

केन्द्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण

विभाग, जल शक्ति मंत्रालय

भारत सरकार Central Ground Water Board Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

RAMPUR DISTRICT UTTAR PRADESH

उत्तरी क्षेत्र, लखनऊ Northern Region, Lucknow

जल शक्ति मंत्रालय

केंद्रीय भूजल बोर्ड Central Ground Water Board (CGWB)

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

Department of Water Resources, River Development and Ganga Rejuvenation

केंद्रीय भूजल बोर्ड Central Ground Water Board (CGWB)

> उत्तरी क्षेत्र , लखनऊ Northern Region, Lucknow

> > **REPORT OF**

AQUIFER MAPPING AND MANAGEMENT PLANS OF

RAMPUR DISTRICT,

UTTAR PRADESH

AQUIFER MAPPING AND MANAGEMENT PLANS OF

RAMPUR DISTRICT, UTTAR PRADESH STATE

CONTRIBUTORS

Principal Authors	:	Binaya Kumar Behera, Scientist-B (Hydrogeology)
	:	
Aquifer management Plans	:	Binaya Kumar Behera, Scientist-B (Hydrogeology)
	:	
Analysis of Geophysical data and interpretation	:	Dr.Shashikant Singh, Scientist-B (Geophysics)
		Anirudh Singh, Asst. Geophysicist
	:	
	:	
Chemical Analysis	:	K.S.Rana, Scientist-B (Chemist) & O I/c Regional Chemical Laboratory K.G.Bhartariya, Scientist-B (Chemist) Dr. Supriya Singh, Scientist-B (Chemist)

ACKNOWLEDGEMENTS

The author is thankful to Dr. Shashi Kant Singh, Scientist-B (Geophysics) and Mr. Anirudh Singh, Asst. Geophysicist for analysis and interpretation of Geophysical data.

The author is also thankful to Mr. Sujatro.R.C, Scientist-B (Hydrogeology) for his help and guidance during the compilation of Groundwater Resource chapter as well as sharing exploratory data.

The author is also thankful to Mr. S.K.Swaroop, Scientist-C (Hydrogeology) and T.S., CGWB-NR for his valuable suggestions that led to overall improvement of NAQUIM report of the allotted study area.

The author is also thankful to Mr. S.G.Bhartariya, Regional Director, CGWB-NR, Lucknow for his supervision and guidance during the course of report completion.

Lastly, the author is thankful to Mr. Chandan Mishra, Dr. Daya Shankar Singh and Dr. Arjun Ram, Young Professionals, CGWB-NR, Lucknow for their help in collating relevant data from R.O.D.C and generation of various thematic maps.

DISTRICT AT A GLANCE

1		GENERAL INFORMATION		
	i	Geographical area (km ²)	:	2651
	ii	Administrative divisions	:	
	a	No. of Tehsils	:	3
	b	No. of Blocks		6
	c	No. of Towns and urban areas	:	5
	d	No. of villages	•	892
	iii	Population (as per 2011 census)		
	a	No. of Males	:	1,223,889
	b	No. of Females	:	1,111,930
	с	Population density (people per km ²)	:	987
	d	Urban population	••	5,88,647
	e	Rural population	:	15,06,338
	iv	Literacy Rate (as per 2011 census)	:	53.3%
	v	Per Capita net income (at current prices)[2018-19] ^[1]	•	₹ 48,351
	vi	Climate	:	Subtropical
	a	Normal Annual precipitation (2018)	:	509 mm
	b	Minimum temperature (°C)	:	-

	с	Maximum temperature (°C)	:	-
2		GEOMORPHOLOGY		Central Ganga Plain
	i	Major Physiographic units	:	Tarai, Older Alluvium, Younger Alluvium Flood Plain
	ii	Major Drainage	:	Ram Ganga, Kosi
3		Land Use [Ha]		
	i	Forest Land	:	6,611
	ii	Fallow Land	:	4,335
	iii	Gross Area sown	:	3,54,000 Ha.
	iv	Net Area sown	:	1,87,416 Ha.
	v	Gross Area irrigated	:	3,41,000 Ha.
	vi	Net Area irrigated	:	1,87,000 Ha.
4		Major Soil types	:	Loamy, silty soil
5		The area under Principal crops		
	i	Rabi	:	46,093.63
	ii	Kharif	:	1,17.661
	iii	Zaid	:	-
6		Sources of irrigation [2016-17]		
	i	No. of dug wells	:	0

	ii	No. of Tube wells	:	1,335 (Government)
			:	10,495 (Private)
	iii	Canals [Ha]	:	94
	iv	Other sources	:	77,406
7		No. of CGWB GW monitoring stations [2019]		
	i	No. of Dug wells	:	1
	ii	No. of Piezometers	:	2
8		Groundwater exploration by CGWB		
	a	No. of wells drilled	:	EW = 6
	b	Depth range (mbgl)	:	150.00 to 300.00
	c	Discharge (lpm)	:	1533 to 1800
	d	Storativity (S)	:	$1.21*10^{-3}$ to $1.93*10^{-5}$
	e	Transmissivity (m ² /day)	:	326 to 709
9		Groundwater quality		
	a	Major Hydrochemical facies	:	Mainly Fresh
	b	Presence of Trace metals	:	None
10		Dynamic Groundwater Resources [as per GEC-2020] (in Ham)		
	a	Net annual Groundwater availability	:	71890.6 ham

	b	Existing Gross Groundwater draft	:	51838.73 ham
	C	Net Groundwater availability	:	19403.58 ham
	d	Stage of Groundwater Development	:	72.11 %
11		Groundwater Control and Regulation		
	a	No. of over-exploited blocks	:	2
	b	No. of critical blocks	:	1
	С	No. of semi-critical blocks	:	3
	d	No. of notified blocks	:	0

INDEX

S. No.		Particulars	Page No.
1		INTRODUCTION	1
	1.1	Objectives	1
	1.2	Scope of the Study	1
	1.3	Approach and Methodology	2
	1.4	Location of the study area	4
	1.5	Data Availability	5
	1.6	Climate	6
	1.7	Geomorphology and Geology	6
	1.8	Drainage	8
	1.9	Soil	9
	1.10	Land use/ Landcover	11
	1.11	Agriculture and Cropping Pattern	14
	1.12	Irrigation	16
	1.13	Prevailing Water Conservation and Recharge Practices	17
2		DATA COLLECTION, INTEGRATION, AND AQUIFER MAPPING	18
	2.1	Aquifer Geometry	18
	2.2	Ground water scenario	18
	2.3	Depth To Water Level	19
	2.4	Groundwater Quality	29

	2.5	Aquifer Characteristics	35
	2.6	Lithological Disposition and Aquifer Disposition	36
3		GROUNDWATER RESOURCE POTENTIAL	40
4		GROUND WATER-RELATED ISSUES	42
5		MANAGEMENT STRATEGIES	43
	5.1	Supply Side Interventions	45
	5.2	Demand Side Interventions	45
	5.3	Miscellaneous Interventions	48
	5.4	Groundwater Management Plan of Bilaspur block	50
	5.5	Groundwater Management Plan of Chamraua block	55
	5.6	Groundwater Management Plan of Milak block	60
	5.7	Groundwater Management Plan of Said nagar block	65
	5.8	Groundwater Management Plan of Suar block	70
	5.8	Groundwater Management Plan of Shahbad block	75
		List of Tables	
1		Status of Data availability, data gap, and data generation	5
2		Soils of Rampur District (U.P.)	10
3		Land Use Pattern of the Rampur District	13
4		Area under major field crops & horticulture (as per latest figures of 2008-09)	15
5		Irrigation Pattern of Rampur District	17
6		Water Level and Fluctuation Data of Water Level Monitoring Stations	20

7		Water Level Trend of Rampur District (from 2012 to 2021)	25
8		Summarized table of GW samples with respect to EC	30
9		Summarized table of GW samples with respect to RSC	31
10		Summarized table of GW samples with respect to SAR	32
1 1		Summarized details of Aquifer groups in the district	36
12		Dynamic Groundwater Resources of Rampur district	40
13		Proposed Supply-side and Demand-side interventions	43
1 4	a	Summarized details of interventions proposed	52
	b	Projected GW Recharge & savings by supply and demand-side management	53
15	a	Summarized details of interventions proposed	57
	b	Projected GW Recharge & savings by supply and demand-side management	58
16	a	Summarized details of interventions proposed	62
	b	Projected GW Recharge & savings by supply and demand-side management	63
17	a	Summarized details of interventions proposed	67
	b	Projected GW Recharge & savings by supply and demand-side management	68
18	a	Summarized details of interventions proposed	72
	В	Projected GW Recharge & savings by supply and demand-side management	73
19	a	Summarized details of interventions proposed	76
	В	Projected GW Recharge & savings by supply and demand-side management	77

	List of Figures	
1	Methodology	3
2	Location Map of Rampur District, U.P.	4
3	Geological Map of Rampur District	7
4	Drainage Map of Rampur district	9
5	Soils Map Rampur District (U.P.)	10
6	Land use & Landcover map of Rampur district	12
7	Land Use Pattern of the Rampur District	14
8	Hydrogeological map of the study area	19
9	Depth of Water Level Map of Rampur District (Pre-Monsoon)	23
10	Depth of Water Level Map of Rampur District (Post- Monsoon)	23
11	Water Level Fluctuation Map of Rampur District	24
12	Long Term Water Level Trend of Karanpur1 (2012 – 2021), Rampur District	26
13	Long Term Water Level Trend of Pahari Dis (2012 – 2021), Rampur District	26
14	Long Term Water Level Trend of Bilaspur Pz CGWB (2012 – 2021), Rampur District	27
15	Long Term Water Level Trend of Shahabad Pz GWD (2012 – 2021), Rampur District	27
16	Long Term Water Level Trend of Tanda (2012 – 2021), Rampur District	28
17	Long Term Water Level Trend of Kemri Pz GWD (2012 – 2021), Rampur District	28

1 8	Trilinear Hill-Piper plot of the unconfined aquifer	29
19	Electrical Conductivity Map Rampur District	31
20	Water Quality Map of Rampur district	34
21	Trilinear Hill-Piper plot of deeper aquifer	35
22	3D model of Rampur district	38
23	3D diagram showing lithological variation in Rampur district	39
24	Dynamic Ground Water Resources Map of Rampur district	41
25	Graph displaying contribution of surface and groundwater for irrigation for each block	42
25	Tentative Sites for GW recharge and Conservation Measures, Bilaspur Block, Rampur (U.P.)	54
26	Tentative Sites for GW recharge and Conservation Measures, Chamrauwa Block, Rampur (U.P.)	55
27	Tentative Sites for GW recharge and Conservation Measures, Milak Block, Etah (U.P.)	64
28	Tentative Sites for GW recharge and Conservation Measures, Saidnagar Block, Etah (U.P.)	69
29	Tentative Sites for GW recharge and Conservation Measures, Suar Block, Etah (U.P.)	74
30	Tentative Sites for GW recharge and Conservation Measures, Shahbad Block, Etah (U.P.)	78

Aquifer Mapping and Management of Ground Water Resources Rampur District, Uttar Pradesh

1. INTRODUCTION

1.1 Objectives

Aquifer Mapping and Management Program is launched by "Central Ground Water Board under MoWR, RD & GR" in response to the overuse, pollution, and other associated problems with groundwater. The initiative was started as part of the XII plan's Ground Water Management and Regulation Plan Scheme. The following are the project's main goals:

- > Delineation and characterization of aquifers in three dimensions,
- Evaluation of aquifers, groundwater regime behavior, hydraulic characteristics, and hydrogeochemistry of aquifer groups on a 1:50,000 scale,
- Identification and quantification of issues,
- > Development of management plans to ensure the sustainability of groundwater resources.

As part of the program, management plans are being created for every aquifer system, proposing several actions to optimize groundwater extraction, and recognizing aquifers with potable groundwater for consumption in areas with poorer quality. In addition to demand-side management options such as crop diversification, improving water use efficiency, etc., the management choices also involve recognition of possible areas for artificial recharge to groundwater and water conservation which aid in stopping dropping water levels.

1.2 Scope of the Study

Gathering and compendium of accessible data on aquifer structures, the boundary of their stretches and portrayal, assessment of data gaps, creation of extensive information to complete the recognized data gaps, and eventually preparation of aquifer maps at the preferred magnitude are all part of the systematic mapping of an aquifer. The findings of this research will help strategists, decision-makers, and other stakeholders employ resource management techniques, including long-term aquifer monitoring networks and theoretical and statistical regional ground-water-flow models. Aquifer mapping at the adequate level can aid in the planning, implementation, and monitoring of numerous managerial treatments focusing on ensuring the

long-term viability of our valuable groundwater resources, which will, in turn, aid in the achievement of drinking water security, better irrigation amenities, and overall "water resource development sustainability" in the nation.

1.3 Approach and Methodology

For the creation of aquifer maps and management plans, a multidisciplinary technique utilizing cutting-edge technologies and techniques is being used, involving remote sensing, GIS, geophysical techniques, groundwater modeling, etc.

To guarantee the quality of the deliverables, a multi-tier evaluation procedure has been implemented. The Regional Directors of the different regions of CGWB assess the aquifer maps and management plans created by the team of officers. Subsequently, at the central headquarters level, the updated maps and management plans are provided to the respective CGWB members. "The National Level Expert Committee" (NLEC), which was established for this objective, is then provided with the maps and management plans. The experts' group includes domain experts in the fields of groundwater from JNU, Delhi; IIT, Roorkee; former Chairman of CGWB; agriculture scientists, etc. The ICAR's agricultural experts have also contributed to the formulation of the management plans for every state. "The State Ground Water Coordination Committee" (SGWCC), which is chaired by the principal secretary of the relevant department, has been established in every state and UT in order to facilitate cooperation on different aquifer mapping-related matters between the State and Union Governments. In order for the suggested aquifer-specific groundwater management plans to be adopted by the State Government, the results are exchanged and discussed in the State Ground Water Coordination Committee.

Figure 1: Methodology of NAQUIM

Location of the study area

Rampur district is one of the districts in the Indian state of Uttar Pradesh, and Rampur town serves as the district's administrative center. The Moradabad Division includes the Rampur District. According to medieval history, Rampur was split between the Badaun and Sambhal districts and belonged to the Delhi area. As a result, it was discovered in 1775. District Udham Singh Nagar in the north, Bareilly in the east, Moradabad in the west, and Badaun in the south encircle Rampur district.

Figure 1: Location Map of Rampur District, U.P.

1.4 Data Availability

Data on the numerous characteristics of groundwater were gathered from publications of the "Central Ground Water Board," state departments, and other organizations. The collected data were displayed on a map on a scale of 1:50,000, and a data gap analysis was done to determine the need for future hydrological, hydrogeological, hydrochemical, and geophysical research. The following table lists the key facts:

SI. No.	Parameter (s)	Data Required	Data Available	Data Gap	Data Generation
1.	Rainfall Data	IMD Meteorological station in the study area	No. Data obtained from European Space Agency.	No.	No.
2.	Soil	Soil Map and Soil infiltration test data.	Soil shape file available from U.P.R.S.A.C	Soil infiltration test data.	Soil infiltration across the study area.
3.	Land Use/ Land cover	Land Use/Land cover pattern	Land Use/ Land cover shape file available from U.P.R.S.A.C	No.	No.
4.	Geomorph ology	Digitized Geomorphological map	District Resource Map available from G.S.I	No.	Map generated on GIS platform.
5.	Geology	Digitized Geological map	District Resource Map available from G.S.I	No.	Map generated on GIS platform.

Table 1: Status of Data availability, data gap, and data generation

6.	Exploration Data	EW in each quadrant	Available from old CGWB & UPGWD records	Yes	Carried out in 3 blocks.
7.	Aquifer Parameters	Aquifer parameters in all the quadrants	From 6 exploratory wells under NAQUIM	Yes	Data to be generated.

1.5 Climate

Since Rampur lacks a meteorological station, the data from the closest station in Bareilly has been used. A hot, dry summer and winter are characteristics of the sub-humid climate. The district receives 967 mm of rainfall on average per year. June through September sees the lion's share of the region's rainfall or about 85%. With an average daily high temperature of around 46°C and an average daily low temperature of around 40°C, May is the warmest month of the year. The daytime temperature decreases noticeably when the southwest monsoon moves in, but the evenings remain pleasant. With an average daily high temperature of 21°C and an average daily minimum temperature of roughly 8°C, January is the coldest month. The average highest monthly temperature is 29.4°C, while the average lowest monthly temperature is 12°C. In the southwest monsoon period and to a smaller extent in the post-monsoon season, the air is quite humid. The average monthly relative humidity in the morning is 69 percent, while in the evening, it is 51 percent. The average wind speed is 5 to 1 kph, which is considered to be mild. There might be 1402.8 mm of evapotranspiration.

1.6 Geomorphology and Geology

a. Geology

District Rampur lies over alluvial deposits of the quaternary period brought by river systems of Ganga and Ram Ganga. These comprise sand, silt and clays in various proportions.

1.7.1 Geomorphology

1.7.1.1 Physiography, Geomorphologic Features and Landforms

The Central Ganga Alluvial Plain includes the Rampur district, which is characterized by steep topography in the north and progressively flattens as it moves south. Manunagar, a hamlet in the district, has the greatest elevation (224 mamsl), whereas Gangapur, a community on the Ram Ganga flood plain, has the lowest elevation (172 mamsl). The enumerated geomorphic units are as follows.

- a) **Tarai Tract:** This tract is the Tarai tract's southern extension in the Nainital district. It is located at the district's farthest northern location. This region is characterized by intermittent running wells and shallow water levels.
- b) Meander Flood Plain: It is a flat, low-lying, badly drained terrain with little to no relief that is restricted to the Kosi, Pilkhau, and Ram Ganga river systems. In this category, common geomorphic characteristics are Sand and Point bars.
- c) Younger Alluvial Plain: These plain regions are only found alongside the Kosi, Pilkhau, and Ram Ganga rivers, with the greatest lateral length of around 10 km, and are characterized by a flat to gently sloping and slightly undulating surface. Common fluvial landforms include oxbow lakes, palaeo-channels, and meander scars.
- d) Older Alluvial Plain: The Terai tract's southern border is an older alluvial plain or upland. The inter stream region is formed by this plain, which is substantially higher in elevation than the younger alluvial plain. The district's land is made up of this plain to the extent of around 80%.
- e) **Ravinous Tract:** This tract, which is distinguished by a chain of gullies alongside the rivers Kosi, Pilakhau, and Ram Ganga, was created by the erosional activity of runoff water. This tract, which is distinguished by a chain of gullies along the rivers Pilakhau, Ram Ganga, and Kosi, was created by the erosional activity of runoff water.

1.7 Drainage

Rampur city lies along the Kosi River, about 15 miles (24 km) east-southeast of Moradabad. The district, which is a portion of the "Central Ganga Alluvial Plain," is characterized by steep hills in the north that progressively flatten out as you move south. The Ram Ganga River and its tributaries, including the Baigul, Bauri, Pilakhau, Ghuga, Dhimri, Saijni, Nahal, and Kosi, are in charge of controlling the drainage of the study area. The Ram Ganga river runs south-easternly and enters the region close to its southwest corner.

Figure 3: Drainage Map of Rampur

1.8 Soil

Distinct fertile kinds of soil have emerged in several geomorphic divisions based on the topography of the location. Tarai tract has fine-textured, organic matter-rich soil. Uplands are where loamy soil formed. Younger alluvial plains have silty soil. The district's pattern of land

use has been greatly influenced by the kind of soil. The lush alluvial soil that covers the whole northern plain is the sort of soil that is present here. The majority of alluvial soils are quite fruitful. These soils often have suitable levels of potash, phosphoric acid, and lime, making them perfect for the development of cereal and pulse crops, including sugarcane, rice, wheat, and others. Alluvial soil locations, like Rampur, are actively farmed and densely inhabited due to their high productivity.

Legend	Plains	Description	
1	Piedmont Plains	Deep, loamy soils.	
2		Deep, loamy soils and silty soils.	
3	Alluvial plain	Deep, loamy soils.	
4		Deep, loamy soils and silty soils.	
5		Deep, fine soils and loamy soils.	
6		Deep, loamy soils(moderate salinity and	
		sodicity) and loamy soils (moderate	
		salinity and strong sodicity).	
7		Deep, silty soils and loamy soils.	
8		Deep, silty soils and slightly eroded.	
9		Deep, loamy soils and loamy soils.	
10	Old Alluvial plain	Deep, loamy soils and sandy soils.	
11	Recent Alluvial Plain	Deep, loamy soils with slight flooding.	
12	Active Flood Plain	Deep, sandy soils(moderate flooding)	
		and loamy soils(slight flooding).	
13		Deep, loamy soils (moderate flooding)	
		and sandy soils(moderate flooding.	

Table 2: Soils of Rampur District (U.P.)

1.9 Land Use/Land Cover

The term "land use" describes the function that a piece of land performs, such as agriculture, wildlife habitat, or recreation. Because quick information is needed to determine what current quantity of land is in what sort of use and to detect the land use variations from year to year, land use applications entail both baseline mapping and subsequent surveillance. This information will be used to create plans that manage growth demands, competing uses, and preservation.

The term "land cover" describes the material that covers the surface of the ground, such as vegetation, urban infrastructure, water, bare soil, etc. For planning, resource management, and monitoring studies, it is crucial to identify, delineate, and map the land cover. The baseline for monitoring operations is established by the classification of the land cover.

Table 3 gives the land use pattern in the district. Land put to agricultural uses comes to 2145.39 Sq. Km including the area of cropland 2090.20 Sq. Km, fallow 37.39 Sq. Km, (thus, current fallows are required to be enhanced to raise the level of productivity of the crops), plantation 17.80 Sq. Km, (current plantations are required to be enhanced to raise the level of productivity of the veggies and fruits). Also, Barren/unculturable/ Wastelands cover an area of 4.18 sq. Km, including salt-affected land 0.33 Sq. Km, sandy area 0.09 Sq. Km and scrubland 3.76 Sq. Km. The Forest area in the district comes to 36.74 Sq. Km, including deciduous 33.79 Sq. Km and scrub forest 2.95 Sq. Km. Moreover, wetlands/water bodies cover an area of 73.22 sq. Km in the district, including the area of inland wetland 1.49 Sq. Km., river/stream/canals 68.60 Sq. Km and water bodies cover the area of 3.13 sq. Km. Also, the built-up area of the district covers 107.48 Sq. Km, which includes a mining area of 0.29 Sq. Km, rural area 78.62 Sq. Km and urban area 28.57 Sq. Km.

Thus, there is a pressing need for afforestation in the district. Grazing uses of land in the district are found to be nil. It would be necessary that grazing of land is enhanced in the district.

Categories	Land Use Pattern of the District	Area in Sq. Km
Agriculture	Cropland	2090.20
	Fallow	37.39
	Plantation	17.80
Barren/unculturable/	Salt Affected Land	0.33
Wastelands	Sandy Area	0.09
	Scrub Land	3.76
Built-up	Mining	0.29
	Rural	78.62
	Urban	28.57
Forest	Deciduous	33.79
	Scrub Forest	2.95
Wetlands / Water	Inland Wetland	1.49
bodies	River/Stream/Canals	68.60
	Water bodies	3.13

Table 3: Land Use Pattern of the Rampur District

Source: https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC502/MAP/UP.pdf

Figure 6: Land use Pattern of Rampur district

1.10 Agriculture and Cropping Pattern

Rampur's economy is largely centered on agriculture. Despite having a lot of fertile lands, it has relatively little industry and almost little mineral exploitation. Rampur's primary industries include the production of agricultural tools, textile weaving, sugar processing, and zari embroidery.

The principal crops in the district include (i) wheat, (ii) rice, (iii) sugarcane, and (iv) pulses. Of the total land in the district, 135.63 ('000) hectares are engaged in the production of wheat. Similarly, 116.154 ('000) hectares of land are utilized to produce rice in the district. The land used to produce sugarcane comes to 22.385 ('000) hectares in the district (Table-4). It suggests that there is a need to increase the area underutilization for various crops in the district, such as (i) jowar (ii) bajra, (iii) maize (iv) urd (v) moong, (vi) gram and (vii) potato vis-à-vis the state of Uttar Pradesh.

Major field	Area ('000 ha)							
crops cultivated	Kharif			Rabi				
	Irrigated	Rainfed	Total	Irrigated	Rainfed	Total	Summer	Grand total
Rice	110.054	-	116.154	-	-	-	6.100	116.154
Wheat	-	-	-	135.63	-	135.63	-	135.63
Sugarcane	-	-	-	22.385	-	22.385	-	22.385
Maize/Pearl millet	-	1.507	1.507	-	-	-	0.887	2.394
Toria	-	-	-	12.228	3.768	15.996	-	15.996
Lentil	-	-	-		1.432	1.432	-	1.432
Mentha	-	-	-	1.321	-	1.321	-	1.321
Mustard	-	-	-	3.276	1.548	4.824	-	4.824
Horticulture	Area ('000 ha)							
Fruits		Total		I	rrigated		Rair	nfed
Mango	2.523		1.513		1.009			
Muskmelon	0.778		0.446		0.311			
Guava	0.139			0.083		0.055		

Table:4 Area under major field crops & horticulture (as per latest figures) (2008-09)

Horticulture crops - Vegetables	Total	Irrigated	Rainfed
Potato	1.722	1.722	-
Pea	0.677	0.677	-
Plantation crops	Total	Irrigated	Rainfed
Poplar	5.465	5.465	-
Eucalyptu s	1.654	-	1.654
Fodder crops	Total	Irrigated	Rainfed
Sorghum	28.658	13.216	15.442
Pearl millet	6.889	-	6.889
Berseem	3.162	3.162	-
Total fodder crop area	38.709	16.378	22.331

Source:http://www.nicra-icar.in/nicrarevised/images/statewiseplans/Uttar%20Pradesh/UP4-Rampur-26.7.2012.pdf

1.11 Irrigation

In the entire district, farming is the main industry. Large-scale surface and groundwater development is being conducted in order to provide irrigation. According to several sources, the Rampur district's irrigated area is provided in (Table-5). The total area that has been irrigated in any way is 355.061 ('000) hectares.

Irrigation		Area ('000 ha)	
Net irrigated area	168.118		
Gross irrigated area	355.061		
Rainfed area	25.125		
Sources of Irrigation	Number	Area ('000 ha)	Total Irrigated Area (%)
Canals		1.313	0.78%
Tanks		0.314	0.18%
Open wells		48.624	28.90%
Bore wells		117.371	69.98%
Lift irrigation schemes	Nil		-
Other sources (please specify)		0.496	0.30%

Source:http://www.nicra-icar.in/nicrarevised/images/statewiseplans/Uttar%20Pradesh/UP4-Rampur-26.7.2012.pdf

The net area sown in the district is 168.118 ('000) hectares. The length of the major canal in the district was 1.313 ('000) hectares. The state tube wells and canals constitute the state irrigation works, while tanks, open wells, bore wells etc., constitute the private works.

1.12 Prevailing Water Conservation and Recharge Practices

Data not available

2 DATA COLLECTION, INTEGRATION, AND AQUIFER MAPPING

2.1 Aquifer Geometry

To know the lithological framework and sub-surface disposition of aquifers in the study area, the lithological data of wells drilled by CGWB and UPGWD was first compiled and redefined as per ROCKWORKS software format and then plotted for visualization of aquifer disposition.

The major lithology is Quaternary alluvium, underlain by the Vindhyan basement. Quaternary alluvium is divided into "Older and Newer alluvium." Older alluvium consists of oxidized sediments of the polycyclic sequence of silt, clay with calcareous concretions (kankar), and micaceous beds. Newer alluvium was deposited by the annual flooding of the Ghaghara River and has non-oxidized sediments made of alternate clay and sand layers.

Three aquifer groups were identified visually upon generation of 2-D and 3-D models and fence diagrams. The quality of formation water is good, barring the occurrence of Iron at a few places in the unconfined aquifer.

2.2 Groundwater scenario

Groundwater in the district occurs in an aquifer system mainly made of alluvial sediments deposited by the Ghaghara River and its tributaries. Granular zones comprise fine-grained sand to silty sand with the occurrence of calcareous concretions (kankar) and possess moderate transmissivity and permeability. Clay layers act as barriers separating the three aquifer groups in the district and possess insignificant transmissivity and permeability, resulting in clay acting as confining layers.

A hydrogeological map of the study area has been attached in Figure 8 below. Perusal reveals that the groundwater flow is mainly towards the Ghaghara River and its tributaries, Tons and Choti Sarju.
2.3 Depth to Water Level

"Pre-monsoon and post-monsoon water level" data were collected from the key wells and piezometers in the district for 2021. The depth to water level data and fluctuation data has been attached in Table 6. Depth to water level maps prepared for the pre-monsoon and post-monsoon periods have been below, as shown in Figures 9 and 10. Pre-monsoon depth to water level fluctuates between 3.15 mbgl to 11.68 mbgl, and post-monsoon depth to water level varies between 2.43 mbgl to 12.16 mbgl. The majority of the district shows water levels between 3 and 18 mbgl, according to a review of the depth to water level contour map for the period of May 2021.

S. No.	Block Name	Loc Names	Long	Lat	Type Of well	PRM_21	PTM_21	FLU_21
1	BILASPUR	BILASPUR*	79.26	28.89	Р	5.85	3.92	1.93
2	BILASPUR	PANWARIYA	79.36	28.79	Р	6.98	5.75	1.23
3	BILASPUR	BAIRKHERI	79.28	28.92	Р	4.18	3.57	0.61
4	BILASPUR	PAIGAMBARPUR DANDIA	79.35	28.82	Р	6.71	6.80	-0.09
5	BILASPUR	KAUSHAL GANJ	79.38	28.89	Р	7.99	5.99	2.00
6	CHAMRAUA	BHONT*	79.11	28.81	Р	6.65	6.22	0.43
7	CHAMRAUA	CHAMRAUA*	79.11	28.79	Р	7.00	6.10	0.90
8	CHAMRAUA	KOYALA*	79.08	28.83	Р	5.30	4.23	1.07
9	CHAMRAUA	MDHEEYA UDAYRAJ	79.05	28.71	Р	7.15	6.60	0.55
10	CHAMRAUA	PNJABNAGAR*	79.00	28.74	Р	5.12	3.30	1.82
11	CHAMRAUA	SAIDPUR (LADAURI)	79.01	28.68	Р	5.43	3.69	1.74
12	MILAK	BARAKHAS	79.14	28.75	Р	7.37	6.00	1.37
13	MILAK	BHAWERKA	79.26	28.71	Р	6.63	5.18	1.45
14	MILAK	DHANELI (NORTH)	79.23	28.65	Р	6.43	5.72	0.71
15	MILAK	GANGAPUR KDIM*	79.20	28.77	Р	5.90	5.05	0.85
16	MILAK	KAMAURA	79.16	28.67	Р	7.95	7.13	0.82
17	MILAK	KAPNERI	79.26	28.72	Р	6.62	5.15	1.47
18	MILAK	KHATA CHINTAMAN	79.19	28.68	Р	6.37	6.44	-0.07
19	MILAK	KUNDANPUR PIEZ	79.11	28.60	Р	5.82	5.39	0.43
20	MILAK	BALBHADRAPUR	79.27	28.69	Р	8.04	7.40	0.64
21	MILAK	PARAM	79.15	28.57	Р	8.54	8.30	0.24
22	MILAK	INAYTPUR	79.30	28.74	Р	7.82	5.98	1.84

Table 6: Water Level and Fluctuation Data of Water Level Monitoring Stations of GWD & CGWB

23	SAIDNAGAR	DILPURA*	79.14	28.86	Р	5.30	3.85	1.45
24	SAIDNAGAR	HAMIRPUR*	78.95	28.89	Р	7.10	6.15	0.95
25	SAIDNAGAR	KARANPUR*	79.07	28.91	Р	7.30	6.42	0.88
26	SAIDNAGAR	KISHANPUR ATARI	79.12	28.88	Р	6.20	4.98	1.22
27	SAIDNAGAR	LALPUR*	79.02	28.87	Р	7.75	4.01	3.74
28	SAIDNAGAR	NAGALA GANESH*	79.05	28.83	Р	6.45	5.85	0.60
29	SAIDNAGAR	SAID NAGAR*	78.98	28.89	Р	6.20	5.66	0.54
30	SAIDNAGAR	SHAUKAT NAGAR	79.04	28.81	Р	7.10	5.80	1.30
31	SHAHABAD	CHAKARPUR*	78.99	28.54	Р	15.50	15.05	0.45
32	SHAHABAD	KHADELI*	78.97	28.52	Р	15.20	16.07	-0.87
33	SHAHABAD	MATHURAPUR*	79.08	28.60	Р	3.15	2.43	0.72
34	SHAHABAD	NARKHERI*	79.06	28.65	Р	5.03	4.18	0.85
35	SHAHABAD	REVRI KHURAD	79.04	28.62	Р	5.49	4.33	1.16
36	SHAHABAD	TANDA*	79.04	28.50	Р	15.86	16.40	-0.54
37	SHAHABAD	UCHA GAWA*	79.03	28.52	Р	15.61	15.10	0.51
38	SHAHABAD	UDAYAPUR JAGIR	79.02	28.63	Р	6.15	5.70	0.45
39	SHAHABAD	JAITOLI	78.99	28.60	Р	7.57	5.98	1.59
40	SHAHABAD	ISHAKHERA	79.07	28.53	Р	11.68	12.16	-0.48
41	SHAHABAD	DEVIYA NAGLA	78.98	28.62	Р	5.80	4.03	1.77
42	SWAR	DHANUPURA	79.02	28.90	Р	5.80	3.62	2.18
43	SWAR	SHIKAMPUR*	78.94	29.02	Р	8.54	6.18	2.36
44	SWAR	SWAR*	79.06	29.03	Р	5.20	6.28	-1.08
45	SWAR	DHAKKANAGLAIYA	78.94	28.96	Р	6.45	5.70	0.75
46	SWAR	SHIKARPUR	79.14	29.06	Р	7.70	6.95	0.75
47	BILASPUR	BILASPUR PZ GWD	79.28	28.88	Р	5.62	3.84	1.78
48	MILAK	DHANELI PURWI	79.18	28.57	W	6.52	6.1	0.42
49	SHAHABAD	SHAHABAD PZ GWD	79.95	27.65	Р	10.78	10.07	0.71

Figure 8: Depth of Water Level Map of Rampur District (Pre-Monsoon)

Figure 9: Depth of Water Level Map of Rampur District (Pre-Monsoon)

The water level grows shallower due to the recharging of the aquifer from rainfall, and the bulk of the region has water levels of 2 - 20 mbgl, according to a review of the depth to water level contour map for the period of November 2021.

2.3.1 Water Level Fluctuation

The district's water level is rising, according to statistics from wells in the Rampur district for the year 2021. The majority of the district's water level fluctuations are between 0.0 and 2.0 mbgl and are trending upward. Figure 11 depicts the variation in water level. A review of the map reveals that the water level is mainly rising between 0 mbgl to 4 mbgl across the district. A small part of the Shahabad, Saur, and Bilaspur block display falls at a water level between 2-0 mbgl. Parts of Saur, Said Nagar, Bilaspur, Chamrauwa, Milak, and Shahabad blocks display a rise in water level between 0-2 mbgl. Parts of Saur and Said Nagar blocks show water level rise between 2-4 mbgl.

Figure 10:Water Level Fluctuation Map of Rampur district for the year 2021

2.3.2 Water Level Trend

Water level hydrographs show a long-term water level trend that shows how groundwater storage in the phreatic zone changes over time. The effects of air pressure, variations in recharge, and withdrawal over time have an impact on storage. A long-term water level trend for the pre and post-monsoon period has been calculated using water level data from the past nine years and is summarized as follows (Table-7)

S.	Location	Pre-Monsoon		Post-Monsoon		Annual				
110.		Data Points	Rise (m/year)	Fall (m/year)	Data Points	Rise (m/year)	Fall (m/year)	Data Points	Rise (m/year)	Fall (m/year)
1	Karanpur 1	1			2			6		
2	Pahari Dis	3			6		0.1777	19		
3	Bilaspur Pz CGWB	5			7		0.1338	27	0.4948	
4	Shahabad Pz GWD	7		0.3248	10	0.4555	0.2632	35		0.2859
5	Tanda	3			9		0.0021	28	0.0174	
6	Thunapur	1			1			5		
7	Kemri Pz GWD	3			3			12		

 Table 7: Water Level Trend of Rampur District (from 2012 to 2021)

When looking at the hydrograph trend (2012–2021) over a nine-year period, it is seen that there is often a modest reduction in water level in the majority of the district both before and after the monsoon, which may be caused by overusing groundwater and inadequate recharging (figures 12-17). Both before and after the monsoon, Karanpur1 and Bilaspur Pz CGWB's water levels have risen. This rising pattern is seen at the same site of Bilaspur Pz CGWB and Karanpur1. Increased precipitation and recharging in the area may be to blame for the increase in water level.

Figure 11:Long Term Water Level Trend of Karanpur1 (2012 - 2021), Rampur District

Figure 12:Long Term Water Level Trend of Pahari Dis (2012 - 2021), Rampur District

Figure 13:Long Term Water Level Trend of Bilaspur Pz CGWB (2012 – 2021), Rampur District

Figure 14:Long Term Water Level Trend of Shahabad Pz GWD (2012 - 2021), Rampur District

Figure 15:Long Term Water Level Trend of Tanda (2012 - 2021), Rampur District

Figure 16:Long Term Water Level Trend of Kemri Pz GWD (2012 - 2021), Rampur District

2.4 Groundwater Quality

The concentration of elements in groundwater is governed by many factors. i.e.

- ➢ Nature of formation,
- Minerals present in the rock,
- Characteristics of soil,
- Anthropogenic activities like Irrigation run-off, Discharge of effluents, Industrial and domestic activities, etc.

In order to have a clear picture and to study the hydrochemistry of groundwater, the analytical data of monitored wells and hand pumps were analyzed by the NABL accredited Regional Chemical Laboratory at Lucknow.

2.4.1 Groundwater sampling

In June 2021, pre-monsoon monitoring was done to identify locations with poor water quality by determining basic metrics and trace metal concentrations.

2.4.2 General Aspects of the unconfined aquifer

6 groundwater samples were collected during the pre-monsoon season in 2019 to analyze basic parameters and trace metals. The analyzed data has been attached as Annexures 1 and 2.

2.4.3 Classification with respect to agricultural use

The unconfined aquifer's water quality has been categorized according to agricultural criteria as required by IS 11624-1986.

Total salt concentration – It is represented as "Electrical Conductivity (EC)," and Table 8 below lists the categorization in regard to the danger it poses to soils.

Figure 17: Trilinear Hill-Piper plot of the unconfined aquifer

Sl. No.	Class	Range of EC (µS/cm)	No. of samples
1.	Low	0 – 1,500	6
2.	Medium	1,500 - 3,000	-
3.	High	3,000 - 6,000	-
4.	Very High	>6,000	-

Table 8: Summarized table of GW samples with respect to EC

All the samples lie within the ambit of the 'Low' class with reference to EC and pose no problem for irrigation.

Residual Sodium Carbonate – It is computed using the below formula, where all constituents are expressed in meq/l, and is characterized in terms of the potentially harmful consequences of bicarbonate ion concentration on soil:

$$RSC = (CO_3^{2-} + HCO_3 -) - (Ca^{2+} + Mg^{2+})$$

Table 9: Summarized table of GW samples with respect to RSC

Sl. No.	Class	Range of RSC (meq/l)	No. of samples	
1.	Low	< 1.5	6	
2.	Medium	1.5 – 3.0	0	
3.	High	3.0 - 6.0	0	
4.	Very High	> 6.0	0	

All the samples lie within the ambit of the 'Low' class with reference to RSC and pose no problem for irrigation.

Sodium Adsorption Ratio – It is a measure of the quality of irrigation water that is utilized to manage soils that have been impacted by salt. The amount of the principal alkaline and alkaline earth cations found in groundwater serves as a sign of the water's appropriateness for irrigation of agricultural land. It may also be used as a diagnostic measure for a soil's sodicity risk based on an investigation of soil pore water.

It is computed from the formula given below:

$$SAR = \frac{Na}{\sqrt{(Ca + Mg)/2}}$$

Sl. No. Class **Range of SAR** No. of samples (meq/l) 1 Low < 106 2 Medium 10 - 18 0 3 High 18 - 26 0 0 4 Very High > 26

Table 10: Summarized table of GW samples with respect to SAR

All the samples lie within the ambit of the 'Low' class with reference to RSC and pose no problem for irrigation.

2.4.4 Note on Trace elements

- > Chromium as Cr: No Chromium was found in any sample.
- **Copper:** No Copper was found in any sample.
- Iron: Five samples (approx. 83.33% of total samples), namely Bilaspur, Chamrauwa, Milak, Said Nagar, and Swar, display values of Iron greater than 0.3 mg/l, which is an acceptable limit as per BIS 10500:2012-2nd Revision.

- Manganese: Two samples (33.33%), namely Chamrauwa and Shahabad, display values of Mn smaller than 0.5 ppm/l, which is an acceptable limit as per BIS 10500:2012-2nd Revision.
- Zinc: Five samples (approx. 83.33% of total samples), namely Bilaspur, Chamrauwa, Milak, Shahabad, and Swar, display values of Zinc small than 10.0 mg/l, which is an acceptable limit as per BIS 10500:2012-2nd Revision.
- Arsenic as As: Only one sample, Milak block, displays Arsenic values of As greater than 0.01 mg/l, which is a permissible limit as per BIS 10500:2012-2nd Revision.
- **Lead:** No Lead was found in any sample.
- Nitrate: Only one sample, the Shahabad block, displays Nitrate higher than the limit as per BIS 10500:2012-2nd Revision.

2.4.5 General hydrochemistry of deeper aquifers

6 groundwater samples were collected in May 2019 when pumping tests were carried out to determine aquifer parameters. 2 samples were earmarked for the determination of basic parameters, namely pH, EC, Ca^{2+} , Mg^{2+} , Na^+ , K^+ , HCO_3^- , CO_3^{2-} , SO_4^{2-} , CI^- , F^- and PO_4^{-3-} . 3 samples were earmarked for analysis of trace metals, namely Fe, Mn, Cu, Cr, Zn, Pb, As, and U by ICP-MS. After obtaining the results of chemical analyses, the samples were plotted on a trilinear Hill-Piper plot, and the samples were classified into different hydrochemical facies based on dominant cations and anions.

2.5 Principal Aquifer System in the study area

There are four main aquifer systems in the study area; the principal aquifer system is Indo-Gangetic plain which is mainly comprising sand, silty, clay, loamy soil and alluvial soils which are separated by restricting clay layers (aquicludes). The "electrical resistivity" (64 inches Normal) and "gamma radioactivity" records of the boreholes drilled in the region were merged to identify granular zones (the aquifers) with varying resistivity. The lithological characteristics, hydraulic parameters and quality, as determined by exploratory drilling and geophysical logging, have been used to demarcate various aquifer grouping. "Aquifer group I, Aquifer group II, Aquifer group III, and Aquifer group IV" are the four aquifer systems existing in the research area.

The details of Exploratory drilling details has been attached in annexure-4.

2.5.1 Aquifer Systems & their Characteristics

The research area's main aquifers were identified by grouping sand, clay, Loamy soil, Silty soil, and Alluvial soils as aquifers separated by restricting clay layers called aquicludes. The "electrical resistivity" (64 inches Normal) and "gamma radioactivity" records of the boreholes drilled in the region were merged to identify granular zones (the aquifers) with varying resistivity. The "lithological character, hydraulic parameters, and quality," as determined by exploratory drilling and geophysical logging, have been used to demarcate various aquifer groupings. "Aquifer group I, Aquifer group II, Aquifer group III and Aquifer group IV" are the three aquifer systems that exist in the research region.

> Aquifer Group- I

The Aquifer group-I lies beneath the topsoil and is found between the depths of 60-90 mbgl. Ground water occurs under water table conditions in this aquifer category, which is unconfined/phreatic. Shallow tube wells, drilled wells, and hand pumps are the most common methods of tapping this aquifer. This aquifer has clay lenses in certain spots. Following the first aquifer is a clay layer that ranges in thickness from 10 to 24 meters. This aquifer was accessed by the majority of state tube wells and public wells.

> Aquifer Group- II

A zone of intermixing where clay and sand layers are intercalated makes up the second aquifer. In the Nanital district, this zone stretches from 90 to 160 meters at Milak and from 125 to 204 meters in Bazpur.

> Aquifer Group- III

This aquifer group occurs between the depths of 240-284 mbgl and below, divided from the overlying aquifer group by clay. The granular zone thickness ranges from 23 to 111 meters, with an average of 42 meters.

> Aquifer Group- IV

The fourth aquifer, which is rather thick at Milak, stretches from 294 m to a total depth of 440 m that has been examined.

The data are available from exploratory drilling summarizing the depth of aquifer groups, feasible extraction structure, discharge, and other details that have been summarized below:

Aquifer	Group – 1 [AL03]	Group – 2 [AL03]	Group – 3 [AL03]	Group – 4 [AL03]
Formation	Sand, clay, and loamy soil.	Pebbles, mostly sand.	Sand, loamy soil & thick clay.	Loamy soil, silty soil, and alluvial soils.
Abstraction Structure	Tube wells and public wells.	Exploratory wells	Tube-well	Tube-well
Depth Range (mbgl)	60-90	90-160	240-284	294 m to total explored depth of 440 m
Discharge (lpm)	65 – 100	1,445	1125 – 1,185	1,220
Tranmissivity (m2/day)	890-1052	871-1866.5	298-1324	1052

Table 11: Summarized details of Aquifer groups in the district

Storage	0.000121-	0.0012-0.00128	0.00857	0.000181-
Coefficient	0.000154			0.000193

2.6 Lithological Disposition and Aquifer Disposition

To effectively comprehend the "lithological and aquifer disposition" in the study area, a 3-D model, sections, and stratigraphy diagrams founded on lithological information gathered through exploratory drilling and geophysical investigations carried out by CGWB in the district have been created. The lithological layers were developed using borehole data. Aquifer/Lithological sections, Stratigraphy diagrams, and 3D Aquifer/ Lithological dispositions diagrams are all prepared using the same color codes. The existence of a substantial pile of various grades of sand with a varying sequence of clay is shown in the research region by lithology and geophysical logging. The models were used to evaluate the lithological and aquifer dispositions; stratigraphic sections were created using Rockworks software. The vertical and horizontal scales in meters are used on the sections created for subsurface formations and aquifers.

> 3-D lithological and Aquifer Model

Figure 20: 3D model of Rampur district

The thickness of Aquifer Group – 1 extends down to 60-90 mbgl (meters below ground level) from the ground surface. It is separated from the Aquifer Group – 2 by a clay layer. Aquifer Group – 2 is observed between 90-160 mbgl (meters below ground level). It is further separated from Aquifer Group - 3 (is observed between 240-284) by thick clay with thickness greater than the one separating Aquifers 1 and 2. Aquifer Group – 4 is observed between 294 to the total explored depth of 440 mbgl (meters below ground level).

> Fence diagram

Figure 23 displays fence diagrams built in the research area that delineate the lithology on a regional scale.

Figure 21: 3D diagram showing lithological variation in Rampur district

3 GROUNDWATER RESOURCE POTENTIAL

Stage of Groundwater Development:

The current stage of Groundwater Development in the Rampur district has been pegged at 72.11% as per GWRE 2021, which is categorized as Safe. 2 blocks of the district, namely Bilaspur, Milak have been categorized as "Safe" as their Stage of GW Development is 59.37% and 64.65% respectively. 3 blocks of the district, namely Said Nagar, Saur, and Shahabad, have been categorized as "Semi-critical" as their Stage of GW Development is 80.16%, 81.95%, and 75.64%, respectively. And remaining 1 block of the district, namely Chamrauwa, have categorized as "Critical" as its Stage of GW Development is 94.46%. Said Nagar block has the lowest groundwater availability, whereas the Bilaspur block has the highest groundwater availability.

The groundwater resource potential of the district (block-wise) has been calculated on the methodology given in Groundwater Estimation Committee (GEC) Report 2020.

S. N o	Assessmen t Unit Name	Net Annual Ground Water Availability (in ham)	Existing Gross Ground Water Draft for all Uses (in ham)	Existing Gross Ground Water Draft for Irrigation (in ham)	Net Ground Water Availabilit y for future use	Stage of Ground Water Develop ment	Categoriza tion (OE/Critic al/Semi critical/Saf e)
1	BILASPU R	21459.27	12740.95	12008.62	8623.98	59.37%	Safe
2	CHAMRA UWA	6604.48	6238.71	5676.04	306.59	94.46%	Critical
3	MILAK	13698.95	8856.68	7995.59	4743.98	64.65%	Safe
4	SAID NAGAR	5162.18	4138.08	3526.37	927.82	80.16%	Semi- critical
5	SAUR	15550.19	12742.84	11520.84	2645.19	81.95%	Semi- critical
6	SHAHAB AD	9415.53	7121.48	6180.53	2156.02	75.64%	Semi- critical
	Total	71890.6	51838.73	46907.99	19403.58	72.11%	

 Table 12: Dynamic Groundwater Resources of Rampur district

Map displaying the block-wise categorization as well as Stage of Groundwater Development has been attached below as Figure 24.

Figure 22: Dynamic Ground Water Resources Map of Rampur district

4 GROUND WATER-RELATED ISSUES

4.1 Identification of issues

The high contribution of groundwater towards irrigation: The contribution of surface water from the existing canal network towards irrigation ranges from 81.97% in the Bilaspur block to a paltry 3.00% in the Milak block. The balance is made up by harnessing groundwater. The blocks of Suar, Chamraon, and Shahabad are entirely reliant on groundwater for irrigation.

Figure 23: Graph displaying contribution of surface and groundwater for irrigation for each block

Data on rainfall through 2021-2022 show a tendency toward decline, which will only lead to less rainfall recharging subsurface aquifers.

4.2 Groundwater quality issues and contamination

> Sporadic occurrence of Iron, Nitrate and Arsenic in the unconfined aquifer.

4.3 Miscellaneous issues

Farmers in the district mainly cultivate sugarcane rather than cash crops and vegetables cultivation practices.

5 MANAGEMENT STRATEGIES

In order to reduce the demand for groundwater resources and enhance their accessibility, management measures must be quickly established and put into action by the responsible agencies. The following table summarizes management techniques by demand- and supply-side actions for implementation:

SUPPLY-SIDE INTERVENTIONS	DEMAND-SIDE INTERVENTIONS
To enhance retention, de-silt of ponds, tanks, and surface water bodies.	Instead of using conventional flood irrigation techniques, drip, sprinkler, and pressured irrigation are encouraged to increase irrigation efficiency.
Construction of Rainwater harvesting structures at suitable locations.	
Construction of check dams at suitable locations to increase the quantum of groundwater recharge	

Table 13: Proposed Supply-side and Demand-side interventions

Flooding recharge to arrest declining GW levels:

It is a direct surface recharge technique and suitable for relatively flat topography. Here, water is spread as a thin sheet. It requires system of distribution channel for the supply of water for flooding. High rate of vertical infiltration is obtained on areas with undisturbed vegetation and sandy soil covering. Flooding temporarily increases river bed permeability by moving clay soils downstream, and this increases aquifer recharge.

5.1 Supply Side Interventions

In order to raise the amount of available water by expanding storage, encouraging community involvement in the reemergence and recovery of conventional water bodies like tanks, ponds, etc., and adequate rainwater harvesting frameworks at urban locations, it has been suggested to embrace that kind initiatives only in groundwater stressed blocks. The following is a description of the various interventions:

5.1.1 Carrying out de-siltation of tanks, streams, surface water, and pond catchments to increase storage.

Conventional water features like tanks, ponds, and can be desalted to expand storage space by catching extra rainwater, which can then be used for home and irrigation needs.

5.1.2 Construction of Rainwater harvesting structures at suitable locations

Rooftop rainwater harvesting is a process where rainwater from roofs of homes, buildings, schools, and other businesses is redirected to a storage tank or used to rehydrate an underground aquifer via a network of pipes and filter media (by Manager Aquifer Recharge techniques). Additionally, it takes far less upkeep to operate.

If not held in a tank, it reduces excess rainfall pouring into sewers that cause urban floods, stops soil erosion, and raises groundwater levels. It can assist get through the summer's peak water demand if kept in a tank or sump.

The amount of rainfall harvested depends on 3 factors:

- Quantum of annual Rainfall (mm)
- Rooftop area (m2)
- Runoff factor (0.2 to 0.8 depending on roofing material)

Formula to calculate harvested rainfall = Quantum of annual Rainfall (mm)* Rooftop area (m2)* Runoff factor

5.1.3 Construction and maintenance of Arsenic removal units

Construction and maintenance of arsenic removal units at places where the deeper aquifer is Arsenic affected.

5.1.4 Construction of deeper tube-wells tapping 2nd Aquifer group at locations where quality issues plague the unconfined aquifer.

Deeper tube-wells tapping the 2nd Aquifer group between 70 - 152 mbgl can be constructed at suitable locations where the unconfined aquifer is affected by quality issues like high Iron, Manganese, Arsenic, etc.

5.1.5 Construction of check dams at suitable locations to increase the quantum of groundwater recharge.

5.2 Demand-side interventions

Agriculture is the main user of groundwater, followed by domestic and industrial needs. There is increased interest in promoting the use of micro-irrigation techniques like spray and drip watering as the traditional form of irrigation via canals provides decreased efficiency. The several approaches are described below:

5.2.1 Promoting drip and sprinkler irrigation to enhance crop production.

- The amount of groundwater used for irrigation will be reduced, and the farmer's revenue will increase since they will be able to plant one or two extra crops.
- As little as 20–25 percent of water is lost with drip irrigation and 30–40 percent with sprinkler irrigation.
- Drip irrigation can also be used to water wheat, cotton, pulses, and oil seeds crops that are spread out. Sprinkler irrigation works well for crops that are close to each other, like sugarcane, spices, vegetables, flowers, fruits, and so on.
- The department in charge (Revenue, Agriculture, Land Holding, etc.) should do a rigorous survey to find out how much land small and marginal farmers own since most microirrigation practices are run on a large scale, and most land holdings are small, usually less than 1 hectare.

5.2.2 Introduction of water-tolerant rice crops

- Popularization of rice varieties like Madhukar for flooded areas and Jal Priya & Jal Lahari varieties for waterlogged conditions by Krishi Vigyan Kendra among the farmers.
- > These problematic areas have been identified by KVK. It has been attached in Annexure-3.

5.2.3 Promoting the cultivation of pulses

- Pulses not only give you the protein you need, but the nitrogen-fixing bacteria in their roots also add about 40 kg/Ha of nitrogen to the soil. It also helps the succeeding crop grow by making the soil's microenvironment, quality, and yield better.
- By combining the farming of pulses with other government programs already in place, such as the "Integrated Scheme of Oilseeds, Pulses, Oil Palm and Maize" (ISOPOM) program, Accelerated Pules Production program, and Pulses Development Program under "Rashtriya Krishi Vikas Yojana," the cultivation of pulses can be given a boost.
- Via seminars and other events, the state agricultural department may educate farmers on the advantages of growing pulses as intercrops and including short-duration pulse types as cash crops.
- Promoting cultivation of pulses has been identified by KVK. It has been attached in Annexure-3.

5.2.4 Promoting oilseed cultivation with subsidies and incentives

- Because the output of oil seeds is inadequate to meet the demands of the population and involves a 40 percent import charge, India is the second biggest importer of oil seeds and the third-largest consumer of oil seeds, spending a total of 74,996 crores on imports in 2017–18.
- In the long-term, it will be advantageous for the nation to double the import duty in addition to providing bonuses for domestic oilseed cultivation by integrating the "Minimum Support Price" (MSP) with the "Minimum Remunerative Price" (MRP) and assent the oil seed sector special prestige under the "National Food Security Mission" (NFSM).
- The "Integrated Scheme of Oilseeds, Pulses, Oil Palm and Maize" (ISOPOM) is a federal program whereby every State develops a five-year seed plan outlining the needs of every farmer and designates ICAR as the nodal organization. In moreover to securing infrastructure

support, technical training for farmers, and demonstrations of the most recent agricultural inputs to increase yield, ICAR is responsible for the purchasing and dispersion of seeds, "weedicides/bio-pesticides, distribution of Gypsum/Pyrite/Liming/Dolomite for lining soils, and sprinkler sets."

- These oilseeds may be grown on appropriate soils, as determined by State Agricultural Universities: Linseed, Mustard, Rap seed, Sunflower, Castor Soybean, Safflower, Niger, Sesamum, and Groundnuts.
- Promoting cultivation of oilseeds has been identified by KVK. It has been attached in Annexure-3.

5.2.5 Providing impetus to horticulture and orchards under Rashtriya Krishi Vikas Yojana

National Agriculture Development Scheme is being operated by the Department of Horticulture & Food Processing, Government of Uttar Pradesh, that covers districts left out of the ambit of the National Horticulture Mission (N.H.M). 60% of the budgetary allocation is covered by the Central government, whereas 40% of budgetary allocation is covered by the State government's budget.

5.3 Miscellaneous interventions

5.3.1 Formulation of village water security and safety plan under the ambit of the National Rural Drinking Water Program (NRDWP).

With the primary goal of institutionalizing community participation and involvement in "Panchayat Raj Institution (PRI)" for water quality monitoring & surveillance of all drinking water sources, the "National Rural Drinking Water Quality Monitoring & Surveillance Program (NDWQM&S)" was introduced in February 2006. The following are the main components of NDWQM&S:

- To establish district- and sub-district-level drinking water quality testing labs (or enhance the current ones) for routine and ongoing evaluation of the water quality of rural drinking water sources.
- To provide "Field Test Kits (FTKs)" and bacteriological vials to GPs for on-the-field testing of essential general parameters (including Arsenic).
- > Raising public awareness of problems with water quality and health.

- Developing the capacity of five local staff members in every GP to test water sources under their control utilizing straightforward FTKs and receiving verification from the closest water testing laboratory for samples that test positively.
- Perform a sanitary survey with certified Panchayat staff to check for potential bacterial contamination.

Underneath the program, all states receive full funding for Information, Education, and Communication (IEC) initiatives, human resource development initiatives, bolstering district-level drinking water quality testing laboratories, purchasing FTK for drinking water testing, travel and transportation costs, data reporting costs, stationery costs, honoraria for district-level surveillance coordinators, water testing, documentation, and data entry costs. Since 2009, the WQMS Program has been included into the NRDWP.

The NRDWP offers grants to all the states for the development of rural water supply schemes, with a concentration on areas that are water-stressed and have poor water quality, as well as for initiatives to collect rainwater and recharge the groundwater, as well as for operation, and maintenance, including minor repairs. Every year, the states get their assigned cash in three installments (40 percent, 40 percent, and 30 percent, correspondingly). The NRDWP gives the states the authority to develop, authorize, and carry out water supply plans, including, among other things, the choice of acceptable treatment technology.

5.3.2 Implementation agricultural contingency plan for Rampur by KVK.

The same has been attached in the Annexure-III

5.3.3

- Promoting cultivation of pulses with high per hectare yield along with incentives.
- Promoting oilseed cultivation with subsidies and incentives.
- Providing impetus to horticulture and orchards by Rashtriya Krishi Vikas Yojana by State Government agencies.
- Construction and maintenance of arsenic removal units at places where the deeper aquifer is Fluoride affected.
- Construction of deeper tube-wells tapping 2nd Aquifer group at locations where quality issues plague the unconfined aquifer

Construction of check dams at suitable locations to increase the quantum of groundwater recharge

BLOCK-WISE, GROUNDWATER MANAGEMENT PLANS

5.4 Groundwater Management Plan of Bilaspur block

- Block: BILASPUR District: Rampur
- 1. General Information

State	Uttar Pradesh
District name	Rampur
Block Name	BILASPUR
Location	
Geographical area	487 Sq.Km.
Basin/Sub-basin	Central Ganga Plain
Principal Aquifer System	Alluvium
Major Aquifer System	Older Alluvium (AL03)
Normal Annual Rainfall	509 mm

2. Aquifer Disposition

Aquifer	• Aquifer Disposition: One aquifer group with 3 Aquifer
Disposition	layers exist.
	• Aquifer 1 (mbgl): From Surface to 60mbgl.
	\circ Aquifer 2 (mbgl): 90 to 210 mbgl.
	• Aquifer 3 (mbgl): 230 to 300 mbgl.
	• Fresh Aquifer Depth: Upto 300 mbgl.
	• Transmissivity (m2/day): 1083.05
	• Sp. Yield: 0.00857

Groundwater Monitoring Status	Ground Water Monitoring Wells: 7
Ground Water Quality	• For Aquifer Group I: No Quality Problem
Aquifer Potential	Aquifer Group I: 1517.7 lpm
Groundwater	Annual Extractable GW Recharge: 214.59 MCM
Resource	• GW Draft: 127.40 MCM
	• Stage of GW Development: 63.49 %
	• Total in-storage resource of the block (fresh) is 86.23 MCM
Existing and	• Present demand for All Usage: 214.59 MCM
Future Water	• Future Demand for Domestic and Industrial Use: 30.53
Demand	MCM

3. Aquifer Management Plan

Groundwater	Location of feasible sites for successful wells.						
Management issues	• Decline in water levels in some parts.						
	• Decline in water levels in some parts.						
	• GW quality Iron and Arsenic are present in an						
	unconfined aquifer						
AR &	Construction of Recharge Structures mainly ponds and						
Conservation	adoption of water use efficiency practices.						
Possibilities							
Groundwater	SUPPLY SIDE MANAGEMENT: Water conservation						
Management Plan	and Artificial Recharge to ground water and on Farm						
	Activities.						
	DEMAND SIDE MANAGEMENT: Promoting Micro						
	irrigation, especially drip and sprinkler irrigation method						
	in Cultivation of rice crops, pulses, oilseed and						

	horticulture.				
Status of GW Exploration	Exploratory Wells: 2 Observation Wells: 2 Piezometers: 5				
Aquifer Characteristics	 Aquifer Group I: Transmissivity: 1083.05 m2/day Storativity: 0.00857 				

> Water Level Behaviour

In Bilaspur, there is a rise in water level in Pre-monsoon and post-monsoon.

➤ Issues

Groundwater contribution to agriculture is above 91.8%.

Groundwater Management Plan

The proposed groundwater management plan for the block has been tabulated below. Upon implementation, 4.47 MCM of groundwater is expected to be available for additional utilization, and Stage of Groundwater Development is expected to decrease by 1.22 %.

Table 14(a): Summarized	l details of interventions	proposed
-------------------------	----------------------------	----------

Block	Check	Stream	Nala	Ponds	On-farm	WUE
	Dams	Develop	Bunds	(Nos.)	area	area
	(Nos.)	ment	(kms)		(Ha)	(Ha)
		(kms)				
Bilaspur	-	-	-	05	5350	4882
Net Annual	Existing	Stage of	Total	Total GW	Projected	Projected
--------------	--------------	-----------	-------------	-------------	--------------	-------------
GW	GW Draft	GW	recharge	savings	Net GW	Stage of
Availability	for all uses	Developme	through	through	Availability	GW
(MCM)	(MCM)	nt (%)	interventio	interventio	(MCM)	Developme
			ns (MCM)	ns (MCM)		nt after
						interventio
						ns (%)
214.59	127.40	59.37	1.10	3.37	219.06	58.15

 Table 14(b): Projected GW Recharge & savings by supply and demand-side management

Tentative location for GW recharge and water conservation Measures, Bilaspur Block, Rampur (U.P.)

Figure 26: Proposed demand and supply side interventions in Bilaspur block.

5.5 Groundwater Management Plan of Chamraua block

Block: CHAMRAUWA District: Rampur

4. General Information

State	Uttar Pradesh
District name	Rampur
Block Name	CHAMRAUWA
Location	
Geographical area	281.26 Sq. Km.
Basin/Sub-basin	Central Ganga Plain
Principal Aquifer	Alluvium
System	
Major Aquifer	Older Alluvium(AL03)
System	
Normal Annual	509 mm
Rainfall	

Aquifer	Aquifer Disposition:		
Disposition	• Aquifer 1 (mbgl):		
	• Aquifer 2 (mbgl):		
	• Aquifer 3 (mbgl):		
	• Fresh Aquifer Depth:		
	• Transmissivity (m2/day):		
	• Sp. Yield:		
Groundwater	Ground Water Monitoring Wells: 8		
Monitoring Status			

Ground Water Quality	• For Aquifer Group I: No Quality Problem
Aquifer Potential	Aquifer Group I: lpm
Groundwater	Annual Extractable GW Recharge: 66.04 MCM
Resource	• GW Draft: 62.38 MCM
	• Stage of GW Development: 65.78 %
	• Total in-storage resource of the block (fresh) is 3.06 MCM
Existing and	• Present demand for All Usage: 66.04 MCM
Future Water Demand	• Future Demand for Domestic and Industrial Use: 32.30 MCM

Croundwator	Managamant	• Location of feasible sites for successful
Gibulluwater	Management	• Location of reasible sites for successful
issues		wells.
		• Decline in water levels in some parts.
		• Decline in water levels in some parts.
		• GW quality Iron and Arsenic are
		present in an unconfined aquifer
AR &	Conservation	Construction of Recharge Structures mainly ponds
Possibilities		and adoption of water use efficiency practices.
Groundwater	Management	• SUPPLY SIDE MANAGEMENT: Water
Dlan		conservation and Artificial Recharge to ground
1 1411		water and on Farm Activities.
		• DEMAND SIDE MANAGEMENT:
		Promoting Micro irrigation, especially drip and
		sprinkler irrigation method in Cultivation of
		rice crops ,pulses,oilseed and horticulture.

Status of GW Exploration	Exploratory Wells: 0		
•	Observation Wells: 0		
	Piezometers: 6		
Aquifer Characteristics	Aquifer Group I:		
Aquiter Churucteristics	 Transmissivity: m2/day 		
	• Storativity:		

In Chamraua, there is no rise in both water levels Pre-monsoon as well as post-monsoon.

> Issues

Nitrate is present in an unconfined aquifer.

Groundwater contribution to agriculture is above 90.00%.

Groundwater Management Plan

The proposed groundwater management plan for the block has been tabulated below. Upon implementation, 3.69 MCM of groundwater is expected to be available for additional utilization, and Stage of Groundwater Development is expected to decrease by 5.01 %.

Block	Check	Stream	Nala	Ponds	On-farm	WUE
	Dams	Develop	Bunds	(Nos.)	area	area
	(Nos.)	ment	(kms)		(Ha)	(Ha)
		(kms)				
Chamraua	-	-	-	05	2905	1403

Net Annual	Existing	Stage of	Total	Total GW	Projected	Projected
GW	GW Draft	GW	recharge	savings	Net GW	Stage of
Availability	for all uses	Developme	through	through	Availability	GW
(MCM)	(MCM)	nt (%)	interventio	interventio	(MCM)	Developme
			ns (MCM)	ns (MCM)		nt after
						interventio
						ns (%)
66.04	62.38	94.46	1.10	2.59	69.73	89.45

 Table 15(b): Projected GW Recharge & savings by supply and demand-side management

Tentative location for Proposed GW Recharge and water Conservation measures, Chamrauwa Block, Rampur

Figure 27: Proposed demand and supply side interventions in Chamrauwa block.

5.6 Groundwater Management Plan of Milak block

Block: MILAK District: Rampur

7. General Information

State	Uttar Pradesh
District name	Rampur
Block Name	MILAK
Location	
Geographical area	522.97 Sq.Km.
Basin/Sub-basin	Central Ganga Plain
Principal Aquifer	Alluvium
System	
Major Aquifer	Older Alluvium(AL03)
System	
Normal Annual	509 mm
Rainfall	

Aquifer	• Aquifer Disposition: One aquifer group with 3 Aquifer		
Disposition	layers exist.		
	• Aquifer 1 (mbgl): From Surface to 90 mbgl.		
	• Aquifer 2 (mbgl): 120.00 to 180.00 mbgl.		
	• Aquifer 3 (mbgl): 200 to 300 mbgl.		
	• Fresh Aquifer Depth: Upto 300 mbgl.		
	• Transmissivity (m2/day): 1207.74		
	• Sp. Yield: 0.0012		
Groundwater	Ground Water Monitoring Wells: 4		

Monitoring Status	
Ground Water Quality	• For Aquifer Group I: No Quality Problem
Aquifer Potential	• Aquifer Group I: 1555.2 lpm
Groundwater	• Annual Extractable GW Recharge: 136.98 MCM
Resource	• GW Draft: 88.56 MCM
	• Stage of GW Development: 60.13 %
	• Total in-storage resource of the block (fresh) is 47.13 MCM
Existing and	• Present demand for All Usage: 136.98 MCM
Future Water	• Future Demand for Domestic and Industrial Use: 51.98
Demand	МСМ

Groundwater	Management	• Location of feasible sites for successful
issues		wells.
		• Decline in water levels in some parts.
		•
		• Decline in water levels in some parts.
		• GW quality Iron and Arsenic are
		present in an unconfined aquifer
AD &	Conservation	Construction of Recharge Structures mainly ponds
Possibilities		and adoption of water use efficiency practices.
Groundwater	Management	• SUPPLY SIDE MANAGEMENT: Water
Plan	8	conservation and Artificial Recharge to ground
		water and on Farm Activities.
		• DEMAND SIDE MANAGEMENT:
		Promoting Micro irrigation, especially drip and
		sprinkler irrigation method in Cultivation of

	rice crops, pulses, oilseed and horticulture.				
Status of GW Exploration	Exploratory Wells: 2				
	Observation Wells: 2				
	Piezometers: 11				
Aquifer Characteristics	Aquifer Group I:				
1	 Transmissivity: 1207.74 m2/day 				
	o Storativity: 0.0012				

In Milak, there is no rise in both water levels Pre-monsoon as well as post-monsoon.

> Issues

Arsenic and Iron is present in an unconfined aquifer.

Groundwater contribution to agriculture is above 90.00%.

Groundwater Management Plan

The proposed groundwater management plan for the block has been tabulated below. Upon implementation, 10.63 MCM of groundwater is expected to be available for additional utilization, and Stage of Groundwater Development is expected to decrease by 4.66%.

 Table 16(a): Summarized details of interventions proposed

Block	Check	Stream	Nala	Ponds	On-farm	WUE
	Dams	Develop	Bunds	(Nos.)	area	area
	(Nos.)	ment	(kms)		(Ha)	(Ha)
		(kms)				
Milak	-	-	-	05	9413	5752

Net Annual	Existing	Stage of	Total	Total GW	Projected	Projected
GW	GW Draft	GW	recharge	savings	Net GW	Stage of
Availability	for all uses	Developme	through	through	Availability	GW
(MCM)	(MCM)	nt (%)	interventio	interventio	(MCM)	Developme
			ns (MCM)	ns (MCM)		nt after
						interventio
						ns (%)
136.98	88.56	64.65	1.10	9.53	147.61	59.99

 Table 16(b): Projected GW Recharge & savings by supply and demand-side management

Tentative location of Proposed GW recharge and Water Conservation measures, Milak Block, Rampur (U.P.)

Figure 28: Proposed demand and supply side interventions in Milak block.

5.7 Groundwater Management Plan of Said Nagar block

Block: SAID NAGAR

District: *Rampur*

10. General Information

State	Uttar Pradesh
District name	Rampur
Block Name	SAID NAGAR
Location	
Geographical area	307.96 Sq.Km.
Basin/Sub-basin	Central Ganga Plain
Principal Aquifer	Alluvium
System	
Major Aquifer	Older Alluvium(AL03)
System	
Normal Annual	509 mm
Rainfall	

Aquifer	Aquifer Disposition:				
Disposition	• Aquifer 1 (mbgl):				
	• Aquifer 2 (mbgl):				
	• Aquifer 3 (mbgl):				
	• Fresh Aquifer Depth:				
	• Transmissivity (m2/day):				
	• Sp. Yield:				
Groundwater	Ground Water Monitoring Wells: 9				
Monitoring Status					
Ground Water	• For Aquifer Group I: No Quality Problem				
Quality					
Aquifer Potential	Aquifer Group I: lpm				
Groundwater	• Annual Extractable GW Recharge: 51.62 MCM				

Resource		٠	GW Draft: 41.38 MCM			
		٠	• Stage of GW Development: 55.98 %			
		•	Total in-storage resource of the block (fresh) is 9.27 MCM			
Existing	and	٠	Present demand for All Usage: 51.62 MCM			
Future V	Vater	•	Future Demand for Domestic and Industrial Use: 33.03			
Demand			МСМ			

Groundwater Manageme	• Location of feasible sites for successful			
issues	wells.			
	• Decline in water levels in some parts.			
	• Decline in water levels in some parts.			
	• GW quality Iron and Arsenic are			
	present in an unconfined aquifer			
AR & Conservati	on Construction of Recharge Structures mainly ponds			
Possibilities	and adoption of water use efficiency practices.			
Groundwater Manageme	• SUPPLY SIDE MANAGEMENT: Water			
Plan	conservation and Artificial Recharge to ground			
	water and on Farm Activities.			
	• DEMAND SIDE MANAGEMENT:			
	Promoting Micro irrigation, especially drip and			
	sprinkler irrigation method in Cultivation of			
	rice crops, pulses, oilseed and horticulture.			
Status of GW Exploration	Exploratory Wells: 0			
	Observation Wells: 0			
	Piezometers: 8			
Aquifer Characteristics	Aquifer Group I:			
1	• Transmissivity: m2/day			

0	Storativity:

In Said Nagar, there is no rise in both water levels Pre-monsoon as well as post-monsoon.

> Issues

Iron is present in an unconfined aquifer.

Groundwater contribution to agriculture is 9.40%.

Groundwater Management Plan

The proposed groundwater management plan for the block has been tabulated below. Upon implementation, 6.96 MCM of groundwater is expected to be available for additional utilization, and Stage of Groundwater Development is expected to decrease by 9.47 %.

Block	Check	Stream	Nala	Ponds	On-farm	WUE
	Dams	Develop	Bunds	(Nos.)	area	area
	(Nos.)	ment	(kms)		(Ha)	(Ha)
		(kms)				
Said	-	-	-	05	7844	4183
Nagar						

Table 17(a): Summarized details of interventions proposed

Table 17(b): Projected GW Recharge & savings by supply and demand-side management

Net Annual	Existing	Stage of	Total	Total GW	Projected	Projected
GW	GW Draft	GW	recharge	savings	Net GW	Stage of
Availability	for all uses	Developme	through	through	Availability	GW

(MCM)	(MCM)	nt (%)	interventio	interventio	(MCM)	Developme
			ns (MCM)	ns (MCM)		nt after
						interventio
						ns (%)
51.62	41.38	80.16	1.10	5.86	58.58	70.63

Tentative location for proposed GW recharge and GW Conservation Measure, Said Nagar, Rampur (U.P.)

Figure 29: Proposed demand and supply side interventions in Saidnagar block.

5.8 Groundwater Management Plan Suar block

Block: SAUR District: Rampur

13. General Information

State	Uttar Pradesh
District name	Rampur
Block Name	SAUR
Location	
Geographical area	408 Sq.Km.
Basin/Sub-basin	Central Ganga Plain
Principal Aquifer	Alluvium
System	
Major Aquifer	Older Alluvium(AL03)
System	
Normal Annual	509 mm
Rainfall	

Aquifer	• Aquifer Disposition: One aquifer group with 3 Aquifer
Disposition	layers exist.
	• Aquifer 1 (mbgl): From Surface to 60 mbgl.
	• Aquifer 2 (mbgl): 70 to 112 mbgl.
	• Aquifer 3 (mbgl): 120 to 150 mbgl.
	• Fresh Aquifer Depth: Upto 150 mbgl.
	• Transmissivity (m2/day): 1080.61
	• Sp. Yield: 0.000181

Groundwater Monitoring Status	Ground Water Monitoring Wells: 5		
Ground Water Quality	For Aquifer Group I: No Quality Problem		
Aquifer Potential	• Aquifer Group I: 1555.2 lpm		
Groundwater	• Annual Extractable GW Recharge: 155.50 MCM		
Resource	• GW Draft: 127.42 MCM		
	• Stage of GW Development: 44.08 %		
	• Total in-storage resource of the block (fresh) is 26.45 MCM		
Existing and	Present demand for All Usage: 155.50 MCM		
Future Water	• Future Demand for Domestic and Industrial Use: 48.14		
Demand	MCM		

Groundwater	Management	• Location of feasible sites for successful					
issues		wells.					
		• Decline in water levels in some parts.					
		• Decline in water levels in some parts.					
		• GW quality Iron and Arsenic are					
		present in an unconfined aquifer					
AR &	Conservation	Construction of Recharge Structures mainly ponds					
Possibilities		and adoption of water use efficiency practices.					
Groundwater	Management	• SUPPLY SIDE MANAGEMENT: Water					
Plan	C	conservation and Artificial Recharge to ground					
		water and on Farm Activities.					
		• DEMAND SIDE MANAGEMENT:					
		Promoting Micro irrigation, especially drip and					

	sprinkler irrigation method in Cultivation of					
	rice crops ,pulses,oilseed and horticulture.					
Status of GW Exploration	Exploratory Wells: 2					
*	Observation Wells: 2					
	Piezometers: 5					
Aquifer Characteristics	Aquifer Group I:					
Aquiter characteristics	 Transmissivity: 1080.61 m2/day 					
	o Storativity: 0.000181					

In Shahbad, there is no rise in both water levels Pre-monsoon as well as post-monsoon.

➢ Issues

Iron is present in an unconfined aquifer.

Groundwater contribution to agriculture is above 90.00%.

Groundwater Management Plan

The proposed groundwater management plan for the block has been tabulated below. Upon implementation, 4.64 MCM of groundwater is expected to be available for additional utilization, and Stage of Groundwater Development is expected to decrease by 2.39 %.

 Table 18(a): Summarized details of interventions proposed

Block	Check	Stream	Nala	Ponds	On-farm	WUE
	Dams	Develop	Bunds	(Nos.)	area	area
	(Nos.)	ment	(kms)		(Ha)	(Ha)
		(kms)				
Shahbad	-	-	-	05	4896	2448

Net Annual	Existing	Stage of	Total	Total GW	Projected	Projected
GW	GW Draft	GW	recharge	savings	Net GW	Stage of
Availability	for all uses	Developme	through	through	Availability	GW
(MCM)	(MCM)	nt (%)	interventio	interventio	(MCM)	Developme
			ns (MCM)	ns (MCM)		nt after
						interventio
						ns (%)
155.5	127.42	81.95	1.10	3.54	160.14	79.56

Table 18(b): Projected GW Recharge & savings by supply and demand-side management

Tentative location for GW recharge and Water Conservation measures, Suar Block, Rampur (U.P.)

Figure 30: Proposed demand and supply side interventions in Suar block.

5.9 Groundwater Management Plan of Shahbad block

Block: SHAHABAD **District:** Rampur

16. General Information

State	Uttar Pradesh
District name	Rampur
Block Name	SHAHABAD
Location	
Geographical area	560.19 Sq.Km.
Basin/Sub-basin	Central Ganga Plain
Principal Aquifer	Alluvium
System	
Major Aquifer	Older Alluvium(AL03)
System	
Normal Annual	509 mm
Rainfall	

Aquifer	Aquifer Disposition:
Disposition	• Aquifer 1 (mbgl):
	• Aquifer 2 (mbgl):
	• Aquifer 3 (mbgl):
	• Fresh Aquifer Depth:
	• Transmissivity (m2/day):
	• Sp. Yield:
Groundwater	Ground Water Monitoring Wells: 5
Monitoring Status	

Ground Water Quality	• For Aquifer Group I: No Quality Problem
Aquifer Potential	Aquifer Group I: lpm
Groundwater	Annual Extractable GW Recharge: 94.15 MCM
Resource	• GW Draft: 71.21 MCM
	• Stage of GW Development: 50.25 %
	• Total in-storage resource of the block (fresh) is 21.56 MCM
Existing and	Present demand for All Usage: 94.15 MCM
Future Water	• Future Demand for Domestic and Industrial Use: 30.73
Demand	МСМ

In Shahbad, there is no rise in both water levels Pre-monsoon as well as post-monsoon.

➢ Issues

Nitrate is present in an unconfined aquifer.

Groundwater contribution to agriculture is above 90%.

Groundwater Management Plan

The proposed groundwater management plan for the block has been tabulated below. Upon implementation, _____ MCM of groundwater is expected to be available for additional utilization, and Stage of Groundwater Development is expected to decrease by ____%.

Table 18(a): Summarized details of interventions propos	ed
---	----

Block	Check	Stream	Nala	Ponds	On-farm	WUE
	Dams	Develop	Bunds	(Nos.)	area	area
	(Nos.)	ment	(kms)		(Ha)	(Ha)
		(kms)				
Shahbad	-	-	-	05	9523	5041

Net Annual	Existing	Stage of	Total	Total GW	Projected	Projected
GW	GW Draft	GW	recharge	savings	Net GW	Stage of
Availability	for all uses	Developme	through	through	Availability	GW
(MCM)	(MCM)	nt (%)	interventio	interventio	(MCM)	Developme
			ns (MCM)	ns (MCM)		nt after
						interventio
						ns (%)
94.15	71.21	75.64	1.10	6.81	102.06	69.77

 Table 18(b): Projected GW Recharge & savings by supply and demand-side management

Tentative sites for Proposed GW recharge and water Conservation Practices, Shahapur Block, Rampur (U.P.)

Figure 31: Proposed demand and supply side interventions in Shahbad block.

ANNEXURE – 1

Block	Sample	Source	Lat	Long	pН	Conductivity	CO ₃	HCO ₃
	Location					µmho/cm at 25°C	mg/L	mg/L
Bilaspur	Block Office	H/P-IM-II	28.8912	79.2606	7.34	595	nil	244
Chamraua	Block Office	H/P-IM-II	28.8081	79.0281	7.39	397	nil	153
Milak	Block Office	H/P-IM-II	28.6066	79.1797	7.75	575	nil	305
Said Nagar	Block Office	H/P-IM-II	28.8580	78.9885	7.34	449	nil	146
Shahbad	Block Office	H/P-IM-II	28.5553	78.9885	7.49	1376	nil	122
Swar	Block Office	H/P-IM-II	29.0565	79.0557	7.50	488	nil	238

(BASIC GW QUALITY DATA OF UNCONFINED AQUIFER)

Block	Cl	F	NO ₃	SO4	Hardness as CaCO ₃	Ca Hardness	Mg Hardness	Na	K
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Bilaspur	28	0.31	BDL	51	225	36	32	38	2.0
Chamraua	21	0.11	BDL	33	150	32	17	21	3.6

Milak	21	0.14	BDL	31	185	16	35	55	21
Said Nagar	36	0.11	BDL	46	165	44	13	28	2.5
Shahbad	170	BDL	182	181	475	64	76	96	14
Swar	14	0.18	BDL	40	205	24	35	28	2.4

ANNEXURE – 2 (TRACE METAL DATA OF UNCONFINED AQUIFER)

Block	Fe	Mn	Cu	Zn	As	Pb	U	Cr
	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)	(ppb)
Bilaspur	0.99	0.00	0.00	1.10	0.00	0.00	7.00	0.00
Chamrarura	4.00	0.39	0.00	1.16	3.00	0.00	3.00	0.00
Milak	4.30	0.00	0.00	1.02	22.00	0.00	0.00	0.00
Said nagar	1.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Shahbad	0.00	0.33	0.00	3.42	0.00	0.00	17.00	0.00
Swar	1.16	0.00	0.00	0.61	0.00	0.00	3.00	0.00

ANNEXURE – 3

1.0 Strategies for weather related contingencies

1.1 Drought

1.2 Rainfed situation

Condition			Suggested Contingency measures				
Early season	Major	Normal Crop /	Change in crop /	Agronomic	Remarks on		
drought	Farming	Cropping	cropping system	measures	Implementatio n		
(delayed	situation	system	including variety				
onset)							
Delay by 2	Deep	Maize/ Pearl	Maize: Kanchan, Navin	 Conservation 	Seed-drill		
weeks	soil,	millet/	Navjyoti, Azad	furrow	under RKVY		
	yellow	Pigeonpea/	utam,Surya,Meerut	Inter- cultivation	Supply of seed		
4 th Week of	colored		pili,Ganga 2,11 Samrat	 Sowing with 	through govt.		
June	alluvial		etc Sorghum: CSH 14,	multi seed drill	agencies <i>ie</i> .		
	loam		16, CSB	 Wider spacing 	NFSM,RKVY		
	soils		13, 15, SPB 1338 etc	for pigeonpea	Re-scheduling		
			Pearl millet: Raj-		of canal		
			171,WCC- 75,Pusa 23,		calendar		
			322 icmh-451				
			Pigeonpea: UPAS 120,				
			ICPL 151,Pusa 33,				
Condition			Suggested Contingency n	neasures	•		
Early season	Major	Normal	Change in crop/cropping	Agronomic	Remarks on		
drought	Farming	Crop/cropping	system	measures	Implementatio n		
(delayed	situation	system					
onset)							
Delay by 4	Deep	Maize/ Pearl	Maize: Kanchan, Navin	Conservation	Seed-drill under		
weeks	soil,	millet/ Sesame/	Navjyoti, Azad	furrow	RKVY		
	yellow	Blackgram	utam,Surya,Meerut	Inter- cultivation	Supply of seed		
2 nd Week of	colored		pili,Ganga 2,11 Samrat	 Sowing with 	through govt.		
July	alluvial		etc Pearl millet: Raj-	multi seed drill	agencies <i>ie</i> .		
	loam		171,WCC- 75,Pusa 23,		NFSM		
	soils		322 icmh-451 Sesame:				
			Pergati, shekar, TA- 78,				
			TA-12				

			Blackgram: Narender		
			Blackgram-1, Pant U-30,		
			19, 35 etc		
Condition			Suggested Contingency n	neasures	
Farly season	Maior	Normal	Change in crop/cropping	Agronomic	Remarks on
drought	Farming	Cron/cronning	system	measures	Implementation
alought	situation	system	System	incusures	
Delay by 6	Deep	Blackgram/Gre	Blackgram: Narender	• Sowing with	Re-scheduling of
weeks	soil,	engram/ Toria	Blackgram-1, Pant U-30,	multi seed drill	canal calendar
4 th week of	yellow	Pearl millet	19, 35 Greengram:		
July	colored		Pantmung - 2, 3,		
	alluvial		Narender mung -1, 4,		
	loam		SML-668, PDM-11		
	soils				
			Pearl millet: Raj-	-	
			171,WCC- 75,Pusa 23,		
			322 icmh-451		
Condition			Suggested Contingency n	neasures	
Early season	Major		Change in crop/cropping	Agronomic	Remarks on
drought	Farming		system	measures	Implementatio n
	situation				
Delay by 8	Deep	Toria	Toria: P.T30, 507, 303,	Conservation	Seed-drill
	soil,			furrow	under RKVY
Weeks	yellow		Bhawani, T-9	Inter-cultivation	Supply of seed
2nd	colored			 Sowing with 	through govt.
	alluvial			multi seed drill	agencies <i>ie</i> .
	loam				NFSM
Week of	soils				
August				1	

Condition		Suggested Contingency measures						
Early season	Major	Normal Crop / Cropping	Crop	Soil nutrient &	Remarks on			
		system	management					
drought	Farming			moisture	Implementation			
(Normal	situatio			conservation				
onset)	n			measures				

	Irrigate	Rice: PS 4, 5, PB 1, PRH 10	. Thining, weeding	 Inter 	• Supply of inter
Normal onset	d up	/	and gap filling in	cultivation	cultural
followed by	land	Sugarcane: 64, 88230,	existing crop.	 Conservation 	implements
15-20 days		92254, 95255, COS 767,	. Re sowing	furrow	through RKVY
dry spell after		8432, 97284 /	. Selection/nurser	 Thinning and 	 Farm ponds
sowing		Toria: T-36,T-9,Bhawani,	y sowing of short	weeding	through IWSM
leading to		PT-30,303,507 /	duration rice	 Mulching 	programme
poor		Maize: Kanchan, Sweta,	cultivar		Pulse crop
germination/c		Navin, Surya, Azad uttam,			seeds supply
rop stand etc.		Navjyoti, Jaunpuri,			through NFSM
		Meerut pili / Pearl millet:			
		Raj-171, -75, Pusa 23, 322			
		icmh-451			
	Irrigate	Rice: PS 2,3, PB 1, Sarju 52,	,		
	d low	Pant 4 Narendra			
	land	359, Saket 4 /			
		Sorghum (Fodder):			
		Kanpuri, UP Chari 1,2 /			
		Sugarcane: 64, 88230,			
		92254, 95255, COS 767,			
		8432, 97284			
	Un	Maize/Sorghum /			
	irrigate	Toria: T-36, T-9, Bhawani	,		
	d up	PT-30,303,507 /			
	land	Pigeonpea: UPAS 120, ICPL			
		151			
	Un	Pigeonpea: UPAS 120, ICPL			
	irrigate	151 /			
	d low	Pearl millet: Local Merut			
	land	pili			
-		-			
Condition		· · · ·	Suggested Conting	gency measures	
Mid season	Major -	Normal Crop/cropping	Crop	Soil nutrient &	Remarks on
drought (long	Farming	system	management	moisture	Implementation
dry spell,	situatio			conservation	
consecutive 2	n			measures	
weeks rainless					
(>2.5 mm)					
period)					
	Irrigate	Rice: PS 4, 5, PB 1, PRH 10	. Thining,	 Inter 	 Supply of inter
At vegetative	d up	/	weeding and	cultivation	cultural
stage	land	Sugarcane: 64, 88230,	gap filling in	 Conservation 	implements

		92254, 95255, COS 767,	existing crop.	furrow	through RKVY
		8432, 97284 /	. Re sowing	 Thinning and 	 Farm ponds
		Toria: T-36,T-9,Bhawani	3.Postponement	weeding	through IWSM
		PT-30,303,507 /	of top dressing	Mulching	programme
		Maize: Kanchan, Sweta	4.Life saving		Pulse crop
		Navin, Surya, Azad uttam,	irrigation		seeds supply
		Navjyoti, Jaunpuri, Meerut	-		through NFSM
		pili /			Micro/drip/spr
		Pearl millet: Raj-171,WCC-			inkler
		75,Pusa 23, 322 icmh-451			
	Irrigate	Rice: PS 2,3, PB 1, Sarju 52,	,		irrigation under
	d low	Pant 4, Narendra			govt. schemes
	land	359, Saket 4 /			
		Sorghum (Fodder):			
		Kanpuri, UP Chari 1,2 /			
		Sugarcane: 64, 88230,	,		
		92254, 95255, COS 767,			
		8432, 97284			
	Un	Maize/Sorghum /	. Thining,	 Inter 	 Supply of inter
At vegetative	irrigate	Toria: T-36,T-9,Bhawani	weeding and	cultivation	cultural
stage	d up	PT-30,303,507 /	gap filling in	 Conservation 	implements
	land	Pigeonpea: UPAS 120, ICPL	existing crop.	furrow	through RKVY
		151	. Re sowing	 Thinning and 	 Farm ponds
			3.Postponement	weeding	through IWSM
			of top dressing	Mulching	programme
			4.Life saving		 Pulse crop
			irrigation		seeds supply
					through NFSM
					Micro/drip/spr
					inkler
	Un	Pigeonpea: UPAS 120, ICPL	4		 irrigation under
	irrigate	151/			govt. schemes
	d low	Pearl millet: Local Merut			irrigation under
	land	pili			govt. schemes
1				•	

Condition			Suggested Contingency measures				
Mid season	Major	Normal Crop/cropping	Crop	Soil nutrient &	Remarks on		
drought	Farming	system	management	moisture	Implementation		
(long dry	situation			conservation			
spell)				measures			
	Irrigated	Rice: PS 4, 5, PB 1, PRH	1. Thining,	 Conservation 	• Farm ponds		
At	up land	10 /	weeding and gap	furrow	through IWSM		
flowering/		Sugarcane: 64, 88230,	filling in existing	 Thinning and 	programme		
fruiting		92254, 95255, COS 767,	crop. 2.Life saving	weeding			
stage		8432, 97284 /	irrigation	 Mulching 			
		Toria: T-36,T-9,Bhawani,	3. Weeding and	 Urea spray or 			
		PT-30,303,507 /	weed mulching	KCL spray			
		Maize: Kanchan, Sweta,					
		Navin, Surya, Azad					
		uttam, Navjyoti,					
		Jaunpuri, Meerut pili /					
		Pearl millet: Raj-					
		171,WCC-75,Pusa 23,					
		322 icmh-451					
	Irrigated	Rice: PS 2,3, PB 1, Sarju					
		52, Pant 4, Narendra					
	low land	359, Saket 4 /					
		Sorghum (Fodder):					
		Kanpuri, UP Chari 1,2 /					
		Sugarcane: 64, 88230,					
		92254, 95255, COS 767,					
		8432, 97284					
	Un	Maize/Sorghum /		1			
	irrigated	Toria: T-36,T-9,Bhawani,	PT-30,303,507 /				
	up land	Pigeonpea: UPAS 120, IC	PL 151				
	Un	Pearl millet: Local Merut	pili /				
	irrigated	Toria: T-36,T-9,Bhawani,	PT-30,303,507				
	low land						

M Fa	Aajor arming ituation rigated	Normal Crop/cropping system	Crop	Rabi crop	Remarks on
Fa	arming ituation rrigated	system	managamant	1	•
sit	ituation rigated		management	planning	Implementation
510	rigated				
Terminal Irr		Rice: PS 4, 5, PB 1, PRH 10 /	1. Life saving	 Toria/mustard 	 Farm ponds
drought up	p land	Sugarcane: 64, 88230,	irrigation	 Potato 	through IWSM
(Early		92254, 95255, COS 767,	2. Picking/harve	 Pea/gram 	programme
withdrawal		8432, 97284 /	sting of	 Barseem/oat 	 Supply of seed
of monsoon)		Toria: T-36,T-9,Bhawani, PT-	pods/ear	 Land labeling 	through
		30,303,507 /	3. Harvest at		ISOPM
		Maize: Kanchan, Sweta,	physiological		 Harvesting
		Navin, Surya, Azad uttam,	maturity		and threshing
		Navjyoti, Jaunpuri, Meerut	stage		implements
		pili / Pearl millet:Raj-	4. Harvest for		through RKVY
		171,WCC-75,Pusa 23, 322	fodder		 Supply of land
		ICMH-451 /			lazer labeler
Irr	rigated	Rice: PS 2,3, PB 1, Sarju 52,			through CLDP
		Pant 4, Narendra			or RKVY
lo	owland	359, Saket 4 /			
		Sorghum (Fodder): Kanpuri,			
		UP Chari 1,2 /			
		Sugarcane: 64, 88230,			
		92254, 95255, COS 767,			
		8432, 97284			
Uı	In	Maize/Sorghum/			
irr	rigated				
ht	p land	Toria: T-36,T-9,Bhawani, PT-			
		30,303,507 /			
		Pigeonpea: UPAS 120, ICPL			
		151			
Ui	In	Pigeonpea: UPAS 120, ICPL			
irr	rigated	151 /			
lo	ow land	Pearl millet: Local Merut pili /			
		Toria: T-36,T-9,Bhawani, PT- 30 303 507			

1.1.2. Draught Irrigated situation

Condition	Jition Suggested Contingency measures					
	Major	Normal Crop/	Change in	Agronomic measur	Remarks on	
	Farming	cropping	crop/cropping		Implementation	
	situation	system	system			
Delayed	Up land	Rice (Basmati)-	Replace rice with	Use short duration	Seed through	
release of	sandy	Wheat	maize or	varieties Rice: PS 4, 5,	KSSC and NFSM	
water in	loam		aerobic rice	PB 1, PRH 10 Maize:	Adequate supply	
canals due	soils	Sorghum	Pearl	Kanchan, Sweta, Navin,	, of	
to low		(Fodder)/	millet/Greengram/	Surya	electricity/diesel	
rainfall		Maize-Potato/	Blackgram - Potato/	Pearl millet:Wcc-75,Raj-	should be ensure	
		Wheat	Wheat	171,Pusa-23,Pusa-322	by the Govt.	
		Sugarcane	No change	Light irrigation	agencies.	
		+cucurbits –		with tube well water		
		Ratoon-Wheat		Follow alternate		
				wetting and drying		
				schedule of irrigation		
				in rice		
				Alternate Furrow		
				irrigation		
				Mulching in sugarcane		
				/ maize		
	Low land	Rice-wheat	Basmati rice -	Use short duration	Seed through	
	clay		Wheat	varieties e.g.	KSSC and NFSM	
	loam	Sorghum	Pearl millet-Wheat	Rice: PS 4, 5, PB1, PRH	Adequate supply	
	soils	Fodder-Wheat		10	of	
		Sugarcane-	No change	Maize: Kanchan, Sweta,	electricity/diesel	
		Ratoon-		Navin, Surya	should be ensure	
		Wheat		Pearl millet (Fodder):	by the Govt.	
				Wcc- 75,Raj-171,Pusa-	agencies.	
				23,Pusa-322		
				Light irrigation		
				with tube well water		
				Follow alternate		
				wetting and drying		
				schedule of		
				irrigation in rice		
				Alternate Furrow		
				irrigation		
				Mulching in		
				sugarcane		

Condition			Suggested Continge	ency measures		
	Major	Normal	Change in	Agronomic measures	Remarks on	
	Farming	Crop/cropping	crop/cropping		Implementation	
	situation	system	system			
Limited	Up land	Rice (Basmati)-	No change	Light irrigation with	Adequate supply	
release of	sandy	Wheat		tube well water at	of electricity/diese	
water in	loam	Sorghum	No change	critical stages only	l should be	
canals due	soils	(Fodder)/		e.g CRI, Tillering	ensured by the	
to low		Maize-		&.Flowering stage	Govt. agencies.	
rainfall		Potato/ Wheat		Follow alternate		
		Sugarcane	No change	wetting and drying		
		+cucurbits –		schedule of		
		Ratoon- Wheat		irrigation in rice		
				Alternate Furrow		
				irrigation		
				Mulching in		
				sugarcane/ maize		
	Low land	Rice-wheat	No change	Light irrigation with	Supply of inter	
	clay			tube well		
	loam					
Condition			Suggested Continge	ency measures		
	Major	Normal Crop/	Change in	Agronomic measur	Remarks on	
	Farming	cropping	crop/cropping		Implementation	
	situation	system	system			
	soils	Sorghum	No change	water at critical stages	cultural implements	
		Fodder-Wheat		only	through RKV	
		Sugarcane-	No change	e.g CRI, Tillering	Adequate supply of	
		Ratoon-Wheat		&.Flowering stage	electricity/diesel	
				Follow alternate	should be ensured	
				wetting and drying	by the Govt.	
				schedule of	agencies.	
				irrigation in rice		
				Alternate Furrow		
				irrigation		
				Mulching in		
				sugarcane		
Condition			Suggested Contingency measures			
------------------	----------------	----------------	--------------------------------	------------------------------	-----------------	--
	Major	Normal	Change in	Agronomic	Remarks on	
	Farming	Crop/cropping	crop/cropping	measures	Implementation	
	situation	system	system			
Non release of	Up land tube	Basmati rice	Maize/ Arabic	Limited	Seed through	
water in canals	well irrigated		Rice	irrigation	KSSC and NFSM	
under delayed	canal sandy	Sorghum/Maize	Pearl millet /	Alternate	Supply of inter	
onset of monsoon	loam soil		Pigeon pea	Furrow	cultural	
in catchment			/Blackgram	irrigation	implements	
		Sugarcane	Sugarcane	• Drip	through RKVY	
		+cucurbits		irrigation	?	
				Mulching		
	Low land	Rice	Pearl millet/	Limited	Seed through	
	tube well		Blackgram	irrigation	KSSC and NFSM	
	irrigated		/Greengram	Alternate	Harvesting and	
	canal clay	Sorghum Fodder	Pearl	Furrow	threshing	
	loam soil		millet/Sorghum	irrigation	implements	
			Fodder	• Drip	through RKVY	
		Sugarcane +	Sugarcane	irrigation		
		cucurbits		 Mulching 		
				Alternate		
				furrow		
				irrigation		

Condition			Suggested Contingency measures			
	Major	Normal	Change in	Agronomic	Remarks on	
	Farming	Crop/cropping	crop/cropping	measures	Implementation	
	situation	system	system			
Lack of inflows			NA	NA	NA	
into tanks due						
to insufficient						
/delayed onset						
of monsoon						
Condition			Suggested Contingency measures			
	Major	Normal	Change in	Agronomic	Remarks on	
	Farming	Crop/cropping	crop/cropping	measures	Implementation	
	situation	system	system			

Insufficient	Up land	Basmati rice	Maize/ Arabic	•	Limited irrigation	• Seed through KSSC
groundwater	tube well		Rice / Vegetable	• /	Alternate Furrow	and NFSM
recharge due	irrigated		(Tomato,	i	irrigation	 Harvesting and
to low rainfall	canal		Brinjal,	•	Drip irrigation	threshing
	sandy loam		cucrbits etc)	•	Mulching	implements
	soil	Sorghum/	Pearl millet /			through RKVY
		Maize	Pigeon pea/			
			Blackgram			
		Sugarcane	Sugarcane			
		+cucurbits				
	Low land	Rice	Pearl millet/	•	Limited irrigation	Seed through KSSC
	tube well		Blackgram/	• ,	Alternate Furrow	and NFSM
	irrigated		Greengram	i	irrigation	 Micro/drip/sprinkler
	canal clay	Sorghum	Pearl millet/	•	Drip irrigation	irrigation under govt.
	loam soil	Fodder	Sorghum	•	Mulching	schemes
			Fodder	• /	Alternate furrow	 Supply of inter
		Sugarcane +	Sugarcane	i	irrigation	cultural implements
		cucurbits				through RKVY

2.0 Unusual rains (untimely, unseasonal etc) (for both rainfed and irrigated situations)

Condition	Suggested continge	ency measure		
Continuous high	Vegetative stage	, Flowering stage	Cron maturity stage	Post-harvest
rainfall in a short snan	regetative stage	i lowering stage	crop matanty stage	
looding to water				
leading to water				
logging				
Maize + Blackgram /	Provide drainage	Provide drainage	Drain out Harvesting at	Shift to safer
Greengram/ Cucurbits			physiological maturity stage	place
Sugarcane +Cucurbits	Provide drainage	Provide drainage	Drain out Harvesting at	
			physiological maturity stage	Shift to safer
			and	place
			Picking of cucurbits crop.	
Blackgram /	Provide drainage	Provide drainage	Drain out Harvesting at	Safe storage
Greengram			physiological maturity stage.	against
				storage pest
				and disease
Horticulture				
Okra	Provide drainage	Provide drainage	Picking of vegetables at	Shift to safer

			physiological maturity stage	place
Cucurbits	Provide drainage	Provide drainage	Drain out & Harvesting at	
			physiological maturity stage	Shift to safer
			and picking of cucurbits	place
			crop.	
Brinjal	Provide drainage	Provide drainage		Shift to safer
			Picking at physiological	place
			maturity stage	
Tomato	Provide drainage	Provide drainage	Picking at physiological	Shift to safer
			maturity stage	place
Mango		-		-
	-		Spray of 2% urea+fungicide	
Guava	-	-	Spray of 2% urea+fungicide	-
Muskmelon	-	-	Spray of 2% urea+fungicide	-
Heavy rainfall with				
high speed winds in a				
short span				
Sugarcane	• Ear thing	Provide drainage	Drain out &Harvesting at	
	• Tying	Use Wind breaks	physiological maturity stage	Shift to safer
	• Use Wind		Use Wind breaks	place
	breaks			
Maize/Sorghum		Provide drainage	Drain out & Harvesting at	
	Provide drainage	Use Wind breaks	physiological maturity stage	
	Use Wind breaks		Use Wind breaks	Shift to safer
				place
Blackgram		Provide drainage	Drain out& Harvesting at	
	Provide drainage	Use Wind breaks	physiological maturity stage	
	Use Wind breaks		Use Wind breaks	Shift to safer
				place
Rice basmati		Provide drainage	Drain out & Harvesting at	
	Provide drainage	Use Wind breaks	physiological maturity stage	
	Use Wind breaks		Use Wind breaks	Shift to safer
				place
Pigeon pea	Provide	Provide drainage	Drain out & Harvesting at	
	drainage	Use Wind breaks	physiological maturity stage	Shift to safer
	 Sowing on 		Use Wind breaks	place
	raised bed			
	• Use Wind			
	breaks			
Horticulture				

Okra	• Provide	Provide drainage	Drain out Harvesting at	
	drainage	Use Wind breaks	physiological maturity stage	
	 Sowing on 		Use Wind breaks	Shift to safer
	raised bed			place
	• Use Wind			
	breaks			
Brinjal	• Provide	Provide drainage	Drain out Harvesting at	
	drainage	Use Wind breaks	physio- logical maturity	
	 Sowing on 		stage	Shift to safer
	raised bed		Use Wind breaks	place
	• Use Wind			
	breaks			
Tomato	Provide	Provide drainage	Drain out Harvesting at	
	drainage	Use Wind breaks	physio- logical maturity	
	 Sowing on 		stage	Shift to safer
	raised bed		Use Wind breaks	place
	 Use Wind 			
	breaks			
Cauliflower	Provide	Provide drainage	Drain out Harvesting at	
	drainage	Use Wind breaks	physio- logical maturity	
	 Sowing on 		stage	Shift to safer
	raised bed		Use Wind breaks	place
	• Use Wind			
	breaks			
Cucurbits	 Provide 	Provide drainage	Drain out Harvesting at	
	drainage	Use Wind breaks	physio- logical maturity	
	 Sowing on 		stage	Shift to safer
	raised bed		Use Wind breaks	place
	 Use Wind 			
	breaks			
Mango	Use Wind breaks	Use of NAA spray	Use of NAA spray	-
		Use Wind breaks	Use Wind breaks	
Guava		Use of NAA spray	Use of NAA spray Use Wind	
	Use Wind breaks	Use Wind breaks	breaks	-
Muskmelon		Use of NAA spray	Use of NAA spray Use Wind	
	Use Wind breaks	Use Wind breaks	breaks	-
Outbreak of pests and				
diseases due to				
unseasonal rains				
Rice basmati	Need based plant	Need based plant	Do not use Hazardous	
Sugarcane	protection IPDM	protection IPDM	pesticide at maturity stage	Shift to safer

Sorghum fodder	for Rice/pluses	for Rice/pluses		place
Blackgram/				
Greengram				
Pigeonpea				
Horticulture				
Okra	Need based plant	Need based plant	Do not use Hazardous	
Brinjal	protection IPDM	protection IPDM	pesticide at maturity stage	Shift to safer
Tomato	for Rice/pluses	for Rice/pluses		place
Cucurbits				
Cauliflower				

2.1 Floods

Condition	Suggested contingency measure				
Transient water logging/	Seedling / nursery stage	Vegetative	Reproductive	At harvest	
partial inundation		stage	stage		
Rice basmati	Re sowing of nursery	Provide	 Provide 	Shift to safer	
	 Direct sowing of rice 	drainage	drainage	place	
	 Sowing of nursery on 				
	raised bed				
Sugarcane	Direct sowing	Provide	Provide	Shift to safer	
		drainage	drainage	place	
Sorghum fodder	Direct sowing	• Provide	Provide	Shift to safer	
		drainage	drainage	place	
Blackgram/ Greengram	Direct sowing	Provide	Provide	Shift to safer	
		drainage	drainage	place	
Pigeonpea	Direct sowing	• Provide	Provide	Shift to safer	
		drainage	drainage	place	
Horticulture					
Okra	Re sowing of nursery	Provide	 Provide 	Shift to safer	
	 Sowing of nursery on 	drainage	drainage	place	
	raised bed				
	 Re transplanting 				
Brinjal	Re sowing of nursery	Provide	 Provide 	Shift to safer	
	 Sowing of nursery on 	drainage	drainage	place	
	raised bed				
	 Re transplanting 				

Tomato	Re sowing of nursery	Provide	Provide	Shift to safer
	• Sowing of nursery on	drainage	drainage	place
	raised bed			
	Re transplanting			
Continuous submergence for				
more than 2 days				
Rice	Re sowing of nursery	Provide	Provide	Shift to safer
	• Direct sowing of rice	drainage	drainage	place
	Sowing of nursery on			
	raised bed			
Horticulture	NA	NA	NA	NA
Okra	Re sowing of nursery	Provide	Provide	Shift to safer
	Sowing of nursery on	drainage	drainage	place
	raised bed			
	Re transplanting			
Brinjal	Re sowing of nursery	Provide	Provide	Shift to safer
	Sowing of nursery on	drainage	drainage	place
	raised bed			
	Re transplanting			
Tomato	Re sowing of nursery	Provide	Provide	Shift to safer
	Sowing of nursery on	drainage	drainage	place
	raised bed			
	Re transplanting			
Mango	Re sowing of nursery	Provide	Provide	Shift to safer
	Sowing of nursery on	drainage	drainage	place
	raised bed			
	Re transplanting			
Sea water intrusion	NA	NA	NA	NA

2.2 Extreme events: Heat wave / Cold wave/Frost/ Hailstorm /Cyclone/Fog

Extreme	Suggested contingency measure				
event type	Seedling / nursery	Vegetative stage	Reproductive stage	At harvest	
	stage				
Heat Wave					
Rice basmati	Re sowing of	 Irrigation interval 	 Irrigation interval 	Light and frequent	
	nursery	should be	should be decreased		
	Light and frequent	decreased		irrigation	
	irrigation during				
	night				

Sugarcane	Mulching	 Irrigation interval 	 Irrigation interval 	Light and frequent
		should be decreased	should be decreased	lirrigation
Sorghum	Re sowing	 Irrigation interval 	 Irrigation interval 	Make silage
fodder		should be decreased	should be	
			decreased	
Blackgram /	Re sowing	 Light irrigation for 	 Light irrigation for 	 Pod picking
Greengram	Mulching	survival	survival	
Pigeonpea	Re sowing	 Light irrigation for 	 Light irrigation for 	 Pod picking
	Mulching	survival	survival	
Horticulture				
Okra	• Re sowing of	 Light irrigation for 	 Light irrigation for 	 Harvesting of
	nursery	survival	survival	fruits
	 Re transplanting 			
	Mulching			
	 Light watering 			
	during night			
Brinjal	Re sowing of	 Light irrigation for 	 Light irrigation for 	•Harvesting of
	nursery	survival	survival	fruits
	Re transplanting			
	Mulching			
	 Light watering 			
	during night			
Tomato	Re sowing of	 Light irrigation for 	 Light irrigation for 	 Harvesting of
	nursery	survival	survival	fruits
	Re transplanting			
	Mulching of nursery			
	beds			
	 Light irrigation 			
	during night			
Mango	Spray of water	 Spray of water 	 Spray of water 	
Guava	 Spray of water 	 Spray of water 	 Spray of water 	
Muskmelon	 Spray of water 	 Spray of water 	 Spray of water 	
Cold wave				
Wheat	Light irrigation	Light irrigation	Light irrigation	Light irrigation
Sugarcane	Mulching	 Light irrigation 		 Harvesting of
				cane
Horticulture				
Tomato	Grow some inter crop	Light Sprinkler		•Harvesting of
		irrigation		fruits
Реа	Grow some inter crop	 Light Sprinkler 		•Harvesting of
		irrigation		fruits

Potato	Grow some inter crop	Light Sprinkler		 Harvesting
		irrigation		
Frost				
Sugarcane	 Light irrigation for 	 Light irrigation for 	 Light irrigation for 	 Harvesting of
	survival	survival	survival	cane
Pigeon pea	Grow as inter crop	 Light Sprinkler 	 Light irrigation for 	Smoke at night
	 Smoke at night 	irrigation	survival	
		 Smoke at night 	 Smoke at night 	
Horticulture				
Potato	 Light irrigation for 	 Light irrigation for 	 Light irrigation for 	 Harvesting
	survival	survival	survival	
	 Smoke at night 	 Smoke at night 	 Smoke at night 	
Tomato	 Light irrigation for 	 Light irrigation for 	 Light irrigation for 	•De halming
	survival	survival	survival	
	 Smoke at night 	 Smoke at night 	 Smoke at night 	
Реа	 Light irrigation for 	 Light irrigation for 	 Light irrigation for 	 Harvesting
	survival	survival	survival	
	 Smoke at night 	 Smoke at night 	 Smoke at night 	
Mango	Irrigation & Smoking	 Irrigation &Smoking 	 Irrigation & Smoking 	
	during night	during night	during night	
Guava	 Irrigation & Smoking 	 Irrigation &Smoking 	 Irrigation & Smoking 	
	during night	during night	during night	
Hailstorm				
All the crops	Re sowing	Re sowing of Catch	Harvest for fodder	Pre Harvesting
		crop		
Horticulture				
All the	Re sowing	Re sowing of Catch	Harvest for fodder	Pre Harvesting
Vegetable		crop		
crops				
	Use anti hail	Use anti hail	Use anti hail	•Harvest the
	net	net	net	damaged fruits
	Spray of	 Spray of 	Spray of	•Spray of
	fungicide with	fungicide with	fungicide with	fungicide with
All the Fruit	2% urea	2% urea	2% urea	2% urea
crops	solution	solution	solution	solution
Fog				

Annexure-4

<u>S.No</u>	District	Block_Tal uk_Mand al_Firka	Village	Latitude	Longitud e	Aquifer_ 1_Thickn ess_m	T_m2per day	S_Sy	Q_lpm	EC	Aquifer_ 2_Thickn ess_m	T_m2per day	S_Sy	Q_lpm	EC
		Suar	Khempur (ITI	28.9367	79.0578	50					90	298.8	1.44E-05	679	11600
1	Rampur		Campus)												
2	Rampur	Bilaspur	Kasba Rajpur	28.8658	79.2734	110					80	1052.9	0.000181	1555	406
3	Rampur	Milak	Pipla-I (Dp)	28.6192	79.1322	170					150	871.15	0.00857	1517	380
4	Rampur	Milak	Pipla-II (Sh)	28.6192	79.1322	170	890.51	0.000121	1517	443	100	1026.58	0.0012	1555	495
5	Rampur	Suar	Raipur	29.0196	79.152	150					100				
6	Rampur	Bilaspur	Sikraura	28.9236	79.2381	80					120				