

जल शक्ति मंत्रालय, जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

भारत सरकार

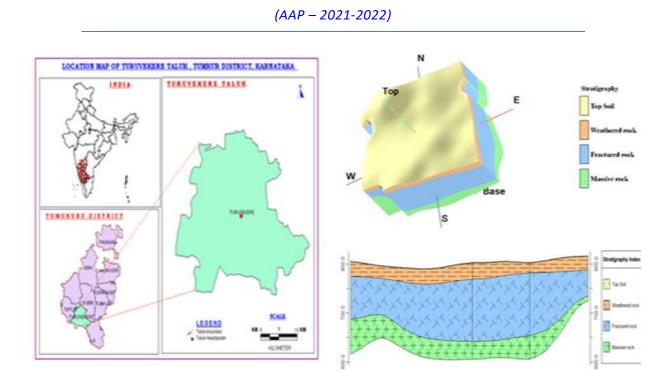
Central Ground Water Board

Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPPING AND MANAGEMENT PLAN

Turuvekere Taluk, Tumkur District, Karnataka


दक्षिण पश्चिमी क्षेत्र, बेंगलुरु South Western Region, Bengaluru भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास एवं गंगा संरक्षण विभाग केन्द्रीय भूमिजल बोर्ड दक्षिण पश्चिम क्षेत्र, बेंगलुरु

FOR OFFICIAL USE ONLY No. SWR/RP/NQM/2022-23/42

Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation <u>Central Ground Water</u> <u>Board</u> South Western Region, Bengaluru

AQUIFER MAPS AND MANAGEMENT PLAN, TURUVEKERE TALUK, TUMKUR DISTRICT, KARNATAKA STATE

By

Naresh Chandra Sahoo, Assistant Hydrogeologist, CGWB, SWR, Bengaluru

AUGUST-2022

AQUIFER MAPS AND MANAGEMENT PLAN, TURUVEKERE TALUK, TUMKUR DISTRICT, KARNATAKA STATE

Contents

1 SALIENT INFORMATION
1.1 Study Area
1.2 Population
1.3 Rainfall and Climate
1.4 Agriculture & Irrigation
1.5 Geomorphology, Physiography & Drainage
1.6 Soil
1.7 Ground water resource availability and extraction
1.8 Existing and Future Water Demands (as per GWRA-2017 and 2020)
1.9 Water level behavior
2 AQUIFER DISPOSITION
2.1 Aquifer Types
3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES
3.1 Comparison of Ground Water Resource and Extraction12
3.1 Comparison of Ground Water Resource and Extraction1
3.1 Comparison of Ground Water Resource and Extraction
3.1 Comparison of Ground Water Resource and Extraction 12 4 GROUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANGEMENT STRATEGY 12 4.1 Resource Enhancement by Supply Side Interventions 12
 3.1 Comparison of Ground Water Resource and Extraction
 3.1 Comparison of Ground Water Resource and Extraction
3.1 Comparison of Ground Water Resource and Extraction 12 4 GROUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANGEMENT STRATEGY 13 4.1 Resource Enhancement by Supply Side Interventions 13 4.1.1 Strategic Action Plan 14 4.1.2 Benefits of Artificial recharge scheme 15 4.2 Resource Savings by Demand Side Interventions 15
3.1 Comparison of Ground Water Resource and Extraction 11 4 GROUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANGEMENT STRATEGY 11 4.1 Resource Enhancement by Supply Side Interventions 11 4.1.1 Strategic Action Plan 14 4.1.2 Benefits of Artificial recharge scheme 11 4.2 Resource Savings by Demand Side Interventions 11 4.2.1 Water Use Efficiency by Micro Irrigation Practices 11

AQUIFER MAPS AND MANAGEMENT PLAN, **TURUVEKERE** TALUK, **TUMKUR** DISTRICT, KARNATAKA STATE

1 SALIENT INFORMATION

Name of the taluk	: Turuvekere
District	: Tumkur
State	: Karnataka
Area	: 785 sq.km.
Population	: 1,68,994
Annual Normal Rainfall	:722.2

1.1 Study Area

Aquifer Mapping Studies have been carried out in Turuvekere taluk, Tumkur district of Karnataka, covering an area of 785 sq.kms under National Aquifer Mapping Project. The Turuvekere taluk is located between North Latitudes 13°04′42.73″ and 13°05′36.89″ and East Longitudes between 76°33′12.79″ to 76°55′02.98″. The study area is bounded on the north-east by Gubbi & north-west by Tiptur taluk, south by Nagamangala taluk of Mandya district and on the south-east by Kunigal taluk of Tumkur district. Location map of Turuvekere taluk of Tumkur district is presented in **Fig-1**. Turuvekere is taluk head quarter. There are 243 villages and 27 Gram panchayats and 4 hoblies in this taluk.

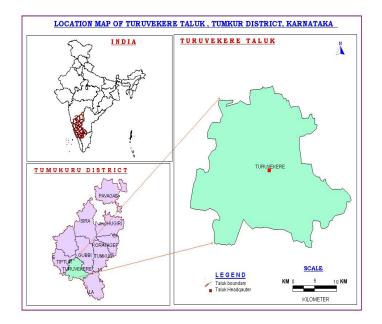


Fig-1: Location map of Turuvekere taluk of Tumkur district

1.2 Population

According to 2011 census, the population in Turuvekere taluk is 1,68,994 out of which 83,950 is male and 85, 044 is female. The taluk has an overall population density of 215.27 persons per sq.km. The decadal variation in population from 2001-2011 is -3.04 % in Turuvekere taluk.

Table-1: Population details

Total	Male	Female	Share of	Rural	Urban	Decadal	Decadal	Decadal change
			the district	population	population	change in	change in	in urban
			population			population	rural	population
							population	
168994	83950	85044	6.30	152177	16817	-3.04	2.9	3.9

Source: District at a glance 2016-17, Govt. of Karnataka

1.3 Rainfall and Climate

Turuvekere taluk enjoys semi-arid climate. Dryness and hot weather prevails in major part of the year. The area falls under Central Dry agro-climatic zone of Karnataka state and is categorized as drought prone. The climate of the taluk is quite agreeable and free from extremes. The year is usually divided into four seasons: summer from March to May; rainy season or south-west monsoon season from June to September; post-monsoon season covering the months of October and November and dry or winter Season from December to February.

The annual rainfall data from 2009 to 2019 of the Turuvekere taluk is given in Table.2, Statistical Analysis of Rainfall Data of Turuvekerei taluk, (1990 to 2019) (Table 2b) and Monthly rainfall data of Turuvekere taluk are given (Table 2c)

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Rainfall (mm)	933.6	1180.8	766	381	317	754.3	750	347	1003	909	1023.8

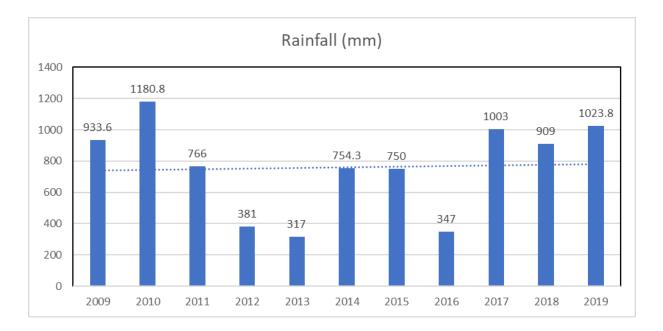

Table-2a Actual Annual Rainfall of Turuvekere taluk from 2009 to 2019

Table-2b: Statistical Analysis of Rainfall Data of Turuvekere taluk, (1990 to 2019)

Stataion Turuvekere	JAN	FEB	MAR	APR	MAY	PRE	JUN	JUL	AUG	SEP	SW	ОСТ	NOV	DEC	NE	ANNUAL
NRM	1.8	4.6	7.7	42.5	88.5	145.0	65.5	51.2	112.3	133.0	362.0	160.8	49.1	5.3	215.2	722.2
STDEV	5.8	11.0	15.9	40.8	74.1	98.1	59.3	36.6	64.2	94.4	144.9	83.0	46.6	11.5	88.1	233.8
CV%	330.4	239.4	206.6	96.0	83.7	67.6	90.5	71.4	57.1	71.0	40.0	51.6	95.0	218.0	40.9	32.4

Year	JAN	FEB	MAR	APR	MAY	PRE	JUN	JUL	AUG	SEPT	SWM	ОСТ	NOV	DEC	NEM	ANNUAL
2009	0	0	2.6	44	153	199.6	47	57	215	237	556	102	76	0	178	933.6
2010	0	0	0	124	148	272	164.8	97.2	126.8	148	536.8	181	191	0	372	1180.8
2011	0	23	0	109	194	326	23	82	82	34	221	132	87	0	219	766
2012	0	0	0	68	50	118	20	35	96	11	162	29	72	0	101	381
2013	0	16	0	38	0	54	20	35	96	11	162	29	72	0	101	317
2014	0	0	38.3	26	153	217.3	64	43	103	83	293	235	9	0	244	754.3
2015	0	0	12	92	51	155	47	10	146	199	402	101	89	3	193	750
2016	3	0	0	0	95	98	59	102	37	22	220	6	0	23	29	347
2017	3	0	32	52	216	303	50	16	145	362	573	125	0	2	127	1003
2018	0	0	24	29	248	301	213	45	70	99	427	141	33	7	181	909
2019	0	37	0	33.4	110.6	181	107.8	39	175	252	573.8	233	6	30	269	1023.8

 Table 2c: Monthly rainfall data of Turuvekere taluk

1.4 Agriculture & Irrigation

Agriculture is the main occupation in Turuvekere taluk. Major crops are Paddy, Maize, Tur, Pulses, Tobacco, Fruits and Vegetables. Water intensive crops like Paddy and Tobacco are grown in Turuvekere Taluk **(Table.3a).**

						•					•	•		
Crop	Paddy	Maize	Bajra	Jowar	Ragi	Wheat	Pulses	Fruits	Vege	Oil	Sugar	Cotton	Coconuts	Total
									tables	seeds	cane			crop
Area(ha)	408	06	0		19631	0	4518	7009	742	162	0	0	0	32476
Area %	1.25	0.02	0		60.44		13.91	21.58	2.31	0.49				100

Table-3a: Cropping pattern in Turuvekere taluk 2016-2017 (Ha)

Source: District at a glance 2016-17, Govt. of Karnataka

It is observed that net sown area accounts for 64,846 (Ha) and area sown more than once is 10199 (Ha) of total geographical area 122500 (Ha) in Turuvekere taluk **(Table-3b).** Area under Forest is 10090 (Ha). Area not available for cultivation and Fallow land cover 22512 (Ha) and 15217 (Ha) of total geographical area respectively. 2,605 (Ha) of net area is irrigated from surface water and 25882 (Ha) is irrigated from Groundwater **(Table.3c).**

Table-3b: Details of land use in Turuvekere taluk 2016-2017 (Ha)

Total	Area	Area not	Fallow	Net	Area	Gross
Geographical	under	available for	land	sown	sown	sown
Area	Forest	cultivation		area	more	area
					than	
					once	
122500	10090	22512	15217	64846	10199	75045
% of the area	8.23	18.37	12.42	52.93	8.32	61.26

Source: District at a glance 2016-17, Govt. of Karnataka

Table-3c: Irrigation details in Turuvekere taluk (in ha)

Source of Irrigation	Length in Km/No of structures	Gross area Irrigated (Ha)	Net area Irrigated (Ha)	% of area
Canals	-	-	-	-
Tanks	162	2605	2605	8.37
Wells	6543	218	218	0.70
Bore/Tube wells	36002	28279	25664	82.51
Lift Irrigation	-	-	-	-
Other Sources		2618	2618	8.42
Total	42707	31102	28487	100

Source: District at a glance 2016-17, Govt. of Karnataka

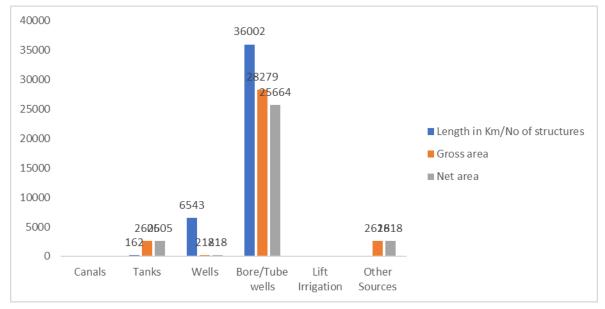


Fig. 3: Sources of Irrigation

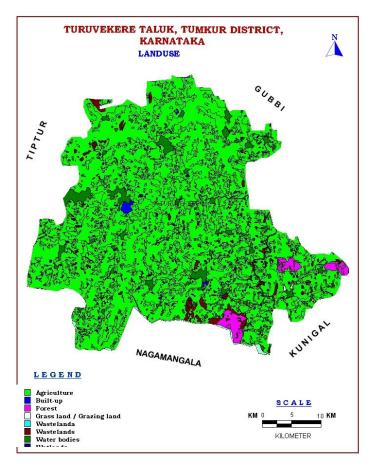


Fig. 4: Land use/land cover map

1.5 Geomorphology, Physiography & Drainage

The geomorphology of the Turuvekere is formed by plain region covered all over the taluk. The elevation varies from 754m to 846m in the taluk. The differential altitude is significant because, it is likely to cause irregular ground water flow patterns on the micro scale (Fig.-5). Topography is dominantly controlled by geological structures. The entire Turuvekere taluk falls in Krishna & Cauvery river basin. The Drainage pattern is dendritic to subdendritic (Fig.-6).

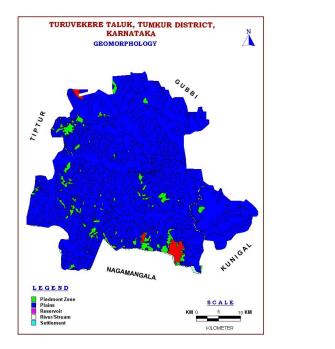
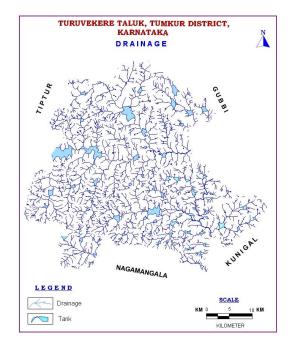
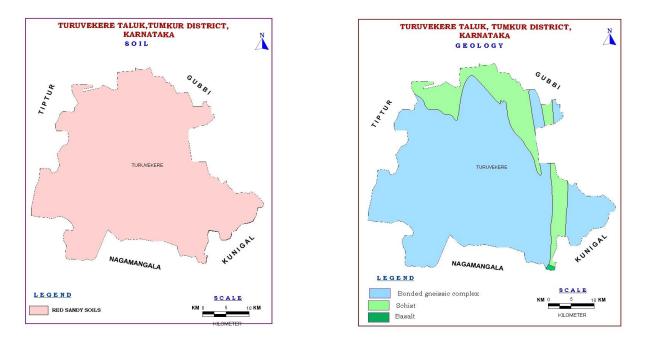
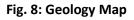



Fig-5: Geomorphology Map






1.6 Soil

The soils of Turuvekere taluk are mostly red sandy soil. These soils vary in depth and texture, depending on the parent rock type, physiographic settings and climatic conditions (Fig.7).

Geologically, the rock formation in the taluk falls into two groups., Banded gneissic complex and schistose formation and Basalt also found in the southern margins of taluk (Fig.8).

1.7 Ground water resource availability and extraction

As per the ground water resource estimation 2020 **(Table 4b),** the data on ground water resources shows that the net annual ground water availability is 5890.88 ham. The existing gross groundwater for irrigation is 3377.70 ham. The stage of groundwater development is 59.74 and falling under **Safe** category

Aquifer wise total ground water resources up to 200 m depth is given in **Table-4a** below.

Table-4a: Total Ground Water Resources (2020) (Ham)

	Annual		n-storage GW sources	Total availability of fresh GW resources
Taluk	replenishable GW resources	Phreatic	Fractured (Down to 200m)	Dynamic + phreatic in-storage + fractured
TURUVEKERE	5890.88	14409	1627	21,926.88

Table.4b Detail of Dynamic Ground Water resource, (2020 Figures in Ham)

Annual	GW	GW	GW	Total	Annual GW	Net GW	Stage of	Categorizati
Extractabl	Extractio	Extraction	Extraction	Extrac	Allocation	Availability	GW	on (Over-
e GW	n for	for	for	tion	for for	for future	Extraction	Exploited/
Resource	Irrigation	Industrial	Domestic	(Ham)	Domestic	use (Ham)	(%)	Critical/
(Ham)	Use	Use (Ham)	Use (Ham)		Use as on			Semi-
	(Ham)				2025 (Ham)			critical/
								Safe/Saline)
5890.88	3377.70	0	141.60	3519.30	156.59	2689.88	59.74	Safe

1.8 Existing and Future Water Demands (as per GWRA-2017 and 2020)

The details of dynamic (Phreatic) ground water resources for Turuvekere taluk as on 2017 and 2020 is shown in **Table.5a** and **Table.5b** It is observed that the stage of ground water extraction is 58 % to 59.74 % from 2017 to 2020.

		•		<i>,</i> ,	0	,	
Net Annual	Existing	Existing	Existing	Allocation	Net Ground	Existing Stage	Category
Ground	Gross	Gross GW	Gross	For	Water	of Ground	
Water	Ground	Draft for	Ground	Domestic	Availability	Water	
Availability	Water Draft	Domestic	Water Draft	and	for Future	Development	
	for	and	for All Uses	Industrial	Irrigation		
	Irrigation	Industrial		Use for Next	Develop-ment		
		Water		25 Years			
		Supply					
5802	3238	120	3358	148	2750	58	SAFE

Table.5a Dynamic Ground Water Resource, (2017 Figures in Ham)

Table.5b Detail of Dynamic Ground Water resource, (2020 Figures in Ham)

Annual	GW	GW	GW	Total	Annual GW	Net GW	Stage of	Categorizati
Extractabl	Extractio	Extraction	Extraction	Extrac	Allocation	Availability	GW	on (Over-
e GW	n for	for	for	tion	for for	for future	Extraction	Exploited/
Resource	Irrigation	Industrial	Domestic	(Ham)	Domestic	use (Ham)	(%)	Critical/
(Ham)	Use	Use (Ham)	Use (Ham)		Use as on			Semi-
	(Ham)				2025 (Ham)			critical/
								Safe/Saline)
5890.88	3377.70	0	141.60	3519.30	156.59	2689.88	59.74	Safe

1.9 Water level behavior

The water level data have been monitored from the representative dug wells and borewells under NHS monitoring programme for both pre and post monsoon seasons during 2019 in Aquifer I **(Table 6a).** During premonsoon season water level ranges from 4.45 to 8.42 mbgl, whereas in postmonsoon it is 0.54 mbgl. Whereas in Aquifer II, the water level ranges from 4.19 to 32.81 mbgl in premonsoon and 2.6 to 19.63 mbgl during post monsoon as per Ground water Department, Govt of Karnataka data. (Table 6b) and the maps shown in **Fig 9 and 10**.

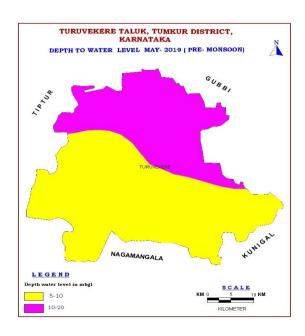
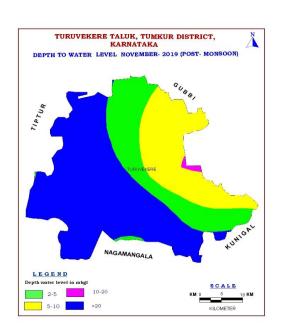

				(-
SI.No.	SITE_TYPE	Location name	Depth of the Well (m bgl)	May-19	Nov-19
		Mayasandra	10.92	4.45	
1	Dug well				-
		Mayasandra1	69.00	17.69	9.40
2	Borewell				
		Turuvekere	12.80	8.42	0.54
3	Dugwell				
		Turuvekere1			
4	Bore well		50.00	19.55	13.28

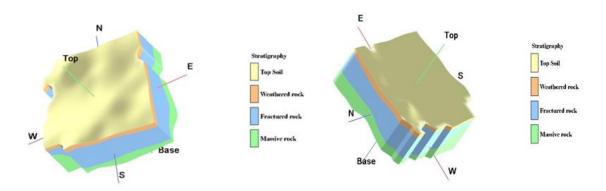
Table 6a: Depth to water level of Pre and Post-monsoon (2019), CGWB


Table 6b: Depth to water level of Pre and Post-monsoon (2019) (State GW Directorate, Govt. of

SI. No	Well Type	Location name	Depth of well (m bgl)	May-19	Nov-19
1		Haridasanahalli	56		
2		Machenahalli	46	23.80	11.4
3		Mayasandra	159	16.82	7.2
4		Turuvekere	62.5	4.19	2.6
5		Vadavanaghatta	60	32.81	19.63

2 AQUIFER DISPOSITION

The occurrence and movement of water in the subsurface is broadly governed by geological frameworks i.e., nature of rock formations including their porosity (primary and secondary) and permeability. The principal aquifers in the area are Gneisses and Schist and the occurrence and movement of ground water in these rocks is controlled by various factors and it primarily depends on the degree of interconnection of secondary pores/voids developed by fracturing and weathering in the hard rock.


2.1 Aquifer Types

In Turuvekere taluk, there are mainly two types of aquifer systems

- Aquifer-I (Phreatic aquifer) comprising weathered Gneisses and schist.
- Aquifer-II (Fractured aquifer) comprising fractured Gneisses and schist.

In Turuvekere taluk, Gneisses and Schists are the two major water bearing formations. Ground water occurs within the weathered and fractured formations semi-confined condition. The borewells were drilled by CGWB under exploratory programme reveals that the depth range of 32 to 200 m bgl. Weathering varies from 17.0 to 32.5 m bgl with yield ranges from 0.01 to 5.6 lps. Most potential fractures noticed between the depth of 30 to 180 m bgl.

The 3D aquifer disposition models, 2D aquifer sections and 3D aquifer fence diagrams have been prepared and presented in **Fig. 11a, b and c.**

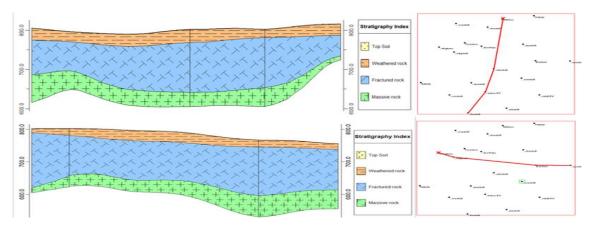


Fig-11b: 2D Cross sections in different directions

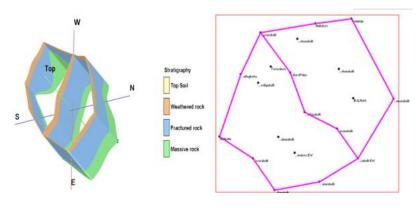


Fig-11c: 3D Aquifer Fence Diagram

3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES

The main ground water issues are Limited Ground Water Potential / Limited Aquifer Thickness / Sustainability, declining water level trend which are all inter-related or inter dependent and Inferior ground water quality due to nitrate contamination in major part of the area.

3.1 Comparison of Ground Water Resource and Extraction

The Dynamic Ground Water Resource 2017 and as on 2020 have already been summarised above and are shown in **Table 7a**. It is observed that the ground water availability in 2020 is more as compared to 2017 due to increase in rainfall and in water table.

Table 7a : Comparison of groundwater availability and draft scenario (in ham)

Taluk	March 2017			March 2020		
Turuvekere	GW Availability (in ham)	GW Extraction (in ham)	Stage of GW Development %	GW Availability (in ham)	GW Extraction (in ham)	Stage of GW Development%
	5802.07	3358	58%	5890.88	3519.30	60%

3.2 Chemical Quality of Ground Water and Contamination

The water samples were collected in different parts of Turuvekere taluk during NAQUIM studies in September 2021 the data is given below in **Table 8a**. The results of quality parameters shows that the EC ranges from 470 to 1905 while Nitrate varies from 0.91 to 103 mg/l (**Fig 12 a and 12 b**).

SI No	Location (Bore Wells)	РН	EC	Cl	NO3
			μS/cm		
1	Haridasanahalli	7.43	1403	184.6	10.98
2	Tavarakere	7.28	1035	142	12.21
3	Malaghatta	7.18	723	63.9	1.14
4	Machenahalli	7.24	834	88.75	2.91
5	Kodigehalli	7.23	1864	372.75	1.62
6	Arkanahalli	7.1	930	138.45	3.63
7	B.G.Hatti	7.79	926	110.05	32.07
8	Soravanahalli	7.2	1905	326	32.55
9	Madanahalli	7.62	882	71	16.47
10	Devanayakanahalli	7.83	752	42.6	10.71
11	Laxmidevarahalli	7.86	1037	117	1.86
12	Maillanahalli	7.41	1147	159.75	13.41
13	Chinchalanahalli	6.79	1300	241.4	47.28
14	Bytara Hosahalli	7.71	470	28.4	0.51

Table 8a: Water quality parameters(NAQUIM Studies in September 2021)

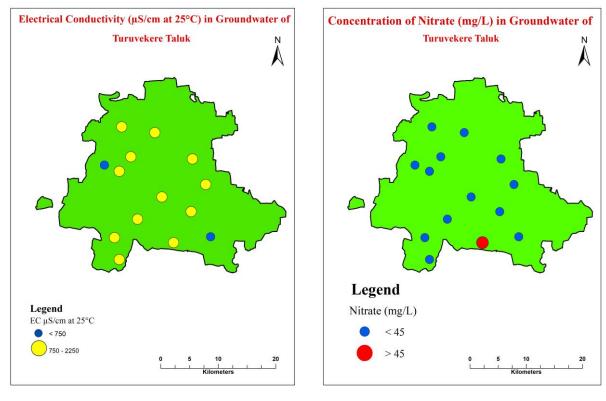


Fig.12 a: EC Map of Turuvekere Taluk

Fig. 12 b: Nitrate Map of Turuvekere Taluk

4 GROUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANAGEMENT STRATEGY

4.1 Resource Enhancement by Supply Side Interventions

Recharge phreatic aquifer (Aquifer-I) in the taluk, through construction of artificial recharge structures, viz. Check dams, percolation tanks & subsurface dykes. The choice of recharge structures should be site specific and such structures need to be constructed in areas already identified as feasible for artificial recharge. Artificial Recharge Structures and Water Conservation Plans are proposed in the taluk through utilizing the uncommitted surface runoff of 1.936 MCM (Table 9a). By constructing 02 percolation ponds a 0.002 lakhs hectares of additional irrigation potential can be created. The existing 60.00 % of stage of ground water extraction would reduce to 58.304% (Table 9b)

Table 9a: Quantity of non-committed surface runoff & expected recharge through AR structures (Asper Master Plan on Artificial Recharge in Karnataka, 2020)

Artificial Recharge Structures Proposed	TURUVEKERE
Non committed monsoon runoff available (MCM)	1.936
Number of Check Dams	0
Number of Percolation Tanks	02
Number of Subsurface dykes	0
Number of Filter beds	0
Tentative total cost of the project (Rs. in lakhs)	35.883
Expected recharge (MCM) @75%	1.452
Additional irrigation potential (in hectares)	200

Table 9b: Improvement in GW availability due to Recharge as per GWRA 2020

Taluk	Net annual ground water availability	Existing gross ground water draft for all uses	Existing stage of ground water development	Expected recharge from proposed Artificial Recharge structures	Cumulative annual ground water availability	Expected improvement in stage of ground water development after the implementation of the project	Expected improvement in overall stage of groundwater development
	HAM	HAM	%	HAM	HAM	%	%
Turuvekere	5890.88	3519.30	60.00	145.2	6036.08	1.696	58.304

4.1.1 Strategic Action Plan

The provision for minimum protective irrigation can only improve the agricultural growth in the taluk which is dependent on rain. This objective can be achieved by utilizing the rain water more efficiently by harvesting structures like farm ponds, check-dams, barrages and other surface structures. The Strategic Action Plan, prepared for the taluk has included the irrigation infrastructure for major irrigation, minor irrigation, ground water recharge, harvesting of rain water, improvement of irrigation efficiency and strengthening the adoption of micro-irrigation. Considering the existing infrastructure in the taluk and considering the irrigation potential required to be created to meet the gap between demand and supply of all the sectors of water use, the Strategic Action Plans are developed under PMKSY project and the same is given below.

4.1.2 Benefits of Artificial recharge scheme

Artificial recharge structures namely check dams and Nala bunds can be taken up on large scale in the over-exploited areas as a management plan to tackle falling ground water levels.

- These structures have proved in building-up of ground water levels and sustainability of ground water abstraction structures, mainly in bore wells.
- An increase in the area irrigated by ground water source is also observed in the area of influence.
- Such activities help in providing sustainable drinking water to the rural population. The qualitative result from farmer's perception indicate that, there is rising trend in ground water levels in the area of influence, productivity of crops enhanced and improvement in yield is observed in bore wells.
- The cropping pattern has shown that farm households have resumed growing crops such as grapes which were not previously grown in the area.

4.2 Resource Savings by Demand Side Interventions

4.2.1 Water Use Efficiency by Micro Irrigation Practices

Turuvekere Taluk falls under Safe category with the stage of groundwater extraction of 59.74 %. However, Water Use Efficiency (WUE) practices like Drip irrigation needs to be strengthened to save irrigation water by way of precision farming mechanism. This ultimately enhances the area under irrigation potential.

4.3 Ground Water Development Plan

Turuvekere taluk has been categorized as **Safe**. However mandatory guideline issued by Government of Karnataka like rain water harvesting and Artificial recharge structures should be constructed. Ground water recharge component needs to be made mandatory in the non-command area of the taluk for further development of ground water.

4.4 Other interventions proposed

- Periodical maintenance of artificial recharge structures should also be incorporated in the Recharge Plan.
- Excess nitrate concentration is found in ground water samples require remedial measures viz.
- Dilution of nitrate rich ground water through artificial recharge & water conservation.
- Roof top rain water harvesting.

5 SUMMARY AND RECOMMENDATIONS

The main ground water issues are Low Ground Water Development, Limited Ground Water Potential / Limited Aquifer Thickness / Sustainability, which are all inter-related or inter dependent and Inferior Ground Water Quality due to nitrate contamination major part of the area. The summary of ground water management plan of Turuvekere taluk is given in **Table- 10**.

Stage of GW Extraction and Category (2020)	59.74%, Safe
Annual Extractable GW Resource (Ham)	5890.88
Total Extraction (Ham)	3519.30
Total GW Resources (Dynamic & Static up to the depth of 150 mbgl) (Ham)	21,926.88
Ground Water Draft for Irrigation (Ham)	3377.70
Ground Water Resource Enhancement by Supply side Interventions	
No of Proposed AR structures	
РТ	02
Expected Additional Recharge to GW due to AR (Ham)	145.2
Additional Irrigation Potential that can be created (Ha)	200
Total Estimated Expenditure (Rs. in Cr.)	0.35883
Change in Stage of GW Extraction (%)	60 to 58.304

Table 10 : Summar	y of Management plan
-------------------	----------------------

- Ground water resource enhancement: Continuous drought, increase in agricultural activity, subjected to excessive ground water withdrawal leading to depletion of ground water level, reduction in yield and deterioration of ground water quality etc., suggests a need for proper ground water management and enhancement of storage capacity of aquifers, protection of ground water quality and proper utilization of ground water. To enhance the storage capacity of aquifers, the dewatered aquifers are to be recharged, for which the artificial recharge structures like Check dams, percolation tanks, point recharge structures etc have to be constructed.
- Ground Water resource: As per the resource estimation 2020, Turuvekere taluk falls under Safe category with the stage of ground water extraction of 60.00%. However, there is need to formulate management strategy to tackle the water scarcity related issues in the taluk during the summer and scarcity of water during the future days.
- Ground water resource enhancement: Increase in agricultural activity, excessive ground water withdrawal, depletion of ground water levels, reduction in yield and ground water quality related issues etc., suggests the need for scientific ground water management, enhancement of storage capacity of the aquifers and protection of ground water quality.

- Uantity of water available through non-committed surface run-off: The surplus non-committed monsoon run off is estimated to be approximately 1.936MCM. This can be used to recharge the aquifer mainly through percolation tanks.
- Advanced irrigation practices: The important crops grown are Paddy, Ragi, Maize, gram, tur, groundnut, sunflower and sugarcane. Water Use Efficiency (WUE) practices like Drip needs and Micro irrigation to be strengthened to save irrigation water by way of precision farming mechanism. This ultimately enhances the area under irrigation potential.
- **Change in cropping pattern**: Farmers are facing inadequacy of groundwater for agriculture during summer and can opt for more rain-fed millets and water efficient Pulses for agricultural production.
- **Drinking water Supply**: In view of ground water contamination with mainly higher concentration Nitrate and fluoride, drinking water supply from surface water needs to be explored/ ensured.
- **Regulation and control:** Taluk is categorized as "Safe". However, the mandatory guidelines like rainwater harvesting and artificial recharge issued by Karnataka Ground Water Authority needs to be strictly implemented in the taluk, so that quality of ground water will improve in due course of time.
- **Participatory management**: Awareness programmes and practice of participatory approach needs to be strengthened with the involvement of all the stake holders for sustainable management.