

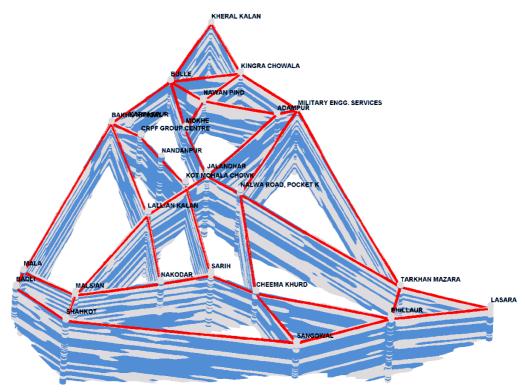
केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation Government of India


Report on AQUIFER MAPPING AND MANAGEMENT PLAN

Jalandhar District, Punjab

उत्तरी पश्चिम क्षेत्र, चंडीगढ़ North Western Region, Chandigarh

AQUIFER MAPPING & MANAGEMENT PLAN OF JALANDHAR DISTRICT, PUNJAB

Central Ground Water Board

North Western Region, Chandigarh Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India 2018

AQUIFER MAPPING AND MANAGEMENT PLAN JALANDHAR DISTRICT (2633.50 Sq Km)

DISTRICT TECHNICAL REPORT (PART – I)							
SL. NO.		TITLE OF CONTENTS	PAGE NO.				
1.0	INTRODU	INTRODUCTION					
2.0	DATA CO	LLECTION AND GENERATION	9 - 17				
3.0	DATA INT	TERPRETATION, INTEGRATION AND AQUIFER MAPPING	18 - 25				
4.0	GROUND	WATER RESOURCES	26 - 32				
5.0	GROUND	WATER RELATED ISSUES	33 - 34				
6.0	MANAGE	MENT STRATEGIES AND AQUIFER MANAGEMENT PLAN	35 – 38				
	BLOCKV	VISE AQUIFER MAPS AND MANAGEMENT PLAN (PA	RT – II)				
	I.	ADAMPUR BLOCK	40 - 49				
	١١.	BHOGPUR BLOCK	50 - 58				
	III.	RURKA KALAN BLOCK	59 - 66				
	IV.	JALANDHAR –EAST BLOCK	67 - 75				
	٧.	JALANDHAR –WEST BLOCK	76 - 84				
	VI.	LOHIAN KHAS BLOCK	85 – 93				
	VII.	NAKODAR BLOCK	94 – 102				
	VIII.	NURMAHAL BLOCK	103 – 111				
	IX.	PHILLAUR BLOCK	112 – 120				
	Х.	SHAHKOT BLOCK	121 – 129				

LIST OF FIGURES

- Fig.1: Base map of Jalandhar District
- Fig.2: Drainage and Water Bodies of Jalandhar District
- Fig.3: Canal and Distributaries of Jalandhar District
- Fig.4: Major Aquifers
- Fig.5: Hydrogeology of Jalandhar District
- Fig.6: Depth to Pre Monsoon Water level May, 2016
- Fig.7: Depth to Post Monsoon Water level November, 2016
- Fig.8: Locations of Exploration Data Availability
- Fig.9: Locations of Validated Exploration Data
- Fig.10: Elevation Contour map
- Fig.11: Three Dimensional Locations of Validated Exploratory Wells with Lithology
- Fig.12: 3-Dimension Lithological Model
- Fig.13a, b, c: 2-Dimension Lithological Sections
- Fig.14: 3-Dimension Lithological Fence
- Fig.15: 3D Aquifer Disposition Model
- Fig.16: 3D Aquifer Disposition Fence
- Fig.17: Concept for Resource Estimation in Unconfined and Confined Aquifer System
- Fig.17: Long term ground water table variation (Shallow Aquifer)
- Fig.18: Long term ground water table variation (Deeper Aquifer)

LIST OF TABLES

Table -1: Analytical methods and equipments used for chemical analysis. Table -2: The Aquifer Parameters of Jalandhar District Table -3: Dynamic Ground Water Resource & Development Potential (31.03.2013) in mcm Table -4: Block Wise In storage Ground Water Resources in Unconfined Aquifer –I (Alluvium) Table -5: Block Wise In storage Ground Water Resources – Confined (Aquifer II) Table -6: Block Wise In storage Ground Water Resources – Confined (Aquifer III) Table -7: Block Wise Total Availability of Groundwater Resources upto 300 m Depth and Volume of unsaturated granular zone after 3m upto water level Table -8 Distribution of Tube wells According to Well Owner's land holding Size Table -9: Distribution of Tube wells According to Depth Table -10: System of Ground water distribution device Table-11a: Scope of Quantitative Impact on Stage of Development after applying various Management Strategies in mcm Table-11b: Impact on Stage of Development (SOD) after applying various management strategies in Jalandhar District Table -12: Overall Stage of Development (SOD) after reduction in Jalandhar District

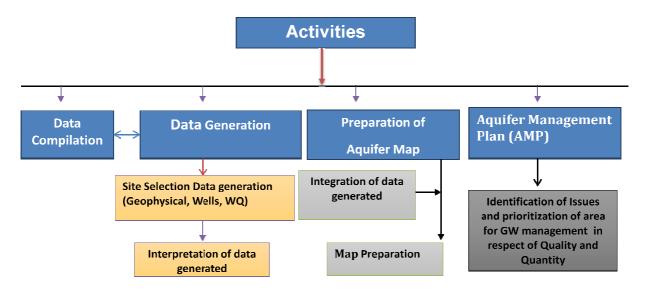
ANNEXURES

Annexure-I: Water level Behaviour of Jalandhar District, 2016 Annexure-II: Results of chemical analysis of water samples from NHS in Jalandhar, 2015 Annexure-III: Validated Exploration data of Jalandhar District Annexure-IV: Lithological Data of Exploration Wells in Jalandhar District Annexure-V: Aquifer Grouping of Exploration Wells in Jalandhar District

PROJECT TEAM

Regional Director	Anoop Nagar	
Nodal Officer	Tejdeep Singh , Sr. Hydrogeologist	
Executive Engineer	L. Ramakrishna	
Report Compilation & Hydrogeology Geophysics	Roopesh G.Krishnan , Scientist 'B'(Jr.HG)	Chemical Quality
S.K. Kapil, Scientist 'D' (Sr.GP) NAQUIM Punjab	Rakesh Rana ,	Rishi Raj, Assistant Chemist Gyanendra Rai
Team	Scientist-D	STA (HG)
Acknowledgement	M.L Angurala, Scientist 'D' (Sr.HG)	

1.0 INTRODUCTION


The primary objective of the Aquifer Mapping can be summed up as "Know your Aquifer, Manage your Aquifer". Demystification of Science and thereby involvement of stake holders is the essence of the entire project. The involvement and participation of the community will infuse a sense of ownership amongst the stakeholders. This is an activity where the Government and the Community work in tandem. Greater the harmony between the two, greater will be the chances of successful implementation and achievement of the goals of the Project. As per the Report of the Working Group on Sustainable Ground Water Management, "It is imperative to design an aquifer mapping programme with a clear-cut groundwater management purpose. This will ensure that aquifer mapping does not remain an academic exercise and that it will seamlessly flow into a participatory groundwater management programme. The aquifer mapping approach can help integrate ground water availability with ground water accessibility and quality aspects.

1.2 Scope of the study:

Systematic mapping of an aquifer encompasses a host of activities such as collection and compilation of available information on aquifer systems, demarcation of their extents and their characterization, analysis of data gaps, generation of additional data for filling the identified data gaps and finally, preparation of aquifer maps at the desired scale. This manual attempts to evolve uniform protocols for these activities to facilitate their easy integration for the district as whole.

1.3 Approach and Methodology:

National Aquifer Mapping Programme basically aims at characterizing the geometry, parameters, behaviour of ground water levels and status of ground water development in various aquifer systems to facilitate planning of their sustainable management. The major activities involved in this process include compilation of existing data, identification of data gaps, and generation of data for filling data gaps and preparation of aquifer maps. The overall activities of aquifer mapping are presented in the flow chart below.

1.4 Location and Geographical Units

Jalandhar is located on the intensively irrigated plain between Beas and Sutlej rivers of Punjab State. The area falls in the Survey of India Toposheet Nos. 44 M/4,7,9,10,11,12,15 and 16, lies between 30⁰ 58' 16" to 31⁰ 36' 53" North latitude and 75⁰ 04' 42" to 75⁰ 57' 48" East longitude covering an area of 2633.50 sq km (Fig.1). It is bounded by Hoshiarpur in North, Ludhiana and Moga in South, Kapurthala in East and parts of SBS Nagar, Kapurthala and Hoshiarpur in West. The area is well connected by road and rails. Jalandhar was the capital of Punjab from India's independence (1947) until Chandigarh was built in 1953. The elevation of land surface ranges between 245m above m.s.l. in northwest to 212 m a.msl at towards southeast. Topographically, it is a leveled plain sloping towards south - south east direction..

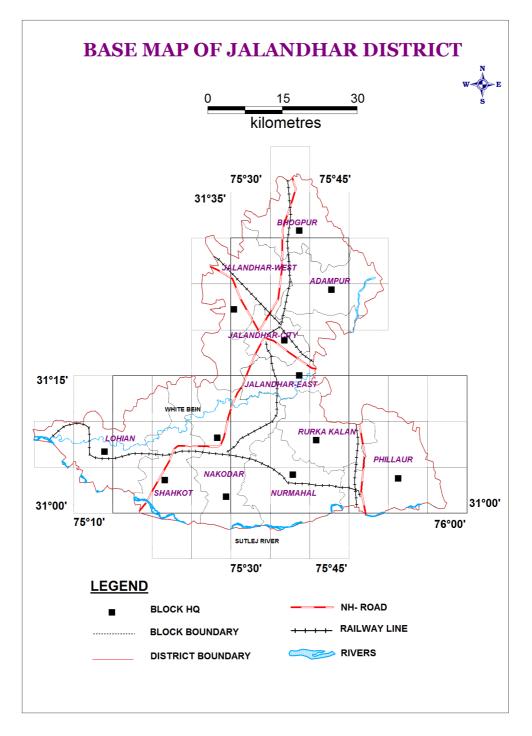
The district comprises four Tehsils namely Jalandhar-I, Phillaur, Jalandhar-II, Nakodar & Shahkot . There are eleven administrative development blocks namely Adampur, Bhogpur, Rurka kalan, Jalandhar-East, Jalandhar-West, Lohian Khas, Nakodar, Nurmahal, Phillaur, Shahkot & Dharamkot. Total number of villages exists in the district is 941 (Inhabited village is 922 and Uninhabited village is 19).

The total population of the district is 2,193,590 as per 2011 census which constitutes 7.9% of the state population. The total rural population is 1,032,419 and the urban population is 1,161,171 and the decennial growth rate is 11.76 % (2001-2011). Population density of district is 836 persons/sq. km.

1.5 Climatic Conditions: Rainfall and Climate

The climate of the district is classified as tropical steppe, semi-arid and hot which is mainly dry except in rainy months and characterized by intensely hot summer and cold winter. The temperature ranges from 45° C (in May/June) to 2.5° C in December/January.

The normal annual rainfall is 703 mm in 28 days which is unevenly distributed over the district. The average annual rainfall in the district is 570 mm. The rainfall in the district in general increases from the south-west towards the north-east and varies from 551.3 mm at Nakodar to 892.3 mm at Adampur. About 70 per cent of the annual normal rainfall in the district is received during the period July to September. Monthly wise rainfall is given in below table.


	Monthly wise Rainfall of Jalandhar District in mm (IMD, Chandigarh)											
Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	OCT	NOV	DEC
2012	93.7	1.8	3.2	13.9	0.2	1.9	91	79.2	107.5	0.7	0	6.2
2013	6.4	84.2	10.3	6	7.4	166.3	117.5	151.8	34.7	5.5	2.6	1.2
2014	4	18.4	16.4	11	6.9	6.1	95.3	40	84.3	10.2	0	18.7
2015	22.5	40	64.9	40.8	24.4	30.6	65	40.3	44.5	3	0	0
2016	10.6	8.9	27.1	1.3	14	26.8	131.5	136.4	15.2	2.4	0.5	0

1.6 Geomorphology & Soil Type

The study area is part of Bist Doab Tract, which is inter alluvial plain between Beas and Satluj River and has almost flat topography with gentle slope towards southwest. Physiographically, the district is characterized by two distinct features i.e. vast upland plain and Satluj flood plain. It exhibits gradational landforms, mainly fluvial, formed by the deposition of

sediments. The width of the flood plain varies according to the amount of shift experienced by the river. It is widest in the Nakodar tehsil. The district is mainly drained by the river Satluj and its tributaries –East (White) Bein and West (Black) Bein. The area is almost flat terrain without any conspicuous topographical features.

Fig.1: Base map of Jalandhar District

Geomorphologically the area is divisible into three types of land forms i.e

- 1. Older Alluvial plain
- 2. Aeolian surface (Sand dunes and Aeolian sheets),
- 3. Older and Active flood plain

These land forms are delineated on the basis of relief, pedological, lithological and vegetation variations (GSI, 2005-2006).

Older Alluvial plain: This is the oldest and dominant geomorphologic unit of the area. It is higher in elevation and has almost a flat topography. Older Alluvial plains are basically the aggradational product of the fluvial action of the ancestral rivers of the Indus System. These plains are presently being modified by erosional action of the various forces as well as anthropogenic activities. These plains are well drained, they have fertile soils and also their groundwater conditions are favorable for the development of tubewell irrigation, thus making them agriculturally the most productive.

Aeolian surface: The Aeolian surface includes sand dunes and Aeolian sheets.

<u>Sand dunes</u>: Sand dunes occur in the form of low mounds. Their morphology has been modified by human activity. At number of places these have been leveled by the local people to reclaim land for cultivation.

<u>Aeolian sheet</u>: It comprises of thin cover of Aeolian sand over the Older Alluvium. The original slope and form of the Aeolian sheets has been highly modified by the agricultural activities of the farmers.

Older flood plain: It is the low land area developed below the adjoining alluvial plain, along the Satluj River locally known as Bet area.

Active flood plain: It is the youngest geomorphic unit developed in Holocene times and comprises active flood plains of the river Satluj.

Landforms: The landforms developed include palaeochannel and river bank escarpment, river channel and point bars developed in the meandering course of the Satluj river.

Study area is occupied by two types of soils a) tropical arid brown and b) arid brown soils. Tropical brown soils are found in major parts of the area whereas arid brown soils are found in south western part of the area especially in Lohian and part of Shahkot block. Along the river Satluj, fluvient type of soil is found.

1.7 Land Use/ Land Cover

The main classes are Built Up land, Agricultural land, forestland, Land under non agriculture use, and water body. The landuse pattern of the study area is given in below table Land use pattern of Jalndhar District, Punjab

Type of Land use	Area (hectares)	
1. Total Geographical area	263350	
2. Forest	5600	
3. Land put to non-agricultural use	29350 (11 %)	
4. Net area sown	234000 (89 %)	
5. Gross cropped area	414000	
6. Cropping intensity	177%	
rce: Statistical Abstract, Punjab, 2015)		

1.8 River System and Water Resources

The main river Sutlej flows in southern part of the study area . White bein (East) drains the central parts and flowing in north-west to south-east direction and are ephemeral, draining monsoon water. Drainage and water bodies are shown in Fig.2.

The Bist Doab Canal System is the major source of canal irrigation. The network of Jalandhar branch (irrigate northern and central parts) and Phillaur distributary of Nawashahar branch (Fig.3). In all there are 41 canals having total length of 604.40 km. of which Best Doab canal is 43 km long. With 'Remodeling of Phillaur distributaries system in Nakodar area and Construction of super passage over Nasrala choe near Adampur will increase the capacity of the channel by 20% and to avoid the damages to the crops and adjoining abadies during flood season.

1.9 Agriculture & Irrigation

Agriculture is the main stay of the people of this area and its inhabitants depend heavily for their livelihood on agriculture and its allied occupations.

The study area can legitimately take pride in being one of those districts of Punjab State enjoying the fruits of irrigated agriculture to the maximum extent. Irrigation is an essential input for intensive agriculture and to increase the yields. It is, therefore, necessary to improve the water resources and utilize them properly. Besides, the importance of irrigation to agriculture has become all the more important with the new farm technology.

Net area sown in the district is 234000 ha which constitutes 91% of the total area. Area sown more than once is 181000 bringing the total cropped area (Gross sown area) to 414000 ha. Paddy constitutes main kharif crop whereas the wheat is the main Rabi crop. Perusal of historical data reveals that the paddy cultivation has increased about 85 times since 1950-51 against wheat cultivation, which has increased only 1.7 times. Average yield of paddy cultivation has increased from 806 kg/ha to 3948 kg/ha where as wheat crop average yield has increased from 958 kg/ha to 4325 kg/ha over the period of last 50 years. Thus, it has given further stress on ground water.

Net Irrigated area is 2,34,000 ha and Gross Irrigated Area is 4,14,000 ha and Irrigation intensity is 177%.

a. Canal Water Irrigation

The study area is not under canal command irrigation. There is no irrigation by Sirhind Doab Canal in this area as it acts only as feeder canal. The network of Jalandhar branch and Phillaur distributary of Nawashahar branch have no contribution towards irrigation.

b. Ground Water Irrigation

With a large part of the study area is not under canal command the contribution by tube wells is bound to be greater than the surface water irrigation. Net area irrigated by Tubewells and wells are 2,34,000 ha.

1.10 Industries

The area has industries which generates large quantity of solid as well as liquid waste. High quantity of lead, chromium, manganese and iron content is found in water sample of East White Bein (Tangri, GSI, 2003).

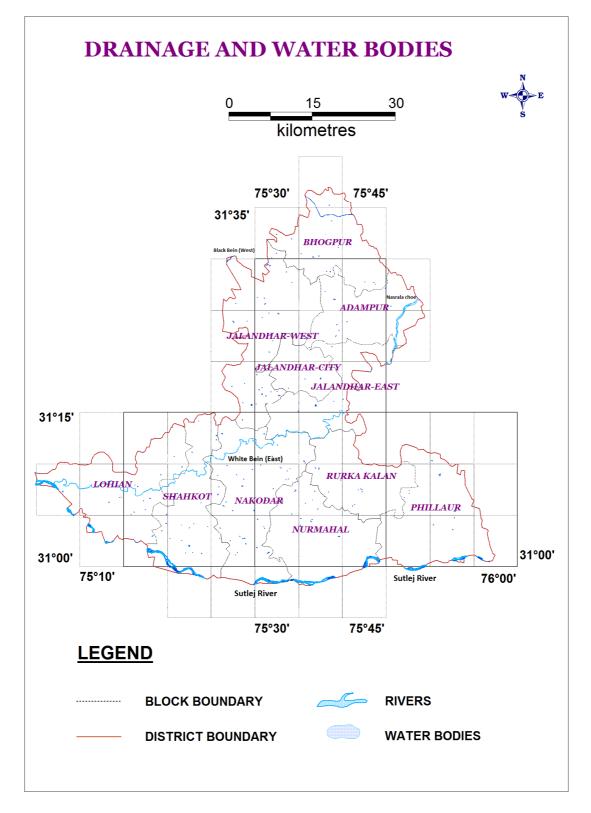
1.11 Quarrying

Unplanned, localized quarrying of river sand from channel bed of the Satluj River is carrying out at number of places. This unplanned quarrying of sand causes the change in river profile. Quarrying of brick clay results in removal of top fertile soil thus rendering large land infertile.

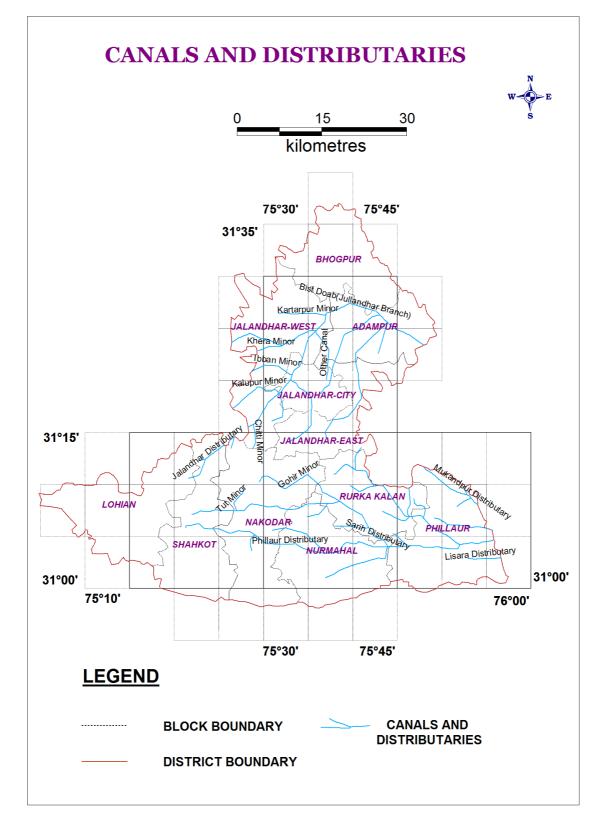
1.12 Water Conservation and Artificial recharge:

Artificial recharge structures may help in arrest decline in which Recharge Trench with injection well structure is the suitable for artificial recharge in all parts of the area due to water level decline trend. Central Ground Water Board (CGWB) has taken up rain water harvesting and artificial recharge studies in the district. Salient features of the projects are enumerated below:

a) Artificial recharge to ground water in Channian village of Jalandhar district (1998-99). The cost of the project was Rs. 9, 89,384/-. The spare canal water and surface runoff generated during monsoon, accumulated in the village ponds was recharged through existing dug well.


b) Pilot project for artificial recharge to ground water from Bist – Doab canal System in Nurmahal area, District Jalandhar (1999-2000). The cost of the project was Rs. 11, 62,000/-. In Nurmahal block water level has declined between 5 to 6 m in last 17 years. The spare water of Phillaur and Sarih distributary during monsoon period was recharged to the ground through 6 vertical shafts. Annual water available for recharge was around 1.62 mcm.

c)Scheme for rainwater harvesting to recharge to ground water in D.C. Office Complex, Jalandhar city (2004-05). The cost of the project was Rs. 4, 80,000/-.


Rooftop rain water harvesting can be adopted in all buildings of the district. Types of recharge structures suitable are; Trenches and injection wells. Injection wells of 40 to 60 m depth can be constructed depending upon the local hydrogeological conditions.

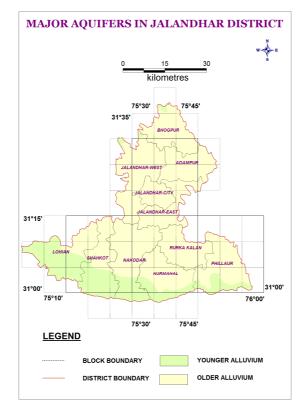
Water conservation methods like change in cropping pattern, change in Irrigation policy, lining of unlined channels, timely plantation of paddy, promotion of sprinkler and drip irrigation etc. may be adopted to overcome the ground water decline in the area.

2.0 DATA COLLECTION AND GENERATION

2.1 Geology and Hydrogeological data:

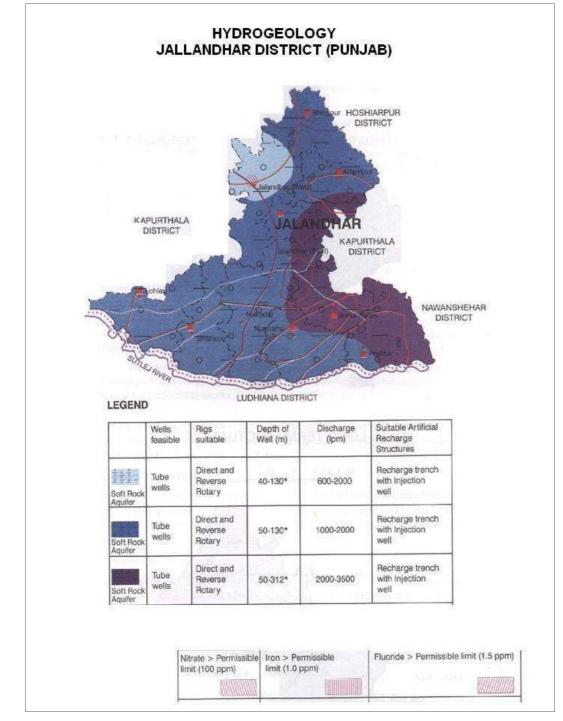
The Study area forms part of the Punjab basin of the Indus super-basin of the vast Indo-Gangetic Plain and is occupied by Quaternary to present day sediments of fluvial as well as Aeolian origin. These Quaternary sediments unconformably overlie the Siwalik Group of rocks, which in turn overlie the crystalline basement. Deep drilling by Oil and Natural Gas Commission at Adampur in the adjoining Jalandhar District has revealed the total thickness of sediments including Lower Siwaliks overlying the Crystalline basement as about 2515m (Datta et.al.1964) The Quaternary deposit can be broadly classified under two distinct categories viz., Fluvial deposits and Aeolian deposits. The former can be further classified into (i) Older Alluvium and (ii) Younger Alluvium. The Aeolian deposits occur as sand dunes and sheets .The generalized stratigraphic sequence of the area is given below,

Age	<u>Lithological Unit</u>	Lithological Characteristics			
Present to Recent	Aeolian Sediments(A2 & A3)	Brownish yellow, micaceous sand with silt, clay and calc. Siliceous concretions Kankar.			
	Newer Alluvium (F3)	Pebbly, fine to coarse, grey, micaceous sand, silt with subordinate amounts of clay & kankar			
	DIASTE	EM			
Recent to Sub-Recent	Newer Alluvium (F2)	Reddish brown silty sand bed with occasional pebbles.			
	DIASTE	EM			
Sub-Recent to	Older Alluvium (F1)	Pebbly, fine to coarse, grey, micaceous			
Pleistocene	Aeolian (A1)	sand, Alternating bands of golden brown,			
		silty clay, sand and silt with Kankar upper			
		horizon is rusty red due to oxidation			
	Basement not	exposed			

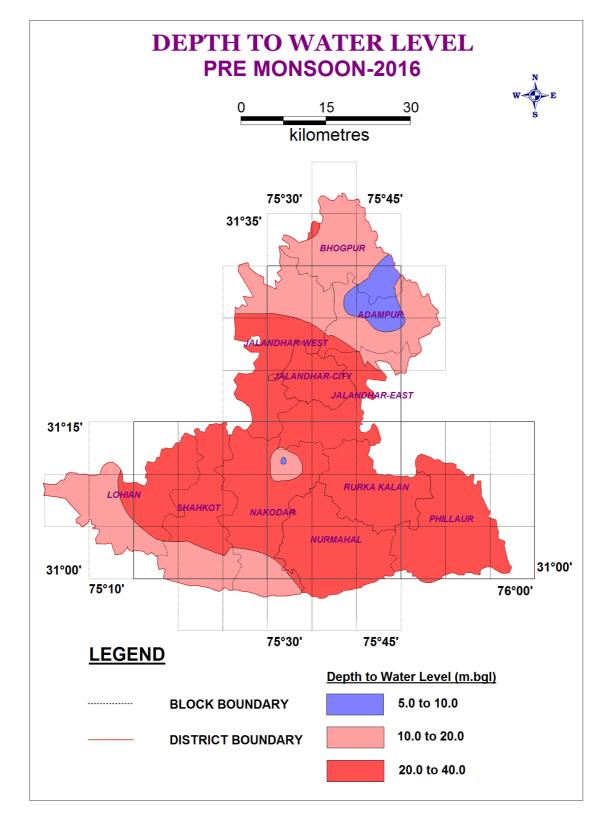

ement not e

Sub surface geological formations comprise of fine to coarse grained sand, silt, clay and kankar (Fig.5). Principle Aquifer is Alluvium and Major aquifer in this area is Older Alluvium (Fig.4). CGWB has carried out ground water exploration up to a depth of 354 meters at villages Malsian, Lallian Kalan and Kheral kalan and depth of 408 m and 419 m at village Pir Dar and Sinder. Under Ground water exploration eleven exploratory wells and twenty two piezometers were constructed in the district. The drilling was carried down to a depth of 419 m and well was constructed down to 382m. The yield of test well was 670 lpm with draw down of 4.75 m. Ten to eleven granular zones were encountered down to the drilled depth. Transmissivity value of the aquifer ranged from 1028 to 5750m²/day. And storativity value ranges from .001 to .006.The hydraulic conductivity value in the district varies from 38 to 90m/day. The value of storage coefficient worked out to be 1.18×10^{-3} to 6.0×10^{-3} . CGWB has revealed the presence of 3 aquifer groups down to a depth of 350m. These aquifer groups comprise of fine to medium grained sand.

Water table elevation ranges from 205 m to 240 m above msl. The ground water flow direction is from north east to south west. The gradient of water table elevation is steeped in north east part and gentle in south west part of the study area. The gradient of ground water table is 1.08 m/km in north east and 0.45 m/km in south west.


2.1.1 Water Level Behavior

Fourteen monitoring stations of Central Ground Water Board (CGWB) (12 Piezometers and 2 Dug wells) and *Forty eight* monitoring stations (52 Piezometers) of State government departments represent first aquifer. *Seven* monitoring stations of CGWB (7 Piezometers) and *four* monitoring stations (4 Piezometers) of State government departments represent Second aquifer Third aquifer is represented by 12 (piezometers) monitoring station of CGWB . Depth to water level in the area ranges from 7.25 to 35.33 m bgl during pre-monsoon period (Fig.6) and 6.85 to 34.50 m bgl during post monsoon period (Fig.7). The major parts (Central ,Western, Eastern and Northern) water levels are >20 m, northern and southern parts having water levels are in the range of 10 to 20 m, in the north eastern part in a portion where, water levels are <10 m bgl. Seasonal water level fluctuation shows a rise and fall in the range of 2.10 to (-) 2.22 meters respectively during the year 2016 (Annexure-I). Net change in water levels Long-term net change of water levels indicates a general decline (negative change) in the large part of the district and it is up to 8.18m. The maximum fall is observed in parts of Nakodar and Shahkot blocks.



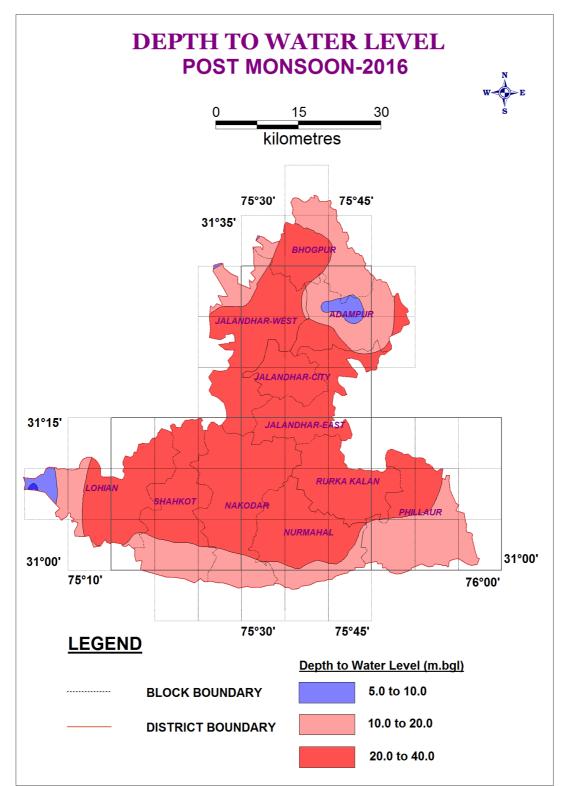

Fig.4: Major Aquifer

Fig.5: Hydrogeology of Jalandhar District

2.2 Water Quality Data:

Ground water quality of shallow aquifer (Aquifer-I) is assessed on the basis of chemical data of National Hydrograph Network stations i.e. NHNS monitored during Pre monsoon period. Fifteen groundwater samples are collected and analyzed during NHNS, 2016, given in Annexure-II. The chemical quality of deeper aquifers has to be assessed during ongoing groundwater exploration programme under NAQUIM. An Isotope study having been carried out in the district under Hydrology Project Phase-II by National Institute of Hydrology (NIH) for validation of the aquifer groups, mechanism of recharge to aquifers and for the age determination of the aquifer water.

Chemical data of ground water from shallow aquifer indicates that ground water is alkaline and fresh. The electrical conductivity (EC) values ranges from 300 to 1120 μ S/cm at 25°C. The EC values more than 1000 μ S/cm have observed in Lallian kalan (1120 μ S/cm at 25°C) and where the EC value less than 1000 μ S/cm are at all locations respectively. Salinity, chloride, fluoride and nitrate are the important parameters that are normally considered for evaluating the suitability of ground water for drinking uses. Generally it is suitable for drinking purposes as chemical parameters are within the permissible limits for safe drinking water set by Bureau of Indian Standard (BIS, 2012) except for iron at few places. The chloride concentration in ground water with iron concentration above permissible limit 1.5 mg/l are found mainly in Kharal kalan (8.62) ,Adampur (6.96), and Nakodar (3.87) whereas Arsenic found within permissible limit in all sampling locations . Nitrate values above permissible limit 45 mg/l are found mainly in Phillaur (55) and Allawalpur (45).

Alkali hazards of irrigation ground waters are estimated through the computation of Residual Sodium Carbonate (RSC), also known as Eaton's Index. Classification based on RSC indicates that 1% of the waters are unsafe for irrigational use. Waters with RSC value <1.25 meq/L are safe for irrigational uses, RSC between 1.25 and 2.5 are marginal and waters with RSC value >2.5 meq/L are unsafe. RSC of ground waters are found to vary from (-2.60) to 3.08 meq/l. Analysing mechanism and equipments used for chemical analysis are given in table-1.

S. No.	Parameters	Analytical Methods		
А.		mical analysis		
	pH Conductivity (EC) Carbonate & bicarbonate (CO ₃ ,HCO ₃) Chloride (Cl) Sulphate (SO ₄) Nitrate (NO ₃) Fluoride (F) Total hardness (T.H) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	Electrometric method Electrical conductivity method Titrimetric method Argenotometric method Nephloturbidity method Spectro-photometric method Ion metric method EDTA-Titri metric method EDTA-Titri metric method By difference Flame photometric method		

Table-1: Analytical methods and equipments used for chemical analysis.

Aquifer Mapping and Management Plan of Jalandhar District, Punjab State

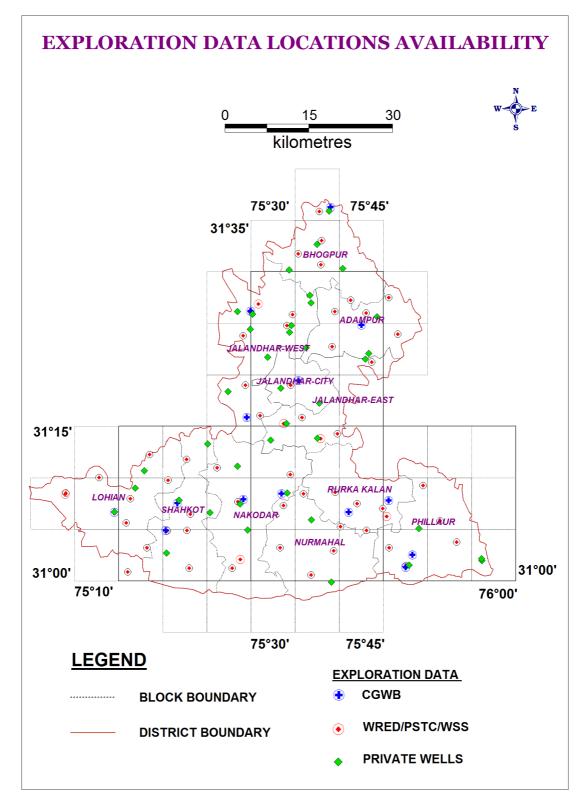
	Total Dissolved Solids (TDS)	Flame photometric method Gravimetric
В.	Trace element	s/Heavy metals
	Copper (Cu) Cadmium (Cd) Chromium (Cr) Lead (Pb) Manganese (Mn) Nickel (Ni) Cyanide (Cn) Iron (Fe)	Digestion followed by Atomic Absorption Spectrophotometer (AAS) Spectrophotometer method

2.3 Geophysical data:

Surface and Subsurface geophysical investigations have been carried out in alluvial tracts over parts of Jalandhar district. The aim of the electrical sounding (VES) has to delineate fresh water - saline water interface laterally as well as vertically. The borehole loggings have been conducted in 18 exploratory wells to delineate the granular zones upto depth of 410m.

2.4 Exploratory drilling State - Data Availability:

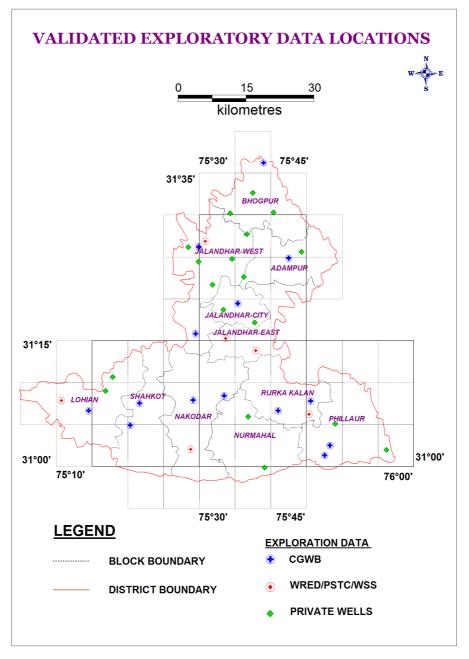
The Lithologs of Exploratory Well/ Observation well/ Piezometer/ productive wells of CGWB, Punjab State Tubewell Corporation (PSTC) now as Punjab Water Resources Development and Management (PWRDM), WRED (Water Resources and Environment Directorate), Water Supply and Sanitation (WSS) and Private Wells have been collected and those supported electrical logs have been validated for aquifer map preparation. The details are given in below table.


Data Availability of Exploration Wells of Jalandhar district

SI.No	Source of data		Depth Range (m)				
		< 100	100-200	200-300	>300		
1	CGWB	11	3	6	12	32	
2	WRED/WSS/PSTC	46	4	0	0	50	
3	PRIVATE WELLS	10	27	3	11	51	
Total		67	34	9	23	133	

2.5 Spatial Data Distribution

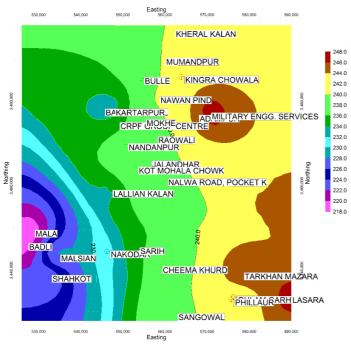
The actual data of all the wells in the area are plotted on the map of 1:50000 scale with 5'X5'grid (9 x 9) km (Fig. 8). Perusal of table shows that majority of tube wells falls in the Aquifer-I and the depth more than 300m. The grids/ formations devoid of groundwater exploration are identified as data gaps and these are to be filled by data generation.


Fig.8: Locations of exploration data availability

3.0 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

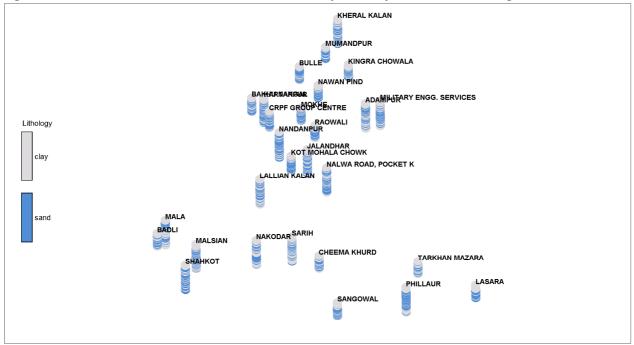
All the available data have been validated for consideration to generate aquifer map. The deepest well in each quadrant is selected and plotted on the map of 1.50000 scale with 5'X5'grid (9 x 9) km and is shown in Fig.9.

Fig.9: Locations of validated exploration data



The optimized wells of CGWB, WRED (Water Resources and Environment Directorate), Water Supply and Sanitation (WSS) and private wells used to prepare the elevation or collar elevation map to identify the topographic variations on the ground surface so that it can give the synoptic picture of gradient variations in the water levels. The topographic elevation values

Roopesh G.K, Scientist-B


Aquifer Mapping and Management Plan of Jalandhar District, Punjab State

have been plotted to prepare the elevation contour map and is in Fig.10. The locations of validated wells in quadrant and toposheet wise distributions in respective blocks are shown in Annexure-III. Three dimensional locations of validated exploratory wells with litholog are given in Fig.11.

Fig.10: Elevation contour map

Fig.11: Three dimensional locations of validated exploratory wells with litholog

3.1 Sub Surface Disposition

3.1.1 Previous Work:

Ground water at shallow depth occurs under unconfined to semi confined and confined conditions in deeper aquifers.

The area is underlain by formations of Sub- recent to Quaternary age comprising of alluvium deposits belonging to vast Indus alluvial plains. Sub surface geological formations comprise of sand, gravel, pebbles, Kankar and clay. Ground water is fresh at all levels in the district. Central Ground Water Board has drilled 11 exploratory boreholes along with equal no of observation wells besides 22 piezometers to delineate and determine potential aquifer zones, evaluation of aquifer characteristics etc. Ground water exploration undertaken by CGWB has revealed the presence of 3 aquifer groups down to a depth of 419m. These aquifer groups comprise of fine to medium grained sand. The first granular zone forms the water table aquifer and occurs upto 115 m below ground level and below that clay layer starts getting thickened about 12 -34 m depth and is considered as Unconfined Aquifer. The second aquifer occurs between 130 and 195 m depth, the third exist between 215 and 333 m depth down wards and behaves as semi-confined to confined aquifer and consisting of thin sand layers alternating with thicker clay layers. Overall flow of ground water is towards south to south-west direction. Total thickness of the alluvium is more because bedrock has not been encountered up to 419 m depth in the district.

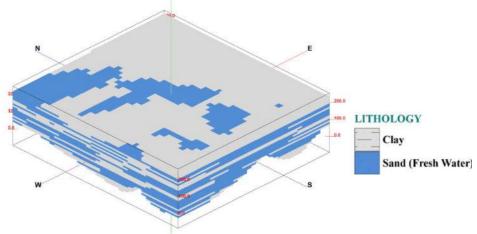
Aquifer Group	Discharge 'Q' (Ipm)	Transmissivity 'T' (m ² /day)	Storativity
1 st Group	5670	5750	6 x10 ⁻³
II nd Group			
II nd Group	1408-2340	480-931	10.05x10 ⁻⁴
			- 16.39 x10 ⁻⁵
III rd Group	2986	1080 - 1709	5.08 x10 ⁻⁴

Table- 2: The Aquifer Parameters of Jalandhar District

The details of validated data on exploration wells is given in below table **Data Validation of Exploration Wells of Jalandhar District**

SI.No	Source of data Depth Range (m)				Total	
		< 100	100-200	200-300	>300	
1	CGWB	0	0	1	10	11
2	WRED/WSS/PSTC	4	2	0	0	6
3	PRIVATE WELLS	0	24	3	10	37
Total		4	26	4	20	54

3.1.2 Present NAQUIM Study:


To understand the sub surface disposition in the study area, geological sections and fence diagram have been prepared by synthesizing the various sub-surface sections on the basis of study of the lithological logs and electrical logs of boreholes drilled by CGWB, WRED and Private Agencies using the RockWorks15 software and a 3D lithological model has been prepared (Fig.12). The 2D lithology sections and 3D lithological fence diagram has been

Aquifer Mapping and Management Plan of Jalandhar District, Punjab State

prepared using lithology model and are shown in Fig.13a, b,c & 14 respectively. The aquifers are composed of fine to medium sand with clay intercalations. The granular zones are extensive. (Annexure IV).

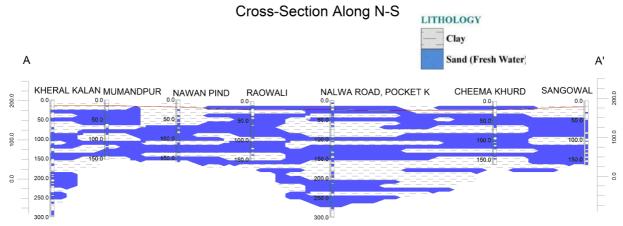

Based on geophysical borehole logging and use of resistivity profiling followed by the depth soundings at few selected places, for the present study and will be referred from time to time as it is obviously the higher resistivity beds represents freshwater zone in contrast in low resistive beds indicating saline groundwater zone. This area is totally represents freshwater zones.

Fig.12: 3-Dimension Lithological Model

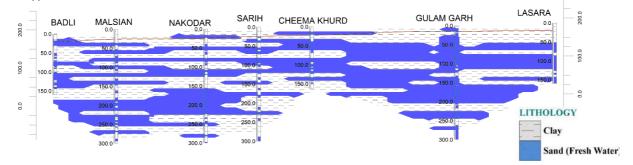
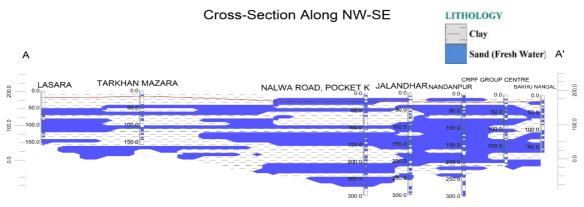
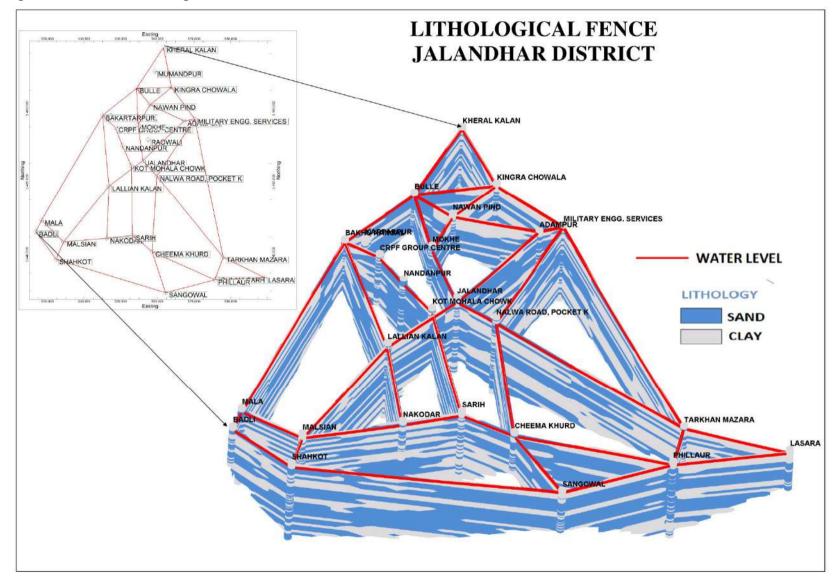

The major aquifer system of the district is quaternary alluvial deposits of Sutlej basin, having older alluvium and newer alluvium mainly comprises of sand, silt and clay admixed with kankars. The top surface layer and soil is mainly silty clay. The lithology shows the variation in lithology thickness i.e. thick clay layers inter bedded with sand except at few locations in Sutlej river basin. In north- eastern parts of the district major lithological formations are characterized by layers of fine to coarse sands interbedded with thick layers of clay.

Fig.13a,b,c: 2-Dimension Lithological Sections



On the basis of lithologs geological sections has been drawn along N-S direction, indicates that surface soil of 4 to 15 m thickness is an admixture of clay with intercalation of sand lenses. There are 5 well defined granular zones up to 50 - 250 m depth separated by laterally extensive

clay layers 5 - 20 m thick. The top sand beds are fine to medium grained while the lower ones are medium to coarse in texture. The overall lithological section shows the variation in lithology thickness i.e. thin clay layers inter bedded with sand except at location Nawanpind where thick clay layers were identified at top depth up to 30m.

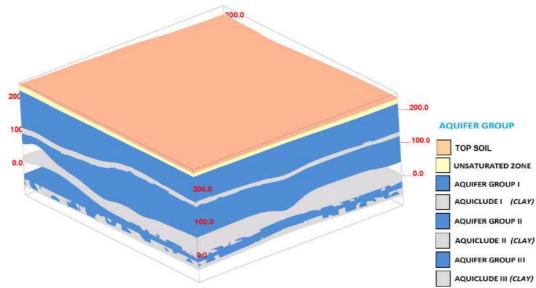

Study of the Sutlej River lithological section indicates that surface soil of 10 to 35m thickness is an admixture of clay and sand. Thicknesses of clay beds are prominent at locations Lasara, Sarih and Malsian. There are 3 well defined granular zones up to 300 m depth separated by laterally extensive clay layers 5 - 20 m thick. The third clay bed occurring at 130 m is alternating with equally extensive thin sand layers. The top sand beds are fine to medium grained while the lower ones are medium to coarse in texture. The lithology shows the variation in thickness i.e. thin clay layers inter bedded with sand except at location Gulamgarh , Cheema & Lasara where thick clay layers were interbedded with sand.

On the basis of lithologs geological sections has been drawn along NW-SE direction, indicates that surface soil of 4 to 40 m thickness is an admixture of clay with intercalation of sand lenses. There are 4 well defined granular zones up to 50 - 270 m depth separated by laterally extensive clay layers 5 - 20 m thick. Thickness of clay bed is increases towards NW direction and Sand horizons are more prominent in South Western part.

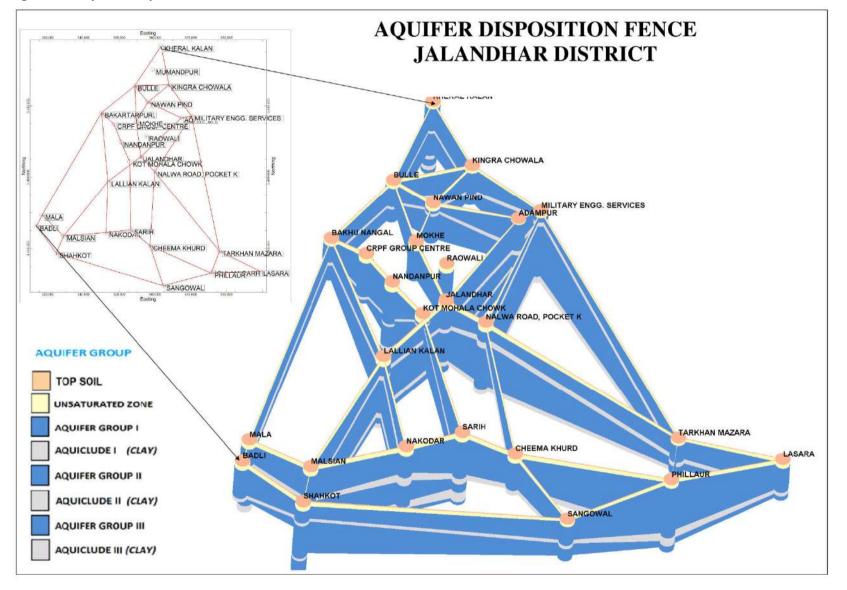
The geometry and nature of aquifers provide the basic parameters for determining occurrence and movement of ground water. The lithological disposition of the area is given in Annexure-V. The 3D lithological fence will represent the much more clear representation of sub-surface lithology in space.

Fig.14: 3-Dimension Lithological Fence

3.2 Aquifer Geometry:


The aquifer group embodies a number of granular layers alternating with thick or thin clay lenses. A few clay layers intervening these aquifer groups pinch out against the sand zones at a few places. The marker horizons are traced all over the area by connecting their tops and bottoms. Sandy clay layer occurs at the surface covering the unconfined aquifer which is in turn underlain by prominent clay zone. It is composed of mainly of medium sand with thin beds of fine sand.

The first aquifer is water table aquifer and extends all over the area is composed mainly of less coarse sediments as compared to other groups. This aquifer is overlain by a thin clay layer of about 1 to 4 m thick and is also underlain by clayey group which is about more than 12 m depth. Aquifer Group -I extends upto 113 m of depth and below that clay layer starts getting thickened about 12-35 m separating Aquifer Group -II ranges from 143 m to 215 m. Aquifer Group -III exists in this area extends from 246m to 300m separated by highly thick clay zones of 12 to 30 m thickness (Annexure V).


Based on the same criteria, to know the broad picture of the aquifer disposition, interrelationship of granular zones, nature, geometry and extension of aquifers in the Jalandhar district, the aquifer grouping has been done using the sub-surface lithology and a threedimensional aquifer model has been prepared shown in Fig.15. Aquifer disposition 3D fence diagram is also prepared using the aquifer model and are shown in Fig.16. The aquifer grouping, group thickness and granular zones encountered in the groups are given in table below

Aquifer Group	Avg. Range From To		- v	hickness	Avg. Granular Zones		
			Min	Max	Min	Max	
Aquifer I	20	113	41	162	38	97	
Aquifer II	143	215	26	135	20	91	
Aquifer III	246	300	21	88	10	46	

Fig.15: 3D Aquifer disposition Model

Fig.16: 3D Aquifer Disposition Fence

4.0 GROUND WATER RESOURCES

Ground water resource estimation of the area have been carried out by taking Dynamic and In-storage resources of unconfined aquifer and confined aquifers present upto 300m depth. The assessment of dynamic ground water Resources of the study area have been carried out jointly by CGWB and Water Resources and Environment Directorate (WRED), Department of Irrigation, Punjab on the basis of Ground Water Estimation Committee (1997) methodology.

The occurrence of potential aquifers (productive granular zones) upto 300 m depth has been demarcated on basis of aquifer wise subsurface mapping. The total saturated thickness of granular zones was derived from the exploratory borehole data of a particular block. The granular zones occurring below the zone of water level fluctuation up to the first confining layer has been considered as static unconfined zone. The ground water resource of this zone has been calculated considering 12% specific yield of the formation. The specific yield value for the unconfined aquifer has been taken as 60% of 0.12 which comes as 0.072 whereas for the confined aquifer, the storativity value has been considered. Since the specific yield is likely to reduce with increase in depth due to compaction of overlying sediments.

Hence, the major data elements considered in this estimation are thickness of granular zones, specific yield/storativity, and area of both fresh water and saline/brackish water. It has been observed that in some of the blocks sufficient data on probable occurrence of granular zones was not available. In those cases, the existing exploratory data of adjoining block/district has been either extrapolated or interpolated to derive such parameters required for estimation. This assessment of total groundwater resources has been computed based on the available data with CGWB & WRED, Department of Irrigation, and Punjab.

4.1 Unconfined Aquifers

a. Dynamic Resources:

Block-wise ground water resource potential of the district has been assessed as per GEC-97 as on 31st March 2013. The primary source of recharge in the area is the rainfall. The ground water development in all the blocks has exceeded the available recharge, thus all the blocks have been categorized as over exploited. Stage of ground water development in the Jalandhar district has been assessed to be 209%. The details are explained in below Table-3. **Table-3: Dynamic Ground Water Resource & Development Potential (31.03.2013) in mcm**

					pinent i e		•••=•=•,	
Assessment Unit/	Net	Existing	Existing	Existing	Provision	Net Ground	Stage of	Category
Block	Annual	Gross	Gross	Gross	for	Water	Ground	
	Ground	Ground	Ground	Ground	domestic,	Availability	Water	
	Water	Water	Water Draft	Water	and	for future	Development	
	Availability	Draft for	for domestic	Draft for	industrial	irrigation	{(13/10) *	
		irrigation	and	All uses	requirement	development	100} (%)	
			industrial	(11+12)	supply to	(10-11-14)		
			water supply		2025			
Adampur	112.85	199.73	2.44	202.17	3.04	-89.92	179	Over Exploited
Bhogpur	105.91	260.78	1.79	262.57	2.22	-157.10	248	Over Exploited
Rurka Kalan	105.46	209.97	2.08	212.06	2.62	-107.13	201	Over Exploited

TOTAL	1304.10	2645.05	74.25	2719.30	94.04	-1434.99	209	Over Exploited
Shahkot	81.36	194.75	5.58	200.33	7.09	-120.49	246	Over Exploited
Phillaur	176.20	306.22	12.59	318.81	15.84	-145.86	181	Over Exploited
Nurmahal	157.07	288.73	1.96	290.69	2.47	-134.13	185	Over Exploited
Nakodar	190.66	451.38	7.47	458.85	9.44	-270.17	241	Over Exploited
Lohian	101.82	215.01	1.46	216.47	1.82	-115.02	213	Over Exploited
Jalandhar-West	177.40	314.50	9.74	324.24	12.38	-149.49	183	Over Exploited
Jalandhar-East	95.38	203.96	29.15	233.10	37.11	-145.69	244	Over Exploited

b. In-storage Ground Water Resources

As per revised guidelines recommended by the Central Level Expert Group on groundwater resources assessment, the resources are separately considered as dynamic and instorage unconfined. In case of alluvial area, the in-storage resources of unconfined aquifer have been computed based on specific yield of the aquifer as detailed below.

In-storage		Thickness of the aquifer				
Ground Water		(granular/productive zone)				
resources	=	below the zone of water level	х	Sp. Yield of	х	Areal extent
(Unconfined		fluctuation down to the bottom		the aquifer		of the
Aquifer)		layer of unconfined aquifer				aquifer

4.2 Confined Aquifer

The availability of ground water resources in confined aquifer have two components: Storage under pressure (using Storativity concept) and Storage under desaturated (gravity drainage) condition (using Specific Yield concept) (source: Assessment of Ground Water Resources; A Review of International Practices, 2014) and is shown in Fig 17. However, since ground water withdrawals from confined aquifer are known to have serious environmental degradation effects, the preliminary assessment of ground water resources in confined aquifer is restricted to the estimation of ground water storage under pressure conditions only but here the storage under de-saturation is also computed.

i) Storativity	Concep	ot:				
In-storage		Thickness of the water		Storativity		Areal extent
Ground Water	=	column in Peizometer of	×	of the	×	of the
resources		particular confined aquifer		confined		confined
(within the		up to the top layer of same		aquifer		aquifer
Peizometer)		confined aquifer				group

ii)Specific Yield C	once	pt:				
In-storage Ground Water resources (within the aquifer thickness)	=	Thickness of the confined aquifer (granular/ productive zone) down to the bottom layer of confined aquifer or exploitable depth of 300 m	×	Sp. Yield of the aquifer	×	Areal extent of the confined aquifer group

Preliminary assessment of the ground water resources in confined aquifer does not imply that the assessed resource is available for exploitation. The objective of this exercise is to have an overview of the ground water regime in the particular confined aquifer. It should be kept in mind that any significant ground water withdrawal from confined aquifer may invoke serious environmental degradation problem. Therefore, in case the preliminary assessment reveals that ground water is being withdrawn in significant quantity for any confined aquifer, that particular aquifer should be identified for detailed assessment using numerical modeling approach. The Block Wise In storage Ground Water Resources in Unconfined Aquifer –I, Confined Aquifer-II, III and total Groundwater resources (Alluvium) is given in Tables 4,5,6 &7 respectively.

Total Availability of Ground Water Resources = Dynamic Resources + In-storage Resources

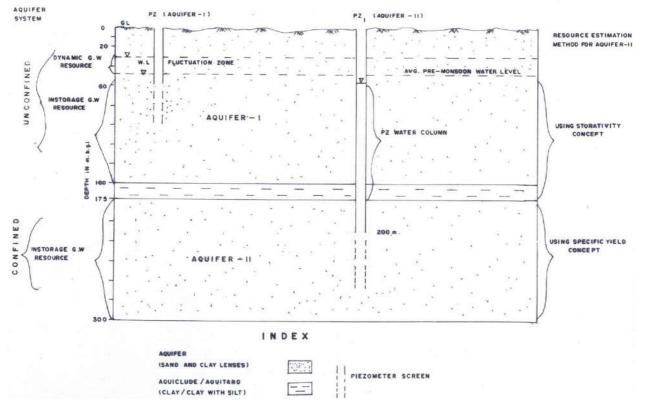


Fig 17: Concept for Resource Estimation in Unconfined and Confined Aquifer System

		BLO	CK WISE IN	STORAGE GR		R RESOURCE	S IN UNCC	NFINED AQU	JIFER –I		
S N.	Name of Assessment Unit	Total		ent (sq.km)		Average Pre-	Depth to	Total Thickness	Thickness of the	Average Specific	In-Storage Ground Water
Ν.	Assessment onit	Geograph ical Area	Total	Assessment Area Fotal Fresh Bra Water S V		monsoon Water Level (m bgl)	bottom of Aquifer Group I (m bgl)	of formation below Pre- monsoon Water Level (m) (9-8)	Granular Zone in AQUIFER GROUP-I below Pre- monsoon WL (m)	Yield	Resources [(5)*(10)*(11)*] FRESH (mcm)
1	2	3	4	5	6	7	8	9	10	11	12
1	Adampur	204.2	204.2	204.2	0	11.46	131	119.54	79	0.072	1161
2	Bhogpur	178	178	178	0	12.96	111	98.04	58	0.072	743
3	Rurka Kalan	191.8	191.8	191.8	0	17.52	104	86.48	65	0.072	898
4	Jalandhar-East	256.2	256.2	256.2	0	28.04	111	82.96	50	0.072	922
5	Jalandhar-West	338.9	338.9	338.9	0	15.08	156	140.92	60	0.072	1464
6	Lohian	280.3	280.3	280.3	0	13.13	96	82.87	65	0.072	1312
7	Nakodar	353.3	353.3	353.3	0	26.64	160	133.36	64	0.072	1628
8	Nur Mahal	319.8	319.8	319.8	0	18.92	143	124.08	62	0.072	1428
9	Phillaur	270.3	270.3	270.3	0	14.62	160	145.38	87	0.072	1693
10	Shahkot	240.7	240.7	240.7	0	26.91	147	120.09	75	0.072	1300
	Dist.Total (mcm)	2633.5	2633.5	2633.5	0						12549
	Dist.Total (bcm)										12.55

Table-4: Block Wise In storage Ground Water Resources in Unconfined Aquifer –I (Alluvium)

bcm: billion cubic metre mcm: million cubic metre

	BLOCK WISE INSTORAGE GROUND WATER RESOURCES – CONFINED (AQUIFER II)														
Sr.	Name of	Areal	extent (sq.	.km)	Тор	Depth	Piezo	Thicknes	Total	Thicknes	Averag	Average	In-Storage	In-Storage	Total in-
No.	Assessment Unit	Total Geograp hical Area	Assessm Total	ent Area Fresh Water	Aqu ifer II (m bgl)	to botto m of Aquife r II (m bgl)	- metri c Head (m bgl)	s of piezo- metric level(m bgl)	Thicknes s of confined aquifer down to explored depth (m) (9-8)	s of the Granular Zone in confined aquifer down to explored depth (m)	e Specific Yield	value of Storativit y	Ground Water Resources (Specific yield concept) [(5)*(11)*(12)]	Ground Water Resources (Storativity concept) [(5)*(9)*(13)]	Storage Ground Water Resource s (mcm) (14+15)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Adampur	204.2	204.2	204.2	143	198	15.2	182.8	55	35	0.072	0.000105	515	3.92	519
2	Bhogpur	178	178	178	130	220	20	200	90	40	0.072	0.000105	513	3.74	516
3	Rurka Kalan	191.8	191.8	191.8	120	170	21	149	50	35	0.072	0.0006	483	17.15	500
4	Jalandhar- East	256.2	256.2	256.2	140	250	30	220	110	90	0.072	0.000105	1660	5.92	1666
5	Jalandhar- West	338.9	338.9	338.9	170	268	19	249	98	82	0.072	0.000105	2001	8.86	2010
6	Lohian	280.3	280.3	280.3	105	180	16	164	75	30	0.072	0.000508	605	23.35	629
7	Nakodar	353.3	353.3	353.3	170	250	28	222	80	67	0.072	0.000121	1704	9.49	1714
8	Nur Mahal	319.8	319.8	319.8	112	186	21	165	74	26	0.072	0.000121	599	5.57	604
9	Phillaur	270.3	270.3	270.3	108	250	18	232	142	82	0.072	0.0006	1596	37.63	1633
10	Shahkot	240.7	240.7	240.7	90	270	30	240	180	70	0.072	0.000121	1213	6.99	1220
	.Total (mcm)	2633.5	2633.5	2633.5									10889	123.43	110.12
Dist.	.Total (bcm)												10.89	1.23	11.01

Table-5: Block Wise In storage Ground Water Resources – Confined (Aquifer II)

Table-6: Block Wise In storage Ground Water Resources – Confined (Aquifer III) BLOCK WISE INSTORAGE GROUND WATER RESOURCES – CONFINED (AQUIFER III)

Sr.	Name of	Areal	extent (sq	.km)	Dept	Dept	Thicknes	Total	Thicknes	Averag	Average	In-Storage	In-Storage	Total in-
No.	Assessment Unit	Total Geograp hical Area	Assessm Total	ent Area Fresh Water	h to Top Aquif er III (m bgl)	h to botto m of Aquif er III (m bgl)	s of piezo- metric level(m bgl)	Thicknes s of confined aquifer down to explored depth (m) (9-8)	s of the Granular Zone in confined aquifer down to explored depth (m)	e Specific Yield	value of Storativit Y	Ground Water Resources (Specific yield concept) [(5)*(10)*(11)]	Ground Water Resources (Storativity concept) [(5)*(8)*(12)]	Storage Ground Water Resource s (mcm) (13+14)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Adampur	204.2	204.2	204.2	214	300	190.8	86	40	0.072	0.000508	588	19.8	608
2	Bhogpur	178	178	178	237	300	213.8	63	21	0.072	0.000508	269	19.3	288
3	Rurka Kalan	191.8	191.8	191.8	215	300	191.8	85	30	0.072	0.000508	414	18.7	433
4	Jalandhar-East	256.2	256.2	256.2	274	300	250.8	26	16	0.072	0.000508	295	32.6	328
5	Jalandhar-West	338.9	338.9	338.9	256	300	232.8	44	18	0.072	0.000508	439	40.1	479
6	Lohian	280.3	280.3	280.3	205	300	156.8	95	50	0.072	0.000508	1009	22.3	1031
7	Nakodar	353.3	353.3	353.3	279	300	255.8	21	16	0.072	0.000508	407	45.9	453
8	Nur Mahal	319.8	319.8	319.8	210	300	186.8	90	30	0.072	0.000508	691	30.3	721
9	Phillaur	270.3	270.3	270.3	262	300	238.8	38	25	0.072	0.000508	487	32.8	519
10	Shahkot	240.7	240.7	240.7	243	300	219.8	57	27	0.072	0.000508	468	26.9	495
Dis	st.Total (mcm)	2633.5	2633.5	2633.5								5067	289	5356
Dis	t.Total (bcm)											5.07	0.29	5.36

	AVAILABILITY OF TOTAL FRESH GROUNDWATER RESOURCES IN JALANDHAR DISTRICT										
Sl.No	Block	Volume of	Dynamic	In-storage	Fresh	Fresh In-	Fresh In-	Total			
		Unsaturated	Groundwater	Groundwater	Groundwater	storage	storage	Availability			
		Zone up to	Resources	Resources	Resources	Groundwater	Groundwater	of Fresh			
		Pre-	(2013)	AQUIFER-I	AQUIFER-I	Resources	Resources	Groundwater			
		monsoon	AQUIFER-I		[(4)+(5)]	AQUIFER-II	AQUIFER-III	Resources			
		WL						[(6)+(7)+(8)]			
		(mcm)									
								mcm			
1	2	3	4	5	6	7	8	10			
1	Adampur	34	112.85	1161	1274.3	519	608	2400.7			
2	Bhogpur	32	105.91	743	849.2	516	288	1654.1			
3	Rurka	48	105.46	898	1003.1	500	433	1936.5			
	Kalan										
4	Jalandhar-	76	95.38	922	1017.7	1666	328	3011.6			
	East										
5	Jalandhar-	91	177.40	1464	1641.4	2010	479	4130.5			
	West										
6	Lohian	77	101.82	1312	1413.6	629	1031	3073.8			
7	Nakodar	102	190.66	1628	1818.7	1714	453	3985.4			
8	Nur Mahal	81	157.07	1428	1584.7	605	721	2910.8			
9	Phillaur	66	176.20	1693	1869.4	1633	519	4022.2			
10	Shahkot	66	81.36	1300	1381.1	1220	495	3096.1			
Dist.	Total (mcm)	672	1304.10	12549	13853.2	11012	5356	30221.7			
Dist.	Total (bcm)	0.67	1.30	12.55	13.853	11.01	5.36	30.22			

Table-7: Block Wise Total Availabilit	of Groundwater Persources u	nta 200 m Danth	and Volume of Unceturated Zone
Table-7: Block wise Total Availability	y of Groundwater Resources u	pto 300 m Depth	and volume of Unsaturated Zone

5.0 GROUND WATER ISSUES

5.1 Ground Water Depletion

The study area is famous for its paddy and non paddy cultivation. The quality of ground water in the area is suitable for irrigation and drinking purposes, therefore, the ground water is constantly being pumped for the irrigation due to its easy access through tube wells at shallow and deep depths and they are the main source of irrigation. This will lead to its deepening of ground water levels in all blocks of Jalandhar District as the recharge of the groundwater through rainfall and other sources are less than the overall extraction. The hydrographs also shows the declining water level trend over the years in the district (Fig.17 & 18) and is categorized as over-exploited. This declining water table trend, if not checked, would assume an alarming situation in the near future affecting agricultural production and thus economy. Ground Water Recharge and Conservation may be carried out in these areas to overcome the depletion.

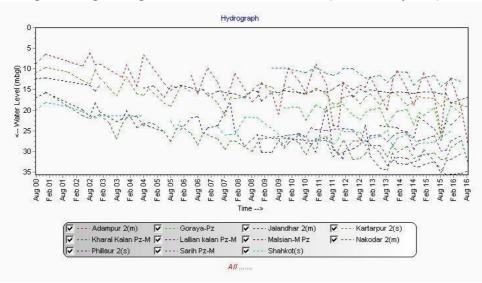
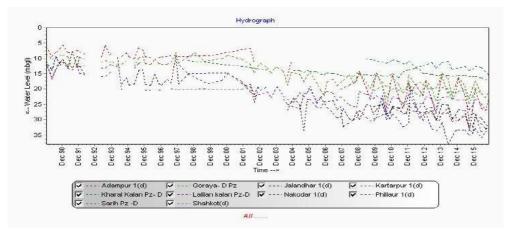



Fig.17: Long term ground water table variation (Shallow Aquifer)

Fig.18: Long term ground water table variation (Deeper Aquifer)

5.2 Ground Water Quality

The ground water of the study area is alkaline in nature. Ground water in the area is fresh. Ground water with iron concentration above permissible limit 1.5 mg/l is found mainly in Kharal kalan (8.62), Adampur (6.96) & Nakodar (3.83).Nitrate above permissible limit 45 mg/l are observed in Phillaur (55) & Alawalpur (45). Flouride above permissible limit 1 mg/l are observed in Sarih (1.2) and Phillaur (1.0) as per NHNS sampling, 2015. There is growing concern on deterioration of ground water quality due to geogenic and anthropogenic activities.

5.3 Ground Water Irrigation Scenario

As per the data available from minor irrigation census 2006-07, the detailed number of shallow, deep, tube wells, lined, unlined water distribution system, land holdings of wells are given in Table-8,9 &10.

Type of Tube well (TW)	Marginal (0-1 ha)	Small (1-2 ha)	Semi- Medium (2-4 ha)	Medium (4-10ha)	Big (>10ha)	Owned by other than individual farmers	Total
Shallow TW	1229	4886	15560	20483	5762	80	48000
Deep TW	1096	3888	11157	10264	3907	0	30312
Total	2325	8774	26717	30747	9669	80	78312

Table-8: Distribution of Tube wells According to Well Owner's land holding Size

Table-9: Distribution of Tube wells According to Depth

Depth of Tubewells in metres									
Depth range	0-20 m	20-40 m	40-60 m	60-70 m	70-90m	90-150m	>150 m	Total depth Range 0-150m	
Tubewells	712	6095	10229	30957	19911	10294	114	78312	
Tubewells (%)	0.90	7.78	13.06	39.53	25.42	13.14	0.14		

Table-10: System of Ground water distribution device

	Open Water Channels						
Lined/pucca	Unlined/kutcha	Underground Pipe	Others	Total			
2280	63818	12154	60	78312			

6.0 MANAGEMENT STRATEGIES AND AQUIFER MANAGEMENT PLAN

Aquifer mapping is leads to groundwater management plans to be implemented by including demand side-management and Ground Water Use Efficiency.

An outline of the Aquifer Management Plan for each block is given in Part-II. This includes details regarding population, rainfall, average annual rainfall, agriculture and irrigation, water bodies, ground water resource availability, ground water extraction and water level behavior. Aquifer disposition and various cross sections have also been given. Ground water resources, extraction and other issues including ground water resource enhancement and demand side innervations have been given.

Artificial recharge plan is less feasible in the Jalandhar District due to very low availability of volume of surplus water (26.54 mcm) (Table-11a). Another focus has been given to minimize the gross draft by enhancing ground water use efficiency in irrigation system after replacing the water distribution system from unlined/kutcha channel to Under Ground Pipeline System (UGPS) in over exploited blocks of the district.

6.1 Scope of Implementation

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the central or state govt. like MANERGA, IWSP, PMKSY (Prime Minister Krishi Sinchai Yojna), NABARD funded schemes, Urban Development schemes, departmentally funded projects etc. may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, engineering Collages, Academic and Research Institution, NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

6.2 Potential of Enhancing the Ground Water Use Efficiency

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced in the state of Punjab, particularly in overexploited blocks.

There are around 63818 (out of 78312) tube wells (81.49 %) operated by farmers for irrigation through unlined/Kutcha open channel system in study area (Table-10) where water from the tube well is discharge to the agricultural field. In this process, huge (around 25 %) (RKVY, 2015) quantity of ground water is wasted in soil moisture and evaporation losses.

Around 61.28 % of the tube wells are of shallow depth (20 to 70m) and remaining wells are deeper depth (70 to >150 m) existed in the area (Table-9). Thus, majority of wells are tapping shallow aquifer which is under stress.

Dynamic ground water resources (2013) indicate that Gross ground water draft for irrigation in the district is estimated at 2645.05 mcm. It is expected that around 25 % of over draft can be brought down by switching over to underground/surface pipeline based distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to 538.86 mcm (Table-11a) assuming that there is a need of crop diversification by the farmers.

The benefit will lead to saving of precious ground water resources in overexploited blocks. The measure if implemented will bring down the ground water overdraft from 209 % to 159%. The category of the blocks will also improve resulting in boosting of agriculture and industrial development otherwise not sustainable in over-exploited blocks (Table-11b).

The tube wells also consume enormous electricity which is subsidized and government incur significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. It is expected to save 1% of the agricultural land occupied by open channels which can be utilized for cultivation purpose. Heavy ground water overdraft can be reduced by these efforts. This will ensure *more crops per drop.*

6.3 Water saving Potential from Crop Diversification-Change Paddy to Maize/Soya-bean:

As the requirement of water for paddy is much high therefore by changing paddy to maize/soya-bean will help in saving of water. For estimating the water saving by crop diversification it is assumed that **one mcm** of water will be saved in case of maize or soyabean planted in **one sq km** of land. In case of pulses even higher amount of ground water can be saved.

The block wise saving of water in mcm by applying various management strategies such as crop diversification, Under Ground Pipe lines (UGPL) in individual land and artificial recharge methods are given in tables 11.a, b.

Block	Net	Total	Present		on in draft		nt water	SOD	Change of
	Ground	Irrigatio	Stage of		saving n			afterwards	paddy
	Water	n Draft	draft	Replace	Adopt	Change	Total	(%)	cultivation
	Availabili	(mcm)	(SOD)	water	Artificial	Paddy	(mcm)		area (% of
	ty (mcm)		(%) (As	courses	recharge	to	(2+3+4)		existing)
			per	by UG	(mcm)	Maize			
			2013)	Pipes		(mcm)			
				(mcm)					
			1	2	3	4	5		
Adampur	112.85	199.73	179	40.69	3.26	35.5	79.45	101	1
Bhogpur	105.91	260.78	248	53.13	2.32	88.7	144.15	102	2
Rurka Kalan	105.46	209.97	201	42.78	1.74	51.8	96.32	101	1
Jalandhar-East	95.38	203.96	244	41.55	3.58	75.9	121.03	108	8
Jalandhar-West	177.40	314.50	183	64.07	2.78	63.0	129.85	102	2
Lohian	101.82	215.01	213	43.80	1.75	58.8	104.35	102	2
Nakodar	190.66	451.38	241	91.96	4.42	149.1	245.48	103	3
Nur Mahal	157.07	288.73	185	58.82	2.63	58.3	119.75	101	1
Phillaur	176.20	306.22	181	62.39	1.92	61.0	125.31	103	3
Shahkot	81.36	194.75	246	39.68	2.14	66.8	108.62	102	2
Total	1304.10	2645.05	209	538.86	26.54	708.8	1274.2	103	

Table-11a: Scope of Quantitative Impact on Stage of Development after applying variousmanagement strategies in mcm

strategies		1	I				
Block	Present	Reduction	Resultant	Reduction in	Resultant	Reduction in	Resultant
	SOD	in SOD (%)	SOD (%)	Stage of	SOD (%)	Stage of	SOD (%)
	(%) as	after	Col.(2 -	development	Col.(2 - 5)	development	Col.(2 - 7)
	on	unlined	3)	after crop		after Artificial	
	2013	channel		diversification		recharge (%)	
		(%)		by			
				Maize/Soyabean			
				(%)			
1	2	3	4	5	6	7	8
Adampur	179	43.27	135.73	31.6	147.4	3	176
Bhogpur	248	60.20	187.8	83.8	164.2	2	246
Rurka Kalan	201	48.68	152.32	49.2	151.8	2	199
Jalandhar-East	244	52.28	191.72	80	164	4	240
Jalandhar-West	183	43.34	139.66	35.5	147.5	2	181
Lohian	213	51.63	161.37	57.7	155.3	2	211
Nakodar	241	57.88	183.12	78.6	162.4	2	239
Nur Mahal	185	44.94	140.06	37.1	147.9	2	183
Phillaur	181	42.49	138.51	34.8	146.2	1	180
Shahkot	246	58.52	187.48	82.1	163.9	3	243
Total	209	50.32	158.7	57.04	151.96	2.3	207

 Table-11b: Impact on Stage of Development (SOD) after applying various management strategies

By adopting all the management strategies resulting in total reduction in stage of groundwater development is 106%. Hence overall stage of development afterwards is 103 % and is given in Table.12.

Idu	Die-12: Overall	Stage of Deve	lopment (SOD) af	ter reduction in	Jalanunar Dis	linci
Block	Present	Reduction in	Reduction in	Reduction in	Total	Stage of
	Stage of	stage of	Stage of	Stage of	Reduction in	development
	development	development	development	development	Stage of	afterwards
	(%) as on	after unlined	after crop	after Artificial	development	(%)
	2013	channel (%)	diversification	recharge (%)	(%)	(2-6)
			by		(3 +4+5)	
			Maize/Soyabean			
			(%)			
1	2	3	4	5	6	7
Adampur	179	43.27	31.6	3	78	101
Bhogpur	248	60.20	83.8	2	146	102
Rurka Kalan	201	48.68	49.2	2	100	101
Jalandhar-		52.28				
East	244	52.20	80	4	136	108
Jalandhar-		43.34				
West	183	+5.5+	35.5	2	81	102
Lohian	213	51.63	57.7	2	111	102
Nakodar	241	57.88	78.6	2	138	103
Nur Mahal	185	44.94	37.1	2	84	101
Phillaur	181	42.49	34.8	1	78	103
Shahkot	246	58.52	82.1	3	144	102
Total	209	50.32	57.04	2.3	110	103

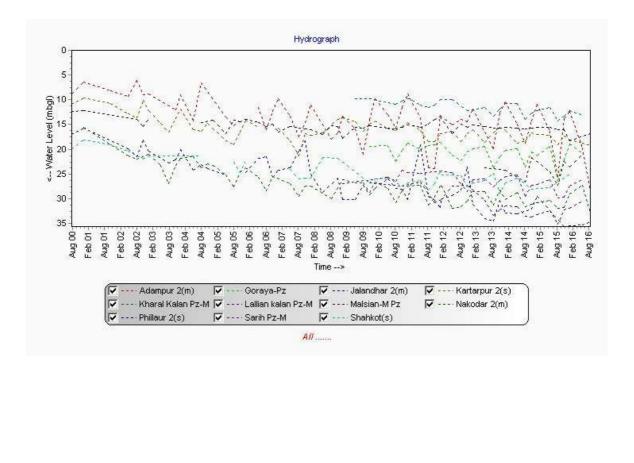
Table-12: Overall Stage of Development (SOD) after reduction in Jalandhar District

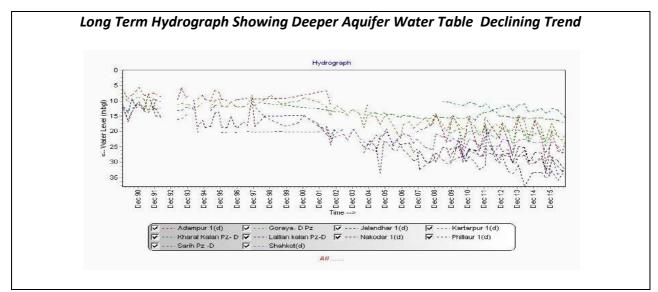
BLOCK WISE AQUIFER MAPS

AND

MANAGEMENT PLAN

(PART-II)


Page | 39


I. Salient Information of Adampur Block

Block Area		20	4.20 sq kn	n			
(in Km ²)							
District/ State	Jalandhar, Punjab						
Population	Urban Popula	tion: 3704					
	Rural Populat	ion: 94489					
	Total populat	ion: 98193					
Rainfall	Normal Mons	oon: 612 mm					
	Non-monsoor	n Rainfall : 170 r	nm				
	Annual Average Rainfall: 782 mm						
Agriculture and Irrigation	Principal crop	Principal crops: Wheat, Rice, Sugar cane, and Maize					
	Other crops: Vegetables and Fodder						
		d area: 271.14					
	Net sown area	a: 176.36 sq kn	n				
	Irrigation prac	ctices: Tube wel					
	Cropping inte	nsity: 154%					
	<u>Area under</u>						
		r Irrigation: 176.					
		r irrigation: 0 sq					
	-	d area: 271.14					
	-	area: 176.36 sc	•				
		types of abstract		res: 6121, Tub	oewells		
Ground Water Resource		r Resources Ava					
Availability and Extraction		er Resources ar			• ·		
		fresh water res			to the depth		
		he basis of geop		Г [.]			
	Aquifer	Aquifer	Aquifer	Granular	Resources		
	Group	Depth range	Thickness	Zones	(mcm)		
		(m)	(m)	(m)			
	Aquifer-I	11.46 - 131.0	120	79	1274.30		
	Aquifer-II	143.0 - 198.0	55	35	519		
	Aquifer-III	214.0 - 300.0	86	40	608		
		Water Resour					
		nular zones avai					
	Block is categorized as Over-Exploited as per Dynamic Groundwater						
	Resources, 2013 assessment.						
	Ground water Resources Extraction Information regarding the abstraction from Aquifer II is not						
				-			
		t there are di tapping combi	-				
		buld not be asse	-		-		
			sseu ior Aqu		separately.		

_							
Existing and future water	Existing Gross Ground water Draft as on 2013						
demands	Irrigation: 199.73 mcm						
	Domestic and industrial water supply: 2.44 mcm						
	<u>Future water demands</u>						
	Irrigation development potential : (-)89.92 mcm						
	Domestic and industrial water supply up to 2025 years : 3.04 mcm						
	Water Scarcity Villages: 71						
Water level behavior	Aquifer wise water level						
	Aquifer-I						
	Pre Monsoon: 7.25 – 26.7 m bgl						
	Post Monsoon: 7.40 – 31.0 m bgl						
	Seasonal Fluctuation: 0.25 – (-)4.30 m/yr						
	Aquifer-II &III						
	Pre Monsoon: 11.3 – 18.6 m bgl						
	Post Monsoon: 3.50 – 35.78 m bgl						

Long Term Hydrograph Showing Shallow Aquifer Water Table Declining Trend

Aquifer Disposition

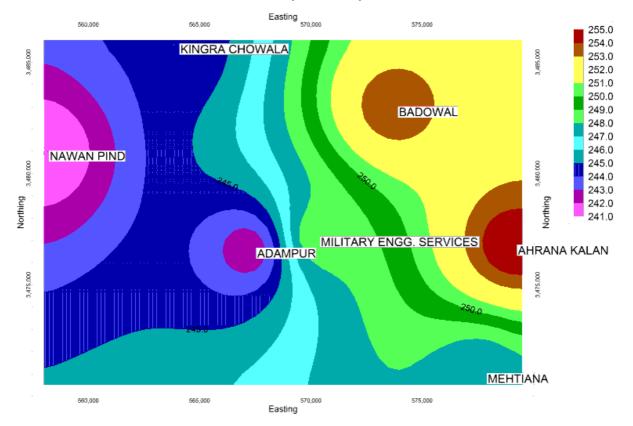
Number of aquifers	1				
Principal aquifer	Alluvium				
Major Aquifer	Older Alluvium				
Aquifer Disposition	Multiple Aquifer System (Three Aquifer Groups)				

Exploratory Data Availability

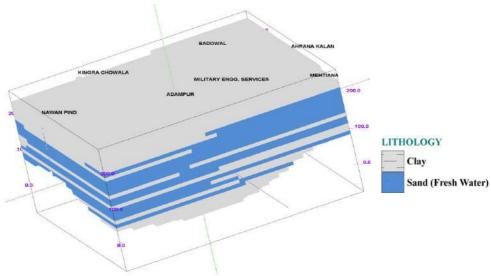
Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	100-200	200-300	>300		
CGWB	0	0	0	2	2	
WRED/PSTC/WSS	4	7	0	1	12	
PRIVATE	0	6	0	2	8	
TOTAL	4	13	0	5	22	

Aquifer wise Characteristics

Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	79			12 %	
(11.46 -131 m)	nary	to confined		NA	NA	(0.072)	1 NA
Aquifer-II	Alluvial	Semi	35	NA NA	INA		INA
(143 - 198 m)	deposits	confined to					
		Confined					
Aquifer-III		Semi	40	NA	NA	NA	NA
(214 - 300 m)		confined to					
		Confined					

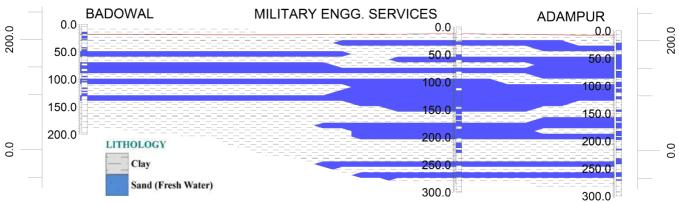

* Well field proposed in this block (Site: Jandu Singha), NA : Not Available

Source: CGWB,2015 & PSTC,2008

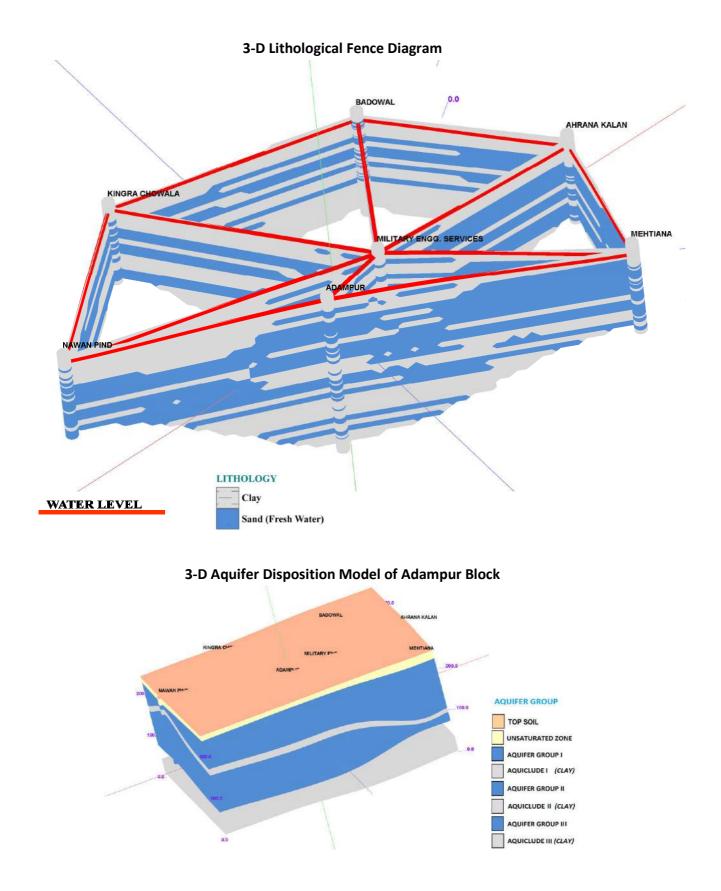

The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt. **Exploratory Data Validated**

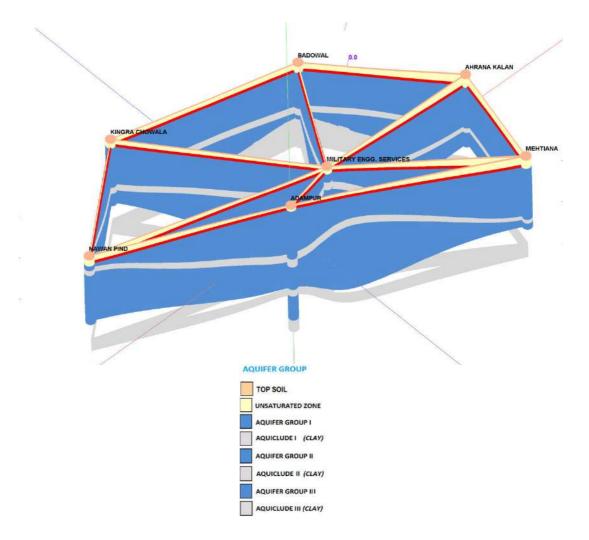
Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	100-200	200-300	>300		
CGWB	0	0	0	1	1	
WRED/PSTC/WSS	0	0	0	0	0	
PRIVATE	0	0	0	2	2	
TOTAL	0	0	0	3	3	

The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.

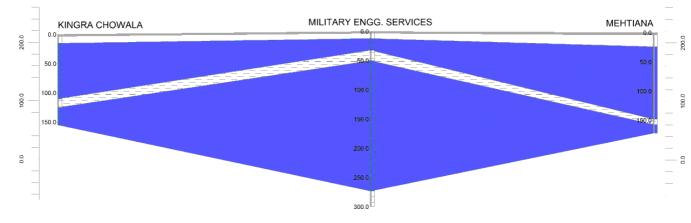


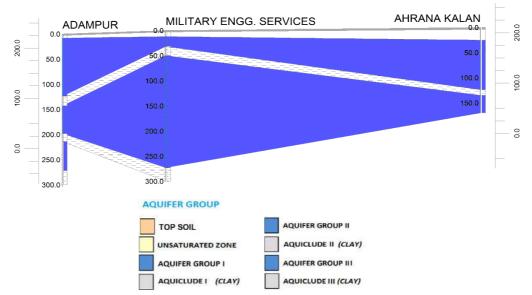
Elevation Map of Adampur Block




3-D Lithological model of Adampur Block

Lithological Cross section from Badowal to Adampur


Lithological Cross section from Nawan pind to Mehtiana ADAMPUR MEHTIANA NAWAN PIND 200.0 0.00 100.0 0 00 LITHOLOGY 0.0 0.0 Clay Sand (Fresh Water)



3-D Aquifer Disposition Fence Diagram

Aquifer Cross section along West to East

Ground water Resource, Extraction, Contamination and other issues in Adampur Block

		112.05
Ground Water	Dynamic Fresh water	112.85 mcm
Resources upto the	resources (Aquifer-I)	
depth of 300m	In-storage Aquifer-I	1161 mcm
	(Specific Yield Concept)	
	In-storage Aquifer-II	515 mcm
	(Specific Yield Concept)	
	In-storage Aquifer-II	3.92 mcm
	(Storativity Concept)	5.52 mem
	, , ,	F 00 m on
	In-storage Aquifer-III	588 mcm
	(Specific Yield Concept)	
	In-storage Aquifer-II	19.80 mcm
	(Storativity Concept)	
	Total Resources	2400.70 mcm
Ground Water	Irrigation	199.73 mcm
Extraction (as per 2013)	-	
	Domestic & Industrial	2.44mcm
Future Demand for dom	estic & Industrial sector (2025)	3.04 mcm
(as per 2013)		
Stage of Groundwater De	evelopment	179 %
Chemical Quality of grou	nd water	Ground water in the area is alkaline in
		nature and pH ranges between 8.23 to
		8.25. EC value of the ground water show
		-
		wide variations and ranges from 215
		μ S/cm to 545 μ S/cm at 25 ^o C.

	RSC values are varies from -1.49 to -0.31 meq/L and the area is fit for irrigation.
Ground water Contamination Issues	<i>Iron(mg/I):</i> Adampur(6.96) <i>Nitrate(mg/I):</i> Allawalpur (45)
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 34 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve 3.26 mcm volume of water*

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Adampur Block (204.20 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 40.69 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean. The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage: 45% of the total rice area needs to change i.e. 35.5 sq km Anticipated volume of water to be saved: 35.50 mcm

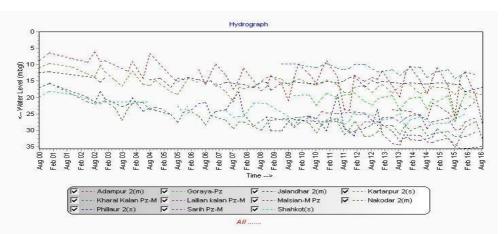
Net Annual Total Gross Paddy Required Amount Gross Reduction Present Crop Ground Irrigat-Draft all area Area to be draft Stage of in Stage of Diversified of Water Water after area (%) ion Draft uses (Sq km) Change developdevelop-Availability (present) (present) from Saved saving ment (%) ment after of water 2013 Paddy to Maize/ (mcm) (mcm) (mcm) (mcm) Maize/ (mcm) soya bean soya bean (%) (Sq km) 112.85 199.73 202.17 80 35.50 164.23 179 31.60 45 35.50

<u>Alternate Water sources</u> Surface water sources: *Tanks, Ponds* No.of Water tanks: 22 Location, details and availability from such sources outside the area: Not Available <u>Regulation and Control:</u>

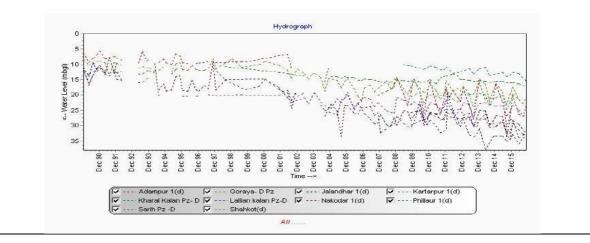
Punjab Subsoil Act for delay in paddy plantation should continue in the area. <u>Other interventions proposed, if any</u>

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip Irrigation	70-90	Sugarcane, Sunflower, Maize


Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

II. Salient Information of Bhogpur Block


Block Area		37	2.40 sq kn	n		
(in Km²)						
District/ State	Jalandhar, Pu	njab				
Population	Urban Popula	tion: 0				
	Rural Populat	ion: 70503				
	Total populat	ion: 70503				
Rainfall	Normal Mons	oon: 647 mm				
	Non-monsoor	n Rainfall : 175 n	nm			
	Annual Avera	ge Rainfall: 822	mm			
Agriculture and Irrigation	Principal crops: Wheat, Rice, Sugar cane, and Maize					
	Other crops: Vegetables and Fodder					
	Gross croppe	d area: 281.71	sq km			
		a: 156.28 sq kn				
		ctices: Tube well				
	Cropping inte	nsity: 180%				
	<u>Area under</u>					
	Ground water Irrigation: 156.20 sq km					
		irrigation: 0 sq				
	_	d area: 281.71	•			
	-	area: 156.28 s	•			
		types of abstract		res: 7995, Tub	ewells	
Ground Water Resource		r Resources Ava			. c	
Availability and Extraction		er Resources ar			- ·	
		fresh water res			to the depth	
		ne basis of geop			Deseuress	
	Aquifer	Aquifer	Aquifer	Granular	Resources	
	Group	Depth range	Thickness	Zones	(mcm)	
	Aquifor I	(m)	(m)	(m)	840.20	
	Aquifer-I	12.96 - 111.0	98	58	849.20	
	Aquifer-II	130.0 - 220.0	90 63	40	516	
	Aquifer-III	237.0 – 300.0	1	21	288	
		Water Resource				
		nular zones avai		•	•	
	-	orized as Over-	exploited as		Gloundwater	
	Resources, 2013 assessment.					
	Ground water Resources Extraction Information regarding the abstraction from Aquifer II is not					
		t there are di				
	-	tapping combi	-			
		ould not be asse				
					separatery.	

Existing and future water	Existing Gross Ground water Draft as on 2013
demands	Irrigation: 260.78 mcm
	Domestic and industrial water supply: 1.79 mcm
	<u>Future water demands</u>
	Irrigation development potential : (-)157.10 mcm
	Domestic and industrial water supply up to 2025 years : 2.22 mcm
	Water Scarcity Villages: 57
Water level behavior	Aquifer wise water level
	Aquifer-I
	Pre Monsoon: 10.30 – 26.70 m bgl
	Post Monsoon: 10.20 – 31.00 m bgl
	Seasonal Fluctuation: (-)2.10 – (-)6.20 m/yr
	Aquifer-II & III
	No Monitoring station exist

Long Term Hydrograph Showing Shallow Aquifer Water Table Declining Trend

Long Term Hydrograph Showing Deeper Aquifer Water Table Declining Trend

Aquifer Disposition

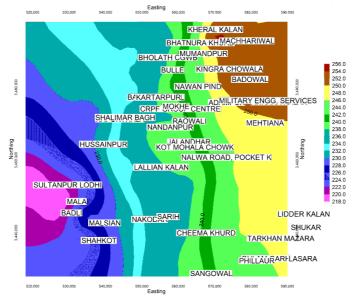
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium
Aquifer Disposition	Multiple Aquifer System (Two Aquifer Groups)

Exploratory Data Availability

Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	100-200	200-300	>300		
CGWB	1	1	1	1	4	
WRED/PSTC/WSS	7	12	0	1	20	
PRIVATE	0	6	0	0	6	
TOTAL	8	19	1	2	30	

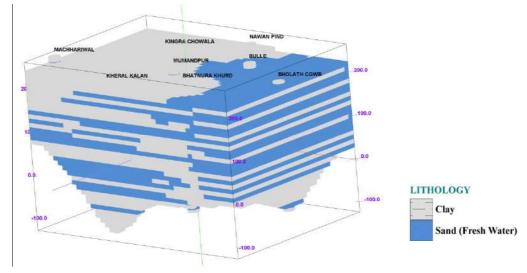
Aquifer wise Characteristics

Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	58	NA	NA	12 %	NA
(12.96-111 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	10				
(130 - 220 m)	deposits	confined to	40	931	2240		1.005 x 10 ⁻³
		Confined					
Aquifer-III		Semi	21	NA	NA	NA	NA
(237 - 300m)		confined to					
		Confined					

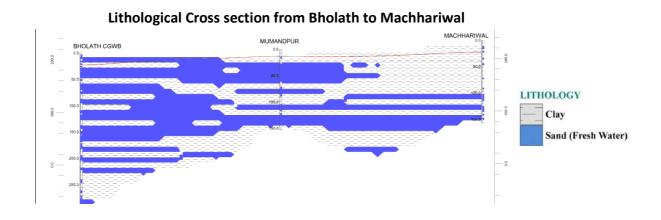

* Well field proposed in the adjacent block NA : Not Available Source: CGWB,2015 & PSTC,2008

The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

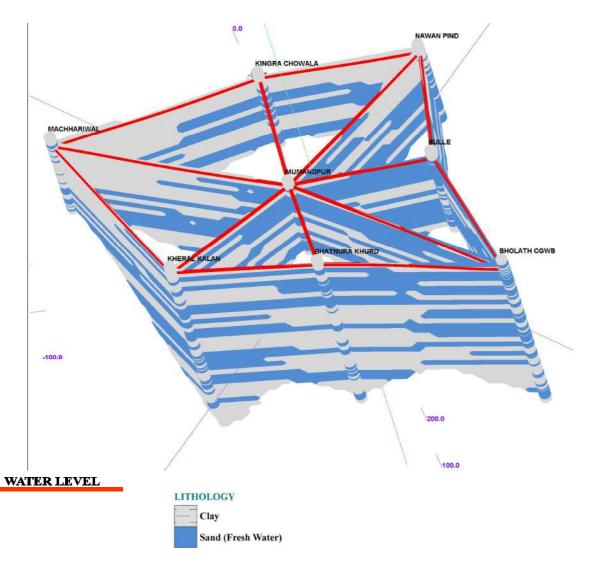
Exploratory Data Validated

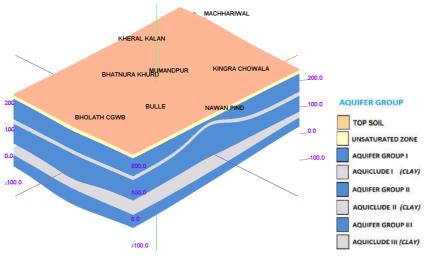

Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	100-200	200-300	>300		
CGWB	0	1	0	1	2	
WRED/PSTC/WSS	0	7	0	0	7	
PRIVATE	0	2	0	0	2	
TOTAL	0	10	0	1	11	

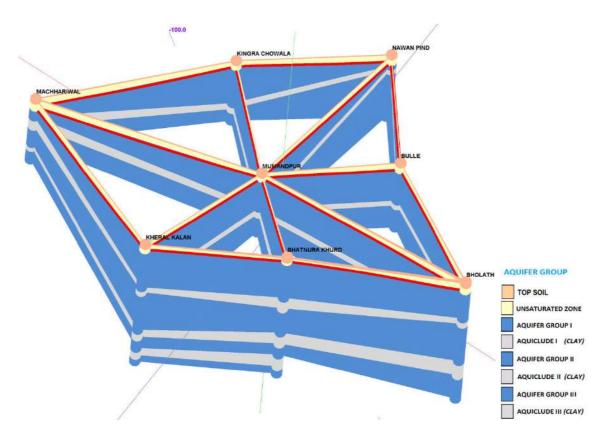
The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.

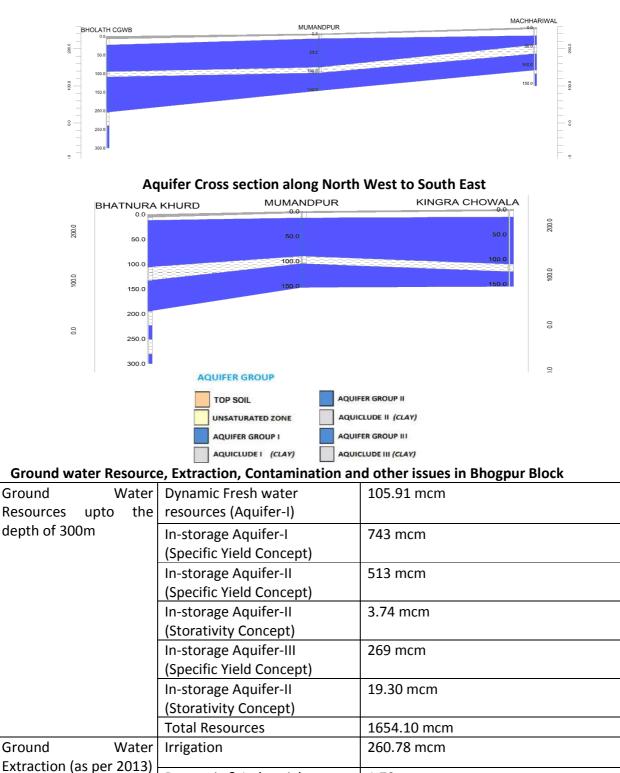

Elevation Map of Bhogpur Block

3-D Lithological model of Bhogpur Block




Lithological Cross section from Bhatnura khurd to Kingra Chowala


3-D Lithological Fence Diagram



3-D Aquifer Disposition Model of Bhogpur Block

3-D Aquifer Disposition Fence Diagram

1.79 mcm

Domestic & Industrial

Aquifer Cross section along West to East

Future Demand for domestic & Industrial sector (2025) (as per 2013)	2.22 mcm
Stage of Groundwater Development	248 %
Chemical Quality of ground water	Ground water of Aquifer-I is alkaline in nature and pH value is 8.60 EC value of the ground water is 445 μS/cm at 25 ⁰ C. RSC value is 1.60 meq/L and the area is fit for irrigation. Ground water of Aquifer-II is alkaline in nature, potable for drinking and fit for irrigation. Ground water of Aquifer-III is alkaline in nature, potable for drinking and fit for irrigation.
Ground water Contamination Issues	<i>Iron(mg/I):</i> Kharal kalan(8.62)
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 32 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow*

Types and number of structures: NA

Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve* 2.32mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Bhogpur Block (372.4 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 53.13 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean .The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage: 74% of the total rice area needs to change i.e. 88.70 sq km Anticipated volume of water to be saved: 88.70 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Crop
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
105.91	260.78	262.57	120	88.70	88.70	172.08	248	83.80	74

Alternate Water sources

Surface water sources: Tanks, Ponds

No.of Water tanks: 17

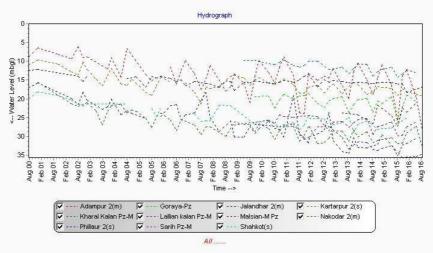
Location, details and availability from such sources outside the area: Not Available *Regulation and Control:*

Punjab Subsoil Act for delay in paddy plantation should continue in the area.

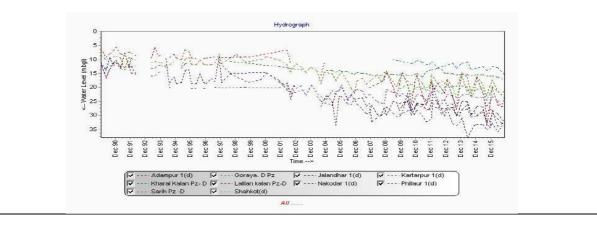
Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip	70-90	Sugarcane, Sunflower, Maize
	Irrigation		


Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

III. Salient Information of Rurka Kalan Block


Block Area	191.80 sq km						
(in Km ²)							
District/ State	Jalandhar, Pu	njab					
Population	Urban Popula	tion: 8487					
-	Rural Population: 82172 Total population: 90659						
	Total populat	ion: 90659					
Rainfall	Normal Mons	oon: 484 mm					
	Non-monsoon Rainfall : 159 mm						
	Annual Average Rainfall: 643 mm						
Agriculture and Irrigation	Principal crops: Rice, Wheat, Sugar cane, and Maize						
	Other crops: Vegetables and Fodder						
	Gross cropped	d area: 310.69	sq km				
		a: 166.36 sq kn					
		ctices: Tube well	and Canal I	rrigation			
	Cropping inte	nsity: 187%					
	<u>Area under</u>						
		Irrigation: 166	•				
		rirrigation: 0 sq					
	•	d area: 310.66	•				
	-	area: 166.26 sc			a su alla		
		types of abstract		res: 7234, Tub	Dewells		
Ground Water Resource Availability and Extraction	-	r Resources Ava er Resources ar		in the differ	ront group of		
Availability and Extraction		fresh water res			• •		
		he basis of geop			to the depth		
	Aquifer	Aquifer	Aquifer	Granular	Resources		
	Group	Depth range	Thickness	Zones	(mcm)		
	0.000	(m)	(m)	(m)	(,		
	Aquifer-I	17.52 - 104.0	86	65	1003.10		
	Aquifer-II	120.0 - 170.0	50	35	500		
	Aquifer-III	215.0 - 300.0	85	30	433		
		Water Resourd	ces available	e is 1936.50 r	ncm and total		
	potential grar	nular zones avai	lable are 13	30 m up to de	epth of 300 m.		
		orized as Over-		•			
	Resources, 20	13 assessment.					
	Ground wate	r Resources Ext	raction				
	Information	regarding the	abstraction	from Aquif	fer II is not		
		t there are di	-				
		tapping combi	-		-		
	water draft co	ould not be asse	ssed for Aqu	uifer-II and III	separately.		

Existing and future water	Existing Gross Ground water Draft as on 2013						
demands	Irrigation: 209.97 mcm						
	Domestic and industrial water supply: 2.08 mcm						
	<u>Future water demands</u>						
	Irrigation development potential : (-)107.13 mcm						
	Domestic and industrial water supply up to 2025 years : 2.62 mcr						
	Water Scarcity Villages: 45						
Water level behavior	Aquifer wise water level						
	Aquifer-I						
	Pre Monsoon: 19.60 – 28.22 m bgl						
	Post Monsoon: 20.70 – 31.26 m bgl						
	Seasonal Fluctuation: (-)0.70 – (-)1.20m/yr						
	Aquifer-II &III						
	Pre Monsoon: 34.11 m bgl						
	Post Monsoon: 35.36 m bgl						

Long Term Hydrograph Showing Shallow Aquifer Water Table Declining Trend

Long Term Hydrograph Showing Deeper Aquifer Water Table Declining Trend

Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium
Aquifer Disposition	Multiple Aquifer System (Three Aquifer Groups)

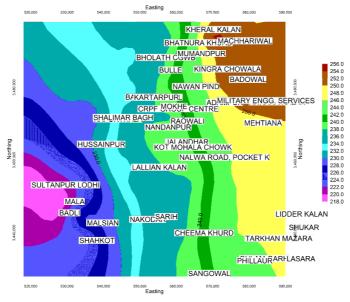
Exploratory Data Availability

Source of Data	No. of e	No. of exploration wells as per depth range (m)						
	<100	100-200	200-300	>300				
CGWB	0	0	0	1	1			
WRED/PSTC/WSS	2	0	0	0	2			
PRIVATE	0	0	0	0	0			
TOTAL	2	0	0	1	3			

Aquifer wise Characteristics

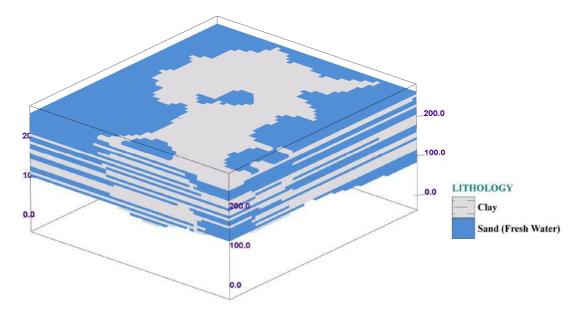
Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	65	NA	NA	12 %	NA
(17.52 -104 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	35	NA	NA		NA
(120 - 170 m)	deposits	confined to					
		Confined					
Aquifer-III		Semi	30	1028	2074		5.08 x 10 ⁻⁴
(215 - 300 m)		confined to					
		Confined					

* Well field proposed in adjacent block , NA : Not Available

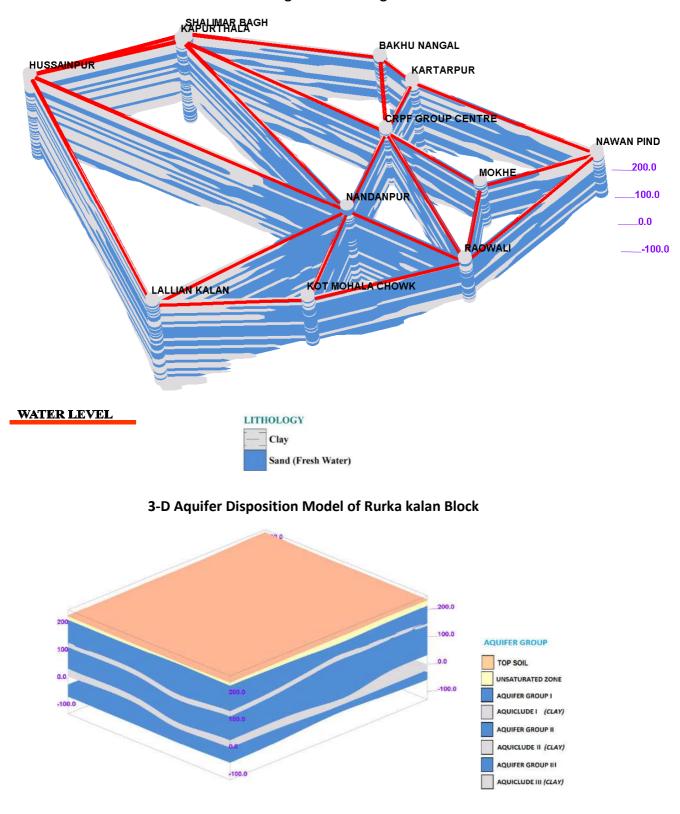

Source: CGWB,2015 & PSTC,2008

The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

Exploratory Data Validated

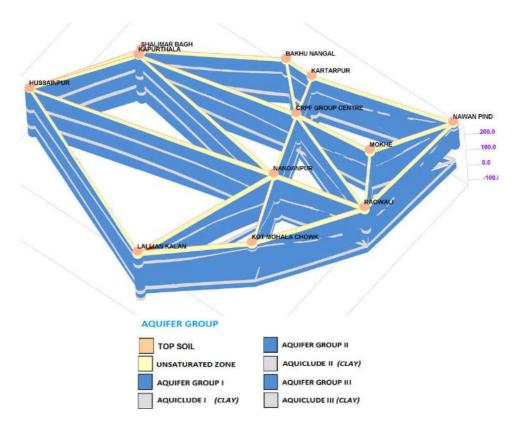

Source of Data	No. of e	No. of exploration wells as per depth range (m)						
	<100	<100 100-200 200-300 >300						
CGWB	0	0	0	1	1			
WRED/PSTC/WSS	2	0	0	0	2			
PRIVATE	0	0	0	0	0			
TOTAL	2	0	0	1	3			

The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.


Elevation Map of Rurka Kalan Block

3-D Lithological model of Rurka Kalan Block

Lithological Cross section from Nakodar to Sangowal



3-D Lithological Fence Diagram

Page | 63

3-D Aquifer Disposition Fence Diagram

Ground water Resource, Extraction, Contamination and other issues in Rurka kalan Block

Ground Water	Dynamic Fresh water	105.46 mcm					
Resources upto the	resources (Aquifer-I)						
depth of 300m	In-storage Aquifer-I	898 mcm					
	(Specific Yield Concept)						
	In-storage Aquifer-II	483 mcm					
	(Specific Yield Concept)						
	In-storage Aquifer-II	17.15 mcm					
	(Storativity Concept)						
	In-storage Aquifer-III	414 mcm					
	(Specific Yield Concept)						
	In-storage Aquifer-II	18.70 mcm					
	(Storativity Concept)						
	Total Resources	1936.50 mcm					
Ground Water	Irrigation	209.97 mcm					
Extraction (as per 2013)	Domestic & Industrial	2.08 mcm					
		2.00 mcm					

Future Demand for domestic & Industrial sector (2025) (as per 2013)	2.62 mcm
Stage of Groundwater Development	201 %
Chemical Quality of ground water	Ground water in the area is alkaline in nature and pH values are 8.54 to 8.85. EC value of the ground water is from410 to 1120 μ S/cm at 25 ^o C. RSC value is -0.20 to 3.08meq/L and the area is fit for irrigation.
Ground water Contamination Issues	NA
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 48 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve 1.74 mcm volume of water*

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Rurka Kalan Block (191.80 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 42.78 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean .The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage: *39% of the total rice area needs to change i.e.* 51.80 sq km Anticipated volume of water to be saved: 51.80 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Crop
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
105.46	209.97	250.22	132	51.80	51.80	158.17	201	49.20	39

Alternate Water sources

Surface water sources: Tanks, Ponds

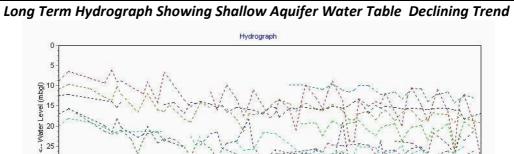
No.of Water tanks: 24

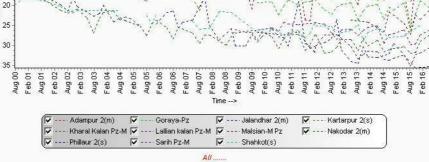
Location, details and availability from such sources outside the area: Not Available *Regulation and Control:*

Punjab Subsoil Act for delay in paddy plantation should continue in the area.

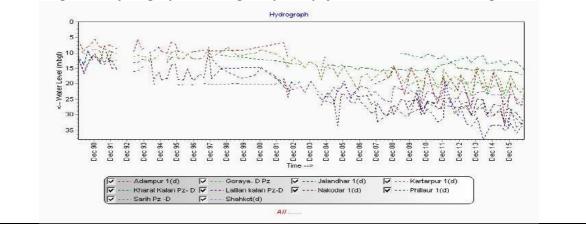
Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).


SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip	70-90	Sugarcane, Sunflower, Maize
	Irrigation		


Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

IV. Salient Information of Jalandhar East Block


Block Area	256.20 sq km					
(in Km ²)	•					
District/ State	Jalandhar, Pu	Jalandhar, Punjab				
Population	Urban Popula	tion: 30802				
-	Rural Populat					
	Total populati	ion: 146754				
Rainfall	Normal Mons	oon: 531 mm				
	Non-monsoor	n Rainfall : 157 n	nm			
	Annual Avera	ge Rainfall: 688	mm			
Agriculture and Irrigation	Principal crop	s: Wheat, Rice, S	Sugar cane,	and Maize		
	Other crops: \	/egetables and I	Fodder			
	Gross cropped	d area: 316.64	sq km			
	Net sown area: 184.42 sq km					
	•	ctices: Tube well				
	Cropping inte	nsity: 172%				
	<u>Area under</u>					
	Ground water Irrigation: 184.42 sq km					
	Surface water irrigation: 0 sq km					
	Gross Irrigated area: 316.64 sq km					
	Net Irrigated area: 184.42 sq km Number and types of abstraction structures: 6269, Tubewells					
				es: 6269, Tub	lewens	
Ground Water Resource Availability and Extraction		r Resources Ava er Resources ar		in the differ	ont group of	
Availability and Extraction		fresh water res				
		he basis of geop			to the depth	
	Aquifer	Aquifer	Aquifer	Granular	Resources	
	Group	Depth range	Thickness	Zones	(mcm)	
		(m)	(m)	(m)	(,	
	Aquifer-I	28.04 - 111.0	83	50	922	
	Aquifer-II	140.0 - 250.0	110	90	1666	
	Aquifer-III	274.0 - 300.0	26	16	328	
		Water Resourd	ces available	e is 3011.60 r		
	potential gran	nular zones avai	lable are 15	6 m up to de	pth of 300 m.	
	potential granular zones available are 156 m up to depth of 300 m. Block is categorized as Over-Exploited as per Dynamic Groundwater					
	Resources, 2013 assessment.					
	Ground water Resources Extraction					
	Information regarding the abstraction from Aquifer II is not					
		t there are dr	-			
		tapping combined	-		-	
	water draft co	ould not be asse	ssed for Aqu	uifer-II and III	separately.	

Existing and future water	Existing Gross Ground water Draft as on 2013
•	i
demands	Irrigation: 203.96 mcm
	Domestic and industrial water supply: 29.15 mcm
	<u>Future water demands</u>
	Irrigation development potential : (-)145.69 mcm
	Domestic and industrial water supply up to 2025 years : 37.11 mcm
	Water Scarcity Villages: 90
Water level behavior	Aquifer wise water level
	Aquifer-I
	Pre Monsoon: 26.60 – 35.18 m bgl
	Post Monsoon: 29.10 – 33.62 m bgl
	Seasonal Fluctuation: (-)1.10 – (-)3.10 m/yr
	Aquifer-II &III
	No Monitoring Stations

Long Term Hydrograph Showing Deeper Aquifer Water Table Declining Trend

Aug 16-

Aquifer Disposition

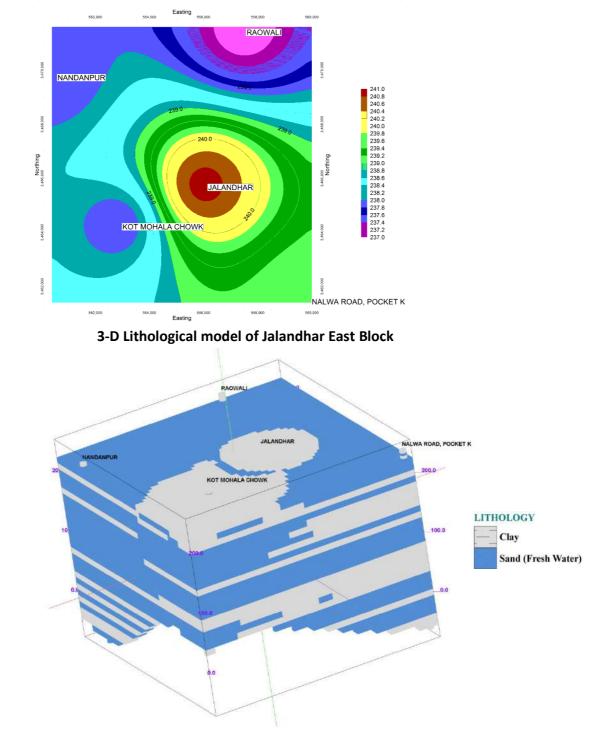
Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium
Aquifer Disposition	Multiple Aquifer System (Three Aquifer Groups)

Exploratory Data Availability

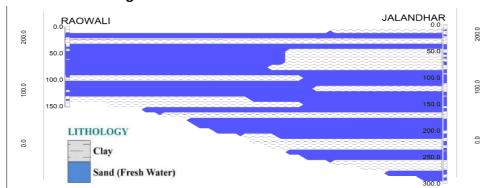
Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	100-200	200-300	>300		
CGWB	0	0	1	0	1	
WRED/PSTC/WSS	5	14	1	1	21	
PRIVATE	0	6	1	1	8	
TOTAL	5	20	3	2	30	

Aquifer wise Characteristics

Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	50	NA	NA	12 %	
(28.04 -111 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	90				NA
(140 - 250 m)	deposits	confined to					
		Confined					
Aquifer-III		Semi	16	NA	NA	NA	NA
(274 - 300 m)		confined to					
		Confined					

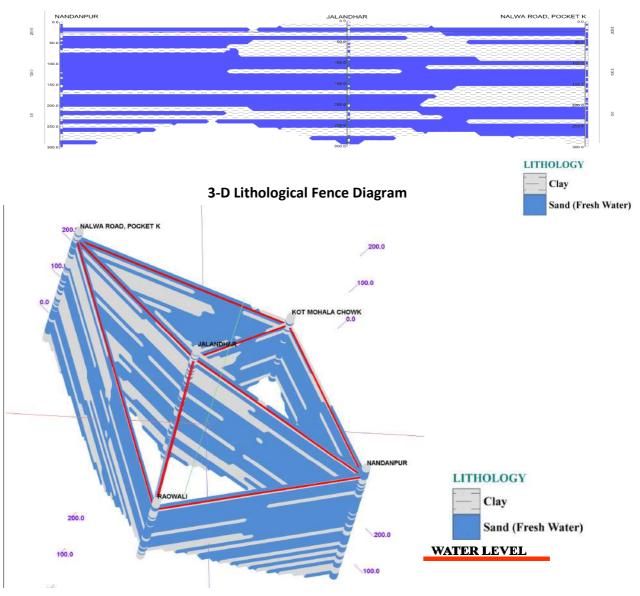

* Well field proposed in adjacent block , NA : Not Available Source: CGWB,2015 & PSTC,2008

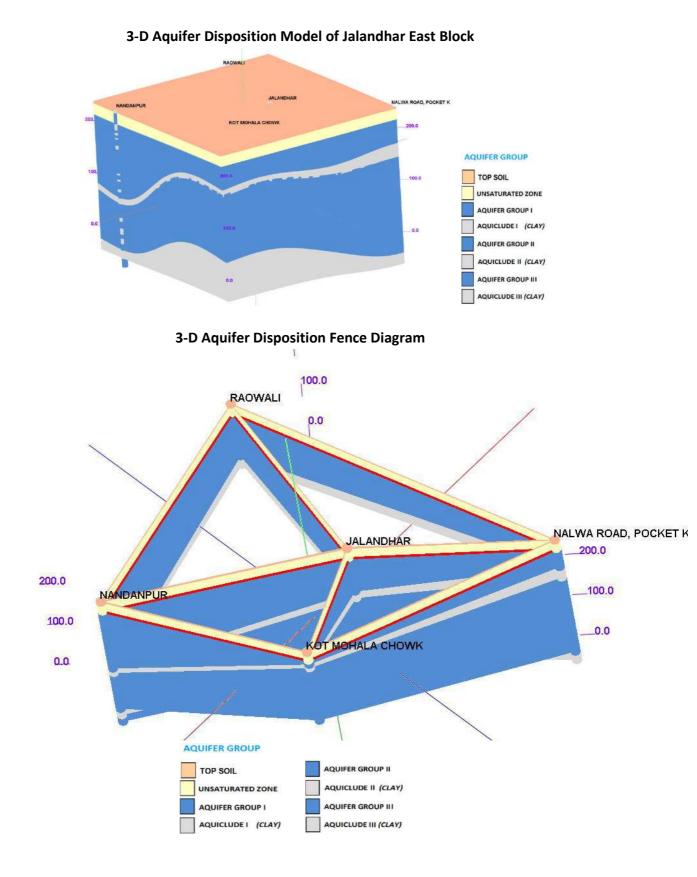
The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

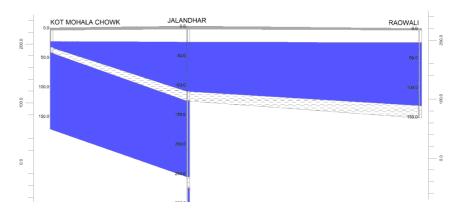

Exploratory Data Validated

Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	<100 100-200 200-300 >300				
CGWB	0	0	0	1	1	
WRED/PSTC/WSS	0	0	0	0	0	
PRIVATE	0	0	1	1	2	
TOTAL	0	0	1	2	3	

The data is validated by selecting the deepest well in each quadrant (elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.

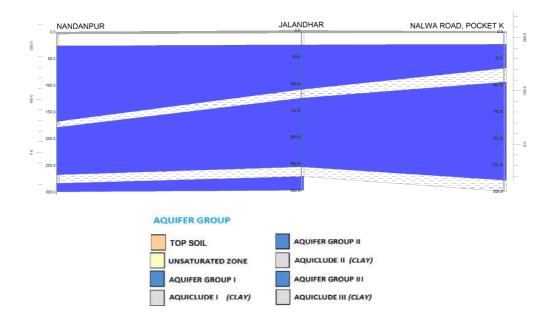



Elevation Map of Jalandhar East Block



Lithological Cross section from Raowali to Jalandhar

Lithological Cross section from Nandanpur to Nalwa



Aquifer Cross section along South West to North East

Aquifer Cross section along North West to South East

Ground water Resource, Extraction, Contamination and other issues in Jalandhar East Block

Ground Water Resources upto the	Dynamic Fresh water resources (Aquifer-I)	95.38 mcm
depth of 300m	In-storage Aquifer-I (Specific Yield Concept)	922 mcm
	In-storage Aquifer-II (Specific Yield Concept)	1660 mcm
	In-storage Aquifer-II (Storativity Concept)	5.92 mcm
	In-storage Aquifer-III (Specific Yield Concept)	295 mcm

	In-storage Aquifer-II	32.60 mcm	
	(Storativity Concept)	52.00 mem	
		2244 62	
	Total Resources	3011.60 mcm	
Ground Water	Irrigation	203.96 mcm	
Extraction (as per 2013)		22.45	
	Domestic & Industrial	29.15 mcm	
Future Demand for dom	estic & Industrial sector (2025)	37.11 mcm	
(as per 2013)			
Stage of Groundwater De	evelopment	244 %	
Chemical Quality of grou	nd water	Ground water in the area is alkaline ir	
		nature and pH value is 8.52 .EC value of	
		the ground water is 415 μ S/cm at 25 ⁰ C.	
		RSC value is 1.62 meq/L and the area is	
		fit for irrigation.	
Ground water Contamination	ation Issues	Not Available (NA)	
Other issues		Water level decline has been observed	
		in major parts of the block due to in	
		discriminate development of ground	
		water resources.	
L			

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 76 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge*. *Roof top Rainwater harvesting will conse*

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will conserve 2.25 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Jalandhar east Block (256.20 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 41.55 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean .The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage:72% of the total rice area needs to change i.e. 75.90 sq km

Anticipated volume of water to be saved: 75.90 mcm

(Sq km)	Net Annual Ground Water Availability 2013 (mcm)	Total Irrigatio n Draft (present) (mcm)	Gross Draft all uses (present) (mcm)	Paddy area (Sq km)	Required Area to be Change from Paddy to Maize/ soya bean	Amount of Water Saved (mcm)	Gross draft after saving of water (mcm)	Present Stage of developme nt (%)	Reduction in Stage of developme nt after Maize/ soya bean (%)	Crop Diversified area (%)
95.4 203.96 233.10 106 75.90 75.90 127.64 244 80	95.4	203.96	233.10	106	(Sq km)	75.90	127.64	244		72

Alternate Water sources

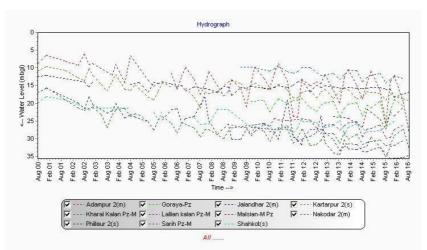
Surface water sources: *Tanks, Ponds* No.of Water tanks: 31 Location, details and availability from such sources outside the area: Not Available *Regulation and Control:*

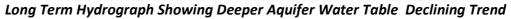
Punjab Subsoil Act for delay in paddy plantation should continue in the area.

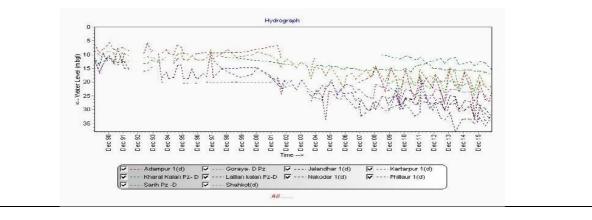
Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip	70-90	Sugarcane, Sunflower, Maize
	Irrigation		


Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.


V. Salient Information of Jalandhar West Block


Block Area		33	8.90 sq kn	n		
(in Km²)	•					
District/ State	Jalandhar, Pu	Jalandhar, Punjab				
Population	Urban Popula	tion: 11708				
-	Rural Populat	ion: 127332				
	Total populati	ion: 139040				
Rainfall	Normal Mons	oon: 565 mm				
	Non-monsoor	n Rainfall : 174 n	nm			
	Annual Avera	ge Rainfall: 739	mm			
Agriculture and Irrigation	Principal crop	s: Rice, Wheat, S	Sugar cane,	and Maize		
	Other crops: \	/egetables and I	Fodder			
	Gross cropped	Gross cropped area: 433.37 sq km				
	Net sown area: 279.46 sq km					
	•	ctices: Tube well	Irrigation			
	Cropping inte	nsity: 155%				
	<u>Area under</u>					
	Ground water Irrigation: 279.46 sq km					
	Surface water irrigation: 0 sq km					
	Gross Irrigated area: 433.47 sq km					
	-	area: 279.46 sc			auralla	
		types of abstract		es: 9605, Tub	lewens	
Ground Water Resource Availability and Extraction	-	r Resources Ava er Resources ar		in the differ	ont group of	
Availability and Extraction		fresh water res				
		he basis of geop			to the depth	
	Aquifer	Aquifer	Aquifer	Granular	Resources	
	Group	Depth range	Thickness	Zones	(mcm)	
	Croup	(m)	(m)	(m)	(1110111)	
	Aquifer-I	15.08 - 156.0	141	60	947.57	
	Aquifer-II	170.0 - 268.0	98	82	2010	
	Aquifer-III	276.0 - 300.0	24	18	479	
		Water Resourd	ces available	e is 4130.50 r	ncm and total	
	potential grar	nular zones avai	lable are 13	30 m up to de	pth of 205 m.	
	potential granular zones available are 130 m up to depth of 205 m. Block is categorized as Over-Exploited as per Dynamic Groundwater					
	Resources, 2013 assessment.					
	Ground water Resources Extraction					
	Information regarding the abstraction from Aquifer II is not					
	available, bu	t there are di	rinking wat	er supply w	ells of State	
		tapping combi	-		-	
	water draft co	ould not be asse	ssed for Aqu	uifer-II and III	separately.	

Existing and future water	Existing Gross Ground water Draft as on 2013				
demands	Irrigation: 314.50 mcm				
	Domestic and industrial water supply: 9.74 mcm				
	Future water demands				
	Irrigation development potential : (-)149.49 mcm				
	Domestic and industrial water supply up to 2025 years : 12.38 mcm				
	Water Scarcity Villages: 136				
Water level behavior	Aquifer wise water level				
	Aquifer-I				
	Pre Monsoon: 18.76 – 32.70 m bgl				
	Post Monsoon: 18.64 – 34.50 m bgl				
	Seasonal Fluctuation: (-)1.45 – (-)6.30 m/yr				
	Aquifer-II &III				
	Pre Monsoon: 33.62 m bgl				
	Post Monsoon: 35.18 m bgl				

Long Term Hydrograph Showing Shallow Aquifer Water Table Declining Trend

Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium
Aquifer Disposition	Multiple Aquifer System (Two Aquifer Groups)

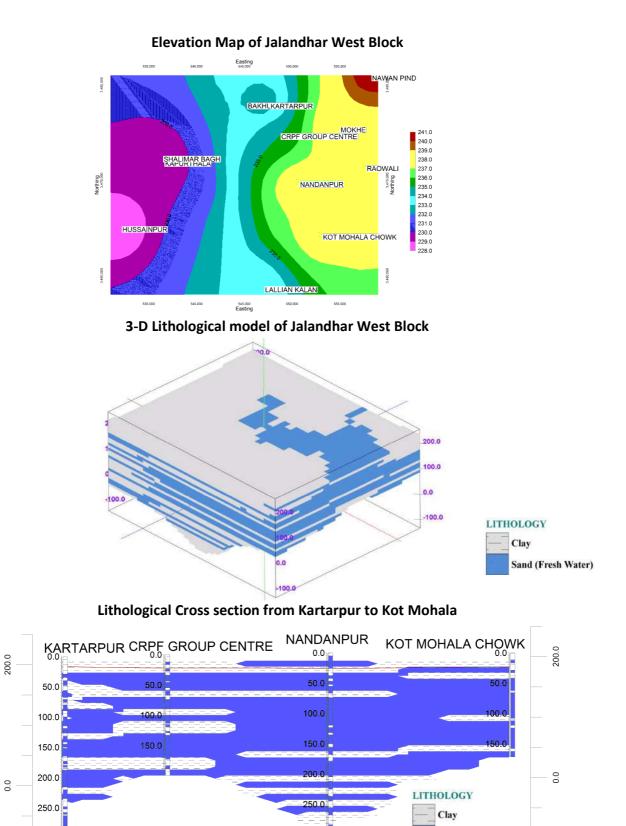
Exploratory Data Availability

Source of Data	No. of e	No. of exploration wells as per depth range (m)					
	<100	<100 100-200 200-300 >300					
CGWB	0	0	0	0	0		
WRED/PSTC/WSS	4	9	1	0	14		
PRIVATE	0	3	1	0	4		
TOTAL	4	12	2	0	18		

Aquifer wise Characteristics

Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –l	Quarter-	Unconfined	60			12 %	
(15.08 -156 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	82	NA	NA		NA
(170 - 268 m)	deposits	confined to					
		Confined					
Aquifer-III		NA	18	NA	NA	NA	NA
(276 - 300 m)							

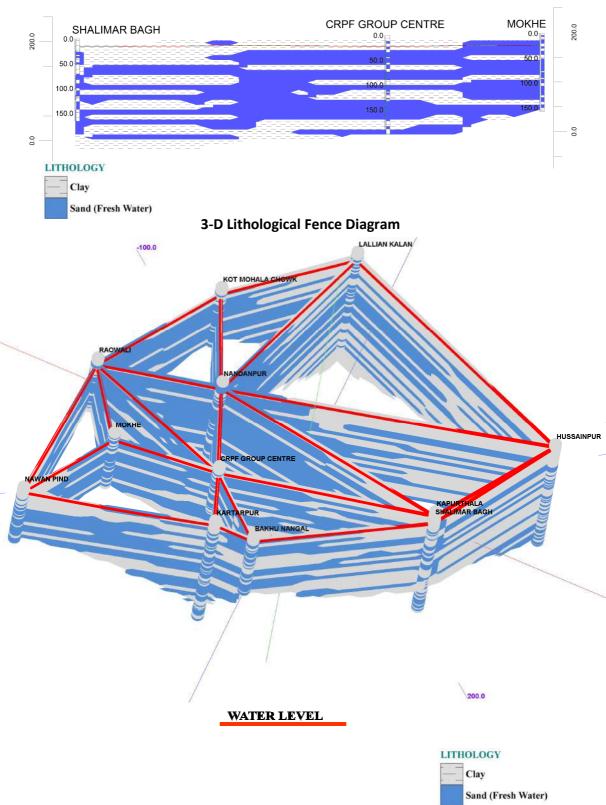
* Well field proposed in adjacent block , NA : Not Available


Source: Groundwater Exploration Report, CGWB,2015

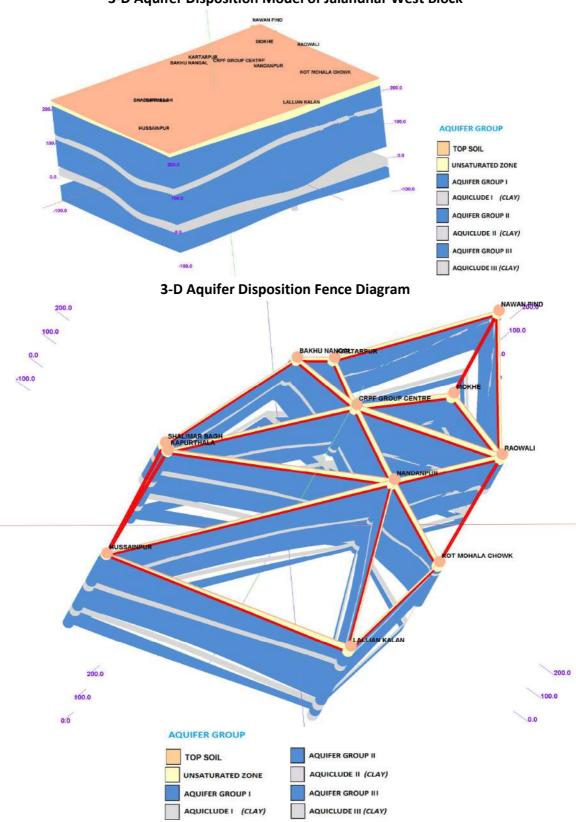
The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

Exploratory Data Validated

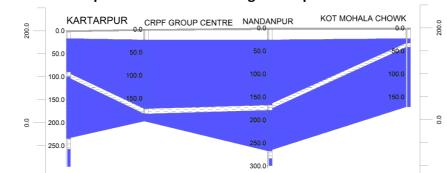
Source of Data	No. of e	No. of exploration wells as per depth range (m)						
	<100	<100 100-200 200-300 >300						
CGWB	0	0	0	1	1			
WRED/PSTC/WSS	0	0	1	0	1			
PRIVATE	0	3	2	0	5			
TOTAL	0	3	3	1	7			


The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.

300.0

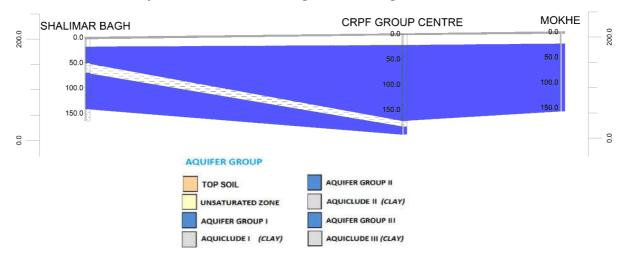

Page | 79

Sand (Fresh Water)



Lithological Cross section from Shalimar Bagh to Mokhe

Page | 80



3-D Aquifer Disposition Model of Jalandhar West Block

Aquifer Cross section along Kartar pur to Kot Mohalla

Aquifer Cross section along Shalimar Bagh to Mokhe

Ground water Resource, Extraction, Contamination and other issues in Jalandhar West Block

Ground Water Resources upto the	Dynamic Fresh water resources (Aquifer-I)	177.40 mcm
depth of 300m	In-storage Aquifer-I (Specific Yield Concept)	1464 mcm
	In-storage Aquifer-II (Specific Yield Concept)	2001 mcm
	In-storage Aquifer-II (Storativity Concept)	8.86 mcm
	In-storage Aquifer-III (Specific Yield Concept)	439 mcm
	In-storage Aquifer-II (Storativity Concept)	40.1 mcm
	Total Resources	4130.50 mcm
Ground Water Extraction (as per 2013)	Irrigation	314.50 mcm
	Domestic & Industrial	9.74 mcm

Future Demand for domestic & Industrial sector (2025) (as per 2013)	12.38 mcm
Stage of Groundwater Development	183 %
Chemical Quality of ground water	Ground water in the area is alkaline in nature pH values are from 8.10 to 8.28, EC value of the ground water are from 400 to 560 μ S/cm at 25 ⁰ C. RSC values are varying from (-)2.60 is (-) 0.27 meq/L and the area is fit for irrigation
Ground water Contamination Issues	Not Available (NA)
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

Ground water Resource Enhancement Potential

<u>Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)</u> Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 91 mcm

Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA

Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve* 2.78 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Jalandhar West Block (338.9 sq km)

Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 64.07 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: Rice to Maize, Soyabean.

The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop Area coverage: 32% of the total rice area needs to change i.e. 63.0 sq km

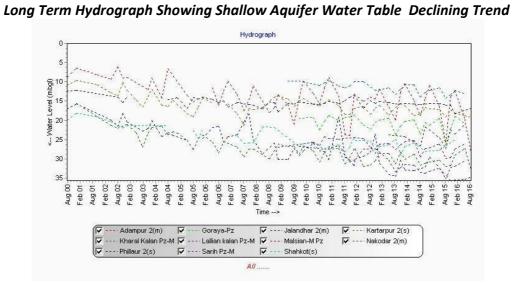
Anticipated volume of water to be saved: 63.0 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Crop
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
177.40	314.50	324.20	200	63	63	143.14	183	35.50	32

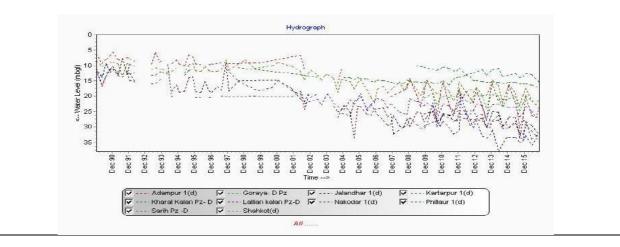
<u>Alternate Water sources</u> Surface water sources: *Tanks, Ponds* No.of Water tanks: 34 Location, details and availability from such sources outside the area: Not Available <u>Regulation and Control:</u>

Punjab Subsoil Act for delay in paddy plantation should continue in the area. <u>Other interventions proposed, if any</u>

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).


SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip	70-90	Sugarcane, Sunflower, Maize
	Irrigation		

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.


VI. Salient Information of Lohian Block

Block Area		28	0.30 sq kn	1			
(in Km ²)				-			
District/ State	Jalandhar, Punjab						
Population	Urban Popula	Urban Population: 0					
		Rural Population: 59846					
	Total populat						
Rainfall	Normal Monsoon: 454 mm						
	Non-monsoor	n Rainfall : 103 n	nm				
	Annual Avera	ge Rainfall: 557	mm				
Agriculture and Irrigation	Principal crop	s: Rice, Wheat, S	Sugar cane,	and Maize			
		/egetables and I					
		d area: 332.71	-				
		a: 176.77 sq kn					
	U	ctices: Tube well	Irrigation				
	Cropping intensity: 188%						
	<u>Area under</u>						
	Ground water Irrigation: 176.7 sq km						
		irrigation: 0 sq					
	-	d area: 332.71					
	-	area: 176.77 sc	-				
Ground Water Resource		types of abstract		res: 6880, Tub	lewens		
Availability and Extraction		r Resources Ava er Resources ar		in the differ	ont group of		
Availability and Extraction		fresh water res			• ·		
		he basis of geop			to the depth		
	Aquifer	Aquifer	Aquifer	Granular	Resources		
	Group	Depth range	Thickness	Zones	(mcm)		
		(m)	(m)	(m)	(,		
	Aquifer-I	13.13 – 96.0	83	65	1413.6		
	Aquifer-II	105.0 - 180.0	75	30	629		
	Aquifer-III	205.0 - 300.0	95	50	1031		
		d Water Resour	ces availabl	e is 3073.8 n	ncm and total		
	potential gran	nular zones avai	lable are 14	15 m up to de	pth of 205 m.		
	Block is categ	orized as Over-	Exploited as	per Dynamic	Groundwater		
	Block is categorized as Over-Exploited as per Dynamic Groundwater Resources, 2013 assessment.						
	Ground wate	r Resources Ext	raction				
	Information	regarding the	abstraction	from Aquif	fer II is not		
		t there are di	-				
		tapping combi	•		-		
	water draft co	ould not be asse	ssed for Aqu	uifer-II and III	separately.		

Existing and future water	Existing Gross Ground water Draft as on 2013					
demands	Irrigation: 215.01 mcm					
	Domestic and industrial water supply: 1.46 mcm					
	Future water demands					
	Irrigation development potential : (-)115.02 mcm					
	Domestic and industrial water supply up to 2025 years : 1.82 mcm					
	Water Scarcity Villages: 85					
Water level behavior	Aquifer wise water level					
	Aquifer-I					
	Pre Monsoon: 9.60 – 32.40 m bgl					
	Post Monsoon: 10.75 – 33.15 m bgl					
	Seasonal Fluctuation: (-)1.15 – (-)1.55 m/yr					
	Aquifer-II &III					
	No Monitoring Stations					

Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium
Aquifer Disposition	Multiple Aquifer System (Two Aquifer Groups)

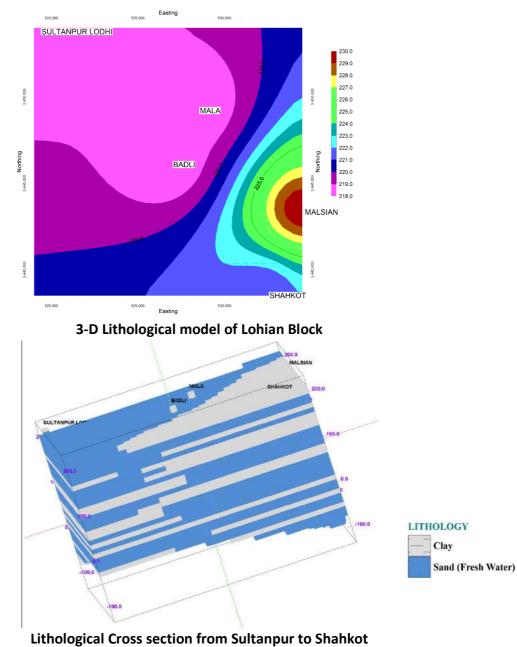
Exploratory Data Availability

Source of Data	No. of e	No. of exploration wells as per depth range (m)					
	<100	<100 100-200 200-300 >300					
CGWB	0	0	0	0	0		
WRED/PSTC/WSS	4	9	1	0	14		
PRIVATE	0	3	1	0	4		
TOTAL	4	12	2	0	18		

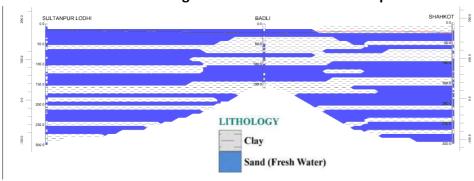
Aquifer wise Characteristics

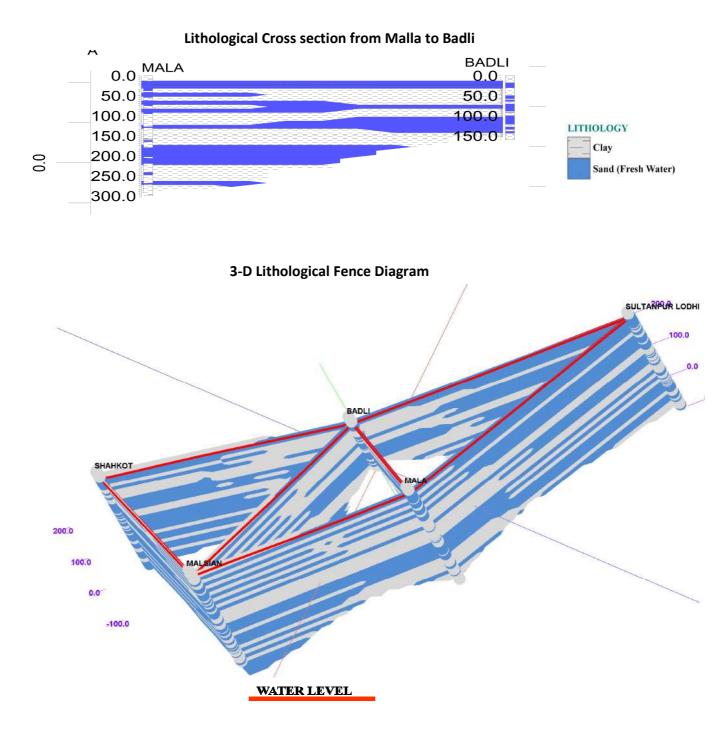
Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	65			12 %	
(13.13 -96 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	30	NA	NA		NA
(105 - 180 m)	deposits	confined to					
		Confined					
Aquifer-III		NA	50	1709	2300	NA	NA
(205 - 300 m)							

* Well field proposed in adjacent block , NA : Not Available

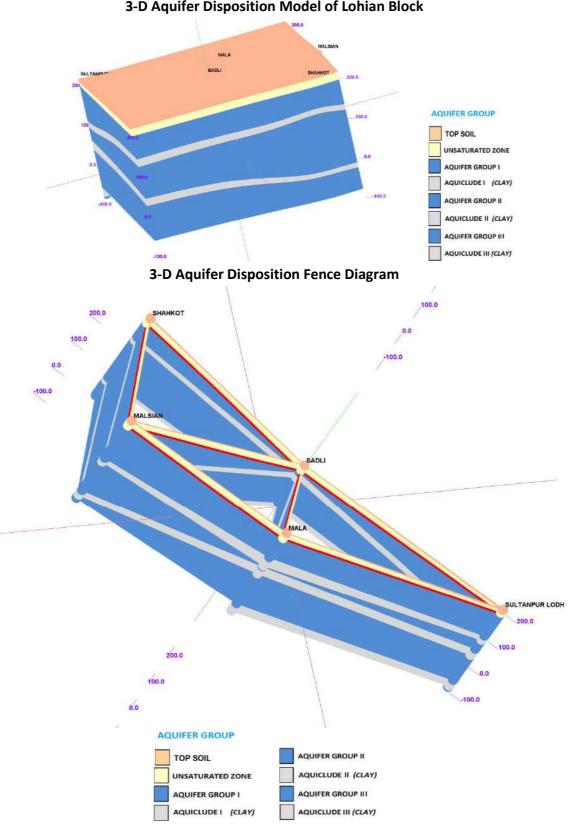

Source: Groundwater Exploration Report, CGWB,2015

The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

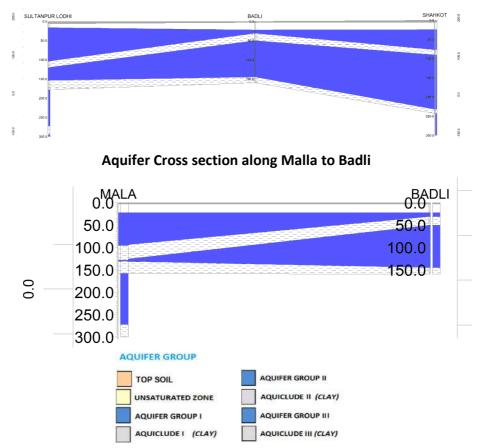

Exploratory Data Validated


Source of Data	No. of e	No. of exploration wells as per depth range (m)			
	<100	100-200	200-300	>300	
CGWB	0	0	0	1	1
WRED/PSTC/WSS	1	0	0	0	1
PRIVATE	0	1	0	0	1
TOTAL	1	1	0	1	3

The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.



Elevation Map of Lohian Block



3-D Aquifer Disposition Model of Lohian Block

Aquifer Cross section along North West to South East

Ground water Resource, Extraction, Contamination and other issues in Lohian Block

Ground Water	Dynamic Fresh water	101.82 mcm
Resources upto the	resources (Aquifer-I)	
depth of 300m	In-storage Aquifer-I	1312 mcm
	(Specific Yield Concept)	
	In-storage Aquifer-II	605 mcm
	(Specific Yield Concept)	
	In-storage Aquifer-II	23.35 mcm
	(Storativity Concept)	
	In-storage Aquifer-III	1009 mcm
	(Specific Yield Concept)	
	In-storage Aquifer-II	22.30 mcm
	(Storativity Concept)	
	Total Resources	3073.80 mcm
Ground Water	Irrigation	215.01 mcm

Extraction (as per 2013)	Domestic & Industrial	1.46 mcm		
Future Demand for dom (as per 2013)	estic & Industrial sector (2025)	1.82 mcm		
Stage of Groundwater De	evelopment	213 %		
Chemical Quality of grou	nd water	Ground water in the area is alkaline in nature, suitable for drinking and is fit for irrigation.		
Ground water Contamina	ation Issues	Not Available (NA)		
Other issues		Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.		

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 77 mcm

Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA

Other interventions proposed: Artificial Recharge, Roof top Rainwater harvesting will conserve 1.75 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Lohian Block (280.30 sq km)

Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 43.80 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: Rice to Maize, Soyabean.

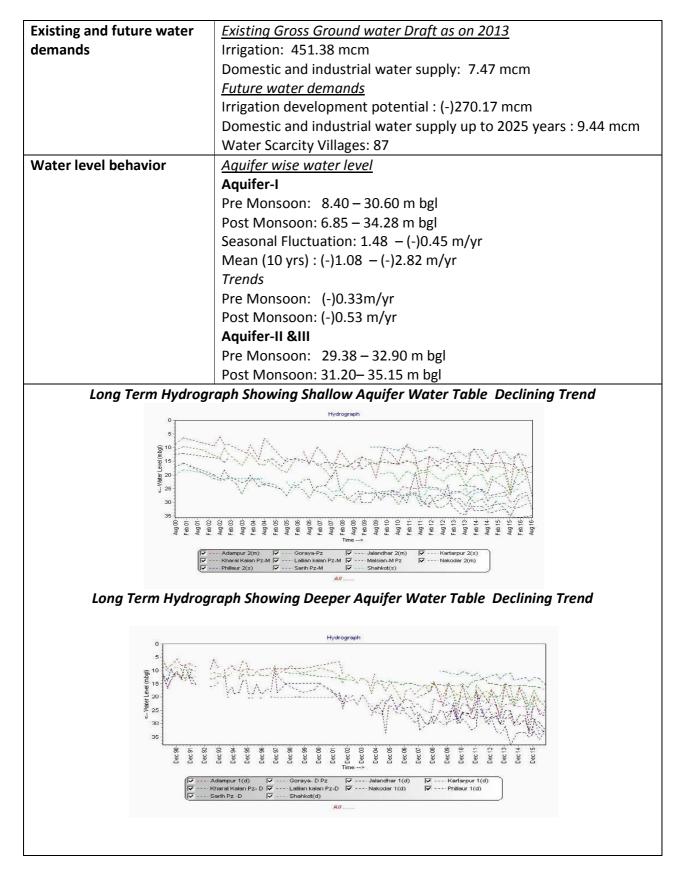
The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop Area coverage: *37% of the total rice area needs to change i.e.* 58.80 sq km

Anticipated volume of water to be saved: 58.8 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Сгор
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
101.82	215.01	216.47	161	58.8	58.8	156.25	213	35.50	37

<u>Alternate Water sources</u> Surface water sources: *Tanks, Ponds* No.of Water tanks: 17 Location, details and availability from such sources outside the area: Not Available <u>Regulation and Control:</u>

Punjab Subsoil Act for delay in paddy plantation should continue in the area. <u>Other interventions proposed, if any</u>


Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip Irrigation	70-90	Sugarcane, Sunflower, Maize

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

VII. Salient Information of Nakodar Block

Block Area		35	3.30 sq kn	n		
(in Km ²)						
District/ State	Jalandhar, Punjab					
Population	Urban Popula	tion: 0				
	Rural Population: 167014					
	Total populat	ion: 167014				
Rainfall	Normal Mons	oon: 484 mm				
	Non-monsoor	n Rainfall : 136 n	nm			
	Annual Avera	ge Rainfall: 620	mm			
Agriculture and Irrigation	Principal crop	s: Rice, Wheat, S	Sugar cane,	and Maize		
	Other crops: V	/egetables and I	Fodder			
	Gross croppe	d area: 424.14	sq km			
		a: 275.13 sq kn				
	U	ctices: Tube well	I Irrigation			
	Cropping inte	nsity: 154%				
	<u>Area under</u>		_			
		Irrigation: 275.	•			
		irrigation: 0 sq				
	•	d area: 424.14				
	-	area: 275.13 sc	-	12005 Tu	h eu velle	
		types of abstract		es: 13805, Tu	beweils	
Ground Water Resource		r Resources Ava er Resources ar		in the differ	ont group of	
Availability and Extraction		fresh water res				
		he basis of geop		•	to the depth	
	Aquifer	Aquifer	Aquifer	Granular	Resources	
	Group	Depth range	Thickness	Zones	(mcm)	
	Croup	(m)	(m)	(m)	(1110111)	
	Aquifer-I	26.64 - 160.0	133	64	1818.70	
	Aquifer-II	170.0 - 250.0	80	67	1714	
	Aquifer-III	276.0 - 300.0	24	18	453	
	-	Water Resourd	ces available	e is 3985.40 r	ncm and total	
	potential gran	nular zones avai	lable are 14	l9 m up to de	pth of 205 m.	
	Block is categ	orized as Over-	Exploited as	per Dynamic	Groundwater	
	Resources, 2013 assessment.					
	Ground water Resources Extraction					
		regarding the		•		
		t there are di				
		tapping combi	-		-	
	water draft co	ould not be asse	ssed for Aqu	uifer-II and III	separately.	

Aquifer Disposition

Number of aquifers	1	
Principal aquifer	Alluvium	
Major Aquifer	Older Alluvium	
Aquifer Disposition	Multiple Aquifer System (Two Aquifer Groups)	

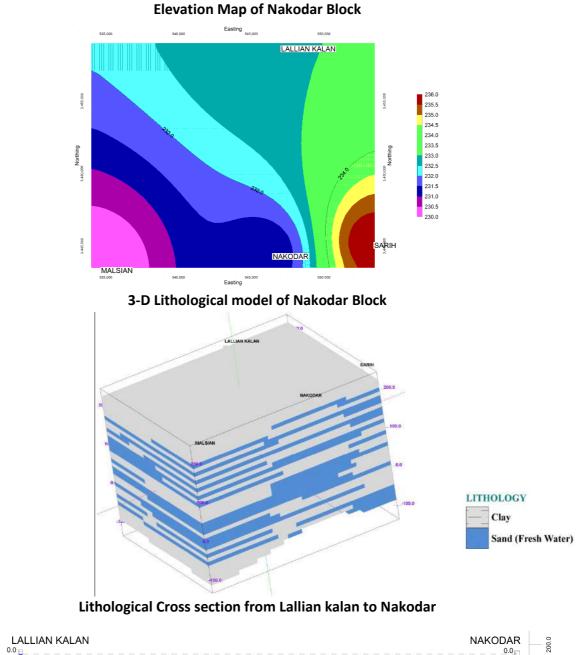
Exploratory Data Availability

Source of Data	No. of e	Total			
	<100	100-200	200-300	>300	
CGWB	0	0	0	0	0
WRED/PSTC/WSS	4	9	1	0	14
PRIVATE	0	3	1	0	4
TOTAL	4	12	2	0	18

Aquifer wise Characteristics

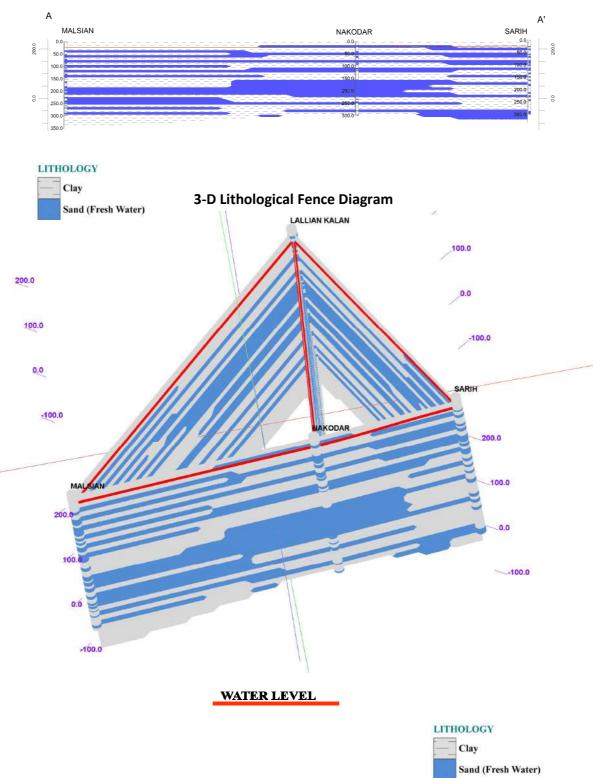
Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	64			12 %	
(26.64 -160 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	67	NA	NA		NA
(170 - 250 m)	deposits	confined to					
		Confined					
Aquifer-III		NA	18	NA	NA	NA	NA
(276 - 300 m)							

* Well field proposed in adjacent block , NA : Not Available

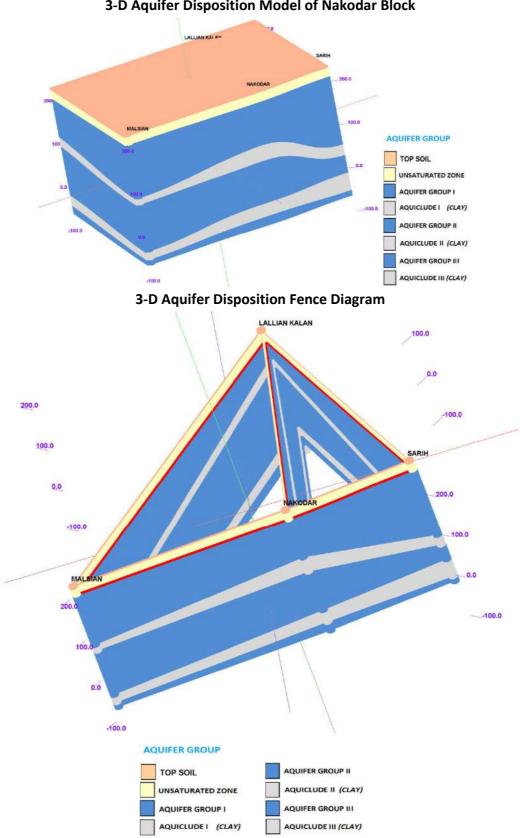

Source: Groundwater Exploration Report, CGWB,2015

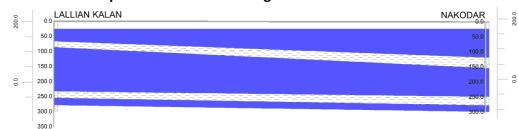
The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

Exploratory Data Validated

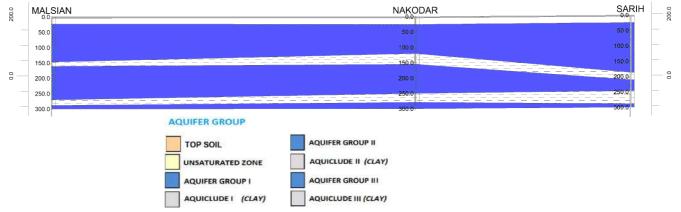

Source of Data	No. of e	No. of exploration wells as per depth range (m)			
	<100	100-200	200-300	>300	
CGWB	0	0	0	0	0
WRED/PSTC/WSS	0	5	1	0	6
PRIVATE	0	3	1	0	4
TOTAL	0	8	2	0	10

The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.





Page | 97


Lithological Cross section from Malsian to Sarih

Aquifer Cross section along Lallian kalan to Nakodar

Aquifer Cross section along Malsian to Sarih

Ground water Resource, Extraction, Contamination and other issues in Nakodar Block

Ground Water Resources upto the	Dynamic Fresh water resources (Aquifer-I)	190.66 mcm
depth of 300m	In-storage Aquifer-I (Specific Yield Concept)	1628 mcm
	In-storage Aquifer-II (Specific Yield Concept)	1704 mcm
	In-storage Aquifer-II (Storativity Concept)	9.49 mcm
	In-storage Aquifer-III (Specific Yield Concept)	407 mcm
	In-storage Aquifer-II (Storativity Concept)	45.90 mcm
	Total Resources	3985.40 mcm
Ground Water	Irrigation	451.38 mcm
Extraction (as per 2013)	Domestic & Industrial	7.47mcm
Future Demand for dom (as per 2013)	estic & Industrial sector (2025)	9.44 mcm
Stage of Groundwater D	evelopment	241 %

Chemical Quality of ground water	Ground water in the area is alkaline in
Chemical Quality of ground water	
	nature pH values are from 8.10 to 8.28,
	EC value of the ground water are from
	380 to 510 μS/cm at 25 ⁰ C.
	RSC values are varying from (-) 0.40 is
	1.20 meq/L and the area is fit for
	irrigation
Ground water Contamination Issues	Iron (mg/l)
	Nakodar (3.83)
Other issues	Water level decline has been observed
	in major parts of the block due to in
	discriminate development of ground
	water resources.

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 102 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow*

Types and number of structures: NA

Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve* 4.42 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Nakodar Block (353.3 sq km)

Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 91.96 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: Rice to Maize, Soyabean.

The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop Area coverage: *50% of the total rice area needs to change i.e.* 149.10 sq km

Anticipated volume of water to be saved: 149.10 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Crop
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
190.7	451.38	458.85	302	149.10	149.10	302.28	241	78.60	50

<u>Alternate Water sources</u> Surface water sources: *Tanks, Ponds* No.of Water tanks: 34 Location, details and availability from such sources outside the area: Not Available <u>Regulation and Control:</u>

Punjab Subsoil Act for delay in paddy plantation should continue in the area. <u>Other interventions proposed, if any</u>

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip Irrigation	70-90	Sugarcane, Sunflower, Maize

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

VIII. Salient Information of Nurmahal Block

Block Area		31	9.80 sq kn	n		
(in Km ²)	515.00 Sq Kill					
District/ State	Jalandhar, Punjab					
Population	Urban Popula	tion: 0				
	Rural Population: 91655					
	Total population: 91655					
Rainfall	Normal Monsoon: 504 mm					
	Non-monsoon Rainfall : 123 mm					
	Annual Avera	ge Rainfall: 627	mm			
Agriculture and Irrigation	Principal crop	s: Rice, Wheat, S	Sugar cane,	and Maize		
		Vegetables and I				
	Gross croppe	d area: 396.18 s	sq km			
		a: 202.48 sq km				
	•	ctices: Tube well	Irrigation			
	Cropping inte	nsity: 196%				
	<u>Area under</u>					
		r Irrigation: 202.				
		rirrigation: 0 sq				
	-	d area: 396.20	•			
	-	area: 202.47 sq			a vella	
Ground Water Resource		types of abstract		es: 7312, Tub	lewens	
Availability and Extraction		r Resources Ava er Resources ar		in the differ	ont group of	
Availability and Extraction		fresh water res			• ·	
		he basis of geop			to the depth	
	Aquifer	Aquifer	Aquifer	Granular	Resources	
	Group	Depth range	Thickness	Zones	(mcm)	
	Croup	(m)	(m)	(m)	(,	
	Aquifer-I	18.92 – 143.0	124	62	1584.70	
	Aquifer-II	112.0 - 186.0	74	26	605	
	Aquifer-III	279.0 - 300.0	21	16	721	
		Water Resourd			I	
	potential gran	nular zones avai	lable are 10)4 m up to de	pth of 205 m.	
	potential granular zones available are 104 m up to depth of 205 m. Block is categorized as Over-Exploited as per Dynamic Groundwater					
	Resources, 2013 assessment.					
	Ground water Resources Extraction					
	Information	regarding the	abstraction	from Aquit	fer II is not	
	available, bu	t there are dr	rinking wat	er supply w	ells of State	
		tapping combined	-		-	
	water draft co	ould not be asse	ssed for Aqu	uifer-II and III	separately.	

Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium
Aquifer Disposition	Multiple Aquifer System (Two Aquifer Groups)

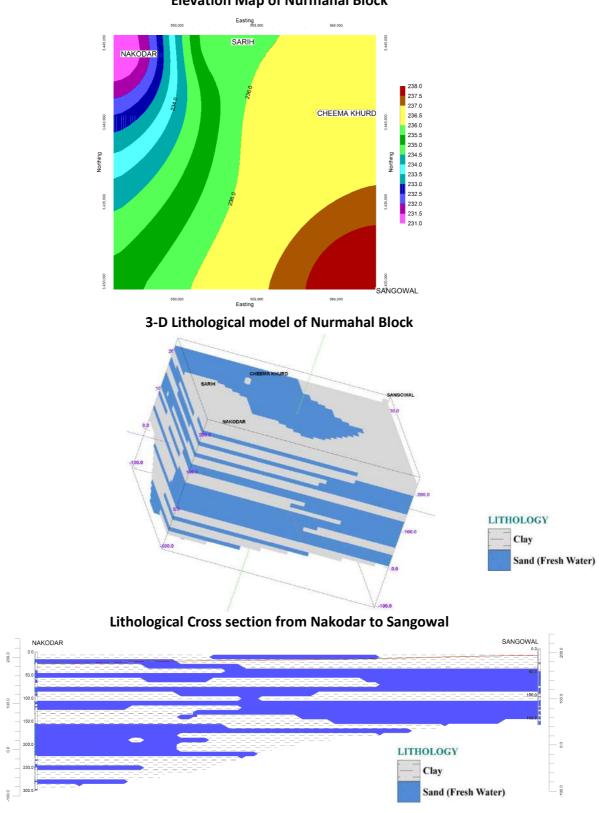
Exploratory Data Availability

Source of Data	No. of e	No. of exploration wells as per depth range (m)				
	<100	<100 100-200 200-300 >300				
CGWB	0	0	0	0	0	
WRED/PSTC/WSS	4	9	1	0	14	
PRIVATE	0	3	1	0	4	
TOTAL	4	12	2	0	18	

Aquifer wise Characteristics

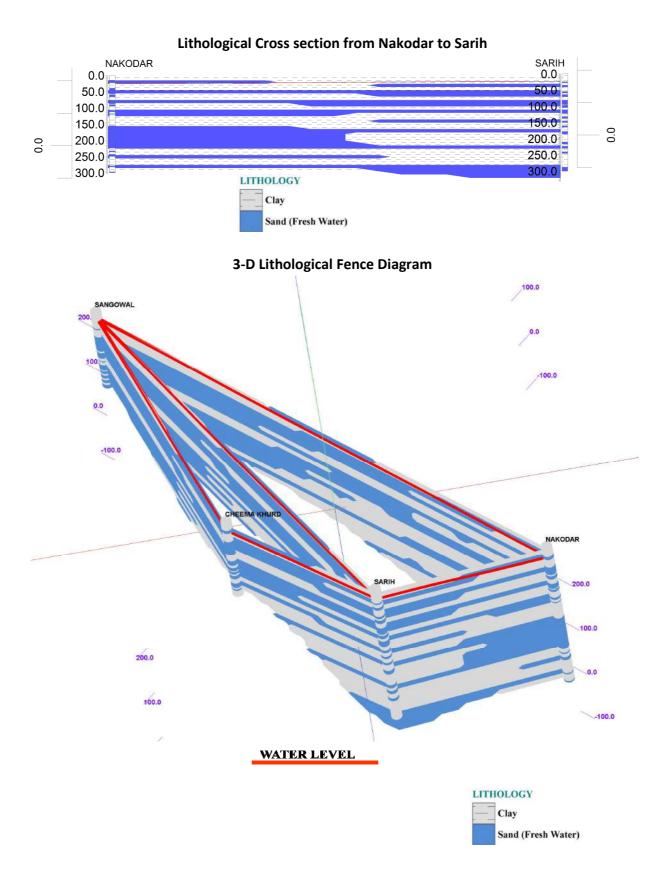
Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –l	Quarter-	Unconfined	62	NA	NA	12 %	NA
(18.92 -143 m)	nary	to confined		INA	NA	(0.072)	NA
Aquifer-II	Alluvial	Semi	26	480	1408		1.61 x 10 ⁻⁴
(112 - 236 m)	deposits	confined to					
		Confined					
Aquifer-III		NA	16	614	1408		1.21 x 10 ⁻⁴
(279 - 300 m)							

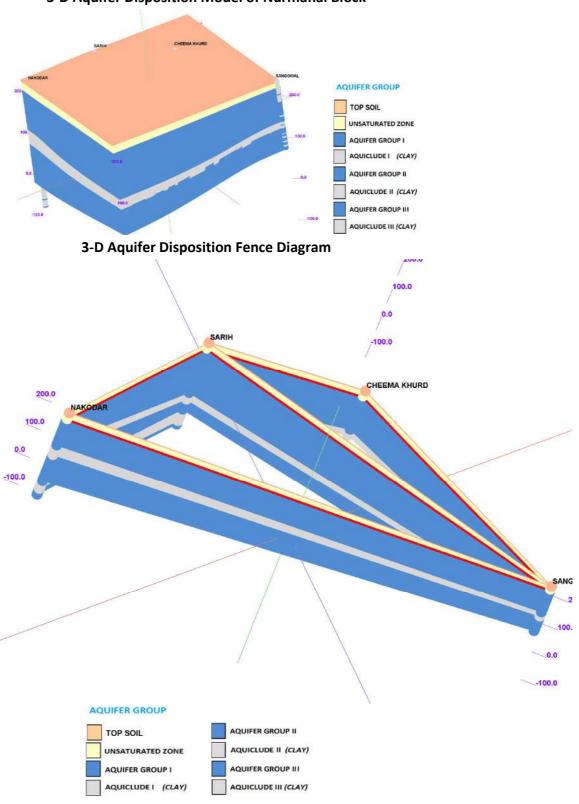
* Well field proposed in adjacent block , NA : Not Available

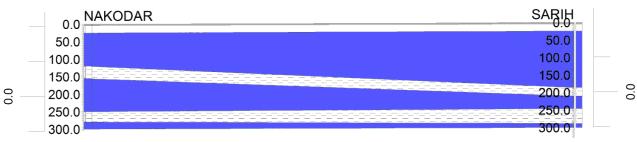

Source: Groundwater Exploration Report, CGWB,2015

The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.

Exploratory Data Validated


Source of Data	No. of e	No. of exploration wells as per depth range (m)					
	<100	<100 100-200 200-300 >300					
CGWB	0	0	0	1	1		
WRED/PSTC/WSS	1	0	0	0	1		
PRIVATE	0	2	0	0	2		
TOTAL	1	2	0	1	4		


The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.


Elevation Map of Nurmahal Block

Page | 106

3-D Aquifer Disposition Model of Nurmahal Block

Aquifer Cross section along Nakodar to Sarih

Aquifer Cross section along Nakodar to Sangowal

Ground water Resource, Extraction, Contamination and other issues in Nurmahal Block

Ground Water	Dynamic Fresh water	157.07 mcm	
Resources upto the	resources (Aquifer-I)		
depth of 300m	In-storage Aquifer-I	1428 mcm	
	(Specific Yield Concept)		
	In-storage Aquifer-II	599 mcm	
	(Specific Yield Concept)		
	In-storage Aquifer-II	5.57 mcm	
	(Storativity Concept)		
	In-storage Aquifer-III	691 mcm	
	(Specific Yield Concept)		
	In-storage Aquifer-II	30.3 mcm	
	(Storativity Concept)		
	Total Resources	2910.8 mcm	
Ground Water	Irrigation	288.73 mcm	
Extraction (as per 2013)			
(Domestic & Industrial	1.96mcm	
Future Demand for dom	estic & Industrial sector (2025)	2.47 mcm	
(as per 2013)			

Stage of Groundwater Development	185 %
Chemical Quality of ground water	Ground water in the area is alkaline in nature pH values is 8.38, EC value of the ground water is $300 \ \mu$ S/cm at 25° C. RSC values is (-)0.16 meq/L and the area is fit for irrigation
Ground water Contamination Issues	Fluoride (mg/l) Sarih (1.2)
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 81 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve*

2.63 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Nurmahal Block (319.80 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 58.82 mcm

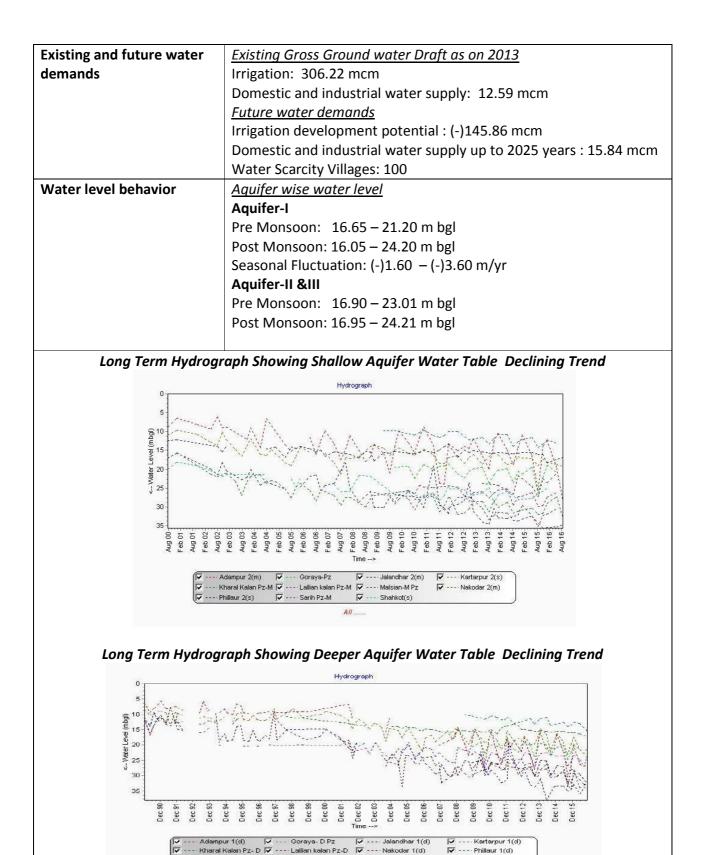
Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean. The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage: *32% of the total rice area needs to change i.e.* 58.30 sq km Anticipated volume of water to be saved: 58.30 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Crop
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
157.10	288.73	290.69	185	58.30	58.30	230.43	185	37.10	32

<u>Alternate Water sources</u> Surface water sources: *Tanks, Ponds* No.of Water tanks: 25 Location, details and availability from such sources outside the area: Not Available <u>Regulation and Control:</u>

Punjab Subsoil Act for delay in paddy plantation should continue in the area. <u>Other interventions proposed, if any</u>


Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip	70-90	Sugarcane, Sunflower, Maize
	Irrigation		

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

IX. Salient Information of Phillaur Block

Block Area		27	70.3 sq km	<u> </u>			
(in Km ²)							
District/ State	Jalandhar, Punjab						
Population	Urban Popula	Urban Population: 6258					
	Rural Populat	Rural Population: 137450					
	Total populati	Total population: 143708					
Rainfall	Normal Monsoon: 489 mm						
	Non-monsoon Rainfall : 139 mm						
	Annual Avera	Annual Average Rainfall: 628 mm					
Agriculture and Irrigation	Principal crop	s: Rice, Wheat, S	Sugar cane,	and Maize			
	Other crops: \	/egetables and I	Fodder				
	Gross cropped	d area: 525.53 s	sq km				
	Net sown area	a: 293.12 sq kn	า				
	Irrigation prac	ctices: Tube well	Irrigation				
	Cropping inte	nsity: 179%					
	<u>Area under</u>						
		Irrigation: 293.					
		irrigation: 0 sq					
	-	d area: 525.70					
	-	area: 283.12 sc	-				
		types of abstract		res: 8812, Tub	ewells		
Ground Water Resource		r Resources Ava					
Availability and Extraction		er Resources ar			• ·		
		fresh water res			to the depth		
		he basis of geop			Deservation		
	Aquifer	Aquifer	Aquifer	Granular	Resources		
	Group	Depth range	Thickness	Zones	(mcm)		
	Aswifer	(m)	(m)	(m)	1000.40		
	Aquifer-I	14.62 - 160.0	145	87	1869.40		
	Aquifer-II	108.0 - 250.0	142 38	82 25	1633		
	Aquifer-III	262.0 - 300.0			519		
		Water Resour					
		nular zones avai orized as Over-		•	•		
	-		LAPIOILEU de				
	Resources, 2013 assessment. Ground water Resources Extraction						
		Ground water Resources Extraction Information regarding the abstraction from Aquifer II is not					
		t there are di					
		tapping combi	-				
		ould not be asse	•		-		

Sarih Pz -D

🔽 ---- Shahkot(d)

All

Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer	Older Alluvium
Aquifer Disposition	Multiple Aquifer System (Two Aquifer Groups)

Exploratory Data Availability

Source of Data	No. of e	No. of exploration wells as per depth range (m)					
	<100	<100 100-200 200-300 >300					
CGWB	0	0	0	0	0		
WRED/PSTC/WSS	4	9	1	0	14		
PRIVATE	0	3	1	0	4		
TOTAL	4	12	2	0	18		

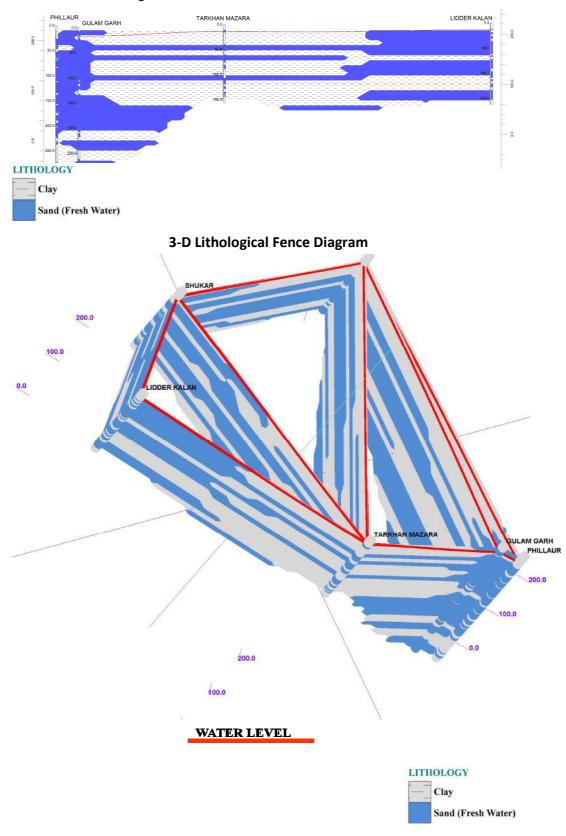
Aquifer wise Characteristics

Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	87			12 %	
(14.62 -160 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	82	5750	5670		6.0 x 10 ⁻³
(108 - 250 m)	deposits	confined to					
		Confined					
Aquifer-III		NA	25	NA	NA	NA	NA
(262 - 300 m)							

* Well field proposed in this block , (Site : Massani) NA : Not Available

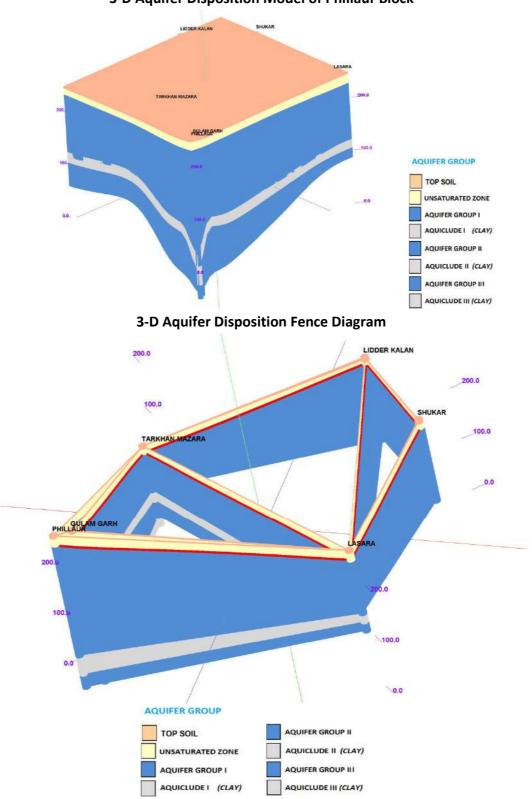
Source: Groundwater Exploration Report, CGWB,2015

The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.


Exploratory Data Validated

Source of Data	No. of e	No. of exploration wells as per depth range (m)			
	<100	100-200	200-300	>300	
CGWB	0	0	0	2	2
WRED/PSTC/WSS	0	0	0	0	0
PRIVATE	0	2	0	0	2
TOTAL	0	2	0	2	4

The data is validated by selecting the deepest well in each quadrant (elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.



Page | 115

Lithological Cross section from Phillaur to Lidder kalan

Page | 116

3-D Aquifer Disposition Model of Phillaur Block

Aquifer Cross section along Tarkhan mazara to Lasara

Ground water Resource, Extraction, Contamination and other issues in Phillaur Block

Ground Water Resources upto the	Dynamic Fresh water resources (Aquifer-I)	176.20 mcm	
depth of 300m	In-storage Aquifer-I (Specific Yield Concept)	1693 mcm	
	In-storage Aquifer-II (Specific Yield Concept)	1596 mcm	
	In-storage Aquifer-II (Storativity Concept)	37.63mcm	
	In-storage Aquifer-III (Specific Yield Concept)	487 mcm	
	In-storage Aquifer-II (Storativity Concept)	32.8 mcm	
	Total Resources	4022.20 mcm	
Ground Water	Irrigation	306.22 mcm	
Extraction (as per 2013)	Domestic & Industrial	12.59 mcm	
Future Demand for dom (as per 2013)	estic & Industrial sector (2025)	15.84 mcm	
Stage of Groundwater De	evelopment	181 %	
Chemical Quality of grou	nd water	Ground water in the area is alkaline in nature pH value is 8.59. EC value of the ground water is 700 μ S/cm at 25 ⁰ C. RSC value is 0.97 meq/L and the area is fit for irrigation.	

Ground water Contamination Issues	Nitrate(mg/l) Phillaur (55) Fluoride(mg/l) Phillaur (1.0)
Other issues	Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 66 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve 1.92 mcm volume of water*

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Phillaur Block (270.30 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 62.39 mcm

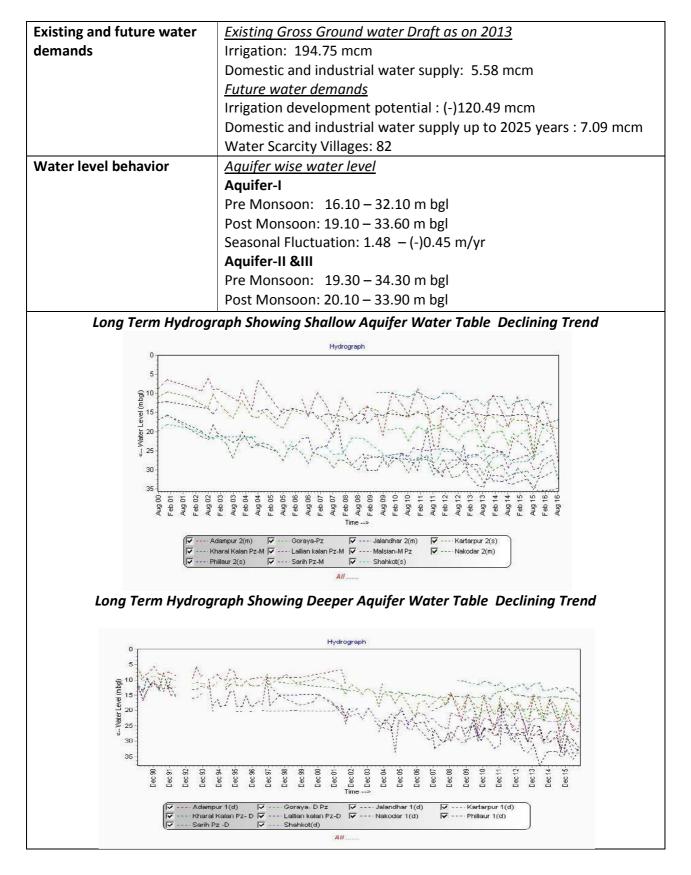
Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean. The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage: *31% of the total rice area needs to change i.e.* 61 sq km Anticipated volume of water to be saved: 61 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Crop
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
176.20	306.22	318.81	201	61.0	61.0	245.22	181	34.80	31

<u>Alternate Water sources</u> Surface water sources: *Tanks, Ponds* No.of Water tanks: 39 Location, details and availability from such sources outside the area: Not Available <u>Regulation and Control:</u>

Punjab Subsoil Act for delay in paddy plantation should continue in the area. <u>Other interventions proposed, if any</u>


Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip	70-90	Sugarcane, Sunflower, Maize
	Irrigation		

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.

X. Salient Information of Shahkot Block

-	landhar, Pui		0.7 sq km				
-	landhar, Pui	•					
		Jalandhar, Punjab					
opulation Ur	rban Popula	tion: 0					
-	ural Populati						
	Total population: 85942						
ainfall No	ormal Mons	oon: 468 mm					
No	on-monsoor	n Rainfall : 106 n	nm				
Ar	nnual Avera	ge Rainfall: 574	mm				
griculture and Irrigation Pr	incipal crop	s: Rice, Wheat, S	Sugar cane,	and Maize			
Ot	ther crops: \	/egetables and I	odder				
Gr	ross cropped	d area: 373.89 s	q km				
Ne	et sown area	a: 203.31 sq km	l				
Irr	rigation prac	tices: Tube well	Irrigation				
Cr	opping inte	nsity: 184%					
	<u>rea under</u>						
		Irrigation: 203.	-				
		irrigation: 0 sq					
	-	d area: 374.11					
	-	area: 203.31 so					
		types of abstract		res: /136, Tub	ewells		
		r Resources Ava					
-		er Resources ar			- ·		
	•	fresh water res			to the depth		
Of C		he basis of geop		•	Deseurees		
	Aquifer	Aquifer Depth range	Aquifer Thickness	Granular Zones	Resources		
	Group	(m)	(m)	(m)	(mcm)		
	Aquifer-I	(11) 26.91 – 147.0	120	75	1381.10		
	Aquifer-II	<u>20.91 - 147.0</u> 90.0 - 270.0	120	73	1220		
	Aquifer-III	243.0 - 300.0	57	27	495		
		Water Resource					
	potential granular zones available are 172 m up to depth of 205 m. Block is categorized as Over-Exploited as per Dynamic Groundwater						
	Resources, 2013 assessment.						
	Ground water Resources Extraction						
		regarding the		from Aauif	er II is not		
		t there are dr		•			
		tapping combined					
		ould not be asse	-		-		
			·				

Aquifer Disposition

Number of aquifers	1
Principal aquifer	Alluvium
Major Aquifer Older Alluvium	
Aquifer Disposition	Multiple Aquifer System (Two Aquifer Groups)

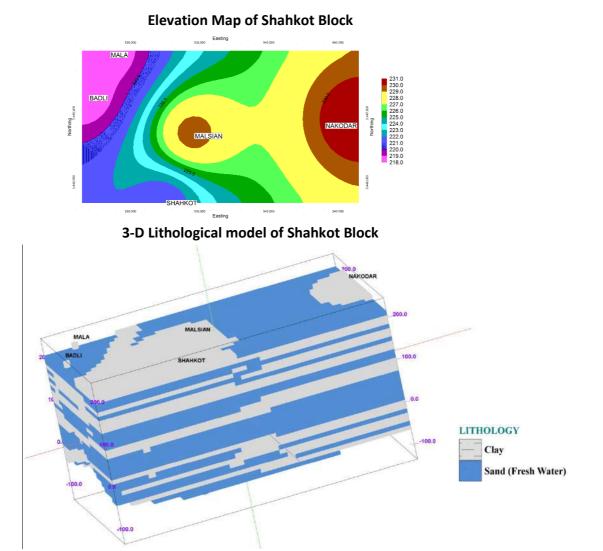
Exploratory Data Availability

Source of Data	No. of exploration wells as per depth range (m)				Total
	<100	100-200	200-300	>300	
CGWB	0	0	0	0	0
WRED/PSTC/WSS	4	9	1	0	14
PRIVATE	0	3	1	0	4
TOTAL	4	12	2	0	18

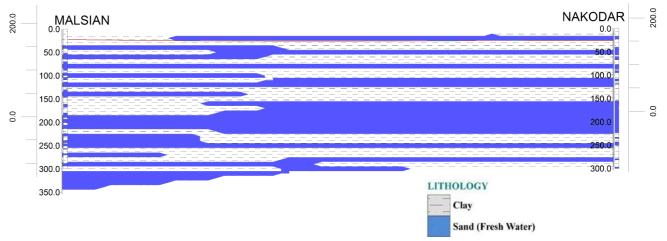
Aquifer wise Characteristics

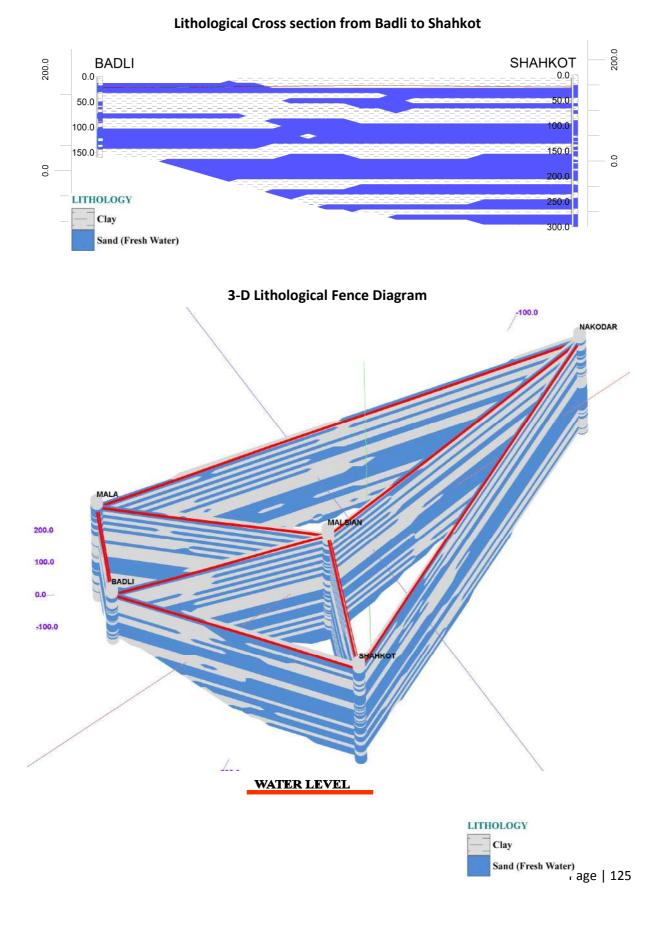
Aquifer Group	Geology	Type of	Thickness	Transmiss-	Discharge	Specific	Storativity
*		Aquifer	of Granular	ivity	(m³/day)	Yield	
			zones (m)	(m²/day)			
Aquifer –I	Quarter-	Unconfined	75			12 %	
(26.91 -147 m)	nary	to confined				(0.072)	
Aquifer-II	Alluvial	Semi	70	NA	NA		NA
(90 - 270 m)	deposits	confined to					
		Confined					
Aquifer-III		NA	27	NA	NA	NA	NA
(243 - 300 m)							

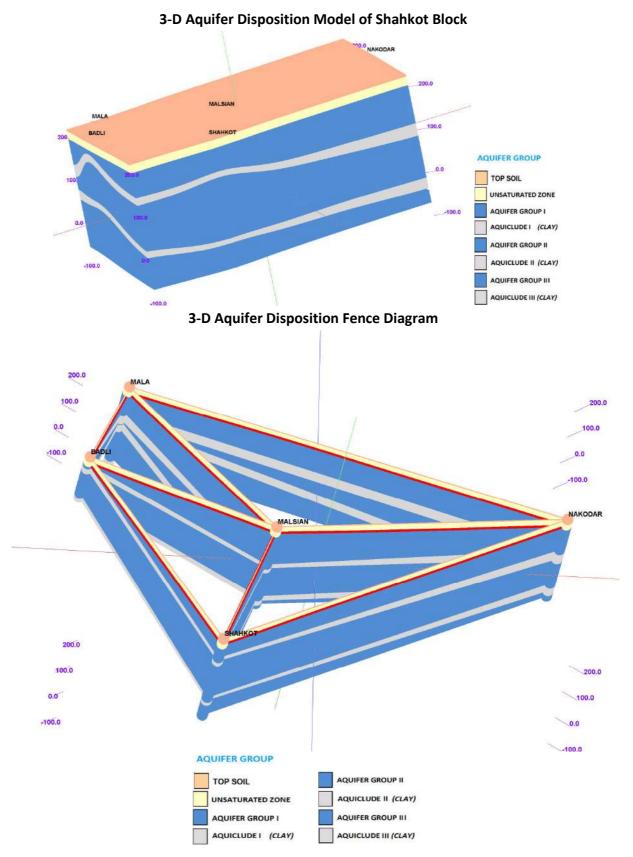
* Well field proposed in this block (Site : Billi Chaharmi) , NA : Not Available

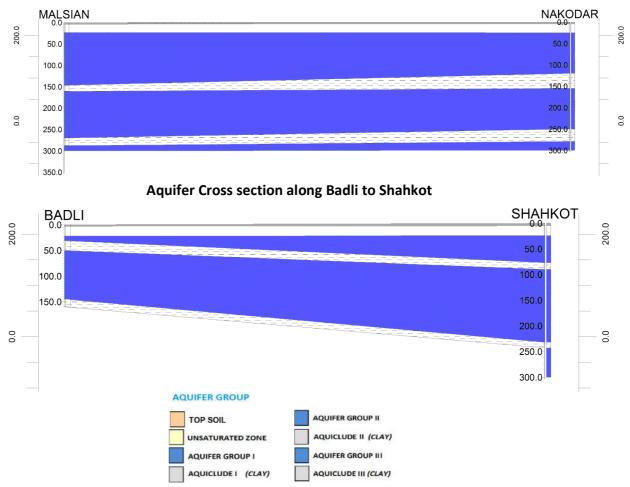

Source: Groundwater Exploration Report, CGWB,2015

The Aquifer comprises of fresh and saline water and the major aquifer material is sand. The aquiclude and aquitard comprises of clay, clay with silt.


Exploratory Data Validated


Source of Data	No. of e	No. of exploration wells as per depth range (m)			
	<100	100-200	200-300	>300	
CGWB	0	0	0	2	2
WRED/PSTC/WSS	0	0	0	0	0
PRIVATE	0	2	0	0	2
TOTAL	0	2	0	2	4


The data is validated by selecting the deepest well in each quadrant(elevation map) and used for preparation of 3-D Litho models, 2-D Geological Cross Sections, Fence Diagrams and Aquifer Maps.



Lithological Cross section from Malsian to Nakodar

Aquifer Cross section along Malsian to Nakodar

Ground water Resource, Extraction, Contamination and other issues in Shahkot Block

Ground Water Resources upto the	Dynamic Fresh water resources (Aquifer-I)	81.36 mcm
depth of 300m	In-storage Aquifer-I (Specific Yield Concept)	1300 mcm
	In-storage Aquifer-II (Specific Yield Concept)	1213 mcm
	In-storage Aquifer-II (Storativity Concept)	6.99 mcm
	In-storage Aquifer-III (Specific Yield Concept)	468 mcm
	In-storage Aquifer-II (Storativity Concept)	26.90 mcm
	Total Resources	3096.10 mcm

Ground Water Extraction (as per 2013)	Irrigation	194.75 mcm		
	Domestic & Industrial	5.58 mcm		
Future Demand for dom (as per 2013)	estic & Industrial sector (2025)	7.09 mcm		
Stage of Groundwater De	evelopment	246 %		
Chemical Quality of grou	ind water	Ground water in the area is alkaline in nature pH value is 8.38, EC value of the ground water is 555 μ S/cm at 25 ⁰ C. RSC values are varying from 2.99 meq/L and the area is fit for irrigation		
Ground water Contamin	ation Issues	Not Available (NA)		
Other issues		Water level decline has been observed in major parts of the block due to in discriminate development of ground water resources.		

Ground water Resource Enhancement Potential

Aquifer wise space available for recharge and proposed interventions (Supply Side Measures)

Aquifer-I:

Volume of unsaturated zone after 3m upto a desirable depth: 66 mcm Source water requirement/availability for recharge: *Rain, Canal, Irrigation return flow* Types and number of structures: NA Other interventions proposed: *Artificial Recharge, Roof top Rainwater harvesting will conserve* 2.14 mcm volume of water

Demand side interventions

Advanced Irrigation Practices

Area proposed to be covered: Entire Shahkot Block (240.7 sq km) Volume of Water expected to be conserved under advanced irrigation practices such as lining of underground pipelines (Kutcha channel) etc.: 62.39 mcm

Required Change in cropping pattern

Proposed change in cropping pattern: *Rice to Maize, Soyabean. The overexploitation can be managed at sustainable level (100%) by changing the Paddy crop* Area coverage: 40% of the total rice area needs to change i.e. 66.80 sq km Anticipated volume of water to be saved: 66.80 mcm

Net Annual	Total	Gross	Paddy	Required	Amount	Gross	Present	Reduction	Сгор
Ground	Irrigatio	Draft all	area	Area to be	of	draft	Stage of	in Stage of	Diversified
Water	n Draft	uses	(Sq km)	Change	Water	after	developme	developme	area (%)
Availability	(present)	(present)		from	Saved	saving	nt (%)	nt after	
2013	(mcm)	(mcm)		Paddy to	(mcm)	of water		Maize/	
(mcm)				Maize/		(mcm)		soya bean	
				soya bean				(%)	
				(Sq km)					
81.36	194.75	200.33	167	66.80	66.80	127.95	246	82.10	40

Alternate Water sources

Surface water sources: Tanks, Ponds

No.of Water tanks: 20

Location, details and availability from such sources outside the area: Not Available *Regulation and Control:*

Punjab Subsoil Act for delay in paddy plantation should continue in the area.

Other interventions proposed, if any

Modern Irrigation Practices be adopted for Rabi crops. Some of the techniques are given in the table below (PAU, Ludhiana).

SI.No	Techniques	Water Saving	Crops
		(%)	
1	Mulching	17	Wheat
2	Bed Planting	18-25	Wheat
3	Use of Sprinkler and drip	70-90	Sugarcane, Sunflower, Maize
	Irrigation		

Other than that by 15 days ponding followed by 2 days of drying can lead to 25% saving of water in paddy crop.