

केन्द्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

BETUL DISTRICT MADHYA PRADESH

उत्तर मध्य क्षेत्र**,** भोपाल North Central Region, Bhopal

Central Ground Water Board Department of Water Resources, RD & GR Ministry of Jal Shakti Government of India

Aquifer Mapping and Ground Water Management Plan of Betul District, Madhya Pradesh

BY Chitta Ranjan Biswal Scientist - B

NORTH CENTRAL REGION BHOPAL 2019-2020

AQUIFER MAPPING AND GROUND WATER MANAGEMENT PLAN FOR BETUL DISTRICT

PART-I: DISTRICT WISE TECHNICAL REPORT

CONTENTS

1	INT	RODUCTION	6
	1.1	Objective and Scope	6
	1.2	Study area	7
	1.3	Climate and Rainfall	8
	1.4	Physiography	8
	1.5	Land Use, Agriculture, Irrigation and Cropping Pattern	9
	1.6	Geology	11
	1.7	Soil Cover	12
	1.8	Hydrology and Drainage	13
2	DA	TA COLLECTION AND GENERATION	
	2.1	Data Collection and Compilation	14
3	DA	TA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING	
	3.1	Hydrogeology	17
	3.2	Water Level Scenario of Aquifer-I	17
	3.3	Ground Water Quality	21
	3.4	3-D and 2-D Aquifer Disposition	26
	3.5	Aquifer Characteristics	29
4	GR	OUND WATER RESOURCES	
	4.1	Ground Water Resources – Aquifer-I	30
	4.2	Ground Water Resources – Aquifer-II	32
5	GR	OUND WATER RELATED ISSUES	
	5.1	Decline in Water Level	33
	5.2	Low Ground Water Potential / Limited Aquifer Thickness / Sustainability	33
	5.3	Deeper Water Levels in Aquifer-II	33
	5.4	Inferior Ground Water Quality	33
	5.5	Increasing Stage of Ground water Extraction	34
6	PRO	DPOSED MANAGEMENT STRATEGY	
	6.1	Supply Side Management	35
	6.2	Demand Side Management	37

List of Figures in Part-I	
Fig. 1.1: Index map, Betul District	7
Fig 1.2: Physiography Map	
Fig.1.3: Landuse Map	9
Fig.1.4: Landuse Pie Chart	10
Fig.1.5: Geological Map	11
Fig.1.6: Soil Map	12
Fig.1.7: Drainage Map	13
Fig.1.8: Basins Of Betul District	13
Fig.2.1: Locations of Exploratory Wells	
Fig.2.2: Location Of Ground Water Monitoring Wells	15
Fig.3.1: Hydrogeology Map	
Fig. 3.2: Premonsoon (May 2019) Depth to Water Level of Aquifer-I (Shallow Aquifer)	
Fig. 3.3: Postmonsoon (Nov. 2019) Depth to Water Level of Aquifer-I (Shallow Aquifer)	
Fig. 3.4: Seasonal Fluctuation of Water Level	19
Fig. 3.5: Premonsoon Water Level Trend (May 2009-18) of Aquifer-I (Shallow Aquifer)	20
Fig. 3.6: Postmonsoon Water Level Trend (Nov. 2009-18) of Aquifer-I (Shallow Aquifer)	20
Fig. 3.7: Piper Diagram	22
Fig. 3.8: U S Salinity Diagram	22
Fig. 3.9: Electrical Conductivity of Aquifer-I (Shallow Aquifer)	23
Fig. 3.10: Nitrate of Aquifer-II (Deeper Aquifer)	

Fig. 3.11: Electrical Conductivity of Aquifer-II (Deep Aquifer)24Fig. 3.12: Fluoride of Aquifer-II (Deep Aquifer)25Fig. 3.13: Nitrate of Aquifer-II (Deep Aquifer)25Fig. 3.14: Fence Diagram26Fig.3.15: 3-D disposition of Aquifers27Fig.3.16: Hydrogeological Cross Section A-A'27Fig.3.17: Hydrogeological Cross Section B-B'28Fig.3.18: Hydrogeological Cross Section C-C'28Fig.4.1: Recharge from various sources31Fig.5.1: Hydrograph (2008-19) of Village Thapa33Fig. 5.2: Stage of Extraction for Multai Block Histogram34Fig.5.3: Stage of Extraction for Betuli Block Histogram34

AQUIFER MAPPING AND GROUND WATER MANAGEMENT PLAN FOR BETUL DISTRICT

PART-II: BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLANS

<u>1</u>	Aquifer Maps And Management Plan for Amla Block	38
<u>2</u>	Aquifer Maps And Management Plan for Athner Block	43
<u>3</u>	Aquifer Maps And Management Plan for Betul Block	48
<u>4</u>	Aquifer Maps And Management Plan for Bhainsdehi Block	53
<u>5</u>	Aquifer Maps And Management Plan for Bhimpur Block	57
<u>6</u>	Aquifer Maps And Management Plan for Chicholi Block	61
<u>7</u>	Aquifer Maps And Management Plan for Ghoradongri Block	66
<u>8</u>	Aquifer Maps And Management Plan for Multai Block	70
<u>9</u>	Aquifer Maps And Management Plan for Prabhat Pattan Block	76
<u>10</u>	Aquifer Maps And Management Plan for Shahpur Block	81
<u>11</u>	SUM UP & RECOMMENDATIONS	84

List of Figures in Part-II

Fig. 1.1: Fence Diagram of Amla Block	39
Fig 1.2: 3D Model Of Amla Block	39
Fig.1.3: Hydrograph of Amla	41
Fig.2.1: Fence Diagram of Athner Block	44
Fig.2.2: 3D Model Of Athner Block	44
Fig.2.3: Cross-section of Athner Block	44
Fig.2.4: Hydrograph of Athner	46
Fig.3.1: Fence Diagram of Betul Block	49
Fig.3.2: Cross-section of Betul Block	49
Fig.3.3: Hydrograph of Betul	53
Fig.4.1: Fence Diagram of Bhaisdehi Block	54
Fig.4.2: Cross-section of Bhaisdehi Block	54
Fig.4.3: Hydrograph of Kothal kund, Block-Bhainsdehi	55
Fig.5.1: Fence Diagram of Bhimpur Block	58
Fig.5.2: Cross-section of Bhimpur Block	58
Fig.6.1: Fence Diagram of Chicholi Block	62
Fig.6.2: Cross-section of Chicholi Block	62
Fig.6.3: Hydrograph of Nerempani, Block-Chicholi	64
Fig. 6.4: Hydrograph of Jogli,Block-Chicholi	64
Fig. 7.1: Fence Diagram of Ghoradongri Block	67
Fig. 7.2: Hydrograph of Sarni, Block-Chicholi	68
Fig.8.1: Fence Diagram of Multai Block	
Fig.8.2: 3D Model Of Multai Block	72
Fig.8.3: Cross-section of Multai Block	73
Fig.8.4: Hydrograph of Sausandra, Block-Multai	74
Fig.9.1: Fence Diagram of Prabhat Pattan Block	77
Fig.9.2: 3D Model Of Prabhat Pattan Block	77
Fig.9.3: Cross-section of Prabhat Pattan Block	78
Fig.9.4: Hydrograph of Masod, Block-Prabhat Pattan	79
Fig.10.1: Fence Diagram of Shahpur Block	82

ANNEXURES

Annexure-I: Details of Ground Water Exploration.	86
Annexure-II: Water Level Data of Aquifer-I (Shallow Aquifer)	
Annexure-III: Pre Monsoon Trend (2009-18)	91
Annexure-IV: Post Monsoon Trend (2009-18)	92
Annexure-V: Ground Water Quality Data of Aquifer-I (Shallow Aquifer)	
Annexure-VI: Ground Water Quality Data of Aquifer-II (Deeper Aquifer)	

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN FOR BETUL DISTRICT

1. INTRODUCTION

National project on Aquifer Mapping (NAQUIM) had been taken up by CGWB to carry out detailed hydrogeological investigation on toposheet scale of 1:50,000. The NAQUIM has been prioritised to study Over-exploited, Critical and Semi-Critical blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulation mechanism has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the **"Road Map"** for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the Administration Betul District for its effective implementation.

1.1 Objective and Scope

Aquifer mapping itself is an improved form of groundwater management – recharge, conservation, harvesting and protocols of managing groundwater. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e, the aquifer map and management plan. The activities under NAQUIM are aimed at:

- identifying the aquifer geometry,
- aquifer characteristics and their yield potential
- quality of water occurring at various depths,
- aquifer wise assessment of ground water resources
- preparation of aquifer maps and
- Formulate ground water management plan.

This clear demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a **"Road Map"** to systematically manage the ground water resources for equitable distribution across the spectrum.

Betul district being spread over an area of 10,043 sq.km have been entirely covered during the Annual Action Plan of 2019-20.

1.2 Study area

Entire Betul District having area of 10,043 sq.km was selected for NAQUIM activities during the year 2019-20. The index map of the study area is presented in **Fig.1.1**.The district is situated in the south central part of the Madhya Pradesh state. It is bounded on the North by Hoshangabad district, on the West by Khandwa district, on the South by Amravati district (Maharashtra); and on the East by Chindwara district. The district lies between north latitude 21^o 22' and 22^o 24' and east longitude 77^o 04' and 78^o 33'.The district comprises of eight tehsils and ten community development blocks, which are Betul, Multai, Athner, Prabhat Pattan, Chicholi, Ghoda Dongri, Amla, Bhainsdehi, Bhimpur and Shahpur. Population of the district is 15, 75,362 and Density of the Population is 157/km²as per 2011 census.

Fig. 1.1: Index map, Betul District.

1.3 Climate and Rainfall

The climate of Betul is characterized by a hot summer and general dryness except rainfall during the south- west monsoon season. The year can be divided into four seasons. The cold season, December to February is followed by summer season from March to about first week of June. The

period from the middle June to September is the south-west monsoon season. October and middle of November constitute the post monsoon or retreating monsoon season. May is the hottest month of the year with average temperature of 39.3°C. The minimum during the December is 10.3°C. The normal annual mean maximum and minimum temperature is 30.7°C and 17.9°C respectively.

The normal annual rainfall of Betul district is 999.8 mm. About 86.6% of annual rainfall is received during monsoon season. Only 13.4% of annual rainfall takes place between October to May.

Year	2014	2015	2016	2017	2018
Rainfall	2399.50	2725.66	2626.30	2612.60	2385.00

Table 1.1: Annual Rainfall Data - 2014-2018 (mm)

1.4 Physiography

The district has four physiographic divisions viz (i) Satpura plateau in Tawa and Morand valleys (ii) The Satpura plateau in central and (iii) The Satpura plateau in southern part of the district and (iv) Tapti valley. The maximum and minimum elevation of the district is 1089m and 358m above mean sea level respectively. The elevation is generally high towards east and southern part of the district and low elevation is towards western and northern side (as per Fig.1.2).

Fig. 1.2: Physiography.

1.5 Land Use, Agriculture, Irrigation and Cropping Pattern

Forest and agriculture are the prominent land use aspects in Betul district and forms 36.9% and 57.6% of total area respectively followed by the industrial and built-up structures. The spatial distribution of land use is presented in Fig. 1.3.

⁽Source: Indian Meteorological Department)

Fig.1.3: Land Use Map.

Table	1.2:	Land	Use	(in	sq.km)
-------	------	------	-----	-----	-------	---

Built up	Agricultural	Forest	Barren/ waste	Water bodies/	Total area
Area	Land		Lad	Wetlands	
87.55	5784.63	3705.48	343.68	121.64	10043

Fig.1.4: Land use Pie Chart.

Soybean is major crop of Betul district. It is cultivated in 2555.6 Sq. km under rain fed and 5.70 Sq. km under irrigated condition. Groundnut, Til, Ramtil are other oilseed crops grown in kharif season and Linseeds and Mustard are major oilseeds of Rabi season in the district. Oilseeds area is 2561.56 Sq. km in Betul district which is 42.17% of Gross Cultivated Area (GCA).Rice and Wheat are major cereals cultivated in Betul district. There are 1399.4 sq. Km rainfed and 386 sq. Km irrigated area covered by cereals in the district which is 29.39% of GCA.Coarse cereals in the district have third position in term of area of production. It covers total 725.99sq. Km including kharif and rabi area. Jowar, Maize, Kodo-Kutki are major coarse cereals cultivated in the district. Coarse cereals contribute 11.95% of GCA of Betul.Other Crops (Mainly sugarcane) also cultivated in 190.01 sq. Km in the district. Other crops contribute 3.13% of GCA of the district. Horticultural crops cover 106.02 sq. Km which is 1.75% of GCA of the district. Fiber crops have very little area only 3.31 sq. Km which is 0.06% of GCA of the district.

The climate of the district is congenial for successful cultivation for oilseed, pulses, cereals and horticultural crops like soybean, paddy, pigeon pea, maize in kharif and wheat, gram, sugarcane and pea in rabi are grown predominantly in the district. The total area under irrigation is 36% out of which 33% is double cropped in this district. (From Krishi Vigyan Kendra website, Betul)

The Ground water source (Open Well, bore well) based irrigation caters to the major area i.e., 72.3% of total irrigated area. 27.1 % of total irrigated area depends on surface water sources (canals, reservoirs, tanks). (Department of agriculture, Madhya Pradesh website)

IRRIGATION BY DIFFERENT SOURCES	Number of Structures	Area in Sq. km
Dug wells	68268	757.73
Tube wells/Bore wells	11231	351.51
Tanks/Ponds	46	98.42
Canals	108	319.7
Other Sources	-	126
Net Irrigated Area	-	1653.36

Table 1.3: Irrigation by different sources.

1.6 Geology

Betul district is underlain by various geological formations, forming different types of the aquifer in the area. Main geological units of the area areDeccan traps,Gondwana formations, Archaeans.Deccan traps comprising basaltic lava flows and most extensive rocks in the district. These rocks present in Betul, Multai, Bhimpura, Chicholi, Bhainsdehi, Atner and Prabhat pattan blocks.The Archaean rocks generally Granitoids cover approximately 20% of the total district area.The Archaeans are mainly occupying the Betul, Chicholi,Bhimpur, Shahpur and Amla blocks.The Gondwana formations comprise succession of sandstone, shales, and clays with seams of coal lying over the crystalline Archaean rocks.The Gondwana formations are mainlypresent inShahpur, Ghodadongri blocks and occur as patches inBhimpur block. The geological map of the district is shown in the **Fig.1.5**. The general stratigraphic succession of the district is presented in the **Table.1.4**

Fig.1.5: Geological Map.

 Table 1.4: Tectono stratigraphic succession of Betul belt (after Chakraborty et.al., 2009)

DECCAN TRAPS		Basaltic lava flows and dolerite dykes					
Intrusive contact / Disconformity							
GONDWANA SUPERGROUP		Conglomerate, sandstones, and shales					
	Unconformable / Tectonic Contact						
	INTRUSIVES	Basic dykes, pegmatites, quartz veins Homophanous Amphibole-Mica Granite, Porphyritic Granite					
	Intrusive / Tectonic contact	11012					
	PADHAR MAFIC – ULTRA MAFIC SUITE	Diorite, Epidiorite, Gabbro, Norite, Pyroxenite, homblendite, Websterite, Harzburgite, Anorthosite, Diorite, talc – serpentinite rock, quartz – epidote rock					
	Intrusive / Tectonic contact						
	SONAGHATI FORMATION	Intercalated sequence of quartzite and quartz- mica schist					
BETUL	Conformable / Tectonic contact						
GROUP	BARGAON FORMATION	Meta-sediments (mica schists) Metarhyolite and felsic metatuff, Metabasalt and Amphibole – Chlorite schist					
	Conformable / Tectonic contact						
	RANIPUR FORMATION	Phyllite, Banded Hematite / Magnetite quartzite, BIF Granulite, Meta-basalt, amphibolite, Carbonaceous phyllites Calcareous quartzite, calc-silicates, marble					
	Un-conformable / Tectonic of	contact					
AMLA GNEISS	BASEMENT ROCK	Banded migmatite gneiss, quartzofeldspathic mica schist /gneiss					

1.7 Soil cover

In the district, there are five types of soils namely kala soil (Black), Morand soil, Matbarra soils, Bardi soil, Sihar and retard soils. The southern central and eastern part of the district is covered by black cotton soil. Geologically the soils are divided according to their clay content and are shown in **Fig. 1.6**

Fig.1.6: Soil Map.

1.8 Hydrology and Drainage

Rivers, lakes and man-made reservoirs are the main sources of surface water abstraction. The major rivers flowing in the district are the Ganjal River (a tributary of the Tapti River), the Morand River and theTawa River (tributaries of the Narmada River). The Tapti River originates from Multai in the Betul district. The development of reservoirs has usually been for irrigation, flood control and hydropower. There are over 135 medium and minor reservoirs in the district. The drainage of the district is diverted in all direction from the eastern high mass of Satpura plateau. The drainage map of the Betul district is shown in **Fig. 1.7.**Betul district three basins are present namely, Narmada, Tapi and Godavari Shown in **Fig.1.8**.

2. DATA COLLECTION AND GENERATION

2.1 Data Collection and Compilation

The data collection and compilation for various components was carried out as given below.

- Hydrogeological Data Current and historical water levels along with water level trend data of monitoring wells representing Aquifer-I (Shallow aquifer) of CGWB. The weathered zone thickness (aquifer-I), lithologyand details of deeper aquifers (aquifer-II) of exploratory wells were also collected and compiled.
- Hydrochemical Data Ground water quality data of monitoring wells of CGWB representing shallow aquifer and data from exploratory wells representing deeper aquifer.
- Exploratory Drilling Ground water exploration data of exploratory wells of CGWB.
- Hydrometeorological Data Long term rainfall data for the whole district and for each block fromIndian meteorological Department and Water Resource Department.
- Water Conservation Structures Numbers, type and storage potential of water conservation structures prevailing in the area from Jilla Panchayat, Betul.
- Cropping Pattern Data Data on prevailing cropping pattern from Krishi Vigyan Kendra, Betul district.

2.1.1Ground Water Exploration

Ground water exploration was carried out to assess the lithological disposition of shallow aquifer (Aquifer-I) and deeper aquifer (Aquifer-II). The locations of exploratory wells are shown in **Fig. 2.1**. The details of exploratory and observation wells are given in **Annexure-II**.

Fig.2.1: Locations of Exploratory Wells.

2.1.2 Ground Water Monitoring Wells

Central ground water board has been carrying out water level monitoring through ground water monitoring wells since last two decades. The water levels of the monitoring wells are being monitored four times in a year during the month January, May, August and November. The locations of monitoring wells are shown in **Fig. 2.2**.

Fig.2.2: Locations of GW Monitoring Wells.

2.1.3 Ground Water Quality

The suitability of ground water for drinking/irrigation/industrial purposes is determined keeping in view the effects of various chemical constituents present in water on the growth of human being, animals, various plants and also on industrial requirement. Though many ions are very essential for the growth of plants and human body but when present in excess, have an adverse effect on health and growth. For assessment of ground water quality, samples from 27 wells (shallow dug wells representing phreatic aquifer) have been collected during pre-monsoon. Similarly for Aquifer – II, the ground water quality data of 43 exploratory/observation wells drilled during earlier exploration and current exploratory drilling activities were utilised.

2.1.4 Thematic Layers

The following 5 thematic layers were also generated on GIS platform which supported the primary database and provided precise information to assess the present ground water scenario and also to propose the future management plan.

- 👃 Drainage and Basin
- </u> Soil
- 👃 Land Use Land Cover
- Geology and Structure
- Physiography

The thematic layers such as geology, drainage, soil, land use-land cover have been described in Chapter - I.

3. DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

The data collected and generated on various parameters viz., water levels, water quality, exploration, aquifer parameters, geophysical, hydrology, hydrometeorology, irrigation, thematic layers was interpreted and integrated. Based on this the various aquifer characteristic maps on hydrogeology, aquifer wise water level scenario both current and long term scenarios, aquifer wise ground water quality, 2-D and 3-D sub surface disposition of aquifers by drawing fence and lithological sections, aquifer wise yield potential, aquifer wise resources, aquifer maps were generated and as discussed in details.

3.1 Hydrogeology

Hydrogeology is concerned primarily with mode of occurrence, distribution, movement and chemistry of water occurring in the subsurface in relation to the geological environment. The occurrence and movement of water in the subsurface is broadly governed by geological frameworks i.e., nature of rock formations including their porosity (primary and secondary) and permeability.Betul district is underlain by various geological formations, forming different types of the aquifer in the area. Main geological units of the area are Deccan traps,Gondwana formations and Archaeans. The principal aquifers in the area are Basalt andAchaeans where the occurrence and movement of ground water primarily depends on the degree of interconnection of secondary pores/voids developed by fracturing and weathering. The hydrogeological map of area is prepared and presented in Fig.3.1.

Fig. 3.1: Hydrogeology.

The water table elevation map was also prepared (**Fig.3.1**) to understand the ground water flow directions. In general, the groundwater movement in the NE part is towards the Tawa River, In the Northern part towards the Narmada River, in the central part the Movement is along the Tapi River, in the SW and SE part the groundwater movement is towards West and Southern side respectively. The occurrence of ground water is different geological formations is described below:

3.1.1 Deccan Traps

Deccan traps comprising basaltic lava flows and most extensive rocks in the district. There rocks occupying in Betul, Multai, Bhimpura, Chicholi, Bhainsdehi, Atner and Prabhat pattan blocks. Ground water occurs in the weathered, jointed and fractured basalts under Unconfined and semiconfined to confined conditions. The unconfined aquifer is restricted up to 15 m bgl while semiconfined and confined aquifers are encountered between 45 to 190 mbgl. The yield of shallow aquifer in this formation ranges between 60 to 300 lpm.

3.1.2Archaeans

The Archaean rocks generally Granitoids cover approximately 20% of the total district area. Quartz veins are common features and occur as thin strings. The Archaeans are mainly occupying the Betul, Chicholi,Bhimpur, Shahpur and Amla blocks. These rocks do not have primary porosity. The weathered part of the crystallineis the aquifer for open well and shallow tube wells. The thickness of these zones in the entire district area ranges from 2.5 to 30.00 m. In this formation, aquifers also occur where the rocks are jointed and fractured. The open wells that exist in this formation range in depth of 8.00-20.00 mbgl generally the column of water available during premonsoon season varies from 2.00 – 4.00 m. The general yield potential of Archaean formation less than 180 lpm. However at places the yield potential in deeper aquifer is found to the tune of 600 lpm.

3.1.3Gondwana Formations

The Gondwana formations comprise succession of sandstone, shales, and clays with seams of coal lying over the crystalline Archaean rocks. The Gondwana formations are mainlypresent inShahpur, Ghodadongri blocks and occur as patches inBhimpur block. In Gondwana formations groundwater occurs mostly in sandstone and at the contact zones. The yield potential of Gondwana ranges from 100 lpm to 300 lpm tapping semi confined and unconfined aquifers.

3.2 Water Level Scenario - Aquifer-I (Shallow Aquifer)

The present depth to water level scenario of shallow aquifer was generated by utilizing water level data of 29 monitoring wells representing shallow aquifer.

3.2.1 Pre-Monsoon (May, 2019)

The **pre-monsoon** depth to water levels during May 2019 ranged between 2.45 (Multai) to 19.7 mbgl (Khedi). The water levels more than 9 mbgl are observed in major part and thewater levels of less than 9 mbgl are observed in northern and easternparts of the district. The pre-monsoon water level data is presented as **Annexure-V**, whereas depth to water level map is given in **Fig.3.2**.

Fig. 3.2: Pre-monsoon (May 2019) Depth to Water Level of Shallow Aquifer.

3.2.2 Post-Monsoon (November, 2019)

The **post-monsoon** depth to water levels during Nov. 2019 ranged between 0.44 (Jhallar) to 7.53 mbgl (Ghatpiparia). The shallow water levels within 3 mbgl are observed in major parts of the area. The water level between 3m to 6mbgl is observed in the southern most part and in the central part of Betul, Chicholi and Shahpur block. The pre-monsoon water level data is presented as **Annexure-V**, whereas depth to water level map is given in **Fig.3.3**.

Fig. 3.3: Post monsoon (November 2019) Depth to Water Level of Shallow Aquifer.

Fig. 3.4: Seasonal Fluctuation of Water Level.

3.2.3 Water level Fluctuation

The water level measured during pre and post monsoon period (2019) was used to compute the seasonal fluctuation. The analysis of water level fluctuation data indicated that minimum water level fluctuation was observed at Kapasia (0.4m) while maximum water level fluctuation was observed at Khedi (13.78 m). The water level fluctuations were grouped under three categories i.e., less, moderate and high and the % of wells in each category was analysed (**Table 3.1**).

S. No.	Category	Fluctuation Range	% of Wells
1.	Less water level fluctuation	0 to 2 m	10.71%
2.	Moderate water level fluctuation	2 to 5 m	28.57%
3.	High water level fluctuation	>5 m	60.72%

Table3.1: Analysis of Water Level Fluctuation.

The analysis indicates that majority of the wells (60.72%) are falling in high fluctuation range indicating aquifer storage is not good, whereas moderate water level fluctuation are observed in 28.57 % wells and low water level fluctuation were observed in 10.71 % wells. The seasonal fluctuation map is presented as **Fig. 3.4** the perusal of map indicates that fluctuation of greater than 5 m is observed in major part of the area, whereas lower fluctuation of less than 2 m is observed in the north east, North West and south central part of the district.

3.2.4 Long Water Level Trend (2009-18)

In order to study long term behavior of the water levels and also the effect of various developmental activities with time, the data for the period 2009-18 have been computed and analyzed.

Fig. 3.5: Pre-monsoon Water Level Trend (May 2009-18) of Aquifer-I (Shallow Aquifer).

Fig. 3.6: Post-monsoon Water Level Trend (November 2009-18) of Aquifer-I (Shallow Aquifer).

The decadal pre-monsoon water level trend analysis (**Fig 3.5**) indicates that during premonsoon period, the northeast, northwest and southern part of the district are showing falling trend. Rest part of the district is showing rising trend.

The decadal post-monsoon water level trend analysis (**Fig 3.6**) indicates that about 95% of the area showing declining trend. Maximum falling trend is ranged between 0 to 0.5 m/yr. Only a small Eastern part of the district and small part of Betul and Bhainsdehi block showing rise in water levels.

3.3 Ground Water Quality

The ground water samples were analysed for major chemical constituents. The aquifer wise ranges of different chemical constituents present in ground water are given in **Table 3.2.**The details of water quality analysis of Aquifer I and II are given in **Annexure VII and VIII**.

Constituents	BIS Aquifer – I (Shallow aqui				quifer) Aquifer-II (Deeper Aquifer)		
	standards for drinking water	Min.	Max.	No. of samples above MPL	Min.	Max.	No. of samples above MPL
рН	6.5-8.5	7.25	8.10	Nil	6.95	8.3	Nil
EC	-	265	1388	Nil	112	1543	-
TH	300-600	126	610	1	45	540	Nil
Calcium	75-200	30	178	Nil	6	204	1
Magnesium	30-100	9	40	Nil	2	29.2	Nil
Potassium	-	0.2	13.1	-	0.1	15.5	-
Sodium	-	10	104	-	6	166	-
Carbonate	-	Nil	Nil	-	Nil	Nil	-
Bi-carbonate	-	134	472	-	18	384	-
Chloride	250-1000	7	222	Nil	7	305	Nil
Nitrate	45	27	161	18	1	155	10
Fluoride	1-1.5	0.05	1.35	Nil	0.26	4.84	10

Table 3.2: Aquifer wise ranges of chemical constituents.

Note: All values except EC (µS/cm @ 25°C) and pH are in mg/l.

3.3.1 Ground Water quality of aquifer-I (Shallow aquifer):

As per chemical analysis of pre-monsoon 2018 of Betul District, the ground water of shallow aquifer in the area of Betul district is slightly acidic to neutral in nature and the pH of ground water ranged in between 7.25 to 8.10; the highest value of pH (8.10) has been observed in Jogli dug well. The electrical conductivity of ground water in Betul district ranged between 265 to 1388 µS/cm at 25°C and the maximum EC value at Athner (1388 μ S/cm at 25°C). The electrical conductivity shows that the ground water is good to slightly saline in nature and at some locations i.e. Athner (1388 µS/cm at 25°C). The EC value map is presented in Fig. 3.9. The fluoride concentration was ranged in between 0.05 to 1.35 mg/l. In the district, fluoride concentration has not been observed more than BIS recommendation of fluoride concentration in drinking water i.e. 1.5 mg/l. The maximum concentration of fluoride has been recorded in the dug well of Jogli village i.e. 1.35 mg/l. In the district, nitrate concentration in ground water ranged in between 27 to 161 mg/l. About 33.3% ground water samples recorded nitrate concentration within the acceptable limit of 45 mg/l and 67.7% water samples recorded more than 45 mg/l as per BIS recommendation. The high nitrate concentration has been recorded in ground water of Bhainsdehi (47 mg/l), Gudagaon (49 mg/l), Jhallar (50 mg/l), Sasundra (51 mg/l), Masod New (52 mg/l), Multai-dw (52 mg/l), Jogli (53 mg/l), Gadha (54 mg/l), Shahpur (55 mg/l), Betul (67 mg/l), Chirapatala (68 mg/l), Khokharkheda (75 mg/l), Pathakhera (75 mg/l), Ghoradongri (76 mg/l), Kotal Kund (84 mg/l), Junapani (85 mg/l), Athner (110 mg/l) and Ghatpiparia (161 mg/l). The nitrate concentration map of Betul district presented in **Fig. 3.10.** Total hardness of ground water in the study area ranged in between 126 to 610 mg/l. The high concentration has been observed in the dug well of Betul (610 mg/l).

Fig.3.7: Piper Diagram.

Fig.3.8: US Salinity diagram.

As per the piper diagram (**Fig.3.7**), water samples are Calcium Chloride (permanent hardness), Calcium Bi-carbonate (temporary hardness) and Mixed (Calcium-Magnesium-Chloride) types of water. The US Salinity Diagram(**Fig.3.8**) shows the ground water is medium to high salinity classes i.e. C₂S₁ and C₃S₁. The C₂S₁ and C₃S₁ classes of water may be used for irrigation purpose with proper soil management.

Fig.3.10: Nitrate of Aquifer-I (Shallow Aquifer).

3.3.2 Ground Water quality of aquifer-II (Deep aquifer):

As per the chemical analysis of the Groundwater samples collected during exploration, the ground water of deep aquifer in the area of Betul district is slightly acidic to neutral in nature and the pH of ground water ranged in between 6.95 to 8.30; the highest value of pH (8.30) has been observed in Chicholi EW. The electrical conductivity of ground water in Betul district ranged between 112 to 1543 μ S/cm at 25°C and the maximum EC value at Betul (1543 μ S/cm at 25°C). The electrical conductivity shows that the ground water is good to slightly saline in nature and at some locations i.e. Betul (1543 μ S/cm at 25°C). The fluoride concentration was ranged in between 0.26 to 4.84 mg/l. In the district, in 10 water samples the Fluoride value found above permissible limit i.e. 1.5 mg/l. The maximum concentration of fluoride has been recorded in the EW of Bhimpur i.e. 4.84 mg/l. In the district, nitrate concentration in ground water ranged in between 1 to 155 mg/l. About 10 ground water samples recorded more than 45 mg/l as per BIS recommendation. The maximum concentration of fluoride in the EW of Jin i.e. 155 mg/l. Total hardness of ground water in the study area ranged in between 45 to 540 mg/l. The high concentration has been observed in the EW of Betul (540 mg/l).

In case of Aquifer-II, it is observed that Total Hardness, pH and Magnesium are within permissible limit. Out of 43 samples taken from exploratory/observation wells, in 10 samples the Nitrate and Fluoride value found above permissible limit. The electrical-conductivity, Fluoride and Nitrate of Aquifer-II has been prepared and presented as **Fig. 3.11, 3.12 and 3.13 respectively**.

Fig.3.11: Electrical Conductivity of Aquifer-II (Deep Aquifer).

Fig.3.12: Fluoride concentration of Aquifer-II (Deep Aquifer).

Fig.3.13: Nitrate concentration of Aquifer-II (Deep Aquifer).

3.4 3-D and 2-D Aquifer Disposition

The data generated from ground water monitoring wells, micro level hydrogeological inventories, exploratory and observation wells, various thematic layers was utilized to decipher the aquifer disposition of the area. This particularly includes the information on geometry of aquifers and hydrogeological information of these aquifers. In the area the two aquifer systems has been deciphered as listed below:

a. Aquifer -I (Shallow Aquifer)

b. Aquifer - II (Deeper Aquifer)

3.4.1 Fence Diagram and 3D model

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 30m. The fractured /jointed basalt and Granitoids, Gondwana sandstones form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig. 3.12** and 3-D representation is presented in **Fig. 3.13**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence and 3D diagram.

Fig.3.15: 3-D disposition of Aquifers.

3.4.2 Hydrogeological Cross Sections

To study the aquifer disposition in detail, various hydrogeological cross section indicating aquifer geometry has been prepared viz. A-A' representing north west – south east direction and B-B' representing north – south direction.

3.4.2.1 Hydrogeological Cross Section A-A'

Hydrogeological cross section A-A'(**Fig.3.16**) represents North West –South East direction and data of 9 exploratory wells i.e., Gawasen, Alampura, Chicholi, Jin, Khedi, Surgaon, Kolgaon, Bisnor, Masod has been utilised.

Fig.3.16: Hydrogeological Cross Section A-A'.

3.4.2.2 Hydrogeological Cross Section B-B'

Hydrogeological cross section B-B'(**Fig.3.17**) represents east – west direction and data of 10 exploratory wells i.e., Kamod, Basinda, Jaora, Chikhali, Khedi, Surgaon, Saikheda, Sandiya, Birolijhilpa, Khambarahas been utilised.

Fig.3.17: Hydrogeological Cross Section B-B'.

3.4.2.3 Hydrogeological Cross Section C-C'

Hydrogeological cross section C-C' (**Fig.3.18**) represents north – south direction and data of 10 exploratory wells i.e., Kamod, Basinda, Jaora, Chikhali, Khedi, Surgaon, Saikheda, Sandiya, Birolijhilpa, Khambara has been utilised.

Fig.3.18: Hydrogeological Cross Section C-C'.

3.5 Aquifer Characteristics

Basalt of the area comprises two distinct units viz, upper vesicular unit and lower massive unit. The massive basalt is hard, compact and does not have primary porosity and is impermeable. Weathering, jointing and fracturing induces secondary porosity in massive unit of basalt. In vesicular basalt, when vesicles are interconnected constitutes good primary porosity and when the vesicles are filled/ partly filled the porosity is limited. Ground water occurs under phreatic/ unconfined to semi-confined conditions in basalts.

Granitoids also doesn't have primary porosity and is impermeable. So the aquifers formed when the rock is weathered, fractured and jointed.

Based on the ground water exploration carried out in the Betul district, the following two types of aquifers can be demarcated and the details are given below in **Table 3.3**.

Major Aquifer	Basalt /Granitoids/ Sandstone			
Type of Aquifer	Aquifer-I	Aquifer-II		
Formation	Weathered Basalt/Granitoids	Jointed / Fractured Basalt/Granitoids/Sandstone		
Depth of Occurrence (mbgl)	1 to 30	30 to 200		
SWL (mbgl)	0.44 to 19.7	10 to 112.8		
Weathered / Fractured rocks thickness (m)	2 to 14	0.5 to 17		
Fractures encountered (mbgl)	Upto 30	Upto 200		
Yield	-	Up to 25 lps		
Transmissivity (m²/day)	-	5 to 80 m²/day		
Specific Yield/ Storativity (Sy/S)	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵		
Suitability for drinking/ irrigation	Suitable for both drinking and agriculture, except high Nitrate at places	Suitable for both drinking and agriculture, except high Nitrate and Fluoride at places		

Table 3.3: Aquifer Characteristics.

4. GROUND WATER RESOURCES

The ground water resources have been assessed for two types of aquifer existing in the area i.e., Aquifer-I and Aquifer-II. The details of the assessment are discussed below.

4.1 Ground Water Resources - Aquifer-I

The ground water resource assessment has been carried out for Betul district and the salient features of the resources are given in **Table 4.1, 4.2 and 4.3**.

As per **Table 4.1**, out of the total 1004300 ha area, recharge worthy areas are 29248 ha in command areas and 827202 ha in non-command areas, whereas 147850 ha area is not worthy for recharge on account of its hilly nature.

District	Predominant	Total	Hilly Area	Ground Water R	echarge Worthy
	Formation	Geographical	(ha)	Area	
		Area (ha)		Command	Non-command
				area (ha)	area (ha)
Betul	Basalt,	1004300	147850	29248	827202
	Achaeans,Gondwana				
	Sandstone				

Table 4.1: Ground Water Recharge worthy Areas for Resource Estimation.

4.1.1 Recharge Component

During the monsoon season, the rainfall recharge is the main recharge parameter, which is estimated as the sum total of the change in storage and gross draft. The change in storage is computed by multiplying groundwater level fluctuation between pre and post monsoon periods with the area of assessment and specific yield. Monsoon recharge can be expressed as:-

 $R = h \times Sy \times A + DG$

Where,

h = rise in water level in the monsoon season, Sy = specific yield

A = area for computation of recharge, DG = gross ground water draft

The monsoon ground water recharge has two components- rainfall recharge and recharge from other sources. The other sources of groundwater recharge during monsoon season include seepage from canals, surface water irrigation, tanks and ponds, ground water irrigation, and water conservation structures.

During the non-monsoon season, rainfall recharge is computed by using Rainfall Infiltration Factor (RIF) method. Recharge from other sources is then added to get total non-monsoonrecharge.

The season wise assessment of recharge from various components such as rainfall and other sources was done and presented in **Table4.2** and **Fig.4.1**. During monsoon season recharge from rainfall contributes maximum component (87832.29 ham) and recharge from other sources is 4914.79 ham, whereas during non-monsoon season, recharge from rainfall is 15543.34 ham and the recharge from other sources is 17950.96 ham. The total annual ground water recharge is 125969.36 ham and net ground water availability after natural discharge is estimated as 119671.78 ham.

Command /	Recharge	Recharge	Recharge	Recharge	Total	Environmental	Net Annual
Non-	from	from other	from rainfall	from other	Annual	flow in non-	Ground
Command /	rainfall	sources	during non-	sources	Ground	monsoon	Water
Total	during	during	monsoon	during non-	Water	period	Availability
	monsoon	monsoon	season	monsoon	Recharge	(ham)	(ham)
	season	season	(ham)	season (ham)	(ham)		
	(ham)	(ham)					
Command	2818.61	1223.88	616.92	4358.14	6011.65	443.69	8454.96
Non-	85013.68	3690.91	14926.42	13592.82	117070.71	5853.89	111216.82
Command							
Total	87832.29	219.90	15543.34	17950.96	125969.36	6297.58	119671.78

Table 4.2: Recharge Components evaluated for Resource Estimation.

The utilisation of available ground water resources for various purposes is provided in **Table 4.3** and **Fig.4.2**. The annual gross draft for all uses is estimated at 69852.02 ham with irrigation sector being the major consumer having a draft of 65506.60 ham. The annual draft for domestic and industrial use was estimated as 4345.42 ham. The allocation for domestic & industrial requirement supply up to next 25 years is about 3187.93 ham and ground water available for future irrigation is 50977.25 ham. The stage of ground water development is 58.37%.

Total	119671.78	65506.60	4645.42	69852.02	3187.93	50977.25	58.37	Safe
Command								
Non	111216.82	63950.24	3947.72	67897.96	2706.8	44559.78	61.05	-
Command	8454.96	1556.36	397.7	1954.06	481.13	6417.47	23.11	-
					(ham)			
		(ham)	(ham)	(ham)	supply	(ham)		
		irrigation	supply	All uses	water	development		
		Draft for	industrial water	Draft for	industrial	irrigation	ment (%)	
Total	(ham)	Water	domestic and	Water	and	for future	Develop	
Command /	Availability	Ground	Draft for	Ground	Domestic	Availability	Water	
Non-	Ground Water	Gross	Ground Water	Gross	for	Water	Ground	
Command /	Net Annual	Existing	Existing Gross	Existing	Allocation	Net Ground	Stage of	Category

Table 4.3: Dynamic Ground Water Resources Availability, Draft and Stage of GW Development.

	Units	
Recharge worthy Area	Sq. km	8564.5
Pre-monsoon (average) depth to water level	m	9.36
Av. depth of Dug well	m	11.735
Specific yield(Sy)%	Fraction	0.016
Saturated thickness of aquifer (ST)	m	2.375

Table 4.4: Static Ground Water Resources of Aquifer-I.

4.2 Ground Water Resources - Aquifer-II

The ground water resource of the Aquifer –II was also assessed to have the correct quantification of resources so that proper management strategy can be framed. To assess these resources, the average thickness of fractures in deeper aquifers from exploratory wells was calculated and the following formula for static ground water resources was utilised i.e.,

GWR =Recharge worthy Area x Thickness of fractures in deep aquifer x Specific yield

By applying above formula, the ground water resource of Aquifer-II was estimated as 445.251 MCM and is presented below in **Table 4.5**.

	Units	Total
Recharge worthy Area	Sq.km	8564.5
Thickness of fracture in deeper aquifer	М	5.24
Specific yield(Sy)%	Fraction	0.01
Resource (A * Sy * ST)	MCM	445.251

Table 4.5: Ground Water Resources of Aquifer-II.

5. GROUND WATER RELATED ISSUES

In the district there are many Groundwater issues both in quantity and quality wise. All the issues are described as follows.

5.1 Declining Water Level

The decline in the water level observed in major part of the district. The pre and post monsoon declining trend of onehydrograph prepared and presented in the **Fig.5.1**. The block wise decline in the trend of the hydrographs has been shown in the **Part-II**.

5.2 Low Ground Water Potential / Limited Aquifer Thickness / Sustainability

The district is covered mostly with hard rock i.e. Deccan trap basalt and Achaean Granitoids. These hard rocks don't haveprimary porosity and are impermeable. So they can form aquifers only when they are weathered, fractured and jointed. So the depth of weathering in shallow aquifer and aquifer thickness in deeper aquifers are limited. Sustainability of both the aquifers is limited.

5.3 Deeper Water Levels in Aquifer-II

In Betul district, deeper water levels of more than 20 mbgl have been observed during premonsoon season in deep aquifers.

5.4 Inferior Ground Water Quality

Out of the 27 groundwater samples collected from dug wells i.e. from shallow aquifers, in 18 samples the Nitrate concentration recorded more than permissible limit i.e. 45 mg/l as per BIS recommendation. Out of 43 groundwater samples taken from exploratory/observation wells i.e from deep aquifers, in 10 samples the Nitrate and Fluoride value found above permissible limit. The details about groundwater quality of both shallow and deep aquifers have been already discussed in **Chapter-3**.

5.5 Increasing stage of Ground Water Extraction

Out of the 10 blocks, Multai and Betul blocks have the stage of groundwater extraction are 80.30% and 79.10 % respectively which are categorised as semi-critical, other 8 blocks are come under safe category. But the stage of extraction for each blocks are increasing in every year. The increasing stage of Ground water extraction for the block Mulai and Betul are presented as histogram in the **Fig.5.2** and **Fig.5.3** respectively.

6. PROPOSED MANAGEMENT STRATEGY

As discussed in previous chapter, there are many groundwater related issues owing to many socio-economic and hydrogeological reasons. The groundwater management plan for Betul district has been made keeping in view the area specific details and includes the strategies like enhancing the ground water resources through the construction of artificial recharge structures such as percolation tanks, check dams/nala bunds, recharge shafts, etc. and ensuring water use efficiency through maintenance/renovation of existing water bodies/water conservation structures. Also, adoption of micro irrigation technique such as sprinkler irrigation has been proposed, that would not only conserve ground water resources by reducing the draft, but would also increase the net cropping area thereby augmenting the agricultural economy of the district.

6.1 Supply side Management

Artificial recharge to ground water is one of the most efficient, scientifically proven and cost effective technology to mitigate the problems of over exploitation of ground water resources. The artificial recharge techniques simultaneously rejuvenates the depleted ground water storage, reduces the ground water quality. The supply side management plan for Betul district has been formulated using the basic concepts of hydrogeology. Sub-surface storage is calculated by multiplying the total area with the respective specific yield (considering the variable lithology) and the unsaturated zone thickness obtained by subtracting 3 mts from the post-monsoon water level. Thus, the surface water requirement to completely saturate the sub-surface Storage is obtained by multiplying a factor of 1.33 to available storage potential. A runoff coefficient factor of 0.3 has been considered for Betul district to calculate the total surface water runoff, 30% of which accounts to the non-committed runoff which is available to sustain the proposed artificial recharge structures. Further, the number of structures has been calculated by allotting 35%, 20% and 35% of noncommitted runoff to Percolation tanks, Recharge shafts/Tube wells and Nala bunds/Check dams/Cement Plugs respectively. The remaining runoff is considered to restore the pre-existing village tanks, ponds and water conservation structures. A detailed calculation of the proposed artificial recharge structures is presented in the **Table 6.1**.

Out of 10043 sq.km geographical area of Betul district, about 8564.5 sq.km., area has been identified for ground water development, wherein 258percolation tank (@ Rs.20 lakh/percolation tank),1804 nala bund, Check dam, Cement plug (@10 lakh/structure), 515 recharge shaft/tube well(@5 lakh/structure), 1399 number of ponds/ village tanks to be renovated (@2 lakh/structure) are recommended to be constructed in feasible areas. This accounts to a total of Rs. 285.73crores to successfully implement the supply side management strategy. **Table 6.2** represents the complete financial outlay plan for the district.

In Betul district already many recharge structures are constructed (as per the data collected from Jilla Panchayat office, Betul). But due to non-availability proper coordinates of the already constructed recharge structures, the feasible sites for the proposed recharge structures cannot be pinpointed. The total numbers of recharge structures constructed in the district are presented in the **Table 6.3**. Block wise supply side management strategy will be discussed in **Part-II**.

	Units	
Total Area	Ca Kas	10043
Area suitable for recharge	Sq Km	8564.5
Sub-surface storage		193.7574
Surface water required	МСМ	257.6973
Surface water (Run-off) available		2873.771
Non-committed Run-off		862.1313
Percolation tank		258
Recharge shaft/ Tube well	Nolo	515
NB/ CD/ CP	No's	1804
No of Villages		1399

Table 6.1: Ground Water Management– Supply Side.

Table 6.2: Ground Water Management– Demand Side.

Structures	Number	Cost in Crores
	258	51.6
Percolation Tanks		
	1804	180.4
NB/ CD/ CP		
	515	25.75
Recharge shaft/ Tube well		
	1399	27.98
Renovation of Village Ponds		
Total Cost		285.73

Table 6.3: Already constructed Recharge structure.

Blocks	Percolation Tank	Farm pond	Contour Bunding	Earthen Bunding	Gabions	Loose Boulder structure	Stone Bund	Check Dam	Stop Dam
Amla	29	61	4	94	9	29	16	1876	23
Athner	64	32		14		3	5	2133	3
Betul	17	152		28	31	4	17	1772	17
Bhainsdehi	34	124	4	8		8		3493	31
Bhimpur	11	112	2	18	1	6	3	3786	9
Chicholi	4	31		31	3		65	1556	24
Ghoradongri	19	45		28	3	2	2	1077	5
Multai	7	23	1	10	3	4	6	1425	18
P.Pattan	24	261	7	15	3	1	6	2233	5
Shahpur	9	86	3	46	1	13	9	2814	47
Total	218	927	21	292	54	70	129	22165	182

6.2 Demand Side Management

However, considering the low storage potential of hard rock aquifer in the area the above ground water development plan should also be coupled with ground water augmentation plan, so that there is no stress on ground water regime of the area. Micro irrigation technologies such as drip and sprinkler systems are being increasingly promoted as technological solutions for achieving water conservation. Micro irrigation comprises two technologies—drip and sprinkler irrigation. Both saves conveyance losses and improve water application efficiency by applying water near the root-zone of the plant some benefits of the micro-irrigation have been listed below:

- The increase in yield for different crops ranges from 27 per cent to 88 per cent and water saving ranges from 36 per cent to 68 per cent vis-à-vis conventional flow irrigation systems (Phansalker and Verma, 2005).
- It enables farmers to grow crops which would not be possible under conventional systems since it can irrigate adequately with lower water quantities.
- It saves costs of hired labour and other inputs like fertilizer.
- It reduces the energy needs for pumping, thus reducing energy per ha of irrigation because of its reduced water needs. However, overall energy needs of the agriculture sector may not get reduced because most farmers use the increased water efficiency to bring more area under irrigation.

Net GW Availability	МСМ	1196.721
Gross Draft	WICIVI	695.6898
Stage of Development	%	62.92
Saving by Sprinkler in MCM		131.0132
Additional recharge created by AR		238.81943
After intervention of AR Structure Net GW AvL.	МСМ	1435.5404
After intervention of AR Structure & utilisation of 60% of additional GW created.	e.m	143.29166
Draft after sprinkler & additional area created for agriculture		707.96826
Stage of Development W/O GW use for additional Area Irrigation		49.317194
Additional area irrigated by GW after intervention		35822.914

Table 6.4: Proposed demand Side Interventions

PART-II: BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLANS

1. AQUIFER MAPS AND MANAGEMENT PLAN OF AMLA BLOCK

1.1 SALIENT INFORMATION				
Block	A	Amla		
Area	Sq Km	1120		
Population (2011 CENSUS)			1,45,911	
Normal Rainfall(2005-14)		millimeter	986.07	
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki	
Land use and Agriculture	Gross cropped area		616.26	
	Net sown area	Sq Km	363.2	
	Area sown more than once		253.06	
	Cropping intensity	%	170%	
	Area under forest	C au K an	37.55	
	Area under Waste land	Sq Km	11.11	
Data Utilised	Monitoring Wells for Water Level		Dw-1 , Pz-2	
	Monitoring Wells for Quality		Dw-1	
	Pre-monsoon WL	meter	6.87	
	Post-monsoon WL		2.3	
	Pre-monsoon WL Trend		Rising 0.024054	
Water level behaviour			Falling 0.010552	
	Post-monsoon WL Trend	(m /yr)	11311g 0.003340	

1.2 AQUIFER DISPOSITION					
Major Aquifer	Basalt /Granitoids				
Type of Aquifer	Aquifer-I	Aquifer-II			
Formation	Weathered Basalt/Granitoids	Jointed / Fractured Basalt/Granitoids			
Depth of	1 to 30	30 to 200			
Occurrence (mbgl)					
SWL (mbgl)	2.3 to 6.87	10 to 32			
Weathered /	2 to 15	0.5 to 3			
Fractured rocks					
thickness (m)					
Fractures	Upto 30	Upto 200			
encountered (mbgl)					
Yield	-	Up to 2.38 lps			
Transmissivity (m²/day)	-	5 to 80 m²/day			

1.2.1 3-D Aquifer Disposition and Fence Diagram

Fig.1.1: Fence Diagram.

Fig.1.2: 3D model.

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 15 m. The fractured /jointed basalt and Granitoids form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.1.1** and 3-D representation is presented in **Fig.1.2**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence and 3D diagram.

1.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES			
	Type of Rock formation	Achaean Gr	anite, Deccan trap Basalt
	Recharge worthy area		1083
	Command area	Sq Km	73.81
	Non-Command area		1009.19
	Recharge From Rain Fall		159 17
	During Monsoon Season		158:17
	Recharge From other		
	sources During Monsoon		10.69
	Season		
	Recharge From Rain Fall		
	During Non-Monsoon		16.4
	Season		
	Recharge From other		
	sources During non-		48.59
	Monsoon Season	МСМ	
	Total Recharge		233.85
DVNAMIC	Annual Extractable		221 77
GROUNDWATER	Groundwater Recharge		221.77
RESOURCES	Existing Gross Ground		119 08
2017	Water Draft for Irrigation		
	Existing Gross Ground		
	Water Draft for Industrial		0.08
	Water Supply		
	Existing Gross Ground		
	Water Draft for Domestic		0.45
	Water Supply		
	Existing Gross Ground		119.62
	Water Draft for All Uses		
	Annual GW Allocation for		
	for Domestic Use as on		3.14
	2025		
	Net Ground Water		
	Availability for Future		99.46
	Irrigation Development		
	Stage of Ground Water	%	53.94%
	Extraction		
	Category		SAFE
Static Resource O	f Shallow Aquifer	MCM	40.450
Static Resource Of Deep Aquifer			33.032

Fig.1.3: Hydrograph (2008-19), Village-Amla, Block- Amla, Betul District.

1.3.1 Ground Water Related Issues			
Declining water level	Declining water level observed both in pre and post-monsoon in		
	major part of the block(Fig.1.3)		
Low Ground Water Potential /	As the block is covered with hard Deccan trap basalt in the southern		
Limited Aquifer Thickness /	part and Achaean Granitoids in the northern part there is restricted		
Low Sustainability and High	depth of weathering (< 20 m) in Aquifer-I and limited aquifer		
runoff	thickness in Aquifer-II. Sustainability of both the aquifers is limited.		

1.4 MANAGEMENT PLAN FOR AMLA BLOCK		
Rainfall	meter	0.98607
Area	Sakm	1120
Area suitable for recharge	зү кш	1083
Average post-monsoon water level	t-monsoon Meter	
Unsaturated zone		2.77
Average SP Yield	%	0.015
Sub-surface storage		44.999
Surface water required	r required	
Surface water (Run-off) available	MCM	320.37
Non-committed Run-off		96.11
Percolation tank		60
Recharge shaft/ Tube well		120
NB/ CD/ CP		419
No of Villages		158

		Cost in
Type of Structures	Number	Crores
Percolation Tanks	60	12
NB/ CD/ CP	419	41.9
Recharge shaft/		
Tube well	120	6
Renovation of		
Village Ponds	158	3.16

1.5 DEMAND SIDE INTERVENTIONS				
Net GW Availability	МСМ	221.773		
Gross Draft	WCW	119.6198		
Stage of Development	%	53.94		
Saving by Sprinkler in MCM		23.817		
Additional recharge created by AR		44.99865		
After intervention of AR Structure		266.77165		
After intervention of AR Structure &utilisation of 60% of additional GW created.	МСМ	26.99919		
Draft after sprinkler & additional area created for agriculture		122.8		
Stage of Development W/O GW use	0/	46.03		
for additional Area Irrigation	70	40.03		
Additional area irrigated by GW after intervention	Sq Km	6750		

2. AQUIFER MAPS AND MANAGEMENT PLAN OF ATHNER BLOCK

2.1 SALIENT INFORMATION				
Block	Athner			
Area		Sq Km	853	
Population			94,878	
Normal		millimotor		
Rainfall(2005-14)		minineter	830.96	
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki	
Land use and	Gross cropped area		588.63	
Agriculture	Net sown area	Sq Km	443.36	
0	Area sown more than once		145.27	
	Cropping intensity	%	133%	
	Area under forest	Sakm	66.76	
	Area under Waste land	зү кш	29.68	
Data Utilizad	Monitoring Wells for Water Level		Dw-2	
Data Otilised	Monitoring Wells for Quality		Dw-2	
	Pre-monsoon WL	Meter	8.45	
Water level	Post-monsoon WL		3.2	
behaviour	Pre-monsoon WL Trend	m /yr	Falling 0.019 to 0.027	
	Post-monsoon WL Trend (m /yr)		Falling 0.014 to 0.027	

2.2 AQUIFER DISPOSITION			
Major Aquifer	Basalt		
Type of Aquifer	Aquifer-I Aquifer-II		
Formation	Weathered Basalt	Jointed / Fractured Basalt	
Depth of Occurrence (mbgl)	1 to 30	30 to 200	
SWL (mbgl)		10 to 25	
Weathered / Fractured	1 to 19	up to 8	
rocks thickness (m)			
Fractures encountered	Upto 30	Upto 200	
(mbgl)			
Yield	-	Up to 16 lps	
Transmissivity (m ² /day)	-	5 to 80 m²/day	
Specific Yield/ Storativity	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵	
(Sy/S)			

2.2.1 3-D Aquifer Disposition and Fence Diagram

As the area is covered with hard Deccan trap basalt, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 19m. The fractured /jointed basalt form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.2.1** and 3-D representation is presented in **Fig. 2.2**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence and 3D diagram.

Fig.2.3: Cross-section.

Hydrogeological cross section F-F' (**Fig.1.3**) represents a section through the block Athner along west-East direction and data of 5 exploratory wells i.e., Gudgaon, Kumhariya, Athner, Bisnoor, Masod has been utilised. The shallow aqufer extends up to 19 meter in the block. The maximum thickness of deeper aqufer is 8 meter.

2.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES			
	Type of Rock formation Deccan trap Basalt		asalt
	Recharge worthy area		533
	Command area	Sq Km	14.57
	Non-Command area		518.43
	Recharge From Rain Fall During Monsoon		54 72
	Season		54.75
	Recharge From other sources During		3.04
	Monsoon Season		5.04
	Recharge From Rain Fall During Non-		9.03
	Monsoon Season		5.05
	Recharge From other sources During		16.4
	non-Monsoon Season	МСМ	10.4
Dynamic	Total Recharge		83.2
Groundwater Resources 2017	Annual Extractable Groundwater		78 71
	Recharge		70.71
	Existing Gross Ground Water Draft for		45 14
	Irrigation		13.11
	Existing Gross Ground Water Draft for		0.381
	Industrial Water Supply		0.001
	Existing Gross Ground Water Draft for		2.159
	Domestic Water Supply		
	Existing Gross Ground Water Draft for All		47.68
	Uses		
	Annual GW Allocation for for Domestic		2.25
	Use as on 2025		_
	Net Ground Water Availability for Future		30.947
	Irrigation Development		
	Stage of Ground Water Extraction	%	60.57%
	Category		SAFE
Static Resource	Of Shallow Aquifer	MCM	36.990
Static Resource Of Deep Aquifer			26.650

2.3.1 Ground Water Related Issue	25
Declining water level	Declining water level observed both in pre and postmonsoon in
	major part of the block (Fig.2.4)
Low Ground Water Potential /	As the block is covered with hard Deccan trap basalt and Granitoids
Limited Aquifer Thickness /	there is restricted depth of weathering (< 20 m) in Aquifer-I and
Low Sustainability and High	limited aquifer thickness in Aquifer-II. Sustainability of both the
runoff	aquifers is limited.
	Shallow Aquifer: At the location Athner the nitrate concentration in
	the shallow aquifer is 110mg/l which is above the permissible limit.
Inferior Ground Water quality	Deep Aquifer: At The location Jaora the Fluoride concentration (1.52
	mg/l) and Nitrate concentration (69mg/l) is above permissible limit.

Fig.2.4: Hydrograph (2008-19), village-Athner

2.4 MANAGEMENT PLAN			
Rainfall	Millimeter	830.96	
Rainfall	meter	0.83096	
Area		853	
Area suitable for	Sq Km	522	
recharge		555	
Average post-			
monsoon water	Matar	4.77	
level	weter		
Unsaturated zone		1.77	
Average SP Yield	%	0.02	
Sub-surface storage		18.868	
Surface water		25.00	
required		23.09	
Surface water (Run-	MCM	122.97	
off) available		132.87	
Non-committed		39.86	
Run-off		55.80	
Percolation tank		25	
Recharge shaft/		50	
Tube well		50	
NB/ CD/ CP		176	
No of Villages		101	

		Cost in
Structures	Number	Crores
Percolation Tanks	25	5
NB/ CD/ CP	176	17.6
Recharge shaft/		
Tube well	50	2.5
Renovation of		
Village Ponds	101	2.02

2.5 DEMAND SIDE INTERVENTIONS		
Net GW Availability	МСМ	78.718
Gross Draft	mem	47.68
Stage of Development	%	60.57
Saving by Sprinkler in MCM		9.028
Additional recharge created by AR		18.8682
After intervention of AR Structure Net GW AvL.	МСМ	97.5862
After intervention of AR Structure & utilisation of 60% of additional GW created.		11.32092
Draft after sprinkler & additional area created for agriculture		49.97292
Stage of Development W/O GW use for additional Area Irrigation		51.20900291
Additional area irrigated by GW after intervention		2830.23

3. AQUIFER MAPS AND MANAGEMENT PLAN OF BETUL BLOCK

3.1. Salient Information			
Block	Betul		
Area		Sq Km	1150
Population			1,66,219
Normal Rainfall(2005-14)		millimeter	1137.7
			Soyabean,
			Groundnut, Til,
	Principal crops		Ramtil, Linseeds,
			Mustard, Rice,
			Wheat, Jowar,
			Maize, Kodokutki
Land use and Agriculture	Gross cropped area		887.44
	Net sown area	Sq Km	528.96
	Area sown more than once		358.48
	Cropping intensity	%	168%
	Area under forest	Sakm	123.25
	Area under Waste land	ЗЧ КШ	30.33
Data Utilised	Monitoring Wells for Water Level		Dw-4
Monitoring Wells for Quality			Dw-3
	Pre-monsoon WL		12.72
	Post-monsoon WL	mbgl	3.12
			Rising 0.003 to 0.02
Water level behaviour	Pre-monsoon WL Trend		Falling 0.0026
		m /yr	Rising 0.0067
	Post-monsoon WL Trend		Falling 0.0183 to 0.03

3.2. AQUIFER DISPOSITION			
Major Aquifer	Basalt /Granitoids		
Type of Aquifer	Aquifer-I	Aquifer-II	
Formation	Weathered	Jointed / Fractured	
	Basalt/Granitoids	Basalt/Granitoids	
Depth of Occurrence	1 to 30	30 to 200	
(mbgl)			
SWL (mbgl)	3.12 to 12.72	13.52 to 50	
Weathered / Fractured	2 to 31	0.5 to 13	
rocks thickness (m)			
Fractures encountered	Upto 30	Upto 200	
(mbgl)			
Yield	-	Up to 16 lps	
Transmissivity (m ² /day)	-	5 to 80 m²/day	
Specific Yield/ Storativity	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵	
(Sy/S)			

As the area is covered with hard Deccan trap basalt and Granitoid, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 31m. The fractured /jointed basalt form the deeper aquifer. The fence

diagram indicating the disposition of various aquifers is presented in **Fig.3.1.**The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence.

Fig. 3.1: Fence Diagram.

Hydrogeological cross section G-G' (**Fig.3.2**) represents a section through the block Betul along north-south direction and data of 6 exploratory wells i.e., Neempani, Bujhaliaghat, Khedi, Betul, Surgaon, Kolgaon has been utilised.

3.3 Ground water resource, extraction, contamination and other issues			
	Type of Rock formation	Acha	ean Granite,
		Decca	an trap Basalt
	Recharge worthy area		1030
	Command area	Sq Km	68.4
	Non-Command area		961.6
	Recharge From Rain Fall During Monsoon Season		60.5871
	Recharge From other sources During Monsoon Season		9.1578
	Recharge From Rain Fall During Non-Monsoon Season		48.2607
	Recharge From other sources During non-Monsoon Season		23.8289
Dynamic	Total Recharge		141.8345
Groundwater	Annual Extractable Groundwater Recharge		134.7238
Resources 2017	Existing Gross Ground Water Draft for Irrigation	мсм	102.187
	Existing Gross Ground Water Draft for Industrial Water Supply		0.6565
	Existing Gross Ground Water Draft for Domestic Water Supply		3.7204
	Existing Gross Ground Water Draft for All Uses		106.5639
	Annual GW Allocation for Domestic Use as on 2025		5.7927
	Net Ground Water Availability for Future Irrigation		26.0876
	Development		
	Stage of Ground Water Extraction	%	79.10%
	Category		Semi Critical
Static Resource	e Of Shallow Aquifer	MCM	14.214
Static Resource	e Of Deep Aquifer	IVICIVI	46.350

3.3.1 Ground Water Related Iss	sues	
Declining water level	Declining water level observed both in pre and post-monsoon in major part of the block (Fig.3.3)	
Low Ground Water Potential /	As the block is covered with hard Deccan trap basalt and granitoids,	
Limited Aquifer Thickness /	there is restricted depth of weathering in Aquifer-I and limited aquifer	
Low Sustainability and High	thickness in Aquifer-II. Sustainability of both the aquifers is limited.	
runoff		
	Shallow Aquifer: At the location Betul the Total hardness and nitrate concentration in the shallow aquifer is 614mg/l and 65 mg/l respectively which is above the permissible limit.	
Inferior Ground Water quality		
	Deep Aquifer: At The location Betul the Calcium concentration (204 mg/l) and Nitrate concentration (151mg/l) of deeper aquifer is above permissible limit. At location Bujhalighat and Surgaon the Nitrate Concentration are 48mg/l and 60 mg/l respectively are above the permissible limit. At Khedi and Kolgaon the Fluoride conc. are 2.53mg/l and 4.25 mg/l respectively which are also above the permissible limit	
Increasing Stage of Ground water Extraction	Now the Stage of Extraction of the Block Betul is at Semi-Critical (79.1 %)	

3.4. MANAGEMENT PLAN FOR BETUL BLOCK		
Rainfall	Millimeter	1137.7
Rainfall	meter	1.1377
Area	Sakm	1150
Area suitable for recharge	зү кш	1030
Average post-monsoon water level	Meter	3.39
Unsaturated zone		0.39
Average SP Yield	%	0.02
Sub-surface storage		8.034
Surface water required		10.69
Surface water (Run-off) available	МСМ	351.55
Non-committed Run-off		105.46
Percolation tank		11
Recharge shaft/ Tube well		21
NB/ CD/ CP		75
No of Villages		193

Structures	Number	Cost in Crores
Percolation Tanks	11	2.2
NB/ CD/ CP	75	7.5
Recharge shaft/ Tube well	21	1.05
Renovation of Village Ponds	193	3.86

3.5. DEMAND SIDE INTERVENTIONS			
Net GW Availability	мсм	134.724	
Gross Draft		106.564	
Stage of Development	%	79.1	
Saving by Sprinkler in MCM		20.4374	
Additional recharge created by AR		39.552	
After intervention of AR Structure Net GW AvL.	МСМ	174.276	
After intervention of AR Structure &utilisation of 60% of additional GW created.		23.7312	
Draft after sprinkler & additional area created for agriculture		109.8578	
Stage of Development W/O GW use for additional Area Irrigation		63.03667745	
Additional area irrigated by GW after intervention		5932.8	

Fig.3.3:Hydrograph (2008-19), village –Betul.

4. AQUIFER MAPS AND MANAGEMENT PLAN OF BHAINSDEHI BLOCK

4.1. Salient Information				
Block		Bhainsdehi		
Area		Sq Km	1257	
Population			1,26,410	
Normal Rainfall(2005-14)		millimeter	1172.26	
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki	
	Gross cropped area		649.14	
Land use and Agriculture	Net sown area	Sq Km	501.5	
	Area sown more than once		147.64	
	Cropping intensity	%	129%	
	Area under forest	Sakm	148.43	
	Area under Waste land	ЗЧКШ	30.47	
Data Utilised	Monitoring Wells for Water Level		Dw-5	
Data Otiliseu	Monitoring Wells for Quality		Dw-5	
	Pre-monsoon WL	mbgl	10.71	
	Post-monsoon WL		2.82	
Water level behaviour	Pre-monsoon WL Trend		Rising from 0.0062 to 0.055 Falling from 0.0058 to 0.0262	
	Post-monsoon WL Trend	m /yr	Rising from 0.000012 to 0.0035 Falling from 0.0142 to 0.174	

4.2. AQUIFER DISPOSITION			
Major Aquifer	Basalt / Gondwana Formations/Granitoids		
Type of Aquifer	Aquifer-I	Aquifer-II	
	Weathered	Jointed / Fractured	
Formation	Basalt/Gondwana	Basalt/Gondwana	
	Formations/Granitoids	Formations/Granitoids	
Depth of Occurrence (mbgl)	1 to 30	30 to 200	
SWL (mbgl)	2.82 to 10.71	12 to 113	
Weathered / Fractured	2 to 24	up to 17	
rocks thickness (m)			
Fractures encountered	Upto 30	Upto 200	
(mbgl)			
Yield	-	Up to 24 lps	
Transmissivity (m ² /day)	-	5 to 80 m²/day	
Specific Yield/ Storativity (Sy/S)	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵	

Fig.4.1: Fence Diagram.

As the area is covered with hard Deccan trap basalt and Granitoid, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends

maximum up to the depth of 24m. The fractured /jointed basalt and Granitoids form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.4.1**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence.

Hydrogeological cross section H-H' (**Fig.4.2**) represents a section through the block Betul along north-south direction and data of 6 exploratory wells i.eSaonga, Kerpani, Jhallar, Vijaygram, Kumhariya, Gudgaon, Sawalmendha, Kothalkund has been utilised.

4.2.1 Ground Water Related Issues		
Declining water level	Declining water level observed both in pre and post-monsoon in major	
	part of the block (Fig.4.3)	
Low Ground Water Potential / Limited Aquifer Thickness / Low Sustainability and High runoff	As the block is covered with hard Deccan trap basalt there is restricted depth of weathering (< 20 m) in Aquifer-I and limited aquifer thickness in Aquifer-II. Sustainability of both the aquifers is limited.	
Inferior Ground Water quality	Shallow Aquifer: At the location Bhainsdehi, Gudgaon, Jhallar, Kothalkund nitrate concentration is 47mg/l, 49mg/l, 50mg/l and 85mg/l respectively which are above the permissible limit. At kerpani Fluoride concentration(2.95 mg/l) above permissible limit	

Fig.4.3: Hydrograph (2008-19), village- Kothalkund.

4.4 MANAGEMENT PLAN FOR BHAINSDEHI BLOCK			
Rainfall	meter	1.17226	
Area		1257	
Area suitable for recharge	Sq Km	1020	
Average post-monsoon water level	Meter	4.3	
Unsaturated zone		1.3	
Average SP Yield	%	0.02	
Sub-surface storage		26.520	
Surface water required		35.27	
Surface water (Run-off) available	МСМ	358.71	
Non-committed Run-off		107.61	
Percolation tank		35	
Recharge shaft/ Tube well		71	
NB/ CD/ CP		247	
No of Villages		142	

Structures	Number	Cost in Crores
Percolation Tanks	35	7
NB/ CD/ CP	247	24.7
Recharge shaft/ Tube well	71	3.55
Renovation of Village Ponds	142	2.84

4.5. DEMAND SIDE INTERVENTIONS		
Net GW Availability	МСМ	131.270
Gross Draft	WICIWI	43.59
Stage of Development	%	10.788
Saving by Sprinkler in MCM		26.52
Additional recharge created by AR		157.79
After intervention of AR Structure Net GW AvL.		15.912
After intervention of AR Structure &utilisation of 60% of additional GW created.	MCM	62.344
Draft after sprinkler & additional area created for agriculture		39.51074213
Stage of Development W/O GW use for additional Area Irrigation		3978
Additional area irrigated by GW after intervention		6749.7975

5. AQUIFER MAPS AND MANAGEMENT PLAN OF BHIMPUR BLOCK

5.1 SALIENT INFORMATION			
Block	Bhimpura		
Area		Sq Km	1150
Population			1,50,924
Normal Rainfall(2005-14)		millimeter	1294.16
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki
	Gross cropped area		519.09
Land use and Agriculture	Net sown area	Sq Km	406.23
	Area sown more than once		112.86
	Cropping intensity	%	128%
	Area under forest	Sakm	346.97
	Area under Waste land	зү кш	33.06
Data Utilizad	Monitoring Wells for Water Level		Dw-0
Data Otilised	Monitoring Wells for Quality		Dw-0
	Pre-monsoon WL	mbgl	8.66
Water level behaviour	Post-monsoon WL		
	Pre-monsoon WL Trend	m /yr	-
	Post-monsoon WL Trend (m /yr)		-

5.2 AQUIFER DISPOSITION					
Major Aquifer	Basalt / Gondwana Formations/Granitoids				
Type of Aquifer	Aquifer-I Aquifer-II				
Formation	Weathered Basalt/Gondwana Formations/Granitoids	Jointed / Fractured Basalt/Gondwana Formations/Granitoids			
Depth of	1 to 30	30 to 200			
Occurrence (mbgl)					
SWL (mbgl)		2.1 to >100			
Weathered /	up to 20	0.5 to 10			
Fractured rocks					
thickness (m)					
Fractures	Upto 30	Upto 200			
encountered (mbgl)					
Yield	-	0.5 to 4.5 lps			
Transmissivity	-	5 to 80 m²/day			
(m ²/day)					
Specific Yield/	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵			
Storativity (Sy/S)					

Fig. 5.1: Fence Diagram.

Fig. 5.2: Cross-Section.

As the area is covered with hard Deccan trap basalt, Granitoid, Gondwana formations the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 20m. The fractured /jointed basalt, Granitoids, Gondwana formations form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.5.1.**The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence.

Hydrogeological cross section J-J' (**Fig.5.2**) represents a section through the block Bhimpur along north-south direction and data of 7exploratory wells i.eKamod, Basinda, Jaora, Bhimpur, AdarshDhanora, Chikhali, Saonga has been utilised.

5.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES			
	Type of Rock formation	Archear formatio	n Granite, Gondwana ns, Deccan trap Basalt
	Recharge worthy area		978
	Command area	Sq Km	0
	Non-Command area		978
	Recharge From Rain Fall During Monsoon Season		93.6671
	Recharge From other sources During Monsoon Season		1.3771
	Recharge From Rain Fall During Non- Monsoon Season		1.0027
	Recharge From other sources During non-Monsoon Season	МСМ	5.1931
D	Total Recharge		101.24
Groundwater Besources	Annual Extractable Groundwater Recharge		96.178
2017	Existing Gross Ground Water Draft for Irrigation		28.7096
	Existing Gross Ground Water Draft for Industrial Water Supply		0.5504
	Existing Gross Ground Water Draft for Domestic Water Supply		3.1195
	Existing Gross Ground Water Draft for All Uses		32.3795
	Annual GW Allocation for Domestic Use as on 2025		4.2921
	Net Ground Water Availability for Future Irrigation Development		62.6259
	Stage of Ground Water Extraction	%	33.67%
	Category		SAFE
Static Resource Of Shallow Aquifer		МСМ	31.687
Static Resource Of Deep Aquifer			62.788

5.3.1 Ground Water Related Issues		
Declining water level	Declining water level observed both in pre and post-monsoon in major part of the block (Fig.5.3)	
Low Ground Water Potential / Limited Aquifer Thickness / Low Sustainability and High runoff	As the block is covered with hard Deccan trap basalt and granitoids, there is restricted depth of weathering in Aquifer-I and limited aquifer thickness in Aquifer-II. Sustainability of both the aquifers is limited.	
Inferior Ground water quality	Deep Aquifer: At The location Saonga, the Nitrate concentration (55mg/l) of deeper aquifer is above permissible limit.	
Increasing Stage of Ground water Extraction	Now the Stage of Extraction of the Block Betul is at Semi-Critical (79.1 %)	

5.4 MANAGEMENT PLAN			
Rainfall	meter	1.29416	
Area		1150	
Area suitable for recharge	Sq Km	978	
Average post-monsoon water level	Meter	3.84	
Unsaturated zone		0.84	
Average SP Yield	%	0.015	
Sub-surface storage		12.323	
Surface water required		16.39	
Surface water (Run-off) available	МСМ	379.71	
Non-committed Run-off		113.91	
Percolation tank		16	
Recharge shaft/ Tube well		33	
NB/ CD/ CP		115	
No of Villages		155	

		Cost in
Structures	Number	Crores
Percolation		
Tanks	60	16
NB/ CD/ CP	419	115
Recharge		
shaft/ Tube		
well	120	33
Renovation of Village Ponds	158	155

5. 5 DEMAND SIDE INTERVENTIONS		
Net GW Availability	NACNA	96.180
Gross Draft	IVICIVI	32.38
Stage of Development	%	33.67
Saving by Sprinkler in MCM		4.9398
Additional recharge created by AR		12.3228
After intervention of AR Structure Net GW AvL.	МСМ	108.5028
After intervention of AR Structure &utilisation of 60% of additional GW created.		7.39368
Draft after sprinkler & additional area created for agriculture		34.83388
Stage of Development W/O GW use for addidtional Area Irrigation		32.10413003
Additional area irrigated by GW after intervention		1848.42

6. AQUIFER MAPS AND MANAGEMENT PLAN OF CHICHOLI BLOCK

6.1 SALIENT INFORMATIO	N		
Block		Chicholi	
Area		Sq Km	494
Population			77,513
Normal Rainfall(2005-14)		millimeter	1248.07
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki
	Gross cropped area		382.58
Land use and Agriculture	Net sown area	Sq Km	232.2
	Area sown more than once		150.38
	Cropping intensity	%	165%
	Area under forest	Sakm	87.41
	Area under Waste land	54 KII	19.14
Data Utilised	Monitoring Wells for Water Level		Dw-6
	Monitoring Wells for Quality		Dw-6
	Pre-monsoon WL	mbgl	9.17
	Post-monsoon WL	_	3.1
Water level behaviour	Pre-monsoon WL Trend	m /yr	Rising 0.0075 to 0.0242 Falling 0.0105 to 0.0523
	Post-monsoon WL Trend		Falling 0.0056 to 0.0651

6.2 AQUIFER DISPOSITION			
Major Aquifer	Basalt /Granitoids		
Type of Aquifer	Aquifer-I	Aquifer-II	
Formation	Weathered	Jointed / Fractured	
	Basalt/Granitoids	Basalt/Granitoids	
Depth of Occurrence (mbgl)	1 to 30	30 to 200	
SWL (mbgl)	3.1 to 9.17	4 to 42	
Weathered / Fractured rocks	up to 24	0.5 to 9	
thickness (m)			
Fractures encountered (mbgl)	Upto 30	Upto 200	
Yield	-	Up to 5.3 lps	
Transmissivity (m²/day)	-	5 to 80 m ² /day	
Specific Yield/ Storativity	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵	
(Sy/S)			

Fig. 6.1: Fence Diagram.

Fig.6.2: Cross-Section.

As the area is covered with hard Deccan trap basalt, Granitoid, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 24m. The fractured /jointed basalt, Granitoids form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.6.1**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence.

Hydrogeological cross section I-I' (**Fig.6.2**) represents a section through the block Chicholi along NW-SE direction and data of 5exploratory wells i.eGawasen, Alampur, Chicholi, Jin, Saonga has been utilised.

3. GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES			
	Type of Rock formation	Archaean Granite,	Deccan trap
	Becharge worthy area	DdSdll	398 5
	Command area	Sa Km	13 36
	Non-Command area	Sqiilli	358 14
	Recharge From Rain Fall During Monsoon Season		52.78
	Recharge From other sources During Monsoon Season		2.08
	Recharge From Rain Fall During Non-Monsoon Season		5.95
	Recharge From other sources During non- Monsoon Season Total Recharge Dynamic oundwater Annual Extractable Groundwater Recharge		6.37
			67.18
Dynamic Groundwater			63.82
Resources 2017	Existing Gross Ground Water Draft for Irrigation	МСМ	36.8
	Existing Gross Ground Water Draft for Industrial Water Supply		0.339
	Existing Gross Ground Water Draft for Domestic Water Supply		1.921
	Existing Gross Ground Water Draft for All Uses		39.06
	Annual GW Allocation for Domestic Use as on 2025		2.01
	Net Ground Water Availability for Future Irrigation Development		24.671
	Stage of Ground Water Extraction	%	61.20%
	Category		SAFE
Static Resource	Of Shallow Aquifer	MCM	13.210
Static Resource Of Deep Aquifer			21.639

6.3.1 Ground Water Related Iss	sues	
Declining water level	Declining water level observed both in pre and post-monsoon in major	
	part of the block (Fig.6.3 and 6.4)	
Low Ground Water Potential /	As the block is covered with hard Deccan trap basalt and granitoids,	
Limited Aquifer Thickness /	there is restricted depth of weathering in Aquifer-I and limited aquifer	
Low Sustainability and High	thickness in Aquifer-II. Sustainability of both the aquifers is limited.	
runoff		
	Shallow Aquifer: At the location Chirapatala, Gadha, Jogli, Khokharkheda, Pathakheda nitrate concentration are68mg/l, 54mg/l, 53mg/l, 75mg/l and 75 mg/l respectively which are above the permissible limit.	
Inferior Ground Water quality	Deep Aquifer: At location Jin, Neempani, malanjpur, the Nitrate Concentration are 155mg/l, 58mg/l and 78 mg/l respectively are above the permissible limit. At Chicholi the Fluoride conc. is 2.9mg/l which is also above the permissible limit	

Fig.6.3: Hydrograph(2008-19), Village-Neempani.

Fig.6.4: Hydrograph(2008-19), Village-Jogli.

6.4. MANAGEMENT PLAN		
Rainfall	meter	1.24807
Area		494
Area suitable for recharge	Sq Km	398.5
Average post-monsoon water level	Meter	4.65
Unsaturated zone		1.65
Average SP Yield	%	0.015
Sub-surface storage		9.863
Surface water required		13.12
Surface water (Run-off) available	MCM	149.21
Non-committed Run-off		44.76
Percolation tank		13
Recharge shaft/ Tube well		26
NB/ CD/ CP		92
No of Villages		80

Structures	Number	Cost in Crores
Percolation Tanks	13	2.6
NB/ CD/ CP	92	9.2
Recharge shaft/ Tube well	26	1.3
Renovation of Village Ponds	80	1.6

6.5. DEMAND SIDE INTERVENTIO	INS	
Net GW Availability	МСМ	63.82
Gross Draft		36.75
Stage of Development	%	57.58
Saving by Sprinkler in MCM		7.36
Additional recharge created by AR	МСМ	9.862875
After intervention of AR Structure Net GW AvL.		73.682875
After intervention of AR Structure &utilisation of 60% of additional GW created.		5.917725
Draft after sprinkler & additional area created for agriculture		35.307725
Stage of Development W/O GW use for additional Area Irrigation		47.91849531
Additional area irrigated by GW after intervention		1479.43125

7. AQUIFER MAPS AND MANAGEMENT PLAN OF GHORADONGRI BLOCK

7.1 Salient Information			
Block	Ghodadongri		
Area		Sq Km	1300
Population			1,49,649
Normal Rainfall(2005-14)		millimeter	1203.06
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki
I am diversion of A and a should be	Gross cropped area		400.94
Land use and Agriculture	Net sown area	Sq Km	253.54
	Area sown more than once		147.4
	Cropping intensity	%	158%
	Area under forest	Saka	146.39
	Area under Waste land	эч кш	24.55
Data Utilizad	Monitoring Wells for Water Level		Dw-2
Data Otiliseu	Monitoring Wells for Quality		Dw-2
	Pre-monsoon WL		8.84
Water level behaviour	Post-monsoon WL	mbgl	1.93
	Pre-monsoon WL Trend		Falling 0.0336 to 0.0474
	Post-monsoon WL Trend	m/yr	Falling 0.0208 to 0.0306

7.2. AQUIFER DISPOSITION			
Major Aquifer	Gondwana Formation/ Granitoids		
Type of Aquifer	Aquifer-I	Aquifer-II	
Formation	Weathered Gondwana Formations/Granitoids	Jointed / Fractured Gondwana formation/Granitoids	
Depth of Occurrence (mbgl)	1 to 30	30 to 200	
SWL (mbgl)	1.93 to 8.84	10.49	
Weathered / Fractured rocks thickness (m)	up to 12.2	0.5 to 3	
Fractures encountered (mbgl)	Upto 30	Upto 200	
Yield	-	Up to 0.8 lps	
Transmissivity(m ² /day)	-	5 to 80 m²/day	
Specific Yield/ Storativity (Sy/S)	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵	

As the area is covered with hard Gondwana formation and Granitoidthe thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 12m. The fractured /jointed Gondwana formation and Granitoidform the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.7.1.** The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence.

Fig.7.1:	Fence	Diagram.
----------	-------	----------

6.3. GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES			
	Type of Bock formation	Gondwana	
			Formation/ Granitoids
	Recharge worthy area		1140
	Command area	Sq Km	15.6
	Non-Command area		1124.4
	Recharge From Rain Fall During Monsoon Season		90.9987
	Recharge From other sources During Monsoon Season		2.023
	Recharge From Rain Fall During Non-Monsoon Season	MCM	15.89
	Recharge From other sources During non-Monsoon Season		8.9976
Dynamic	Total Recharge		117.9093
Groundwater Resources 2017	Annual Extractable Groundwater Recharge		112.01
	Existing Gross Ground Water Draft for Irrigation		25.1653
	Existing Gross Ground Water Draft for Industrial Water Supply		0.5022
	Existing Gross Ground Water Draft for Domestic Water Supply		2.8456
	Existing Gross Ground Water Draft for All Uses		28.5131
	Annual GW Allocation for for Domestic Use as on 2025		3.8211
	Net Ground Water Availability for Future Irrigation Development		82.525
	Stage of Ground Water Extraction	%	25.46%
	Category		SAFE
Static Resource Of Shallow Aquifer		МСМ	34.200
Static Resource Of Deep Aquifer			35.340

6.3.1 Ground Water Related Issues			
Declining water level	Declining water level observed both in pre and post-monsoon in major		
	part of the block (Fig.6.3)		
Low Ground Water Potential /	As the block is covered with hard Deccan trap basalt and Granitoids		
Limited Aquifer Thickness /	there is restricted depth of weathering (< 20 m) in Aquifer-I and limited		
Low Sustainability and High	aquifer thickness in Aquifer-II. Sustainability of both the aquifers is		
runoff	limited.		
Inferior Ground Water quality	Shallow Aquifer: At the location Ghoradongri nitrate concentration is		
	76mg/l which is above the permissible limit.		

6.4. MANAGEMENT PLAN		
Rainfall	meter	1.20306
Area		1300
Area suitable for recharge Sq Km		1140
Average post-monsoon water level	Meter	4.79
Unsaturated zone		1.79
Average SP Yield	%	0.015
Sub-surface storage	МСМ	30.609
Surface water required		40.71
Surface water (Run-off) available		411.45
Non-committed Run-off		123.43
Percolation tank		41
Recharge shaft/ Tube well		81
NB/ CD/ CP		285
No of Villages		172

		Cost in
Structures	Number	Crores
Percolation		
Tanks	41	8.2
NB/ CD/ CP	285	28.5
Recharge		
shaft/ Tube		
well	81	4.05
Renovation of		
Village Ponds	172	3.44

Fig.7.2: Hydrograph (2008-19), village- Sarni.

6.5. DEMAND SIDE INTERVENTIONS			
Net GW Availability	мсм	112.013	
Gross Draft		37.176	
Stage of Development	%	33.19	
Saving by Sprinkler in MCM	МСМ	5.033	
Additional recharge created by AR		30.609	
After intervention of AR Structure Net GW AvL.		142.622	
After intervention of AR Structure &utilisation of 60% of additional GW created.		18.3654	
Draft after sprinkler & additional area created for agriculture		50.5084	
Stage of Development W/O GW use for additional Area Irrigation		35.41417173	
Additional area irrigated by GW after intervention		4591.35	

8.AQUIFER MAPS AND MANAGEMENT PLAN OF MULTAI BLOCK

8.1 SALIENT INFORMATION				
Block	Multai			
Area		Sq Km	1081	
Population			1,26,080	
Normal Rainfall(2005-14)		millimeter	1108.36	
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki	
	Gross cropped area		882.52	
Land use and Agriculture	Net sown area	Sq Km	607.31	
	Area sown more than once		275.21	
	Cropping intensity	%	145%	
	Area under forest	Sakm	13.95	
	Area under Waste land	ЗЧКШ	3.29	
Data Utilised	Monitoring Wells for Water Level		Dw-5	
	Monitoring Wells for Quality		Dw-5	
	Pre-monsoon WL	mbgl	8.70	
	Post-monsoon WL	_	3.45	
Water level behaviour	Pre-monsoon WL Trend		Rising 0.0089 to 0.0351 Falling 0.0036 to 0.007	
	Post-monsoon WL Trend	m /yr	Rising 0.0049 Falling 0.0024 to 1.119	

8.2 AQUIFER DISPOSITION			
Major Aquifer	Deccan trap Basalt		
Type of Aquifer	Aquifer-I	Aquifer-II	
Formation	Weathered Basalt	Jointed / Fractured Basalt	
Depth of Occurrence (mbgl)	1 to 30	30 to 200	
SWL (mbgl)		12 to 36	
Weathered / Fractured rocks thickness (m)	up to 25	0.5 to 12	
Fractures encountered (mbgl)	Upto 30	Upto 200	
Yield	-	0.1 to 14 lps	
Transmissivity (m ² /day)	-	5 to 80 m²/day	
Specific Yield/ Storativity (Sy/S)	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵	

Fig.8.1: Fence Diagram.

Fig.8.2:3D Model.

As the area is covered with hard rock Deccan trap Basalt, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 25 m. The fractured /jointed basalt form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig. 8.1** and 3-D representation is presented in **Fig. 8.2**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence and 3D diagram.

Hydrogeological cross section J-J' (**Fig.8.3**) represents a section through the block Multai along nearly E-W direction and data of 6 exploratory wells i.eSaikheda, Jualkheda, Sandiya, Chandora, Dhauva, Khambarahas been utilised.

Fig.8.3: Cross-Section.

8.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES			
	Type of Rock formation	Deccan	trap Basalt
	Recharge worthy area		871
	Command area	Sq Km	39.07
	Non-Command area		831.93
	Recharge From Rain Fall During Monsoon Season		107.27
	Recharge From other sources During Monsoon Season		9.82
	Recharge From Rain Fall During Non-Monsoon Season		16.45
	Recharge From other sources During non-Monsoon Season	MCM	31.33
Dynamic	Total Recharge		164.87
Groundwater	Annual Extractable Groundwater Recharge		155.877
Resources 2017	Existing Gross Ground Water Draft for Irrigation		125.8
	Existing Gross Ground Water Draft for Industrial Water Supply		0.606
	Existing Gross Ground Water Draft for Domestic Water Supply		3.434
	Existing Gross Ground Water Draft for All Uses		129.84
	Annual GW Allocation for Domestic Use as on 2025		3.59
	Net Ground Water Availability for Future Irrigation Development		25.881
	Stage of Ground Water Extraction	%	83.30%
	Category		SEMI-
Static Resource Of Shallow Aquifer			35.537
Static Resource Of Deen Aquifer		MCM	63 322
			00:022

8.3.1 Ground Water Related	Issues
Declining water level	Declining water level observed both in pre and post-monsoon in major part
	of the block (Fig.8.4)
Low Ground Water	As the block is covered with hard Deccan trap basalt there is restricted
Potential / Limited Aquifer	depth of weathering in Aquifer-I and limited aquifer thickness in Aquifer-II.
Thickness /	Sustainability of both the aquifers is limited.
Low Sustainability and	
High runoff	
	Shallow Aquifer: At the location Junapani, Multai, Sasundra the nitrate
	concentration in the shallow aquifer is 85mg/l, 52 mg/l and 51 mg/l
Inferior Ground Water	respectively which are above the permissible limit.
quality	Deep Aquifer: At The location Sandiya Fluoride concentration is 2.74mg/l
	which is above permissible limit.
Increasing Stage of Ground	Now the Stage of Extraction of the Block Multai is at Semi-Critical (83.30%)
water Extraction	

Fig.8.4: Hydrograph (2008-19), village Sasundra.

4. MANAGEMENT PLAN FOR AMLA BLOCK			
Rainfall	meter	1.10836	
Area		1081	
Area suitable for recharge	Sq Km	871	
Average post-monsoon water level	Meter	3.55	
Unsaturated zone		0.55	
Average SP Yield	%	0.02	
Sub-surface storage		9.581	
Surface water required		12.74	
Surface water (Run-off) available	MCM	289.61	
Non-committed Run-off		86.88	
Percolation tank		13	
Recharge shaft/ Tube well		25	
NB/ CD/ CP		89	
No of Villages		139	

		Cost
		in
Structures	Number	Crores
Percolation		
Tanks	13	2.6
NB/ CD/ CP	89	8.9
Recharge		
shaft/ Tube		
well	25	1.25
Renovation of		
Village Ponds	139	2.78

5. DEMAND SIDE INTERVENTIONS				
Net GW Availability	МСМ	155.877		
Gross Draft		129.84		
Stage of Development	%	83.3		
Saving by Sprinkler in MCM		25.16		
Additional recharge created by AR		23.12505		
After intervention of AR Structure Net GW AvL.	МСМ	179.00205		
After intervention of AR Structure &utilisation of 60% of additional GW created.		13.87503		
Draft after sprinkler & additional area created for agriculture		118.55503		
Stage of Development W/O GW use for addidtional Area Irrigation		66.23110182		
Additional area irrigated by GW after intervention		3468.7575		

9. AQUIFER MAPS AND MANAGEMENT PLAN OF PRABHAT PATTAN BLOCK

9.1. SALIENT INFORMATION			
Block	PrabhatPattan		
Area		Sq Km	1133
Population			1,31,022
Normal Rainfall(2005-14)		millimeter	978.03
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki
	Gross cropped area		773.62
Land use and Agriculture	Net sown area	Sq Km	567.71
	Area sown more than once		205.91
	Cropping intensity	%	136%
	Area under forest	Sakm	58.98
	Area under Waste land	ЗЧ КШ	66.58
Data Utilised	Monitoring Wells for Water Level		Dw-2
	Monitoring Wells for Quality		Dw-2
	Pre-monsoon WL		13.1
Water level behaviour	Post-monsoon WL	mbgl	3.17
	Pre-monsoon WL Trend ()		Falling 0.0331 to 0.0619
	Post-monsoon WL Trend (m /yr)	m /yr	Falling 0.0129 to 0.0586

2. AQUIFER DISPOSITION				
Major Aquifer	Deccan trap Basalt			
Type of Aquifer	Aquifer-I Aquifer-II			
Formation	Weathered Basalt	Jointed / Fractured Basalt		
Depth of Occurrence (mbgl)	1 to 30	30 to 200		
SWL (mbgl)	3.17 to 13.1	46 to 81		
Weathered / Fractured rocks thickness (m)	up to 16	0.5 to 12		
Fractures encountered (mbgl)	Upto 30	Upto 200		
Yield	-	0.1 to 25 lps		
Transmissivity (m ² /day)	-	5 to 80 m²/day		
Specific Yield/ Storativity (Sy/S)	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵		

Fig.9.1: Fence Diagram.

Fig.9.2: 3D Diagram.

As the area is covered with hard rock Deccan trap Basalt, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 16m. The fractured /jointed basalt form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.9.1** and 3-D representation is presented in **Fig. 9.2**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence and 3D diagram.

Hydrogeological cross section K-K' (**Fig.9.3**) represents a section through the block PrabhatPattanand data of 6 exploratory wells i.eSaikheda, Jualkheda, Sandiya, Chandora, Dhauva, Khambarahas been utilised.

Fig.9.3: Cross-Section.

3. GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES			
	Type of Rock formation	Decca	n trap Basalt
	Recharge worthy area		1066
	Command area	Sq Km	33.26
	Non-Command area] [1032.74
	Recharge From Rain Fall During Monsoon Season		105.86
	Recharge From other sources During Monsoon Season		5.27
	Recharge From Rain Fall During Non-Monsoon Season		17.66
Dynamic	Recharge From other sources During non-Monsoon Season		18.31
Groundwater Total Recharge			147.1
Resources	Annual Extractable Groundwater Recharge	мсм	139.002
2017	Existing Gross Ground Water Draft for Irrigation		83.6
	Existing Gross Ground Water Draft for Industrial Water Supply		0.6
	Existing Gross Ground Water Draft for Domestic Water Supply		3.4
	Existing Gross Ground Water Draft for All Uses] [87.6
	Annual GW Allocation for Domestic Use as on 2025		3.552
	Net Ground Water Availability for Future Irrigation Development		51.25
	Stage of Ground Water Extraction	%	63.02%
	Category		SAFE
Static Resource Of Shallow Aquifer		NACNA	38.536
Static Resource Of Deep Aquifer		IVICIVI	69.183

Ground Water Related Issues	
Declining water level	Declining water level observed both in pre and post-monsoon in
	major part of the block
Low Ground Water Potential /	As the block is covered with hard Deccan trap basalt there is
Limited Aquifer Thickness /	restricted depth of weathering (< 20 m) in Aquifer-I and limited
Low Sustainability and High	aquifer thickness in Aquifer-II. Sustainability of both the aquifers is
runoff	limited.
	Shallow Aquifer: At the location Masod the nitrate concentration in
Inferior Ground Water quality	the shallow aquifer is 52mg/l which is above the permissible limit.

Fig.9.4: Hydrograph (2013-18), Village Masod.

4. MANAGEMENT PLAN		
Rainfall	meter	0.97803
Area	C au 1/au	1133
Area suitable for recharge	Sq Km	1066
Average post-monsoon water level Meter		4.79
Unsaturated zone		1.79
Average SP Yield	%	0.015
Sub-surface storage		28.622
Surface water required		38.07
Surface water (Run-off) available	МСМ	312.77
Non-committed Run-off		93.83
Percolation tank		38
Recharge shaft/ Tube well		76
NB/ CD/ CP		266
No of Villages		128

Structures	Number	Cost in Crores
Percolation Tanks	38	7.6
NB/ CD/ CP	266	26.6
Recharge shaft/ Tube well	76	3.8
Renovation of Village Ponds	128	2.56

5. DEMAND SIDE INTERVENTIONS			
Net GW Availability		139.002	
Gross Draft		87.6	
Stage of Development		63.02	
Saving by Sprinkler in MCM		16.72	
Additional recharge created by AR		28.6221	
After intervention of AR Structure Net GW AvL.		167.6241	
After intervention of AR Structure &utilisation of 60% of additional GW created.		17.17326	
Draft after sprinkler & additional area created for agriculture		88.05326	
Stage of Development W/O GW use for additional Area Irrigation		52.53019106	
Additional area irrigated by GW after intervention		4293.315	

10. AQUIFER MAPS AND MANAGEMENT PLAN OF SHAHPUR BLOCK

10.1 Salient Information									
Block	Shahpur								
Area	Sq Km 505								
Population			1,13,306						
Normal Rainfall(2005-14)		millimeter	1254.81						
	Principal crops		Soyabean, Groundnut, Til, Ramtil, Linseeds, Mustard, Rice, Wheat, Jowar, Maize, Kodokutki						
	Gross cropped area		336.14						
Land use and Agriculture	Net sown area	Sq Km	225.85						
	Area sown more than once		110.29						
	Cropping intensity	%	149%						
	Area under forest	Sakm	112.92						
	Area under Waste land	зү кш	11.22						
Data Utilizad	Monitoring Wells for Water Level		Dw-2						
	Monitoring Wells for Quality		Dw-2						
	Pre-monsoon WL		9.87						
Water level behaviour	Post-monsoon WL	mbgl	3.34						
	Pre-monsoon WL Trend (m /yr)		Rising 0.0015 to 0.0046						
	Post-monsoon WL Trend (m /yr)	m /yr	Falling 0.0129 to 0.0585						

10.2. AQUIFER DISPOSITION		
Major Aquifer	Gondwana Fo	ormation/ Granitoids
Type of Aquifer	Aquifer-I	Aquifer-II
Formation	Weathered Gondwana Formations/Granitoids	Jointed / Fractured Gondwana formation/Granitoids
Depth of Occurrence (mbgl)	1 to 30	30 to 200
SWL (mbgl)		3.25 to 12.64
Weathered / Fractured rocks	up to 18	0.5 to 6
thickness (m)		
Fractures encountered (mbgl)	Upto 30	Upto 200
Yield	-	Up to 0.6 lps
Transmissivity (m ² /day)	-	5 to 80 m ² /day
Specific Yield/ Storativity (Sy/S)	-	1.0x10 ⁻⁴ to 5.5x10 ⁻⁵

As the area is covered with hard Gondwana formation and Granitoid the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 16m. The fractured /jointed Gondwana Formation and Granitoids form the deeper aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig.10.1.** The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence.

Fig. 10.1: Fence Diagram.

10.3. Groun	d water resource, extraction, contamination and other is	sues	
	Type of Rock formation	Gondwar	na Formation/ Granitoids
	Recharge worthy area		445
	Command area	Sq Km	12.62
	Non-Command area		432.38
	Recharge From Rain Fall During Monsoon Season		48.61
	Recharge From other sources During Monsoon Season		2.5
	Recharge From Rain Fall During Non-Monsoon Season		7.51
	Recharge From other sources During non-Monsoon Season		8.42
Dynamic	Total Recharge		67.04
Groundwater Resources	Annual Extractable Groundwater Recharge	МСМ	63.34
2017	Existing Gross Ground Water Draft for Irrigation		38.65
	Existing Gross Ground Water Draft for Industrial Water Supply		0.411
	Existing Gross Ground Water Draft for Domestic Water Supply		2.329
	Existing Gross Ground Water Draft for All Uses		41.39
	Annual GW Allocation for Domestic Use as on 2025		2.44
	Net Ground Water Availability for Future Irrigation Development		21.843
	Stage of Ground Water Extraction	%	65.34%
	Category		SAFE
Static Resource	Of Shallow Aquifer	МСМ	21.160
Static Resource	Of Deep Aquifer	IVICIVI	20.648

10.3.1 Ground Water Related Issues								
Declining water level	Declining water level observed in some part of the block							
Low Ground Water Potential /	As the block is covered with hard Deccan trap basalt there is							
Limited Aquifer Thickness /	restricted depth of weathering (< 20 m) in Aquifer-I and limited							
Low Sustainability and High	aquifer thickness in Aquifer-II. Sustainability of both the aquifers is							
runoff	limited.							
	Shallow Aquifer: At the location Shapur the nitrate concentration in							
Inferior Ground Water quality	the shallow aquifer is 55 mg/l which is above the permissible limit.							

10.4. MANAGEMENT PLA	N	
Rainfall	meter	1.25481
Area		505
Area suitable for	Sq Km	445
recharge		
Average post-monsoon		3 65
water level	Meter	3.05
Unsaturated zone		0.65
Average SP Yield	%	0.015
Sub-surface storage		4.339
Surface water required		5.77
Surface water (Run-off) available	MCM	167.52
Non-committed Run-off		50.26
Percolation tank		6
Recharge shaft/ Tube well		12
NB/ CD/ CP		40
No of Villages		131

Structures	Number	Cost in Crores
Percolation Tanks	6	1.2
NB/ CD/ CP	40	4
Recharge shaft/ Tube well	12	0.6
Renovation of Village Ponds	131	2.62

10.5. DEMAND SIDE INTERVENTIONS			
Net GW Availability	NACNA	63.344	
Gross Draft	IVICIVI	41.39	
Stage of Development	%	65.34	
Saving by Sprinkler in MCM		7.73	
Additional recharge created by AR		4.33875	
After intervention of AR Structure Net GW AvL.	МСМ	67.68275	
After intervention of AR Structure &utilisation of 60% of additional GW created.	-	2.60325	
Draft after sprinkler & additional area created for agriculture		36.26325	
Stage of Development W/O GW use for additional Area Irrigation		53.57827511	
Additional area irrigated by GW after intervention		650.8125	

SUM UP & RECOMMENDATIONS

- A thorough study was carried out based on data gap analysis, data generated in-house; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of aquifer maps and aquifer management plans of Betul district.
- The study area is spanning over 10043 sq.km, out of which 1478.50 sq.km is hilly area and area suitable for recharge is 8564.50 sq.km.
- The major rivers flowing in the district are the Tapi River, the Ganjal River (a tributary of the Tapti River), the Morand River and the Tawa River (tributaries of the Narmada River).
- Main geological units of the area are Deccan traps, Gondwana formations, Archaeans. Deccan traps comprising basaltic lava flows and most extensive rocks in the district.
- The pre-monsoon depth to water levels during May 2019 ranged between 2.45 to 19.7 mbgl and the post-monsoon depth to water levels during Nov. 2019 ranged between 0.44 to 7.53 mbgl.
- About 60.72% of monitoring wells of the district are showing high fluctuation range (premonsoon WL & post-monsoon WL) indicating aquifer storage capacity of the district is not good.
- For Shallow aquifers the electrical conductivity of ground water ranged between 265 to 1388 μS/cm at 25°C, pH ranged in between 7.25 to 8.10, fluoride concentration was ranged in between 0.05 to 1.35 mg/l, nitrate concentration ranged in between 27 to 161 mg/l. Total hardness ranged in between 126 to 610 mg/l.
- For deep aquifers the electrical conductivity of ground water ranged between 112 to1543 μ S/cm at 25°C,pH ranged in between 6.95 to 8.30, fluoride concentration was ranged in between 0.26 to 4.84 mg/l, nitrate concentration ranged in between 1 to 155 mg/l. Total hardness ranged in between 45 to 540 mg/l.
- During monsoon season recharge from rainfall contributes maximum component (87832.29 ham) and recharge from other sources is 4914.79 ham, whereas during non-monsoon season, recharge from rainfall is 15543.34 ham and the recharge from othe r sources is 17950.96 ham.
- The net dynamic ground water resource available is 119671.78 ham. The annual gross draft for all uses is estimated as 69852.02 ham with irrigation sector being the major consumer having a draft of 65506.60 ham, resulting the stage of ground water development to be 58.37 % as a whole for district. The Betul district falls under safe category.
- There are 2 Semi critical blocks out of 10 Blocks (79.1 & 83.3 % Stage of Development in Betul and Multai respectively).
- On the basis of the exploratory bore wells drilled by CGWB, NCR under its NAQUIM program, it has been observed that the yield varies from meagre to 25 lps.
- As per the Management plan prepared under NAQUIM of all the Block of Betul District, a total number of 258 Percolation Tanks, 515 Recharge Shafts/Tube wells and 1504Nala Bunds/Check Dams/Cement Plugs have been proposed and financial expenditure is expected to be Rs285.73 Crores in Betul District for sustainable development and management of ground water resources.

 In Betul district, the main ground water issues are Decline in the water level, Limited Ground Water Potential / Limited Aquifer Thickness / Sustainability, Deeper Water Levels particularly in deeper aquifers, Inferior Ground Water Quality both in shallow and deep aquifers and Increasing Stage of ground water extraction

•

ANNEXURE-I: Details of Ground Water Exploration

S.	Location	Block	Туре	Year of	Depth	Thickne	Aquifer	Zone	SWL	Discharge
No.			of well	construc	Drilled	ss of			(mbgl)	(lps)
				tion		weather				
1	AdarshDhan ora	Bhimpur	EW	2018-19	200	6.1	Weathered/ fractured Basalt	12.2-15.25, 67.1-70.1	22.75	1.5
2	Amla	Amla	EW	2008-09	250.1	15			10	0.22
3	Athner	Athner	EW	2005-06	250	19	Fractured & Jointed granitic gneiss	158-164,231-233	10.28	16
4	Barai	Multai	EW		147.3		Weathered Vesicular Basalt	12-16,37-46	12.3	2.5
5	Basinda	Bhimpur	EW	2018-19	200	6	Weathered Basalt/Sandstone	3.05-6.1, 152-154	>100	Meagre
6	Betul sadar	Betul	EW	2005-06	305	24.3	Fractured & Jointed granitic gneiss	54.9-59, 115-122, 296- 300	13.7	4.26
7	Betul sadar	Betul	OW	2005-06	134.2	27.4	Fractured & Jointed granitic gneiss	21.4-27.4, 117-122	13.52	
8	Bhainsdehi	Bhainsdehi	EW	2008-09	189.7	21	Fractured/ Jointed Basalt	45-55, 134-140, 154-159	112.8	12
9	Bhainsdehi	Bhainsdehi	OW1	2008-09	154	21	Fractured/Jointed Basalt	43-53, 140-146	112.7	
10	Bhainsdehi	Bhainsdehi	OW2	2008-09	146.1	24	Fractured/Jointed Basalt	46-55, 135-140	111.95	
11	Bhimpur	Bhimpur	EW	2006-07	201	12	Gondwana sandstone /fractured granite/Fractured basalt	54-64, 70-85,192-198	2.01	3
12	Bhimpur	Bhimpur	OW1	2006-07	98.6	11	Fractured basalt	54-64	3.87	
13	Bhimpur	Bhimpur	OW2	2006-07	202	8	fractured granite/Fractured basalt	56-65, 192-195	1.53	
14	Bhujaliaghat	Betul	EW	2006-07	269	19	Fractured Amphibolite	19.0-24.0,24.0-37.0	19.72	3.28
15	Bhujaliaghat	Betul	OW	2006-07	49.8	16	Fractured Granite	16.0-25.0,40.0-44.0	26.17	0.22
16	Birolijhilpa	PrabhatPat tan	EW	2018-19	155	12.2	fractured Basalt	79.3-82, 122-128		

17	Bisnoor	PrabhatPat tan	EW	2018-19	201.3	6.1				Megare
18	Bordehi	Amla	EW	2018-19	200	6	Basalt/ Gabbro	80.3-83.3	10.54	2.38
19	BotharPatha r	Multai	EW	2018-19	202.3	4	Basalt			
20	Chakora	PrabhatPat tan	EW	2018-19	201.3	6	Basalt	183-192.15		
21	Chandora	Multai	EW	2008-09	274.5	4	Weathered/Vescicular Basalt	33.5-39.5	22.5	0.75
22	Chandu	Bhimpur	EW	2018-19	200.2	2.5	Basalt	58.90-68.10	55.85	1.76
23	Chicholi	Chicholi	EW	2005-06	263	17	Fractured & Jointed granitic gneiss	15-17,64-73, 153- 158,258-263	36.18	5.3
24	Chicholi	Chicholi	OW	2005-06	263	20	Fractured & Jointed granitic gneiss	17-20, 159-165, 159-165, 256-263	36.1	
25	Chikhali	Bhimpur	EW	2018-19	200.1	1.9	Basalt	43-44.6		
26	Dahuva	Multai	EW	2018-19	204.7	12.2	Basalt	21.8-24.9,83.7-86.8	11.99	0.1
27	Dedhpani	Bhainsdehi	EW	2008-09	134.2	6	Fractured Basalt	125-134.2	87.22	11
28	Dedhpani	Bhainsdehi	OW1	2008-09	146.4	6	Fractured Basalt	130-136	87.53	1.2
29	Dedhpani	Bhainsdehi	OW2	2008-09	134.1	6	Fractured Basalt	128-134.10	87.45	2.75
30	Dhamangao n	Bhainsdehi	EW	2008-09	266.6	10	Fractured Basalt	10.0-14.0	12.5	0.25
31	Gawasen	Chicholi	EW	2018-19	178.9	8.1	Basalt	36.6-39.65,72.1-75.2		
32	Gudgaon	Bhainsdehi	EW	2008-09	256.2	15	Fractured/ Jointed Basalt	150-153	100	0.75
33	Hirapur	Shahpur	EW	2018-19	200	7.5	Gondwana sandstone	25.4-28.4	12.38	0.6
34	Jaora	Athner	EW	2006-07	305	12	Weathered Vesicular Basalt	30-36	24.9	0.22
35	Jhallar	Bhainsdehi	EW	2007-08	275.5	3.1	Fractured basalt	25.4-37.6	7.49	0.22
36	Jholi	Ghodadong ri	EW	2018-19	198.25	12.2	Gondwana Sandstone	35.3-38.4	10.49	0.8
37	Jin	Chicholi	EW	2005-06	300.1	14	Fractured Basalt/Basic Intrusive/Sandstone	23.0-26.0,36.0- 45.0,216.5-219.0	4.1	0.75

38	Jualkheda	Multai	EW	2007-08	256.4	4	Fractured/weathered basalt	41-45, 107-117,	36.1	1.18
39	Kantawadi	Shahpur	EW	2018-19	130	18	Granite	18-21,70.15-73.2,		
								131.15-134.2		
40	Kantawadi	Shahpur	OW	2018-19	103.7	21.35	Granite	15.05-18.3, 48.8-54,		
								82.35-85.4		
41	Kerpani	Bhainsdehi	EW	2007-08	190.6	3	Fractured basalt	144-158, 173-190	75	15
42	Kerpani	Bhainsdehi	OW	2007-08	158.6	3	Fractured/weathered basalt	149-158.6		
43	Khamapur	Bhimpur	EW	2018-19	91.5	6.1	Basalt			
44	Khambara	P.Pattan	EW	2018-19	203.3	6.1	Basalt	25.4-28.4	80.72	0.1
45	Khedi	Betul	EW	2005-06	298	6	Fractured Basalt/Granite/Marble	13.2-19.2,135.2-	50	0.75
								140.0,152.0-159.6		
46	Khumariya	Bhainsdehi	EW	2005-06	164.7	15.3	Weathered Vescicular Basalt	3.0-18.3	49.7	
47	kolgaon	Betul	EW	2006-07	286.7	3	Fractured basalt	85-94,152-160,115-	30.52	1.8
								125,204-214		
48	KothalKund	Bhainsdehi	EW	2018-19	185	1	fractured Basalt	53-55, 130-132		
49	Kvk Betul	Betul	EW	2018-19	152.5	9.15	fractured Basalt	06-9.15		
50	Malanjpur	Chicholi	EW	2006-07	305	18	Fractured & Jointed granitic gneiss	217-220	19.2	0.5
51	Mangona	P.Pattan	EW	2018-19	200	9.15	Basalt	116.9-119.9	41.39	0.2
52	Masod	P.Pattan	EW	2008-09	274.5	4	Weathered/Vescicular Basalt	67.0-73.0	46.62	0.75
53	Multai	Multai	= F\//	2005-06	304 51	3	Fractured basalt/Gondwana	Dry	Dry	Dry
55	Walta	Walta		2005 00	504.51	5	Sandstone	Diy	Dry	Diy
54	Nanda	Bhimpur	EW	2018-19	200	6	Sandstone/Granite	160.4-163.4	23.11	0.5
55	Neempani	Chicholi	EW	2005-06	305	17	Fractured & Jointed granitic	12-17,152-156,178-186	7.92	5.36
							gneiss			
56	Neempani	Chicholi	OW	2005-06	152.2	20	Fractured & Jointed granitic	16-20	7.7	
							gneiss			
57	Pathakheda	Chicholi	EW	2006-07	292.7	24	Fractured basalt/Gondwana Sandstone	58-67,118-125,289-292.8	41.9	3.28
58	Pathakheda	Chicholi	OW	2006-07	79	24	Fractured basalt/Gondwana	58-67, 67-79	31.23	

							Sandstone			
59	Pawarjhand a	Shahpur	EW	2018-19	200	6.1	Granite	139-142.1	12.64	0.1
60	PrabhatPatt an	PrabhatPat tan	EW	2007-08	112	16	Fractured basalt	82-88, 102-112		25
61	PrabhatPatt an	PrabhatPat tan	OW	2007-08	109.8	10	Fractured basalt	6-10, 80-90, 105-109.8		
62	Ratamati	Betul	EW	2005-06	293	31	Jointed & fractured granite			
63	Remli	Amla	EW	2018-19	200	14	Basalt/Granite	95.5-98.6	32.02	1.02
64	Saikheda	Multai	EW	2007-08	186	25	fractured Basalt	9-25, 125-131		14
65	Saikheda	Multai	OW	2007-08	164.7	25	fractured Basalt	9-25, 125-132		
66	Sakadehi	Betul	EW	2005-06	268	30	Fractured & Jointed granitic gneiss	12-15,27-30	13.5	3.28
67	Sandiya	Multai	EW	2007-08	274.5	16	fractured Basalt	88-97, 112-118,146-152		10
68	Sandiya	Multai	OW1	2007-08	158.6	6	fractured Basalt	97-104, 104-115, 146- 158.6		
69	Sandiya	Multai	OW2	2007-08	158.6	6	fractured Basalt	97-102, 146-150		
70	Saonga	Bhimpur	EW	2005-06	293	7	Fractured Basalt/Granite	13.0-20.0,118.0-125.0	10.25	2.45
71	Sasundra	Multai	EW	2005-06	209.6	6	Vesicular basalt	157.60-166.90	34.5	2.36
72	Sataldehi	Godadonga ri	EW	2018-19	200	8				
73	Sawalmend ha	Bhainsdehi	EW	2018-19	200.8	8.5	Fractured/Jointed Basalt	57.3-63.4, 120-124.4	12.36	24
74	Sawalmend ha	Bhainsdehi	OW	2018-19		10	Fractured/Jointed Basalt	63-66		
75	Shahpur	Shahpur	EW	2005-06	304.51	20	Gondwana sandstone	48-56	11.7	1.8
76	Surgaon	Betul	EW	2005-06	305	15.2	Fractured & Jointed granitic gneiss	112-118	29.5	1.18
77	Thana	Athner	EW	2018-19	200					
78	Vijaygram	Bhainsdehi	EW	2018-19	57.95	12.2	Basalt	7.90-9.10	21.5	0.7

ANNEXURE-II: Water Level Details of Shallow Aquifer

BLOCK_NAME	VILLAGE_NAME	Pre-monsoon WL	Post-Monsoon WL	Fluctuation
AMLA	Amla	6.87	2.3	4.57
AMLA	Amla(S)	7.92	2.02	5.9
ATHNER	Gujarmaal	13.1	4	9.1
ATHNER	Athner	3.8	2.4	1.4
BETUL	Betul	11.5	0.84	10.66
BETUL	Kolgaon	9.5	2.6	6.9
BETUL	Khedi	19.7	5.92	13.78
BHAINSDEHI	Sanwal Medha	5.57	1.79	3.78
BHAINSDEHI	Kotal kund	9.77	6.25	3.52
BHAINSDEHI	Gudagaon	11.16	2.26	8.9
BHAINSDEHI	Bhainsdehi	14	3.35	10.65
BHAINSDEHI	Jhallar	13.06	0.44	12.62
CHICHOLI	Chirapatala	10	3.8	6.2
CHICHOLI	Pathakhera	4.8	1.25	3.55
CHICHOLI	Jogli	13.53	6.38	7.15
CHICHOLI	Khokharkheda	5.1	1.3	3.8
CHICHOLI	Gadha	14.14	2.9	11.24
CHICHOLI	Nimpani	7.45	2.95	4.5
GHORADONGRI	Ghoradongri	11.93	2.1	9.83
GHORADONGRI	Sarni	5.75	1.75	4
MULTAI	Multai	2.45	1.15	1.3
MULTAI	Junapani	14.35	3.45	10.9
MULTAI	Sasundra	12.6	2.7	9.9
MULTAI	Kapasia	2.8	2.4	0.4
MULTAI	Ghatpiparia	11.33	7.53	3.8
PRABHAT PATTAM	Pattan	13.1	1.15	11.95
SHAHPUR	Bhonra	8.66	1.66	7
SHAHPUR	Shahpur	11.07	5.02	6.05

ANNEXURE-III: Pre-monsoon Trend (2009-18)

BLOCK_NAME	VILLAGE_NAME	TREND(m/yr)
Amla	Amla(d)	0.019594
Amla	Amla(S)	0.024054
Athner	Athner	-0.01951
Athner	Athner	-0.027766
Betul	Kolgaon	0.020473
Betul	Thapa	0.003049
Betul	Khedi	-0.002674
Betul	Betul	0.020439
Bhainsdehi	Kotal kund	-0.005828
Bhainsdehi	Sanwal Medha	-0.026205
Bhainsdehi	Gudagaon	0.014611
Bhainsdehi	Bhainsdehi	0.006199
Bhainsdehi	Jhallar	0.055467
Chicholi	Jogli	0.007507
Chicholi	Chincholi	0.01594
Chicholi	Pathakhera	-0.052368
Chicholi	Nimpani	-0.010517
Chicholi	Chirapatala	-0.019023
Chicholi	Khokharkheda	0.024264
Ghoradongri	Sarni	-0.047469
Ghoradongri	Ghoradongri	-0.033603
Multai	Junapani	0.008923
Multai	Multai	0.020477
Multai	Kapasia	0.035175
Multai	Sasundra	-0.003697
Multai	Ghatpiparia	-0.007007
Prabhat pattam	Masod	-0.000318
Prabhat pattam	Masod New	-0.061947
Prabhat pattam	Pattan	-0.033157
Shahpur	Shahpur	0.004695
Shahpur	Bhonra	0.00153

ANNEXURE-IV: Post-monsoon Trend (2009-18)

BLOCK_NAME	VILLAGE_NAME	TREND(m/yr)
Amla	Amla(d)	-0.003647
Amla	Amla(S)	0.003348
Amla	Amla	-0.010552
Athner	Athner	-0.027931
Athner	Athner	-0.014149
Betul	Kolgaon	0.006734
Betul	Thapa	-0.035661
Betul	Betul	-0.018398
Bhainsdehi	Kotal kund	-0.062989
Bhainsdehi	Sanwal Medha	-0.01426
Bhainsdehi	Gudagaon	0.003584
Bhainsdehi	Bhainsdehi	-0.174108
Bhainsdehi	Bhainsdehi	-0.029147
Bhainsdehi	Jhallar	0.000012
Chicholi	Jogli	-0.065413
Chicholi	Chincholi	-0.040585
Chicholi	Pathakhera	-0.030801
Chicholi	Nimpani	-0.018796
Chicholi	Chirapatala	-0.005652
Chicholi	Khokharkheda	-0.019794
Ghoradongri	Sarni	-0.030668
Ghoradongri	Ghoradongri	-0.020884
Multai	Junapani	0.004913
Multai	Multai	-0.002424
Multai	Multai	-1.119175
Multai	Kapasia	-0.030129
Multai	Sasundra	-0.03414
Multai	Ghatpiparia	-0.006159
Prabhat pattam	Masod New	-0.058597
Prabhat pattam	Pattan	-0.01294
Shahpur	Shahpur	-0.018544
Shahpur	Bhonra	-0.032105

S. No.	District	Block	Location	рН	EC	CO₃	HCO₃	CI	SO₄	NO₃	F	PO₄	SiO2	Total Hardness	Са	Mg	Na	к
				@ 25°C	μS/cm at 25°C		mg/l											
1	Betul	Athner	Athner1	7.98	1388	0	447	135	12	110	0.25	BDL	22	425	104	40	104	13.1
2	Betul	Betul	Betul1	7.68	1367	0	306	222	18	67	0.50	BDL	15	610	178	40	25	2.3
3	Betul	Bhainsdehi	Bhainsdehi1	7.27	587	0	141	67	28	47	0.30	0.2	29	210	62	13	32	0.3
4	Betul	Shahpur	Bhonra	7.32	912	0	423	30	18	27	0.60	BDL	47	340	102	21	45	1.0
5	Betul	Chicholi	Chirapatala	7.39	1288	0	472	120	15	68	0.15	BDL	51	510	150	33	52	0.4
6	Betul	Chicholi	Gadha	7.87	712	0	263	27	12	54	0.20	BDL	26	245	64	21	38	0.2
7	Betul	Multai	Ghatpiparia	7.63	1068	0	269	87	26	161	0.15	BDL	27	490	162	21	14	0.2
8	Betul	Ghoradongri	Ghoradongri	7.48	1199	0	462	87	14	76	0.50	0.2	30	429	152	12	72	0.9
9	Betul	Bhainsdehi	Gudagaon	7.87	612	0	207	50	12	49	0.85	BDL	14	177	38	20	57	0.3
10	Betul	Athner	Gujarmaal	7.97	723	0	298	15	28	42	0.20	BDL	19	313	79	28	18	0.4
11	Betul	Bhainsdehi	Jhallar	7.72	498	0	164	20	12	50	0.30	BDL	28	126	36	9	48	0.5
12	Betul	Chicholi	Jogli	8.10	786	0	237	74	25	53	1.35	BDL	16	222	63	16	71	4.9
13	Betul	Multai	Junapani	7.52	789	0	316	20	10	85	0.20	BDL	33	328	99	20	22	0.6
14	Betul	Multai	Kapasia	7.73	712	0	279	35	12	28	0.10	BDL	35	247	65	21	35	6.6

Annexure-V: Ground Water Quality Data of Aquifer-I (Shallow Aquifer)

S. No.	District	Block	Location	рН	EC	CO₃	HCO₃	CI	SO₄	NO₃	F	PO₄	SiO2	Total Hardness	Ca	Mg	Na	К
				@ 25°C	μS/cm at 25°C		mg/l											
15	Betul	Betul	Khedi	7.82	1011	0	340	111	5	42	0.55	BDL	0	419	129	23	32	2.1
16	Betul	Chicholi	Khokharkheda	7.25	586	0	176	27	8	75	0.20	BDL	32	227	63	17	18	0.4
17	Betul	Betul	Kolgaon	7.87	789	0	340	30	16	39	0.05	BDL	23	278	71	25	50	2.1
18	Betul	Bhainsdehi	Kotal Kund	7.57	938	0	383	27	12	84	0.15	0.1	28	343	99	23	52	0.5
19	Betul	Prabhat Pattam	Masod New	7.25	856	0	158	139	18	52	0.65	BDL	42	394	105	32	12	0.3
20	Betul	Multai	Multaidw	7.52	844	0	358	22	14	52	0.50	BDL	25	308	83	25	42	2.4
21	Betul	Chicholi	Nimpani	7.82	265	0	134	15	5	40	0.50	BDL	29	126	30	12	20	1.3
22	Betul	Chicholi	Pathakhera	7.85	888	0	358	17	18	75	0.40	0.1	34	359	83	37	29	2.1
23	Betul	Prabhat Pattam	Pattan	7.73	456	0	134	47	6	32	0.70	BDL	22	192	42	21	10	0.7
24	Betul	Bhainsdehi	Sanwal Medha	7.52	868	0	413	12	13	38	0.30	BDL	19	293	83	21	58	0.8
25	Betul	Ghoradongri	Sarni	7.84	896	0	395	25	26	40	0.15	BDL	24	298	71	29	64	0.7
26	Betul	Multai	Sasundra	7.87	725	0	286	7	36	51	0.10	0.1	32	258	63	25	37	1.1
27	Betul	Shahpur	Shahpur	7.42	942	0	371	40	12	55	0.50	BDL	29	364	91	33	35	2.3

S. No.	Location	longitude	latitude		рН	EC	CO₃	HCO₃	Cl	SO₄	NO₃	F	Total Hardness	Ca	Mg	Na	к
					@ 25°C	μS/cm at 25°C						mg/l					
1	Athner	77.9067	21.625	EW	7.4	713	0	311	21	28	35	0.72	315	82	13	20	0.1
2	Athner	77.9067	21.625	OW	7.2	697	0	299	21	25	31	0.52	300	76	27	21	0.2
3	Sadar	77.88389	21.89722	EW	7.1	1543	0	214	305	100	151	0.49	540	204	7	117	5.8
4	Surgaon	77.89722	21.83139	EW	7.3	888	0	18	74	200	60	1.37	170	64	2	105	2.2
5	Neempani	77.875	22.075	EW	7.03	600	0	256	7	18	58	1.23	255	54	29	20	2.4
6	Chicholi	77.6756	22.015	EW	8.3	970	0	177	124	72	32	2.3	195	36	7.3	135	17
7	Chicholi	77.6756	22.015	OW	8.1	926	0	140	121	135	1.7	2.9	130	38	21	125	4.4
8	Bhainsdehi	77.62981	21.644	EW	7.1	567	0	140	85	10	37	0.31	120	34	9	75	1
9	Bhainsdehi	77.62981	21.644	OW1	7.2	528	0	79	35.5	20	12	2.95	45	6	7.3	51	0.8
10	Bhainsdehi	77.62981	21.644	OE2	7.2	379	0	85	64	14	15	0.5	90	20	10	46	0.6
11	Dedhpani	77.5555	21.5107	EW	7	265	0	98	21	3	22	0.46	120	30	11	6	0.2
12	Dedhpani	77.5555	21.5107	OW1	7.1	287	0	110	25	3	17	0.38	55	16	4	41	0.5
13	Dedhpani	77.5555	21.5107	OW2	7.1	112	0	112	28	5	19	0.41	62	18	9	22	0.2
14	Chandora	78.275	21.78055	EW	7.52	625	0	250	60	15	9	0.38	210	68	10	48	0.8
15	Masod	78.1218	21.601	EW	7.52	722	0	195	60	15	9	0.4	210	68	10	44	0.8
16	Dhamangaon	77.7575	21.5933	EW	7.52	725	0	197	54	22	16	0.45	220	52	10	42	0.8
17	Bujhaliaghat	77.88611	21.91084	EW	7.2	887	0	311	89		47	0.26	375	132	23	32	2.9
18	Bujhaliaghat	77.88611	21.91084	OW	7.2	709	0	189	74	40	48	1.37	250	80	12	36	15.5
19	Pathakheda	77.5528	22.1294	EW	6.95	540	0	171	39		29	0.3	105	38	2	78	4.3
20	Sandiya	78.225	21.73889	EW	7.28	423	0	171	39	10	2	2.74	55	10	7	89	0.9
21	Sandiya	78.225	21.73889	OW	7.23	420	0	146	46	15	6	1.36	70	18	6	65	0.9
22	Saikheda	78.09861	21.775	EW	7.19	710	0	384	21	10	4	0.46	300	84	22	28	0.4
23	Jhallar	77.75	21.728	EW	7.64	720	0	305	35.5	35	14	1.12	190	28	29.2	70	12.5
24	Kerpani	77.75	21.7949	EW	7.92	328	0	79	35.5	20	12	2.95	45	6	7.3	51	0.8
25	Jualkheda	78.2219	21.8386	EW	7.52	625	0	250	60	15	9	0.38	210	68	10	48	0.8

Annexure-VI: Ground Water Quality Data of Aquifer-II (Deeper Aquifer)

S. No.	Location	longitude	latitude		рН	EC	CO₃	HCO₃	Cl	SO4	NO ₃	F	Total Hardness	Са	Mg	Na	к
					@ 25°C	μS/cm at 25°C						mg/l					
26	PrabhatnPattan	78.2664	21.6494	EW	7.94	435	0	171	39	20	2	0.46	90	22	9	59	0.5
27	PrabhatnPattan	78.2664	21.6494	OW	7.83	609	0	153	89	30	24	0.97	90	16	12	98	2.5
28	Kolgaon	77.89889	21.76833	EW	7.3	901	0	171	156	0	32	4.25	115	42	2	158	0.9
29	Gawasen	77.4772	22.1818	EW	7.39	466	0	133	59	10	29	0.49	175	46	15	26	1.2
30	Gawasen	77.4772	22.1818	OW	7.43	453	0	133	57	9	26	0.67	170	42	16	24	1.5
31	Chikhli	77.62055	21.89028	EW	7.59	450	0	108	67	17	19	0.50	140	16	24	36	3.7
32	Mendha Chhindwada	77.867	21.533	EW	7.27	387	0	175	15	13	8	0.42	110	22	13	35	2.8
33	Mendha Chhindwada	77.867	21.533	ow	8.19	354	0	151	17	16	7	0.51	100	24	10	33	2.5
34	Saonga	77.75834	21.8325	EW	8.12	611		92	110	25	55	1.9	145	44	9	74	11.7
35	Khedi	77.8083	21.8606	EW	7.55	688	0	281	35	18	1	2.53	190	48	17	60	2
36	Jin	77.6967	21.9458	EW	7.31	1244	0	250	121	70	155	0.27	445	106	19	66	0.1
37	Bhimpur	77.5417	21.9167	EW	7.6	617	0	79	74	86	44	4.84	110	24	12	91	0.8
38	Jaora	77.51811	21.8783	EW	7.2	456	0	122	43		69	1.52	65	20	4	78	1.1
39	Malanjpur	77.7314	22.025	EW	7.42	1400	0	122	227	170	78	0.97	330	100	19	156	12.2
40	Amla	78.1307	21.9239	EW	7.52	1332	0	293	199	154	18	0.6	300	80	24	166	14
41	Sawalmendha	77.6992	21.509	EW	7.56	574	0	305	21	5	2	0.39	210	44	24	35	0.5
42	Sawalmendha	77.6992	21.509	OW	7.55	583	0	292	28	3	3	0.37	225	60	18	30	0.7
43	Gudgaon	77.7097	21.593	EW	7.15	634	0	287	43	28	2	0.47	200	46	21	53	4

Here, all parameters are expressed in mg/L except pH, EC (μ S/cm @ 25°C).