

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on AQUIFER MAPPING AND MANAGEMENT PLAN

Tarantaran District, Punjab

उत्तरी पश्चिम क्षेत्र, चंडीगढ़ North Western Region, Chandigarh

AQUIFER MAPPING & MANAGEMENT PLAN

TARNTARAN DISTRICT PUNJAB

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India 2018

CONTENTS

- 1. INTRODUCTION
- 2. SOIL CHARACTERISTICS&LAND USE
- 3. CLIMATE
- 4. GEOMORPHOLOGY
- 5. DATA COLLECTION AND GENERATION
- 6. HYDROGEOLOGY
- 7. GROUND WATER RESOURCES
- 8. HYDROCHEMISTRY
- 9. GROUND WATER ISSUES
- **10. AQUIFER MANAGEMENT PLAN**
- 11. BLOCKWISE AQUIFER MAPS AND MANAGEMENT PLAN
 - i. BHIKHIWIND BLOCK
 - ii. CHOLA SAHIB BLOCK
 - iii. GANDIWIND BLOCK
 - iv. KHADOOR SAHIB BLOCK
 - v. NAUSHERA PANNUAN BLOCK
 - vi. PATTI BLOCK
 - vii. TARNTARAN BLOCK
 - viii. VALTOHA BLOCK

12. CONCLUSION

LIST OF FIGURES

- Fig 1: Base Map of Tarntaran District.
- Fig 2: Canal Map of Tarntaran District
- Fig 3: Location of CGWB, PSTC, WRED, Private Wells.
- Fig 4: Exploration Bore Hole Location Map
- Fig 5: Validated Exploration Data of Tarntaran District.
- Fig 7: Elevation Contour Map-Tarntaran District.
- Fig 8: Major aquifer of Tarntaran District
- Fig 9: 3Dimension Lithological Model-Tarntaran District.
- Fig10: Fence Selection Map
- Fig 11: 3Dimension Lithological Fence of Tarntaran District.
- Fig:12: Litho cross- section of Tarnatran district
- Fig 13: 3Dimension Aquifer model Tarntaran District.
- Fig 14: Cross sections of Aquifer Map of Tarntaran District.
- Fig 15: Methodology for Resource Estimation in Unconfined and Confined Aquifer System.
- Fig 16: Irrigation tube wells as per depth.
- Fig 17: Irrigation tube wells as per depth.

LIST OF TABLES

Table 1: Data availability of exploration wells in Tarntaran district.

Table 2: Summary of optimized exploration wells.

Table 3: Aquifer Group depth and thickness ranges of Tarntaran District

Table 4: Dynamic Ground Water Resource & Development Potential (as on 31.03.2013)

Table 5: Block wise in-storage groundwater resources–unconfined (aquifer I)

Table 6: Block wise in-storage ground water resources - confined (aquifer II).

Table 7: Block wise in-storage ground water resources - confined (aquifer III/upto300m).

Table 8: Block wise total available Unsaturated Granular zone.

Table 9: Block wise availability Total fresh ground water up to 300m Depth

Table 10: Distribution of Tube wells according to owner's land holding size

Table 11: Distribution of Shallow Tube wells according to Depth

Table 12: Type of Ground Water Distribution Device

Table 13: Scope of quantitative impact on stage of development after applying various management strategies.

AQUIFER MAPPING AND GROUND WATER MANAGEMENT IN HOSHIARPUR DISTRICT, PUNJAB (2583 Sq.Km UNDERNAQUIFERUIM XII PLAN)

1.0 INTRODUCTION

The demand for the water has multiplied manifold with a rapid growth in population, agriculture /irrigation and industries. It has affected both the available surface and ground water resources. This has given acceleration to the ground water development. With the large scale development of ground water, it has become essential to monitor the behavior and to suggest measures to salvage the changed situation of the ground water system.

There has been a paradigm shift from "groundwater development" to "groundwater management" in the past two decades in the country. An accurate and comprehensive micro-level picture of ground water through aquifer mapping in different hydrogeological settings would enable robust groundwater management plans in an appropriate scale. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical field and laboratory analyses are applied to characterize the quantity, quality and sustainability of ground water in aquifers. This would help achieving drinking water security, improved irrigation facility and sustainability in water resources development in large parts of rural India, and many parts of urban India.

Central Ground Water Board (CGWB) implemented the Aquifer Mapping Programme in Punjab in four phases (**Fig. 1**) with the broad objective of preparing an Aquifer-wise management plan for the region. Various multi–disciplinary geo-scientific activities were undertaken in the study partly through in-house capacity of CGWB, DWRS, PSCTC and Private agencies for generation of additional micro-level hydrogeological data. This report primarily deals with Tarntaran district of Punjab State (**Fig. 1**), covered under Phase-I.

Tarn Taran district lies between 31⁰ 05', and 31⁰ 30' 05 north latitude and 74⁰ 30' and 75⁰ 15' 05" east longitudes. The area falls in Survey of India toposheetNos 44-I & 44-M. It has a geographical area of 2583 sq. km. It is bounded by Amritsar district in the north ,Kaputhala district in the east Pakistan in the west , and Ferozpur district in the south. The district headquarters is located at Tarn Taran. The total population of the district is 1120070 (census-2011) The district has decennial growth rate of 19.28 %. Density of population per square kilometre is 464. The area is well connected by roads and railways. National highways 1, 1a, and 15 pass through the area and connect the important towns falling in the tract. Major towns are

connected with broad gauge line of Northern Railways run through Khem Karan- Patti- Tarn Taran to Amritsar.

There are three tehsils namely Tarn Taran , Patti, and Khadur Sahib and five sub tehsils namely Jhabal, Chohla sahib, Khem Karan, Bhikiwind and Goindwal Sahib in the district. The district is divided into 8 development blocks namely Gandiwind, Bhikiwind, TarnTaran, Khadur Sahib, NausheraPannuan, Chohla Sahib, Patti, and Valtoha.

2.0SOIL CHARACTERISTICS&LAND USE

Saline and alkaline soils occur in the district. Soils with salt content exceeding 0.2% are considered to be high salt soils and this concentration is injurious for plant growth. Soils whose

pH values exceed 9.0 have been classified as high alkali soils. The alkalinity render the soil impervious. The alkali soils present in the area has low fertility as compared to normal soils. The Soils of the district are categorized as tropical arid brown (weakly SOLONIZED), and arid brown soil (SOLONIZED). These soils are deficient in NPK.

2.1LAND USE, AGRICULTURE AND IRRIGATION

Tarn Taran is primarily an agricultural district. Agriculture constitutes the main source of economy, and most of the area fit for agriculture is being cultivated. The land utilization in the district is as follows:

- 1. Area under forests 5176 hac
- 2. Net area sown 217541 hac
- 3. Total cropped area 384541 hac

The main Rabi crops grown in the district are- wheat (185800 hect.), gram and barley, where askharif crops grown are- rice (166000 hect.), maize, bajra, sugar cane and cotton.

The district has a network of Upper Bari Doab canal which give rise to various branches such as Sabraon branch, Lowerkasur branch etc. These canals further feed their distributaries. The district has 100% irrigation facility, out of which 44.73% comes from ground water source. About 71% area of Patti block and 59% area of Tarn Taran Block is irrigated by canal water, and rest of the area of the district is irrigated with ground water.

3.0 CLIMATE

The climate of the district can be classified as tropical steppe, semi-arid and hot, which is mainly characterized by general dryness except for a short period during southwest monsoon season. There are four seasons in a year namely the cold season from November to March, hot season from April to June, south west monsoon season from the last week of June to the middle of September and the post monsoon season from September till the beginning of November. During cold season, a series of western disturbances affect the climate of the district. During the summer months i.e. From April to June, weather is very hot, dry and uncomfortable. The weather becomes humid and cloudy during July to September.

3.1 RAINFALL

The normal annual rainfall of the district is 545 mm, which is unevenly distributed over the area in 30days. The south-west monsoon which contributes 74%, sets in last week of June and withdraws in middle of September. July and August are the rainiest months. Rest 26% of annual rainfall occurs in the non-monsoon months in the wake of western disturbances and thunder storms. Normal Annual Rainfall: 545 mm Normal monsoon Rainfall: 405 mm

Temperature Mean Maximum : 40.50C(May&June) Mean Minimum : 4.50C(January) Normal Rainy days : 30

4.0 GEOMORPHOLOGY

4.1 Physiography:

Physiographically the district represents alluvial plain. The topographic gradient is about 0.4m/km in the district. The district falls in Ravi sub basin, Beas Sub basin and Satluj sub basin of Indus Basin. The area of the district in Ravi sub basin in the northern part of the district is 1440 sq. Km. Whereas Beas sub basin in the central part of the district covers an area of 783 sq. Km. Satluj sub basin covers an area of 361 sq km in the eastern part of the district.

4.2 Drainage and Canal Network

The area is drained by Patti and NakashNadi besides several artificial drains. The area is however broadly drained by the river Sutlej and its distributaries from the southern boundary of the district.

Fig 2:Canal map of Tarntarn District

5. DATA COLLECTION AND GENERATION

5.1 Tube well Logs

The Lithologs of Exploratory Well/ Observation well/ Piezometer/ productive wells of CGWB, and private agencies have been collected and those supported electrical logs have been validate for aquifer map preparation. The details are shown in table below,

Sl.No	Source of data	Depth Range (m)											
		< 100	100-200	200-300	>300								
1	CGWB	0	0	8	0								
2	PRIVATE	0	51	0	0								
	Total	0	0	0	0								

Table 1:Data Availability of Exploration Wells of Tarn TaranDistrict

	-	1	
TAR	N TAI	RAN D	ISTRICT

5.2 SPATIAL DATA DISTRIBUTION

The actual data of all the wells in the area are plotted on the map of 1:50000 scale with 5 min x 5 min grid (9km x 9km) and is shown in Fig: 2.The exploration data shows that majority of tube wells falls in the II^{nd} Aquifer. After data validation, only selected the deepest well in each quadrant is plotted on the map of 1.50000 scales with 5 min x 5 min grid (9km x 9km) and is shown in Fig: II. The grids/ formations devoid of SH/PZ/EW are identified as data gaps and these are to be filled by data generation.

Fig:3 Exploratory Bore Hole Location

5.3 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

All the available data have been validated for consideration to generate aquifer map. Thedeepest well in each quadrant is selected and plotted on the map of 1.50000 scale with 5'X5'grid (9 x 9km) and is shown in Fig 4.

Surface elevation map Fig 5 shows that relief od district is from N E to SW and elevation range from 230 to 202. Difference between highest and ;lower elevation is 28m.

Fig 5: Elevation Contour Map-Tarntaran District

 Table 2: Summaryof Optimised exploratory wells of TarnTaran District.

BLOCK	TOPOSHEET/QUADRA NT	DEPTH RANGE (m)								ELEVATIO N (mamsl)	SOURC E OF
		LOCATIO	<10		100-		200-		>30	-	DATA
		N	U	LUCATION	200	LUCATION	300	LUCATION	0		
NausheraPannu	3B2 //I/ 15			Nandnurkheda	100					221	F
	562 441/ 15			Nanaparkireda	100					221	
Tarn taran	3B2 44I/ 14			Pandorisidwan	105					227	E
											PRIVAT
Bhikhiwind	3C1 44I/ 11			Mari Gaur Singh	108					215	Е
											PRIVAT
Chohla sahib	3C1 44I/ 15			Sarhalikalan	109					219	E
											PRIVAT
Valtoha	2C1 44I/ 12			Bhangala	112					201	E
NausheraPannu											PRIVAT
an	2C2 44I/ 15			Chambal	112					222	E
											PRIVAT
Tarn taran	1C1 44I/ 15			Kad Gill	113					227	E
											PRIVAT
Gandiwind	1C1 44I/ 11			SohalThati	113					220	E
										240	PRIVAT
Chohla sahib	3B3 441/ 15			Snakri	114					219	
Torn toron	201 //// 11			Man	117					214	
	SAI 441/ 11			vvali	11/					214	
Patti	1B 44I/ 16			Buh	118					207	E
	,										PRIVAT
Valtoha	2B2 44I/ 12			Rattokegajjal	118					208	Е
											PRIVAT
Patti	2A 44I/ 16			Bangla Rai	119					203	E
											PRIVAT
Tarn taran	1A 44M/ 03			Bath	119					229	E

						PRIVAT
Tarn taran	3B1 44I/ 14	Balachak	122		228	E
						PRIVAT
Bhikhiwind	3C2 44I/ 11	 Makhikalan	125		 217	E
						PRIVAT
Tarn taran	1B1 44I/ 15	 Daburji	126		 226	E
						PRIVAT
Valtoha	1A2 44I/ 12	Mastgarh	128		 208	E
						PRIVAT
Gandiwind	3C2 44I/ 10	SaraiAmant Khan	131		222	E
						PRIVAT
Tarn taran	3A 44I/ 14	 Jhabal	133		 223	E
						PRIVAT
Valtoha	1C2 44I/ 12	 Manakejand	133		 205	E
						PRIVAT
Tarn taran	1B2 44I/ 15	 KotDharm Chand kalan	137		 225	E
						PRIVAT
Valtoha	1C1 44I/ 12	 Punian	142		215	E
NausheraPannu						PRIVAT
an	2C1 44I/ 15	 Warana	144		 228	E
						PRIVAT
Chohla sahib	3C2 44I/ 15	 Chola Sahib	145		 220	E
						PRIVAT
Bhikhiwind	2A 44I/ 11	 Dall	145		 216	E
						PRIVAT
Chohla sahib	3C3 44I/ 15	 Khara	147		 221	E
						PRIVAT
Khadur sahib	1C1 44M/ 03	Chakgagrewal	148		220	E
			4.40		244	PRIVAT
Valtoha	1B3 44I/ 12	 Kotlivasavasingh	148		 211	E
NausheraPannu	100 44/45		450		227	PRIVAT
an	103 441/ 15	Chutala	152		 227	E DDIV/AT
	20.4404/02		450		224	PRIVAT
Chohla sahib	3A 44IVI/ U3	 iviundapind	153		 224	E
Bhikhiwind	3B1 44I/ 11	Bhaini Massa singh	155		217	PRIVAT

							E
			Judicial				PRIVAT
Tarn taran	1C2 44I/ 15		Complex,Tarntarn	158		225	E
							PRIVAT
Khadur sahib	2B 44M/ 03		Khadoor sahib	158		229	E
							PRIVAT
Valtoha	2C2 44I/ 12		Jhugianpirbakhash	162		201	E
							PRIVAT
Valtoha	3A2 44I/ 11		Rajoke	162		211	<u> </u>
				100			PRIVAT
Tarn taran	3A1 44I/ 15		DayalRajputan	166		220	E
T			laabala	170		222	
Tarn taran	ZA1 441/ 15		Jeongia	170			
Bhikhiwind	2C2 //1/ 11		Pabuwind	171		217	F
DHIKHIWIHU			Fallowing	1/1		217	
Chohla sahib	1C1 44I/ 16		KambohDahiwal	178		213	E
							PRIVAT
Gandiwind	3B 44I/ 10		BhuruAttari	182		218	E
							PRIVAT
Gandiwind	3C1 44I/ 10		Kasel	182		223	E
							PRIVAT
Tarn taran	1A1 44I/ 15		chabalkhurd	187		224	E
							PRIVAT
Tarn taran	2B 44I/ 15		Daleke	187		224	E
							PRIVAT
Valtoha	1A3 44I/ 12		BhuraKhona	195		209	E
				4.05		245	PRIVAT
Bhikhiwind	2B 44I/ 11		Mughal Chak	195		215	
) (altaba	102 441/12		Chaamaakhuurd	107		212	
Valtona	1BZ 44I/ 1Z	<u> </u>	Спеетнакниго	197			
Gandiwind	102 441/ 11		Chhichrewal	197		221	F
Ganatwind	102 771/ 11			1.57			
Patti	3A2 44I/ 15		Surwind	197		218	E

			Algonkala					PRIVAT
Bhikhiwind	3B3 44I/ 11		n	200			215	E
			DholKohn					PRIVAT
Valtoha	1A1 44I/ 12		а	205			211	E
								PRIVAT
Bhikhiwind	2A2 44I/ 15		Bainka	209			216	E
								PRIVAT
Bhikhiwind	2C1 44I/ 11		 Puhla	233			217	E
								PRIVAT
Valtoha	2B1 44I/ 12		 Gajal	247			210	E
					Algohkot			
Bhikhiwind	3B2 44I/ 11		 		hi	300	214	CGWB
					Bhikhiwin			
Bhikhiwind	2C3 44I/ 11		 		d	300	217	CGWB
Patti	3A3 44I/ 15				Bhoparai	300	220	CGWB
Tarn taran	1A2 44I/ 15				Chabal	300	223	CGWB
Khadur sahib	1C2 44M/ 03				Jalalabad	300	223	PSTC
Chohla sahib	2A 44M/ 03				Jamerai	300	229	CGWB
Chohla sahib	1C2 44I/ 16				Jauneke	300	225	CGWB
Patti	3B1 44I/ 15				Kairon	300	219	CGWB
Valtoha	1B1 44I/ 12				Valtoha	300	213	CGWB

6. HYDROGEOLOGY

6.1 PREVIOUS WORK

The geological formations in the Tarn Taran district are of recent deposits known collectively as the Indo-Gangetic alluvium quaternary age, which consists of alluvial sand, clay and silt, beds of gravels and very coarse sand are rarely seen. Exploratory drilling at 14 places was carried out in the district. Out of these, six exploratory wells and two slim holes were drilled to ascertain sub-surface geology. Of these the exploratory well at Voltaha was abandoned due to very fine-grained aquifer material. The basement was not encountered even at deepest borehole was not encountered even at this site, the thickness of alluvium is assumed to be more than 500m. The yield of the six successful exploratory wells ranges between 484 to 4510 lpm for drawdown between 4.75 to 13.5 m. The hydraulic conductivity varies from 24 to 121 m/day. The value of storage coefficient varies between 2.08 x 10⁻² to 8.04x 10⁻³. Depth to water level in the district ranges from 10.08 to 19.68 m below ground level (bgl) during premonsoon period and between 10.56 to 20.10 m bgl during postmonsoon period. Water table slopes mainly from north -east to south- west indicating the flow direction in the district. Ground water in the district occurs under water table, Semi confined to confined conditions. The deeper aquifer is under semi-confined condition and composed of fine sand and is silty in nature. Major aquifer map of Tarntaran district dominated by older alluvium and younger alluvium. Major aquifer depicted in map Fig 6.

Fig:6 Major Aquifer of Tarntaran District

6.2 Present NAQUIFERUIM study

To understand the sub surface lithology and its disposition, the lithological data of the optimized wells drilled by CGWB, PHED and Private Agencies is plotted using the RockWorks15 software and a lithological model has been prepared and is shown in fig. The 2D lithology map and 3D lithological fence diagram has been prepared using the lithology model and are shown in fig 7.

Fig 7: 3-Dimension Lithological Model of Tarntarn District

To present a three dimensional regional picture of the sub-surface conditions in the districts a fence diagram was prepared by synthesizing the various sub-surface sections. The fence diagram thus drawn reveals broad picture of disposition, inter relationship of granular zones, nature, geometry and extension of aquifers of the entire district. The aquifer group embodies a number of granular layers alternating with thick or thin clay lenses. Lithologs and fence location map showing exploration wells and various block diagrams based on Lithology and Aquifer Group.

Fig 9: 3 Dimension Lithological Fence of Tarnatarn District

Fig 10: LithoCross sections of Tarn TaranDistrict

6.3 Aquifer Geometry (3-Dimensional)

A fence diagram was drawn to study the three dimensional regional picture of the sub-surface conditions in Tarn Tarandistrict area by synthesizing the various sub-surface sections. The fence diagram thus drawn reveals broad picture of disposition, inter relationship of granular zones, nature, geometry and extension of aquifers of the entire district (Fig. 5.3.6a &5.3.6b). The aquifer group embodies a number of granular layers alternating with thick or thin clay lenses. A few clay layers intervening these aquifer groups pinch out against the sand zones at a few places.

The first water table aquifer extends all over the district composed of less coarse sediments as compared to other groups. This aquifer is overlain by a thin clay layer of about 0.5 to 2.5 m. thickness and is also underlain by clayey group of about 3 to 6 m. thick.

The thickness of water table aquifers varies from 20 to 40m and it extends maximum down to 50m. The granular material mainly consists of fine to medium sand. In the south-western part of the district there are 6-8 granular zones separated by clay beds. The thickness of granular material ranges between 15 to 85m and the aquifers are composed of fine to medium sand. The thickness of these clay beds varies from 10 to 45m. The clay beds are laterally and vertically extensive in nature and contain some kankar also. In the extreme SW part the thickness of clay beds is maximum. The water table aquifer extends down to 10-30m depth. There is general trend of decrease in percentage of granular material from NE to SW. The percentage ranges from 66% in north – eastern part (Jandiala Guru) to 89% near Boparai in south – western part. Higher percentage of sand in the district may be due to proximity to source area. Aquifer Group thickness and depth ranges minimum and maximum are shown in Striplogs showing Lithology and block diagrams based on Lithology and Aquifer Group are shown in Fig.11.

Aquifer	Depth Ra (mbg	ange l)	Thickness (m)				
Group	From To		Min	Max			
Aquifer I	15	138	46	123			
Aquifer II	55	285	35	218			
Aquifer III	191	300	85	109			

Table:3 Aquifer group depth and thickness range of Tarntaran District

Fig.11 3Dimesion Aquifer Model-Tarntaran District

Fig.12:Aquifer Section (2D) map of Tarn Taran District

7. GROUND WATER RESOURCES

Ground water resource estimation of the area have been carried out by taking Dynamic and Instorage resources of unconfined aquifer and confined aquifers present up to 300m depth. The assessment of Dynamic and in storage Ground Water Resources of the study area have been carried out jointly by CGWB, Water Resources & Environment Directorate, Department of Irrigation, on the basis of Groundwater Estimation Committee (GEC) (1997) methodology based on data available and as per the revised methodology for the year 2013.

The occurrence of potential aquifers (productive granular zones) upto 300 m depth has been demarcated on basis of aquifer wise subsurface mapping. The total saturated thickness of granular zones was derived from the exploratory borehole data of a particular block. The granular zones occurring below the zone of water level fluctuation up to the first confining layer has been considered as static unconfined zone. The ground water resource of this zone has been calculated considering 12% specific yield of the formation. The specific yield value for the unconfined aquifer has been taken as 60% of 0.12 which comes as 0.072 whereas for the confined aquifer, the Storativity value has been considered. Since the specific yield is likely to reduce with increase in depth due to compaction of overlying sediments.

Hence, the major data elements considered in this estimation are thickness of granular zones, specific yield, Storativity and area of fresh water. It has been observed that in some of the blocks sufficient data on probable occurrence of granular zones was not available. In those cases, the existing exploratory data of adjoining block/district has been either extrapolated or interpolated to derive such parameters required for estimation. This assessment of total groundwater resources has been computed based on the available data with CGWB Water Resources & Environment Directorate, Department of Agriculture, and Punjab Water Resource Management & Development Corporation, Punjab

7.1 Unconfined aquifers

Dynamic Resources

As per Groundwater Resources Estimation 2013, the ground water development in all blocks has exceeded the available recharge, thus all blocks**Bhikhiwind,Chola Sahib, Gandiwind, Khaduar Sahib, NaushehraPanuan Patti , Tarntaran, and Valtoha**have been categorized as **over exploited**. Stage of ground water development in the Tarntaran district has been assessed to be 133%.

S. No	Assessment Unit/Distict	Net Annual Ground Water Availabi lity	Existin g Gross Ground Water Draft for irrigati on	Existing Gross Ground Water Draft for domesti c and industri al water supply	Existi ng Gross Groun d Water Draft for all uses	Provision for domestic, and industrial requireme nt supply to 2025 years	Net Annual Ground Water Availabilit y for future irrigation developme nt	Stage of Ground Water Developme nt 7/4*100 (%)
1	2	3	4	5	6	7	8	9
1	BHIKHIWIN D	17673	21864	274	22138	405	-4596	125
2	CHOLA SAHIB	16175	18586	265	18851	393	-2803	117
3	GANDIWIND	26771	28507	166	28673	245	-1982	107
4	KHADUR SAHIB	17541	25604	302	25905	447	-8509	148
5	NAUSHEHR A PANUAN	9975	16210	209	16419	310	-6545	165
6	PATTI	16085	25377	494	25870	727	-10019	161
7	TARN TARAN	22192	27726	600	28326	879	-6413	128
8	VALTOHA	14608	21792	222	22014	330	-7514	151
	TOTAL	141020	185665	2531	188196	3736	-48381	133

Instorage Ground Water Resources

As per revised guidelines recommended by the Central Level Expert Group on ground water resources assessment, the resources are separately considered as dynamic and in-storage unconfined. In case of alluvial area, the in-storage resources of unconfined aquifer have been computed based on specific yield of the aquifer as detailed below:

In-storage		Thickness of the aquifer				
Ground Water		(granular/productive zone)		Sp. Yield of		Areal extent
resources	=	below the zone of water level	х	the aquifer	v	of the
(unconfined		fluctuation down to the bottom			Х	aquifer
Aquifer)		layer of unconfined aquifer				

7.2 Confined Aquifer

The availability of ground water resources in confined aquifer have two components: Storage under pressure (using Storativity concept) and Storage under desaturated (gravity drainage) condition (using Specific Yield concept) (source: Assessment of Ground Water Resources; A Review of International Practices, 2014) and is shown in Fig 11. However, since ground water withdrawals from confined aquifer are known to have serious environmental degradation effects, the preliminary assessment of ground water resources in confined aquifer is restricted to the estimation of ground water storage under pressure conditions only but here the storage under de-saturation is also computed.

Storativity Concept:

ii)	In-storage Ground Water resources (within the Peizometer)	age Thickness of the d Water column in Peizon particular confir n the = up to the top lay neter) confined aquifer			Storativity of the confined aquifer	×	Areal extent of the confined aquifer group
	Specific Yield Conc	ер	t:				
ii)	In-storage Ground Water resources (within the aquifer thickness)	_	Thickness of the confined aquifer (granular/ productive zone) down to the bottom layer of confined aquifer or exploitable depth of 300 m	×	Sp. Yield of the aquifer	×	Areal extent of the confined aquifer group

Preliminary assessment of the ground water resources in confined aquifer does not imply that the assessed resource is available for exploitation. The objective of this exercise is to have an overview of the ground water regime in the particular confined aquifer. It should be kept in mind that any significant ground water withdrawal from confined aquifer may invoke serious environmental degradation problem. Therefore, in case the preliminary assessment reveals that ground water is being withdrawn in significant quantity for any confined aquifer, that particular aquifer should be identified for detailed assessment using numerical modelling approach.

Total Availability of Ground Water Resources = Dynamic Resources + In-storage Resources.

Table 5: BLOCK WISE INSTORAGE GROUND WATER RESOURCES IN UNCONFINED AQUIFER-I

Annexure II A-1 (for unconfined aquifer, alluvial area)													
GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OF TARN TARAN DISTRICT (2013)													
Type of Ground Water Assessment Unit (Block):													
Sr.	Name of	Type of		Areal e	xtent (ha)	Average	Depth to	Total	Thickness	Averag	In-Storage	In-Storage
No	Assessment	rock	Total		Assessme	ent Area	Pre-	bottom	Thicknes	of the	е	Ground	Ground Water
•	Unit	formatio	Geographic	Total	Fresh	Brackish/Sali	/Sali monsoo o		s of	Granular	Specifi	Water	Resources
		n	al Area		Water	ne Water	n water	uncontin	tormatio	Zone in	c Yield	Resources	[(7)*(11)*(12) *1
							(m bgl)	aquifer	Pre-	ed		*1 FRFSH	J BRAKISH/SALI
							(~8.)	(m bgl)	monsoo	aquifer		(ham)	NE
									n Water	below			(ham)
									Level	Pre-			
(m) monsoon													
									(9-8)	(m)			
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	 Tarntaran		-										
1	Bhikhiwind	Alluvium	33300	33300	33300	0	1/ 10	60	/5.81	40	0.072	96407 5	0
2	Chola Sahib	Alluvium	34080	2/080	2/080	0	17 / 25	80	71 57	62	0.072	155558.0	0
3	Gandiwind	Alluvium	34980	22600	22600	0	1/.435	85	71.37	63	0.072	151971 9	0
4	Khadur	Anuvium	33050	33030	33030	0	14.70	07	12.22	05	0.072	151671.0	0
•	Sahib	Alluvium	34150	34150	34150	0	18.16	88	69.84	61	0.072	150380.2	0
5	NausherPanu									-			
	an	Alluvium	19920	19920	19920	0	18.66	85	66.34	61	0.072	87689.4	0
6	Patti	Alluvium	37550	37550	37550	0	15.095	90	74.91	65	0.072	176315.3	0
7	Tarntaran	Alluvium	32000	32000	32000	0	17.53	64	46.47	43	0.072	99164.2	0
8	Voltaha	Alluvium	32750	32750	32750	0	11.61	61	49.39	43	0.072	101252.5	0
				25834	25834								
	Dist.Total	(ham)	258340	0	0	0						1018640	0
Dist.Total (mcm)		(mcm)										10186.40	0.00

		Annexu	ıre II A-1	(for AQL	JIFER GI	ROUP II, a	alluvial are	ea)							
	GENERAL D	ESCRIPTION O	F THE GR	3)											
	Type of Ground Water Assessment Unit (Block):														
Sr. Name of Areal extent (ha) wate Top water Depth Total Thickne Average averag In-Storage												In-Storage	in storage		
No	No Assessment Total Assessment r Aquif coloum to Thickne ss of value of e Groun												Ground	ground	
•	. Unit Geographic Area level er II n in PZ botto ss of the Storativi sp.Yiel Water											Water	water		
		al Area	Total	Fresh		(m		m of	confine	Granula	ty	d	Resources	resource	
				Water		(Iga		Aquit	a	r Zone			(6)*(D)*(12) *1 EDESU	with in	
								(m	down to	confine			(ham)	aquiler	Total
								hgl)	evolore	d			(nam)	*1 FRFSH	Ground
								~ 5'/	d denth	aquifer]	Water
									(m)	down to					Resourc
									(9-8)	explore					e (13) +
										d depth					(d)FRES
										(m)					н
1	2	4	5	6	а	8	b	9	10	11	12	с	13	d	14
	Tarntaran														
1	Bhikhiwind	33300	33300	33300	13.3										
					3	73	59.67	286	226.33	188	0.00238	0.072	4729	450749	455478
2	Chola Sahib	34980	34980	34980	12.6										
					5	109	96.35	244	147.65	117.5	0.00238	0.072	8021	295931	303952
3	Gandiwind	33690	33690	33690	14.4	00	01 50	210	120.42	100	0 00220	0.072	CE 44	242569	240100
4	Khadun	3/150	2/150	2/150	2 15 0	96	81.58	218	136.42	100	0.00238	0.072	0541	242568	249109
4	Sahib	54150	54150	54150	15.9	106	00.05	100	00.05	76	0 00238	0.072	7210	186860	10/199
5	NausherPanu	19920	19920	19920	120	100	30.03	190	33.33	70	0.00238	0.072	7319	180809	194100
5	an	15520	10020	15520	2	101	88.08	228	139.92	103	0.00238	0.072	4176	147727	151903
6	Patti	37550	37550	37550	11.9	101	00.00		100102	100	0.00200	0.072	1170	1	101000
					3	111	99.07	269	169.93	132	0.00238	0.072	8854	356875	365729
7	Tarntaran	32000	32000	32000	13.6										
					9	76	62.31	220	157.69	96	0.00238	0.072	4746	221184	225930
8	Voltaha	32750	32750	32750	12.3										
					7	76	63.63	239	175.37	111	0.00238	0.072	4960	261738	266698
	Dist.Total(ha	258340	25834	25834									31875	2163640	2212986

Table 6: BLOCK WISE INSTORAGE GROUND WATER RESOURCES - CONFINED (AQUIFER II)

m)	0	0							
Dist.Total									22129.8
(mcm)							318.75	21636.40	6

Table 7: BLOCK WISETOTAL AVAILABLE GROUND WATER RESOURCES IN AQUIFERS UP TO 300m DEPTH

	Annexure II A-1 (for AQUIFER GROUP III, alluvial area)* upto depth 300m															
	GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OF TARN TARAN DISTRICT (2013)															
	Type of Ground Water Assessment Unit (Block):															
Sr. Name of Type of Areal extent (ha) wat Top water Dept Total Thickne Average avera In-Storag													In-Storage	in storage		
Ν	Assessment rock Total Assessment er Aquif colou h to Thickne ss of value of ge Ground											Ground	ground			
о.	Unit	formati	Geographi	Ar	ea	level	er III	mn in	botto	ss of	the	Storativ	sp.Yie	Water	water	
		on	cal Area	Total	Fresh Wate r		(m bgl)	PZ	m of Aquif er III (m bgl)	confine d aquifer down to explore d depth (m) (9-8)	Granul ar Zone in confine d aquifer down to explore d depth (m)	ity	Id	Resources [(6)*(b)*(1 2)*] FRESH (ham)	resource with in aquifer [(6)*(11)*(c)*] FRESH	Total Groun d Water Resour ce (13) + (d)FRE SH
1	2	3	4	5	6	а	8	b	9	10	11	12	С	13	d	14
	Tarntaran															
1	Bhikhiwind	Alluviu		3330	3330											
		m	33300	0	0	20	286	266	300	34	0	0.00238	0.072	21082	0	21082
2	Chola Sahib	Alluviu		3498	3498											
		m	34980	0	0	20	264	244	300	56	23	0.00238	0.072	20314	57927	78240
3	Gandiwind	Alluviu	2200	3369	3369	20	240	220	200		50	0.00000	0.072	17040	120125	14377
4	Khadun	M Allender	33690	0	0	20	240	220	300	80	52	0.00238	0.072	17640	120135	5
4	Sahib	Alluviu	3/150	3415 0	3415 0	20	198	178	300	122	88	0 00238	0.072	14467	21637/	23084
5	NausherPan	Alluviu	34130	1992	1992	20	1.70	1/0	500	144	00	0.00230	0.072	14401	210374	2
	r tausmenn am	m	19920	0	0	20	248	228	300	72	37	0.00238	0.072	10809	53067	63876

	uan															
6	Patti	Alluviu		3755	3755											
		m	37550	0	0	20	290	270	300	30	8	0.00238	0.072	24130	21629	45758
7	Tarntaran	Alluviu		3200	3200											13641
		m	32000	0	0	20	238	218	300	82	52	0.00238	0.072	16603	119808	1
8	Voltaha	Alluviu		3275	3275											10343
		m	32750	0	0	20	258	238	300	62	36	0.00238	0.072	18551	84888	9
				2583	2583											82342
	Dist.Total	(ham)	258340	40	40									31875	679828	4
																8234.
	Dist.Total	(mcm)												318.75	6798.28	24

Table 8: BLOCK WISETOTAL AVAILABLE UNSATURATED GRANULAR ZONE

Annexure II A-1 (for unconfined aquifer, alluvial area) GENERAL DESCRIPTION OF THE GROUND WATER ASSESSMENT UNIT OFT TARNTARAN DISTRICT (2013)

		BLOCK WISE I	NSTORAG	E GROUND	WATER RESOUR	CES IN UNCON	FINED AQUIFER	k −I		
Sr.	Name of		Areal e	xtent (ha)		Average Unsatuated	Thickness of	Average	In-Storage	
No.	Assessment	Total		Assessme	nt Area		the	Specific	Ground Water	
	Unit	Geographical Area	Total Fresh Water		Brackish/Saline Water	zone (m bgl)	Granular Zone in Unsaturated part (m)	Yield	Resources [(6)*(11)*(12)*] FRESH (mcm)	
1	2	3	4	5	6	7	10	11	12	
	TARNTARAN									
1	Bhikhiwind	33300	33300	33300	0	14.19	6	0.012	2398	
2	Chola Sahib	34980	34980	34980	0	17.435	7	0.012	2938	
3	Gandiwind	33690	33690	33690	0	14.78	6	0.012	2426	
4	Khadur Sahib	34150	34150	34150	0	18.16	9	0.012	3688	
5	NausherPanuan	19920	19920	19920	0	18.66	8	0.012	1912	
6	Patti	37550	37550	37550	0	15.095	7	0.012	3154	

7	Tarntaran	32000	32000	32000	0	17.53	9	0.012	3456
8	Voltaha	32750	32750	32750	0	11.61	5	0.012	1965
Dist.Total (mcm)		258340	258340	258340	0				21937
Dist.Total (bcm)									21.94

Table9. AVAILABILITY OF TOTAL FRESH GROUNDWATER RESOURCES IN TARN TARAN DISTRICT UPTO 300 METRE DEPTH

Sl.No	BLOCK	Dynamic Groundwater Resources (2013)	In-storage Groundwater Resources AQUIFER-I	Total Groundwater Resources AQUIFER-I	In-storage Groundwater Resources AQUIFER-II	In-storage Groundwater Resources AQUIFER-III	Total Avail Ground Resou [(5)+(6)	Total Availabilty of Groundwater Resources [(5)+(6)+(7)]	
		AQUIFER-I		[(3)+(4)]			ham	mcm	
1	2	3	4	5	6	7	8	9	
1	Bhikhiwind	17673.08	96407.50	114081	455478	21082	590640	5906.4	
2	Chola Sahib	16174.96	155558.86	171734	303952	78240	553926	5539.3	
3	Gandiwind	26771.03	151871.82	178643	249109	143775	571528	5715.3	
4	Khadur Sahib	17541.44	150380.21	167922	194188	230842	592951	5929.5	
5	NausherPanuan	9975.05	87689.43	97664	151903	63876	313443	3134.4	
6	Patti	16084.94	176315.27	192400	365729	45758	603888	6038.9	
7	Tarntaran	22192.19	99164.16	121356	225930	136411	483697	4837.0	
8	Voltaha	14607.70	101252.52	115860	266698	103439	485997	4860.0	
Dist.Total (ham)		141020	1018640	1159660	2212986	823424	4196070	41960.7	
Dist.Total (mcm)		1410	10186	11597	22129.86	8234.24	41961	419.6	

8 HYDROCHEMISTRY

8.1 Sample Collection, Chemical Analysis and Chemical Characteristics

In order to ascertain the variation in chemical quality of ground water from aquifer-I, water samples were collected during pre-monsoon period from the Ground Water Observation Wells (GWOW). The major element and arsenic analyses were carried out as per standard methods at Regional Chemical Laboratory, North Western Region, and Chandigarh. The details of sample locations are shown in Appendix-III and depicted in Fig.

The specifications for drinking water issued by Bureau of Indian standards (BIS) in 2012, have been revised and issued under publication specification IS: 10500:2012 (Table-3). The chemical characteristics of water samples analysed (Table-4) and the common source and distribution are discussed below.

Fig14 Ground Water Quality Map Tarntaran District

S. No.	Characteristic	Requiremen t (Acceptable Limit)	Permissible Limit in Absence of Alternate	Remarks
		- /	Source	
	Genera	l Parameters and	d MajorIons(mg/l)
i)	<i>p</i> H value	6.5-8.5	No	-
ii)	$EC(\mu Scm^{-1})$	-	-	Not noted in IS
iii)	Total dissolved solids (mg/l)	500	2000	-
iv)	Turbidity(NTU)	1	5	-
v)	Total HardnessasCaCO3(mg/l)	200	600	-
vi)	Alkalinityas CaCO3 (mg/l)	200	600	-
vii)	Fluoride (as F) mg/l	1.0	1.5	-
viii)	Chloride (as Cl), mg/l	200	1000	-
x)	Carbonate, mg/l	-	-	Not noted in IS
	Sulphate (as SO4)mg/l	200	400	Maybe extended to
				400 provided that
				Magnesium does
X1)	Nitrate (as NO3)mg/l	45	No relaxation	-
xii)	Calcium (as Ca)mg/l	75	200	-
xiii)	Magnesium (as Mg)mg/l	30	100	-
xiv)	Sodium (as Na) mg/l	-	-	Not noted in IS
xv)	Potassium (as K) mg/l	-		Not noted in IS
xvi)	Iron (as Fe) mg/l	0.3	No relaxation	Total concentration of manganese(asMn) an ion as Fe) shall not exceed0.3 mg/l
xxiii)	Total Arsenic(as As)mg/l	0.01	0.05	-

Table Drinking Water Specification as per BIS (10 500:2012).

 Table
 : Results of chemical analysis of water samples collected from GWOW (May 2014)
	TARANTARAN																				
38	AMNISHA KALRA		7.88	<mark>1165</mark>	564	757	210	25	36	185	7.5	Nil	564	56	75	0.63	0.36	0.02	24	5.55	5.04
39	CHABAL	Gandiwind	8.40	440	255	286	105	13	18	65	5.4	26	228	10	5	0	0.07	0.01	25	2.76	2.52
40	GOINDWAL	Gandiwind	8.15	488	349	317	147	29	18	70	4.2	Nil	349	10	0	0	0.17	0.02	23	2.51	2.78
41	KALSIA KALAN	Bhikhiwind	8.20	<mark>1040</mark>	510	676	95	13	15	195	10	Nil	510	28	69	0.36	0.12	0.02	18	8.73	6.47
42	GANDIWIND	Gandiwind	8.55	755	375	491	189	17	36	108	10	79	295	35	0	10	0.95	nd	15	3.42	3.70
43	BHIKIWIND	Bhikhiwind	8.10	<mark>1480</mark>	792	962	200	38	26	270	6.5	Nil	792	49	46	27	1.85	0.05	30	8.31	8.99
		Valtoha																		11.6	
44	RATTOKE		7.95	<mark>1775</mark>	698	1154	158	25	23	335	6.5	Nil	698	160	78	13	0.74	nd	23	1	8.29
45	CHOLA SAHIB	Chohla Sahib	7.55	915	443	595	252	42	36	108	6.8	Nil	443	35	35	55	0.40	0.01	26	2.96	2.22
46	SAHABPURA	Tarn Taran	7.95	930	582	605	105	17	15	185	5.8	Nil	582	21	0	0	0.95	nd	25	7.85	7.45
47	KHANDUR		8.45	845	510	549	179	29	26	130	10	26	483	14	0	13	0.80	nd	14	4.23	5.23
																				11.6	
		Max	8.65	2155	792	1401	515	130	51	335	305	79	792	174	352	225	1.85	0.90	35	1	10.67
											0.7										
		Min	7.00	198	80	129	95	13	5	2	0	Nil	54	7	0	0	0.00	0.01	8	0.09	-4.57

9. GROUND WATER RELATED ISSUES

Tarntaran is famous for its paddy cultivation and is also known as 'Rice Bowl' of Punjab.The quality of ground water in the district is potable for both the drinking and irrigation purposes therefore, the ground water is constantly being pumped for the irrigation due to its easy access through tube wells and they are the main source of irrigation.

This will lead to its major ground water issue which is deepening of ground water level as the recharge of the groundwater through rainfall and other sources are less than the overall extraction.

9.1 GROUND WATER IRRIGATION SCENARIO

As per the data available from minor irrigation census 2006-07, the number of shallow and deep, tube wells, lined, unlined water distribution system, land holdings of wells are given in Table 9, 10 and 11

Fig 10: Irrigation tube wells as per depth.

No. of shallow tube wells by size class of individual owner							
Sr.no	district	Marginal	Small	Semi-Medium	Medium	Big	Total
		(0-1 ha)	(1-2 ha)	(2-4 ha)	(4-10ha)	(>=10 ha)	
1	Tarn	1870	7475	19184	16395	3361	48285

	Taran						
--	-------	--	--	--	--	--	--

	No. by the depth of shallow Tube well						
Sr.no	district	(0-20 mts)	(20-40	(40-60 mts)	(60-70	(>70 mts)	Total
			mts)		mts)		
1	Tarn	0	5244	948	42140	0	48332
	Taran						

Table10:Distribution of Shallow Tubewells According to Depth of tube well

Table 11.Number of Ground Water Schemes and Potential Utilized by water distribution device

	Ground Water	Schemes according t	o water Distribution Sy	ystem
		Open Water Cha	nnel	
Sr.no	District	Underground		
1	Tarn Taran	2621	56648	308

10. AQUIFER MANAGEMENT PLAN

A summery outline of the artificial recharge plan for the entire district of each OE block is given at the beginning in tabular forms. This is followed by the salient features of each block along with the detailed structure-wise recharge plan and cost estimates.Details of the block wise type of suitable recharge structures and volume of water assured for annual recharge for each block in rural area, urban area and artificial recharge in agricultural farm are given in table and design of recharge structures are annexed at annexure I, II. More than 5 meter Mean decadal water level with falling trend is considered for block wise artificial recharge calculation.

Another focus has been given to minimize the gross draft by enhancing ground water use efficiency in irrigation system after replacing the water distribution system from unlined/kutcha channel to Under Ground Pipeline System in the whole district.

10.1 SCOPE OF IMPLEMENTATION

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the Central or State Govt. like MANERGA, IWSP, PMKSY (Prime Minister KrishiSinchaiYojna), NABARD funded schemes, Urban Development schemes, departmentally funded projects etc. may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, Engineering Collages, Academic and Research Institution and NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

10.2POTENTIAL OF ENHANCING THE GROUND WATER USE EFFICIENCY

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced by the state of Punjab, particularly in overexploited blocks. There are around 48332tube wells operated by farmers for irrigation through unlined/Kutcha (78.31%) open channel system in Tarntaran district where water from the tube-well is discharge to the agricultural field. In this process huge quantity of ground water is wasted in soil moisture and evaporation losses.

Dynamic ground water resources (2011) indicate that Gross ground water draft for irrigation in Tarntaran district is estimated at 1881.96 MCM. It is expected that over draft can be brought down by switching over to underground/surface pipeline based distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to the tune of 1411.5 MCM assuming there is no crop diversification by the farmers.

The benefit will lead to saving of precious ground water resources in overexploited blocks of tarntaran Districts. The measure if implemented will bring down the ground water overdraft from 133% to 98.74 %. The category of the blocks will also improve drastically resulting in boosting of agriculture and industrial development otherwise not sustainable in majority of the blocks in the state.

The tube wells also consume enormous electricity which is subsidized and government incurs significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. This will also be useful in the waterlogged/ shallow water table areas as the seepage losses in these areas also aggravate the water logging. Government should make/launch a mission mode program for installing the underground pipe lines instead of having kutcha channel in the entire Punjab. Heavy ground water overdraft can be reduced by these efforts. This will ensure more crops per drop.

10.3 Water Saving Potential from Crop Diversification-Change Paddy to Maize/Pulses:

As the requirement of water for paddy is much high therefore by changing paddy to maize/Pulses will help in saving of water. For estimating the water saving by crop diversification it is assumed that one mcm of water will be saved in case of maize or pulses planted in one sq km of land. In case of pulses even higher amount of ground water can be saved.

Table 12: Scope of Quantitative Impact on Stage of Development after applying various

management strategies

Block	t Ground	tal Draft	Present	Reduct	tion in draft by dif	ferent water s	aving method	SOD afterwards	Change of paddy
	Water	(mcm)	Stage of	Replace	Adopt	Change	Total (mcm)	(%)	cultivation area
	ailability		draft (SOD)	water	Artificial	Paddy to	(2+3+4)		(% of existing)
	(mcm)		(%)	courses by	recharge	Maize			
			per 2013	UG Pipes	(mcm)	(mcm)			
				(mcm)	(mem)				
			1	2	3	4	5		
BHIKHIWIND	176.73	221.38	125	55.3	2.50	0	57.8	92.53	Not Required
CHOLA SAHIB	161.75	188.50	117	47.1	2.40	0	49.5	85.92	Not Required
GANDIWIND	267.71	286.72	107	71.7	1.40	0	73.1	79.8	Not Required
KHADUR SAHIB	175.41	259.05	148	64.8	2.90	16.8	84.5	100	8
NAUSHEHRA								100	10
PANUAN	99.75	164.19	165	41.0	1.60	21.576	64.176	100	12
PATTI	160.85	258.70	161	64.7	2.70	30.564	97.964	100	11
TARN TARAN	221.92	283.25	128	70.8	3.30	0	74.1	94.24	Not Required
VALTOHA	146.08	220.14	151	55.0	2.20	17.03	74.23	100	7
Total	1410.2	1882.0	133	470.5	19.00	85.97	575.47	98.74	Not Required

BLOCK WISE AQUIFER MAP AND MANAGEMENT PLAN

(I) Bhikhiwind Block (333 KM)

1. Salient Information

Population (2011)

Rural-2133 Urban--3835 Total-25968

Average Annual Rainfall (Bhikhiwind block)512mmAgriculture and IrrigationMajor Crops- Rice, WheatOther crops-Sugarcane, Potatoes, Pulses,
Net Area Sown- 299.97sq.kmGross Cropped Area-302.95sq.km

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers that can be used for irrigation after treatment. The canal irrigation is available in theBhikhiwindblock.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and Instorage ground water resources up-to fresh water. Block is categorized as**Over Exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tube wellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~13.8- 16.02 (mbgl)Post Monsoon-~6.67-15.7 (mbgl)

Aquifer	Geology	Type of Aquifer	Thickness of Granular	Transmissivity (m ² /day)	Specific Yield %	Storativity
		1	Zones (m)			
Aquifer-I	na ul	Unconfined		1450-4140	0.072	484.5-
(17-109m)	cer via		46	1100 1110	0107 1	4504
Aquifer-II	uat / Iluv	Unconfined			NΛ	
(67-287m)	Q A A	to Confined	88	-	NA	-

Aquifer Disposition: Combined Aquifer System

Aquifer comprises of freshwater only and the main aquifermaterial is sand.

The non-aquifer material comprise of clay.

3D Lithological model

3D Lithology Fence

1. Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	176.73
wise Resource	In-storage Ground	5729.67
available (mcm)	Water Resources	
	Total	5906.40
Ground Water	Irrigation	218.64
Extraction (in	Domestic & Industrial	2.74
mcm)		
Provision for domest	ic & Industrial	4.05
requirement upto 20	25 (in mcm)	
Chemical Quality of g	round water&	Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

2. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (14.14m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing pits
	will save 2.5mcm volume of water

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)
	will save 55.3mcm volume of water wastage
Change in cropping pattern	Change in cropping pattern not required
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

(II) CHOLA SAHIB BLOCK (349.9 SQ KM)

Salient Information

Population (2011)

Rural-21152 Urban-0 Total-21152

Average Annual Rainfall(Chola Sahib block) 526mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown-224.21sq.km
	Gross cropped area-227.31sq.km

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Chola Sahib block**Ground Water Resource Availability**: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and In-storage ground water resources up-to fresh water. Block is categorized as **OverExploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tube wellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~17.69-19.17(mbgl)&Post Monsoon-~16.55-

18.00(mbgl)

Aquifer	Geology	Type of	Thickness of	Transmissivity	Specific	Storativity
		Aquifer	Granular	(m²/day)	riela %	
			Zones (m)			
Aquifer-I		Unconfined	71 54	1450 4140	0.072	484.5-
(12-114m)	y		/1.54	1450-4140	0.072	4504
Aquifer-II	nar [s	Unconfined	117		ΝIΛ	
(70-264m)	ceri vial osit	to Confined	11/	-	NA	-
Aquifer-III	uat Iluv epc	Unconfined	າາ		NIΛ	
(245-300m)	Q A de	to Confined	23	-	INA	-

Aquifer Disposition: Combined Aquifer System

Aquifer comprises of freshwater only and the main aquifermaterial is sand.

The non-aquifer material comprise of clay.

3D Lithology model

4. Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	161.75	
wise Resource	In-storage Ground	5377.51	
available (mcm)	Water Resources		
	Total	5539.26	
Ground Water	Irrigation	185.86	
Extraction (in	Domestic & Industrial	2.65	
mcm)			
Provision for domest	ic & Industrial	3.93	
requirement upto 20	25 (in mcm)		
Chemical Quality of g	round water&	Suitable for drinking and irrigation	
contamination		purposes	
Other issues		Declining water level trend	

5. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (17.435m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing pits
	will save 2.4 mcm volume of water

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)		
	will save 47.1mcm volume of water wastage		
Change in cropping pattern	Not Required		
Alternate water sources	Tanks, ponds and canals		
Regulation and Control	-		
Other interventions proposed, if	-		
any			

3. GANDIWIND BLOCK(336.9 SQ KM)

Salient Information

Population (2011)

Rural-21152 Urban-0 Total-21152

Average Annual Rainfall	633mm
Agriculture and Irrigation	Major Crops- Rice, Wheat
	Other crops-Sugarcane, Potatoes, Pulses,
	Net Area Sown-151.35sq.km
	Gross Crped Area- 151.35 sq.km

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the GANDIWINDblock.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and Instorage ground water resources up-to fresh water. Block is categorized as **Over exploited Area** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~10.75 – 19.68 (mbgl)Post Monsoon-~10.44 – 18.9 (mbgl)

Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmissivity (m²/day)	Specific Yield %	Storativity
Aquifer-I (14-110m)	cerna vial	Unconfined	72	1450-4140	0.072	484.5- 4504
Aquifer-II (55-196m)	Quat ry Alluv	Unconfined to Confined	100	-	NA	-

Aquifer Disposition: Combined Aquifer System

Aquifer comprises of freshwater only and the main aquifermaterial is sand.

The non-aquifer material comprise of clay.

3D Lithology model

3D Lithology Fence

Cross-Section A-A'

7. Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	267.71
wise Resource	In-storage Ground	5447.57
available (mcm)	Water Resources	
	Total	5715.28
Ground Water	Irrigation	285.07
Extraction (in	Domestic & Industrial	1.66
mcm)		
Provision for domest	ic & Industrial	2.45
requirement upto 20	25 (in mcm)	
Chemical Quality of g	round water&	Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

8. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average	
recharge and proposed interventions	depth to water level (14.78m).	
Other interventions proposed	Artificial Recharge, Roof top Rainwater	
	Harvesting, Farm recharge by constructing pits	
	will save 1.40mcm volume of water	

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)		
	will save 71.7mcm volume of water wastage		
Change in cropping pattern	Not Required		
Alternate water sources	Tanks, ponds and canals		
Regulation and Control	-		
Other interventions proposed, if	-		
any			

4.KHADOOR SAHIB BLOCK (341.5SQ KM)

1. Salient Information

Population (2011)

Rural-25154 Urban--Total-25154

Average Annual Rainfall	637mm	
Agriculture and Irrigation		Major Crops- Rice, Wheat
		Other crops-Sugarcane, Potatoes, Pulses,
		Net Area Sown-119.85 sq.km
		Gross Cropped Area=252.35

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the **khadoor sahib** block.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and Instorage ground water resources up-to fresh water. Block is categorized as Over-Exploited as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~18.15-21.30(mbgl)&Post Monsoon-~16.60-20.19(mbgl)

Aquifer	Geology	Type of	Thickness of	Transmissivity	Specific	Storativity
		Aquifer	Granular	(m²/day)	Yield %	
			Zones (m)			
Aquifer-I (12-97m)	у	Unconfined	70	1450-4140	0.072	484.5- 4504
Aquifer-II (77-166m)	cernar vial osits	Unconfined to Confined	76	-	NA	-
Aquifer-III (191-300m)	Quat Alluv depo	Unconfined to Confined	55	-	NA	-

Aquifer Disposition: Combined Aquifer System

Aquifer comprises of freshwater only and the main aquifermaterial is sand. The non-aquifer material comprise of clay.

3D Lithology model

2.

Ground Water

Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	175.41	
wise Resource	In-storage Ground	5754.1	
available (mcm)	Water Resources		
	Total	5929.51	
Ground Water	Irrigation	256.04	
Extraction (in	Domestic & Industrial	3.02	
mcm)			
Provision for domest	ic & Industrial	4.47	
requirement upto 20	25 (in mcm)		
Chemical Quality of g	round water&	Suitable for drinking and irrigation	
contamination		purposes	
Other issues		Declining water level trend	

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (18.16m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing pits
	will save 2.90mcm volume of water

5. Demand Side Interventions

3.

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)
	will save 64.8mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to
	maize/soyabean
	8 % of the total area needs to change the crop from
	paddy to maize/soyabean
	Anticipated volume of water to be saved by
	maize/soyabean is 16.8mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

5. NAUSHERA PANUUN BLOCK (199.2 SQ KM)

Salient Information

Population (2011)

Rural-17051 Urban--Total-17051

Average Annual Rainfall547mm **Agriculture and Irrigation**

Major Crops- Rice, Wheat Other crops-Sugarcane, Potatoes, Pulses, Net Area Sown-153.03 sq.km Gross cropped Area Sown-154.56 sq.km

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in theNAUSHERA PANUUNblock.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and Instorage ground water resources up-to fresh water. Block is categorized as Over-Exploited as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~17.50-19.37(mbgl)&Post Monsoon-~16.00-18.16(mbgl)

Aquifer Disposition: Combined Aquifer System

Aquifer	Geology	Type of	Thickness of	Transmissivity	Specific	Storativity
		Aquifer	Granular	(m²/day)	Yield %	
			Zones (m)			
Aquifer-I	na I	Unconfined	66	1450 4140	0.072	484.5-
(14-95m)	ceri via		00	1430-4140	0.072	4504
Aquifer-II	uat ′ Iluv	Unconfined	4 5		NIΛ	
(83-152m)	Q R A	to Confined	45	-	NA	-

Aquifer comprises of freshwater only and the main aquifermaterial is sand.

The non-aquifer material comprise of clay.

3D Lithology model

3D Lithology Fence

1. Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	99.75
wise Resource	In-storage Ground	3034.68
available (mcm)	Water Resources	
	Total	3134.43
Ground Water	Irrigation	162.10
Extraction (in	Domestic & Industrial	2.09
mcm)		
Provision for domestic & Industrial		3.10
requirement upto 2025 (in mcm)		
Chemical Quality of ground water&		Suitable for drinking and irrigation
contamination		purposes

Other issues 1	Declining water level trend
----------------	-----------------------------

2. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (18.66m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing pits
	will save 1.60mcm volume of water

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)
	will save 41.0 mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean
	12% of the total area needs to change the crop from
	paddy to maize/soyabean
	Anticipated volume of water to be saved by
	maize/soyabean is 21.57mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

6. PATI BLOCK (375.5 SQ KM)

1. Salient Information

Population (2011)

Rural-25723 Urban-0 Total-25723

Average Annual Rainfall451mm **Agriculture and Irrigation**

Major Crops- Rice, Wheat Other crops-Sugarcane, Potatoes, Pulses, Net Area Sown-258.62sq.km Gross cropped Area-261.14 Total Irrigated Area- 205.64 sq.km

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers that can be used for irrigation after treatment. The canal irrigation is available in the

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and Instorage ground water resources up-to fresh water. Block is categorized as **Overexploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~17.53 – 18.73(mbgl)&Post Monsoon-~16.63-17.64 (mbgl)

Aquifer	Geology	Type of Aquifer	Thickness of Granular Zones (m)	Transmissivity (m²/day)	Specific Yield %	Storativity
Aquifer-I (14-112m)	cerna vial	Unconfined	36.33	1450-4140	0.072	484.5- 4504
Aquifer-II (95-268m)	Quat ry Alluv	Unconfined to Confined	18.26	-	NA	-

Aquifer Disposition: Combined Aquifer System

Aquifer comprises of freshwater only and the main aquifermaterial is sand. The non-aquifer material comprise of clay.

3D Lithology model

3D LithologyFence

Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	160.85
wise Resource	In-storage Ground	5878.03
available (mcm)	Water Resources	
	Total	6038.88
Ground Water	Irrigation	253.57
Extraction (in	Domestic & Industrial	4.94
mcm)		
Provision for domestic & Industrial		7.27
requirement upto 2025 (in mcm)		
Chemical Quality of ground water&		Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

2. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (17m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing pits
	will save 2.7mcm volume of water

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel) will save 64.7mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean 11% of the total area needs to change the crop from

	paddy to maize/soyabean
	Anticipated volume of water to be saved by
	maize/soyabean is 30.56mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

7. TARANTARAN BLOCK (320SQ KM)

Salient Information

Population (2011)

Rural-35178 Urban-0 Total-35178

Average Annual Rainfall 562mm Agriculture and Irrigation

Major Crops- Rice, Wheat Other crops-Sugarcane, Potatoes, Pulses, Net Area Sown-203.91 sq.km Gross cropped Area Sown-203.91 sq.km Total Irrigated Area-203.64 sq.km

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the TarnTaran block.

Ground Water Resource Availability: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and Instorage ground water resources up-to fresh water. Block is categorized as **Over Exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~15.03-20.40(mbgl)&Post Monsoon-~14.00-

18.94(mbgl)

Aquifer Disposition: Combined Aquifer System

Aquifer	Geolog	Type of	Thickness	Transmissivity(m ² /da	Specifi	Storativit
	у	Aquifer	of Granular	y)	c Yield	у

			Zones (m)		%	
Aquifer-I (14-138m)	ıvial	Unconfine d	47	1450-4140	0.072	484.5- 4504
Aquifer-II (73-220m)	nary Allu S	Unconfine d to Confined	96	-	NA	-
Aquifer-III (238- 300m)	Quateri deposit	Unconfine d to Confined	52	-	NA	-

Aquifer comprises of freshwater only and the main aquifermaterial is sand.

The non-aquifer material comprise of clay.

3D Lithology model

3D LithologyFence

Ground Water Resource, Extraction,	Contamination and Other Issues
---	---------------------------------------

Combined Aquifer	Dynamic Aquifer	221.92
wise Resource	In-storage Ground	4615.05
available (mcm)	Water Resources	
	Total	4836.97
Ground Water	Irrigation	277.26
Extraction (in	Domestic & Industrial	6.00
mcm)		
Provision for domest	ic & Industrial	8.79
requirement upto 202	25 (in mcm)	
Chemical Quality of g	round	Suitable for drinking and

water&contamination	irrigationpurposes
Other issues	Declining water level trend

4. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (17m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing pits
	will save 2.7mcm volume of water

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)	
	will save 13.8 mcm volume of water wastage	
Change in cropping pattern	Proposed change in cropping pattern from Paddy to maize/soyabean	
	11% of the total area needs to change the crop from	
	paddy to maize/soyabean	
	Anticipated volume of water to be saved by	
	maize/soyabean is 30.56mcm	
Alternate water sources	Tanks, ponds and canals	
Regulation and Control	-	
Other interventions proposed, if	-	
any		

8. VALTOHA BLOCK (327.5 SQ KM)

Salient Information

Population (2011)

Rural-17332 Urban-0 Total-17332

Average Annual Rainfall 408mm **Agriculture and Irrigation**

Major Crops- Rice, Wheat Other crops-Sugarcane, Potatoes, Pulses, Net Area Sown-295sq.km Gross cropped area-298sq.km Total Irrigated Area- 295sq.km

Water Bodies&Canal Irrigation

Water bodies available in the villages for the storm water and untreated waste water of villagers, that can be used for irrigation after treatment. The canal irrigation is available in the Ropar block. **Ground Water Resource Availability**: Ground Water Resources available in the combined group of aquifers. The resources are calculated as per Dynamic ground water resources (2013) and Instorage ground water resources up-to fresh water. Block is categorized as **Over exploited** as per Ground Water Assessment 2013.

Ground water Extraction: Information regarding the abstraction from different Aquifers is not available, but there are drinking water supplies from tubewellstapping combined aquifer and separate aquifer could not be assessed separately.

Water level Behavior (2015): Pre Monsoon-~6.12 – 17.33(mbgl)&Post Monsoon-~5-17.33(mbgl)

Aquifer	Geology	Type of	Thickness of	Transmissivity	Specific	Storativity
		Aquifer	Granular	(m²/day)	Yield %	
			Zones (m)			
Aquifer-I		Unconfined	50	1450-4140	0.072	484.5-
(17-115m)	Ż		50	1430-4140	0.072	4504
Aquifer-II	nar l	Unconfined	111		NΛ	
(76-239m)	ceri via vsit	to Confined	111	-	INA	-
Aquifer-III	uat Iluv epc	Unconfined	26		ΝΑ	
(258-300m)	A d	to Confined	30	-	INA	-

Aquifer Disposition: Combined Aquifer System

Aquifer comprises of freshwater only and the main aquifermaterial is sand.

The non-aquifer material comprise of clay.

3D Lithology model

Ground Water Resource, Extraction, Contamination and Other Issues

Combined Aquifer	Dynamic Aquifer	146.08
wise Resource	In-storage Ground	4713.89
available (mcm)	Water Resources	
	Total	4859.97
Ground Water	Irrigation	277.26
Extraction (in	Domestic & Industrial	6.00
mcm)		
Provision for domest	ic & Industrial	3.3
requirement upto 20	25 (in mcm)	
Chemical Quality of g	round water&	Suitable for drinking and irrigation
contamination		purposes
Other issues		Declining water level trend

6. Ground Water Resource Enhancement

Aquifer wise space available for	Volume of unsaturated zone upto the average
recharge and proposed interventions	depth to water level (12m).
Other interventions proposed	Artificial Recharge, Roof top Rainwater
	Harvesting, Farm recharge by constructing pits
	will save 2.2mcm volume of water

Advanced Irrigation Practices	Lining of underground pipelines (Kutcha channel)
-------------------------------	--

	will save 55.0mcm volume of water wastage
Change in cropping pattern	Proposed change in cropping pattern from Paddy to
	maize/soyabean
	7% of the total area needs to change the crop from
	paddy to maize/soyabean
	Anticipated volume of water to be saved by
	maize/soyabean is 17.03mcm
Alternate water sources	Tanks, ponds and canals
Regulation and Control	-
Other interventions proposed, if	-
any	

CONCLUSION:

1.0Ground Water Recharge

Due to reduction in forest and green areas, the natural recharge to ground water has got reduced. Further, improvement in drainage pattern and lowering of water table has also affected ground water recharge. There is an urgent need to take up schemes for recharge to ground water to arrest further decline of water table. The recharge schemes using following source water is considered feasible:

(i) Unpolluted rain water harvested from rooftops, roads and used water of Sarovers.

(ii) Surplus canal water during monsoon period particularly in good rainfall years.

(iii) Unpolluted stored water in depressions and ponds.

(iv) Accumulated water in the low lying areas around agricultural fields.

(v) Monsoon runoff and escape canal water in drains.

(vi) Existing dugwells, dug-cum-borewells, abandoned tubewells, cavity wells, recharge wells in trenches, shaft-cum-recharge wells and excavated ponds are utilized/ considered effective ground water recharge structures.

2.0 Ground Water Conservation

Ground water conservation is proposed to be carried out by following methods:

3.0 Change in cropping pattern

The farmers have adopted paddy cultivation due to profitability. There is an urgent need to change the cropping pattern and to adopt cultivation of those crops which require less irrigation. Paddy is the main Kharif crop of the district and area under paddy is increasing year after year. Studies been carried out have indicated that by replacing paddy crop with maize, groundnut, kharif pulse, soybean, bajra, fodder, about thousand Hectare Meter irrigation water can be saved. To bring out desired change in cropping pattern, it is necessary that adequate support price and processing facilities are made available for the referred crops.

4.0 Change in Irrigation Policy

The irrigation policy is required to be modified as per the prevailing ground water conditions. The canal water allowances can be increased to save ground water. Thus, rationalization of the irrigation policy will help in controlling ground water depletion in the over-exploited areas.

5.0 Timely Plantation of Paddy

It has been estimated that paddy which is sown in the month of May requires 77 cms of evapotranspiration (E.T.) whereas paddy which is sown on or after 16th June requires only 62 cms of E.T. Thus, substantial water can be saved by postponing paddy cultivation from early May to late June. State Govt. has made an Act titled "The Punjab Preservation of Sub Soil Water Act, 2009" in year 2009 to preserve the sub soil water. It provides for the prohibition of sowing nursery of paddy before 10th May and transplanting paddy as notified by the state Government i.e before 10th of June.

6.0 Promotion of Sprinkler and Drip Irrigation

Wherever feasible, pipe conveyance system fitted with modern pressurized irrigation practices such as Sprinkler and Drip Irrigation should be introduced to conserve water and increase the yield of crops. It has been observed that by using drip irrigation system in sandy areas, about 60% water can be saved. Use of sprinkler irrigation results in water saving to the extent of 20%. 'More crop per drop' concept should be popularized.

7.0 Realistic Irrigation Power Pricing

Rate of power for tubewell irrigation is irrational and requires modification. There should be no free power for irrigation so that due care will be taken by the consumers for its economic and judicious use. Instead of flat rates, metering may be introduced.

8.0 Mass Awareness Program

Management of ground water resources cannot be successful without public participation. Therefore, public awareness is of prime necessity. To make the public aware, it is necessary to organize mass awareness program at grass root level and impart training on rainwater harvesting techniques for ground water recharge to various

State government agencies at regular intervals so that water policies made by government can be effectively implemented. Central Ground Water Board has taken a lead in this and conducting Tier III, Training Programs on 'Village Level Aquifer Management Plan" at Block level under Aquifer Mapping programme.

9.0 Ground Water Regulation

Ground Water regulation may be enforced for management of ground water resources as has been done by Central Ground Water Authority.