

केंद्रीय भूमि जल बोर्ड

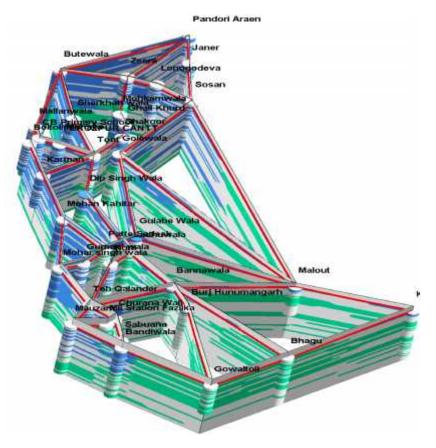
जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on AQUIFER MAPPING AND MANAGEMENT PLAN


Ferozpur and Fazilka Districts, Punjab

उत्तरी पश्चिम क्षेत्र, चंडीगढ़

North Western Region, Chandigarh

AQUIFER MAPPING & MANAGEMENT PLAN OF FEROZPUR AND FAZILKA DISTRICTS, PUNJAB

Central Ground Water Board

North Western Region, Chandigarh Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India 2017

AQUIFER MAPPING AND MANAGEMENT PLAN FEROZPUR AND FAZILKA DISTRICTS (5850 Sq Km)

		DISTRICT TECHNICAL REPORT (PART – I)	
SL. NO.		PAGE NO.	
1.0	INTRODU	JCTION	1 - 7
2.0	DATA CO	LLECTION AND GENERATION	8 - 19
3.0	DATA INT	TERPRETATION, INTEGRATION AND AQUIFER MAPPING	20 - 29
4.0	GROUND	WATER RESOURCES	30 - 38
5.0	GROUND	WATER RELATED ISSUES	39 - 40
6.0	MANAGE	EMENT STRATEGIES AND AQUIFER MANAGEMENT PLAN	41 - 44
	BLOCKV	VISE AQUIFER MAPS AND MANAGEMENT PLAN (PA	RT — II)
	Ι.	FEROZPUR BLOCK	46 - 52
	١١.	MAKHU BLOCK	52 - 57
	111.	MAMDOT BLOCK	58 - 63
	IV.	ZEERA BLOCK	64 - 70
	٧.	GHALL KHURD BLOCK	71 - 77
	VI.	GURU HARSAHAI BLOCK	78 - 84
	VII.	JALALABAD BLOCK	85 – 90
	VIII.	FAZILIKA BLOCK	91 – 97
	IX.	KHUIAN SARWAR BLOCK	98 - 105
	Х.	ABOHAR BLOCK	105 - 111

LIST OF FIGURES

- Fig.1: Administrative map of Ferozpur and Fazilka Districts
- Fig.2: Drainage and Water Bodies of Ferozpur and Fazilka Districts
- Fig.3: Canal and Distributaries of Ferozpur and Fazilka Districts
- Fig.4: Major Aquifers
- Fig.5: Depth to Pre Monsoon Water level (May, 2015)
- Fig.6: Depth to Post Monsoon Water level (November, 2015)
- Fig.7: Groundwater Quality, 2015
- Fig.8: VES Locations in Ferozpur and Fazlika Districts
- Fig.9: Locations of Exploration Data Availability
- Fig.10: Locations of Validated Exploration Data
- Fig.11: Elevation Contour Map
- Fig.12: Locations of Validated Exploratory Wells with Lithology
- Fig.13: 3-Dimension Lithological Model
- Fig.14a,b,c: 2-Dimension Lithological Sections
- Fig.15: 3-Dimension Lithological Fence
- Fig.16: 3D Aquifer Disposition Model
- Fig.17: 3D Aquifer Disposition Fence Diagram

Fig.18: Conceptual figure to Understand the Fresh and Saline Water Resources in the Aquifer up

to 300 m for Resource Estimation in Unconfined and Confined Aquifer System.

Fig.19: Long term Ground Water Table Variation

LIST OF TABLES

Table -1: Analytical methods and equipments used for chemical analysis

Table -2: Data Availability of Exploration Wells of Ferozpur and Fazilka district

Table -3: Summary of Optimized Exploration Wells

Table-4: Aquifer Grouping in Ferozpur and Fazilka District

Table-5: Ferozpur District Dynamic Ground Water Resource & Development Potential (31.03.2013) in mcm

Table-6: Fazilka District Dynamic Ground Water Resource & Development Potential(31.03.2013) in mcm

Table-7: Block Wise In-Storage Ground Water Resources of Fresh Water Aquifers Upto Average Depth (Ferozpur District)

Table-8: Block Wise In-Storage Ground Water Resources of Saline Aquifers Upto 300 m Depth (Ferozpur District)

Table-9: Block Wise Total Availability of Fresh and Saline Groundwater Resources upto 300 m Depth and Volume of Unsaturated Granular Zone after 3m upto water level (Ferozpur District).

Table-10: Block Wise In-Storage Ground Water Resources of Fresh Water Aquifers Upto Average Depth (Fazilka District)

Table-11: Block Wise In-Storage Ground Water Resources of Saline Aquifers Upto 300 m Depth (Fazilka District)

Table-12: Block Wise Total Availability of Fresh and Saline Groundwater Resources upto 300 m

Depth and Volume of Unsaturated Granular Zone after 3m upto water level. (Fazilka District)

Table-13: Distribution of Tube wells According to Well Owner's land holding Size

Table-14: Distribution of Tube wells According to Depth

Table-15: System of Ground water Distribution Device

Table-1**6**a: Scope of Quantitative Impact on Stage of Development after applying various Management Strategies in mcm

Table-16b: Impact on Stage of Development (SOD) after applying various ManagementStrategies in Ferozpur and Fazilka Districts

Table-16c: Overall Stage of Development (SOD) after total reduction potential in Ferozpur and Fazilka District

ANNEXURES

Annexure-I: Results of Chemical Analysis of Water Samples from NHS in Ferozpur and Fazilka Districts, 2015

Annexure-II: Physical record of Exploration data of Ferozpur and Fazilka Districts

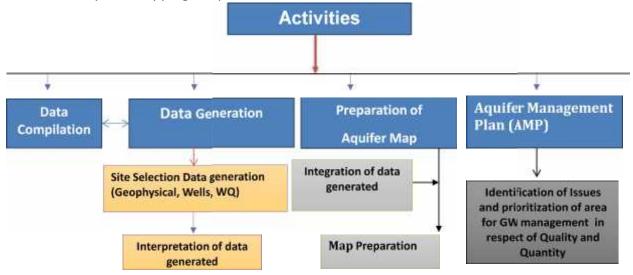
Annexure-III: Lithological Data of Wells in Ferozpur and Fazilka Districts

Annexure-IV: Aquifer Grouping of Well Locations in Ferozpur and Fazilka Districts

PROJECT TEAM

Regional Director	Dr. S. K. Jain	
Nodal Officer	Dr. Sunil Kumar ,	
	Scientist 'D' (Sr. Hydrog	eologist)
		8 9
Executive Engineer	H.K. Manocha	
Report Compilation	Gyanendra Rai,	
	STA (HG)	
	Supporting team:	
Hydrogeology	Geophysics	Chemical Quality
Rakesh Rana,	S.K. Kapil,	Rishi Raj,
Scientist 'D'	Scientist 'D'	Assistant Chemist
G.P Singh,	S.K. Pali,	
Scientist 'D' (Retd.)	Scientist 'D' (Retd.)	
Roopesh G.Krishnan		
Scientist 'B'		

1.0 INTRODUCTION


The primary objective of the Aquifer Mapping can be summed up as "Know your Aquifer, Manage your Aquifer". Demystification of Science and thereby involvement of stake holders is the essence of the entire project. The involvement and participation of the community will infuse a sense of ownership amongst the stakeholders. This is an activity where the Government and the Community work in tandem. Greater the harmony between the two, greater will be the chances of successful implementation and achievement of the goals of the Project. As per the Report of the Working Group on Sustainable Ground Water Management, "It is imperative to design an aquifer mapping programme with a clear-cut groundwater management purpose. This will ensure that aquifer mapping does not remain an academic exercise and that it will seamlessly flow into a participatory groundwater management programme. The aquifer mapping approach can help integrate ground water availability with ground water accessibility and quality aspects.

1.2 Scope of the study:

Systematic mapping of an aquifer encompasses a host of activities such as collection and compilation of available information on aquifer systems, demarcation of their extents and their characterization, analysis of data gaps, generation of additional data for filling the identified data gaps and finally, preparation of aquifer maps at the desired scale. This manual attempts to evolve uniform protocols for these activities to facilitate their easy integration for the district as whole.

1.3 Approach and Methodology:

National Aquifer Mapping Programme basically aims at characterizing the geometry, parameters, behaviour of ground water levels and status of ground water development in various aquifer systems to facilitate planning of their sustainable management. The major activities involved in this process include compilation of existing data, identification of data gaps, and generation of data for filling data gaps and preparation of aquifer maps. The overall activities of aquifer mapping are presented in the flow chart below.

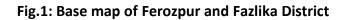
1.4 Location and Geographical Units

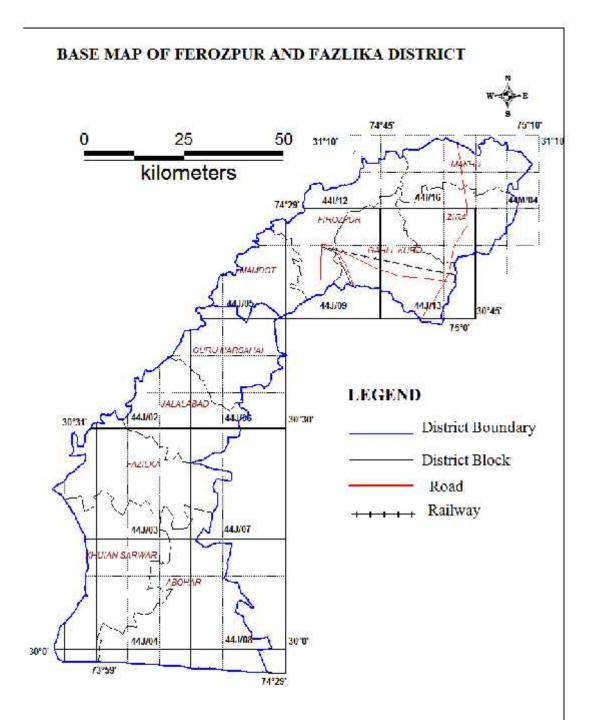
Ferozpur, the south western most district of Punjab State with a total geographical area of 5850 sq km. is located between 29° 56′ 47″ and 31° 0′ 7″ north latitudes and 72° 52′ 4″ and 75° 01′ 11″ east longitudes. The district area falls in Survey of India degree sheet nos. 44 J, 44F, 44I. Administratively, the district is under control of Ferozpur and Fazilka division and is divided into 10 development blocks namely Ferozpur, Fazilka, Abohar, Zira, Jalalabad, Ghall Khurd, Guru Har Sahai, Khuyian Servar, Makhu and Mamdot.

The Ferozpur district forms a part of Sutlej sub basin of main Indus basin and is interrupted by clusters of sand dunes. The district area is almost a flat terrain with a gentle slope towards south west direction.

Physiographically, it is characterized by four distinct features i.e. the upland plain, sand dune tracts, younger flood plain and active flood plain. The river Sutlej that is of perrineal nature mainly drains the area. River Sutlej shows both influent and effluent nature in the area. The area is traversed by a dense network of canals. In irrigation practices, contribution of tubewells are larger as compared to canal system i.e 137 % area irrigated by canal is being irrigated by tubewells.

1.5 Climatic Conditions: Rainfall and Climate


The climate of the district is classified as sub-tropical steppe, semi-arid and hot which is mainly dry except in rainy months and characterized by intensely hot summer and cold winter.


The normal annual rainfall is 449 mm in 24 days which is unevenly distributed over the district. Normal Monsoonal rainfall is 349 mm. The southwest monsoon sets in last week of June and withdraws towards end of September and contributes about 78% of annual rainfall. July and August are the rainiest months. Rest 22% of the annual rainfall occurs during non-monsoon months of the year in the form of thunder storm and western disturbances. Rainfall in the district increases from southwest to northeast.

1.6 Geomorphology & Soil Type

The district area forms a part of Indo-Gangetic plain and Sutlej Sub basin of main Indus basin. The area as a whole is almost flat with a gentle slope towards the south westerly direction. The physiographic of the district is broadly classified from north to south into four distinct features i.e. Upland plain, Sand dune tract, younger flood pain and active flood plain of Sutlej.

The soil of the district is of two types i.e. sierozem (in northern parts) and desert soils (in southern parts)

1.7 Land Use/ Land Cover

Based on the interpretation of topographical data, land use/land classes have been identified. The main classes are Built Up land, Agricultural land, forestland, Land under non agriculture use, current fallows and water body.

Land use pattern of Ferozpur and Fazilka district, Punjab

Type of Land use	Area (hectares)	
1. Total Geographical area	585000	
2. Forest	2004	
3. Land put to non-agricultural use	16719	
4. Current Fallows	2239	
5. Net area sown	126678	
6. Gross cropped area	252989	
7. Cropping intensity	189%	

1.8 River System and Water Resources

Two major rivers flows the entire study area, Satluj river flows in western part and Beas river in Northern part. There are some drains which flow during heavy rains and serve as natural drainage. Phidda drain, Taroori drain, Chand Bhan drain and Sem Nala are important among them (Fig.3). There is a vast network of canals and their distributaries passess through this area. These are Eastern canal, Bikaner Canal, Jalalabad branch, Ladhuka disty., Golewala disty (Fig.4).

Eastern Canal system is a non-perennial system. Its construction was completed in 1927 and it used to off take from Hussainiwala Headworks. However, after the construction of Harike Headworks, the supply of water to Eastern canal system and Bikaner Canal has been switched over to Harike Headworks, except for a portion of Eastern canal running in a length of about 8.02 Kms which receives water supply from Hussainiwala Headworks for feeding 7 distribution and 8 minors. The authorised discharge of Eastern Canal system is 3197 cs, which has culturable command area of 2.16 lac hect and runs in a length of 856 Kms.

1.9 Agriculture & Irrigation

The two main crop seasons in a year in the district are kharif and rabi which is locally known as 'Sauni'(Summer Harvest Season) and 'Harrhi' (Winter Harvest Season). The principle Kharif crops are Paddy, Maize, Bajra, Cotton, Moong, Mash, Moth, Arhar, Sugarcane, etc., while important Rabi crops are Wheat, Barley, Gram, Sarson, Taramera and Toria, etc. Kharif and rabi is cultivated in this area under two types of soil i.e. loamy sand and sandy loam and the sources of irrigation are canal as well as tubewells.

Irrigation in the district is carried out both by surface water as well as ground water. As southern and southwestern parts of this area are underlain by saline water, so canal water is

major source of irrigation. In some parts where fresh water is available as fresh water lenses, than irrigation is done by skimming wells known as multiple well point system. Conjunctive use of canal water and ground water for irrigation is most prominent in this area.

a. Canal Water Irrigation

Major source of irrigation is canal where water from Eastern canal is utilized for irrigation. Important distributaries are Jalalabad branch, Ladhuka disty., Golewala disty. system.

b. Ground Water Irrigation

With the advent of multiple well point systems, ground water irrigation is also playing an important role in development of agriculture economy of the district. This is not only release the pressure mounted on the canal water supply but also creates the maximum storage in the unconfined aquifer for fresh ground water through by return flow and canal seepage. In irrigation practices, contribution of tubewells are larger as compared to canal system i.e 137 % area irrigated by canal is being irrigated by tubewells.

1.10 Industries

There are no major industries in the area except Agro and sugar mill industries in Fazilka area.

1.11 Mineral Resources

The geological formations identified in the area are: sandy clay with saltpetre encrustations at places, clay with sporadic sandy nodules. Except saltpeter, other mineral occurrences in the Firozpur District are rather rare. The seepage of natural gas and the occurrences of groundwater have also been reported from this area.

Natural Gas --- The seepage of natural gas has been reported from Zira. The details of the seepage are not known.

Saltpetre. ---Saltpetre is essentially a nitrate of potassium and sodium, with minor amounts of chloride, sulphate and carbonate radicals. It occurs as a thin, white encrustation on the surface. The efflorescence appears during the hot months, viz. May and June and even during July in the absence of adequate rains.

1.12 Water Conservation and Artificial recharge:

The north and eastern part of the district where water level decline exists, artificial recharge structures may help in arrest decline in which Recharge Trench with injection well structure is the suitable for artificial recharge. Water conservation methods like change in cropping pattern, change in Irrigation policy, lining of unlined channels, timely plantation of paddy, promotion of sprinkler and drip irrigation etc. may be adopted to overcome the ground water decline in the area.

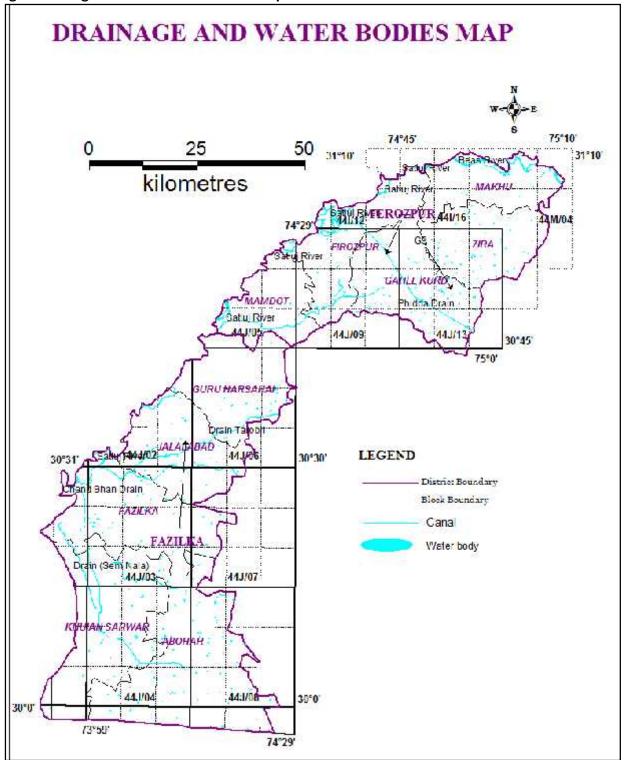
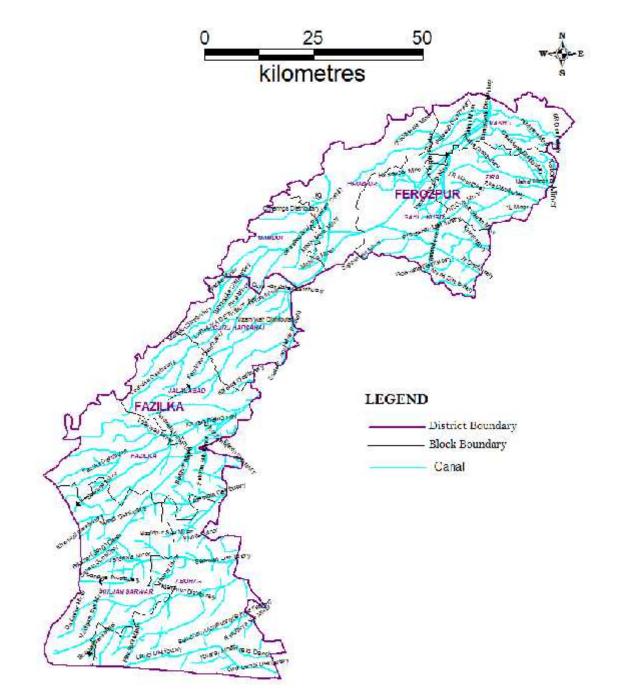



Fig.2: Drainage and Water Bodies of Ferozpur and Fazlika District

Fig.3: Canal and Distributaries of Ferozpur and Fazlika District

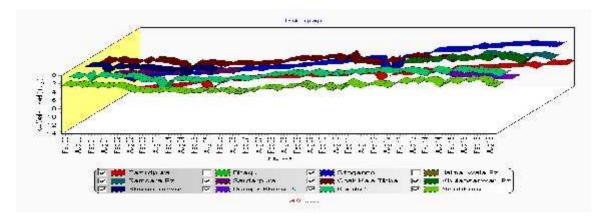
CANALS AND DISTRIBUTARIES

2.0 DATA COLLECTION AND GENERATION

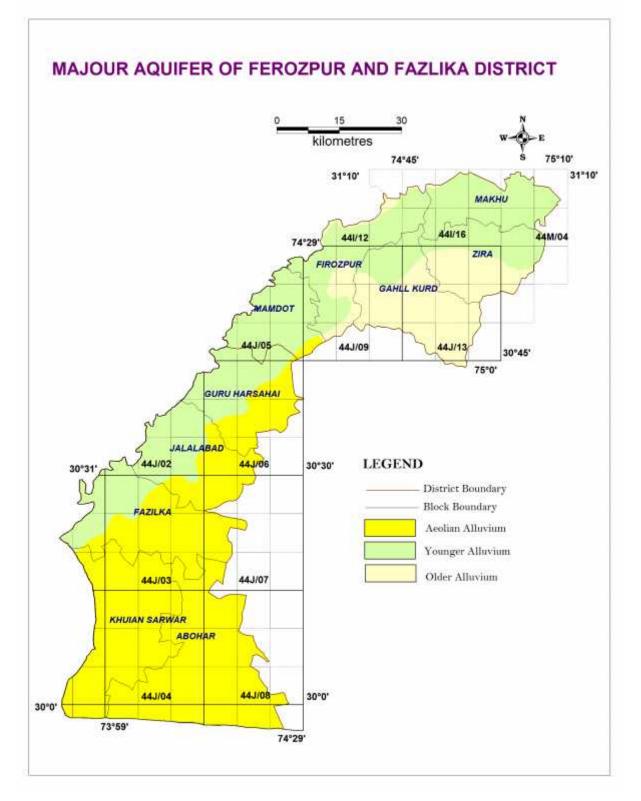
2.1 Geology and Hydrogeological data:

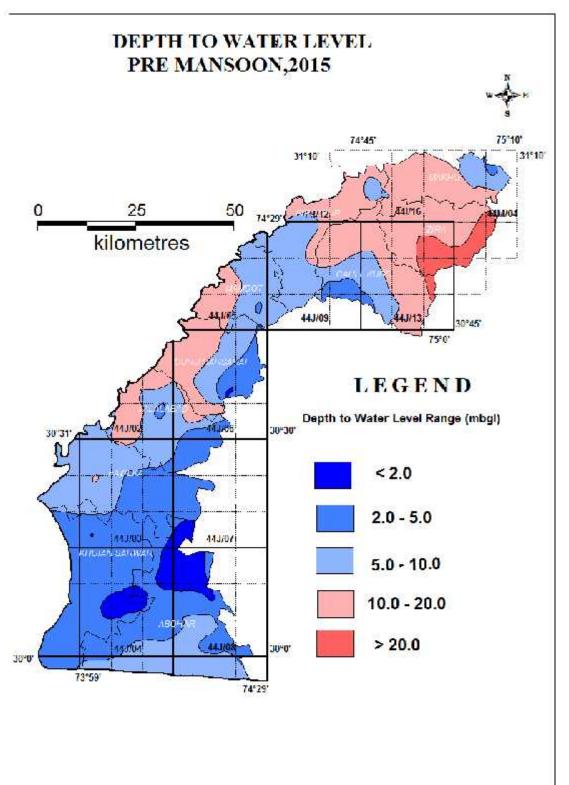
The entire surface is occupied by loose to semi consolidated Quaternary sediments which form part of the Indo-Gangetic alluvial tract. These sediments were deposited by rivers from Himalayas in their present and ancestral forms. Flat surfaces are randomly distributed low relief sand dunes/ridges, scattered all around especially in southern parts of the district.

The alluvial deposits underlying the district form a part of Sutlej/ Saraswati deposits and are located away from the present course of Sutlej River and the alluvial tract composed of fine sands, silt, and silty clay. There are occasional bands and patches of sand with mica flakes. Relative compact bands of silty clay and thin kankar beds are also reported in some of the well sections in the district. Clay occurs in the form of lenticular bodies at various depths. Principal aquifer in the district is Alluvium and major aquifers in the district are older alluvium, Aeolian alluvium and younger alluvium.


The area is fully occupied by flat alluvial plain, of quaternary age. The major hydrogeology in the study area:

- 1. Major Aquifer is Older Alluvium and Aeolian Alluvium (Fig.5).
- 2. Principle Aquifer is Alluvium.


Ground water occurs in both water table and confined conditions.


2.1.1 Water Level Behavior

Twenty monitoring stations of CGWB (4 Piezometers and 13 Dugwells) and *eighteen* monitoring stations (18 Piezometers) of State government departments represent first aquifer falls in the district. To represent the second aquifer and third aquifer one monitoring station is exist. The depth to water level ranges from 1.75 to 17.19 m bgl during pre-monsoon period and 1.20 to 20.15 m bgl during post monsoon period. It has been observed that in the eastern part of the district water levels are in the range of 10 to 20 m, in the central part of the district the water levels are in the range of 5 to 10 m bgl and in western part of the district the water levels are shallower in the range of 2 to 5 meters range. Seasonal water level fluctuation shows a rise and fall in the range of 1.10 to (-) 2.00 meters in western and eastern part of the districts respectively during the year 2015. Depth to water level maps is shown in Fig 5& 6. *Hydrograph of Observation Wells*

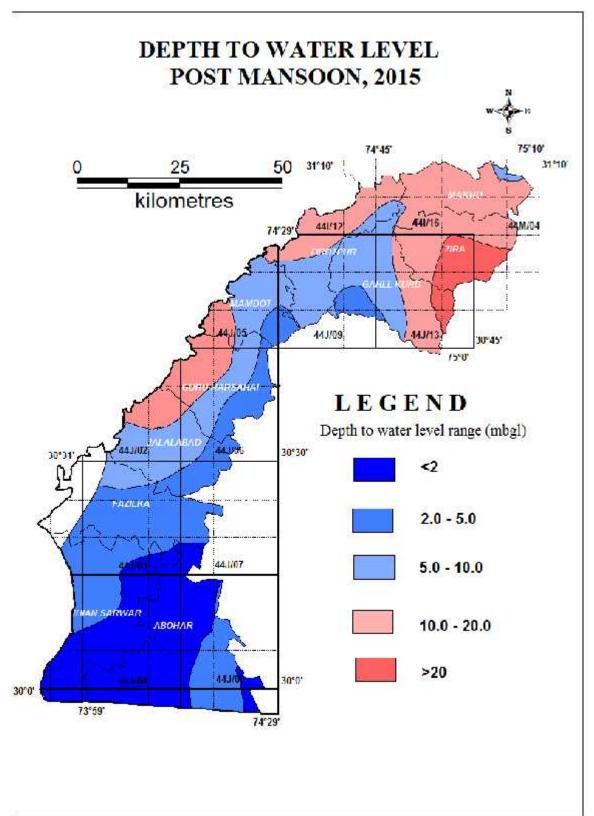


Fig.4: Major Aquifers

Fig.5: Depth to Pre Monsoon Water level May, 2015

Fig.6: Depth to Post Monsoon Water level November, 2015

2.2 Hydro chemical Data:

Ground water quality of shallow aquifer is assessed based on the chemical data of the ground water observation monitored regularly by CGWB on annual basis (Annexure-I). In addition to that chemical quality of different aquifers has to be assessed during ground water exploration under NAQUIM.

Chemical data of ground water from shallow aquifer indicates that ground water is alkaline, fresh to moderately saline. The electrical conductivity (EC) values are ranges from 393 to 8415 μ S/cm at 25°C. The ground water occurring in the southern and south-western parts comprising of Fazilka district is mostly saline and not suitable for drinking uses.

Chemical data of ground water from shallow aquifer indicates that ground water is alkaline, fresh or moderately saline. The electrical conductivity (EC) values are more than 3000 μ S/cm, at four locations i.e. Rattewala(sohangarh), Abohar, Danewali and Bannawala, where the EC value is 5790, 8415, 5604 and 5418 μ S/cm at 25°C respectively. Generally it is suitable for drinking purposes as chemical parameters are well within the permissible limits for safe drinking water set by Bureau of Indian standard (BIS) except for heavy metals at few places. These places are Malsian (Fe: 5 mg/l), Rattewala(sohangarh) (F: 1.74 mg/l), Abohar (F:1.75 mg/l), Danewali (F : 1.75 mg/l), Among anions, bicarbonate is the dominant anion and among cations, either sodium is the dominant cation (45%) or mixed cationic character prevails.

Analysing mechanism and equipments used for chemical analysis are given in the below table-1.

S. No.	Parameters	Analytical Methods			
Α.	Physico-chei	nical analysis			
	рН	Electrometric method			
	Conductivity (EC)	Electrical conductivity method			
	Carbonate & bicarbonate (CO ₃ ,HCO ₃)	Titrimetric method			
	Chloride (Cl)	Argenotometric method Nephloturbidity method Spectro-photometric method			
	Sulphate (SO ₄)				
	Nitrate (NO ₃)				
	Fluoride (F)	lon metric method EDTA-Titri metric method			
	Total hardness (T.H)				
	Calcium (Ca)	EDTA-Titri metric method			
	Magnesium (Mg)	By difference			
	Sodium (Na)	Flame photometric method Flame photometric method			
	Potassium (K)				
	Total Dissolved Solids (TDS)	Gravimetric			
B.	Trace element	ts/Heavy metals			
	Copper (Cu)	Digestion followed by Atomic			
	Cadmium (Cd)	Absorption Spectrophotometer			

Table-1: Analytical methods and equipments used for chemical analysis.

Cł	nromium (Cr)	(AAS)
Le	ead (Pb)	
М	langanese (Mn)	
Ni	ickel (Ni)	
Cy	yanide (Cn)	
Irc	on (Fe)	Spectrophotometer method

Test Methods: (Basic Parameters)							
pH:	APHA 22 nd Edition; 4500 H ⁺ B						
EC:	APHA 22 nd Edition; 2510 BB						
CI:	APHA 22 nd Edition; 4500 Cl ⁻ B						
NO _{3:}	APHA 22 nd Edition; 4500 NO ₃ ⁻ B						
F:	APHA 22 nd Edition; 4500- F ⁻ D						
TH:	APHA 22 nd Edition; 2340 C						
Ca:	APHA 22 nd Edition; 3500 Ca B						
Mg:	APHA 22 nd Edition; 3500 Mg ⁺ B						

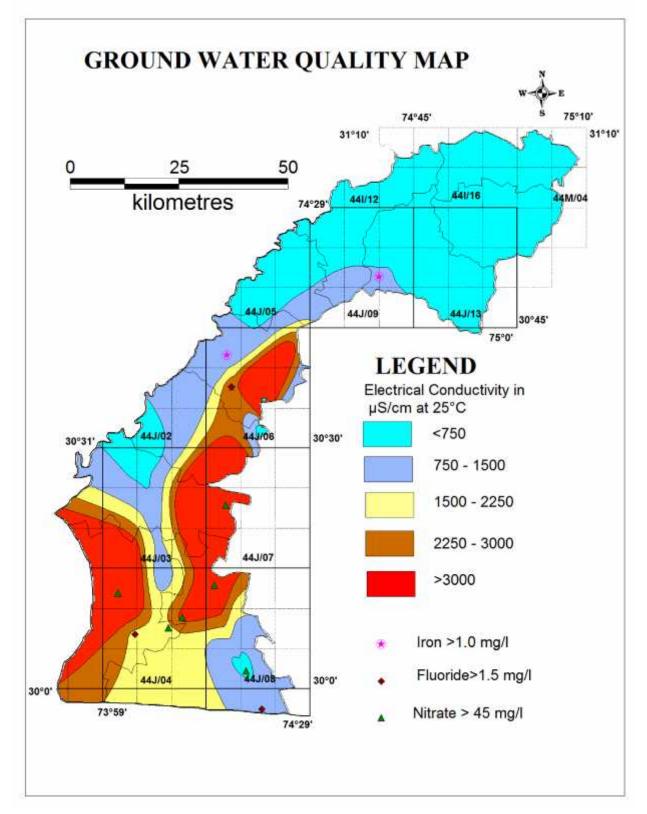
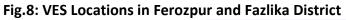
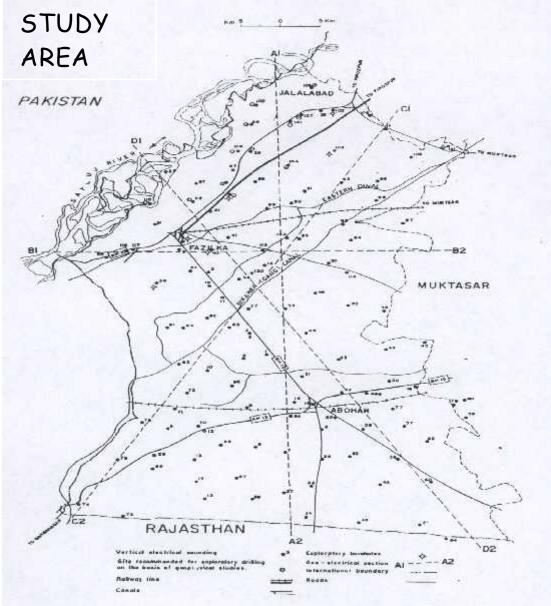




Fig.7: Groundwater Quality, 2015 Ferozpur and Fazilka District

2.3 Geophysical data:

Surface and Subsurface geophysical investigations have been carried out in alluvial tracts over parts of Study area(Ferozpur and Fazlika district). In Surface geophysical investigations, total 44 VES in an area of 1800 sq km were conducted with current electrical separation of 600 to 1000 m and locations of VES are shown in Fig.8. The aim of the survey was to delineate fresh water - saline water interface laterally as well as vertically.

Due to inland salinity problem the surface soil has become saline particularly in major parts of Abohar, Khuiyan Sarwar blocks and few parts of Fazilka blocks. The support study

through auger holes drilling at few places provides confirmatory evidence in respect of water logging and shallow ground water salinity. Under the present study the following criteria in respect of ground water quality has been considered being in line with the standards of BSI and present drinking/irrigation water scenario:

Electrical Conductivity (micro Siemens per cm)	Quality of ground water
Less than 2500	fresh
More than 2500	saline

The high value of EC of the order of 10,000 to 14,000 micro Siemens per cm was observed at shallow depth in Juradkhera (Abohar block) and Sabuwana (Fazilka block) in the western part of study area (near VES 38 and 39 respectively) showing high salinity of ground water.

Generally K & Q type multi-layered VES curves were recorded. Q type VES curves represent consecutive fall of resistivity and K type VES curves represent initial rise & consecutive fall of resistivity in the latter part of the curves (Plate-XIV).

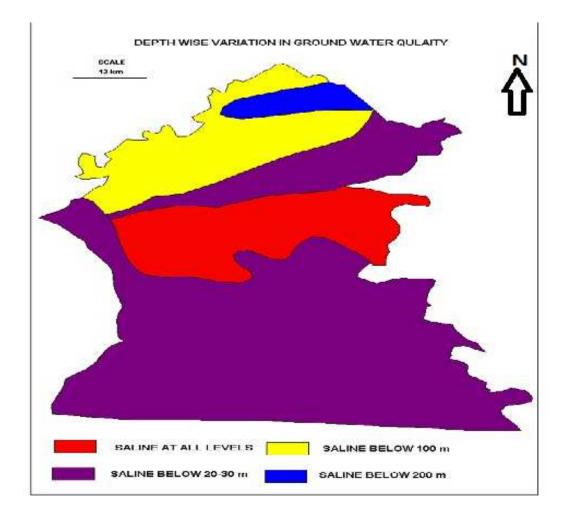
FINDINGS

An effort has been made to assess the depth-wise potability of water in South-west Ferozpur district through the analysis of iso-resistivity maps at half current electrode separation. The qualitative analysis of apparent resistivity data provides the depth-wise potability of ground water in entire South-west Ferozpur district. The following table depicts the feature in South-west Ferozpur.

Depth	_	Area bearing resh water (EC<2500)		bearing saline 500)
	%	Sq.Km.	%	Sq.Km.
within 10m	87	2153	13	317
within 20m	60	1480	40	990
within 30m	43	1070	57	1400
within 40m	36	886	64	1584
within 50m	25	620	75	1850
within 80m	19	477	81	1993
within 150m	12	305	88	2165
within 200m	8	185	92	2285
Within 250m	0	0	100	2470

Depth wise interpretation of South-west Ferozpur based on VES

More than 15 ohm m resistivity corresponds to the granular zones bearing fresh quality of ground water. This zone mainly consists of sand. Less than 15 ohm m resistivity corresponds to the geological formation consisting mainly of clay with sand and kankar bearing saline to brackish quality of ground water (EC above 2500 micro Siemens per cm). According to the present study, ground water is saline at all levels in 13% of the total area studied. 46 to 75% of the area bears saline to brackish quality of ground water at shallow depth within 50m. This area includes mainly the northern and north-western parts. Only 8 to 19% of the area is available with fresh water within 80 to 200 m depth. This area includes few locations mainly the northern parts. As an overall conclusion of the present study, it is evident that no fresh ground water occurs below 200m depth almost over the entire south-west Ferozpur District.


Areas where possibility of fresh water within 20 to 50 m depth is expected are Dangarkhera (VES 1), Dewan-khera (VES 30), Rajpura (VES34), Dodewala (VES33), Juradkhera (VES 38), Narainpur (VES 61), Bajidpur (VES 64), Rukanpura (VES 67) in the South, Hasta-kalan (VES 87), Nakerian (VES 95), Salem-shah (VES 31) and Chak-saidake (VES 111) in the North.

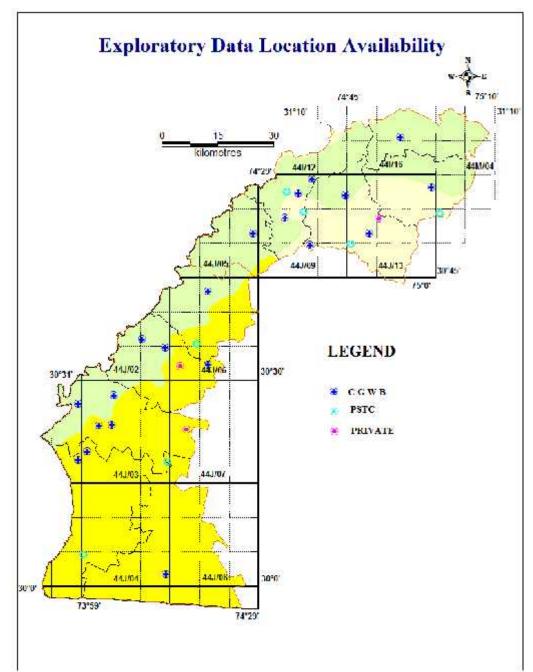
The present study and exploratory drilling conducted by CGWB has revealed that ground water quality slightly improves vertically in some of the area around north. Areas where possibility of fresh water in the depth range of 80 to 150m is expected, are Bahak-khas, Jhugge-gulabsinghde, Bhamba-wattu, Chak-Bandiwala, Gumaniwalam and Muazzam. Only at one place i.e. Mukundsinghwala (VES 72) in the extreme North, the quality of ground water improves in a deeper depth in the interval of 126 to 234 m where 108 m thick granular zone containing fresh water has been inferred. The ground water above and below this fresh water zone is saline. The EC value of ground water in a 135 m deep tube-well (tapping part of this aquifer) was 600 micro Siemens per cm showing fresh quality of water. The EC value of water in a 13m shallow hand-pump was 4000 micro Siemens per cm showing ground water salinity at shallow depth. The interpreted results of VES at this particular place indicate saline quality of ground water below 234m depth.

33% of the area below 10m depth is available with marginally saline ground water. The areas where marginally saline ground water has been inferred at shallow depth within 30 m are Nandgarh (VES59), Ramgarh (VES 75), Thandewala (VES 64), Harike-kalan (VES 79), Ganiana (VES 57), Dingana (VES 47), Aulakh (VES 50), Rathania (VES 1), Peori (VES 34), Lalbai (VES 26), Badal (VES 29), Fatuhiwala (VES 39), Domwali (VES 7), Birk-khera (VES 52), Qubrewala (VES 24), Killanwali (VES 42) and Shahkot (VES 59).

In order to prevent deterioration of ground water quality in areas affected with inland salinity, some preventive measures are to be taken, such as (i) installation of proper drainage system to stop accumulation of flood water and (ii) Proper management of water resources by the users especially the ground water and surface water.

On the basis of results of surface geophysical investigation and conclusions drawn, exploratory drilling down to 150m to 250m has been recommended in some locations of Southwest Ferozpur district, Punjab namely Bahak Khas, Teh-quallander, Rana, Muazzam, Bhjanbawattu and Jhugge-gualabsinghde.

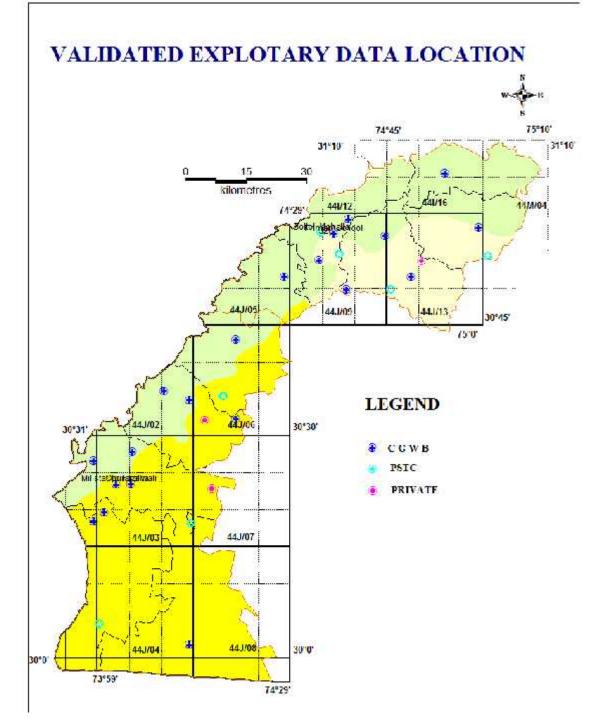
2.4 Exploratory drilling State - Data Availability:

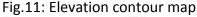

The Lithologs of Exploratory Well/ Observation well/ Piezometer/ productive wells of CGWB, Punjab State Tubewell Corporation (PSTC) and private wells have been collected and those supported electrical logs have been validate for aquifer map preparation. The details are shown in Table-1.

Source of Data		Total Wells			
	<100	100-200	200-300	>300	
PRIVATE	0	4	3	0	7
CGWB	0	0	4	16	20
PSTC	0	0	2	0	2
TOTAL	0	4	9	16	29

2.5 Spatial Data Distribution

The actual data of all the wells in the area are plotted on the map of 1:50000 scale with 5'X5'grid (9 x 9) km and is shown in Fig. 9. The exploration data shows that majority of tube wells falls in the Aquifer-I and the depth more than 300m. The grids/ formations devoid of SH/PZ/EW are identified as data gaps and these are to be filled by data generation. The locations of availability of exploration data in grid wise distribution of respective blocks is shown Annexure-II.


Fig.9: Locations of Exploration Data Availability


3.0 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

All the available data have been validated for consideration to generate aquifer map. The deepest well in each quadrant is selected and plotted on the map of 1.50000 scale with 5'X5'grid (9 x 9) km and is shown in Fig.10.

The optimized wells of CGWB, Punjab State Tubewell Corporation (PSTC) now as Punjab Water Resources Development and Management (PWRDM), WRED (Water Resources and Environment Directorate), Water Supply and Sanitation (WSS) and private wells used to prepare the elevation or collar elevation map to identify the topographic variations on the ground surface so that it can give the synoptic picture of gradient variations in the water levels. The topographic elevation values have been plotted to prepare the elevation contour map and is in Fig.11. The locations of validated wells in quadrant and toposheet wise distributions in respective blocks are shown in Table-3.Three dimensional location of validated exploratory wells with litholog are given in Fig.12

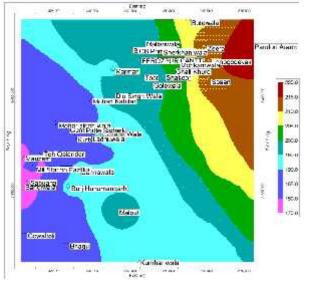


Fig.12: Three dimensional locations of validated exploratory wells with litholog

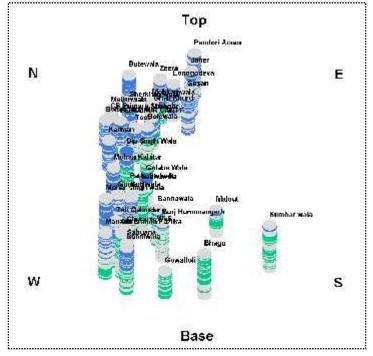


 Table -3: Summary of optimized exploration wells

TOPOSHEET	DEPTH RANGE (m)								ELEVATIO	SOURC
/ QUADRANT	LOCATI ON	<100	LOCATION	100- 200	LOCATION	200- 300	LOCATION	>30 0	N (mamsl)	E OF DATA
3A 44J/ 04			Gowaltoli	167					180	Private
2A 44J/ 06					Patte Sadeek	225			185	Private
3C 44J/ 03					Burj Hunumangarh	247			192	CGWB
2A 44J/ 07					Bannawala	255			192	PSTC
3C 44J/ 04					Bhagu	292			186	CGWB
3C 44J/ 02							Gumani wala	300	184	CGWB
3B 44J/ 06							Ladhuwala	300	188	CGWB
							Mauzam	300	179	CGWB
							Mil Station			
2A 44J/ 03							Fazilka	300	182	CGWB
1B 44J/ 06							Mohan Kahitar	300	189	CGWB
3A 44J/ 03							Sabuana	300	177	CGWB
1B 44J/ 03							Teh Qalander	300	181	CGWB
2B 44J/ 09			FEROZPUR CANTT	152					197	Private
1A 44J/ 09			Boltoli Mohalla	163					197	Private
1B2 44J/ 09			CB Primary School	163					202	Private
3A 44J/ 13					Shakoor	200			198	Private
2A 44J/ 13					Ghall Khurd	202.7			203	CGWB
3B 44J/ 09					Toot	217			196	CGWB
2A 44N/ 01					Lonogodeva	233			212	Private
3A 44J/ 06					Kutti	252			185	CGWB
							Bandiwala	300	178	CGWB
2B 44I/ 16							Butewala	300	207.46	CGWB
2B 44J/ 03							Churana Wali	300	178	CGWB

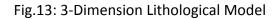
Aquifer Mapping and Management Plan of Ferozpur and Fazilka District, Punjab State

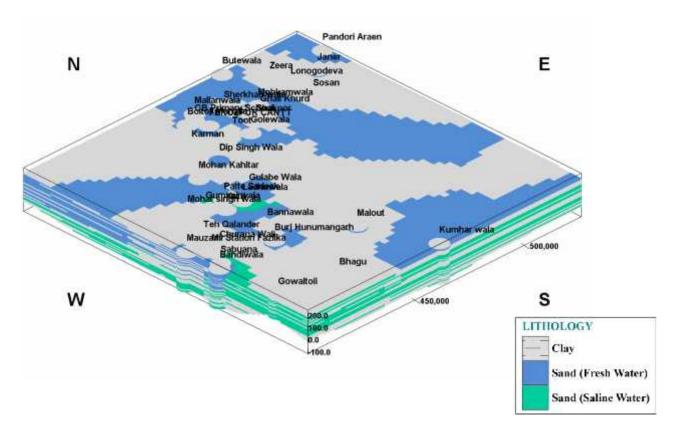
2C 44J/ 05		Karman	300	193	CGWB
1B1 44J/ 09		Mallanwala	300	196	CGWB
2C 44J/ 02		Mohar singh wala	300	184	CGWB
2B 44J/ 13		Mohkamwala	300	203	PSTC
1C 44J/ 09		Sherkhan wala	300	201	CGWB
1C 44J/ 13		Zeera	300	214	CGWB

3.1 Sub Surface Disposition

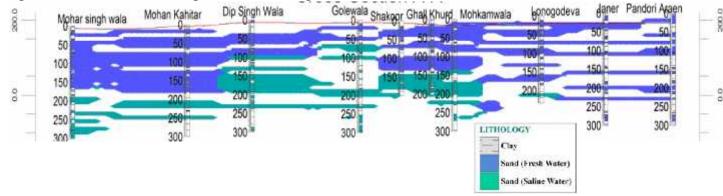
3.1.1 Previous Work:

The area represents almost flat alluvial plain with sand dunes with maximum height of 5.5 m above general land surface. The alluvial deposits under laying the district are parts of Sutlej and Ravi river deposits. Ground water at shallow depth occurs under unconfined to semi confined and confined conditions in deeper aquifers.

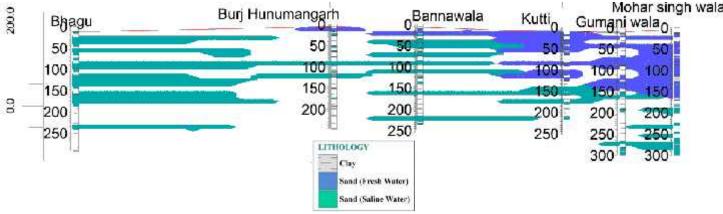

Exploratory drilling was conducted by CGWB at 20 locations in the district includes 05 exploratory wells and 2 PZ hole through in-house activities and 19 exploratory wells Data Collected from Private and PSTC, to delineate and determine the potential aquifer zones, evaluation of aquifer characteristics etc. The drilling has been done to a maximum depth of about 448 m (Mohar Singh wala) and revealed the presence of 4 to 11 prominent permeable granular zones. The granular zone consists of fine to medium sand.


Further, the study of exploratory boreholes drilled in the district revealed the presence of multiple aquifer groups up to the maximum drilled depth of 448 m. The first aquifer group forms the very shallow water table aquifer occurs down to 23.5 m bgl and below that clay layer starts getting thickened about 8-10m separating Aquifer IB to depth of 165m bgl. The second and third aquifer behaves as semi-confined to confined and consisting of thin sand layers alternating with thicker clay layers. Overall flow of ground water is towards south-west direction.

3.1.2 Present NAQUIM Study:


To understand the sub surface disposition in the district, geological sections and fence diagram have been prepared by synthesizing the various sub-surface sections on the basis of study of the lithological logs and electrical logs of boreholes drilled by CGWB, PSTC and Private Agencies are plotted using the RockWorks15 software and a 3D lithological model has been prepared and is shown in Fig.13. The 2D lithology sections and 3D lithological fence diagram and has been prepared using lithology model and are shown in Fig.14a, b, c & 15 respectively. The aquifers are composed of fine to medium sand with clay intercalations. The granular zones are extensive. The aquifer occurring below 195 depth is composed of very fine to medium sand with silt.

Based on geophysical borehole logging and use of resistivity profiling followed by the depth soundings at few selected places, fresh-saline water zones are demarcated. This analysis is extremely important for the present study and will be referred from time to time as it is obviously the higher resistivity beds represents freshwater zone in contrast in low resistive beds indicating saline groundwater zone.



The major aquifer system of the study area is Quaternary alluvial deposits having Older, Younger and Aeolian alluvium which mainly comprises of sand, silt and clay. The top surface layer and soil is mainly silty clay. The lithology along SW-NE direction shows the variation in lithology thickness i.e. thin clay layers inter bedded with sand except at location Janer and Pandori Arean where thick clay layers were identified at depths 105mbgl. There is inter-layering of sand and clay with thick clay at Golewala towards Northeastern side at a depth below 100m to 175m bgl.

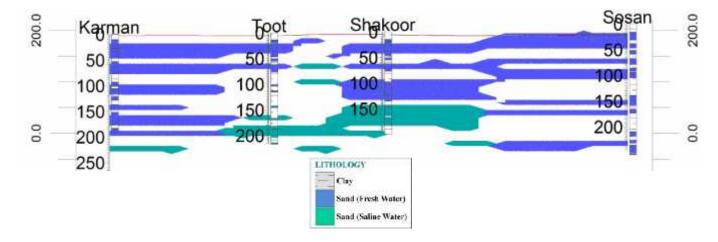
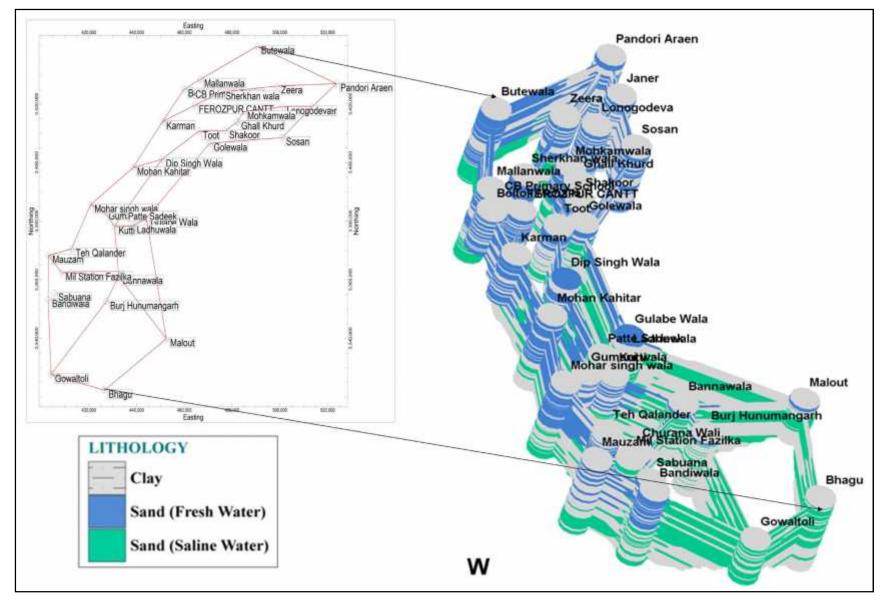


Fig.14a: 2-Dimension	Lithological	Soction	along SW/ NE
i ig.14a. 2-Dimension	Lithological	Section	along Svv-IvL

Fig.14b: 2-Dimension Lithological Section along S - N


Fig.14c: 2-Dimension Lithological Section along W-E

The geological section along S-N direction shows the variation in lithology thickness i.e. thin clay layers inter bedded with sand except at location Burj hanumangarh where thick clay layers were identified at depths 103mbgl. The southern side is having saline water granular zones and northern side having fresh granular zones. The fresh saline interface is clearly depict in this section. There is inter-layering of sand and clay with thick clay at Bannawala and Bhagu towards Southern side at a depth below 150m and 175m bgl.

The geological section along W-E direction shows the variation in lithology thickness i.e. thin clay layers inter bedded with thick sand except at location Toot where thick clay layers were identified at depths 52 mbgl. This section has fresh granular zones up to depth of 200m except Toot and Shakoor where saline granular zones are observed at depth of 150m bgl. The 3D lithological fence will represent the much more clear representation of sub-surface lithology in space.

Fig.15: 3-Dimension Lithological Fence

3.2 Aquifer Geometry:

The aquifer group embodies a number of granular layers alternating with thick or thin clay lenses. A few clay layers intervening these aquifer groups pinch out against the sand zones at a few places. The marker horizons are traced all over the area by connecting their tops and bottoms. Sandy clay layer occurs at the surface covering the unconfined aquifer which is in turn underlain by prominent clay zone. It is composed of mainly of medium sand with thin beds of fine sand.

Aquifer IA (Very Shallow Aquifer) extends maximum upto 103 m of depth and below that clay layer starts getting thickened about 10-12m separating Aquifer IB to a maximum depth of 176 m. Multi aquifers are exists and separated by highly thick clay zones of 25 to 40 m thickness upto 300m depth (Table-4). Based on the same criteria, to know the broad picture of the aquifer disposition, inter-relationship of granular zones, nature, geometry and extension of aquifers in the Ferozpur and Fazlika district, the aquifer grouping (Annexure-IV)has been done using the sub-surface lithology and a three-dimensional aquifer model has been prepared shown in Fig.16 and aquifer disposition 3D fence diagram was also prepared using the aquifer groups after Aquifers-(IA &IB), so the whole lithology is considered to be a single aquifer group system. The first aquifer is water table aquifer and extends all over the area. The aquifer is mainly composed of fine to coarse grained sand.

Aquifer Group	Range		Thickness	
	From	То	Min	Max
Aquifer IA	4	103	14	101
Aquifer IB	83	176	9	84
Multiple Aquifers	84	300	36	177

Table-4: Aquifer Grouping in Ferozpur and Fazlika District

Fig.16: 3D Aquifer disposition Model

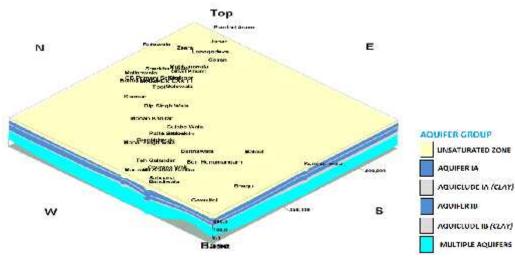
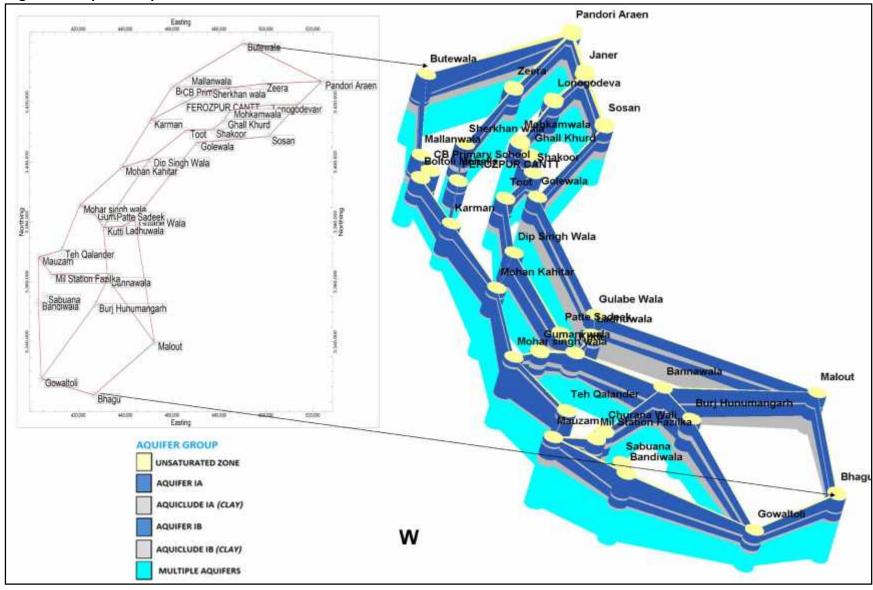



Fig.17: 3D Aquifer Disposition

4.0 GROUND WATER RESOURCES

Ground water resource estimation of the area have been carried out by taking Dynamic and In-storage resources of unconfined aquifer and confined aquifers present upto 300m depth. The assessment of dynamic ground water Resources of the study area have been carried out jointly by CGWB and Water Resources and Environment Directorate (WRED), Department of Irrigation, Punjab on the basis of Ground Water Estimation Committee (1997) methodology.

The occurrence of potential aquifers (productive granular zones) upto 300 m depth has been demarcated on basis of aquifer wise subsurface mapping. The total saturated thickness of granular zones was derived from the exploratory borehole data of a particular block. The granular zones occurring below the zone of water level fluctuation up to the first confining layer has been considered as static unconfined zone. The specific yield value for the unconfined aquifer has been taken as 60% of 0.12 which comes as 0.072 whereas for the confined aquifer, the storativity value has been considered. Since the specific yield is likely to reduce with increase in depth due to compaction of overlying sediments.

Hence, the major data elements considered in this estimation are thickness of granular zones, specific yield/storativity, and area of both fresh water and saline/brackish water. It has been observed that in some of the blocks sufficient data on probable occurrence of granular zones was not available. In those cases, the existing exploratory data of adjoining block/district has been either extrapolated or interpolated to derive such parameters required for estimation. This assessment of total groundwater resources has been computed based on the available data with CGWB & WRED, Department of Irrigation, and Punjab.

4.1 Groundwater Resources up to depth of 300m

a. Dynamic Resources:

Block-wise ground water resource potential of the district has been assessed as per GEC-97 as on 31st March 2013. The primary source of recharge in the area is the rainfall. The ground water development in all the blocks has exceeded the available recharge, thus all the blocks have been categorized as over exploited. Stage of ground water development in the Ferozpur & Fazilka districts has been assessed to be 144% and 95%. The details are explained in below Table-5 & 6.

Table 5: Ferozpur	District	Dynamic	Ground	Water	Resource	&	Development	Potential
(31.03.2013) in mcm	า							

Assessment	Net	Existing	Existing	Existing	Provision for	Net Ground	Stage of	Category
Unit/ Block	Annual	Gross	Gross Ground	Gross	domestic,	Water	Ground	
	Ground	Ground	Water Draft	Ground	and	Availability	Water	
	Water	Water Draft	for domestic	Water	industrial	for future	Development	
	Availability	for	and	Draft for	requirement	irrigation	{(13/10) *	
		irrigation	industrial	All uses	supply to	development	100} (%)	
			water supply	(11+12)	2025	(10-11-14)		
FEROZPUR	26742	31775	704	32479	987	-6021	121	Over
								Exploited
GHALL	28126	50348	308	50656	416	-22639	180	Over
KHURD								Exploited

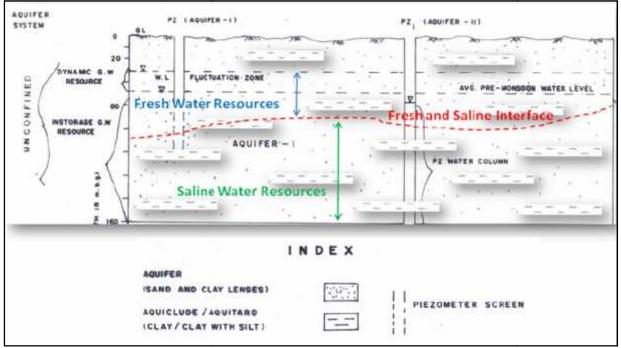
TOTAL	137499	196392	1935	198327	2588	-61481	144	Over Exploited
ZIRA	16284	36925	391	37316	533	-21174	229	Over Exploited
MAMDOT	24938	30863	186	31049	174	-6099	125	Over Exploited
GURU HAR SAHAI	26711	25136	222	25358	304	1271	95	SAFE
MAKHU	14699	21345	124	21469	174	-6820	146	Over Exploited

Table	6:	Fazilka	District	Dynamic	Ground	Water	Resource	&	Development	Potential
(31.03	.20	13) in mo	m							

Assessment	Net	Existing	Existing	Existing	Provision for	Net Ground	Stage of	Category
Unit/ Block	Annual	Gross	Gross Ground	Gross	domestic,	Water	Ground	
	Ground	Ground	Water Draft	Ground	and	Availability	Water	
	Water	Water Draft	for domestic	Water	industrial	for future	Development	
	Availability	for	and	Draft for	requirement	irrigation	{(13/10) *	
		irrigation	industrial	All uses	supply to	development	100} (%)	
			water supply	(11+12)	2025	(10-11-14)		
ABOHAR	29733	9861	954	10815	1331	18541	36	SAFE
FAZILKA	26747	37859	819	38677	1116	-12227	145	OVER- EXPLOITED
JALALABAD	22032	30403	690	31093	955	-9326	141	OVER- EXPLOITED
KHUYIAN SARWAR	14811	7597	344	7941	479	6735	54	SAFE
TOTAL	93323	85719	2807	88526	3882	3722	95	SAFE

b. In-storage Ground Water Resources

As per revised guidelines recommended by the Central Level Expert Group on groundwater resources assessment, the resources are separately considered as dynamic and instorage unconfined. In case of alluvial area, the in-storage resources of unconfined aquifer have been computed based on specific yield of the aquifer as detailed below.


In-storage Ground Water		Thickness of the aquifer (granular/productive zone)				Areal extent
resources	=	below the zone of water level	х	Sp. Yield of	х	of the
(Unconfined		fluctuation down to the bottom		the aquifer		
Aquifer)		layer of unconfined aquifer				aquifer

The dynamic and in-storage ground water resources estimations have been calculated for single aquifer group upto 300m of each block of Ferozpur and Fazilka districts. In-storage

ground water resources are estimated for fresh water and saline water resources based on the geophysical interpretations of depth of fresh and saline water interface for each block wise. The fresh and saline calculations are made based on the assumptions on aquifer is considered as unconfined aquifer so that the specific yield concept is used for resources estimations (Fig.18). The detailed resources estimations are calculated in detailed table for fresh and saline water resources in the below tables-7, 8, 9, 10, 11 & 12.

Total Availability of Ground Water Resources = Dynamic Resources + In-storage Resources.

Fig.18: Conceptual figure to understand the fresh and saline water resources in the aquifer up to 300 m for Resource Estimation in Unconfined and Confined Aquifer System.

(The clay lenses are more dominant in the aquifer and sometimes huge thickness of clay deposits are also observed in the lithologs)

Table-7. Block Wise In-Storage Ground Water Resources of Fresh Water Aquifers Upto Average Depth of Ferozpur District

	GENERAL	DESCRIP	TION OF TH	HE GROUN	D WATE	R ASSESSMEN	NT UNIT	OF DISTRI	ICT FEROZ	ZPUR, PU	NJAB STAT	ГЕ (2013)
Тур	e of Groun	d Water A	Assessment V	U nit (Block): FEROZ	ZPUR Blocks						
Sr. No	Name of Assessmen	Type of rock	Areal ext	. ,	Average Pre-	Depth to bottom of	Total Thickne	Total thickness	Thickness of the	Thickne ss of	Average Specific	In-Storage Ground
	t Unit	formatio n	Total Geographi cal Area	Assessme nt Area Fresh Water	monsoo n Water Level (m bgl)	nonsoo Aquifer Water based on Level Geophysical (m bgl) Interface & Bore logging (m bgl)	ss of formati on below Pre- monsoo n Water Level (m) (9-8)	of the Granular Zones up to the depth of Fresh Water Zones (m)	unsaturat ed granular Zones up to Pre- monsoon WL (m)	the saturat ed granula r Zones up to the depth of Fresh water aquifer below (m) (11- 12)	Yield	Water Resources up to the depth of Fresh Water Aquifer (ham) 5*13*14
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Ferozpur	Alluvium	46950	46950	6.7	174	167.3	71	3	68	0.072	229867
2	Ghal Khurd	Alluvium	53210	53210	9.68	140	130.32	96	7	89	0.072	340970
3	Makhu	Alluvium	28860	28860	1.75	225	223.25	146	1	145	0.072	301298
4	Mamdot	Alluvium	37580	37580	3.11	190	186.89	134	1	133	0.072	359866
5	Zira	Alluvium	38340	38340	19.3	208	188.7	105	8	97	0.072	267767
	Dist. Total(-	204940	204940								1499768
	Dist. Total(N	ИСМ)										14998

Table-8. Block Wise In-Storage Ground Water Resources of Saline Aquifers Upto 300 m Depth of Ferozpur District

GEN	ERAL DESCRIP	TION OF THE	GROUND WATE	R ASSESSMENT U	NIT OF DISTRIC	T FEROZPUR, P	UNJAB STAT	E (2013)		
Туре	e of Ground V	Vater Asses	sment Unit (Blo	ock): Ferozpur B	locks					
Sr.	Name of	Type of	Areal e	xtent (ha)	Depth to	Depth to	Total	Total	Average	In-Storage
No.	Assessment Unit	rock formation	Total	Assessment	bottom of Aquifer	bottom of Saline Water	thickness of the	thickness of the	Specific Yield	Ground Water
			Geographical	Area	based on	Aquifer	Saline	Granular		Resources
			Area	Saline Water	Geophysical Interface & Borelogging (m bgl)	based on Geophysical Interface & Borelogging (m bgl)	Water up to the max depth (m)	Zones up to the depth ofSaline Water Zones (m)		up to the depth of Saline Water Aquifer (ham) 5*13*14
1	2	3	4	5	6	7	8	9	10	11
1	Ferozpur	Alluvium	46950	46950	174	300	126	68.7	0.072	232233
2	Ghal Khurd	Alluvium	53210	53210	140	250	110	64	0.072	245192
3	Makhu	Alluvium	28860	28860	225	300	75	55	0.072	114286
4	Mamdot	Alluvium	37580	37580	190	0	0	0	0.072	0
5	Zira	Alluvium	38340	38340	208	300	92	71	0.072	195994
	Dist. Total(ham)		204940	204940						787705
	Dist. Total(N	/ICM)								7877

Table-9. Block Wise Total Availability of Fresh and Saline Groundwater Resources upto 300 m Depth andVolume of unsaturated granular zone in the Ferozpur District

		AVAILAE	BILITY OF TOTAL FRESH G	ROUNDWATER RES	SOURCES IN FEROZ	PUR DISTRICT		
SI.No BLOCK		Volume of Unsaturated Zone (HAM)	Dynamic Groundwater Resources (2013) AQUIFER-I	In-storage Groundwater Resources UPTO	Groundwater Resources upto FRESH WATER	Total Saline Groundwater Resources upto	Fresh Gro	ailabilty of oundwater [(5)+(6)+(7)]
				FRESHWATER	[(3)+(4)] (HAM)	(HAM)	ham	mcm
1	2	3	4	5	6	7	8	9
1	Ferozpur	1690	26742	229867	256609	232233	488842	4888
2	Ghal Khurd	4470	28126	340970	369095	245192	614287	6143
3	Makhu	346	14699	301298	315997	114286	430283	4303
4	Mamdot	451	24938	359866	384804	0	384804	3848
5	Zira	3681	16284	267767	284051	195994	480045	4800
Dist.To	otal (ham)	10638	110788	1499768	1610556	787705	2398261	23983
Dist.To	otal (mcm)	106	1108	14998	16106	7877		

ham :	hectare metre
mcm:	million cubic metre

	G	ENERAL DES	CRIPTION O	OF THE GRO	OUND WA	TER ASSE	SSMENT U	NIT OF DI	STRICT FAZI	LIKA, PUNJA	B STATE (2013)
Тур	e of Ground	d Water Ass	sessment	Unit (Block	(): FAZILI	KA Block	S					
Sr. N o.	Name of Assessmen t Unit	Type of rock formation	Areal ex Total Geogra phical Area	ttent (ha) Assess ment Area Fresh Water	Averag e Pre- monso on Water Level (m bgl)	Depth to bottom of Aquifer based on Geophy sical Interfac e & Borelog ging (m bgl)	Total Thickne ss of formati on below Pre- monsoo n Water Level (m) (9-8)	Total thickne ss of the Granula r Zones up to the depth of Fresh Water Zones (m)	Thickness of the unsaturat ed granular Zones up to Pre- monsoon WL (m)	Thickness of the saturated granular Zones up to the depth of Fresh water aquifer below (m) (11-12)	Averag e Specific Yield	In-Storage Ground Water Resources up to the depth of Fresh Water Aquifer (ham) 5*13*14
1	2	3	4	5	8	9	6	7	8	9	10	11
	FAZILIKA											
1	Abohar	Alluvium	67290	57090	8.65	18	9.35	9	3	6	0.072	24663
2	Fazilka	Alluvium	85920	80720	11.45	117	105.55	54	7	47	0.072	273156
3	Guru Har Sahai	Alluvium	49060	23460	9.75	204	194.25	118	2	116	0.072	195938
4	Jalalabad	Alluvium	52440	47440	11.2	163	151.8	75	8	67	0.072	228851
5	Khuyan Sarovar	Alluvium	84540	67240	9.56	155	145.44	99	6	93	0.072	450239
Dist. Total(ham) 339250 275 Dist. Total(MCM)			275950								1172847 11728	

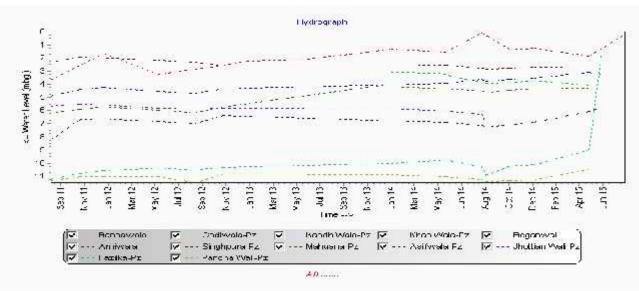
Table-10. Block Wise In-Storage Ground Water Resources of Fresh Water Aquifers Upto Average Depth of Fazilka District

GEN			•	ER ASSESSMENT UNI						<u> </u>
Тур	e of Ground Wa	ater Assess	ment Unit (B	lock): FAZILKA BLO	СКЅ		_			
Sr. No	Name of Assessment Unit	Type of rock formatio n	Area Total Geographic al Area	l extent (ha) Assessment Area Saline Water	Depth to bottom of Fresh Water Aquifer based on Geophysic al Interface & Boreloggi ng (m bgl)	Depth to bottom of Saline Water Aquifer based on Geophysic al Interface & Boreloggin g (m bgl)	Total thickness of the Saline Water up to the max depth (m)	Total thickness of the Granular Zones up to the depth ofSaline Water Zones (m)	Average Specific Yield	In-Storage Ground Water Resources up to the depth of Saline Water Aquifer (ham) 5*13*14
1	2	3	4	5	6	7	8	9	10	11
	Fazilka									
1	Abohar	Alluvium	67290	10200	18	300	282	135	0.072	99144
2	Fazilka	Alluvium	85920	5200	117	250	133	57	0.072	21341
3	Guru Har Sahai Jalalabad	Alluvium	49060	25600	204	275	71	39	0.072	71885
4		Alluvium	52440	5000	163	250	87	47	0.072	16920
5	Khuyan Sarovar	Alluvium	84540	17300	155	300	145	73	0.072	90929
	Dist. Total(ha	-	339250	63300						300218
	Dist. Total(M									3002

Table-12. Block Wise Total Availability of Fresh and Saline Groundwater Resources upto 300 m Depth andVolume of unsaturated granular zone in the Fazilka District

	AVAILABILITY OF TOTAL FRESH GROUNDWATER RESOURCES IN FAZILKA DISTRICT											
SI.N	BLOCK	Volume of	Dynamic	In-storage	Groundwater	Total Saline	Total Ava	•				
ο		Unsaturated	Groundwater	Groundwater	Resources	Groundwater	Ground					
		Zone up to Pre-	Resources	Resources UPTO	upto FRESH WATER	Resources[(3)+(4)	Resou	rces				
		monsoon WL (ham) 5*7*8	(2013) AQUIFER-I	FRESHWATER	[(3)+(4)] (HAM)] (HAM)	ham	mcm				
1	2	3	4	5	6	7	8	9				
1	Abohar	24224	29733	24663	54395	99144	153539	1535				
2	Fazilka	72173	26747	273156	299904	21341	321245	3212				
3	Guru Har Sahai	11774	26711	195938	222649	71885	294534	2945				
4	Jalalabad	50342	22032	228851	250883	16920	267803	2678				
5	Khuyan Sarovar	60869	14811	450239	465050	90929	555979	5560				
Dist.T	otal (ham)	219383	120035	1172847	1292881	300218	1593100	15931				
Dist.T	otal (mcm)	2194	1200	11728	12929	3002						

ham : hectare metre


mcm: million cubic metre

5.0 GROUND WATER RELATED ISSUES

5.1 Ground Water Depletion

Ferozpur and Fazilka district is famous for its paddy and non paddy cultivation. The quality of ground water in the district is potable for both the irrigation and drinking purposes therefore, the ground water is constantly being pumped for the irrigation due to its easy access through tube wells at shallow depths and they are the main source of irrigation. This will lead to its deepening of ground water levels in all blocks of Ferozpur and All Blocks of Fazlika District saline and shallow so that there water is less using in irrigation and drinking purpose district as the recharge of the groundwater through rainfall and other sources are less than the overall extraction. The hydrographs also shows the declining water level trend over the years in the district (Fig.19) and is categorized as over-exploited. This declining water table trend, if not checked, would assume an alarming situation in the near future affecting agricultural production and thus economy. Ground Water Recharge and Conservation may be done in these areas to overcome the depletion. Other than the groundwater depletion, quality and rising water table are the other major issues.

5.2 Rising Water table

In western parts of the district the water table is rising due to limited/non-extraction of ground water because of its brackish / saline quality and more availability of canal water for domestic and irrigation purposes. The fresh water thickness in this area is less. These areas are likely to get water logged in near future. There is an urgent need to arrest the rising water trend in western part of the district and implement anti-water logging schemes.

5.3 Ground Water Quality

The ground water of the study area is alkaline in nature. Ground water in the area is fresh to marginally saline. Ground water with iron concentration above permissible limit 1.5 mg/l is found mainly in Malsian (5 mg/l) fluoride concentration above permissible limit 1.5 mg/l is found Rattewala(sohangarh) (1.74 mg/l), Abohar (1.75 mg/l), Danewali (1.75 mg/l). The

electrical conductivity (EC) values are more than 3000 μ S/cm, at four locations i.e. Rattewala(sohangarh), Abohar, Danewali and Bannawala, where the EC value is 5790, 8415, 5604 and 5418 μ S/cm at 25°C respectively. There is growing concern on deterioration of ground water quality due to geogenic and anthropogenic activities.

5.4 Ground Water Irrigation Scenario

As per the data available from minor irrigation census 2006-07, the detailed number of shallow, deep, tube wells, lined, unlined water distribution system, land holdings of wells are given in Table-13, 14 and 15.

	Table-13. Distribution of Tube wens According to wen owner 3 land holding Size									
Type of Tube well (TW)	Marginal (0-1 ha)	Small (1-2 ha)	Semi- Medium (2-4 ha)	Medium (4-10ha)	Big (>10ha)	Total				
Shallow TW	1990	7701	30872	32420	9489	82472				
Deep TW	299	1157	4247	5581	2338	13622				
Total	2289	8858	35119	38001	11827	96094				

Table-13: Distribution of Tube wells According to Well Owner's land holding Size

Table-14: Distribution of Tube wells According to Depth

	Depth of Tubewells in metres								
Depth range	0-20 m	20-40 m	40-60 m	60-70 m	70-90m	90-150m	Range 0-150m		
Tubewells	1591	39824	13867	27349	4774	8761	96269		
Tubewells (%)	2%	41%	14%	29%	5%	9%	100%		

Table-15: System of Ground water distribution device

Open Water Channels							
Lined/pucca	Unlined/kutcha	Others	Total				
26399	69212	658	96269				

6.0 MANAGEMENT STRATEGIES AND AQUIFER MANAGEMENT PLAN

Aquifer mapping is leads to groundwater management plans to be implemented by including demand side-management and Ground Water Use Efficiency.

An outline of the Aquifer Management Plan for each block is given in chapter-7. This includes details regarding population, rainfall, average annual rainfall, agriculture and irrigation, water bodies, ground water resource availability, ground water extraction and water level behavior. Aquifer disposition and various cross sections have also been given. Ground water resources, extraction and other issues including ground water resource enhancement and demand side innervations have been given.

Artificial recharge plan is less feasible in the Ferozpur and Fazlika District due to very low availability of volume of surplus water (9.59 mcm). Another focus has been given to minimize the gross draft by enhancing ground water use efficiency in irrigation system after replacing the water distribution system from unlined/kutcha channel to Under Ground Pipeline System (UGPS) in over exploited blocks of the district. Scope of quantitative impact on stage of ground water development after applying various management strategies is given in Table-16.

6.1 Scope of Implementation

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the central or state govt. like MANERGA, IWSP, PMKSY (Prime Minister Krishi Sinchai Yojna), NABARD funded schemes, Urban Development schemes, departmentally funded projects etc. may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, engineering Collages, Academic and Research Institution, NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

6.2 Potential of Enhancing the Ground Water Use Efficiency

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced in the state of Punjab, particularly in overexploited blocks.

There are around 69212 (out of 96269) tube wells (71.89 %) operated by farmers for irrigation through unlined/Kutcha open channel system in Ferozpur and Fazlika district where water from the tube well is discharge to the agricultural field. In this process, huge (around 25 %) quantity of ground water is wasted in soil moisture and evaporation losses.

Around 85.83 % of the tube wells are of shallow depth (<20 to 70m) and remaining wells are deeper depth (70 to >150 m) existed in the district. Thus majority of wells are tapping shallow Aquifer which is under stress due to over-exploitation.

Dynamic ground water resources (2013) indicate that Gross ground water draft for irrigation in the Ferozpur and Fazilka districts are estimated to be 2821.10 mcm. It is expected that around 25 % of over draft can be brought down by switching over to underground/surface pipeline based distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to 717.1 mcm assuming that there is a no crop diversification by the farmers.

The benefit will lead to saving of precious ground water resources in overexploited blocks. The measure if implemented will bring down the ground water overdraft from 144 % to 113%. The category of the blocks will also improve resulting in boosting of agriculture and industrial development otherwise not sustainable in over-exploited blocks.

The tube wells also consume enormous electricity which is subsidized and government incurs significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. It is expected to save 1% of the agricultural land occupied by open channels which can be utilized for cultivation purpose. Heavy ground water overdraft can be reduced by these efforts. This will ensure *more crops per drop*.

6.3 Water saving Potential from Crop Diversification-Change Paddy to Maize/Soya-bean:

As the requirement of water for paddy is much high therefore by changing paddy to maize/soya-bean will help in saving of water. For estimating the water saving by crop diversification it is assumed that **one mcm** of water will be saved in case of maize or soyabean planted in **one sq km** of land. In case of pulses even higher amount of ground water can be saved.

The block wise saving of water in mcm by crop diversification, UGPL and artificial recharge methods details are given below table. The table shows that how much reduction of stage of development presents to after adaptation of these practices are explained in Table-16a,b &c.

Block	Net	Total	Present	Reducti	Reduction in draft by different water				Change of
	Ground	Irrigation	Stage		saving method			afterwards	paddy
	Water	Draft	of	Replace	Adopt	Change	Total	(%)	cultivation
	Availability	(mcm)	draft	water	Artificial	Paddy	(mcm)		area (% of
	(mcm)		(SOD)	courses	recharge	to	(2+3+4)		existing)
			(%) (As	by UG	(mcm)	Maize			
			per	Pipes		(mcm)			
			2013)	(mcm)					
			1	2	3	4	5		
Abohar	297.3	98.6	36	27.04	0.0	0	27.04	27.28	NR
Fazilka	267.5	378.6	145	96.69	3.5	48.3	148.50	99.83	NR
Jalalabad	220.3	304.0	141	77.73	2.6	34.23	114.61	99.91	NR
Khuyian Sarwar	148.1	76.0	54	19.85	0.0	0	19.85	40.21	NR
Ferozpur	267.4	317.7	121	81.20	2.9	0	84.06	90.02	NR
Ghall Khurd	281.3	503.5	180	126.64	3.1	132.09	261.88	99.69	NR
Guru Har Sahai	267.1	251.4	95	63.39	2.8	0	66.23	70.14	NR
Makhu	147.0	213.4	146	53.67	2.7	27.94	84.33	99.92	NR
Mamdot	249.4	308.6	125	77.62	2.2	0	79.79	92.51	NR
Zira	162.8	369.3	229	93.29	0.4	139.6	233.24	108	27.92
									(8%)
Total	2308.2	2821.1		717.12				100	

Table-16a: Scope of Quantitative Impact on Stage of Development after applying variousmanagement strategies in mcm

				s in study area			
Block	Presen	Reductio	Resultan	Reduction in	Resultan	Reduction in	Resultan
	t SOD	n in SOD	t SOD	Stage of	t SOD	Stage of	t SOD
	(%) as	(%) after	(%)	development	(%)	developmen	(%)
	on	unlined		after crop		t after	
	2013	channel		diversification		Artificial	
		(%)		by		recharge	
			Col.(2 -	Maize/Soyabea	Col.(2 -	(%)	Col.(2 -
			3)	n (%)	5)		7)
			57		57		,,
1	2	3	4	5	6	7	8
ABOHAR	36	5.96	30.41	0.00	36.37	0.00	36.37
FAZILKA	145	25.44	119.16	7.31	137.29	1.31	143.29
JALALABAD	141	24.80	116.32	4.73	136.39	1.20	139.92
KHUYIAN							
SARWAR	54	9.22	44.40	0.00	53.62	0.00	53.62
FEROZPUR	121	21.36	100.10	0.00	121.46	1.07	120.39
GHALL KHURD	180	32.17	147.93	34.27	145.84	1.12	178.99
GURU HAR							
SAHAI	95	16.91	78.02	0.00	94.93	1.06	93.87
MAKHU	146	26.10	119.96	7.78	138.29	1.85	144.21
MAMDOT	125	22.24	102.26	0.00	124.50	0.87	123.63
ZIRA	229	40.75	188.40	71.80	157.36	0.22	228.94

Table-16b: Impact on Stage of Development (SOD) after applying various management strategies in study area

By adopting all the management strategies resulting in total reduction in stage of groundwater development is 91.47%. Hence overall stage of development afterwards is 100 % and is given in Table.16.

Block	Present	Reduction	Reduction in	Reduction in	Total	
	SOD	in SOD (%)	Stage of	Stage of	Resultant	
	(%) as	after	development	development	SOD (%)	
	on	unlined	after crop	after		
	2013	channel	diversification by	Artificial		
		(%)	Maize/Soyabean	recharge (%)	Col.(3+4+5)	
			(%)			
1	2	3	4	5	6	7
ABOHAR	36	5.96	0.00	0.00	5.96	30
FAZILKA	145	25.44	18.06	1.31	44.81	100
JALALABAD	141	24.80	15.54	1.20	41.54	100
KHUYIAN						
SARWAR	54	9.22	0.00	0.00	9.22	44
FEROZPUR	121	21.36	0.00	1.07	22.43	99
GHALL KHURD	180	32.17	46.96	1.12	80.26	100
GURU HAR						
SAHAI	95	16.91	0.00	1.06	17.98	77
MAKHU	146	26.10	19.01	1.85	46.96	99
MAMDOT	125	22.24	0.00	0.87	23.11	101
ZIRA	229	40.75	87.76	0.22	128.73	100

Table-16c: Overall Stage of Development (SOD) after reduction

BLOCK WISE AQUIFER MAPS

AND

MANAGEMENT PLAN

(PART-II)

1.0 Salient Information

Name of the Block and	Ferozpur
Area	752.10 sq km
District/ State	Ferozpur, Punjab
Population	Urban Population: 0
-	Rural Population: 138731
	Total population: 138731
Rainfall	Normal Monsoon: 282 mm
	Non-monsoon Rainfall : 55 mm
	Annual Average Rainfall: 349 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation
-	Cropping intensity: 198%
	Number and types of abstraction structures: 9975 nos. , Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 2566 mcm (fresh and saline water resources) up to the depth of 300m. The fresh water resources are estimated up to the depth of 174m based on geophysical interpretations interface. The potential granular zones are available for fresh water calculated as 71 m. Saline water resources are estimated based on the available depth of wells existed in this block up to 300 m and the granular zones are counted after the depth of 174 m and available zones are 68 m. Block is categorized as Over-Exploited as per Dynamic Groundwater Resources, 2013 assessment. Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.

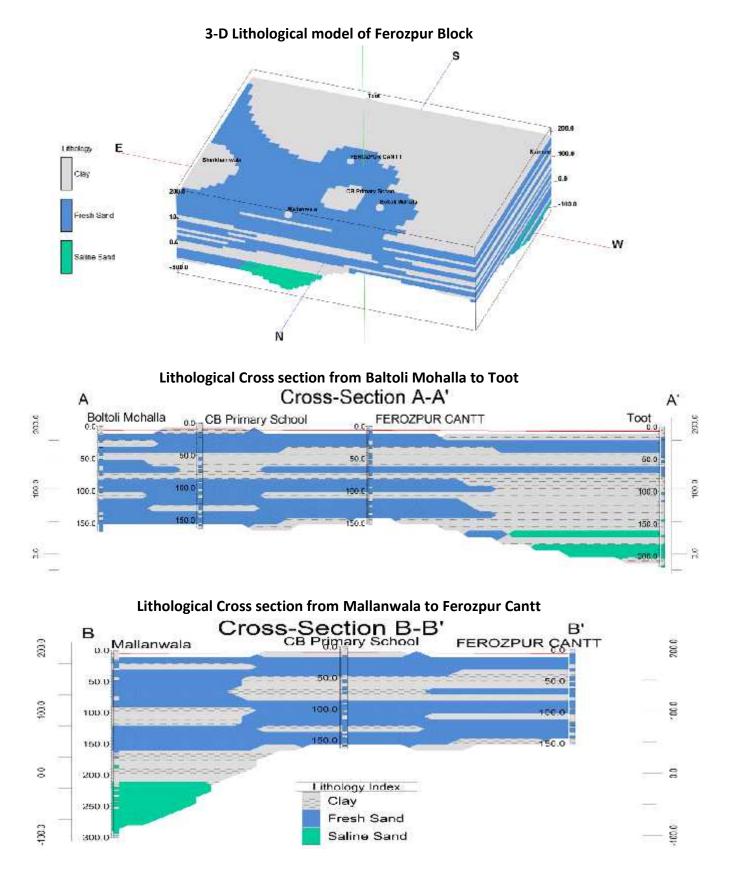
kisting and future wat	er <u>Existing Gross Ground water Draft as on 2013</u>						
emands	Irrigation: 317.5 mcm						
	Domestic and industrial water supply: 7.04 mcm						
	<u>Future water demands</u>						
	Irrigation development potential : -60.21 mcm						
	Domestic and industrial water supply up to 2025 years : 9.87 mcm						
/ater level behavior	<u>Aquifer wise water level</u>						
	Aquifer-I						
	Pre Monsoon: 1.45 – 15.22 m bgl						
	Post Monsoon: 1.20 – 13.10 m bgl						
	Mean (10 yrs) : 1.00 – (-)1.01 m/yr						
	Trends						
	Pre Monsoon: $0.18 - (-)0.22 \text{ m/yr}$						
	Post Monsoon: 0.24 – (-)0.30 m/yr						
	-Pr. State : Publish District : ERCIZEUR, Tabsic : EIRCIZEUR, The k : EIRCIZEUR Willage, Mehre Wava 						
	-P+ Shate - Punjab Diskrict - CROZENR Tabali - FIROZENR Josek - FIROZENR Williage - Mehre Wasa						
(jocu) eva trater.							
(jocu) eva trade	Mains Mayris- Junis- Seois- Seois- Voiris- Janis- Marid- M						
May 15 Juli 12 Seo 12 Vov 12 Vov 12	Mains Mayris- Junis- Seons- Vioris- Junis- Marris- Marris- Marris- Kugris- Cesto- Feonts- Zarris- Zarris- Leonts- Costo- Teonts- Costo- Teonts- Costo- Teonts- Costo- Teonts- Costo- Teonts- Costo- Teonts- Costo- Teonts- Costo- Teonts- Costo-						

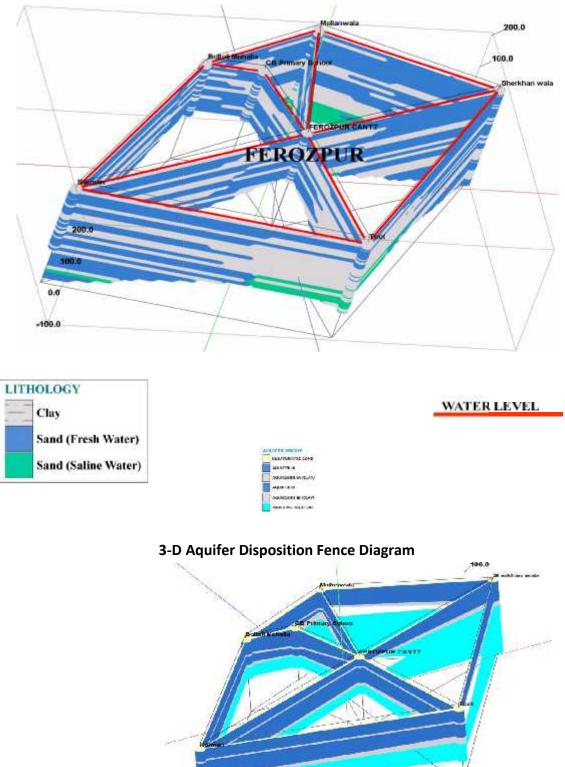
Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Younger Alluvium, Older Alluvium

Aquifer wise Characteristics

Aquifer	Geology	Type of	Thickness	Transmissi	Yield/	Specific	Storativity
Group		Aquifer	of	vity	Discharge	Yield %	
*			Granular zones (m)	(m²/day)	(m³/day)		
Aquifer	Quaternar	Unconfin	137	Not	Not	0.0072	Not
-1	y Alluvial	ed to		Available	Available	(12%)	Available
	deposits	confined		(NA)	(NA)		(NA)


* Well field proposed in adjacent block


The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated

Source of Data	No. of e	Total			
	<100	100-200	200-300	>300	
CGWB		1		2	3
PRIVATE		2			2
TOTAL					5

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.

100.0.

3-D Lithological Fence Diagram

200.0

_0.0

Ground Water	Dynamic Fresh water	264.42 mcm		
Resources upto the	resources			
depth of 300m	In-storage Fresh water	2298.67 mcm		
	resources			
	In-storage Saline water	2322.3 mcm		
	resources			
	Total	4885.39 mcm		
Ground Water Extraction (as per 2013)	Irrigation	317.75 mcm		
	Domestic & Industrial	7.04 mcm		
Future Demand for do	mestic & Industrial sector	9.87 mcm		
(2025) (as per 2013)				
Stage of Groundwater De	evelopment	121 %		
Chemical Quality of grou	nd water	Not Available		
Ground water Contamina	ation Issues	Not Available		
Other issues		In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems. Salinity Problem in deeper aquifer		

Ground water Resource, Extraction, Contamination and other issues

Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 169.02 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will save 2.86 mcm volume of water*

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 469.50 sq km (Entire Block) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 57.11mcm

<u>Change in cropping pattern</u> Not required

Area coverage: Not required Anticipated volume of water to be saved: Not required

2. Salient Information

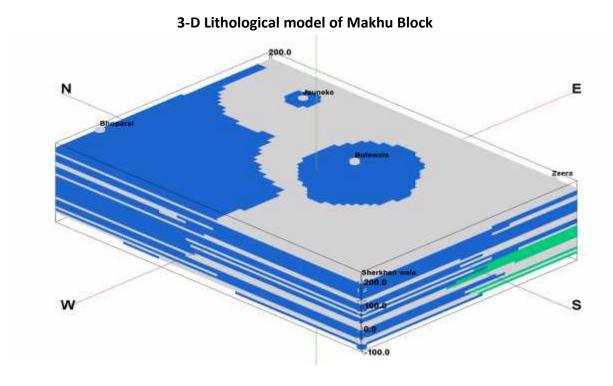
Name of the Block and	ΜΑΚΗυ
Area	288.60 sg km
(in Km ²)	
District/ State	Ferozpur, Punjab
Population	Urban Population:
	Rural Population: 77662
	Total population: 77662
Rainfall	Normal Monsoon: 328 mm
	Non-monsoon Rainfall : 61 mm
	Annual Average Rainfall: 370 mm
Agriculture and Irrigation	Principal crops: Wheat, Cotton and Paddy
	Gross cropped area: 1334.27 sq km
	Number and types of abstraction structures: 6927nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 5445 mcm (fresh and saline water resources) up to the depth of 300 m. The fresh water resources are estimated up to the depth of 225 m based on geophysical interpretations interface. The potential granular zones are available for fresh water is 145 m. Saline water resources are estimated based on the available depth of wells existed up to 300 m and the granular zones are counted after the depth of 225 m and available zones are 55 m. Block is categorized as Over-Exploited as aper Dynamic Groundwater Resources, 2013 assessment. Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.

Existing and future water demands	Existing Gross Ground water Draft as on 2013Irrigation: 213.45 mcmDomestic and industrial water supply: 1.24 mcmFuture water demandsIrrigation development potential : -68.26 mcmDomestic and industrial water supply up to 2025 years : 1.74 mcm
Water level behavior	Aquifer wise water level Aquifer-I Pre Monsoon: $2.35 - 16.00 \text{ m bgl}$ Post Monsoon: $1.55 - 18.20 \text{ m bgl}$ Mean (10 yrs): $1.58 - (-)0.86 \text{ m/yr}$ Trends Pre Monsoon: $0.16 - (-)0.26 \text{ m/yr}$ Post Monsoon: $0.15 - (-)0.29 \text{ m/yr}$

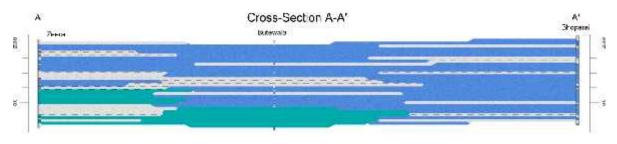
Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Younger Alluvium

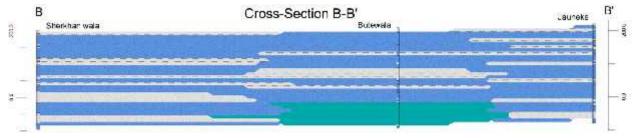
Aquifer wise Characteristics

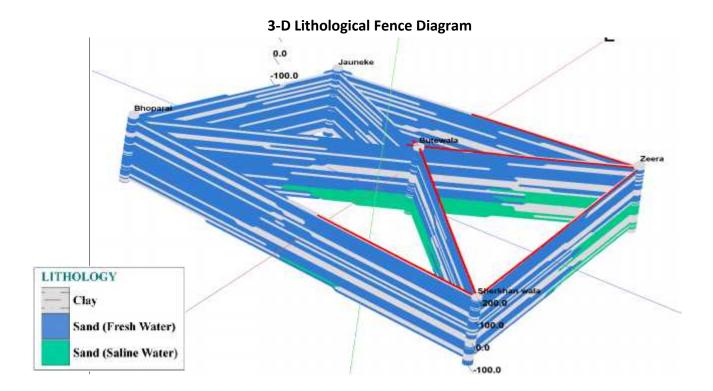

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(lpm)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	200	1210	4840	0.072	NA
	ary	d to					
	Alluvial	confined					
	deposits						

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.


Exploratory Data Validated

Source of Data	No. of e	Total						
	<100	<100 100-200 200-300 >300						
				1				
CGWB	0	0	0	1	1			
TOTAL					1			


The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.



Lithological Cross section from Zeera to Bhoparai

Lithological Cross section from Sherkhanwala to Jauneke

Ground water Resource, Extraction, Contamination and other issues

Ground Water Resources upto the	,	146.99 mcm		
depth of 300m	In-storage Fresh water resources	3012.98 mcm		
	In-storage Saline water resources	1142.86 mcm		
	Total	4303 mcm		
Ground Water Extraction (as per 2013)	Irrigation	420.20 mcm		
	Domestic & Industrial	14.02 mcm		
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	15.11 mcm		
Stage of Groundwater De	evelopment	162 %		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH ranges between 8.53 to 8.7. Ground water in the area is fresh to marginal saline. EC value of the ground water show wide variations and ranges from 563 μ S/cm to 571 μ S/cm at 25 ⁰ C.		

Ground water Contamination Issues	Potable Ground water			
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources. In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.			

Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 0.346 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 2.72 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

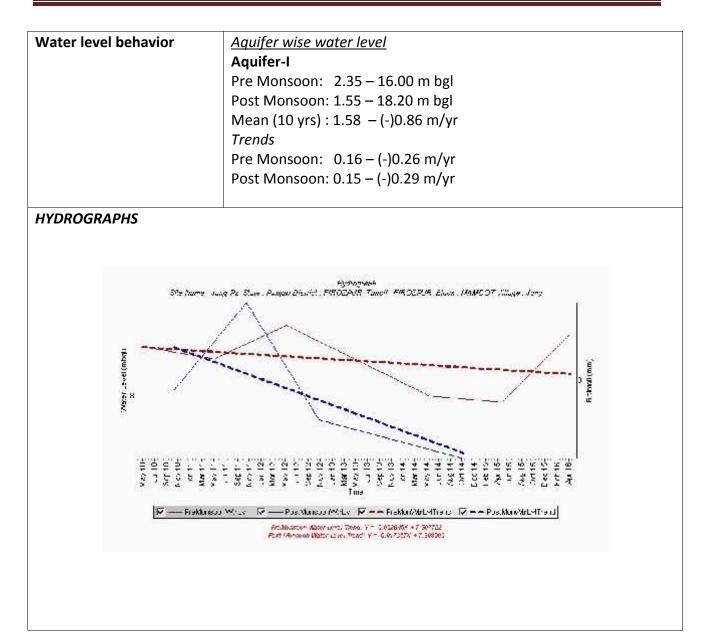
Area proposed to be covered: 288.6 sq km

Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 38.36 mcm

Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean 7.8 % of the total rice area needs to change.*

Area coverage: 11.43 sq km


Anticipated volume of water to be saved: 11.43mcm

Net Annual	Total	Gross	Paddy	Change	Reductio	Gross	Present	Reduction	Percentage
Ground	Irrigatio	Draft all	area	Paddy to	n in	draft	Stage of	in Stage of	of Crop
Water	n Draft	uses	(Sq km)	Maize/	Water	after	developme	developme	Diversified
Availability	(present)	(present)		soya bean	Saved	saving	nt (%)	nt after	area
2013	(mcm)	(mcm)		(Sq km)	(mcm)	of water		Maize (%)	
(mcm)						(mcm)			
147.0	213.4	1.2	254	11.43	11.43	202.02	146	138	7.8

<u>Alternate Water sources:</u> Groundwater/surface water sources: Tanks, Ponds

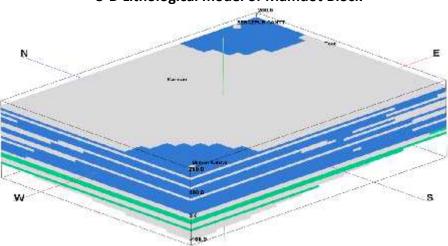
Name of the Block and Area (in Km ²)	MAMDOT 375.80 sq km
District/ State	Ferozpur, Punjab
Population	Urban Population: 0 Rural Population: 103234 Total population: 103234
Rainfall	Normal Monsoon: 290 mm Non-monsoon Rainfall : 100 mm Annual Average Rainfall: 398 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation Cropping intensity: 193% <u>Area under</u> Number and types of abstraction structures: 10081 nos., Tubewells
Ground Water Resource Availability and Extraction	Ground water Resources Availability Ground Water Resources are available in 3848 mcm (fresh and saline water resources) up to the depth of 300 m. The fresh water resources are estimated up to the depth of 190 m based on geophysical interpretations interface. The potential granular zones are available for fresh water is 133 m. Saline water resources arenot available due to data deficiency. Block is categorized as Over- Exploited as aper Dynamic Groundwater Resources, 2013 assessment. Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.
Existing and future water demands	Existing Gross Ground water Draft as on 2013 Irrigation: 308.63 mcm Domestic and industrial water supply: 1.86 mcm <u>Future water demands</u> Irrigation development potential : -60.99 Domestic and industrial water supply up to 2025 years : 1.74 mcm

3.0 Salient Information

Aquifer Disposition

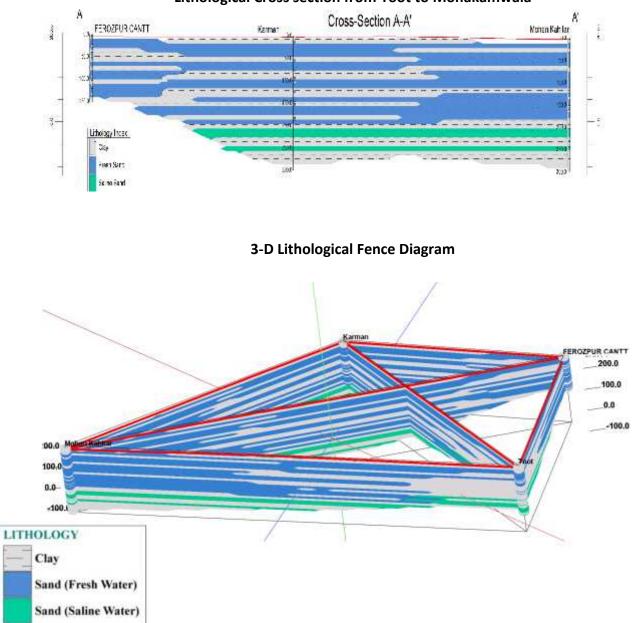
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium, Younger Alluvium

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(lpm)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	133	2660	3706	0.72	6.4*10 ⁻⁴
	ary	d to					
	Alluvial	confined					
	deposits						

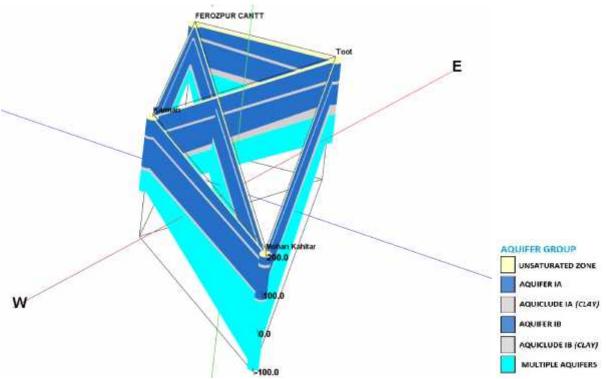

Aquifer wise Characteristics

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of e	Total			
	<100	100-200	200-300	>300	
CGWB				1	1
TOTAL				1	1

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.



3-D Lithological model of Mamdot Block

v

Lithological Cross section from Toot to Mohakamwala

3-D Aquifer Disposition Fence Diagram

3.0 Ground water Resource, Extraction, Contamination and other issues

Ground Water Resources upto the	Dynamic Fresh water resources	249.38 mcm			
depth of 300m	In-storage Fresh water resources	3598.66 mcm			
	In-storage Saline water resources	0 mcm			
	Total	3848 mcm			
Ground Water	Irrigation	308.63 mcm			
Extraction (as per 2013)	Domestic & Industrial	14.02 mcm			
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	1.86 mcm			
Stage of Groundwater De	evelopment	125 %			
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH ranges near 8.37. Ground water in the area is fresh to marginal saline. EC value of the ground water show wide variations and			

	ranges from 545 μ S/cm at 25 ⁰ C.
Ground water Contamination Issues	Potable Ground Water
Other issues	 Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources. In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.

Ground water Resource enhancement

<u>Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)</u> Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 143.96 mcm

Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 4.75 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 666.50 sq km

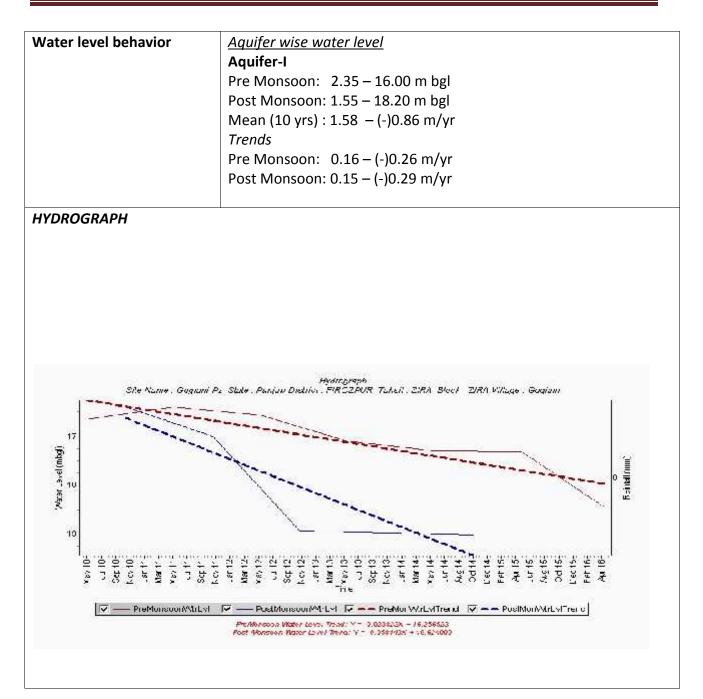
Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 99.15 mcm

Change in cropping pattern

Proposed change in cropping pattern: Not Required

Area coverage: Not Required

Anticipated volume of water to be saved: Not Required


Net Annual	Total	Gross	Paddy	Change	Reductio	Gross	Present	Reduction	Percentage
Ground	Irrigatio	Draft all	area	Paddy to	n in	draft	Stage of	in Stage of	of Crop
Water	n Draft	uses	(Sq km)	Maize/	Water	after	developme	developme	Diversified
Availability	(present)	(present)		soya bean	Saved	saving	nt (%)	nt after	area
2013	(mcm)	(mcm)		(Sq km)	(mcm)	of water		Maize (%)	
(mcm)						(mcm)			
249.4	308.6	1.9	227	0	0	308.63	125	125	0.0

Alternate Water sources

surface water sources: Tanks, Ponds

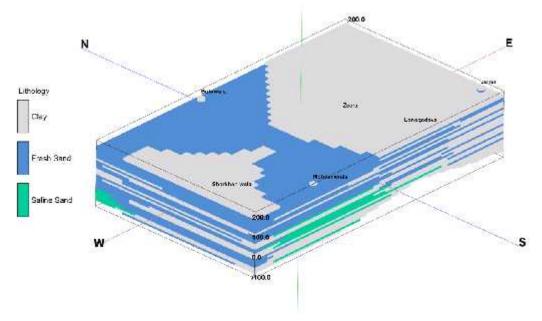
4.0 Salient Information

Name of the Block and	Zeera				
Area	383.40 sq km				
(in Km ²) District/ State	Ferozpur, Punjab				
Population	Urban Population: 766				
Population	Rural Population: 112437				
	Total population: 112437				
Rainfall	Normal Monsoon: 328 mm				
Kumun	Non-monsoon Rainfall :100 mm				
	Annual Average Rainfall: 436 mm				
Agriculture and Irrigation	Irrigation practices: Canal and Tube well Irrigation				
· · · · · · · · · · · · · · · · · · ·	Cropping intensity: 182%				
	Number and types of abstraction structures: 11595 nos., Tubewells				
Ground Water Resource					
Availability and Extraction	Ground water Resources Availability Ground Water Resources are available in 4800 mcm (fresh and				
Availability and Extraction	saline water resources) up to the depth of 300 m. The fresh water				
	resources are estimated up to the depth of 208 m based on				
	geophysical interpretations interface. The potential granular zones				
	are available for fresh water is 97m. Saline water resources are				
	estimated based on the available depth of wells existed up to 300 m				
	and the granular zones are counted after the depth of 208 m and				
	available zones are 71 m. Block is categorized as Over-Exploited as				
	aper Dynamic Groundwater Resources, 2013 assessment.				
	Ground water Resources Extraction				
	Deeper aquifers are marginal to highly saline and it is not suitable				
	for irrigation purpose so that all users are tapping at shallow				
	aquifers only. State government drinking water supply wells tapped				
	at shallow aquifers and canal supply water are used for domestic				
	and Irrigation purpose. So that the ground water draft could not be				
	addressed for deeper aquifer.				
Existing and future water	Existing Gross Ground water Draft as on 2013				
demands	Irrigation: 369.25 mcm				
	Domestic and industrial water supply: 3.91 mcm				
	Future water demands				
	Irrigation development potential : -211.74 mcm				
	Domestic and industrial water supply up to 2025 years : 5.33 mcm				
	somestic and musicial water supply up to 2025 years . 5.55 mem				
	<u> </u>				

2.0 Aquifer Disposition

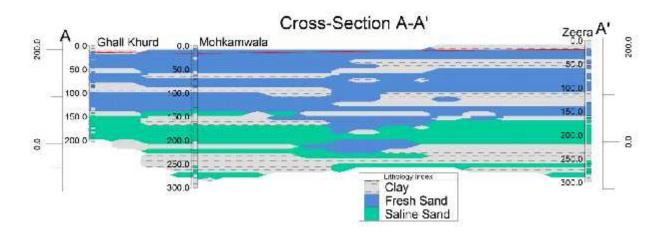
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Younger Alluvium, Older Alluvium

Aquifer wise Characteristics

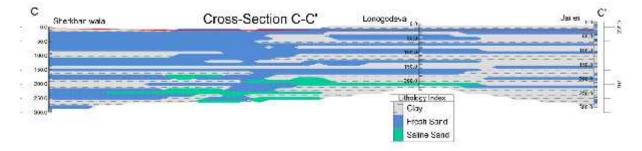

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	168	NA	NA	NA	NA
	ary	d to					
	Alluvial	confined					
	deposits						

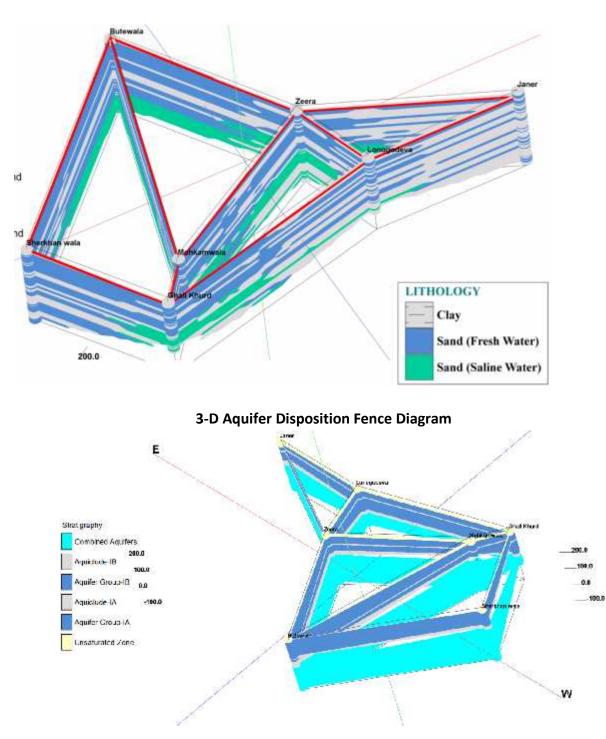
The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of e	exploration wells	s as per depth ra	inge (m)	Total
	<100	100-200	200-300	>300	
CGWB	0	0	1	1	2
WRED/PSTC/WSS	0	0	0	1	0
PRIVATE	0	0	1	0	0
TOTAL	0	0	2	0	2

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.




3-D Lithological model of Zeera Block

Lithological Cross section from Sherkhan wala and Janer

3-D Lithological Fence Diagram

Ground Water Dynamic Fresh water 162.84 mcm							
	1	162.84 mcm					
Resources upto the	resources						
depth of 300m	In-storage Fresh water	2677.67 mcm					
	resources						
	In-storage Saline water	1959.94 mcm					
	resources						
	Total	4800 mcm					
Ground Water	Irrigation	36.25 mcm					
Extraction (as per 2013)	Domestic & Industrial	14.02 mcm					
	mestic & Industrial sector	5.33 mcm					
(2025) (as per 2013)							
Stage of Groundwater De	evelopment	229 %					
Chemical Quality of grou	nd water	Not Available					
Ground water Contamina	ation Issues	Not Available					
Other issues		Water level decline has been observed in					
		major parts of the block due to in					
		discriminate development of ground water					
		resources.					
		In shallow water level area, less					
		development of ground water resource					
		couple with recharge from canal irrigation					
		is causing water logging and inland salinity					
		problems.					

Ground water Resource, Extraction, Contamination and other issues

Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 36.81 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 0.36 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 383.4 sq km Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc 66.36

Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean 71.8 % of the total rice area needs to change.*

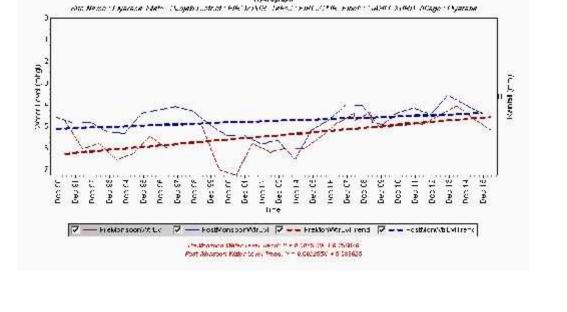
Area coverage: 116.915sq km

Anticipated volume of water to be saved: 116.915 mcm

Net Annual	Total	Gross	Paddy	Change	Reductio	Gross	Present	Reduction	Percentage
Ground	Irrigatio	Draft all	area	Paddy to	n in	draft	Stage of	in Stage of	of Crop
Water	n Draft	uses	(Sq km)	Maize/	Water	after	developme	developme	Diversified
Availability	(present)	(present)		soya bean	Saved	saving	nt (%)	nt after	area
2013	(mcm)	(mcm)		(Sq km)	(mcm)	of water		Maize (%)	
(mcm)						(mcm)			
162.8	369.3	3.9	349	116.915	116.91	252.34	229	157	71.8

Alternate Water sources

Groundwater/surface water sources: Tanks, Ponds


Location, details and availability from such sources outside the area: --

Regulation and Control: Punjab Sub Soil Act, 2009 regarding plantation of paddy cultivation.

5. Salient Information

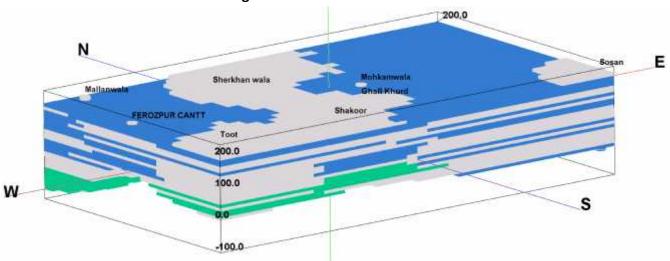
Name of the Block and Area (in Km ²)	GHALL KHURD 532.10 sq km
District/ State	Ferozpur, Punjab
Population	Urban Population: 8724 Rural Population: 134028 Total population: 142752
Rainfall	Normal Monsoon: 298 mm Non-monsoon Rainfall : 117 mm Annual Average Rainfall: 422 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation Cropping intensity: 190% <u>Area under</u> Number and types of abstraction structures: 15960 nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 6143 mcm (fresh and saline water resources) up to the depth of 300 m. The fresh water resources are estimated up to the depth of 140 m based on geophysical interpretations interface. The potential granular zones are available for fresh water is 89 m. Saline water resources are estimated based on the available depth of wells existed up to 300 m and the granular zones are counted after the depth of 140 m and available zones are 64 m. Block is categorized as Over-Exploited as per Dynamic Groundwater Resources, 2013 assessment.
	Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.

Existing and future water	Existing Gross Ground water Draft as on 2013				
demands	Irrigation: 503.48 mcm				
	Domestic and industrial water supply: 3.08 mcm				
	<u>Future water demands</u>				
	Irrigation development potential : -226.39mcm				
	Domestic and industrial water supply up to 2025 years : 4.16 mcm				
Water level behavior	Aquifer wise water level				
	Aquifer-I				
	Pre Monsoon: 2.35 – 16.00 m bgl				
	Post Monsoon: 1.55 – 18.20 m bgl				
	Mean (10 yrs) : 1.58 – (-)0.86 m/yr				
	Trends				
	Pre Monsoon: 0.16 – (-)0.26 m/yr				
	Post Monsoon: 0.15 – (-)0.29 m/yr				
HYDROGRAPH					
	MyArayraph son Maha : Sugab Justant - Ale With G. Jaha : Sud USP 6. Hubble : MAHOT 3: (61): Allayo : Oyaraba				

2.0 Aquifer Disposition

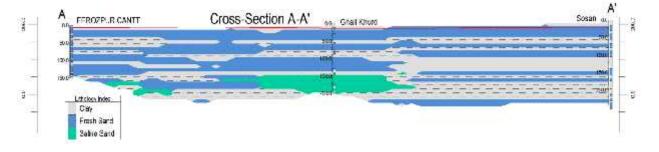
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium, Younger Alluvium

Aquifer wise Characteristics

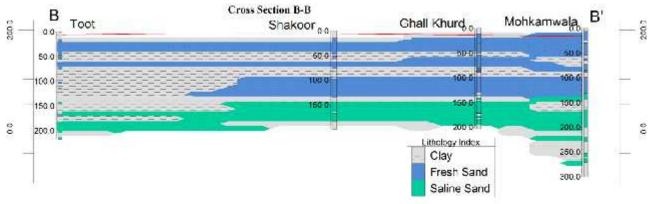

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	153	1890	NA	12	NA
	ary	d to					
	Alluvial	confined					
	deposits						

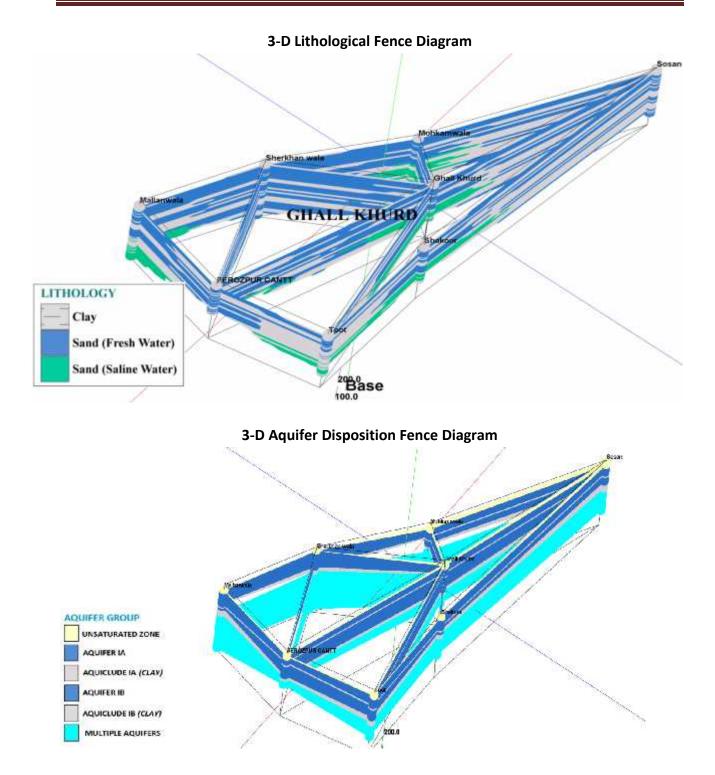
The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of e	No. of exploration wells as per depth range (m)					
	<100	100-200	200-300	>300			
CGWB			1	2	3		
WRED/PSTC/WSS				1	1		
PRIVATE			1		1		
TOTAL			2	3	5		

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.




3-D Lithological model of Ghal Khurd Block

Lithological Cross section from Ferozpur Cantt to Sosan

Ground Water Resources upto the	Dynamic Fresh water resources	281.26 mcm		
depth of 300m	In-storage Fresh water resources	3409.70 mcm		
	In-storage Saline water resources	2451.92 mcm		
	Total	6143 mcm		
Ground Water Extraction (as per 2013)	Irrigation	503.48 mcm		
Extraction (ds per 2013)	Domestic & Industrial	3.08 mcm		
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	4.16 mcm		
Stage of Groundwater De	evelopment	180%		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH ranges near 9.15. Ground water in the area is fresh to marginal saline. EC value of the ground water show wide variations and ranges near to 761 at 25 ^o C.		
Ground water Contamina	ation Issues	Potable Water for drinkimg		
Other issues		Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources. In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.		

Ground water Resource, Extraction, Contamination and other issues

Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 44.7 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 3.15 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 532.10 sq km Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 90.49 mcm

Change in cropping pattern

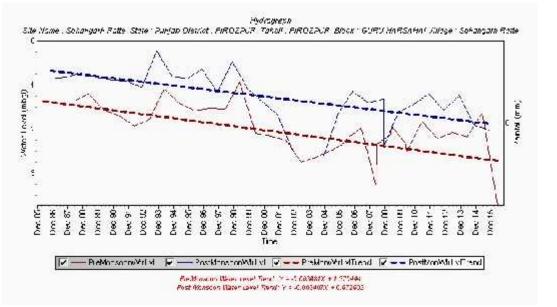
Proposed change in cropping pattern: *Rice to Maize, Soyabean* 34.3% of the total rice area needs to change.

Area coverage: 96.39 sq km

Anticipated volume of water to be saved: 96.39 mcm

Net Annual	Total	Gross	Paddy	Change	Reductio	Gross	Present	Reduction	Percentage
Ground	Irrigatio	Draft all	area	Paddy to	n in	draft	Stage of	in Stage of	of Crop
Water	n Draft	uses	(Sq km)	Maize/	Water	after	developme	developme	Diversified
Availability	(present)	(present)		soya bean	Saved	saving	nt (%)	nt after	area
2013	(mcm)	(mcm)		(Sq km)	(mcm)	of water		Maize (%)	
(mcm)						(mcm)			
281.3	503.5	3.1	357	96.39	96.39	407.09	180	146	34.3

<u>Alternate Water sources</u>


surface water sources: Tanks, Ponds

5.0 Salient Information

Name of the Block and	GURU HARSAHAI			
Area	490.6 sq km			
(in Km ²)				
District/ State	Fazilka, Punjab			
Population	Urban Population: -			
	Rural Population: 151315			
	Total population: 151315			
Rainfall	Normal Monsoon: 210mm			
	Non-monsoon Rainfall : 30 mm			
	Annual Average Rainfall: 384 mm			
Agriculture and Irrigation	Irrigation practices: Canal and Tube well Irrigation			
	Cropping intensity: 196 %			
	Number and types of abstraction structures: 9828 nos., Tubewells			
Ground Water Resource	Ground water Resources Availability			
Availability and Extraction	Ground Water Resources are available in 2945 mcm (fresh and			
	saline water resources) up to the depth of 275 m. The fresh water			
	resources are estimated up to the depth of 204 m based on			
	geophysical interpretations interface. The potential granular zones			
	are available for fresh water is 116 m. Saline water resources are			
	estimated based on the available depth of wells existed up to 275 m			
	and the granular zones are counted after the depth of 204 m and			
	available zones are 39 m. Block is categorized as Critical as aper			
	Dynamic Groundwater Resources, 2013 assessment.			
	Ground water Resources Extraction			
	Deeper aquifers are marginal to highly saline and it is not suitable			
	for irrigation purpose so that all users are tapping at shallow			
	aquifers only. State government drinking water supply wells tapped			
	at shallow aquifers and canal supply water are used for domestic			
	and Irrigation purpose. So that the ground water draft could not be			
	addressed for deeper aquifer.			

Existing and future water	Existing Gross Ground water Draft as on 2013
demands	Irrigation: 251.36 mcm
	Domestic and industrial water supply: 2.22 mcm
	<u>Future water demands</u>
	Irrigation development potential : 12.71 mcm
	Domestic and industrial water supply up to 2025 years : 3.04 mcm
Water level behavior	Aquifer wise water level
	Aquifer-I
	Pre Monsoon: 2.35 – 16.00 m bgl
	Post Monsoon: 1.55 – 18.20 m bgl
	Mean (10 yrs) : 1.58 – (-)0.86 m/yr
	Trends
	Pre Monsoon: 0.16 – (-)0.26 m/yr
	Post Monsoon: 0.15 – (-)0.29 m/yr

HYDROGRAPHS

2.0 Aquifer Disposition

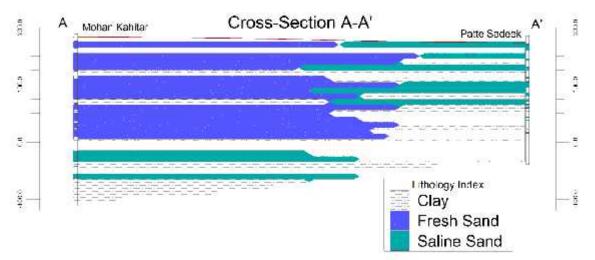
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Younger Alluvium, Aeolian Alluvium

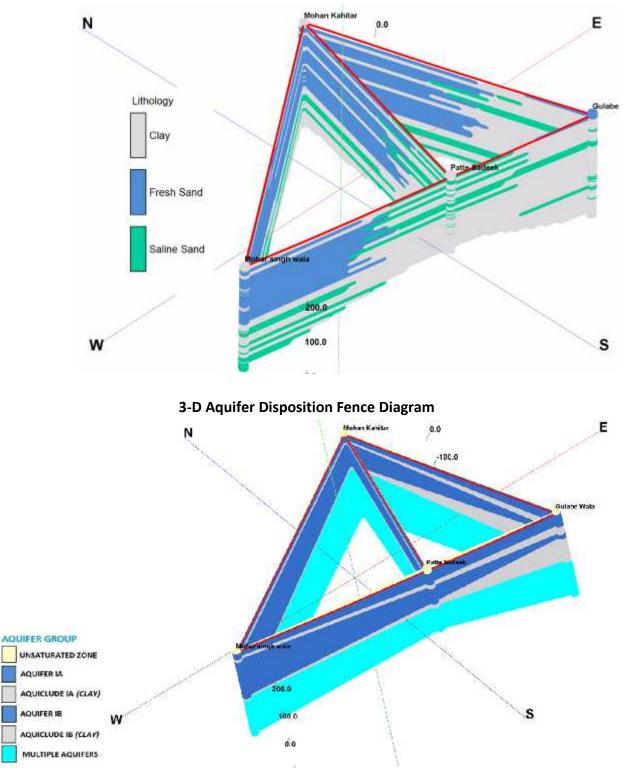
Aquifer wise Characteristics

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	155	NA	NA	NA	NA
	ary	d to					
	Alluvial	confined					
	deposits						

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of e	No. of exploration wells as per depth range (m)			
	<100	<100 100-200 200-300 >300			
CGWB	0	0	1	1	2
WRED/PSTC/WSS	0	0	0	1	0
PRIVATE	0	0	0	0	0
TOTAL	0	0	0	0	2


The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.

3-D Lithological model of Guru Har Sahai Block

Lithological Cross section from Mohan Kathiar to Patte Sadeek

3-D Lithological Fence Diagram

Ground Water Resources upto the	Dynamic Fresh water resources	267.11 mcm		
depth of 300m	In-storage Fresh water resources	1959.38 mcm		
	In-storage Saline water resources	718.85 mcm		
	Total	2945 mcm		
Ground Water Extraction (as per 2013)	Irrigation	251.36 mcm		
	Domestic & Industrial	2.2 mcm		
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	12.71 mcm		
Stage of Groundwater De	evelopment	95 %		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH ranges between 8.41 to 9.01. Ground water in the area is fresh to marginal saline. EC value of the ground water show wide variations and ranges from 750 μ S/cm to 7592 μ S/cm at 25 ^o C.		
Ground water Contamina	ation Issues	Fluoride (mg/l): Swah Vala (3.39), Nitrate (mg/l): Banna Wala (374), Sohangarh (93), Swah Vala(61)		
Other issues		Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources. In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.		

Ground water Resource, Extraction, Contamination and other issues

Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

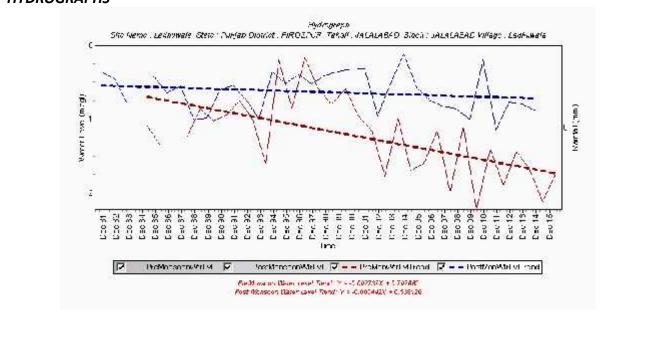
Volumes of unsaturated zone after 3m upto a desirable depth: 117.74 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 2.84 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 490.60 sq km Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 45.18mcm


Change in cropping pattern

Proposed change in cropping pattern: *Not Required* Area coverage: *Not Required* Anticipated volume of water to be saved: *Not Required*

7.0 Salient Information

Name of the Block and Area	JALALABAD 524.4 sq km					
(in Km ²)	524.4 SQ KIII					
District/ State	Ferozpur, Punjab					
Population	Urban Population: 560 Rural Population: 173012 Total population: 173572					
Rainfall	Normal Monsoon: 272 mm Non-monsoon Rainfall : 57 mm Annual Average Rainfall: 333 mm					
Irrigation	Irrigation practices: Canal and Tube well Irrigation Cropping intensity: 100% Number and types of abstraction structures: 10228nos., Tubewells					
Ground Water Resource	Ground water Resources Availability					
Availability and Extraction	Ground Water Resources are available in 2678 mcm (fresh and saline water resources) up to the depth of 300 m. The fresh water resources are estimated up to the depth of 163 m based on geophysical interpretations interface. The potential granular zones are available for fresh water is 67 m. Saline water resources are estimated based on the available depth of wells existed up to 250 m and the granular zones are counted after the depth of 163 m and available zones are 46 m. Block is categorized as Over-Exploited as aper Dynamic Groundwater Resources, 2013 assessment.					
	Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.					
Existing and future water demands	Existing Gross Ground water Draft as on 2013 Irrigation: 304.03 mcm Domestic and industrial water supply: 6.9 mcm Future water demands Irrigation development potential : -93.26 mcm Domestic and industrial water supply up to 2025 years : 9.55 mcm					

Water level behavior	Aquifer wise water level
	Aquifer-I
	Pre Monsoon: 2.35 – 16.00 m bgl
	Post Monsoon: 1.55 – 18.20 m bgl
	Mean (10 yrs) : 1.58 – (-)0.86 m/yr
	Trends
	Pre Monsoon: 0.16 – (-)0.26 m/yr
	Post Monsoon: 0.15 – (-)0.29 m/yr
	Aquifer-II & III: No Monitoring Stations
HYDROGRAPHS	

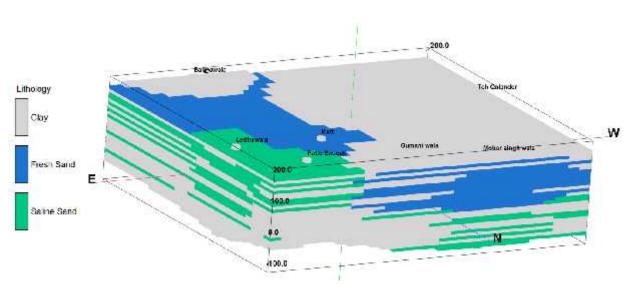
Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Younger Alluvium, Aeolian Alluvium

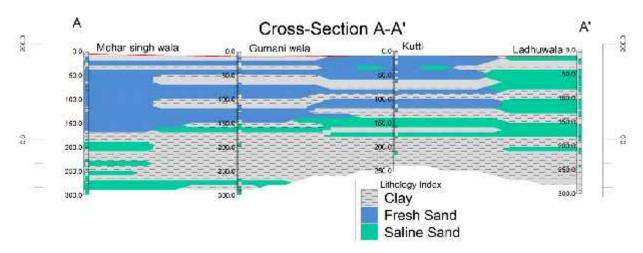
Exploratory Data Availability

Source of Data	No. of exploration wells as per depth range (m)				Total		
	<100	<100 100-200 200-300 >300					
CGWB	0	0	0	3	0		
WRED/PSTC/WSS	0	0	1	0	0		
PRIVATE	0	0	0	0	0		
TOTAL	0	0	0	0	4		

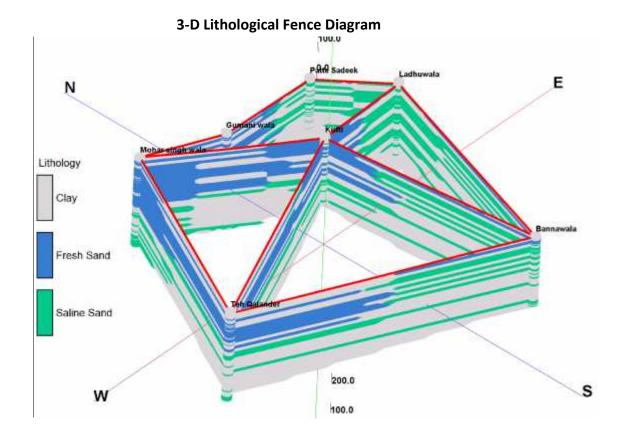
Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	114	2450	3478	0.72	1.38*10 ⁻³
	ary	d to					
	Alluvial	confined					
	deposits						

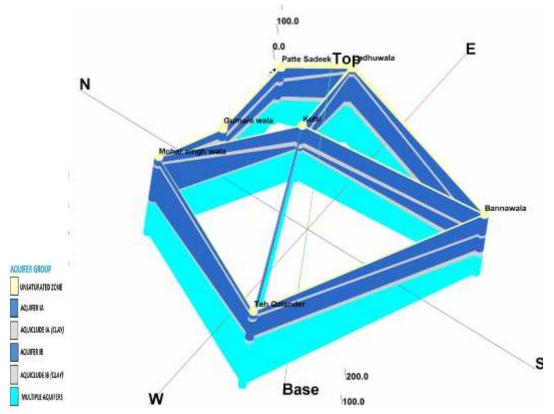

Aquifer wise Characteristics

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.


Exploratory Data Validated

Source of Data	No. of e	No. of exploration wells as per depth range (m)					
	<100	<100 100-200 200-300 >300					
CGWB	0	0	0	3	0		
WRED/PSTC/WSS	0	0	1	0	0		
PRIVATE	0	0	0	0	0		
ΤΟΤΑL	0	0	0	0	4		


The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.



3-D Lithological model of Jalalabad Block

Lithological Cross section from Mohar Singh Wala to Saduwala

3-D Aquifer Disposition Fence Diagram

Ground water Resource, Extraction, Contamination and other issues

Ground Water Resources upto the	Dynamic Fresh water resources	220.32 mcm		
depth of 300m	In-storage Fresh water resources	2288.51 mcm		
	In-storage Saline water resources	169.20 mcm		
	Total	2678.03 mcm		
Ground Water Extraction (as per 2013)	Irrigation	304.03 mcm		
Extraction (as per 2013)	Domestic & Industrial	6.9 mcm		
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	9.55 mcm		
Stage of Groundwater De	evelopment	141 %		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH ranges near to 8.53. Ground water in the area is fresh to marginal saline. EC value of		

	the ground water show wide variations and ranges from 555 μ S/cm to 3774 μ S/cm at 25 ^o C.
Ground water Contamination Issues	NA
Other issues	 Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources. In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.

Ground water Resource enhancement

<u>Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)</u> Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 503.42 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 2.65 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered 522.4 sq km

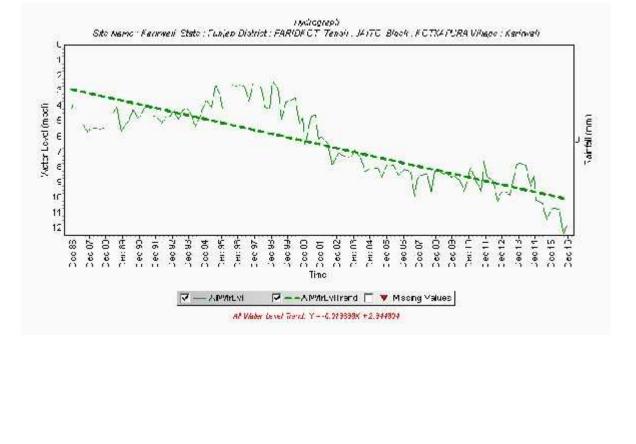
Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 54.64 mcm

Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean 3 % of the total rice area needs to change.*

Area coverage: 10.432 sq km

Anticipated volume of water to be saved: 10.432 mcm


Net Annual Ground Water Availability 2013	Total Irrigatio n Draft (present) (mcm)	Gross Draft all uses (present) (mcm)	Paddy area (Sq km)	Change Paddy to Maize/ soya bean (Są km)	Reductio n in Water Saved (mcm)	Gross draft after saving of water	Present Stage of developme nt (%)	Reduction in Stage of developme nt after Maize (%)	Percentage of Crop Diversified area
(mcm)	(memy	(ment)		(39 ((1))	(mem)	(mcm)		10120 (70)	
220.3	304.0	6.9	326	10.432	10.432	293.59	141	4.7	3

8. Salient Information

Name of the Block and	FAZILIKA
Area	859.2 sq km
(in Km ²)	oq
District/ State	Fazilika, Punjab
Population	Urban Population: 5770
	Rural Population: 181209
	Total population: 186979
Rainfall	Normal Monsoon: 272 mm
	Non-monsoon Rainfall : 50 mm
	Annual Average Rainfall: 326 mm
Irrigation	Irrigation practices: Canal and Tube well Irrigation
	Cropping intensity: 100%
	Number and types of abstraction structures: 13771 nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 3212 mcm (fresh and
Availability and Extraction	saline water resources) up to the depth of 300 m. The fresh water
	resources are estimated up to the depth of 500 m. the resh water
	geophysical interpretations interface. The potential granular zones
	are available for fresh water is 47 m. Saline water resources are
	estimated based on the available depth of wells existed up to 250 m
	and the granular zones are counted after the depth of 117 m and
	available zones are 57 m. Block is categorized as Over-Exploited as
	aper Dynamic Groundwater Resources, 2013 assessment.
	aper Dynamic Groundwater Resources, 2015 assessment.
	Ground water Resources Extraction
	Deeper aquifers are marginal to highly saline and it is not suitable
	for irrigation purpose so that all users are tapping at shallow
	aquifers only. State government drinking water supply wells tapped
	at shallow aquifers and canal supply water are used for domestic
	and Irrigation purpose. So that the ground water draft could not be
	addressed for deeper aquifer.
	1

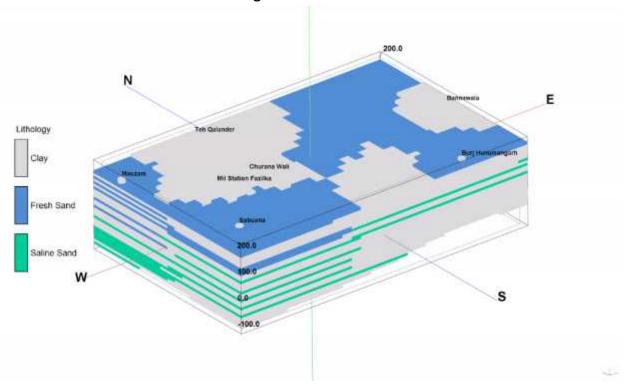
Existing and future water	Existing Gross Ground water Draft as on 2013				
demands	Irrigation: 378.59 mcm				
	Domestic and industrial water supply: 8.19 mcm				
	<u>Future water demands</u>				
	Irrigation development potential : -122.27 mcm				
	Domestic and industrial water supply up to 2025 years : 11.16 mcm				
Water level behavior	Aquifer wise water level				
	Aquifer-I				
	Pre Monsoon: 2.35 – 16.00 m bgl				
	Post Monsoon: 1.55 – 18.20 m bgl				
	Mean (10 yrs) : 1.58 – (-)0.86 m/yr				
	Trends				
	Pre Monsoon: 0.16 – (-)0.26 m/yr				
	Post Monsoon: 0.15 – (-)0.29 m/yr				

HYDROGRAPHS

Aquifer Disposition

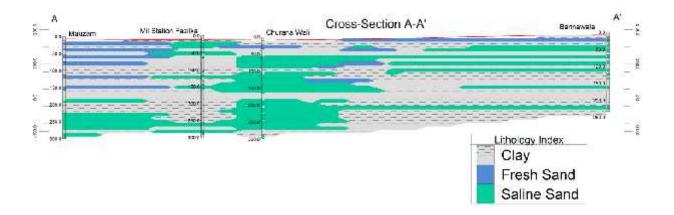
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Younger Alluvium, Aeolian Alluvium

Aquifer wise Characteristics

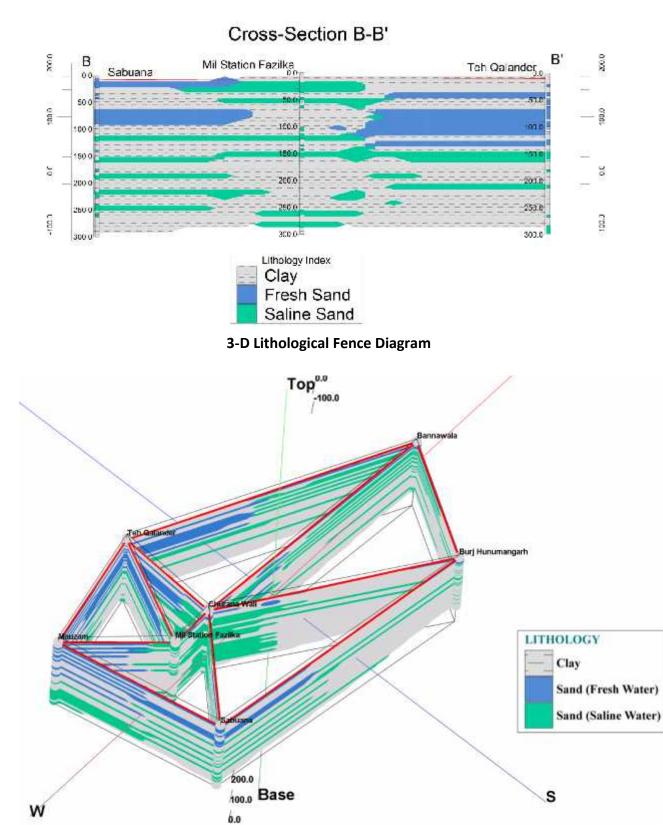

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	104	NA	NA	NA	NA
	ary	d to					
	Alluvial	confined					
	deposits						

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

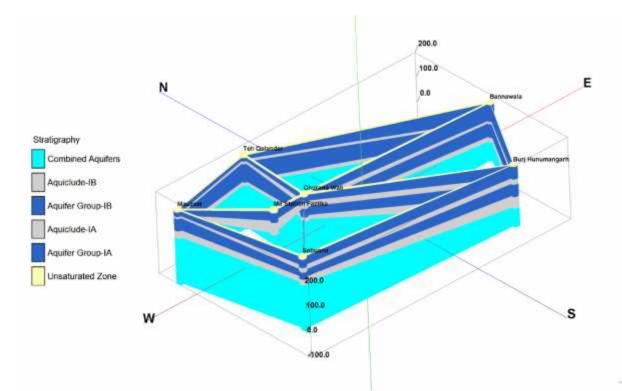
Exploratory Data Validated


Source of Data	No. of e	inge (m)	Total		
	<100	100-200	200-300	>300	
CGWB	0	0	0	4	4
WRED/PSTC/WSS	0	0	2	0	2
PRIVATE	0	0	0	0	0
TOTAL	0	0	2	4	6

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.



3-D Lithological model of Fazlika Block


Lithological Cross section from Mauazam to Bannawala

Lithological Cross section from Sabuana to Teh Qalander

3-D Aquifer Disposition Fence Diagram

Ground water Resource, Extraction, Contamination and other issues

Ground Water	Dynamic Fresh water	267.11 mcm		
Resources upto the				
depth of 300m				
	In-storage Fresh water	2731.56 mcm		
	resources			
	In-storage Saline water	213.41 mcm		
	resources			
	Total	3212 mcm		
Ground Water	Irrigation	378.59 mcm		
Extraction (as per 2013)	Domestic & Industrial	9.10		
	Domestic & Industrial	8.19 mcm		
Future Demand for do	mestic & Industrial sector	11.16 mcm		
(2025) (as per 2013)				
Stage of Groundwater De	evelopment	145 %		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH		
, .		ranges between 8.49 to 8.84. Ground water		
		in the area is fresh to marginal saline. EC		
		value of the ground water show wide		
		variations and ranges from 649 μ S/cm to		
		787μ S/cm at 25 ^o C.		
		787μ5/cm at 25 C.		

Ground water Contamination Issues	NA
Other issues	 Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources. In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.

Ground water Resource enhancement

<u>Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)</u> Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 721.73 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

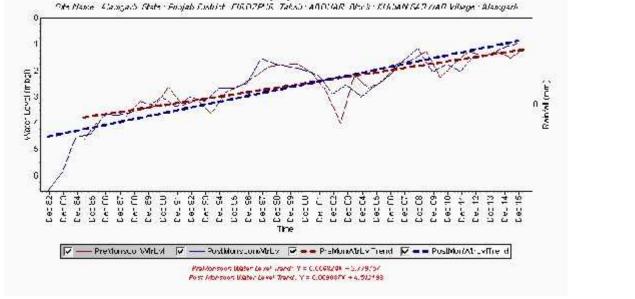
Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 3.51

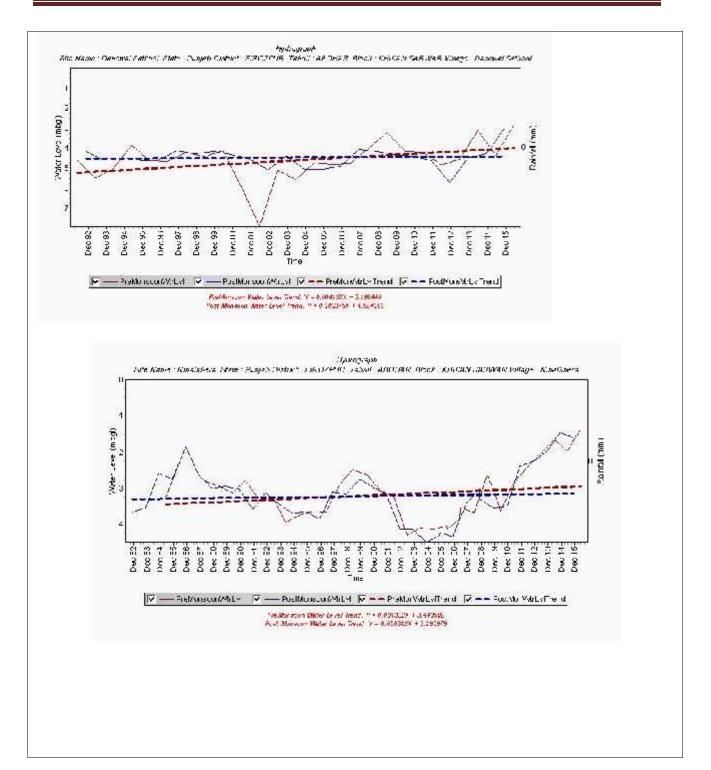
Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 859.20 sq km Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 68.04 mcm

Change in cropping pattern


Proposed change in cropping pattern: *Rice to Maize, Soyabean 7.3 % of the total rice area needs to change.* Area coverage: 19.5 sq km Anticipated volume of water to be saved: 19.5 mcm


Net Annual	Total	Gross	Paddy	Change	Reductio	Gross	Present	Reduction	Percentage
Ground	Irrigatio	Draft all	area	Paddy to	n in	draft	Stage of	in Stage of	of Crop
Water	n Draft	uses	(Sq km)	Maize/	Water	after	developme	developme	Diversified
Availability	(present)	(present)		soya bean	Saved	saving	nt (%)	nt after	area
2013	(mcm)	(mcm)		(Sq km)	(mcm)	of water		Maize (%)	
(mcm)						(mcm)			
267.5	378.6	8.2	230	19.55	19.55	359.04	145	137	7.3

9.0 Salient Information

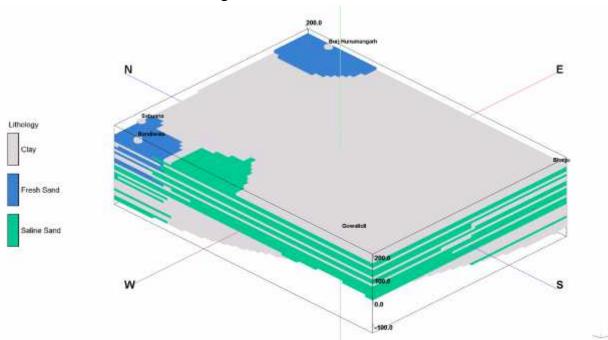
Name of the Block and	KHUIAN SARWAR
Area	845.4 sq km
(in Km²)	•
District/ State	Fazilka, Punjab
Population	Urban Population: 0
	Rural Population: 183688
	Total population: 183688
Rainfall	Normal Monsoon: 249 mm
	Non-monsoon Rainfall : 49 mm
	Annual Average Rainfall: 326 mm
Agriculture and Irrigation	Irrigation practices: Canal and Tube well Irrigation
	Cropping intensity: 100%
	Number and types of abstraction structures: 3327 nos., Tubewells
Ground Water Resource	Ground water Resources Availability
Availability and Extraction	Ground Water Resources are available in 5560 mcm (fresh and
	saline water resources) up to the depth of 300 m. The fresh water
	resources are estimated up to the depth of 155 m based on
	geophysical interpretations interface. The potential granular zones
	are available for fresh water is 93 m. Saline water resources are
	estimated based on the available depth of wells existed up to 300 m
	and the granular zones are counted after the depth of 155 m and
	available zones are 73 m. Block is categorized as Safe as per Dynamic
	Groundwater Resources, 2013 assessment.
	Crown dwyster Deservices Future tiers
	Ground water Resources Extraction
	Deeper aquifers are marginal to highly saline and it is not suitable
	for irrigation purpose so that all users are tapping at shallow
	aquifers only. State government drinking water supply wells tapped
	at shallow aquifers and canal supply water are used for domestic
	and Irrigation purpose. So that the ground water draft could not be
	addressed for deeper aquifer.

Existing and future water	Existing Gross Ground water Draft as on 2013				
demands	Irrigation: 75.97 mcm				
	Domestic and industrial water supply: 3.44 mcm <i>Future water demands</i>				
	Irrigation development potential : -6.735mcm				
	Domestic and industrial water supply up to 2025 years : 4.79mcm				
Water level behavior	Aquifer wise water level				
	Aquifer-I				
	Pre Monsoon: 2.35 – 16.00 m bgl				
	Post Monsoon: 1.55 – 18.20 m bgl				
	Mean (10 yrs) : 1.58 – (-)0.86 m/yr				
	Trends				
	Pre Monsoon: 0.16 – (-)0.26 m/yr				
	Post Monsoon: 0.15 – (-)0.29 m/yr				
HYDROGRAPHS					

Aquifer Disposition

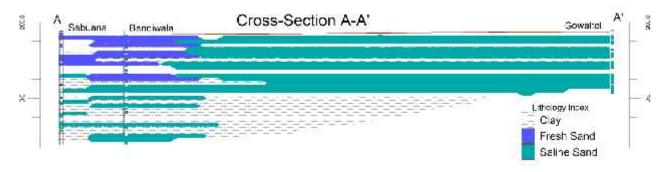
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Aeolian Alluvium

Aquifer wise Characteristics

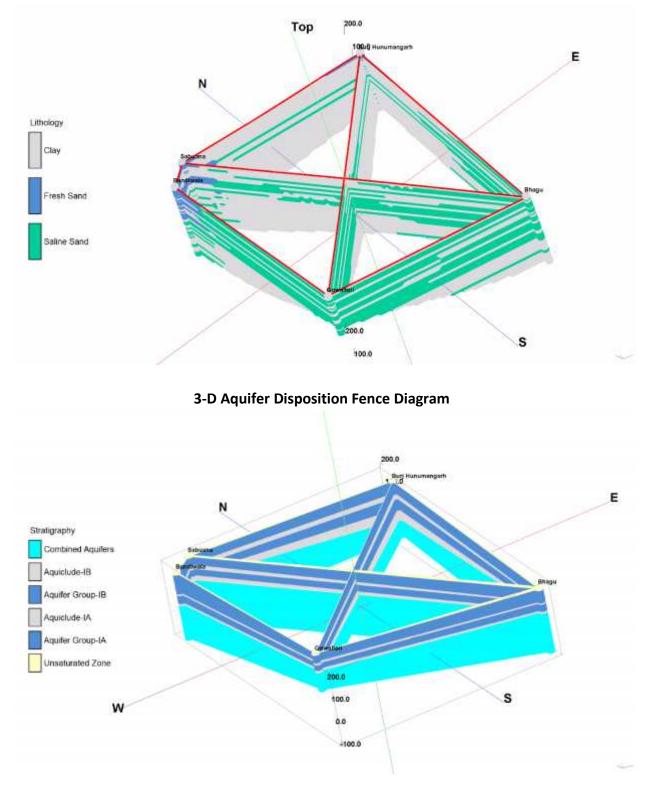

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	166	NA	NA	NA	NA
	ary	d to					
	Alluvial	confined					
	deposits						

The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of exploration wells as per depth range (m)				Total
	<100	100-200	200-300	>300	
CGWB		1		2	3
TOTAL		1		2	3

The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.



3-D Lithological model of Khuian Sarwar Block

Lithological Cross section from Sabuana to Gowaltoli

3-D Lithological Fence Diagram

Ground Water Resources upto the	Dynamic Fresh water resources	148.11 mcm	
depth of 300m	In-storage Fresh water resources	4502.3 mcm	
	In-storage Saline water resources	909.29 mcm	
	Total	5560 mcm	
Ground Water Extraction (as per 2013)	Irrigation	75.97 mcm	
	Domestic & Industrial	3.44 mcm	
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	4.79 mcm	
Stage of Groundwater De	evelopment	95 %	
Chemical Quality of ground water		Ground water in the area is alkaline and pH ranges between 8.0 to 8.83 Ground water in the area is fresh to marginal saline. EC value of the ground water show wide variations and ranges from 1274 μ S/cm to 5812 μ S/cm at 25 ^o C.	
Ground water Contamina	ation Issues	Fluoride (mg/l): Khuain Sarwar (3.39),: Nitrate (mg/l): Almargarh (146), Danewal (240)	
Other issues		Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources. In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.	

Ground water Resource, Extraction, Contamination and other issues

Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

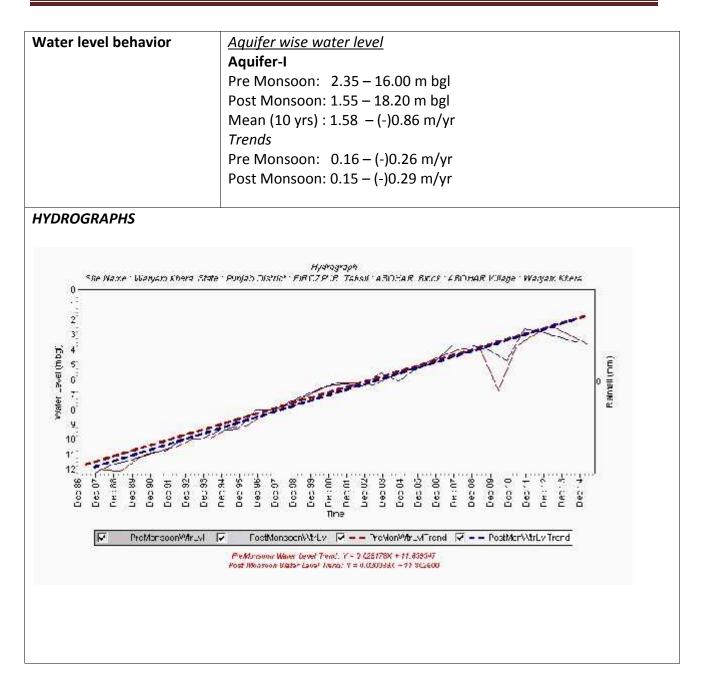
Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 608.69 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will save 0.0 mcm volume of water

Demand side interventions

Advanced Irrigation Practices


Area proposed to be covered: 845.4sq km Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 13.65 mcm

Change in cropping pattern : Not Required

Proposed change in cropping pattern: Not Required Area coverage: Not Required Anticipated volume of water to be saved : Not Required

10.0 Salient Information

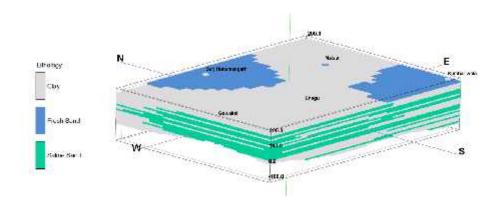
Name of the Block and	ABOHAR		
Area (in Km ²)	672.9 sq km		
District/ State	Fazilka, Punjab		
Population	Urban Population: Rural Population: 221202 Total population: 221202		
Rainfall	Normal Monsoon: 195 mm Non-monsoon Rainfall : 15 mm Annual Average Rainfall: 340 mm		
Irrigation	Irrigation practices: Canal and Tube well Irrigation Cropping intensity: 100% Number and types of abstraction structures: 4732 nos., Tubewells		
Ground Water Resource Availability and Extraction	Ground water Resources Availability Ground Water Resources are available in 1535 mcm (fresh and saline water resources) up to the depth of 300 m. The fresh water resources are estimated up to the depth of 18 m based on geophysical interpretations interface. The potential granular zones are available for fresh water is 3 m. Saline water resources are estimated based on the available depth of wells existed up to 300 m and the granular zones are counted after the depth of 18 m and available zones are 135 m. Block is categorized as Safe as per Dynamic Groundwater Resources, 2013 assessment. Ground water Resources Extraction Deeper aquifers are marginal to highly saline and it is not suitable for irrigation purpose so that all users are tapping at shallow aquifers only. State government drinking water supply wells tapped at shallow aquifers and canal supply water are used for domestic and Irrigation purpose. So that the ground water draft could not be addressed for deeper aquifer.		
Existing and future water demands	Existing Gross Ground water Draft as on 2013 Irrigation: 98.61 mcm Domestic and industrial water supply: 9.54 mcm <u>Future water demands</u> Irrigation development potential : 185.41 mcm Domestic and industrial water supply up to 2025 years : 13.31 mcm		

Aquifer Disposition

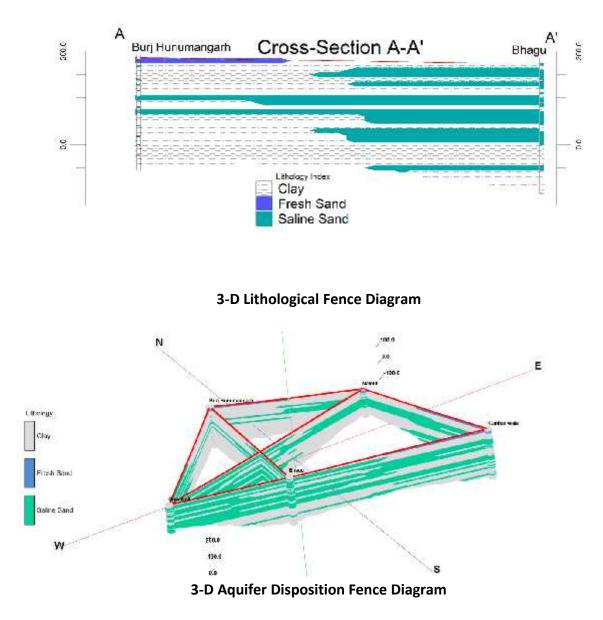
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Aeolian Alluvium

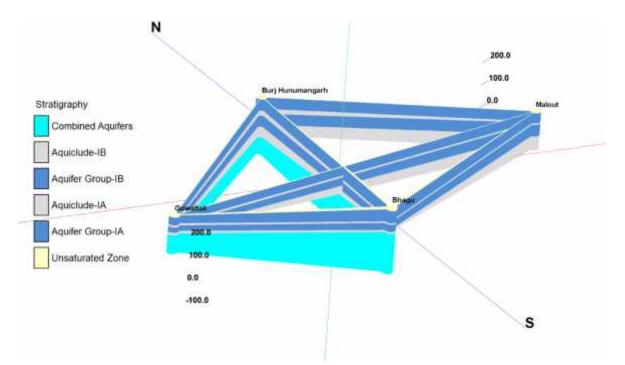
Aquifer wise Characteristics

Aquifer	Geology	Type of	Thickness	Transmissiv	Yield	Specific	Storativity
Group		Aquifer	of	ity	(m³/day)	Yield %	
*			Granular	(m²/day)			
			zones (m)				
Aquifer -I	Quatern	Unconfine	138	NA	NA	0.72	NA
	ary	d to					
	Alluvial	confined					
	deposits						


The Aquifer comprises of both fresh and saline water and the main aquifer material is sand. The non-aquifer material comprise of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of exploration wells as per depth range (m)				Total
	<100	100-200	200-300	>300	
			1		
CGWB			L		L
TOTAL			1		1


The data is validated by selecting the deepest well in each quadrant and used for preparation of 3-D Litho models, 2-D geological cross sections, Fence diagrams and aquifer maps.

3-D Lithological model of Abhor Block

Ground water Resource, Extraction, Contamination and other issues

Ground Water Resources upto the	Dynamic Fresh water resources	297.3 mcm		
depth of 300m	In-storage Fresh water resources	246.63 mcm		
	In-storage Saline water resources	991.44 mcm		
	Total	1535 mcm		
Ground Water Extraction (as per 2013)	Irrigation	98.61 mcm		
Extraction (as per 2013)	Domestic & Industrial	9.54 mcm		
Future Demand for do (2025) (as per 2013)	mestic & Industrial sector	13.33 mcm		
Stage of Groundwater De	evelopment	36 %		
Chemical Quality of grou	nd water	Ground water in the area is alkaline and pH ranges between 7.74 to 9.13. Ground water in the area is fresh to marginal saline. EC value of the ground water show wide variations and ranges from 618 μ S/cm to 3906 μ S/cm at 25 ⁰ C.		
Ground water Contamination Issues		<i>Fluoride (mg/l):</i> Bazidapurabl (9.11), Dhilwan Kalan (3.10), Matta (2.75):		

	<i>Nitrate (mg/l):</i> Abohar (472), Kundal (221)
Other issues	In shallow water level area, less development of ground water resource couple with recharge from canal irrigation is causing water logging and inland salinity problems.

Ground water Resource enhancement

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volumes of unsaturated zone after 3m upto a desirable depth: 242.24 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: --Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will save 0.0 mcm volume of water*

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: 672.9 sq km Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 17.72 mcm

<u>Change in cropping pattern</u> Not Required

Proposed change in cropping pattern: Not Required Area coverage: Not Required Anticipated volume of water to be saved: Not Required

<u>Alternate Water sources</u> Surface water sources: Tanks, Ponds

<u>Regulation and Control</u>: Punjab Subsoil Act, 2009 for delay in paddy plantation should continue in this area.