

केंद्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES Parts Of Nadia District (9 Blocks), West Bengal (Karimpur - I, Karimpur - II, Tehatta - I, Tehatta -II, Kaliganj, Nakashipara, Chapra, Krishnaganj & Hanskhali Blocks) (Phase - II)

> पूर्वी क्षेत्र, कोलकाता Eastern Region, Kolkata

GOVERNMENT OF INDIA MINISTRY OF JAL SHAKTI

REPORT ON AQUIFER MAPPING STUDIES IN PARTS OF NADIA DISTRICT (9 Blocks), WEST BENGAL

(Karimpur - I, Karimpur - II, Tehatta - I, Tehatta - II, Kaliganj, Nakashipara, Chapra, Krishnaganj & Hanskhali Blocks)

(PHASE - II)

(AAP 2016 - 2017)

Central Ground Water Board Eastern Region, Kolkata

SEPTEMBER 2019

REPORT ON AQUIFER MAPPING STUDIES IN PARTS OF NADIA DISTRICT (9 Blocks), WEST BENGAL

(Karimpur - I, Karimpur - II, Tehatta - I, Tehatta - II, Kaliganj, Nakashipara, Chapra, Krishnaganj & Hanskhali Blocks)

(PHASE - II)

(AAP 2016 - 2017)

CONTENTS

<u>Part I</u>

Aquifer Mapping Studies in parts of Nadia district (9 Blocks)CHAPTERPage No (s).Chapter - 1: INTRODUCTION01

1.1	Objective	01
1.2	Scope of Study	01
1.3	Approach and Methodology	01 to 02
1.4	Location, Extent and Accessibility of the study area	02
1.5	Administrative divisions and Population	02 to 04
1.6	Land use and cropping pattern	04 to 05
1.7	Urban areas	05
Cha	pter - 2: HYDROMETEOROLOGY	
2.1	Rainfall	05 to 06
2.2	Temperature	06
Cha	pter - 3: PHYSIOGRAPHY	
3.1	Geomorphology	07
3.2	Drainage	07
3.3	Soil Types	07
Cha	pter - 4: GEOLOGY & HYDROGEOLOGY	
4.1	General geology	07 to 08
4.2:	Hydrogeology	08 to 26

4.2.1: Sub-surface Hydrogeology	08 to 15						
4.2.2: Aquifer characteristics							
4.2.3: Ground water regime of aquifers	16 to 21						
4.2.4: Seasonal long term water level trend analysis	21 to 23						
4.2.5: Ground Water Resources, Draft, SOD & Category	23 to 26						
Chapter - 5: HYDROCHEMISTRY							
5.1: Quality of Shallow and Deeper Aquifer Water	27						
5.2: General range of chemical parameter	27 to 31						
5.3: Ground water pollution	31 to 32						
Chapter - 6: AQUIFER MANAGEMENT PLAN							
6.1: Ground Water Management Plan for Drinking Purposes	33 to 36						
6.2: Ground Water Management Plan for Irrigation Purposes	36 to 38						

Chapter - 7: SCOPE OF ARTIFICIAL RECHARGE	39
---	----

Part II

Block wise Aquifer Management Plan in parts of Nadia District (9 Blocks)

1. Karimpur I Block.	40 to 49
2. Karimpur II Block.	50 to 60
3. Tehatta I Block.	61 to 71
4. Tehatta II Block.	72 to 82
5. Kaliganj Block.	83 to 93
6. Nakashipara Block.	94 to 102
7. Chapra Block.	103 to 113
8. Krishnaganj Block.	114 to 124
9. Hanskhali Block.	125 to 138

Part III

Data Gap Analysis in parts of Nadia District (9 Blocks), West Bengal

139 to 153

EXECUTIVE SUMMARY

Under the National Aquifer Mapping & Management Programme (NAQUIM), taken up by CGWB under XIIth Plan, 9 blocks of Nadia district in West Bengal, covering an area of approximately 2262 sq. km. were taken up by CGWB, ER, Kolkata during 2015-16 (extended to 2016-17). This report envisages the salient features of aquifer geometry, characteristics, ground water occurrences, availability, resource vis-a-vis quality etc. in respect of present scenario.

The broad objective of the study is to establish the geometry of underlying aquifer systems in horizontal and vertical domain and characterize them, so as to work out the developmental potential and prepare aquifer-wise management plan.

During the present study, there have been four major activity components viz.: (i) Data collection from different sources and compilation, (ii) Data gap analysis to ascertain requirement for further data generation, (iii) Data generation in respect of hydrogeological, geophysical, geochemical aspects, and (vi) Preparation of aquifer maps and management plan to achieve the primary objective.

The study area falls in northern part of Nadia district comprising 9 blocks namely-Karimpur I, Karimpur II, Tehatta I, Tehatta II, Kaliganj, Nakashipara, Chapra, Krishnaganj and Hanskhali; these blocks are located on the eastern side of Bhagirathi river. The study area is a part of Lower Ganga Alluvial Plains in the inter-fluvial belt of Ganga basin. Bhagirathi, Jalangi, Churni, etc forms the major drainage in the study area. The area partly falls in the Survey of India Degree Sheet nos. 79A and 79B and extends between North latitudes 23.240° and 24.132° and East longitudes 88.070° and 88.870°.

As per 2011 census, the total population of the study area (i.e. in 9 Blocks) is 21,21,105 which is about 41 % of the total population of Nadia district. The average population growth from 2001 to 2011 is about 12.25 %. The average annual rainfall in Nadia district from 2012-2016 is 1214.24 mm. However, the normal annual rainfall (1980-2016) is slightly higher at 1376 mm.

Ground water based irrigation is done by DTWs, STWs & Dug Wells, and cultural command area is 1267.93 sq. km. The surface water based irrigation is done by RLI and SFI and it's cultural command area is 88.60 sq. km. Total cultivable area in the area is 1584.68 sq. km. and the Cropping Intensity is 243%.

Principal crops in the area, are Paddy (Aus, Aman & Boro), Wheat, Maize, Gram, Pulses, Oil seeds (Mustard, Linseed), Fibers (Jute), Sugar-cane, Vegetables (Potato), etc.

Geomorphology, mainly represented by younger flood plain, is almost flat topography covered with numerous small rivers/ streams, meander scars, cut off/ abandoned channels, point bars, natural levees. Elevation ranges from 28.84 m above MSL (Mean Sea Level), near Jairampur, Karimpur block, to 5.1 m above MSL, near Hanskhali block.

Geologically, the area is underlain by a huge thickness of Recent to Sub-Recent Alluvium of the Ganga basin. Thick Gangetic alluvium of Quaternary Era constitutes the sub - surface geology. These fluviatile sediments are composed of sand of various grades, silt, clay, gravel, kankar and their various admixtures deposited by the river Ganga and its tributaries. Sand is grey coloured and highly micaceous in nature and compositionally quartzo-feldspathic with some mafic minerals.

Hydrogeologically, 3 aquifer systems/ groups, separated by clay barriers of widely variable thickness, have been identified. The shallow aquifer system (say, Aquifer I Group) exists within a depth range of 5 m to 150 m, which extends up to 186 m at Betai in Tehatta I block; ground water in this aquifer system is mostly contaminated by arsenic in all the blocks. The next deeper aquifer system (Aquifer II Group) occurs broadly within 150 – 200 m in all the blocks; ground water in this aquifer system is found to be contaminated by arsenic by arsenic sporadically, particularly in Tehatta I, Tehatta II, Kaliganj & Nakashipara blocks. The deepest one (Aquifer III Group) exists approximately within the depth range from 215 m to 295 m, as observed in Karimpur I & Karimpur II, Tehatta II and Kaliganj blocks; ground water in this aquifer system is in general fresh.

. The tube wells tapping the zones at shallow depth (Aquifer I) yield (Q) to the tune within 36 - 173 m³/hr with Transmissivity (T) varying from 350 to 2700 m²/day. In the tube wells tapping the intermediate zones, Aquifer- II, Q generally ranges from 29 to191 m³/hr with T varying from 350 to 2700 m²/day. Abstraction structures in the deeper aquifer, i.e. Aquifer III, yield between 36 and 86 m³/hr. Pumping tests' data indicate that Storage co-efficient (S) ranges from 1.55 x 10⁻³ to 6.2 x 10⁻⁴ indicating confined condition for deeper aquifers. However, at many places the phreatic aquifers are under unconfined condition.

Monitoring data of hydrograph stations reveal that the pre-monsoon depth to water level (DTW) in shallow aquifer (Aquifer I) in this area ranges within 3 - 4 m bgl in a small patch of east-central part, covering parts of Karimpur II & Tehatta I blocks, and deepest within 7 - 8 m bgl in the west-central part, mainly in parts of Nakashipara block; and the same in deeper aquifer, Aquifer II is found to be shallow, ranging from 3 to 4 m bgl in the border area of Karimpur II & Tehatta I blocks, and deep, ranging from 9 to 10 m bgl in the west-central and south-western parts covering parts of Kaliganj & Hanskhali blocks.

Pre-monsoon water table map of Aquifer- I reveals ground water 'mounds' in the north-eastern & west-central parts of the area covering parts of Karimpur I, Karimpur II and Kaliganj blocks with a maximum elevation varying from 18 to 19 m above MSL and ground water 'troughs' occurring in the east-central & west-central parts covering parts of Chapra & Krishnaganj and Kaliganj blocks with maximum depression within 7 – 8 m above MSL. The regional direction of ground water flow is from north-west to south-east with variable gradients from 1:8000 to 1:1100 in different parts of the area.

Pre-monsoon water table map for deeper aquifer (Aquifer II) reveals the creation of ground water 'mounds' in the north-eastern & west-central parts of present area covering parts of Karimpur I, Tehatta- I, Nakashipara and Chapra blocks with a maximum elevation between 18 m and 19 m above MSL; and ground water 'troughs' occurring in the north-

western & south-western parts covering parts of Karimpur II and in the border of Krishnaganj & Hanskhali blocks with a maximum depression ranging between 7 m and 8 m above MSL. The local direction of ground water flow varies from place to place with variable gradients from 1:6000 to 1:1000.

Annual ground water flow has been estimated by Darcy's law using Q= TIL method. Block-wise flow of ground water in shallow unconfined aquifer and deeper semi-confined to confined aquifer systems have been presented in the Report.

Long term trend analysis reveals that there is a falling trend in some blocks (except a few) both during Pre-monsoon and Post-monsoon. Pre-monsoon falling trend of water level varies from 0.9 cm/year, in Hanskhali block to 16.4 cm/year, in Nakashipara block; Post-monsoon falling trend varies from 2.2 cm/year, in Nakashipara block) to 21.2 cm/year, in Tehatta I block.

Dynamic ground water resources of Aquifer I in the area under study have been estimated based on GEC (1997) methodology by CGWB and State Water Investigation Department (SWID) for the year as on 31.03.2013. The Net Ground Water Resource availability in the area comprising 9 blocks is computed to the tune of 1235.477 MCM and the Total Ground Water Draft for all uses is 1277.85 MCM. The average Stage of Development is 103.4 %. Based on the same estimation, out of nine blocks, two blocks – Nakashipara and Krishnaganj have been categorized as 'Safe' and other seven blocks are categorized as 'Semi-critical'.

Dynamic ground water resource of phreatic aquifer, Aquifer I, in the study area has also been estimated based on the Water Level Fluctuation Method for the year 2016 considering average Specific Yield of 20% and the same is found to be 422.237 MCM. The Dynamic ground water resources of deeper semi-confined to confined aquifer in the study area has also been estimated based on the average Storativity (considered as 1.55x 10⁻³) and average fluctuation of Water level (Pre monsoon minus post monsoon) of the present area and the same has been estimated to be 327.231 MCM.

Ground water occurring in shallow and deeper aquifers in the study area does not vary significantly, excepting sporadic contamination by arsenic. It is, in general, slightly alkaline and Ca-Mg- HCO3 type with electro-conductivity (EC) ranging between 280 and 1080 µS/cm. Chemical facies of shallow aquifer is generally MgHCO₃- CaHCO₃- NaHCO₃ Type, and that of deeper aquifer is in general MgHCO₃- NaHCO₃ Type. Sodium (Alkali) hazard of the ground water from both the shallow and deeper aquifers is very low and the Salinity hazard is 'Medium'.

Arsenic is the main contaminant in shallow and, at places, in intermediate Aquifer Groups in all 9 Blocks of present study area; sporadic arsenic in shallow aquifers beyond permissible limit (0.01 mg/l) has been encountered. A total population of 2121105 (Census 2011) in rural area, are within risk zone. Maximum concentration of arsenic in ground water has been observed to the tune of 1.18 mg/l at Mahisbathan in Karimpur II block.

In Part II, Aquifer Management Plan for Drinking and Irrigation has been dealt. Arsenic contamination in shallow aquifer is an important issue in present area. Arsenic free deeper aquifers, ranging from 200 to 300 m bgl, are potential with yield to the tune of 12.5 litre per second with drawdown of 6 m (approx), can cater to the need of rural water supply. Nos. of tube wells needed for supply of potable water in uncovered area have been estimated based on detail rational approach and cost estimate has been drawn for construction of those wells for implementation of PWSS in those parts. Tube wells should be constructed by tapping aquifers, separated from top arsenic contaminated aquifers by a persistent clay blanket above it and putting cement seal against clay layer in order to prevent the vertical percolation of arsenic contaminated water from the top contaminated aquifer. However, PHED, Government of West Bengal has been implementing different Short Term, Medium Term and Long Term measures to tackle the menace of ground water contamination by arsenic.

Paddy and Rabi vegetables are the important corps that are cultivated mainly by irrigation by ground water. There is regionally extensive unconfined upper aquifer system within depth of 150 m bgl in the area. This aquifer is highly potential and holds fresh water and can cater to the need of irrigation, agriculture and industries. There is urgent need for efficient management of the aquifer systems for sustenance of the tube wells due to huge declining of water level due to irrigation and also heavy withdrawal for drinking purpose in urban areas.

Based on the availability of ground water resources & its present status of development, block-wise availability of ground water for future Irrigation has been estimated; it reveals that only 4 blocks, eg. Hanskhali, Kaliganj, Nakashipara and Krishnaganj have nominal ground water available for future irrigation, whereas, no ground water is available in remaining 5 blocks.

Area suitable for artificial recharge is worked out based on post-monsoon depth to water level of more than 3m and showing long term falling trend of water level more than 0.20 m/year. Block-wise net surface water availability for recharge has been estimated after Dhruvanarayana, 1993, followed by source water allocation for suitable types of conservation & artificial recharge structures with feasible numbers and structure-wise cost estimate, have also been worked out for the study area. Considering the higher level of ground water development, categorization of block, suitable area for recharge, proposal for implementation of conservation and artificial recharge projects in the study area have been proposed. Percolation Tanks, Re-Excavation of Existing Tanks (REET) with Recharge Shafts, Injection Wells, Conservation Ponds in the rural area, and Roof-Top Rain Water Harvesting structures in urban areas are proposed structures in the present area.

To improve the ground water scenario in shallow aquifer, implementation of modern irrigation practices like drip water irrigation system, sprinklers can be implemented. Water columns suggested in consultation with BCKV are as follows: rice - 0.8m, wheat - 0.2 - 0.35m, mustard - 0.2m, pulse - 0.08 - 0.12m, vegetable 0.12 - 0.16m, following micro-irrigation system. By decreasing area of Boro cultivation in summer and implementing micro-irrigation

techniques, huge draft of ground water could be avoided.

In Part II of the Report, block wise management plan of 9 blocks of Nadia district have been dealt separately by giving salient information of the block concerned, tabulating facts and figures of the aquifer(s), their disposition by 2D and 3D images, tabulating seasonal depth to water levels, analyzing long term water level trends, individual aquifer characteristics, viz. Discharge, Transmissivity, Storativity etc., aquifer-wise availability of ground water resources, eg. (dynamic and static), annual flow of ground water through the aquifer, chemical quality of ground water especially arsenic contamination & risk population. Under resource enhancement & management plan, suitable interventions for tapping proper aquifer have been proposed. Judicious use of irrigation water, eg. phase wise lessening of area of cultivation of 'Boro' rice, change in cropping pattern, use of low water requiring crops and use of micro-irrigation techniques have been strongly suggested. Finally, artificial recharge and rain water harvesting is suggested for specific structures; for this quantum of rain water for harvesting, has been estimated for individual blocks by applying 'Dhruvaarayana (1993)' method. The proposed conservation and / or recharge structures along with cost estimates have also been tabulated for all the blocks separately.

Part I

Aquifer Mapping Studies in parts of Nadia District (9 Blocks),

West Bengal

(Karimpur - I, Karimpur - II, Tehatta - I, Tehatta - II, Kaliganj, Nakashipara, Chapra, Krishnaganj & Hanskhali Blocks)

1. INTRODUCTION

Groundwater is one of the prime sources of fresh water contributing significantly for the survival of mankind. However, overexploitation, surface runoff, subsurface groundwater discharge have depleted the fresh groundwater availability considerably. Assessing the groundwater potential zone is extremely important for the protection of water quantity & quality, and the management of groundwater system. In this context, the National Aquifer Mapping & Management Programme (NAQUIM) has been taken up by CGWB under XIIth Plan. As per the Action Plan under NAQUIM, ground water management studies in 9 blocks of Nadia district in West Bengal, covering an area of approximately 2262 sq. km. was taken up by CGWB, ER, Kolkata during 2015-16-17. This report envisages the salient features of aquifer geometry, characteristics; ground water occurrences, availability, resource vis-a-vis quality etc. in present scenario.

1.1 **Objective**

The broad objective of the study is to establish the geometry of the underlying aquifer systems in horizontal and vertical domain and characterize them, so as to work out the development potential and prepare aquifer-wise management plan using ground water simulation model.

1.2 Scope of Study

The scope of the present study is broadly within the framework of National Aquifer Mapping & Management Programme (NAQUIM) being implemented by CGWB. There are four major activity components viz.: (i) Data collection / compilation (ii) Data gap analysis (iii) Data generation and (vi) Preparation of aquifer maps and management plan to achieve the primary objective. Data compilation included collection, and wherever required procurement, of all maps from concerned Agencies, such as the Survey of India, Geological Survey of India, State Governments etc., computerization and analyses of all acquired data, and preparation of a knowledge base. Identification of Data Gap included ascertaining requirement for further data generation in respect of hydrogeological, geophysical, chemical, hydrological, hydro-meteorological studies, etc. Data generation included those of hydrometeorology, chemical quality of ground water, litho-logs and aquifer parameters. Generation of ground water chemical quality data was accomplished by collection of water samples and their laboratory analyses for all major parameters, and some of the heavy metals. Additional data pertaining to sub-surface lithology and aquifer parameters were obtained through drilling of additional exploratory wells and slim holes, pumping tests at the drilling sites.

1.3 Approach and Methodology

An approach and methodology adopted to achieve the major objective have been shown below step-wise.

- i) Compilation of existing data
- ii) Identification of data gaps
- iii) Data generation based on data gaps
- iv) Preparation of thematic maps on GIS platform
- v) Preparation of Rock-Works based 2D/3D maps
- vi) Compilation of Block-wise Aquifer Maps and Management Plan

1.4 Location, Extent and Accessibility of the study area

The study area (Plate 1) comprising 9 blocks of northern Nadia district which is located on the eastern bank of Bhagirathi river, a tributary of river Ganga bordering with Bardhaman district in the west, and flanked by the western boundary of Bangladesh in the east, south-eastern boundary of Murshidabad district in the north-west, and some blocks of southern Nadia district in the south. The area extends between North latitudes 23.240° and 24.132° and East longitudes 88.070° and 88.870°. The study area partly falls in the Survey of India Degree Sheet nos. 79A and 79B. The study area forms part of Lower Ganga Alluvial Plains in the inter-fluvial belt of Ganga basin.

1.5 Administrative divisions and population

The study area comprises of 9 Blocks falling in 3 Sub-Divisions (in whole/ parts) covering an area of about 2262 sq. km, i.e., about 57.8 % total area of Nadia district. Details of administrative divisions are summarized in **Table- I**.

SI No.	Name of the Sub-	Name of the	No. of Gram	No. of	Geographic
	Division	Block	Panchayats	inhabite	area (in sq.km.)
			_	d	(GIS based)
				Villages	
1.	Tehatta	Karimpur - I	8	65	212.27
2.	Tehatta	Karimpur – II	10	65	241.18
3.	Tehatta	Tehatta - I	11	55	258.30
4.	Tehatta	Tehatta – II	7	32	174.44
5.	Krishnanagar Sadar	Kaliganj	15	105	319.75
6.	Krishnanagar Sadar	Nakashipara	15	101	354.24
7.	Krishnanagar Sadar	Chapra	13	77	310.48
8.	Krishnanagar Sadar	Krishnaganj	7	52	159.55
9.	Ranaghat	Hanskhali	13	76	231.50
	TOTAL		99	1628	2261.71

Table-I: Administrative divisions of the study area in parts of Nadia district

Plate-1

As per 2011 census, the total population of the study area (i.e. 9 Blocks) is 21,21,105 which is about 41 % of the total population of Nadia district. The average population growth from 2001 to 2011 is about 12.25 %. Block-wise male and female population in the study area is shown in **Table-II**.

Block	Population (2011)						
	Male	Female	Total				
Karimpur - I	83014	77881	160895				
Karimpur – II	111488	105648	217136				
Tehatta - I	125875	118447	244322				
Tehatta – II	77299	73932	151231				
Kaliganj	157234	148963	306197				

Table-II:	Block-wise	Male and	Female	population
	DIOCK-WISC	maic and	I cinaic	population

Total	10,91,624	10,29,481	21,21,105
	10.01.604	10.00.404	
Hanskhali	127576	118323	145899
Krishnganj	75573	71132	146705
Chapra	152575	143954	296529
Nakashipara	180990	171201	352191

Source: District Statistical Handbook, 2013

The Administrative Map of the study area is shown in Plate-1.

1.6 Land-use and Cropping pattern

Irrigation plays an important role for crop production and intensity of crops. The area is having cultivable area of about 61% of the total geographical area. The cultivable land in the study area, about 35% is rain fed, and in the rest area crop production is solely dependent of surface water and ground water irrigation systems. Ground water irrigation is created by deep tube well and shallow tube wells. Irrigation by surface water is done through River lift irrigation, whereas irrigation by water conservation structures (tanks etc.) is covering an area of about 12% of the total irrigated area.

The details of land use pattern in each blocks is shown in the following Table- III.

S1.	Name of	Geograp	Cultiv	Area	Cultivab	Fores	Hom	Remarks
Ν	the Block	hical	able	Under	le Waste	t	e	
0.		Area	Area	Pasture	Land	Land	State	
		(ha)	(ha)	and	(ha)	(ha)	Land	
		(Agricul		Orchar			(ha)	
		ture-		d(ha)				
		based)						
1.	Karimpur-I	21580	12516	209			4631	Some
								Vested Land
2.	Karimpur-	22440	13015	217			4712	Some
	II							Vested Land
3.	Tehatta-I	24960	15224	241			5241	Some
								Vested Land
4.	Tehatta-II	17250	10212	167			3622	Some
								Vested Land
5.	Kaliganj	32000	20480	357			6720	Some
								Vested Land
6.	Nakashipar	36090	23052	312	Nil	309	7525	Some
	а							Vested Land
7.	Chapra	30600	20002	287			6426	Some
								Vested Land
8.	Krishnagan	15160	9612	146		215	3183	Some
	j							Vested Land
9.	Hanskhali	24630	13745	176		181	5085	Some
								Vested Land

Table-III: Block-wise details of Land-use pattern

The principal crops which are cultivated In this area, are :-

- a) Paddy- Aus, Aman & Boro; Wheat, Maize etc.
- b) Cereals- Gram and other Pulses
- c) Oil seeds- Mustard, Linseed etc.
- d) Fibers- Jute etc.
- e) Miscellaneous- Sugar-cane, Potato etc.

The ground water based irrigation is done by DTWs, STWs and Dug Wells and the cultural command area is 1267.93 sq. km. The surface water based irrigation is done by RLI and SFI and the cultural command area is 88.60 sq. km. Total cultivable area in the area is 1584.68 sq. km. and the Cropping Intensity is 243%.

1.7 Urban areas

Urban areas in the study area include some of the Census Towns, viz., Karimpur, Chapra, Bagula, Majdia etc.

2. HYROMETEOROLOGY

The climate of the area is characterized by hot and humid climate with adequate rainfall mainly derived from south-west monsoon, which starts from mid-June and continue up to September. Generally, 85 percent of the rainfall is received during the monsoon period. Pre-monsoon showers are occasionally received in the month of March, April and May.

2.1 Rainfall

The average annual rainfall in Nadia district from 2012-2016 is 1214.24 mm. Rainfall amount is measured from 10 Rain gauge stations in different blocks. Rainfall data for a period of 5 years (2012-2016) have been recorded month-wise (**Table- IV**).

However, the normal annual rainfall (1980-2016) is slightly higher at 1376 mm. It is obvious that there is slight decrease in rainfall during the last 5 years.

A critical analysis of Rainfall v/s cropping pattern is shown in Plate-2.

Nadia	Year	Jan	Feb	Mar	April	May	Jun	July	Aug	Sept	Oct	Nov	Dec
						Nadia							
	2012	19.7	0.4	0.4	27.2	74.3	95.6	206.8	162.7	161.8	71.6	37.8	3.7
	2013	6.3	9.1	1.5	39.3	149.7	188.1	181.1	327	160.7	224.8	0	0.2
	2014	0.8	50.2	17.1	0	92	221.4	203.1	236.7	218.8	56.7	0	0
	2015	5.5	14.5	18.5	99.2	56.5	327.5	516.3	139.1	178.6	48	0	4.4
	2016	0.8	38.7	16.2	3.2	181.3	152.1	334.5	429.1	176.2	67.5	16.9	0
Average 5 yrs		6.62	22.58	10.74	33.78	110.76	196.94	288.36	258.92	179.22	93.72	10.94	1.66

5 years Rainfall in Nadia district

Normal RainfaH1443.8 mm Normal monsoon Rainfal955 mm

Plate- 2

Critical analysis of rainfall v/s cropping pattern

Ten Year Average Rainfall of Nadia District and cropping pattern in Study area

2.2 Temperature

The winter season sets in around middle of November when both maximum and minimum temperature begin to drop steadily and attain their respective lowest values in the month of January. The temperature starts rising in the month of February. May is the hottest month of the year.

3. PHYSIOGRAPHY

3.1 Geomorphology

The study area is an extensive alluvial plain possessing the characteristics of younger flood plain with almost flat topography covered with meander scars, cut off/ abandoned channels, point bars, natural levee type landforms. Elevation range from 28.84m above mean sea level (near Jairampur, Krimpur block) to 5.1m(near, Hanskhali block) above mean sea level. The slope of land is about 0.50 m per km from north to south. Numerous small rivers/ streams and abandoned channels cause interspersed throughout the area with a number of depressions meander scars, ox-bow lakes, point bars etc. Geomorphic unit is only Younger deltaic plain.

3.2 Drainage

The Ganga or the Padma along with its tributaries viz., Bhagirathi, Jalangi, Churni, Ichhamati etc forms the major drainage in the study area. All rivers and tributaries are perennial in nature. The Bhagirathi River flows along the western boundary of the study area from almost north-west to south-east direction. Jalangi river flows in almost central part of the area from NNE to SSW. The other tributaries are confined to the eastern part of the area flowing from north-east to south-west direction.

3.3 Soil Types

Entire area is covered by alluvial soil, and the parent material is Gangetic alluvium. Admixture of sand, silt and clay has given rise to three broad types of soil. Coarse Soil- formed by sand and loamy sand, Moderately Coarse Soil- formed by sandy and silty loams, and Moderately Fine Soil- formed by silt and clayee loams. Coarse Soil has got minimum distribution occurring mainly in Nakashipara block and other two types of soil have got more or less equal percentage of distribution in the area.

4. GEOLOGY AND HYDROGEOLOGY

4.1 General Geology

The area under study is covered by a huge thickness of Recent to Sub-Recent Alluvium of the Ganga Basin. Thick Gangetic alluvium of Quaternary age conceals the sub - surface geology. However, analysis of the tube wells reveals, fluviatile sediments in succession. The Recent fluviatile sediments are composed of sand of various grades, silt, clay, gravel and kankar and their various admixtures deposited by the river Ganga and its tributaries. Sand is grey coloured and highly micaceous in nature. Gravels are mainly composed of quartz, feldspar and mafic minerals.

The Geological/ Hydrogeological Map with drainage system of the area is shown in **Plate-3.**

Plate- 3

4.2 Hydrogeology4.2.1 Sub-surface Geology:

The entire district is covered by thick alluvial formation composed of sand of different grades, silt and clay. The aquifers consist mostly of sand of different grades (coarse to fine). Gravel that is in general, the most important constituent of the aquifers, is not playing important role in this area. As it is observed in most of the boreholes, gravel is absent and it is present in very insignificant quantity. From the exploratory wells constructed by CGWB and State departments, it is observed that, in general three aquifer systems have been identified. The shallow aquifer (say, Aquifer- I) exists within a depth range of 5m to 150m, which extends up to 186m at Betai in Tehatta- I block. The next aquifer system (say, Aquifer- II) exists within the depth range of 150 to 200m and the deepest one (say, Aquifer- III) exists

approximately within the depth range of 215m to 295m. These aquifer groups are separated by clay barriers of widely variable thickness. In the study area, Block-wise the aquifer disposition is classified broadly and tabulated in **Table-V**.

The map showing the locations of the Exploratory Wells by CGWB/ State Govt. wells is presented in **Plate-3**. The 2D/3D views of the aquifer system in the study area are shown below as: - (a) Multi-log Plot of the Exploratory Wells in **Plate-4 & 5**; (b) Stratigraphic Fence & Model in **Plate-6 & 7**; (c) NW-SE Cross Section Index Map & Lithological Cross Section in **Plate-8 & 9**; (d) NE-SW Cross Section Index Map & Lithological Cross Section in **Plate-10 & 11**; (e) N-S Cross Section Index Map & Lithological Cross Section in **Plate-10 & 11**; (e) N-S Cross Section Index Map & Lithological Cross Section in **Plate-12 & 13**; (f) Lithological Panel diagram of the study area in **Plate-14**.

Sr.	District	Block	Depth	Quality	Depth range	Quality	Depth range	Quality	Remarks
No.			range of		of 2 nd		of 3rd		
			1st aquifer		Aquifer		Aquifer		
			(mbgl)		(mbgl)		(mbgl)		
1.	Nadia	Chapra	3-119	Arsenic	121-195	Fresh	-		
2.	Nadia	Hanskhali	3-27, 30- 128	Arsenic	106-156	Fresh	-		
3.	Nadia	Kaliganj	19-50	Arsenic	56-110	Fresh/	254-270	Fresh	
						Arsenic			
						(sporadic)			
4.	Nadia	Karimpur I	5-131	Arsenic	154-185	Fresh	282-294	Fresh	
5.	Nadia	Karimpur	10-159	Arsenic	179-210	Fresh	215-224	Fresh	
		II							
6.	Nadia	Tehatta I	9-67, 2-	Arsenic	70-177	Fresh/			
			186 (at			Arsenic	-		
			Betai)			(sporadic)			
7.	Nadia	Tehatta II	6-70	Arsenic	62-143	Fresh/	216-232	Fresh	
						Arsenic			
						(sporadic)			
8.	Nadia	Nakashipar	6-62	Arsenic	69-156	Fresh/	-		
		а				Arsenic			
						(sporadic)			
9.	Nadia	Krishnagan	12-155	Arsenic	213-225	Fresh	-		
		j							

Table-V: Aquifer Disposition and its Quality in Study area in parts of Nadia district

Location of Tube wells

Lithological Strip log in Parts of Nadia District, West Bengal

Plate-5

Aquifer-II Clay-III Aquifer-III Clay-IV

Е

NW-SE Cross-section Index Map in Nadia District

Plate-8

NW-SE Cross-section in Nadia District

NW-SE CROSS SECTION OF NADIA DISTRICT

Plate-9

NE-SW Cross-section Index map of Nadia District

Plate-10

NE-SW Cross-section of Nadia District

Plate-11

Plate-12

SECTION ALONG A - B (NORTH - SOUTH) IN AQUIFER MAPPING AREA OF NADIA DISTRICT

Plate-14

4.2.2 Aquifer characteristics:

The tube wells tapping the zones at shallow depth (say Aquifer- I) are yielding discharge (Q) and it ranges from 36 to 173 m³/hr and the Transmissivity (T) varies from 350 to 2700 m²/d. The tube wells taping the intermediate zones (say Aquifer- II), Q generally ranges from 29 to191 m³/hr and T varies from 350 to 2700 m²/d. The deeper aquifer (say, Aquifer- III), yields ranging from 36 to 86 m³/hr. The pumping tests data indicate that the value of Storage co-efficient (S) ranges from 1.55x10⁻³ to $6.2x10^{-4}$ indicating confined conditions for deeper aquifers. However, at many places the phreatic aquifers are under unconfined condition.

4.2.3 Ground Water Regime of Aquifers:

During detailed survey 114 numbers of almost uniformly distributed key observation wells have been established in the study area and in addition, 33 NHS falling in this area were considered for water level monitoring and water sample collection. These are mostly tube-wells and a few dug wells tapping the zones in different aquifer system representing Aquifer- I & II.

The <u>pre-monsoon</u> depth to water level (DTWL) map for **shallow aquifer** (**Plate-15**) in this area reveals that the water level is the shallowest (3 to 4 m bgl) in a small patch of east-central part of the area covering parts of Karimpur-II & Tehatta- I blocks; and is the deepest (7 to 8m bgl) in the west-central part of the area mainly in parts of Nakashipara block; and the same during <u>post-monsoon</u> period is the shallowest (2 to 3 m bgl) in parts of Nakashipara & Tehatta- I blocks; and the deepest (6 to 7 m bgl) in the west-central part of the area covering parts of Nakashipara & Kaliganj blocks.

The <u>pre-monsoon</u> depth to water level map for **deeper aquifer** (**Plate-17**) in this area reveals that the water level is the shallowest (3 to 4 m bgl) in a small patch in the border area of Karimpur-II & Tehatta- I blocks; and is the deepest (9 to 10 m bgl) in the west-central and south-western parts of the area covering parts of Kaliganj & Hanskhali blocks.

The water level during <u>post-monsoon</u> period is the shallowest (within 1 m bgl) in parts of Chapra & Nakashipara blocks; and the deepest (8 to 9 m bgl) in the west-central and north-eastern parts of the area covering parts of Kaliganj & Karimpur- I blocks.

Considering the elevation of the ground level and depth to water level monitored from the monitoring wells, **Water Table** maps with contours of 1 m intervals, were prepared for both the shallow (Aquifer- I) and deeper (Aquifer- II) aquifers.

The pre-monsoon water table map for shallow aquifer (Plate-16) reveal that, there

are ground water <u>mounds</u> in the north-eastern & west-central parts of the area covering parts of Karimpur- I & II and Kaliganj blocks with a maximum elevation of 18m to 19m amsl; and ground water <u>troughs</u> occur in the east-central & west-central parts of the area covering parts of Chapra & Krishnaganj and Kaliganj blocks with a maximum depression of 7m to 8m amsl. The regional direction of ground water flow is from north-west to south-east with variable gradients from 1:8000 to 1:1100 in different parts of the area.

The <u>pre-monsoon</u> water table map for **deeper aquifer** (**Plate-18**) reveals that, there are ground water <u>mounds</u> in the north-eastern & west-central parts of the area covering parts of Karimpur- I, Tehatta- I, Nakashipara and Chapra blocks with a maximum elevation of 18m to 19m amsl; and ground water <u>troughs</u> occur in the north-western & south-western parts of the area covering parts of Karimpur- II and in the border of Krishnaganj & Hanskhali blocks with a maximum depression of 7m to 8m amsl. The local direction of ground water flow varies place to place with variable gradients from 1:6000 to 1:1000 in different parts of the area as shown in **Table-19**.

The <u>post-monsoon</u> water table maps for both the **shallow & deeper aquifers** (**Plate-16 & 18**) reveal almost of the same nature as those of pre-monsoon period for both the aquifers separately.

<u>Ground water flow</u> has been calculated by Darcy's law using Q= TIL where Q is quantity of ground water flowing through the area, T is Transmissivity of the Aquifer , I is Hydraulic Gradient and L is maximum length of flow path perpendicular to flow direction. In general ground water flow is from NW to SE within the area in shallow aquifer system; and at different directions in deeper aquifer system in this area, as deciphered by the Premonsoon Water Table maps. Block-wise the flow of ground water in the shallow unconfined aquifer system in approximation are shown in **Table-VI**, and that in deeper semi-confined to confined aquifer system is tabulated in **Table-VI**.

Depth to water level : Aquifer I

Water Table: Aquifer I

Depth to water level : Aquifer II

Deeper Aquifer Water Table Contour Lines : Pre-monsoon & Post-monsoon

Table-VI: Block-wise approximation of Ground Water Flow in Unconfined aquifer system in the	
Study area	

Sr	District	Block	Flow direction	Average	Hydraulic	Average T	Quantity of
no.				length of flow	Gradient (I)	of	Ground
				path across	(approx)	unconfined	water Flow
				flow direction		aquifer	(approx)
				(m)		(approx)	(m ³ /day)
						(m^2/d)	
1	Nadia	Chapra	Mostly Easterly	14000	1:2000	4000	28000
2	Nadia	Hanskhali	Mostly North-easterly	13000	1:6000	4000	8700
3	Nadia	Kaliganj	Mostly South-	17000	1:3333	4000	20400
			easterly/ South-				
			westerly				
4	Nadia	Karimpur I	Mostly North-easterly	15000	1:1142	4000	52500
5	Nadia	Karimpur	Mostly South-easterly	15000	1:2333	4000	25700
		II					
6	Nadia	Tehatta I	Mostly Southerly/	11000	1:3000	4000	14700
			South-eastrly				
7	Nadia	Tehatta II	Mostly South-easterly	13000	1:8000	4000	6500
8	Nadia	Nakashipar	Mostly Easterly	18000	1:2500	4000	28800
		a					
9	Nadia	Krishnagan	Mostly North-easterly	13000	1:4000	4000	13000
-		i					
		1 3				<u> </u>	

						-	
Sr	District	Block	Flow direction	Average	Hydraulic	Average T	Quantity of
no.				length of flow	Gradient (I)	of confined	Ground
				path across	(approx)	aquifer	water Flow
				flow direction		(m^2/d)	(approx)
				(m)			(m^3/day)
1	Nadia	Chapra	Mostly North/ North- easterly	18000	1:1500	3100	37200
2	Nadia	Hanskhali	Mostly North/ North- westerly	23000	1:1250	3300	60720
3	Nadia	Kaliganj	Mostly Westerly	20000	1:1750	2800	32000
4	Nadia	Karimpur I	Radial- outward (as centrally Gr. W. mound) Mostly Westerly/ South- westerly	18000	1:1666	2700	29160
5	Nadia	Karimpur II	Mostly Westerly	15000	1:2000	2800	21000
6	Nadia	Tehatta I	Radial- outward (as centrally Gr. W. mound) Mostly Westerly	13000	1:1166	2800	31200
7	Nadia	Tehatta II	Radial- inward (as centrally Gr. W. trough)	22000	1:6000	2950	10800
8	Nadia	Nakashipara	Radial- outward (as centrally Gr. W. mound) Mostly Southerly	17000	1:2500	2900	19720
9	Nadia	Krishnaganj	Radial- inward (as centrally Gr. W. trough) Mostly Westerly	15000	1:1000	3200	48000

 Table-VII: Block-wise approximation of Ground Water Flow in Semi-confined to Confined

 aquifer system in the study area

4.2.4 Pre-monsoon & Post-monsoon long term trend analysis:

The long term trend analysis reveals that there is a falling trend in almost all the Blocks both during Pre-monsoon and Post-monsoon periods. The Pre-monsoon falling trend of water level varies from 0.9 cm/year (in Hanskhali block) to 16.4 cm/year (in Nakashipara block). The same during Post-monsoon varies from 2.2 cm/year (in Nakashipara block) to 21.2 cm/year (in Tehatta- I block). However, a few monitoring wells show slight rising trends during pre-monsoon period in Tehatta- I, Nakashipara and Krishnaganj blocks and during post-monsoon period in Krishnaganj block. Details of pre-monsoon and post-monsoon water level trend (from 1995 to 2011) in cm/year for individual Block is given in **Table-VIII**.

The map showing the Post-monsoon Water Level Trends (2006-2016) of the Aquifer-I in the study area (**Plate-20**) indicates slight rising trend of water level in the west-central part of the area.

Table-VIII:Block-wisePre-monsoon andPost-monsoon average long termwater level trends (2000 to 2016)

			Premonsoon				Pos	tmonsoor	ı
S.No.	Block	Location	Ris	e	Fal	I	Ris	e	Fall
			(me	eter/yr.)	(me	eter/yr.)	(me	eter/yr.)	(meter/yr.)
1	Karimpur-I	Karimpur		0.009	-		-		0.088
		Murutia Pz	-			0.13	-		0.069
		Utr Kechuadanga	-			0.032	-		0.122
2	Karimpur-II	Gopalpur	-			0.016	-		0.149
		Mahisabathan	-			0.053		0.029	-
		Mahisbathan		0.084	-		-		0.156
		Narayanpur	-			0.015	-		0.104
		Thanapara	-			0.006	-		0.15
3	Tehatta-I	Betai Pz	-			0.079	-		0.212
		Karuigachhi		0.198	-			0.25	-
		Palassey Para	-			0.028	-		0.21
		Shyamnagar		0.074	-		-		0.217
		Tehatta Pz		0.07	-		-		0.238
4	Tehatta-II	Barnia	-			0.03	-		0.128
		Hanspukuria	-			0.03	-		0.064
		Kulgachhi	-			0.051		0.073	-
5	Kaliganj	Debagram pz	-			0.045	-		0.138
	0,	Juranpur	-			0.056	-		0.154
6	Nakshipara	Birpur Pz		0.034	-		-		0.127
	·	Mayapur	-			0.007	-		0.047
		Muragacha		0.07	-		-		0.098
		Muragacha		0.165	-		-		0.022
		Nakasipara Pz	-			0.164	-		0.14
7	Chapra	Chapra Pz	-			0.087	-		0.065
		Fulkulmi Pz	-			0.063	-		0.109
		Hridaypurpz	-			0.045	-		0.144
8	Krishnaagani	Banpur		0.019	-			0.13	-
-		Banpur Pz	-			0.08	-		0.131
		Bhajan Ghat	-			0.065		0.043	-
		Gobindapur		0.027	-		-		0.344
9	Hanskhali	Badkulla	-			0.009	-		0.049
-		Gajna		0.1	-		-		0.056
		Hanskhali Pz	-			0.013	-		0.099

Plate-20

4.2.5 Ground Water Resources, Draft, SOD & Category:

The dynamic ground water resources of Aquifer –I in the area under study have been calculated on the basis of GEC (1997) methodology by CGWB and State Water Investigation Department (SWID) for the year as on 31.03.2013. The block wise computed data of dynamic ground water resources, as on 31^{st} March 2013 is shown below in **Table-IX**.

The availability of GW resources for future uses with long term trends of ground water levels & its present status in study area are mentioned in **Table-X**.

Table-IX: Block wise dynamic ground water resources as on 31st March'11

SI. No.	Block	Net ground water availability (MCM)	Gross ground water draft (MCM)	Stage of development (%)	Category	Net ground water availability for future irrigation development (MCM)	Provision for domestic and industrial requirement supply upto next 25 years(MCM)
1.	Karimpur - I	119.2327	138.9490	116.54	Semi- critical	(-) 20.6156	3.8383
2.	Karimpur – II	133.2005	164.4156	123.43	Semi- critical	(-) 32.2506	4.4190
J.	Tehatta - I	138.3390	153.0598	110.64	Semi- critical	(-) 15.8940	5.0070
4.	Tehatta – II	98.6830	109.7564	111.22	Semi- critical	(-) 11.7969	3.0879
5.	Kaliganj	157.1135	145.7449	92.76	Semi- critical	9.7991	6.6984
6.	Nakashipara	185.5714	157.2051	84.71	Safe	26.5593	7.7121
7.	Chapra	182.2997	199.0758	109.20	Semi- critical	(-) 18.2449	6.2686
8.	Krishnganj	79.7440	69.9808	87.76	Safe	9.0438	3.0702
9.	Hanskhali	141.2931	139.6603	98.84	Semi- critical	0.2251	6.0080

Table-X: Availability of GW resources & its Present Status in Study area

Sr.	District	Block	Net GW	Gross	SOD in	Long terr	m Water	Category	GW
No.			availabili	GW draft	%	Level trend in			available
			ty in ham	in Ham		Cm/Yr (R	Lising - &		for
						Fallin	ng +)		Future
						Pre	Post		GW use
						monsoon	monsoo		in ham
							n		
1	Nadia	Chapra	18229.97	19907.58	109.20	4.56	11.47	Semi Critical	-
2	Nadia	Hanskhali	14129.31	13966.03	98.84	1.79	10.82	Semi Critical	22.51
3	Nadia	Kaliganj	15711.35	14574.49	92.76	3.64	10.39	Semi Critical	979.91
4	Nadia	Karimpur I	11923.27	13894.90	116.54	6.22	10.57	Semi Critical	-
5	Nadia	Karimpur II	13320.05	16441.56	123.43	3.00	9.09	Semi Critical	-
6	Nadia	Tehatta I	13833.90	15305.98	110.64	1.67	8.32	Semi Critical	-
7	Nadia	Tehatta II	9868.30	10975.64	111.22	-2.35	-3.06	Semi Critical	-
8	Nadia	Nakashipara	18557.14	15720.51	84.71	1.07	8.81	Safe	2655.93
9	Nadia	Krishnaganj	7974.40	6998.08	87.76	2.92	10.92	Safe	904.38
Study Area B in Total		123547.7	127784.8	103.42	2.50	8.59	0	4562.73	

On the basis of ground water resource calculation (2013) and pre-monsoon & postmonsoon water level trends, out of nine blocks, two blocks – Nakashipara and Krishnaganj are 'Safe' and other seven blocks are categorized as 'Semi-critical'. The map showing the Category of Blocks is shown in **Plate-21**.

The Static (In-storage) ground water resources of phreatic aquifer in the study area is estimated based on the average Specific Yield (considered as 20%) and the pre-monsoon saturated thickness of the phreatic aquifer. Block-wise the In-storage ground water resources are calculated and tabulated which is shown in **Table-XI**.

The Dynamic ground water resources of semi-confined to confined aquifer in the study area is estimated based on the average Storativity (considered as 1.55x 10⁻³) and Average Fluctuation of Water level (Pre to post) in the area. Block-wise the Dynamic ground water resources are calculated and tabulated in **Table-XII**.

Table-XI: Block-wise in-storage ground water resources in Aquifer- I

Block	Block Area (sq km)	Average pre- monsoon depth to water level	Average Specific Yield	Average thickness of granular zones	Thickness of granular zone below pre- monsoon depth to water level	Volume of in- storage ground water resource (MCM)
Chapra	310.48	5.35	0.2	90	74.65	5256.4264
Hanskhali	231.5	5.58	0.2	55	74.42	2288.146
Kaliganj	319.75	6.7	0.2	80	73.3	4687.535
Karimpur I	212.27	5.81	0.2	60	74.19	2300.58226
Karimpur II	241.18	4.82	0.2	65	75.18	2902.84248
Krishnaga nj	258.3	6.32	0.2	80	73.68	3806.3088
Nakashipa ra	174.44	5.64	0.2	70	74.36	2245.39168
Tehatta I	354.24	6.94	0.2	80	73.06	5176.15488
Tehatta II	159.55	5.29	0.2	80	74.71	2383.9961
Total						31047.3836

Blockwise In-storage ground water resources in Aquifer I (phreatic)

Table-XII: Char	nge in storage	in semi-con	fined to conf	fined aquifer i	n study area	(Pre to

Post-monsoon, 2016)

Sr	District	Block	Area in	Average	Average Storativity of	Change in
no.			ha	Fluctuation of	confined aquifer	Storage in ham
				Water level (Pre		
				to post) in metre		
1	Nadia	Chapra	31048	1.21	1.55 x 10 ⁻³	58.230
2	Nadia	Hanskhali	23150	1.11	1.55 x 10 ⁻³	39.829
3	Nadia	Kaliganj	31975	0.59	1.55 x 10 ⁻³	29.241
4	Nadia	Karimpur I	21227	0.84	1.55 x 10 ⁻³	27.637
5	Nadia	Karimpur II	24118	0.77	$1.55 \ge 10^{-3}$	28.785
6	Nadia	Tehatta I	25830	0.88	1.55 x 10 ⁻³	35.232
7	Nadia	Tehatta II	17444	0.65	1.55 x 10 ⁻³	17.575
8	Nadia	Nakashipar a	35424	1.17	1.55 x 10 ⁻³	64.241
9	Nadia	Krishnagan j	15955	1.07	1.55 x 10 ⁻³	26.461
Tota	l					327.231
5. HYDROCHEMISTRY

5.1 Quality of Shallow and Deeper Aquifer Water

Ground water samples were collected during pre-monsoon period from the National Hydrograph Stations falling in the study area and those have been analysed in the departmental Chemical Laboratory. Chemical quality of ground water occurring in shallow and deeper aquifers does not vary significantly, except arsenic concentration. The water, in general, is slightly alkaline. Water is Ca-Mg- HCO3 type.

5.2 General range of chemical parameter

The samples from the monitoring wells in the study area, were analysed in the CGWB Laboratory. From the analytical results, it is found that, pH of water, in general, varies between 8.31 and 8.50 indicating slightly Basic in nature, and EC ranges between 282.9 and 1077 μ S/cm. The EC contour map (**Plate-22**) shows that, the ground water is mainly having less than 500 μ S/cm in most of the part including the central portion. EC is higher than 500 μ S/cm in parts of Karimpur- II, Tehatta- I & II, Krishnaganj and Hanskhali blocks. Concentrations of Na ranges from 10.8 to 100.4 mg/1. Cl is mostly in the range of 7.5 - 110 mg/1. Fluoride ranges from BDL – 1.08 mg/1, whereas Nitrate concentration ranges from 0.1 – 27.7 mg/1. Total hardness as CaC03 ranges from 105 - 275 mg/1. Block-wise Ranges of Chemical Parameters in Shallow aquifer is shown in **Table-XIII**.

The Chemical Facies in the Piper-Trilinear Diagram (**Plate-23**) shows that the ground water in shallow aquifers is in general MgHCO³- CaHCO³- NaHCO³ Type, and that of deeper aquifer is in general MgHCO³- NaHCO³ Type.

The Wilcox Plot (**Plate-24**) indicates that the Sodium (Alkali) hazard of the ground water from both the shallow and deeper aquifers is very low and the Salinity hazard is in the 'Medium' category.

Block	Aquifer	As	pН	EC	Na	Cl	F	NO ³	Total
	Туре	(mg/l)		(Us/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Hardness
									as CaCo ³
									(mg/l)
Karimpur-I	Ι	0.003-	8.37-	282.9-	10.8-	20.0-	BDL-	0.1-	150-225
_		0.332	8.44	759.3	84.2	72.5	1.5	27.0	
Karimpur-II	Ι	0.002-	8.33-	398.8-	17.7-	12.5-	BDL-	1.2-	130-275
_		0.008	8.50	1077	100.4	110	0.51	27.7	
Tehatta-I	Ι	0.0001-	8.45-	382.2-	10.9-	12.5-	BDL-	BDL-	115-180
		0.044	8.49	1032.0	90.4	47.5	0.42	1.7	
Tehatta-II	Ι	0.0002-	8.37-	328.6-	15.9-	12.5-	BDL-	BDL-	130-160
		0.076	8.46	701.4	48.1	25.0	0.39	0.7	
Kaliganj	Ι	0.002-	8.35-	347.2-	17.0-	20.0-	0.04-	BDL-	125-195
		0.082	8.46	550.4	89.0	37.5	0.70	0.9	
Nakashipara	Ι	0.0001-	8.31-	312.0-	14.7-	7.5-	0.28-	BDL-	120-155
-		0.119	8.49	437.7	41.2	15.0	1.11	5.4	
Chapra	Ι	0.0002-	8.32-	292.8-	17.7-	10.0-	BDL-	BDL-	130-180
-		0.034	8.50	507.6	37.4	50.0	1.08	2.8	
Krishnaganj	Ι	0.0003-	8.32-	295.9-	16.0-	10.0-	BDL-	BDL-	105-160
		0.019	8.48	464.5	49.2	22.5	0.82	0.5	
Hanskhali	Ι	0.0001-	8.32-	283-	13.5-	10-	BDL-	BDL-	125-180
		0.05	8.49	415.7	29.2	32.5	0.97	7.2	

Table-XIII: Block-wise Ranges of Chemical Parameters in Shallow aquifer

(Samples from Monitoring Wells)

Plate- 22

Chemical Facies of Ground Water in Nadia District

Piper Plot of NAQUIM Study Area of Nadia District 2017

Plate-23

5.3 Ground water pollution:

Arsenic is the main pollutant in the shallow and intermediate (at places) aquifer system in all the 9 Blocks in the study area. Sporadic occurrence of arsenic in shallow aquifers beyond permissible limit has been established in all the blocks of the district. The spot value of concentration of Arsenic in ground water in all the blocks in the study area is plotted and shown in **Plate-25**. A total population of 2121105 (as per 2011 Census) in rural area of the study area, are at risk zone. The maximum concentration of arsenic in ground water has been observed as 1.18 mg/l at Mahisbathan in Karimpur- II block. PHED has tested so far 15796 nos. of public hand pump tube wells in the area in their laboratories. From the chemical analysis results of the tube wells, it has been observed that 37% tube wells contain arsenic content in ground water in the range of 0.01 to 0.05 mg/l & 24% tube wells are having arsenic content >0.05 mg/l. The details are shown in **Table-XIV**.

Sl.	Name of arsenic	No. of			Arsenic	Concentra	tion (in mg/	l)	
No.	affected block	Tube well	< & =	=0.01	>0.01 &	>0.01 & <=0.05		>0.05	
		analysed	%	No.	%	No.	%	No.	ntration
1	Karimpur- I	1177	29.57	348	28.04	330	42.40	499	1.08
2	Karimpur- II	1697	26.34	447	27.64	469	45.96	780	0.93
3	Tehatta - I	1368	69.23	947	20.10	275	10.67	146	0.54
4	Tehatta -II	755	60.53	457	33.11	250	6.36	48	0.34
5	Kaliganj	2111	27.00	570	38.09	804	34.86	736	1.00
6	Nakashipara	2459	45.51	1119	40.42	994	14.07	346	0.56
7	Chapra	2230	34.80	776	52.83	1178	12.38	276	0.51
8	Krishnaganj	1737	39.21	681	37.94	659	22.86	397	0.77
9	Hanskhali	2262	34.92	790	39.48	893	25.46	576	0.53
	TOTAL	15796	40.79	6135	35.29	5852	23.89	3804	

Table-XIV: Status of Arsenic concentration in ground water in parts of Nadia district

Water Quality (Arsenic content in ground water)

Plate- 25

6. AQUIFER MANAGEMENT PLAN

6.1 Ground Water Management Plan for Drinking Purposes

The drinking water in all the 9 blocks of Nadia district (in study area B) is being supplied by PHED through surface water & ground water. The **Table-XV** showing below the block-wise status of Arsenic concentration in ground water and risk population in the area, reveals the Sporadic occurrence of arsenic above permissible limit are reported in all the 9 blocks.

Sr No.	District	Block (As affected)	No. of habitations in the risk zone where (Arsenic conc.>0.05 mg/l	No. of habitations in the risk zone (Arsenic conc. 0.01 to 0.05 mg/l)	Risk Population (2011) where Arsenic conc. >0.05 mg/l
1	Nadia	CHAPRA	63	40	296529
2		HANSKHALI	135	53	245899
3		KALIGANJ	192	96	306197
4		KARIMPUR - I	158	46	160895
5		KARIMPUR - II	138	19	217136
6		KRISHNAGANJ	136	69	146705
7		NAKASHIPARA	91	61	352191
8		TEHATTA - I	45	68	244322
9		TEHATTA - II	26	69	151231
	Nadia Total		984	521	2121105

Table-XV: Arsenic affected Blocks and Risk Population

A total of 21,21,105 people (as per 2011 Census) of the blocks are at risk zone in the area.

Sporadic occurrence of arsenic in shallow aquifers has been established in all the blocks of the district. A total of 2121105 of people (as per 2011 Census) in rural area of the study area are at risk zone. The maximum concentration of arsenic in ground water has been observed as1.08 mg/l. PHED has tested so far 15796 nos. of public hand pump tube wells in this area in their laboratories. From the chemical analysis results of the tube wells, it has been observed that 37% tube wells contain arsenic content in ground water in the range of 0.01 to 0.05 mg/l & 24% tube wells are having arsenic content >0.05 mg/l.

As per the data of PHED, Govt. of West Bengal, about 85% of the rural risk population has been covered by water supply schemes. Only 15% rural population in the

study area in Karimpur I & II, Tehatta I & II, Hanskhali, Krishnaganj, Chapra blocks are to be covered by arsenic free water supply. Kaliganj and Nakashipara blocks are fully covered by State Authority.

6.1.1 Requirement of Wells:

As evidenced from the exploration arsenic free deeper aquifers ranging from 200 to 300 mbgl) are potential with a capacity to yield to the tune of 12.5 litre per second with drawdown of 6 m (approx) and can cater to the need of rural water supply. Considering human drinking and domestic demand of water @70 lpcd & projected population upto 2021 (considering decadal growth rate @ 21.09% following PHED guidelines and District Census 2011), the demand of water for human population as on 2021 has been calculated. Cattle population as on 2021 is estimated considering 0.19 per capita human population (district cattle population/ district human population), village population & 0.36 annual growth rate. Considering the cattle consumption @20 lpcd, water requirement for cattle has been calculated.

As per the ground Water Act, 2005 for arsenic affected areas, the extraction has been restricted to $45 \text{ m}^3/\text{hr}$ (+/- 5%). Considering above guideline number of tube wells sizing of 250 mm X 150 mm with depth 300 mbgl has been calculated. Four observation wells, one for each block, are suggested for the blocks to monitor the impact of withdrawal of water from the tube wells on the water level. The tube wells should be constructed by tapping the aquifers which is separated from top arsenic contaminated aquifers by a persistent clay blanket. Provision for sealing the top arsenic contaminated aquifers with proper cement sealing against clay layer should be kept in order to prevent the vertical percolation of arsenic contaminated water from the top contaminated aquifer.

6.1.2 Mitigation Measures:

To supply safe Drinking Water to the affected blocks of the State a comprehensive Arsenic Master Plan was taken for implementation through various Short, Medium and Long Term measures by the State Government with assistance of Government of India. To combat the arsenic contamination in ground water, mitigation measures have been taken up by State Govt. by involving different NGOs, institutions etc., to provide arsenic free drinking water in the arsenic affected areas. Over the years, State Government has undertaken number of steps to tackle the problem of arsenic contamination for ensuring safe drinking water to local habitants. Surface water supply scheme along with ground water based supply schemes are implemented in West Bengal by PHED, Govt. of West Bengal. A number of arsenic removal plants are also installed in the arsenic infested areas to remove arsenic from arsenic rich ground water as a short term measures. Sludge disposal from arsenic removal equipment is another problem for arsenic infested areas. But due to number of reasons, regarding operation, maintenance, social adaptability, lack of awareness among local people these efforts were not that much successful.

The technologies which are relevant to the ground water of West Bengal only have been classified as short, medium or long term remedial measures based on their nature. Since 1995 onwards PHED of Government of West Bengal has been implementing all possible mitigation measures by Engineering interventions.

Short Term : New Hand Pump Tube well tapping deeper Aquifer, Ring Well etc. Medium Term : ATU with existing Hand Tube Well, ARP for existing PWSS, New

large bore Tube Wells tapping deeper Aquifer, New Ground Water based PWSS.

Long Term : Surface Water based PWSS

Groundwater with arsenic contamination has been found mainly in the shallow aquifers. Deep aquifers, separated by thick clay layer of appropriate composition (which acts as an impervious layer between aquifer groups) may yield arsenic free fresh ground water. It was inferred from the isotopic studies carried out in West Bengal that in alluvial formations, there is no hydraulic connection between shallow and deep aquifers, when separated by an appropriate impervious layer. Central Ground Water Board, while carrying out extensive work on this aspect, has deciphered and delineated deep arsenic free aquifers in some parts of arsenic infested areas of West Bengal.

Exploration in the areas also reveals that the wells, constructed by tapping multiple aquifer system (tapping shallow and deep both aquifers), allows contamination from adjacent contaminated aquifers through annular space packed with gravel. At places the confining clays layers, silty in nature, act as semi-pervious, but under stressed condition (over pumping) arsenic contaminated water gets passage through these semi-confining layers and may contaminate safe aquifer water. In order to prevent such vertical percolation of contaminated

water, **CGWB** has adopted cement sealing technique to separate deeper arsenic free aquifer from shallow arsenic rich aquifer. Central Ground Water Board has already constructed tube wells in arsenic infested areas of West Bengal adopting cement sealing techniques and handed over to PHED, Govt. of West Bengal for supply of arsenic free water. Therefore construction of suitably designed tube well tapping arsenic free deeper aquifer in arsenic infested area is most suitable structure for supplying arsenic free water.

Based on the exploration data and need for water supply schemes, district wise feasibility of arsenic free abstraction structures is discussed below.

6.2 Ground Water Management Plan for Irrigation Purposes

The study area is basically under intensive irrigated agriculture by groundwater and also partly by surface water. Paddy and Rabi vegetables are the important corps cultivated by farmers in the region. In major part of the area farmers depend only on groundwater for cultivation of these crops during all seasons. Any reduction in the yield of the tube wells due to decline in groundwater shall adversely impact the production of the food grain. The study area has multilayer aquifer system where ground water occurs as regionally extensive unconfined conditions in upper aquifer system (say Aquifer- I & II) within depth of 150 mbgl (with local variation). This aquifer system is highly potential in nature, holds fresh water and caters to the need of irrigation, agriculture and industries. But in most of the places arsenic contamination in ground water occurs (>0.01mg/l) in a sporadic manner in Aquifer -I and Aquifer -II (at places), therefore it is not suitable for drinking purposes. The Aquifer System-III within depth of 280 mbgl (with slight variation in regional/ local level) occurs below the Aquifer System-I & II separated by clay bed with variable thickness. The ground water occurs under semi-confined to confined conditions and is in general arsenic free. As revealed by the Exploration, the Aquifer System-III within depth of 300 mbgl occurs below the Aquifer System-II separated by thick clay bed with variable thickness in northern Blocks (except Tehatta-I, where further exploration is required) of the study area, and is arsenic free. The ground water occurs under confined conditions in this aquifer system. The CGWB has constructed number of arsenic free wells tapping the Aquifer II & III groups using cement sealing techniques and handed over to PHED/ State Government departments for supply of arsenic free water. It is observed that ground water level is declining slowly in most of the area under irrigation and also in some of the wells in the urban areas. Therefore there is need for efficient management of these aquifer systems for sustenance of the tube wells tapping

Aquifer Systems– I, II as well as III.

Block-wise the availability of Ground Water Resources & its present status of Development of the aquifer system and, block-wise availability of land **for** future Irrigation in the study area are shown in the following **Tables-XVI & XVII**.

Sr.	District	Block	Net GW	Gross	SOD in	Long terr	n Water	Category	GW
No.			availabili	GW draft	%	Level ti	rend in	6.	available
			ty in ham	in Ham		Cm/Yr (R	Lising - &		for
			-			Falling +)			Future
						Pre	Post		GW use
						monsoon	monsoo		in ham
							n		
1	Nadia	Chapra	18229.97	19907.58	109.20	4.56	11.47	Semi Critical	-
2	Nadia	Hanskhali	14129.31	13966.03	98.84	1.79	10.82	Semi Critical	22.51
3	Nadia	Kaliganj	15711.35	14574.49	92.76	3.64	10.39	Semi Critical	979.91
4	Nadia	Karimpur I	11923.27	13894.90	116.54	6.22	10.57	Semi Critical	-
5	Nadia	Karimpur II	13320.05	16441.56	123.43	3.00	9.09	Semi Critical	-
6	Nadia	Tehatta I	13833.90	15305.98	110.64	1.67	8.32	Semi Critical	-
7	Nadia	Tehatta II	9868.30	10975.64	111.22	-2.35	-3.06	Semi Critical	-
8	Nadia	Nakashipara	18557.14	15720.51	84.71	1.07	8.81	Safe	2655.93
9	Nadia	Krishnaganj	7974.40	6998.08	87.76	2.92	10.92	Safe	904.38
S	tudy Area	B in Total	123547.7	127784.8	103.42	2.50	8.59	0	4562.73

Table-XVI: Availability of GW resources & its present Status in the Study area

 Table-XVII: Availability of Land for Future Irrigation

Sr. No.	Distri ct	Block	Geogra phical area in ha	Cultiva ble area in ha	Net irrigated Comman d area (GW) in ha	Net irrigate d Comma nd area (SW) in ha	Net irrigated Comman d area (GW +SW) in ha	Net area availabl e for Irrigatio n	Demand i.e Water required for Irrigatio	GW availab le for Irrigati on	Remar ks
1	Nadia	Chapra	31048	21372	12149.15	1406.4	13555.55	7816.45		-	
2	Nadia	Hanskh ali	23150	17580	27815.26	1371	29186.26	-11606.3	Nil	22.51	
3	Nadia	Kaligan j	31975	19169	12373.95	921.08	13295.03	5873.97		979.91	
4	Nadia	Karimp ur I	21227	15217	13377.43	727.22	14104.65	1112.35		-	
5	Nadia	Karimp ur II	24118	17168	18821.11	682.5	19503.61	-2335.61	Nil	-	
6	Nadia	Tehatta I	25830	19750	12236.54	949.29	13185.83	6564.17		-	
7	Nadia	Tehatta	17444	15250	9955.83	1042.6	10998.43	4251.57		-	

		II								
8	Nadia	Nakashi	35424	23082	15441.4	731.53	16172.93	6909.07	2655.93	
		para								
9	Nadia	Krishna	15955	9880	4622.06	1028.63	5650.69	4229.31	904.38	
		ganj								
	Study	v area in	226171	158468	126793	8860.25	135652.98	22815.02	4562.73	
	Nadia	a district								

6.2.1 Desirable Management Interventions:

To formulate the proper Aquifer Management Plan, it is required to understand the ground water resources, its quality and proper scientific development. The study area is basically under intensive irrigated agriculture by groundwater and also partly by surface water. Paddy and Rabi vegetables are the important corps cultivated by farmers in the region. In major part of the area farmers depend only on groundwater for cultivation of these crops during all seasons. Any reduction in the yield of the tube wells due to decline in groundwater shall adversely impact the production of the food grain. Though the study area has multilayer aquifer system in which Aquifer-I & II (within depth of 150 m bgl) is highly potential in nature, holds suitable water and caters to the need of irrigation in agriculture and industries. Aquifer III (within depth of 160 to 300) occurs below the Aquifer II separated by clay bed. Aquifer II for their requirement. It is observed that ground water level is declining slowly in most of the area under irrigation and also in some of the wells in the urban areas. Therefore, there is need for efficient management of the aquifer systems for sustenance of the tube wells tapping Aquifer I as Well as Aquifer II.

7. SCOPE OF ARTIFICIAL RECHARGE

Considering the administrative units (blocks or municipalities), average post monsoon water level and long term trend of ground water level, the area suitable for artificial recharge has been identified. The area suitable for recharge is arrived considering area having the post-monsoon depth to water level more than 3m and showing long term falling trend of water level more than 2cm/year.

a) Water levels more than 9m bgl with or without the falling trend with first priority.

b) Water levels between 6m and 9m bgl and with declining trend with second priority.

c) Area showing water levels between 6m and 9m bgl with no declining trend with third priority.

d) Areas showing water levels between 3m and 6m bgl and with declining trend with fourth priority.

However, area with 3m to 6m bgl post monsoon water level with no long term falling trend and area with 0 to 3m bgl of post monsoon water level has not been considered as feasible area for recharge.

Block-wise net surface water availability for recharge; source-water allocation for suitable types of artificial recharge structures; feasible numbers of various structures and structure-wise cost estimates were worked out for the study area, based on soil characteristic, land-slope, Runoff co efficient, rainfall data and long term trend, recommended by Dhruvanarayana, 1993.

Considering the higher ground water development, categorization of the block as per the Ground Water Resource Assessment, 2013 and block/municipal level suitable area for recharge, priority may be assessed for implementation of artificial recharge projects in the study area. Percolation Tanks, Re-Excavation of Existing Tanks (REET) with Recharge Shafts, Injection Wells, Conservation Ponds in the rural area, and Roof-Top Rain Water Harvesting structures in the urban areas may be constructed as per the feasibility study.

N. B. - The Reports on "Data Gap Analysis", "Geophysical Studies" and "Block-wise Ground Water Management Plan" of the concerned area are presented separately.

Part II

Block wise Aquifer Management Plan in parts of Nadia District (9 Blocks), West Bengal

(Karimpur - I, Karimpur - II, Tehatta - I, Tehatta - II, Kaliganj, Nakashipara, Chapra, Krishnaganj & Hanskhali Blocks)

Disposition of Aquifers in Study Area, Parts of Nadia district, West Bengal

1. KARIMPUR - I BLOCK

1.0 Salient Information

Block Name: Karimpur - I

Area (in sq km): 212.27

District: Nadia

State: West Bengal

Population (as on 2011): 160895

Table 1: Details of Population

Male	Female	Total
83014	77881	160895

1. Rainfall

Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Table 2: Details of Annual Rainfall since last five years (mm)

Plack	Normal	Actual (Annual)							
BIOCK		2012	2013	2014	2015	2016			
Karimpur-I	1444	862.0	1287.8	1096.8	1408.1	1416.5			

2. Agriculture & Irrigation

Total area in ha: 21227

Table 3: Details of Land use pattern

SI. No	Name of the Block	Geographic Area (ha)	Cultivable Area (ha)	Area under pasture & orchard (ha)	Cultivable Waste Land(ha)	Forest Land (ha)	Home Stead Land (ha)
1.	Karimpur-I	21227	15217	209	(Negligible)	(Negligible)	4631

3. Aquifer Wise Ground Water Resource Availability & Extraction

Table 4: Details of aquifer wise resource availability and draft (in MCM)

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	119.23	-	-	138.95
Static Resource	2300.58	-	-	-

4. Disposition of Principal Aquifer System

In Karimpur - I Block, three aquifer systems exist.

 The range of 1staquifer is on an average from 5m to 131m but this is containing Arsenic.

- The range of 2ndaquifer is on an average from 154m to 185m, which is fresh and Arsenic free.
- The range of 3rdaquifer is 282 m to 294 m, which is also fresh and Arsenic free.

Table 5: Details of aquifer disposition depth range

	1st Aquifer	2nd aquifer	3rd aquifer
Karimpur- I	5-131 m	154-185 m	282-294 m

Fig.1: Aquifer disposition in Karimpur - I Block

Fig.2: N- S Cross section of Karimpur - I & II (combined) Blocks

Table 6: Details of Aquifer Wise Water Level Ranges & Pre-monsoon and Post-monsoon long term water level trends (2006 to 2017)

SI.	Block	Aquifer	Pre-mons	oon Trend	Post-monsoon Trend		
No.			Rise (cm/year)	Fall (cm/year)	Rise (cm/year)	Fall (cm/year)	
1.	Karimpur - I	I	-	6.22	-	10.57	
		II	-	-	-	-	
			-	-	-	-	

Table 7: Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)	Thickness of the Granular Zone in 3rd aquifer (m)
Karimpur - I	212.27	126	35	15

Table 8: Aquifer-wise depth range and parameters (On the basis of CGWB

exploration data)

Name of Block		1 st Aquife	ər	2 nd Aquifer				3 rd Aquifer			
	Depth Range (mbgl)	Discha rge (m³/hr)	T (m²/d ay)	S	Depth Range (mbgl)	Dischar ge (m³/hr)	T (m² /da y)	S	Depth Range (mbgl)	Disch arge (m³/hr)	T (m²/da y)
Karimpur - I	5 - 131	36	2700	-	150 - 185	29	-	-	280 - 295	-	-

Ground Water Resource, Extraction, Contamination & Other Issues Resource Availability & Extraction: Dynamic ground water resources as on 31st March '13

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply upto 2035 years(MCM)
Karimpur - I	119.23	138.94	116.54	Semi-critical	3.84

Table 9: Availability of Ground Water resource

6. Chemical Quality of Ground Water & Contamination

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered, as analyzed by CGWB.

Table 10: Range of chemical parameter (based on CGWB Monitoring Wells data)

Block	Aquifer	As	рН	EC	Na	CI	F	NO ³	Total Hardness as
	Туре	(mg/l)	-	(Us/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	CaCo ³ (mg/l)
Karimpur - I	Ι	0.003-	8.37-	282.9-	10.8-	20.0-	BDL-	0.1-	150-225
-		0.332	8.44	759.3	84.2	72.5	1.5	27.0	

Name of arsenic	No. of			Arseni	c Concent	ration (in m	ng/l)		
affected block Tube well		<& =0.01		>0.01 &<=0.05		>0.05		Max.	
	analysed	%	No.	%	No.	%	No.	concentration	
Karimpur - I	1177	29.57	348	28.04	330	42.40	499	1.08	

Fig. 3: Spot values of As in Karimpur – I Block, Nadia district

7. Ground Water Resource Enhancement & Management Plan

8.1 Ground Water Management Plan for drinking purposes

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED a population of 5244 in 4 villages is under risk zone where no water supply scheme exists.
- On the basis of data available, 2 tube wells are required for catering four uncovered villages. Details of calculation are given below.
- The arsenic free aquifers in the depth span of 154m to 185m & 282m to 294m (comparatively less potential) may be exploited for the purpose.
- Arsenic free aquifer should be tapped with proper cement sealing. Arsenic removal plant may be installed before supply.
- Regular Field monitoring is necessary for Arsenic concentration in tube wells.

Table 12: Number and cost for construction of Tube wells in the uncovered villagescalculated on the basis of projected population of Human and Cattle

Block	Projecte d populati on upto 2021 (consid ering growth 21.09% per decade as per Census 2011	Water required for drinking & domestic purposes @ 70 lpcd (in lpd)	Cattle Populatio n (Consider ing 0.19 per capita human populatio n) as on 2011	Cattle Population (Consideri ng 0.36 annual growth rate) as on 2021	Water required for drinking & domestic purposes @ 20 lpcd (in lpd)	Total Water Required (in Ipd)	Numb er of T. Ws	Cost of the tube well of 300 m depth (approx) & 10"x6" dia @ Rs. 25 lakhs (In lakh) as per EFC
Karimpur- I	6350	444500	7556	10276	205520	650020	2	50

8.2 Management Plan for Irrigation

Table 13: Availability of Land for Future Irrigation

Sr. No.	District	Block	Geographical area in ha	Cultivable area in ha	Net irrigated Command area (GW) in ha	Net irrigated Command area (SW) in ha	Net irrigated Command area (GW +SW) in ha	Net area available for Irrigation in ha	Demand i.e. Water required for irrigation in ham	GW available for future Irrigation in ham
1	Nadia	Karimpur I	21227	15217	13377.43	727.22	14104.65	1112.35	-	-

- On the basis of the Ground Water Resource Assessment, the block is under Semicritical condition and the Stage of Ground Water Development (SOD) is 116.54 %. Hence, irrigation by exploiting the unconfined aquifer is not advisable.
- As indicated in the above mentioned Table, ground water is not available for future irrigation in this block. Surface water bodies like streams, canals, ponds may be used for irrigation purposes for the available land.
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised. Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is must in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.
- Regular monitoring of Arsenic concentration in crop is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in

future.

Table 14: Ground Water Management Plan for Irrigation in consultation with experts of

Block	Ground water availabilit y(Ham,)	Qualit y	Major crops/veg etables/ fruits/flow ers currently in practice	Water column depth(m)	Crops suggested for better management(con sidering ground water quality & quantity)	Water column depth(m) recommende d	Remarks e.g. Irrigatio n techniqu es etc
Karimpur- I	-	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	wheat(0.3- 0.35),rice(1. 2- 1.4),Vegeta ble(0.15- 0.2),pulse(0 .1-0.12)	wheat, mustard, lentil, flowers, vegetables	wheat(0.2- 0.25),mustard (0.2),pulse(0. 08- 0.12),flowers(0.12-0.16)	Conjuncti ve use of fresh and contamin ated water: 1:1 ratio/drip for vegetabl e, flowers

Bidhan Chandra Krishi Vidyalaya (BCKV)

8.3 Management Plan for Industrial Purpose

The block is under Semi-critical condition and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.
- The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

8. Special interventions for monitoring of Ground water situations in Semi-Critical Block

As per the GEC Norms for Semi-critical block, the following precautions should be taken before GW extraction.

- It is necessary to increase the density of observation wells in that unit for regular water level monitoring and thereby-
- The rainfall recharge during monsoon season by the water table fluctuation method can be estimated with greater accuracy.
- The trend of water table during pre- monsoon and post-monsoon intervals can be evaluated with greater accuracy.
- The trend of water table during pre- monsoon and post- monsoon intervals consequent to further groundwater development can be more effectively monitored.

Net Pre Post irrig Area Average Geog Averag Cultiva monsoo monsoo raphi to be SO e Pre Post ate Name of n WL n WL ble Remarks for GW irrigat D in monso monsoon cal d Block Trend Trend Management Plan area in WL in area are ed in % on WL 2016 in 2016 in ha in ha a in ha in mbgl mbgl cm/yr cm/yr ha 2122 15217 141 1112. Block is under semi critical condition so 7 04. 35 65 Regular Monitoring of 116. 6.22 10.57 GW Regime should be Karimpur- I 5.81 4.97 54 made from time to time, Boro cultivation should be restricted

9. Proposed Artificial Recharge Structures in the Study area:

Table 15: Space Available For Recharge and Proposed Interventions:

Table 16: Area suitable for recharge in the study area:

			•
District	Block Name	Block Area (in	Area suitable for
		ha)	recharge(Considering area
			having DTW more than 3m in
			post-monsoon and showing
			2cm/y falling trend)(in ha)
Nadia	Karimpur-I	21227	21227 (considering the average
			criteria)

Run off coefficie nt from Dhruv anara yana, 1993(Total Norm al Land volum mons e of slope, surfac oon type rainfal of е l in land runoff m(50 Annual and availa yrs total soil ble 50% of volume V (Non 60% of data type) Annua from Are of rain 'C' lly 'Vt' committ Vnc(consi fall in land Major type of (RnXA 75% of dering edata.g a(H ed)= flow)= Vf soil available 'Vt' = V ov.in) a) Ham=(R slope XC) Vnc 'A' 0-5% Block 'Rn' n X A) in that block Ham Ham Ham Ham Deep, poorly Karimp 212 20271.7 10135. 7601.9 3800.9 2280.575 0.955 0.5 drained ur I 27 85 8925 19 59688 813 loamy soil

Table 17: Calculation of Surface runoff on the basis of Runoff co efficient fromDhruvanarayana, 1993 (Based on land slope, type of land and soil)

Table 18: Details of Recharge structure in block calculated on the basis of soil characteristic, Slope, Rain fall data and Long term

trend

Block	Amount		Sourc		Sourc										Tot
(3)	of water	Source	е		е										al
	for	water	water		water										Co
	artificial	allocati	alloca		alloca						Nos.				st
	recharg	on for	tion		tion						of	Cost			(in
	e and /	Percol	for	Source	for				Nos. of		REE	of			Lak
	or	ation	REET	water	Injecti				Percol		Т	REET			h)
	conserv	Tank	with	allocati	on				ation	Cost of	with	with	Nos.	Cost	
	ation	and	Rech	on for	Well	Source			tank	Percol	recha	Rech	of	of	
	(Ham)	REET	arge	Percol	(8)	water		Cost of	sugges	ation	rge	arge	inject	inject	
	(4)	with	Shaft	ation		allocatio	Nos. of	conserv	ted @	tank@	shaft	Shaft	ion	ion	
		Rechar	(Ham)	Tank		n for	Conserv	ation	50	Rs 8	@ 10	@ Rs	Well	Well	
		ge	: 50 %	(Ham):		Conserv	ation	pond	Ham	lakh	Ham	8 lakh	@ 30	@	
		Shaft	of	50 %		ation	Pond @	@ Rs 8	per	per	per	per	Ham	Rs	
		in Ham	Col. 5	of Col.		Pond in	10 Ham	lakh per	unit	unit	unit	unit	per	25	
		(5)	(6)	5 (7)		Ham (9)	per unit	unit (12)	(11)	(13)	(11)	(12)	unit	lakh	
					25 %										15
					of										87
Karim		35% of			Col. 4	40 % of									
nanm		Col. 4			i.e.	Col. 4									
puri		i.e.			570.1	i.e.									
	2280.57	798.20			4	912.23									
	6	Ham	399.1	399.1	Ham	Ham	91	728	8	64	40	320	19	475	

2. KARIMPUR II BLOCK

1.0 Salient Information

Block Name: Karimpur II Area (in sq km): 241.18 District: Nadia State: West Bengal Population (as on 2011): 217136

Table 1.1 - Details of Population

Male	Female	Total
111488	105648	217136

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Block	District Normal	Actual (Annual)								
		2012	2013	2014	2015	2016				
Karimpur II	1444	862.0	1287.8	1096.8	1408.1	1416.5				

Agriculture & Irrigation

Total area in ha: 24118

Table 1.3 - Details of Land use pattern of block

SI. No	Name of the Block	Geographic Area (ha)	Cultivable Area (ha)	Area under pasture & orchard (ha)	Cultivable Waste Land(ha)	Forest Land (ha)	Home Stead Land (ha)
1.	Karimpur-II	24118	17168	217	(Negligible)	(Negligible)	4712

Aquifer Wise Ground Water Resource Availability & Extraction:

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	133.20	-	-	164.41
Static Resource	2902.84	-	-	-

Table 1.4 - Details of aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Karimpur II Block, three aquifer systems exist.

- The average depth range of 1staquifer is from 10m to 159m, but ground water in this contains Arsenic.
- The average depth range of 2ndaquifer is from 179m to 210m which is fresh and Arsenic free.
- The average depth range of 3rdaquifer is 215 m to 224 m, which is also fresh and Arsenic free.

Table 2.1 - Details of aquifer disposition depth range in the block

Karimpur-II	1st Aquifer	2nd aquifer	3rd aquifer	
	10-159 m	179-210 m	215-224 m	

Fig 2.1 - Aquifer disposition in Karimpur II Block

Fig 2.2 – Cross section index line in Karimpur II Block

Fig 2.3 - Cross section of Karimpur II & nearby area

Table 2.2 - Aquifer Wise Water Level Ranges & Seasonal long term trends (2006 -17)

SI.	Aquifer	Pre	e-monsoon		Post-monsoon			
NO.		Depth to	Tre	nd	Depth to	Trend		
	water level		Rise (cm/year)	Fall (cm/year)	water level	Rise (cm/year)	Fall (cm/year)	
1.	I	3.84 - 4.87	-	3.00	3.37 – 4.24	-	9.09	
2.	II	4.33 – 5.90	-	-	3.26 – 5.09	-	-	

Table 2.3 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)	Thickness of the Granular Zone in 3rd aquifer (m)
Karimpur-II	241.18	149	31	9

Table 2.4 - Aquifer-wise depth range and parameters

Name of Block	1 st Aquifer				2 nd		3 rd Aquifer				
	Depth Range (mbgl)	Discharg e (m³/hr)	T (m²/da y)	S	Depth Range (mbgl)	Discharge (m³/hr)	T (m²/ day)	S	Depth Range (mbgl)	Disc harg e (m ³ / hr)	T (m²/d ay)
Karimpur-II	10 - 159	-	-	-	179 - 210	-	-	-	215 - 224	-	-

3.0 Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March'13

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years (MCM)
Karimpur II	133.20	164.41	123.43	Semi-critical	4.42

Table 3.1 - Availability of Ground Water resource in Block

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered.

 Table 3.2 - Range of chemical parameter in the block

Block	Aquifer	As	рН	EC	Na	Cl	F	NO ₃	Total Hardness as
	Туре	(mg/l)		(µs/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	CaCO ₃ (mg/l)
Karimpur II	1	0.002-	8.33-	398.8-	17.7-	12.5-	BDL-	1.2-	130- 275
		0.008	8.50	1077	100.4	110	0.51	27.7	

Table 3.3 - Arsenic Concentration in ground water in detail

Name of arsenic	No. of								
affected block	Tube well	<& =0.01		>0.01 &	>0.01 &<=0.05		05	Max.	
	analysed	%	No.	%	No.	%	No.	concentration	
Karimpur II	1697	26.34	447	27.64	469	45.96	780	0.93	

(Source – PHED, Govt. of West Bengal)

Fig. 3.1 – Spot values of Arsenic in ground water

4.0 Ground Water Resource Enhancement & Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED a population of 63224 in 12 villages is under risk zone where no water supply scheme exists.
- On the basis of data available, 22 tube wells are required for catering twelve uncovered villages. Details of calculation are given below.
- The arsenic free aquifers in the depth span of 179m to 210m & 215m to 224m (comparatively less potential) may be exploited for the purpose.
- Arsenic free aquifer should be tapped with proper cement sealing. Arsenic removal plant may be installed before supply.
- Regular Field monitoring is necessary for Arsenic concentration in tube wells.

Table 4.1 – Nos & cost of Tube wells in the uncovered (projected) population of Human and Cattle

Block	Projected population upto 2021 (considering growth 21.09% per decade as per Census 2011	Water required for drinking & domestic purposes @ 70 lpcd (in lpd)	Cattle Population (Considering 0.19 per capita human population) as on 2011	Cattle Population (Considering 0.36 annual growth rate) as on 2021	Water required for drinking & domestic purposes @ 20 lpcd (in lpd)	Total Water Required (in lpd)	Number of T.Ws	Cost of the tube well of 300 m depth (approx) & 10"x6" dia @ Rs. 25 lakhs (In lakh) as per EFC
Karimpurll	76564	5359480	91111	123911	2478220	7837700	22	550

Management Plan for Irrigation

Table 4.2 - Availability of Land for Future Irrigation

Sr.	Distri	Block	Geogra	Cultivab	Net	Net	Net	Net area	Demand	GW	Remar
No.	ct		phical	le area	irrigated	irrigated	irrigated	availabl	i.e.	availab	ks
			area in	in ha	Comman	Comma	Comman	e for	Water	le for	
			ha		d area	nd area	d area (Irrigatio	required	future	
					(GW) in	(SW) in	GW	n in ha	for	Irrigati	
					па	па	+3w)III ha		Irrigatio	on in	
							IIa		n in ham	ham	
2.	Nadia	Karimp	24118	17168	18821.11	682.5	19503.61	-2335.61	Nil	-	
		ur- II									

- On the basis of the Ground Water Resource Assessment, the block is under Semicritical condition and the Stage of Ground Water Development (SOD) is 123.43 %. Hence, irrigation by exploiting the unconfined aquifer is not advisable.
- As indicated in the above mentioned Table, the net area for irrigation is not at all available, even over-irrigated. Hence, over-irrigation may be stopped and no further irrigation is suggested with ground water.
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.
- Regular monitoring of Arsenic concentration in crop is also necessary.

 R & D study is necessary in arsenic affected area so we can get new solutions in future.

Block	Ground water availabili ty(Ham,)	Qua lity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(consideri ng ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Karimpur-II	-	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2-1.4), Vegetable (0.15-0.2), pulse (0.1- 0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat (0.2-0.25), mustard (0.2), pulse (0.08-0.12), lowers (0.12-0.16)	Conjunctive use of fresh and contaminat ed water: 1:1 ratio/drip for vegetables, flowers

Table 4.3 - Ground Water Management Plan for Irrigation in consultation with experts of BidhanChandra Krishi Vidyalaya (BCKV)

Table 4.4 – Important points for Irrigation

Name of Block	Geogra phical area in ha	Cultivabl e area in ha	Net irriga ted area in ha	Area to be irrigate d in ha	SOD in %	Pre monsoon WL Trend 2016 in cm/yr	Post monsoon WL Trend 2016 in cm/yr	Average Pre monsoon WL in mbgl	Average Post monsoon WL in mbgl	Remarks for GW Management Plan
Karimpur-II	24118	17168	1950 3.61	 2335.61	123.4 3	3.00	9.09	4.82	4.00	Block is under semi critical condition so Regular Monitoring of GW Regime should be made from time to time, Boro cultivation should be restricted

Management Plan for Industrial Purpose:

The block is under Semi-critical condition and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.

 The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Special interventions for monitoring of Ground water situations in Semi-Critical Block

As per the GEC Norms for Semi-critical block, the following precautions should be taken before GW extraction.

- It is necessary to increase the density of observation wells in that unit for regular water level monitoring and thereby-
- The rainfall recharge during monsoon season by the water table fluctuation method can be estimated with greater accuracy.
- The trend of water table during pre- monsoon and post-monsoon intervals can be evaluated with greater accuracy.
- The trend of water table during pre- monsoon and post- monsoon intervals consequent to further groundwater development can be more effectively monitored.

Artificial Recharge:

Table 4.5 - Area suitable for recharge in the study area:

District	Block Name	Block Area (in ha)	Area suitable for recharge (Considering area having DTW more than 3m in post- monsoon and showing 20 cm/yr falling trend)(in ha)
Nadia	Karimpur-II	24118	24118 (considering the average criteria)

Table 4.6 – Estimation of Surface runoff by Dhruvanarayana method, 1993 (Based on land slope, type of land and soil)

Block	Normal	Area(Ha	Annual total	Run off co-	Major type of soil	Total	75% of 'Vt' =	50% of V	60% of
	monsoon) 'A'	volume of rain	efficient	available in that block	volume of	V Ham	(Non	Vnc(considering
	rainfall in		fall in	from		surface		committed)=	e-flow)= Vf Ham
	m(50 yrs		Ham=(Rn X A)	Dhruvanar		runoff		Vnc Ham	
	data from			ayana,199		available			
	data.gov.in			3(Land		Annually			
) 'Rn'			slope, type		'Vt'			
				of land and		(RnXAXC)			
				soil type)		Ham			
				'C' land					
				slope 0-5%					
Karimpur II	1.053	24118	25396.254	0.5	Deep, poorly drained	12698.127	9523.5953	4761.7976	2857.078575
					loamy soil				

Table 4.7 – Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of	Source	Source	Source water	Source water allocation	Source	Nos. of	Cost of	Nos. of	Cost of	Nos. of	Cost of	Nos. of	Cost of	Total
	water for	water	water	allocation for	for Injection Well (6)	water	Farm	Farm	Irrigation Cum	Irrigation	REET	REET	injection	injection	Cost (16)
	artificial	allocation	allocation	Irrigation Cum		allocation	Pond @	pond @	Recharge Tank	Cum	with	with	Well @	Well @	
	recharge	for	for REET	Recharge Tank		for Farm	10 Ham	Rs 8 lakh	suggested @ 50	Recharge	recharge	Recharge	30 Ham	Rs 25	
	and / or	Irrigation	with	(Ham): 50 % of Col. 3		Pond in	per unit	per unit	Ham per unit	Tank @	shaft @	Shaft @	per unit	lakh (15)	
	conservation	Cum	Recharge	(5)		Ham (7)	(8)	(9)	(10)	Rs 8 lakh	10 Ham	Rs 8 lakh	(14)		
	(Ham) (2)	Recharge	Shaft							per unit	per unit	per unit			
		Tank and	(Ham):							(11)	(12)	(13)			
		REET with	50 % of												
		Recharge	Col. 3 (4)												
		Shaft in													(in Lakh)
		Ham (3)													、 <i>,</i>
Karimpur II	2857.0786	70 % of Col.	999.98	999.98	20 % of Col. 2 i.e.	10 % of	29	232	20	160	100	800	19	475	1667
		2 i.e.			571.42 Ham	Col. 2 i.e.									
		1999.96				285.71 Ham									
		Ham													

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

3. TEHATTA I BLOCK

1.0 Salient Information

Block Name: Tehatta-I Area (in sq km): 258.30 District: Nadia State: West Bengal Population (as on 2011): 244322

Table 1.1 - Details of Population

Male	Female	Total
125875	118447	244322

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Block	District Normal			Actual (Annual)		
		2012	2013	2014	2015	2016
Tehatta- I	1444	862.0	1287.8	1096.8	1408.1	1416.5

Agriculture & Irrigation

Total area in ha: 25830

Table 1.3 - -Details of Land use pattern of block

SI. No	Name of the Block	Geographic Area (ha)	Cultivable Area (ha)	Area under pasture & orchard (ha)	Cultivable Waste Land(ha)	Forest Land (ha)	Home Stead Land (ha)
1.	Tehatta- I	25830	19750	241	(Negligible)	(Negligible)	5241
Aquifer Wise Ground Water Resource Availability & Extraction:

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	138.33	-	-	153.06
Static Resource	5176.15	-	-	-

Table 1.4 - Aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Tehatta- I Block, two aquifer systems exist.

- The average depth range of 1staquifer is from 9m to 67m, but this contains ground water which contains Arsenic.
- The average depth range of 2ndaquifer is from 70m to 177m which is fresh and Arsenic free.

Table 2.1 - Details of aquifer disposition depth range in the block

Tehatta-I	1st Aquifer	2nd aquifer	3rd aquifer
	9-67 m	70-177 m	-

Fig- 2.2 - N- S Cross section of Tehatta I & Tehatta II (combined) Blocks

Table 2.2 - Aquifer Wise Water Level Ranges & Seasonal long term water level trends (2006 -2017)

SI.	Aquifer		Pre-monsoon		Post-monsoon			
No.		Depth to	Trend		Depth to	Trend		
		water level	Rise (cm/year)	Fall (cm/year)	water level	Rise (cm/year)	Fall (cm/year)	
1.	I	3.30 – 6.37	-	1.67	2.56 – 5.57	-	8.32	
2.	11	3.92 – 7.27	-	-	3.11 - 6.23	-	-	

Table 2.3 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)
Tehatta-I	258.30	58	107

Table 2.4 - Aquifer-wise depth range and parameters

Name of Block		1 st Aquife	r		2 nd Aquifer				
	Depth Range (m bgl)	Dischar ge (m³/hr)	T (m²/da y)	S	Depth Range (m bgl)	Discharge (m ³ /hr)	T (m²/ day)	S	
Tehatta-I	9 – 67; 2 - 186	-	-	-	70 - 177	-	-	-	

3.0 Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March 2013

Table 3.1	Availability of	Ground Water	resource in Block
-----------	-----------------	---------------------	-------------------

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years(MCM)
Tehatta-I	138.34	153.06	110.64	Semi-critical	5.01

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered

Block	Aquifer	As	рН	EC	Na	Cl	F	NO ₃	Total Hardness
	Туре	(mg/l)		(µs/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	as CaCO₃(mg/l)
Tehatta I	I	0.0001-	8.45-	382.2-	10.9-	12.5-	BDL-	BDL- 1.7	115- 180
		0.044	8.49	1032.0	90.4	47.5	0.42		

Table 3.3 - Arsenic concentration (based on PHED hand pump data)

Name of arsenic	No. of			Arseni	c Concent	ration (in m	ng/l)	
affected block	Tube well	<& =	<& =0.01		>0.01 &<=0.05		05	Max.
	analysed	%	No.	%	No.	%	No.	concentration
Tehatta I	1368	69.23	947	20.10	275	10.67	146	0.54

Fig. 3.1 – Spot values of Arsenic (mg/l) in block

4.0 Ground Water Resource Enhancement& Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED a population of 95511 in 23 villages is under risk zone where no water supply scheme exists.
- On the basis of data available, 24 tube wells are required for catering twenty-three uncovered villages. Details of calculation are given below.
- The arsenic free aquifers in the depth span of 70m to 177m (comparatively less potential) may be exploited for the purpose.
- Arsenic free aquifer should be tapped with proper cement sealing. Arsenic removal plant may be installed before supply.
- Regular Field monitoring is necessary for Arsenic concentration in tube wells.

Table 4.1 – Nos. & cost of Tube wells in the uncovered (projected) population of Human and Cattle

Block	Projected population upto 2021 (considering growth 21.09% per decade as per Census 2011	Water required for drinking & domestic purposes @ 70 lpcd (in lpd)	Cattle Population (Considering 0.19 per capita human population) as on 2011	Cattle Population (Considering 0.36 annual growth rate) as on 2021	Water required for drinking & domestic purposes @ 20 lpcd (in lpd)	Total Water Required (in lpd)	Number of T. Ws	Cost of the tube well of 300 m depth (approx) & 10"x6" dia @ Rs. 25 lakhs (In lakh) as per EFC
Tehatta I	115664	8096480	19583	20300	406001	8502481	24	600

Management Plan for Irrigation:

- On the basis of the Ground Water Resource Assessment, the block is under Semicritical condition and the Stage of Ground Water Development (SOD) is 110.64 %. Hence, irrigation by exploiting the unconfined aquifer is not advisable.
- As indicated in the above mentioned Table, ground water is not available for future irrigation in this block. Surface water bodies like streams, canals, ponds may be used for irrigation purposes for the available land.
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.
- Regular monitoring of Arsenic concentration in crop is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in future.

Sr.	Distri	Block	Geogra	Cultiva	Net	Net	Net	Net area	Demand	GW	Remar
No.	ct		phical	ble area	irrigated	irrigate	irrigated	availabl	i.e.	availab	ks
			area in	in ha	Comman	d	Comman	e for	Water	le for	
			ha		d area	Comma	d area (Irrigatio	required	future	
					(GW) 1n	nd area	GW	n in ha	for	Irrigati	
					ha	(SW) in	+SW) in		Irrigatio	on in	
						па	па		n in	ham	
									ham		
3.	Nadia	Tehatta	25830	19750	12236.54	949.29	13185.83	6564.17	-	-	-
		Ι									

Table 4.2 - Availability of Land for Future Irrigation

Table 4.3 - Ground Water Management Plan for Irrigation in consultation with experts of Bidhan Chandra Krishi Vidyalaya (BCKV)

Block	Ground water availabili ty(Ham,)	Qua lity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(consideri ng ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Tehatta-I	-	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2-1.4), Vegetable (0.15-0.2), pulse (0.1- 0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat (0.2-0.25), mustard (0.2), pulse (0.08-0.12), flowers (0.12-0.16)	Conjunctive use of fresh and contaminat ed water: 1:1 ratio/drip for vegetables, flowers

Table 4.4 – Important points for Future Irrigation

Name of Block	Geogra phical area in ha	Cultivabl e area in ha	Net irriga ted area in ha	Area to be irrigate d in ha	SOD in %	Pre monsoon WL Trend 2016 in cm/yr	Post monsoon WL Trend 2016 in cm/yr	Average Pre monsoon WL in m bgl	Average Post monsoon WL in mbgl	Remarks for GW Management Plan
Tehatta-I	25830	19750	1318 5.83	6564.17	110.6 4	1.67	8.32	5.94	5.00	Block is under semi critical condition so Regular Monitoring of GW Regime should be made from time to time, Boro cultivation should be restricted

Management Plan for Industrial Purpose:

The block is under Semi-critical condition and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.

 The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Special interventions for monitoring of Ground water situations in Semi-Critical Block

As per the GEC Norms for Semi-critical block, the following precautions should be taken before GW extraction.

- It is necessary to increase the density of observation wells in that unit for regular water level monitoring and thereby-
- The rainfall recharge during monsoon season by the water table fluctuation method can be estimated with greater accuracy.
- The trend of water table during pre- monsoon and post-monsoon intervals can be evaluated with greater accuracy.
- The trend of water table during pre- monsoon and post- monsoon intervals consequent to further groundwater development can be more effectively monitored.

Artificial Recharge

Table 4.5 - Area suitable for recharge in the study area:

District	Block Name	Block Area (in ha)	Area suitable for recharge(Considering area having DTW more than 3m in post- monsoon and showing 20 cm/y falling trend)(in ha)
Nadia	Tehatta I	25830	15830 (considering the average criteria)

Block	Normal	Area(Ha	Annual total	Run off co-	Major type of soil	Total	75% of 'Vt' =	50% of V	60% of
	monsoon) 'A'	volume of rain	efficient	available in that block	volume of	V Ham	(Non	Vnc(considering
	rainfall in		fall in	from		surface		committed)=	e-flow)= Vf Ham
	m(50 yrs		Ham=(Rn X A)	Dhruvanara		runoff		Vnc Ham	
	data from			yana,1993(available			
	data.gov.in			Land slope,		Annually			
) 'Rn'			type of		'Vt'			
				land and		(RnXAXC)			
				soil type)		Ham			
				'C' land					
				slope 0-5%					
Tehatta- I	1.053	25830	27198.99	0.42	25 % Deep, poorly	11423.5758	8567.6819	4283.8409	2570.304555
					drained loamy soil, 25				
					% imperfectly drained				
					fine & 50% moderately				
					drained sandy soil				
1	1	1	1	1			1		1

Table 4.6 – Estimation of Surface runoff by Dhruvanarayana method, 1993 (Based on land slope, type of land and soil)

Table 4.7 - Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of water for artificial recharge and / or conservation (Ham) (2)	Source water allocation for Irrigation Cum Recharge Tank and	Source water allocation for REET with Recharge Shaft (Ham):	Source water allocation for Irrigation Cum Recharge Tank (Ham): 50 % of Col. 3 (5)	Source water allocation for Injection Well (6)	Source water allocation for Farm Pond in Ham (7)	Nos. of Farm Pond @ 10 Ham per unit	Cost of Farm pond @ Rs 8 lakh per unit	Nos. of Irrigation Cum Recharge Tank suggested @ 50 Ham per unit	Cost of Irrigation Cum Recharge Tank @ Rs 8 lakh per unit (11)	Nos. of REET with recharge shaft @ 10 Ham per unit (12)	Cost of REET with Recharge Shaft @ Rs 8 lakh per unit (13)	Nos. of injection Well @ 30 Ham per unit (14)	Cost of injection Well @ Rs 25 lakh (15)	Total Cost (16)
Tehatta - i	2570.3046	REET with Recharge Shaft in Ham (3) 70 % of Col. 2 i.e. 1799.21	50 % of Col. 3 (4) 899.61	899.61	20 % of Col. 2 i.e. 514.06 Ham	10 % of Col. 2 i.e. 257.04	(8) 26	(9) 208	(10)	144	90	270	17	425	(in Lakh) 1047
		Ham				Ham									

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

4. TEHATTA II BLOCK

1.0 Salient Information

Block Name: Tehatta- II Area (in sq km): 174.44 District: Nadia

State: West Bengal

Population (as on 2011): 151231

Table 1.1 - Details of Population

Male	Female	Total
77299	73932	151231

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Table 1.2 - Details of Annual Rainfall since last five years (mm)

Block	District Normal	Actual (Annual)							
		2012	2013	2014	2015	2016			
Tehatta-II	1444	862.0	1287.8	1096.8	1408.1	1416.5			

Agriculture & Irrigation

Total area in ha: 17444

Table 1.3 - Details of Land use pattern of block

SI.	Name	Geographic	Cultivable	Area under	Cultivable	Forest	Home Stead
No	of the	Area (ha)	Area (ha)	pasture &	Waste	Land (ha)	Land (ha)
	Block			orchard (ha)	Land(ha)		
1.	Tehatta-II	17444	15250	167	(Negligible)	(Negligible)	3622

Aquifer Wise Ground Water Resource Availability & Extraction:

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	98.68	-	-	109.76
Static Resource	2383.99	-	-	-

Table 1.4 - Details of aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Tehatta-II Block, three aquifer systems exist.

- The average depth range of 1staquifer is from 6m to 70m but ground water in it is Arsenic bearing.
- The average depth range of 2ndaquifer is from 62m to 143m which is fresh and Arsenic free.
- The average depth range of 3rdaquifer is from 216m to 232 m, which is also fresh and Arsenic free.

Table 2.1 - Details of aquifer disposition depth range in the block

Tehatta-II	1st Aquifer	2nd aquifer	3rd aquifer
	6-70 m	62-143 m	216-232 m

Fig 2.1 - Aquifer disposition in Tehatta II Block

Fig 2.2 - N- S Cross section of Tehatta-I & II (combined) Blocks

Table 2.3 - Aquifer Wise Water Level Ranges & Seasonal long term water level trends (2006 to2017)

SI.	Aquifer		Pre-monsoon Trend			Post-monsoon Trend			
NO.		Depth to Rise Fal water (cm/year) (cm/y level		Fall (cm/year)	Depth to water level	Rise (cm/year)	Fall (cm/year)		
1.	I	4.03 – 4.55	- 2.35		3.21 – 3.75	-3.06			
2.	II	4.11 -	-	-	3.84 – 5.69	-	-		

Table 2.4 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)	Thickness of the Granular Zone in 3rd aquifer (m)	
Tehatta-II	174.44	64	81	16	

Table 2.5 - Aquifer-wise depth range and parameters

Name of Block		1 st Aquife	r		2 nd Aquifer				3 rd Aquifer		
	Depth Range (mbgl)	Discharg e (m³/hr)	T (m²/da y)	S	Depth Range (mbgl)	Discharge (m³/hr)	T (m²/ day)	S	Depth Range (mbgl)	Disc harg e (m ³ / hr)	T (m²/d ay)
Tehatta-II	6 - 70	36	-	-	62 - 143	43	3000	-	216 - 232	-	-

3.0 Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March 2013

Table 3.1 - Availability of Ground Water resource in Block

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years(MCM)
Tehatta-II	98.68	109.76	111.22	Semi-critical	3.09

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered.

Block	Aquifer Type	As (mg/l)	рН	EC (μs/Cm)	Na (mg/l)	Cl (mg/l)	F (mg/l)	NO₃ (mg/l)	Total Hardness as CaCO₃(mg/I)
Tehatta-II	1	0.0002- 0.076	8.37- 8.46	328.6- 701.4	15.9- 48.1	12.5- 25.0	BDL- 0.39	BDL- 0.7	130- 160

Table 3.2 - Range of chemical parameter in the block

Table 3.3 - Arsenic Concentration	(mg/l) in ground water
-----------------------------------	------------------------

Name of arsenic	No. of		Arsenic Concentration (in mg/l)										
affected block	Tube well	<& =	0.01	>0.01 &	>0.01 &<=0.05		05	Max.					
	analysed	%	No.	%	No.	%	No.	concentration					
Tehatta-II	755	60.53	457	33.11	250	6.36	48	0.34					

(Source - PHED, Govt. of West Bengal)

Fig. 3.1 – Spot values in ground water of shallow aquifer

4. Ground Water Resource Enhancement & Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purposes.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED a population of 25415 in 9 villages is under risk zone where no water supply scheme exists.
- On the basis of data available, 7 tube wells are required for catering nine uncovered villages. Details of calculation are given below.
- The arsenic free aquifers in the depth span of 62m to 143m (at places) & 216m to 232m (comparatively less potential) may be exploited for the purpose.
- Arsenic free aquifer should be tapped with proper cement sealing. Arsenic removal plant may be installed before supply.
- Regular Field monitoring is necessary for Arsenic concentration in tube wells.

Management Plan for Irrigation:

- On the basis of the Ground Water Resource Assessment, the block is under Semicritical condition and the Stage of Ground Water Development (SOD) is 111.22 %. Hence, irrigation by exploiting the unconfined aquifer is not advisable.
- As indicated in the above mentioned Table, ground water is not available for future irrigation in this block. Surface water bodies like streams, canals, ponds may be used for irrigation purposes for the available land.
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.
- .Regular monitoring of Arsenic concentration in crop is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in future.

Table 4.1 – Nos. & cost of Tube wells in uncovere	d (projected population) of Human and Cattle
---	--

Block	Projected population upto 2021 (consideri ng growth 21.09% per decade as per Census 2011	Water required for drinking & domestic purposes @ 7 0 lpcd (in lpd)	Cattle Population (Considering 0.19 per capita human population) as on 2011	Cattle Population (Considering 0.36 annual growth rate) as on 2021	Water required for drinking & domestic purposes @ 20 lpcd (in lpd)	Total Water Required (in lpd)	Number of T. Ws	Cost of the tube well of 300 m depth (approx) & 10"x6" dia @ Rs. 25 lakhs (In lakh) as per EFC
Tehatta II	30778	2154460	5848	7953	159060	2313520	7	175

Table 4.2 - Availability of Land for Future Irrigation

Sr. No.	Distri ct	Block	Geogra phical area in ha	Cultiva ble area in ha	Net irrigated Comman d area (GW) in ha	Net irrigate d Comma nd area (SW) in ha	Net irrigated Comman d area (GW +SW) in ha	Net area availabl e for Irrigatio n in ha	Demand i.e. Water required for Irrigatio n in ham	GW availab le for future Irrigati on in ham	Remar ks
1	Nadia	Tehatta II	17444	15250	9955.83	1042.6	10998.43	4251.57	-	-	-

Table 4.3 - Ground Water Management Plan for Irrigation in consultation with experts of BidhanChandra Krishi Vidyalaya (BCKV)

Block	Ground water availabili ty(Ham,)	Qua lity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(consideri ng ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Tehatta-II	-	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2-1.4), Vegetable (0.15-0.2), pulse (0.1- 0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat (0.2-0.25), mustard (0.2), pulse (0.08-0.12), flowers (0.12-0.16)	Conjunctive use of fresh and contaminat ed water: 1:1 ratio/drip for vegetables, flowers

 Table 4.4 – Important points for future irrigation

Name of Block	Geogra phical area in ha	Cultivabl e area in ha	Net irriga ted area in ha	Area to be irrigate d in ha	SOD in %	Pre monsoon WL Trend 2016 in cm/yr	Post monsoon WL Trend 2016 in cm/yr	Average Pre monsoon WL in mbgl	Average Post monsoon WL in mbgl	Remarks for GW Management Plan
Tehatta-II	17444	15250	1099 8.43	4251.57	111.2 2	-2.35	-3.06	5.29	4.72	Block is under semi critical condition so Regular Monitoring of GW Regime should be made from time to time, Boro cultivation should be restricted

Management Plan for Industrial Purpose:

The block is under Semi-critical condition and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.
- The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Special interventions for monitoring of Ground water situations in Semi-Critical Block

As per the GEC Norms for Semi-critical block, the following precautions should be taken before GW extraction.

- It is necessary to increase the density of observation wells in that unit for regular water level monitoring and thereby-
- The rainfall recharge during monsoon season by the water table fluctuation method can be estimated with greater accuracy.
- The trend of water table during pre- monsoon and post-monsoon intervals can be evaluated with greater accuracy.

 The trend of water table during pre- monsoon and post- monsoon intervals consequent to further groundwater development can be more effectively monitored.

Artificial Recharge:

Table 4.5 - Area suitable for recharge in the study area:

District	Block Name	Block Area (in ha)	Area suitable for recharge(Considering
			area having DTW more than 3m in post- monsoon and showing 2cm/y falling trend)(in ha)
Nadia	Tehatta-II	17444	Part (site specific) (considering the average criteria- as Rising WL Trend)

Table 4.6 – Estimation of Surface runoff by Dhruvanarayana, 1993 method (Based on land slope, type of land and soil)

Block	Normal	Area(Ha	Annual total	Run off co-	Major type of soil	Total	75% of 'Vt' =	50% of V	60% of
	monsoon) 'A'	volume of rain	efficient	available in that block	volume of	V Ham	(Non	Vnc(considering
	rainfall in		fall in	from		surface		committed)=	e-flow)= Vf Ham
	m(50 yrs		Ham=(Rn X A)	Dhruvanar		runoff		Vnc Ham	
	data from			ayana,199		available			
	data.gov.in			3(Land		Annually			
) 'Rn'			slope, type		'Vt'			
				of land and		(RnXAXC)			
				soil type)		Ham			
				'C' land					
				slope 0-5%					
Tehatta -ii	1.053	17444	18368.532	0.45	50 % imperfectly	8265.8394	6199.3796	3099.6898	1859.813865
					drained fine & 50%				
					moderately drained				
					sandy soil				

Table 4.7 – Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of water for artificial recharge	Source water allocation for	Source water allocation for REET with	Source water allocation for Irrigation Cum Recharge Tank (Ham): 50 % of	Source water allocation for Injection Well (6)	Source water allocation for Farm Pond in	Nos. of Farm Pond @ 10	Cost of Farm pond	Nos. of Irrigation Cum Recharge	Cost of Irrigation Cum Recharge	Nos. of REET with recharge	Cost of REET with Recharge	Nos. of injection Well @ 30 Ham	Cost of injection Well @ Rs 25	Total Cost (16)
	conservation (Ham) (2)	Cum Recharge Tank and REET with	Recharge Shaft (Ham): 50 % of Col. 3 (4)	Col. 3 (5)		Ham (7)	Ham per unit (8)	8 lakh per unit (9)	suggested @ 50 Ham per unit (10)	Rs 8 lakh per unit (11)	10 Ham per unit (12)	Rs 8 lakh per unit (13)	(14)	iakii (13)	(:-
		Shaft in Ham (3)													(iii Lakh)
Tehatta - ii	1859.8139	70 % of Col. 2 i.e. 1301.87 Ham	650.94	650.94	20 % of Col. 2 i.e. 371.96 Ham	10 % of Col. 2 i.e. 185.98 Ham	19	152	13	104	65	520	12	300	1076

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

5. KALIGANJ BLOCK

1.0 Salient Information

Block Name: Kaliganj

Area (in sq km): 319.75

District: Nadia

State: West Bengal

Population (as on 2011): 306197

Table 1.1 - Details of Population

Male	Female	Total
157234	148963	306197

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Table 1.2 - Details of Annual Rainfall since last five years (mm)

Block	District Normal			Actual (Annual)					
		2012	2013	2014	2015	2016			
Kaliganj	1444	862.0	1287.8	1096.8	1408.1	1416.5			

Agriculture & Irrigation

Total area in ha: 31975

Table 1.3 - Details of Land use pattern of block

SI.	Name	Geographic	Cultivable	Area under	Cultivable	Forest	Home Stead
No	of the	Area (ha)	Area (ha)	pasture &	Waste	Land (ha)	Land (ha)
	Block			orchard (ha)	Land(ha)		
1.	Kaliganj	31975	19169	357	(Negligible)	(Negligible)	6720

Aquifer Wise Ground Water Resource Availability & Extraction:

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	157.11	-	-	145.74
Static Resource	4687.53	-	-	-

Table 1.4 - Aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Kaliganj Block, three aquifer systems exist.

- The average depth range of 1staquifer is from 19m to 50m, but sporadic occurrence of arsenic has been encountered in ground water of this aquifer.
- The average depth range of 2ndaquifer is from 56m to 110m which is fresh and Arsenic free (at places).
- The average depth range of 3rdaquifer is 254 m to 270 m, which is also fresh and Arsenic free.

Table 2.1 - Details of aquifer disposition depth range in the block

Kaliganj	1st Aquifer	2nd aquifer	3rd aquifer
	19-50 m	56-110 m	254-270 m

KALIGANJ

Fig 2.1 - Aquifer disposition in Kaliganj Block

Fig 2.1 - N- S Cross section of Kaliganj, Nakashipara & Chapra (combined) Blocks

Table 2.2 - Aquifer Wise Water Level Ranges & Seasonal long term water level trends (2006 to2017)

SI.	Block	Aquifer	Pre-monsoon			Post-monsoon			
NO.			Depth to	Trend [Depth to water	Trend		
				Rise (cm/year)	Fall (cm/year)	level	Rise (cm/year)	Fall (cm/year)	
1.	Kaliganj	I	3.76 - 6.76	-	3.64	3.62 - 6.28	-	10.39	
2.	Kaliganj	II	4.79 – 9.10	-	-	4.14 - 8.21	-	-	

Table 2.3 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)	Thickness of the Granular Zone in 3rd aquifer (m)	
Kaliganj	319.75	31	54	16	

Table 2.4 - Aquifer-wise depth range and parameters

Name of Block	1 st Aquifer				2 nd Aquifer				3 rd Aquifer		
	Depth Range (m bgl)	Discharg e (m³/hr)	T (m²/da y)	S	Depth Range (m bgl)	Discharge (m³/hr)	T (m²/ day)	S	Depth Range (m bgl)	Disc harg e (m ³ / hr)	T (m²/d ay)
Kaliganj	19 - 50	11	-	-	56 - 110	11 - 36	-	-	254 - 270	36	-

3. Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March'13

Table 3.1 - Availability	v of Ground Water resource in Blo	ck
	y of Ground Water resource in Dio	CIN

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years(MCM)
Kaliganj	157.11	145.74	92.76	Semi-critical	6.70

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered.

	Table 3.2 - Range of chemical	parameter in the block	(based on CGWB Mon	itoring Wells data)
--	-------------------------------	------------------------	--------------------	---------------------

Block	Aquifer	As	рН	EC	Na	Cl	F	NO ₃	Total Hardness as
	Туре	(mg/l)		(µs/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	CaCO₃(mg/I)
Kaliganj	I	0.002-	8.35-	347.2-	17.0-	20.0-	0.04-	BDL-	125- 195
		0.082	8.46	550.4	89.0	37.5	0.70	0.9	

Table 3.3 - Arsenic Concentration in ground water of Tube wells

Name of arsenic	No. of			Arseni	c Concent	ration (in m	ng/l)		
affected block	Tube well	<& =	<& =0.01 >0.		>0.01 &<=0.05		05	Max.	
	analysed	%	No.	%	No.	%	No.	concentration	
Kaliganj	2111	27.00	570	38.09	804	34.86	736	1.00	

(Source – PHED, Govt. of India)

Fig. 3.1 – Spot values of arsenic (mg/l) in ground water

4.0 Ground Water Resource Enhancement& Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED, no population is remaining under Arsenic risk zone, as the area is fully covered by the State Water Supply System.
- It is suggested, regular field monitoring is necessary for Arsenic concentration in tube wells.

Management Plan for Irrigation:

Sr.	Distri	Block	Geogra	Cultiva	Net	Net	Net	Net area	Demand	GW	Remar
No.	ct		phical area in ha	ble area in ha	irrigated Comman d area (GW) in ha	irrigate d Comma nd area (SW) in ha	irrigated Comman d area (GW +SW) in ha	availabl e for Irrigatio n in ha	i.e. Water required for Irrigatio n in ham	availab le for future Irrigati on in ham	ks
5.	Nadia	Kaligan j	31975	19169	12373.95	921.08	13295.03	5873.97		979.91	

Table 4.1 - Availability of Land for Future Irrigation

- On the basis of the Ground Water Resource Assessment, the block is under Semicritical condition and the Stage of Ground Water Development (SOD) is 92.76 %. Hence, irrigation by exploiting the unconfined aquifer is not advisable.
- As indicated in the above mentioned Table, about 980 ham of ground water is available for future irrigation for about 5874 ha of land available in this block. The available ground water may be used proportionately for Rabi and Boro paddy and other crops.
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.
- Regular monitoring of Arsenic concentration in crop is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in future.

Table 4.2 - Ground Water Management Plan for Irrigation in consultation with experts of BidhanChandra Krishi Vidyalaya (BCKV)

Block	Ground water availabili ty(Ham,)	Qua lity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(consideri ng ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Kaliganj	979.91	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2-1.4), Vegetable (0.15-0.2), pulse (0.1- 0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat 0.2-0.25), mustard (0.2), pulse (0.08-0.12), flowers (0.12-0.16)	Conjunctive use of fresh and contaminat ed water: 1:1 ratio/drip for vegetables, flowers

Table 4.3 - Availability of Land for Future Irrigation

Name of Block	Geogra phical area in ha	Cultivabl e area in ha	Net irriga ted area in ha	Area to be irrigate d in ha	SOD in %	Pre monsoon WL Trend 2016 in cm/yr	Post monsoon WL Trend 2016 in cm/yr	Average Pre monsoon WL in m bgl	Average Post monsoon WL in m bgl	Remarks for GW Management Plan
Kaliganj	3197 5	19169	1329 5.03	5873.97	92.76	3.64	10.39	6.70	6.12	Block is under semi critical condition so Regular Monitoring of GW Regime should be made from time to time, Boro cultivation should be restricted

Management Plan for Industrial Purpose:

The block is under Semi-critical condition and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, the artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.

 The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Special interventions for monitoring of Ground water situations in Semi-Critical Block

As per the GEC Norms for Semi-critical block, the following precautions should be taken before GW extraction.

- It is necessary to increase the density of observation wells in that unit for regular water level monitoring and thereby-
- The rainfall recharge during monsoon season by the water table fluctuation method can be estimated with greater accuracy.
- The trend of water table during pre- monsoon and post-monsoon intervals can be evaluated with greater accuracy.
- The trend of water table during pre- monsoon and post- monsoon intervals consequent to further groundwater development can be more effectively monitored.

Artificial Recharge :

Table 4.4 - Area suitable for recharge in the study area:

District	Block Name	Block Area (in ha)	Area suitable for recharge(Considering
			area having DTW more than 3m in post-
			monsoon and showing 20 cm/y falling
			trend) (in ha)
Nadia	Kaliganj	31975	31975 (considering the average criteria)

Table 4.5 – Estimation of Surface runoff by Dhruvanarayana, 1993 method (Based on land slope, type of land and soil)

Block	Normal monsoon rainfall in m(50 yrs data from data.gov.i n) 'Rn'	Area(H a) 'A'	Annual total volume of rain fall in Ham=(Rn X A)	Run off co- efficient from Dhruvana rayana,19 93(Land slope, type of land and soil type) 'C' land slope 0-	Major type of soil available in that block	Total volume of surface runoff available Annually 'Vt' (RnXAXC) Ham	75% of 'Vt' = V Ham	50% of V (Non committed) = Vnc Ham	60% of Vnc(considerin g e-flow)= Vf Ham
Kaliganj	1.053	31975	33669.675	0.35	20 %Deep, poorly & imperfectly drained loamy soil, 80% moderately drained sandy soil	11784.38 625	8838.2897	4419.1448	2651.486906

Table 4.6 – Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of water for artificial recharge and / or conservation (Ham) (2)	Source water allocation for Irrigation Cum Recharge Tank and REET with Recharge Shaft in Ham (3)	Source water allocation for REET with Recharge Shaft (Ham): 50 % of Col. 3 (4)	Source water allocation for Irrigation Cum Recharge Tank (Ham): 50 % of Col. 3 (5)	Source water allocation for Injection Well (6)	Source water allocation for Farm Pond in Ham (7)	Nos. of Farm Pond @ 10 Ham per unit (8)	Cost of Farm pond @ Rs 8 lakh per unit (9)	Nos. of Irrigation Cum Recharge Tank suggested @ 50 Ham per unit (10)	Cost of Irrigation Cum Recharge Tank @ Rs 8 lakh per unit (11)	Nos. of REET with recharge shaft @ 10 Ham per unit (12)	Cost of REET with Recharge Shaft @ Rs 8 lakh per unit (13)	Nos. of injection Well @ 30 Ham per unit (14)	Cost of injection Well @ Rs 25 lakh (15)	Total Cost (16) (in Lakh)
Kaliganj	2651.4869	70 % of Col. 2 i.e. 1856.04 Ham	928.02	928.02	20 % of Col. 2 i.e. 530.30 Ham	10 % of Col.2 i.e. 265.15 Ham	27	216	19	152	93	474	18	450	1292

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

6. NAKASHIPARA BLOCK

1.0 Salient Information

Block Name: Nakashipara

Area (in sq km): 354.24

District: Nadia

State: West Bengal

Population (as on 2011): 352191

Table 1.1 - Details of Population

Male	Female	Total
180990	171201	352191

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Table 1.2 - Details of Annual Rainfall since last five years (mm)

Block	District Normal			Actual (Annual)	
		2012	2013	2014	2015	2016
Nakashipara	1444	862.0	1287.8	1096.8	1408.1	1416.5

Agriculture & Irrigation

Total area in ha: 35424

Table 1.3 - Land use pattern of block

SI. No	Name of the Block	Geographic Area (ha)	Cultivable Area (ha)	Area under pasture &	Cultivable Waste	Forest Land	Home Stead Land (ha)
				orchard (ha)	Land(ha)	(ha)	
1.	Nakashipara	35424	23082	312	Nil	309	7525

Aquifer Wise Ground Water Resource Availability & Extraction:

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	185.57	-	-	157.20
Static Resource	2245.39	-	-	-

 Table 1.4 - Aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Nakashipara Block, two aquifer systems exist.

- The range of 1staquifer is on an average from 6m to 62m but this is containing Arsenic.
- The range of 2ndaquifer is on an average from 69m to 156m which is fresh and Arsenic free (at places).

Table 2.1 - Aquifer disposition depth range in the block

Nakashipara	1st Aquifer	2nd aquifer	3rd aquifer
	6-62 m	69-156 m	-

Fig 2.1 - Aquifer disposition in Nakashipara block

Cross-Section in Kaliganj-Nakashipara-Chapra

Fig 2.2 - N- S Cross section of Kaliganj, Nakashipara & Chapra (combined) Blocks

Table 2.2 - Aquifer Wise Water Level Ranges & Seasonal long term water level trends (2006 to2017)

SI. No.	Block	Aquifer		Pre-monsoo	n	Post-monsoon			
			Depth to water level	Trend		Depth to water level	Tre	Trend	
		Rise Fall		Fall (cm/year)		Rise (cm/year)	Fall (cm/year)		
1.	Nakashipara	I	4.41 - 5.61	-	1.07	2.04 - 4.26	- -	8.81	
2.	Nakashipara	II	4.15 - 6.41	-	-	3.22 – 5.11	-	-	

Table 2.3 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)
Nakashipara	354.24	56	87

Table 2.4 - Aquifer-wise depth range and parameters

Name of Block		1 st Aquife	r	2 nd Aquifer				
	Depth Range (mbgl)	Discharg e (m³/hr)	T (m²/da y)	S	Depth Range (mbgl)	Discharge (m ³ /hr)	T (m²/d ay)	S
Nakashipara	6 - 62	173	350	-	69 - 156	191	1400	-

3.0 Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March'13

Table 3.1 - Ground Water resource in Bloc

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years(MCM)
Nakashipara	185.57	157.20	84.71	Safe	7.71

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered

Block	Aquifer	As	рН	EC	Na	CI	F	NO ₃	Total Hardness as
	Туре	(mg/l)		(µs/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	CaCO₃(mg/l)
Nakashipara	I	0.0001-	8.31-	312.0-	14.7-	7.5-	0.28-	BDL-	120- 155
		0.119	8.49	437.7	41.2	15.0	1.11	5.4	

Table 3.3 - Arsenic Concentration in ground water of Tube wells

Name of arsenic	ame of arsenic No. of Arsenic Concentration (in mg/l)								
affected block	Tube well	<& =	<& =0.01 >0.01 &<=0.05		>0.05		Max.		
	analysed	%	No.	%	No.	%	No.	concentration	
Nakashipara	2459	45.51	1119	40.42	994	14.07	346	0.56	

(Source – PHED, Govt. of West Bengal)

Fig. 3.1 – Spot values in ground water

4.0 Ground Water Resource Enhancement & Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED, no population is remaining under Arsenic risk zone, as the area is fully covered by the State Water Supply System.
- It is suggested, regular field monitoring is necessary for Arsenic concentration in tube wells.

Management Plan for Irrigation:

Table 4.1 - Availability of Land for Future Irrigation

Sr. No.	Distric t	Block	Geogra phical area in ha	Cultivabl e area in ha	Net irrigated Command area (GW) in ha	Net irrigated Comman d area (SW) in ha	Net irrigated Command area (GW +SW) in ha	Net area available for Irrigation in ha	Demand i.e. Water required for Irrigation in ham	GW availabl e for future Irrigatio n in ham	Remark s
6.	Nadia	Nakaship ara	35424	23082	15441.4	731.53	16172.93	6909.07	-	2655.93	-

- On the basis of the Ground Water Resource Assessment, the block is under Safe category and the Stage of Ground Water Development (SOD) is 84.71 %.
- As indicated in the above mentioned Table, about 2656 ham of ground water is available for future irrigation for about 6910 ha of land available in this block. The available ground water may be used proportionately for Rabi and Boro paddy and other crops
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.
- .Regular monitoring of Arsenic concentration in crop is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in future.

Table 4.2 -Ground Water Management Plan for Irrigation in consultation with experts of BidhanChandra Krishi Vidyalaya (BCKV)

Block	Ground water availabili ty(Ham,)	Qual ity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(considerin g ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Nakashipara	2655.93	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2- 1.4), Vegetable (0.15-0.2), pulse(0.1-0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat (0.2-0.25), mustard (0.2), pulse (0.08-0.12), flowers(0.12-0.16)	Conjunctive use of fresh and contaminate d water: 1:1 ratio/drip for vegetables, flowers

Name of Block	Geogra	Cultivabl	Net	Area to	SOD	Pre	Post	Average	Average Post	Remarks for GW Management
	phical	e area in	irriga	be	in %	monsoon	monsoon	Pre	monsoon WL	Plan
	area in	ha	ted	irrigate		WL Trend	WL Trend	monsoon	in m bgl	
	ha		area	d in ha		2016 in	2016 in	WL in m		
			in ha			cm/yr	cm/yr	bgl		
Nakasshipara	3542	23082	1617	6909.07	84.71	1.07	8.81	5.64	4.47	Block is under Safe category, so
			2.93							regular monitoring of GW
	4									regime may be made from time
										to time. Boro cultivation may be
										encouraged to some extent.
										5

Management Plan for Industrial Purpose:

The block is under Safe category and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, the artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.
- The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Artificial Recharge:

Table- Space Available For Recharge and Proposed Intervention

Table 4.4 - Area suitable for recharge in the study area:

District	Block Name	Block Area (in ha)	Area suitable for recharge(Considering
			area having DTW more than 3m in post-
			monsoon and showing 20 cm/yr falling
			trend) (in ha)
Nadia	Nakashipara	35424	35424 (considering the average criteria)

r			1				1		
Block	Normal	Area(Ha	Annual total	Run off co-	Major type of soil	Total	75% of 'Vt' =	50% of V	60% of
	monsoon) 'A'	volume of rain	efficient	available in that block	volume of	V Ham	(Non	Vnc(considering
	rainfall in		fall in	from		surface		committed)=	e-flow)= Vf Ham
	m(50 yrs		Ham=(Rn X A)	Dhruvanar		runoff		Vnc Ham	
	data from			ayana,1993		available			
	data.gov.in			(Land		Annually			
) 'Rn'			slope, type		'Vt'			
				of land and		(RnXAXC)			
				soil type)		Ham			
				'C' land					
				slope 0-5%					
Nakashipara	1.053	35424	37301.472	0.35	20 % Deep, poorly	13055.5152	9791.6364	4895.8182	2937.49092
					drained loamy soil,				
					80% moderately				
					drained sandy soil				

Table 4.5 – Estimation of Surface runoff by Dhruvanarayana, 1993 method (Based on land slope, type of land and soil)

Table 4.6 – Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of water for artificial recharge and / or conservation (Ham) (2)	Source water allocation for Irrigation Cum Recharge	Source water allocation for REET with Recharge Shaft	Source water allocation for Irrigation Cum Recharge Tank (Ham): 50 % of Col. 3 (5)	Source water allocation for Injection Well (6)	Source water allocation for Farm Pond in Ham (7)	Nos. of Farm Pond @ 10 Ham per	Cost of Farm pond @ Rs 8 lakh per	Nos. of Irrigation Cum Recharge Tank suggested @ 50 Ham	Cost of Irrigation Cum Recharge Tank @ Rs 8 lakh per unit	Nos. of REET with recharge shaft @ 10 Ham per unit	Cost of REET with Recharge Shaft @ Rs 8 lakh per unit	Nos. of injection Well @ 30 Ham per unit (14)	Cost of injection Well @ Rs 25 lakh (15)	Total Cost (16)
	(1011)(2)	Tank and REET with Recharge Shaft in Ham (3)	(Ham): 50 % of Col. 3 (4)				unit (8)	unit (9)	per unit (10)	(11)	(12)	(13)			(in Lakh)
Nakashipara	2937.4909	70 % of Col. 2 i.e. 2056.24 Ham	1028.12	1028.12	20 % of Col. 2 i.e. 588.48 Ham	10 % of Col.2 i.e. 293.75 Ham	29	232	21	168	103	824	20	500	1724

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

7. CHAPRA BLOCK

1.0 Salient Information

Block Name: Chapra Area (in sq km): 310.48 District: Nadia State: West Bengal Population (as on 2011): 296529

Table 1.1 - Details of Population

Male	Female	Total
152575	143954	296529

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Table 1.2 - Annual Rainfall since last five years (mm)

Block	District Normal	Actual (Annual)							
		2012	2013	2014	2015	2016			
Chapra	1444	862.0	1287.8	1096.8	1408.1	1416.5			

Agriculture & Irrigation

Total area in ha: 31048

Table 1.3 - Details of Land use pattern of block

SI. No	Name of the Block	Geographic Area (ha)	Cultivable Area (ha)	Area under pasture & orchard (ha)	Cultivable Waste Land(ha)	Forest Land (ha)	Home Stead Land (ha)
1.	Chapra	31048	21372	287	(Negligible)	(Negligible)	6426

Aquifer Wise Ground Water Resource Availability & Extraction:

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	182.30	-	-	199.07
Static Resource	5256.42	-	-	-

 Table 1.4 - Aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Chapra Block, two aquifer systems exist.

- The average depth range of 1staquifer is from 3m to 119m but this contains Arsenic contaminated ground water.
- The average depth range of 2ndaquifer is on an average from 121m to 195m, which is fresh and Arsenic free.

Table 2.1 - Aquifer disposition depth range in the block

Chapra	1st Aquifer	2nd aquifer	3rd aquifer
	3-119 m	121-195 m	-

Fig 2.1 - Aquifer disposition in Chapra Block

Cross-Section in Kaliganj-Nakashipara-Chapra

Fig 2.2 - N- S Cross section of Kaliganj, Nakashipara & Chapra Blocks (combined)

Table 2.2 - Aquifer Wise Water Level Ranges & Seasonal long term water level trends (2006 to2017)

SI.	Aquifer		Pre-monsoon	I	Post-monsoon				
NO.		Depth to	Trei	nd	Depth to water	Trend			
			Rise (cm/year)	Fall (cm/year)	level	Rise (cm/year)	Fall (cm/year)		
1.	I	5.02 – 5.78	-	4.56	3.11 - 3.63	-	11.47		
2.	II	3.92 – 6.32	-	-	3.05 - 6.53	-	-		

Table 2.3 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)
Chapra	310.48	116	74

Name of Block	1 st Aquifer				2 ⁿ			
	Depth Range (mbgl)	Dischar ge (m³/hr)	T (m²/da y)	S	Depth Range (mbgl)	Discharge (m ³ /hr)	T (m²/ day)	S
Chapra	3 - 119	-	-	-	121 - 195	54	301 7	6.23 x10 ⁻⁴

3. Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March'13

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years (MCM)
Chapra	182.30	199.07	109.20	Semi-critical	6.27

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered.

Block	Aquifer	As	рН	EC	Na	Cl	F	NO ₃	Total Hardness as
	Туре	(mg/l)		(µs/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	CaCO₃(mg/l)
Chapra	I	0.0002-	8.32-	292.8-	17.7-	10.0-	BDL-	BDL-	130- 180
		0.034	8.50	507.6	37.4	50.0	1.08	2.8	

Table 3.2 - Range of chemical parameter in the block

Table 3.3 - Arsenic Concentration in ground water

Name of arsenic	No. of	Arsenic Concentration (in mg/l)								
affected block Tube well		<& =0.01		>0.01 &<=0.05		>0.05		Max.		
	analysed	%	No.	%	No.	%	No.	concentration		
Chapra	2230	34.80	776	52.83	1178	12.38	276	0.51		

(Source – PHED, Govt. of West Bengal)

Fig. 3.1 – Spot values of As (mg/l) in ground water

4. Ground Water Resource Enhancement & Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED a population of 44153 in 6 villages is under risk zone where no water supply scheme exists.
- On the basis of data available, 14 tube wells are required for catering six uncovered villages. Details of calculation are given below.
- The arsenic free aquifers in the depth span of 121m to 195m (comparatively less potential) may be exploited for the purpose.
- Arsenic free aquifer should be tapped with proper cement sealing. Arsenic removal plant may be installed before supply.
- Regular Field monitoring is necessary for Arsenic concentration in tube wells.

Block	Projected population upto 2021 (considering growth 21.09% per decade as per Census 2011	Water required for drinking & domestic purposes @ 70 lpcd (in lpd)	Cattle Population (Considering 0.19 per capita human population) as on 2011	Cattle Population (Considering 0.36 annual growth rate) as on 2021	Water required for drinking & domestic purposes @ 20 lpcd (in lpd)	Total Water Required (in lpd)	Number of T. Ws	Cost of the tube well of 300 m depth (approx) & 10"x6" dia @ Rs. 25 lakhs (In lakh) as per EFC
Chapra	53469	3742830	52546	71462	1429240	5172070	14	350

Management Plan for Irrigation:

Sr.	Distri	Block	Geogra	Cultiva	Net	Net	Net	Net area	Demand	GW	Remar
No.	ct		phical	ble area	irrigated	irrigate	irrigated	availabl	i.e.	availab	ks
			area in	in ha	Comman	d	Comman	e for	Water	le for	
			ha		d area	Comma	d area (Irrigatio	required	future	
					(GW) in	nd area	GW (SW) in	n in ha	for	Irrigati	
					lla	(SW) III ha	+3 w) III ha		Irrigatio	on in	
						iiu	na		n in	ham	
									ham		
7.	Nadia	Chapra	31048	21372	12149.15	1406.4	13555.55	7816.45	-	-	-
ĺ											

- On the basis of the Ground Water Resource Assessment, the block is under Semicritical condition and the Stage of Ground Water Development (SOD) is 109.20 %. Hence, irrigation by exploiting the unconfined aquifer is not advisable.
- As indicated in the above mentioned Table, ground water is not available for future irrigation in this block. Surface water bodies like streams, canals, ponds may be used for irrigation purposes for the available land.
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation.
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic

concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.

- Regular monitoring of Arsenic concentration in crop is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in future.

Table 4.3 -Ground Water Management Plan for Irrigation in consultation with experts of BidhanChandra Krishi Vidyal aya (BCKV)

Block	Ground water availabili ty(Ham,)	Qua lity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(consideri ng ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Chapra	-	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2-1.4), Vegetable (0.15-0.2), pulse(0.1- 0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat (0.2-0.25), mustard (0.2), pulse (0.08-0.12), flowers (0.12-0.16)	Conjunctive use of fresh and contaminat ed water: 1:1 ratio/drip for vegetables, flowers

Table 4.4 – Salient points for Future Irrigation

Name of Block	Geogra	Cultivabl	Net	Area to	SOD	Pre	Post	Average	Average Post	Remarks for GW Management
	phical	e area in	irriga	be	in %	monsoon	monsoon	Pre	monsoon WL	Plan
	area in	ha	ted	irrigate		WL Trend	WL Trend	monsoon	in m bgl	
	ha		area	d in ha		2016 in	2016 in	WL in m		
			in ha			cm/yr	cm/yr	bgl		
Chapra	3104	21372	1355	7816.45	109.2	4.56	11.47	5.35	4.33	Block is under semi critical
		_	5.55		0					condition so Regular Monitoring
	8									of GW Regime should be made
										from time to time Boro
										sultivation should be restricted
										cultivation should be restricted

Management Plan for Industrial Purpose:

The block is under Semi-critical condition and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

 All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)

- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, the artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.
- The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Special interventions for monitoring of Ground water situations in Semi-Critical Block

As per the GEC Norms for Semi-critical block, the following precautions should be taken before GW extraction.

- It is necessary to increase the density of observation wells in that unit for regular water level monitoring and thereby-
- The rainfall recharge during monsoon season by the water table fluctuation method can be estimated with greater accuracy.
- The trend of water table during pre- monsoon and post-monsoon intervals can be evaluated with greater accuracy.
- The trend of water table during pre- monsoon and post- monsoon intervals consequent to further groundwater development can be more effectively monitored.

Artificial Recharge :

Table 4.5 - Area suitable for recharge in the study area:

District	Block Name	Block Area (in ha)	Area suitable for recharge(Considering area having DTW more than 3m in post- monsoon and showing 20 cm/yr falling trend)(in ha)
Nadia	Chapra	31048	31048 (considering the average criteria)

Block	Normal monsoon rainfall in m(50 yrs data from data.gov.in) 'Rn'	Area(Ha) 'A'	Annual total volume of rain fall in Ham=(Rn X A)	Run off co- efficient from Dhruvanar ayana,1993 (Land slope, type of land and soil type) 'C' land slope 0-5%	Major type of soil available in that block	Total volume of surface runoff available Annually 'Vt' (RnXAXC) Ham	75% of 'Vt' = V Ham	50% of V (Non committed)= Vnc Ham	60% of Vnc(considering e-flow)= Vf Ham
Chapra	1.053	31048	32693.544	0.4	50 %Deep, poorly & imperfectly drained loamy soil, 50% moderately drained sandy soil	13077.4176	9808.0632	4904.0316	2942.41896

Table 4.6 – Estimation of Surface runoff by Dhruvanarayana, 1993 method (Based on land slope, type of land and soil)

Table 4.7 – Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of water for artificial recharge and / or conservation (Ham) (2)	Source water allocation for Irrigation Cum Recharge Tank and REET with Recharge Shaft in Ham (3)	Source water allocation for REET with Recharge Shaft (Ham): 50 % of Col. 3 (4)	Source water allocation for Irrigation Cum Recharge Tank (Ham): 50 % of Col. 3 (5)	Source water allocation for Injection Well (6)	Source water allocation for Farm Pond in Ham (7)	Nos. of Farm Pond @ 10 Ham per unit (8)	Cost of Farm pond @ Rs 8 lakh per unit (9)	Nos. of Irrigation Cum Recharge Tank suggested @ 50 Ham per unit (10)	Cost of Irrigation Cum Recharge Tank @ Rs 8 lakh per unit (11)	Nos. of REET with recharge shaft @ 10 Ham per unit (12)	Cost of REET with Recharge Shaft @ Rs 8 lakh per unit (13)	Nos. of injection Well @ 30 Ham per unit (14)	Cost of injection Well @ Rs 25 lakh (15)	Total Cost (16) (in Lakh)
Chapra	2942.419	70 % of Col. 2 i.e. 2056.24 Ham	1029.85	1029.85	20 % of Col. 2 i.e. 588.48 Ham	10 % of Col.2 i.e. 294.24 Ham	29	232	21	168	103	824	20	500	1724

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

8. KRISHNAGANJ BLOCK

1.0 Salient Information

Block Name: Krishnaganj Area (in sq km): 159.55 District: Nadia State: West Bengal Population (as on 2011): 146705

Table 1.1 - Details of Population

Male	Female	Total
75573	71132	146705

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Table 1.2 - Annual	Rainfall since	last five years	; (mm)
	Runnun Since	iust net years	, (,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Block	District Normal	Actual (Annual)							
		2012	2013	2014	2015	2016			
Krishnaganj	1444	862.0	1287.8	1096.8	1408.1	1416.5			

Agriculture & Irrigation

Total area in ha: 15955

Table 1.3 - Land use pattern of block

SI.	Name	Geographic	Cultivable	Area under	Cultivable	Forest	Home Stead
No	of the Block	Area (ha)	Area (ha)	pasture &	Waste	Land	Land (ha)
				orchard (ha)	Land(ha)	(ha)	
1.	Krishnaganj	15955	9880	146	(Negligible)	215	3183

Aquifer Wise Ground Water Resource Availability & Extraction

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	79.74	-	-	69.98
Static Resource	3806.31	-	-	-

Table 1.4 - Aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Krishnaganj Block, three aquifer systems exist.

- The average depth range of 1st & 2nd aquifers together is from 12m to 155m but this is containing Arsenic; in fact the clay separating 1st & 2ndaquifer is thin, as explored by CGWB
- Aquifer I in this block is almost combined one of both 1st & 2nd aquifers in other blocks.
- The average depth range of 3rdaquifer is 213 m to 225 m, which is fresh and Arsenic free.

Table 2.1 - Aquifer disposition depth range in the block

Krishnaganj	1st & 2 nd Aquifer	3rd aquifer		
	12-155 m	213-225 m		

Fig 2.1 - Aquifer disposition in Krishnaganj Block

Fig 2.2 – Cross section index line in Krishnaganj Block

Fig 2.3 - Cross section of Krishnaganj & Hanskhali Blocks (combined)

Table 2. 2 - Aquifer Wise Water Level Ranges & Seasonal long term water level trends (2006 to2017)

SI.	Block	Aquifer	Pre-monsoon			Post-monsoon			
NO.			Depth to water Trend			Depth to Trend			
				Rise (cm/year)	Fall (cm/year)	bgl)	Rise (cm/year)	Fall (cm/year)	
1.	Krishnaganj	1&11	6.55 – 7.12	-	2.92	5.43 – 6.08	-	10.92	
2.	Krishnaganj		4.83 – 7.84	-	-	4.16 – 7.32	-	-	

Table 2.3 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st & 2 nd aquifer (m)	Thickness of the Granular Zone in 3rd aquifer (m)
Krishnaganj	159.55	143	12

Table 2 4 - Agu	ifer-wise denth i	ange and narar	neters (On the H	hasis of CGWB e	voloration data)
Table 2.4 - Aqu	illei-wise deptilli	ange and para	neters (On the r	Jasis of CGWD e	xpioration uata)

Name of Block	1	st & 2 nd Aqu	uifer			3 rd Aquifer			
	Depth Range (mbgl)	Dischar ge (m³/hr)	T (m²/d ay)	S	Depth Disch T Range arge (m²/day) (mbgl) (m³/ hr)			S	
Krishnaganj	12 - 155 72 -				213 - 225	54 - 90	7030	1.55x10 ⁻³	

3.0 Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March'13

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years(MCM)
Krishnaganj	79.74	69.98	87.76	Safe	3.07

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered.

Table 3.2 - Range of chemical parameter in the block

Block	Aquifer	As	рН	EC	Na	Cl	F	NO ₃	Total Hardness as
	Туре	(mg/l)		(µs/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	CaCO₃(mg/l)
Krishnaganj	I	0.0003-	8.32-	295.9-	16.0-	10.0-	BDL-	BDL-	105- 160
		0.019	8.48	464.5	49.2	22.5	0.82	0.5	

Table 3.3 - Arsenic Concentration (mg/l) in ground water

Name of arsenic	No. of	Arsenic Concentration (in mg/l)							
affected block	Tube well	<& =0.01		>0.01 &	>0.01 &<=0.05		05	Max.	
	analysed	%	No.	%	No.	%	No.	concentration	
Krishnaganj	1737	39.21	681	37.94	659	22.86	397	0.77	

(Source – PHED, Govt. of West Bengal)

Fig. 3.1 – spot values of As (mg/l) in ground water

4. Ground Water Resource Enhancement & Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED a population of 14523 in 5 villages is under risk zone where no water supply scheme exists.
- On the basis of data available, 4 tube wells are required for catering five uncovered villages. Details of calculation are given below.
- The arsenic free aquifers in the depth span of 213m to 225m (comparatively less potential) may be exploited for the purpose.

- Arsenic free aquifer should be tapped with proper cement sealing. Arsenic removal plant may be installed before supply.
- Regular Field monitoring is necessary for Arsenic concentration in tube wells.

Table 4.1 – Nos. & cost of Tube wells in uncovered (projected population) of Human and Cattle

Block	Projected population upto 2021 (considering growth 21.09% per decade as per Census 2011	Water required for drinking & domestic purposes @ 70 lpcd (in lpd)	Cattle Population (Considering 0.19 per capita human population) as on 2011	Cattle Population (Considering 0.36 annual growth rate) as on 2021	Water required for drinking & domestic purposes @ 20 lpcd (in lpd)	Total Water Required (in lpd)	Number of T. Ws	Cost of the tube well of 300 m depth (approx) & 10"x6" dia @ Rs. 25 lakhs (In lakh) as per EFC
Krishnaganj	17587	1231090	2977	3086	61729	1292819	4	100

Management Plan for Irrigation:

Sr.	Distri	Block	Geogra	Cultiva	Net	Net	Net	Net area	Demand	GW	Remar
No.	ct		phical area in ha	ble area in ha	irrigated Comman d area (GW) in ha	irrigate d Comma nd area (SW) in ha	irrigated Comman d area (GW +SW) in ha	availabl e for Irrigatio n in ha	i.e. Water required for Irrigatio n in ham	availab le for future Irrigati on in ham	ks
8.	Nadia	Krishna ganj	15955	9880	4622.06	1028.63	5650.69	4229.31		904.38	

- On the basis of the Ground Water Resource Assessment, the block is under Safe category and the Stage of Ground Water Development (SOD) is 87.76 %.
- As indicated in the above mentioned Table, about 904 ham of ground water is available for future irrigation for about 4230 ha of land available in this block. The

available ground water may be used proportionately for Rabi and Boro paddy and other crops.

- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also so that, there is no Arsenic contamination in food chain system.
- Regular monitoring of Arsenic concentration in crop is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in future.

Table 4.3 - Ground Water Management Plan for Irrigation in consultation with experts of BidhanChandra Krishi Vidyalaya (BCKV)

Block	Ground water availabili ty(Ham,)	Qua lity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(consideri ng ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Krishnaganj	-	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2-1.4), Vegetable (0.15-0.2), pulse (0.1- 0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat (0.2-0.25), mustard (0.2), pulse (0.08-0.12), flowers (0.12-0.16)	Conjunctive use of fresh and contaminat ed water: 1:1 ratio/drip for vegetables, flowers

Management Plan for Industrial Purpose:

The block is under Safe category and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, the artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.

The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water

Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Table 4.4 – Salient points for Future Irrigation

Name of Block	Geogra	Cultivabl	Net	Area to	SOD	Pre	Post	Average	Average Post	Remarks for GW Management
	phical	e area in	irriga	be	in %	monsoon	monsoon	Pre	monsoon WL	Plan
	area in	ha	ted	irrigate		WL Trend	WL Trend	monsoon	in m bgl	
	ha		area	d in ha		2016 in	2016 in	WL in m		
			in ha			cm/yr	cm/yr	bgl		
Krishnaganj	15955	9880	5650	4229.31	87.76	2.92	10.90	6.32	5.25	Block is under Safe category, so
			.69							regular monitoring of GW
										regime may be made from time
										to time. Boro cultivation may be
										encouraged to some extent
										encouraged to some extent.
			1			1	1			

Artificial Recharge

Table 4.5 - Area suitable for recharge in the study area:

District	Block Name	Block Area (in ha)	Area suitable for recharge(Considering area having DTW more than 3m in post- monsoon and showing 20 cm/y falling trend)(in ha)
Nadia	Krishnaganj	15955	15955 (considering the average criteria)

Block	Normal	Area(Ha	Annual total	Run off co-	Major type of soil	Total	75% of 'Vt' =	50% of V	60% of
	monsoon) 'A'	volume of rain	efficient	available in that block	volume of	V Ham	(Non	Vnc(considering
	rainfall in		fall in	from		surface		committed)=	e-flow)= Vf
	m(50 yrs		Ham=(Rn X A)	Dhruvanar		runoff		Vnc Ham	Ham (4)
	data from			ayana,199		available			
	data.gov.i			3(Land		Annually			
	n) 'Rn'			slope, type		'Vt'			
				of land and		(RnXAXC)			
				soil type)		Ham			
				'C' land					
				slope 0-5%					
Krishnaganj	1.053	15955	16800.615	0.38	30 %Deep, poorly	6384.2337	4788.1753	2394.0876	1436.452583
					drained loamy soil,				
					70% moderately				
					drained sandy soil				
			1						

Table 4.6 – Estimation of Surface runoff by Dhruvanarayana, 1993 method (Based on land slope, type of land and soil)

Table 4.7 – Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of	Sourco	Sourco	Source water	Source water	Sourco	Noc	Cost	Nos of	Cost of	Nos of	Cost of	Nos of	Cost of	Total
DIOCK (1)	water for	water	water	allocation for	allocation for	water	of	of	Irrigation	Irrigation	RFFT	RFFT	injection	injection	Cost
	artificial	allocation	allocation	Irrigation Cum	Injection Well (6)	allocation	Farm	Farm	Cum	Cum	with	with	Well @	Well @	(16)
	recharge	for	for REET	Recharge Tank	2	for Farm	Pond	pond	Recharge	Recharge	recharge	Recharge	30 Ham	Rs 25	()
	and / or	Irrigation	with	(Ham): 50 % of		Pond in	@ 10	@ Rs	Tank	Tank @	shaft @	Shaft @	per unit	lakh (15)	
	conservation	Cum	Recharge	Col. 3 (5)		Ham (7)	Ham	8 lakh	suggested	Rs 8 lakh	10 Ham	Rs 8 lakh	(14)	. ,	
	(Ham) (2)	Recharge	Shaft				per	per	@ 50 Ham	per unit	per unit	per unit			
		Tank and	(Ham):				unit	unit	per unit	(11)	(12)	(13)			
		REET	50 % of				(8)	(9)	(10)						
		with	Col. 3 (4)												
		Recharge													(in
		Shaft in													Lakh)
		Ham (3)													
Krishnaganj	1436.4526	70 % of	502.76	502.76	20 % of Col. 2 i.e.	10 % of	14	112	10	80	50	400	10	250	842
		Col. 2 i.e.			287.29 Ham	Col.2 i.e.									
		1005.52				143.65									
		Ham				Ham									
		1	1	1											

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

9. HANSKHALI BLOCK

1.0 Salient Information

Block Name: Hanskhali Area (in sq km): 231.50 District: Nadia State: West Bengal Population (as on 2011): 245899

Table 1.1 - Details of Population

Male	Female	Total
127576	118323	245899

Rainfall: Average annual rainfall (Nadia district) for the period 2012-2016 (in mm): 1214.24

Block	District Normal		Actual (Annual)						
		2012	2013	2014	2015	2016			
Hanskhali	1444	862.0	1287.8	1096.8	1408.1	1416.5			

Agriculture & Irrigation

Total area in ha: 23150

Table 1.3 - Land use pattern of block

SI.	Name	Geographic	Cultivable	Area under	Cultivable	Forest	Home Stead
No	of the Block	Area (ha)	Area (ha)	pasture &	Waste	Land	Land (ha)
				orchard (ha)	Land(ha)	(ha)	
1.	Hanskhali	23150	17580	176	(Negligible)	181	5085

Aquifer Wise Ground Water Resource Availability & Extraction:

Resource Availability	Aquifer I	Aquifer II	Aquifer III	Extraction (for Aquifer I)
Dynamic Resource	141.29	-	-	139.66
Static Resource	2288.14	-	-	-

Table 1.4 - Aquifer wise resource availability and draft (in MCM) in Block

2.0 Disposition of Principal Aquifer System:

In Hanskhali Block, three aquifer groups exist.

- 1staquifer group occurs in general, ranging from 3m to 100 m which contains Arsenic contaminated ground water.
- The average depth range of 2ndaquifer group is from 126 to 156 m which is fresh and in general, Arsenic free except sporadic occurrence at places.
- The average depth range of 3rdaquifer is 205 m to 240 m, which is also fresh and Arsenic free.

Table 2.1 - Aquifer disposition depth range in the block

Hanskhali	1st Aquifer Group	2nd Aquifer Group	3rd aquifer		
	3-100 m	126-156 m	205-240 m		

Fig 2.1 - Aquifer disposition in Hanskhali Block

Fig. 2.2- Cross section index line

Table 2.4 - Aquifer Wise Water Level Ranges & Seasonal long term water level trends (2006 to2017)

SI.	Aquifer	Pre-monsoon 1	rend		Post-monsoon	Post-monsoon			
NO.	Depth to water level (m bgl)	Depth to water Rise level (m bg) (cm/year)			lTrend				
			Rise (cm/year)	Fall (cm/year)	(~8.)	Rise (cm/year)	Fall (cm/year)		
1.	I	5.85 – 6.93	-	1.79	4.90 - 6.03	-	10.82		
2.		3.44 - 8.32	-	-	2.93 – 5.45	-	-		

Table 2.5 - Aquifer wise (Maximum) thickness

Block	Area (sq km)	Thickness of the Granular Zone in 1st aquifer (m)	Thickness of the Granular Zone in 2nd aquifer (m)	Thickness of the Granular Zone in 3rd aquifer (m)
Hanskhali	231.50	97	30	35

Table 2.6 - Aquifer-wise depth range and parameters

Name of Block		1 st Aquife	r		2 nd Aquifer			
	Depth Range (m bgl)	Dischar ge (m³/hr)	T (m²/da y)	S	Depth Range (m bgl)	Discharg e (m ³ /hr)	T (m²/ day)	S
Hanskhali	3 - 100	72	3300	-	126-156	68	5207	-

3.0 Ground Water Resource, Extraction, Contamination & Other Issues:

Resource Availability & Extraction: Dynamic ground water resources as on 31st March'13

Table 3.1 - Availability of Ground Water resource in Block

Block	Net ground Water availability (MCM)	Gross ground Water draft (MCM)	Stage of Development (%)	Category	Provision for domestic and industrial requirement supply up to 2035 years (MCM)
Hanskhali	141.29	139.66	98.84	Semi-critical	6.01

Chemical Quality of Ground Water & Contamination:

Average data of chemical parameters in the block based on the analysis from 8 to 10 monitoring wells are given below. For Arsenic data, 3 to 4 monitoring wells are considered.

Block	Aquifer	As	рН	EC	Na	Cl	F	NO ₃	Total Hardness as	
	Туре	(mg/l)		(µs/Cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	CaCO₃(mg/I)	
Hanskhali	I	0.0001-	8.32-	283-	13.5-	10-32.5	BDL-	BDL-	125-180	
		0.05	8.49	415.7	29.2		0.97	7.2		

Table 3.3 - Arsenic Concentration in ground water

Name of arsenic	No. of Arsenic Concentration (in mg/l)								
affected block	Tube well	<& =	0.01	>0.01 &<=0.05		>0.05		Max.	
	analysed	%	No.	%	No.	%	No.	concentration	
Hanskhali	2262	34.92	790	39.48	893	25.46	576	0.53	

(Source – PHED, Govt. of West Bengal)

Fig. 3.1 – Spot values of arsenic (mg/l) in ground water

4.0 Ground Water Resource Enhancement & Management Plan:

Ground Water Management Plan for Drinking purposes-

- As per the ground water policy, first priority of water is for drinking purpose.
- The Block is declared by the State Arsenic Task Force, as Arsenic affected.
- As per the Status of Rural Water Supply Schemes published by WBPHED, a population of 55704 in 8 villages is under risk zone where no water supply scheme exists.
- On the basis of data available, 14 tube wells are required for catering eight uncovered villages. Details of calculation are given below.
- The arsenic free aquifers in the depth span of 126m to 156m & 205m to 240m (comparatively less potential) may be exploited for the purpose.

- Arsenic free aquifer should be tapped with proper cement sealing. Arsenic removal plant may be installed before supply.
- Regular Field monitoring is necessary for Arsenic concentration in tube wells.

Table 4.1 – Nos. & cost for construction of Tube wells in uncovered (projected) population of Human and Cattle

Block	Projected population upto 2021 (considering growth 21.09% per decade as per Census 2011	Water required for drinking & domestic purposes @ 70 lpcd (in lpd)	Cattle Population (Considering 0.19 per capita human population) as on 2011	Cattle Population (Considering 0.36 annual growth rate) as on 2021	Water required for drinking & domestic purposes @ 20 lpcd (in lpd)	Total Water Required (in lpd)	Number of T. Ws	Cost of the tube well of 300 m depth (approx) & 10"x6" dia @ Rs. 25 lakhs (In lakh) as per EFC
Hanskhali	67458	4722060	11421	11839	236783	4958843	14	350

Management Plan for Irrigation:

- On the basis of the Ground Water Resource Assessment, the block is under Semicritical condition and the Stage of Ground Water Development (SOD) is 98.84 %. Hence, irrigation by exploiting the unconfined aquifer is not advisable.
- As indicated in the above mentioned Table, the net area for irrigation is not at all available, even over-irrigated. Hence, over-irrigation may be stopped and no further irrigation is suggested in this block. However, a quantum of about 22.5 ham of ground water which is available for future irrigation in this block, may be utilised for irrigation in adjacent water demanding block like Krishnaganj.
- Irrigation by modern techniques like Sprinkler, Drip irrigation may be utilised.
 Crops consuming low amount of water should be cultivated.
- Conjunctive use of ground water and surface water may be applied for irrigation
- Artificial recharge is advisable in Arsenic affected zone for dilution of Arsenic concentration in unconfined aquifer for irrigation purpose also, so that there is no Arsenic contamination in food chain system.
- .Regular monitoring of Arsenic concentration in crops is also necessary.
- R & D study is necessary in arsenic affected area so we can get new solutions in future.
| Table 4.2 - Availabilit | ty of Land for | Future Irrigation |
|-------------------------|----------------|-------------------|
|-------------------------|----------------|-------------------|

Sr.	Distri	Block	Geogra	Cultiva	Net	Net	Net	Net area	Demand	GW	Remar
No.	ct		phical area in ha	ble area in ha	irrigated Comman d area (GW) in ha	irrigate d Comma nd area (SW) in ha	irrigated Comman d area (GW +SW) in ha	availabl e for Irrigatio n in ha	i.e. Water required for Irrigatio n in ham	availab le for future Irrigati on in ham	ks
9.	Nadia	Hanskh ali	23150	17580	27815.26	1371	29186.26	-11606.3	Nil	22.51	

Table 4.3 - Ground Water Management Plan for Irrigation in consultation with experts of BidhanChandra Krishi Vidyalaya (BCKV)

Block	Ground water availabili ty(Ham,)	Qua lity	Major crops/vegetables/ fruits/flowers currently in practice	Water column depth(m)	Crops suggested for better management(consideri ng ground water quality & quantity)	Water column depth(m) recommended	Remarks e.g. Irrigation techniques etc
Hanskhali	22.51	As	wheat, rice, mustard, cabbage, cauliflower, brinjal, okra, lentil	Wheat (0.3- 0.35), rice (1.2-1.4), Vegetable (0.15-0.2), pulse(0.1- 0.12)	wheat, mustard, lentil, flowers, vegetables	Wheat (0.2-0.25), mustard (0.2), pulse (0.08-0.12), flowers (0.12-0.16)	Conjunctive use of fresh and contaminat ed water: 1:1 ratio/drip for vegetables, flowers

Table 4.4 – Salient points for Future Irrigation

Name of Block	Geogra phical area in ha	Cultivabl e area in ha	Net irriga ted area	Area to be irrigate d in ha	SOD in %	Pre monsoon WL Trend 2016 in	Post monsoon WL Trend 2016 in	Average Pre monsoon WL in m	Average Post monsoon WL in m bgl	Remarks for GW Management Plan
			in ha			cm/yr	cm/yr	bgl		
Hanskhali	23150	17580	2918 6.26	 11606.3	98.84	1.79	10.82	5.58	4.18	Block is under semi critical condition so Regular Monitoring of GW Regime should be made from time to time. Boro cultivation should be restricted

Management Plan for Industrial Purpose:

The block is under Semi-critical condition and is mainly agriculture based rural area. There is a less chance for growing up of small scale industries. However, in near future, if any industry is coming up, the following steps should be considered.

- All industries proposing to draw ground water through energized means, need to obtain NOC for ground water withdrawal from the State Ground Water Authority (SGWA)
- All industries abstracting ground water > 500 m³/day in the semi-critical assessment unit, have to implement mandatorily, the artificial recharge measures, as per the norms.
- All the industries need to recharge 90 % of the quantum of ground water withdrawal.
- The Authority is to issue NOC for various uses and monitor its compliance. The NOC should be vested with the District Magistrate/ Deputy Commissioner/ State Ground Water Authority/ State Nodal Agency/ Central Ground Water Authority, as per details given in the guidelines of CGWA.

Special interventions for monitoring of Ground water situations in Semi-Critical Block

As per the GEC Norms for Semi-critical block, the following precautions should be taken before GW extraction.

- It is necessary to increase the density of observation wells in that unit for regular water level monitoring and thereby-
- The rainfall recharge during monsoon season by the water table fluctuation method can be estimated with greater accuracy.
- The trend of water table during pre- monsoon and post-monsoon intervals can be evaluated with greater accuracy.
- The trend of water table during pre- monsoon and post- monsoon intervals consequent to further groundwater development can be more effectively monitored.

Artificial Recharge:

District	Block Name	Block Area (in ha)	Area suitable for recharge (Considering area having DTW more than 3m in post- monsoon and showing 20 cm/y falling
			trend) (in ha)
Nadia	Hanskhali	23150	23150 (considering the average criteria)

Table 4.5 - Area suitable for recharge in the study area:

Table 4.6 – Estimation of Surface runoff by Dhruvanarayana, 1993 method (Based on land slope, type of land and soil)

Block	Normal	Area(Ha	Annual total	Run off co-	Major type of soil	Total	75% of 'Vt' =	50% of V	60% of
	monsoon) 'A'	volume of rain	efficient	available in that block	volume of	V Ham	(Non	Vnc(considering
	rainfall in		fall in	from		surface		committed)=	e-flow)= Vf Ham
	m(50 yrs		Ham=(Rn X A)	Dhruvanar		runoff		Vnc Ham	(4)
	data from			ayana,199		available			
	data.gov.in			3(Land		Annually			
) 'Rn'			slope, type		'Vt'			
				of land and		(RnXAXC)			
				soil type)		Ham			
				'C' land					
				slope 0-5%					
Hanskhali	1.053	23150	24376.95	0.4	50 %Deep, poorly	9750.78	7313.085	3656.5425	2193.9255
					drained loamy soil,				
					50% moderately				
					drained sandy soil				
Hanskhali	1.053	23150	24376.95	soil type) 'C' land slope 0-5% 0.4	50 %Deep, poorly drained loamy soil, 50% moderately drained sandy soil	9750.78	7313.085	3656.5425	2193.9255

Table 4.7 – Possible Recharge & conservation structures using harvested run off in block based on soil characteristic, Slope, Rain fall data and Long term trend & cost estimate

Block (1)	Amount of water for artificial recharge and / or	Source water allocation for Irrigation	Source water allocation for REET with Bochargo	Source water allocation for Irrigation Cum Recharge Tank (Ham): 50 % of	Source water allocation for Injection Well (6)	Source water allocation for Farm Pond in	Nos. of Farm Pond @ 10	Cost of Farm pond @ Rs	Nos. of Irrigation Cum Recharge Tank	Cost of Irrigation Cum Recharge Tank @ Ps & Jakh	Nos. of REET with recharge shaft @	Cost of REET with Recharge Shaft @ Ps & lakb	Nos. of injection Well @ 30 Ham per unit	Cost of injection Well @ Rs 25 lakh (15)	Total Cost (16)
	(Ham) (2)	Recharge Tank and REET with Recharge Shaft in Ham (3)	Shaft (Ham): 50 % of Col. 3 (4)	(0). 3 (5)			per unit (8)	o lakh per unit (9)	@ 50 Ham per unit (10)	per unit (11)	per unit (12)	per unit (13)	(14)		(in Lakh)
Hanskhali	2193.9255	70 % of Col. 2 i.e. 1535.75 Ham	767.88	767.88	20 % of Col. 2 i.e. 438.79 Ham	10 % of Col.2 i.e. 219.40 Ham	22	176	15	120	77	616	15	120	1032

REET with Recharge Shaft

Re-excavation of existing tank with Recharge Shaft

Part III

Data Gap Analysis in parts of Nadia District

(9 Blocks), West Bengal

(Karimpur - I, Karimpur - II, Tehatta - I, Tehatta - II, Kaliganj, Nakashipara, Chapra, Krishnaganj & Hanskhali Blocks)

DATA GAP ANALYSIS FOR AQUIFER MAPPING PROGRAMME IN PARTS OF NADIA DISTRICT (9 BLOCKS), WEST BENGAL

Toposheet No.: 78 D/12

Quadra nt No.	No. of additional EW required			No. of VES/T	additio EM req	nal uired	No. o wate moni requi	of addition r level toring s red	onal tations	No. of water statio	Remarks		
	Aq -I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-	Aq-II	Aq-III	Aq-l	Aq-II	Aq-III	
2C	0	0	0	1	1	1	0	0	0	0	0	0	
3A	0	0	0	3	3	1	0	0	0	0	0	0	
3B	0	0	0	0	0	0	0	0	0	0	0	0	
3C	0	0	1	3	3	1	1	1	1	1	1	1	
Total	0	0	1	7	7	3	1	1	1	1	1	1	

Note:

No. of additional EW required- 1 (Aq-III: 1)

No. of additional VES/TEM required- 17 (Aq-I: 7, Aq-II: 7, Aq-III: 3)

No. of additional water level monitoring stations required -3 (Aq-I: 1, Aq-II: 1, Aq-III: 1)

No. of additional water quality stations required-3 (Aq-I: 1, Aq-II: 1, Aq-III: 1)

Toposheet No. 7 system in Alluvia	′8 D/12 (pa al areas (d	arts) quadr	Explora ant wis	ntory Da se)	ata ado	equad	;y f	or <u>Thr</u>	<u>ee</u> Aq	uifer	Fig-2 group	
								Aq. Gp.	Dept Rnge	h Aq e par me	EC a te	;
								Ist	Nil	rs Nil	Nil	
								II nd	Nil	Nil	Nil	
								III rd	Nil	Nil	Nil	
Aq. Depth A Gp. Rnge p m	Aq. EC bara nete s		Aq. Gp.	Depth Rnge	Aq. para mete rs	EC		Aq. Gp.	Dept h Rnge	Aq. para met ers		
I st Nil N	Nil Nil		I st	Nil	Nil	Nil		Ist	Ni I	Nil	Nil	
II nd Nil N	Nil Nil		 nd	Nil	Nil	Nil		 nd	Nil	Nil	Nil	
III rd Nil N	Nil Nil		IIIrd	Nil	Nil	Nil		IIIrd	Nil	Nil	Nil	

Toposhe Alluvial	eet No. areas (q	78 D/12 uadrant	Explorative Explorative	ato	ory Data	Gap A	nalysis	for <u>Thr</u>	re	<u>e</u> Aquif	er grou	up	r syster	n in	
										Aq. Gp.	EW/OV	V/SI	H/PZ		
									ľ		Req		Exist	Gap	
									ľ	Ist	0		0	0	
										II nd	0		0	0	
										IIIrd	0		0	0	
	-			_						1					
Aq. Gp.	EW/OW/	SH/PZ			Aq. Gp.	EW/OW	/SH/PZ			Aq. Gp.	EW/OV	V/SI	H/PZ		
	Req	Exist	Gap			Req	Exist	Gap			Req		Exist	Gap	
Ist	0	0	0	1	lst	0	0	0		lst	0		0	0	
II nd	0	0	0	1	II nd	0	0	0		II nd	0		0	0	
IIIrd	0	0	0	1	IIIrd	0	0	0		IIIrd	1		0	1	
L				J [1			11	l	1				

Quadrant No.	No. of additional EW required			No. of additional VES/TEM required			No. o wate moni requi	f additio r level toring st red	nal ations	No. of water requir	Remarks		
	Aq-I	Aq-I Aq-II Aq-III			Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	
3C	0	0	0	2 2 1		1	0	0	0	0	0	0	
Total	0 0 0		2	2 2 1		0 0 0		0 0 0					

Note: No. of Additional EW required- 0

No. of additional VES/TEM required- 5 (Aq-I: 2, Aq-II: 2, Aq-III: 1) No. of additional water level monitoring stations required -0 (Aq-I: 0, Aq-II: 0, Aq-III: 0)

No. of additional water quality stations required-0 (Aq-I: 0, Aq-II: 0, Aq-II: 0)

_.

Toposheet No. 79 A/1 (parts) system in Alluvial areas (quad) Exploratory rant wise)	Data ad	dequacy	for	Three	Aqui	Fi fer gro	g-2 oup
				A G	q. D p. F	epth Inge	Aq. para meter s	EC
				s ¹	Ν	lil	Nil	Nil
				II	nd N	Jil	Nil	Nil
				II	rd N	Jil	Nil	Nil

Toposheet No. 79 A/1 (par system in Alluvial areas (qu	rts) Exploratory Data Gap Ar uadrant wise)	nalysis fo	or <u>Three</u>	Aquifer	Fig-2 group
		Ag Gp	EW/OW/S	H/P7	
		, iq. op.	Req	Exist	Gap
		lst	0	0	0
		II nd	0	0	0
		IIIrd	0	0	0

Quadrant No.	No. of requir	f addition ed	al EW	No. of VES/T	additio EM requ	nal ıired	No. o wate moni requi	of addition r level toring st ired	onal ations	No. of water statio	additio quality ns requi	nal red	Remarks
	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq- III	
1C	0	0	0	1	1	1	0	0	0	0	0	0	
2C	0	0	0	2	2	1	0	0	0	0	0	0	
3A	0	0	1	2	2	1	0	1	1	0	1	1	
3B	0	0	0	3	3	1	0	1	1	0	1	1	
3C	0	0	0	3	3	1	0	0	1	0	0	1	
Total	0	0	1	11	11	5	0	2	3	0	2	3	

Note: No. of Additional EW required- 1 (Aq-III: 1)

г

No. of additional VES/TEM required- 27 (Aq-I: 11, Aq-II: 11, Aq-III: 5) No. of additional water level monitoring stations required -5 (Aq-I: 0, Aq-II: 2, Aq-III: 3)

No. of additional water quality stations required-5 (Aq-I: 0, Aq-II: 2, Aq-III: 3)

Toposh system	eet No in Allu	o. 79 vial ar	A/5 (p eas (qu	oarts) Jadra	Exploratory nt wise)	Data	adequacy	for	<u>Three</u>	Aquifer	Fig-2 group
Aq. Gp.	Dept h Rnge	Aq. para met ers	EC								
lst	Nil	Nil	Nil								
 nd	Nil	Nil	Nil								
IIIrd	Nil	Nil	Nil								

Toposh system	eet No. in Alluv	79 A/5(vial area	parts) I as (qua	Exploratory Data Gap Analysi drant wise)	Fig-2 s for <u>Three</u> Aquifer group
Aq. Gp.	EW/OW/	SH/PZ			
	Req	Exist	Gap		
I st	0	0	0		
II nd	0	0	0		
IIIrd	1	0	1		

Quadrant No.	No. of EW re	additio quired	nal	No. of VES/T	additio EM requ	nal uired	No. o wate moni requi	of additic r level toring st ired	onal tations	No. of water requir	additio quality ed	nal stations	Remarks
	Aq-I Aq-II Aq-III			Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	
1C	Aq-I Aq-II Aq-III 0 0 0			2	2	1	0	1	1	0	1	1	
2C				2	2	1	0	1	1	0	1	1	
Total	0	0	0	4	4	2	0	2	2	0	2	2	

Note: No. of Additional EW required-0

No. of additional VES/TEM required- 10 (Aq-I: 4, Aq-II: 4, Aq-III: 2)

No. of additional water level monitoring stations required - 4 (Aq-I: 0, Aq-II: 2, Aq-III: 2)

No. of additional water quality stations required-4 (Aq-I: 0, Aq-II: 2, Aq-III: 2)

Toposheet No.: 79A/6

Quadrant No.	No. of requir	addition ed	al EW	No. of VES/T	additio EM req	nal uired	No. o wate moni requi	of addition r level toring s red	onal tations	No. of water requir	f additio quality ed	nal stations	Remarks
	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-ll	Aq-III	Aq-I	Aq-II	Aq-III	
1A	0	0	1	1	1	1	0	1	1	0	1	1	
1B	0	0	0	1	1	1	1	1	1	1	1	1	
1C	0	0	1	1	1	1	0	0	1	0	0	1	
2A	0	0	0	1	1	1	0	1	1	0	1	1	
2B	0	1	1	2	2	1	0	1	1	0	1	1	
2C	0	0	0	1	1	1	0	1	1	0	1	1	
ЗA	0	0	0	1	1	1	0	0	0	0	0	0	
3B	0	0	0	1	1	1	0	0	1	0	0	1	
3C	0	0	1	1	1	1	1	1	1	1	1	1	
Total	0	1	4	10	10	9	2	6	8	2	6	8	

No. of Additional EW required- 5 (AQ-II: 1, AQ-III: 4) 2 OW for 2B No. of additional VES/TEM required- 29 (Aq-I: 10, Aq-II: 10, Aq-III: 9) No. of additional water level monitoring stations required -16 (Aq-I: 2, Aq-II: 6, Aq-III: 8)

No. of additional water quality stations required-16 (Aq-I: 2, Aq-II: 6, Aq-III: 8)

Aq. Gp.	Depth Rnge	Aq. param eters	EC	Aq. Gp.	Depth Rnge	Aq. param eters	EC	Aq. Gp.	Depth Rnge	Aq. param eters	EC
st	Nil	Nil	Nil	l st	Nil	Nil	Nil	lst	Nil	Nil	Nil
Ind	Nil	Nil	Nil	IInd	Nil	Nil	Nil	llnd	183- 195	Nil	Nil
 rd	Nil	Nil	Nil	 rd	Nil	Nil	Nil	IIIrd	Nil	Nil	Nil
Aq. Gp.	Depth Rnge	Aq. param eters	EC	Aq. Gp.	Depth Rnge	Aq. param eters	EC	Aq. Gp.	Depth Rnge	Aq. param eters	EC
st	Nil	Nil	Nil	lst	Nil	Nil	Nil	lst	Nil	Nil	Nil
 nd	Nil	Nil	Nil	 nd	Nil	Nil	Nil	 nd	Nil	Nil	Nil
 rd	Nil	Nil	Nil	IIIrd	Nil	Nil	Nil	rd	Nil	Nil	Nil
Aq. Gp.	Depth Rnge	Aq. param eters	EC	Aq. Gp.	Depth Rnge	Aq. param eters	EC	Aq. Gp.	Depth Rnge	Aq. param eters	EC
st	Nil	Nil	Nil	l st	Nil	Nil	Nil	Ist	Nil	Nil	Nil
II nd	Nil	Nil	Nil	ll nd	Nil	Nil	Nil	 nd	Nil	Nil	Ni
III rd	Nil	Nil	Nil	III rd	Nil	Nil	Nil	III rd	Nil	Nil	Ni

Fig-2 Toposheet No. 79 A/6 Exploratory Data Gap Analysis for Three Aquifer group system in Alluvial areas (quadrant wise)

Fig-2

				_								
Aq. Gp.	EW/OV	V/SH/PZ		Aq. Gp	b. EW/OV	V/SH/PZ		Aq. Gp.	EW/OV	V/SH/PZ		
	Req	Exist	Gap		Req	Exist	Gap		Req	Exist	Gap	Ī
Ist	0	0	0	Ist	0	0	0	Ist	0	0	0	-
II nd	0	0	0	II nd	0	0	0	II nd	0	0	0	-
IIIrd	1	0	1	IIIrd	0	0	0	IIIrd	1	0	1	_
Aq. Gp.	EW/OV	V/SH/PZ		Aq. Gp	. EW/OV	V/SH/PZ		Aq. Gp.	EW/OV	V/SH/PZ		
	Req	Exist	Gap		Req	Exist	Gap		Req	Exist	Gap	_
lst	0	0	0	lst	0	0	0	lst	0	0	0	_
II nd	0	0	0	II nd	1	0	1	II nd	0	0	0	-
IIIrd	0	0	0	Illrd	1	0	1	IIIrd	0	0	0	1
Ag Gp		//2U/D7				//2U/D7						
Ач. Ор.		V/311/FZ				WJ1/FZ		Aq. Op.		V/311/FZ		
	Req	Exist	Gap		Req	Exist	Gap		Req	Exist	Gap	
lst	0	0	0	lst	0	0	0	Ist	0	0	0	
ll nd	0	0	0	II nd	0	0	0	II nd	0	0	0	
IIIrd	0	0	0	IIIrd	0	0	0	IIIrd	1	0	1	
				┛╽└───								

Quadrant No.	No. of requir	addition ed	al EW	No. of VES/T	additio EM req	nal uired	No. of level r requir	additiona nonitoring ed	al water g stations	No. of a water o require	addition quality s ed	al tations	Remark
	Aq-I	Aq-I Aq-II Aq-III 0 0 1			Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-ll	Aq-III	
1A	0	0	1	2	2	1	0	1	1	0	1	1	
1B	0	0	0	2	2	1	0	1	0	0	1	0	
1C	0	0	0	2	2	1	0	1	1	0	1	1	
2A	0	0	0	2	2	1	1	1	1	1	1	1	
2B	1	1	1	2	2	1	0	1	1	0	1	1	
3A	0	0	1	2 2 1 (0	1	1	0	1	1		
Total	1	1	3	2 2 1 12 12 6		1	6	5	1	6	5		

Note: No. of Additional EW required-5 (Aq-I: 1, AQ-II: 1, AQ-III: 3) 3 OW for 2B

No. of additional VES/TEM required- 30 (Aq-I: 12, Aq-II: 12, Aq-III: 6) No. of additional water level monitoring stations required -12 (Aq-I: 1, Aq-II:6, Aq-III: 5)

No. of additional water quality stations required-12 (Aq-I: 1, Aq-II:6, Aq-III: 5)

T A	oposhe Iluvial a	et No. areas (d	79 A/9 quadra	Exp	lorat se)	toi	ry Data	adequ	acy fo	r <u>Thr</u>	ee .	Aquifer	group	F syster	ig-2 n in
	Aq. Gp.	Depth Rnge	Aq. para meter s	EC			Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para meter s	EC
	st	Nil	Nil	Nil			st	Nil	Nil	Nil		st	Nil	Nil	Nil
	 nd	Nil	Nil	Nil			IInd	Nil	Nil	Nil		IInd	NiL	Nil	Nil
	 rd	Nil	Nil	Nil			III rd	Nil	Nil	Nil		IIIrd	Nil	Nil	Nil
	Aq. Gp.	Depth Rnge	Aq. para meter s	EC			Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para meter s	EC
	st	Nil	Nil	Nil			st	Nil	Nil	Nil		st	Nil	Nil	Nil
	 nd	Nil	Nil	Nil			IInd	Nil	Nil	Nil		II nd	Nil	Nil	Nil
	 rd	Nil	Nil	Nil			rd	Nil	Nil	Nil		III rd	Nil	Nil	Nil
	Aq. Gp.	Depth Rnge	Aq. para meter s	EC			Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para mete rs	EC
	st	Nil	Nil	Nil			st	Nil	Nil	Nil		st	Nil	Nil	Nil
	IInd	Nil	Nil	Nil			IInd	Nil	Nil	Nil		IInd	Nil	Nil	Nil
	III rd	Nil	Nil	Nil			III rd	Nil	Nil	Nil		IIIrd	Nil	Nil	Nil

Toposh system	eet No. in Alluv	79 A/	9 Expl as (qua	orator	y Da wise	ata Ga e)	p Anal	lysis	for	<u>Three</u>	Aquifer	Fig-2 group
Aq. Gp.	EW/OV	V/SH/PZ	7									
	Req	Exist	Gap									
Ist	0	0	0									
IInd	0	0	0									
IIIrd	1	0	1									
				Aq. Gp.		EW/OW	//SH/PZ	Ζ				
						Req	Exist	Gap				
				Ist		1	0	1				
				[[nd		1	0	1				
				Illrd	1	1	0	1				
Aq. Gp.	EW/OV	V/SH/PZ	7									
	Req	Exist	Gap									
st	0	0	0									
IInd	0	0	0									
IIIrd	1	0	1									

Quadrant No.	No. of requir	additiona ed	al EW	No. of VES/T	additio EM requ	nal iired	No. o wate moni requi	f additio r level toring st red	nal ations	No. of water requir	additio quality ed	nal stations	Remarks
	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	
1A	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	1	0	1	1	0	1	1	
2A	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	1	0	1	1	0	1	1	
2B	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	1	0	0	0	0	0	0	
3A	0	0	0	2	2	1	0	0	1	0	0	1	
3B	0	0	0	2	2	1	0	1	1	0	0	0	
3C	0 0 1			1	1	1	0	0	0	0	1	1	
Total	1	1	2	10	10	6	0	3	4	0	3	4	

Note:

No. of Additional EW required-4 (Aq-I: 1, AQ-II: 1, AQ-III: 2)

3 OW for 2B

г

No. of additional VES/TEM required- 26 (Aq-I: 10, Aq-II: 10, Aq-III: 6) No. of additional water level monitoring stations required -7 (Aq-I: 0, Aq-II: 3 Aq-III:4)

No. of additional water quality stations required-7(Aq-I: 0, Aq-II: 3 Aq-III:4)

Toposh areas (q	eet No. 7 uadrant	9 A/10 wise)	Explora	tory	Data	adequacy	for <u>T</u>	<u>hree</u> Aqu	lifer grou	p systen	n in All	Fig-2 luvial	
٨a	Donth	۸a	EC		Δa	Denth	nΑ	EC.	٨a	Donth	۸a	FC	L

Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para meter s	EC	Aq. Gp.	Depth Rnge	Aq. para meter s	EC	
st	Nil	Nil	Nil		lst	Nil	Nil	Nil	lst	Nil	Nil	Nil	
II nd	Nil	Nil	Nil		 nd	Nil	Nil	Nil	 nd	NiL	Nil	Nil	
 rd	Nil	Nil	Nil		III rd	Nil	Nil	Nil	 rd	Nil	Nil	Nil	
Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para meter s	EC	Aq. Gp.	Depth Rnge	Aq. para meter s	EC	
st	Nil	Nil	Nil		lst	Nil	Nil	Nil	lst	Nil	Nil	Nil	
IInd	Nil	Nil	Nil		IInd	Nil	Nil	Nil	IInd	Nil	Nil	Nil	
III rd	Nil	Nil	Nil		III rd	Nil	Nil	Nil	IIIrd	Nil	Nil	Nil	
Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para meter s	EC	Aq. Gp.	Depth Rnge	Aq. para meter s	EC	
st	Nil	Nil	Nil		st	Nil	Nil	Nil	lst	Nil	Nil	Nil	
II nd	Nil	Nil	Nil		II nd	Nil	Nil	Nil	II nd	Nil	Nil	Nil	
 rd	Nil	Nil	Nil		rd	Nil	Nil	Nil	rd	Nil	Nil	Nil	

Toposh Alluvial	eet No. areas (79 A/10 quadran	Explora t wise)	atory Data Gap Analysis for <u>Thr</u>	<u>ee</u> Aquif	er group	Fi system	g-2 ì in
Aq. Gp	EW/O	N/SH/PZ						
• P.	Req	Exist	Gap					
Ist	1	0	1					
 nd	1	0	1					
IIIrd	1	0	1					
					Aq. Gp.	EW/OW	//SH/PZ	
						Req	Exist	Gap
					st	0	0	0
					IInd	0	0	0
					IIIrd	1	0	1

Quadrant No.	No. of EW re	additio quired	nal	No. of additional VES/TEM required				of addition r level toring s ired	onal tations	No. of water requir	nal stations	Remarks	
	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-ll	Aq-III	Aq-I	Aq-II	Aq-III	
1A	0	0	0	1	1	1	1	1	1	1	1	1	
1B	0	0	0	1	2	1	0	0	1	0	0	1	
1C	0	0	1	1	2	1	0	0	1	0	0	1	
2A	0	0	0	1	1	1	1	1	1	1	1	1	
2B	1	1	1	1	2	1	0	1	1	0	1	1	
2C	0	0	0	1	1	1	0	0	1	0	0	1	
3A	0	0	0	1	1	1	0	1	1	0	1	1	
3B	0	0	0	1	1	1	0	1	1	0	1	1	
3C	0	0	1	1	1	1	0	1	1	0	1	1	
Total	1 1 3 9 12 9					9	2	6	9	2	6	9	

Note:

No. of Additional EW required-5 (Aq-I: 1, AQ-II: 1, AQ-III: 3)

3 OW for 2B

No. of additional VES/TEM required- 30 (Aq-I: 9, Aq-II: 12, Aq-III: 9)

No. of additional water level monitoring stations required -17 (Aq-I: 2, Aq-II: 6 Aq-III: 9)

No. of additional water quality stations required-17 (Aq-I: 2, Aq-II: 6 Aq-III: 9)

<u> </u>	Donth	<u>۸</u>			Aq. Gp.	Depth Rnge	Aq. para	EC		\ <u>~</u>	Depth	<u>۸</u>		1
Аq. Gp.	Rnge	Aq. para	EC				meter s			чq. Gp.	Rnge	Aq. para	EC	
		meter s			st	60- 78	T=29	Nil				meter s		
st	Nil	Nil	Nil				66 m²/d			st	Nil	Nil	Nil	
 nd	Nil	Nil	Nil				ау		I	Ind	NiL	Nil	Nil	
rd	Nil	Nil	Nil		IInd	Nil	Nil	Nil		 rd	Nil	Nil	Nil	
				1	rd	Nil	Nil	Nil			1			1
Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Аq. Эр.	Depth Rnge	Aq. para meter s	EC	
st	Nil	Nil	Nil		 st	Nil	Nil	Nil	I	st	Nil	Nil	Nil	
 nd	Nil	Nil	Nil		IInd	Nil	Nil	Nil		Ind	Nil	Nil	Nil	
rd	Nil	Nil	Nil		 rd	Nil	Nil	Nil	I	rd	Nil	Nil	Nil	
Aq. Gp.	Depth Rnge	Aq. para meter s	EC		Aq. Gp.	Depth Rnge	Aq. para meter s	EC	4	Аq. Эр.	Depth Rnge	Aq. para meter s	EC	
st	Nil	Nil	Nil		lst	Nil	Nil	Nil	I	st	Nil	Nil	Nil	
 nd	Nil	Nil	Nil		IInd	Nil	Nil	Nil		Ind	Nil	Nil	Nil	
rd	Nil	Nil	Nil		III rd	Nil	Nil	Nil		rd	Nil	Nil	Nil	

Fig-2 Toposheet No. 79 A/11 Exploratory Data adequacy for <u>Three</u> Aquifer group system in Alluvial areas (quadrant wise)

Fig-2 Toposheet No. 79 A/11 Exploratory Data Gap Analysis for <u>Three</u> Aquifer group system in Alluvial areas (quadrant wise)

				Aq. Gp.	EW/OW	/SH/PZ		
					Req	Exist	Gap	
				st	0	0	0	
				[[nd	0	0	0	
				IIIrd	1	0	1	
Aq. Gp.	EW/OW	//SH/PZ						
	Req	Exist	Gap					
lst	1	0	1					
IInd	1	0	1					
IIIrd	1	0	1					
				Aq. Gp.	EW/OW	/SH/PZ		
					Req	Exist	Gap	
				st	0	0	0	
				IInd	0	0	0	
				IIIrd	1	0	1	

Toposheet No.: 79A/15

Quadrant No.	No. of require	additional ed	EW	No. of VES/T	addition EM requ	al uired	No. o level statio	f additior monitorir ns requir	al water Ig ed	No. of quality require	Remarks		
	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	Aq-I	Aq-II	Aq-III	
1A	0	0	0	2	2	1	0	0	1	0	0	1	
2A	0	0	0	1	1	1	0	0	0	0	0	0	
Total	0 0 0			3	3	2	0	0	1	0	0	1	

Note:

No. of Additional EW required-0

No. of additional VES/TEM required- 8 (Aq-I:3, Aq-II: 3, Aq-III: 2)

No. of additional water level monitoring stations required -1(Aq-I:0, Aq-II: 0, Aq-III: 1)

No. of additional water quality stations required-1(Aq-I:0, Aq-II: 0, Aq-III: 1)

EXPLORATORY DATA COMPILATION IN PARTS OF NADIA (9 Blocks)

Topo No.	Quadra nt no.	Block	Name of site	Agency	Depth of drilling	Aquif	ers tappe	d (mbgl)			Aq	uifer	baram	eter				Aq	uifer w quality	ater	Any other information
						Aq- I	Aq- II	Aq- III		Aq- I			Aq- II			Aq- III	i	Aq - I	Aq- II	Aq- III	
									к	T (m²/d)	S	к	Т	S	К	Т	S				
79A/6	1A	Kaliganj	Debagram '58-'59	CGWB	269.86	33.75- 76.41		254.50- 268.50		3492.0	0.74x 10 ⁻³										Shallow well- 48.25 lps Deeper well- 3.48 lps, DD- 3.38 m
79A/6	1B		Dingel	CGWB	267.50			254.50- 267.50												Pot able	Discharge-10 lps
79A/6	2B	Nakashipara	Jugpur	CGWB	152.40	20.40- 106.70				1393.0 9											Discharge- 53.46 lps
79A/2	1C		Juranpur 2001-02	CGWB	341.51		183- 195													Pot able	Discharge- 3.21 lps
79A/11	3A	Hanskhali	Badkulla (Suravistha n) 23º08'00" 88º31'39" 2002-03	CGWB	350.81	93-99, 118- 127, 150- 159		300-312, 318- 324,330- 333		3041										Pot able	Shallow well- 19.17 lps, , SWL-4.166 mbgl, DD- 2.47 m. Deeper well- 4.13 lps, SWL-2.72 mbgl, DD- 11.31 m Cement Sealing-261- 264 mbgl
79A/11	1B	Tehatta-II	Kulgachi 23 ⁹ 25'50" 88 ⁹ 35'42" 2002-03	CGWB	230.91	60-78				2966.5 6											Discharge- 13.33 lps DD-2.93 m SWL-1.75 mbgl RL to GL- 13.139 mamsl.
79A/11	2C	Krishnaganj	Bhajanghat 23°22'51" 88°44'35" 2010/11- 2011/12	CGWB	202.50			196-202, 216-222, 228-238, 244-250													Discharge-25 lps
79A/9	1C	Karimpur-I	Madhyagop	CGWB	319.35		113-														Discharge-

			alpur 23 ⁰ 58'15" 88 ⁰ 41'30" 2010/11- 2011/12			119, 140- 146, 209- 215							5.23 lps (Comp10 lps)
79A/10	1A	Tehatta-I	Tehatta High School	CGWB	325.15		204-216, 219-225			20 44. 11			Discharge- 9.56 lps
79A/5	3C	Tehatta-II	Palashipara 2010/11- 2011/12	CGWB	325.05	95- 107, 128- 134, 171- 177			39 5.5 4				Discharge-12 lps
79A/15	2A	Krishnaganj	Putikhali, 23 ⁰ 24'32.5" 88 ⁰ 45'9.9" 2010/11- 2011/12	CGWB	325	146- 152, 196- 208,24 8-260,							Discharge- 34.25 lps

