

केन्द्रीय भूमिजल बोर्ड

जल शक्ति मंत्रालय, जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

भारत सरकार

# **Central Ground Water Board**

Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation Government of India

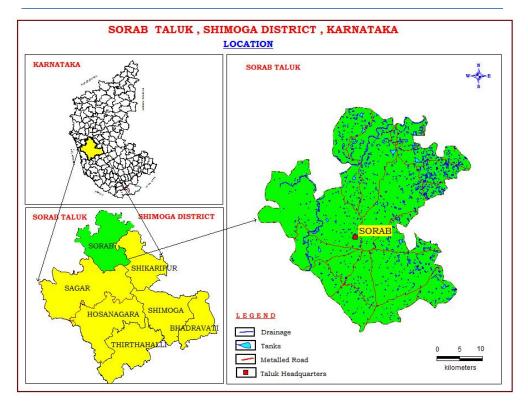
Report on

# AQUIFER MAPPING AND MANAGEMENT PLAN

Soraba Taluk, Shimoga District, Karnataka

दक्षिण पश्चिमी क्षेत्र, बेंगलुरु South Western Region, Bengaluru

FOR OFFICIAL USE ONLY No. SWR/RP/NQM/2023-24/30


भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास एवं गंगा संरक्षण विभाग <u>केन्द्रीय भूमिजल बोर्ड</u> दक्षिण पश्चिमी क्षेत्र, बेंगलुरु



Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation <u>Central Ground Water Board</u> South Western Region, Bengaluru

# AQUIFER MAPS AND MANAGEMENT PLAN, SORABA TALUK, SHIMOGA DISTRICT, KARNATAKA STATE

(AAP –2022-23)



By

Damera Anjaneyulu, AHG, CGWB, SWR, Bengaluru

**MAY 2023** 

# AQUIFER MAPS AND MANAGEMENT PLAN, SORABA TALUK, SHIMOGA DISTRICT, KARNATAKA STATE

# Contents

| 1. INT | RODUCTION                                                                            | 1  |
|--------|--------------------------------------------------------------------------------------|----|
| 2. SAI | LIENT INFORMATION                                                                    | 3  |
| 2.1.   | Study Area                                                                           | 3  |
| 2.2.   | Population                                                                           | 4  |
| 2.3.   | Rainfall                                                                             | 4  |
| 2.4.   | Agriculture & Irrigation                                                             | 5  |
| 2.5.   | Geomorphology, Physiography & Drainage                                               | 7  |
| 2.6.   | Soil                                                                                 | 8  |
| 2.7.   | Ground water resource availability and extraction                                    | 8  |
| 2.8.   | Existing and future water demands (as per GEC-2022)                                  | 8  |
| 2.9.   | Water level behavior                                                                 | Э  |
| 3. AQ  | UIFER DISPOSITION                                                                    | 11 |
| 3.1.   | Number of aquifers: In Soraba taluk, there are mainly two types of aquifer systems;1 | 1  |
| 3.2.   | 3-D aquifer disposition and Cross-Sections14                                         | 4  |
| 3.2.   | .1. Aquifer disposition – Rockworks output1                                          | 4  |
| 4. GR  | OUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER                             |    |
| ISSUES |                                                                                      | 15 |
| 4.1.   | Aquifer wise resource availability and extraction1                                   | 5  |
| 4.2.   | Chemical quality of ground water and contamination1                                  | 6  |
| 5. GR  | OUND WATER MANAGEMENT PLAN                                                           | 18 |
| 5.1.   | Resource Enhancement by Supply Side Interventions1                                   | 8  |
| 5.2.   | Resource Savings by Demand Side Interventions                                        |    |
| 5.2.   | .1. Water Use Efficiency by Micro Irrigation Practices                               | 0  |
| 5.2.   | .2. Change in cropping pattern                                                       | 0  |
| 5.3.   | Ground Water Development Plan                                                        | 0  |
| 5.4.   | Regulation and Control                                                               | 1  |
| 5.5.   | Other interventions proposed                                                         | 1  |
| 6. SUN | MMARY AND RECOMMENDATIONS                                                            | 22 |

# AQUIFER MAPS AND MANAGEMENT PLAN, SORABA TALUK, SHIMOGA DISTRICT, KARNATAKA STATE

## **1. INTRODUCTION**

**National Project on Aquifer Mapping (NAQUIM)** initiated by Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India with a vision to identify and map the aquifers at the micro level with their characteristics, to quantify the available groundwater resources, to propose plans appropriate to the scale of demand and institutional arrangements for participatory management in order to formulate a viable strategy for the sustainable development and management of the precious resource which is subjected to depletion and contamination due to indiscriminate development in the recent past.

**Groundwater** is being increasingly recognized as a dependable source of supply to meet the demands of domestic, irrigation and industrial sectors of the country. The development activities over the years have adversely affected the groundwater regime in many parts of the country. Hence, there is a need for scientific planning in development of groundwater under different hydrogeological situations and to evolve effective management practices with the involvement of community for better groundwater governance.

Aquifer Mapping has been taken up in Shikaripura taluk, Shimogadistrict with a view to formulate strategies for sustainable management plan for the aquifer system in accordance with the nature of the aquifer, the stress on the groundwater resource and prevailing groundwater quality which will help in drinking water security and improved irrigation facility. It will also result in better management of vulnerable areas.

#### Objectives

The objectives of the aquifer mapping can broadly be stated as:

- To define the aquifer geometry, type of aquifers and their lateral and vertical extent
- To determine the groundwater regime scenario
- To determine the hydrogeochemical characteristics of the aquifer units
- To define 2D and 3-D dispositions of the aquifer units
- To estimate the availability of groundwater resources in the aquifer system
- To develop a sustainable groundwater management plan for the aquifer system

#### **Scope of the Study**

The important aspect of the aquifer mapping programme is the synthesis of the large volume of data already generated during specific studies carried out by **Central Ground Water Board** (**CGWB**) and various Government organizations with a new data set generated that broadly describe the aquifer system. The available generated data are assembled, analyzed, examined, synthesized and interpreted from available sources. These sources are predominantly non-computerized data, which is to be converted into computer based GIS data sets.

Data gaps have been identified after proper synthesis and analysis of the available data collected from different state organizations like GWD, Watershed Department, etc. In order to bridge the data gap, data generation programme has been formulated in an organized way in the study area. Exploration work has been carried out in different segments of the regions and aquifer parameters have been estimated. Groundwater monitoring regime has been strengthened by establishing/adding State agencies additional monitoring wells. 2D and 3D sections have been prepared to bring out more realistic as the data points are more closure to the field.

#### Ground water Issues in the study area

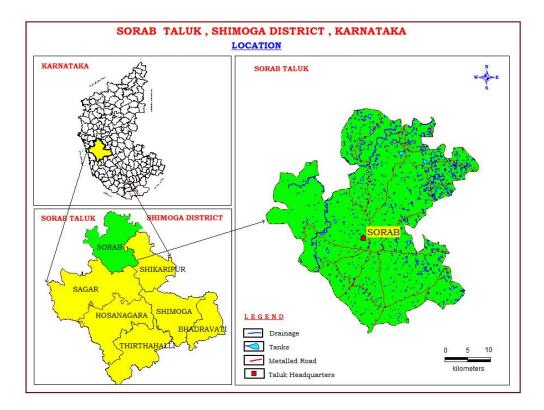
The main issues pertaining to the Shikaripura taluk is as follows

- About 85% dependency on groundwater for irrigated agriculture
- Lack of surface water resources as alternate water sources
- Source Sustainability for drinking and irrigation, especially in lean periods
- Declining groundwater level trends in wells analyzed tapping phreatic aquifer during pre monsoon period.
- Contamination of Urban areas with municipal waste and sewage

#### **Approach & Methodology**

Integrated multi-disciplinary approach involving geological, geophysical, hydrological, hydrogeological and hydrogeochemical components were taken up in 1:50000 scale to meet the objectives of study. Geological map of the study area has been generated based on the GSI maps, geophysical data have been generated through vertical electrical soundings and geoelectrical layers with different resistivity have been interpreted in corroboration with the litho-stratigraphy of the observation wells and exploratory wells down to depths of 250 mbgl. Hydrological and Hydrometeorological data have been collected from Statistical department, Govt of Karnataka. Drainage, Soil and Geomorphology of the taluk were prepared based on the satellite data interpreted by KSRSAC.

Based on the data gap analysis, data generation process has been scheduled through establishing key observation wells, integrating Ground Water Directorate (GWD) observation wells, pinpointing exploratory sites for drilling through in-house, collecting geochemical samples in order to study groundwater regime, geometry of the aquifer and aquifer parameters and quality of the groundwater respectively. Groundwater recharge and draft have been computed based on approved guidelines and method to estimate the ground water resources of the aquifer system.


Based on the above studies Management strategies both on the supply side through augmentation of groundwater through artificial recharge and water conservation and on demand side through change in irrigation pattern have been formulated for sustainable management of the groundwater resource.

#### 2. SALIENT INFORMATION

Name of the taluk: **SORABA** District: **SHIMOGA**; State: **KARNATAKA** Area: 1139 sq.km. Population: 2,00,809 (As 2011 census) Annual Normal Rainfall: 1189 mm

#### 2.1. Study Area

Aquifer mapping studies was carried out in Soraba Taluk, Shimoga district of Karnataka, covering an area of 1139sq.kms under National Aquifer Mapping Project. SORABA TALUK of SHIMOGA district is located between north latitude 14° 13' 16.36" and 14° 39' 14" & east longitude 74° 52' 27" and 75° 17' 49" and is covered in parts of Survey of India Topo sheet Nos. 48J/15, 16, 48N/2,3,4. SORABA TALUK is bounded by Hangal Taluk on north, Sagara Taluk on south, Soraba Taluk on east and Siddapur, Sirsi Taluks on the western side. Location map of Soraba Taluk of Shimoga district is presented in Figure-1. Taluk administration of Soraba Taluk is divided into 6 Hoblies. Soraba town is the Taluk head quarter. There are 281 inhabited and 25 uninhabited villages in the Taluk.



## Fig-1: Location map.

# 2.2. Population

According to 2011 census, the population in the Taluk is 2,00,809, in which 1,89,477 constitute the rural population and 11,302 urban population, which works out to 94 % (rural) and 6 % (urban) of the total population of Taluk. The study area has an overall population density of 175 persons per sq.km. The decadal variation in population from 2001 to 2011 is +8.05 % in Soraba taluk (Table-1).

| Total  | Male   | Female | Share of     | Rural      | Urban      | Decadal    | Decadal    | Decadal change |
|--------|--------|--------|--------------|------------|------------|------------|------------|----------------|
|        |        |        | the district | population | population | change in  | change in  | in urban       |
|        |        |        | population   |            |            | population | rural      | population     |
|        |        |        |              |            |            |            | population |                |
| 200809 | 101130 | 99679  | 11.46        | 189477     | 11032      | +8.05%     | +6.36%     | +52.58%        |

Table-1: Population details of Soraba taluk

Source: District at a glance 2018-19, Govt. of Karnataka

### 2.3. Rainfall

Soraba Taluk enjoys semi-arid climate. Dryness and hot weather prevails in major part of the year. The area falls under Southern Transition agro-climatic zone of Karnataka state and. The normal annual rainfall in Soraba Taluk for the period 2001 to 2022 is 1189 mm. Seasonal rainfall pattern indicates that, major amount of rainfall was recorded during South-West Monsoon seasons, which

contributes about 82% of the annual normal rainfall, followed by North-East Monsoon season constituting 10.5% and remaining 6.5% in Pre-Monsoon season (Table-2).

Table-2: Average Rainfall Data of Soraba Taluk, Shimoga district, Karnataka (2001-2018)

| STATION | JAN | FEB | MAR | APR | MAY | PRE-<br>MON | JUN | JUL | AUG | SEP | MON  | OCT | NOV | DEC | POST-<br>MON |
|---------|-----|-----|-----|-----|-----|-------------|-----|-----|-----|-----|------|-----|-----|-----|--------------|
| Soraba  | 1   | 0   | 15  | 33  | 45  | 94          | 229 | 405 | 366 | 129 | 1129 | 106 | 36  | 2   | 144          |

Table-3: The annual rainfall data ofSoraba Taluk, Shimoga district, Karnataka (2001-2022)

|                | YEAR            | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |      |
|----------------|-----------------|------|------|------|------|------|------|------|------|------|------|------|
|                | ANN<br>Rainfall | 407  | 1192 | 1182 | 1220 | 1634 | 1401 | 2018 | 1489 | 1826 | 1666 |      |
| YEAR           | 2011            | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| ANN<br>Rainfal | 1431<br>I       | 1371 | 1264 | 1731 | 979  | 989  | 1080 | 1304 | 1792 | 1534 | 1811 | 1908 |

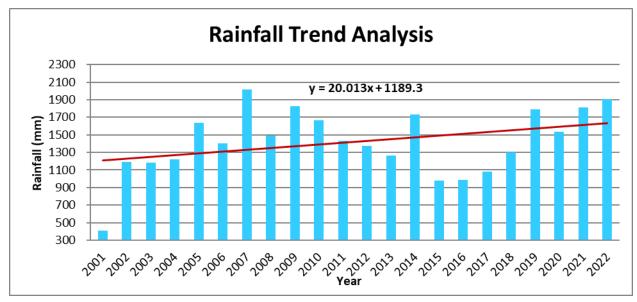



Fig. 2 - Rainfall Trend Analysis

The rainfall pattern in the Soraba Taluk reveals the irregularity of rainfall behaviour (**Fig-2**) and the rainfall varies from 407 mm to 2018 mm (**Table-3**). As mentioned above, the normal annual rainfall of Soraba taluk is 1189mm. Soraba Taluk received rainfall above normal during the years 2004-2014 and 2014 & 2018 to 2022.

### 2.4. Agriculture & Irrigation

Agriculture is the main occupation in Soraba Taluk. Major Kharif crops are Paddy, Fruits, Cotton & Arecanut. Main crops of Rabi season are Paddy, Maize, vegetables, Oil seeds (Table-4).

Water intensive crops paddy is grown in 46.5% of total crop area. Maize is grown in 33.8%, Arecanutin 11.6%, Fruits in 6.7% and pulses in 0.4% of total crop area of Taluk shown in Table.5.

| Year    | Paddy | Maize | Coconut | Arecanut | Pulses | Fruits | Vegetables | Oil seeds | Sugarcane | Cotton |
|---------|-------|-------|---------|----------|--------|--------|------------|-----------|-----------|--------|
| 2017-18 | 24706 | 17929 | 331     | 6148     | 228    | 3549   | 178        | 70        | 83        | 118    |

Table-4: Cropping pattern in Soraba taluk 2017-18 (Ha)

It is observed that the net sown area accounts 41% and area sown more than once is 4% of total geographical area in Soraba taluk. Area not available for cultivation and Forest covers8% &23% of total geographical area respectively (Table-5). 63% of net area irrigated is only from bore wells and 18% from tank irrigation (Table-6).

Table-5: Details of land use in Soraba Taluk 2017-18 (Ha)

| Taluk  | Total<br>Geographical<br>Area | Area<br>under<br>Forest | Area not<br>available<br>for<br>cultivation | Fallow<br>land | Net<br>sown<br>area | Area sown<br>more than<br>once |
|--------|-------------------------------|-------------------------|---------------------------------------------|----------------|---------------------|--------------------------------|
| Soraba | 114767                        | 26667                   | 9592                                        | 6598           | 47171               | 5023                           |

Source: District at a glance 2018-19, Govt. of Karnataka

Table-6: Irrigation details in Soraba taluk(in ha)

| Source of Irrigation | Net area irrigated (Ha.) | % of area |
|----------------------|--------------------------|-----------|
| Canals               | 0                        | 0         |
| Tanks                | 16584                    | 61        |
| Wells                | 350                      | 1         |
| Bore wells           | 9519                     | 35        |
| Lift Irrigation      | 80                       | 0         |
| Other Sources        | 579                      | 2         |
| Total                | 27112                    |           |

Source: District at a glance 2018-19, Govt. of Karnataka

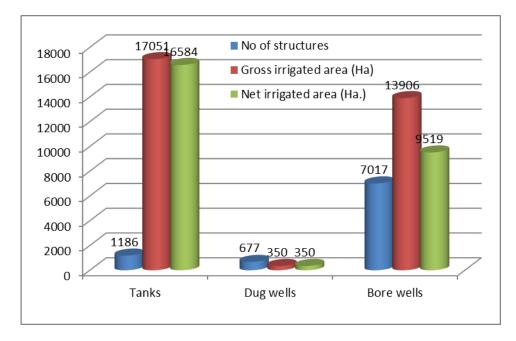



Fig.3. Irrigation source in Soraba taluk, Shimoga district

# 2.5. Geomorphology, Physiography & Drainage

The general land elevation on the Northeastern side of the Taluk is about 560 m amsl and increases to 600 m amsl in theSouthwest. The general slope is mostly towards SW to NE(Fig.-4).

The Taluk is drained by 1st to 4th order streams which flow towards North and east wards. The Kumadvathi River flowing through the center of taluk in SW-NE direction. The tank system is well developed in the Taluk. The general drainage pattern is dendritic to sub-dendritic in nature and mostly joins Kumadvathi River (Fig.-5), which is the tributary of Tungabhadra River.

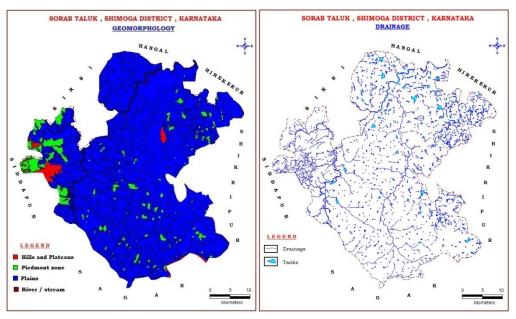



Fig.4. Geomorphology map

Fig.5. Drainage map

## 2.6. Soil

In general, the Taluk is covered by clay skeltal soil. Patches of clay loamy soil are also found at places. The clay skeltalsoil in general derive from Schist. **Black cotton** soils are derived from Gnessisin Fig.6.

The land use map of the taluk is shown in **Fig.7.** Major part of the taluk is covered by Forest and followed by Agriculture activity.

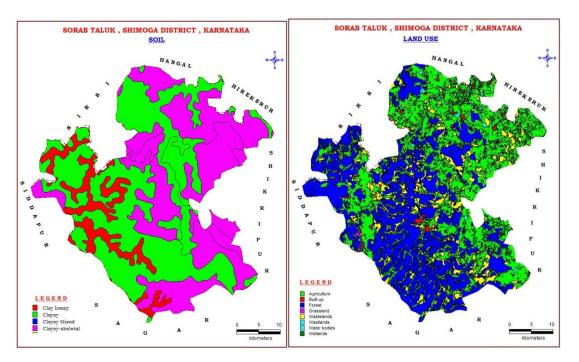



Fig-6: Soil Map

Fig-7: Land use Map

### 2.7. Ground water resource availability and extraction

Aquifer wise total ground water resources up to 200 m depth is given in **Table-7** below.

| Taluk  | Annual<br>replenishable GW<br>resources | Fresh In-storage GW resources | Total availability of fresh<br>GW resources |
|--------|-----------------------------------------|-------------------------------|---------------------------------------------|
| SORABA | 14645                                   | 0                             | 14645                                       |

Table-7: Total Ground Water Resources (2022) (Ham)

# **2.8.** Existing and future water demands (as per GEC-2022)

- Net Annual Ground Water Availability for Future Use (ham): 6728.23
- Ground Water Resource for Domestic Utilisation for projected year 2025 (ham): 494.48

#### 2.9. Water level behavior

(a). Depth to water level: The depth to water levels of Aquifer-I in Pre-monsoon are in the range from 1.60 to 16.16 mgbl(Fig.8), in Post-monsoon are from 3.11 to 13.00 mbgl(Fig.9) and of Aquifer-II in Pre-monsoon are in the range from 5 to 13.80 mbgl(Fig.10), in Post-monsoon are from 2.72 to 11.90 mbgl(Fig.11). The depth to water level data is shown in **Table.8** 

(b). Seasonal Fluctuation: The seasonal fluctuation in Aquifer-I is from -5.52 to 3.25m (Fig.12) and in Aquifer-II is from -0.3 to 7.6m(Fig.13)

(c). Decadal Avarage water level: The decadal average water level of Pre-monsoon are in the range from 7.11 to 18.34 mbgl and Post-monsoon from 4.12 to 13.01mbgl. Shown in table.9

| S.No  | LOCATION     | Pre-monsoon<br>May-22 | Post-monsoon<br>Nov-22 | Fluctuation |
|-------|--------------|-----------------------|------------------------|-------------|
| Aquif | er-I         |                       |                        | •           |
| 1     | Anavatti     | 4.76                  | 3.11                   | 1.65        |
| 2     | Ankaravalli  | 13.45                 | 13.00                  | 0.45        |
| 3     | Chandraguthi | 4.40                  | 4.85                   | -0.45       |
| 4     | Hosabale     | 7.71                  | 7.08                   | 0.63        |
| 5     | Hosabale     | 8.00                  | 10.10                  | -2.10       |
| 6     | M.Lingadalli | 8.86                  | 6.90                   | 1.96        |
| 7     | Shivapura    | 1.60                  | 7.10                   | -5.50       |
| 8     | Sorab        | 16.16                 | 12.91                  | 3.25        |
| 9     | Ulavi        | 4.15                  | 3.69                   | 0.46        |
| Aquif | er-II        | L                     | I                      |             |
| 10    | Anavatti1    | 7.86                  | 2.72                   | 5.14        |
| 11    | Agasanahalli | 7.8                   | 5.3                    | 2.5         |
| 12    | Anavatti     | 7.5                   | 6.4                    | 1.1         |
| 13    | Hunasavalli  | 12.3                  | 8.2                    | 4.1         |
| 14    | Joladagudde  | 5                     | 5.3                    | -0.3        |
| 15    | Kuppagadde   | 10.6                  | 6.8                    | 3.8         |
| 16    | Sorab        | 10.4                  | 3.6                    | 6.8         |
| 17    | Ulavi        | 10.8                  | 3.2                    | 7.6         |
| 18    | Yelasi       | 13.8                  | 11.9                   | 1.9         |

Table-8: Depth to water level for pre-monsoon and post-monsoon

| Location         | Lattitude | Longitude | 2012-21 Mean<br>(Pre-monsoon) | 2012-21<br>Mean(Post-<br>monsoon) |
|------------------|-----------|-----------|-------------------------------|-----------------------------------|
| Anavatti         | 14.5667   | 75.1417   | 9.04                          | 4.47                              |
| Chandraguthi     | 14.4333   | 74.9508   | 7.61                          | 4.12                              |
| Hosabale         | 14.3250   | 75.0500   | 7.11                          | 5.29                              |
| MadsurLingadalli | 14.2089   | 75.0831   | 12.62                         | 7.47                              |
| Sorab            | 14.3667   | 75.1000   | 18.34                         | 13.01                             |

Table.09. Decadal Average depth to water level of Pre & Post-monsoon

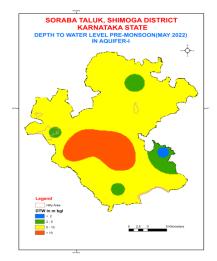



Fig.8.Pre -monsoon DTW of Aq-I

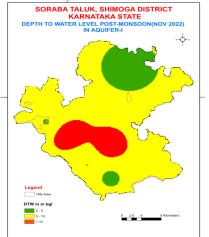
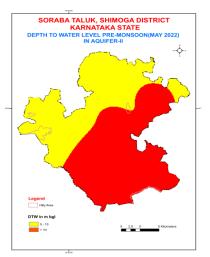




Fig.9.Post-monsoon DTW of Aq-I





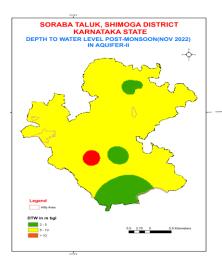
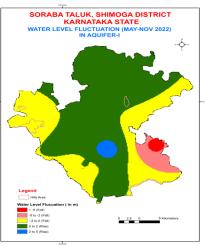
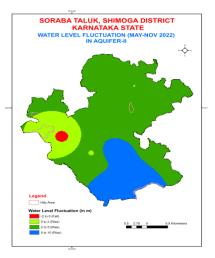
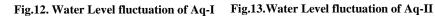






Fig.11. Post-monsoon DTW of Aq-II







## **3. AQUIFER DISPOSITION**

# **3.1.** Number of aquifers:In Soraba taluk, there are mainly two types of aquifer systems;

#### I. Aquifer-I (Phreatic aquifer) Weathered Schist & Banded Gneiss

II. Aquifer-II (Fractured aquifer) Fractured Schist & Banded Gneiss

In Soraba taluk, FracturedSchist & Banded Gneissis the main water bearing formations.

Ground water occurs within the weathered and fractured Schist & Banded Gneissunder water table condition and semi-confined condition. In the Taluk, bore wells were drilled from a minimum depth of 80 mbgl to a maximum of 190 mbgl (Table-10a&b). Depth of weathered zone (Aquifer-I) ranges from 16 mbgl to 48 mbgl (Fig.14). Ground water exploration reveals that aquifer-II fractured formation was encountered between the depths of 23 to 185 mbgl. Yield ranges from 0.9 to 6.18 lps (Fig.15). Transmissivity ranges from 16.8 to 58m<sup>2</sup>/day(Table-11).

#### Depth wise Aquifer System:

The data generated from ground water monitoring wells, micro level hydrogeological inventories, exploratory and observation wells, various thematic layers were utilized to decipher the aquifer disposition of the area. In the Taluk, if we consider the vertical distribution of aquifer, two types of aquifer system are observed i.e., Aquifer – I which is a shallow phreatic aquifer and Aquifer – II which constitutes the deeper fractured aquifer.

#### a) Aquifer-I (Shallow Phreatic aquifer)

Aquifer – I comprises of weathered schist and weathered Banded Gneissic Complex. The spatial distribution of depth of occurrence and aquifer thickness of Aquifer-I is depicted in **Fig. 14A**. It indicates that the depth of occurrence of aquifer – I ranges from 16 to 48 m bgl. However, it mainly occurs in the depth range of 16 to 30 m bgl covering about 10% of the area in Sout-West part of the Taluk. The depth of occurrence of 30 to 60 m bgl is observed more than 90% of area majority of the taluk

#### b) Aquifer-II (Deeper Fractured aquifer)

It comprises of fractured Banded Gneissic Complex and Schistose rock. The spatial distribution of depth of occurrence and aquifer thickness of Aquifer-II is depicted in **Fig. 19B**. It indicates that the depth of occurrence of aquifer – II ranges from 47 to 185 m bgl. However, it mainly occurs in the depth range of 50 to 100 m bgl covering 90% of the area mainly throughout the taluk. The depth of occurrence of 100 to 200 m bgl is observed in about 10% of area in western parts. The perusal of the map for fractured aquifer thickness indicates that it ranges from 3 to 19 m, however, the aquifer thickness of 2.5 to 5 m is observed in 20% of the area covering south-west & Eastern parts aquifer thickness of 5 to 7.5 m is observed in about 60% of the area covering at North, Centre & East of the

taluk. 7.5 to 10 m thickness is observed in 5% of the area in western part of the taluk. The higher fractured aquifer thickness of 10 to 20 m is observed only in 15% area in western part of the taluk.

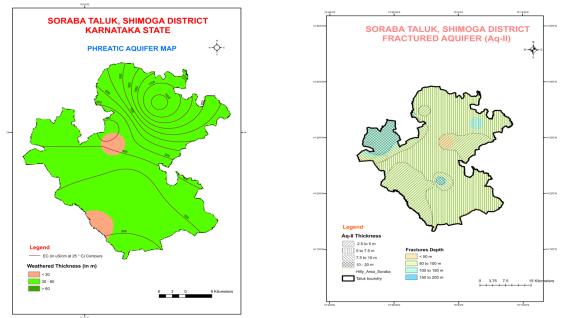



Fig.14A. Phreatic Aquifer map

Fig.14B. Fractured Aquifer map

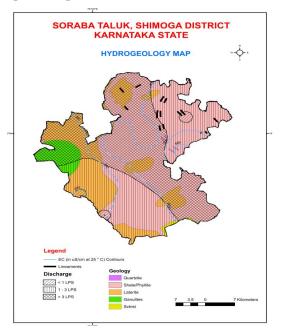



Fig.15. Hydrogeology map

| SI<br>No. | Location    | Latitud<br>e | Longitu<br>de | Depth<br>drilled<br>(mbgl) / | Litholog<br>y | Fracture Zones<br>encountered<br>(mbgl) | SWL<br>(mbgl) | Dischar<br>ge (lps) | Drow<br>down<br>(m) | T<br>(m2/day<br>) |
|-----------|-------------|--------------|---------------|------------------------------|---------------|-----------------------------------------|---------------|---------------------|---------------------|-------------------|
|           |             |              |               | Casing<br>(m)                |               |                                         |               |                     |                     |                   |
| 1         | Soraba EW   | 14.370       | 75.0986       | 129.1 &                      | Greywac       | 34,48,55,90,97,                         | 8.34          | 5.95                | 5.93                | 44.8              |
|           |             | 833          | 11            | 35.75                        | ke            | 125                                     |               |                     |                     |                   |
|           | a l out     | 14.270       | 75.0007       | 10 ( 0                       | 0             | 22 21 55 01 00                          | 0.00          | 6.10                | 2.05                | 20                |
| 2         | Soraba OW1  | 14.370       | 75.0986       | 126 &                        | Greywac       | 23,31,55,81,90,                         | 8.09          | 6.18                | 3.85                | 39                |
|           |             | 833          | 11            | 48.30                        | ke            | 93,107,123                              |               |                     |                     |                   |
| 3         | Soraba OW2  | 14.370       | 75.0986       | 145.4 &                      | Greywac       | 37.55.68,119                            | 9             | 4.4                 | 7.82                | 58                |
|           |             | 833          | 11            | 40.5                         | ke            |                                         |               |                     |                     |                   |
| 4         | Samanavalli | 14.544       | 75.0041       | 147.45 &                     | Greywac       | 37,86,89,137,15                         | 5.88          | 2.97                | 16.31               | 16.8              |
|           |             | 444          | 67            | 34.30                        | ke            | 4,185                                   |               |                     |                     |                   |
| 5         | Jade        | 14.577       | 75.0541       | 190.10 &                     | Amphib        | 25,48,52,66,69,                         | 11.9          | 0.977               | -                   |                   |
|           |             | 778          | 67            | 25.72                        | olite         | 70                                      |               |                     |                     |                   |
| 6         | Mugur       | 14.598       | 75.1180       | 77.25                        | Greywac       |                                         |               |                     |                     |                   |
|           | U           | 611          | 56            |                              | ke            |                                         |               |                     |                     |                   |
| 1         |             |              |               |                              |               |                                         |               |                     |                     |                   |

 Table-10a: Details of Ground Water Exploration

# Table.10b.Well inventory data

| Village       | Lattitude |           | Total depth | Casing depth | Fractures depth |
|---------------|-----------|-----------|-------------|--------------|-----------------|
| Erakasavi     | 14.350390 | 75.234592 | 133         | 45           | 66              |
| Dugur         | 14.255680 | 75.102308 | 133         | 50           | 60,100          |
| BadadaBylu    | 14.348466 | 74.975220 | 230         | 30           | 57,60           |
| Tandigere     | 14.370199 | 75.030973 | 100         | 33           | 53              |
| Ankaravalli   | 14.406172 | 74.993592 | 133         | 40           | 37,50,66        |
| Horabile      | 14.476315 | 74.937173 | 175         | 35           | 30,100,120      |
| Kereguppa     | 14.470277 | 75.058023 | 100         | 22           | 40,66           |
| Kuppegadda    | 14.486324 | 75.115450 | 80          | 30           | 35              |
| Annekoppa     | 14.540258 | 75.197956 | 120         | 35           | 106             |
| GudiginaKoppa | 14.455675 | 75.187728 | 133         | 33           | 40,53           |
| Kummuru       | 14.414874 | 75.120790 | 150         | 35           | 60              |
| Nadahalli     | 14.361927 | 75.074976 | 162         | 47           | 66              |
| Magadi        | 14.294019 | 75.025533 | 133         | 16           | 35,50,66        |

| Aquifers                                      | Weathered Zone (AqI)   | Fractured Zone (AqII)  |
|-----------------------------------------------|------------------------|------------------------|
| Prominent Lithology                           | Weathered Schist & BGC | Fractured Schist & BGC |
| Thickness range (mbgl)                        | 16-48                  | Fractures upto185 mbgl |
| Depth range of occurrence of fractures (mbgl) | -                      | 47-185                 |
| Range of yield potential (lps)                | Poor yield             | 0.9 to 6.18            |
| $T (m^2/day)$                                 | -                      | 16.8 to 58             |
| Quality Suitability for Domestic & Irrigation | Suitable               | Suitable               |

Table-11: Basic characteristics of each aquifer

# 3.2. 3-D aquifer disposition and Cross-Sections 3.2.1. Aquifer disposition – Rockworks output

Sub-surface aquifer disposition are prepared based upon the outcome of ground exploration programme. Mainly. Four zones are categorized namely Top soil, Weathered, Fractured and Massive zones. These zones are represented using rockworks to depict the subsurface sections and models and presented in **Fig.-16**, **Fig.-17** and **Fig.18**.

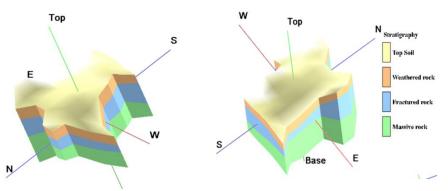



Fig. 16. Sub-surface 3D model view of Soraba taluk

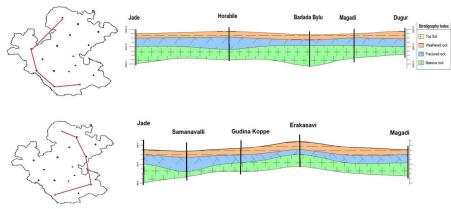
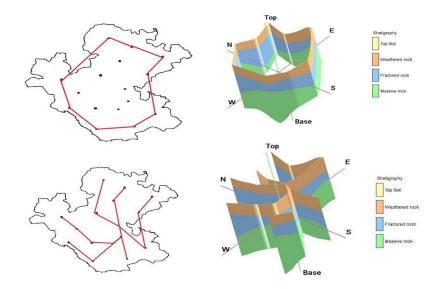




Fig-17: Cross sections in different directions



**Fig-18: Fence in different directions** 

# 4. GROUND WATER RESOURCE, CONTAMINATION AND OTHER ISSUES

# EXTRACTION,

# 4.1. Aquifer wise resource availability and extraction

### Table.12: Present Dynamic Ground Water Resource of Soraba taluk (2022)

| Annual       | Existing    | Existing    | Existing  | Existing   | Allocation  | Net ground   | Existing   | Category |
|--------------|-------------|-------------|-----------|------------|-------------|--------------|------------|----------|
| extractable  | gross       | gross       | gross     | gross      | of Ground   | water        | stage of   |          |
| ground water | ground      | ground      | ground    | ground     | Water       | availability | ground     |          |
| resources    | water draft | water draft | water     | water      | Resource    | for future   | water      |          |
| (ham)        | for         | for         | draft for | extraction | for         | irrigation   | extraction |          |
|              | irrigation  | industrial  | domestic  | for all    | Domestic    | development  | (%)        |          |
|              | (ham)       | water       | water     | uses       | Utilisation | (ham)        |            |          |
|              |             | supply      | supply    | (ham)      | for         |              |            |          |
|              |             | (ham)       | (ham)     |            | projected   |              |            |          |
|              |             |             |           |            | year 2025   |              |            |          |
|              |             |             |           |            | (ham)       |              |            |          |
| 14645.92     | 7423.2      | 0.00        | 470.32    | 7893.52    | 494.98      | 6728.23      | 53.90      | safe     |
|              |             |             |           |            |             |              |            |          |

## Table.13: Comparison of ground water availability and draft scenario in Soraba taluk

| Taluk  | GW        | GW       | Stage  | GW        | GW    | Stage of | GW       | GW       | Stage of |
|--------|-----------|----------|--------|-----------|-------|----------|----------|----------|----------|
|        | availabil | draft    | of     | availabil | draft | GW       | availabi | draft    | GW       |
|        | ity (in   | (in ham) | GW     | ity (in   | (in   | develop  | lity (in | (in ham) | develop  |
|        | ham)      |          | develo | ham)      | ham)  | ment (%) | ham)     |          | ment     |
|        |           |          | pment  |           |       |          |          |          | (%)      |
|        |           |          | (%)    |           |       |          |          |          |          |
|        |           | 2017     |        |           | 2020  |          |          | 2022     |          |
| Soraba | 9637      | 6404     | 66.44  | 13391     | 7290  | 54.44    | 14646    | 7893     | 53.90    |
|        |           |          |        |           |       |          |          |          |          |

It is seen that the stage of ground water extraction is improved in the taluk in comparison with 2017. However, with respect to 2017 estimations, there is an decrease of 10% in the stage of ground water development i.e.,66 to 54% though the taluk is categorized as "**Safe**".

# 4.2. Chemical quality of ground water and contamination

Interpretation from Chemical Analysis results in Sorabtalik is mentioned as under and the data is shown in Table.14.

- ELECTRICAL CONDUCTIVITY: In general, EC values range from 110 to 1230 μ/mhos/cm in the aquifer-I at 25°C (Fig.19).and range from 190 to 630 μ/mhos/cm in the aquifer-II (Fig.20).
- **CHLORIDE:** Chloride concentration in ground water ranges between 11 and 118 mg/l in the aquifer-I (Fig.21).and ranges between 11 and 124 mg/l in the aquifer-II (Fig.22).
- **NITRATE:** Nitrate concentration in ground water ranges from 2 and 23 mg/l in the Aquifer–I (Fig.23).and ranges from 0 and 13 mg/l in the Aquifer –II(Fig.24).
- **FLUORIDE:** Fluoride concentration in ground water ranges between 0.07 and 0.62 mg/l in the aquifer-I and ranges between 0.02 and 0.12 mg/l in the aquifer-II (Fig.25).

| S.        | Location         | EC     | Cl     | NO3    | F (mg/L) |  |
|-----------|------------------|--------|--------|--------|----------|--|
| No.       |                  | (mg/L) | (mg/L) | (mg/L) |          |  |
| Aquifer-I |                  |        |        |        |          |  |
| 1.        | Anavatti         | 1230   | 188    | 7      | 0.62     |  |
| 2.        | Ankaravalli      | 190    | 14     | 6      | 0.19     |  |
| 3.        | Chandraguti      | 360    | 57     | 20     | 0.18     |  |
| 4.        | Hosabale         | 200    | 32     | 10     | 0.08     |  |
| 5.        | Jaddihalli       | 380    | 35     | 23     | 0.45     |  |
| 6.        | MadsurLingadalli | 110    | 11     | 2      | 0.07     |  |
| 7.        | Sorab            | 250    | 21     | 13     | 0.26     |  |
| Aqui      | fer-II           |        |        |        |          |  |
| 8.        | Ankaravalli      | 250    | 11     | 1      | 0.02     |  |
| 9.        | BadadaBylu       | 190    | 11     | 0      | 0.03     |  |
| 10.       | Erakasavi        | 460    | 71     | 13     | 0.12     |  |
| 11.       | GudiginaKoppa    | 630    | 124    | 11     | 0.03     |  |

Table-14: Quality of ground water in Soraba taluk of Shimoga district.

| 12. | Horabile   | 200 | 18 | 5  | 0.10 |
|-----|------------|-----|----|----|------|
| 13. | Kereguppa  | 490 | 50 | 13 | 0.07 |
| 14. | Kummuru    | 500 | 64 | 9  | 0.15 |
| 15. | Kuppegadda | 350 | 50 | 13 | 0.02 |
| 16. | Nadahalli  | 320 | 14 | 1  | 0.03 |
| 17. | Tandigere  | 260 | 21 | 1  | 0.02 |

In general, ground water quality in Soraba taluk is good for drinking purpose as per "Indian Standard Drinking Water Specification 2012". Ground water samples have also been tested and found suitable for agriculture & irrigation purposes in entire part of the taluk, where EC is less than 750 µ/mhos/cm.

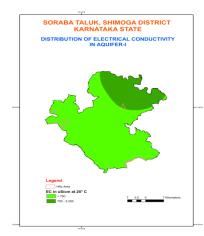



Fig.19. Distribution of EC in Aq-I

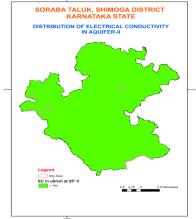





Fig.20. Distribution of EC in Aq-II

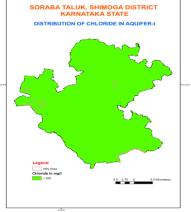



Fig.21. Distribution of Cl in Aq-I

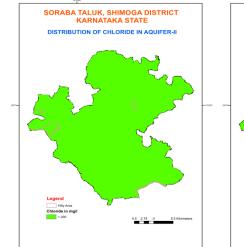



Fig.22. Distribution of Cl in Aq-II

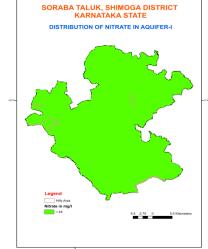



Fig.23. Distribution of NO<sub>3</sub> in Aq-I

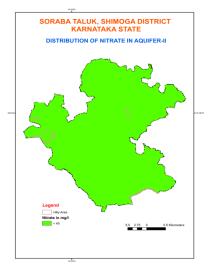



Fig.24. Distribution of NO3 in Aq-II

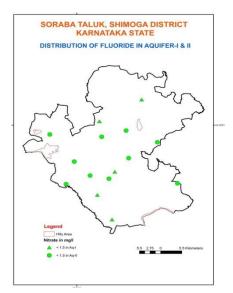



Fig.25. Distribution of F inAq-I &II.

# 5. GROUND WATER MANAGEMENT PLAN

#### 5.1. Resource Enhancement by Supply Side Interventions

Recharge to dry **phreatic aquifer zone** (**Aq-I**) through construction of artificial recharge structures, viz; check dams, percolation tanks & Sub surface dyke (**Table-15**) is recommended. The choice of recharge structures should be site specific and such structures need to be constructed in areas already identified as feasible for artificial recharge.

In Soraba taluk,1104 sq.km area is feasible for recharge and the surface surplus non-committed runoff availability is 149.784 MCM, which is considered for planning of AR structures. For this, a total of 4 sub-surface dykes, 135 percolation tanks, 32 filterbedsand 794 Check dams are proposed. The volume of water expected to be conserved/recharged @75% efficiency is 112.338 MCM through these AR structures. The approximate cost estimate for construction of these AR structures is Rs. 107.62 Cr. The additional area which can be brought under assured ground water irrigation will be about 13500 hectares. However, the figures given are tentative locations (annexure 1A & B) and pre-field studies / DPR are recommended prior to implementation of these recharge structures (Fig.26).

| Artificial Recharge Structures Proposed              | Soraba taluk |
|------------------------------------------------------|--------------|
| Area feasible for artificial recharge (sq.km)        | 1104         |
| Non committed monsoon runoff available (MCM)         | 149.784      |
| Total no. of existing artificial recharge structures | 9            |
| Number of Check Dams proposed                        | 794          |
| Number of Percolation Tanks proposed                 | 135          |

Table-15: Quantity of non-committed surface runoff & expected recharge through AR structures

| Number of Filter beds proposed                  | 32      |
|-------------------------------------------------|---------|
| Number of Sub surface dyke proposed             | 4       |
| Tentative total cost of the project (Rs. in Cr) | 107.62  |
| Excepted recharge (MCM)                         | 26.53   |
| Additional irrigation potential (Hectares)      | 112.338 |

Note: The numbers proposed are tentative and detailed feasibility studies are required in field to finalize the actual locations for the construction of AR structures.

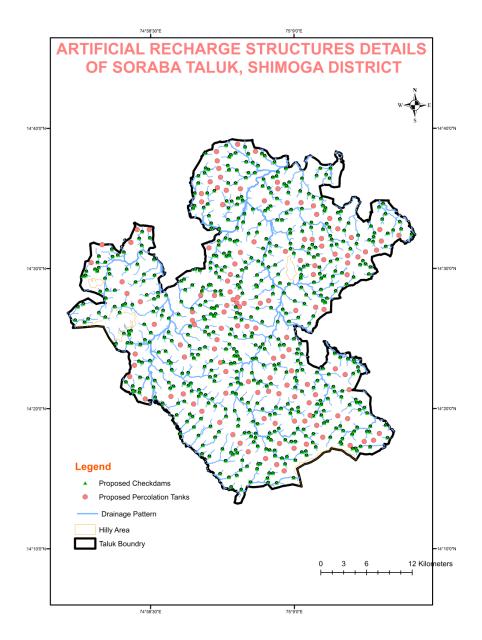



Fig.26. Details of tentative Artificial Recharge Structures in Soraba taluk.

#### 5.2. Resource Savings by Demand Side Interventions

#### 5.2.1. Water Use Efficiency by Micro Irrigation Practices

It is observed that bore wells contribute 35% of the source for irrigation in Soraba Taluk. The water efficient methodology may be applied for growing Maize which is grown in 17929 ha and is ground water dependent as compared to the other crops which are mainly grown during kharif. Initially, the micro irrigation techniques (drip) are proposed in 25% of Maizecultivated area of 17929 ha i.e., 4481 ha. Considering the crop water requirement of 0.50 m and savings of 25% i.e., 0.125 m by drip irrigation, it will contribute in saving ground water by 1616 ham and thus will improve stage of development marginally. However, in long run the practice of Efficient irrigation techniques will add to the ground water resource in large extent. (**Table-16**).

Table 16: Improvement in GW availability (2022) due to savings by adopting water use efficiency

| Annual      | Total     | Stage of   | Maize   | Unit    | Total   | Cumulativ   | Expected          | Expected       |
|-------------|-----------|------------|---------|---------|---------|-------------|-------------------|----------------|
| Extractable | GW        | ground     | Area    | savings | Saving  | e annual    | improvement in    | improvement    |
| GW          | extractio | water      | propose | _       | due to  | Extractable | stage of ground   | in overall     |
| Resource    | n for all | extraction | d for   |         | adoptin | GW          | water extraction  | stage of       |
| (Ham)       | uses      |            | WUE     |         | g ŴUE   | Resource    | after the         | ground water   |
|             |           |            |         |         | measur  |             | implementation of | extraction     |
|             |           |            |         |         | es      |             | the project       |                |
| HAM         | HAM       | %          | HA      | М       | HAM     | HAM         | %                 | %              |
| 14645.90    | 7893.53   | 53.89      | 4482    | 0.125   | 1616    | 16262       | 5.35              | 53.89 to 48.53 |

#### 5.2.2. Change in cropping pattern

Water intensive crop like paddy are grown in 46% of total cropped area. At present, the stage of ground water extraction is lower side @ 53.84% (2022), thus change in cropping pattern has not been suggested.

### 5.3. Ground Water Development Plan

In Soraba Taluk, the present stage of ground water extraction (2022) is merely 53.89 %, say 54% with net ground water availability for future use of 6728.23ham and total extraction of 7893.53ham. The ground water draft for irrigation purpose is estimated to be 7423.26ham and there is further scope for developing the resource for irrigation as a part of development with appropriate scientific backing. The implementation of the plan should be based on site specific detailed hydrogeological and scientific surveys for pinpointing the sites for construction additional abstraction structures.

As per tentative estimates, 168dug wells and 1356bore wells are recommended to be constructed in feasible areas which is likely to create about 990hectares of additional irrigation potential (Table-17).

| Table - 17: Feasibility of Additional GW abstraction structures based on GWRA 2022 availabilit |
|------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------|

| Annual Extractable GW Resource (Ham)                        | 16262 |
|-------------------------------------------------------------|-------|
| Net GW Availability for future use (Ham)                    | 6728  |
| Stage of GW Extraction (%)                                  | 53.89 |
| GW Resources available to increase SOE to 60% (Ham)         | 9757  |
| Total Extraction / Draft (Ham)                              | 7893  |
| Balance GWR available to enhance SOE 60% (Ham)              | 1864  |
| DW unit draft (Ham)                                         | 1.00  |
| BW unit draft (Ham)                                         | 1.25  |
| No. of DW feasible considering 9% of balance GWR with unit  | 168   |
| draft of 1 ham                                              |       |
| No. of BWs feasible considering 91% of balance GWR with     | 1356  |
| unit draft of 1.25 ham                                      |       |
| Additional irrigation potential created by DW's considering | 109   |
| crop water requirement of 0.65 m (Ha)                       |       |
| Additional irrigation potential created by BW's considering | 881   |
| crop water requirement of 0.65 m (Ha)                       |       |
| Total irrigation potential created by DW's and BW's (Ha)    | 990   |

Note- Hydrogeological and scientific intervention is needed for pinpointing the sites for construction of dugwells and Borewells

# 5.4. Regulation and Control

Soraba Taluk has been categorized as **"Safe"**. However, the mandatory guidelines like rainwater harvesting and artificial recharge issued by Karnataka Ground Water Authority(KGWA) needs to be strictly implemented to avoid the taluk from safe category to semi critical or higher category in the future.

# 5.5. Other interventions proposed

- **Periodical maintenance of artificial recharge structures** should also be incorporated in the Recharge Plan.
- Excess nitrate concentration is found in ground water samples require remedial measures viz.
  - Dilution of nitrate rich ground water through artificial recharge & water conservation.
  - Roof top rain water harvesting.
  - Improving quality by proper drainage and limited usage of Nitrogenous fertilizers
- Excess fluoride concentration is found in ground water samples of deeper aquifer require remedial measures viz.
  - o Alternate source
  - Removal technology

# 6. SUMMARY AND RECOMMENDATIONS

The main ground water issues are Low Ground Water Development, Limited Ground Water Potential / Limited Aquifer Thickness / Sustainability, Deeper Water Levels particularly in Aquifer-II in some parts, hilly and plateau areas which are all inter-related or inter dependent and Inferior Ground Water Quality due to fluoride contamination especially in deeper aquifer. The summary of ground water management plan of Soraba Taluk is given in **Table-18**.

| Present stage of Ground water H                                      | Extraction and Category as per GEC-2022(%)                                                                 | 53.89%, Safe   |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------|
| Annual Extractable Ground Wa                                         | ter Resources (ham)                                                                                        | 14645          |
| Existing Gross Ground Water E                                        | 7893                                                                                                       |                |
| <b>Ground Water Resource Enha</b>                                    | ancement by Supply side Interventions                                                                      |                |
| Area Feasible for Artificial Re                                      | charge (ha)                                                                                                | 110400         |
| Expected additional recharge from                                    | om monsoon surplus runoff (ham)                                                                            | 149784         |
| Additional irrigation potential (                                    | Hectares)                                                                                                  | 13500          |
|                                                                      | ngs by Demand side Interventions                                                                           |                |
| Maize Area proposed for WUE                                          | (ha)                                                                                                       | 17929          |
| Expected Saving due to adoptin                                       | g WUE measures (ham)                                                                                       | 1616           |
| Expected improvement in stage measures and implementation o          | of ground water extraction after adopting WUE<br>f the project (%)                                         | 53.89 to 48.53 |
| Government to take initiatives<br>use efficiency irrigations practic | -                                                                                                          |                |
| <b>Ground Water Resource Deve</b>                                    | elopment Plan                                                                                              |                |
| Balance GWR available to enha                                        | 1864                                                                                                       |                |
| No. of DW feasible considering                                       | 168                                                                                                        |                |
| No. of BWs feasible considering ham                                  | 1356                                                                                                       |                |
| Additional irrigation potential c<br>requirement of 0.65 m (Ha)      | reated by DW's considering crop water                                                                      | 109            |
|                                                                      | reated by BW's considering crop water                                                                      | 881            |
| Total irrigation potential created                                   | d by DW's and BW's (Ha)                                                                                    | 990            |
| Excess Nitrate concentration                                         | cial recharge &<br>nous fertilizers in<br>stic drainage                                                    |                |
| Excess Fluoride concentration                                        | network system<br>In limited places especially in deeper aquifer<br>Alternate source<br>Removal technology |                |

#### Table 18: Summary of Management plan of Soraba Taluk

As per the resource estimation – 2022, Soraba taluk falls under Safe category with the stage of ground water extraction is 53.89 %. However, there is need to formulate management strategy to tackle the water scarcity related issues in the taluk in the coming days to avoid water crisis in the future. It is suggested to adopt a scientific and multi-pronged ground water management strategy covering supply side interventions, demand side interventions, ground water development

interventions and ground water quality protection aspects as mentioned in the management plan suggested above

**Ground water resource enhancement by supply side interventions**: In Soraba taluk,1104 sq.km area is feasible for recharge and the surface surplus non-committed runoff availability is 149.784 MCM, which is considered for planning of AR structures. For this, a total of 4 sub-surface dykes, 135 percolation tanks, 32 filterbedsand 794 Check dams are proposed. The volume of water expected to be conserved/recharged @75% efficiency is 112.338 MCM through these AR structures. The approximate cost estimate for construction of these AR structures is Rs. 107.62 Cr. The additional area which can be brought under assured ground water irrigation will be about 13500 hectares. However, the figures given are tentative and pre-field studies / DPR are recommended prior to implementation of these recharge structures

**Ground water resource enhancement by demand side interventions**: It is observed that bore wells contribute 35% of the source for irrigation in Soraba Taluk. The water efficient methodology may be applied for growing Maize which is grown in 17929 ha and is ground water dependent as compared to the other crops which are mainly grown during kharif. Initially, the micro irrigation techniques (drip) are proposed in 25% of Maize cultivated area of 17929 ha i.e., 4481 ha. Considering the crop water requirement of 0.50 m and savings of 25% i.e., 0.125 m by drip irrigation, it will contribute in saving ground water by 1616 ham and thus will improve stage of development marginally. However, in long run the practice of Efficient irrigation techniques will add to the ground water resource in large extent.

**Change in cropping pattern**: Water intensive crop like paddy are grown in 46% of total cropped area. At present, the stage of ground water extraction is lower side @ 53.84% (2022), **thus change in cropping pattern has not been suggested.** 

**Ground Water Resource Development Plan:** In Soraba Taluk, the present stage of ground water extraction (2022) is merely 53.89 %, say 54% with net ground water availability for future use of 6728.23ham and total extraction of 7893.53ham. The ground water draft for irrigation purpose is estimated to be 7423.26ham and there is further scope for developing the resource for irrigation as a part of development with appropriate scientific backing. The implementation of the plan should be based on site specific detailed hydrogeological and scientific surveys for pinpointing the sites for construction additional abstraction structures. As per tentative estimates, 168dug wells and 1356bore wells are recommended to be constructed in feasible areas which is likely to create about 990hectares of additional irrigation potential.

**Nitrate Contamination**: Proper drainage of sewage and scientific disposal of sewage water by the concerned urban/rural agency needs to be adopted along with limited usage of Nitrogenous fertilizers by farmers to avoid nitrate contamination. All the ground water sources for drinking water supply may be checked for ground water quality parameters as per BIS norms.

**WUE in Domestic Sector:** WUE practices are the prime management option in domestic sector as well in view of having high density clusters of urban households and establishments. In premium apartments and infrastructure projects, use of three-way line for fresh water, bathroom water and toilet water will enable reuse of grey water for gardening, car washing and flushes etc. The water saver fixtures/ aerators can be used for kitchen & bathroom pipes, bath showers and water free urinals.

**Regulation and Control**: Taluk is categorised as "Safe". However, the mandatory guidelines like rainwater harvesting and artificial recharge issued by Karnataka Ground Water Authority needs to be strictly implemented to avoid the taluk from deteriorating from safe category to semi critical category in the future.

Water Linkages with other Activities: Water sector has strong linkages with other developmental activities. Hence, the proposed management plans cannot be considered as static and needs to be reviewed and improved from time to time.

#### Annexure 1:

| S.No | Longitude  | Lattitude  | Village             |
|------|------------|------------|---------------------|
| 1    | 75.0855556 | 14.2372222 | Holekoppa           |
| 2    | 75.0730556 | 14.2402778 | Holekoppa           |
| 3    | 75.1285230 | 14.2450000 | Mysavi              |
| 4    | 75.1182468 | 14.2455136 | Kaisodi             |
| 5    | 75.0966667 | 14.2458333 | Bhadrapura          |
| 6    | 75.1173885 | 14.2507219 | Kaisodi             |
| 7    | 75.1491667 | 14.2511111 | Mysavi              |
| 8    | 75.0704433 | 14.2517452 | Devanagudikoppa     |
| 9    | 75.0800000 | 14.2538889 | Baragi              |
| 10   | 75.0596599 | 14.2559681 | Halasinakoppa       |
| 11   | 75.1239849 | 14.2565939 | Kaisodi             |
| 12   | 75.1194444 | 14.2566667 | Kaisodi             |
| 13   | 75.0847222 | 14.2602778 | Baragi              |
| 14   | 75.1047222 | 14.2616667 | Doguru              |
| 15   | 75.0925000 | 14.2647222 | Horanylu            |
| 16   | 75.1061111 | 14.2675000 | Doguru              |
| 17   | 75.1388889 | 14.2675000 | Kanahalli           |
| 18   | 75.1083333 | 14.2677778 | Doguru              |
| 19   | 75.0663889 | 14.2713889 | Kerekoppa           |
| 20   | 75.0866667 | 14.2719444 | Brahmana Dodderi    |
| 21   | 75.1513889 | 14.2719444 | Kanahalli           |
| 22   | 75.1350000 | 14.2744444 | Kanahalli           |
| 23   | 75.1411111 | 14.2761111 | Kanahalli           |
| 24   | 75.0465811 | 14.2767057 | Kyasanuru           |
| 25   | 75.1263889 | 14.2772222 | Ulavi               |
| 26   | 75.1650000 | 14.2777778 | Kannuru             |
| 27   | 75.0752778 | 14.2788889 | Kerekoppa           |
| 28   | 75.0377778 | 14.2797222 | Veeranapura         |
| 29   | 75.0805556 | 14.2805556 | Dalavayihosakoppa   |
| 30   | 75.0730556 | 14.2811111 | Kerekoppa           |
| 31   | 75.1591667 | 14.2816667 | Kannuru             |
| 32   | 75.1641667 | 14.2827778 | Kannuru             |
| 33   | 75.2263889 | 14.2832440 | Shyandlakoppa       |
| 34   | 75.1260880 | 14.2837057 | Karjikoppa          |
| 35   | 75.0786111 | 14.2841667 | Chiranthe Hosakoppa |
| 36   | 75.1200000 | 14.2841667 | Ulavi               |
| 37   | 75.1158333 | 14.2852778 | Ulavi               |
| 38   | 75.0625245 | 14.2854248 | Kyasanuru           |
| 39   | 75.2211111 | 14.2858333 | Shyandlakoppa       |
| 40   | 75.2247222 | 14.2861111 | Shyandlakoppa       |

# A) Tentative Locations of Proposed Check Dams, Shikaripura taluk

| 41 | 75.1762367 | 14.2877129 | Hunavalli          |
|----|------------|------------|--------------------|
| 42 | 75.2425000 | 14.2877778 | Indihalli          |
| 43 | 75.2308333 | 14.2883333 | Shyandlakoppa      |
| 44 | 75.1055556 | 14.2886111 | Hodabatte          |
| 45 | 75.0385982 | 14.2897093 | Ramagondanakoppa   |
| 46 | 75.2075000 | 14.2913889 | Hesarikoppa        |
| 47 | 75.1725000 | 14.2930556 | Hunavalli          |
| 48 | 75.2063889 | 14.2933333 | Hesarikoppa        |
| 49 | 75.1005556 | 14.2936111 | Malalagadde        |
| 50 | 75.1463889 | 14.2941667 | Karjikoppa         |
| 51 | 75.1513889 | 14.2941667 | Karjikoppa         |
| 52 | 75.1216667 | 14.2961111 | Kolisalu           |
| 53 | 75.1391404 | 14.2961532 | Karjikoppa         |
| 54 | 75.2086111 | 14.2975000 | Hesarikoppa        |
| 55 | 75.1186135 | 14.2984724 | Kolisalu           |
| 56 | 75.2636111 | 14.2986111 | Indihalli          |
| 57 | 75.1027778 | 14.2987308 | Malalagadde        |
| 58 | 75.1938889 | 14.2991667 | Brahmana Induvalli |
| 59 | 75.0535467 | 14.2993800 | Moodagodu          |
| 60 | 75.0975000 | 14.3002778 | Malalagadde        |
| 61 | 75.1641667 | 14.3008333 | Brahmana Holekatte |
| 62 | 75.0333333 | 14.3013889 | Magadi             |
| 63 | 75.2205556 | 14.3027778 | Hesari             |
| 64 | 75.1733333 | 14.3033333 | Nadavada Holekatte |
| 65 | 75.1030556 | 14.3038889 | Malalagadde        |
| 66 | 75.1497222 | 14.3038889 | Brahmana Sagaddhe  |
| 67 | 75.0110699 | 14.3040089 | Nadavada Dodderi   |
| 68 | 75.1200044 | 14.3041579 | Kolisalu           |
| 69 | 75.0894444 | 14.3044444 | Banadakoppa        |
| 70 | 75.0948253 | 14.3048848 | Malalagadde        |
| 71 | 75.0583333 | 14.3058333 | Hirle              |
| 72 | 75.2416667 | 14.3058333 | Karekoppa          |
| 73 | 75.1261111 | 14.3061111 | Kolisalu           |
| 74 | 75.2386111 | 14.3061111 | Karekoppa          |
| 75 | 75.2230556 | 14.3063889 | Hesari             |
| 76 | 75.2096151 | 14.3070573 | Hesari             |
| 77 | 75.1613889 | 14.3086111 | Talabylu           |
| 78 | 75.1541667 | 14.3096281 | Kattinakere        |
| 79 | 75.1311111 | 14.3097222 | Pura               |
| 80 | 75.2011111 | 14.3100000 | Hinduvalli         |
| 81 | 75.2266667 | 14.3111111 | Karekoppa          |
| 82 | 75.0277778 | 14.3113889 | Nadavada Dodderi   |
| 83 | 75.0480556 | 14.3122222 | Hosabale           |
| 84 | 75.2427279 | 14.3123163 | Chitturu           |
| 85 | 75.2061111 | 14.3126869 | Hinduvalli         |

| 86  | 75.0816667 | 14.3127778 | Nisarani            |
|-----|------------|------------|---------------------|
| 87  | 75.2613889 | 14.3136111 | Chitturu            |
| 88  | 75.1052778 | 14.3152778 | Avalagodu           |
| 89  | 75.1862161 | 14.3162161 | Shigga              |
| 90  | 75.0194444 | 14.3180556 | Muttigoppa          |
| 91  | 75.0999427 | 14.3180556 | Shiravanthe         |
| 92  | 75.1902778 | 14.3183333 | Shigga              |
| 93  | 75.0822222 | 14.3205556 | Nisarani            |
| 94  | 75.0363889 | 14.3213889 | Balagodu            |
| 95  | 75.0261111 | 14.3238889 | Muttigoppa          |
| 96  | 75.0669444 | 14.3241667 | Melina Kirugunasi   |
| 97  | 75.1733333 | 14.3247222 | Shigga              |
| 98  | 75.1830609 | 14.3255491 | Shigga              |
| 99  | 75.0067210 | 14.3258245 | Aralige             |
| 100 | 75.1205556 | 14.3261111 | Kondagalale         |
| 101 | 75.0227778 | 14.3266667 | Muttigoppa          |
| 102 | 75.1263889 | 14.3272222 | Kondagalale         |
| 103 | 75.1452778 | 14.3277778 | Ammagondanakoppa    |
| 104 | 75.2388889 | 14.3280556 | Hirekasavi          |
| 105 | 75.1766667 | 14.3288889 | Shigga              |
| 106 | 75.1552778 | 14.3294444 | Kulavalli           |
| 107 | 75.0775000 | 14.3308333 | Chilanuru           |
| 108 | 75.1861111 | 14.3308333 | Kundagasavi         |
| 109 | 75.0958333 | 14.3316667 | Кирре               |
| 110 | 75.2297222 | 14.3319444 | Kavadi              |
| 111 | 75.1472222 | 14.3325000 | Kumbatthi           |
| 112 | 75.0663889 | 14.3327778 | Kelagina Kirugunasi |
| 113 | 75.1113889 | 14.3327778 | Byrakoppa           |
| 114 | 75.1338889 | 14.3336111 | Chimanuru           |
| 115 | 75.1547222 | 14.3344444 | Kulavalli           |
| 116 | 75.2355556 | 14.3344444 | Hirekasavi          |
| 117 | 75.1277778 | 14.3350000 | Heggodu             |
| 118 | 75.0537560 | 14.3363397 | Kasaraguppa         |
| 119 | 75.2175000 | 14.3377778 | Chikkasavi          |
| 120 | 75.1830556 | 14.3383333 | Kasavadikoppa       |
| 121 | 75.1780556 | 14.3386111 | Kasavadikoppa       |
| 122 | 75.1422222 | 14.3388889 | Chimanuru           |
| 123 | 74.9897222 | 14.3397222 | Abasi               |
| 124 | 75.1050000 | 14.3397222 | Halagalale          |
| 125 | 75.0086160 | 14.3397247 | Abasi               |
| 126 | 75.0455556 | 14.3400000 | Kasaraguppa         |
| 127 | 75.0938066 | 14.3404733 | Kappagalale         |
| 128 | 75.2263889 | 14.3405556 | Chikkasavi          |
| 129 | 75.2305556 | 14.3408333 | Hirekasavi          |
| 130 | 75.0161111 | 14.3419444 | Abasi               |

| 131 | 75.1819444 | 14.3427778 | Kasavadikoppa    |
|-----|------------|------------|------------------|
| 132 | 75.2250000 | 14.3441667 | Chikkasavi       |
| 133 | 75.0861111 | 14.3447222 | Kappagalale      |
| 134 | 75.0502778 | 14.3450000 | Kasaraguppa      |
| 135 | 75.1911111 | 14.3452778 | Manemane         |
| 136 | 74.9805556 | 14.3469444 | Abasi            |
| 137 | 75.2075000 | 14.3472222 | Jiralekoppa      |
| 138 | 75.0336111 | 14.3480556 | Goggehalli       |
| 139 | 75.0419444 | 14.3497222 | Dyavagodu        |
| 140 | 75.0791667 | 14.3508333 | Nadahalli        |
| 141 | 75.0363889 | 14.3513889 | Dyavagodu        |
| 142 | 74.9613889 | 14.3525000 | Andavalli        |
| 143 | 75.0750000 | 14.3525000 | Nadahalli        |
| 144 | 75.1991667 | 14.3536111 | Arekoppa         |
| 145 | 74.9555556 | 14.3538889 | Andavalli        |
| 146 | 75.1595491 | 14.3538913 | Hiruru           |
| 147 | 75.2086111 | 14.3541667 | Arekoppa         |
| 148 | 75.0250535 | 14.3542202 | Abasi            |
| 149 | 74.9534419 | 14.3550415 | Andavalli        |
| 150 | 75.0338889 | 14.3558333 | Kakkarasi        |
| 151 | 74.9620403 | 14.3568918 | Andavalli        |
| 152 | 74.9988889 | 14.3576193 | Kadasuru         |
| 153 | 75.1736111 | 14.3581944 | Tavarekoppa      |
| 154 | 75.1511111 | 14.3586111 | Shanthigeri      |
| 155 | 74.9786111 | 14.3588889 | Kadasuru         |
| 156 | 75.1977778 | 14.3594444 | Arekoppa         |
| 157 | 75.0027778 | 14.3600000 | Kadasuru         |
| 158 | 75.1166667 | 14.3600000 | Halagalale       |
| 159 | 74.9533333 | 14.3602778 | Andavalli        |
| 160 | 75.0211111 | 14.3608333 | Hejje            |
| 161 | 75.1886111 | 14.3608333 | Yalavalli        |
| 162 | 75.0727497 | 14.3620895 | Nadahalli        |
| 163 | 75.0852778 | 14.3625000 | Maruru           |
| 164 | 75.1216667 | 14.3630556 | Kunaji           |
| 165 | 75.0158333 | 14.3633333 | Hejje            |
| 166 | 75.0241667 | 14.3636111 | Thandige         |
| 167 | 75.1058333 | 14.3636111 | Halagalale       |
| 168 | 74.9972222 | 14.3644444 | Kadasuru         |
| 169 | 75.0813889 | 14.3644444 | Nadahalli        |
| 170 | 74.9450000 | 14.3650000 | Andavalli        |
| 171 | 75.1090278 | 14.3659722 | Kunaji           |
| 172 | 75.0527778 | 14.3661111 | Gundashettykoppa |
| 173 | 75.1530556 | 14.3663889 | Shanthigeri      |
| 174 | 75.1783333 | 14.3666667 | Mavale           |
| 175 | 74.9801399 | 14.3668045 | Нејје            |

| 176 | 75.1008333 | 14.3670833 | Hireshakuna      |
|-----|------------|------------|------------------|
| 177 | 75.0802778 | 14.3694444 | Nadahalli        |
| 178 | 74.9713889 | 14.3697222 | Andavalli        |
| 179 | 75.1511111 | 14.3700000 | Shanthigeri      |
| 180 | 74.9622222 | 14.3705556 | Andavalli        |
| 181 | 75.0475000 | 14.3711111 | Yalashi          |
| 182 | 75.0538889 | 14.3722222 | Gundashettykoppa |
| 183 | 75.1922222 | 14.3741667 | Bedhavatti       |
| 184 | 75.2219444 | 14.3750000 | Kolagunasi       |
| 185 | 75.0136111 | 14.3752778 | Thandige         |
| 186 | 75.0984722 | 14.3759722 | Hireshakuna      |
| 187 | 75.0208333 | 14.3761111 | Thandige         |
| 188 | 75.1777778 | 14.3763889 | Chennapura       |
| 189 | 75.1405556 | 14.3766667 | Kodakani         |
| 190 | 75.0800000 | 14.3775000 | Halesoraba       |
| 191 | 75.2286111 | 14.3777778 | Chatradahalli    |
| 192 | 75.1536111 | 14.3783333 | Andige           |
| 193 | 74.9877778 | 14.3786111 | Нејје            |
| 194 | 75.0491667 | 14.3788889 | Yalashi          |
| 195 | 75.1600000 | 14.3794444 | Andige           |
| 196 | 75.0008333 | 14.3797222 | Нејје            |
| 197 | 75.0861111 | 14.3797222 | Thirumalapura    |
| 198 | 75.1272222 | 14.3802778 | Kodakani         |
| 199 | 75.1850000 | 14.3811111 | Bedhavatti       |
| 200 | 75.2277778 | 14.3826737 | Chatradahalli    |
| 201 | 75.0408333 | 14.3833333 | Yalashi          |
| 202 | 75.1127778 | 14.3850000 | Kanukoppa        |
| 203 | 75.1258333 | 14.3850000 | Kodakani         |
| 204 | 75.1311111 | 14.3863889 | Kodakani         |
| 205 | 75.0727778 | 14.3869444 | Halesoraba       |
| 206 | 75.1580556 | 14.3869444 | Uruganahalli     |
| 207 | 74.9997222 | 14.3877778 | Нејје            |
| 208 | 75.0772222 | 14.3877778 | Halesoraba       |
| 209 | 74.9644444 | 14.3883333 | Holemaruru       |
| 210 | 75.2235997 | 14.3883333 | Sutthakote       |
| 211 | 75.0636111 | 14.3888889 | Kardigere        |
| 212 | 74.9608333 | 14.3897222 | Holemaruru       |
| 213 | 74.9972222 | 14.3900000 | Нејје            |
| 214 | 75.0488889 | 14.3902778 | Tavarehalli      |
| 215 | 75.1543353 | 14.3903530 | Uruganahalli     |
| 216 | 74.9741667 | 14.3905556 | Holemaruru       |
| 217 | 75.2227778 | 14.3911111 | Sutthakote       |
| 218 | 75.0839554 | 14.3921930 | Halesoraba       |
| 219 | 75.2155556 | 14.3925000 | Bilavani         |
| 220 | 75.0991667 | 14.3927778 | Chikkashakuna    |

| 221 | 75.1036111 | 14.3930556 | Chikkashakuna  |
|-----|------------|------------|----------------|
| 222 | 75.0277778 | 14.3933333 | Jambehalli     |
| 223 | 75.2061111 | 14.3943547 | Bilavani       |
| 224 | 75.0813889 | 14.3958333 | Halesoraba     |
| 225 | 75.0770833 | 14.3961111 | Halesoraba     |
| 226 | 75.0327778 | 14.3975000 | Jambehalli     |
| 227 | 75.0255556 | 14.3977778 | Jambehalli     |
| 228 | 75.1591667 | 14.3983333 | Uruganahalli   |
| 229 | 75.1533333 | 14.3988889 | Uruganahalli   |
| 230 | 75.1994444 | 14.3991667 | Kumashi        |
| 231 | 74.9850000 | 14.4005556 | Antharavalli   |
| 232 | 75.0800000 | 14.4008333 | Halesoraba     |
| 233 | 74.9933333 | 14.4016667 | Antharavalli   |
| 234 | 75.1544444 | 14.4038889 | Hireyavali     |
| 235 | 75.0669444 | 14.4041667 | Narashipura    |
| 236 | 75.1140992 | 14.4043520 | Bilagi         |
| 237 | 75.0350000 | 14.4044444 | Jambehalli     |
| 238 | 75.0766667 | 14.4044444 | Halesoraba     |
| 239 | 75.1086111 | 14.4063889 | Bilagi         |
| 240 | 75.0413889 | 14.4066667 | Jambehalli     |
| 241 | 75.0225000 | 14.4080556 | Kanthanahalli  |
| 242 | 75.1030556 | 14.4088889 | Oturu          |
| 243 | 75.1325000 | 14.4088889 | Uppahalli      |
| 244 | 74.9625000 | 14.4094444 | Kathavayi      |
| 245 | 75.1375000 | 14.4094444 | Uppahalli      |
| 246 | 75.0711030 | 14.4098420 | Kuderegalali   |
| 247 | 75.1116667 | 14.4100000 | Bilagi         |
| 248 | 75.1572222 | 14.4105556 | Devathikoppa   |
| 249 | 74.9327778 | 14.4108333 | Basthikoppa    |
| 250 | 74.9516667 | 14.4113889 | Kathavayi      |
| 251 | 74.9469443 | 14.4115740 | Kathavayi      |
| 252 | 74.9738889 | 14.4122222 | Chandragutthi  |
| 253 | 75.0008333 | 14.4141667 | Gunjanuru      |
| 254 | 74.9680556 | 14.4152778 | Chandragutthi  |
| 255 | 75.1308333 | 14.4158333 | Kummaru        |
| 256 | 75.1497222 | 14.4163889 | Hireyavali     |
| 257 | 74.9919444 | 14.4180556 | Gunjanuru      |
| 258 | 75.1209907 | 14.4184907 | Kummaru        |
| 259 | 75.0980142 | 14.4188476 | Oturu          |
| 260 | 75.0788889 | 14.4188889 | Chitrattihalli |
| 261 | 75.0897222 | 14.4200000 | Chitrattihalli |
| 262 | 74.9488889 | 14.4213889 | Chandragutthi  |
| 263 | 75.0205556 | 14.4213889 | Kanthanahalli  |
| 264 | 75.0461111 | 14.4213889 | Saremaruru     |
| 265 | 75.0716667 | 14.4216667 | Bilavagodu     |

| 266 | 74.9425000 | 14.4227778 | Chandragutthi              |
|-----|------------|------------|----------------------------|
| 267 | 75.0988889 | 14.4230556 | Oturu                      |
| 268 | 74.9752778 | 14.4236111 | Chandragutthi              |
| 269 | 74.9969444 | 14.4244444 | Gunjanuru                  |
| 270 | 75.0516667 | 14.4244444 | Thyavagodu                 |
| 271 | 75.0413889 | 14.4247222 | Saremaruru                 |
| 272 | 74.9483333 | 14.4252778 | Chandragutthi              |
| 273 | 74.9511111 | 14.4261111 | Chandragutthi              |
| 274 | 75.0736111 | 14.4277778 | Bilavagodu                 |
| 275 | 75.0438673 | 14.4302854 | Thyavagodu                 |
| 276 | 75.0230556 | 14.4311111 | Kallambi                   |
| 277 | 74.9672222 | 14.4336111 | Chandragutthi              |
| 278 | 75.1683333 | 14.4347222 | Udri                       |
| 279 | 74.8944444 | 14.4361111 | Kodambi                    |
| 280 | 75.1111111 | 14.4366667 | Thotlagondana(Halli)koppa  |
| 281 | 75.1300000 | 14.4366667 | Udri                       |
| 282 | 75.1436111 | 14.4369444 | Udri                       |
| 283 | 74.8830556 | 14.4386111 | Chandragutthi State Forest |
| 284 | 75.0858333 | 14.4388889 | Bendekoppa                 |
| 285 | 75.0413925 | 14.4395558 | Surekoppa                  |
| 286 | 74.8988889 | 14.4400000 | Chandragutthi State Forest |
| 287 | 74.9972222 | 14.4408333 | Gudavi                     |
| 288 | 75.0786111 | 14.4416667 | Thavanandhi                |
| 289 | 75.1550000 | 14.4416667 | Udri                       |
| 290 | 74.9197222 | 14.4422222 | Chandragutthi State Forest |
| 291 | 75.0975000 | 14.4423611 | Dodderikoppa               |
| 292 | 75.0397222 | 14.4425000 | Surekoppa                  |
| 293 | 75.1733333 | 14.4433333 | Udri                       |
| 294 | 75.0522419 | 14.4434945 | Surekoppa                  |
| 295 | 74.9886111 | 14.4441463 | Nyarasi                    |
| 296 | 75.0091667 | 14.4455556 | Gudavi                     |
| 297 | 75.0486111 | 14.4458333 | Surekoppa                  |
| 298 | 75.0844444 | 14.4458333 | Thavanandhi                |
| 299 | 75.0541667 | 14.4461111 | Surekoppa                  |
| 300 | 75.1402778 | 14.4466667 | Udri                       |
| 301 | 75.0802778 | 14.4472222 | Thavanandhi                |
| 302 | 74.9119444 | 14.4475000 | Chandragutthi State Forest |
| 303 | 74.9372222 | 14.4475000 | Chandragutthi State Forest |
| 304 | 74.9783333 | 14.4488889 | Pura                       |
| 305 | 74.9902778 | 14.4501389 | Pura                       |
| 306 | 75.1361111 | 14.4513889 | Udri                       |
| 307 | 75.0255556 | 14.4522222 | Gudavi                     |
| 308 | 75.1052742 | 14.4526391 | Korakodu                   |
| 309 | 75.0525000 | 14.4527778 | Surekoppa                  |
| 310 | 74.9827495 | 14.4528786 | Pura                       |

| 311 | 75.0494444 | 14.4530556 | Surekoppa                  |
|-----|------------|------------|----------------------------|
| 312 | 75.1219444 | 14.4533333 | Korakodu                   |
| 313 | 75.0788889 | 14.4541667 | Thavanandhi                |
| 314 | 74.8863889 | 14.4544444 | Chandragutthi State Forest |
| 315 | 74.9312004 | 14.4547222 | Baragavalli                |
| 316 | 75.0558333 | 14.4552778 | Surekoppa                  |
| 317 | 74.9411111 | 14.4563889 | Baragavalli                |
| 318 | 75.0354867 | 14.4563889 | Gudavi                     |
| 319 | 74.9527778 | 14.4569444 | Mannatthi                  |
| 320 | 74.8930556 | 14.4580556 | Kodambi                    |
| 321 | 74.9441667 | 14.4580556 | Kundagodu                  |
| 322 | 75.1625000 | 14.4580556 | Udri                       |
| 323 | 75.1877778 | 14.4597222 | Guduginakoppa              |
| 324 | 75.0125000 | 14.4605556 | Gudavi                     |
| 325 | 75.0419444 | 14.4608333 | Surekoppa                  |
| 326 | 75.1508333 | 14.4613889 | Udri                       |
| 327 | 75.1850000 | 14.4616667 | Guduginakoppa              |
| 328 | 74.9791667 | 14.4638889 | Bennuru                    |
| 329 | 75.1900231 | 14.4645853 | Guduginakoppa              |
| 330 | 74.9202778 | 14.4647222 | Naraji                     |
| 331 | 75.1038889 | 14.4661111 | Kuppagadde                 |
| 332 | 74.9841667 | 14.4666667 | Bennuru                    |
| 333 | 74.9938889 | 14.4680556 | J.I.Hosuru Agrahara        |
| 334 | 75.1827778 | 14.4680556 | Guduginakoppa              |
| 335 | 74.9702778 | 14.4686111 | Bennuru                    |
| 336 | 75.1647222 | 14.4686111 | Guddekoppa                 |
| 337 | 75.0611111 | 14.4688889 | Kerekoppa                  |
| 338 | 75.1241667 | 14.4700000 | Kuppagadde                 |
| 339 | 75.0869444 | 14.4705556 | Kuppagadde                 |
| 340 | 75.1377778 | 14.4708333 | Kuppagadde                 |
| 341 | 75.1744444 | 14.4708333 | Guddekoppa                 |
| 342 | 74.9838889 | 14.4713889 | Bennuru                    |
| 343 | 74.9136111 | 14.4727778 | Nelluru                    |
| 344 | 75.0375000 | 14.4730556 | Thekkuru                   |
| 345 | 75.0538889 | 14.4730556 | Kerekoppa                  |
| 346 | 75.0602778 | 14.4733333 | Kerekoppa                  |
| 347 | 75.2005556 | 14.4733333 | Kanukoppa                  |
| 348 | 74.9313889 | 14.4741667 | Horabylu                   |
| 349 | 74.9216667 | 14.4747222 | Nelluru                    |
| 350 | 75.0172222 | 14.4747222 | J.I.Hosuru Agrahara        |
| 351 | 75.1827778 | 14.4750000 | Chikkabburu                |
| 352 | 75.0388889 | 14.4775000 | Thekkuru                   |
| 353 | 75.0833333 | 14.4775000 | Vuyiguddekoppa             |
| 354 | 75.1588889 | 14.4775000 | Guddekoppa                 |
| 355 | 75.1047222 | 14.4783333 | Kuppagadde                 |

| 356 | 75.1241667 | 14.4786111 | Kuppagadde          |
|-----|------------|------------|---------------------|
| 357 | 75.0258333 | 14.4802778 | J.I.Hosuru Agrahara |
| 358 | 75.0458333 | 14.4802778 | Thekkuru            |
| 359 | 75.1036111 | 14.4802778 | Kuppagadde          |
| 360 | 75.0483333 | 14.4805556 | Kolaga              |
| 361 | 75.0811111 | 14.4805556 | Bommenahalli        |
| 362 | 75.1963889 | 14.4808333 | Chikkabburu         |
| 363 | 75.1436111 | 14.4813889 | Bettadakurli        |
| 364 | 75.2138889 | 14.4813889 | Thatthuru           |
| 365 | 75.1327778 | 14.4827778 | Науа                |
| 366 | 75.1741667 | 14.4836111 | Balekoppa           |
| 367 | 74.9566667 | 14.4838889 | Mangalore           |
| 368 | 75.0850000 | 14.4841667 | Bommenahalli        |
| 369 | 74.9664556 | 14.4850942 | Mangalore           |
| 370 | 75.0125212 | 14.4851850 | J.I.Hosuru Agrahara |
| 371 | 75.1100166 | 14.4857131 | Kuppagadde          |
| 372 | 75.0158333 | 14.4872222 | J.I.Hosuru Agrahara |
| 373 | 74.9194444 | 14.4883333 | Sindli              |
| 374 | 75.1830556 | 14.4883333 | Negavadi            |
| 375 | 75.1580556 | 14.4886111 | Bettadakurli        |
| 376 | 75.0588889 | 14.4897222 | Kolaga              |
| 377 | 75.2225000 | 14.4897222 | Thatthuru           |
| 378 | 75.1972222 | 14.4905556 | Thatthuru           |
| 379 | 74.8922222 | 14.4908333 | Kuntagalale         |
| 380 | 75.1869444 | 14.4908333 | Negavadi            |
| 381 | 75.0811111 | 14.4911111 | Bommenahalli        |
| 382 | 74.8958333 | 14.4916667 | Kuntagalale         |
| 383 | 74.9797222 | 14.4919444 | Kamaruru            |
| 384 | 75.1047222 | 14.4922222 | Gendla              |
| 385 | 75.1586111 | 14.4925000 | Bettadakurli        |
| 386 | 74.9669444 | 14.4930556 | Kamaruru            |
| 387 | 75.1305556 | 14.4930556 | Haya                |
| 388 | 75.2411111 | 14.4933333 | Gangavalli          |
| 389 | 74.9250000 | 14.4936111 | Sindli              |
| 390 | 75.1813889 | 14.4938889 | Negavadi            |
| 391 | 75.2084206 | 14.4947877 | Thatthuru           |
| 392 | 75.0547222 | 14.4950000 | Kolaga              |
| 393 | 74.8966667 | 14.4966667 | Kuntagalale         |
| 394 | 74.9100000 | 14.4969444 | Kuntagalale         |
| 395 | 75.2002778 | 14.4969444 | Thatthuru           |
| 396 | 75.0350000 | 14.4977778 | Sampagodu           |
| 397 | 75.0616667 | 14.4980556 | Dyavanahalli        |
| 398 | 75.0863889 | 14.4983333 | Nittakki            |
| 399 | 74.9072222 | 14.4991667 | Kuntagalale         |
| 400 | 74.9238889 | 14.4991667 | Sindli              |

| 401 | 74.9458333 | 14.4991667 | Harishi        |
|-----|------------|------------|----------------|
| 402 | 75.1572222 | 14.4991667 | Bettadakurli   |
| 403 | 75.0293348 | 14.4992763 | Sampagodu      |
| 404 | 75.0480556 | 14.5002778 | Hunasekoppa    |
| 405 | 75.0913889 | 14.5005556 | Nittakki       |
| 406 | 74.9117294 | 14.5010408 | Kuntagalale    |
| 407 | 75.1808333 | 14.5013889 | Negavadi       |
| 408 | 75.1186111 | 14.5016667 | Gendla         |
| 409 | 75.2430556 | 14.5016667 | Hiremagadi     |
| 410 | 75.0655556 | 14.5019444 | Dyavanahalli   |
| 411 | 75.1616667 | 14.5022222 | Bettadakurli   |
| 412 | 75.0555556 | 14.5030556 | Dyavanahalli   |
| 413 | 75.1664454 | 14.5040120 | Bettadakurli   |
| 414 | 75.1269444 | 14.5041667 | Mathighatta    |
| 415 | 75.2305556 | 14.5044444 | Hiremagadi     |
| 416 | 74.9588889 | 14.5050000 | Mangarasikoppa |
| 417 | 75.1116667 | 14.5050000 | Gendla         |
| 418 | 75.2372222 | 14.5052778 | Hiremagadi     |
| 419 | 75.0480556 | 14.5069444 | Jaddihalli     |
| 420 | 74.9102778 | 14.5072222 | Thelagundli    |
| 421 | 74.9197222 | 14.5075000 | Thelagundli    |
| 422 | 75.0905556 | 14.5075000 | Thalaguppa     |
| 423 | 75.1944444 | 14.5083333 | Negavadi       |
| 424 | 75.1063889 | 14.5086111 | Gendla         |
| 425 | 75.2338889 | 14.5091667 | Hiremagadi     |
| 426 | 75.2025000 | 14.5108333 | Negavadi       |
| 427 | 74.9791667 | 14.5108576 | Kamaruru       |
| 428 | 75.0977492 | 14.5126065 | Thalaguppa     |
| 429 | 75.1741667 | 14.5134722 | Hireyadagodu   |
| 430 | 74.9286111 | 14.5141667 | Thelagundli    |
| 431 | 74.9119444 | 14.5147222 | Thelagundli    |
| 432 | 75.0675000 | 14.5147222 | Puttanahalli   |
| 433 | 75.0552778 | 14.5150000 | Jaddihalli     |
| 434 | 75.0519444 | 14.5155556 | Jaddihalli     |
| 435 | 75.0708333 | 14.5155556 | Puttanahalli   |
| 436 | 75.1144444 | 14.5155556 | Kathuru        |
| 437 | 74.9350000 | 14.5158333 | Harishi        |
| 438 | 75.1788889 | 14.5161111 | Hireyadagodu   |
| 439 | 75.0644444 | 14.5180556 | Basuru         |
| 440 | 75.1497222 | 14.5180556 | Thudaneeru     |
| 441 | 75.1677778 | 14.5180556 | Hireyadagodu   |
| 442 | 74.9633333 | 14.5188889 | Kamaruru       |
| 443 | 75.0711111 | 14.5191667 | Puttanahalli   |
| 444 | 74.9425000 | 14.5194444 | Chikkalagodu   |
| 445 | 75.1205556 | 14.5200000 | Hasavi         |

| 446 | 74.9277778 | 14.5230556 | Thelagundli    |
|-----|------------|------------|----------------|
| 447 | 75.1455556 | 14.5233333 | Thudaneeru     |
| 448 | 75.2186111 | 14.5233333 | Thyavaratheppa |
| 449 | 75.1686111 | 14.5236111 | Hireyadagodu   |
| 450 | 75.1122222 | 14.5238889 | Siddihalli     |
| 451 | 75.1761111 | 14.5250000 | Hireyadagodu   |
| 452 | 75.1608333 | 14.5258333 | Thudaneeru     |
| 453 | 75.2616667 | 14.5261111 | Ginivala       |
| 454 | 75.1283333 | 14.5269444 | Hasavi         |
| 455 | 74.9641667 | 14.5275000 | Hirekaligodu   |
| 456 | 75.1955556 | 14.5275000 | Chikkayedagodu |
| 457 | 75.0579210 | 14.5278231 | Haralikoppa    |
| 458 | 75.1722222 | 14.5283333 | Hireyadagodu   |
| 459 | 75.2019444 | 14.5286111 | Chikkayedagodu |
| 460 | 75.2261111 | 14.5294444 | Thyavaratheppa |
| 461 | 75.1455556 | 14.5297222 | Badanakatte    |
| 462 | 75.1202778 | 14.5302778 | Hasavi         |
| 463 | 75.2463889 | 14.5319444 | Hanche         |
| 464 | 75.0775000 | 14.5322222 | Kerehalli      |
| 465 | 75.2100000 | 14.5322222 | Ennikoppa      |
| 466 | 75.0580441 | 14.5327778 | Haralikoppa    |
| 467 | 75.0805888 | 14.5333334 | Kerehalli      |
| 468 | 75.2416667 | 14.5338889 | Hanche         |
| 469 | 75.0719444 | 14.5344444 | Kerehalli      |
| 470 | 75.1958333 | 14.5344444 | Hunasavalli    |
| 471 | 75.1161111 | 14.5352778 | Siddihalli     |
| 472 | 74.9611111 | 14.5358333 | Iduru          |
| 473 | 75.0663889 | 14.5361693 | Kerehalli      |
| 474 | 74.9741667 | 14.5363889 | Iduru          |
| 475 | 75.2469444 | 14.5375000 | Hanche         |
| 476 | 75.1941667 | 14.5388889 | Hunasavalli    |
| 477 | 75.2280556 | 14.5394444 | Kunitheppa     |
| 478 | 75.2933333 | 14.5405556 | Gummanahalu    |
| 479 | 75.0944444 | 14.5416667 | Kathavalli     |
| 480 | 75.2641667 | 14.5416667 | Jogihalli      |
| 481 | 75.1452778 | 14.5419444 | Badanakatte    |
| 482 | 75.2480556 | 14.5420833 | Barangi        |
| 483 | 75.1047222 | 14.5430556 | Kotekoppa      |
| 484 | 74.9647222 | 14.5438889 | Iduru          |
| 485 | 75.1600000 | 14.5444444 | Thalluru       |
| 486 | 75.2111111 | 14.5452778 | Kamanavalli    |
| 487 | 75.2708333 | 14.5455556 | Jogihalli      |
| 488 | 75.1450000 | 14.5463889 | Kubaturu       |
| 489 | 75.1852778 | 14.5466667 | Thalluru       |
| 490 | 75.2805556 | 14.5469444 | Yalivala       |

| 491 | 75.0586111 | 14.5475000 | Vardhikoppa   |
|-----|------------|------------|---------------|
| 492 | 75.0490736 | 14.5477778 | Chagaturu     |
| 493 | 75.0805556 | 14.5483333 | Thumarikoppa  |
| 494 | 75.1708333 | 14.5488889 | Thalluru      |
| 495 | 75.1930556 | 14.5488889 | Thalluru      |
| 496 | 75.2438889 | 14.5502778 | Barangi       |
| 497 | 75.1077778 | 14.5527778 | Kotekoppa     |
| 498 | 75.1625000 | 14.5527778 | Thalluru      |
| 499 | 75.1897222 | 14.5533333 | Thalluru      |
| 500 | 75.0488889 | 14.5538889 | Chagaturu     |
| 501 | 75.2163889 | 14.5538889 | Kamanavalli   |
| 502 | 75.1711111 | 14.5547222 | Thalluru      |
| 503 | 75.0877778 | 14.5550000 | Kathavalli    |
| 504 | 75.2788889 | 14.5555556 | Yalivala      |
| 505 | 75.1294444 | 14.5577778 | Hosahalli     |
| 506 | 75.1352778 | 14.5577778 | Kodikoppa     |
| 507 | 75.0694444 | 14.5580556 | Thumarikoppa  |
| 508 | 75.2575000 | 14.5586111 | Barangi       |
| 509 | 75.2058333 | 14.5588889 | Chikkachavati |
| 510 | 75.0822222 | 14.5597222 | Hosakoppa     |
| 511 | 75.0461111 | 14.5627778 | Kaligeri      |
| 512 | 75.0894444 | 14.5650000 | Bennuru       |
| 513 | 75.2613889 | 14.5650000 | Barangi       |
| 514 | 75.1408333 | 14.5658333 | Kubaturu      |
| 515 | 75.2033333 | 14.5663889 | Chikkachavati |
| 516 | 75.2072222 | 14.5680556 | Chikkachavati |
| 517 | 75.1869444 | 14.5686111 | Hurali        |
| 518 | 75.1147222 | 14.5688889 | Kubaturu      |
| 519 | 75.1463889 | 14.5700000 | Kubaturu      |
| 520 | 75.0997222 | 14.5705556 | Bennuru       |
| 521 | 75.1594985 | 14.5712550 | Anavatti      |
| 522 | 75.1180556 | 14.5713889 | Kubaturu      |
| 523 | 75.0266667 | 14.5716667 | Halekoppa     |
| 524 | 75.0700000 | 14.5719444 | Salagi        |
| 525 | 75.1883333 | 14.5719444 | Hurulikoppa   |
| 526 | 75.0397222 | 14.5725000 | Jade          |
| 527 | 75.2536111 | 14.5730556 | Bennegere     |
| 528 | 75.1213889 | 14.5741667 | Kubaturu      |
| 529 | 75.0283333 | 14.5747222 | Halekoppa     |
| 530 | 75.1852778 | 14.5747222 | Hurali        |
| 531 | 75.0805556 | 14.5763889 | Bankasana     |
| 532 | 75.0447222 | 14.5766667 | Jade          |
| 533 | 75.2586111 | 14.5772222 | Bennegere     |
| 534 | 75.0738889 | 14.5800000 | Thalagundli   |
| 535 | 75.0677778 | 14.5802778 | Thalagundli   |

| 536 | 75.0872222 | 14.5808333 | Bankasana        |
|-----|------------|------------|------------------|
| 537 | 75.1827778 | 14.5830556 | Hurali           |
| 538 | 75.1291667 | 14.5833333 | Kubaturu         |
| 539 | 75.0813889 | 14.5836111 | Shanuvalli       |
| 540 | 75.1736111 | 14.5850000 | Hurali           |
| 541 | 75.0858333 | 14.5852778 | Kachavi          |
| 542 | 75.1680556 | 14.5888889 | Kodihalli        |
| 543 | 75.0288889 | 14.5897222 | Kallukoppa       |
| 544 | 75.0441667 | 14.5897222 | Mangapura        |
| 545 | 75.1219444 | 14.5900000 | Mooguru          |
| 546 | 75.1430556 | 14.5902778 | Neerlagi         |
| 547 | 75.1575000 | 14.5922222 | Kodihalli        |
| 548 | 75.0527778 | 14.5925000 | Mangapura        |
| 549 | 75.1191667 | 14.5958333 | Mooguru          |
| 550 | 75.1116667 | 14.5980556 | Thelagadde       |
| 551 | 75.1408333 | 14.5980556 | Neerlagi         |
| 552 | 75.1380556 | 14.6005556 | Dwarahalli       |
| 553 | 75.0330556 | 14.6016667 | Kamaruru         |
| 554 | 75.0697222 | 14.6016667 | Talagadde Forest |
| 555 | 75.0786111 | 14.6016667 | Madhapura T.     |
| 556 | 75.1440278 | 14.6026389 | Dwarahalli       |
| 557 | 75.1127778 | 14.6061111 | Mooguru          |
| 558 | 75.1597222 | 14.6072222 | Thoravandha      |
| 559 | 75.1933333 | 14.6072222 | Moodidoddikoppa  |
| 560 | 75.0911111 | 14.6080556 | Kodikoppa        |
| 561 | 75.1240278 | 14.6084722 | Mooguru          |
| 562 | 75.1286111 | 14.6098611 | Dwarahalli       |
| 563 | 75.0333333 | 14.6102778 | Kamaruru         |
| 564 | 75.1775000 | 14.6105556 | Moodidoddikoppa  |
| 565 | 75.1891667 | 14.6116667 | Moodidoddikoppa  |
| 566 | 75.0408333 | 14.6136111 | Soornagi         |
| 567 | 75.0944444 | 14.6138889 | Kodikoppa        |
| 568 | 75.1022222 | 14.6138889 | Mallasamudra     |
| 569 | 75.1302778 | 14.6147222 | Thuyilakoppa     |
| 570 | 75.0802778 | 14.6169444 | Shanthapura      |
| 571 | 75.0705556 | 14.6172222 | Shanthapura      |
| 572 | 75.0455556 | 14.6177778 | Soornagi         |
| 573 | 75.1945391 | 14.6189264 | Moodidoddikoppa  |
| 574 | 75.1400000 | 14.6191006 | Dwarahalli       |
| 575 | 75.1819444 | 14.6191667 | Moodidoddikoppa  |
| 576 | 75.0422222 | 14.6194444 | Soornagi         |
| 577 | 75.0691667 | 14.6225000 | Shanthapura      |
| 578 | 75.1061111 | 14.6225000 | Shakunahalli     |
| 579 | 75.0997222 | 14.6261111 | Arathalagadde    |
| 580 | 75.1261111 | 14.6266667 | Thuyilakoppa     |

| 581 | 75.0916667 | 14.6269444 | Arathalagadde |
|-----|------------|------------|---------------|
| 582 | 75.0711111 | 14.6327778 | Alahalli      |
| 583 | 75.1141667 | 14.6341667 | Shankarikoppa |
| 584 | 75.0727778 | 14.6352778 | Alahalli      |
| 585 | 75.0941667 | 14.6363889 | Bilagale      |
| 586 | 75.1108333 | 14.6366667 | Shankarikoppa |
| 587 | 75.0419444 | 14.6372222 | Soornagi      |
| 588 | 75.0786111 | 14.6375000 | Bilagale      |
| 589 | 75.0902778 | 14.6444444 | Bilagale      |
| 590 | 75.0672222 | 14.6463889 | Binkavalli    |

# B) Tentative Locations of Proposed Percolation Tanks, Shikaripura taluk

| S.No | Longitude | Lattitude | Village             |
|------|-----------|-----------|---------------------|
| 1    | 75.137774 | 14.259365 | Kanahalli           |
| 2    | 75.128580 | 14.266846 | Kaisodi             |
| 3    | 75.115092 | 14.274030 | Ulavi               |
| 4    | 75.093939 | 14.282113 | Malalagadde         |
| 5    | 75.149749 | 14.286271 | Kannuru             |
| 6    | 75.218133 | 14.289508 | Shyandlakoppa       |
| 7    | 75.164778 | 14.291046 | Hunavalli           |
| 8    | 75.131967 | 14.291964 | Karjikoppa          |
| 9    | 75.084130 | 14.292284 | Chiranthe Hosakoppa |
| 10   | 75.235310 | 14.294276 | Karekoppa           |
| 11   | 75.246657 | 14.295760 | Indihalli           |
| 12   | 75.184716 | 14.299404 | Hinduvalli          |
| 13   | 75.075241 | 14.302455 | Talakalakoppa       |
| 14   | 75.253719 | 14.303826 | Malalikoppa         |
| 15   | 75.177368 | 14.313465 | Shigga              |
| 16   | 75.126767 | 14.315889 | Pura                |
| 17   | 75.059298 | 14.317112 | Melina Kirugunasi   |
| 18   | 75.162958 | 14.318559 | Shigga              |
| 19   | 75.150384 | 14.318567 | Kumbatthi           |
| 20   | 75.215097 | 14.321508 | Kavadi              |
| 21   | 75.113276 | 14.321578 | Кирре               |
| 22   | 75.203139 | 14.324808 | Chikkasavi          |
| 23   | 75.169403 | 14.325432 | Shigga              |
| 24   | 75.037526 | 14.330274 | Balagodu            |
| 25   | 75.027406 | 14.338948 | Goggehalli          |
| 26   | 75.168187 | 14.340385 | Kottari             |
| 27   | 74.968516 | 14.344928 | Andavalli           |
| 28   | 75.150710 | 14.347573 | Hiruru              |
| 29   | 74.999802 | 14.347920 | Kadasuru            |
| 30   | 75.175863 | 14.349948 | Yalavalli           |
| 31   | 75.014831 | 14.350910 | Abasi               |

| 32 | 75.131388 | 14.351173 | Kunaji                    |
|----|-----------|-----------|---------------------------|
| 33 | 75.066669 | 14.351798 | Nadahalli                 |
| 34 | 75.105624 | 14.352681 | Halagalale                |
| 35 | 75.118750 | 14.354028 | Halagalale                |
| 36 | 75.216970 | 14.355895 | Arekoppa                  |
| 37 | 75.141210 | 14.361335 | Shanthigeri               |
| 38 | 75.166057 | 14.362216 | Mavale                    |
| 39 | 75.094280 | 14.365545 | Hireshakuna               |
| 40 | 75.120663 | 14.370018 | Kodakani                  |
| 41 | 74.949493 | 14.371539 | Andavalli                 |
| 42 | 75.212079 | 14.373841 | Kolagunasi                |
| 43 | 75.066676 | 14.377516 | Halesoraba                |
| 44 | 75.146742 | 14.378377 | Andige                    |
| 45 | 75.200121 | 14.380730 | Gerukoppa                 |
| 46 | 74.955319 | 14.384997 | Holemaruru                |
| 47 | 75.060237 | 14.388283 | Kardigere                 |
| 48 | 75.124970 | 14.393341 | Kodakani                  |
| 49 | 75.016245 | 14.394809 | Gunjanuru                 |
| 50 | 75.136323 | 14.395428 | Kodakani                  |
| 51 | 74.956237 | 14.398453 | Thoruvagondanakoppa       |
| 52 | 75.143691 | 14.403497 | Hireyavali                |
| 53 | 75.052878 | 14.404432 | Jambehalli                |
| 54 | 75.011215 | 14.409282 | Gunjanuru                 |
| 55 | 75.055949 | 14.415496 | Thyavagodu                |
| 56 | 75.140939 | 14.418152 | Bekkavali                 |
| 57 | 75.061168 | 14.428951 | Thyavagodu                |
| 58 | 75.103205 | 14.429236 | Thotlagondana(Halli)koppa |
| 59 | 75.092467 | 14.431333 | Dodderikoppa              |
| 60 | 75.081114 | 14.431935 | Bendekoppa                |
| 61 | 75.028333 | 14.433333 | Kallambi                  |
| 62 | 74.979550 | 14.433743 | Nyarasi                   |
| 63 | 75.026073 | 14.438371 | Kallambi                  |
| 64 | 75.064549 | 14.448387 | Thavanandhi               |
| 65 | 75.026074 | 14.448562 | Gudavi                    |
| 66 | 75.152006 | 14.450142 | Udri                      |
| 67 | 75.186376 | 14.451313 | Guduginakoppa             |
| 68 | 75.176251 | 14.454012 | Guduginakoppa             |
| 69 | 75.083521 | 14.454578 | Thavanandhi               |
| 70 | 75.067927 | 14.456161 | Thavanandhi               |
| 71 | 75.089102 | 14.458547 | Kuppagadde                |
| 72 | 75.108742 | 14.458837 | Korakodu                  |
| 73 | 75.080134 | 14.459315 | Thavanandhi               |
| 74 | 74.962559 | 14.460618 | Hosabale                  |
| 75 | 75.118871 | 14.461823 | Korakodu                  |
| 76 | 75.075601 | 14.463037 | Thavanandhi               |

| 77  | 75.081111 | 14.465833 | Kuppagadde             |
|-----|-----------|-----------|------------------------|
| 78  | 75.052886 | 14.468079 | Kerekoppa              |
| 79  | 75.036111 | 14.468225 | Thekkuru               |
| 80  | 74.946255 | 14.470375 | Kundagodu              |
| 81  | 75.071922 | 14.472308 | Vuyiguddekoppa         |
| 82  | 74.940261 | 14.484273 | Mangalore              |
| 83  | 75.068857 | 14.485167 | Kolaga                 |
| 84  | 75.214647 | 14.492555 | Thatthuru              |
| 85  | 75.173520 | 14.492888 | Negavadi               |
| 86  | 75.072235 | 14.492941 | Dyavanahalli           |
| 87  | 75.175369 | 14.503353 | Negavadi               |
| 88  | 75.077764 | 14.505499 | Nittakki               |
| 89  | 75.215274 | 14.506609 | Thatthuru              |
| 90  | 74.902501 | 14.506987 | Kuntagalale            |
| 91  | 75.157571 | 14.509645 | Bettadakurli Forest    |
| 92  | 75.186118 | 14.510522 | Negavadi               |
| 93  | 75.227866 | 14.513774 | Hiremagadi             |
| 94  | 75.215282 | 14.515281 | Vrutthikoppa           |
| 95  | 75.199937 | 14.517089 | Nellikoppa             |
| 96  | 75.084522 | 14.519252 | Thalaguppa             |
| 97  | 75.237081 | 14.519746 | Hanche                 |
| 98  | 75.139468 | 14.520422 | Hasavi                 |
| 99  | 75.250589 | 14.521825 | Hanche                 |
| 100 | 75.046153 | 14.524645 | Haralikoppa            |
| 101 | 75.183750 | 14.526667 | Hireyadagodu           |
| 102 | 74.915806 | 14.528477 | Thelagundli            |
| 103 | 74.950992 | 14.531224 | Hirekaligodu           |
| 104 | 75.101104 | 14.531805 | Shiddehalli Plantation |
| 105 | 75.256434 | 14.532584 | Ginivala               |
| 106 | 75.172017 | 14.534754 | Thalluru               |
| 107 | 75.162808 | 14.534760 | Thalluru               |
| 108 | 75.183376 | 14.535642 | Hunasavalli            |
| 109 | 75.219908 | 14.536807 | Thyavaratheppa         |
| 110 | 75.277931 | 14.539437 | Gummanahalu            |
| 111 | 75.254608 | 14.546341 | Barangi                |
| 112 | 74.958664 | 14.546476 | Kenchikoppa            |
| 113 | 74.973400 | 14.546478 | Iduru                  |
| 114 | 75.203341 | 14.547288 | Kamanavalli            |
| 115 | 75.193527 | 14.559557 | Chikkachavati          |
| 116 | 75.177567 | 14.564354 | Hurali                 |
| 117 | 75.173583 | 14.574524 | Hurali                 |
| 118 | 75.062917 | 14.575972 | Thalagundli            |
| 119 | 75.141654 | 14.578134 | Kubaturu               |
| 120 | 75.158541 | 14.578422 | Neerlagi               |
| 121 | 75.037261 | 14.579370 | Jade                   |

| 122 | 75.113715 | 14.580541 | Vitalapura       |
|-----|-----------|-----------|------------------|
| 123 | 75.036955 | 14.589238 | Kallukoppa       |
| 124 | 75.067355 | 14.593118 | Thalagundli      |
| 125 | 75.130303 | 14.594886 | Mooguru          |
| 126 | 75.084551 | 14.594907 | Thelagadde       |
| 127 | 75.056528 | 14.596250 | Talagadde Forest |
| 128 | 75.129694 | 14.602661 | Mooguru          |
| 129 | 75.047705 | 14.603290 | Talagadde Forest |
| 130 | 75.060297 | 14.608670 | Talagadde Forest |
| 131 | 75.058150 | 14.619137 | Talagadde Forest |
| 132 | 75.056310 | 14.628108 | Talagadde Forest |
| 133 | 75.055391 | 14.639172 | Binkavalli       |
| 134 | 75.102995 | 14.639455 | Shakunahalli     |
| 135 | 75.081193 | 14.647837 | Bilagale         |

(Source: Master Plan, CGWB, 2020. It is likely that the number of structures proposed may vary depending upon the ground truth verification and feasibility criteria)