

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on AQUIFER MAPPING AND MANAGEMENT PLAN

Gurdaspur District, Punjab

उत्तरी पश्चिम क्षेत्र, चंडीगढ़

North Western Region, Chandigarh

AQUIFER MAPPING & MANAGEMENT PLAN

GURDASPUR DISTRICT PUNJAB

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India 2016

CONTENTS

- 1. INTRODUCTION
- 2. DATA COLLECTION AND GENERATION
- 3. HYDROGEOLOGY
- 4. GROUND WATER RESOURCES
- 5. GROUND WATER ISSUES
- 6. AQUIFER MANAGEMENT PLAN
- 7. BLOCKWISE AQUIFER MAPS AND MANAGEMENT PLAN OF GURDASPUR DISTRICT
 - i. BATALA BLOCK
 - ii. DINA NAGAR BLOCK
 - iii. FATEHGARH CHURIAN BLOCK
 - iv. GURDASPUR BLOCK
 - v. KAHNUWAN BLOCK
 - vi. KALANAUR BLOCK
 - vii. QADIAN BLOCK
 - viii. SRI HARGOBINDPUR BLOCK
 - ix. DERA BABA NANAK BLOCK
 - x. DHARIWAL BLOCK

8. BLOCKWISE AQUIFER MAPS AND MANAGEMENT PLAN OF PATHANKOT DISTRICT

- i. BAMYAL BLOCK
- ii. DHAR KALAN BLOCK
- iii. PATHANKOT BLOCK
- iv. NAROT JAIMAL SINGH BLOCK
- 9. CONCLUSION

LIST OF FIGURES

- Fig 1: Base Map of Gurdaspur District.
- Fig 2: Location of CGWB, PSTC, WRED, Private Wells.
- Fig 3: Validated Exploration Data of Gurdaspur District.
- Fig 4: Elevation Contour Map-Gurdaspur District.
- Fig 5: 3Dimension Lithological Model-Gurdaspur District.
- Fig 6: 3Dimension Lithological Fence of Gurdaspur District.
- Fig 7: 3Dimension Aquifer model Gurdaspur District.
- Fig 8: Cross sections of Aquifer Map of Gurdaspur District.
- Fig 9: Methodology for Resource Estimation in Unconfined and Confined Aquifer System.
- Fig 10: Irrigation tube wells as per depth.
- Fig 11: Ground water trend versus rainfall.
- Fig 12: Long term ground water table variation.
- Fig 13: Irrigation tube wells as per depth.

.

LIST OF TABLES

Table 1: Data availability of exploration wells in Gurdaspur district.
Table 2: Summary of optimized exploration wells.
Table 3: Aquifer Group depth and thickness ranges of Gurdaspur District
Table 4: Dynamic Ground Water Resource & Development Potential (as on 31.03.2013)
Table 5: Block wise in-storage groundwater resources-unconfined (Aquifer I)
Table 6: Block wise in-storage ground water resources - confined (Aquifer II).
Table 7: Block wise in-storage ground water resources - confined (Aquifer II)
Table 8: Block wise total available ground water resources in Aquifers up to 300m depth.
Table 9: Distribution of Tube wells according to owner's land holding size
Table 10: Distribution of Shallow Tube wells according to Depth
Table 11: Type of Ground Water Distribution Device
Table 12: Scope of quantitative impact on stage of development after applying various management strategies.

ANNEXURES

Annexure 1: Details of water quality analysis of the Gurdaspur and Pathankot District.

AQUIFER MAPPING AND GROUND WATER MANAGEMENT IN GURDASPUR & PATHANKOT DISTRICT, PUNJAB (3513 Sq.Km UNDER NAQUIFERUIM XII PLAN)

1.0 INTRODUCTION

There has been a paradigm shift from "groundwater development" to "groundwater management" in the past two decades in the country. An accurate and comprehensive microlevel picture of ground water through Aquifer mapping in different hydrogeological settings would enable robust groundwater management plans in an appropriate scale. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical field and laboratory analyses are applied to characterize the quantity, quality and sustainability of ground water in Aquifers. This would help achieving drinking water security, improved irrigation facility and sustainability in water resources development in large parts of rural India, and many parts of urban India.

Central Ground Water Board (CGWB) implemented the Aquifer Mapping Programme in Punjab in four phases (**Fig. 1**) with the broad objective of preparing an Aquifer-wise management plan for the region. Various multi–disciplinary geoscientific activities were undertaken in the study partly through in-house capacity of CGWB,DWRS,PSCTC and Private agencies for generation of additional micro-level hydrogeological data. This report primarily deals with Gurdaspur and Pathankot district of Punjab State (**Fig. 1**), covered under Phase-I.

The nature and character of sediments, their lateral and vertical extent and Aquifer system have been studied with the help of sub-surface geological sections prepared from the litho logs of the boreholes drilled in the Gurdaspur and Pathankot districts. The Upper Siwalik comprises boulders, cobbles and pebbles inter-bedded with buff to reddish brown clay. These are followed by finer sediments of 'Sirowal' comprising gravel, sand, silt and clay. The contact between Kandi and Sirowal was marked by presence of spring line, which has disappeared due to the declining of water levels. Depth to water level in the district ranges from 1.91 to 9.54 m (bgl) during pre-monsoon period and between 1.64 to 9.00 m bgl during post monsoon period in Pathankot District and 2.39 to 19.51 m below

ground level (bgl) during pre-monsoon period and between 2.50 to 19.46 m bgl during post monsoon period in Gurdaspur district respectively. Alluvium is expected to be more than 450 m as bedrock has not been encountered up to depth. The quality of ground water in both the district is fresh.

Central Ground Water Board has drilled 21ground water exploratory wells in the depth range of 84 to 375m and wells were constructed in the depth range of 74 to 355m bgl. The discharge ranges from 9731 lpm to 4300 lpm with a drawdown of 6 to 16.25m. At Chaunta free flowing conditions were encountered and free flow of 2105 lpm was recorded. The depth of exploratory boreholes Transmissivity of the Aquifers ranged from 142 m²/day to 7720 m²/day. The hydraulic conductivity values varied from 4.6 to 134m/day. The value of storage coefficient worked out to be 1.0 x 10⁻³ to 4.03 x 10⁻⁴

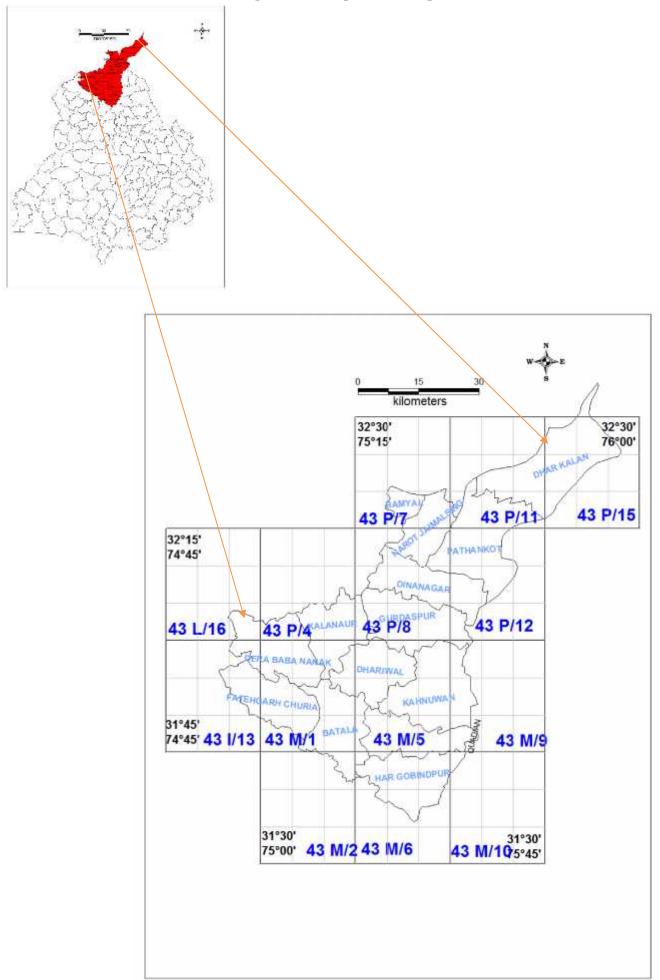


Fig 1: Base Map of Gurdaspur & Pathankot Districts

2. DATA COLLECTION AND GENERATION

2.1 Tube well Logs

The Lithologs of Exploratory Well/ Observation well/ Piezometer/ productive well s of CGWB, Punjab State Tubewell Corporation (PSTC) now as Punjab Water Resources Development and Management (PWRDM) and private wells have been collected and those supported electrical logs have been validate for Aquifer map preparation. The details are shown in table

Table 2. Data Availability of Exploration Wells of Pathankot & Gurdaspur districts

Sl.No	Source of data	Depth Range (m)											
		< 100	100-200	200-300	>300								
1	CGWB	6	1	0	1								
2	WR&ED	4	0	0	0								
3	PRIVATE	0	5	0	0								
	Total	10	6	0	1								

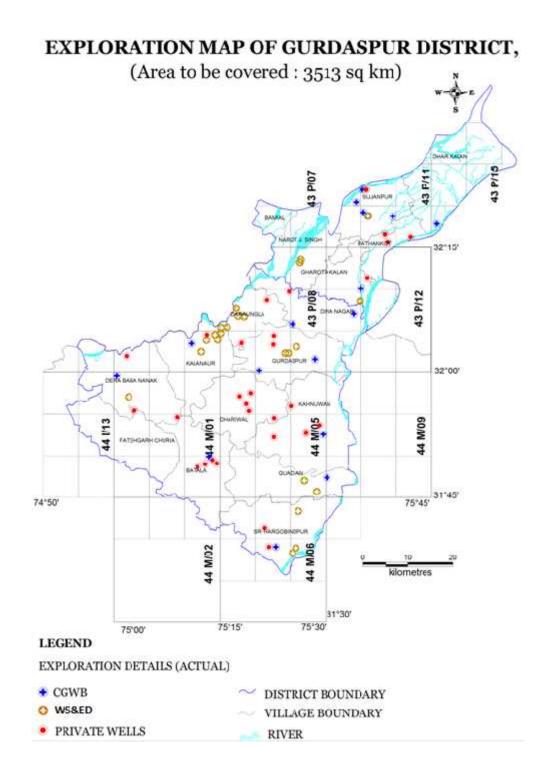
PATHANKOT DISTRICT

	GURDASPUR DISTRICT											
Sl.No	Source of data		Depth R	ange (m)								
		< 100	100-200	200-300	>300							
1	CGWB	1	0	3	8							
2	WR&ED	0	11	2	0							
3	PRIVATE	3	40	0	0							
	Total	4	51	5	8							

GURDASPUR DISTRICT

2.2 Ground Water Quality

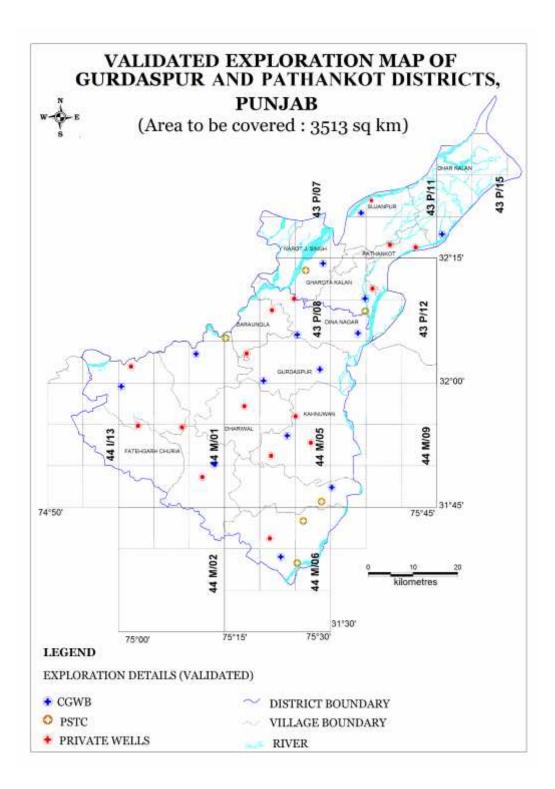
The ground water in the district is alkaline in nature with low mineralization. The pH value ranges from 7.77 to 8.25 indicating a weak base type characteristic. Specific Conductance, a measure of total dissolved solids present in water, ranges from 235 to 1640 micromhos/cm at 25^oC. The fluoride concentration in the entire district is within the permissible limit of 1.5 mg/L for drinking water as per BIS and it ranges from 0.12 to 1.16 mg/L. In general, Nitrate values are below the permissible limit with an exception at two villages, i.e. Batala (138 mg/L) and Kalanaur (146 mg/L). Iron, the essential for plant and animal growth, is below 1.0 mg/L in the entire area. Arsenic concentration above the prescribed BIS 2011 permissible limit of 0.01 mg/L is found in well waters located at Nishayra (0.015 mg/L), Behrampur (0.0113 mg/L), Galri (0.0201 mg/L) and Sri Hargobindpur (0.010 mg/L).


S. No	Location	Block	District	Latitude	Longitude	Type of Well	As in mg/l	Fe in mg/l
1	Madipur	Fatehgarh Chudian	Gurdaspur	31.8279	74.9423	Dugwell	0.017	0.1988
2	Mullowali	Dere Baba Nanak	Gurdaspur	31.9908	75.0075	Tubewell	0.027	1.0238
3	Dera Baba Nanak	Dere Baba Nanak	Gurdaspur	32.0333	75.0321	Handpump	0.001	2.9022
4	Salehchak	Kalanam	Gurdaspur	32.0486	75.1808	Tubewell	0.021	0.1539
5	Kalanam	Kalanam	Gurdaspur	32.0146	75.1478	Handpump	0.004	0.0247
6	Bhagowal	Dhariwal	Gurdaspur	31.9040	75.1683	Tubewell	0.005	0.0348
7	Dhianpur	Dere Baba Nanak	Gurdaspur	31.9225	75.0703	Handpump	0.003	0.9503
8	Ghaniyake Banger	Fatehgarh Chudian	Gurdaspur	31.8621	75.0583	Handpump	0.002	0.0882
9	Dakoha	Sree Hargobindpur	Gurdaspur	31.6578	75.3774	Handpump	0.001	2.0563
10	Sri Hargobindpur	Sree Hargobindpur	Gurdaspur	31.6877	75.4740	Dugwell	0.001	0.0301
11	Bham	Sree Hargobindpur	Gurdaspur	31.7598	75.4507	Tubewell	0.001	BDL
12	Aulakhkalan	Qaddian	Gurdaspur	31.7869	75.4866	Handpump	0.001	3.48
13	Qaddian	Qaddian	Gurdaspur	31.8255	75.3885	Handpump	BDL	0.4031
14	Sathiali	Kahnuwal	Gurdaspur	31.8839	75.4250	Tubewell	BDL	0.003
15	Naushera	Dhariwal	Gurdaspur	31.8866	75.2733	Handpump	0.001	0.0526
16	Gurdaspur	Gurdaspur	Gurdaspur	32.0334	75.3956	Handpump	0.002	0.2731
17	Pandori Dham	Dina Nagar	Gurdaspur	32.0572	75.5030	Dugwell	0.008	0.219
18	Galri	Dina Nagar	Gurdaspur	32.1260	75.3292	Dugwell	0.008	2.4525
19	Dina Nagar	Dina Nagar	Gurdaspur	32.1439	75.4734	Handpump	0.001	1.9549

S. No	District	Block	Location	Latitude	Longitude	pН	EC in	CO ₃	HCO ₃	Cl	SO_4	NO ₃	F	PO ₄	Ca	Mg	Na	K	SiO ₂	Т.Н
1	Gurdaspur	Dere Baba Nanak	Mullowali	31.9908	75.0075	7.97	608	nil	349	30	BDL	BDL	0.28	BDL	50	20	59	4.9	20	248
2	Gurdaspur	Dere Baba Nanak	Dera Baba Nanak	32.0333	75.0321	7.8	1602	nil	490	135	170	45	0.29	BDL	69	50	177	9.3	15	214
3	Gurdaspur	Dere Baba Nanak	Dhianpur	31.9225	75.0703	8.48	1106	46	289	117	130	61	0.23	BDL	25	27	162	99	30	158
4	Gurdaspur	Dhariwal	Bhagowal	31.9040	75.1683	8.28	421	nil	171	11	72	2.7	0.38	BDL	46	19	12	6.4	21	281
5	Gurdaspur	Dhariwal	Naushera	31.8866	75.2733	8.58	215	10	117	7.0	BDL	4.0	0.79	BDL	26	10	6.5	2.3	16	378
6	Gurdaspur	Dina Nagar	Pandori Dham	32.0572	75.5030	8.78	641	26	195	32	19	90	0.21	2.15	79	19	19	21	33	347
7	Gurdaspur	Dina Nagar	Galri	32.1260	75.3292	8.48	511	26	238	28	12	4.0	0.21	BDL	35	30	32	1.5	15	191
8	Gurdaspur	Dina Nagar	Dina Nagar	32.1439	75.4734	8.29	912	nil	359	92	40	37	0.41	BDL	46	53	84	0.8	17	174
9	Gurdaspur	Fatehgarh Chudian	Madipur	31.8279	74.9423	7.76	697	nil	403	23	BDL	2.7	0.32	BDL	55	16	78	7.3	22	128
10	Gurdaspur	Fatehgarh Chudian	Ghaniyake Banger	31.8621	75.0583	8.29	1094	nil	517	117	BDL	17	0.3	BDL	33	50	122	60	22	202
11	Gurdaspur	Gurdaspur	Gurdaspur	32.0334	75.3956	8.38	707	20	188	83	70	28	0.21	BDL	42	44	49	1.6	17	89
12	Gurdaspur	Kahnuwal	Sathiali	31.8839	75.4250	8.69	300	20	128	11	7.0	16	0.33	BDL	25	19	11	2.4	22	207
13	Gurdaspur	Kalanam	Salehchak	32.0486	75.1808	8.49	322	20	164	7	BDL	BDL	0.29	BDL	26	6.2	38	2.5	18	20
14	Gurdaspur	Kalanam	Kalanam	32.0146	75.1478	8.41	2096	46	282	255	175	259	0.21	BDL	37	62	213	209	22	117
15	Gurdaspur	Qaddian	Aulakhkalan	31.7869	75.4866	7.95	569	nil	376	9.0	BDL	22	0.21	BDL	81	25	15	3	23	248
16	Gurdaspur	Qaddian	Qaddian	31.8255	75.3885	8.11	356	nil	235	7.0	BDL	13	0.39	BDL	42	16	16	1.3	19	97
17	Gurdaspur	Sree Hargobindpur	Dakoha	31.6578	75.3774	8.17	494	nil	225	28	BDL	41	0.1	BDL	52	19	24	5.7	29	276
18	Gurdaspur	Sree Hargobindpur	Sri Hargobindpur	31.6877	75.4740	8.45	430	17	128	25	6.0	53	0.35	BDL	38	19	19	4.6	26	311
19	Gurdaspur	Sree Hargobindpur	Bham	31.7598	75.4507	8.12	406	nil	255	11	BDL	15	0.34	BDL	47	21	13	5.1	21	202
							, .			-						-			-	

2.3 SPATIAL DATA DISTRIBUTION

Data Distribution


The actual data of all the wells in the area are plotted on the map of 1:50000 scale with 5' x 5' grid (9km x 9km) and is shown in Fig: 9.The exploration data shows that majority of tube wells falls in the Ist Aquifer and IInd Aquifer. After data validation, only selected the deepest well in each quadrant is plotted on the map of 1.50000 scale with 5' x 5' grid (9km x 9km) and is shown in Fig:10. The grids devoid of SH/PZ/EW are identified as data gaps and these are to be filled by data generation.

2.4 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

All the available data have been validated for consideration to generate Aquifer map. The deepest well in each quadrant is selected and plotted on the map of 1.50000 scale with 5'X5'grid (9 x 9km) and is shown in Fig -3.

Fig 3: Validated Exploration Data of Gurdaspur District

The topographic elevation values have been plotted to prepare the elevation contour map and is in fig 4.

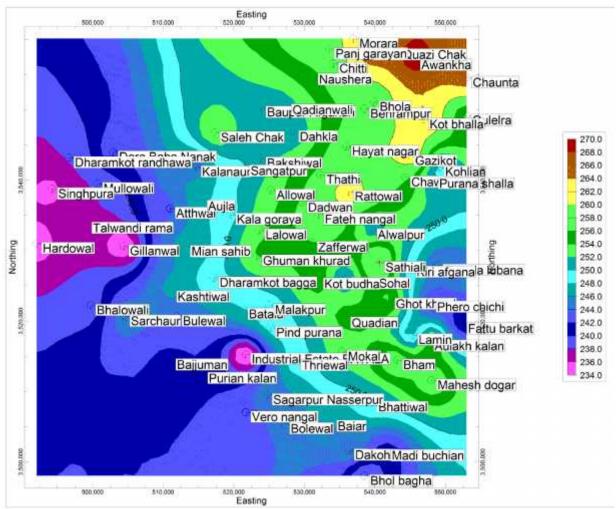


Fig 4: Elevation Contour Map-Gurdaspur District

The data is validated by selecting the deepest well in each quadrant with those supported electrical logs for preparation of Aquifer map and is shown below

Table-2: Summery of Optimized Exploration Wells

Data Validated: The data is validated by selecting the deepest well in each quadrant with those supported electrical logs for preparation of Aquifer map and is shown below;

PATHANKOT DISTRICT (Validated)													
Sl.No	District	Block	Toposheet/Quadrant			Depth Range (m)						Elevation	Source of
				Location	< 100	Location	100-200	Locati- on	200- 300	Loca- tion	>300	(m amsl)	data
1	PATHANKOT	Pathankot	2A 43P/11	Attepur	67							332	CGWB
2	PATHANKOT	Gharota Kalan	1A 43P/12	Garhmal	97.8							242	CGWB
3	PATHANKOT	Dhar Kalan	3A 43P/15	Haryal	74.5							409	CGWB
4	PATHANKOT	Narot jamal Singh	3B 43P/07	Datyal	47.24							264	PSTC
5	PATHANKOT	Gharota Kalan	1B 43P/12	Gharota Kalan	91.44							270	PSTC
6	PATHANKOT	Pathankot	2B 43P/11			Madhopur II	105					391	PRIVATE
7	PATHANKOT	Pathankot	3C 43P/11			Mamoon Cantt	160					360	PRIVATE
8	PATHANKOT	Gharota Kalan	1B 43P/12			Najo Chak	113					287	PRIVATE
9	PATHANKOT	Pathankot	3B 43P/11			Shashtri Nagar,PNKT	150					327	PRIVATE
10	PATHANKOT	Narot jamal Singh	1C 43P/08								302.5	266.5	CGWB

	I able 3 GUKDASPUK DISTRICT (Validated)										-		
SI.N	District	Block	Toposheet/Q			Dep	th Range	(m)				Elevati	Source of
0			uadrant	Location	<	Location	100-	Locatio	200-	Location	>30	on (m	data
					100		200	n	300		0	amsl)	
		Sh			68.5								
1	GURDASPUR	Hargobindpur	2C 44M/06	Balarwal	8							241	PSTC
_				Moor(Mithawa	80.7								
2	GURDASPUR	Quadian	3C 44M/05	n)	7							258	PSTC
2		Sh	10 4414/06	Classic K1 1	96.0							252	DOTO
3	GURDASPUR	Hargobindpur Sh	1C 44M/06	Cheema Khudi	1							252	PSTC
4	GURDASPUR	Hargobindpur	1B 44M/06			Baiar	125					246	PRIVATE
-	GURDASI UK	Thargoonhapar	10 440/00			Birth Quazi	123					240	INVAIL
5	GURDASPUR	Dinanagar	1B 43P/08			Chak	125					270	PRIVATE
		Dera Baba											
6	GURDASPUR	Nanak	2B 44M/01			Dalam	125					246	PRIVATE
7	GURDASPUR	Daraungla	3A 43P/08			Dahkla	126.8					250	PRIVATE
8	GURDASPUR	Khanuwan	1B 44M/05			Alwalpur	128					249	PRIVATE
9	GURDASPUR	Daraungla	2B 43P/08			Chitti	128					258	PRIVATE
10	GURDASPUR	Khanuwan	2B 44M/05			Kalu Sohal	130					248	PRIVATE
11	GURDASPUR	Dhariwal	1A 44M/05			Kalyanpur	132.7					231	PRIVATE
		Fatehgarh											
12	GURDASPUR	churia	2A 44M/01			Gillanwal	135					241	PRIVATE
13	GURDASPUR	Kalanaur	2A 43P/08			Baupur Afganan	141.73					251	PSTC
		Dera Baba				Dera Baba							
14	GURDASPUR	Nanak	3C 43P/04			Nanak	156.97					244	PRIVATE
						Industrial Estate							
15	GURDASPUR	Batala	3C 44M/01			BA	200	¥7' '				244	PRIVATE
16	GURDASPUR	Khanuwan	2C 44M/05					Kiri afgana	254			248	PRIVATE
10	GORDASI OK	Dera Baba	20 77101/03					Mullowa	207	 		270	INVAIL
17	GURDASPUR	Nanak	1A 44M/01					li	255.58			238	CGWB
18	GURDASPUR	Gurdaspur	3C 43P/08					Gazikot	288.3			267	CGWB

Table 3 GURDASPUR DISTRICT (Validated)

		Sh]				
19	GURDASPUR	Hargobindpur	2B 44M/06			Dakoha	300			247	CGWB
								Saleh			
20	GURDASPUR	Kalanaur	3A 43P/04					Chak	310		CGWB
21	GURDASPUR	Gurdaspur	3B 43P/08					Thathi	312		CGWB
22	GURDASPUR	Dinanagar	2C 43P/08					Bhola	313		CGWB
									315.		
23	GURDASPUR	Batala	2C 44M/01					Batala	7		CGWB
								Aulakh	375.		
24	GURDASPUR	Quadian	1A 44M/09					kalan	3		CGWB
25	GURDASPUR	Dinanagar	2A 43P/12	Chaunta	83.8						CGWB
26	GURDASPUR	Khanuwan	2C 44M/05					Sathiali	302		CGWB

3. HYDROGEOLOGY 3.1 PREVIOUS WORK

The main Aquifer group of the area is thick granular zones alternate with thick or thin clay lenses . The fresh Aquifer is water table and extends all over the area is composed of coarser sediments. In the north eastern and northern part, there are 5-6 Aquifers within 300m depth and ranges in the thickness from 20-65 m. These granular zones are laterally extensive in nature and composed of medium to coarse sands with gravel and pebbles cobbles etc. The clay beds area 5-12 m thick. In the central part 5-6 prominent granular zones have been encountered within the depth of 375m bgl. The thickness of granular zones is variable from 20-95m and the clay beds varies from 3-14m thick. Water levels of the area in pre monsoon period varies from 2.39(Khani Khui) to 18-93. The shallowest water level area in the eastern and north eastern portion of Gurdaspur town. The deepest water levels are around Shri Hargobindpur and Fatehgarh Churrian. In the same way the post monsoon water levels are variable from 1.70m (Behram pur) to 16.76(Sri Hargobindpur) By comparing the pre monsoon and post monsoon water levels, it is seen that area above 10m depth to water is quite reduced around Kalanaur and Sri Hargobindpur but the area of of Dhar kalan block does not show much changes in the water levels because of Kandi /Siwaliks system and Hilly terrain. In the same way the area under water level in range of 2-5 m around Guurdaspur, Dinanagar, Narot Jaimal Singh is increased. It shows that there is extensive recharge by Ravi and Beas during monsoon. The monitoring of long term fluctuation for ten years reveals that in the pre monsoon period overall trend is declining in the ranges of

0.10(Dinanagar) to 2.40m/yr (Quandian where as in post monsoon the trend is declining to the tune of 0.66m(Pardori talab) to 6.39m(Dhianpur) The pre monsoon trend of 0.10 - 2.4m/yr is very nominal and in the post monsoon 6.6cm/yr to 64cm/yr. From the above trend it seems that the Ravi & Beas are continuously recharging the area during pre monsoon period because of perennial nature and in post monsoon the flow of the river is less here less recharge showing decline in water levels

3.2 Present NAQUIFERUIM study

To understand the sub surface lithology and its disposition, the lithological data of the optimized wells drilled by CGWB, PHED and Private Agencies is plotted using the RockWorks15 software and a lithological model has been prepared and is shown in fig. The

2D lithology map and 3D lithological fence diagram has been prepared using the lithology model and are shown in fig 5 & 6 respectively.

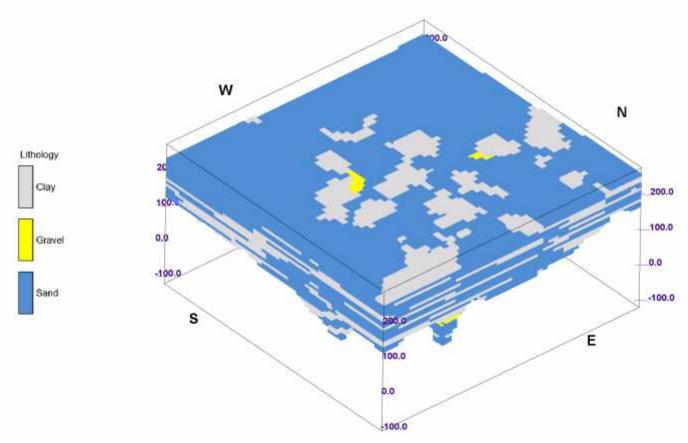


Fig 5: 3-Dimension Lithological Model of Gurdaspur District

To know the broad picture of the disposition, inter-relationship of granular zones, nature, geometry and extension of Aquifers in the Gurdaspur and Pathankot district, threedimensional fence diagram have prepared by synthesizing the various sub-surface sections. In Gurdaspur and Pathankot district, Aquifer group embodies a number of granular zones alternating with thick or thin clay lenses. The major clay zones intervening Aquifer groups pinch out against the Aquifer groups at a few places and within these clay zones the sand beds also occur. The marker horizons are traced all over the area by connecting their tops and bottoms.

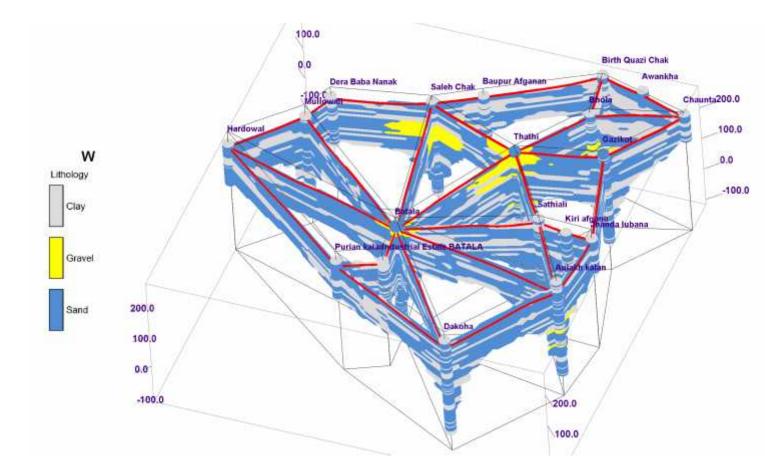


Fig 6: 3 Dimension Lithological Fence of Gurdaspur District

3.3 Aquifer Geometry

The first Aquifer is water table and extends all over the area is composed mainly of less coarse sediments as compared to other groups. This Aquifer is overlain by a thin clay layer of about 0.5 to 2.5 m thick and is also underlain by clayey group which is about 3-6 m thick. In the northeastern part, there are 5-6 Aquifers within 300 m depth and ranges in thickness from 20-65 m. These granular zones are laterally extensive in nature. The Aquifer material is mainly composed of medium to coarse sand with beds of gravel at places. In the extreme northern part i.e. at Taragarh and Chaunta the Aquifer material consists of gravels, pebbles,

and boulder. Here the Aquifers are separated by clay beds, which vary in thickness from 5-12 m. The clay beds pinch out in the easterly direction in the extreme northern part of the area.

In the central part, 5-6 prominent granular zones have been encountered within a depth of 300-375 m bgl. The thickness of granular zones varies from 20-95 m and within the granular zones thin streaks of clays also occur. The thickness of clay beds varies from 3-14 m. The thickness of water table Aquifer varies from 20-40 m and it extends upto 50 mbgl. The granular material mainly consists of fine to medium sand.

	Gurdaspur District												
SI.No	Aquifer Group	Depth RangeThickness(m)Range (m)				Average Thickness (m) as per available							
		Min Max Min Max											
1	Aquifer Group I	8	135	45	135	84							
2	Aquifer Group II	64	302	41	201.3	87							
3	Aquifer Group III	185	346	60	131	90							
4	Aquifer Group IV	292	375	7	21	14							

Table: 3 Aquifer Group depth and thickness ranges of Gurdaspur District

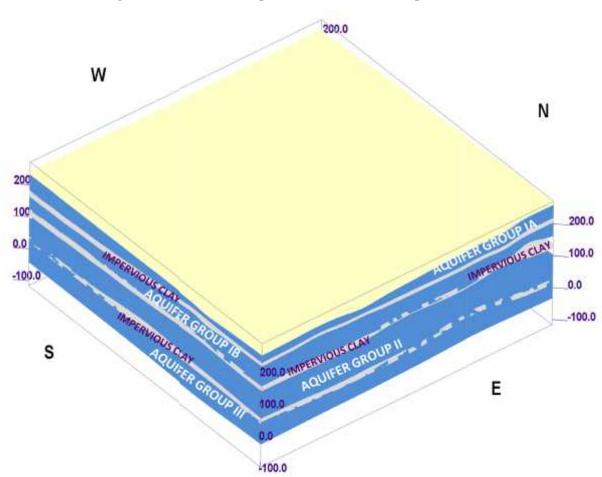
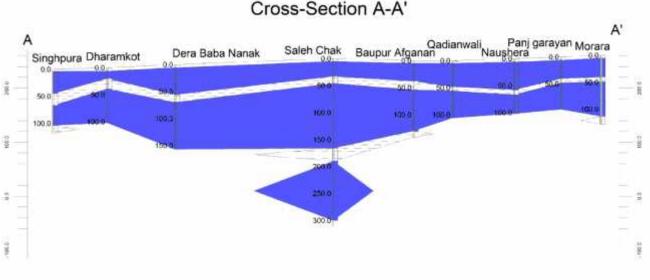
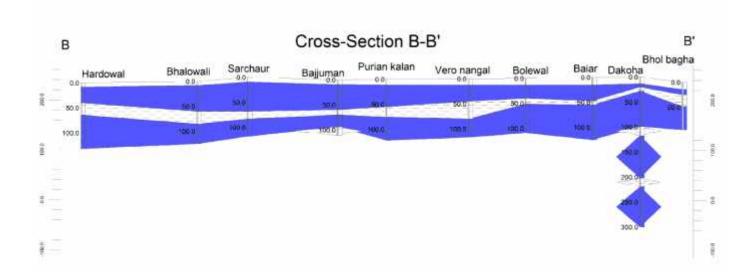
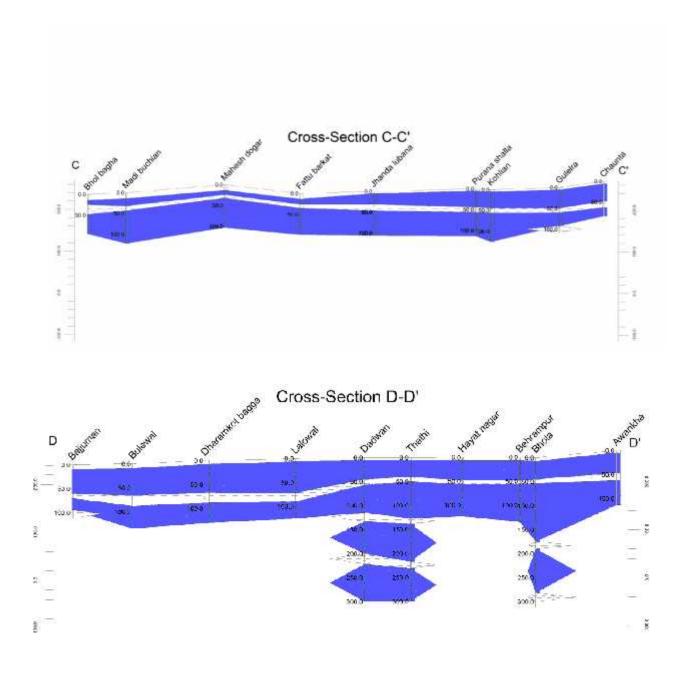





Fig 7: 3-Dimension Aquifer model - Gurdaspur District

Cross-Section A-A'

Fig 8: Cross sections of Aquifer Map of Gurdaspur District

4. GROUND WATER RESOURCES

Ground water resource estimation of the area have been carried out by taking Dynamic and In-storage resources of unconfined Aquifer and confined Aquifers present upto 300m depth. The assessment of Dynamic and In-storage Ground Water Resources of the study area have been carried out jointly by CGWB, Water Resources & Environment Directorate, Department of Irrigation on the basis of Groundwater Estimation Committee (GEC 1997) methodology based on data available and as per the revised methodology for the year 2013.

The occurrence of potential Aquifers (productive granular zones) upto 300 m depth has been demarcated on basis of Aquifer wise subsurface mapping. The total saturated thickness of granular zones was derived from the exploratory borehole data of a particular block. The granular zones occurring below the zone of water level fluctuation up to the first confining layer has been considered as static unconfined zone. The ground water resource of this zone has been calculated considering 12% specific yield of the formation. The specific yield value for the unconfined Aquifer has been taken as 60% of 0.12 which comes as 0.072 whereas for the confined Aquifer, the Storativity value has been considered. Since the specific yield is likely to reduce with increase in depth due to compaction of overlying sediments.

Hence, the major data elements considered in this estimation are thickness of granular zones, specific yield, Storativity and area of fresh water. It has been observed that in some of the blocks sufficient data on probable occurrence of granular zones was not available. In those cases, the existing exploratory data of adjoining block/district has been either extrapolated or interpolated to derive such parameters required for estimation. This assessment of total groundwater resources has been computed based on the available data with CGWB Water Resources & Environment Directorate, Department of Agriculture, and Punjab Water Resource Management & Development Corporation, Punjab

4.1 Unconfined Aquifers

Dynamic Resources

As per Groundwater Resources Estimation 2013, the ground water development in Gurdaspur district comprising 10 blocks, ground water draft has exceeded the available recharge by more than 100% in 8 blocks thus have been categorized as **over exploited** however in **Gurdaspur** which is **semi-Critical** and Dina nagar which is **Safe** in category.

Overall Stage of ground water development in the Gurdaspur district has been assessed to be

124%.

Table 4: Dynamic Ground Water Resource & Development Potential of Gurdaspur district

Assessment Unit/ Block	Net Annual Ground Water Availability	Existing Gross Ground Water Draft for irrigation	Existing Gross Ground Water Draft for domestic and industrial water supply	for All uses	Provision for domestic, and industrial requirement supply to 2025	y for	Stage of Ground Water Developm ent (%)
BATALA	17609	25430	1084	26514	1268	-9088	151
DINA NAGAR	11139	11241	270	11511	326	-428	103
FATEHGARH CHURIAN	18649	24516	323	24839	379	-6246	133
GURDASPUR	18808	14918	1069	15987	1254	2637	85
KAHNUWAN	20554	25199	303	25502	371	-5016	124
KALANAUR	13360	17354	186	17541	227	-4221	131
QADIAN	11991	15158	241	15398	291	-3458	128
SRI HARGOBINDPUR	15407	17474	337	17811	398	-2464	116
DERA BABA NANAK	17691	24468	338	24806	405	-7183	140
DHARIWAL	19263	23214	313	23527	380	-4331	122
Total (ham)	164473	198971	4466	203437	5301	-39799	124

(as on 31.03.2013)

Table 5: Dynamic Ground Water Resource & Development Potential of Gurdaspur district

(as on 31.03.2013)

Assessment Unit/ Block	Net Annual Ground Water Availabil ity	Existing Gross Ground Water Draft for irrigation	Existing Gross Ground Water Draft for domestic and industrial water supply	Ground Water Draft for All uses	Provision for domestic, and industrial requirement supply to 2025	Net Ground Water Availability for future irrigation development	Stage of Groun d Water Develo pment (%)
BAMYAL	1698	1302	99	1401	122	275	82
DHAR KALAN	5890	878	246	1124	300	4712	19
PATHANKOT	18555	11190	1229	12419	1441	5924	67
NAROT JAIMAL SINGH	5815	5128	252	5380	310	377	93
Total (ham)	31959	18497	1827	20324	2173	11288	64

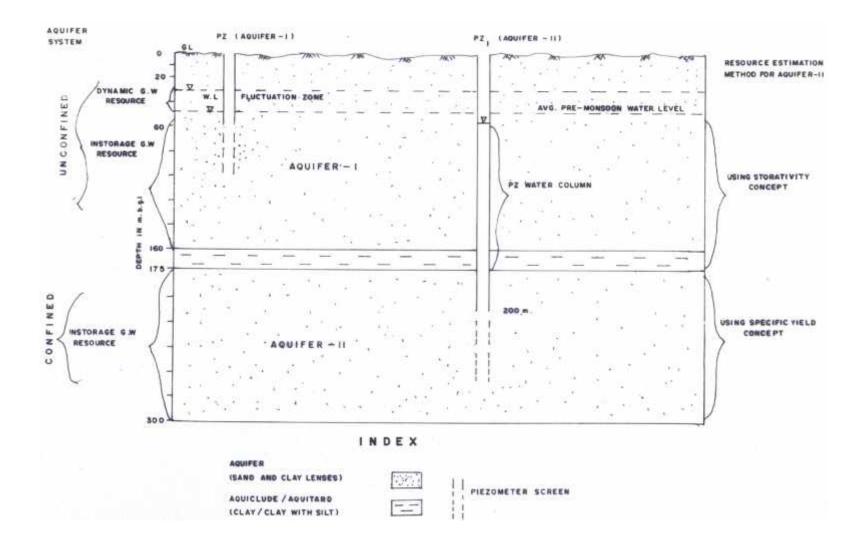
The ground water development in Pathankot district, all the blocks are in **Safe** category. Stage of ground water development in the Pathankot district has been assessed to be **64%**.

In-storage Ground Water Resources

As per revised guidelines recommended by the Central Level Expert Group on ground water resources assessment, the resources are separately considered as dynamic and in-storage unconfined. In case of alluvial area, the in-storage resources of unconfined Aquifer have been computed based on specific yield of the Aquifer as detailed below:

In-storage		Thickness of the Aquifer				
Ground Water		(granular/productive zone)		Sp. Yield of		Areal extent
resources	=	below the zone of water level	х	the Aquifer		of the
(unconfined		fluctuation down to the bottom			Х	Aquifer
Aquifer)		layer of unconfined Aquifer				

4.2 Confined Aquifer


The availability of ground water resources in confined Aquifer have two components: Storage under pressure (using Storativity concept) and Storage under desaturated (gravity drainage) condition (using Specific Yield concept) (source: Assessment of Ground Water Resources; A Review of International Practices, 2014) and is shown in Fig 9. However, since ground water withdrawals from confined Aquifer are known to have serious environmental degradation effects, the preliminary assessment of ground water resources in confined Aquifer is restricted to the estimation of ground water storage under pressure conditions only but here the storage under de-saturation is also computed.

Storativity Concept:

ii)	In-storage Ground Water resources (within the Peizometer)	=	Thickness of the water column in Peizometer of particular confined Aquifer up to the top layer of same confined Aquifer	×	Storativity of the confined Aquifer	×	Areal extent of the confined Aquifer group
	Specific Yiel	d Co	ncept:				
ii)	In-storage Ground Water resources (within the Aquifer thickness)		Thickness of the confined Aquifer (granular/ productive zone) down to the bottom layer of confined Aquifer or exploitable depth of 300 m	1	Sp. Yield of the Aquifer	×	Areal extent of the confined Aquifer group

Preliminary assessment of the ground water resources in confined Aquifer does not imply that the assessed resource is available for exploitation. The objective of this exercise is to have an overview of the ground water regime in the particular confined Aquifer. It should be kept in mind that any significant ground water withdrawal from confined Aquifer may invoke serious environmental degradation problem. Therefore, in case the preliminary assessment reveals that ground water is being withdrawn in significant quantity for any confined Aquifer, that particular Aquifer should be identified for detailed assessment using numerical modelling approach.

Total Availability of Ground Water Resources = Dynamic Resources + In-storage Resources.

Fig 9: Concept for Resource Estimation in Unconfined and Confined Aquifer System

Table 5: BLOCK WISE INSTORAGE GROUND WATER RESOURCES IN UNCONFINED AQUIFER –I (PATHANKOT DISTRICT)

S. N.	Name of Assessment	Type of rock formation		Areal ext	ent (ha)		e Pre- monso on u Water Level A	Depth to bottom	Total Thickne	Thicknes s of the	Avera ge	In-Storage Ground
	Unit		Total Geograp		essment A	Area		of	ss of	Granular	Specifi	Water
			hical Area	Total	Fresh Water	Brackis h/Salin e Water		unconfin ed Aquifer I (m bgl)	formati on below Pre- monsoo n Water Level (m) (9-8)	Zone in unconfin ed Aquifer I below Pre- monsoon WL (m)	c Yield	Resources [(6)*(11)*(1 2)*] FRESH (ham)
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Bamial	Alluvium	4780	4780	4780	0	5.10	75.0	69.90	27	0.072	9292
2	Dhar Kalan	Alluvium	39840	15823	15823	0	9.49	75.0	65.51	26	0.072	29621
3	Narot Jaimal Singh	Alluvium	17090	17090	17090	0	5.10	91.3	86.15	63	0.072	77520
4	Pathankot	Alluvium	35150	35150	35150	0	7.25	65.0	57.75	39	0.072	98701
	Dist. Total (ham)		96860	72843	72843							215134
	Dist. Total (mcm)											2151.34

Sr. No.	Name of	Type of				1							
No.	A	Type of	Areal extent (ha)				Тор	Depth	Total	Thickness	Average	In-Storage	In-Storage
	Assessment Unit	rock	Total		sessment Ar	-09	Aquifer	to	Thickness	of the	value of	Ground Water	Ground Water
		formatio	Geographica	Total Fresh			II	bottom	of	Granular	Storat-	Resources	Resources
ı		n	l Area	Total	F resn Water	Bracki sh/Sali	(m bgl)	of	confined	Zone in	ivity	[(6)*(11)*(12)*]	[(7)*(11)*(12)*]
ı		'			vv atti	ne		Aquifer	Aquifer	confined		FRESH	BRAKISH /
						Water		II (m.hgl)	down to	Aquifer		(ham)	SALINE
ı		'						(m bgl)	explored depth	down to explored			(ham)
ı		'							(m)	depth			
									(9-8)	(m)			
1													
1													
ı													
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	_		4	3	U		0	7	10	11	14	15	14
G	Gurdaspur	· ا			ļ								
1 B;	Bamial	Alluvium	4780	4780	4780	0	0	0	0	0	0.000403	0	0
2 D	Dhar Kalan	Alluvium	39840	15823	15823	0	0	0	0	0	0.000403	0	0
3 N	Narot Jaimal												
Si	Singh	Alluvium	17090	17090	17090	0	101	300	199	129	0.000403	888	0
4		Alluviam/											
Pa	Pathankot	Boulders	35150	35150	35150	0	73	160	87	39	0.000119	163	0
<u> </u>	Dist.Total ((ham)	96860	72843	72843	0						1052	
ı	Dist.Total (mcm)											10.52	0.00

Table 6: BLOCK WISE INSTORAGE GROUND WATER RESOURCES - CONFINED (AQUIFER II) (PATHANKOT DISTRICT) Type of Ground Water Assessment Unit (Block):

AV	Annexure I B-2 AVAILABILITY OF TOTAL FRESH GROUNDWATER RESOURCES IN PATHANKOT DISTRICT UPTO 300 METRE DEPTH												
Sl.No	BLOCK	Dynamic Groundwater Resources (2013) AQUIFER-I	In-storage Groundwater Resources AQUIFER-I	Groundwater Resources AQUIFER-I [(3)+(4)]	In-storage Groundwater Resources AQUIFER-II	In-storage Groundwater Resources AQUIFER-III	Total Availa Groundy Resources [(5	vater					
							ham	mcm					
1	2	3	4	5	6	7	8	9					
1	Bamial	1698	9292	10991	0	0	10991	110					
2	Dhar Kalan	5890	29621	35511	0	0	35511	355					
3	Narot Jaimal Singh	5815	77520	83335	888	0	84224	842					
4	Pathankot	18555	98701	117257	163	0	117420	1174					
Dist.To	Dist.Total (ham) 31959 215134		247094	1052	0	248145.1							
Dist.Total (mcm)		320	2151	2471	11	0	2481						

Table 7: BLOCK WISE TOTAL AVAILABLE GROUND WATER RESOURCES IN AQUIFERS UP TO 300m DEPTH

Table -8

BLOCK WISE INSTORAGE GROUND WATER RESOURCES IN UNCONFINED AQUIFER –I (GURDASPUR DISTRICT)

Sr	Name of	• 1		Areal extent (ha)				Depth	Total	Thicknes	Avera	In-Storage	In-Storage
· N	Assessment Unit	rock formation	Total	Assessment Area		Area	e Pre- monso	to botto	Thickne ss of	s of the Granula	ge Specifi	Ground Water	Ground Water Resources
0.	Umt		Geograph ical Area	Total	Fresh Water	Brackis h/Saline Water	on Water Level (m bgl)	m of Aquif er Grou p I (m bgl)	formati on below Pre- monsoo n Water Level (m) (9-8)	r Zone in AQUIFE R GROUP -I below Pre- monsoon WL (m)	c Yield	Resources [(6)*(11)*(12)*] FRESH (ham)	(7)*(11)*(12)*] BRAKISH/SALI NE (ham)
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Gurdaspur												
1	Batala	Alluvium	27830	27830	27830	0	8.60	69	60.40	47	0.072	94177	0
2	Dera Baba Nanak	Alluvium	29450	29450	29450	0	7.19	55	47.81	30	0.072	63612	0
3	Dhariwal	Alluvium	25680	25680	25680	0	8.20	45	36.80	23	0.072	42526	0
4	Dina Nagar	Alluvium	23630	23630	23630	0	4.39	127	122.61	74	0.072	125901	0
5	Fatheh Garh Churian	Alluvium	21330	21330	21330	0	8.05	57	48.95	32	0.072	49144	0
6	Gurdaspur	Alluvium	25130	25130	25130	0	4.83	115	110.17	83	0.072	150177	0
7	Kahnuwan	Alluvium	32370	32370	32370	0	10.49	96	85.51	56	0.072	130516	0
8	Kalanour	Alluvium	22640	22640	22640	0	6.35	54	47.65	35	0.072	57053	0
9	Quadian	Alluvium	18060	18060	18060	0	12.41	135	122.59	95	0.072	123530	0
10	Sri Hargobindpur	Alluvium	28330	28330	28330	0	14.94	103	88.06	77	0.072	157062	0
	Dist.Total	l (ham)	254450	254450	254450	0						993697	0
	Dist.Total (mcm)											9936.97	0.00

Table-9 BLOCK WISE INSTORAGE GROUND WATER RESOURCES IN UNCONFINED AQUIFER -II, (GURDASPUR DISTRICT)

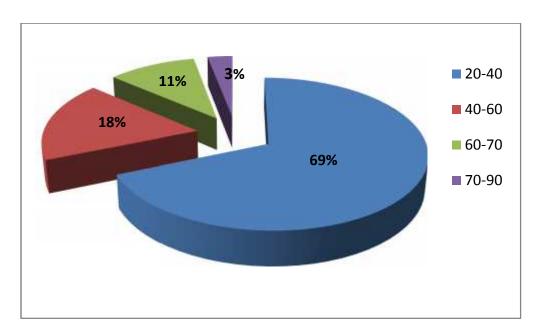
Sr.	Name of	Type of rock formation					Тор	Depth	Total	Thicknes	Average	In-Storage	In-Storage
No	Assessment Unit		Total	As	sessment Ar	ea	Aquife r II	to bottom	Thicknes s of	s of the Granular	value of Storativit	Ground Water Resources	Ground Water Resources
•	Unit		Geograph ical Area	Total	Fresh Water	Brackish /Saline Water	(m bgl)	of Aquife r II (m bgl)	confined Aquifer down to explored depth (m) (9-8)	Zone in confined Aquifer down to explored depth (m)	y	[(6)*(11)*(12)*] FRESH (ham)	[(7)*(11)*(12)*] BRAKISH / SALINE (ham)
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Gurdaspur												
1	Batala	Alluvium	27830	27830	27830	0	81	176	95	67	0.0022	4028	0
2	Dera Baba		20450	20450	20.450	0	. .	1.65	0.0		0.0000	4771	0
3	Nanak	Alluvium	29450	29450	29450	0	67	165	98	75	0.0022	4771	0
	Dhariwal	Alluvium	25680	25680	25680	0	66	133	67	48	0.0022	2663	0
4	Dina Nagar	Alluvium	23630	23630	23630	0	0	0	0	0	0.0022	0	0
5	Fatheh Garh Churian	Alluvium	21330	21330	21330	0	72	135	63	48	0.0022	2211	0
6	Gurdaspur	Alluvium	25130	25130	25130	0	126	180	54	44	0.0022	2388	0
7	Kahnuwan	Alluvium	32370	32370	32370	0	107	220	113	94	0.0022	6572	0
8	Kalanour	Alluvium	22640	22640	22640	0	74	158	84	68	0.0022	3325	0
9			18060	18060	18060	0	145	238	93			2419	0
10	Quadian Sri	Alluvium	18000	18000	18000	U	143	238	93	62	0.0022	2419	0
10	Hargobindpur	Alluvium	28330	28330	28330	0	116	202	86	74	0.0022	4528	0
	Dist.Tota	l (ham)	254450	254450	254450	0						25959	0
	Dist.Tota	l (mcm)										259.59	0.00

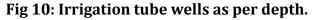
Table-10 BLOCK WISE INSTORAGE GROUND WATER RESOURCES IN UNCONFINED AQUIFER –III, (GURDASPUR DISTRICT)

Sr.	Name of	Type of rock formation	Areal extent (ha)				Depth	Depth	Total	Thicknes	Average	In-Storage	In-Storage
No	Assessment Unit		Total	Assessment Area		Area	to Top Aquife	to bottom	Thicknes s of	s of the Granular	value of Storativit	Ground Water Resources	Ground Water Resources
•			Geographi cal Area	Total	Fresh Water	Brackish/ Saline Water	r III (m bgl)	of Aquife r III (m bgl)	confined Aquifer down to explored depth (m) (9-8)	Zone in confined Aquifer down to explored depth (m)	y	[(6)*(11)*(12)*] FRESH (ham)	[(7)*(11)*(12)*] BRAKISH / SALINE (ham)
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Gurdaspur												
1	Batala	Alluvium	27830	27830	27830	0	192	300	108	86	0.0024	5636	0
2	Dera Baba Nanak	Alluvium	29450	29450	29450	0	196	255.58	59.58	42	0.0024	2913	0
3	Dhariwal	Alluvium	25680	25680	25680	0	0	0	0	0	0.0024	0	0
4	Dina Nagar	Alluvium	23630	23630	23630	0	0	0	0	0	0.0024	0	0
5	Fatheh Garh Churian	Alluvium	21330	21330	21330	0	0	0	0	0	0.0024	0	0
6	Gurdaspur	Alluvium	25130	25130	25130	0	193	300	107	78	0.0024	4616	0
7	Kahnuwan	Alluvium	32370	32370	32370	0	230	300	70	57	0.0024	4345	0
8	Kalanour	Alluvium	22640	22640	22640	0	190	300	110	86	0.0024	4585	0
9	Quadian	Alluvium	18060	18060	18060	0	252.5	300	47.5	42	0.0024	1786	0
10	Sri Hargobindpur	Alluvium	28330	28330	28330	0	218	300	82	55	0.0024	3669	0
	Dist.Total (h	am)	254450	254450	254450	0						22096	0
	Dist.Total (mcm)											220.96	0.00

Table-11 BLOCK WISE TOTAL AVAILABLE GROUND WATER RESOURCES IN AQUIFERS UP TO 300m DEPTH

							Anne	xure I B-2	
A	VAILABILITY OF	TOTAL FRESH	GROUNDWAT		S IN GURDASP	UR DISTRICT U	JPTO 300 ME	TRE	
Sl.No	BLOCK	Dynamic Groundwater Resources (2013) AQUIFER-I	In-storage Groundwater Resources AQUIFER-I	DEPTH Groundwater Resources AQUIFER-I [(3)+(4)]	In-storage Groundwater Resources AQUIFER-II	In-storage Groundwater Resources AQUIFER-III	Total Availabilty of Groundwater Resources [(5)+(6)+(7)]		
							ham	mcm	
1	2	3	4	5	6	7	8	9	
1	Batala	17609.37	94176.72	111786	4028	5636	121450	1215	
2	Dera Baba Nanak	17690.55	63612.00	81303	4771	2913	88986	890	
3	Dhariwal	19263.41	42526.08	61789	2663	0	64452	645	
4	Dina Nagar	11138.76	125900.64	137039	0	0	137039	1370	
5	Fatheh Garh Churian	18649.42	49144.32	67794	2211	0	70005	700	
6	Gurdaspur	18808.43	150176.88	168985	2388	4616	175990	1760	
7	Kahnuwan	20553.68	130515.84	151070	6572	4345	161987	1620	
8	Kalanour	13360.30	57052.80	70413	3325	4585	78324	783	
9	Quadian	11991.40	123530.40	135522	2419	1786	139727	1397	
10	Sri Hargobindpur	15407.36	157061.52	172469	4528	3669	180667	1807	
Dist.To	otal (ham)	164473	<i>993697</i>	1158170	25959	22096	1206224		
Dist.To	otal (mcm)	1645	9937	11582	260	221	12062		


5. GROUND WATER RELATED ISSUES


Gurdaspur is famous for its paddy cultivation and is also known as 'Rice Bowl' of Punjab. The quality of ground water in the district is potable for both the drinking and irrigation purposes therefore, the ground water is constantly being pumped for the irrigation due to its easy access through tube wells and they are the main source of irrigation.

This will lead to its major ground water issue which is deepening of ground water level as the recharge of the groundwater through rainfall and other sources are less than the overall extraction.

5.1 GROUND WATER IRRIGATION SCENARIO

As per the data available from minor irrigation census 2006-07, the number of shallow and deep, tube wells, lined, unlined water distribution system, land holdings of wells are given in Table 12,13 and 14

Table 12-Distribution of Tube wells Acco	ording to Owner's holding Size

No. of shallow tube wells by size class of individual owner							
Sr.no	district	Marginal	Small	Semi-Medium	Medium	Big	Total
		(0-1 ha)	(1-2 ha)	(2-4 ha)	(4-10ha)	(>=10 ha)	
1	Gurdaspur	6319	17639	36473	19183	2747	82361

Table13 -Distribution of Shallow Tube wells According to Depth of tube well

No. by the depth of shallow Tube well							
Sr.no	district	(0-20 mts)	(20-40 mts)	(40-60 mts)	(60-70 mts)	(>70 mts)	Total
1	Gurdaspur	2169	56933	14618	8830	2478	85028

Table14- Type of Ground water distribution device

Open Water Channel					
Lined/pucca Unlined/kutcha Total					
5979	78500	84479			

6. AQUIFER MANAGEMENT PLAN

A summery outline of the artificial recharge plan for the entire district of each OE block is given at the beginning in tabular forms. This is followed by the salient features of each block along with the detailed structure-wise recharge plan and cost estimates. Details of the block wise, type of suitable recharge structures and volume of water assured for annual recharge for each block in rural area, urban area and artificial recharge in agricultural farm are given in table and design of recharge structures are annexed at annexure I, II. More than 5 meter Mean decadal water level with falling trend is considered for block wise artificial recharge calculation. Another focus has been given to minimize the gross draft by enhancing ground water use efficiency in irrigation system after replacing the water distribution system from unlined/kutcha channel to Under Ground Pipeline System in the whole district.

6.1 SCOPE OF IMPLEMENTATION

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the Central or State Govt. like MANERGA, IWSP, PMKSY (Prime Minister Krishi Sinchai Yojna), NABARD funded schemes, Urban Development schemes, departmentally funded projects etc. may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, Engineering Collages, Academic and Research Institutions, NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

6.2 POTENTIAL OF ENHANCING THE GROUND WATER USE EFFICIENCY

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced by the state of Punjab, particularly in overexploited blocks. There are around 84932 operated by farmers for irrigation through unlined/Kutcha (92.32%) open channel system in Gurdaspur district where water from the tubewell is discharge to the agricultural field. In this process huge quantity of ground water is wasted in soil moisture and evaporation losses.

Dynamic ground water resources (2013) indicate that Gross ground water draft for irrigation in Gurdaspur district is estimated at 2197.41MCM. It is expected that around 26.52 % of over draft can be brought down by switching over to underground/surface pipeline based distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to the tune of 1784.77 MCM assuming there is no crop diversification by the farmers.

The benefit will lead to saving of precious ground water resources in overexploited blocks of Gurdaspur Districts. The measure if implemented will bring down the ground water overdraft from 127% to 100.48 %. The category of the blocks will also improve drastically resulting in boosting of agriculture and industrial development otherwise not sustainable in majority of the blocks in the state.

The tubewells also consume enormous electricity which is subsidized and government incurs significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. This will also be useful in the waterlogged/ shallow water table areas as the seepage losses in these areas also aggravate the water logging. Government should make/launch a mission mode program for installing the underground pipe lines instead of having *katcha* channel in the entire Punjab. Heavy ground water overdraft can be reduced by these efforts. This will ensure more crop per drop.

6.3 Water Saving Potential from Crop Diversification-Change Paddy to Maize/Pulses:

As the requirement of water for paddy is much high therefore by changing paddy to maize/Pulses will help in saving of water. For estimating the water saving by crop diversification it is assumed that one mcm of water will be saved in case of maize or pulses planted in one sq km of land. In case of pulses even higher amount of ground water can be saved

Block		Reduction in draft by different water saving method							
	Net Ground Water ability (mcm)	Total Draft (mcm)	'resent Stage of Iraft (SOD) (%) As per 2013	place water urses by UG Pipes (mcm)	opt Artificial recharge (mcm)	ge Paddy to Maize (mcm)	Total (mcm) (2+3+4)	SOD afterwards (%)	nge of paddy cultivation area (% of existing)
			1	2	3	4	5		
BATALA	176.1	265.1	151	66.3	3.27	19.5	89.07	100	12
DINA NAGAR	111.4	115.1	103	28.8	0.00	0.0	28.8	78	-
FATEHGARH CHURIAN	186.5	248.4	133	62.1	2.52	0.0	64.62	99	-
GURDASPUR	188.1	159.9	85	40.0	0.35	0.0	40.35	64	-
KAHNUWAN	205.5	255.0	124	63.8	4.59	0.0	68.39	91	-
KALANAUR	133.6	175.4	131	43.9	2.46	0.0	46.36	97	-
QADIAN	119.9	154.0	128	38.5	2.85	0.0	41.35	94	
SRI HARGOBINDPUR	154.1	178.1	116	44.5	3.33	0.0	47.83	85	-
DERA BABA NANAK	176.9	248.1	140	62.0	3.10	6.0	71.1	100	3
DHARIWAL	192.6	235.3	122	58.8	3.06	0.0	61.86	90	-
Total	1644.7	2034.4	124	508.6	25.52	19.5	553.62	91	-

 Table 15: Scope of Quantitative Impact on Stage of Development after applying various management strategies (District Gurdaspur)

Block				Reduction i	n draft by diffe	erent water saving n			
	Net Ground Water ability (mcm)	Total Draft (mcm)	resent Stage of Iraft (SOD) (%) As per 2013	place water ourses by UG Pipes (mcm)	opt Artificial recharge (mcm)	ge Paddy to Maize (mcm)	Total (mcm) (2+3+4)	SOD afterwards (%)	nge of paddy cultivation area (% of existing)
			1	2	3	4	5		
BAMYAL	17.0	14.0	82	3.5	-	-	3.5	62	-
DHAR KALAN	58.9	11.2	19	2.8	-	-	2.8	14	-
ΡΑΤΗΑΝΚΟΤ	185.6	124.2	67	31.0	-	-	31.0	50	-
NAROT JAIMAL									_
SINGH	58.2	53.8	93	13.5	-	-	13.5	69	-
Total	319.6	203.2	64	50.8	-	-	50.8	48	-

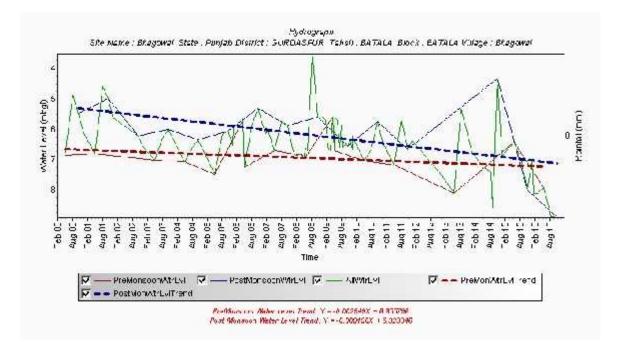
 Table 16: Scope of Quantitative Impact on Stage of Development after applying various management strategies (District Pathankot)

7. BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

(I) BATALA BLOCK (278.30 SQ KM)

1. Salient Information

Population (2011)	Rural-140815
	Urban-2002
	Total-142817
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall – 1047.70 mm
Average Annual Rainfall (Batala block)	779 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 197.59 sq.km
	Total Irrigated Area-381.59 sq.km

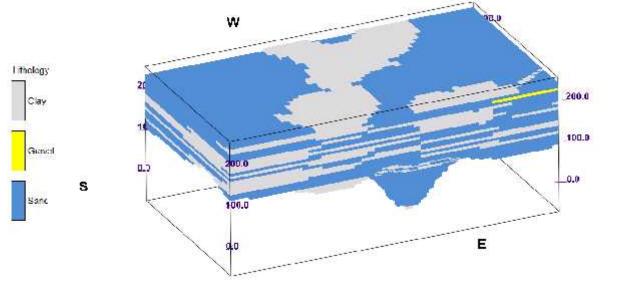

Water Bodies & Canal Irrigation

Water bodies available in the villages for storm water and untreated waste water of villagers, can be used for irrigation after treatment. The canal irrigation is also available in the Batala block.

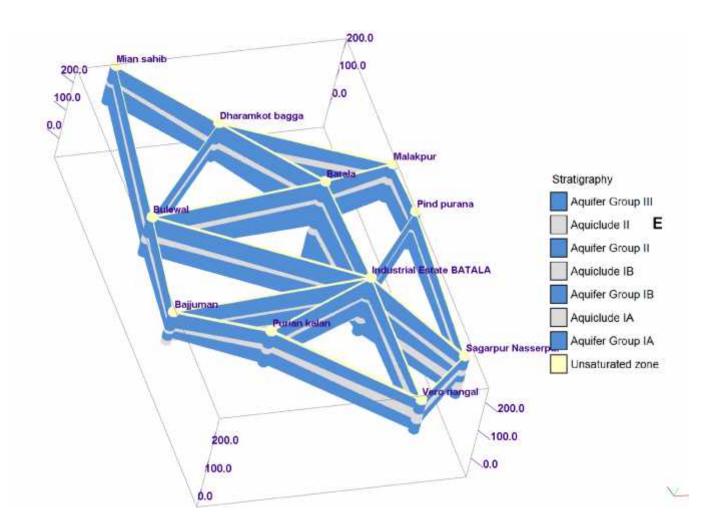
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (47m) is not very prominent in terms of thickness and geographic extent. Aquifer II (67 m) & III (86 m) are more prominent in thickness and geographic extent. Block is categorized as Over-Exploited as per Ground Water Assessment 2013 assessment.

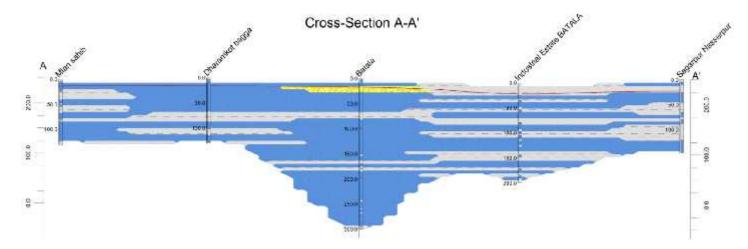
Ground water Extraction: Information regarding the abstraction from Aquifer III is not available, but there are drinking water supply from Tubewells tapping combined Aquifer and separate Aquifer could not be assessed separately.

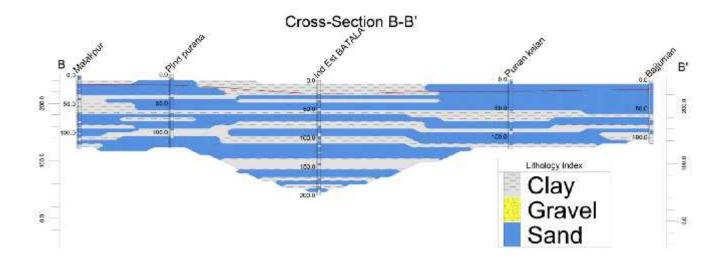
Water level Behavior (2015): Pre Monsoon-~6.30-9.10 (*mbgl*)bgl &Post Monsoon-~4.32-9.40 (*mbgl*)


2. Aquifer Disposition: Multiple Aquifer System (3 Aquifer System)

Aquifer	Geology	Type of	Thickness of	Transmissivity	Specific	Storativity
		Aquifer	Granular	(m²/day)	Yield %	
			Zones (m)			
Aquifer-I		Unconfined	47	1450-7190	0.072	$2.00*10^{-2}$
(9-69m)	ý		-17	1450 / 150	0.072	2.00 10
Aquifer-II	nary l S	Unconfined	67		NA	
(81-176m)	cerna vial osits	to Confined	07	-	INA	-
Aquifer-III	Quaterna Alluvial deposits	Unconfined	86		NA	
(192-300m)	d A Q	to Confined	00	-	INA	-


Aquifer comprises of freshwater only and the main Aquifer formation is sand.


The non-Aquifer material comprise of clay.


3D Lithology model

3D Lithology Fence

3. Ground Water Resource, Extraction, Contamination and Other Issues

A		17(00
Aquifer wise Water	Dynamic Aquifer I	176.09
Resources available	In-storage Aquifer I	941.77
(in mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	40.28
	Dynamic Aquifer III	-
	In-storage Aquifer III	56.36
	Total	1215
Ground Water	Irrigation	257.00
Extraction (in	Domestic & Industrial	11.00
mcm)		
Provision for domest	tic & Industrial	12.68
requirement up to 2	025 (in mcm)	
Chemical Quality of g	round water and	Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone up to the
recharge and proposed interventions	average depth to water level (9 m).

Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 3.215 mcm volume of water

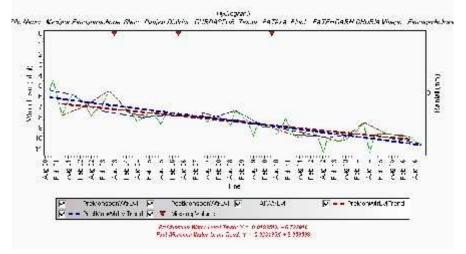
5. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 70.43 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 12 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 19.5 mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if any	-

(II) FATEHGARH CHURIAN BLOCK (213.30 SQ KM)

1. Salient Information

Population (2011)	Rural- 117690
	Urban
	Total- 117690
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall - 1047.70 mm
Average Annual Rainfall	
(Fatehgarh Churian block)	700 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown- 175.54 sq.km
	Total Irrigated Area- 335.54 sq.km

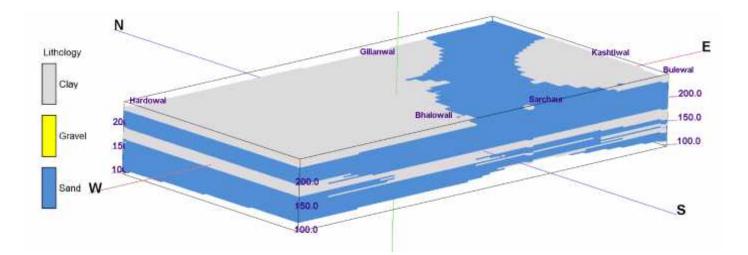

Water Bodies & Canal Irrigation

Water bodies available in the villages for storm water and untreated waste water of villagers, can be used for irrigation after treatment. The canal irrigation is also available in the Fatehgarh Churian block.

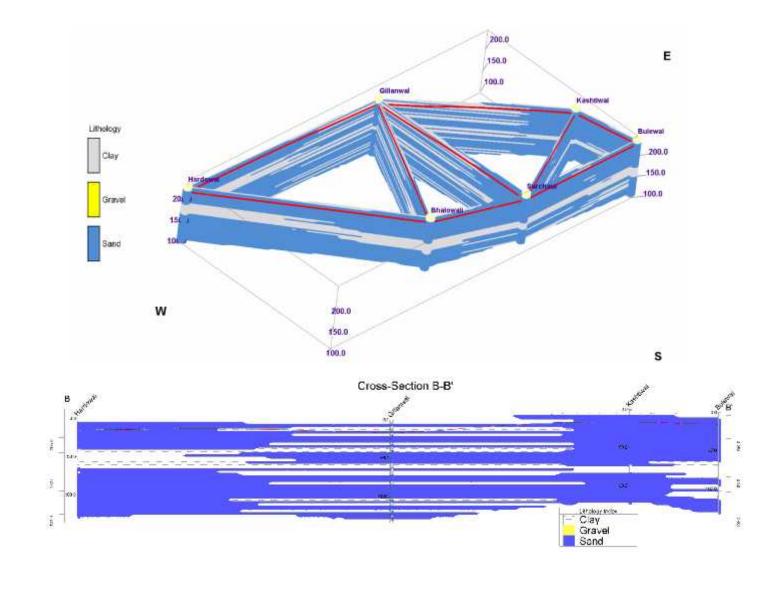
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (32m) is not very prominent in terms of thickness and geographic extent. Aquifer II (48 m) is more prominent & Aquifer III (-na-) data is not available . Block is categorized as Over-Exploited as per Ground Water assessment 2013.

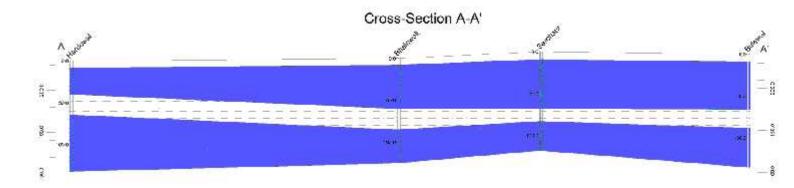
Ground water Extraction: Information regarding the abstraction from Aquifer III is not available, but there are drinking water supply from Tubewells tapping combined Aquifer and separate Aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon *6.10-9.56 (mbgl)* & Post Monsoon-~*6.30-9.66 (mbgl)*


Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
			Zones (m)	(m²/day)		
Aquifer-I (8-57m)	sits	Unconfined	32	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II (72-135m)	nary I depo	Unconfined to Confined	48	-	Not assessed	-
Aquifer-III (data not available)	Quaternary Alluvial deposits	-	-	-	Not assessed	-

2. Aquifer Disposition: Multiple Aquifer System (3 Aquifer System)


Aquifer comprises of freshwater only and the main Aquifer material is sand.


The non-Aquifer material comprise of clay.

3D Lithology model

3D Lithology Fence

Ground Water	Dynamic Aquifer I	186.49
Resources (in	In-storage Aquifer I	491.44
mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	22.11
	Dynamic Aquifer III	-
	In-storage Aquifer III	-
	Total	700
Ground Water	Irrigation	248.39
Extraction (in	Domestic & Industrial	3.23
mcm)		
Future Demand for domestic & Industrial		3.79
sector (2025) (in mcm)		
Chemical Quality of ground water		Potable for drinking and irrigation
Other issues		declining water level trend

3. Ground Water Resource, Extraction, Contamination and Other Issues

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone up to the
recharge and proposed interventions	average depth to water level (8 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 2.549 mcm volume of water

5. Demand Side Interventions

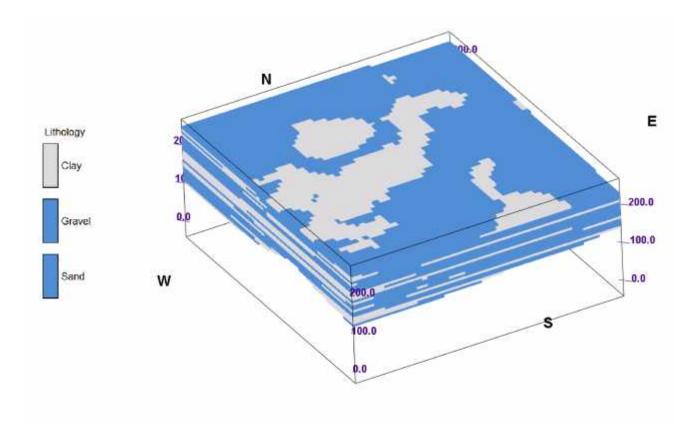
Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 67.90 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

(III) KAHNUWAN BLOCK (323.70 SQ KM)

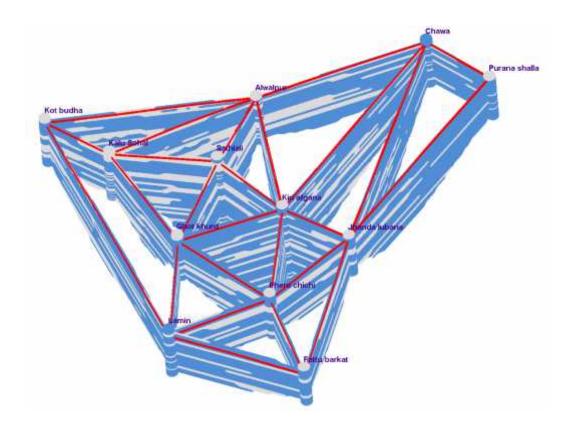
1. Salient Information

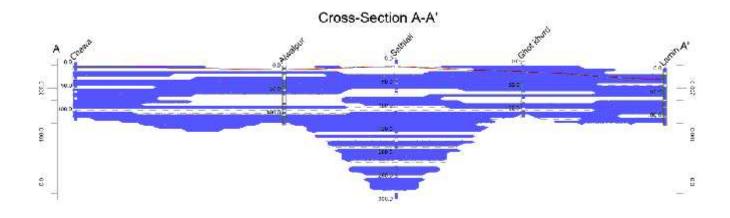
Population (2011)	Rural-134576
	Urban
	Total- 134576
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall - 1047.70 mm
Average Annual Rainfall (Kahnuwan b	block) 624 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses,
	Net Area Sown- 239.19 sq.km
	Total Irrigated Area- 446.19 sq.km

Water Bodies & Canal Irrigation


Water bodies are available in the villages for the storm water and untreated water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Kahnuwan block.

Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (56 m) is not very prominent in terms of thickness and geographic extent as compared to Aquifer II (94 m) & III (57) m. Block is categorized as Over-Exploited as per Ground Water Assessment 2013.


Ground water Extraction: Information regarding the abstraction from Aquifer II & III is not available, but there are drinking water supply tapping combined Aquifer and Aquifer could not be assessed separately.


Water level Behavior (2015): Pre Monsoon *3.04-7.60 (mbgl)* &Post Monsoon-~*3.70-8.00(mbgl)*

3D Lithology model

3D Lithology Fence

Cross-Section B-B' Joanda Woana ooto budio ookali Sonal cekinalgana В Ô.: 90.0 0.002 2002 50.0 00.0 100 1.0.0 B 100.0 130.0 Lithology Index Clay Gravel Sand 50.0 0.00 250.0 0.0 300.0

2. Aquifer Disposition:	Multiple Aquifer System	(3 Aquifer System)
2. Inquiter Disposition.	multiple liquiter bystelli	(5 figurier 5ystem)

Aquifer	Geology	Type of Aquifer	Thickness of Granular	Transmis sivity	Specific Yield %	Storativity
		•	Zones (m)	(m²/day)		
Aquifer-I (11- 96m)	у	Unconfined	56	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II (107-220m)	ernary /ial sits	Unconfined to Confined	113	-	NA	-
Aquifer-III (230-300m)	Quaterna Alluvial deposits	Unconfined to Confined	70	-	NA	-

Aquifer comprises of freshwater only and the main Aquifer material is sand.

The non-Aquifer material comprise of clay.

3. Ground Water Resource, Extraction, Contamination and Other Issues

Aquifer wise	Dynamic Aquifer I	206
Resources	In-storage Aquifer I	1305
available(in mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	65.72
	Dynamic Aquifer III	-
	In-storage Aquifer III	43.45
	Total	1620
Ground Water	Irrigation	255.02
Extraction (in	Domestic & Industrial	3.03
mcm)		
Provision for domestic & Industrial		3.71
requirement upto2025 (in mcm)		
Chemical Quality of ground water &		Potable for drinking and irrigation
contamination		purposes
Other issues		declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (11 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 4.586 mcm volume of water

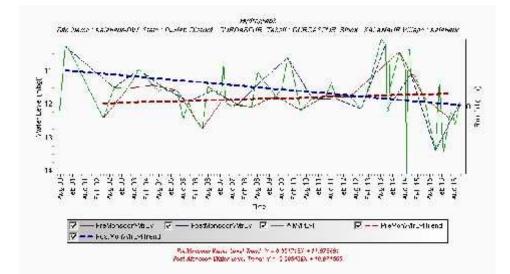
5. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 69.79 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

6. KALANOUR BLOCK (206.20 SQ KM)

1. Salient unformation

Population (2011)	Rural- 81650
	Urban
	Total- 81650
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall - 1047.70 mm
Average Annual Rainfall (Kalanour block)	795 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses,
	Net Area Sown- 160.08 sq.km
	Total Irrigated Area- 312.08 sq.km

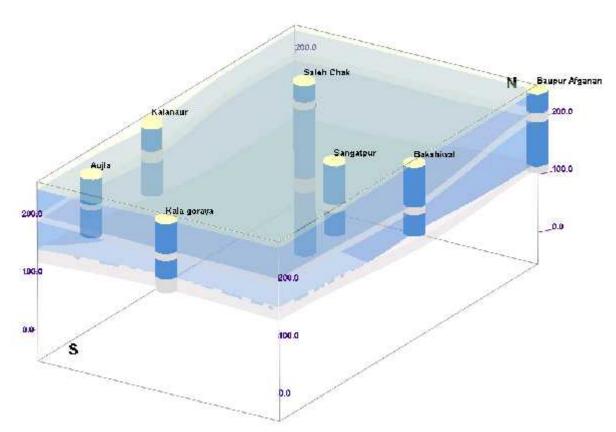

Water Bodies & Canal Irrigation

Water bodies are available in the villages for the storm water and untreated water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Kalanour block.

Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (48 m) is not very prominent in terms of thickness and geographic extent as compared to Aquifer II (68 m) & Aquifer III is (86 m) Block is categorized as Over-Exploited as per Ground Water assessment 2013.

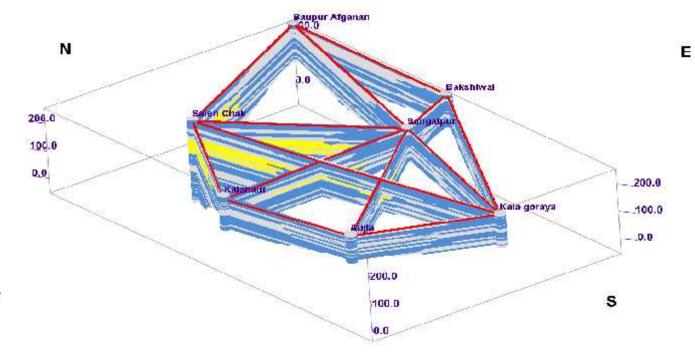
Ground water Extraction: Information regarding the abstraction from Aquifer III is not available, but there are drinking water supply from tube wells tapping combined Aquifer and separate Aquifer could not be assessed separately.

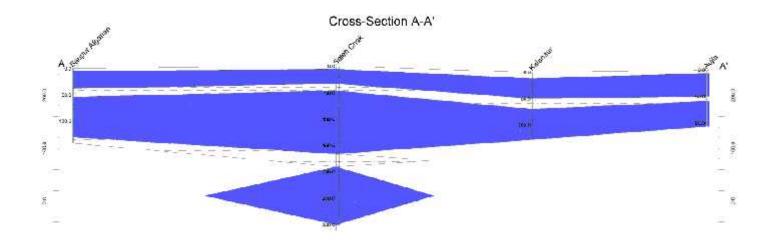
Water level Behavior (2015): Pre Monsoon 3.04- 11.79 (*mbgl*) &Post Monsoon-~ 3.80 – 11.09 (*mbgl*)

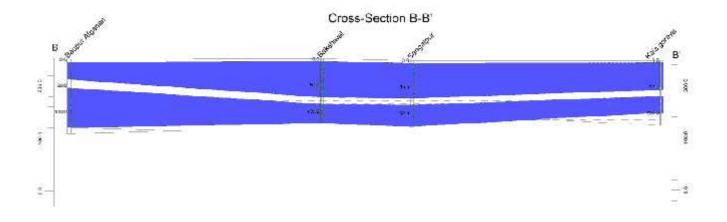


2.	Aquifer Disposition:	Multiple Aqui	fer System (3	Aquifer System)
2.	riquiter Disposition.	multiple riqui	ier bystein (s	riquiter bystemj

Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m ² /day)	Specific Yield %	Storativity
Aquifer-I (6-54m)	y	Unconfined	79	142- 4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II (74-158m)	ernary ⁄ial sits	Unconfined to Confined	68	-	NA	-
Aquifer-III (190-300m)	Quaterna Alluvial deposits	Unconfined to Confined	86	-	NA	-


Aquifer comprises of freshwater only and the main Aquifer material is sand.


The non-Aquifer material comprise of clay.



3D Lithology model

3D Lithology Fence

3. Ground Water Resource, Extraction, Contamination and Other Issues

Aquifer wise Water Dynamic Aquifer I		133.60
Resources available In-storage Aquifer I		570.53
(in mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	33.25
	Dynamic Aquifer III	-
	In-storage Aquifer III	45.85
	Total	783
Ground Water Irrigation		173.54
Extraction (in	Domestic & Industrial	1.86
mcm)		
Provision for domest	ic & Industrial sector	2.27
(2025) (in mcm)		
Chemical Quality of g	round water	Potable for drinking and irrigation
Other issues		declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone up to the
recharge and proposed interventions	average depth to water level (6 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 2.462 mcm volume of water

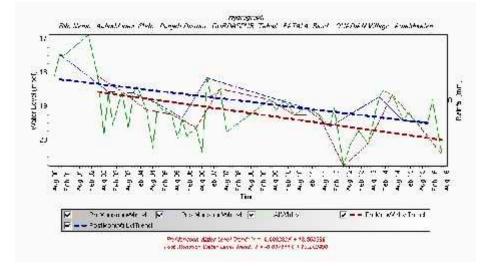
5. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 48.06 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

7. QUADIAN BLOCK (180.86 SQ KM)

1. Salient Features

Population (2011)	Rural-96436
	Urban- 1733
	Total- 98169
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall – 1047.70 mm
Average Annual Dainfall (Quadian block)	90 <i>4</i> mm
Average Annual Rainfall (Quadian block)	894 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses
	Net Area Sown- 159.62 sq.km
	Total Irrigated Area- 320.62 sq.km

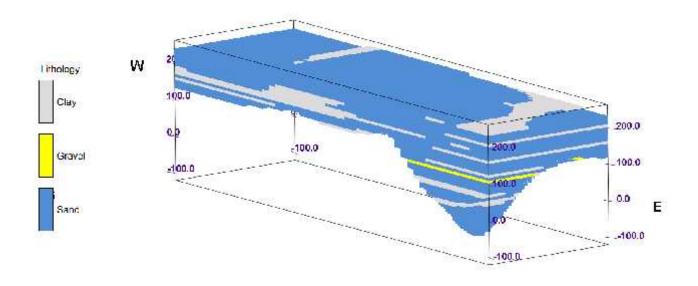

Water Bodies & Canal Irrigation

Water bodies are available in the villages for the storm water and untreated water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Quadian block.

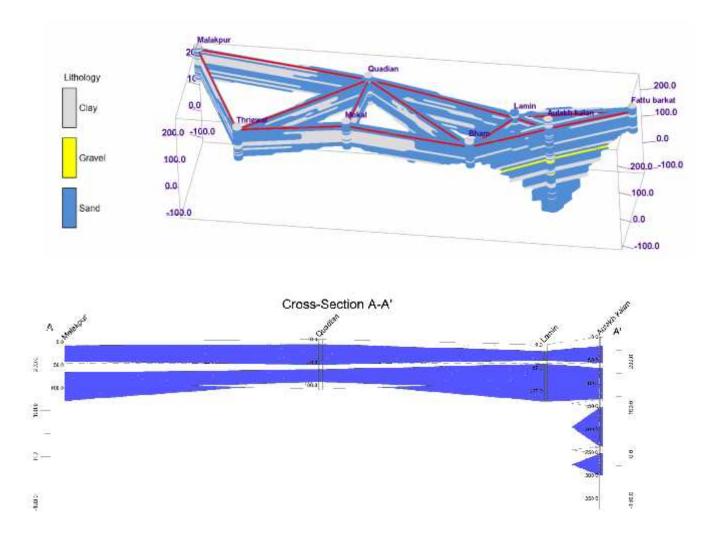
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (95 m) is very prominent in terms of thickness and geographic extent. Aquifer II (62 m) is less in thickness & Aquifer III is (42 m). Block is categorized as Critical as per Ground Water assessment 2013.

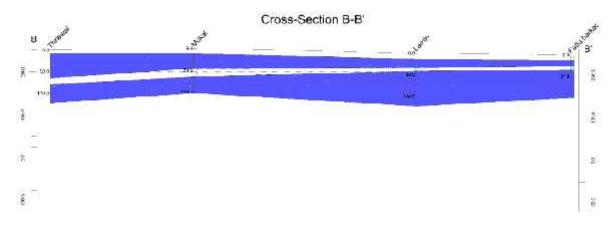
Ground water Extraction: Information regarding the abstraction from Aquifer III is not available, but there are drinking water supply tapping from Tubewell combined Aquifer and separate Aquifer could not be assessed separately.

Water level Behavior (2015) : Pre Monsoon *9.00-19.51 (mbgl)* & Post Monsoon-~ *6.80-15.10 (mbgl)*


2.	Aquifer Disposition:	Multiple Aquifer S	System (3 Aquifer System)
	nganer 2 ispection	i i di i pro i i qui o i c	

Aquifer	Geology	Type of Aquifer	Thickness of Granular	Transmis sivity	Specific Yield %	Storativity
			Zones (m)	(m²/day)		
Aquifer-I (12-135m)	y	Unconfined	95	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II (145-238m)	ernary vial ssits	Unconfined to Confined	62	-	NA	-
Aquifer-III (253-300m)	Quaterna Alluvial deposits	Unconfined to Confined	42	-	NA	-


Aquifer comprises of freshwater only and the main Aquifer formation is sand.


The non-Aquifer material comprise of clay.

3D Lithology model

3D Lithology Fence

Aquifer wise Water Dynamic Aquifer I		119.91	
Resource available In-storage Aquifer I		1235.30	
(in mcm) Dynamic Aquifer II		-	
	In-storage Aquifer II	24.19	
	Dynamic Aquifer III	-	
	In-storage Aquifer III	17.86	
	Total	1397	
Ground Water	Irrigation	151.58	
Extraction (in Domestic & Industrial		2.41	
mcm)			
provision for domest	tic & Industrial	2.91	
requirement up to 2	025 (in mcm)		
Chemical Quality of g	ground water &	suitable for drinking and irrigation	
contamination		purposes	
Other issues		declining water level trend	

3. Ground Water Resource, Extraction, Contamination and Other Issues

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (12m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 2.849 mcm volume of water

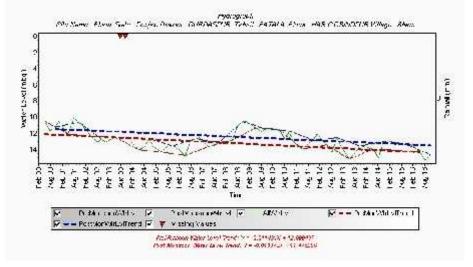
5. Demand Side Interventions

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 41.98 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

8. SRI HARGOBINDPUR BLOCK (326.40 SQ KM)

1. Salient Information

Population (2011)	Rural- 116271
	Urban
	Total- 116271
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall – 1047.70 mm
Average Annual Rainfall (Sri Hargobin	adpur block) 816 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses,
	Net Area Sown- 195.85 sq.km
	Total Irrigated Area- 393.85 sq.km

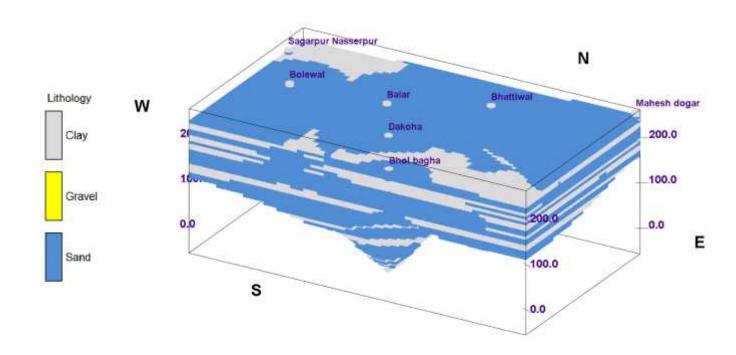

Water Bodies & Canal Irrigation

Water bodies are available in the villages for the storm water and untreated water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Sri Hargobindpur block.

Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (77 m) is very prominent in terms of thickness and geographic extent. Aquifer II (74 m) is very prominent in terms of thickness & Aquifer III is (55 m) Block is categorized as Over-Exploited as per Ground Water assessment 2013

Ground water Extraction: Information regarding the abstraction from Aquifer III is not available, but there are drinking water supply from tubewells tapping combined Aquifer and separate Aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon *4.50-15.65 (mbgl)* &Post Monsoon-~ *4.50-15.65 (mbgl)*

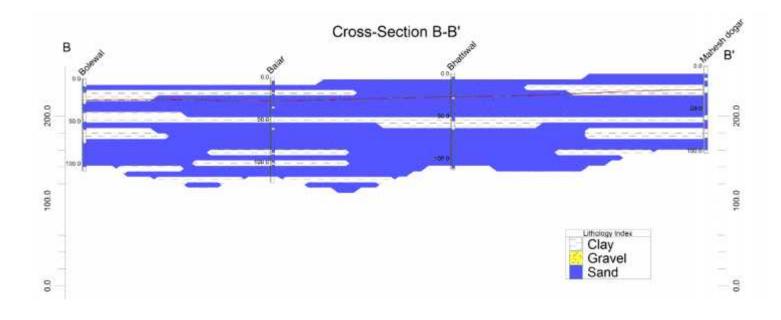

2.	Aquifer Disposition:	Multiple Aquifer System	(3 Aquifer System)

Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
			Zones (m)	(m ² /day)		
Aquifer-I		Unconfined	77	142-	0.072	$1.0*10^{-3}$ to
(15-103m)	y		//	4300	0.072	4.03*10 ⁻³
Aquifer-II	nary s	Unconfined	74		NT A	
(116-202m)	ieri vial	to Confined	/4	-	NA	-
Aquifer-III	Quaterna Alluvial deposits	Unconfined	FF		NIA	
(218-300m)	QA	to Confined	55	-	NA	-


Aquifer comprises of freshwater only and the main Aquifer material is sand.

The non-Aquifer material comprise of clay.

3D Lithology model



3D Lithology Fence

500.0

Aquiferwise Water	Dynamic Aquifer I	154.07	
Resource In-storage Aquifer I		1570.62	
available(in mcm)	Dynamic Aquifer II	-	
In-storage Aquifer II		45.28	
Dynamic Aquifer III		-	
	In-storage Aquifer III	36.69	
	Total	1807	
Ground Water	Irrigation	174.74	
Extraction (in	Domestic & Industrial	3.37	
mcm)			
Provision for domestic & Industrial		3.98	
requirement upto 2025 (in mcm)			
Chemical Quality of ground water &		Suitable for drinking and irrigation	
contamination		purposes	
Other issues		declining water level trend	

3. Ground Water Resource, Extraction, Contamination and Other Issues

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (15m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 3.346 mcm volume of water

5. Demand Side Interventions

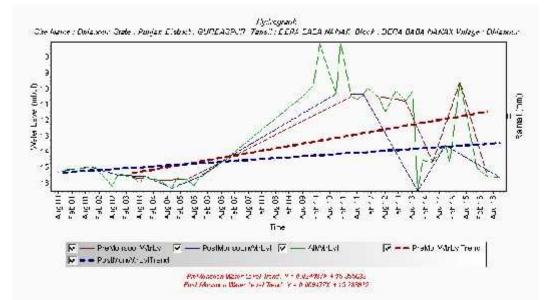
Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 48.39 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

9. DERA BABA NANAK BLOCK (294.50 SQ KM)

1. Salient information

Rural- 115015		
Urban- 4001		
Total- 119016		
Average annual rainfall – 1047.70 mm		
Average Annual Rainfall (Dera Baba Nanak block) 706 mm		

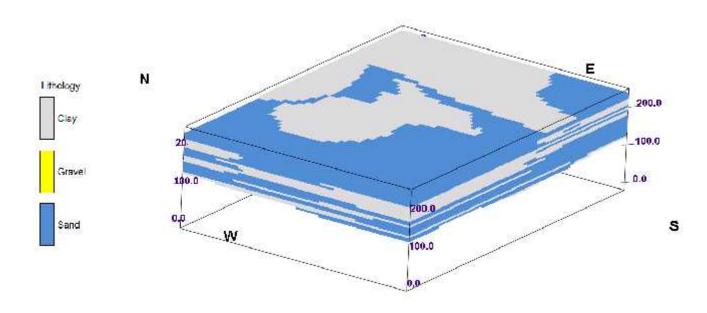
Agriculture and Irrigation

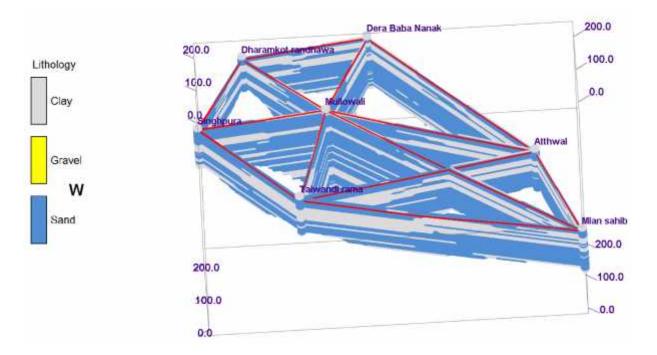

Major Crops- Rice, Wheat Other crops- Sugarcane, Potatoes, Pulses, Net Area Sown- 252.71 sq.km Total Irrigated Area- 488.71 sq.km

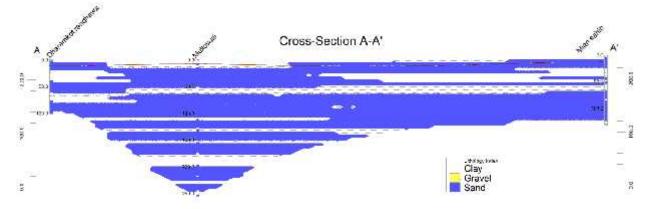
Water Bodies & Canal Irrigation

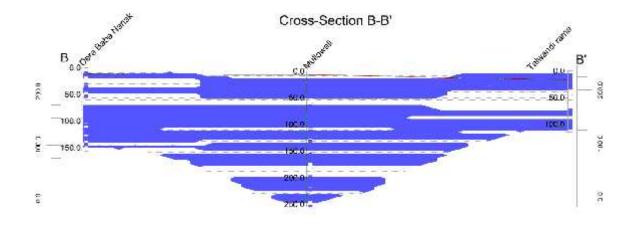
Water bodies available in the villages for storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is also available in the Dera Baba Nanak block.

Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (30 m) is not very prominent in terms of thickness and geographic extent. Aquifer II (75 m) is prominent in thickness & Aquifer III is (42 m). Block is categorized as Over-Exploited as per ground water assessment 2013. **Ground water Extraction**: Information regarding the abstraction from Aquifer III is not available, but there are drinking water supply from tubewelss tapping combined Aquifer and separate Aquifer could not be assessed separately.


Water level Behavior (2015): Pre Monsoon 2.00-10.00 (mbgl)


Aquifer	Geology	Type of Aquifer	Thickness of Granular	Transmis sivity	Specific Yield %	Storativity
			Zones (m)	(m²/day)		
Aquifer-I (7-55 m)	y	Unconfined	30	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II (57-165 m)	ernary vial ssits	Unconfined to Confined	75	-	NA	-
Aquifer-III (196-256m)	Quaterna Alluvial deposits	Unconfined to Confined	42	-	NA	-


Aquifer comprises of freshwater only and the main Aquifer matirial is sand.


The non-Aquifer material comprise of clay.

3D Lithology Fence

Aquifer wise Water	Dynamic Aquifer I	176.91	
Resource available	In-storage Aquifer I	636.12	
(in mcm)	Dynamic Aquifer II	-	
	In-storage Aquifer II	47.71	
	Dynamic Aquifer III	-	
	In-storage Aquifer III	29.13	
	Total	890	
Ground Water	Irrigation	244.68	
Extraction (in	Domestic & Industrial	3.38	
mcm)			
Provision for domest	tic & Industrial sector	4.05	
requirement up to 20)25 (in mcm)		
Chemical Quality of g	round water	Suiatable for drinking and	
		irrigation	
Other issues		declining water level trend	

4. Ground Water Resource Enhancement

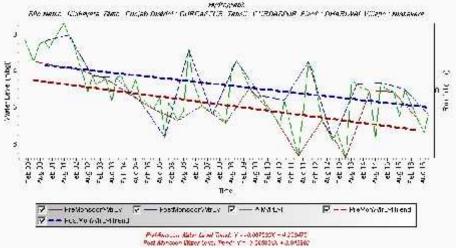
Aquifer wise space available for recharge and proposed interventions	Volume of unsaturated zone upto the average depth to water level (7m).		
Other interventions proposed	Artificial Recharge, Roof top Rainwater		
	Harvesting, Farm recharge by constructing		
	pits will save 3.098 mcm volume of water		

will save 67.77 mcm volume of water wastage
Proposed change in cropping pattern from Paddy to maize/soyabean 3 % of the total area needs to change the crop from paddy to maize/soyabean Anticipated volume of water to be saved by maize/soyabean is 6 mcm
Tanks, ponds and canals
-
-

DHARIWAL BLOCK (256.80 SQ KM)

1. Salient information

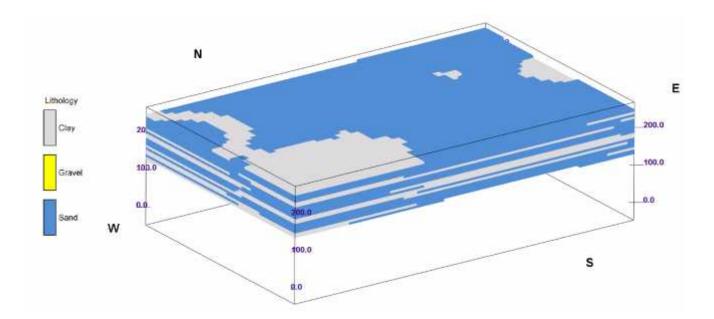
Population (2011)	Rural- 138380		
Ur	Urban- 7721		
Το	tal- 146101		
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall – 1047.70 mm		
Average Annual Rainfall (Dhariwal block)	819 mm		
Agriculture and Irrigation	Major Crops- Rice, Wheat		
	Other crops- Sugarcane, Potatoes, Pulses,		
	Net Area Sown- 174.30 sq.km		
	Total Irrigated Area- 330.30 sq.km		

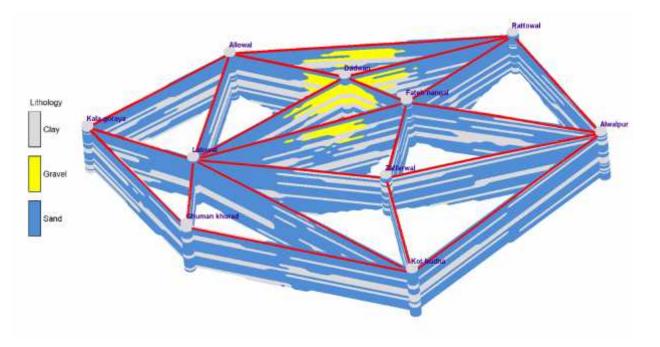

Water Bodies & Canal Irrigation

Water bodies available in the villages for storm water and untreated waste water of villagers, can be used for irrigation after treatment. The canal irrigation is also available in the Dhariwal block.

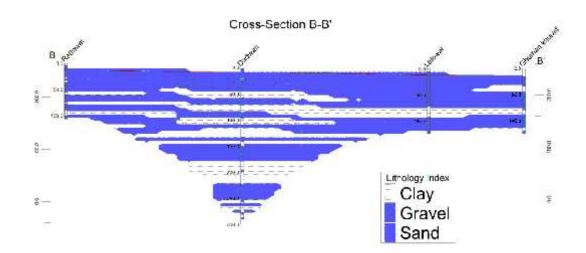
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (23 m) is not very prominent in terms of thickness and geographic extent. Aquifer II (48 m) is more in thickness & Aquifer III is not assessed due to non availability of data. Block is categorized as Over-Exploited as per ground water assessment 2013.

Ground water Extraction: Information regarding the abstraction from Aquifer III is not available, but there are drinking water supply tapping combined Aquifer and separate Aquifer could not be assessed separately.


Water level Behavior (2015): Pre Monsoon *4.30-11.80 (mbgl)* &Post Monsoon-~ *2.90-26.90 (mbgl)*


Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m ² /day)	Specific Yield %	Storativity
Aquifer-I (8-45m)	y	Unconfined	23	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II (66-133m)	ernary ⁄ial sits	Unconfined to Confined	48	-	NA	-
Aquifer-III (225-300m)	Quaterna Alluvial deposits	Unconfined to Confined	NA	-	NA	-

Aquifer comprises of freshwater only and the main Aquifer formation is sand.


The non-Aquifer material comprise of clay.

3D Lithology Fence

Cross-Section A-A'

Aquifer wise Water	Dynamic Aquifer I	192.63		
Resource available	In-storage Aquifer I	425.26		
(in mcm)	Dynamic Aquifer II	-		
	In-storage Aquifer II	26.63		
	Dynamic Aquifer III	-		
	In-storage Aquifer III	-		
	Total	645		
Ground Water	Irrigation	232.14		
Extraction (in	Domestic & Industrial	3.13		
mcm)				
Provision for domest	tic & Industrial sector	3.80		
requirement up to20	25 (in mcm)			
Chemical Quality of g	round water &	Suitable for drinking and irrigation		
Contamination		purposes		
Other issues		declining water level trend		

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average		
recharge and proposed interventions	depth to water level (8 m).		
Other interventions proposed	Artificial Recharge, Roof top Rainwater		
	Harvesting, Farm recharge by constructing		
	pits will save 3.112 mcm volume of water		

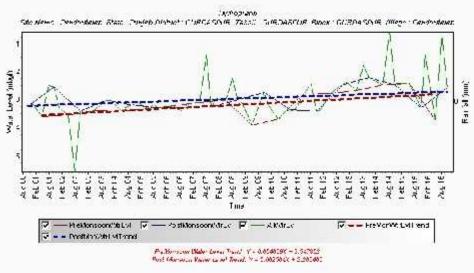
Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 64.29 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

10. GURDASPUR BLOCK (256.80 SQ KM)

1. Salient Information

Population (2011)	ıral- 138380		
	Urban- 7721		
,	Total- 146101		
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall – 1047.70 mm		
Average Annual Rainfall (Gurdaspur block)	819 mm		
Agriculture and Irrigation	Major Crops- Rice, Wheat		

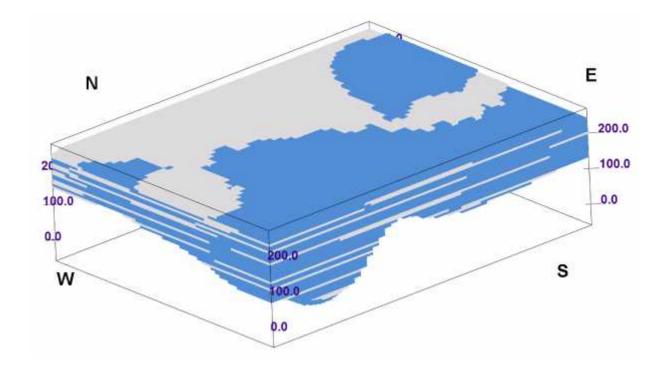
Other crops- Sugarcane, Potatoes, Pulses,

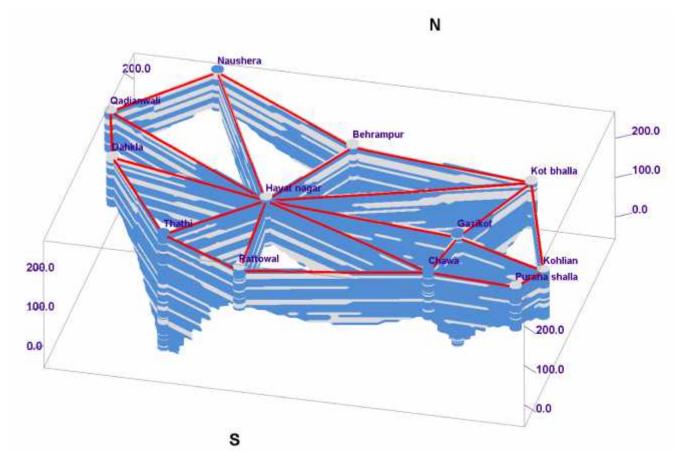

Water Bodies & Canal Irrigation

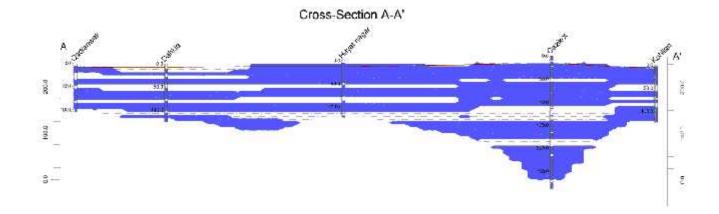
Water bodies available in the villages for storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is also available in the Gurdaspur block.

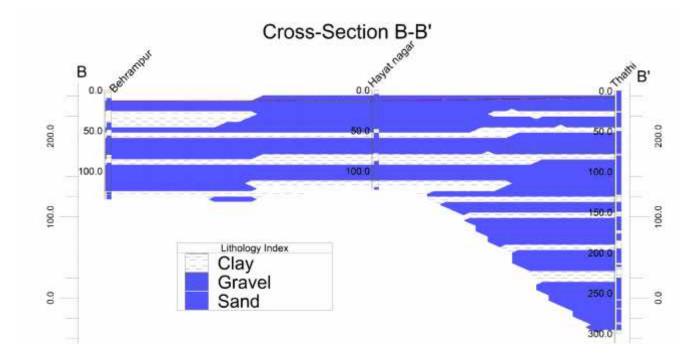
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (110 m) is very prominent in terms of thickness and geographic extent. Aquifer II (54 m) is not more in thickness & Aquifer III (107 m) is also very prominent in terms of thickness and geographic extent. Block is categorized as Semi- Critical as per ground water assessment 2013.

Ground water Extraction: Information regarding the abstraction from Aquifer II & III is available, but there are drinking water supply tapping combined Aquifer and separate Aquifers are assessed separately.


Water level Behavior (2015): Pre Monsoon *4.30-11.80 (mbgl)* &Post Monsoon-~ *2.90-26.90 (mbgl)*


Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
			Zones (m)	(m ² /day)		
Aquifer-I		Unconfined	110	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
(5-115m)	Σ.		110	142-4300	0.072	$4.03*10^{-3}$
Aquifer-II	nary l	Unconfined	54		NA	
(126-180m)	ceri vial sit	to Confined	54	-	INA	-
Aquifer-III	Quaterna Alluvial Ieposits	Unconfined	107		NA	
(100,000,)	$\sim -$		107	-	INA	-


(193-300m) $\Im \overline{\triangleleft} \overline{\triangleleft}$ \Im 107-NAAquifer comprises of freshwater only and the main Aquifer material is sand.


The non-Aquifer material comprise of clay.

3D Lithology Fence

Aquifer wise Water	Dynamic Aquifer I	188.08		
Resource available	In-storage Aquifer I	1501.77		
(in mcm)	Dynamic Aquifer II	-		
	In-storage Aquifer II	23.88		
	Dynamic Aquifer III	-		
	In-storage Aquifer III	46.16		
	Total	1760		
Ground Water	Irrigation	149.18		
Extraction (in	Domestic & Industrial	10.69		
mcm)				
Provision for domest	tic & Industrial	12.54		
requirement up to 2	025 (in mcm)			
Chemical Quality of g	ground water &	Suitable for drinking and irrigation		
contamination		purposes		
Other issues		declining water level trend		

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (5 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 0.35 mcm volume of water

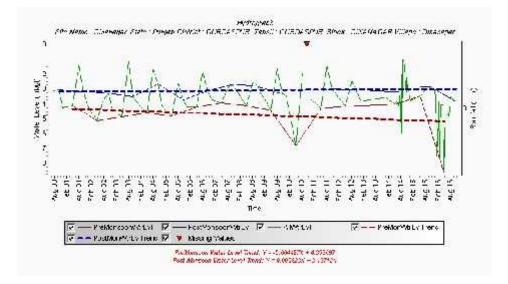
Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 40.00 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

11. DINANAGAR BLOCK (236.30 SQ KM)

Total Irrigated Area- 267.22 sq.km

1. Salient Information

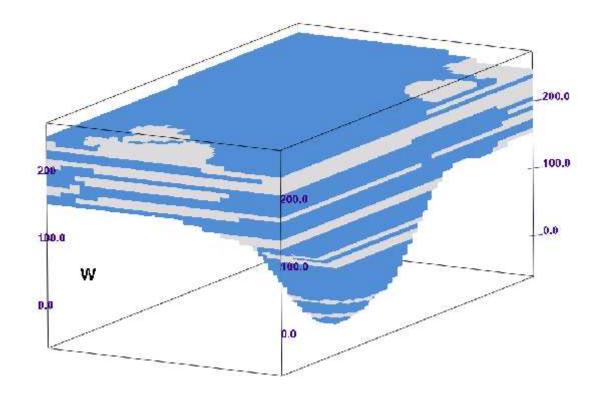
Population (2011)	Rural- 106323
	Urban
	Total- 106323
Rainfall 2014 (Gurdaspur Distt.)	Average annual rainfall – 1047.70 mm
Average Annual Rainfall (Dinanagar block) 947 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses,
	Net Area Sown- 147.22 sq.km

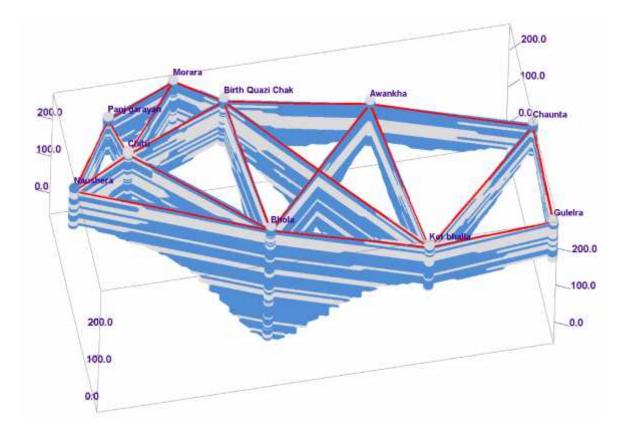

Water Bodies & Canal Irrigation

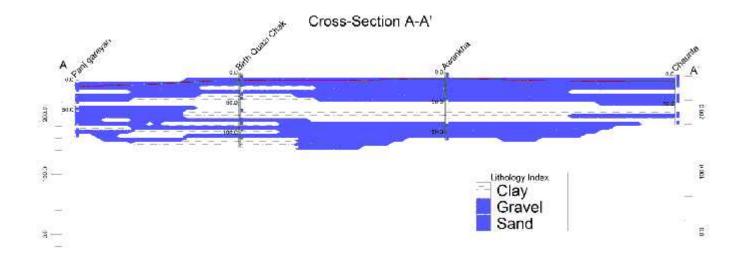
Water bodies available in the villages for storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is also available in the Dinanagar block.

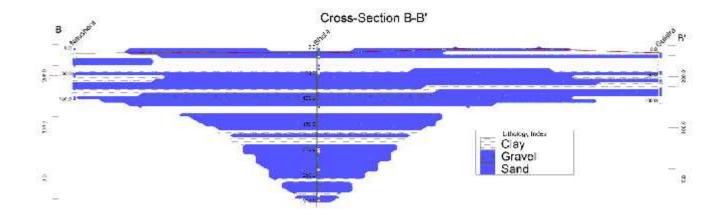
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (122 m) is very prominent in terms of thickness and geographic extent. Aquifer II & Aquifer III is not assess due to non availability of data. Block is categorized as **Safe** as per ground water assessment 2013.

Ground water Extraction: Information regarding the abstraction from Aquifer II & III is not available.


Water level Behavior (2015): Pre Monsoon 3.47-6.80 (*mbgl*) &Post Monsoon-~ 2.23-5.56(*mbgl*)


Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m ² /day)	Specific Yield %	Storativity
Aquifer-I (4-127m)	y	Unconfined	122	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II	ernary ⁄ial sits	Unconfined to Confined	NA	-	NA	-
Aquifer-III	Quaterna Alluvial deposits	Unconfined to Confined	NA	-	NA	-


Aquifer comprises of freshwater only and the main Aquifer material is sand.


The non-Aquifer material comprise of clay.

3D Lithology Fence

Aquifer wise Water	Dynamic Aquifer I	192.63
Resource available	In-storage Aquifer I	425.26
(mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	26.63
	Dynamic Aquifer III	-
	In-storage Aquifer III	-
	Total	645
Ground Water	Irrigation	232.14
Extraction (in	Domestic & Industrial	3.13
mcm)		
Provision for domestic & Industrial		3.80
requirement up to2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
Contamination		purposes
Other issues		declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone up to the
recharge and proposed interventions	average depth to water level (8 m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing
	pits will save 3.112 mcm volume of water

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 64.29 mcm volume of water wastage
Change in cropping pattern	Changing of cropping pattern is not required in the block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

12. BAMYAL BLOCK (47.8 SQ KM)

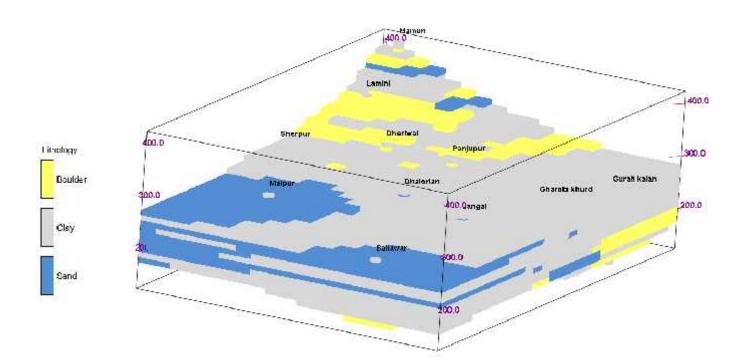
1. Salient Information

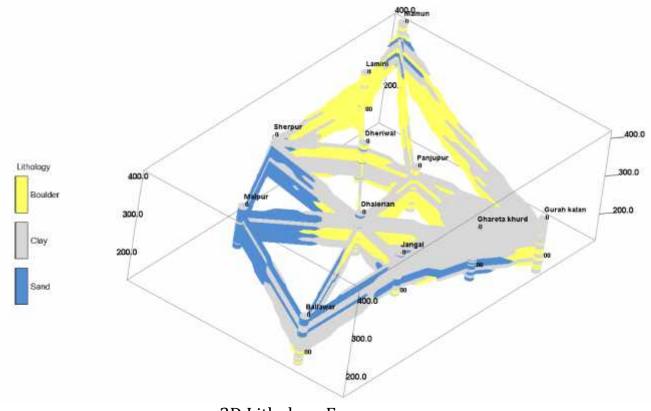
Population (2011)	Rural- 16400
	Urban
	Total- 16400
Rainfall 2014 (Pathankot Distt.)	Average annual rainfall – 1047.70 mm
Average Annual Rainfall (Bamyal block)	1158 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses,
	Net Area Sown- 34.02 sq.km
	Total Irrigated Area- 34.34 sq.km

Water Bodies & Canal Irrigation

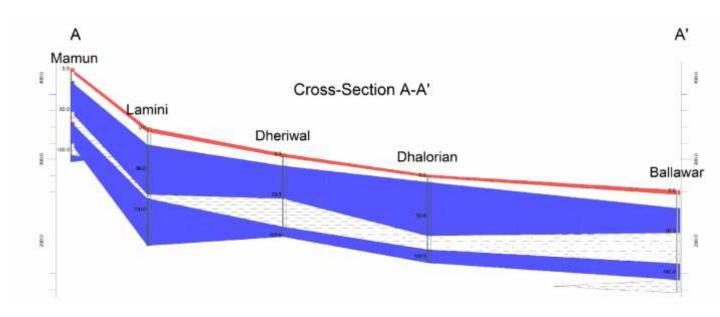
Water bodies are not available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment.

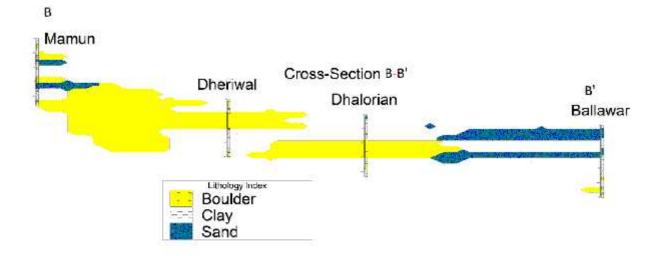
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (70 m) is very prominent in terms of thickness and geographic extent. Aquifer II & Aquifer III is not assessed due to non availability of data. Block is categorized as **Safe** as per ground water assessment2013.


Ground water Extraction: Information regarding the abstraction from Aquifer II & III is not available.


Water level Behavior (2015): Pre Monsoon 4.30-4.92 (*mbgl*) &Post Monsoon-~ 4.60-4.90 (*mbgl*)

Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
		-	Zones (m)	(m ² /day)		
Aquifer-I		Unconfined	70	142-4300	0.072	$1.0*10^{-3}$ to
(5-75m)	Y		70	142-4300	0.072	4.03*10 ⁻³
Aquifer-II	nary I S	Unconfined	NA		NA	
	ieri vial sit	to Confined	INA	-	INA	-
Aquifer-III	Quaterna Alluvial deposits	Unconfined	NI A		ΝA	
	Q de	to Confined	NA	-	NA	-


Aquifer comprises of freshwater only and the main Aquifer material is sand.


The non-Aquifer material comprise of clay.

Aquifer wise Water	Dynamic Aquifer I	16.98
Resource available	In-storage Aquifer I	92.92
(mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	-
	Dynamic Aquifer III	-
	In-storage Aquifer III	-
	Total	109.90
Ground Water	Irrigation	13.02
Extraction (in	Domestic & Industrial	0.99
mcm)		
Provision for domestic & Industrial		1.22
requirement up to 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone up to the
recharge and proposed interventions	average depth to water level (5 m).
Other interventions proposed	-
	·

Advanced Irrigation Practices	-
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

13.NAROT JAIMAL SINGH BLOCK (170.90 SQ KM)

1. Salient Information

Rural- 85614
Urban
Total- 85614
Average annual rainfall – 1047.70 mm

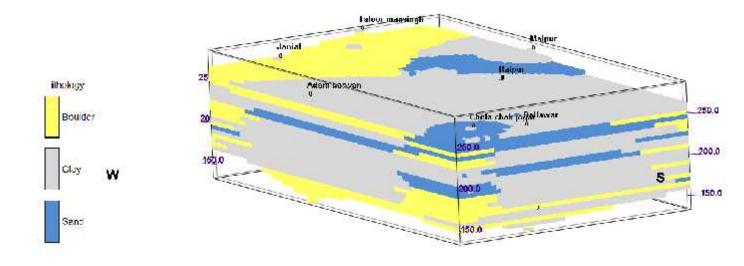
Average Annual Rainfall (Narot Jaim	nal Singh block) 1103 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses,
	Net Area Sown- 97 sq.km
	Total Irrigated Area- 137.65 sq.km

Water Bodies & Canal Irrigation

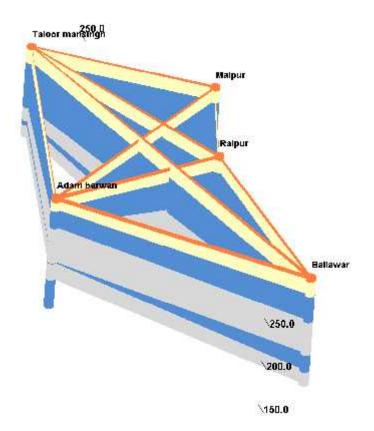
Water bodies available in the villages for storm water and untreated waste water of villagers, can be used for irrigation after treatment.

Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (86m) is very prominent in terms of thickness and geographic extent. Aquifer II & Aquifer III is not assessed due to non availability of data. Block is categorized as **Safe** as per ground water assessment 2013.

Ground water Extraction: Information regarding the abstraction from Aquifer II & III is not available.

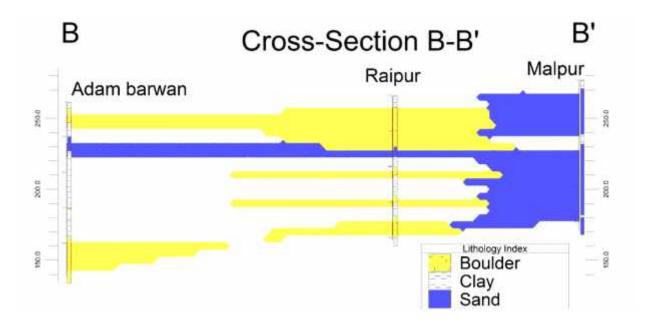

Water level Behavior (2015): Pre Monsoon 4.80 (mbgl) & Post Monsoon-~

4.70(mbgl)

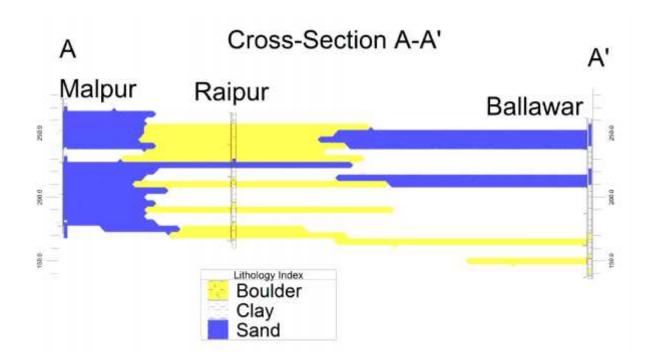

Aquifer	Geology	Type of Aquifer	Thickness of Granular	Transmis sivity	Specific Yield %	Storativity
			Zones (m)	(m²/day)		
Aquifer-I (5-91m)	ILA	Unconfined	86	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II (101-300m)		Unconfined to Confined	129	142-4300	NA	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-III	Quaterna Alluvial deposits	Unconfined to Confined	NA	-	NA	-

Aquifer comprises of freshwater only and the main Aquifer material is sand.

The non-Aquifer material comprise of clay.



3D Lithology Fence



Lithological Section

Stratigraphical Section

Aquifer wise Water	Dynamic Aquifer I	58.15
Resource available	In-storage Aquifer I	775.20
(mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	8.88
	Dynamic Aquifer III	-
	In-storage Aquifer III	-
	Total	842
Ground Water	Irrigation	51.28
Extraction (in	Domestic & Industrial	2.52
mcm)		
Provision for domest	ic & Industrial	3.10
requirement up to 20)25 (in mcm)	
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (5 m).
Other interventions proposed	-

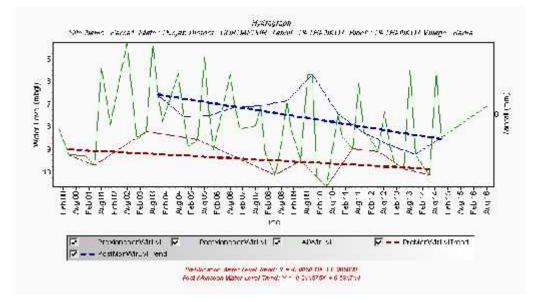
Advanced Irrigation Practices	-
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

14. PATHANKOT BLOCK (351.50 SQ KM)

1. Salient Information

Population (2011)	Rural- 216223
	Urban- 143593
	Total- 72630
Rainfall 2014 (Pathankot Distt.)	Average annual rainfall – 1047.70 mm

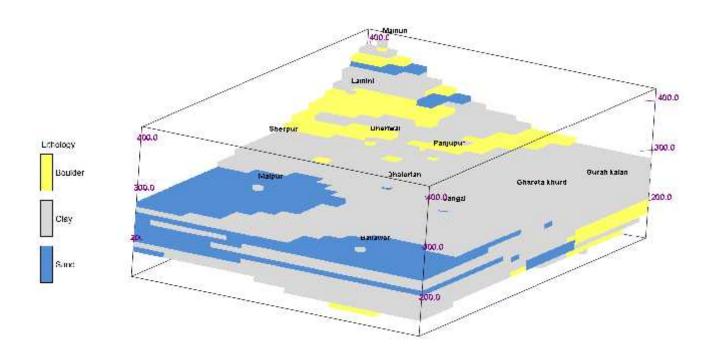
Average Annual Rainfall (Pathankot block)	1121 mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops- Sugarcane, Potatoes, Pulses,
	Net Area Sown- 68.30 sq.km
	Total Irrigated Area- 68.86 sq.km

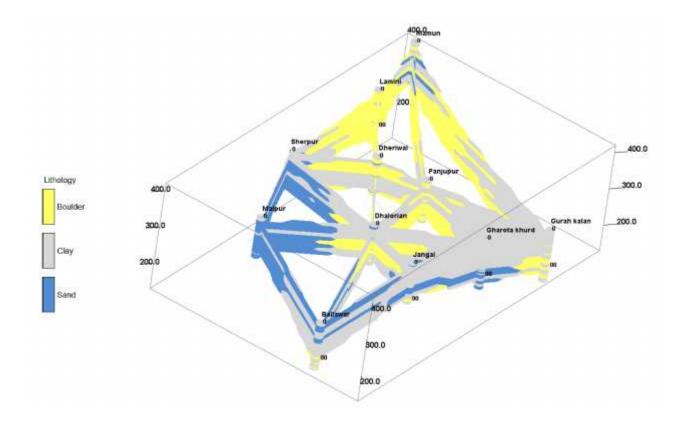

Water Bodies & Canal Irrigation

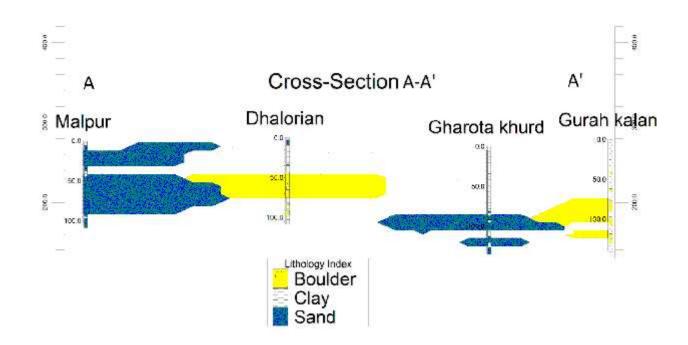
Water bodies available in the villages for storm water and untreated waste water of villagers, that can be used for irrigation after treatment.

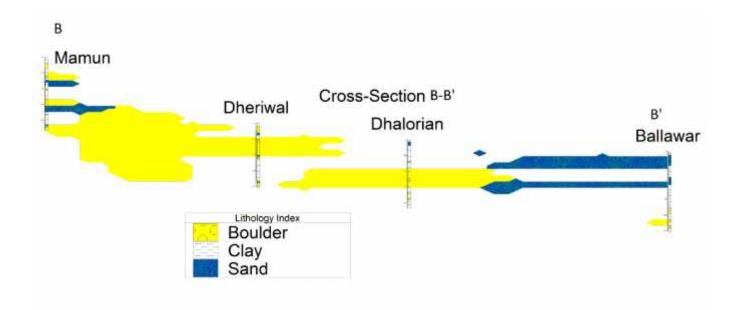
Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I & II (39 m) is very prominent in terms of thickness and geographic extent. Aquifer III is not assessed due to non availability of data. Block is categorized as **Safe** as per ground water assessment 2013.

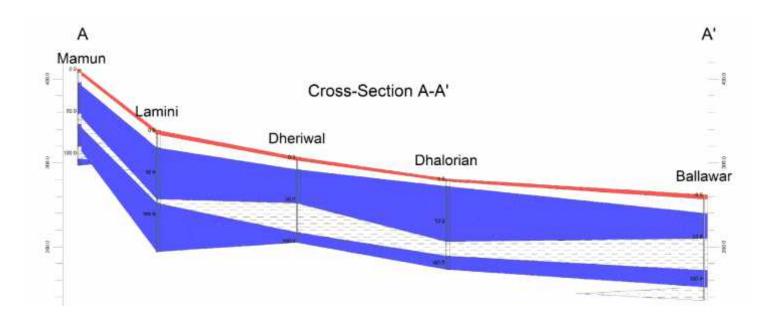
Ground water Extraction: Information regarding the abstraction from Aquifer III is not available.


Water level Behavior (2015): Pre Monsoon 1.91-9.54 (mbgl) &Post Monsoon-~ 2.52-8.48 (mbgl)


Aquifer	Geology	Type of	Thickness of	Transmis	Specific	Storativity
		Aquifer	Granular	sivity	Yield %	
			Zones (m)	(m²/day)		
Aquifer-I		Unconfined	39	142-4300	0.072	$1.0*10^{-3}$ to
(7-65m)	Σ.		39	142-4300	0.072	4.03*10 ⁻³
Aquifer-II	nar I S	Unconfined	39		NA	
(73 – 160m)	via	to Confined	39	-	INA	-
Aquifer-III	Quaternary Alluvial deposits	Unconfined	NA		NA	
	d A Q	to Confined	INA	-	INA	-


Aquifer comprises of freshwater only and the main Aquifer matierial is sand.


The non-Aquifer material comprise of clay.



3D Lithology Fence

Aquifer wise Water	Dynamic Aquifer I	185.55
Resource available	In-storage Aquifer I	987
(mcm)	Dynamic Aquifer II	-
	In-storage Aquifer II	1.63
	Dynamic Aquifer III	-
	In-storage Aquifer III	-
	Total	1174
Ground Water	Irrigation	111.90
Extraction (in	Domestic & Industrial	12.29
mcm)		
Provision for domest	ic & Industrial sector	14.41
requirement up to 2025 (in mcm)		
Chemical Quality of ground water &		Suitable for drinking and irrigation
contamination		purposes
Other issues		declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone up to the
recharge and proposed interventions	average depth to water level (7 m).
Other interventions proposed	-

Advanced Irrigation Practices	-
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

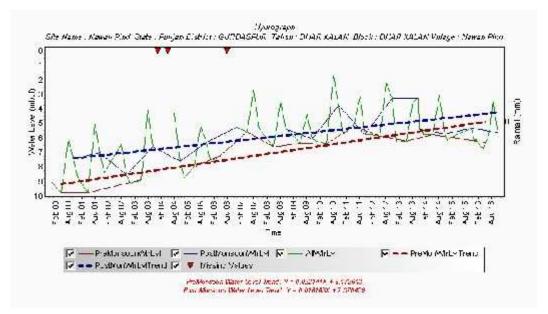
15. DHAR KALAN BLOCK (398.40 SQ KM)

1. Salient Information

Population (2011)	Rural- 73329		
	Urban- 10663		
	Total- 62666		
Rainfall 2014 (Pathankot Distt.)	Average annual rainfall – 1047.70 mm		
Average Annual Rainfall (Pathankot block) 1276 mm		

Agriculture and Irrigation

Major Crops- Rice, Wheat Other crops- Sugarcane, Potatoes, Pulses, Net Area Sown- 98.47 sq.km Total Irrigated Area- 99.15 sq.km

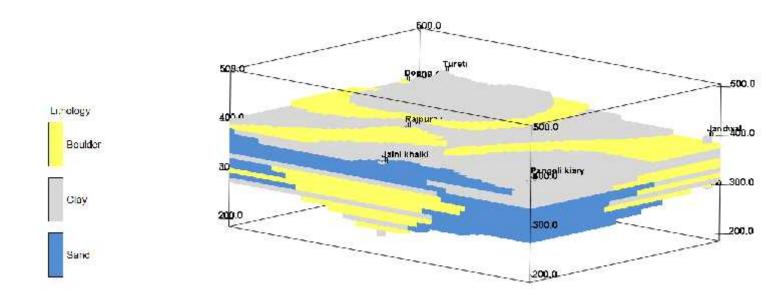

Water Bodies & Canal Irrigation

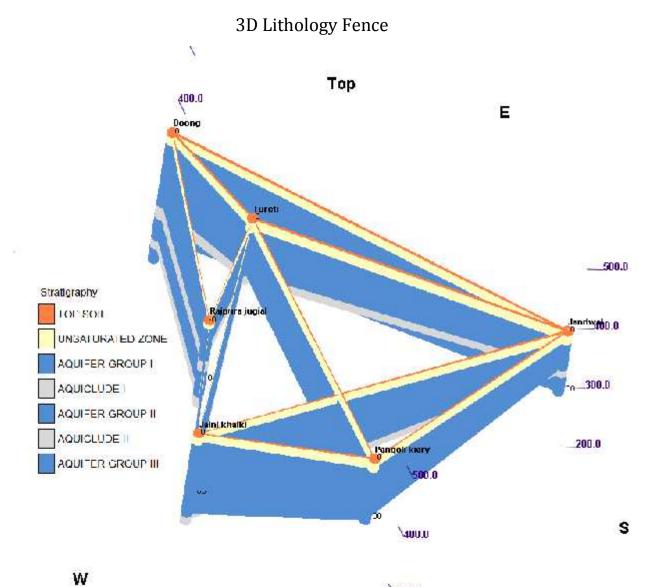
Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment.

Ground Water Resource Availability: Ground Water Resources available in the different group of Aquifers. Aquifer I (122 m) is very prominent in terms of thickness and geographic extent. Aquifer II & Aquifer III is not assessed due to non availability of data. Block is categorized as **Safe** as per ground water assessment 2013.

Ground water Extraction: Information regarding the abstraction from Aquifer II & III is not available.

Water level Behavior (2015): Post Monsoon-~ 2.90-26.90 (mbgl)

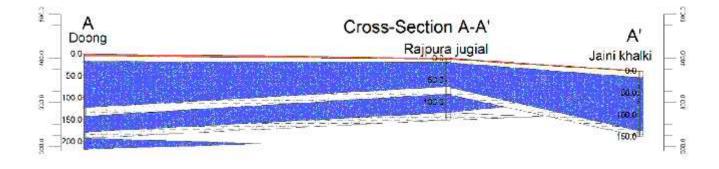


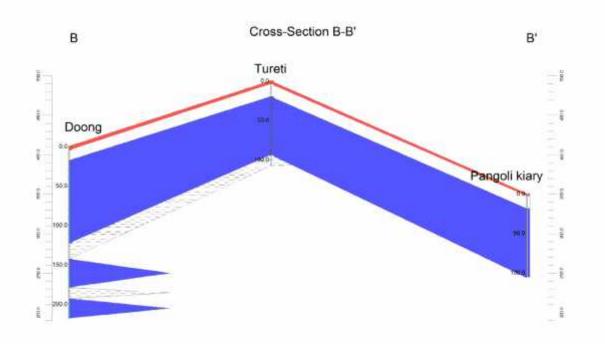

2.	Aquifer Disposition:	Multiple Aquifer	r System (3 Aquifer System)
----	-----------------------------	------------------	-----------------------------

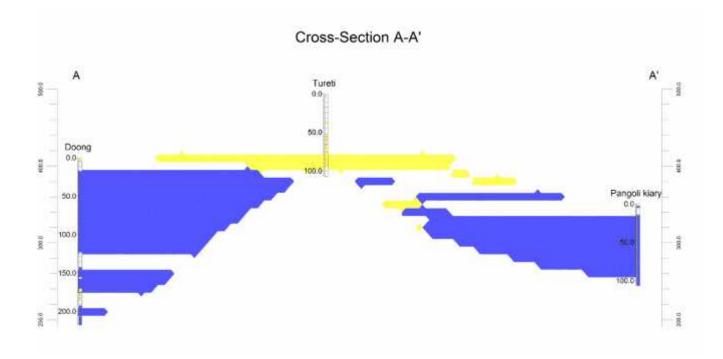
Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmis sivity (m ² /day)	Specific Yield %	Storativity
Aquifer-I (9-75m)	гу	Unconfined	26	142-4300	0.072	1.0*10 ⁻³ to 4.03*10 ⁻³
Aquifer-II		Unconfined to Confined	NA	-	NA	-
Aquifer-III	Quaterna Alluvial deposits	Unconfined to Confined	NA	-	NA	-

Aquifer comprises of freshwater only and the main Aquifer material is sand.

The non-Aquifer material comprise of clay.






300.0

Stratigraphical Section

Lithological Section

Aquifer wise Water	Dynamic Aquifer I	58.90	
Resource available	In-storage Aquifer I	296.21	
(mcm)	Dynamic Aquifer II	-	
	In-storage Aquifer II	-	
	Dynamic Aquifer III	-	
	In-storage Aquifer III	-	
	Total	355	
Ground Water	Irrigation	8.78	
Extraction (in	Domestic & Industrial	2.46	
mcm)			
Provision for domestic & Industrial		3.0	
requirement up to 2025 (in mcm)			
Chemical Quality of ground water &		Suitable for drinking and irrigation	
contamination		purposes	
Other issues		declining water level trend	

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (9 m).
Other interventions proposed	-

Advanced Irrigation Practices	-
Change in cropping pattern	Changing of cropping pattern is not required in the
	block
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	