Declining water level trend	

5. Ground Water Resource, Extraction, Contamination and Other Issues

6. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average	
recharge and proposed interventions	depth to water level (13m).	
Other interventions proposed	Artificial Recharge, Roof top Rainwater	
	Harvesting, Farm recharge by constructing	
	pits will save 0.26 mcm volume of water	

7. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 98.09 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 30 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 60.10 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if any	-

3. DORAHA BLOCK (224.80 SQ KM)

1. Salient Information

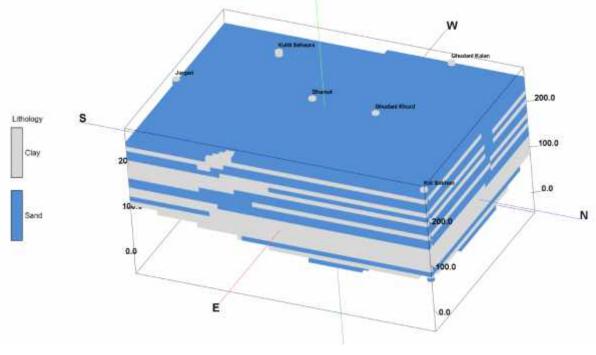
Population (2011)	Rural-96668
	Urban
	Total-96668
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Doraha -I block)	681 mm

Agriculture and Irrigation

Major Crops- Rice, Wheat Other crops-Sugarcane, Potatoes, Pulses, Net Area Sown- 204.55 sq.km Total Irrigated Area-387.43 sq.km

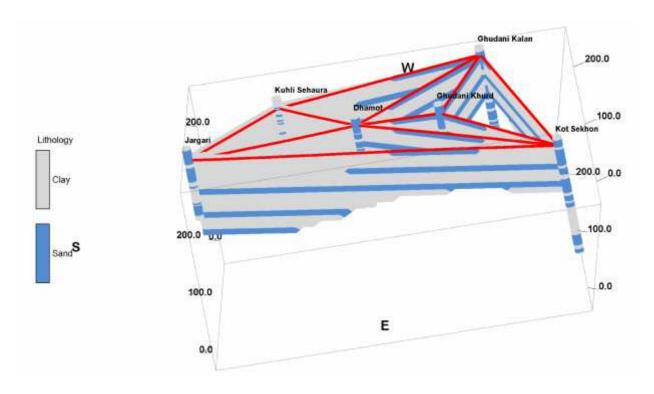
Water Bodies & Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Doraha block.

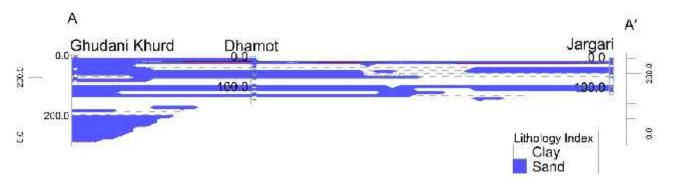

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~8.43 – 16.60 (mbgl) &Post Monsoon-~2.32 -16.40 (mbgl)

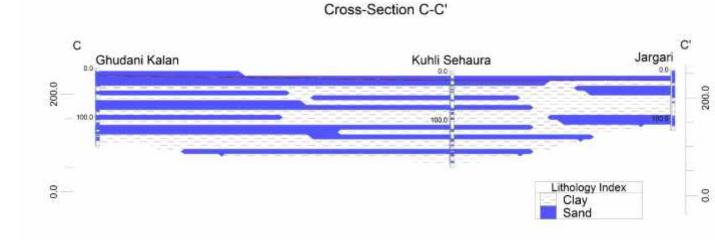

Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
			Zones (m)	(m²/day)		
Aquifer-I (14-94m)	laterna uvial	Unconfined	52	1120	0.072	4.3*10-3
Aquifer-II (124-170m)	Quat ry Alluv	Unconfined to Confined	29	-	NA	-

Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.



3D Lithology model

3D Lithology Fence



Cross-Section B-B'

Combined Aquifer	Dynamic Aquifer	272.98
wise Resource	In-storage Ground	1351
available (mcm)	Water Resources	
	Total	1624
Ground Water	Irrigation	295.19
Extraction (in	Domestic & Industrial	4.59
mcm)		
Provision for domest	ic & Industrial	5.68
requirement upto 20	25 (in mcm)	
Chemical Quality of g	round water &	Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

2. Ground Water Resource, Extraction, Contamination and Other Issues

3. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (9m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 0.208 mcm volume of water

4. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 88.1mcm volume of water wastage
Change in cropping pattern	No change in crop pattern
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

4. JAGRAON BLOCK (344.30 SQ KM)

1. Salient Information

Population (2011)	Rural-146566
	Urban
	Total-146566
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Jagraon block)	553 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 412.16 sq.km
	Total Irrigated Area- 667 sq.km

Water Bodies & Canal Irrigation

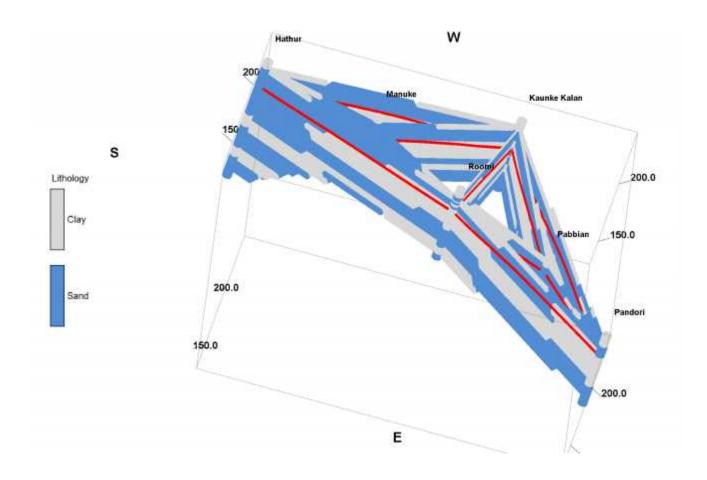
Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Ludhiana - II block.

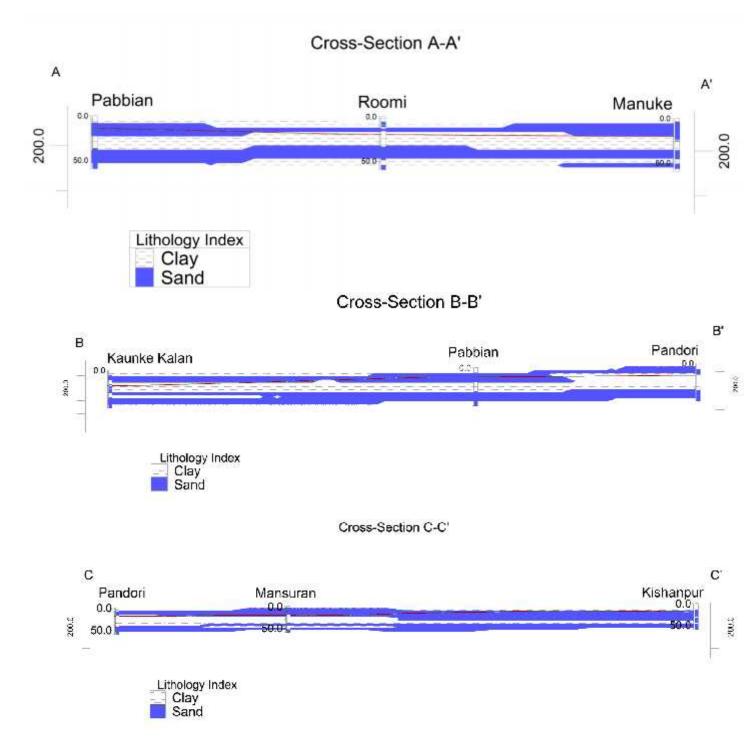
Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.


Water level Behavior (2015): Pre Monsoon-~16.12 – 25.90 (mbgl) & Post Monsoon-

 $\sim \! 15.65 - 26.60 \text{ (mbgl)}$


Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m ² /day)	Specific Yield %	Storativity
Aquifer-I (21-90m)	ury	Unconfined	57	1120	0.072	4.3*10-3
Aquifer-II (101-182m)		Unconfined to Confined	60	-	NA	-
Aquifer-III (200-300m)	Quaterna Alluvial deposits	Unconfined to Confined	47.5	-	NA	-


Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.

3D Lithology model

3D Stratigraphical Fence

Combined Aquifer	Dynamic Aquifer	225.02
wise Resource	In-storage Ground	4125.98
available (mcm)	Water Resources	
	Total	4351
Ground Water	Irrigation	301.78
Extraction (in	Domestic & Industrial	8.13
mcm)		
Provision for domestic & Industrial		10.07
requirement upto 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

2. Ground Water Resource, Extraction, Contamination and Other Issues

3. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (21 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 7.945 mcm volume of water

4. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 90.06 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 1 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 4 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

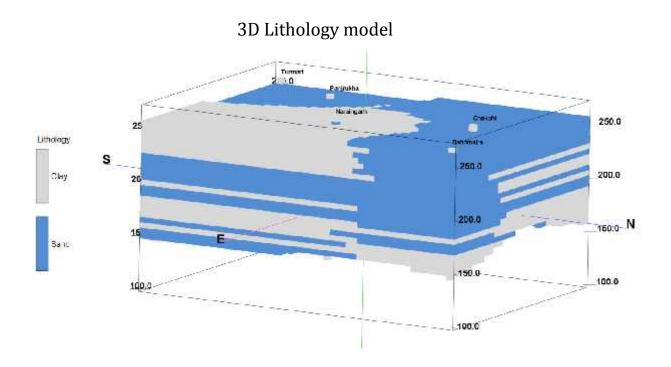
5. KHANNA BLOCK (365.70 SQ KM)

1. Salient Information

Population (2011)	Rural-114322
	Urban-0
	Total-114322
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Khanna block)	654 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 216.54 sq.km
	Total Irrigated Area- 411.24 sq.km

Water Bodies & Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Nihal Singh Wala block.


Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

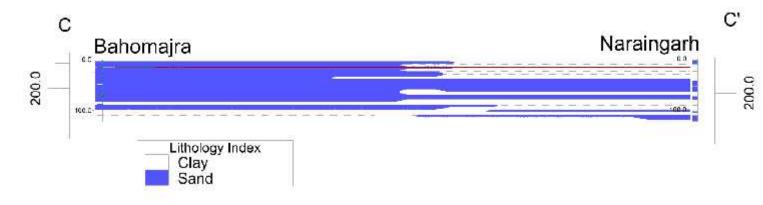
Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~10.33-23.15 (mbgl) &Post Monsoon-~10.37 – 22.30 (mbgl)

Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
		_	Zones (m)	(m²/day)		
Aquifer-I	na l	Unconfined	49	1120	0.072	4.3*10-3
(15-88m)	terr vial		T J	1120	0.072	T.J 10-J
Aquifer-II	n g	Unconfined	37		NA	
(110-163m)	Qu All	to Confined	57	-	INA	-

Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.


3D Stratigraphy Fence


Cross-Section A-A'

Cross-Section B-B'

Cross-Section C-C'

2. Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	162.38
wise Resource	In-storage Ground	2319.62
available (mcm)	Water Resources	
	Total	2482
Ground Water	Irrigation	329.91
Extraction (in	Domestic & Industrial	8.40
mcm)		
Provision for domestic & Industrial		10.36
requirement upto 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

3. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (15 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 0.889 mcm volume of water

4. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 98.46 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 46 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 88.00 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

6. LUDHIANA BLOCK (316.80 SQ KM)

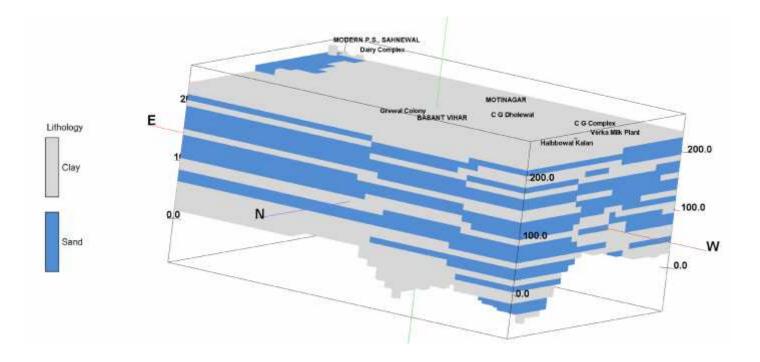
Salient Information

Population (2011)	Rural-158821
	Urban-59069
	Total-217890
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Ludhiana block)	666 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 188.70 sq.km
	Total Irrigated Area- 312.37 sq.km

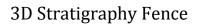
Water Bodies & Canal Irrigation

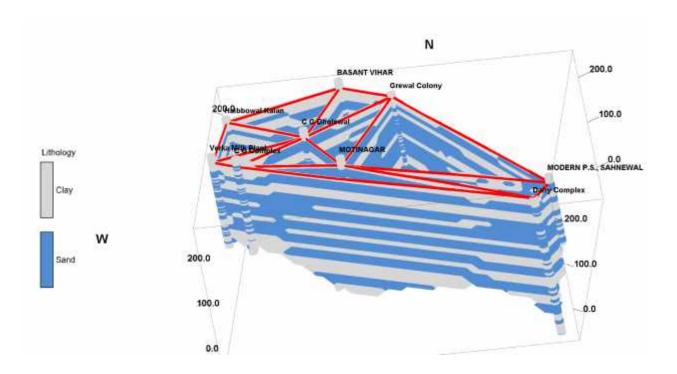
Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Nihal Singh Wala block.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

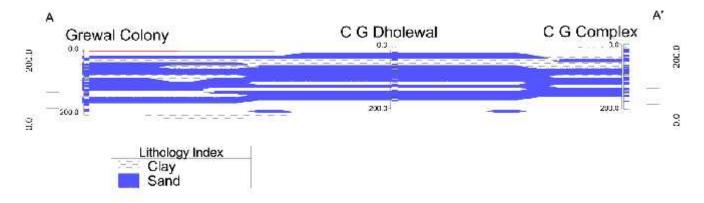

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~21.75-28.80 (mbgl) &Post Monsoon-


 $\sim 21.15 - 27.90 \text{ (mbgl)}$

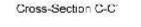

Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m²/day)	Specific Yield %	Storativity
Aquifer-I (24-120m)	ury	Unconfined	61	1120	0.072	4.3*10-3
Aquifer-II (148-195m)		Unconfined to Confined	30	-	NA	-
Aquifer-III (207-258m)	Quaterna Alluvial deposits	Unconfined to Confined	27	-	NA	-

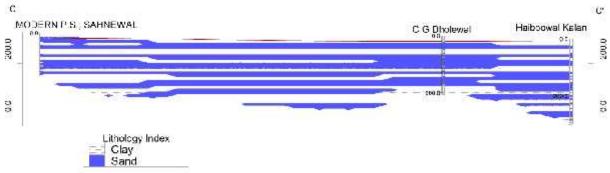
Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.



3D Lithology model






Cross-Section A-A'

Cross-Section B-B'

Combined Aquifer	Dynamic Aquifer	125.03
wise Resource	In-storage Ground	2767.97
available (mcm)	Water Resources	
	Total	2893
Ground Water	Irrigation	264.59
Extraction (in	Domestic & Industrial	45.20
mcm)		
Provision for domestic & Industrial		60.60
requirement upto 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

5. Ground Water Resource, Extraction, Contamination and Other Issues

6. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (24m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 1.512 mcm volume of water

7. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 78.96 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 70 % of the total area needs to change the crop
	from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 94.40 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

7. MACHIWARA BLOCK (365.70 SQ KM)

Salient Information

Population (2011)	Rural-94057		
	Urban-0		
	Total-94057		
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm		
Average Annual Rainfall (Machiwara block	k) 765mm		
Agriculture and Irrigation	Major Crops- Rice, Wheat		
	Other crops-Sugarcane, Potatoes, Pulses,		
	Net Area Sown- 271.11 sq.km		

Total Irrigated Area- 525.79 sq.km

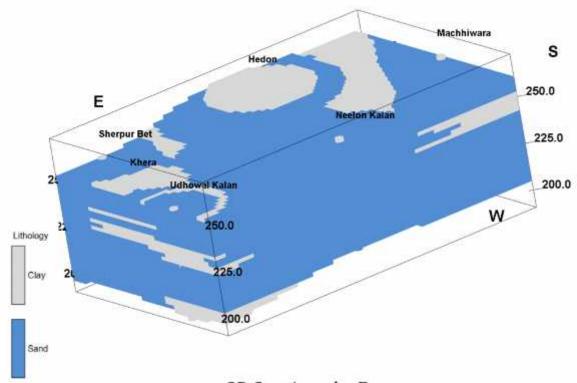
Water Bodies & Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Ludhiana block.

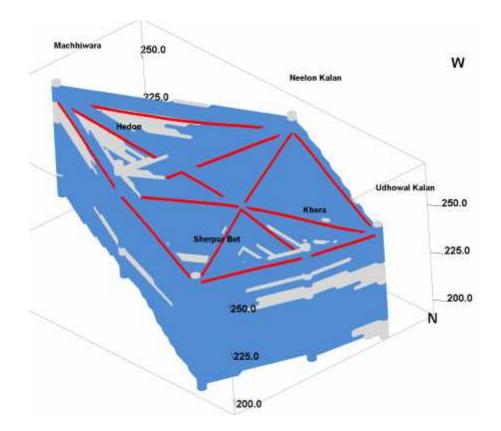
Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~10.33-23.15 (mbgl) &Post Monsoon-~10.37 – 22.30 (mbgl)


Aquifer Disposition: Combined Aquifer System

Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m ² /day)	Specific Yield %	Storativity
Aquifer-I (14-60m)	Qua ter nar	Unconfined	37	1120	0.072	4.3*10-3


Aquifer comprises of freshwater only and the main aquifer material is sand.

The non-aquifer material comprise of clay.

3D Lithology model

3D Stratigraphy Fence

8. Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	264.40
wise Resource	In-storage Ground	989.60
available (mcm)	Water Resources	
	Total	1254
Ground Water	Irrigation	272.84
Extraction (in	Domestic & Industrial	3.55
mcm)		
Provision for domestic & Industrial		4.33
requirement upto 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

9. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (14 m).
Other interventions proposed	Not required

10.Demand Side Interventions

Advanced Irrigation Practices	Not required
Change in cropping pattern	Not required
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

8. PAKHOWAL BLOCK (210.83 SQ KM)

Salient Information

Population (2011)	Rural-105356			
	Urban-3845			
	Total-109201			
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm			
Average Annual Rainfall (Pakhowal block)	612 mm			
Agriculture and Irrigation	Major Crops- Rice, Wheat			
	Other crops-Sugarcane, Potatoes, Pulses,			
	Net Area Sown- 183.97 sq.km			

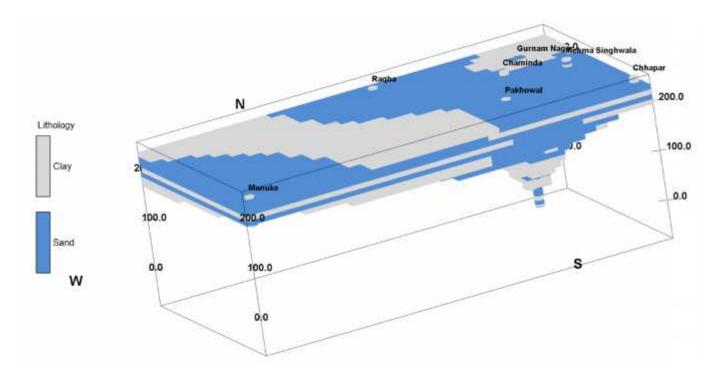
Water Bodies & Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Pakhowal block.

Total Irrigated Area- 362.08 sq.km

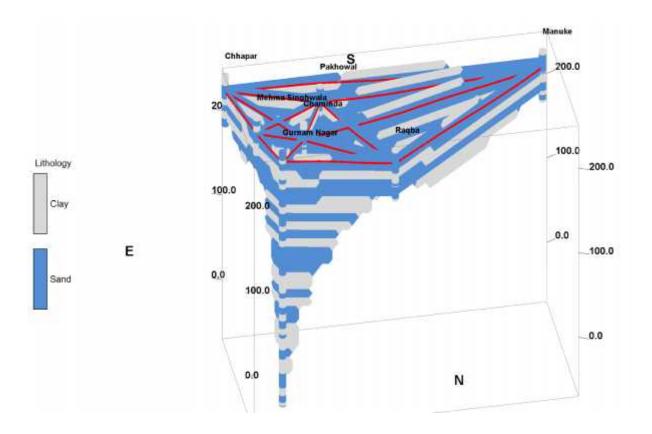
Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

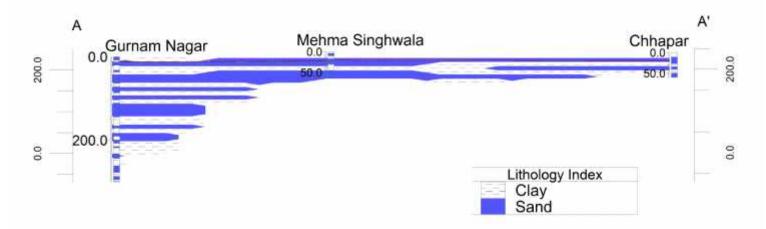

Water level Behavior (2015): Pre Monsoon-~13.33-25.25 (mbgl) &Post Monsoon-

 $\sim 13.05 - 25.68 \text{ (mbgl)}$

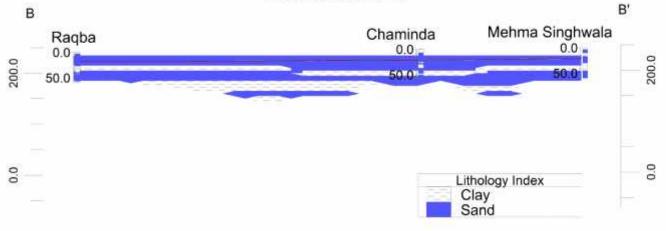
Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m²/day)	Specific Yield %	Storativity
Aquifer-I (16-75m)	y	Unconfined	34	1120	0.072	4.3*10-3
Aquifer-II (120-212m)	ernary ⁄ial sits	Unconfined to Confined	38	-	NA	-
Aquifer-III (225-300m)	Quaterna Alluvial deposits	Unconfined to Confined	25	-	NA	-

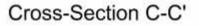

Aquifer comprises of freshwater only and the main aquifer material is sand.

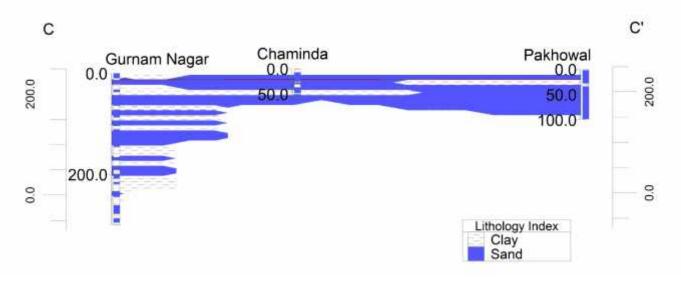
The non-aquifer material comprise of clay.



3D Lithology model


3D Stratigraphy Fence




Cross-Section A-A'

Cross-Section B-B'

Combined Aquifer	Dynamic Aquifer	126.18
wise Resource	In-storage Ground	1537.82
available (mcm)	Water Resources	
	Total	1664
Ground Water	Irrigation	240.34
Extraction (in	Domestic & Industrial	2.68
mcm)		
Provision for domestic & Industrial		
requirement upto 2025 (in mcm)		3.40
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

Ground Water Resource, Extraction, Contamination and Other Issues

11. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (16 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 0.13 mcm volume of water

12.Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 71.73 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 24% of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 53.5 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

9. SAMRALA BLOCK (153.50 SQ KM)

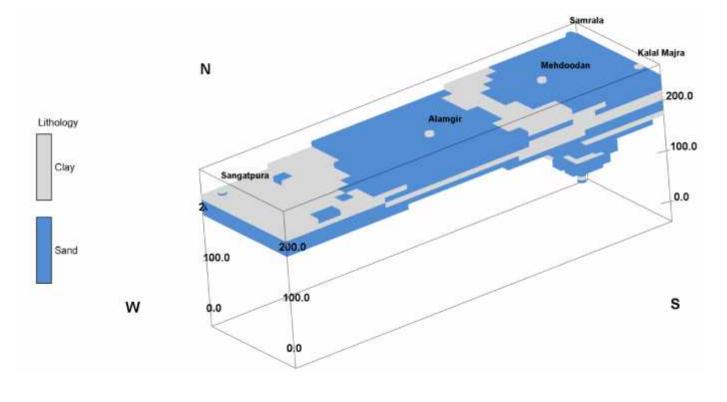
Salient Information

Population (2011)	Rural-84205
	Urban-0
	Total-84205
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Samrala block)	721 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 150.52 sq.km
	Total Irrigated Area- 293.79 sq.km

Water Bodies & Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Samrala block.

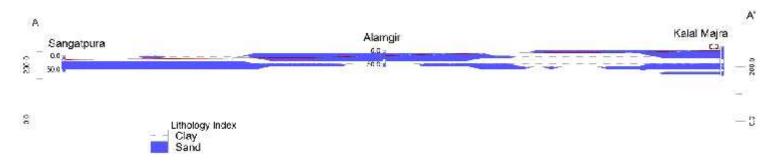
Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

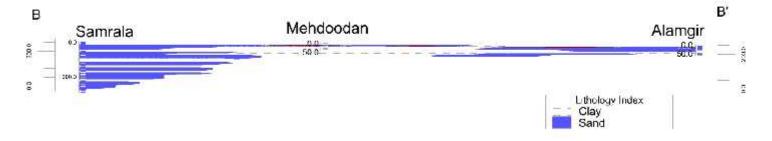

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~8.80-20.62 (mbgl) &Post Monsoon-~10.00 – 20.18 (mbgl)

Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
		-	Zones (m)	(m²/day)		
Aquifer-I		Unconfined	32	1120	0.072	4.3*10-3
(18-72m)	y		52	1120	0.072	4.5 10-5
Aquifer-II	nary I S	Unconfined	48		NA	
(100-169m)	ieri vial sit	to Confined	40	-	INA	-
Aquifer-III	Quaterna Alluvial deposits	Unconfined	71		NLA	
(186-279m)	Q [A]	to Confined	71	-	NA	-

Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.


3D Lithology model


3D Stratigraphy Fence

Cross-Section A-A'

Cross-Section B-B'

Combined Aquifer	Dynamic Aquifer	101.52
wise Resource	In-storage Ground	1688.48
available (mcm)	Water Resources	
	Total	3033.31
Ground Water	Irrigation	198.79
Extraction (in	Domestic & Industrial	5.40
mcm)		
Provision for domestic & Industrial		6.41
requirement upto 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

Ground Water Resource, Extraction, Contamination and Other Issues

13.Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (18m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 0.152 mcm volume of water

14.Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 59.33 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 36 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 49.60 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

10. SIDWANBET BLOCK (401.70 SQ KM)

Salient Information

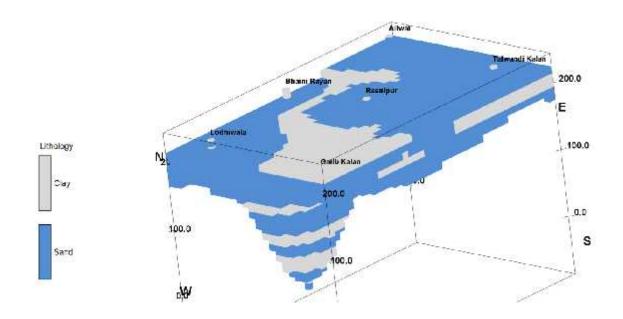
Population (2011)	ural-127065
U	rban-0
Т	otal-127065
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Sidwanbet block)	605 mm

Agriculture and Irrigation

Major Crops- Rice, Wheat Other crops-Sugarcane, Potatoes, Pulses, Net Area Sown- 234.41 sq.km Total Irrigated Area- 610.34 sq.km

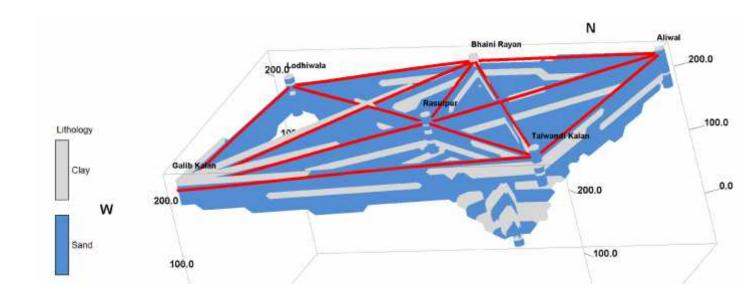
Water Bodies & Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Sidwanbet block.

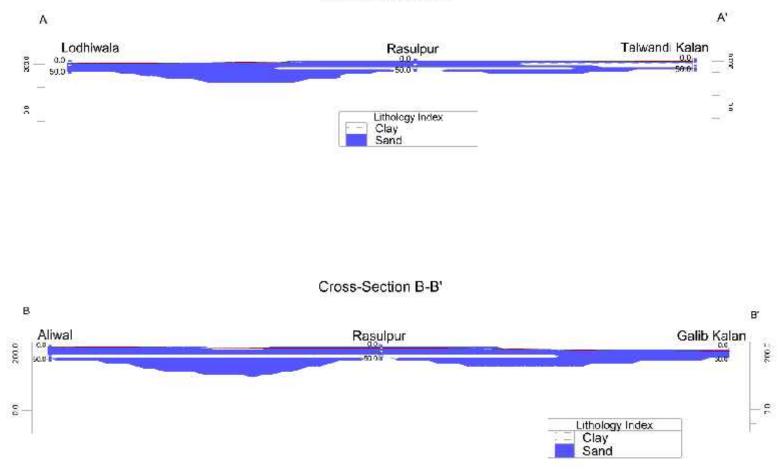

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~8.05-21.79 (mbgl) &Post Monsoon-~7.26 – 23.30 (mbgl)


Aquifer	Geology	Type of Aquifer	Thickness of Granular	Transmis sivity	Specific Yield %	Storativity
		•	Zones (m)	(m²/day)		
Aquifer-I (20-120m)	y	Unconfined	39	1120	0.072	4.3*10-3
Aquifer-II (155-210m)	ernary ⁄ial sits	Unconfined to Confined	42	-	NA	-
Aquifer-III (235-300m)	Quaterna Alluvial deposits	Unconfined to Confined	51	-	NA	-

Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.



3D Lithology model

3D Stratigraphy Fence

Cross-Section A-A'

Combined Aquifer	Dynamic Aquifer	212.05
wise Resource	In-storage Ground	3915.95
available (mcm)	Water Resources	
	Total	4128
Ground Water	Irrigation	350.52
Extraction (in	Domestic & Industrial	4.80
mcm)		
Provision for domestic & Industrial		5.38
requirement upto 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

Ground Water Resource, Extraction, Contamination and Other Issues

15.Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (20 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 0.14 mcm volume of water

16.Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 104.61 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 16 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 50.20 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

11.SUDHAR BLOCK (144.70 SQ KM)

Salient Information

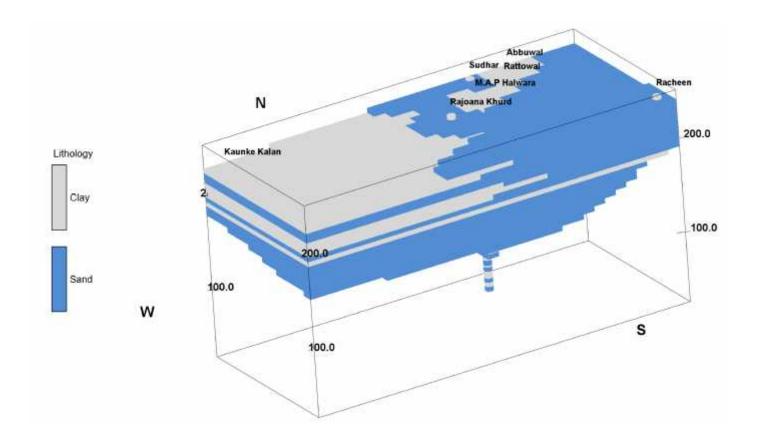
Population (2011)	Rural-53647
	Urban-17439
	Total-71086
Rainfall 2014 (Ludhiana District)	Average annual rainfall -681 mm
Average Annual Rainfall (Sudhar block)	557 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 228.09 sq.km
	Total Irrigated Area- 382.99 sq.km

Water Bodies & Canal Irrigation

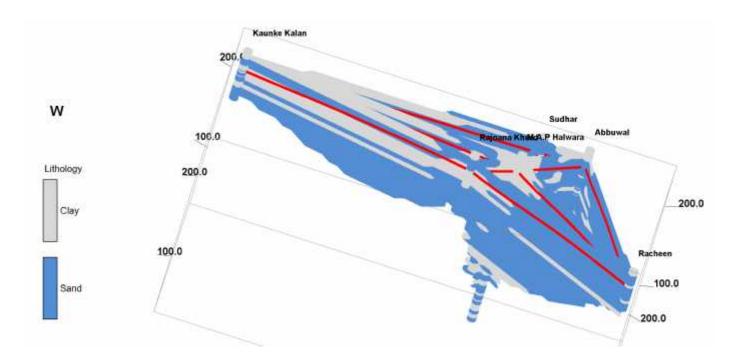
Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Sudhar block.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **Over- Exploited** as per Ground Water Assessment 2013.

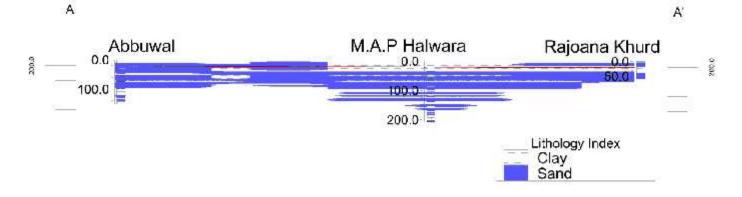
Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewells tapping combined aquifer and separate aquifer could not be assessed separately.

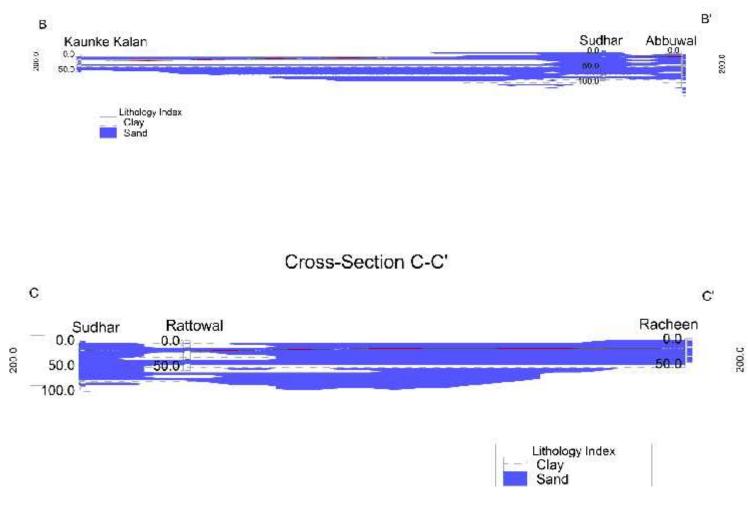

Water level Behavior (2015): Pre Monsoon-~19.50-27.10 (mbgl) &Post Monsoon-

 $\sim 18.85 - 27.35 \text{ (mbgl)}$


Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m ² /day)	Specific Yield %	Storativity
Aquifer-I (18-100m)	y	Unconfined	32	1120	0.072	4.3*10-3
Aquifer-II (115-175m)	ernary ⁄ial sits	Unconfined to Confined	22	-	NA	-
Aquifer-III (190-210m)	Quaterna Alluvial deposits	Unconfined to Confined	9	-	NA	-

Aquifer comprises of freshwater only and the main aquifer material is sand. The non-aquifer material comprise of clay.




3D Stratigraphy Fence

Cross-Section A-A'

Cross-Section B-B'

17.Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	98.37
wise Resource	In-storage Ground	659.63
available (mcm)	Water Resources	
	Total	758
Ground Water	Irrigation	139.74
Extraction (in	Domestic & Industrial	3.42
mcm)		
Provision for domestic & Industrial		4.47
requirement upto 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

18. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (18 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 0.189 mcm volume of water

19.Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 41.70 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 3 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 7.7.00 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	