

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on AQUIFER MAPPING AND MANAGEMENT PLAN

Mansa District, Punjab

उत्तरी पश्चिम क्षेत्र, चंडीगढ़ North Western Region, Chandigarh

CONTENTS

1.0	INTRODUCTION
2.0	CLIMATE & RAINFALL
3.0	GEOMORPHOLOGY & SOILS
4.0	GEOLOGY
5.0 5.1	HYDROGEOLOGY Aquifer System
5.2	Water Level Behavior
5.3	Water Table Elevation
6.0 6.1	AQUIFER GEOMETRY AND CHARACTERISATION Mansa District
6.2	Data Availability
6.3	Data Distribution
6.4	Physical record of Well data
6.5	Sub Surface Disposition
6.6	Aquifer Geometry (3D)
7.0	GROUND WATER RESOURCES
8.0	GROUND WATER QUALITY
9.0	STATUS OF GROUND WATER DEVELOPMENT
10.0	GROUND WATER MANAGEMENT STRATEGY
10.1	Water Conservation and Artificial Recharge
11.0	GROUND WATER RELATED ISSUES & PROBLEMS
11.1	Ground Water Depletion
12.0	RECOMMENDATIONS
13.0	BLOCK WISE DATA OF MANSA DISTRICT

1

Bhikhi

2	Budladha		
3	Jhunir		
4	Surdhulgarh		
5	Mansa		
	i	i	

	Table		
1 .Table Rainfall data2 . Table-2 : Major Aquifer Sy	ystems of Phase-I		
3 .Table Rainfall data			

INTRODUCTION

Mansa District is located in the southern part of Punjab State and covers an area of 2,198 sq. km and lies between North latitude 29°30′ to 30°15′ and East longitude 75°10′ to 75°46′ it lies in topographic sheet 44 N/08,12 and 44 O/01,02,05,06,09 . It is bounded by Sangrur district in the east, Bathinda District in the west, Barnala District in the North and Haryana State in the South. The district has total Population of 7,68,808 as per census 2011, with a population density of 350 persons/km² and the decennial growth of 11.2%. 70.40 % population of Mansa districts lives in rural areas of villages.. This district is a newly created district of Punjab by reorienting parts of adjoining Bathinda District in 1992, and is divided into five development blocks for the purpose of administrative control

Administratively Mansa district falls under Bhathinda Constituency. The district has three sub-divisions viz-Mansa , Budhlada , Sardulgarh and five development blocks viz.- Mansa , Bhikhi , Budhlada , Sardulgarh , Jhunir

1.1 Objective

The primary objective of the Aquifer Mapping Programme is to delineation of lateral and vertical disposition of aquifers and their characterization on 1: 50,000 scale in general or larger scale aquifer map. Quantification of ground water availability and assessment of its quality to formulate aquifer management plans to facilitate sustainable management of ground water resources at appropriate scales through participatory management approach with active involvement of stakeholders.

1.2 Scope of the study

Systematic mapping of an aquifer encompasses a host of activities such as collection and compilation of available information on aquifer systems, demarcation of their extents and their characterization, analysis of data gaps, generation of additional data for filling the identified data gaps and finally, preparation of aquifer maps at the desired scale. This manual attempts to evolve uniform protocols for these activities to facilitate their easy integration for the district as whole.

1.0 CLIMATE & RAINFALL

The climate in the area is typical semi-arid type with distinct wet and dry seasons. The climate of district is classified as sub- tropical steppe, semi-arid and hot which is mainly dry except in rainy months Mansa and characterized by intensely hot summer and cold winter. The normal average annual rainfall of the district is 378.2 mm. The rainfall occurs due to southwest monsoon which sets in the last week of June and withdraws towards end of September. During three months of monsoon season from July to September the district experiences high humidity, cloudiness and good monsoon rainfall. The period from October to November Constitutes post monsoon season. The cold weather season prevails from December to February followed by hot weather season or Pre monsoon season which ends up to the last week of June

Rainfall The normal annual rainfall of Mansa District is 378 mm in 23 days which is unevenly distributed over the district. The southwest monsoon sets in last week of June and withdraws towards end of September and contributes about 83% of annual rainfall. July and August are rainiest month. Rest 17% of the annual rainfall occurs during Non-monsoon months of the year in the district increases from southwest to northeast

Normal Annual Rainfall : 378mm Normal Monsoon Rainfall : 320 mm

Table 2.0: Last five year rainfall data of Mansa District.

Table: 1 Rainfall data

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	ОСТ	NOV	DEC	TOTAL
2010	0	0	0	0	0	13.6	60.6	10	52.3	0	0	5	141.5
2011	1.2	43	0	15.8	8.2	19.5	25.1	30.5	42.2	0	0	0.5	186
2012	1.4	0	0	3	0	3.7	12.4	26.5	42.8	2.7	0	2	94.5
2013	3.2	24.5	5	0	0	81.7	42.3	79	21.8	0	2.5	0	260
2014	16.5	9.6	23.4	19.5	11.4	22.8	20.6	3	50.3	0	2	4.4	183.5

Temperature

Mean Maximum: 48° c (May June) Mean Minimum: 3.5°C(January)

2.0 GEOMORPHOLOGY & SOILS

The monotony of the plain surface is broken by presence of sand ridges which are residuals of sand dunes in different parts of the district. These sand dune features were quite apparent few decades ago but due to development of agriculture many of these were levelled down but the residuals of these dunes break the monotony of the landscape. The sand dune is a ridge of sand which can assume various forms. Here, in this district linear sand ridges can be observed here and there. According to concentration of sand dunes two types of areas may be demarcated i.e.

- (i) Areas with concentration of sand ridges
- (ii)Areas without sand ridges
 - (i) Area with Concentration of Sand Dunes.- Sand dunes are more conspicuous in three parts of the district. The first concentration of these sand dunes is quite apparent in northwestern part of the district. Many of these sand dunes form linear chains, some of the ridges have a length of about 1km, and most of these ridges are about few hundred meters long. The second concentration is between Uddat branch and Boha distributory of Sirhind canal. Unlike the sand dunes of above mentioned concentration, these run in different directions, indicating shifting wind direction. Most of these sand ridges are small in size. The third cluster of sand dunes is discernible in villages north of Ghaggar River passing through southern part of the district.
 - (ii) Areas without Sand Dunes.- In the intervening tracts between above mentioned three micro regions, either there is complete absence of sand dunes or there are scattered sand ridges here and there.

Apart from the presence of sand dunes, which break monotony of landscape, the Ghaggar River also plays a role in forming low-lying flood plain which differs from the upland plain in terms of alluvial morphology.

3.0 GEOLOGY

The area forms a part of the Indo-Gangetic Alluvial plains consisting of quaternary sediments. These sediments can be broadly classified into three subdivisions viz. older alluvium formed by the depositional processes of older stream, newer alluvium formed by the present day streams and aeolian deposits in the form of sand dunes and sheets representing the depositional

feature of the wind action. The older alluvium and the aeolian deposits are extensive whereas the newer alluvium has limited distribution. Although a number of remnants of sand dunes are present throughout the area, these are more conspicuous towards the western and southern parts of the district.

The older alluvium comprises interbanded clay, sandy clay, silt and sand with horizons of kankar. On the surface, it is chiefly represented by massive, pale reddish brown, clayey silt to fine sand with disseminated kankar. A horizon of sticky clay usually a meter or so thick, locally called pandoo, occurs 1.5 to 3.0 metre below the surface. Kankar bearing levels are usually found over this pandoo zone. The pandoo zone not only traps water under artesian conditions but also causes water logging and consequent formation of kankar and sodium and magnesium salts, thereby rendering the soil infertile. At places the grains are cemented together by infiltrating silica and lime to form impervious layers. The older alluvium soils are rich in alkalies and lime although there proportion is variable. The newer alluvium is lighter in colour and more fresh looking as compared to older alluvium and aeolian deposits. It occupies a very small stretch along the course of the Ghaggar River. From the Aeolian deposits it can be distinguished by its bluish

grey colour. Aeolian deposits are widespread in the western and southern parts of the area and thin out in the eastern side. These are common in the following areas:-

- 1. Piplian-Mandhali-Bareh Malsinghwala
- 2. Budhlada-Kulana-Rangrial-Daska
- 3. Boha-Sher Khanwala-Kishangarh

In Kotli Khurd and Piplian-Malsinghwala area the highest dune is 8 m high with average being 3-5 m.

5.0 HYDROGEOLOGY

The area falls under the Indo-Gangetic alluvial plains. The geological formations met within the district comprise Alluvium of Quaternary age. It consists of alternating beds of sand, silt and clay. In the southwestern part, the alluvium is overlain by thin layer unstratified loam.

The pre monsoon depth to water level ranges from 5.56 to 15.01 m bgl, and post monsoon value ranges from 2.18 to 10.33 m bgl .In most of the area depth to water level occurs within 10m b.g.l. The area experiences a rise in water level from pre-monsoon to post monsoon periods due to recharge from rainfall occurred in the area. The long-term water level fluctuation over the past shows the rising trend in the northeastern part up to 5m.

The rise in water table is due to less withdrawal of ground water owing to its bad quality and / or the intensive irrigation by network of canals. The decline in water level at few places may be attributed to withdrawal of ground water due to its fresh and marginal quality and/ or non-availability of canal water to meet the requirement for agricultural purposes. The water table elevation ranges from 186 m to 209 m above mean sea level.

The general ground water flow is from northeast to southwest direction. The yield of the shallow tube wells varies from 870 to 3000 liters per minute for 4 to 13 m drawdown. The long term trend of water level ranges in the district from -0.14 to -0.82 m/yr.

5.1 AQUIFER SYSTEMS

Based on the hydrogeological characteristics, the area has been classified in to 1 principal aquifer system i.e. alluvium and 2 major aquifers i.e. younger alluvium, older alluvium.

Table-2: Major Aquifer Systems of Phase-I

S. No	Principal Aquifers Code	Principal Aquifers	Area	Major Aquifer Code	Major Aquifer	Area	% of Total Area	Age (As per Geological Time Scale)
1	AL	Alluvium	2189	AL03	Older Alluvium	1861.5	85.04	Quaternary
2				AL06	Valley fills	327.5	14.96	Quaternary
Total			2189			2189	100	

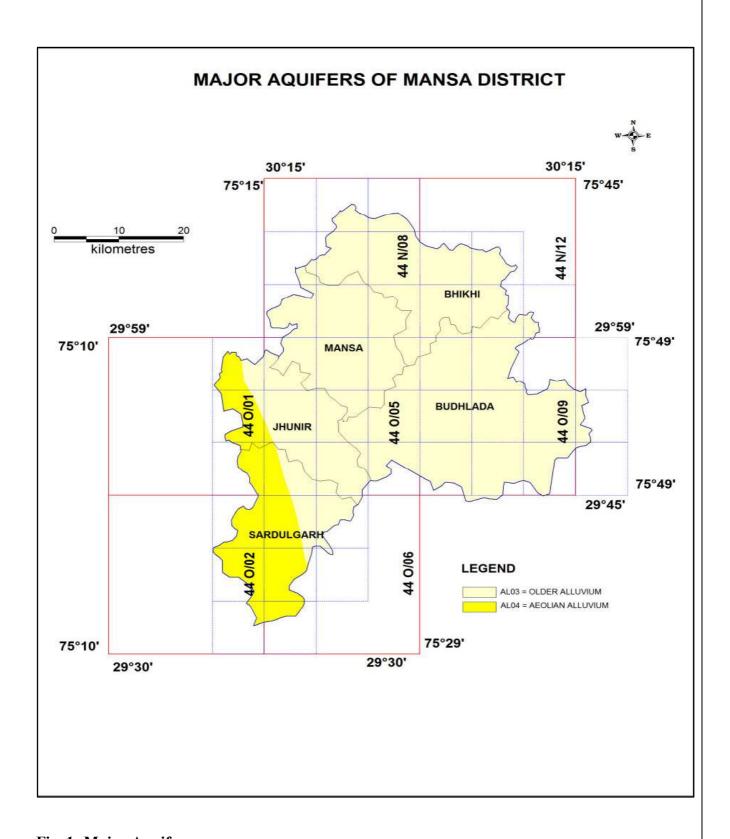


Fig. 1; Major Aquifers

5.2 Water Level Behavior

The depth to water in most of the area lies between 10-22 m bgl. within 10 m bgl. Depth to water level in the area varies from 4.5 to 26.5m bgl in pre-monsoon period, 2015 (Fig. 2). In north-eastern part, it is shallow to medium and becomes deeper towards south-western parts. In major part of the area, water level rest between 10-22 m.

5.3 Water Table Elevation

The highest elevation is in the middle part in the mansa and budhlada and the lowest in the southeastern part and reflects the topographic gradients. The hydraulic gradient in the middle part is steep, nature of formations in northeastern part and occurrence of finer sediments in southeastern part. The flow of ground water, in general, is from NE to SE direction

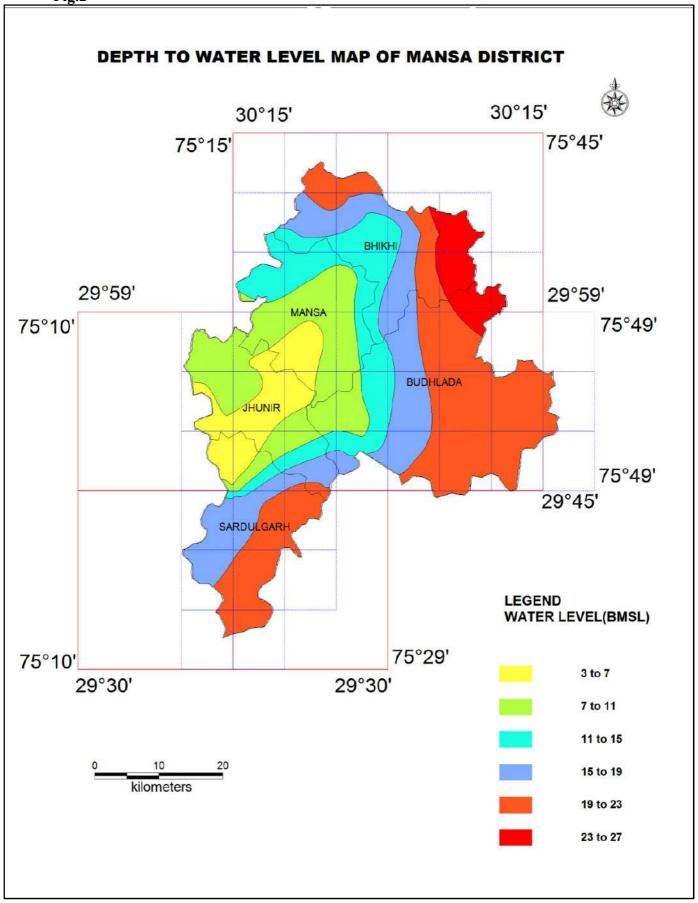
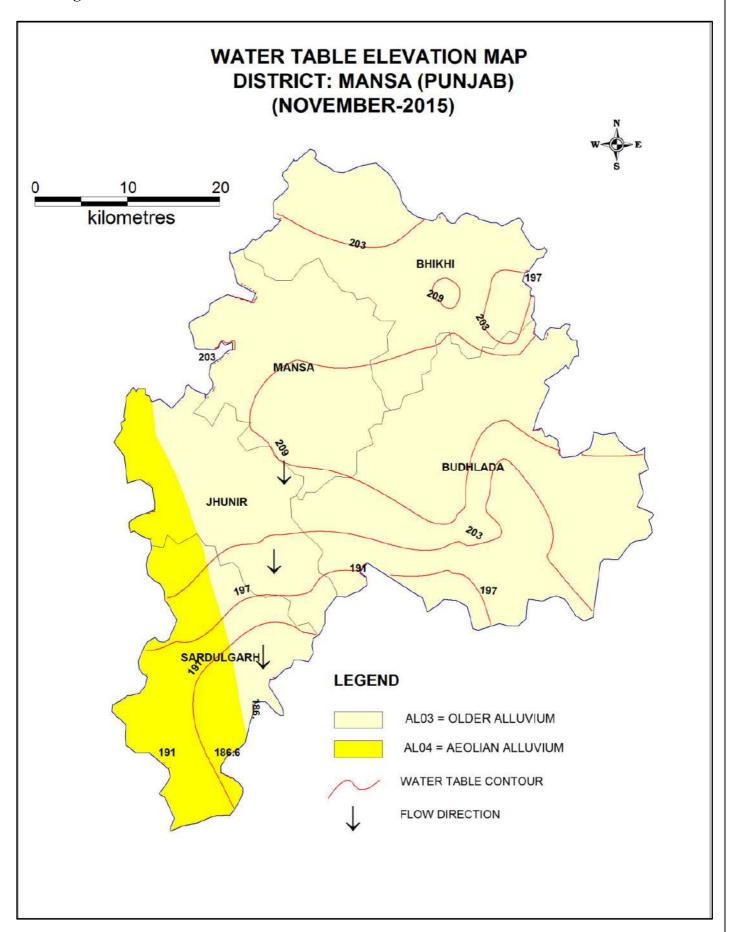



Fig.3

6.0 AQUIFER GEOMETRY AND CHARACTERISATION

The widespread Ground Water exploration carried out to bring a broad picture of the aquifer disposition, which is of great importance for Ground Water development. The nature of sediments, their lateral and vertical extent and aquifer systems have been studied with the help of litho logs of the boreholes drilled. A large number of sub surface geological cross section and fence diagrams have been drawn and correlated and their characterizations are described district wise along with figures

6.1 Mansa District

The nature and character of sediments, their lateral and vertical extent and aquifer system have been studied with the help of sub-surface geological sections prepared from the litho logs of the boreholes drilled in the Mansa district. The quality of ground water in the district is fresh and saline.

Central Ground Water Board has carried out 16 ground water exploratory wells up to a depth range from 248 m to 300 m , WAPCOS carried out 1 well exploration with depth range of 256.1 m and PRIVATE 12 well drilled upto a depth range of 201m to 300 m. . The depth of exploratory boreholes Transmissivity of the aquifers ranged from m^2/day 43 to 1590 m^2/day . The hydraulic conductivity values varied from 3 to 42 m/day.

6.2 Data Availability

The Lithologs of Exploratory Well/ Observation well/ Piezometer/ productive wells of CGWB, WAPCOS, and private wells have been collected and those supported electrical logs have been validate for aquifer map preparation. The details are shown

Table 6.2a Data Availability of Exploration Wells of Mansa district

Data Availability

Sl.No	Source of data	Depth Range (m)					
		< 100	100-200	200-300			
1	CGWB	0	0	17			
2	WAPCOS	0	0	1			
3	PRIVATE	0	0	12			
	Total	0	0	30			

6.3 Data Distribution

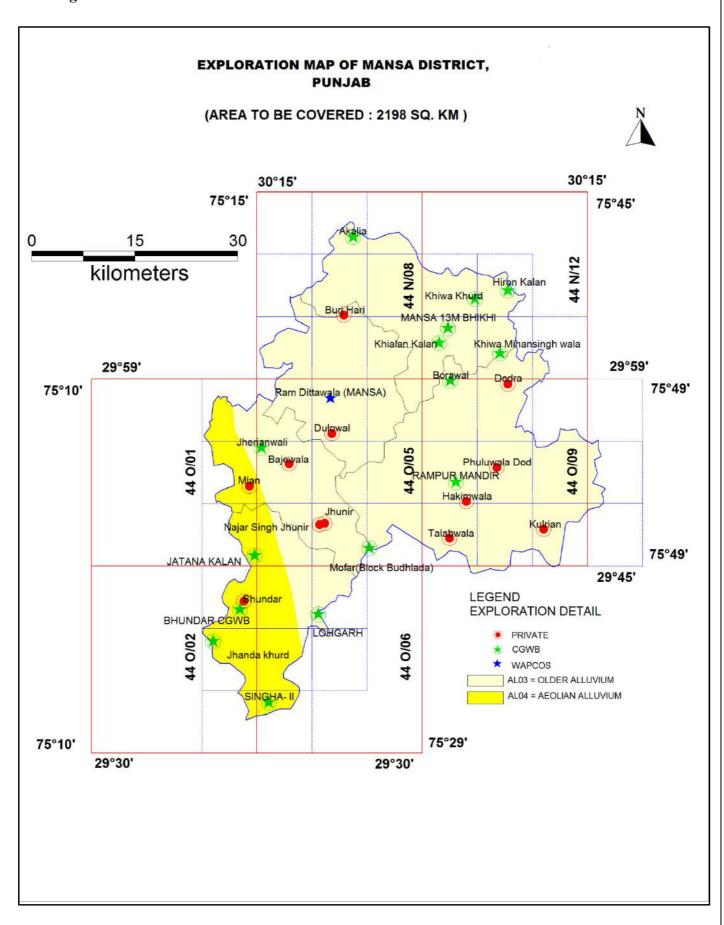
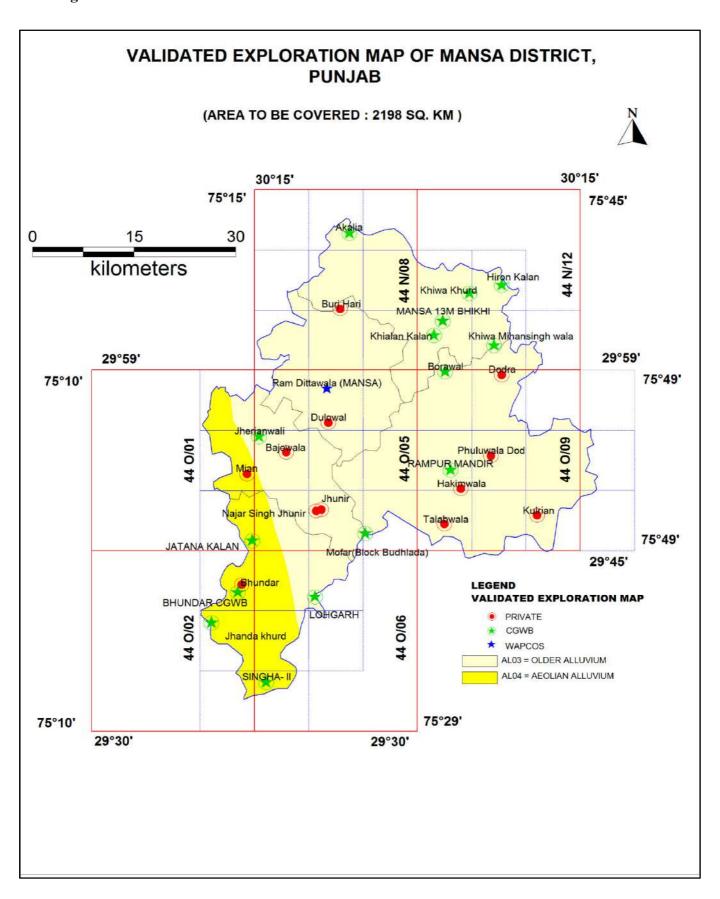

The actual data of all the wells in the area are plotted on the map of 1:50000 scale with 5 min by 5 min grid (9 x 9km) and is shown in Fig: 6.2a. The exploration data shows that majority of tube wells falls in the Ist Aquifer and IInd Aquifer. After data validation, only selected the deepest well in each quadrant is plotted on the map of 1.50000 scale with 5 min by 5 min grid (9 x 9km) and is shown in Fig: 6.2b. The grids/ formations devoid of SH/PZ/EW are identified as data gaps and these are to be filled by data generation.

Table 6.2b Data Availability of Exploration Wells of Mansa district


Data Availability

Sl.No	Source of data	Depth Range (m)					
		< 100	100-200	200-300			
1	CGWB	0	0	16			
2	WAPCOS	0	0	1			
3	PRIVATE	0	0	12			
	Total	0	0	30			

Fig 6.2a

Fig 6.2b

6.4 Physical record of Well data:

Physical record of existing data of CGWB, State Govt. and Private agency with supported electrical logs is shown below;

Table3

Bore	Longitud e	Latitude	Elevation	Collar Elevation	Depth	Water level	Block	Deptt
Bajewala	75.298	29.885	213	237	300	6.5	JHUNIR	Prvt
Bhundar	75.225	29.699	209	209	300	16.2	Sardulgarh	Prvt
Burj Hari	75.381	30.084	221	221	285	14.5	Mansa	Prvt
Dodra	75.629	29.992	226	226	251	11.49	Budhlada	Prvt
Dulowal	75.363	29.926	218	218	300	8.6	Mansa	Prvt
Hakimwala	75.566	29.835	221	279	285.9	16.9	Budhlada	Prvt
Jhunir	75.350	29.805	214	214	210.4	12.2	JHUNIR	Prvt
Kulrian	75.683	29.798	222	222	292.68	18.8	Budhlada	Prvt
Mian	75.238	29.855	215	215	275	6.3	JHUNIR	Prvt
Najar Singh Jhunir	75.344	29.804	213	213	201	11.8	JHUNIR	Prvt
Phuluwala Dod	75.612	29.880	221	221	228.65	19.7	Budhlada	Prvt
Ram Dittawala (MANSA)	75.360	29.974	218	219	256.1	8.4	Mansa	WAPCOS
Talabwala	75.541	29.786	213	213	300	16.7	Budhlada	Prvt
Akalia	75.395	30.189	222	222	248	23.9	ВНІКНІ	CGWB
BHUNDAR CGWB	75.223	29.696	209	209	300	16.1	Sardulgarh	CGWB
Borawal	75.542	29.997	222	232	252	8.68	Budhlada	CGWB
DODHRA	75.395	30.189	221	221	251	23.9	Mansa	CGWB
Hiron Kalan	75.629	30.117	229	229	250.2	25.1	ВНІКНІ	CGWB
JATANA KALAN	75.246	29.763	211	211	300	8.8	Sardulgarh	CGWB
Jhanda khurd	75.183	29.649	208	208	300	15	Sardulgarh	CGWB
Jherianwali	75.256	29.907	215	215	300	6.9	Jhunir	CGWB
Khialan Kalan	75.525	30.047	221	221	258.85	17.6	ВНІКНІ	CGWB
Khiwa Khurd	75.579	30.106	226	226	300	22.3	ВНІКНІ	CGWB

Khiwa Mihansingh wala	75.617	30.033	224	224	250.25	23.6	ВНІКНІ	CGWB
LOHGARH	75.342	29.685	212	212	300	25.4	Sardulgarh	CGWB
MANSA 13M BHIKHI	75.538	30.067	229	229	275	18.7	ВНІКНІ	CGWB
Mofar(Block Budhlada)	75.419	29.769	215	215	300	20.1	Budladha	CGWB
RAMPUR MANDIR	75.550	29.861	225	225	282	14.7	Budladha	CGWB
SINGHA- II	75.267	29.567	209	209	250.5	17.1	Sardulgarh	CGWB
Bajewala	75.298	29.885	213	237	300	6.5	JHUNIR	Prvt

6.6 Sub Surface Disposition:

The study of lithologs of boreholes drilled in Mansa district indicates that the alluvium is fine to coarse sand clays. In the alluvial areas,. The top aquifer, which is unconfined occurs down and generally consists of fine to medium sand whereas the, Lower aquifers consist of mostly medium to coarse sand.

Lithological map (2D) of Mansa District along with cross Sections A-A' (N-S), B-B' (S-NE), Section C-C' (NE-SW), Section D-D' (W-SE), Section E-E' (S-N), Section F-F' (NE-SW). Clay lenses which pinch out at short distances occur within the sand zones. The aquifers are thick and extensive in nature. The granular material consists of fine to coarse sand. The lithological maps (2D) and Lithological section line map with sections (2D) of Mansa districts (Fig. 6.5a and Fig 6.5.b, c, d)

Fig.6.5a:Lithological map (2D) of Mansa District

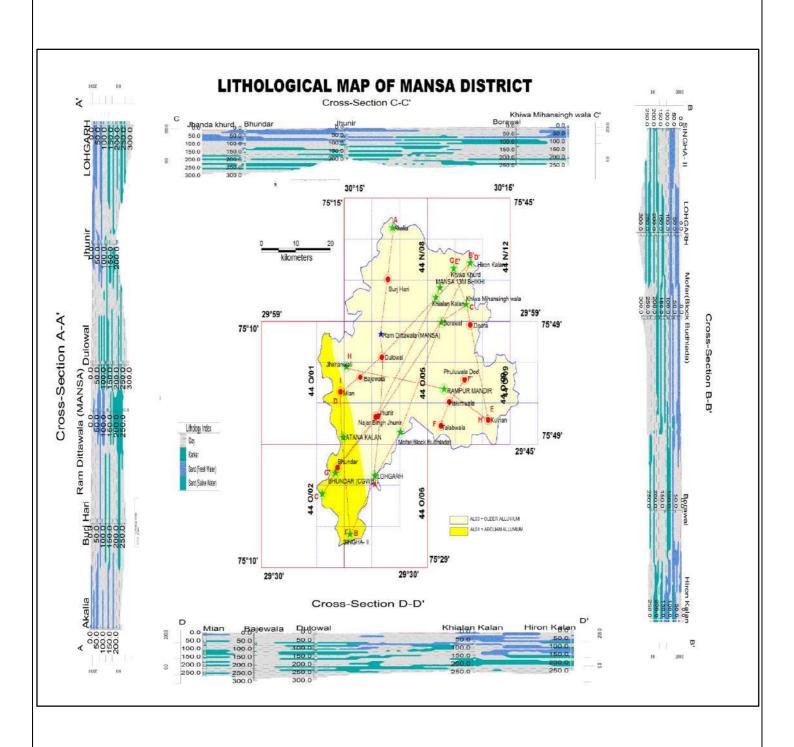
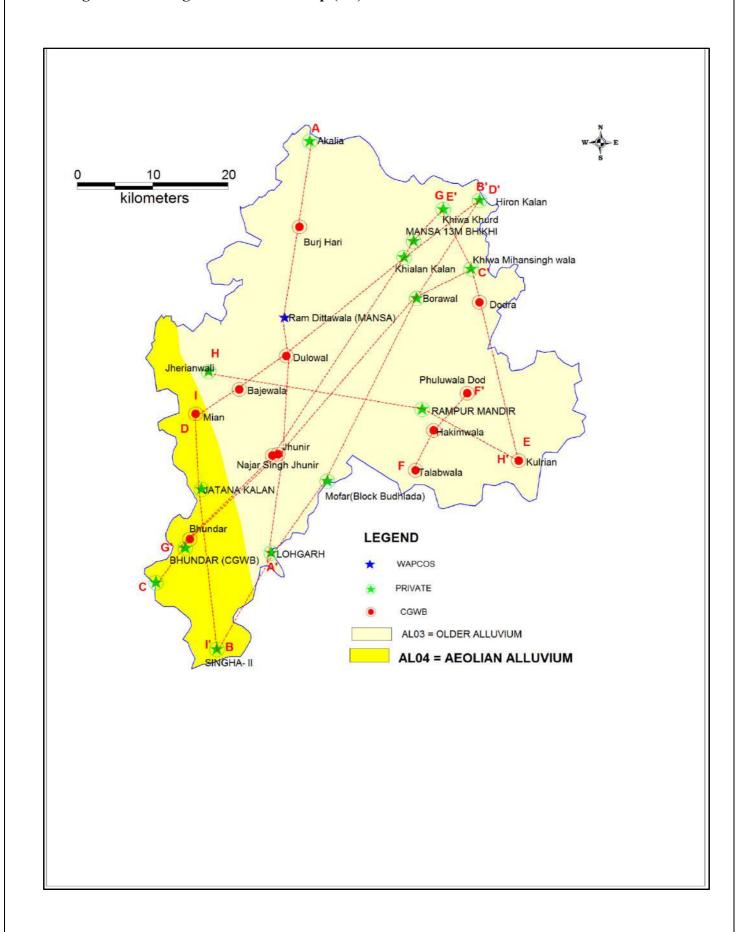
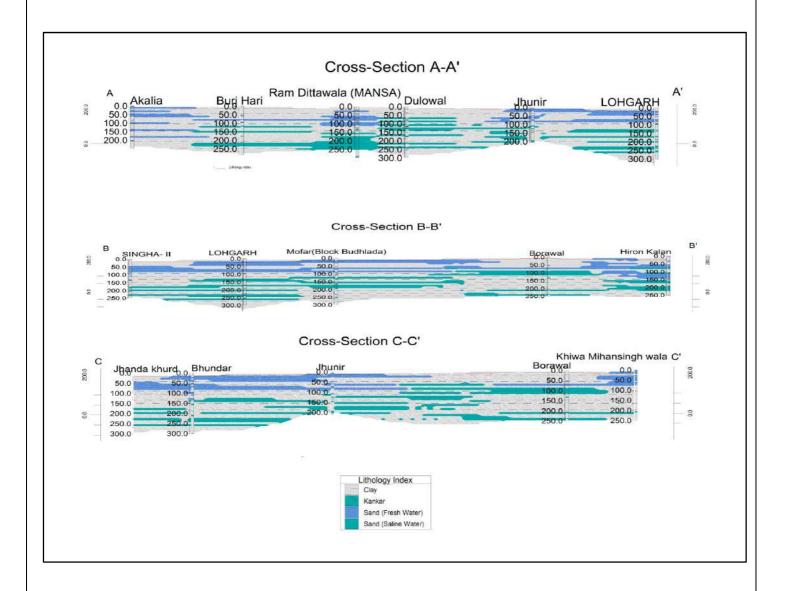




Fig.6.5b: Lithological section line map (2D) of Mansa district

Fig.6.5c: Lithological section along Akalia-Lohgrh (A-A'), Singha-II-Hiron kalan (B-B'), Jhanda khud-Khiwa mihansingh wala(C-C').

Cross sections from Mian to Hiron Kalan (D-D'), Kulrian to Khiwa Khurd (E-E'), Talabwala to Phuluwal Dod (F-F').

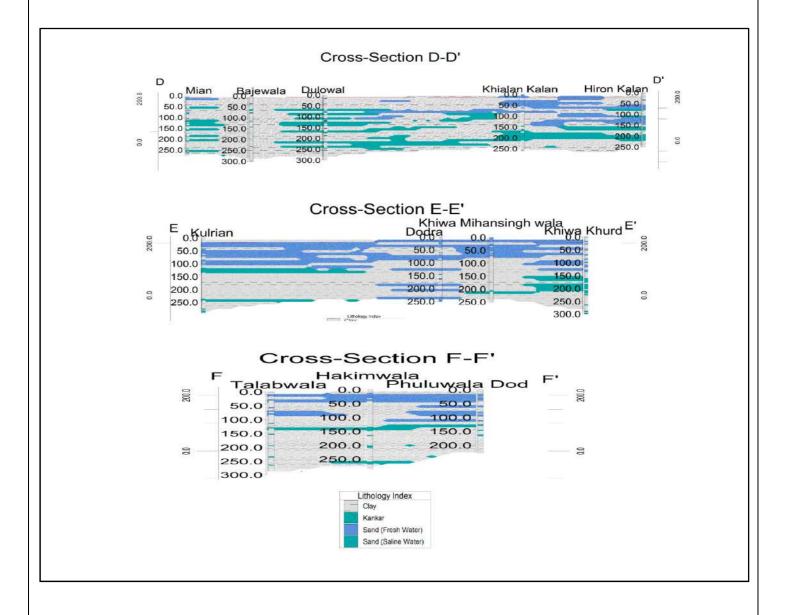
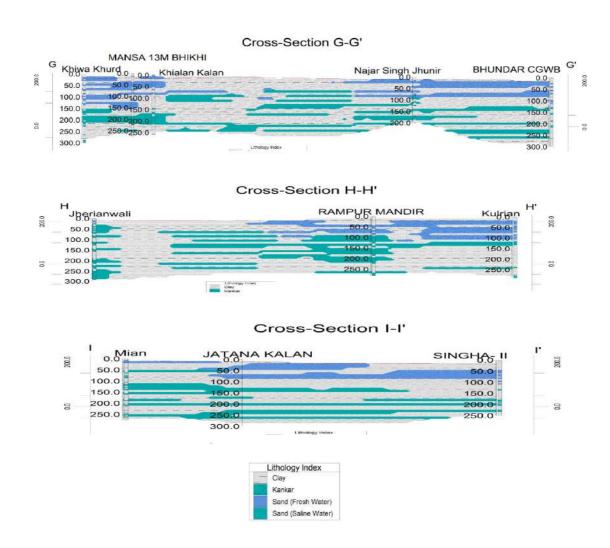



Fig.6.5d: Lithological section along Khiwa khurd – BHUNDAR CGWB (G-G') and Jherianwali - kulrian (H-H') Mian – Singha II (I-I').

6.7 Aquifer Geometry (3D)

To know the broad picture of the disposition, inter-relationship of granular zones, nature, geometry and extension of aquifers in the Mansa district, three-dimensional fence diagram (Fig 6.6a & 6.6b) have prepared by synthesizing the various sub-surface sections.

In Mansa district, aquifer group embodies a number of granular zones alternating with thick or thin clay lenses. The major clay zones intervening aquifer groups pinch out against the aquifer groups at a few places and within these clay zones the sand beds also occur. The marker horizons are traced all over the area by connecting their tops and bottoms.

Table-4: Aquifer Grouping in MANSA District

Aquifer Group	Ra	inge	Thickness		
	From	То	Min	Max	
Aquifer I	6.3	131	55	122	
Aquifer II	83	252	14	113	
Aquifer III	207	300	39.9	78	

BLOCK DIAGRAM OF AQUIFER:

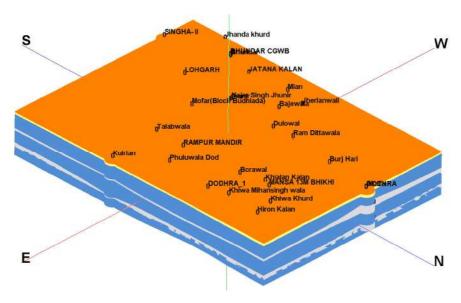


Fig.6.6a: Lithology Disposition (3D) of Mansa District

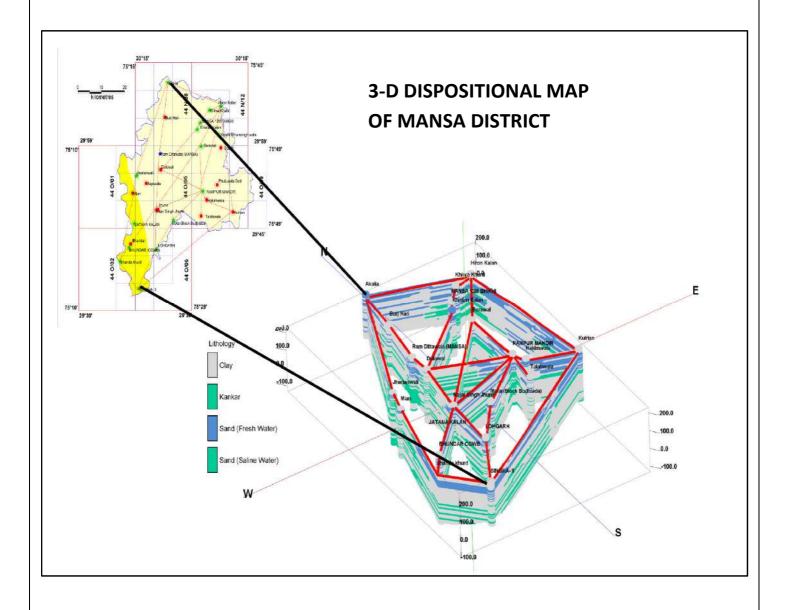
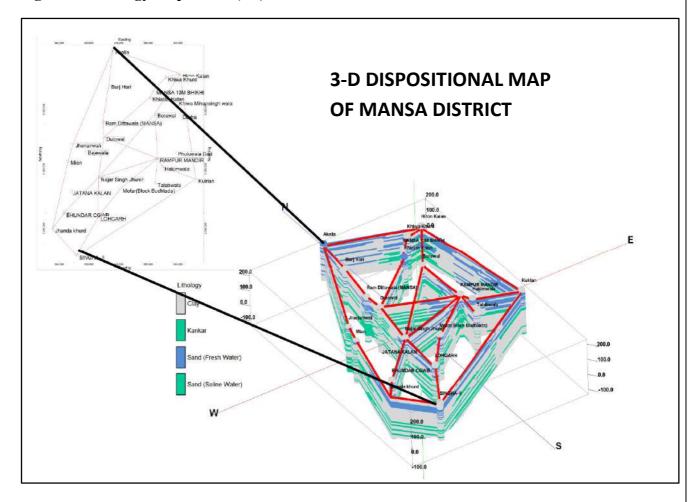



Fig.6.6b: Lithology Disposition (3D) of Mansa District

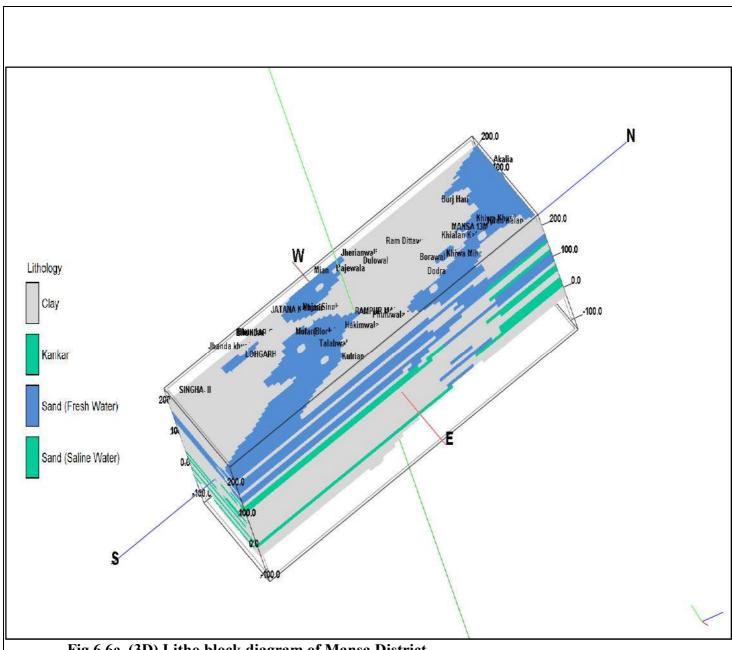


Fig.6.6c. (3D) Litho block diagram of Mansa District

8.0 Ground Water Resources

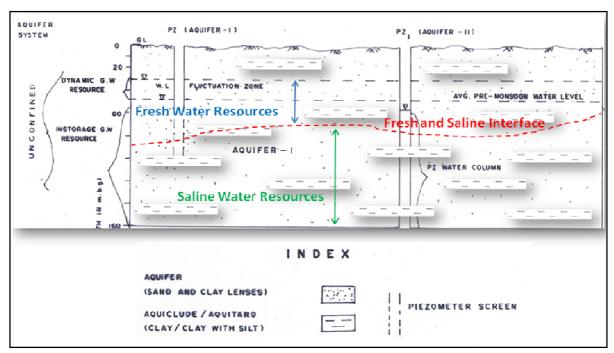
The Ground Water resources of the district were done for each individual block as per GEC 1997 norms. Perusal of the estimates reveals overall stage of ground water development in the district is of the order of 138 %. The ground water development in all the blocks of the district have been categorized as over exploited. Bhikhi ,Budhlada ,Jhunir ,Mansa ,Sardulgarh blocks are showing 125%,175%,98%,125% and 182 % respectively. Net ground water availability of the district is 1034.20 mcm.

The blocks wise resource potential in the district has been assessed are given below.

GROUND WATER RESOURCE AND DEVELOPMENT POTENTIAL OF MANSA DISTRICT, PUNJAB AS ON 31^{ST} MARCH, 2013 in mcm

Block	Net annual	Existing	Existing	Provision	Net annual	Stage of	Catagory
	ground	gross	gross	for	ground	ground	
	water	ground	ground	domestic &	water	water	
	availability	water	water	industrial	availability	development	
	(mcm)	draft for	draft for	requirement	for future	(%)	
		irrigation	all uses	supply to	irrigation		
		(mcm)	(mcm)	2025	development		
				(mcm)	(mcm)		
ВНІКНІ	214.55	268.76	268.76	0	-54.21	125	OVER- EXPLOITED
BUDHLADA	274.00			_	100 -1		OVER-
	251.92	441.38	441.43	5	-189.51	175	EXPLOITED
JHUNIR	242.60	200.26	200.26	0	4.25	00	OVER-
	212.60	208.26	208.26	0	4.35	98	EXPLOITED
MANSA	236.67	295.79	295.84	5	-59.16	125	OVER-
	230.07	295.79	295.64	5	-39.16	125	EXPLOITED
SARDULGARH	118.46	217.78	217.82	4	-99.36	184	OVER-
	110.40	217.70	217.02	4	-33.30	104	EXPLOITED
TOTAL	1024.20	1421.07	1422.10	12	207.01	120	OVER-
	1034.20	1431.97	1432.10	13	-397.91	138	EXPLOITED

b. In-storage Ground Water Resources


As per revised guidelines recommended by the Central Level Expert Group on groundwater resources assessment, the resources are separately considered as dynamic and instorage unconfined. In case of alluvial area, the in-storage resources of unconfined aquifer have been computed based on specific yield of the aquifer as detailed below.

In-storage		Thickness of the aquifer				
Ground Water		(granular/productive zone)				A I I I
resources (Unconfined Aquifer)	=	below the zone of water level fluctuation down to the bottom layer of unconfined aquifer	Х	Sp. Yield of the aquifer	X	Areal extent of the aquifer

The dynamic and in-storage ground water resources estimations have been calculated for single aquifer group upto 300m of each block of Ferozpur and Fazilka districts. In-storage ground water resources are estimated for fresh water and saline water resources based on the geophysical interpretations of depth of fresh and saline water interface for each block wise. The fresh and saline calculations are made based on the assumptions on aquifer is considered as unconfined aquifer so that the specific yield concept is used for resources estimations (Fig.19). The detailed resources estimations are calculated in detailed table for fresh and saline water resources in the below Table-7, 8& 9.

Total Availability of Ground Water Resources = Dynamic Resources + In-storage Resources.

Fig.19: Conceptual figure to understand the fresh and saline water resources in the aquifer up to 300 m for Resource Estimation in Unconfined and Confined Aquifer System.

(The clay lenses are more dominant in the aquifer and sometimes huge thickness of clay deposits are also observed in the lithologs)

Table-5. Block Wise In-Storage Ground Water Resources of Fresh Water Aquifers Upto Average Depth

GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OF DISTRICT MANSA, PUNJAB STATE (2013)

Type of Ground Water Assessment Unit (Block): MANSA Blocks

Sr. No	Name of Assessment Unit	Type of rock formati on	Areal ext Total Geographi cal Area	ent (ha) Assessme nt Area Fresh Water	Averag e Pre- monso on Water Level (m bgl)	Depth to bottom of Aquifer based on Geophysic al Interface & Boreloggi ng (m bgl)	Total Thickne ss of formati on below Pre- monsoo n Water Level (m) (9-8)	Total thickne ss of the Granula r Zones up to the depth of Fresh Water Zones (m)	Thickness of the unsaturat ed granular Zones up to Pre- monsoon WL (m)	Thickne ss of the saturat ed granula r Zones up to the depth of Fresh water aquifer below (m) (11- 12)	Averag e Specifi c Yield	In- Storage Ground Water Resourc es up to the depth of Fresh Water Aquifer (mcm) 5*13*14
1	2	3	4	5	8	9	10	11	12	13	14	15
	MANSA											
	BHIKHI		221.2									
1		Alluvium		221.2	8.65	55	46.35	30	2	28	0.072	446
	BUDHLADA		67540									
2	*****	Alluvium	50220	675.4	11.45	117	105.55	54	7	47	0.072	2286
	JHUNIR		58330	502.2	0.75	204	404.25	440	2	116	0.072	4072
3	MANICA	Alluvium	25010	583.3	9.75	204	194.25	118	2	116	0.072	4872
4	MANSA	Alluvium	35810	358.1	11.2	163	151.8	75	8	67	0.072	1727
_		AlluviuiII		330.1	11.2	103	131.0	,,,	U	07	0.072	1/2/

Aquifer Mapping and Management Plan of Mansa District, Punjab State

5	SARDULGA RH	Alluvium	23290	232.9	9.56	155	145.44	99	6	93	0.072	1559
Dist. Total(ham)		185191	1851.912								10890	
Dist. Total(MCM)											109	

Table6. Block Wise In-Storage Ground Water Resources of Saline Aquifers Upto 300 m Depth

GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OF DISTRICT Mansa, PUNJAB STATE (2013)

Type of Ground Water Assessment Unit (Block): Mansa BLOCKS

Sr.	Name of	Type of rock formation	Areal extent (ha)		Depth to	Depth to	Total	Total	Average	In-
No.	Assessment Unit		Total Geographical Area	Assessment Area Saline Water	bottom of Fresh Water Aquifer based on Geophysical Interface & Borelogging (m bgl)	bottom of Saline Water Aquifer based on Geophysical Interface & Borelogging (m bgl)	thickness of the Saline Water up to the max depth (m)	thickness of the Granular Zones up to the depth ofSaline Water Zones (m)	Specific Yield	Storage Ground Water Resources up to the depth of Saline Water Aquifer (ham) 5*13*14
1	2	3	4	5	9	10	11	12	14	15
	Fazilka									
1	ВНІКНІ	Alluvium	221.2	221.2	18	300	282	135	0.072	2150
2	BUDHLADA	Alluvium	675.4	675.4	117	250	133	57	0.072	2772
3	JHUNIR	Alluvium	583.3	583.3	204	275	71	39	0.072	1638
4	MANSA	Alluvium	358.1	358.1	163	250	87	47	0.072	1212
5	SARDULGARH	Alluvium	232.9	232.9	155	300	145	73	0.072	1224
Dist. Total(ham)			2071	2071						8996
Dist. Total(MCM)										90

Table-8. Block Wise Total Availability of Fresh and Saline Groundwater Resources upto 300 m Depth and Volume of unsaturated granular zone in the District

GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OF DISTRICT MANSA, PUNJAB STATE (2013) Type of Ground Water Assessment Unit (Block): MANSA Blocks Type of Average Thickness of Specific Volume of Sr. Name of Areal extent (ha) **Assessment** rock Prethe Yield Unsaturated No. Total **Assessment Area** Zone up to Unit formation monsoon unsaturated Geographical **Total Area Fresh** Pre-Water granular Area and Saline monsoon WL Level Zones up to (m bgl) Pre-monsoon (ham) 5*7*8 WL (m) 2 5 6 7 1 3 4 8 9 **MANSA** BHIKHI 221 8.65 1 Alluvium 221.2 3 0.12 80 BUDHLADA Alluvium 675.4 675 11.45 7 0.12 567 JHUNIR 583 Alluvium 583.3 9.75 0.12 3 2 140 MANSA 358 358.1 8 0.12 Alluvium 11.2 344 SARDULGARH 233 Alluvium 232.9 9.56 6 0.12 168 Dist. Total(ham) 2071 2071 1298

Dist. Total(MCM)

13

	AVAILABILITY OF TOTAL FRESH GROUNDWATER RESOURCES IN MANSA DISTRICT							
Sl.No	BLOCK	Dynamic	In-storage	Groundwater	Groundwater	Total Ava	ilabilty of	
		Groundwater	Groundwater	Resources upto	Resources upto	Fresh Gro	undwater	
		Resources (2013)	Resources UPTO	FRESH WATER	Saline	Reso	urces	
		AQUIFER-I	FRESHWATER	[(3)+(4)] (HAM)		[(5)+(6)+(7)]	
						ham	mcm	
1	2	3	4	5	6	7	8	
1	ВНІКНІ	221	446	667	2150	2817	28	
2	BUDHLADA	675	2286	2961	2772	5733	57	
3	JHUNIR	583	4872	5455	1638	7093	71	
4	MANSA	358	1727	2086	1212	3297	33	
5	SARDULGARH	233	1559	1792	1224	3017	30	
Dist.Total (ham)		2071	10890	12961	8996	21957	220	
Dist.To	otal (mcm)	21	109	130				

ham : hectare metre mcm: million cubic metre

9.0 Ground Water Quality

The ground water is alkaline in nature with pH values ranging from 7.77 to 8.78 with a mean pH value of 8.31. It is moderately to highly saline with EC values ranging from S/cm at 25°C at Fattamaluka with mean EC value of μ S/cm at Budhlada to 5350 μ 635 S/cm. The ground water is soft to hard in nature as total hardness values show a μ 2576 wide variation and ranges from 4mg/l at Bhikhi to 612mg/l with a mean value of 315mg/l. The calcium and magnesium concentrations are mostly less than 100mg/l. Calcium ranges from 12mg/l at Doda to 82mg/l at Jhand Khurd whereas magnesium content varies from 2.4mg/l at Bhikhi to 119mg/l at Burj Bhalaike with mean of 37 and 54 mg/l respectively. Sodium varies widely from 23mg/l at Budhlada to 1028mg/l at Fattamaluka with an average of 435mg/l. The concentration of potassium ranges from 2.0mg/l at Doda to 375mg/l at Burj Bhalaike with an average of 98mg/l. In majority of the samples, the potassium content is less than 100mg/l.

Among anions, carbonate ranges from nil at several places to 120mg/l at Junir with an average value of 33mg/l. The bicarbonate concentration ranges from 302mg/l at Ralla to 905mg/l at Kot Dhamru with an average of 557mg/l. The chloride concentration in ground water varies from 30mg/l at Budhlada to 728mg/l at Burj Bhalaike and its average concentration is 250mg/l. The sulphate content in the district ranges from trace at Ralla to 4 433mg/l at Fattamaluka with an average concentration of 459mg/l. The nitrate values are less than 45mg/l in nearly 60% wells and it ranges from 1mg/l at Doda to 161mg/l at Mansa with a mean value of 59mg/l. High concentration of nitrate in ground water may be due to indiscriminate use of fertilizers. The fluoride content of the district ranges from 0.16mg/l at Budhlada to 4.58mg/l at Junir. However, exceptionally high concentration of 7.84mg/l of fluoride is recorded at Bhikhi II. It is within the permissible limit of 1.5mg/l in about 70% samples.

Among cations, Na is the predominant cation in most water samples. Among anions, bicarbonate is dominant in 23.5% samples and in the remaining samples; none of the anion is dominant. Ground water is by and large Na-mixed anion type. Ground water at Fatta Maluka is of Na-SO4 type.

On comparison with drinking water standards given by BIS, it is found that most of the waters have concentration of one or more chemical constituents above the permissible limit and thus are not suitable for drinking use. Only 40% ground waters are potable as these have all the chemical constituents within the permissible levels. The constituents that make them unfit for drinking are mainly NO3, F, EC, or combination of these.

Plot in the USSL staff (1954) diagram indicates that waters fall under C2S1, C3S2, C3S3, C3S4, C4S1, C4S3 and C4S4 classes of irrigation rating. Such waters may create medium to very high salinity hazards and low to very high sodium hazards when used for irrigation under customary irrigation. However, these waters can be used for irrigating salt tolerant crops grown on soils with adequate permeability, only after addition of appropriate amounts of gypsum. Classification based on RSC indicates that only 35% of waters are safe and the remaining 65% of the waters are unsafe for irrigation use. Arsenic contamination in ground water in district Mansa, Punjab, has been found in samples from 6 location, more than the prescribed limits by BIS, IS:10500

10.0 Status of Ground Water Development

Ground water development in the district has taken place through private and public agencies for both irrigation and drinking purposes and can be summarized as below: -

The water supply to the district is mainly based on ground water through tube wells. The water supply to the villagers is met out with the installation of hand pumps as spot & convenient source of water. The canal irrigation covers a very sound area of 90 sq. km out of 3060 sq. km area of total irrigated area. The remaining area is irrigated by ground water. The shallow tube wells in the district ranges from 25-90 m deep. Tapping the aquifer from 10-90m, With a discharge of 200 to 1500 lpm. Most of the shallow tube wells are either run by diesel engines or electric motors. 117352 no. of motors are working in district. The ground water discharge is between 600 1000 lpm in south east and is between 1300-300 lpm in the northern part of the district.

11.0 GROUND WATER MANAGEMENT STRATEGY

11.1 Water Conservation and Artificial Recharge

Rain water harvesting and Artificial recharge to ground water should be adopted to check further decline in ground water level since natural recharge to aquifer system is not adequate to support heavy withdrawal of ground water. Farmers have adopted paddy cultivation due to its profitability and incentives from Govt. Paddy requires much more water in comparison to other crops Thus, a change in cropping pattern is required. Paddy sown in the month of May requires more evapo transpiration than paddy sown after 15thJune. Thus, a lot of water can be saved by timely plantation of paddy. Effective irrigation practices like sprinkler, laser leveling should be adopted.

12.0 GROUND WATER RELATED ISSUES & PROBLEMS

12.1 Ground Water Depletion

Water levels are declining in the district. Rate of decline is quite considerable in all parts of the district. In general ground water is potable in the district. Awareness was provided to local administration and other agencies by providing guidance for various recharge projects in the district.

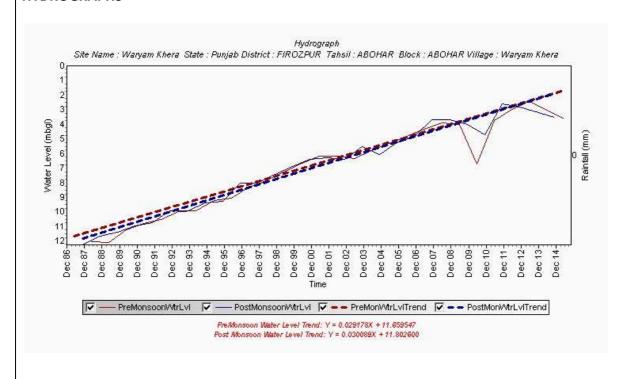
13.0 RECOMMENDATIONS

- 1. In order to arrest the declining trend of water levels in North western and south western part of the district, the rooftop rainwater harvesting technology should be adopted and recharge structures may also be constructed.
- 2. Planned use of surface and ground water (conjunctive use) has to be done to overcome both over exploitation and Ground water quality problems.
- 3. The construction of roof top rainwater harvesting structures should be made mandatory in building which will help in checking the falling water level trend in the towns of water level depleting areas.
- 4. The abandoned dug wells may be cleaned and should be used for recharging the ground water by utilizing the surface monsoon runoff.
- 5. The crops consuming less quantity of water may be grown in place of crops requiring more water in the Over exploited blocks.

1.0 Salient Information

Name of the Block and Area (in Km²)	Bhikhi 221.20 sq km
District/ State	Mansa, Punjab
Population	Urban Population: 0 Rural Population: 19032 Total population: 19032
Rainfall	Normal Monsoon: 338 mm Non-monsoon Rainfall : 303.29 mm Annual Average Rainfall: 389 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation Cropping intensity: 101% Number and types of abstraction structures: 8439 nos., Tubewells
Ground Water Resource Availability and Extraction	Ground Water Resources Availability Ground Water Resources are available in 2672 mcm (fresh and saline water resources) up to the depth of 300 m. The fresh water resources are estimated up to the depth of 106 m based on geophysical interpretations interface. The potential granular zones are available for fresh water is 81 m. Saline water resources are estimated based on the available depth of wells existed up to 300 m and the granular zones are counted after the depth of 152 m and available zones are 76 m. Block is categorized as Over-Exploited as aper Dynamic Groundwater Resources, 2013 assessment. Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.
Existing and future water demands	Existing Gross Ground water Draft as on 2013 Irrigation: 268.76 mcm Domestic and industrial water supply: 0.0010 mcm Future water demands Irrigation development potential: -54.21 mcm Domestic and industrial water supply up to 2025 years: 0.001 mcm

Water level behavior Aquifer wise water level


Aquifer-I

Pre Monsoon: 2.35 – 16.00 m bgl Post Monsoon: 1.55 – 18.20 m bgl Mean (10 yrs): 1.58 – (-)0.86 m/yr

Trends

Pre Monsoon: 0.16 – (-)0.26 m/yr Post Monsoon: 0.15 – (-)0.29 m/yr

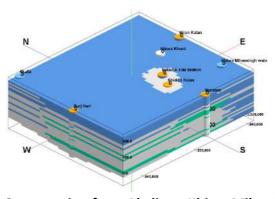
HYDROGRAPHS

2. 0 Aquifer Disposition

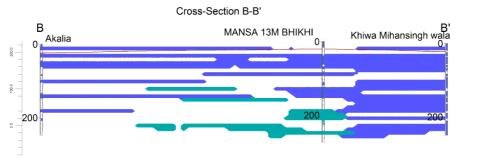
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium

Aquifer wise Characteristics

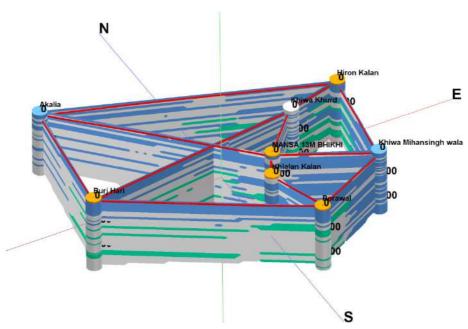
Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	106	547		12	
	ary	d to					
	Alluvial	confined					
	deposits						

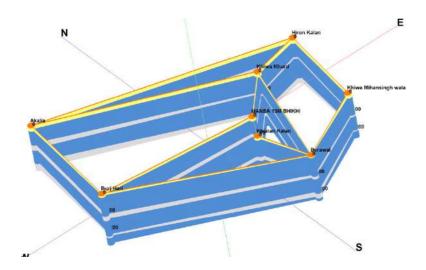

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Data Availability


Sl.No	Source of data	Depth Range (m)			
		< 100	100-200	200-300	
1	CGWB	0	0	6	
2	WAPCOS	0	0	0	
3	PRIVATE	0	0	0	
	Total	0	0	6	

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.


3-D Lithological model of Bhikhi Block


Lithological Cross section from Akalia to Khiwa MihanSingh wala

3-D Lithological Fence Diagram

3-D Aquifer Disposition Fence Diagram

Ground water Resource, Extraction, Contamination and other issues

12				
	Dynamic Fresh water	214.54 mcm		
Resources upto the	resources			
depth of 300m	In-storage Fresh water	6.67 mcm		
	resources			
	In-storage Saline water	21.5 mcm		
	resources			
	Total	544 mcm		
Ground Water Extraction (as per 2013)	Irrigation	268.76 mcm		
Extraction (as per 2015)	Domestic & Industrial	0.001mcm		
Future Demand for do	mestic & Industrial sector	-54.21 mcm		
(2025) (as per 2013)				
Stage of Groundwater De	evelopment	125 %		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH		
		near to 9.06. Ground water in the area is fresh to marginal saline. EC value of the		
		ground water show wide up to 1480 μS/cm		
		at 25 ⁰ C.		
Ground water Contamina	ation Issues	Nitrate (mg/l): Kotra (104)		
Other issues		Water level decline has been observed in		
		major parts of the block due to in		
		discriminate development of ground water		
		resources.		

4. Ground water Resource enhancement

<u>Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)</u>

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 8 mcm

Source water requirement/availability for recharge: Rain, Canal, Irrigation return flow

Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 0.0

mcm volume of water

5. Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 221.2 sq km

Volume of Water expected to be conserved under advanced irrigation practices such as lining of

underground pipelines (Kutcha channel) etc.: 17.72 mcm

Change in cropping pattern Not Required

Proposed change in cropping pattern: Not Required

Area coverage: Not Required

Anticipated volume of water to be saved: Not Required

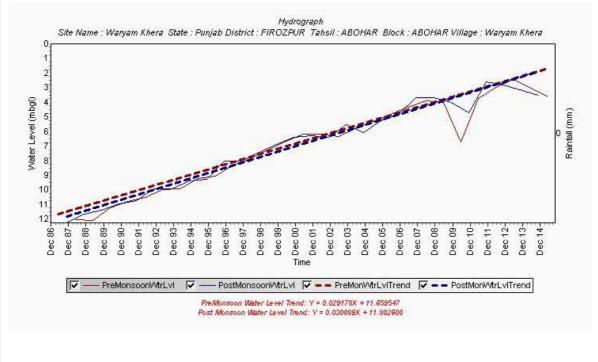
Alternate Water sources

Groundwater/surface water sources: Tanks, Ponds

Location, details and availability from such sources outside the area: --

<u>Regulation and Control:</u> Punjab Subsoil Act, 2009 for delay in paddy plantation should continue in the area.

Other interventions proposed, if any


Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

2.0 Salient Information

Name of the Block and	Bhudhlada 675.4 sq km
Area	-
(in Km ²)	
District/ State	Mansa, Punjab

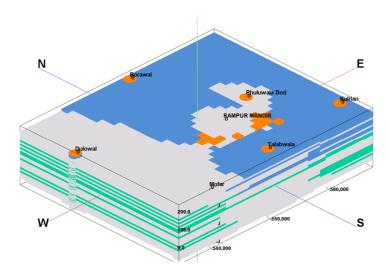
Population	Urban Population: 0
	Rural Population: 40218 Total population: 40218
Rainfall	Normal Monsoon: 328 mm
- Naman	Non-monsoon Rainfall : 93 mm
	Annual Average Rainfall: 429 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation
	Cropping intensity: 101%
	Number and types of abstraction structures: 40218 nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 2672 mcm (fresh and
	saline water resources) up to the depth of 300 m. The fresh water
	resources are estimated up to the depth of 106 m based on
	geophysical interpretations interface. The potential granular zones
	are available for fresh water is 81 m. Saline water resources are
	estimated based on the available depth of wells existed up to 300 m
	and the granular zones are counted after the depth of 152 m and
	available zones are 76 m. Block is categorized as Over-Exploited as
	aper Dynamic Groundwater Resources, 2013 assessment.
	Ground water Resources Extraction
	Deeper aquifers are marginal to highly saline and it is not suitable
	for irrigation purpose so that all users are tapping at shallow
	aquifers only. State government drinking water supply wells tapped
	at shallow aquifers and canal supply water are used for domestic
	and Irrigation purpose. So that the ground water draft could not be
	addressed for deeper aquifer.
Existing and future water	Existing Gross Ground water Draft as on 2013
demands	Irrigation: 441.38 mcm
	Domestic and industrial water supply: 0.045 mcm
	<u>Future water demands</u>
	Irrigation development potential: -189 mcm
	Domestic and industrial water supply up to 2025 years : 0.045 mcm
Water level behavior	Aquifer wise water level
	Aquifer-I
	Pre Monsoon: 2.35 – 16.00 m bgl
	Post Monsoon: 1.55 – 18.20 m bgl
	Mean (10 yrs) : 1.58 – (-)0.86 m/yr
	Trends
	Pre Monsoon: 0.16 – (-)0.26 m/yr
	Post Monsoon: 0.15 – (-)0.29 m/yr

2. 0 Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium

Aquifer wise Characteristics

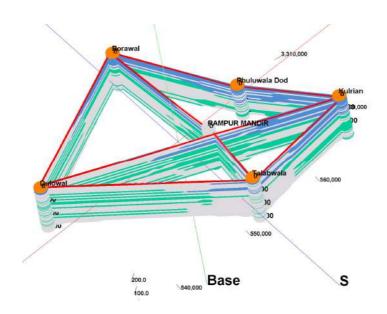
Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	106	547		12	
	ary	d to					
	Alluvial	confined					
	deposits						


The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Data Availability


Sl.No	Source of data	Depth Range (m)			
		< 100	100-200	200-300	
1	CGWB	0	0	2	
2	WAPCOS	0	0	0	
3	PRIVATE	0	0	5	
	Total	0	0	7	

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.


3-D Lithological model of Bhudhlada Block

Lithological Cross section from Borawal to Talabwala

3-D Lithological Fence Diagram

3-D Aquifer Disposition Fence Diagram Borawal RAMPUR MANDIR Talabwata To 560,000 200.0 S

Ground water Resource, Extraction, Contamination and other issues

		1		
Ground Water	Dynamic Fresh water	214.54 mcm		
Resources upto the	resources			
depth of 300m	In-storage Fresh water	6.67 mcm		
	resources			
	In-storage Saline water	21.5 mcm		
	resources			
	Total	544 mcm		
Ground Water Extraction (as per 2013)	Irrigation	441.38 mcm		
Extraction (as per 2015)	Domestic & Industrial	0.0mcm		
Future Demand for do	mestic & Industrial sector	4.34 mcm		
(2025) (as per 2013)				
Stage of Groundwater De	evelopment	175%		
	·			
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH		
Greenwar Quarry or great	a water	near to 9.09. Ground water in the area is		
		fresh to marginal saline. EC value of the		
		ground water show wide up to 680 μ S/cm at 25 $^{\circ}$ C.		
		at 25 C.		
Constant Control	aki a a tanana	Althorte (or of II) Makes (4.0.4)		
Ground water Contamina	ation issues	Nitrate (mg/l): Kotra (104)		
Other issues		Water level decline has been observed in		
		major parts of the block due to in		
		discriminate development of ground water		

resources.

4. Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 8 mcm

Source water requirement/availability for recharge: Rain, Canal, Irrigation return flow

Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 0.0

mcm volume of water

5. Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 675.4 sq km

Volume of Water expected to be conserved under advanced irrigation practices such as lining of

underground pipelines (Kutcha channel) etc.: 17.72 mcm

Change in cropping pattern Not Required

Proposed change in cropping pattern: Not Required

Area coverage: Not Required

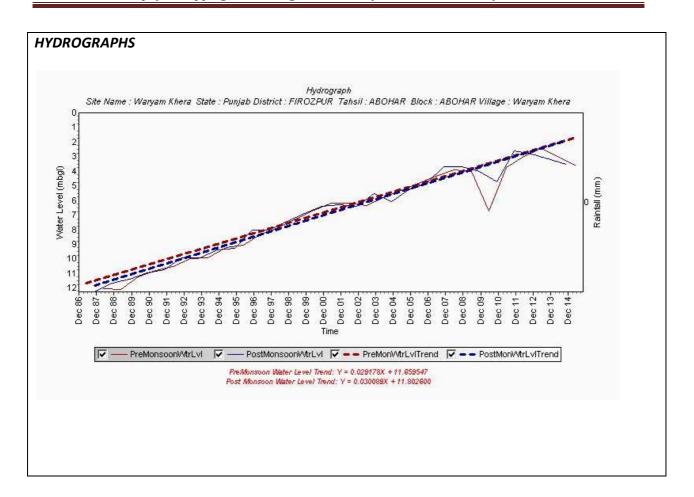
Anticipated volume of water to be saved: Not Required

Alternate Water sources

Groundwater/surface water sources: Tanks, Ponds

Location, details and availability from such sources outside the area: --

<u>Regulation and Control</u>: Punjab Subsoil Act, 2009 for delay in paddy plantation should continue in the area.


Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

3.0 Salient Information

Name of the Block an Area (in Km²)	JHUNIR 308.45 sq km
District/ State	Mansa, Punjab
Population	Urban Population: 0

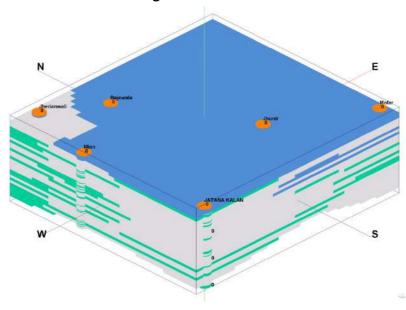
	Rural Population: 18104
	Total population: 18104
Rainfall	Normal Monsoon: 318 mm
Kaiman	
	Non-monsoon Rainfall : 63 mm
	Annual Average Rainfall: 387 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation
	Cropping intensity: 101%
	Number and types of abstraction structures: 40218 nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 2672 mcm (fresh and
	saline water resources) up to the depth of 300 m. The fresh water
	resources are estimated up to the depth of 106 m based on
	geophysical interpretations interface. The potential granular zones
	are available for fresh water is 81 m. Saline water resources are
	estimated based on the available depth of wells existed up to 300 m
	and the granular zones are counted after the depth of 152 m and
	available zones are 76 m. Block is categorized as Over-Exploited as
	aper Dynamic Groundwater Resources, 2013 assessment.
	Ground water Resources Extraction
	Deeper aquifers are marginal to highly saline and it is not suitable
	for irrigation purpose so that all users are tapping at shallow
	aquifers only. State government drinking water supply wells tapped
	at shallow aquifers and canal supply water are used for domestic
	and Irrigation purpose. So that the ground water draft could not be
	addressed for deeper aquifer.
Existing and future water	Existing Gross Ground water Draft as on 2013
demands	Irrigation: 208.26 mcm
	Domestic and industrial water supply: 0.0 mcm
	<u>Future water demands</u>
	Irrigation development potential: 4.34 mcm
	Domestic and industrial water supply up to 2025 years : 0.0 mcm
Water level behavior	Aquifer wise water level
	Aquifer-I
	Pre Monsoon: 2.35 – 16.00 m bgl
	Post Monsoon: 1.55 – 18.20 m bgl
	Mean (10 yrs) : 1.58 – (-)0.86 m/yr
	Trends
	Pre Monsoon: 0.16 – (-)0.26 m/yr
	Post Monsoon: 0.15 – (-)0.29 m/yr
	1 03t 14101130011. 0.13 - (-70.23 111) yi

2. 0 Aquifer Disposition

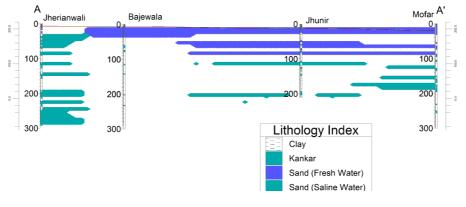
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Aeolian Alluvium,Older Alluvium

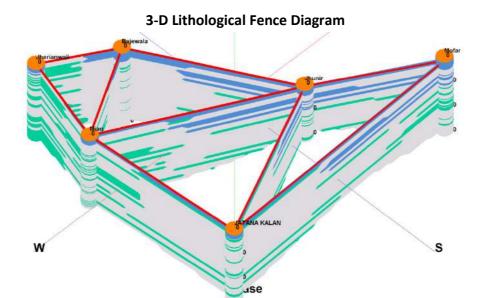
Aquifer wise Characteristics

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	106	547		12	
	ary	d to					
	Alluvial	confined					
	deposits						


The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	100-200	200-300	>300		
CGWB			1			
WRED/PSTC/WSS						
PRIVATE						
TOTAL					1	


The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.

3-D Lithological model of Jhunir Block

Lithological Cross section from Jherianwali to Mofar

3-D Aquifer Disposition Fence Diagram

Ground water Resource, Extraction, Contamination and other issues

Ground	Water	Dynamic Fresh water	214.54 mcm
Resources	upto the	resources	
depth of 300	m	In-storage Fresh water	6.67 mcm
		resources	

	In-storage Saline water resources	21.5 mcm
	Total	544 mcm
Ground Water Extraction (as per 2013)	Irrigation	208.26 mcm
Extraction (as per 2015)	Domestic & Industrial	0.0mcm
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	0.0 mcm
Stage of Groundwater Do	evelopment	98%
Chemical Quality of ground water		Ground water in the area is alkaline and pH range 8.63 to 9.51. Ground water in the area is fresh to marginal saline. EC value of the ground water show wide range from 240 to 5235 μ S/cm at 25 0 C.
Ground water Contamina	ation Issues	Nitrate (mg/l): Fatta maluka(104), burj Bhaike(299) Fluride (mg/l):mofar(2.32)
Other issues		Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

4. Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 8 mcm

Source water requirement/availability for recharge: Rain, Canal, Irrigation return flow

Types and number of structures: --

Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will save 0.0 mcm volume of water*

5. Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 675.4 sq km

Volume of Water expected to be conserved under advanced irrigation practices such as lining of

underground pipelines (Kutcha channel) etc.: 17.72 mcm

Change in cropping pattern Not Required

Proposed change in cropping pattern: Not Required

Area coverage: Not Required

Anticipated volume of water to be saved: Not Required

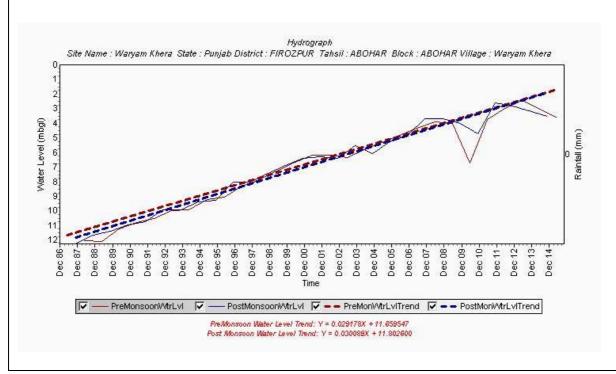
Alternate Water sources

Groundwater/surface water sources: Tanks, Ponds

Location, details and availability from such sources outside the area: --

<u>Regulation and Control</u>: Punjab Subsoil Act, 2009 for delay in paddy plantation should continue in the area.

Other interventions proposed, if any


Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

4.0 Salient Information

Name of the Block and Area (in Km²)	Sardulgarh 232.90sq km
District/ State	Mansa, Punjab
Population	Urban Population: 0
	Rural Population: 17675
	Total population: 17675
Rainfall	Normal Monsoon: 265 mm
	Non-monsoon Rainfall : 120 mm
	Annual Average Rainfall: 414 mm
Irrigation	Cropping intensity: 101% Number and types of abstraction structures: 17665 nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 2672 mcm (fresh and saline water resources) up to the depth of 300 m. The fresh water resources are estimated up to the depth of 106 m based on geophysical interpretations interface. The potential granular zones are available for fresh water is 81 m. Saline water resources are estimated based on the available depth of wells existed up to 300 m and the granular zones are counted after the depth of 152 m and available zones are 76 m. Block is categorized as Over-Exploited as aper Dynamic Groundwater Resources, 2013 assessment.

	Ground water Resources Extraction		
	Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.		
Existing and future water	Existing Gross Ground water Draft as on 2013		
demands	Irrigation: 217.78 mcm		
	Domestic and industrial water supply: 3.8 mcm		
	<u>Future water demands</u>		
	Irrigation development potential: -99.36 mcm		
	Domestic and industrial water supply up to 2025 years : 3.8 mcm		
Water level behavior	Aquifer wise water level		
	Aquifer-I		
	Pre Monsoon: 2.35 – 16.00 m bgl		
	Post Monsoon: 1.55 – 18.20 m bgl		
	Mean (10 yrs): 1.58 - (-)0.86 m/yr		
	Trends		
	Pre Monsoon: 0.16 – (-)0.26 m/yr		
	Post Monsoon: 0.15 – (-)0.29 m/yr		

HYDROGRAPHS

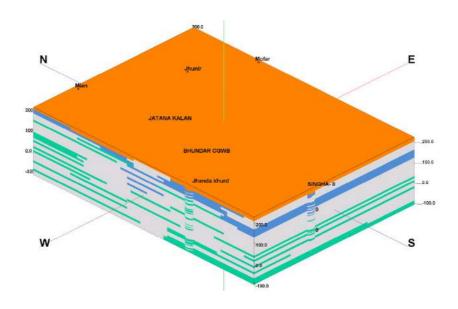
Ac	nuifer	Mannin	g and Mai	naaement	Plan o	f Mansa	District.	Puni	ah State
414	Julici	Pluppin	y unu mui	lugement	I lull U	Pluisu	DISCITUL,	I WILL	ub blutt

2. 0 Aquifer Disposition

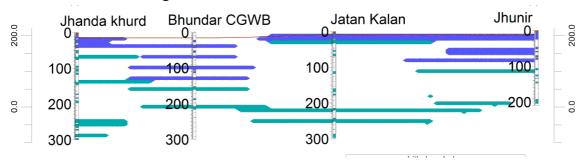
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Aeolian Alluvium,Older Alluvium

Aquifer wise Characteristics

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	106	547		12	
	ary	d to					
	Alluvial	confined					
	deposits						

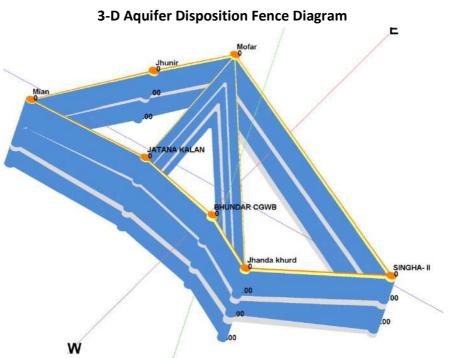

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Data Availability


Sl.No	Source of data	Depth Range (m)				
		< 100	100-200	200-300		
1	CGWB	0	0	5		
2	WAPCOS	0	0	0		
3	PRIVATE	0	0	1		
Total		0	0	6		

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.


3-D Lithological model of SardulgarhBlock



Lithological Cross section from Jhand Khurd to Jhunir

3-D Lithological Fence Diagram

Ground water Resource, Extraction, Contamination and other issues

	Dynamic Fresh water resources	214.54 mcm		
depth of 300m	In-storage Fresh water	6.67 mcm		
	resources			
	In-storage Saline water resources	21.5 mcm		
	Total	544 mcm		
Ground Water Extraction (as per 2013)	Irrigation	217.78 mcm		
Extraction (as per 2015)	Domestic & Industrial	5.0mcm		
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	5.0 mcm		
Stage of Groundwater D	evelopment	184%		
Chemical Quality of grou	nd water	NA		
Ground water Contamin	ation Issues	NA		
Other issues		Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.		

4. Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 8 mcm

Source water requirement/availability for recharge: Rain, Canal, Irrigation return flow

Types and number of structures: --

Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will save 0.0 mcm volume of water*

5. Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 675.4 sq km

Volume of Water expected to be conserved under advanced irrigation practices such as lining of

underground pipelines (Kutcha channel) etc.: 17.72 mcm

Change in cropping pattern Not Required

Proposed change in cropping pattern: Not Required

Area coverage: Not Required

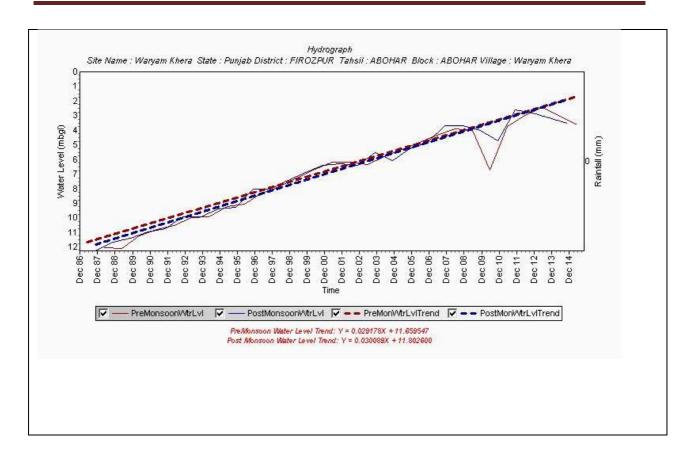
Anticipated volume of water to be saved: Not Required

Alternate Water sources

Groundwater/surface water sources: Tanks, Ponds

Location, details and availability from such sources outside the area: --

<u>Regulation and Control:</u> Punjab Subsoil Act, 2009 for delay in paddy plantation should continue in the area.


Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

5.0 Salient Information

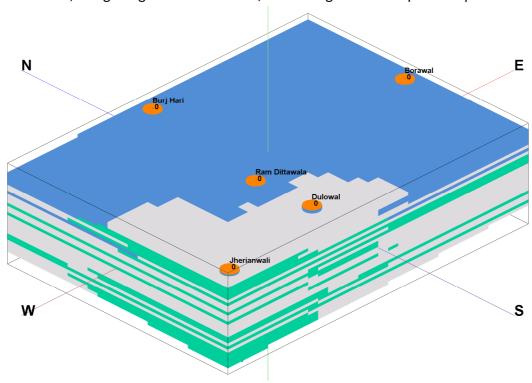
Name of the Block and Area	Mansa 358.14 sq km
(in Km²)	
District/ State	Mansa, Punjab
Population	Urban Population: 0
	Rural Population: 22203
	Total population: 22203
Rainfall	Normal Monsoon: 335 mm
	Non-monsoon Rainfall :78 mm
	Annual Average Rainfall: 408 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation
	Cropping intensity: 101%
	Number and types of abstraction structures: 22203 nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 2672 mcm (fresh and
	saline water resources) up to the depth of 300 m. The fresh water
	resources are estimated up to the depth of 106 m based on
	geophysical interpretations interface. The potential granular zones
	are available for fresh water is 81 m. Saline water resources are
	estimated based on the available depth of wells existed up to 300 m
	and the granular zones are counted after the depth of 152 m and

	available zones are 76 m. Block is categorized as Over-Exploited as aper Dynamic Groundwater Resources, 2013 assessment. Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.
Existing and future water demands	Existing Gross Ground water Draft as on 2013 Irrigation: 295.79 mcm Domestic and industrial water supply: 5.00 mcm Future water demands Irrigation development potential: -59.16 mcm Domestic and industrial water supply up to 2025 years: 5 mcm
Water level behavior	Aquifer wise water level Aquifer-I Pre Monsoon: 2.35 – 16.00 m bgl Post Monsoon: 1.55 – 18.20 m bgl Mean (10 yrs): 1.58 – (-)0.86 m/yr Trends Pre Monsoon: 0.16 – (-)0.26 m/yr Post Monsoon: 0.15 – (-)0.29 m/yr
HYDROGRAPHS	

2. 0 Aquifer Disposition

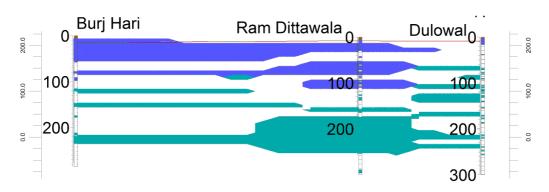
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium

Aquifer wise Characteristics

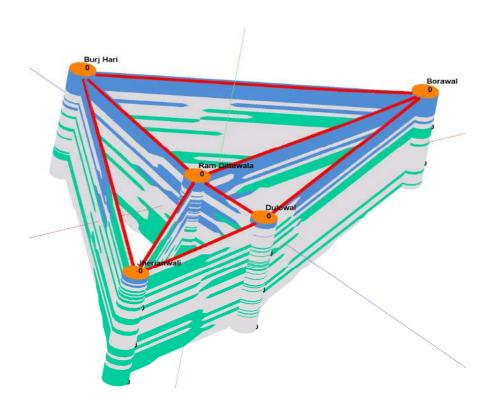

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	106	547		12	
	ary	d to					
	Alluvial	confined					
	deposits						

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

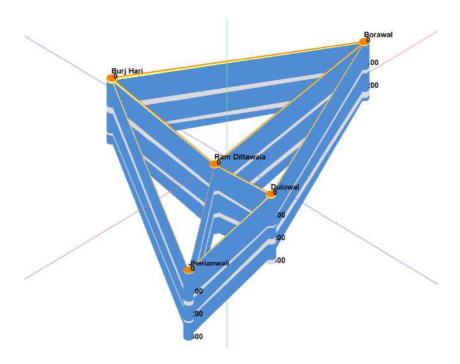
Data Availability


Sl.No	Source of data	Depth Range (m)				
		< 100	100-200	200-300		
1	CGWB	0	0	0		
2	WAPCOS	0	0	1		
3	PRIVATE	0	0	2		
Total		0	0	3		

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.



3-D Lithological model of Mansa Block


Lithological Cross section from Burj Hari to Dulowal

3-D Lithological Fence Diagram

3-D Aquifer Disposition Fence Diagram

Ground water Resource, Extraction, Contamination and other issues

Ground Water	,	214.54 mcm		
Resources upto the				
depth of 300m	In-storage Fresh water	6.67 mcm		
	resources			
	In-storage Saline water	21.5 mcm		
	resources			
	Total	544 mcm		
Ground Water	Irrigation	295.7 mcm		
Extraction (as per 2013)		F. O		
	Domestic & Industrial	5.0mcm		
Future Demand for do	mestic & Industrial sector	5.0 mcm		
(2025) (as per 2013)				
Stage of Groundwater Do	evelopment	125%		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH		
		range 8.76 to 9.31. Ground water in the		
		area is fresh to marginal saline. EC value of		
		the ground water show wide range from		

	305to 1340 μS/cm at 25 ⁰ C.
Ground water Contamination Issues	Nitrate (mg/l): ralla(47), Fluride (mg/l):Bhikhi(2.32), ralla(1.83),
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

4. Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 8 mcm

Source water requirement/availability for recharge: Rain, Canal, Irrigation return flow

Types and number of structures: --

Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will save 0.0 mcm volume of water*

5. Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 675.4 sq km

Volume of Water expected to be conserved under advanced irrigation practices such as lining of

underground pipelines (Kutcha channel) etc.: 17.72 mcm

<u>Change in cropping pattern</u> Not Required

Proposed change in cropping pattern: Not Required

Area coverage: Not Required

Anticipated volume of water to be saved: Not Required

Alternate Water sources

Groundwater/surface water sources: Tanks, Ponds

Location, details and availability from such sources outside the area: --

<u>Regulation and Control</u>: Punjab Subsoil Act, 2009 for delay in paddy plantation should continue in the area.

Other interventions proposed, if any

Mc	odern Irrigatio	n Practices h	ne adonted	for Rabi cro	ops. Some of	the technia	ues are given
	elow (PAU, Lu		e adopted	TOT NUMBER CITY	,ps. 30111c 0	the teening	acs are given