

केन्द्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

Malkangiri District Odisha

दक्षिण पूर्वी क्षेत्र, भुवनेश्वर South Eastern Region, Bhubaneswar

Government of India

MINISTRY OF JAL SHAKTI,

DEPARTMENT OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION

REPORT ON AQUIFER MAPPING AND MANAGEMENT PLAN IN MALKANGIRI DISTRICT, ODISHA

FOREWORD

Malkangiri is the southernmost district of Odisha state, bears an agrarian economy. The agriculture in the district is inevitably exposed to the vagaries of rainfall. Erratic rainfall is quite frequent and also the irrigation facilities are inadequate in the district, affecting the agriculture production from year to year. The agrarian development of the district can be boosted by tapping the groundwater resources through dug wells and medium-deep bore wells.

Due to wide variation in hydrogeological set up in the district, the occurrence and distribution of aquifers are non-uniform and so also their yielding properties. The common modes of groundwater exploitation in the district are dug well, dug-cum-bore well, shallow tube well etc. The hard crystalline rocks of the district form two distinct aquifer systems. The shallow aquifers formed by the weathered mantle, stores groundwater under phreatic condition. The deeper aquifer is formed by fracture zones, joints, etc holds groundwater in semi-confined/confined conditions. Granitic hard-rock aquifers have water yielding fracture zones and have average success rate with 2-10 lps of discharge. The places where weathering thickness is more and condition is favourable, the phreatic aquifer attains good yield potential and large diameter dug wells are suitable structures to extract water from them.

Groundwater irrigation is currently an underutilized resource that could mitigate the effects of drought such as surface water scarcity and crop failure. Groundwater irrigation practices can insure increased agricultural production by enhancing the area irrigated and scope of irrigation. Apart from irrigation, drinking water scarcity can also be mitigated through judicious utilization of groundwater. The present stage of groundwater development is only 19.43%, leaving a vast scope for future groundwater development in the district. Groundwater irrigation practices can ensure increased agricultural production by enhancing the area irrigated and scope of irrigation.

Based on the available data and the earlier hydrogeological studies taken up in 07 blocks of the district viz. Kalimela, Khairput, Korukonda, Kudumulguma, Malkangiri, Mathili and Podia, covering 3510 Sq. Km. of mappable area, an attempt has been made in this report to compile all relevant information, such as hydrogeological, agriculture, irrigation, land use, rain fall, chemical quality of water and other collateral data. Shri Rajeev kumar Tripathy, Scientist-'B'and Shri Sudhanshu kumar Mohanty, Scientist-'B'has compiled and prepared the present report on "Aquifer Mapping and Management Plan in Malkangiri District, Odisha". Their sincere efforts in preparation of the report will no doubt be very useful and benefit the state. It is hoped that, it will be of immense help to different groundwater user agencies, administrators and planners in preparation of groundwater development plans and will be a handy tool in effective management of groundwater resources in the district.

Date: 29.08.2022

(P. K. Mohapatra) Regional Director

Aquifer Mapping and Management plan in Malkangiri District, Odisha

CONTRIBUTORS PAGE

Data Acquisition	:	Shri R. K. Tripathy, Scientist-'B'
		Shri S. K. Mohanty, Scientist-'B'
Data Processing	:	Shri R. K. Tripathy, Scientist-'B'
		Shri S. K. Mohanty, Scientist-'B'
Data Compilation & Editing	:	Shri R. K. Tripathy, Scientist-'B'
		Shri S. K. Mohanty, Scientist-'B'
Geophysics	:	Shri Rajesh Babu , AGP
		Smt. Bindu Singh,AGP
Data Interpretation	:	Shri R. K. Tripathy, Scientist-'B'
		Shri S. K. Mohanty, Scientist-'B'
GIS	:	Dr. Satyabrata Sahoo, Young Professiona
Report Compilation	:	Shri R. K. Tripathy, Scientist-'B'
		Shri S. K. Mohanty, Scientist-'B'
Technical Guidance	:	Shri D. N. Mandal. Scientist-'D'
	•	
Overall Supervision	:	Shri P. K. Mohapatra, Regional Director
Report Editing	:	Report Processing Section, SER

CONTENTS

AQUIFER MAPPING AND MANAGEMENT PLAN IN MALKANGIRI DISTRICT (3510 Sq. Km)

List No.	TITLE	Page No.
1	INTRODUCTION	1-21
1.1	Objective	
1.2	Approach and Methodology	
1.3	Compilation of existing data, identification of data gaps and data generation	
1.4	Study Area Details	
1.5	Rainfall and Climate	
1.6	Geomorphology	
1.7	Soil characteristics	
1.8	Landuse, Cropping Pattern and Irrigation Potential	
1.9	Source wise Irrigation potential of Malkangiri District	
1.10	Drainage and Hydrology	
2	DATA COLLECTION AND GENERATION	22-41
2.1	Geology	
2.2	Hydrogeology	
2.3	Ground Water Exploration	
2.4	Monitoring of Ground Water Regime	
2.5	Geophysical Survey	
2.6	Chemical Quality	
3	DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING	42-60
3.1	Shallow Aquifer	
3.1.1	Pre-monsoon Depth to Water Level	
3.1.2	Post-monsoon Depth to Water Level	
3.1.3	Seasonal Fluctuation of Water Level	
3.1.4	Decadal Water Level Trend	
3.2	Deeper Aquifer	
3.3	Ground Water Quality	
3.4	Aquifer Groups and Their Demarcation	
3.5	Aquifer Disposition	
4	GROUND WATER RESOURCES	61-63
5	GROUND WATER RELATED ISSUES	64-65
5.1	Under-Utilisation of Ground Water Resources	
5.2	Ground Water Problem in Hilly Areas	
5.3	Depleted Water Level in Phreatic Aquifer	

6	MANAGEMENT STRATEGIES	66-68
6.1	Management Plan for Under-Utilisation of Ground Water Resources	
6.2	Management Plan for Scarcity of Water in Hilly Areas	
6.3	Management Plan for Depleted Water Level in Phreatic Aquifer	
6.4	Organising Public interaction programmes (PIPs)	
7	SUMMARY AND RECOMMENDATIONS	69-72
7.1	Summary	
7.2	Recommendations	
	Acknowledgements	73
	References	74

LIST OF FIGURES

Fig. 1.1: Administrative Map of Malkangiri District.

- Fig. 1.2 : Rainfall Map of Malkangiri District.
- Fig. 1.2a: Isohyte map of Malkangiri District.
- Fig. 1.3 : Land Elevation Map of MalkangiriDistrict.
- Fig. 1.4 : Geomorphological Map of Malkangiri District.
- Fig. 1.5 : Soil Map of Malkangiri District.
- Fig. 1.6 : Landuse Map of Malkangiri District.
- Fig. 1.7 : Drainage Map of Malkangiri District.
- Fig.2.1 : Geological Map of Malkangiri District.
- Fig. 2.2 : Hydrogeological Map of Malkangiri District.
- Fig. 2.3 : Locations of Exploratory Wells Drilled by CGWB in Malkangiri District.
- Fig. 2.4 : Locations of NHS in Malkangiri District.
- Fig. 2.5 : Locations of Key wells in Malkangiri District.
- Fig. 2.6 : Location of VES of malkangiri district
- Fig. 2.7 : Chloride map of phreatic aquifer in Malkangiri District.
- Fig. 2.8 : Iso conductivity map of phreatic aquifer in Malkangiri District.
- Fig. 2.9 : Nitrate map of phreatic aquifer in Malkangiri District
- Fig. 2.10: Uranium map of phreatic aquifer in Malkangiri District.
- Fig. 2.11 : Iso conductivity map of deeper aquifer in Malkangiri District.
- Fig. 2.12 : Chloride map of deeper aquifer in Malkangiri District.
- Fig.2.13:TDS map of deeper aquifer in Malkangiri District.
- Fig. 3.1 : Depth to Water Level in Phreatic Aquifer During Pre-monsoon.
- Fig. 3.2 : Depth to Water Level in Phreatic Aquifer During Post-monsoon.
- Fig. 3.3 : Seasonal Fluctuation in Water Level in Phreatic Aquifer.
- Fig. 3.4 : Hydrographs (NHNS) in different Blocks of Malkangiri District.
- Fig. 3.5 : Piper diagram of water samples in malkangiri District.
- Fig. 3.6 : US salinity diagram of Phreatic Aquifer in malkangiri District.
- Fig. 3.7 : Location and plan view of Schematic hydrogeological cross sections in Malkangiri District.
- Fig. 3.8 : Schematic Aquifer Cross-Section Along A-A' in Malkangiri District.

Fig. 3.9 : Schematic Aquifer Cross-Section Along B-B' in Malkangiri District.

Fig. 3.10 : Schematic Aquifer Cross-Section Along C-C' in Malkangiri District.

Fig. 3.11 : Location and plan view of Fence diagram in Malkangiri District.

Fig. 3.12 : Fence diagram depicting the aquifer disposition in Malkangiri District

Fig. 3.13 : 3D aquifer disposition of Malkangiri District

Fig. 5.1 : Proposed Sites for Artificial Recharge Structures in Malkangiri District.

LIST OF TABLES

Table 1.1: Blockwise Land Use Pattern in Malkangiri District.

Table 1.2: Different sources of water availability in Malkangirl District(Ha)

Table 1.3 Total water demand for various sectors in Malkangiri district

Table 1.4: Water Budget of Malkangiri District.

Table 2.1: Generalized Stratigraphic Sequence in Malkangiri District.

Table 2.2: Seasonal water level fluctuation in Malkangiri District.

Table 3.1: Decadal Water Level Trend Analysis of NHS (2011-2021) in Malkangiri District.

Table 4.1: Dynamic Ground Water Resources of Aquifer-I in Malkangiri District (2020).

Table 4.2: In-storage Ground Water Resources of Aquifer-I in Malkangiri District.

Table 4.3: Total Ground Water Resources of Aquifer-I in Malkangiri District (2020).

Table 4.4:In-storage Ground Water Resources of Aquifer-II in Malkangiri District (2020).

Table 5.1: Ground water development potential of Malkangiri District.

Annexures:

I	:	Result of VES
IIA	:	Basic Data of Exploratory Wells (inhouse drilling)
IIB	:	Basic Data of Exploratory Wells (outsourcing drilling)
IIIA	:	Chemical quality of water samples of exploratory wells
IIIB	:	Chemical quality of water samples of key wells
v	:	Details of Key Wells

1 INTRODUCTION

1.1 Objective

Central Ground Water Board (CGWB) has taken up National Aquifer Mappingand Management (NAQUIM) programme during the XIIth five year plan to carry out integration of micro level hydrogeological, geophysical, hydrochemical data and information on geology, geomorphology, soil, hydrometeorology, hydrology, landuse, cropping pattern etc on a GIS platform to formulate district, block or aquifer-wise Ground Water Management Plan. The formulation of a sustainable ground water management plan would help in achieving the demand for drinking, irrigation and industrial need for water with minimal stress on the aquifer.

The activities under NAQUIM are aimed at identifying the aquifer geometry, aquifer characteristics their yield potential along with the quality of water occurring at various depths, aquifer-wise assessment of ground water resources and development. Aquifer mapping itself is an improved form of groundwater management – recharge, conservation, harvesting and protocols of managing groundwater.With these aims, Aquifer Mapping was carried out in Malkangiri district in Odisha covering an area of about 3510sq. km.The district has been divided into 7 Blocks namely, Kalimela,Khairput, Korukonda, Chitrakonda, Malkangiri, Mathili and Podia.

Aquifer mapping is a multidisciplinary exercise wherein a combination of geological, geophysical, hydrological, hydrogeological, meteorological and hydro-chemical information is integrated to characterize the spatial and temporal variation of quantity and quality of the aquifer system and identification of local ground water related problems and issues.

To resolve such issues, the NAQUIM study was carried out with the following broad objectives: to define the aquifer geometry with precise lateral and vertical demarcation down to the depth of 200 mbgl, to define the behaviour of ground water regime in time and space, to study the hydraulic characteristics of both shallow and deeper aquifers, to study the hydrochemistry of aquifer systems, to prepare Aquifer Maps indicating disposition of aquifers along with their characterization and to formulate the Aquifer Management Plans for sustainable development and management of ground water resources.

1.2 Approach and Methodology

Multi-disciplinary approach involving geological, geophysical, hydrological, hydrogeological and hydro-geochemical survey would be carried out to meet the aim and objectives listed above. GIS would be used to prepare the maps. The entire Malkangiri district has been geologically mapped by the Geological Survey of India. The geological mapping of the area was carried out by Sri H. Crookshank (1938). Shri F. Ahmed, Geologist of G.S.I conducted investigations on the geo-hydrological conditions in parts of the area in 1959. Parts of the area were covered by S/Sri S. K. Guha & P. N. Nag of G.S.I through systematic hydrogeological surveys (Malkangiri Zone, Dandakaranya Project) during 1966-67. The district was covered through systematic hydrogeological surveys by Sh. M. V. Rao, STA (Hydrogeology) CGWB during 1975-76. Reappraisal hydrogeological surveys were also carried out by S/Sh. G. Y. Setty(1987-88) and S. Suresh (1990-91). So far 36 exploratory wells, 05 observation wells have been drilled under exploratory drilling programme of CGWB to delineate ground water potential of deeper aquifers. Ground water monitoring is being done through 35 numbers of permanent hydrograph network stations four times in a year and water samples are collected once in a year during pre-monsoon for complete chemical analysis.

1.3 Compilation of Existing Data, Identification of Data Gaps and Data Generation

Preliminary work consists of the collection and review of all existing data which relate to the area. This usually included the results of any previous hydrogeological studies and exploratory drilling carried out by CGWB and State agencies and compiled to identify the data gaps in the study area. After the data compilation all the data were integrated and analysed.

From the data analysis it is found that only 35 NHNS monitoring wells found in the District. So additional 68 key well established to fill the gap of water level monitoring. (Annexures V)

In case of exploratory 41 EWs driiled in the distrct before NAQUIM study. So additional 32 EWs drilled during NAQUIM study to fill the gap. (Annexures IIB)

Similarly for Geophysical analysis, data availability was zero.

Review of background information will lead the study teams to carry out further studies in the field, where they will employ various techniques to determine the three-dimensional extent and aquifer characteristics of the significant water-bearing formations. Key Observation wells representing the different aquifers have to be established and monitoring to be carried out. Well inventory and collection of relevant data is to be carried out to strengthen the data base. The analysis of the data has to be carried out for preparation of thematic maps.

1.4 Study area Details

During XII five year plan, the National Aquifer Mapping and Management (NAQUIM) programme were taken up under Annual Action Plan (AAP) 2021-22 for detailed hydrogeological investigation and Aquifer Mapping in Malkangiri district. Malkangiri is the southern most district of Orissa. It was awarded the status of the district in October 1992, when the erstwhile Koraput district was divided into four new districts. The district is bordered in the North and West by Bastar district of Chhatishgarh and in the south by Khammam and East Godavari districts of Andhra Pradesh, in the east by Koraput district, Orissa. The district lies between north latitudes 17°47′58″ and 18°44′18″ and East longitudes 81°23′23″ and 82°27′05″ falling in Survey of India Degree sheet Nos. 65 F,G,J. The district covers an area of 5791 Sq.Km and is divided into 7 Community Development Blocks – Kalimela, Khairput, Korukonda, Kudumulguma, Malkangiri, Mathili and Podia. The Malkangiri town, the district headquarter is approachable from adjacent districts through State Highways. The important towns of the district are well connected by road. It is one of the most economically backward tribal district of Orissa. The administrative map of the District is given in Fig.1.1

The Malkangiri town, the district headquarter is approachable from adjacent districts through State Highways. The important towns of the district are well connected by road.

Fig. 1.1: Administrative Map of Malkangiri District.

The district is having a total population of 613192 with a rural population of 563664 (91.93 percent) and urban population of 49528 (8.07 percent) and 253624 males and 309568 females. The Schedule Caste (SC) and Schedule Tribe (ST) household of the district counts to 138295 (22.6 %) &354614 (57.8 %) respectively. So, the district is more rural in its character though the district is experiencing increasing rate of urbanisation in recent years. Number of households in the district is 137599. The population density of the district is 106. The district recorded a decadal change of 21.6 percent during the period 2001-2011 in its population. A positive change is observed in the sex composition of the district with increased sex ratio from 997 (census 2001) to 1020(census2011).

The district comprises 07 CD Blocks namely, Malkangiri, Kalimela, Podia, Korukonda, Chitrakunda, Khairput and Mathili.In the District there are two urban centres i.e Malkangiri Municipality and Balimela N.A.CThere are 111Gram Panchayats with 1055 villages.

Source: Census data (2011) of Malkangiri district

1.5 Rainfall and Climate

The rainfall in the district is mainly derived from the south west monsoon. The average annual rainfall is of the order of 1818.056 mm, out of which 91% is received during monsoon (mid-June to mid-October). Based on the average annual rainfall for 10 yrs(2012 – 2021)it was observed that during the last 10 years, from 2012 to 2021, the highest rainfall amounting 3067.7 mm occurred in Korukonda block in 2019 and the lowest annual of 984.5 mm. in Podia block in 2014.

The climate of this district is characterized by a very hot dry summer and well distributed rains in the south-west monsoon season. The cold season commences from November and lasts till the end of March. The hot season follows thereafter and continues till about the second week of June. The south-west monsoon season is from mid-June to the mid of October.

During summer temperature varies from 35° to 45°C. May is the hottest month with the maximum mean daily temperature of 41°C. In winter temperature varies from 9 to 27°C. December is the coldest month of the year.

Humidity of the air is generally high during south west monsoon and decreases from the end of November due to cold wave. The relative humidity is varying from 14% to 92% during summer and monsoon. The average humidity during summer is 25% to 30% and in monsoon 75%.

Wind is generally light to moderate. During summer and south-west monsoon season, wind velocity increases. In the post-monsoon months and in winter, wind is mainly from the north and east. During summer wind direction is variable and in rainy season wind from south west direction is very common. Mean wind speed varies from 34 km/ hr. in January to 6.8 km./hr. in June - July. The rainfall map of the district is shown in fig.1.2 and the isohyte map of the district is shown in Fig.1.2a.

Fig. 1.2: Rainfall Map of Malkangiri District.

Fig. 1.2a: Isohyet map of Malkangiri District.

Fig. 1.3: Land Elevation Map of Malkangiri District

1.6 Geomorphology

The district is characterized by varied geomorphological features. Based on Landsat data interpretations and field studies, the geomorphic units of the district are broadly identified as - Structural Hills, Denundational Hills, Residual Hills, Shallow and Moderately weathered pediplain, Pediment – Inselberg complex, Inselberg, Flood plains, Structural Valley, Linear Ridge and Bazada are as follows.

Structural Hills – It is characterized by a group of linear/curvilinear/folded hill ranges of large areal extent, interspersed with narrow intermontane valleys showing definite structural control. It is the most important geomorphological unit in the district adjoining the entire southern border and occupying the northern corner of the district.

Denudational Hills – It occurs in the North Eastern corner of the district in a limited patch. It is represented by a group of massive hill ranges interspersed with narrow intermontane valleys having no structural control or structures obliterated by denudation.

Residual Hills – Hill ranges of moderate dimension surrounded by plains all around, occur as isolated features along the northern boundary of the district.

Shallow and Moderately Weathered Pediplain – Next to the structural hills this forms the major geomorphological unit in the district. It presents gently undulating terrain of vast areal extent, formed as a result of coalescence of different pediments along the foot hills of the Eastern Ghats and affected by shallow to moderate weathering. The northeastern part of the district is characterized by moderately weathered pediplane with weathering prevalent down to a depth of 5-20 m. The rest of the district is covered by shallow weathered pediplain with weathering restricted to 5 m depth.

Pediment – Inselberg Complex – It is a gently undulating bed rock surface with a number of small inselbergs. This unit is widely distributed throughout the district.

Inselberg – Inselbergs are scattered all over the district. These are isolated hills of limited areal extent surrounded by plains all around.

Flood Plain – A narrow stretch of alluvium occurs along river Kolab and its tributaries in the northern part of the district.

Structural Valley – A narrow linear valley within the structural hills and formed along the structurally weak planes occurs along the south eastern boundary of the district.

Linear Ridge – A narrow linear ridge of quartz reef with steep sloped covered by debris, is found in the northern part of the district.

Bazada – A gently sloping plain is formed in the foot hill zone and consist mainly of alluvial and partly alluvial material comprising fine silt to big boulders. It occurs in the Southern part of the district.

The geomorphological map of the district is shown in **Fig.1.4**.

Fig. 1.4: Geomorphological map of Malkangiri District.

1.7 Soil characteristics

The distribution of different soil types in the district depends much on its physiographic and lithologic variations. Based on the physical and chemical characteristics, mode of origin and occurrence, soils of the district may be classified into two groups namely Alfisols (Red Soil) and Ultisols (Lateritic soil).

Alfisols - Alfisols or red soil are the most prominent soil types in the district. There are two different varieties – red sandy soil and red loamy soil. They are red in colour and clayey in nature especially the loamy soil, poor in organic matter. Its fertility is low.

Ultisols - Ultisols or lateritic soil occurs in a narrow diagonal strip across the district trending NE-SW. They are red to brown in colour and clayey in nature. Due to low organic matter content the

fertility of lateritic soil is low. The soil map of malkangiri district is shown in Fig.1.5.

Fig. 1.5 : Soil Map of Malkangiri District.

1.8 Landuse, Cropping Pattern and Irrigation Potential

The study area shows wide variation in the pattern of land utilization. The forest area is 14.64% of total geographical area. The net sown area of the district is 106964 ha . Agriculture is the main stay for the rural population of the district. The block-wise landuse pattern is shown in Table 1.1 and the thematic map on land use is shown in **Fig. 1.6**.

The cultivation is mainly in the Kharif season. Rabi cultivation is restricted to areas with irrigation facilities. The different crops grown in the area are paddy, pulses (Arhar, Green and Black gram) and

vegetables (potato, onion, garlic, turmeric, ginger and seasonal vegetables), etc. The major crop of the district is paddy. The paddy area in the district covers 58000 ha.

Land use, Cropping Pattern

Large percentage of the land in the district is kharif crop land which indicates that the land is used predominantly for agriculture. Crop land in Kharif is 75024 hectares where as in rabi it is 31947 hectares. The agriculture land is the major land use pattern having 64.07% of the total geographical area followed by forest land with 14.64%, pastures 6.07%. Agriculture land use includes Net Sown, Cultivable Waste, Land under miscellaneous tree crops & groves and Fallows Land. The average cropping intensity is 156%. and Net sown area constitute 68.07% of the total Agriculture area.

- Malkangiri district showed wide variation in land use pattern. The land utilization pattern indicates that out of total geographical area, the forest area constitute 156493 ha. (27.02 %) and the net sown area is 142550 ha.
- Cropping intensity of the district is lower than the state average. Average cropping intensity of the district is 122.4%. The blocks namely Kalimela, Korkunda, Malkangiri having more cropping intensity than district average.
- There is a scope to increase cropping intensity by increasing area under irrigation thus provides water source for growing second crops.

S No	Name	Total	A	rea Under	Agricultur	Area	Area	Area	
	Blocks	IArea (ha)	Gross Croppe d Area (ha)	Net Sow n Area (ha)	Area sown >once	ea Cropping wn Intensity once (%)		didei Wstelan d (ha)	Other Uses (ha)
1	Malkangiri	87441	20470	16213	4257	126	14125	53	3326
2	Korkunda	98759	45241	35035	10206	129	24469	1588	7622
3	Mathil	72456	22842	21834	1008	105	26487	706	3519
4	Kalimela	89276	46874	26760	20114	175	30603	617	3285

Table 1.1: Block wise land use pattern in Malkangiri District (in Ha)

6	Khairput	63900	10710	10140	570	117	18732	84	4054 1638
7	K.Gumma	77054 579100	10948 182910	10583 142550	365 40360	103	25068 156493	982 4777	2039 25483

Source : District Irrigation plan of Malkangiri District, Govt. of Odisha

- The total cropped area is about 1.99 lakh ha out of which 0.91 lakh ha (45.6% of TCA) is irrigated and 1.08 lakh ha (54.4% of TCA) is under rainfed area .
- Kalimela block is fully irrigated (98 % of TCA).
- The blocks like Korukonda, Malkangiri, and Podia, in which percent of irrigated areas are high as compared to other blocks, and Kudumulugum block is poorly irrigated (5.0% of TCA).
- Among the different crop groups, cereals accounts for 38.0% of the irrigated area followed by oil seed crops (22.4%), pulses (16.4%), other crops (15.2%), coarse cereals (5.6%), and horticulture and plantation (1.1%), and. This indicates that major source of water in agriculture is being used for cultivation of cereals like paddy and maize.
 - In the district as a whole, total cereal accounts for 20.5 % of the TCA is under irrigated and 32.1% of the total TCA is under rainfed. Among the blocks, Kalimela (35.6%), Podia (34.5%), Korukonda (22.4%) having higher percent of the TCA is under irrigated and followed by Malkangiri (21.5%). Other hand, Mathili (70.7%), Kudumulugum (65.8%), and Khairaput (63.6%) are the blocks, where higher percent of TCA is under rainfed cereals.
- Total pulses accounts only 7.5% of the TCA is under irrigated and 4.8% is under rainfed in the Malkangiri district. The blocks like Kalimela (29.4%), Podia (6.1%), Malkangiri (2.3%) and Korukonda (2.1%) are the blocks having higher percent of the total pulses under irrigated.
- In Malkangiri district, only 23.2% the TCA is under irrigated food crops and nearly 43.5% of the TCA is under rainfed food crops). The blocks like Kalimela

(65.0%), Podia (40.6%), Korukonda (24.6%) and Malkangiri (23.7%) are having higher per cent of TCA under irrigated food crops. This suggests that other blocks having greater potential to convert rainfed area into irrigated.

- Oil seeds account 10.2% of the TCA under irrigated and 14.4% of the TCA under rainfed, which shows majority of the oilseeds is under rainfed areas. In the district, Kalimela (25.9%), Podia (17.3%) and Korukonda (8.0%) blocks are having maximumpercentage of TCA, under irrigated oil seeds.
- Other crops including fibre crops accounts about 7.0% of the GCA is irrigated but percent area under rainfed is 1.4%, due to major crops are being the vegetable crops is under irrigated.
- In the district hardly 0.5% of the TCA is irrigated horticulture and plantation crops and, 1.5% of the TCA is under rainfed horticulture & plantation.
 Particularly Malkangiri block is having more horticulture and plantation cropped areathan other blocks in the district.

1.9 Source-wise Irrigation potential of Malkangiri District

Status of Ground Water Availability

Total ground water recharge in different blocks of Malkangiri district is 0.336 BCM out of which, the draft is only 0.03188 BCM (9.5 %) thereby generating a gap of 0.3041 BCM (90.5 %).

Ground water draft varies only in the range of 5.1-13.6 % and gap in the range of 86.4-

94.9 % of the ground water recharge in different blocks of Malkangiri

Maximum (0.0684 BCM) and minimum (0.0222 BCM) ground water recharge were found in Korkunda and Khairaput block, respectively.

Maximum (0.0068 BCM) and minimum (0.0028 BCM) ground water draft were found in Korkunda and Podia block, respectively.

Maximum (0.0617 BCM) and minimum (0.0192 BCM) ground water gap in utilization were found in Korkunda and Khairaput block, respectively.

However, all the blocks were found in very much ground water gap in utilization in Malkangiri

district showing a enormous scope of ground water utilization.

Average ground water development in the Malkangiri district is 10% and it varied between 5.06 to 13.60% among the blocks. Highest in the block of Khairaput (13.6%) followed by Kalimela (12.42%) and Malkangiri (11.39%). The lowest ground water development in the block oh Podia (5.06%), followed by Mathili (7.76%).

Among the existing type of irrigation systems, six surface irrigation government canal existing Malkangiri district in four blocks namely Malkangiri, Korkunda, Kalimela and Podia covering an area of 57901 ha. Maximum area irrigated through govt. canal in Kalimela block (23190 ha) followed by Podia (15354 ha) block.

Three blocks viz., Mathili, Khairput, Guma are not having any govt. canal for irrigation where as there is no community based/private canal in the district.

Tank/ponds/reservoirs are an exceptional source of surface irrigation in Malkangiri district. A total of 77 community ponds and 23 Govt. reservoirs exist in district.

Maximum area irrigated through community ponds are in Korkunda block (625 ha) followed by remaining blocks only in the range of 90-130 ha each. Similarly maximum area irrigated through Govt. reservoirs in Korkunda block (1631 ha) and the remaining block in the range of only 111-597 ha with no area in Guma block.

There are only 1255 private open well and 1183 private Bore well as source of ground water for irrigating an area of 251 ha and 2045 ha, respectively. There is no tube wellseither Govt. or private and community or Govt. open well used for irrigation in any blocks of the district.

There are 394 Nos. of other source of irrigation including water harvesting structures irrigating an area of 7833 ha in the district with maximum area of 1826 ha in Kalimelablock followed by 1520 ha area in Korkunda block .

There are only 1535 electicity pump and 2255 diesel pump used for water extraction in irrigation in the district, showing a great scope of using more water extraction devices in the district.

More diesel pumps are used in comparison to electicity pump, may be due to non availablity of electicity near the source of water.

Highest number of water exctracting devices (1029) including both diesel and eclectric pump is in Korkunda block followed by Kalimela and Malkangiri blocks .

A maximum of 36 % area is irrigated in Kalimela block from all sources followed by Podia block (23%) and lowest in Guma block (1%) in the district.

			1		1
S. No	Source	Kharif	Rabi	Summer	Total
1	Surface Irrigation				
i.	Canal (Major & Medium Irrigation)	57901	31903	1625	91429
ii.	Minor Irrigation tanks	2251	393	15	2659
iii.	Lift Irrigation / Diversion	7108	3307	396	10811
iv.	Various Water Bodies including Rain Water Harvesting	1295	706	356	2357
v.	Treated Effluent Received from STP	0	0	0	0
vi	Untreated Effluent	0	0	0	0
vii.	Perennial Source of Water	725	444	155	1324
Sub-t	otal	69280	36753	2547	108580
2	Ground Water				
i.	Open Well	251	251	0	502
ii.	Deep Tube Well	2045	1717	629	4391
iii.	Medium Tube Well	0	0	0	0
iv.	Shallow Tube Wells	0	0	0	0
Sub-total		2296	1968	629	4893
Total		71576	38721	3176	113473

	Table 1.2: Different sources	of water availability i	n Malkangiri district (ha)
--	------------------------------	-------------------------	----------------------------

Source:District Irrigation plan of Malkangiri District,Govt.of Odisha

Table 1.3: Total water demand of the district for various sector in Malkangiri District

Plack		Componer	nts for 2011 (I	n BCM)	Components for 2025 (In BCM)					
BIOCK	Domestic	Crop	Livestock	Industrial	Total	Domestic	Crop	Livestock	Industrial	Total
Mathili	0.00210	0.01850	0.00170	0.00032	0.02262	0.00424	0.06899	0.00005	0.00064	0.07393
Khairaput	0.00094	0.00759	0.00170	0.00014	0.01037	0.00190	0.02835	0.00005	0.00028	0.03058
Kudumulgu ma	0.00136	0.00541	0.00170	0.00020	0.00868	0.00275	0.02316	0.00005	0.00041	0.02637
Malkangiri	0.00147	0.08068	0.00170	0.00951	0.09335	0.00296	0.22096	0.00005	0.00973	0.23370
Korkunda	0.00282	0.19762	0.00170	0.00042	0.20256	0.00528	0.53675	0.00005	0.00079	0.54288

Podia	0.00126	0.15323	0.00170	0.00019	0.15639	0.00255	0.40584	0.00005	0.00038	0.40883
Kalimela	0.00259	0.31113	0.00170	0.00039	0.31581	0.00522	0.81710	0.00005	0.00078	0.82316
Total	0.01254	0.77417	0.01190	0.01117	0.80978	0.02489	2.10115	0.00037	0.01302	2.13944

Source:District Irrigation plan of Malkangiri District,Govt.of Odisha

Table 1.4: Water budget of Malkangiri district

Blocks	Existing water availability (BCM)		Existing water availability (BCM) Total (BCM)		nd (BCM)	Water gap (BCM)*	
	Surface water	Ground water		2011	2025	2011	2025
Mathili	0.23200	0.05810	0.29010	0.02262	0.07393	-0.26748	-0.21617
Khairaput	0.14700	0.02220	0.16920	0.01037	0.03058	-0.15883	-0.13862
Kudumulguma	0.32300	0.03510	0.35810	0.00868	0.02637	-0.34942	-0.33173
Malkangiri	0.17300	0.04360	0.21660	0.09335	0.23370	-0.12325	0.01710
Korkunda	0.34700	0.06840	0.41540	0.20256	0.54288	-0.21284	0.12748
Podia	0.24400	0.05600	0.30000	0.15639	0.40883	-0.14361	0.10883
Kalimela	0.37400	0.05270	0.42670	0.31581	0.82316	-0.11089	0.39646
Total	1.84000	0.33610	2.17610	0.80978	2.13944	-1.36632	-0.03666
		*If water gap ne	gative indicates s	urpus water is	available		

Source:District Irrigation plan of Malkangiri District,Govt.of Odisha

Block wise water budget has been estimated based on existing water availability, water demand during 2011 and 2025 and water gap during 2011 and 2025.

Lowest groundwater is available in the Khairaput block (7% of total groundwater), whereas highest groundwater is available in Korkundar block (20%).

More than 50% of the groundwater resources are available in three blocks (Korkunda, Mathili and Podia).

Lowest surface water is available in the Khairaput block (8% of total surface water), whereas highest surface water is available in Kalimela block (20%).

More than 55% of the surface water resources are available in three blocks (Kalimela, Korkunda and Kudumulguma).

In caseof total water resource is concerned, lowest water is available in the Khairaput block (8% of total water), whereas highest water is available again in Korkunda block (19%).

Available surface water resource (1.8400 BCM) is more than five times higher than total groundwater resource (0.3361 BCM).

More than 55% of the total water resources are available in three blocks (Kalimela, Korkunda and Kudumulguma).

At present there is surplus water of 1.3663 BCM in the district. During 2025 the surplus will be reduced to 0.0367 BCM. But the block wise picture is different.

Fig. 1.6: Landuse map of Malkangiri District.

1.10 Drainage and Hydrology

The general drainage pattern in the district is dendritic to sub-parallel. The Kolab river alongwith its tributaries, the Potteru and Sileru rivers is the most prominent river of the region. The Kolab river issues from the Sinkaram hills and follows a south westerly course after passing over Malkangiri district. The river joins the Godavari river in Khammam district of Andhra Pradesh. The drainage map of Malkangiri district is shown in Fig.1.7.

Fig. 1.7: Drainage map of Malkangiri District.

2 DATA COLLECTION AND GENERATION

2.1 Geology

The area is characterized by a complex geological set up with a variety of rock types belonging mainly to the Precambrians and Archeans, except a thin alluvial patch along river Kolab. The Geological successions of the district is as follows –

Recent	Alluvium
	Unconformity
Pre-Cambrian	Quartzites, Limestones, Conglomerates, Shales
	Unconformity
	Younger Dolerite Dykes, Pegmatites, Vein Quartz Intrusives
	Unconformity
Archeans	Andalusite Schists, Sericite Quartz Schists
	Unconformity
	Charnockites
	Khondalites
	Granite Gneiss and its variants
	Basement not known

Table2.1 : Generalised Stratigraphic sequence in Malkangiri District

The area has suffered regional metamorphism up to the granulite facies and has experienced numerous phases of magmatic intrusions, accompanied by progressive and retrogressive metamorphism, repeated folding and shearing. As a result original structures, textures and mineral compositions have been completely obliterated by new structures and mineral assemblages.

Granite Gneiss and its variants – These are medium to fine grained rocks exposed in the undulating plains and scattered hillocks. The suite of rocks comprises Hornblende Gneiss, Biotite, Gneiss and Pink Granite. Megascopically the rocks are fine to medium grained, leucocratic with well-developed foliation planes in case of gneisses. The gneisses are usually

Aquifer Mapping and Management plan in Malkangiri District, Odisha

banded. The bands consist of thin layers rich in quartz and feldspar. Hornblende and mica are common occurrence while Garnet is found occasionally. The strike of the gneisses is variable, viz. N 750E – S750W with 200 dip to N 850W – S 850E with vertical dips. In the majority of the cases, the strike is similar to that of the Eastern Ghats. Granites occur in limited patches in the central and western parts of the district.

Khondalites – The khondalitic group of rocks consists of quartz – Garnet – Sillimanite Schist & Gneiss and Garnetiferous sillimanite quartzite. The khondalites are usually found in the South Eastern and Western parts of the district in the hilly terrains. These rocks exhibit multiple sets of joints having steep dips.

Charnockites – These generally occupy the hill ranges. The rock is coarse grained, dark green to grey in colour with feldspar and quartz crystals. The ferromagnesian minerals are hypersthene and pyroxene. Garnet is also present. The charnockitic rocks form massive out crops. The joints found in charnockites trend N 300E, N-S, & E-W with sub-vertical to vertical dips.

Schists - These include Andalusite – Schists and gneisses and quartz – sericite schists. These occupy the northern part of the district. They are essentially composed of feldspar, andalusite, sericite with inclusions of quartz.

Pegmatites and Dolerites– The pegmatites are commonly associated with the granite gneisses. These are rarely associated with the rocks of charnockites. The dolerites occur locally as dykes and small intrusions in the gneisses and charnockites. Garnet is found in the dolerite in some areas.

Quartz Reef – A prominent Quartz reef is observed in the northeastern boundary of the district. This is intrusive into the country rock and occurs as a narrow linear ridge with steep slopes covered by debris.

Conglomerate, Quartzite, Limestone, Shale – These rock types occurs near in North Eastern –

South Western boundary of the district. The Quartzites are generally ferruginous in nature and are overlain by the limestones, fine grained and white to blue in colour.

Alluvium - A narrow patch of alluvium occurs along the river Kolab and its tributaries in the northern part of the district. It has only limited thickness.

The granites and its variants are most predominant rock type and occupy major parts of the district. Geological set up of the district primarily controls the Hydrogeological condition of the area.

Fig. 2.1: Geological Map of Malkangiri District.

2.2 Hydrogeology

The hydrogeology of the district varies widely depending upon the geological and geomorphic set up and soil characteristics. The major hydrgeological units may be categorized as – Consolidated formations and Unconsolidated to Semi-consolidated formations.

Consolidated formations - Almost the entire district is underlain by the consolidated formations, comprising granites, granite gneiss and its variants, charnockites, Khondalites, Schists, Quartzites, Limestones etc. These formations lack primary porosity and are rendered porous and permeable only.

when weathered and fractured. The weathered residuum forms the main repositories of groundwater, which occurs under water table conditions and circulates through deeper fractures and fissures.

Granites and Granite Gneisses - These are the most prominent rock types in the district occupying the undulating terrains and low lying areas. On weathering these rocks are altered to loose kaolinised sandy clay. The thickness of the weathered zone ranges from 6 to 16 m depending on the topography and foliated and joined nature of the rocks. The sheet joints and vertical joints are interconnected. These facilitate free horizontal and vertical flow of groundwater. The depth to water table ranges from 0.57 to 10.97 m bgl in the months of May – June while 0.00 to 8.19 m bgl in the months of Dec – January. The seasonal water table fluctuation is in the range of –2.37 to 10.00 m. The specific capacity Index of open wells varies from 0.017 to 17 lpm/m/m2. The discharge of up to 6 lps has been recorded in the dugwells tapping unconfined aquifers. In exceptional cases discharge of 18 LPS has also been recorded. The borewells tapping deeper fracture zones, record discharge up to 10 Lps for moderate drawdowns. The transmissivity values of water bearing fractured zones tapped in borewells, 38 m to 200 m deep, vary from 1.3 m2/day to 27.5 m2/day.

Charnockites – Next to Granite Gneiss, the charnockite form the second most dominant aquifers in the area. These rocks are usually fine to medium grained, occasionally coarse grained. The weathering in these rocks is not very pronounced and restricted to 3 to 20 m depth. These rocks are jointed and fractured but the joints are not very prominent. These rocks occupy the hill ranges. The premonsoon and postmonsoon depth to water table values

range from 4.93 to 9.06 m and 3.99 to 7.69 m below ground level respectively. The seasonal water table fluctuation varies from 0.50 to 6.12 m. The specific capacity Index of aquifer as computed in a representative open well was 0.134 lpm/m/m2. Due to their hard and compact nature and occurrence in hill ranges, these rocks have poor yield prospects. The wells in this formation generally yield 1 to 2 lps.

Khondalites - The khondalites are restricted to the western parts of the district. These rocks exhibit multiple sets of joints. Most of the joints have nearly vertical to steep dips. The opening of joints range from 5-60 mm and the thickness of the weathered residuum ranges from 3.5 to 13.00 m. The weathered residuum and underlying fractured rocks constitute the aquifers. The premonsoon and post monsoon depth to water table values range from 2.2 to 14.25 m and 1.1 to 12.25 m bgl respectively. Fluctuations is in the range of 1.1 to 3.0 m.

Schists – These include Andalusite Schists, Quartz – Sericite – Schists. The highly Weathered and decomposed products consist generally of moderately sticky clay. The depth of weathering varies from 12 – 30 m.

Quartzites, Limestones – These rocks occur in small patches along the northern boundary of the district. They were not explored hydrogeologically. The depth of weathering is not known. The depth to water level in the premonsoon is 1.88 m bgl and in the postmonsoon period is 1.83 to 2.37 m bgl.

Quartz Reef - A narrow linear ridge with steep slopes covered by debris, acts as barrier to the movement of groundwater. The upstream side of the ridge is favourable for groundwater occurrence.

Unconsolidated Formations

Alluvium –Alluvium is not well developed in the area. Small and local patches occur along the Sabari river. It is generally 2-5 m in depth. Its width varies from Zero to less than a Km. Most part of the banks of Sabari, Sileru and Potteru rivers are rocky with no tendency to deposit alluvium on either side. As such these are not useful for groundwater development because of its limited areal extent and thickness.

Fig. 2.2: Hydrogeological Map of Malkangiri District.

2.3 Ground Water Exploration

In order to decipher the aquifer system of the area, CGWB has constructed numerous exploratory wells and observation wells which are shown in **Fig. 2.3**. The details of data generated from this exploration are given in annexure-IIA.

Fig. 2.3: Locations of ExploratoryWells Drilled by CGWB in Malkangiri District.

2.4 Monitoring of Ground Water Regime

Due to covid19 pandemic situation in the year 2020 and 2021 the pre monsoon monitoring (April 2021) of water level could not taken in the district. So the pre monsoon and post monsoon water level of NHS 2019 data is taken into account for preparation of maps.. There are 20 National Hydrograph Network Stations (NHNS) exist in the District. Under NAQUIM, 68 Key Observation wells (dug wells).were established during post monsoon period 2021 The details of the National Hydrograph Network Stations (NHNS) are shown in **Table 2.3** and the locations of the monitoring stations are shown in **Fig. 2.4**. The list of Keywells established in Malkangiri District is given in annexure-IV. The chemical quality of ground water in the district is monitored annually on a routine basis by CGWB through its National Hydrograph Network Stations. During the NAQUIM

programme, 68water samples were collected from the monitoring wells .The Ground water Quality data of Exploratory well in Malkangiri Dist is given in annexure-IIIA.

Fig. 2.4: Locations of NHNS in Malkangiri District.

Fig. 2.5: Locations of Key wells in Malkangiri District.

SI. No.				Pre- Monsoon Water	Post-Monsoon	Eluctuatio
	Location	Latitude	Longitude	level(2019)	level(2019)	n
1	Pongam	18.51	82.14	6	1.95	4.05
2	maithili1	18.56	82.2225	5.8	0.92	4.88
3	Kudumulugumma	18.38	82.197	3.95	1.39	2.56
4	Somnathpur1	18.30138	82.127	4.6	2.21	2.39
5	Khairput	18.4838	82.237	5.65	4.09	1.56
6	MV 37	19.304	82.720	3.2	2.21	0.99
7	MV 9	18.3025	81.853	9	1.76	7.24
8	Balimela Chowk	18.2394	82.1013	4.45	1.63	2.82
9	Korukonda 1	18.2886	81.985	4.2	2.17	2.03
10	katameta	18.46027	82.0758	3	1.07	1.93
11	Chitapari	18.25083	82.105	2.9	1.54	1.36
12	Parkannala	18.35666	82.156	6	2.02	3.98
13	Sindhimal	18.4069	81.94	5.7	1.49	4.21
14	Malkangiri 1	18.3730	81.9044	5.75	1.41	4.34
15	Kumbharguda	18.4577	82.056	3.75	0.92	2.83
16	Mundiguda	18.2266	82.22	4.8	1.04	3.76

Table-2.2:Seasonal Water Level Fluctuation in NHS in Malkangiri district

Table-2.4: List of NHS in Malkangiri district

2.5 Geophysical Survey

58 VES carried out in Malkangiri district during NAQUIM studty to fill the Gap . (Interpreted VES results is given in Annexure-I)

VES Data Generation

A total of 58 VES were carried out in Malkangiri district. The VES locations are shown in figure 2.6.

Fig 2.6: VES location Map of Malkangiri District

Interpreted VES Results

The Interpreted results of VES are given in Annexure I. All the existing CGWB Boreholes are more than 1 km from the nearby VES points. So comparison may not give good results. After comparing the VES results with the local geology and hydrogeology, the resistivity characteristics of the near surface weathered rock and the underlying massive / fractured formation were established.

The top geoelectric layer with resistivities varying between 3 and 575 Ohm m inferred as soil depending on its nature and saturation and the thickness varies between 0.3 and 3.5 m

Mostly the 2nd or 3rd geoelectric layer, occasionally the 1st one with resistivities ranging from 3.6 to 76 Ohm m has been inferred as weathered layer. The layer with more than 80 Ohm m has been considered as semi weathered layer. The wide range of resistivities may be due to its nature and saturation. In general, the weathered / semi weathered zone extends down to a depth of 19 m bgl., occasionally exceeds to 23m. To understand the possibility of encountering thin fractured zones, the VES curves were analysed for 'current increase', 'curve break' and 'factor flat'. The depth zones with combination of all these three attributes, viz., increase in current, associated with reduced gradient in apparent resistivity trend (curve break) and horizontal flattening of factor curve were identified as indicators of the presence of fractured zones. Mostly the 3rd or 4^{th} geoelectric layer, occasionally, the 5th or 6th one with resistivities ranging from 16 to 516 Ohm m, occasionally exceeding to 1100 Ohm m has been inferred as Less compact formation / formation with fractures. The higher order of resistivities may be due to the suppression of thin low resistive geoelectric layer in between the two high resistive layers. Wide range of the resistivities may be due to the variations in the degree of fracturing, nature of the formation, etc. The thickness of the geoelectric layer inferred as less compact / formation with fractures, in general varies between 9.7 and 100 m, occasionally exceeds to more than 200m. The depth to bottom of this layer is, in general, varying from 17.8 to 200 m. occasionally exceeds to more than 300m. The layer with resistivities more than 600 Ohm m may be inferred as compact depending on the nature and type of the formation.

On the basis of geoelectrical layer parameters and the fractured zone analysis a few sites are recommended for borehole drilling or Shallow borehole or Dug well .

Conclusions and Recommendations:

In the surveyed area of Malkangiri district, in general, the weathered zone extends down to a depth of 19 m bgl. Thin fractured zones were identified by 'current increase', 'curve break' and 'factor flat'. Mostly the 3rd or 4th geoelectric layer, occasionally, the 5th or 6th one with resistivities ranging from 16 to 516 Ohm m, occasionally exceeding to 1100 Ohm m has been inferred as Less compact formation / formation with fractures. The higher order of resistivities may be due to the suppression of thin low resistive geoelectric layer in between the two high resistive layers. Wide range of the resistivities may be due to the variations in the degree of fracturing, nature of the formation, etc. The thickness of the geoelectric layer inferred as less compact / formation with

33

fractures, in general varies between 9.7 and 100 m, occasionally exceeds to more than 200m. The depth to bottom of this layer is, in general, varying from 17.8 to 200 m. occasionally exceeds to more than 300m. The layer with resistivities more than 600 Ohm m may be inferred as compact depending on the nature and type of the formation.

On the basis of geoelectrical layer parameters and the fractured zone analysis a few sites are recommended for borehole drilling

2.6 Chemical Quality

The chemical quality of ground water in the district is monitored annually on a routine basis by CGWB through its national Hydrograph Network Stations. Quality of ground water from deeper aquifers was assessed during the exploration activities like drilling and pumping tests. The suitability of ground water for drinking/irrigation/industrial purposes is determined keeping in view the effects of various chemical constituents present in water.

The chemical quality of ground water in the district is monitored annually on a routine basis by CGWB through its national Hydrograph Network Stations. Quality of ground water from deeper aquifers was assessed during the exploration activities like drilling and pumping tests. The suitability of ground water for drinking/irrigation/industrial purposes is determined keeping in view the effects of various chemical constituents present in water.Based on the chemical analysis of water samples(Annex-III A &B) from different sources, it was observed that, almost all chemical parameters lie within permissible limit for drinking and irrigation purpose except few samples of some isolated pockets. The iso-conductivity map of phreatic aquifers of the district has been prepared and presented as **Fig. 2.8**. The quality of ground water is generally good with EC ranging from 70 to 3100µs/cm.

34

Fig:2.7 Chloride map of phreatic aquifer of Malkangiri District.

Fig:2.8 Iso- Conductivity map of Phreatic aquifer of Malkangiri District.

Fig:2.9 Nitrate map of Phreatic aquifer of Malkangiri District.

Fig:2.10 Uranium map of Phreatic aquifer of Malkangiri District.

Fig: 2.11 Iso conductivity map of deeper aquifer in Malkangiri District.

Fig: 2.12 Chloride map of deeper aquifer in Malkangiri District.

Fig: 2.13 TDS map of deeper aquifer in Malkangiri District.

3 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

3.1 Shallow Aquifer

Ground water occurs in phreatic condition in shallow aquifers and is utilized by means of dug wells or shallow tube wells. The depth of the dug wells used as observation points vary from 5.3 to 14.1 mbgl and their diameter ranges from 1.0 m to 8.1 m. The wells are generally lined to the total depth.

3.1.1 Pre-monsoon Depth to Water Level

The Depth to water level in pre-monsoon period varies from 2.9 mbgl (Chitapari) to 9.75 mbgl (MV-7) the average being 5.20mbgl. In general, the study area has the depth to water level in between 4to6 mbgl during the pre-monsoon. The pre-monsoon depth to water level map is shown in Fig. 3.1.

Fig. 3.1: Depth to Water Level in Phreatic Aquifer During Pre-monsoon.

3.1.2 Post-monsoon Depth to Water Level

Depth to water level in post-monsoon period varies from 0.92 mbgl (Mathili) to 5.75 mbgl (Bhejaguda) the average being 1.97 mbgl. The depth to water level of the study area during post-monsoon is in general within 0-2 mbgl. The post-monsoon depth to water level map is shown below in **Fig. 3.2**.

Fig. 3.2: Depth to Water Level in Phreatic Aquifer During Post-monsoon.

3.1.3 Seasonal Fluctuation of Water Level

The water level fluctuation varies from 0.99 mbgl (MV-37) to 4.88mbgl (Mathili) the average being 2.99mbgl. The general range of fluctuation in water level in the study area is between 2-4m. The

shallow post-monsoon water level along with fluctuation pattern indicates that the annual replenishment of phreatic aquifer due to monsoon rainfall is adequate in the district but deeper summer level is due to rapid dewatering of the phreatic aquifer .The seasonal fluctuation of water level of Aquifer-I is shown in **Fig. 3.3**.

3.1.4 Decadal Water Level Trend

The National Hydrograph Network Stations (NHNS) data are considered for analysis of long-term trend for the period 2011-20. The trend of water level for both pre-monsoon and post-monsoon periods (2011-21)were analyzed. The results of trend analysis have been shown in **Table-3.1**. The long term trend analysis indicates that out of 11 stations, 8(72.72%) show falling trend and 3 stations (27.28%) show rising trend in pre-monsoon. In the post-monsoon out of 11 stations 05(45.45%) show rising trend and 6(54.55%) show falling trend.

-						1
SI						
No.	Location	Block	Premonsoon	Postmonsoon		
			Trend	Trend		
			(m/year)	Remark	(m/year)	Remark
1	Balimela	Korukunda	0.0393	Fall	0.054	Rise
2	Bejaguda	Mathili	0.0334	Rise	0.0756	Rise
3	Chitapari	Korukunda	0.0507	Rise	0.0398	Fall
4	Katameta	Mathili	0.0063	Fall	0.0028	Fall
5	Kumbharguda	Malkangiri	0.2133	Fall	0.0663	Rise
6	M.V.9	Malkangiri	0.0454	Fall	0.006	Rise
7	Malkangiri 1	Malkangiri	0.0187	Fall	0.0708	Fall
8	Mundiguda	Khairaput	0.0598	Fall	0.0821	Rise
9	Parkannala	Kodumulguma	0.1070	Fall	0.0314	Fall
10	Pongam	Mathili	0.0683	Rise	0.0297	Rise
11	Sindhimal	Malkangiri	0.1258	Fall	0.0288	Fall

Table-3.1: Decadal Water Level Trend Analysis of CGWB NHS (period 2011-2021) in Malkangiri District

47

3.2 Deeper Aquifer

Unlike phreatic aquifer, ground water occurs under confined to semi-confined condition in the deeper aquifer. The deeper aquifer comprises of the jointed, fractured and consolidated or crystalline formations. In general, it is confined on top by weathered formations and bottom by massive rocks.

3.3 Ground Water Quality

The suitability of the ground water for the purpose of irrigation analysed in the US-Salinity diagram as shown in **Fig. 3.6**.in which EC is taken as salinity hazard and SAR as alkalinity hazard. The predominant USSL classes of the water samples fall within C2S1and C3S1 classes. C3S1 class indicating high salinity and low alkali water which cannot be used on soil with restricted drainage and requires special arrangement for salinity control.The soil must be permeable and the drainage must be adequate, irriagation water must be added in excess to provide considerable leaching and tolerant crops and plants should be selected for such regions.The water samples represent Ca-HCO₃ type to mixed facies of Ca-Mg-Na-HCO₃-SO₄ types as shown in the Piper diagram in **Fig. 3.5**. This indicates a transitional or mixing environment between the younger water and resident water.

Piper Diagram of Phreatic Aquifer in Malkangiri District

Fig. 3.5 : Piper-Diagram of Water Samples, Malkangiri District.

Fig;3.6 US-Salinity Diagram, Phreatic Aquifer in Malkangiri District.

3.4 Aquifer Groups and Their Demarcation

Based on extensive analysis of historical data, micro level hydrogeological survey data generated and ground water exploration carried out in the area, the following two types of aquifers can be demarcated and the details are given below:

Aquifer- I (Unconfined Aquifer):Unconfined aquifer, occurs in entire area except rocky outcrops, formed by the weathered mantle atop all crystalline formations and discontinuous alluvial tracts along major river channels. This aquifer generally occurs down to maximum depth of 30m bgl. Based on field observations, isopach map of Aquifer–I is generated..

Aquifer-II(Semi-Confined to Confined Aquifer): Semi-confined to confined aquifer occurs as fracture zone aquifers in the entire area irrespective of rock types. However the aquifer properties, the yield of bore wells constructed in them depends on the rock type. As per the

ground water exploration, carried out by CGWB. Aquifer-II in Granitic rocks has better yield in comparison to Charnockites and Khondalites. In general, most of the fracture zones are encountered within 30 to 180 mbgl and seldom beyond that. Thus the maximum dep for the Aquifer-II has been taken as 200 mbgl.

3.5 Aquifer Disposition

The ground water exploration data has been used to generate the 3D disposition of the aquifer system. It comprises of all existing litho-units and the zones tapped during the ground water exploration, forming an aquifer. Three 2D schematic sections were drawn along lines A-A', B-B' and C-C', which are shown in plan view in Fig.3.7 and the corresponding 2D schematic sections are shown in **Fig. 3.8**, **3.9** and **3.10** The fence diagram and 3D disposition of the aquifer system of Malkangiri District are shown in **Fig.3.12and 3.13**

Fig. 3.7: Location and plan view of schematic hydrogeological cross-sections in Malkangiri District

Fig:3.8 Schematic aquifer cross-section A-A' in Malkangiri district

Fig:3.9 Schematic aquifer cross-section B-B' in Malkangiri district

Fig:3.10 Schematic aquifer cross-section C-C' in Malkangiri district

Fig:3.11 Location and plan view of Fence diagram in Malkangiri district.

Fig:3.12 : Fence diagram depicting the aquifer disposition in Malkangiri District

Fig. 3.13 : 3D aquifer disposition in Malkangiri District

4 **GROUND WATER RESOURCES**

The dynamic ground water resource of the district was jointly carried out in 2020 by Central Ground Water Board (CGWB) and Ground Water Survey and Investigation (GWS&I) adopting the methodology recommended by GEC 2015. The ground water resource can be aquifer wise divided into Dynamic and Static resource. The dynamic resource is the part of resource within the water level fluctuation zone which is also the annual replenishable resource. The resource below the water level fluctuation zone is termed as the In-storage (Static) resource. Mainly the water level fluctuation method was adopted for calculation of recharge. The block-wise resource of the aquifer mapping blocks as on 2020 is given below in **Table 4.1**.

SI No	Block	Net Annual Ground Water Availabili ty	Existing Gross Ground Water Draft for Irrigation	Existing Gross Ground Water Draft for domesti c & Industri al Supply	Existing Gross Ground Water Draft for all uses	Annual ground water allocation for domestic water supply as on 2025	Net Ground Water Availability for future irrigation developme nt	Stage of Grou nd Wate r Devel opme nt
		(Ham)	(Ham)	(Ham)	(Ham)	(Ham)	(Ham)	(%)
1	Kalimela	6859.4	762.12	347.206	1109.33	382.36	5714.92	16.17
2	Khairaput	1469.68	242.38	134.114	376.49	155.09	1072.21	25.61
3	Korukunda	6870.38	687.08	404.620	1091.7	435.37	5747.93	15.88
4	Kudumulugu	2666.56	177.58	226.934	404.52	257.1	2231.87	15.17
5	Malkangiri	4590.73	484.3	408.093	892.4	485.79	3620.63	19.43
6	Mathili	3526.77	379.62	290.411	670.03	326.94	2820.21	18.99
7	Podia	4484.11	315.56	182.909	498.48	214.13	3954.41	11.11
	Total	30467.63	3048.64	1994.29	5042.95	2256.78	25162.18	

Table 4.1: Dynamic Ground Water Resources of Aquifer-I in Malkangiri District. (2020)

The combined net ground water available is 30467.6 Ham and gross annual draft is 5042.95 Ham. The stage of ground water development is minimum for Podia block which is 11.11 %. The highest ground water development is in Khairaput block that is 25.61 % .All the Blocks of the District comes under safe category.The In-storage resources are calculated for Aquifer-I and II separately. However the semi-confined to confined deeper aquifers have linkage to the unconfined aquifer through the fractures and receive continuous recharge. The In-storage ground water resources of Aquifer-I are given in **Table 4.2** and the total resources of Aquifer-I in **Table 4.3** below.

SI No	Block	Assessment Area	Bottom Depth of Aquifer	Average Pre- monsoon Water Level	Total Effective Saturated Thickness 5% of (2-3)	Average Specific Yield	In Storage Ground Water Resources [(1)*(4)*(5)]
		(Ha) (1)	(mbgl) (2)	(mbgl) (3)	(m) (4)	(5)	(Ham) (6)
1	Kalimela	124817	30.00	6.5	1.175	0.03	4399.799
2	Khairaput	42182	30.00	5.4	1.23	0.03	1556.516
3	Korukunda	88640	30.00	4.8	1.26	0.03	3350.592
4	Kudumulugu	109564	30.00	5.5	1.225	0.03	4026.477
5	Malkangiri	66309	30.00	6.8	1.16	0.03	2307.553
6	Mathili	46717	30.00	5.2	1.24	0.03	1737.872
7	Podia	46717	30.00	6.4	1.18	0.03	1653.782
	Total	524946					19032.59

 Table 4.2: In-Storage Ground Water Resources of Aquifer-I in Malkangiri District.

Table 4.3:	Total Ground	Water Resources	s of Aquifer-I in	Malkangiri District.	(2020)
------------	--------------	-----------------	-------------------	----------------------	--------

SI No	Block Dynamic In Storage		Total Ground	
1	Kalimela	6859.4	4399.799	11259.2
2	Khairaput	1469.68	1556.516	3026.196
3	Korukunda	6870.38	3350.592	10220.97
4	Kudumulugumal	2666.56	4026.477	6693.037

5	Malkangiri	4590.73	2307.553	6898.283
6	Mathili	3526.77	1737.872	5264.642
7	Podia	4484.11	1653.782	6137.892
	Total	30467.63	19032.59	49500.22

The in-storage ground water resource in Aquifer- II i.e. the semi-confined to confined aquifer is shown in **Table 4.4**.

Table 4.4: In-Storage Ground Water Resources of Aquifer-II in Malkangiri District. (2020)

SI No	Block	Assessment Area	Bottom Depth of Aquifer	Average Pre- monsoon Water Level	Total Effective Saturated Thickness 5% of (2- 3)	Average Specific Yield	In Storage Ground Water Resources [(1)*(4)*(5)]
		(Ha)	(mbgl)	(mbgl)	(m)	-	(Ham)
		-1	-2	-3	-4	-5	-6
1	Kalimela	124817	163	6.5	7.825	0.004	3906.7721
			146				1186.1578
2	Khairaput	42182		5.4	7.03	0.004	4
3	Korukunda	88640	137	4.8	6.61	0.004	2343.6416
	Kudumulugum		160				
4	al	109564		5.5	7.725	0.004	3385.5276
			174				2217.3729
5	Malkangiri	66309		6.8	8.36	0.004	6
			137	5.2			1231.4601
6	Mathili	46717			6.59	0.004	2
			149	6.4			1332.3688
7	Podia	46717			7.13	0.004	4
							15603.301
	Total	524946					06

5 GROUND WATER RELATED ISSUES

The highly diversified occurrence and considerable variations in the availability and utilization of groundwater makes its management a challenging task. Scientific development and management strategy for groundwater has become imperative to avert the looming water crisis. In this context, various issues such as, prioritization of areas for development of groundwater resources vis-a-vis its availability, augmentation of groundwater through rainwater harvesting and artificial recharge, pricing and sectoral allocation of resources and participation of the stakeholders must be considered.

5.1 Under Utilisation of Ground Water Resources

As per the ground water resource estimated jointly by CGWB and State Govt. in 2020, all Blocks of Malkangiri District comes under safe category. Thus there is ample scope exists for further ground water development in all Blocks. The Stages of ground water development in these Blocks varies from 11.12% to 25.62%. There is scope for extraction of water available from the phreatic aquifer keeping the percentage of ground water development within 60%.

5.2 Ground Water Problem in Hilly Areas

Malkangiri district receives adequate rainfall and the normal annual rainfall is 1818mm. The eastern parts of the district are mainly of of hilly terrain and thus high run off zone. They act as recharge zones as well as good reservoir of ground water. Once they get saturated, during monsoon the excess water flows as run off and base flow. During the post-monsoon period, the thin weathered zones soon loose the entire storage water due to base flow. So there is scarcity of water in these areas in lean and summer season.

5.3 Depleted Water Level in Phreatic Aquifer

The Depth to water level in pre-monsoon period varies from 2.9 mbgl (Chitapari) to 9.75 mbgl (MV-7) the average being 5.20mbgl. In general, the study area has the depth to water level in between 4to6 mbgl during the pre-monsoon. Depth to water level in post-monsoon period varies from 0.92 mbgl (Mathili) to 5.75 mbgl (Bhejaguda) the average being 1.97 mbgl. The depth to water level of the study area during post-monsoon is in general within 0-2 mbgl. The water level fluctuation varies from 0.99 mbgl (MV-37) to 4.88mbgl (Mathili) the average being 2.99mbgl. The general range of fluctuation in water level in the study area is between 2-4m. The shallow post-

monsoon water level along with fluctuation pattern indicates that the annual replenishment of phreatic aquifer due to monsoon rainfall is adequate in the district but deeper summer level is due to rapid dewatering of the phreatic aquifer. The deeper level during the pre-monsoon indicates ground water scarcity in the areas during the summer months.

Fig: 5.1 Proposed sites for Artificial Recharge structures in Malkangiri District.
6 MANAGEMENT STRATEGIES

6.1 Management Plan for Under-Utilisation of Ground Water

Proposed Interventions: There is very little scope for the demand side interventions as the district experiences acute shortage of water during the lean seasons. However to meet the irrigation requirement in relatively water deficient areas, efficient irrigation techniques such as drip and sprinkler should be practised. No other demand side intervention is feasible.

For the supply side intervention, further development of ground water resource is possible as there is sufficient scope for this is available in the district as the present ground water development ranges from 11.12% to 25.62% in the district. The quantum of water available for extraction from the phreatic aquifer is thus calculated, keeping the percentage of ground water development within 60%. The same is shown in the **Table 5.1**.

Block	Net Ground Water Availability (Ham)	Stage of Ground Water Developme nt (% in 2020)	Present Ground Water Draft (Ham)	Ground Water draft at 60% Stage of developm ent (Ham)	Surplus Ground Water at Present Stage of developme nt (Ham)	Number of BW/ STW Recommend ed in Each block (assuming unit draft as 2.21 ham per structure per year) 50%	Number of DW Recommend ed in Each block(assuming unit draft as 0.26 ham per structure per year) 50%
				(1)*0.6	(4)-(3)		
	-1	-2	-3	-4	-5	-6	-7
Kalimela	6859.4	16.17241	1109.33	4115.64	3006.31	680	5781
Khairaput	1469.68	25.61714	376.49	881.808	505.318	114	972
Korukund a	6870.38	15.88995	1091.7	4122.228	3030.528	686	5828
Kudumulu gumal	2666.56	15.17011	404.52	1599.936	1195.416	270	2299
Malkangiri	4590.73	19.43917	892.4	2754.438	1862.038	421	3581
Mathili	3526.77	18.9984	670.03	2116.062	1446.032	327	2781
Podia	4484.11	11.11659	498.48	2690.466	2191.986	496	4215
Total	30467.6		5042.95	18280.58	13237.63	2995	25457

 Table 5.1: Ground Water Development Potential of Malkangiri District.

Structures Feasible:The feasible ground water structures and probable yield in different geological units in Nuapada district is given below:

Granite and Granite Gneiss: Ground water occurs in weathered horizon in unconfined condition, yield of dug well upto 50 m3/day; Deeper fracture zones - yield of bore wells within 2.0 lps, occasionally upto 5 lps.

Charnockites: Ground water in weathered zone in unconfined condition, yield of dug wells upto 30 m^3 /day; Deeper fracture zones- yield of bore wells less than 1 lps

Khondalites: Ground water in weathered zone in unconfined condition, yield of dug wells upto 50 m^3 /day; Deeper fracture zones- yield of bore wells less than 1 lps

6.2 Management Plan for Scarcity of Water in Hilly Areas

Due to uneven and hilly terrain and lower ground water recharge and storage capacity, there are many areas where the phreatic aquifer quickly desaturates causing water scarcity during nonmonsoon periods. To enhance the ground water availability, suitable measures for augmentation of monsoon recharge, should be taken up. In the foot hill regions, contour trenching alongwith gabion structures should be constructed to arrest the surface runoff and improve rainfall recharge.

6.3 Management Plan for Depleted Water Level in Phreatic Aquifer

The problem of water level depletion in the phreatic aquifers can be addressed through artificial recharge through various water conservation structures. However, as already discussed, water level between 3- 5 mbgl during post-monsoon period in most of the district shows adequate natural recharge and replenishment of phreatic aquifer.But there is still a lot of scope for artificial recharge to address the sustenance of phreatic aquifer to address the summer period water crisis due to deepening of water level. All the existing 1st order streams are suitable for construction of nala bunds.Similarly 2nd and 3rd order drainages are suitable for the construction of check dams.For the mitigation of deeper water level areas in the district, the following measures can be taken up:

1.Contour trenching, staggered trenching and gabion structures to arrest the surface runoff in foot-hill areas.

2. Construction of farm ponds and renovation of existing water bodies.

67

The proposed sites for artificial recharge structures are shown in Fig. 5.1

6.4 Organising Public interaction programmes(PIPs)

To create awareness among local public, farmers and various stake holders of Ground water CGWB has organized various PIPs and mass awareness programmes in the state of Odisha .In this context one public interaction programmes has been organized at Malkangiri in Malkangiri District to discuss about local issues, sustainable Ground water development and management, water conservation, Rain water Harvesting and Artificial Recharge techniques.

7 SUMMARY AND RECOMMENDATIONS

7.1 Summary

National Aquifer Mapping Programme (NAQUIM) was taken up for detailed hydrogeological investigation, data-gap analysis and Aquifer Mapping and Management in the district of Malkangiri, covering seven blocks namely Kalimela, Khairput, Korukonda, Kudumulguma, Malkangiri, Mathili and Podia. during the period 2021-22 The following are the summarised details.

- 1 The district lies between north latitudes 17°47′58″ and 18°44′18″ and East longitudes 81°23′23″ and 82°27′05″ falling in Survey of India Degree sheet Nos. 65 F,G,J. The district covers an area of 5791 Sq.Km.The district is bordered in the North and West by Bastar district of Chhatishgarh and in the south by Khammam and East Godavari districts of Andhra Pradesh, in the east by Koraput district, Orissa The Malkangiri town, the district headquarter is approachable from adjacent districts through State Highways. The mappable area under NAQUIM is 3510 sq. Km,.
- 2 The average annual rainfall of the district is 1818 mm,Based on the average annual rainfall for 10 yrs(2012 2021)it was observed that during the last 10 years, from 2012 to 2021, the highest rainfall amounting 3067.7 mm occurred in Korukonda block in 2019 and the lowest annual of 984.5 mm. in Podia block in 2014.
- 3 The forest area is 14.64% of total geographical area. The net sown area of the district is 106964 ha and constitute 68.07 % of the total Agriculture area, with cropping intensity of 156.0 %.
- 4 Two types of soil are found in the district viz. Ultiisols and Alfisols.
- 5 The total cropped area is about 1.99 lakh ha out of which 0.91 lakh ha (45.6% of TCA) is irrigated and 1.08 lakh ha (54.4% of TCA) is under rainfed area .
- 6 There are two major sources of water available in Malkangiri district, namely surface irrigation and ground water irrigation. The surface irrigations include Canal (Major & Medium Irrigation), minor irrigation, lift irrigation, Various Water Bodies including Rain Water Harvesting, Untreated Effluent and Perennial sources of

water. For the ground water includes Open well (Dug well), Deep Tube Well, Medium Tube Well (Bore well), Shallow Tube Wells respectively. All the area is divided as per seasons like Kharif and Rabi. Based on the season, the area under canal water in Kharif is 57901 ha, for Rabi season is 31903 ha,for summer season 1625ha and the total area under canal water is 91429 Ha. The total area available through minor irrigation is 2659 Ha, and the area under lift irrigation is 10811 Ha. The area under the perennial sources of water extents is 1324Ha. Similarly, the area under open well is 502 Ha, Bore well is 4391 Ha.Total area under surface water irrigation is 108580ha and area under ground water irrigation is4893ha

- 7 The district is underlain by Granite-gneiss and its variants, of Easern-ghat group and Chhattisgarh Group a small patch of alluvium and laterites.
- 8 The district is occupied by the consolidated formations comprising Granites, Granite gneiss, Quartzites, Khondalites and Charnockites, . These rocks are very hard and compact, and lack primary porosity. Ground water is stored mainly in the secondary porosity resulting from weathering and fracturing of the rocks. The aquifer materials are highly heterogeneous in character showing both vertical and lateral variations. The weathered residum form the main repositories of ground water, which occurs under water table conditions and circulates through deeper fractures and fissures. Ground water occurs under confined to semi-confined condition in the deeper fractured zones. The water yielding capacity of fractured rocks largely depends on the extent of fracturing, openness and size of fractures and extent of their interconnections into the near surface weathered zone.The Unconsolidated Formation includes alluvial deposits of recent origin occur as thin discontinuous patches along the prominent drainage channels. These mainly consist of silt, sand with gravel & pebble, which form potential shallow aquifers tapped through dug wells.
- 9 CGWB has constructed 36 EWs and 05 OWs during the ground water exploration programme. For the monitoring of ground water level and quality CGWB has established 35 National Hydrograph Network Stations in the district.
- 10 The Depth to water level in pre-monsoon period varies from 2.9 mbgl (Chitapari) to 9.75

mbgl (MV-7) the average being 5.20mbgl. In general, the study area has the depth to water level in between 4to6 mbgl during the pre-monsoon. Depth to water level in post-monsoon period varies from 0.92 mbgl (Mathili) to 5.75 mbgl (Bhejaguda) the average being 1.97 mbgl. The depth to water level of the study area during post-monsoon is in general within 0-2 mbgl. The water level fluctuation varies from 0.99 mbgl (MV-37) to 4.88mbgl (Mathili) the average being 2.99mbgl. The general range of fluctuation in water level in the study area is between 2-4m. The long term trend analysis indicates that out of 11 stations, 8(72.72%) show falling trend and 3 stations (27.28%) show rising trend in premonsoon. In the post-monsoon out of 11 stations 05(45.45%) show rising trend and 6(54.55%) show falling trend.

- 11 Based on the chemical analysis of water samplesfrom different sources, it was observed that, almost all chemical parameters lie within permissible limit for drinking and irrigation purposes.
- 12 The estimated dynamic ground water resource is 30467.6 Ham and the stages of development of ground water range from 11.1 to 25.6 %.All the blocks of the Malkangiri district comes under safe category.

7.2 Recommendations

For a sustainable ground water development in the area, a systematic, economically sound and politically feasible framework for groundwater management is required. Considering the local physiographical and hydrogeological set up the following ground water management strategy is suggested.

- 1 As there is large scope for development of ground water, suitable schemes may be launched for development to boost agricultural production in the district. The financial institutions should generously finance such schemes.
- 2 Diversification of crops from paddy to non paddy crops like oil seed, pulses and vegetables during rabi season at least in the high land and part of medium land areas is essential.

- 3 Priority should be given to the phreatic aquifer for extraction of ground water through large diameter dugwells and dug cum borewells at hydrogeologically suitable locations. Selection of proper site for drilling of bore wells, based on the favourable hydrogeological conditions has to be done.
- 4 For the irrigation requirement in relatively water deficient areas, efficient irrigation techniques such as drip and sprinkler should be practiced.
- 5 Conjunctive use of surface and ground water is must in the command areas.
- 6 In the foot hill regions, contour trenching, staggered trenching along with gabion structures should be constructed to arrest the surface runoff and improve rainfall recharge
- 7 Artificial recharge projects may be taken up in the district especially in hard rock areas for augmentation of ground water resources through construction of percolation tanks, check dams, farm ponds.
- 8 Rain water harvesting should be adopted in all Govennment and public buildings.
- 9 The farmers should be educated through agricultural extension services for adopting suitable cropping patterns for optimal utilization of available ground water and surface water resources.
- 10 Industrial waste waters and effluents should be treated and disposed off properly under an effective monitoring mechanism.

ACKNOWLEDGEMENTS

The author is very much thankful to the Sh Sunil Kumar, Chairman CGWB, Sh Satish Kumar, Member(East) Sh Anoop Nagar, Member (HQ) for providing an opportunity to carry out NAQUIM work in Malkangiri District.

The author is thankful to Sh P.K.Mohapatra.Regional Director, and Sh D.N Mondal Scientist-D, Supervisory officer for providing technical guidance and supervision for compiling the report. Last but not the least the author is thankful to Sh B.B Sahoo ,Scientist-D(chemist) ,Sh B.N Dehury ,Assistant Chemist for chemical analysis,Sh Rajesh Babu, Assistant Geophysicist for providing the Geophysical data and Dr Satyabrata Sahu,Young professional for preparing the maps.

References:-

i. Ground water resource assessment of Odisha state, CGWB, SER, Bhubaneswar, 2017

ii. District Irrigation plan of Malkangiri District, Odisha state , 2016

iii. District Census, Malkangiri District, 2011

iv. Hydrogeological Framework and Ground water development prospects in Malkangiri District,Odisha CGWB,SER, Bhubaneswar,2007

vi. Agricuture and Irrigation data of District Agriculture Department, Malkangiri District, Govt of Odisha

vii. District Statistical Hand book, Malkangiri District, 2018, Govt of Odisha

vii. VES data and results of Malkangiri District, Geophysical section, CGWB, SER, Bhubaneswar, 2022

Annexure-1 :INTERPRETED VES RESULTS IN PARTS OF MALKANGIRI DISTRICT

Malk	angiri District_	HR	WAPC	COS Ltd.	PROJECT:	VERTI	CAL ELECTRI	ICAL SOUN	DING(\	/ES) IN ODISHA STATE	DATA G	ENERATION	N
S.N o.	LOCATION	Block	VES NO.	EASTING/	NORTHI NG	Direo para	t interpreti meters by s	on of VES oftware	ayer	Inferred lithology	Aquife	r Charectris	stics
						Lay er	Resisitiv ity	Thickne ss (m)	Dept h		Aquif er	Depth Range(Inferr ed
				Longitude	Latitude		(ohm.m)		(m)			m)	aquife r water qualit y
1	Naliguda	Khairput	408	44Q0626003	2037947	1	167	2.0	2.0	Top Soil			
						2	31	2.7	4.7	Weathered Formation	Aquif er	2-4.7	Potabl e
						3	894	74.7	79.4	Compact formation			
						4	VH			Compact formation			
2	Khairput	Khairput	409	44Q0630320	2044141	1	18	1.1	1.1	Top Soil			
						2	39	9.2	10.3	Weathered Formation	Aquif er	1.1-10.3	Potabl e
						3	VH	40.8	51.1	Compact formation			
						4	279	143.2	194. 3	Less Compact formation	Aquif er	51.1- 194.3	Potabl e
					1	5	VH			Compact formation			
3	Dengambo	Khairput	410	44Q0647591	2052460	1	70	2.0	2.0	Top Soil			

						2	28	12.8	14.8	Weathered	Aquif	2-14.8	Potabl
										Format5ion	er		e
						3	VH			Compact formation			
						4							
4	Kuriguda	Khairput	411	44Q0633370	2046027	1	171	0.4	0.4	Top Soil			
						2	40	5.6	6.0	Weathered			
										Formation			
						3	14	8.3	14.3	Weathered	Aquif	0.4-14.3	Potabl
										Formation	er		e
						4	VH	8.0	22.3	Compact formation			
						5	20			Less Compact	Aquif	22.3- ?	Potabl
										formation	er		е
5	Dabuguda	Khairput	412	44Q0635098	2048985	1	134	1.3	1.3	Top Soil			
						2	70	4.6	5.9	Weathered	Aquif	1.3-5.9	Potabl
										Formation	er		е
						3	115	17.9	23.8	Less Compact	Aquif	5.9-23.8	Potabl
										formation	er		е
						4	VH			Compact formation			
6	Mudulipada	Khairput	413	44Q0637869	2040052	1	131	2.3	2.3	Top Soil			
						2	67	7.4	9.7	Weathered	Aquif	2.3-9.7	Potabl
										Formation	er		е
						3	184	19.7	29.4	Less Compact	Aquif	9.7-29.4	Potabl
										formation	er		е
						4	692	283.4	312.	Less Compact	Aquif	29.4-	Potabl
									8	formation	er	312.8	е
						5	VH			Compact formation			
7	Dalapatigud a	Mathili	414	44Q0628565	2059670	1	93	1.5	1.5	Top Soil			
						2	64	11.5	13.0	Weathered	Aquif	1.5-13	Potabl
										Formation	er		e
						3	16	13.0	26.0	Less Compact	Aquif	13-26	Potabl

										formation	er		е
						4	VH			Compact formation			
8	Kaliaguda	Mathili	415	44Q0613117	2054647	1	40	0.48	0.5	Top Soil			
						2	10	9.96	10.4	Weathered Formation	Aquif er	0.5-10.4	Potabl e
						3	320			Less Compact formation			
9	Pangam	Mathili	416	44Q0619928	2048578	1	55	0.9	0.9	Top Soil			
						2	23	2.4	3.2	Weathered Formation	Aquif er	0.9-3.2	Potabl e
						3	102	19.9	23.1	Less Compact formation	Aquif er	3.2-23.1	Potabl e
						4	866			Compact formation			
10	Mathili	Mathili	417	44Q0627296	2052809	1	48	0.5	0.5	Top Soil			
						2	8	5.5	6.0	Weathered Formation	Aquif er	0.5-6	Potabl e
						3	5	9.5	15.4	Weathered Formation			
						4	215			Less Compact formation	Aquif er	15.4- ?	Potabl e
11	Karaaraali	Mathili	410	4400505000	2001220	1	242	0.0	0.0	Top Coil			
11	Kamarpali	wathii	418	44Q0595602	2061336	1	242	0.6	0.6				
						2	113	3.4	4.0	Formation			
						3	140	20.3	24.3	Less Compact formation	Aquif er	4-24.3	Potabl e
						4	VH			Compact formation			
12	Temurapali	Mathili	419	44Q0608956	2062646	1	22	0.9	0.9	Top Soil			
						2	9	1.0	1.9	Top Soil			

						3	61	2.1	4.1	Weathered	Aquif	1.9-4.1	Potabl
										Formation	er		e
						4	27	15.5	19.6	Less Compact	Aquif	4.1-19.6	Potabl
										formation	er		е
						5	827			Compact formation			
13	Bara	Mathili	420	44Q0618951	2066946	1	35	1.0	1.0	Top Soil			
						2	20	9.1	10.1	Weathered	Aquif	1.0-10.1	Potabl
						3	317	38 /	18 5		Aquif	10.1-	Potabl
						5	517	50.4	40.5	formation	er	48.5	e
						4	VH			Compact formation			
14	Jharapali	Malkangiri	422	44Q0596586	2040887	1	9	1.1	1.1	Top Soil			
						2	3	1.0	2.2	Top Soil			
						3	VH	15.4	17.6	Compact formation			
						4	454			Less Compact formation	Aquif er	17.6- ?	Potabl e
											1		
15	Pandhiripan	Malkangiri	423	44q0608067	2039724	1	99	0.5	0.5	Top Soil			
						2	21	13.1	13.6	Weathered	Aquif	0.5-13.6	Potabl
										Formation	er		e
						3	VH			Compact formation			
16	Baraja	Malkangiri	424	44Q0614513	2036886	1	76	10	10.4	Weathered Formation	Aquif er	0-10.4	Potabl e
						2	VH	253	263. 4	Compact formation			
						3	VH			Compact formation	1		1

17	Simaguda	Malkangiri	425	44Q0596906	2032938	1	67	1.4	1.4	Top Soil			
						2	14	6.9	8.2	Weathered	Aquif	1.4-8.2	Potabl
										Formation	er		е
						3	VH			Compact formation			
18	Malkangiri	Malkangiri	426	44Q0592344	2032200	1	58	0.7	0.7	Top Soil			
						2	106	15.9	16.6	Weathered	Aquif	0.7-16.6	Potabl
										Formation	er		е
						3	VH	18.2	34.8	Compact formation			
						4	662	86.0	120.	Less Compact	Aquif	34.8-	Potabl
									8	formation	er	120.8	е
						5	VH			Compact formation			
19	Akuru	Malkangiri	427	44Q0601054	2050385	1	70	0.8	0.8	Top Soil			
						2	25	2.9	3.7	Top Soil			
						3	48	19.3	23.0	Weathered	Aquif	3.7-23	Potabl
										Formation	er		е
						4	VH			Compact formation			
20	Adamunda	Malkangiri	428	44Q0612435	2031579	1	27	3.2	3.2	Top Soil			
						2	13	4.3	7.5	Weathered	Aquif	3.2-7.5	Potabl
										Formation	er		е
						3	899			Compact formation			
21	Koilpari	Malkamgiri	429	44Q0601804	2024699	1	91	1.0	1.0	Top Soil			
						2	13	4.5	5.4	Weathered	Aquif	1.0-5.4	Potabl
										Formation	er		е
						3	VH			Compact formation			

22	MunusKond a R.F	Malkangiri	430	44Q0603162	2028976	1	24	0.7	0.7	Top Soil			
						2	13	2.1	2.8	Top Soil			
						3	239	16.3	19.1	Semi Weathered Formation	Aquif er	2.8-19.1	Potabl e
						4	767			Compact formation			
23	Mongo	Malkangiri	431	44Q0601435	2045821	1	56	1.2	1.2	Top Soil			
						2	76	6.8	8.0	Weathered Formation	Aquif er	1.2-8	Potabl e
						3	268	80.5	88.5	Less Compact formation	Aquif er	8-88.5	Potabl e
						4	VH			Compact formation			
24	Balimela	Korkunda	432	44Q0611279	2013382	1	27	1.3	1.3	Top Soil			
						2	3	2.0	3.2	Top Soil			
						3	VH	8.2	11.5	Compact formation			
						4	468			Less Compact formation	Aquif er	11.5- ?	Potabl e
25	Haripur	Korkunda	433	44Q0611537	2002474	1	55	2.3	2.3	Top Soil			
						2	99	10.9	13.2	Weathered	Aquif er	2.3-13.2	Potabl e
						3	65	30.9	44.1	Less Compact	Aquif er	13.2- 44 1	Potabl
						4	VH			Compact formation			
26	Bandukigud a	Korkunda	434	44Q0584684	2035267	1	53	0.5	0.5	Top Soil			

						2	180	0.9	1.3	Top Soil			
						3	16	2.2	3.5	Weathered	Aquif	1.3-3.5	Potabl
										Formation	er		е
						4	220	14.3	17.8	Less Compact	Aquif	3.5-17.8	Potabl
										formation	er		е
						5	608	219	236. 8	Compact formation			
						6	VH			Compact formation			
27	Bankiguda	Korkunda	435	44Q0589396	2031351	1	126	1.8	1.8	Top Soil			
						2	26	3.8	5.6	Weathered	Aquif	1.8-5.6	Potabl
										Formation	er		е
						3	VH	6.5	12.1	Compact formation			
						4	428			Less Compact	Aquif	12.1- ?	Potabl
										formation	er		е
28	Chitapari	Korkunda	436	44Q0609786	2018475	1	191	0.9	0.9	Top Soil			
						2	52	5.8	6.8	Weathered	Aquif	0.9-6.8	Potabl
										Formation	er		е
						3	158	12.2	19.0	Less Compact	Aquif	6.8-19	Potabl
										formation	er		е
						4	VH			Compact formation			
29	Thenthuligu	Korkunda	437	44Q0603853	2010385	1	66	0.3	0.3	Top Soil			
	da												
						2	9	4.7	4.9	Weathered	Aquif	0.3-4.9	Potabl
										Formation	er		е
						3	VH			Compact formation			
30	Sukraguda	Korkunda	438	44Q0585995	2019298	1	32	0.9	0.9	Top Soil		l	1

						2	10	1.0	1.9	Top Soil			
						3	36	6.8	8.7	Weathered Formation	Aquif er	1.9-8.7	Potabl e
						4	111	9.7	18.4	Less Compact formation	Aquif er	8.7-18.4	Potabl e
						5	471	166.0	184. 4	Less Compact formation	Aquif er	18.4- 184.4	Potabl e
						6	VH			Compact formation			
31	Titango	Korkunda	439	4400589396	2031350	1	1237	1.0	1.0	Top Soil			
51	intungo	Konkunuu	+35	++20505550	2031330	2	2653	0.8	1.8	Top Soil			
						3	556	1.6	3.4	Top Soil			
						4	VH	2.7	6.1	Compact formation			
						5	747	37.2	43.3	Compact formation			
						6	184	27.6	70.9	Less Compact formation	Aquif er	43.3- 70.9	Potabl e
						7	855			Compact formation			
32	Dudimetta	Korkunda	440	44Q0592738	2011589	1	18	2.2	2.2	Top Soil			
						2	41	8.4	10.6	Weathered Formation	Aquif er	2.2-10.6	Potabl e
						3	437	279.1	289. 7	Less Compact formation	Aquif er	10.6- 290	Potabl e
						4	VH			Compact formation			
33	Tumusapali	Korkunda	441	44Q0597527	2021490	1	575	0.3	0.3	Top Soil			
						2	277	4.6	4.9	Semi Weathered Formation			

						3	121	2.5	7.4	Semi Weathered Formation			
						4	383	91.3	98.7	Less Compact formation	Aquif er	7.4-99	Potabl e
						5	VH			Compact formation			
34	Chedipali	Korkunda	442	44Q0592178	2020353	1	28	0.9	0.9	Top Soil			
						2	13	3.2	4.1	Weathered Formation	Aquif er	0.9-4.1	Potabl e
						3	76	14.2	18.3	Weathered / Less Compact Formation	Aquif er	4.1-18.3	Potabl e
						4	VH			Compact Formation			
35	Akharpali	Korkunda	443	44Q0575034	2026769	1	418	2	1.6	Top Soil			
						2	90	9	10.6	Semi Weathered Formation	Aquif er	1.6-10.6	Potabl e
						3	334	33	43.8	Less Compact Formation	Aquif er	10.6- 43.8	Potabl e
						4	VH			Compact Formation			
36	Mv-14	Korkunda	444	44Q0588370	2024805	1	85	2	2.4	Top Soil			
						2	47	3	5.7	Weathered	Aquif	2.4-5.7	Potabl
										Formation	er		е
						3	137	23	28.4	Less Compact	Aquif	5.7-28.4	Potabl
						4	516	205	272		er Agwif	20 /	e Botabl
						4	210	295	525. 4	Formation	er	323	e

						5	VH			Compact			
										Formation			-
37	Niliguda	Podia	445	44Q0567011	2020098	1	184	1.6	1.6	Top Soil			-
						2	362	1.0	2.7	Top Soil			
						3	30	4.2	6.9	Weathered Formation	Aquif er	2.7-6.9	Potabl e
						4	VH	5.0	11.9	Compact Formation			
						5	272	63.0	74.9	Less Compact Formation	Aquif er	11.9-75	Potabl e
						6	VH			Compact Formation			
20	MovE6	Dodia	116	4400556586	1000071	1	22	1 5	1 5	Top Soil			
38	10100-20	Poula	440	4400556586	1999071	1	22	1.5	1.5	Top Soil			-
						2	344	2.6	4.1				
						3	36	5.7	9.8	Weathered Formation	Aquit er	4.1-9.8	Potabl e
						4	VH			Compact Formation			
													_
39	Podia	Podia	447	44Q0557583	2008484	1	10	1.6	1.6	Top Soil			_
						2	24	9.2	10.8	Weathered Formation	Aquif er	1.6-10.8	Potabl e
						3	VH	10.4	21.2	Compact Formation			
						4	118	23.6	44.8	Less Compact Formation	Aquif er	21.2- 44.8	Potabl e
						5	VH			Compact Formation			

40	Kalimela	Kalimela	448	44Q0545523	1972152	1	29	0.9	0.9	Top Soil			
						2	10	3.6	4.6	Weathered			
										Formation			
						3	20	8.6	13.2	Weathered	Aquif	0.9-13.2	Potabl
										Formation	er		е
						4	116	156.3	169.	Less Compact	Aquif	13.2-	Potabl
									5	Formation	er	170	е
						5	VH			Compact			
										Formation			
41	Tokelguda	Podia	449	44Q0555160	1982761	1	411	0.4	0.4	Top Soil			
						2	152	2.3	2.7	Semi Weathered			
										Formation			
						3	317	32.6	35.3	Less Compact	Aquif	2.7-35.3	Potabl
										Formation	er		е
						4	704	146.6	181.	Less Compact	Aquif	35.3-	Potabl
									9	Formation	er	182	e
						5	VH			Compact			
										Formation			
42	Lachipeta	Podia	450	44Q0559199	1989346	1	120	0.8	0.8	Top Soil			
						2	53	16.9	17.7	Weathered	Aquif	0.8-17.7	Potabl
										Formation	er		е
						3	611			Less Compact	Aquif	17.7- ?	Potabl
										Formation	er		е
43	Gorekhapali	Podia	451	44Q0551759	1989930	1	336	0.6	0.6	Top Soil			
						2	42	6.7	7.3	Weathered	Aquif	0.6-7.3	Potabl
										Formation	er		е
						3	77	13.9	21.2	Less Compact	Aquif	7.3-21.2	Potabl
										Formation	er		e

						4	1088			Less Compact	Aquif	21.2- ?	Potabl
										Formation	er		е
4.4	Detakhal	Kalimala	452	4400582220	2002228	1	21	0.0	0.0	Ton Soil			
44	Ротаклаг	Kalimela	452	44Q0583239	2003328		31	0.9	0.9				
						2	23	3.2	4.1	Weathered	Aquif	0.9-4.1	Potabl
-						-	122	1.4.4	10 5	Formation	er	4 4 4 0 5	e Dataki
						3	133	14.4	18.5	Less Compact	Aquit	4.1-18.5	Potabl
						Δ	0.01			Formation	er	10 5 2	e Dotobl
						4	801			Less Compact	Aquii	10.5- f	POLADI
										FOITIALION	ei		e
45	Engulikunda	Kalimela	453	44Q0581005	1994861	1	11	0.4	0.4	Top Soil			
						2	4	4.3	4.7	Weathered			
										Formation			
						3	VH			Compact			
										Formation			
46	Doganda	Kalimela	454	44Q0573162	1990647	1	45	1.5	1.5	Top Soil			
						2	27	6.3	7.8	Weathered	Aquif	1.5-7.8	Potabl
										Formation	er		е
						3	84	14.8	22.6	Less Compact	Aquif	7.8-22.6	Potabl
										Formation	er		е
						4	1053			Less Compact	Aquif	22.6- ?	Potabl
										Formation	er		е
47	Birenpali	Kalimela	455	44Q0637869	2040052	1	157	0.8	0.8	Top Soil			
						2	15	8.3	9.1	Weathered	Aquif	0.8-9.1	Potabl
										Formation	er		е
						3	VH			Compact			
						 				Formation			

48	ManiyamKo nda	Kalimela	456	44Q0569015	1981890	1	177	0.8	0.8	Top Soil			
						2	30	6.2	7.1	Weathered Formation	Aquif er	0.8-7.1	Potabl e
						3	187	68.1	75.2	Less Compact Formation	Aquif er	7.1-75.2	Potabl e
						4	688			Less Compact Formation	Aquif er	75.2- ?	Potabl e
49	Pulusamami di	Kalimela	457	44Q0582712	1987322	1	315	0.6	0.6	Top Soil			
						2	66	3.1	3.7	Weathered Formation	Aquif er	0.6-3.7	Potabl e
						3	174	28.1	31.8	Less Compact Formation	Aquif er	3.7-31.8	Potabl e
						4	3255	000f		Compact Formation			
50	Kurumanar	Kalimela	458	44Q0603684	1995711	1	29	2.6	2.6	Top Soil			
						2	40	8.6	11.2	Weathered Formation	Aquif er	2.6-11.2	Potabl e
						3	VH	2.8	14.0	Compact Formation			
						4	815			Compact Formation			
51	Badaliguda	Kalimela	459	44Q0593800	2002699	1	4	0.7	0.7	Top Soil			
						2	9	5.7	6.3	Weathered Formation	Aquif er	0.7-6.3	Potabl e
						3	VH			Compact Formation			

52	Udarganda	Kalimela	460	44Q0569963	2002343	1	68	1.9	1.9	Top Soil			
						2	17	2.2	4.1	Weathered Formation			
						3	51	14.2	18.3	Weathered Formation	Aquif er	1.9-18.3	Potabl e
						4	VH			Compact formation			
53	Supali	Kalimela	461	44Q0578220	2010898	1	94	6.2	6.2	Weathered Formation	Aquif er	0-6.2	Potabl e
						2	209	12.5	18.6	Semi Weathered Formation			
						3	817	189.6	208. 2	Less Compact Formation			
						4	VH			Compact formation			
54	Kudumula Gumma	K.Gumma	462	44Q0623688	2032944	1	148	1.89	1.9	Top Soil			
						2	40	2.5	4.4	Weathered Formation	Aquif er	1.9-4.4	Potabl e
						3	135	17.1	21.5	Less Compact Formation	Aquif er	4.4-21.5	Potabl e
						4	VH			Compact formation			
55	Gopalpur	Korkunda	463	44Q0618234	2022697	1	119	0.4	0.4	Top Soil			
						2	470	0.9	1.2	Top Soil			
						3	17	11.1	12.3	Weathered Formation	Aquif er	1.2-12.3	Potabl e
					1	4	1401			Compact formation			

56	Tarabeda	Kudumulag umma	464	44Q0637214	2018946	1	25	0.6	0.6	Top Soil			
						2	33	3.5	4.1	Top Soil			
						3	55	14.3	18.4	Weathered Formation	Aquif er	4.1-18.4	Potabl e
						4	190	20.5	38.9	Less Compact formation	Aquif er	18.4- 38.9	Potabl e
						5	VH			Compact formation			
57	Chilipodar	Kudumula Gumma	465	44Q0625033	2027271	1	32	1.2	1.2	Top Soil			
						2	21	5.8	7.0	Weathered Formation	Aquif er	1.2-7	Potabl e
						3	220	145.6	152. 6	Less Compact formation	Aquif er	7-153	Potabl e
						4	VH			Compact formation			
58	Tikrapadar	Kudumula Gumma	466	44Q0627598	2029214	1	43	0.8	0.8	Top Soil			
						2	27	2.8	3.7	Top Soil			
						3	12	9.6	13.3	Weathered Formation	Aquif er	3.7-13.3	Potabl e
						4	294			Less Compact formation	Aquif er	13.3- ?	Potabl e

Annexure-IIA:Basic Data of Exploratory Wells Drilled by CGWB in Malkangiri District.

Sr.N O	Block	Location	Latitude in decimal	Longitude in decimal	Depth drilled (mbgl)	Lithology	Depth to Bed rock (mbgl) Casing Pipe	Granular zones/ deciphered (mbgl)	SWL (mbgl)/ Date	Discharg e (lps)	Drawdow n (m)	T (m² / day)	S
		-					Lowered						
1	Khairput	Khairput			186.6	Biotite	15.96	24,32	2.55	2.8	23.43		l
						Gr.							l
			18.4526	82.2383		Gneiss							l
2	Kudmulgu	Kudmulgu			38.5	-do-	19.75	11,38	3.56	10.60	10.14		
	ma	ma	18.3473	82.189									
3	Kudmulgu	Kudmulgu			130.10	-do-	16.55	25,29,31,32	3.80	7.33	10.19		l
	ma	ma	18.3473	82.189									l
4	Kudmulgu	Balimela			166.75	-do-	10.20	28,75,84,85,131,	4.35	5.16	22.75		
	ma		18.2479	82.0853				160					1
5	Kudmulgu	Balimela			141.25	-do-	12.40	20,24,52,60,76	4.93	4.40	18.15		
	ma		18.2479	82.0853									l
6	Korkunda	Korkunda	18.2802	81.9529	200.00	-do-	14.20			Nil			
7	Malkangiri	Malkangiri			200.00	-do-	12.15	16,81,126,144	2.60	0.88			
		0	18.3628	81,9020									l
8	Kalimela	Kalimela	10.0020	01.0020	195.30	-do-	8.30	20.57.70.76.	5.67	2.54	23.58		
			18 0760	81 77/1				103, 158	0.07				l
9	Kalimela	Podia	10.0700	01.7741	135 95	Gr	13 29	9 15 94 118	8.03	4 23	17 39		[
	Kunnela	1 Ould	10 17/2	01 5533	155.55	Gneiss	10.20	5,15,54,110	0.05	4.25	17.55		l
10	Mathili	Mathili	18.1743	81.5523	150.60	do	12.20	00 127	2.25	2.00	20.40		
10	ividtiili	IVIdLIIII	18.5405	82.1/18	129.00	-u0	13.20	99,137	3.23	2.00	29.40	0.5.4	
11	Korukonda	MV-53	40.0004	04 7252	92	Granite	21	20 22 75 76	7.23	6.5	2.07	251.	ł
12			18.2931	81./253				29,32,75,76				16	
12	Korukonda	Potrel	18.2600	82.0214	203	Granite	13.15	103,133	1.3	1.5	14.82	6.91	ł

13	Korukonda	Neelakha mberu	18.2067	82.0406	195	Granite	16	77,79,89,95	3.87	7.5	15.15	98.1 9	
14	Korukonda	Neelakha mberu	18.2067	82.0406	147	Granite	12.8		3.67		5.34	51.4 3	8.95x 10⁻⁴
15	Korukonda	MV-47	18.2756	81.8708	200	Granite	13.5	135,137	4.13	4.6	16.65	33.8	
16	Korukonda	MV-47	18.2756	81.8708	200	Granite	14.63		4.07		8.63	22.5 3	3.01x 10 ⁻⁴
17	Korukonda	MV-26	18.2097	81.8961	129	Granite	18.5	126,128	2.93	6.5	17.77	12.7 4	
18	Malkangiri	Titiberi	18.3767	81.7656	201	Granite	62.5		6.75			0.33	
19	Malkangiri	Tangapalli	18.5606	81.9261	204	Granite	56	84,85,104,115,1 73,174	7.28	0.15			
20	Mathili	Kutunipall i	18.6375	82.1992	201	Granite	16.5						
21	Mathili	Champajh arna	18.5619	82.2719	198	Granite	19.5						
22	Mathili	Pujarigud a	18.5833	82.2500	198	Granite	18.5	95,96	2.24			1.89	
23	Khairput	Palkaguda	18.4061	82.2258	200	Granite	35.7	52,52.5	3.73	2.1	10.63	11.6 7	
24	Khairput	Gotiguda	18.4419	82.1681	198	Granite	12.5						
25	Khairput	Dongakun da	18.3550	82.1125	199	Granite	12.5	145,146	13			0.33	
26	Podia	Girkanpall i	18.0650	81.6506	200	Granite	19						
27	Podia	MPV-67	18.1667	81.5833	144	Granite	18.5	123,124	1.18	7.01	14.25	80.5 5	
28	Podia	MPV-67	18.1667	81.5833	72	Granite	24.39		1.68		4.38	98.3 7	8.02x 10 ⁻⁴

29	Kalimela	Jakalgondi	18.0103	81.7225	201	Granite	19	22,23,45,46,53,5 4	1.95	1.75	15.55	12.6	
30	Malkangiri	Doriguda	18.2778	81.8558	201	Granite	12.19						
31	Malkangiri	Thapagud a	18.3833	82.0447	120	Granite	16.46	33,33.5	5.46	4.6	9.92	23.0 6	
32	Podia	M.V- 58 / Gothanpal li	18.1425	81.6092	152.43	Granite	12.19	148,149	1.64	2.3	14.85	3.84	
33	Podia	Kunchanp alli	18.1467	81.5478	200	Granite	12.19	14,15					
34	Kalimela	Balliguda	17.9850	81.6856	200	Granite	16.46	119,120					
35	Korukonda	Korukond a	18.2853	81.9781	96.5	Granite	10.67		1.05	4.56	17.06	14.4 5	
36	Korukonda	Nakamam udi	18.2500	82.1250	111	Granite	15.24	108,108.50	2.16	5	15.34	35.5 2	
37	Chitrakond a	Maliguda	18.1667	82.0833	200	Granite	12.19						
38	Chitrakond a	Kankiripad a	18.1250	82.0417	164	Granite	18.29	120,121	5.01	3.28	14.21	12.9 9	
39	Mathili	Mathili	18.6250	82.2500	200	Granite	12.19	14,14.70		3			
40	Kalimela	MV-63	18.1775	81.8097	200	Granite	18.29	161,163	4.45	3.5	21.45	4.86	
41	Podia	Kaldapalli	18.1250	81.5000	200	Granite	12.8	78,79	2.34			0.71	

ANNEXURE-IIB:Basic Data of Exploratory Wells Drilled by contractual Drilling in Malkangiri District

Sr.No	Block	Location	Lattitude	Longitude		Draw-	-	
					Discharge	down	 (m 2 /d)	Storativity
					in lps	(m)	(mz/d)	
1	Korukonda	MV-53	18.2931	81.7253	6.5	2.07	251.16	
2	Korukonda	Potrel	18.26	82.0214	90	14.82	6.91	
3	Korukonda	Neelakhamberu	18.2067	82.0406	450 lpm	15.15	98.19	
4	Korukonda	Neelakhamberu	18.2067	82.0406		5.34	51.43	8.95x10 ⁻⁴
5	Korukonda	MV-47	18.2756	81.8708	274 lpm	16.65	33.8	
6	Korukonda	MV-47	18.2756	81.8708		8.63	22.53	3.01x10 ⁻⁴
7	Korukonda	MV-26	18.2097	81.8961	6.5	17.77	12.74	
8	Malkangiri	Titiberi	18.3767	81.7656			0.33	
9	Malkangiri	Tangapalli	18.5606	81.9261	0.15			
10	Mathili	Kutunipalli	18.6375	82.1992				
11	Mathili	Champajharna	18.5619	82.2719				
12	Mathili	Pujariguda	18.5833	82.25			1.89	
13	Khairput	Palkaguda	18.4061	82.2258	126	10.63	11.67	
14	Khairput	Gotiguda	18.4419	82.1681				
15	Khairput	Dongakunda	18.355	82.1125			0.33	
16	Podia	Girkanpalli	18.065	81.6506				
17	Podia	MPV-67	18.1667	81.5833	421 lpm	14.25	80.55	
18	Podia	MPV-67	18.1667	81.5833		4.38	98.37	8.02x10 ⁻⁴
19	Kalimela	Jakalgondi	18.0103	81.7225	105	15.55	12.6	
20	Malkangiri	Doriguda	18.2778	81.8558				
21	Malkangiri	Thapaguda	18.3833	82.0447	4.6	9.92	23.06	
22		M.V- 58 /				14.05	2.04	
	Podia	Gothanpalli	18.1425	81.6092	2.5	14.65	5.64	
23	Podia	Kunchanpalli	18.1467	81.5478				
24	Kalimela	Balliguda	17.985	81.6856				
25	Korukonda	Korukonda	18.2853	81.9781	4.56	17.06	14.45	
26	Korukonda	Nakamamudi	18.25	82.125	5	15.34	35.52	
27	Chitrakonda	Maliguda	18.1667	82.0833				

28	Chitrakonda	Kankiripada	18.125	82.0417	3.28	14.21	12.99	
29	Mathili	Mathili	18.625	82.25	182			
30	Kalimela	MV-63	18.1775	81.8097	210	21.45	4.86	
31	Podia	Kaldapalli	18.125	81.5			0.71	
32	Podia	Podia	18.2083	81.5				

ANNEXURE-III A: Ground Water Quality Data of Exploratory Wells in Malkangiri District.

Sr.N	Block	Location	Latitude	Longitu	EC	Cl	TH	TDS	Са	Na	К	HC	SO ₄	NO	Cl	F	Fe
ο			in	de in								O ₃		3			
			decimal	decimal	Micro				1		1	1	1			1	
					sieme												
					ns/cm	con	centra	tion in r	ng/l								
1	Korukonda	MV-53	18.2931	81.7253	540	25	150	352	36	51.5	2.3	160	60.3	6.9	25	0.48	0.1
																	5
2	Korukonda	Potrel	18.2600	82.0214	352	10	100	225	24	32.2	1.5	130	24	3.8	10	0.32	0.1
																	4
3	Korukonda	Neelakhamberu	18.2067	82.0406	848	20	350	542	72	29.6	2.9	330	48.8	8.8	20	0.74	0.1
																	6
4	Korukonda	Neelakhamberu	18.2067	82.0406	736	20	300	470	64	37.2	2.3	320	26.2	7.8	20	0.64	0.1
																<u> </u>	6
5	Korukonda	MV-47	18.2756	81.8708	538	20	170	344	36	42	2.1	200	29.1	6	20	0.5	0.1
																	5
6	Korukonda	MV-47	18.2756	81.8708	536	20	160	342	36	46	2.3	200	128	6.3	20	0.54	0.1
7	Kanulianda	NAV 20	10 2007	01.0001	500	20	100	220	10	20.1	2.1		22.0	F C	20	0.52	4
/	Korukonda	IVIV-20	18.2097	81.8961	506	20	180	320	40	30.1	2.1	200	23.8	5.6	20	0.52	+
8	Maikangiri		18.3767	81.7656	808	25	100	514	24	135.7	2.7	280	/1.3	8.5	25	0.6	+
9	Malkangiri	Tangapalli	18.5606	81.9261		0.5			1.6		1.0	100					+
10	Mathili	Kutunipalli	18.6375	82.1992	396	25	60	260	16	60	1.9	120	32.9	4.7	25	0.45	-
11	Mathili	Champajharna	18.5619	82.2719	998	25	100	636	24	179.4	2.9	350	93.4	9.7	25	0.72	
12	Mathili	Pujariguda	18.5833	82.2500	606	40	190	388	40	48	2.5	200	32.3	7.5	40	0.56	
13	Khairput	Palkaguda	18.4061	82.2258	194	10	60	126	16	14.9	0.9	60	17.2	2.5	10	0.21	
14	Khairput	Gotiguda	18.4419	82.1681	548	25	180	347	40	40	2.3	200	26.7	6.3	25	0.44	
15	Khairput	Dongakunda	18.3550	82.1125	402	15	30	256	8	78.6	1.6	160	17	4.7	15	0.48	
16	Podia	Girkanpalli	18.0650	81.6506													

17	Podia	MPV-67	18.1667	81.5833	824	35	350	528	76	24.1	2.9	310	36.2	8.8	35	0.74	0.1 5
18	Podia	MPV-67	18.1667	81.5833	834	40	310	530	72	45	2.9	320	25.1	8.5	40	0.69	0.1 6
19	Kalimela	Jakalgondi	18.0103	81.7225	444	25	130	282	28	38.8	2.1	150	26.2	5.3	25	0.45	0.1 3
20	Malkangiri	Doriguda	18.2778	81.8558													
21	Malkangiri	Thapaguda	18.3833	82.0447	738	45	130	470	32	106	2.7	250	39	8.8	45	0.68	0.1 6
22	Podia	M.V- 58 / Gothanpalli	18.1425	81.6092	306	10	100	194	24	21.1	1.9		29.7		10	0.4	
23	Podia	Kunchanpalli	18.1467	81.5478	412	10	160	266	36	18	2.1	160	21	5.6	10	0.43	
24	Kalimela	Balliguda	17.9850	81.6856	334	20	90	212	20	32.2	1.9	110	2.3	4.4	20	0.36	
25	Korukonda	Korukonda	18.2853	81.9781	692	45	200	448	44	63.2	2.5	240	28.4	7.5	45	0.48	0.1 2
26	Korukonda	Nakamamudi	18.2500	82.1250	496	20	180	324	40	27.8	2.1	60	142.9	6.3	20	0.5	0.1 4
27	Chitrakonda	Maliguda	18.1667	82.0833	1116	170	230	718	48	146.2	3.1	210	86.4	11	170	0.78	
28	Chitrakonda	Kankiripada	18.1250	82.0417	426	10	140	270	32	30.5	1.7	170	20.1	4.4	10	0.48	0.1 2
29	Mathili	Mathili	18.6250	82.2500	478	10	170	306	36	28.1	2.3	180	33.5	5.6	10	0.5	
30	Kalimela	MV-63	18.1775	81.8097	634	30	150	406	32	72.9	2.5	240	21.3	7.2	30	0.48	0.1 6
31	Podia	Kaldapalli	18.1250	81.5000	538	20	200	342	44	28.2	2.1	200	29.1	6	20	0.49	
32	Podia	Podia	18.2083	81.5000	940	85	240	596	52	101.4	2.9	270	60.7	10. 1	85	0.72	

ANNEXURE-IIIB: Ground Water Quality Data of monitoring wells in Malkangiri District.

	VILLAGE	Block	Lattitude	Longit ude	рН	EC	TD S	Hardne ss	Alkalinit y	Ca+ +	Mg+ +	Na+	K+	CO3 -	HCO3 -	CI-	SO4 =	NO3	F-	Uraniu m
													mg	/L						
1	Jharapali	MALKANGIRI	18.45	81.91	7.8	550	326	61	250	25	36	28	2	0	305	14	5	1.82	0.65	0.007
2	Damaguda	MALKANGIRI	18.45	81.85	7.5	800	320	56	185	22	57	54	1.5	0	226	70	72	75.84	0.71	0.019
3	Damaguda	MALKANGIRI	18.46	81.85	8	300	161	82	150	33	17	9	1	0	183	7	5	0.87	0.76	BDL

4	Narayangu	MALKANGIRI	18.44	81.83	7.8	800	439	138	345	55	44	28	47.5	0	421	58	4	3.91	0.28	BDL
5	Pandripani	MALKANGIRI	18.44	82.02	7.7	300	188	87	140	35	9	10	10.5	0	171	12	0	3.09	0.25	BDL
6	Kenduguda	MALKANGIRI	18.42	82.03	8	450	265	92	160	37	16	13	31.1 1	0	195	26	28	2	0.16	BDL
7	Dugali	MALKANGIRI	18.40	82.07	8.12	600	336	128	200	51	21	18	65	0	244	42	46	12.32	0.45	0.005
8	Gangala	MATHILI	18.43	82.07	8	450	300	66	160	27	18	40	2.67	0	195	39	19	0.74	0.34	BDL
9	Bhaluguda	MALKANGIRI	18.46	82.05	7.8	900	519	148	235	59	10	39	128	0	287	70	78	51.2	0.19	BDL
1 0	Sursmal	MALKANGIRI	18.40	81.96	7.7	750	392	112	230	45	36	18	68	0	281	46	72	1.97	0.31	0.004
1 1	Saunliguda	MATHILI	18.48	82.08	7.9	700	312	66	145	27	57	29	5	0	177	10 4	41	29.58	0.39	BDL
1 2	Bhijaguda	MATHILI	18.47	82.05	8	150	89	51	55	20	1	7	4	0	67	7	3	6.4	0.18	BDL
1 3	Pulapali-1	MATHILI	18.49	82.04	7.6	400	235	41	145	16	30	12	13	0	177	23	17	0	0.14	BDL
1 4	Bhandar P	MATHILI	18.51	82.06	8.1	550	252	71	120	29	24	50	3.5	0	146	56	54	39.81	0.44	0.007
1 5	Naikguda	MATHILI	18.49	82.10	7.8	300	202	61	70	25	6	32	5	0	85	37	18	18.87	0.34	BDL
1 6	Mentukuli	MATHILI	18.59	82.21	7.9	100 0	543	36	290	14	52	47	122. 5	0	354	91	55	34.96	0.36	BDL
1 7	Kiang	MATHILI	18.62	82.13	7.7	105 0	477	117	225	47	86	25	1.4	0	275	16 7	43	23.64	0.18	0.004
1 8	Udaygiri	MATHILI	18.66	82.13	7.8	400	203	71	155	29	26	17	4.6	0	189	30	16	2.65	0.19	BDL
1 9	Talapadar HP	MATHILI	18.61	82.10	8	450	215	107	205	43	21	13	1.3	0	250	14	4	0.84	0.2	BDL
2 0	Kansariput HP	MATHILI	18.61	82.03	7.3	200	90	46	80	18	7	10	1.7	0	98	5	0	16.78	0.15	BDL
2 1	Permarasi	MATHILI	18.60	81.97	7.4	300	161	82	140	33	12	8	2.5	0	171	7	0	12.25	0.16	BDL
2 2	MV-11	MALKANGIRI	18.33	81.93	7.6	200	109	51	75	20	7	12	4.4	0	92	12	15	0.06	0.11	BDL
2 3	Koilipari	KORUKONDA	18.31	81.96	7.7	140	76	36	55	14	1	14	1	0	67	5	9	0.77	0.15	BDL
2 4	MV-34 HP	KORUKONDA	18.26	82.02	7.7	200	131	61	80	25	5	12	5	0	98	5	8	20.45	0.22	BDL
2	MV-33	KORUKONDA	18.26	82.02	7.7	800	440	92	290	37	22	72	41.8	0	354	58	31	4.71	0.21	BDL

5				1		1			1											
2 6	MV-30	KORUKONDA	18.22	82.00	7.5	500	276	107	140	43	24	25	3.7	0	171	56	36	15.83	0.22	BDL
2 7	Tarlakota	KORUKONDA	18.28	82.07	7.7	550	287	82	170	33	26	42	13.6	0	207	53	41	0.06	0.14	BDL
2 8	MV-46	MALKANGIRI	18.29	82.81	7.8	450	278	66	195	27	21	26	24.1 1	0	238	26	18	0.57	0.39	BDL
2 9	MV-54	KALIMELA	18.18	81.78	7.6	550	379	102	190	41	22	36	22.6	0	232	46	37	0.62	0.23	BDL
3 0	Kachalwada	KALIMELA	18.20	81.85	7.6	950	354	143	150	57	47	29	37.4	0	183	72	98	156.3 2	0.35	BDL
3 1	MPV-6	KALIMELA	18.18	81.80	7.6	300	168	71	105	29	11	18	4.5	0	128	23	22	0.08	0.17	BDL
3 2	Kangorkon	KALIMELA	18.14	81.80	7.9	400	230	66	145	27	22	25	2.5	0	177	30	20	0.13	0.24	BDL
3 3	Kalimela	KALIMELA	18.07	81.75	7.9	700	376	117	275	47	33	33	57.8	0	336	33	37	31.51	0.34	BDL
3 4	MV-64	KALIMELA	18.16	81.80	7.5	200	109	56	85	22	10	11	3.5	0	104	12	8	11.14	0.21	BDL
3 5	Champanag	MALKANGIRI	18.38	81.86	6.8	120	100	46	60	18	4	2	4.3	0	73	5	0	9.6	0.17	BDL
3 6	Chalanguda	MALKANGIRI	18.38	81.74	7.6	400	243	102	160	41	10	18	23.7 1	0	195	19	31	13.91	0.17	BDL
3 7	Tandki	MALKANGIRI	18.43	81.82	7.9	550	233	128	130	51	10	23	40.8 5	0	159	30	36	81.36	0.2	BDL
3 8	Titiberi HP	MALKANGIRI	18.37	81.76	7.3	150	101	71	90	29	4	3	1.21	0	110	5	0.2	0.6	0.22	BDL
3 9	Tralgundi	PODIA	18.28	81.69	7.3	60	46	20	35	8	2	6	1.4	0	43	2	5	0	0.14	BDL
4 0	Niliguda	PODIA	18.27	81.64	7.7	400	281	36	210	14	38	7	20.3 7	0	256	16	6	2.53	0.21	BDL
4 1	Podia HP	PODIA	18.17	81.54	8	110 0	497	87	340	35	63	68	64	0	415	56	60	148.7	0.49	BDL
4 2	MPV-67	PODIA	18.15	81.58	7.7	350	227	71	170	29	17	18	10.1	0	207	16	8	0.5	0.27	BDL
4 3	MV-58	PODIA	18.14	81.61	7.9	550	304	51	180	20	39	31	3	0	220	37	35	3.38	0.44	0.003
4	MV-67	KALIMELA	18.08	81.70	7.9	750	378	56	225	22	45	35	63.8	0	275	65	66	0.28	0.27	BDL

4																				
4 5	MPV-74	KALIMELA	18.00	81.69	7.6	200	181	46	85	18	9	15	3	0	104	12	12	0.85	0.28	BDL
4 6	MV-79	KALIMELA	17.99	81.59	7.6	105 0	519	87	270	35	50	112	5.1	0	329	95	73	114.3	0.52	0.011
4 7	Motu	KALIMELA	17.83	81.40	7.9	850	389	87	175	35	62	42	4.7	0	214	81	61	127.4	0.27	BDL
4 8	MV-88	KALIMELA	17.88	81.55	7.9	750	362	102	175	41	49	36	1.7	0	214	74	59	56	0.28	BDL
4 9	MPV-81	KALIMELA	17.93	81.56	7.9	750	365	148	205	59	22	62	1.8	0	250	77	55	12.8	0.26	BDL
5 0	Kukudaguda	MALKANGIRI	18.36	81.97	7.7	250	154	82	90	33	4	27	1.3	0	110	19	21	24	0.45	BDL
5 1	Suliacolony	KORUKONDA	18.29	81.97	7.9	650	330	77	280	31	44	37	7.6	0	342	28	16	1.8	1.16	BDL
5 2	MV-36	KORUKONDA	18.27	82.09	8	350	179	102	165	41	12	17	2.7	0	201	7	15	0.7	0.48	BDL
5 3	Temporary	CHITRAKON DA	18.13	82.13	6.6	150	79	51	45	20	2	9	8.7	0	55	12	1	35.12	0.13	0.007
5 4	Sariapali	CHITRAKON DA	18.08	82.16	7	100	58	41	45	16	2	5	3	0	55	5	0	15.12	0.15	BDL
5 5	Janbai	CHITRAKON DA	18.11	82.22	7	170	93	61	60	25	5	8	3.6	0	73	16	0	27.8	0.14	BDL
5 6	Chitrakunda	CHITRAKON DA	18.11	82.11	7	100	69	36	50	14	1	9	5.4	0	61	7	0	7.7	0.1	BDL
5 7	Parkanmala	KHOIRAPUT	18.36	82.14	7.9	400	235	102	150	41	15	21	2.2	0	183	42	3	1	0.2	BDL
5 8	Sindhiguda	KHOIRAPUT	18.40	82.15	8.2	450	240	158	180	63	6	18	15.7	0	220	28	24	4.1	0.28	BDL
5 9	Doraguda	KHOIRAPUT	18.36	82.17	7.9	400	206	153	190	61	11	5	6.8	0	232	9	1	5.7	0.24	BDL
6 0	Puruna G	KHOIRAPUT	18.38	82.20	7.9	200	115	56	100	22	7	14	2.8	0	122	9	0	4.5	0.11	BDL
6 1	Muduliguda	KHOIRAPUT	18.39	82.21	7.6	200	112	61	100	25	7	9	2.5	0	122	9	0	1.9	0.14	BDL
6 2	Kutiguda	KHOIRAPUT	18.43	82.20	7.5	80	57	26	40	10	2	8	1.4	0	49	7	0	5.3	0.12	BDL
6 3	Podaghat	KHOIRAPUT	18.47	82.20	8.1	250	137	82	90	33	7	10	3.5	0	110	19	5	15.9	0.13	BDL

98

6 4	Kakabahal	KHOIRAPUT	18.49	82.26	7.9	300	217	77	135	31	9	14	22.8	0	165	19	11	2.9	0.2	BDL
6 5	Kodaguda	KHOIRAPUT	18.50	82.23	7.9	700	334	46	265	18	69	30	12.7	0	323	37	40	61.6	0.24	BDL
6 6	Amliput	KHOIRAPUT	18.53	82.27	7.8	180	131	46	75	18	6	10	11	0	92	16	9	1	0.16	BDL
6 7	Badliguda	MATHILI	18.54	82.25	8.1	430	250	107	170	43	24	17	18	0	207	30	25	21	0.18	BDL
6 8	Bhoiguda	MATHILI	18.56	82.27	7.8	300	189	66	90	27	9	28. 4	7.5	0	110	42	17	10.5	0.15	BDL

ANNEXURE-IV: List of Key wells established in Malkangiri district

SL NO.	VILLAGE	LOCATION	BLOCK	MP(MAGL)	DIA(M)	SWL(MBMP)	DEPTH(MBMP)	LATITUDE	LONGITUDE
1	Jharapali	DW in the H/o Chandra Padhiani	MALKANGIRI	0.7	3.1	1.4	7.4	18.45465	81.90604
		along Tetemeta road near field							
2	Damaguda	Infront of Upper Primary school.	MALKANGIRI	0.45	2.45	2.2	9.3	18.45217	81.85353
3	Damaguda	In the field of Mukka Darua on	MALKANGIRI	0.65	6.45	1.2	4.36	18.45516	81.85353
		RHS of road.							
4	Narayanguda	In the H/o Balaram Samaratha	MALKANGIRI	GL	4.1	3.3	6.4	18.43676	81.83143
		100 m from Primary school							
5	Pandripani	Near Pandripani Chowk in front of	MALKANGIRI	0.5	2.2	2.8	6.5	18.4406	82.01543
		Agriculture office.							
6	Kenduguda	Infront of Anganwadi Kendra	MALKANGIRI	0.7	2.5	3.5	7.7	18.42307	82.02692
7	Dugali	in the house of Guru Dora	MALKANGIRI	GL	2.1	1.1	4.8	18.40051	82.07476
8	Gangala	In the house of prahallad	MATHILI	0.82	1.95	2.57	8.52	18.43363	82.07128
		chaunara							
9	Bhaluguda Colony-2	near meeting hall	MALKANGIRI	0.83	1.5	5.1	9.55	18.46108	82.04554
10	Sursmal	near the house of Ramachandra	MALKANGIRI	0.3	4.1	2.15	6.2	18.40363	81.9553

		Kabasti							
11	Saunliguda	in the house of Puria Dora	MATHILI	0.87	1.9	1.57	10.2	18.48228	82.07978
12	Bhijaguda	in front of panchayat office	MATHILI	0.67	2.75	1.62	3.75	18.47338	82.05078
13	Pulapali-1	in front of Kothaghara	MATHILI	0.55	2.35	3.62	7.12	18.49018	82.03857
14	Bhandari Pangam	in front of jatri Visram gruha	MATHILI	0.7	2.1	1.61	7.9	18.5092	82.06389
15	Naikguda	opposite to Kasturba Gandhi Girls'	MATHILI	0.85	2.05	3.72	9.1	18.48553	82.09909
		Hostel							
16	Mentukuli	in the house of sh. Bala Naik	MATHILI	0.75	1.8	2.2	5.9	18.58504	82.21141
17	Kiang	in the house of Sh. Sandeep	MATHILI	GL	2.4	3.75	9.65	18.61633	82.12834
		Biswal							
18	Udaygiri	in the house of Sh. Budu Bhumiya	MATHILI	0.5	1.8	3	6.45	18.66357	82.1272
19	Talapadar	at entry of the village	MATHILI	0.55	2.9	1.7	7.9	18.61133	82.09992
20	Kansariput	in front of Govt. primary school	MATHILI	0.9	1.4	3.9	7.85	18.6125	82.03498
21	Permarasi	near Adarsha Anganwadi center	MATHILI	0.6	2.05	3.45	6.9	18.6038	81.97423
22	MV-11	in the house of Sh. Bharat Sarkar	MALKANGIRI	GL	2.1	2.2	3.95	18.32834	81.93385
23	Koilipari	in the house of Sh. Deepak Mistri	KORUKONDA	0.42	3.85	1.45	4.4	18.31325	81.96198
24	MV-34	in the house of Sh. Krishna prasad	KORUKONDA	0.65	2.15	3.58	7.85	18.2575	82.01951
		Mondol							
25	MV-33	in the house of Sh. Madhav	KORUKONDA	1.12	0.85	2.36	6.01	18.25662	82.01673
		Mandol							
26	MV-30	in the house of Smt. Kumuda	KORUKONDA	0.8	3.5	3.38	10.35	18.22329	82.0007
		Mandal							
27	Tarlakota	in the house of Sh. Padmanabha	KORUKONDA	0.75	2.75	3.3	6.95	18.28028	82.06586
		Madkani							
28	MV-46	Near transformer adjacent to	MALKANGIRI	0.75	3.55	1.52	7.95	18.29097	82.80541
		Primary School							
29	MV-54	in the house of Sh. Nikhil Das	KALIMELA	0.72	3.1	1.9	7.65	18.18325	81.77728
30	Kachalwada RO colony	near Mission Shakti House	KALIMELA	1	2.4	3.1	6.95	18.20377	81.85406
31	MPV-6	inside High school	KALIMELA	0.52	3.25	2.92	6.05	18.18391	81.8003
32	Kangorkonda	in front of post office	KALIMELA	0.7	2	1.91	3.98	18.13999	81.79533
33	Kalimela	in front of post office	KALIMELA	0.3	2.3	2.1	6.95	18.07481	81.75209
34	MV-64	inside Irrigation Colony	KALIMELA	0.82	2.55	4.52	8.9	18.15715	81.79754
35	Champanagar	near brick factory	MALKANGIRI	GL	1.3	1.12	7.55	18.37967	81.86166
36	Chalanguda	back side of Jatri pratikshyalaya	MALKANGIRI	0.65	1.85	2.08	6.35	18.38318	81.74029
37	Tandki	in front of Ashram School	MALKANGIRI	0.7	1.95	5.41	10.5	18.42998	81.82268

38	Titiberi	at the end of the village	MALKANGIRI	GL	2.3	1.41	6.95	18.37332	81.76218
39	Tralgundi	in the house Sh. Budura Padiami	PODIA	0.4	1.95	3.05	6.9	18.2772	81.69413
40	Niliguda	in front of the Anganwadi kendra	PODIA	0.85	1.9	4.24	7.25	18.26872	81.63992
		near over head tank.							
41	Podia	in front of post office in H/O	PODIA	0.7	2.3	3.35	8.1	18.17454	81.5394
		Saphiq Ahmed							
42	MPV- 67	in the house of Sh. Milan Biswas	PODIA	0.55	1.5	3.01	4.31	18.15442	81.5791
43	MV-58	near telephone tower	PODIA	0.68	3.75	1.71	8.2	18.14184	81.60825
44	MV-67	in the paddy field of Sh. Bihari	KALIMELA	0.65	2.5	1.82	6.85	18.08025	81.70043
		Tetta							
45	MPV-74	in the house of Sh. Sudhanshu	KALIMELA	GL	4.8	1.55	6.3	18.00264	81.68929
		Mallick							
46	MV-79	in the house of Sh. Kanchan	KALIMELA	0.52	3.8	4.4	7.9	17.98838	81.58654
		Mandal							
47	Motu	back side of Geeta Pathasala	KALIMELA	0.75	2.1	5.01	9.55	17.83191	81.40111
48	MV-88	in front of anganwadi kendra	KALIMELA	0.8	3.5	3.4	6.85	17.88429	81.55049
49	MPV-81	in the house of Sh. Amrit Mirdha	KALIMELA	0.3	1.15	7.45	12.3	17.92735	81.56153
50	Kukudaguda	in the house of Sh. Manju Khila	MALKANGIRI	0.83	3.55	1.75	6.1	18.35992	81.97384
51	Sulia colony	in front of primary school	KORUKONDA	1.15	2.2	2.25	7.8	18.29134	81.97354
52	MV-36	At the entry of the village	KORUKONDA	0.75	2.3	2.81	5.07	18.27128	82.09391
53	Temporary Colony	near adarsh Anganwadi kendra	CHITRAKONDA	0.75	2.15	7.52	8.9	18.13408	82.12855
54	Sariapali	at the end of the village	CHITRAKONDA	0.65	2.55	5.35	8.15	18.08124	82.16414
55	Janbai	near primary health center	CHITRAKONDA	0.55	2	9.1	12.9	18.11143	82.22074
56	Chitrokonda	near electric sub-station	CHITRAKONDA	0.96	1.7	10.02	15.4	18.10674	82.11253
57	Parkanmala Colony	in the soil conservation office	KHOIRAPUT	0.42	4.35	2.9	7.77	18.36213	82.14224
		premises							
58	Sindhiguda	in the house of Sh. Mukunda	KHOIRAPUT	0.7	1.8	2.45	6.15	18.40207	82.15358
		Kuasi							
59	Doraguda	in front of Anganwadi Kendra	KHOIRAPUT	0.55	2.8	5	6.35	18.3555	82.16825
60	Puruna Guma	in the house of Smt. Gena Majhi	KHOIRAPUT	0.75	3.45	4.25	7.9	18.37812	82.19902
61	Mudliguda	in the house of Sh. Sanya Golpeda	KHOIRAPUT	0.6	3.65	4.5	10.2	18.38551	82.20674
62	Kutiguda	in the house of Sh. Hari Jani	KHOIRAPUT	0.65	3.1	2.61	8.65	18.43444	82.1979
63	Podaghat Colony	at the end of the village	KHOIRAPUT	0.75	1.6	4.12	7.1	18.47449	82.20352
64	Kakabahal	in the house of Sh. Hari Khila	KHOIRAPUT	0.5	3.1	2.25	4.1	18.49315	82.25618
65	Kodaguda	in the house of Sh. Padmanabha	KHOIRAPUT	0.75	1.2	4.15	9.45	18.50131	82.23365
Aquifer Mapping and Management plan in Malkangiri District, Odisha

		Naik							
66	Amliput	in the house of Sh. Ramachandra	KHOIRAPUT	0.9	2	2.28	6	18.52828	82.27144
		Gouda							
67	Badliguda	in the house of Sh. Dorru Pujari	MATHILI	0.65	2.25	1	3.05	18.539	82.25335
68	Bhoiguda	in the house of Sh. Podia Pujari	MATHILI	0.82	3.7	3.35	6.85	18.55904	82.26794

Annexure-V: List of NHS in the district

SI.	Village	Location
No.		
1	Badili	In front of School.
2	Balimela	Bus Stand Area
3	Balimela Chowk	Near road junction to Balimela and Korukonda. In front of H/O
		Mahendra Pattanaik
4	Bejaguda	Infront of P.S.M.E School.
5	Bhejangawara	Near Post office.
6	Chitapari	Entracle of village, 100m left of Somanathpur-balimela road. 6 km
		from Somanathpur.
7	Chitrakonda	Near Station, infront of Panchayat office.
8	Govindpali 1	Compound of kartik Purna Chandra Mishra house. 1/2 km from
		Govindpali bazar towards balimela chhak, opposite to relience
		mobile tower.
9	Kalimela	Block Office compound.
10	Kalimela1	Opp to Post office
11	Kanyashram	In the compound of Kanyashram (High School). 10 KM from
		Kalinath.
12	Katameta	Near Mobile Tower left side of Malkangiri-Jeypore road. 7 km from
		Pandrpani towards Jeypore.
13	Khairput1	Centre of Lineman Sahi, Near electric Transformer, end of the
		Khairput Market area 12 km from Govindpali
14	Korukonda 1	End of village, divergence road to Khilaguda sahi and market near
		Trinath temple
15	Kudumuluguma1	Infront of Didayi Development Agency office. 14km from Khairput
16	Kumbharguda	Vill Kumbharguda, 2km From Pandiripani Towards Pongam, Beside

		Main road & Opp. to Village Entrance Road to Kumbarguda.
17	M.V 37	Back side of house and shop of Amal das. Right side of Balimela-
		malkangiri road. 5 km from Balimela chowk towards Korukonda.
18	M.v.58	Infront of Shiva Mandir. Inbetween Kanyashram and Podia.
19	M.v.64	Potteru Irrigation Project Colony. Left side of the road to Kalimele.
20	M.v.7	In the house of Shri. Ramakrishna Talukdar
21	M.v.79	Left side of main Road, near Market.
22	M.v.88	Infront of Medical Qrts & Panchabati Gramya Bank.
23	M.V.9	Inside the compound of Shri B. C. Sardar's House. Approachable via
		Malkangiri (approx 9 Km) by Road.
24	M.V1- 19	11km from M.V 7, 400 mtrs from main road towards irrigation
		colony, near rogi kalyan samiti, left side of road
25	Maithili1	In the compound of T.Nilakantha's house. Near Panchayat Office
26	Malkangiri 1	Opposite to Sivam Filling Stations & Catholic Church, Dipti Convent
		School, In Front of Bhairavi Bar, Malkangiri
27	Motu	In the premises of Jaganath Temple.
28	Mundiguda	3kms from Khairaput Towards Kudumuluguma, Entrance of the
		Village, Right side of the Road
29	Parkannala	Centre of village, 100 m right of Kudumulugumma-Balimela road. 5
		km from Kudumulugumma.
30	Pongam	Inside village on the Rt side of the Rd Malkangiri-Mathili
31	Porhia	Infront of Post Office
32	Raddaguda	Opp.to U.P.School, at the end of village.
33	Sindhimal	At Bhimasahi near pond at the end of village right side of
		Malkangiri-Mathili road. 10km from Malkangiri.
34	Somnathpur 1	In front of house of Shayama Majhi inside nuasahi. Opposite side of
		overhead water tank. About 100 m away from main road.
35	Venkatapalam	Inside the village & adj. to Praful Mandal's house.

Aquifer Mapping and Management plan in Malkangiri District, Odisha