

REPORT ON AQUIFER MAPS AND MANAGEMENT PLAN OF SHEOHAR DISTRICT OF

BIHAR

CENTRAL GROUND WATER BOARD

DEPARTMENT OF WATER RESOURCES, RIVER DEVELOPMENT AND GANGA REJUVENATION,

MINISTRY OF JAL SHAKTI

GOVERNMENT OF INDIA

MARCH 2023

Ρατνα

Contributor's Page

Name	Designation	
Principal Author		
Sh. Alok Kumar Sinha	Scientist-C (Hg.) CGWB MER, Patna	
Other Co	ntributor	
Sh. Imam Hasan	(Scientist-B,HG) CGWB, MER, Patna	
Md. Amin Rasheed & Shipra Kumari	Young Professional Data compilation and Map Preparation	
Geophysics		
Dr. Subrata Das & Sh. Rittik Das	Scientist-C (Gp) CGWB MER Patna Scientist-B (Gp.) CGWB MER Patna	
Chemical Analysis		
Ms. Manasi Bhattacharya Dr. Suresh Kumar Dr. Shelja Tiwari Sh. Anurag Shukla	Regional Chemical Laboratory Central Ground Water Board MER Patna	
Report S	Scrutiny	
Dr. Sudhanshu Shekhar	Scientist-D (Hg.) CGWB, SUO, Ranchi	

Overall Supervision and GuidanceSh. T.B.N SinghSh. Rajeev Ranjan ShuklaRegional DirectorHOOCGWB MER, PatnaCGWB,MER, Patna

Table of Contents

Chapter	·11
INTRO	DUCTION1
1.1	Objectives1
1.2	Scope of the Study2
1.3	Approach and Methodology2
1.4	Area Details7
1.5	Data Availability9
1.6 (limate and Rainfall
1.7 P	hysiographic Setup12
1.8 (Geomorphology13
1.9 L	and Use Land Cover
1.10	Soil type16
1.11	Hydrology& Drainage18
1.12	Geology19
1.14	Irrigation
1.15	Prevailing Water Conservation/Recharge Practices40
Chapter	· 2
DATA	COLLECTION AND GENERATION
2.1 E	Data Collection, Compilation and Data Generation41
2.2 H	Iydrogeology41
Dept	h to Groundwater Level in Aquifer Group I44
2.3 (Geophysical survey
2.4 (Ground Water Quality
Chapter	• 3
DATA	INTERPRETATION, INTEGRATION AND AQUIFER MAPPING54
3.1 A	Aquifer Summary and Hydrogeological Framework
Chapter	• 4
-	ND WATER RESOURCES60
4.1	Assessment of Annually Replenishable or Dynamic Ground Water Resources onfined Aquifer i. e Aquifer-I)60

4.2In Storage Groundwater Resources	45
Chapter 5	46
GROUND WATER RELATED ISSUES	
5.1 Identification of Issues	
5.2 Major Ground Water Related Issues	46
Chapter 6	
Management StrategiesError! Bookmarl	k not defined.
1.Supply side management	50
6.1 Ground Water Development	50
6.2 Possibility of construction of additional shallow tube wells	
6.3 Water Conservation and Artificial Recharge	53
2. Demand side management	53
Chapter 7	54

List of Figures

Figure 1: Activities under National Aquifer Mapping Programme4	ŀ
Figure 2: Location map of Sheohar district8	3
Figure 3: Administrative divisions of Sheohar district9)
Figure 4: Rainfall of Sheohar district11	
Figure 5: Geomorphology of Sheohar district14	ŀ
Figure 6: Digital elevation model of Sheohar District14	ŀ
Figure 7: Land use Land cover map16	
Figure 8:Soil map of Sheohar District18	
Figure 9: Drainage system of Sheohar District Source- District Irrigation Plan Sheohar 2016	-
2019)
Figure 10:Geological Map of Sheohar District21	L
Figure 11:Location of observation wells for water level and water quality monitoring43	3
Figure 12:Pre monsoon water level map of aquifer group I (Unconfined Aquifer)44	ł
Figure 13:Post monsoon water level map of aquifer group I (Unconfined Aquifer)45	>
Figure 14:Pre monsoon water Table map of aquifer group I(Unconfined Aquifer)46	5
Figure 15:Post monsoon water Table map of aquifer group I (Unconfined Aquifer)47	1
Figure 16:Hydrograph of Sheohar NHS well depicting long term water level trend47	1
Figure 17: Modified Piper Diagram for ground water quality of Shallow aquifer49)
Figure 18: Salinity Hazard Map for ground water quality of Shallow aquifer50)
Figure 19: Suitability for ground water quality of Shallow aquifer51	L
Figure 20: Hydrogeological map of Sheohar District53	3
Figure 21: Map showing the section line55	>
Figure 22: Aquifer Disposition Index55	>
Figure 23: 2D Section Sahebganj to Parashpatti passing from Centre of sheohar district56	5
Figure 24: 2D Section Govindganj toParashpatti passing throughsheohar district	ĵ
Figure 25: 2D Section Areraj to Chilara (Sonbarsa) passing through Sheohar district	1
Figure 26: 2D Section Motipur to Chilara (Sonbarsa) passing through Sheohar district57	1
Figure 27: 2D Section Areraj to Madhaul(Runni Saidpur) passing through Sheohar district 58	3
Figure 28: Tentative 3D Aquifer Disposition in Sheohar district58	3
Figure 29 : Flood Hazard Map of Sheohar District47	
Figure 30 : Hydrograph of Sheohar NHS well depicting long term water level trend48	3

List of Table

Table 1: Major activities in aquifer mapping programme
Table 2: Salient features of Sheohar district8
Table 3: Data availability and utilized for preparation of aquifer map and management plan 9
Table 4: Land use and Land cover details of Sheohar district15
Table 5: Major soil type in Sheohar district 17
Table 6: Geological succession of the Quaternary deposit of Sheohar District20
Table 7: Taluka-wise and crop-wise area details (Ha)21
Table 8: Estimated Area by Size Classes and Land Use (Agricultural Census, 2015-16)22
Table 9: Taluka-wise source of irrigation details 39
Table 10: Area irrigated by different source. 39
Table 11: Restoration of public water harvesting structures such as ponds / puddles / ahars /
pynes in Sheohar district40
Table 12: Creation of farm ponds/Fishery ponds40
Table 13: Construction of check dams in Sheohar district under various schemes40
Table 14: Hydrogeological characteristics of Aquifers 42
Table 15: Number of observation wells tapping different aquifers (for measurement of
groundwater level and quality)43
Table 16: Ground water quality of shallow aquifer
Table 17: Aquifer characteristics of Sheohar district 59
Table 18: Salient Features of Dynamic Groundwater Resources of Sheohar District (as on 31 st
March, 2020)61
Table 19: Block-wise groundwater resources, availability, utilization and stage of
groundwater extraction (GWRA 2020)44
Table 20: Total Groundwater resources of Sheohar district (Fresh) 45
Table 21: Flood Hazard Index of Sheohar district 48
Table 22 : Table depicting requirement of additional no. of tubewells to increase stage of
ground water extraction to 70%53

Chapter 1

INTRODUCTION

Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation.

During XII five year plan (2012-17) National Aquifer Mapping (NAQUIM) study was initiated by CGWB to carry out detailed hydrogeological investigation, which is continued till 2023. In pursuance of AAP 2021-22, CGWB, MER, Patna, has carried out Aquifer mapping and Management Plan in Sheohar district of Bihar State with the aim of delineation and characterization of aquifers and its quantity, quality and sustainability of ground water in aquifers. The study is a part of the fulfillment of National Aquifer mapping and Management Plan. The aquifer maps and management plans will be shared with the Bihar Government for its effective implementation.

1.1 Objectives

The major objectives of aquifer mapping are

- Delineation of lateral and vertical disposition of aquifers and their characterization
- Quantification of ground water availability and assessment of its quality to formulate aquifer management plans to facilitate sustainable management of ground water resources at appropriate scales through participatory management approach with active involvement of stakeholders.

The groundwater management plan includes Ground Water recharge, conservation, harvesting, development options and other protocols of managing groundwater. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e. the aquifer map and management plan.

The main activities under NAQUIM are as follows:

- a). Identifying the aquifer geometry
- b). Aquifer characteristics and their yield potential
- c). Quality of water occurring at various depths
- d). Aquifer wise assessment of ground water resources
- e). Preparation of aquifer maps and

f). Formulate ground water management plan.

The demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a "Road Map" to systematically manage the ground water resources for equitable distribution across the spectrum.

1.2 Scope of the Study

Scope of the study is limited to the extent defining the geometry of aquifer system in space i.e. lateral and vertical distribution of aquifer system, based on existing data. Defining characteristics of aquifer system wherever available and its significance in development and management of groundwater resources in terms of quantity and quality of groundwater of the area depicting groundwater regime in two and three dimensional form for easy understanding, quantification of available groundwater resources, demand and supply of groundwater and its use in the area. Identification of issues related with development and use of groundwater to meet the competing water demand and its depiction for addressing the issue in terms of quantity and quality. Groundwater management strategies for addressing the issues by introducing management interventions (on demand and supply side) into the system.

Finally it's the user, whose participatory perspective of groundwater development, use and management based on available Aquifer information system by the user as a stakeholder himself is envisaged.

1.3 Approach and Methodology

Methodology involves creation of database for each of the principal aquifer. Delineation of aquifer extent (vertical and horizontal). Standardized output for effective presentation of scientific integration of Hydrogeological, geophysical, geological, hydro chemical data facts on GIS platform, identification and manifestation of issues and formulation of strategies to address the issues by possible interventions at local and regional level.

The activities of the Aquifer Mapping can be grouped as follows.

1.3.1 Data Compilation & Data Gap Analysis

One of the important aspect of the aquifer mapping programme was the synthesis of the large volume of data already collected during specific studies carried out by Central Ground Water

Board and various Government organizations with a new data set generated that broadly describe an aquifer system. The data were assembled, analysed, examined, synthesized and interpreted from available sources. These sources were predominantly non-computerized data, which was converted into computer based GIS data sets. On the basis of available data, Data Gaps were identified.

1.3.2 Data Generation

There was also a strong need for generating additional data to fill the data gaps to achieve the task of aquifer mapping. This was achieved by multiple activities such as exploratory drilling, geophysical techniques, hydro-geochemical analysis, remote sensing, besides detailed hydrogeological surveys.

1.3.3 Aquifer Map Preparation

On the basis of integration of data generated from various studies of hydrogeology & geophysics, aquifers have been delineated and characterized in terms of quality and potential. Various maps have been prepared bringing out Characterization of Aquifers, which can be termed as Aquifer maps providing spatial variation (lateral & vertical) in reference aquifer extremities, quality, water level, potential and vulnerability (quality & quantity).

1.3.4 Aquifer Management Plan Formulation

Aquifer response Model has been utilized to identify a suitable strategy for sustainable development of the aquifer in the area.

All the above activities under the ground National Aquifer Mapping programmeis depicted elaborated in the given table 1 and Fig.1.

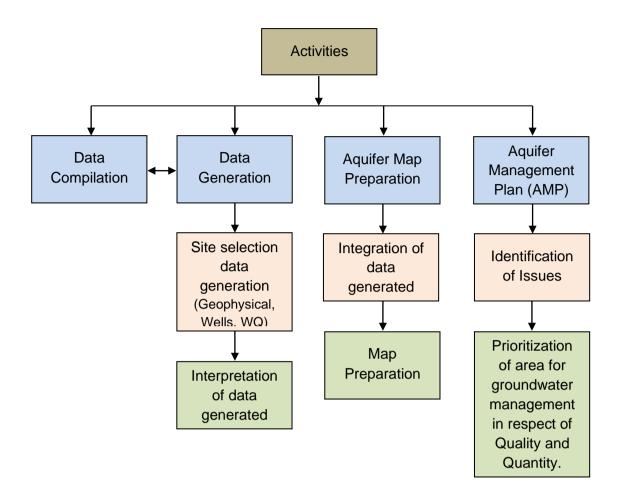


Figure 1: Activities under National Aquifer Mapping Programme

Activities

- Step 1: No activity needed
- Step 2: Data generation
- Step 3: Aquifer map preparation
- Step 4: Preparation of management plan

T 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • •	•	
Table 1: Major activities	s in aquifer	manning	programme
ruore rendgor detterne.	, in againer	mapping	programme

Sl.	Activity	Sub Activity	Task
No.			
Ι	Compilation of	Compilation of	Preparation of Base map and
	Existing Data/	Existing groundwater	thematic layers
	Identification of	Data	Data base of Exploration wells

Sl.	Activity	Sub Activity	Task
No.			
	Principal Aquifer Units & Data Gap	Identification of Data Gap (as per the need of the Terrain & determine the density of data requirement)	Compilation of Geology, Geophysics, Hydrogeology, Geochemical, Hydrology Delineation of principal aquifers (Vertical & Lateral) Compilation of Aquifer wise Water Level data Compilation of Aquifer wise Draft Data Data Gap in thematic layer Data gap in Sub-surface Information & aquifer parameters Data gap in information on Geology, Geophysics, Hydrogeology, Geochemical, Hydrology Data gap in delineation aquifers (Vertical & Lateral) Gap in Aquifer wise Water Level data Data gap in Aquifer wise Draft Data
Π	Generation of Data	Generation of Geological layers in1: 50,000 scale	Preparation of Geological Map in 1:50,000 scale. Preparation of Sub-surface Geology Geomorphologic Analysis

Sl.	Activity	Sub Activity	Task
No.			
			Analysis of Land use pattern
			Vertical Electrical Sounding (VES)
		Surface and sub- surface geo-electrical	Bore Hole Logging
		and gravity data	2-D Imaging
		generation	Advanced Geophysical Methods
		Hydrological	Demarcation of water bodies
		information	Soil Infiltration studies
		Parameters on	Rainfall data analysis, Canal flow,
		groundwater recharge	recharge structures etc.
		Preparation	Water Level Monitoring
		Hydrogeological maps in 1: 50,000 scale	Exploratory drilling
			Pumping tests
			Sub-surface lithological data
			generation from existing wells
		Generation of	Analysis of groundwater for
		additional water	pesticide, Bacteriological
		quality parameters	contamination
III	Aquifer Map	Analysis of data base	Integration of Hydrogeological,
	Preparation (1:	and preparation of GIS	Geophysical, Geological, Hydro-
	50K scale and	layers	chemical data
	for identified	Preparation of Aquifer	
	areas in	Maps	
	1:10,000 scale)		
IV	Aquifer	Model	Integration of Aquifer Geometry,
	Response	Conceptualisation	Aquifer units, Aquifer parameters,

Activity	Sub Activity	Task
Model/Aquifer Management	Model Simulation	Groundwater Draft & Recharge. From field study, data from
Plan		secondary sources (state GWD & Local agencies)
	Preparation of Aquifer Management Plan	Information of aquifer to public, villagers.
IEC Activity & Implementation of Aquifer Management Plan	 A. Capacity building B. Participatory Groundwater Management 	Involvement of PRIs, local administration, state government, community & NGO's
	Model/Aquifer Management Plan IEC Activity & Implementation of Aquifer Management	Nodel/AquiferManagementPlanModel SimulationPlanPreparation of AquiferManagement PlanIEC Activity &A. Capacity buildingImplementationof AquiferManagementB. ParticipatoryPlan

1.4 Area Details

The district of Sheohar, which till the 1991 Census was a part of Sitamarhi district as one of its subdivisions, was elevated to the status of a district on 6th October, 1994. The study area forms a part of the Baghmati River basin which is a productive aquifer system in north Bihar area. The district is situated in the northern part of Tirhut Division and lies on the extreme north region of the state of Bihar. It is surrounded on the north and east by the district of Sitamarhi, on the south by the district of Muzaffarpur and on the west by the district of East Champaran. It is one of the historical districts in the State of Bihar both in terms of size of population and total area of the district. The district Sheohar lies between N 26° 20' 50'' and 26° 39' 45'' and E 85° 10' 50'' and 85° 23' 20'' covering an area of 443 Sq. Km It has an average elevation of 53 meters. The area falls in the Survey of India degree sheets 72F and toposheet nos. 72F/2, 3, 6 and 7. The districthas only one subdivision viz. Sheohar and five C.D. Blocks viz., Sheohar, Piprahi, Purnahiya, DumriKatsari and Tariyani Chowk. Sheohar is the only town in the district. There are altogether 53 panchayats comprising 203 villages in the district

Location map of Sheohar district is presented in figure 2 and administrative divisions in figure 3.

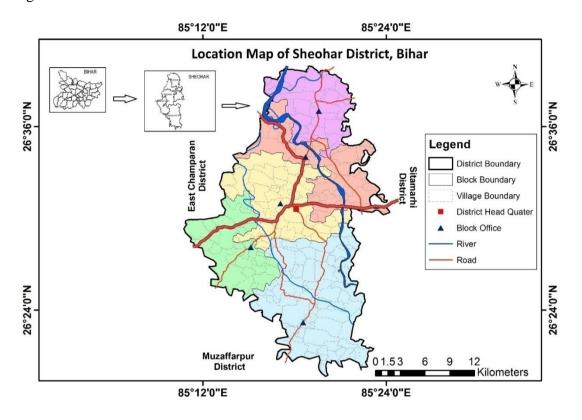


Figure 2: Location map of Sheohar district

Table 2: Salient features	of Sheohar district
rable 2. Buildit features	of bileonal arbtilet

Geographical Area	443 km ²
No of Blocks	5
Population (2011 Census)	656246
Average annual rainfall	720.4 mm
Range of average temperature	9°C - 38°C
Major drainage system	Baghmati River
Major/ medium irrigation scheme	None
Major geological formation	Soft Rock: Alluvium
Utilizable groundwater resources (GWRA	FRESH
2020)	161.07 MCM/Yr.
Net groundwater draft	81.74 MCM/Yr.
Stage of groundwater development	56.39%

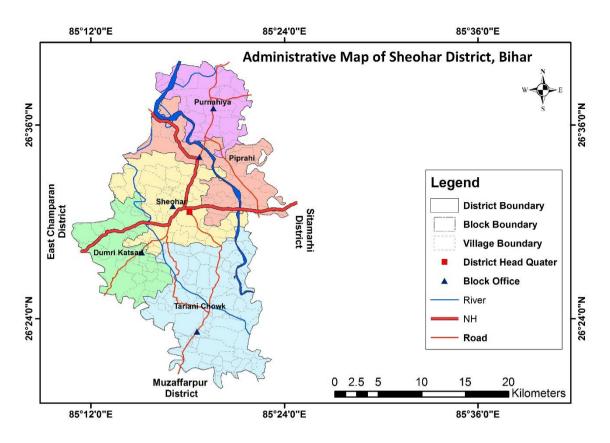


Figure 3: Administrative divisions of Sheohar district

1.5 Data Availability

Geological, Geophysical, Hydrogeological and Hydro chemical data generated during Groundwater exploration, Systematic Hydrogeological studies, Reappraisal Hydro geological studies, Groundwater Management studies, Micro level hydrogeological studies and special studies by the Central Ground Water Board since its inception by central and state government and other institutions have been collected and utilized in in preparation of Aquifer Map and Groundwater management plan. The data available on soil, Drainage, Geomorphology, Land use and Land cover compiled and integrated to generate respective thematic maps.

Table 3: Data availability and utilized for preparation of aquifer map and management plan

Sl. No	Themes	Data available/considered
1	Groundwater level data Long term	DW
	CGWB	05
	MWRD Piezometers with telemetric	05
	DWLR	
	Total	10
2	Groundwater quality data	DW

Sl. No	Themes	Data available/considered				
	CGWB	05				
	Total	05				
3	Land use and Land cover	Information available				
		GIS data set with limited attributes				
4	Geomorphology	District Resource Map 2009 (GSI)				
5	Drainage	District Irrigation Plan 2016-20				
6	Soil	Information available				
7	Irrigation/Minor Irrigation Data	GIS data set with limited attributes				
8	Water conservation structures	Available from				
9	Soil conservation structures	Statistical data available from State				
		Government departments				
10	Cropping pattern data	District Irrigation Plan 2016-20				
11	Hydrological data	Available from State Water				
		Resources Data center				
12	Rainfall data	Statistical data available from State				
		Government departments/IMD				

1.6 Climate and Rainfall

The climate of this district is characterized by mild cold season, hot dry summer, hot and moist monsoon season. The cold season starts from about end of November to the end of February. This is followed by the summer season from March to about second week of June. Southwest monsoon sets in from second week of June and lasts till September. October to November is a transition period from monsoon to winter season.

The maximum temperatures (25–40°C) are noticed from May to July and lowest temperatures (12 - 26° C) from December to January months. The relative humidity is reported to be very high in the district i.e. 44% in April to 81% in August. For the rest six months, the average relative humidity remains more than 70%.

Month wise rainfall in the district is given in Fig. 4 showing maximum rainfall in the months of June to September. Scanty rainfall is observed in winters. Figure 4 shows the rainfall chart from 2017 to 2021.

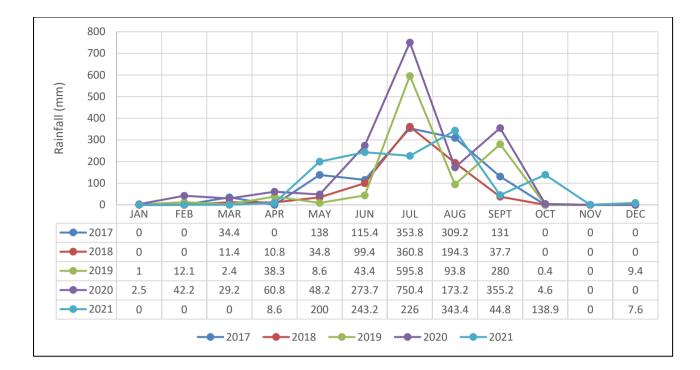


Figure 4: Rainfall of Sheohar district

1.6.1 Temperature

There is no meteorological observatory in the district. The meteorological data and climatological conditions prevailing at Muzaffarpur observatory of the neighbouring district may be taken as representative of the climatic conditions in the district as a whole. The summer season commences from March when temperature begins to rise rapidly and lasts till second week of June. Generally May is the hottest month with the mean maximum temperature at about 35°C and the mean minimum temperature at about 24°C. On individual days the maximum temperature may rise upto about 42°C during May and early part of June. There is fall in day temperature with the onset of the southwest monsoon by second week of June. However, the weather remains uncomfortable throughout the monsoon season as night temperatures begin to drop from mid November and winter season sets in. January is the coldest month with the mean maximum temperature at about 9°C. During winter season the district is affected by cold waves in association with western disturbances which move across northern parts of the country and under its influence minimum temperature may drop to 3°C.

1.6.2 Humidity

Humidity remains high throughout the year except during the summer season when it is comparatively low between 45% to 55% in the afternoon. During monsoon season humidity remains high above 80%. In post monsoon and winter season humidity remains between 65% to 80%.

1.6.3 Cloudiness

Sky is heavily clouded to overcast during monsoon season. Thereafter the cloudiness decreases and the sky is generally clear or lightly clouded for rest of the year. During the passage of western disturbances across northern parts of the country during post monsoon and winter season the sky remains overcast or heavily clouded.

1.6.4 Winds

Winds are generally calm or easterly/westerly in post monsoon, winter and premonsoon seasons. Winds generally blow predominantly from the east direction in the southwest monsoon season.

1.6.5 Special Weather Phenomena

In association with storms and depressions originating in the Bay of Bengal during monsoon and post monsoon months which move in westerly/northwesterly direction after crossing the coast affect the district and its neighborhood and cause widespread heavy rain and strong winds. Thunderstorms generally occur throughout the year however, their frequency is more during summer and southwest monsoon season, occasionally thunderstorms are accompanied with hail during summer season. Dust storms affect the district occasionally during summer season. Fog occurs occasionally during post monsoon and winter season.

1.7 Physiographic Setup

The area has flat monotonous topography having regional slope (varying from 0.2 m/km to 0.08 m/km) towards South-East. The landform relief varies from 43.2 m amsl, near Bausi in north, to 35.1 m, near Hardi in south. Regionally, the area is flat with series of undulations present in the area.

These minor undulations present in the area are outcomes of shifting of river Bagmati towards west along with the natural processes of degradation and aggradations. Some relief features such as paleo-channels, natural levees, back-swamps/flood plains of varying shape and sizes can be found in the area.

1.8 Geomorphology

The area of Sheohar falls under the catchment area of Bagmati River which is known for its flood every year in her catchments. Other streams passing through the district are Kola Nadi, Balsundar Nala and Purani Dhar which are mainly avulsed channels of the river Bagmati. The drainage pattern is sub-parallel in the district. The area of Sheohar is underlain by thick sequence of unconsolidated sediments deposited during Quaternary period. These unconsolidated sediments mostly comprised of sands of various grades with occasional pebble beds. Which is mainly fluvial and lacustrine origin. The area has flat monotonous topography having regional slope (varying from 0.2 m/km to 0.08 m/km) towards South-East. The landform relief varies from 58 m amslto 61 mamsl. Regionally, the area is flat with series of undulations. Geomorphological map of the district is presented in figure 5 and digital elevation model of the district is presented in figure 6.

In the exploratory drilling done by CGWB, in the Sitamarhi district where the same morpho-stratigraphic unit is extending (as described above), many clay and sand sequences have been observed which may be due to multi-cyclic nature of deposition.

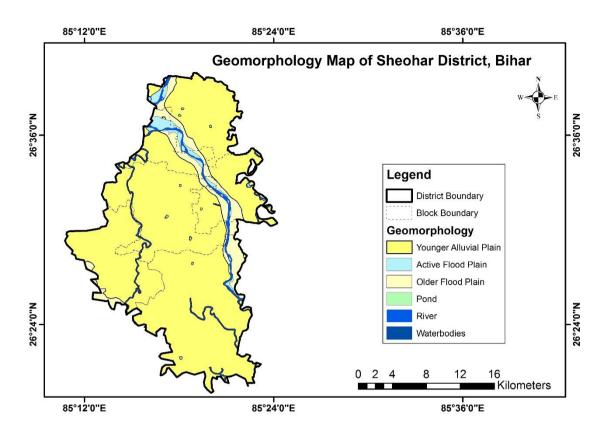


Figure 5: Geomorphology of Sheohar district

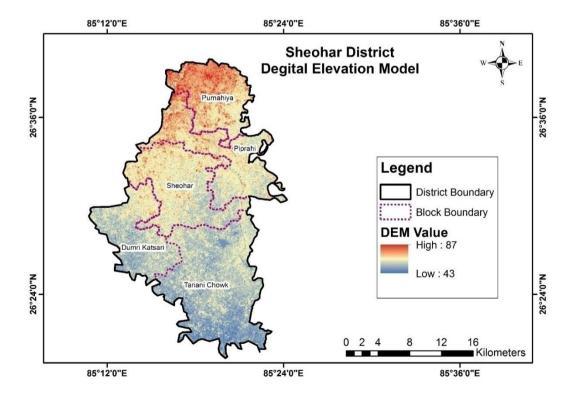


Figure 6: Digital elevation model of Sheohar District

1.9 Land Use Land Cover

Land use and Land cover map of the district is presented in figure 7 and table 4.

		Area under Agriculture							
Name of the block	Total Geographical area	Gross Cropped area	Net sown area	sown more intensity		Area under forest	Area under wasteland	Area under other uses	
DumriKatsari	66.59	54.84	46.12	38.74	119%	0	1.81	12.63	
Piprarhi	82.68	68.47	55.30	46.45	124%	0	2.41	16.83	
Purnahiya	64.10	52.81	44.95	37.75	117%	0	1.56	10.93	
Sheohar	93.95	69.10	64.48	51.37	107%	0	2.29	15.98	
Tariani Chowk	13.680	11.061	95.07	79.85	116%	0	3.98	27.75	

Table 4: Land use and Land cover details of Sheohar district

Area in square km.

Source- District Irrigation Plan Sheohar 2016-20

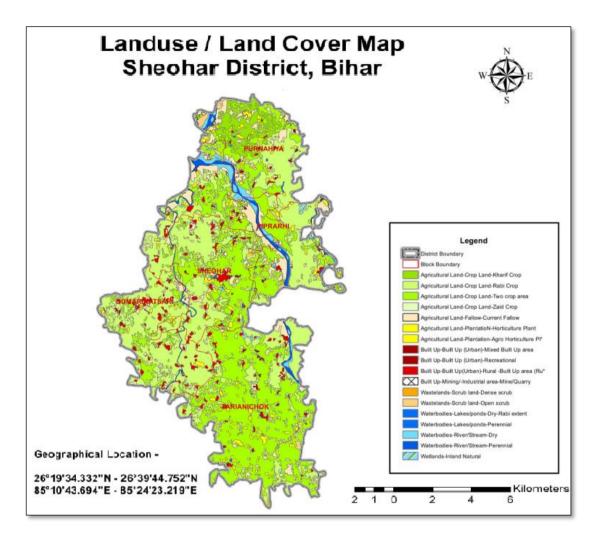


Figure 7: Land use Land cover map Source- District Irrigation Plan Sheohar 2016-20

1.10 Soil type

Main soil type in the area is Udifluvent i.e. frequently flooded, Deep, nearly level, well drained to very poorly drained areas of unconsolidated alluvium, generally stratified and varying widely in texture and drainage over short distances. Soil in the district has been grouped as soil of:

- a. Active alluvial plain- soils in this group are very deep, coarse to fine loamy, calcareous at places and with slight to moderate erosion. Taxonomically, this type of soil comes under Udifluvent soil and they occupy the central part of the district.
- b. Recent flood plain- soils in this group are very deep, fine loamy, calcareous, with slight erosion and severe flooding and surface texture is loamy. This soil is present in eastern and southern part of the district.

Block wise major soil class with land slope is presented in table 5 and figure 8.

Table 5: Major soil type in	Sheohar district
-----------------------------	------------------

				Land Slope				
Name of the block	Major Soil Classes	Area (ha)	0-3% (ha)	3-8% (ha)	8- 25% (ha)	>25% (ha)		
DumriKatsari		4612	4612	0	0	0		
Piprarhi		5530	5530	0	0	0		
Purnahiya	Sandy Soil,	4495	4495	0	0	0		
Sheohar	Sandy Loam, Loam	•	6448	6448	0	0	0	
Tariani Chowk		9507	9507	0	0	0		
Total		30592	30592	0	0	0		

Source- District Irrigation Plan Sheohar 2016-20

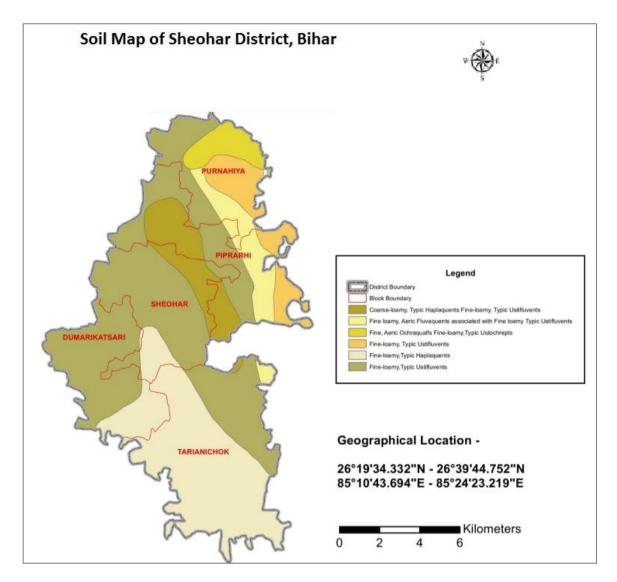


Figure 8:Soil map of Sheohar District

Source- District Irrigation Plan Sheohar 2016-20

1.11 Hydrology& Drainage

The river Bagmati is the main river flowing through the district of Sheohar. Some of the area of the district falls under the catchment areas of Bagmati River. Bagmati is a perennial river originating in Shivpur range of hills in Nepal. The river Bagmati has changed its course several times in past. Other streams present in the district are Kola Nadi, Balsundar Nala and Purani Dhar which are considered to be avulsed channels of the river Bagmati. The drainage pattern is sub-parallel in the district. On its left bank, the river merges with Kola Nadi. The river from this point up to confluence of Manusmara River downwards, flows along the course of Kola Nadi. The district is exposed to floods every year, especially during the monsoon season, thereby causing damages to the standing crops. Drainage map of the district is presented in figure 9.

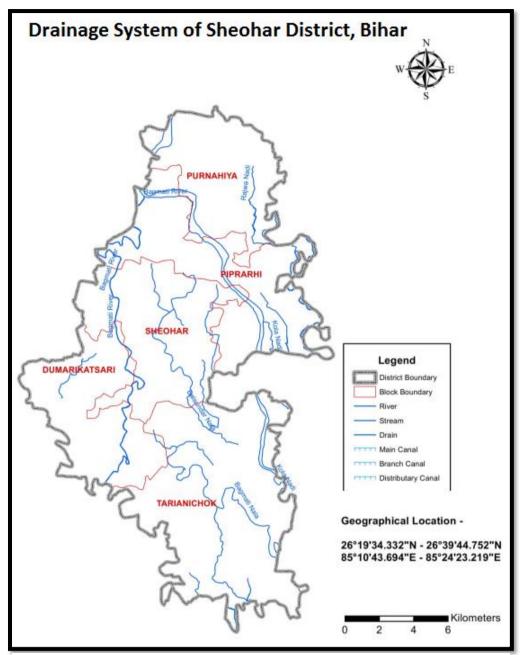


Figure 9: Drainage system of Sheohar District Source- District Irrigation Plan Sheohar 2016-20

1.12 Geology

The area underlain by thick pile of Quaternary alluvium deposited by fresh water during the Quaternary era in the fore-deep between Kaimur Plateau and Himalayan range. Lithologically the entire alluvial fill in the Sheohar district is composed of finer clastics, like clay, silt and various grades of sand associated with kankar. The lithological characteristics are mainly

governed by the depositional environment namely distance from the provenance, agencies of deposition and medium of transport. Marked lateral and vertical variation in texture and composition of sediments support of these propositions. The geophysical survey carried out by Geological Survey of India in the past, indicate that alluvial thickness in the area is between 1000 m to 2000m. The oldest formation of the area is Hajipur formation represented by oxidized yellow silty clay impregnated with caliche. This formation occupies mainly the paleo levee areas and its age ranges from Pleistocene to early Holocene. Vaishali formation of Holocene age is occupying the older flood plains of the block. This formation consisting of Unoxidised clayey silt to sandy silt. The youngest formation of the area is Diara formation represented by present day deposits of sand and occupies the recent flood plain area. The recent to sub recent deposits underlain by erosional basement of Vindhyan formation of Precambrian age. (Fig -10).

Table 6: Geological su	uccession of the (Quaternary de	posit of Sheohar District.

Lithology	Geological unit	Age
Unconsolidated sand, soil and clay	Diara formation	Holocene to Recent
Unoxidised unconsolidated	Jaynagar formation	Holocene
clayey silt/silty clay	Vaishali formation	
Oxidized yellowish brown silty cla	Hajipur formation	Late Pleistocene to Early Holocene
impregnated with caliche		

Source: District Resource map 2009(GSI)

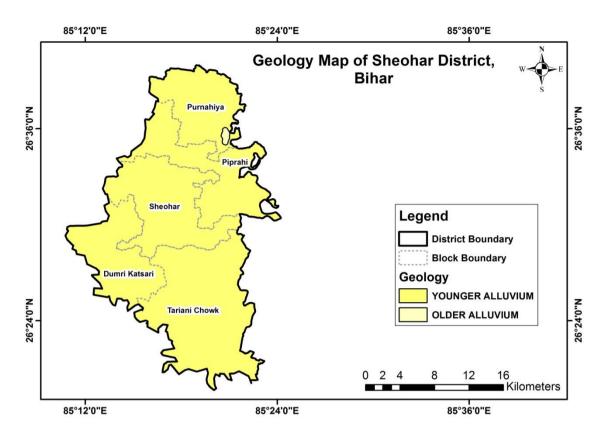


Figure 10:Geological Map of Sheohar District

1.13 Agriculture

Taluka Name	Cereals	Coarse	Pulses	Oilseed	Horticulture
		Cereals			Crops
DumriKatsari	3750	600	1095	263	818
Piprarhi	5000	800	1560	363	1081
Purnahiya	3520	520	949	230	703
Sheohar	4750	760	1161	571	756
Tariani Chowk	8250	1320	2409	606	1780
District Total	25270	4000	7174	2033	5138

Table 7: Taluka-wise and crop-wise area details (Ha)

Source: District Irrigation Plain SHEOHAR 2016-20

Block	То	otal	Net	Area	Net	Other	Fallow	Culturable	Total	Land Not
	Holdin	gs (All	Area	Under	Cultivated	Uncultivated	Land	Waste	Uncultivated	Available
	Clas	sses)	Sown	Current	Area	Land	Other	Land	Land	for
				Fallows		Excluding	than			cultivation
						Fallow Land	Current			
							Fallow			
	No.	Area	(Ha)	(Ha)	(Ha)	(Ha)	(Ha)	(Ha)	(Ha)	(Ha)
		(Ha)								
DUMRI	9880	4421	4396	25	4421	0	0	0	0	0
KATSARI										
PIPRAHI	17659	6376	6228	148	6376	0	0	0	0	0
PURNAHIYA	6432	4207	3559	549	4106	100	0	0	100	0
SHEOHAR	35267	6369	5715	637	6352	18	0	0	18	0
TARIYANI	29228	10563	9838	723	10562	1	0	0	1	0
District Total	98466	31936	29736	2082	31817	119	0	0	119	0

 Table 8: Estimated Area by Size Classes and Land Use (Agricultural Census, 2015-16)

1.14 Irrigation

The main source of irrigation is catered by ground water by shallow and medium tubewells along with village ponds in the district. Net area irrigated for the district is 19098 Ha and the gross area irrigated is 26237 Ha.

Taluka	Net	Area	Gross	Canal	No. of	No.	No.	of Tube	well
	Irrigated Area (ha)	more than	Irrigated Area (ha)	Length (km)	Ponds	of Dug well	STW	MTW	DTW
		once (ha)							
Dumri Katsari	2828	1211	4039	0	28	1	1169	99	4
Piprarhi	4005	1432	5437	0	2	0	975	573	6
Purnahiya	2456	1051	3507	0	17	3	521	142	1
Sheohar	3611	1541	5152	0	6	1	1296	290	6
Tariani Chowk	6198	1904	8102	0	40	0	2272	1459	3
District Total	19098	7139	26237	0	93	5	6233	2563	20

Table 9: Taluka-wise source of irrigation details

Source- District Irrigation Plan Sheohar 2016-20

Table 10: Area irrigated by different source.

Source	Number

Source	Number	Area Irrigated (Ha)
Canal	0	0
Open Wells	439	1450
Tube Wells	6233	11700
Total	6672	13150

Source: Agriculture Contingency Plan for Sheohar district 2011

1.15 Prevailing Water Conservation/Recharge Practices

Prevailing water conservation structures are presented in table 10,11 and 12

Table 11: Restoration of public water harvesting structures such as ponds / puddles / ahars / pynes in Sheohar district

Rural Development Department	35
Minor Water Resource Department	7
Total	42
Total	4.

Source:

https://www.jaljeevanhariyali.bih.nic.in/JalJeevanHaryali/DashBoard.aspx?AwayabId=2

Table 12: Creation of farm ponds/Fishery ponds

Rural Development Department	359
Animal Husbandry and Fisheries department	36
Total	395

Source:https://www.jaljeevanhariyali.bih.nic.in/JalJeevanHaryali/AwayabwiseProgreesReport .aspx?DeptID=1&AwayabId=7

Table 13: Construction of check dams in Sheohar district under various schemes

	Rural Development Department	2	
So	reehttps://www.jalieevanharivali.hih.nic.in/Jalleevan	Harvali/DachBoard acny?Awayah	Ы

Source<u>https://www.jaljeevanhariyali.bih.nic.in/JalJeevanHaryali/DashBoard.aspx?AwayabId</u> =1

Chapter 2

DATA COLLECTION AND GENERATION

2.1 Data Collection, Compilation and Data Generation

Hydrogeological data of the district was collected from CGWB reports, BDRs and unpublished reports. Water level and water quality data from observation wells/piezometers from CGWB and MWRD, Government of Biharwas collated and combined for preparation of maps. Lithologs of CGWB with geophysical logs were used for demarcation of aquifer groups. Details of hydrogeological data of existing wells is presented in table 14.Groundwater level and groundwater quality maps for pre monsoon and post monsoon period of 2018 are also presented.

Exploratory drilling as per the data gap is proposed for Sheohar district for generation of subsurface geology data and hydrogeological parameters. The work is under planning stage at the time of compilation of the report.

2.2 Hydrogeology

Sheohar district has one of the most prolific aquifer systems in the Gangetic alluvium of north Bihar plains. Quaternary unconsolidated sediments of the area consist of sand, gravel, pebbles constituting potential aquifer. The aquifer is found to be extensive regionally and occurs in the form of layers down below. Rainfall is the main source of ground water recharge. Other sources of ground water of the area include fertile agriculture land, surface water in the form of river. The sand layers of the quaternary alluvial sequence form the major repository of the groundwater in the block. These groundwater repositories occur under unconfined condition in the shallow zone and under semi-confined to confined condition in the deeper zone. The aquifers from the area are of very high potential. The regional slope of the water table is towards south-east.

Age	Lithology	Hydrogeology	Yield
Quaternary	Recent Alluvium (Clay,	Fairly thick	Suitable for
	Silt, Sand, Gravel,	Regionally extensive	deep or shallow
	Pebble and	confined to unconfined	tubeWells,
	Calcareous Concretion	ground water rest	discharge
	etc.)	within 6m bgl	prospects
		ground water	50m ³ /hr in shallow
		fluctuation with in 3m	tube wells and
			150m³/hr
			in deep tube wells
			With nominal
			drawdown.
1		1	1

Table 14: Hydrogeological characteristics of Aquifers

2.2.1 Ground Water in Aquifer-I and Aquifer II (Shallow Aquifer & Deeper Aquifer)

Groundwater in the area occurs under unconfined condition in the Aquifer Group I and under semi-confined to confined condition in the Aquifer Group II and III. The major source of recharge is through rainfall. Factors like return seepage from irrigation and subsurface inflow also contribute in recharging the groundwater in the area. The area is characterized by occurrence of various grades of sand admixed with Gravel, silt and clay in alluvial sediments forming fairly prolific aquifers.

Table 15: Number of observation wells tapping different aquifers (for measurement of groundwater level and quality)

Aquifer Group	DW	Pz	Total
Aquifer Group I	5	5	10
(Unconfined/Semi			
Confined)			
Aquifer Group II	No Data	No Data	No Data
(Confined I)			
Aquifer Group III	No Data	No Data	No Data
(Confined II)			

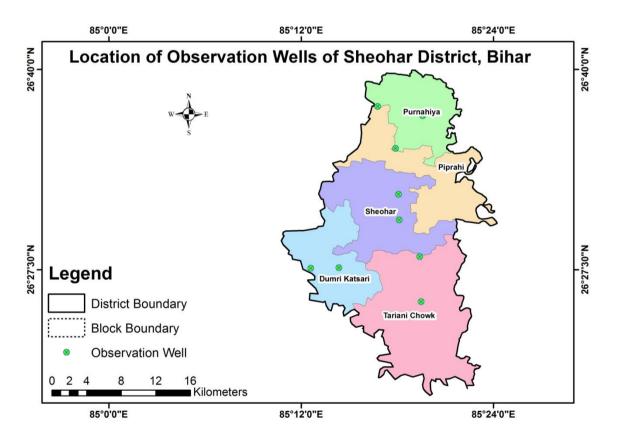


Figure 11: Location of observation wells for water level and water quality monitoring

Depth to Groundwater Level in Aquifer Group I

Depth to groundwater level during premonsoon and Post monsoon period of 2021is given in Figs. 12(aand b). During pre monsoon period shallowest water level of 2.78 mbgl was recorded at Kushhar village of Sheoharblock and the deepest water level of 4.99 mbgl was recorded in DumriKatsari village of DumriKatsari block located in the western part of the district

During post monsoon period shallowest water level of 1.52 mbgl was recorded at Sarvarpur village of tariyani block and the deepest water level of 2.8 mbgl was recorded in PurnahiaBazar village of Piprahi block located in the northern part of the district

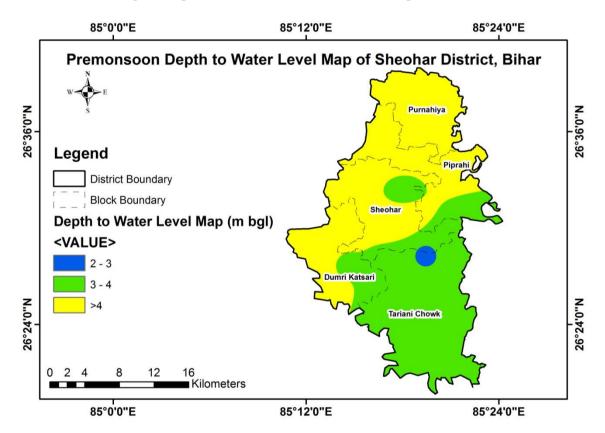


Figure 12:Pre monsoon water level map of aquifer group I (Unconfined Aquifer)

Figure 13:Post monsoon water level map of aquifer group I (Unconfined Aquifer)

2.2.2 Water Table

Water Table in Aquifer Group I follows the general topography and regional flow direction is from NE-SW Direction.

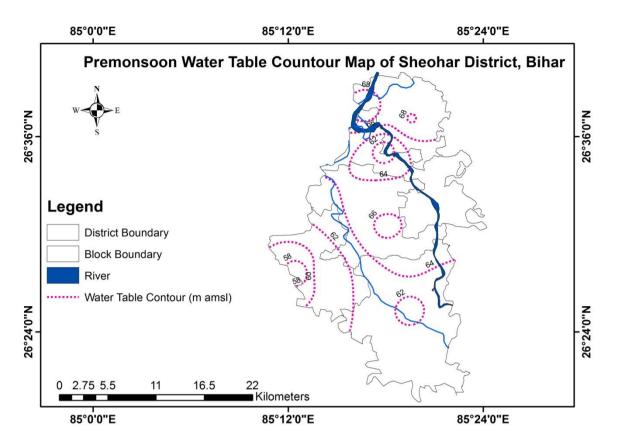


Figure 14:Pre monsoon water Table map of aquifer group I(Unconfined Aquifer)

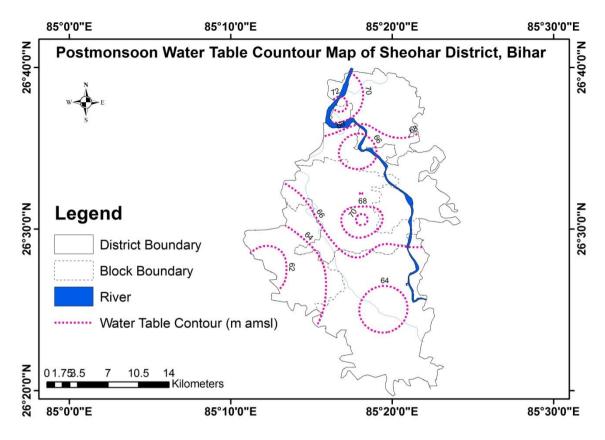


Figure 15:Post monsoon water Table map of aquifer group I (Unconfined Aquifer)

2.2.1.3 Last ten years long term water level trend

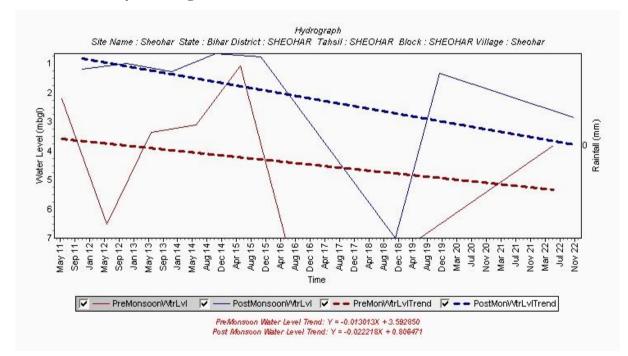


Figure 16:Hydrograph of Sheohar NHS well depicting long term water level trend

2.3 Geophysical survey

There was no data available at the time of compilation of the report

2.4 Ground Water Quality

Hydrochemical data (water quality sampling, number of samples and analysis mechanism etc.)

Groundwater is the most important and essential natural resource for domestic, industrial and agricultural needs. Water quality in an area is a function of physical and chemical parameters that are greatly influenced by geological formations and anthropogenic activities. Understanding the quality of groundwater is particularly important as it determines the factors governing the suitability of water for drinking, domestic, agricultural and industrial purposes (Subramanian et al.2005). Quality of groundwater is as much demanding as its quantity. Suitability of groundwater for drinking and irrigational purpose is important for its safe and effective use. Sheohar district is mainly dependent on groundwater for the domesticand irrigation demand. The pressure on groundwater is considerable for irrigation requirements in the semi-urban and rural areas. Chemically, the groundwater is an aqueous solution in the sub-surface geological formation. The concentration of the major ions and other dissolved ions in groundwater are functions of the availability of the constituents in the aquifer matrices and their solubility. Rocks, through which water circulate, are composed of minerals and amorphous solids, which in turn are composed of chemical elements that greatly affect the groundwater quality. This chapter is an overview of the chemical quality of groundwater as determined by analyzing water samples collected from different locations spread over the entire area, tapping different aquifer groups.

To study the groundwater chemistry of different aquifers present in the area, Water quality data of 5 groundwater samples were collected from CGWB and pre monsoon 2021. The water samples were collected and stored in 1 liter capacity clean plastic bottles. Before collection of samples, the bottles were properly washed. Prior to collecting the samples, the containers were rinsed by the water to be sampled. The wells were duly purged or disturbed before collecting groundwater sample. A total number of 5groundwater samples were collected from open dug wells tapping Aquifer Group Iacross the study area for chemical analysis of major parameters during the month of May 2021. These water samples were analysed in chemical

laboratory of CGWB MER, Patna for differentparameters. Pre monsoon water quality diagrams for analysed samples viz Modified Piper Diagram etc is presented below.

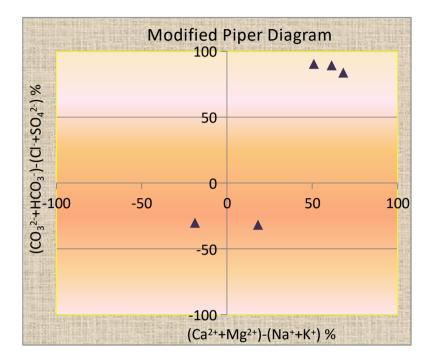


Figure 17: Modified Piper Diagram for ground water quality of Shallow aquifer

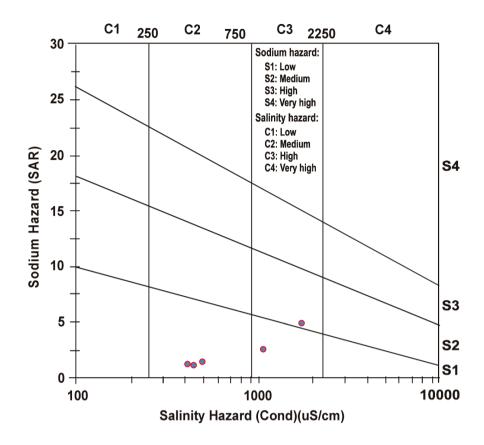


Figure 18: Salinity Hazard Map for ground water quality of Shallow aquifer

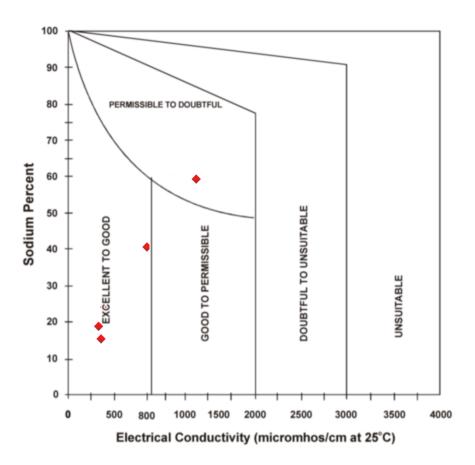


Figure 19: Suitability for ground water quality of Shallow aquifer

Ground Water Quality of Shallow Aquifer

Sl. No.	1	2	3	4	5
DISTRICT	Sheohar	Sheohar	Sheohar	Sheohar	Sheohar
BLOCK	Tariyani	Sheohar	Sheohar	Piprahi	DumriKatsari
LOCATION	Sarvarpur Kushaha NHS		Sarsaula Khurd NHS	Purnahiya Bazar NHS	DumriKatsari
Latitude	26.4252	26.4721	26.5368	26.6186	26.4605
longitude	85.3248	85.3234	85.3013	85.3264	85.2393
Type of well	DW	DW	DW	DW	DW
рН	7.63	7.72	7.68	7.59	7.82
EC	551.00	2088.00	1688.00	833.00	1405.00

Table 16: Ground water quality of shallow aquifer

Sl. No.	1	2	3	4	5		
DISTRICT	Sheohar	Sheohar	Sheohar	Sheohar	Sheohar		
BLOCK	Tariyani	Sheohar	Sheohar	Piprahi	DumriKatsari		
LOCATION	Sarvarpur NHS	Kushahar	Sarsaula Khurd NHS	Purnahiya Bazar NHS	DumriKatsari		
TDS	358.15	1357.20	1097.20	541.45	913.25		
ТН	225.00	535.00	505.00	240.00	370.00		
Ca ²⁺	80.00	76.00	164.00	46.00	116.00		
Mg ²⁺	6.08	83.84	23.09	30.38	19.44		
Na ⁺	19.20	190.20	144.50	57.46	114.78		
K ⁺	10.46	71.40	15.40	43.20	61.20		
CO3 ²⁻	0.00	0.00	0.00	0.00	0.00		
HCO3 ⁻	280.60	622.20	469.70	372.10	628.30		
Cl-	24.85	294.65	227.20	42.60	63.90		
SO4 ²⁻	6.85	91.20	106.20	43.76	87.10		
NO3 ⁻	2.62	26.92	37.80	7.76	10.50		
PO4 ³⁻	0.69	0.61	0.32	0.16	0.11		
F -	0.64	0.98	0.35	0.71	0.94		

2.5 Ground Water Exploration

There is no exploratory drilling by CGWB at the time of preparation of the report. However data from exploration done in adjoining districts have been utilized for preparation of aquifer maps.

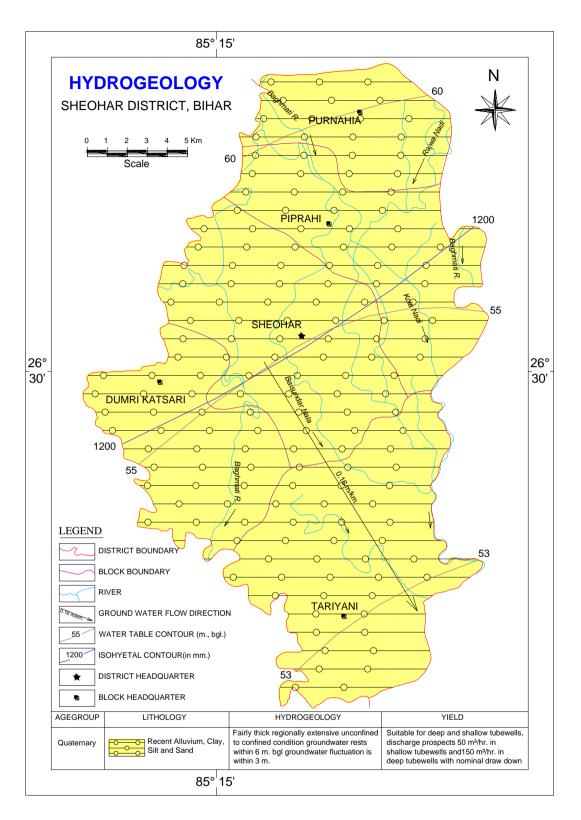


Figure 20: Hydrogeological map of Sheohar District

Chapter 3 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

The alluvial aquifer system of Sheohar district is mainly composed of the quaternary alluvium with alternate layers of coarse to fine sand making the aquifer and clay beds with various degree of sand mixing form the aquitard. The aquifer system is grouped into three aquifer groups upto 300m depth in the region, based on the Exploratory drilling in the adjoining districts. The data has been analysed using Rockworks 16 software and is presented below in the Hydrogeological cross sections A-A' to G-G' and Solid Model of the district showing the depiction of Aquifer Groups and Aquitard up to 300m. Map showing section lines is presented in Fig. 27. The stratigraphic sections depicting aquifer group I (Unconfined/Semi Confined), II (Confined I) and III (Confined II) are placed at Figs 28(a to g). Fence Diagram and 3D Solid Model of Sheohar district is depicted in Fig. 29 and 30, respectively.

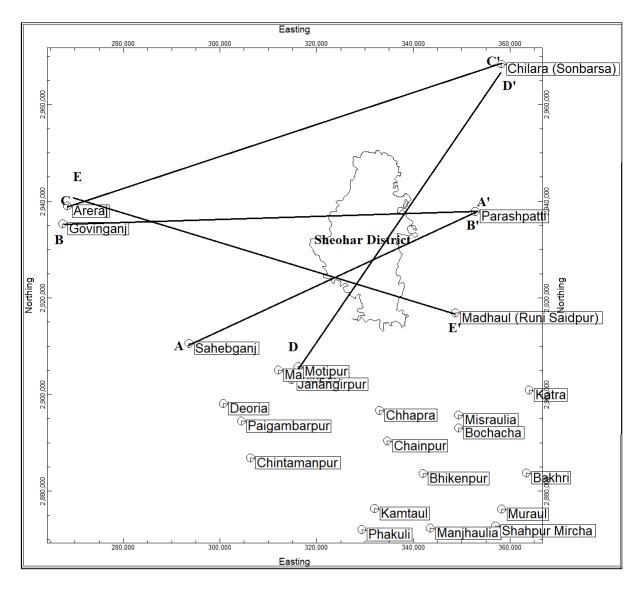


Figure 21: Map showing the section line

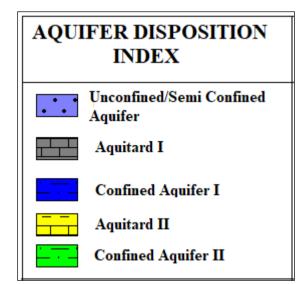


Figure 22: Aquifer Disposition Index

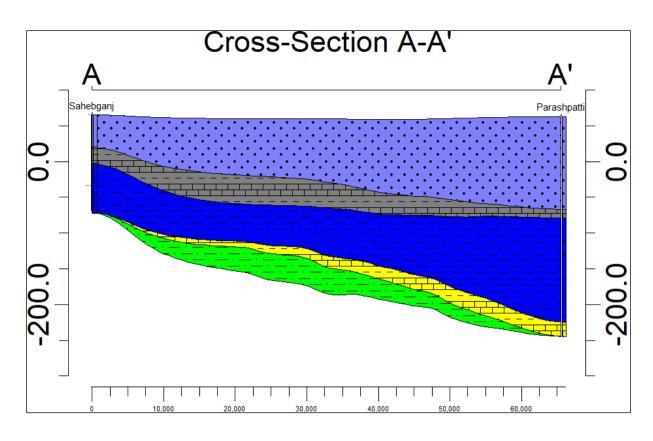


Figure 23: 2D Section Sahebganj to Parashpatti passing from Centre of sheohar district

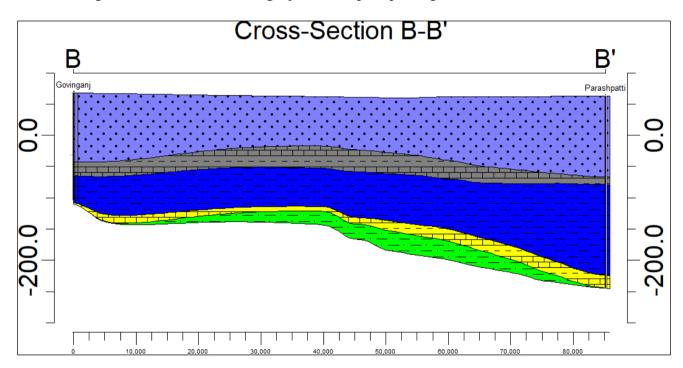


Figure 24: 2D Section Govindganj toParashpatti passing throughsheohar district

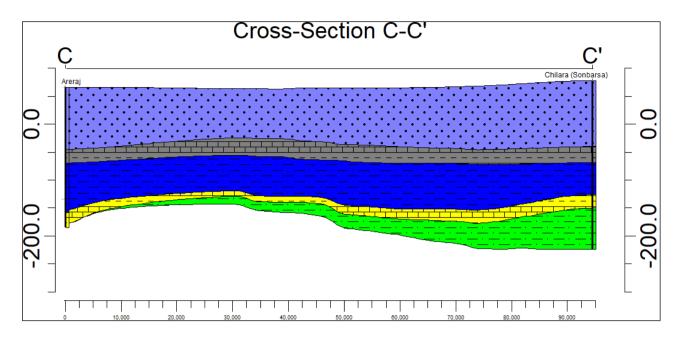


Figure 25: 2D Section Areraj to Chilara (Sonbarsa) passing through Sheohar district

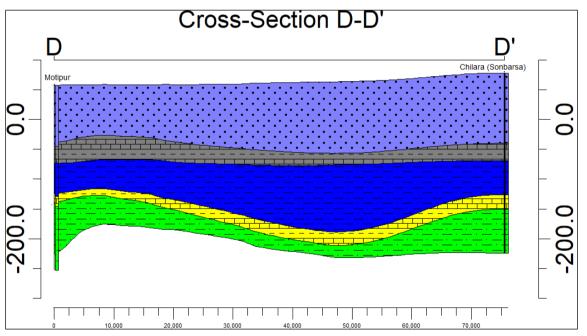


Figure 26: 2D Section Motipur to Chilara (Sonbarsa) passing through Sheohar district

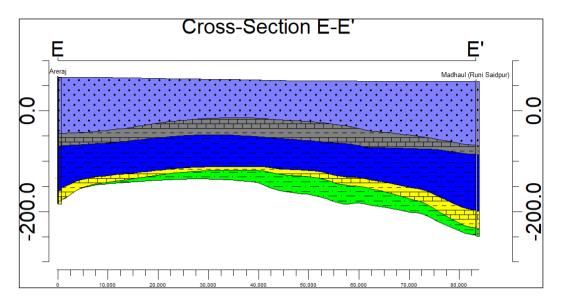


Figure 27: 2D Section Areraj to Madhaul(Runni Saidpur) passing through Sheohar district

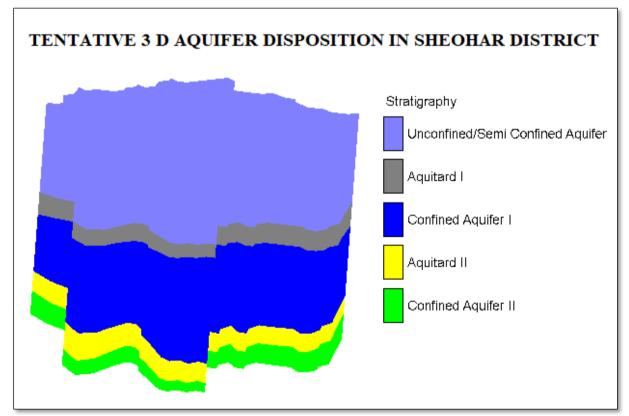


Figure 28: Tentative 3D Aquifer Disposition in Sheohar district

3.1 Aquifer Summary and Hydrogeological Framework

Sheohardistrictis a small district with agriculture as main activity. In the district the multilayer aquifer system is observed, the aquifer are separated by aquitard comprising of clay interbeded with thin sand layers in the area down to about 300 mbgl and they have been grouped into three groups as per general use pattern in the area and for management proposal (Table 18).

Aquifer Group	Base of Aquife r (m)	Generali zed Thicknes s (m)	Yield (m ³ /H r)	Quality/EC (µS/cm)	Water Level/Piezometric head (mBGL)	Transmissivity(m²/Day)
Ι	45-	40-70	15-	434-3270	2.78-4.21	1050
Unconfined/S	130		75			
emi Confines						
II	68-	60-120	50-	250-400	1.3-2.5	1000-2600
Confined	288		100			
Aquifer I						
III	135-	50-80	100-	250-400	1.2-2.3	500-859
Confined	308		150			
Aquifer II						

Table 17: Aquifer characteristics of Sheohar district

Chapter 4

GROUND WATER RESOURCES

Ground Water Resource of the area has been estimated block wise based on for base year as on 2020. In the present report GEC 2015 methodology has been used and based on the assessment has been made using appropriate assumptions. This methodology recommends aquifer wise ground water resource assessment of both the Ground water resources components, i.e., Replenishable ground water resources or Dynamic Ground Water Resources and In-storage Resources or Static Resources. The assessment of ground water includes assessment of dynamic and in-storage ground water resources, but the development planning should mainly depend on dynamic resource only as it gets replenished every year. Changes in static or in-storage resources reflect impacts of ground water mining. Such resources may not be replenishable annually and may be allowed to be extracted only during exigencies with proper recharge planning in the succeeding excess rainfall years.

4.1 Assessment of Annually Replenishable or Dynamic Ground Water Resources (Unconfined Aquifer i. e Aquifer-I)

The methodology for ground water resources estimation is based on the principle of water balance as given below –

Inflow – Outflow = Change in Storage (of an aquifer)

The equation can be further elaborated as

 $\Delta S = RRF + RSTR + RC + RSWI + RGWI + RTP + RWCS \pm VF \pm LF - GE - T - E - B$

Where,

 Δ S – Change is storage, RRF – Rainfall recharge, RSTR- Recharge from stream channels

RC - Recharge from canals, RSWI - Recharge from surface water irrigation

RGWI- Recharge from ground water irrigation, RTP- Recharge from Tanks & Ponds

RWCS – Recharge from water conservation structures, VF – Vertical flow across the aquifer system, LF- Lateral flow along the aquifer system (through flow), GE-Ground Water Extraction, T- Transpiration, E- Evaporation, B-Base flow

The dynamic Ground Water Resources has been assessed by CGWB, MER, Patna in association with Minor Water Resources Deoartment, Government of Bihar based on GEC, Methodology 2015. The salientfeatures of Dynamic Ground Water Resources of

Sheohardistrict (as on 31st March, 2020) are given in **table 13.** Other details information regarding Dynamic Ground Water Resources of Sheohar district is provided in **Annexure-IV.**

Type of Assessment Unit	Community Development Blocks (05 blocks)
Annual Ground Water Recharge (MCM)	161.07
Provision for Natural Discharge (MCM)	16.10
Annual Extractable Ground Water Resources (MCM)	144.97
Existing Gross Ground Water Draft for All Uses (MCM)	81.74
Irrigation Use (MCM)	65.69
Industrial Use (MCM)	3.78
Domestic Use (MCM)	12.27
Annual GW Allocation for domestic use as on 2025 (MCM)	13.79
Net Annual GW Availability for 'Future Use' (MCM)	61.71
Stage of Ground Water Extraction (%)	56.39%

Table 18: Salient Features of Dynamic Groundwater Resources of Sheohar District (as on 31st March, 2020)

SI. N	0.	State	District	Assessment Unit Name	Total Area of Assessment Unit (Ha)	Recharge Worthy Area(Ha)	Recharge from Rainfall- Monsoon Season	Recharge from Other Sources- Monsoon Season	Recharge from Rainfall- Non Monsoon	Recharge from Other Sources- Non Monsoon Season	Total Annual Ground Water (Ham) Recharge	Total Natural Discharges (Ham)	Annual Extractable Ground Water Resource (Ham)	for Irrigation	Ground Water Extraction for Industrial Use (Ham)	for Domestic	Extraction (Ham)	Annual GW Allocation for for Domestic Use as on 2025 (Ham)	Net Ground Water Availability for future use (Ham)	Ground Water	Categorizat ion (Over- Exploited/C ritical/Semi critical/Saf e/Saline)
	1 BIH	HAR :	SHEOHAR	DUMRI KATSARI	6659	6659	1831.61	154.32	127.31	139.99	2253.23	225.32	2027.91	766.1	45.00	160.91	972.01	180.75	1036.06	47.93	Safe
	2 BIH	HAR :	SHEOHAR	PIPRAHI	8268	8268	2274.17	217.93	158.07	182.17	2832.34	283.23	2549.11	1002.45	54.00	203.20	1259.66	228.26	1264.39	49.42	Safe
	3 BIH	HAR :	SHEOHAR	PURNAHIYA	6410	6410	1763.12	187.67	122.55	170.47	2243.81	224.38	2019.43	927.47	54.00	158.41	1139.88	177.94	860.02	56.45	Safe
	4 BIH	HAR :	SHEOHAR	SHEOHAR	9282	9282	2553.08	198.48	177.46	181.83	3110.85	311.09	2799.76	950.29	72.00	364.36	1386.65	409.28	1368.19	49.53	Safe
	5 BIH	HAR	SHEOHAR	TARIANI CHOWK	13680	13680	3762.78	985.86	261.54	656.91	5667.09	566.71	5100.38	2922.59	153.00	340.59	3416.17	382.58	1642.22	66.98	Safe
		C	District Tota	al	44299	44299	12184.76	1744.26	846.93	1331.37	16107.32	1610.73	14496.59	6568.9	378.00	1227.46	8174.37	1378.81	6170.88	56.39	Safe

Table 19: Block-wise groundwater resources, availability, utilization and stage of groundwater extraction (GWRA 2020)

As per dynamic ground water resource of Bihar 2020 annual extractable ground water resource of Sheohar district is 14496.59 ham, Total annual ground water recharge is 16107.32 ham and net ground water availability for future use is 6170.88 ham. Stage of ground water extraction is 56.39% and the district is categorized as Safe.

4.2In Storage Groundwater Resources

In storage groundwater resources computed for the district considering taluka/block as a unit and conceptual depiction of multilayer aquifer system in for the computation of in-storage groundwater resources upto 300 m depth is given below and computed resources are given in Table 20.

S No.	Taluka	Total geographical area (SqKm)	In-Storage groundwater	Annual replenishable groundwater	Total availability of groundwater resources		
			(MCM)	(MCM)	(MCM)		
1	DumriKatsari	6659	258.90	20.28	279.18		
2	Piprahi	8268	409.02	25.49	434.51		
3	Purnahia	6410	255.82	20.19	276.02		
4	Sheohar	9282	508.10	28.00	536.09		
5	Tariyani	13680	609.85	51.00	660.86		
	District						
	Total	44299	2041.69	144.97	2186.66		

Table 20: Total Groundwater resources of Sheohar district (Fresh)

Chapter 5

GROUND WATER RELATED ISSUES

Prevailing agricultural/Irrigation practices, increase in groundwater demand, geogenic reason for variation in groundwater quality are some of the major reasons for ground water related issues in the district. Followings are the major ground water related issues in the area

5.1 Identification of Issues

There is thick pile of sediments, as revealed from the litholg of the tube wells drilled in Sitamarhi and Muzaffarpur district. The aquifer is continuous one and may be called unconfined. The aquifers are highly potential and prolific in nature. In other parts of the district, although clay layers are present, as revealed from the data of constructed wells, the aquifers are highly potential. Dynamic Ground Water Resources (as on 2020) also indicates that all the 5 blocks are in safe category. The stage of ground water extraction varies between 47.93% and 66.98%. There is ample scope for ground water development in the district. 3 blocks namely DumriKatsari,Piprah and Sheohar have stage of ground water development less than the district average of 56.31%. Quantitavely, the district has no such ground water resource and low draft, resulting in shallow water level in pre-monsoon period and become water logged during post monsoon period. Qualitatively, there is no issue except few dugwell samples showing high EC due to local geogenic causes, otherwise samples from handpumps and tubewells have all theparamaeters within permissible range.

5.2 Major Ground Water Related Issues

Water Logging and flooding: The district has high ground water resource and low draft, resulting in shallow water level in pre-monsoon period and become water logged during post monsoon period. Another issue is of flooding almost 40% of the area is classified as low to moderately affected by floods as per the flood hazard map of the district prepared by ISRO presented below in the figure 23.

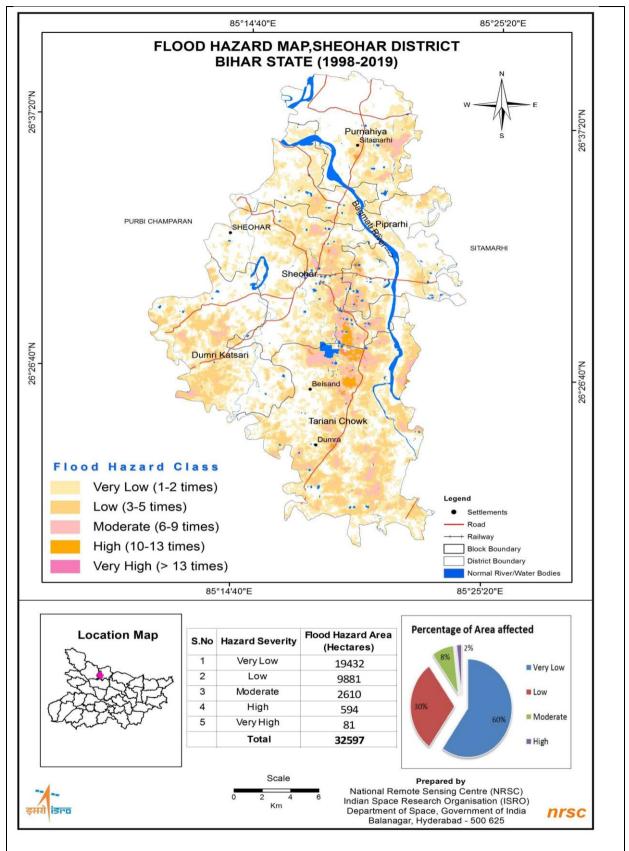


Figure 29 : Flood Hazard Map of Sheohar District

Source:https://bhuvan.nrsc.gov.in/pdf/Flood-Hazard-Atlas-Bihar.pdf

District Area	Total Flood	% Flood Hazard	Flood Hazard
(Hectares)	Inundated Area	Area	Index FHI= Σ
	(Hectares)		(Hw*Aw) * Σ
			(IAVw))
44300	23738	54	80
	(Hectares)	(Hectares) Inundated Area (Hectares)	(Hectares) Inundated Area Area (Hectares)

Table 21: Flood Hazard Index of Sheohar district

Source:https://bhuvan.nrsc.gov.in/pdf/Flood-Hazard-Atlas-Bihar.pdf

5.2.1Aquifer Group I (Unconfined/Semi Confined)

Water level trend of aquifer group I: water level trend shows declining trend in both pre and postmonsoon period in the Sheohar NHS Dug well but this can be local phenomena. The general pre and post monsoon water level in the wells are between 5 to less than 2 mbgl.

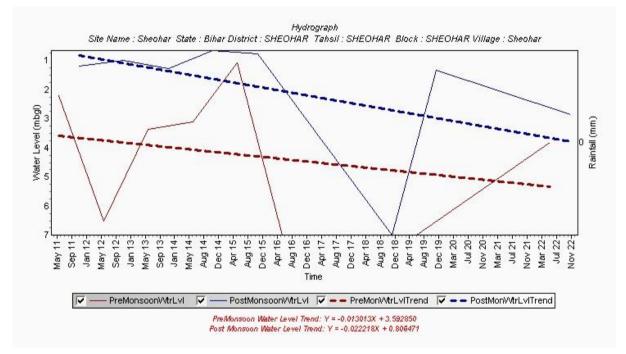


Figure 30 : Hydrograph of Sheohar NHS well depicting long term water level trend

Reasons for Groundwater Related Issues

Prevailing agricultural/Irrigation practices; increase in groundwater demand, geogenic reason for variation in groundwater quality and schedule of power supply are some of the major reasons for groundwater related issues in these area.

Future demand (for 2025 and 2030) scenario and stress aspects of the aquifer

Area has plenty of ground water resources and the economy of the area is based on agriculture. Economy of the area is mainly based on agro& food processing.

Participatory groundwater management issues

As on date participatory groundwater management issues are not much significant as there is plenty of ground water developed through shallow tubewells of 20-30m constructed by individual farmers

Chapter6

MANAGEMENT STRATEGIES

The district is rich in ground as well as surface water resources. The conjunctive use of surface and ground water will provide better ground water management strategy. The management strategies can be grouped in two components.

1.Supply side management

2. Demand side management

1.Supply side management

6.1 Ground Water Development

Development of groundwater potential in the area has to be viewed against the backdrop of a predominant agrarian economy. The aquifer system present in the district is highly potential. As per Ground Water Resources Assessment 2020, the stage of ground water extrcation in the district is only 56.39%. There is a lot of scope for further development of ground water. A shallow tube well within the depth range of 20-40 m, tapping granular zone of 10-15 mbgl and 25- 30 mbgl respectively can yield as high as 75 m3 /hr. A well assembly of 76 mm diameter or 102 mm diameter with 6 to 12 m of slotted pipes can be used for construction of tube wells. Medium tube wells can be constructed by tapping potential aquifer present in the depth range of 50-100 m bgl. A well down to a depth of 70-100 meters tapping the aquifer of 50-80 m bgl can yield on an average of 180 m3/hr discharge for nominal drawdown. The slot size should be recommended as per the grain size. For medium to coarse-grained sand the slot opening may be 1/16". CGWB explorations in nearby areas have revealed the presence of deeper potential aquifer down to drilled depth of 150 mbgl. Conjunctive use of surface and ground water is the best possible way for optimum use of the resource.

6.2 Possibility of construction of additional shallow tube wells

On the basis of Dynamic Ground Water Resources Assessment - 2020, additional number of shallow tube well for alluvium area for each block has been calculated within the safe limit of the Stage of extraction upto 70% by considering unit draft for each tube well 1.35 ha m. As

Table 22 : Table depicting requirement of additional no. of tubewells to increase stage of ground water extraction to 70%

S. No.	District/ Assessment Unit	Total Annual Ground Water Recharge (Ham)	Annual Extractable Ground Water Resource (Ham)	Total Extraction (Ham)	Annual GW Allocation for for Domestic Use as on 2025 (Ham)	Stage of Ground Water Extraction (%)	Categorization	Projected SOD (%)	GW draft at Projected SOD	Additional Resource Available (Ham)	Unit Draft of STW (Ham)	Additional Nos. of STW feasible based on GW availability
1	DUMRI KATSARI	2253.23	2027.91	972.01	180.75	47.93	safe	70.00	1419.54	427.62	1.35	317
2	PIPRAHI	2832.34	2549.11	1259.66	228.26	49.42	safe	70.00	1784.38	536.47	1.35	397
3	PURNAHIYA	2243.81	2019.43	1139.88	177.94	56.45	safe	70.00	1413.60	427.89	1.35	317
4	SHEOHAR	3110.85	2799.76	1386.65	409.28	49.53	safe	70.00	1959.83	430.65	1.35	319
5	TARIANI CHOWK	5667.09	5100.38	3416.17	382.58	66.98	safe	70.00	3570.27	1147.53	1.35	850
DIST	FRICT TOTAL	16107.32	14496.59	8174.37	1378.81	56.39	Safe	70.00	10147.61	2970.17	1.35	2200

per the calculation, a total of 2200 number of tube wells can be constructed to fulfill the future demand of ground water. The block wise additional number of tubewells is given in table 22.

6.3 Water Conservation and Artificial Recharge

All the blocks of the district fall under the safe category. The need for water conservation and artificial recharge need not be over emphasized in the area. Available groundwater resources indicate that the block have high ground water resource and low draft, resulting in shallow water level in pre-monsoon period and become water logged during post monsoon period. Exploitation of ground water in these blocks would push the water level to desirable depth.Sheohardistrictis is highly dependent on groundwater for drinking, industrial and irrigation water requirement. Following interventions are in place in the district to address the issues related with water resources.

• 2 Nos Construction of Check dams, 42 nos deepening of Ponds and reservoirs and construction of 395 farm ponds/fisheries ponds as per data of jaljeewanhariyali mission, a flagship programme of Government of Bihar.

2. Demand side management

In present ground water scenario of the district there is no need for demand side management such as micro irrigation, regulation and control mechanisms. The district is rich in ground water resources and floods are frequent phenomena which result in augmentation of ground water resources every year. There is need of constant data acquisition related to water level, which can indicate the ground water condition.

Chapter 7

SUMMARY AND CONCLUSION

- Sheohar is one of the agriculturally, socially and economically advanced districts, situated in the northern part of Bihar State. Regionally, it forms part of North Bihar Alluvial plain.
- Groundwater is the main source of irrigation water in the district catering almost 80% of the irrigation water demand.
- There is no CGWB Exploratory drilling or geophysical studies done till the compilation of the report. Exploratory drilling has been planned in the district.
- The Report has been compiled with existing data and data collected from limited field checks and existing reports of erstwhile Sitamarhi district from which Sheohar district was carved and Muzaffarpur District located south of Sheohar district.
- Groundwater occurs in the alluvium aquifer with sand of various sizes separated by clay and mixed horizons forming the aquitards. Groundwater occurs both in Phreatic as well as Semiconfined to Confined condition.
- For the purpose of Aquifer mapping up to 300m, the different aquifer units are grouped in Aquifer Group I, II and III. Aquifer group I is unconfined to semi confined aquifer whereas Aquifer Group II is semi confined to Confined and Aquifer Group III is confined in Nature. These aquifer groups are regionally extensive and form prolific aquifer system in the district.
- A number of activities for augmenting groundwater resources have been done with construction of check dams (2nos), deepening of village ponds (42 nos.), Farm Ponds/Fisheries ponds (395 nos.).