

# केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण

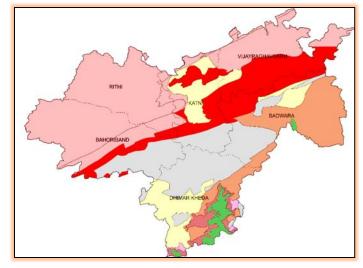
विभाग, जल शक्ति मंत्रालय

# भारत सरकार Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

# AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES KATNI DISTRICT, MADHYA PRADESH

उत्तर मध्य क्षेत्र, भोपाल North Central Region, Bhopal








Government of India Ministry of Jal Shakti, Water Resources, River Development & Ganga Rejuvenation Department Central Ground Water Board

# AQUIFER MAPPING GROUND WATER MANAGEMENT PLAN



# KATNI DISTRICT MADHYA PRADESH

Ву

Lata Udsaiya, Scientist – C Kamlesh Ojha, Sc-B Kishan Patel, AHG Under the Supervision A.K. Biswal, Head of Offic

North Central Region, Bhopal 2022 - 2023

# **PREFACE**

National Project on Aquifer Mapping (NAQUIM) is intended in knowing, understanding and managing the aquifers for sustainable development of groundwater which is the most important part for ensuring water security in India. The study involves a scientific process, where in a combination of geological, geophysical, hydrological and chemical analyses are applied to characterize the quantity, quality and sustainability of groundwater in aquifers. The result of these studies will contribute significantly to the resource management tools such as long-term aquifer monitoring networks, conceptual and quantitative regional groundwater flow models which can be used by planners, policy makers and other stakeholders for sustainable development of groundwater.

Under the project of National Aquifer Mapping (NAQUIM), Central Ground Water Board(CGWB) North Central Region, Bhopal has taken up Katni district to prepare the Aquifer maps for the entire district as well as block wise and formulate Block-wise Aquifer Management Plan. Katni district occupies an area of 4894 sq. km out of which the ground water recharge worthy area is 4666.48 sq. km. and the rest is covered by hilly and forest area. Katni district falls under two river basins i.e., Ganga & partly in Narmada basin. About 82% area of the district is drained by the Ganga basin. The Chhoti Mahanadi, Katni & Ken rivers are the major rivers of this basin. Main geological units of the area are, Archaean, Mahakoshals, Vindhayan Super group, Gondwana super group, Lametas, Deccan traps, Katni formation, Laterites and alluvium. As per the Dynamic Ground Water Resource Assessment Report (2022), the Annual Ground Water Extraction in the district is 372.37MCM and ground water extraction for all uses is 175.37 MCM, resulting the stage of ground water development to be 47.10 % as a whole for district. The Katni district falls under safe category. The interventions suggested in the report will not only have positive impact on the ground water regime but would also play a key role in augmenting the net cropping area and would ultimately enhance the agricultural productivity and economy of the district.

I would like to place on record my appreciation of the untiring efforts of **Ms Lata Udsaiya, Sc-C, Mr Kamlesh Ojha, Sc-B Kishan Patel, AHG** for preparing the Aquifer maps and Management plan and compiling this informative report. I would also thank Sh. Ashok Kumar Biswal (Head of Office) for taking painstaking efforts in scrutinizing the report I fondly hope that this report will serve as a valuable guide for sustainable development of Ground Water in the Katni district, Madhya Pradesh.

Place: Bhopal

(A.K Biswal) Head of Office

# Contents

| CHAPTER - 1                                                  |
|--------------------------------------------------------------|
| INTRODUCTION                                                 |
| 1.1 Objective and Scope:                                     |
| 1.2 Approach and Methodology4                                |
| 1.3 Study Area5                                              |
| 1.4 Climate And Rainfall7                                    |
| 1.5 Physiography/Digital Elevation Model9                    |
| 1.6 Geomorphology9                                           |
| 1.7 Land Use, Agriculture, Irrigation and Cropping Pattern11 |
| 1.8 Soil                                                     |
| 1.9 Geology                                                  |
| 1.10 Hydrology and Drainage                                  |
| CHAPTER – 2                                                  |
| DATA COLLECTION AND GENERATION                               |
| 2.1 Data Collection and Compilation                          |
| 2.2 Data availability and data gap analysis                  |
| 2.3 Ground Water Exploration                                 |
| 2.4 Ground Water Monitoring Wells                            |
| 2.5 Thematic Layers                                          |
| CHAPTER – 3                                                  |
| DATA INTERPRETATION, INTEGRATION AND A QUIFER MAPPING        |
| 3.1 Hydrogeology25                                           |
| 3.2 Ground Water Level Scenario                              |
| 3.3 Hydro Chemical Study (Ground Water Quality)              |
| 3.4 3-D and 2-D Aquifer Disposition                          |
| 3.5 Aquifer Characteristics                                  |
| 3.6 Geophysical Exploration                                  |

#### CHAPTER - 4

#### GROUND WATER RESOURCES

## CHAPTER - 5

#### GROUND WATER RELATED ISSUES

# CHAPTER - 6

#### PART I-GROUND WATER MANAGEMENT STRATEGIES

- 6.1 District Ground Water Management Plan (Outcome of NAQUIM)......72

# CHAPTER – 7

# PART II-BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

# CHAPTER – 8

# <u>CHAPTER - 1</u> INTRODUCTION

National project on Aquifer Mapping (NAQUIM) had been taken up by CGWB to carry out detailed hydrogeological investigation on toposheet scale of 1:50,000. The NAQUIM has been prioritised to study Over-exploited, Critical and Semi-Critical blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulation mechanism has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydro-geological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the "**Road Map**" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus, the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the Administration Katni District for its effective implementation.

**1.1 Objective and Scope:** Aquifer mapping itself is an improved form of groundwater management – recharge, conservation, harvesting and protocols of managing groundwater. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e., the aquifer map and management plan. The activities under NAQUIM are aimed at:

- ✤ identifying the aquifer geometry,
- 4 aquifer characteristics and their yield potential
- 4 quality of water occurring at various depths,
- 4 aquifer wise assessment of ground water resources
- ✤ preparation of aquifer maps and
- ↓ Formulate ground water management plan.

This clear demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a **"Road Map"** to systematically manage the ground water resources for equitable distribution across the spectrum.

Katni district being spread over an area of 4894 sq.km have been entirely covered during the Annual Action Plan of 2022-23.

**1.2 Approach and Methodology:** To achieve the objectives the following approach and methods have been adopted and stepwise details have been shown in the **Fig.1.1**.

- Data compilation
- Data gap analysis
- Data generation
- Preparation of block-wise aquifer maps and management plan

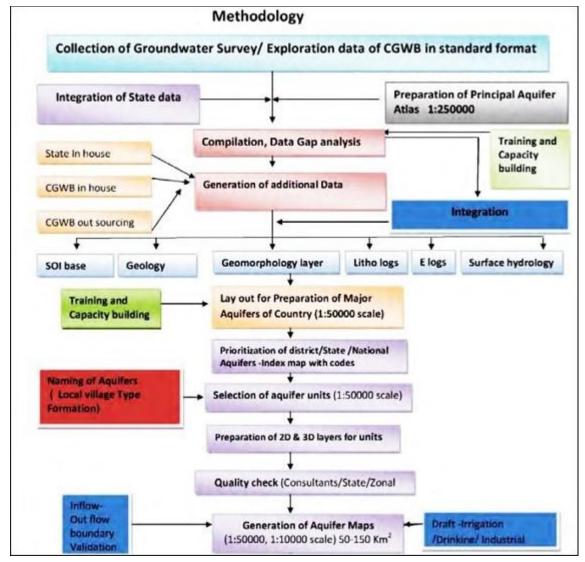
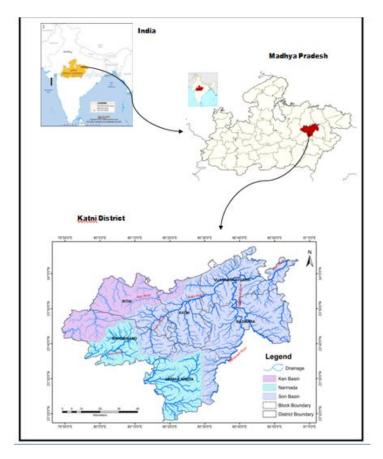



Fig.1.1: Approach and Methodology


# 1.3 Study area:


Entire Katni District having area of 4666 sq.km was selected for NAQUIM activities during the year 2022-23. The administrative map of the study area is presented in **Fig.1.3**. Katni is a newly formed district, situated in the eastern part of Madhya Pradesh. It came into existence by reorganization of Jabalpur districts in the year 2003. It is having 23.0% tribal population of the district. It is famous for its Cement & Lime Stone and & Fireclay industries.

Katni district in surrounded by Satna in north-east, Umaria in the east, Jabalpur & Damoh in the west & Panna in the north. The district lies between north latitude 23°59' and 24°75' and east longitude 79°57' and 80°59' falling in the Survey of India Toposheet No. 55M, 63D, 64A and 55N. The area of the district in 4504 sq. Km. It has been divided into four Tehsil and six blocks (**Table-1.1**). There are 911 villages and four towns in the district. The Index map of Katni district is in **Fig.1.2**.

According to the 2011 census Katni District has a population of 1,292,042, roughly equal to the nation of Estonia or the US state of New Hampshire. This gives it a ranking of 379<sup>th</sup> in India (out of a total of 640). The district has a population density of 261 inhabitants per square kilometre. Its population growth rate over the decade 2001-2011 was 21.38%. Katni has a sex ratio of 948 females for every 1000 males and a literacy rate of 73.62%. Scheduled Castes and Scheduled Tribes made up 12.05% and 24.59% of the population respectively. Kols are the largest tribal group which is 41% of the tribal population, while Gonds (34%) and Bharias (20%) are the other major tribes.

| S.no | Tehsil         | Block             | Area in Sq.Km | No. of towns |
|------|----------------|-------------------|---------------|--------------|
| -    |                | 1. Rithi          | 490.00        |              |
| 1.   | Mudwara        | 2. Katni          | 530.08        | 3            |
|      |                | 3. Badwara        | 812.63        |              |
| 2.   | Vijayraghogarh | 4. Vijayraghogarh | 668.74        | 1            |
| 3.   | Bahoriband     | 5. Bahoriband     | 933.25        |              |
| 4.   | Dhimarkheda    | 6. Dhimarkheda    | 784.59        |              |
|      | Total          | 6                 | 4504.11       | 4            |





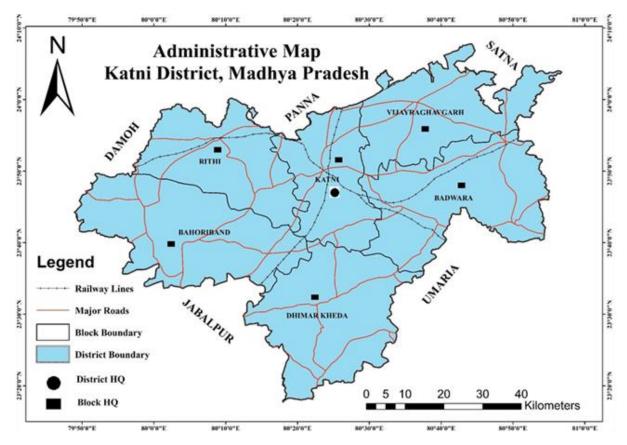



Fig.1.3: Administrative map, Katni District

#### 1.4 Climate and Rainfall

The climate of Katni district M.P. characterized by a summer and general dryness except during the south west monsoon season. The year may divide into four seasons. The cold season, December to February is followed by the hot season from March to about middle of June. The period from the middle of June to September is the south west monsoon season. October and November form the post monsoon or transition period. The nearest Observatory is Jabalpur. The climatological parameters of Jabalpur are used for analysis of rainfall. The average annual rainfall of Katni District is 1112 mm. Katni district received maximum rainfall during south west monsoon period i.e., June to September about 56.9% of the annual rainfall received during monsoon season. Only 13.1% of the annual rainfall takes place between October to May period as shown in the **Fig.1.4**. Surplus water for ground water recharge is available only during the south west monsoon period.

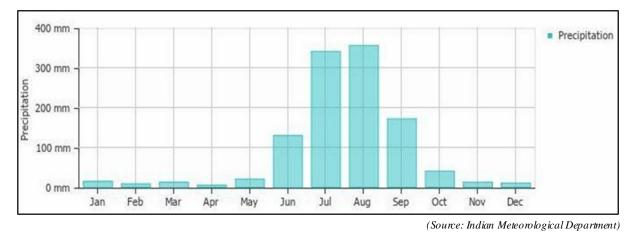



Fig.1.4 Rainfall distribution yearly

The normal maximum temperature received during the month of May is  $42^{\circ}C$  and minimum during the month of December / January is  $9^{\circ}C$ . The normal annual means maximum and minimum temperature of Katni district is  $32^{\circ}C \& 18^{\circ}C$  respectively with an average temperature of  $25.2^{\circ}C$  as shown in **Fig.1.5**.



Fig 1.5 Temperature variation yearly

During the south west monsoon season the relative humidity generally exceeds 88% (August month) in the rest of the year is driver. The driver part of the year is the summer season, when relative humidity's are less 31% May is the driest month of the year as it can be observed from the no. of rainy days as shown in **Fig.1.6**. Historical variation of rainfall (last 21 Years) as shown in **Fig.1.7**. The wind velocity is higher during the pre-monsoon period as compared to post monsoon period. The maximum wind velocity 8.2 km/hr observed during the month of June and minimum 2.6 km/hr during the month of December. The average normal annual wind velocity of Katni district is 4.9km/hr. Normal climatologically parameter of Katni district is given in **Table 1.2**.

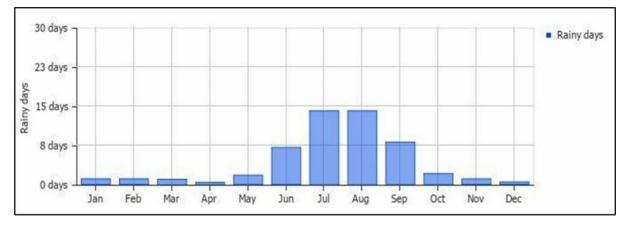



Fig. 1.6 Rainy days variation yearly

| Table 1.2: Normal climat | ologically parame | eter of Katni District |
|--------------------------|-------------------|------------------------|
|--------------------------|-------------------|------------------------|

| S.No. | Parame te r                     | Jan  | Feb  | Mar  | April | May  | Jun  | July | Aug  | Sept | Oct  | Nov  | Dec  | Annual |
|-------|---------------------------------|------|------|------|-------|------|------|------|------|------|------|------|------|--------|
| 1     | Maximum<br>Temperature<br>(°C)  | 26.2 | 29.4 | 34.5 | 39.3  | 42   | 38   | 31.1 | 29.8 | 31.4 | 32.3 | 29.9 | 26.7 | 32.6   |
| 2     | Minimum<br>Temperature<br>(°C)  | 9.7  | 12.1 | 16.6 | 21.9  | 26.4 | 26.6 | 24.2 | 23.7 | 23.3 | 7.92 | 13.1 | 9.7  | 18.9   |
| 3     | Relative<br>Temperature<br>(°C) | 64   | 58   | 43   | 33    | 31   | 59   | 85   | 88   | 82   | 70   | 65   | 70   | 63     |
| 4     | Wind<br>Velocity<br>(Km/hr)     | 3.2  | 3.7  | 4.3  | 5     | 6.3  | 8.2  | 7.2  | 6.9  | 5.4  | 3.5  | 2.7  | 2.6  | 4.9    |

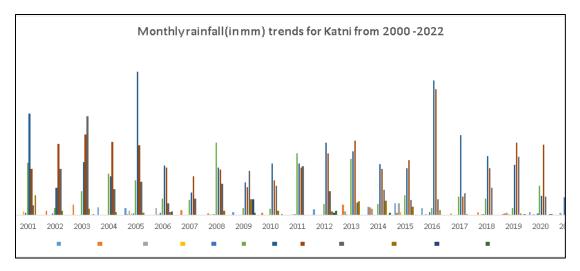



Fig 1.7 Historical variation of rainfall (last 21 Years)

# 1.5 Physiography/Digital Elevation Model

Katni district is endowed with the diverse physiography. The maximum elevation is 669 above mean sea level (amsl) which is recorded near southern part covering areas in Dhimarkheda and Badwara block and western part covering areas in Rithi and Bahoriband blocks. The Southern part of Bhimarkheda block covered by Malwa Plateau elevation ranging from 350 – 450m. The minimum elevation is recorded in the north-eastern part of the district. The major part of the district is having elevation having division as it can be observed from the fig below the north-eastern part of the is having average elevation of lower side ranging from 291m to 370m above mean sea level, while the elevation range on the south-western part of the district is on higher side ranging from 370m to 669m above mean sea level. The digital elevation Model (DEM) with drainage pattern is shown in the **Fig.1.8**.

# 1.6 Geomorphology

Katni district is predominantly hilly & forested. From geo-morphological point of view, the district consists of series of mountains ranger & rivers. It can be divided into three geo-morphological divisions.

- 1. Vindhyan plateau
- 2. Denudational slope & older flood plain
- 3. Structural hills & valleys of Bhitrigarh ranges.

In general, Katni district is characterised by hilly to undulating terrain with altitude ranging between 400 m & 700 m. amsl. The main high relief features of the area are the Bhander & Rampur ranger of Vindhyan Plateau. Which form the north western boundary of the district. North central part of the districts covered by denudation slope & older flood plain along the Katni river form west to east directory a proterozone works. The Bhitrigarh rangerun across the southern part of the district from south west to north east & represented by plateau, hills

& valley it consists of metamorphic rock. As per ITC classification system there are three groups of land form (a) Denudation, (b) Depositional & (c) Structural have been identified in the district. The geomorphology map of the district is shown in the **Fig.1.9**.

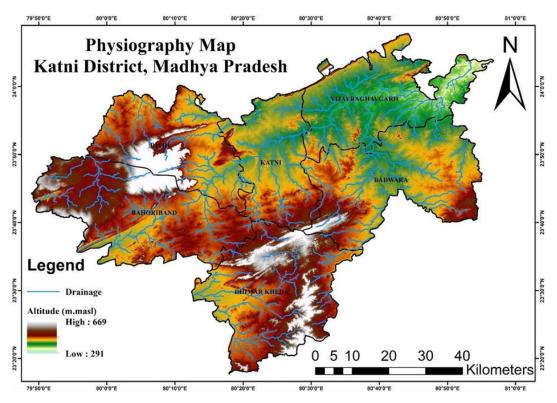



Fig 1.8 Digital Elevation map of Katni district

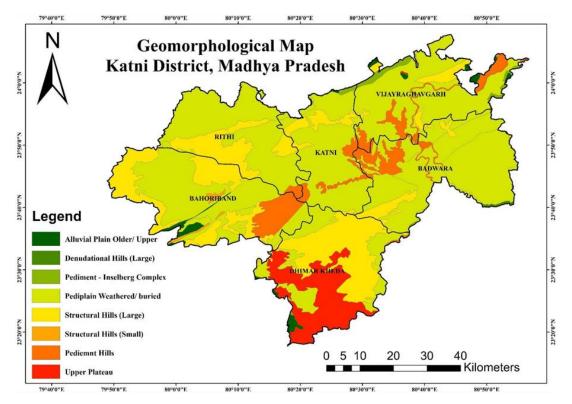



Fig 1.9 Geomorphology map of Katni District

# 1.7 Land Use, Agriculture, Irrigation and Cropping Pattern:

Land cover type is natural differentiation, which describes how much of an area is covered by forest, wetland, agriculture, impervious surface, and other land and water types. Land cover of an area can be determined by analysing satellite and aerial images. Land use shows how people use the landscape – whether for development, conservation, or mixed uses and therefore, cannot be determined by satellite or aerial remote sensing techniques.

In the study area district, the land cover map of the Katni district with toposheet Numbers 55M, 63 D, 64 A and 55 N were made using WMS server map images by Bhuvan portal of ISRO and further processing the data in QGIS software. Based on the type of use of the natural land system type, the land use pattern was determined and demarcated in the combined Land use Land Cover (LULC) map, which is shown in **Fig.1.10** and related legend in **Fig.1.11**. A perusal of the LULC map, based on the latest available database (2015 – 2016), shows that 14 different types of units can be categorized on the map. However, for sake of simplicity, these LULC classes are combined in the 5 five broader subdivisions, a brief description of which is given below:

**Cultivated land:** Cultivated land which is around 52% of the land use is visible almost all over the Katni as agriculture is the main occupation of the people.

**Barren land:** Such type of land, devoid of any vegetation, is exposed mostly in the central part of the district. The aerial extent of this land cover is not much, and it is predominantly associated with barren land having sandy areas and scrubland.

**Vegetation:** Thick, Moderate, and sparse vegetation are found to occur extensively in the study area. The thick vegetation type (dense forest cover) is by far the most extensive, followed successively by the moderate and sparse vegetation type, as observed from the LULC map. The vegetation covers around 51% of the total land use with evergreen and semigreen forest making up to 81% of the total vegetation cover, after deciduous forest making 18% of total forest cover and reaming are scrub forest and plantation forest.

**Built-up/settlement:** The settlements are very limited in aerial extent, except for the Katni block which is mostly an urban area as the district headquarters and other facilities are located nearby. The rural area is scattered with a limited aerial extent.

Water bodies and Pastureland: The Pasture land is closely associated with cattle grazing, covering limited land only 144.49 Square kilometres of the total land. The water bodies mostly including river streams and canals cover up to 46.64 square kilometres of the total area.

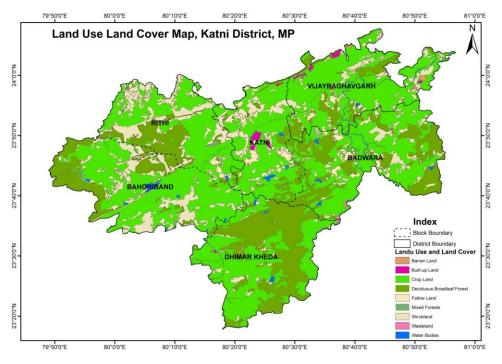



Fig 1.10 Land use and Landover map of Katni District

# Irrigation:

Irrigation facilities in Katni district are under development stage only 30% of net sown area is irrigated, and rest of the area in rain fed. Surface water irrigation in the district is in developing stage ground water is the main source of irrigation in the district out of total 594.49 sq.km. area, irrigated land is 320.15 sq.km. is irrigated from ground water sources, which in about 54.57% of total irrigation in the district. There are 921 table wells & 11008 dug wells is the district for irrigation. High SAR is not good for irrigation as it leads to Sodium Hazard. Water samples in the district generally fall in C1S1, C2S1 and C3S<sup>1</sup> classes of US Salinity diagram. However, ground water in the district general is sage for irrigation but proper drainage system is required where EC is more than 1500 us cm-1. A distribution table is given in **Table.1.4**.

Table.1.4: Irrigation distribution

| Irrigation by Different Sources | Number | Area(Ha) |  |
|---------------------------------|--------|----------|--|
| Dug wells                       | 11008  | 301      |  |
| TubeWells/Borewells             | 921    | 12       |  |
| Tanks/Ponds                     | 2581   | 07       |  |
| Canals                          | 144    | 128      |  |
| Other Sources                   | 1623   | 151      |  |
| Net Irrigated Area              | 492    |          |  |
| Gross Irrigated Area            | 592    |          |  |

#### 1.8 Soil :

Soil of the district may be classified according to their physical property, the crops grown and their position. The low-lying area is occupied by pale yellow, reddish brown & block soil. Pale yellow is occupying alluvium, reddish brown is occupying the upper Bhander sandstones & black soil is occupying the argillaceous Sirbu shale. All the agricultures fields are located over shales are covered by medium block soil & it occupying the argillaceous. Sirbu shale All the agriculture field are located over shales are covered by medium black soil it varies in the thickness from place to place from 1 to 4 m. In the north of Katni town the area. The soil map of Katni District is shown in the **Fig.1.13**.

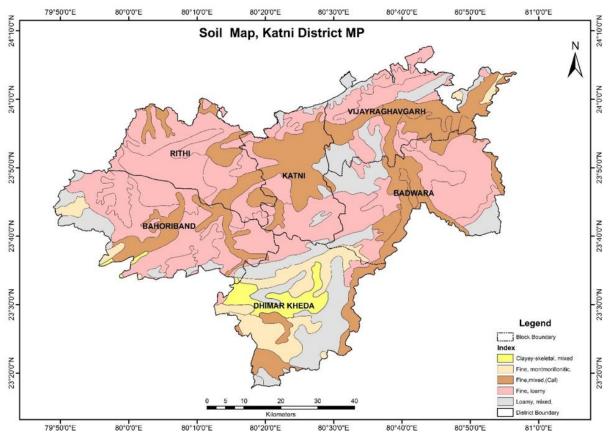



Fig.1.13: Soil Map of Katni district

#### 1.9 Geology:

The Katni District lies in Vindhyan Super Group which has been sub divided into four groups, viz. the Semri Group, the Kaimur Group, the Rewa Group and the Bhander Group. Traditionally the Semri Group is considered to represent the Lower Vindhyan while the Kaimur, Rewa and Bhander groups constitute the Upper Vindhyan. The Semri Group has been further subdivided into four formations, viz. the Basal Formation, the Porcellanite Formation, the Kheinjua Formation and Rohtas Formation. The Rohtas Formation is dominantly made up of limestone and shale. In the Katni area, only two stratigraphic horizons of the Vindhyan Supergroup are developed. The lower is the Rohtas Formation which is

under lain by the older metamorphic rocks. The Rohtas Formation is unconformably overlain by the sandstones of the Kaimur Group. However, in the northern face of a hillock near Tikaria, about 2 km southwest of the Katni railway station from where the fossils have been recovered, Rohtas Formation is capped by a thick lateritic horizon. The Rohtas Formation is represented by a thick unit of black to greyish-black micritic limestone which grades upwards into a calc-argillaceous sequence with ash-grey shale intercalating with dark-grey limestone. The fossil-bearing horizon is about 5 m thick and forms a very weak hill slope because of the dominance of shale intercalations and the fissile nature of the rock. The fossils have been recovered by splitting the shales and limestones along the bedding plane. The rocks dip about 15°WNW. Parallel lamination is the dominant bedding of the fossil-bearing horizon. The other sedimentary structures are lenticular and flaser bedding, wavy bedding, small-scale cross-lamination, ripple marks, wrinkle marks and mud cracks. These structures suggest that the fossil-bearing horizon represents a low-energy tidal fiat environment. The geological map of the Katni districtis shown in **Fig.1.14**.

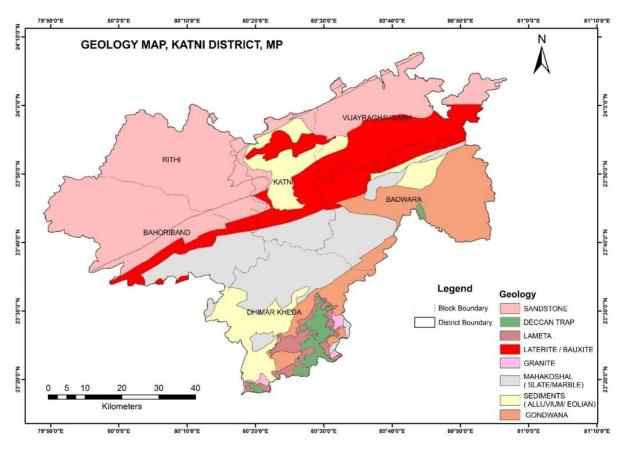



Fig.1.14: Geological Map of Katni district

# **General Geological Succession**

The stratigraphic sequence of various geological units with their respective rock types are described below in **Table.1.5** 

| Age                              | Formation                       |                  | Lithology                                                                                                       |  |  |
|----------------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Recent                           |                                 | Soil/Alluvium    |                                                                                                                 |  |  |
| -Sub recent                      |                                 | Laterite/Bauxite |                                                                                                                 |  |  |
| Upper cretaceous to<br>Paleocene | Deccan Trap                     |                  | Basaltic flows                                                                                                  |  |  |
| Cretaceous                       | Lametas Group                   | )                | SandStone                                                                                                       |  |  |
| Cretaceous to carboniferous      | Gondwana supe<br>(Jabalpur Grou | 0 1              | Sandstone, clay                                                                                                 |  |  |
|                                  | Unconformity                    |                  |                                                                                                                 |  |  |
|                                  |                                 | Bhander group    | Shale and Sandstone                                                                                             |  |  |
|                                  | Upper<br>Vindhyan               | Rewa group       | Shale and sandstone                                                                                             |  |  |
| Neoproterozoic                   |                                 | Kaimur group     | Shale and sandstone                                                                                             |  |  |
| Mesoproterozoic                  | soproterozoic Lower Semri group |                  | Shale,Porcellanite<br>Quartzite,limestone,shale<br>quartzite                                                    |  |  |
| Faulted co                       | ontact                          |                  |                                                                                                                 |  |  |
| Intrusive                        |                                 |                  | Basic dykes, quartz vein and<br>reef,quartz porphyry,<br>syenite                                                |  |  |
| Intrusivecontact                 |                                 |                  |                                                                                                                 |  |  |
| Paleo proterozoic                | Mahakoshal Group                |                  | Meta lava<br>Quartzite,conglomerate,Phyll<br>ite and slate bands Dolomitic<br>/limestone/Dolomitic<br>limestone |  |  |

# Table.1.5: STRATIGRAPHIC SUCCESSION OF KATNI DISTRICT

The oldest group of rocks comprising of Achaeans and Proterozoic formation constitute nearly 45% area of the State. The next younger formation of Carboniferous to lower Cretaceous comprising Gondwana Super Group covers 10% area while the formation of Cretaceous to Paleocene comprising mostly of Deccan Trap basalt constitutes 38% area of the State. The ENE-WSW trending volcanic sedimentary sequence of Mahakoshal group consisting of metavolcanic rocks, chemical precipitates and forbidts is exposed in the southern part. Vindhyan super group represented by Semri, Kaimur, Rewa & Bhander groups consisting of sand stone, shales, limestones, Porcellanite & sand stone with glauconite partings occupy northern plateau and forms escarpment. Extensive laterite profile has developed over rocks of Vindhyan and Gondwana. Sporadic occurrence of laterite is reported over Mahakoshal rocks. Quaternary sediments mainly comprise clay and calcareous concretions.

Tight folding of the Mahakoshals, intense deformation of the Vindhyan along the contact with Mahakoshals and an overall broad shallow synclinal structure of the Vindhyan are the main structural feature of the area. The contact between the Mahakoshal and the Vindhyan is faulted all along. A number of minor faults and micro linear veins trending NNW-SSE to NW- SE have been identified.

According to the District Resource Map, Geological Survey of India classification of different formations exposed in these areas with their order as super imposition is as under:

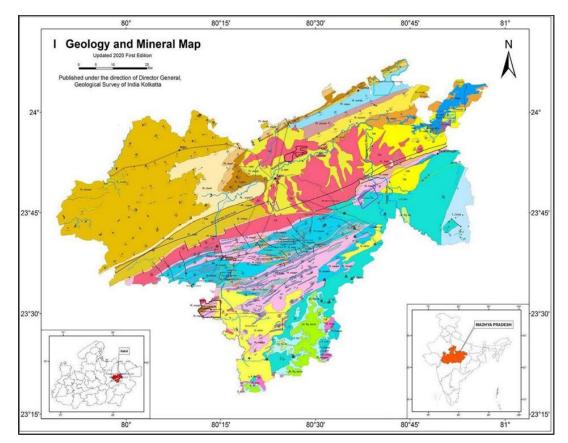



Fig.1.15: Geology and Mineral Map of Katni district

|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Le                        | ge                       | na          |                                                                                                                 |     |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|-----|
| type<br>Legend                     | L'Hysidgen Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Formation                 | Group                    | Supergroup  | Age                                                                                                             |     |
| Q <sub>2</sub> nars                | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ramnagar                  | free or conservation and | oupergroup  | Holocene                                                                                                        |     |
| Q, nahsi                           | Silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hirdepur                  | Narmada Alluvium         |             | Pleistocene                                                                                                     |     |
| Qal                                | Alluvium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                          |             | Quaternary                                                                                                      |     |
| Cel                                | Laterite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                          |             | Cenozoic                                                                                                        |     |
| N <sub>12</sub> ksst               | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Katni                     |                          |             | Mio-Pliocene                                                                                                    |     |
| ßK-Pg.db                           | Basalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000                     |                          | ř.          |                                                                                                                 |     |
| (K,Rg,dadd                         | Dolerite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                          |             |                                                                                                                 |     |
| pK, Pg, damd                       | Basalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mandia                    | Amarkantak               | Deccan Trap | Upper Cretaceous to<br>Palaeocene                                                                               |     |
| jiK <sub>2</sub> Pg, da            | Basalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unclassified Basalt flows |                          |             |                                                                                                                 |     |
|                                    | Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chicasonica casar nowa    | Lameta                   | 5 C         | Upper Cretaceous                                                                                                |     |
| K <sub>2</sub> list                | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jabalpur                  | Carrieta                 |             | The second se |     |
| J <sub>2</sub> K <sub>1</sub> just | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Upper Gondwana           | Gondwana    | Late Jurassic to Early<br>Cretaceous                                                                            |     |
| T <sub>3</sub> J, bast             | and the second se | Bandhogarh                |                          |             | 010100000                                                                                                       |     |
| Pt <sub>2</sub> vbmsh              | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maihar                    |                          |             |                                                                                                                 |     |
| Pt <sub>5</sub> vbmsst             | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                         | Bhander                  |             | Neoproterozoic                                                                                                  |     |
| Pt <sub>3</sub> vbssh              | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sirbu                     |                          |             | no sector mediale for the distribution                                                                          |     |
| Pt <sub>2</sub> vbgsh              | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ganurgarh                 |                          |             |                                                                                                                 |     |
| Ptosvrgsat                         | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Govindgarh                | Rewa                     |             | Meso to Neoproterozoic                                                                                          |     |
| Pt <sub>25</sub> vrjsh             | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jhiri                     |                          |             |                                                                                                                 |     |
| Pt <sub>2</sub> vkdhsst            | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dhandraul                 | Kaimur                   |             |                                                                                                                 |     |
| Pt <sub>2</sub> vsspo              | Porcellanite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Suket                     |                          |             |                                                                                                                 |     |
| Pt <sub>3</sub> vsssh              | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                          | Vindhyan    |                                                                                                                 |     |
| Pt <sub>j</sub> varhist            | Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rohtasgarh                |                          | - manyan    |                                                                                                                 |     |
| Pl <sub>2</sub> vermsh             | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rampur                    |                          |             |                                                                                                                 |     |
| Pt <sub>i</sub> vscrist            | Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chorhat                   |                          |             | Mesoproterozoic                                                                                                 |     |
| Pt <sub>2</sub> vscrsst            | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chomat                    | Semri                    |             | Mesoproterozoic                                                                                                 |     |
| Pt <sub>2</sub> vskjah             | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Khenjua                   |                          |             |                                                                                                                 |     |
| Pt <sub>2</sub> vschpo             | Porcellanite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chopan                    |                          |             |                                                                                                                 |     |
| Pt <sub>2</sub> vskrist            | Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kajrahat                  |                          |             |                                                                                                                 |     |
| Pt,vsash                           | Shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arangi                    |                          |             |                                                                                                                 |     |
| Pt <sub>2</sub> vsdsst             | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Deoland                   |                          |             |                                                                                                                 |     |
| yPt, mmg                           | Granite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Madan Mahal Granite       |                          |             | 1                                                                                                               |     |
| -                                  | Vein quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                          |             |                                                                                                                 |     |
| Ptymaqp                            | Quartz porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                          |             |                                                                                                                 |     |
| Timaop                             | Epidiorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                          |             |                                                                                                                 |     |
| mPt, mac                           | Carbonatite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                          |             |                                                                                                                 |     |
| Pt, maac                           | Conglomerate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                          |             |                                                                                                                 |     |
| -tPt(max                           | Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                          |             |                                                                                                                 |     |
| Pt, maamb                          | Metabasit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Agori                     | Mahakoshal               |             | Palaeoproterozoic                                                                                               |     |
| Pt, maaph                          | Phyllite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                          |             |                                                                                                                 |     |
| Pt, measch                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                          |             |                                                                                                                 |     |
| Pt, maacb                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                          |             |                                                                                                                 |     |
| Pt. maado                          | Dolomite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                          |             |                                                                                                                 |     |
| Pt, maaq                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                          |             |                                                                                                                 |     |
| Pt, meablf                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                          |             |                                                                                                                 |     |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                         |                          | 23          |                                                                                                                 |     |
| ructura                            | I and Mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ral symbols 💽             | Bauxite 🗢                | Limestone   | Inferred Lithocontact District Hea                                                                              | daw |
| Bedding                            | † Palaeocurr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rent &                    | Clay +                   | Ochre       |                                                                                                                 |     |
| + Foliation                        | Plunge of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | minor fold                | Dolomite 💢               | Scheelite   | Map boundaries • Major town                                                                                     |     |
| =                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | -                        | 1           | *···· Shear zone River                                                                                          | non |
| 1 Joint                            | Vertical Joi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | int LU                    | Glass sand               |             | Fault Railway                                                                                                   |     |
| Ag, Cu, Au                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Base metal Copy           | per, Gold Flu            | orite Iron  | Boad                                                                                                            |     |
| Base Matel                         | and Bauxite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper Dolo               | mite Go                  | ld Limes    | Fault Inferred                                                                                                  |     |
| Dase Metal                         | and bauxing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper Dolo               | Go                       |             | Fault Observed                                                                                                  |     |
|                                    | int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                          | PGE         | and Gold Ban Sagar                                                                                              | Res |

Fig.1.16: Legend of Geology and Mineral Map of Katni district

The following minerals are found in various Tehsil of Katni.

• Murwara: Limestone, Dolomite, Bauxite, Laterite, Clay and Fireclay etc. are the main minerals found in Murwara Tehsil.

- Vijayraghavgarh: Limestone, Dolomite, Fireclay, Sand and Laterite are the main minerals found in this Tehsil.
- Bahoriband: Dolomite, Bauxite, Laterite, Fireclay. Red Ochre and marble are the main minerals found in this Tehsil.
- Dhimarkheda: Limestone, Dolomite, Bauxite, Laterite, Fireclay, iron ore, Manganese, Soapstone, Quartz, Red Ochre and Sand are the main minerals found in this Tehsil.
- Rithi- Flag Stone.
- Barhi–White Clay, Sand and Stone Quarry.
- Badwara-LimeStone, Dolomite, Quartz, Soapstone, Laterite, Marble and Sand.

# 1.10 Hydrology and Drainage:

Katni district falls under two river basins i.e., Ganga & partly in Narmada basin. About 82 % area of the district is drained by the Ganga basin. The Chhoti Mahanadi, Katni & Ken rivers are the major rivers of this basin. Ken river flows towards north and confluences with Yamuna River. Katni river flow easterly & confluences with Chhoti Mahanadi near Hantola village of Chhoti Mahanadi takes turn towards east & ultimately confluence with Son River of Ganga basin. The drainage and River map of the Katni district is shown in **Fig.1.17** and **Fig.1.18**.

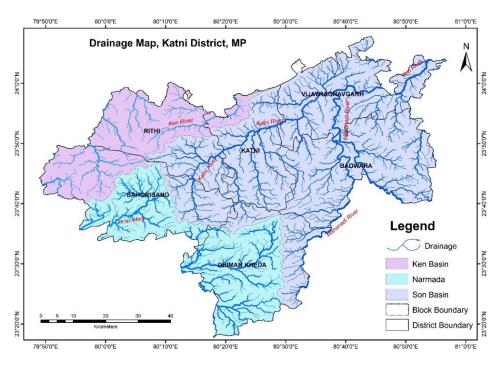



Fig.1.17: Drainage Map of Katni district

District Katni is drained by many rivers and its tributaries in which sand mining occurs like Choti Mahanadi, Son River, Umrer Nadi and Halphal Nadi etc.

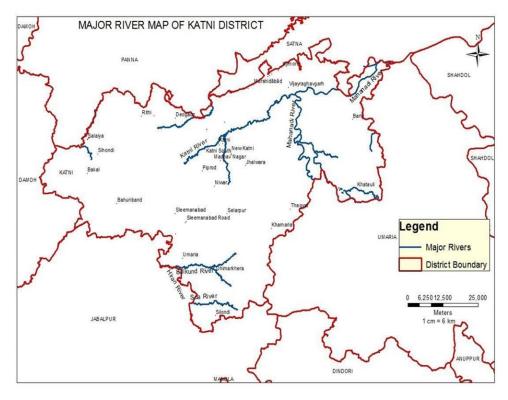



Fig 1.18: River Map of Katni district

**Son River:** The Son originates near Amarkantak in Madhya Pradesh just east of the headwater of the Narmada River, and flows north-northwest through Madhya Pradesh state before turning sharply eastward where it encounters the southwest-northeast- running Kaimur Range. Geologically, the lower valley of the Son is an extension of the Narmada Valley, and the Kaimur Range an extension of the Vindhya Range. The Son River at 784 kilometers long is one of the largest rivers of India. Its chief tributaries are the Tons, Choti Mahanadi, Rihand and the North Koel. The Son has a steep gradient (35– 55 cm per km) with quick run-off and ephemeral regimes, becoming a roaring river with the rain-waters in the catchment area but turning quickly into a fordable stream.

Dams: The first dam on the Son was built in 1873–74 at Dehri. The Indrapuri Barrage was constructed, 8 kilometers (5 mi) upstream, and commissioned in 1968. The Bansagar Dam in Madhya Pradesh was commissioned in 2008.

**Katni River:** The River Katni originates in the Katni District of Madhya Pradesh and flows from this region to Piprod and Mawai in the West. It also flows through the region of Vijayraghavgarh and Doli in the North east. However, in the West it is seen as flowing into the regions of Dukriya, Ruhniya and in some places of the region of Kua. From Ruhniya it comes southwards and is seen flowing in the regions of Pipariya and the major town of Dhimarpura. The river flows from the regions close to Panna in the north till Bakal in the west. This River is not that well known but is an important river in the state of Madhya Pradesh. The river Katni helps in irrigation and maintain fertility of the agricultural lands, it helps in the generation of electricity and is also useful for trading purposes. The river Katni originates in largest producers of lime in Madhya Pradesh as well as it is rich in resources like bauxite, iron ore.

**Choti Mahanadi:** A large size capacity "Dub Sagar Dam"is constructed where Choti Mahanadi turns and meets in Son River. Mahanadi enters in Umaria district near Gura Kalan. It flows down ward direction. Further near Ganeshpur river enters into Katni District where elevation of river 379 m. After crossing Ganeshpur village Choti Mahanadi flows through villages like Sakrigarh, Bansari, Suddi, Rajarwara, Ghanaur, Barhati, Barua and turns easterly near its confluence with dub Sagar dam and merge in Son River at that point. Thus, in the downstream, it carries huge load of sand (originates after weathering of sedimentary rocks and recent formations). But initially, the sandy matter is less.

**Umrer Nadi:** This is another river in district Katni in which availability of sand or gravel or aggregate resources are present. It originates near Darauri  $(23^0 51^{\circ} \text{ N} - 80^0 38^{\circ} \text{ E})$  near SE Direction in district. It takes south easterly course for about 20km through basaltic terrain and turns towards south and flow to Umaria district through salaiya khurd-imaliya in zigzag course. From this point it takes a South direction in Umaria district. It is a rich source of sands and other associated aggregates as after entering into Umaria District. Moreover, due to lithology of the course, the quality of sand is also good. A large tract of this river is utmost suitable for sand mining. Many of the sand quarries operated by the MP State Mining Corporations Ltd. are in this tract.

**Halphal Nadi:** It originates near Kumharwara in Katni district. It runs towards easterly through Chhindahaipipariya village initially and then further flows up toNadawan in Katni district than enters Umaria district. The total length of Halphal Nadi is approx. 15 km up to Nadawan.

# CHAPTER-2

# **DATA COLLECTION AND GENERATION**

#### 2.1 Data Collection and Compilation

The primary data such as well locations, discharge, water quality, and lithological unit inputs were available with CGWB, NCCR, Bhopal and utilized as baseline data. However, the ancillary data such as irrigation facilities, rainfall, climate data, Land use and land cover data, etc., have been collected from various sources like the National Bureau of Soil Survey and Land Use Planning, Geological Survey of India, BHUVAN (ISRO) and various state govt. departments and other internet sources and complied.

The data collection and compilation for various components were carried out as given below:

**Hydrogeological data:** Current and historical (last 5-6 years) water level data of 19 NHS wells and 77 key wells (established) available for Katni district from the Central Groundwater board Bhopal.

**Hydro chemical data:** Water quality data from 99 wells of pre-monsoon has been collected and compiled.

**Exploratory drilling:** Groundwater exploration data of 16 existing exploratory wells complied.

Geophysical data: TEM were conducted in the study area.

**Hydrology data:** Data on various irrigation projects, their utilization status, and area irrigated from the irrigation department.

**Hydro meteorological data:** Long-term rainfall data from IMD and WRIS and Katni district reports were compiled.

**Land use and Land cover data:** It is retrieved from the BHUVAN platform of the Indian Space Research Organization and compiled and processed using GIS software.

**Cropping Pattern data:** Data on prevailing cropping patterns from District statistical dairy and agriculture department were compiled.

#### 2.2 Data availability and data gap analysis

After taking into consideration, the data available with CGWB on Groundwater exploration, geophysical survey, water level monitoring, and water quality, the data were compiled. The requirement, availability, and gap of major data inputs i.e., exploratory wells, geophysical data, and water quality data are detailed in **Table.2.1**.

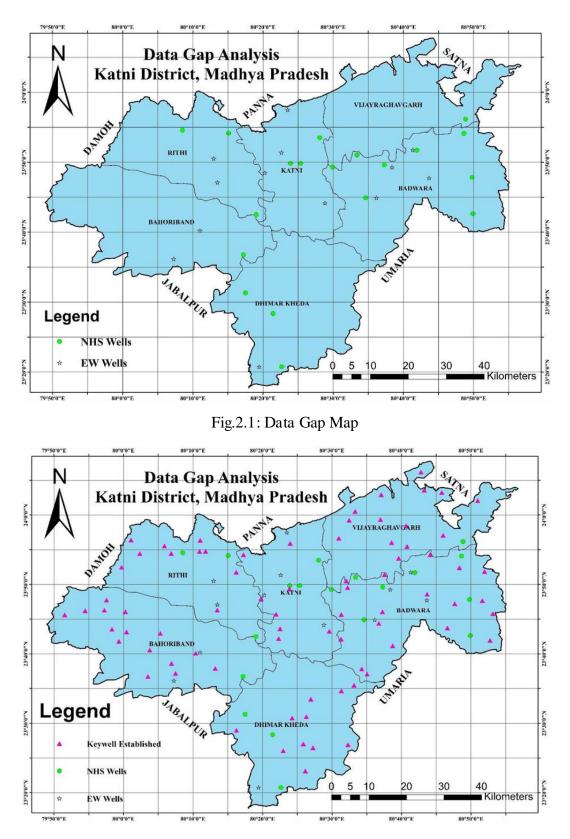



Fig.2.2: Key wells, NHS wells and EW location map with Data Gap analysis

| S. No | Items            | Data Requirement                                                                       | Data Availability                                            | Data Gap                                                         |  |
|-------|------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--|
| 1     | Climate          | Season-wise Rainfall<br>pattern                                                        | Annual Rainfall of<br>Meteorological Stations                | Time series data<br>Rainfall                                     |  |
| 2     | Soil             | Soil map and Soil infiltration rate                                                    | Soil Map                                                     | Soil infiltration rate                                           |  |
| 3     | Land Use         | Latest Land use pattern                                                                | Till 2015-16                                                 | Land use and data map.<br>The latest updated data<br>required    |  |
| 4     | Geomorphology    | Detailed information on the<br>geomorphology of<br>the area                            | Satellite data available                                     | District-level in formation<br>on 1:50000                        |  |
| 5     | Geophysics       | Geophysical data of the study area                                                     | TEM                                                          | -                                                                |  |
| 6     | Geology          | Detailed information on the geology of the area                                        | Quadrangle map<br>available                                  | The map on 1:50000 to be provided by CHQ                         |  |
| 7     | Exploration data | Detailed information on the subsurface of the area                                     | 18 EW Data Available                                         | Exploratory wells are required                                   |  |
| 8     | Hydrogeology     | Water Level                                                                            | Water level from 19<br>NHS wells and 77 Keys<br>is available | No Data Gap                                                      |  |
| 9     | Water Quality    | Water quality and its suitability<br>for Drinking, Irrigation &<br>Industrial purposes | Data available for NHS<br>and Key wells<br>extablished       | Aquifer wise Groundwater<br>quality data need to be<br>collected |  |

# Table.2.1: Data gap Analysis

Based on the data gap analysis, it indicates that the existing groundwater data are adequate to represent the area. Existing Exploratory wells data is not adequate for a better understanding of its behavior in terms of subsurface geology. Geophysical studies is required for better understanding of the sub surface data. Therefore, there is a need to increase the density of exploratory wells in the study area. The details of the location are given in **Annexure II**.

# 2.3 Ground Water Exploration

CGWB had drilled 13 exploratory wells (1997-2001) and 05 exploratory wells (2022-23) in the district. Hydrogeological data of exploratory wells drilled in the district is given in Annexure-I. From the perusal of Annexure-I reveals that, yield of Gondwana formations vary from 4.7 lps to 15.71 lps & drawdown ranges between 3.57 m to 8.44 m. The yield of Archean is between 2.66 of 3.0 lps for drawdown of 40.85 m. The yield of exploratory wells located in Vindhyan are showing merger discharger to 5.5 lps at Gulwara.

The Katni formation showing the yield between 3.5 lps and 14.67 lps for draw down between 21.48 m & 37.64 m. The exploration in cavernous limestone done at Kuan the yield was found 18 lps for 4 m draw down only. Aquifer tapping in shale formation have poor yield ranging from 1.5 lps to 5.5 lps.

# 2.4 Ground Water Monitoring Wells

Central ground water board has been carrying out water level monitoring through ground water monitoring wells since last two decades. The water levels of the monitoring wells are being monitored four times in a year during the month January, May, August and November. CGWB has established 14 Dug wells and 03 Piezometers for water level monitoring purpose. The locations of monitoring wells are shown in **Fig.2.3**.

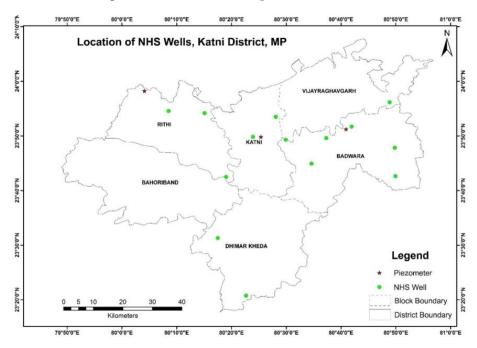



Fig.2.3 Location of NHS monitoring points in Katni District

# 2.5 Thematic Layers

The following 5 thematic layers were also generated on GIS platform which supported the primary database and provided precise information to assess the present ground water scenario and also to propose the future management plan.

- Drainage and River
- 📥 Soil
- ↓ Land Use Land Cover
- Geology and Structure
- Physiography

The thematic layers such as geology, drainage, soil, land use-land cover have been described in Chapter - 1.

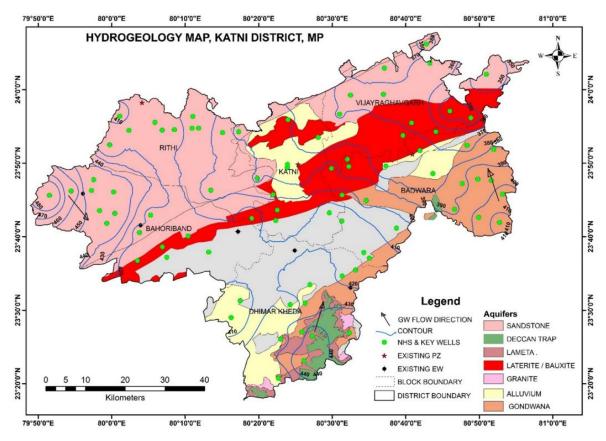
# **CHAPTER-3**

# **DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING**

## 3.1 Hydrogeology

Katni district is underlain by various geological formations, forming different types of aquifers in the area. Main geological units of the area are, Archaean, Mahakoshals, Vindhayan Super group, Gondwana super group, Lametas, Deccan traps, Katni formation, Laterites and alluvium. Occurrence and movement of ground water in hard rocks is mainly controlled by secondary porosity in Gondwana Sandstone & Vesicular Basalts in Deccan traps play an important role in ground water movement. Lameta are also forming potential aquifers made up of relatively loose and friable shale & sandstone. Ground water in general occurs under unconfined to semi-confined conditions. The occurrence and movement of ground water in different geological formation is described below. The hydrogeological map of the Katni district is shown in **Fig.3.1**.

#### Mahakoshal group (Archaean):


There rocks consisting of quartzite, shale, slate & marble are hard, compact, recrystallized and have no primary porosity & form poor aquifer: However, limestone at places have solution cavity resulting into very high secondary porosity & permeability can yield 18 lps. water in wells. There formations are found in southern part of the district in Dhimarkheda block the open wells existing in their formations can yield moderate quantity of ground water. The yield depends upon the saturated thickness of weathered mantle overlying the massive rock. The open wells have depth range between 9 to 15 mbgl. Generally, column of water available during pre-monsoon season varies from 2 to 4 m. the general yield potential of Archaean formations in less than 3 lps.

# Vindhyan:

There are mostly sandstones and are devoid of primary porosity. However, due to weathering, fracturing & jointing the top position of formation behave as phreatic aquifer due to development of secondary porosity. There is poor yielding formation for the ground water point of view both in phreatic & deep aquifer zone. There formations occupied the northern part of the district in form of Kaimur ranger from west to east covering major parts of Rithi, Bahoriband & Vijayraghavgarh block. The depth of open wells exists in this formation ranges from 8 to 15 mbgl. The general yield potential of Vindhyan formation is less than 3 lps.

#### Gondwana:

There are sedimentary formation and are rich in granular zones forming moderately potential aquifers. Gondwana sand stone. Support both tube wells & dug wells and capable of yielding



up to 5 to 16 lps of water for moderate drawdown of 4 to 8 m. There formation is occupying eastern parts of the district in Badwara & Katni blocks & underlain by older alluvium.

Fig.3.1: Hydrogeological Map of Katni district

# Lameta bed:

This group consists of limestone, sand stone & days and lie unconformably on the older rock formations & are found usually underlying Deccan traps. There formations occupying southern part of the district in Dhimarkheda block in a narrow strip in the area. There beds are sandy containing chart, Jasper, pebble result being a calcareous grit rather than limestone & having thickness of about 8 to 15 m. and can yield poor to moderate discharge. Lameta, Gondwana contact can be explored for moderately potential aquifers.

#### **Deccan Traps:**

Deccan traps are very limited in the area in parts of Dhimarkheda block. the weathered, jointed, fractured & vesicular units of basalt form moderately potential aquifer. These formations have highly variable yield, being higher in dug wells ranging from 2 to 7 lps & generally increase with the depth.

# Katni formation

These are horizontally disposed sequence belonging to Jabalpur bed of Gondwana super group with thickness varying between 13 to 52 m. It consists of thin veneer of ferruginous sediments and its base is conglomerate/pebbly ferruginous quarts wake with bauxite. This formation is exposed above 380 m. amsl over the entire Katni valley. The exploratory box wells in this formation have discharge from 3.5 to 7 lps. for 7.50 to 23 m. of draw down.

# Laterite:

It is most abundant in block of Katni area & transferred pebbles of these laterites are seam at the base of Katni formation over the Jabalpur beds. This formation has poor to moderate field ranging from 3 to 4 lps.

# Alluvium:

The alluvial deposits are confined mostly along and around the river courses in the Dhimarkheda & Bahoriband blocks along Balkund & Suhar rivers. This is about 10 to 12 m. thick & has very good ground water potential zones which can field up to 10 lps of discharge of ground water.

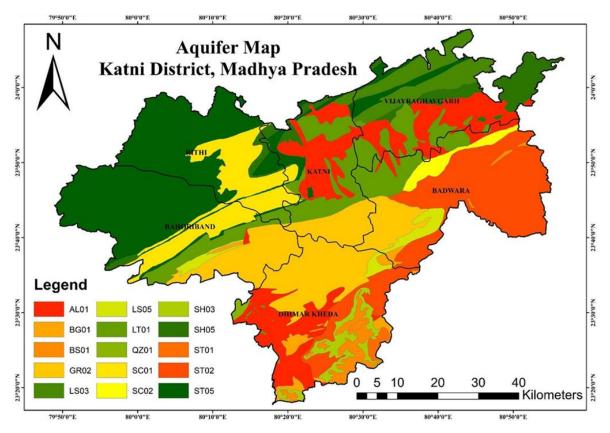



Fig.3.2 Aquifer map of Katni district

# 3.2 Ground Water Level Scenario

The present depth to water level scenario of aquifer was generated by utilizing water level data of 99 monitoring wells representing shallow aquifer.

## 3.2.1 Pre-Monsoon (May, 2022)

The **pre-monsoon** depth to water levels during May 2022 ranged between 2.5 mbgl (Gulwaram village) to 14.72 mbgl (Rohaniya village). The water levels more than 8 mbgl are observed in major (north eastern and south eastern) part and the water levels of less than 9 mbgl are observed in southern and western parts of the district. The pre-monsoon water level data is presented as Table 6, whereas depth to water level map is given in **Fig.3.3** 

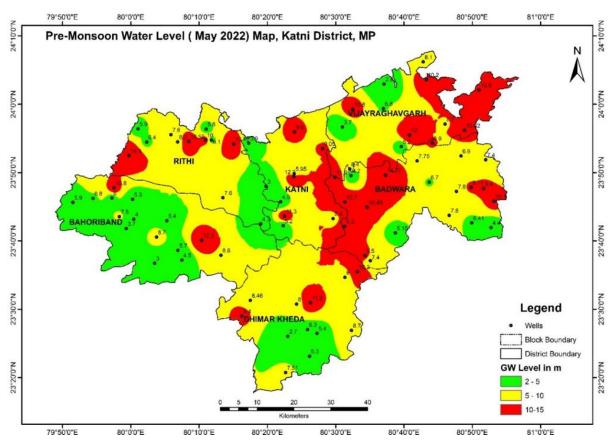



Fig.3.3: Depth to Water Level Map of Katni District (Pre-monsoon)

# 3.2.2 Post-Monsoon (November, 2022)

The **post-monsoon** depth to water levels during November 2022 ranged between 0.20 m - 9.76 m. The water levels more than 8 mbgl are observed in major (north eastern and south eastern) part and the water levels of less than 9 mbgl are observed in southern and western parts of the district. The pre-monsoon water level data is presented as Annexure-III, whereas depth to water level map is given in **Fig.3.4**.

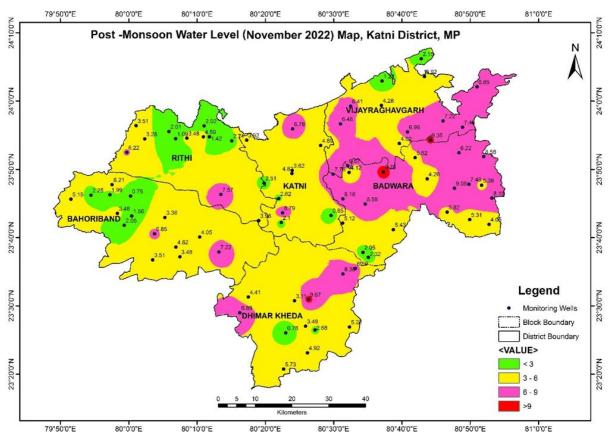



Fig.3.4: Depth to Water Level Map of Katni District (Post monsoon)

#### 3.2.3 Water level Fluctuation

The water level measured during pre and post monsoon period (2022) was used to compute the seasonal fluctuation. The analysis of water level fluctuation data indicated that minimum water level fluctuation was 0.4 mbgl while maximum water level fluctuation was observed 6.4mbgl. The water level fluctuations were grouped under three categories i.e., less, moderate and high and the % of wells in each category was analysed (**Table.3.1**)

| S. No. | Category                         | Fluctuation Range | % of Wells |
|--------|----------------------------------|-------------------|------------|
| 1.     | Less water level fluctuation     | 0 to 2 m          | 33%        |
| 2.     | Moderate water level fluctuation | 2 to 5 m          | 42%        |
| 3.     | High water level fluctuation     | >5 m              | 25%        |

Table.3.1: Analysis of Water Level Fluctuation.

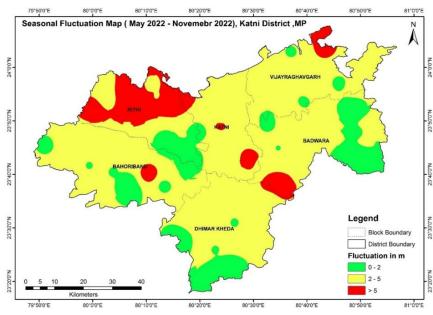



Fig.3.5 Seasonal Water Level Fluctuation map of Katni District

The analysis indicates that majority of the wells (42%) are falling in moderate fluctuation range indicating aquifer storage is good, whereas high fluctuation range were observed equal no of (25%) wells and low water level fluctuation were observed equal no of (33%) wells. The seasonal fluctuation map is presented as **Fig.3.5**.

# 3.2.4 Long Water Level Trend (2013-22)

In order to study long term behavior of the water levels and also the effect of various developmental activities with time, the data for the period 2013-22 have been computed and analyzed.

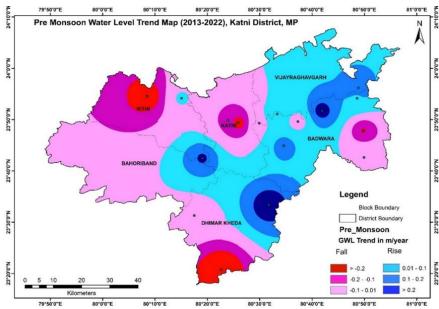



Fig.3.6 Pre-Monsoon GW level trend map (May 2013-May 2022)

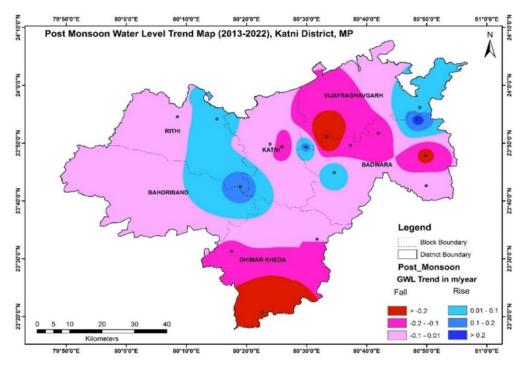



Fig.3.7 Post-Monsoon GW level trend map (Nov 2013-Nov 2022)

The decadal pre-monsoon water level trend analysis (**Fig.3.6**) indicates that during premonsoon period, 54% of the district are showing rising trend. Rest few parts of the district is showing falling trend. The decadal post-monsoon water level trend analysis (**Fig.3.7**) indicates that central, SE and SW area showing declining trend. Maximum falling trend is ranged between -0.01 to -0.2 m/yr.

#### **3.3** Hydro Chemical Study (Ground Water Quality)

The suitability of ground water for drinking/irrigation/industrial purposes is determined keeping in view the effects of various chemical constituents present in water on the growth of human being, animals, and various plants and also on industrial requirement. Though many ions are very essential for the growth of plants and human body but when present in excess, have an adverse effect on health and growth.

#### Hydro-chemical scenario of Katni District

The water samples were collected from NAQUIM study in clean double stopper HDPE poly ethylene bottles from 77 nos. different locations for cation and anion analysis and 18 nos. of ground water for heavy/ trace metal analysis of Katni district during pre-monsoon 2022. During post-monsoon 2022, 19 nos. of ground water samples collected for cation and anion analysis.

#### **Quality of Ground Water for Drinking Purpose:**

The ground water samples from Katni district have varied range of pH from 6.94 to 7.96. As per BIS(IS 10500: 2012) recommendation, all the water samples have pH recorded within the permissible limits of 6.5 to 8.5, the maximum pH recorded in the water sample of Deori Phatak (7.96). The ground water of the study area can be assessed as neutral to slightly alkaline in nature. The electrical conductivity of ground water samples in Katni district varies from 248 to 3628 µS/cm at 25°C. In the 70 nos. of ground water samples recorded electrical conductivity less than 1000 µS/cm; 10 nos. of water samples recorded electrical conductivity in between 1000 to 1500 µS/cm at 25°C; 4 nos. of water samples recorded electrical conductivity in between 1500 to 2000 to 3000 µS/cm at 25°C; 2 nos. of water samples recorded electrical conductivity more than 2000 µS/cm at 25°C namely Banson (2205 µS/cm at 25°C) and Badapar (2345 µS/cm at 25°C) whereas 2 nos. of water samples recorded electrical conductivity more than 3000 µS/cm at 25°C namely Hardwara (3156 µS/cm at 25°C) and Bartari (3628 µS/cm at 25°C). So, overall ground water quality in Katni district is good to slightly saline in nature and few locations are saline in nature. The maximum electrical conductivity has been observed in the water sample of Bartari (3628 µS/cm at 25°C). The electrical conductivity of post-monsoon water samples ranges between 295 to  $2413 \text{ }\mu\text{S/cm}$  at  $25^{\circ}\text{C}$ . In the water samples of post monsoon only 1 sample in between 1500 to 2000 µS/cm at 25°C; whereas 2 locations have been more than 2000 µS/cm at 25°C namely: Hardwara (2261 µS/cm at 25°C) and Banson (2413 µS/cm at 25°C). The electrical conductivity of water samples is more than 2000 µS/cm at 25°C shows that the water is saline in nature.

The fluoride concentration in Katni district lies in between 0.11 to 1.17 mg/l, which represents that all the samples are within the permissible limit i.e., 1.5 mg/l as per BIS (IS 10500: 2012). The maximum fluoride concentration has been observed in the water sample of Jharela village i.e., 1.17 mg/l. The fluoride concentration in water samples during postmonsoon are ranges between 0.14 to 0.95 mg/l which indicated fluoride concentrations are within the permissible limit. Nitrate concentration in ground water samples of Katni district falls within the 1 to 310 mg/l. It is observed that 21.59% samples have nitrate concentration more than the acceptable limit i.e., 45 mg/l, while rest 78.41% samples have concentration less than acceptable limit. Highest concentration (more than 100 mg/L) of nitrate is reported in the water samples of Kothi (110 mg/l), Bhamka (114 mg/l), Majhgawan (117 mg/l), Takhala (123 mg/l), Hardwara (156 mg/l), Neemkhere (186 mg/l) and Banson (310 mg/L). High nitrate in ground water samples may be due to anthropogenic activities or excessive use of fertilizers. The range of Total Hardness (as CaCO<sub>3</sub>) in ground water samples of study area is 50 to 990 mg/l. During post-monsoon, nitrate concentration ranges between 10 to 232 mg/l. Highest concentration (more than 100 mg/L) of nitrate is reported during post-monsoon namely: Neemkhere and Hardwara (105 mg/l), Bhanka (150 mg/l) and Banson (232 mg/l)

In all locations, total hardness concentrations are within the permissible limit of 600 mg/l except the villages of Banson (610 mg/l), Pipariya (765 mg/l), Badapar (865 mg/l) and Bartari (990 mg/l). During post-monsoon, total hardness concentration is within the permissible limits and ranges between 100 to 560 mg/l.

The analysis of heavy/ trace metal analysis in the ground water of Katni district shows that the copper and nickel are below detectable limit whereas concentration of iron ranges between 0.013 to 1.136 mg/l. the maximum concentration has been observed in the village of Harduwa 1.136 mg/l i.e., more than permissible limit of 1.0 mg/l. The zinc concentration ranges between 0.082 to 0.432 mg/l and manganese concentration ranges between 0.011 to 0.504 mg/l the maximum concentration has been observed in the village of Banson 0.504 mg/l i.e., more than BIS permissible limit.

Piper diagram **Fig.3.8** has three parts: a Cation triangle, an Anion triangle, and a Central diamond-shaped field. In Cation triangle, the relative percentages of the major cations  $(Ca^{2+}, Mg^{2+}, Na^+, K^+)$  are plotted. In Anion triangle the major anions  $(HCO_3^-+CO_3^{2-}, SO_4^{2-}, C\Gamma)$  are plotted. These points are then projected to the central diamond shaped field. The piper diagram of Katni district shows the ground water samples are Calcium-chloride type i.e., permanent hardness, Calcium-Bicarbonate type i.e., temporary hardness; Mixed type i.e., Calcium-Magnesium Chloride type; Mixed type i.e. Calcium-Sodium Bi-carbonate type and Sodium Chloride types i.e. saline in nature.

#### **Quality of Ground Water for Irrigation Purpose:**

In classification of water for irrigation purpose, it is assumed that the water will be used for irrigation purpose based upon its soil texture, infiltration rate, drainage and climate. The chemical data of all the water samples from Katni district is plotted on U.S. Salinity Laboratory diagram.

U.S. Salinity Laboratory diagram **Fig.3.9**, the ground water samples of Katni district are  $C_1$ - $S_1$  Class (Low Salinity & Low Sodium);  $C_2$ - $S_1$  Class (Medium Salinity & Low Sodium) and  $C_3$ - $S_1$  Class (High Salinity & Low Sodium),  $C_4$ - $S_1$  Class (Very High Salinity & Low Sodium),  $C_3$ - $S_2$  Class (High Salinity & Medium Sodium),  $C_4$ - $S_2$  Class (Very High Salinity & Medium Sodium),  $C_4$ - $S_3$  Class (Very High Salinity & High Sodium) which means that these waters may be used for irrigation purpose for most of the crops. The ground water of  $C_3$ - $S_1$ ;  $C_4$ - $S_1$ ;  $C_3$ - $S_2$ ;  $C_4$ - $S_2$  and  $C_4$ - $S_3$  classes may be used for irrigation, considering the salinity content of the ground water.

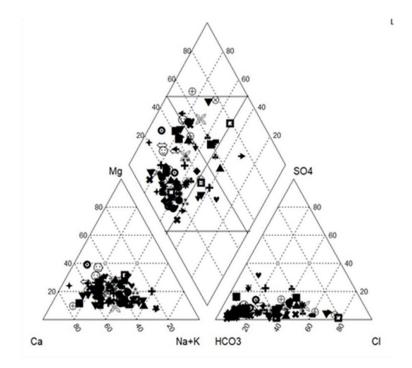



Fig:3.8 Hill Piper Diagram representing classification of water samples collected from National Hydrograph Stations, Katni District, Madhya Pradesh

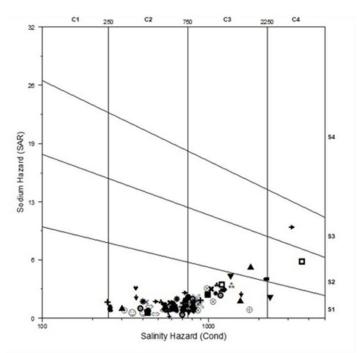



Fig:3.9 US Salinity Diagram for water samples collected from National Hydrograph Stations of Katni District, Madhya Pradesh.

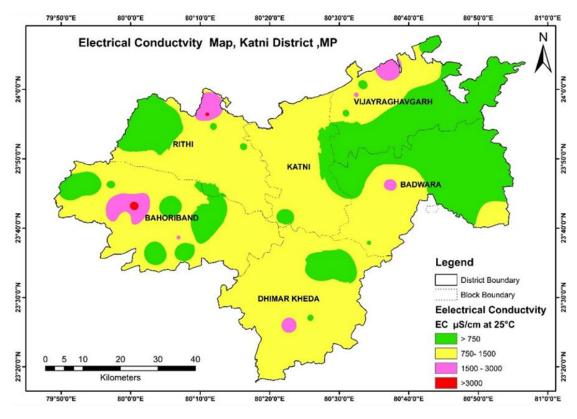



Fig.3.10: Electrical Conductivity map of Katni district

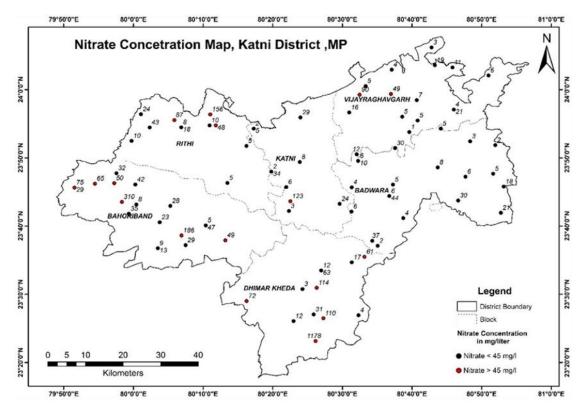



Fig.3.11: Nitrate concentration map of Katni district

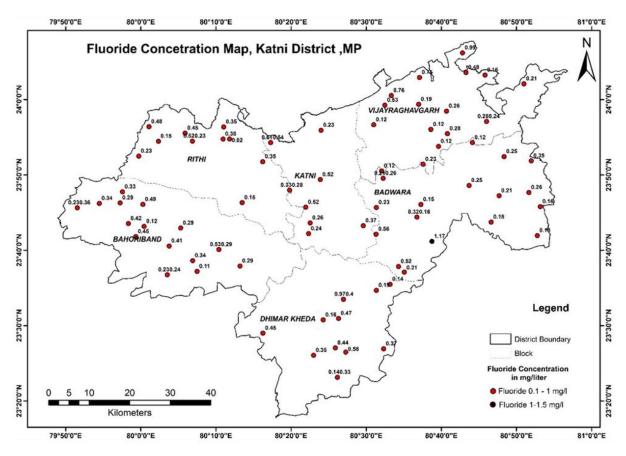



Fig.3.12: Fluoride concentration map of Katni district

## 3.4 3-D and 2-D Aquifer Disposition

The data generated from ground water monitoring wells, micro level hydrogeological inventories, exploratory and observation wells, various thematic layers was utilized to decipher the aquifer disposition of the area. This particularly includes the information on geometry of aquifers and hydrogeological information of these aquifers. In the area the two aquifer systems have been deciphered as listed below:

```
b. Aquifer – II (Deeper Aquifer)
```

#### 3.4.1 3D model

A 3-Dimensional lithological model was prepared for the Katni district after detailed analysis of the pre-existing and available bore-log data from the exploratory and observation well. A comprehensive analysis was made as per lithology and stratigraphy of the area.

The 3-D Model results concluded that the region is dominantly occupied by Laterite, Alluvium(clay & sand), Quartzite, Marble, Dolomite, Gondwana sandstone and Vindhyan limestone, sandstone, shale, Slate. The sub-surface lithology has been broadly classified into Top Laterites/Unsaturated zone, Alluvium, underlain bylimestone, Dolomite which has been

considered as shallow aquifer (up to a depth of 60 meter). This Vindhyan Shale/Sandstone, Slate, Marble, Quartzite that forms the deeper aquifer (from 60-200 meters).

The 3-D representation indicating the disposition of various aquifers is presented in **Fig.3.13**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the 3D diagram.

# 3.4.2 2-Dimensional Cross Section:

2-Dimensional cross-section A-A' covering the wells Khamariya, Tigawan, Tewari and Parahua along the direction NW-SE been prepared and shown in the **Fig.3.14.** The cross section shows that the thickness of the prominent aquifer i.e., Alluvium and Shale thickness more in Khamriya (NW side) and decreases towards Parahua (SE side) and Limestone and dolomite formation is gradually increases. The thickness of the deep aquifer is also limited and confined in shale formation in Khamariya site.

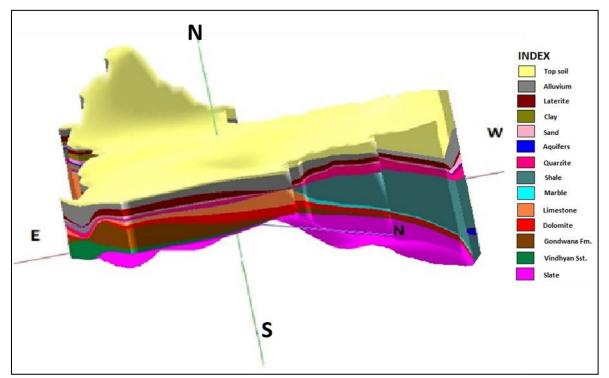



Fig.3.13: 3-D Aquifer Model, Katni District

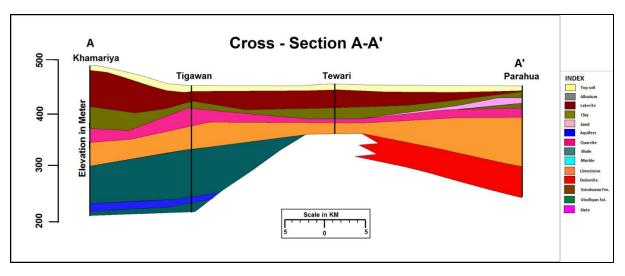



Fig.3.14:- 2-D Aquifer Cross Section, Katni District

# 3.5 Aquifer Characteristics

The Gondwana group of rocks, that bears the coal deposit, is also a fine groundwater repository in this district. Gondwana formation particularly the upper part of the Barakar sandstone supports development of phreatic aquifers which extends from few meters below ground level to 25 m below land surface.

Limestone also bears bedding fracture planes and secondary porosity and in limestone-shale joints. Fractured marble and fractured granite are the low ground water potential zones in the area.

The felspathic medium to coarse grained sandstone, bears groundwater in the interconnected primary pores is the formation as well as the contact planes between shales and sandstone.

Based on the ground water exploration carried out in the Katni district, the following two types of aquifers can be demarcated and the details are given below in **Table 3.2**.

| Major Aquifer                                | Alluvium/Laterite/Quartzite/Vindhyan<br>Shale/sandstone/Limestone/Gondwana Formation/Slate/Marble |                                                                   |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Type of Aquifer                              | Aquifer-I Aquifer-II                                                                              |                                                                   |  |  |  |
| Formation                                    | Alluvium/Laterite/Lameta<br>sandstone/Limestone/Gondwana<br>sandstone                             | Weathered/fractured Vindhyan<br>Shale/Limestone/Marble/Sandstone/ |  |  |  |
| Depth of Occurrence (mbgl)                   | 1 to 30                                                                                           | 30 to 200                                                         |  |  |  |
| SWL (mbgl)                                   | 0.16 to 14.26                                                                                     | 12.36 to 32.39                                                    |  |  |  |
| Weathered / Fractured rocks<br>thickness (m) | 2 to 14                                                                                           | 0.5 to 17                                                         |  |  |  |
| Fractures encountered (mbgl)                 | Up to 30                                                                                          | up to 200                                                         |  |  |  |

Table.3.2: Aquifer Characteristics

| Yield                                   | Up to 5 lps                                                               | Up to 18 lps                                                              |  |
|-----------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Transmissivity (m <sup>2</sup> /day)    | $0.520$ to $6.86 \text{ m}^2/\text{day}$                                  | 6 to 72 m <sup>2</sup> /day                                               |  |
| Specific Yield/ Storativity (Sy/S)      | -                                                                         | $1.0 \times 10^{-4}$ to $5.5 \times 10^{-5}$                              |  |
| Suitability for drinking/<br>irrigation | Suitable for both drinking and agriculture, except high Nitrate at places | Suitable for both drinking and agriculture, except high Nitrate at places |  |

## 3.6 Geophysical Exploration

Geophysical survey comprising transient electromagnetic (TEM) sounding was carried out with the objectives to delineate potential ground water (Aquifer) zones as well as quantifying the resistivity and thickness of various sub-surface geological formations. In all 120 TEM soundings at 23 locations were carried out this district guided by geological, hydrogeological, geomorphological studies. The location of the TEM shown in **Fig.3.15** and the list of location with coordinates are given in Table.3.3.

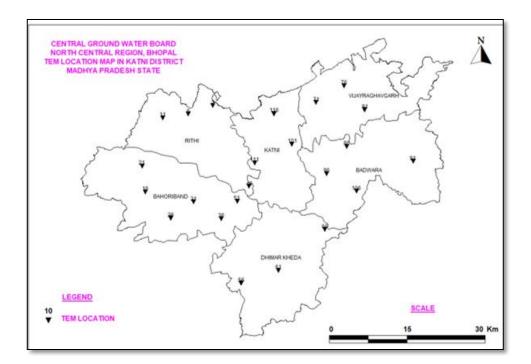



Fig.3.15: Location of TEM in Katni district, MP

## **Data Acquisition and Processing**

TEM soundings were carried out using terra TEM-24 instrument of Monex Geo Scope Geophysical Manufacturing & Consulting Ltd. of Australia with a 40 X 40 m and 20 X 20 m coincident loop, where the transmitter and receiving coils are parallel to each other.

A time-varying current is applied into a transmitter loop, usually an ungrounded loop of wire laid on the surface. The transmitter loop generates an EM wave that propagates into the subsurface. As the EM energy encounters different subsurface materials, it induces eddy currents that generate secondary EM fields. These secondary EM fields are picked up at the surface by a receiver loop or magnetic antenna and recorded as the induced energy diffuses into the earth. The quantity acquired is the voltage measured in the receiver coil as function of time after switching off the primary field. The values are plotted on double log scale. The rate of diffusion/decay (Voltage) indicates the resistivity of the subsurface materials.

In order to construct image of subsurface, 5 to 10 TEM soundings were carried out along a profile line with sounding spacing of 5 and 10 m. Coordinates of each sounding point was taken with hand held GPS at the center of loops. The data was collected repeatedly to ensure steady state with varying current and frequencies to reduce the error. Current processing, modeling and inversion techniques were used to ensure uniformity. The data acquired were stored in the instrument receiver console.


The software TEMPLOT and IX1D were used for processing TEM sounding data. The collected data which was in BIN form was exported to TEMPLOT software to remove data points which deviated from decay curve (Ramp values and erroneous/noise values) and raw data is formatted into USF (Universal Sounding Format) which can be imported into modeling program IXID. The USF files were imported in IX1D software and selected for forward modeling process and generated a 1-D inversion model (Models of apparent resistivity as a function of apparent depth) for each sounding through. Most of the soundings reflect two to three-layer models of sub surface. At some of the GTEM locations, where the sites were drilled based on VES results, an attempt has been made for data validation and correlation.

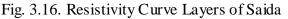

| Sl. No | LOCATION       | TEM<br>STATIONS | LAT     | LONG    |
|--------|----------------|-----------------|---------|---------|
| 1      | SAIDA          | 5               | 23.9428 | 80.2169 |
| 2      | RITHI          | 5               | 23.9192 | 80.1417 |
| 3      | BHARATPUR      | 5               | 23.9086 | 80.0643 |
| 4      | SANDA          | 5               | 23.7017 | 80.0122 |
| 5      | KHAKKARA       | 5               | 23.7742 | 80.0020 |
| 6      | PIPARIYA       | 5               | 23.6295 | 80.0897 |
| 7      | BARKHERA       | 5               | 23.6743 | 80.1581 |
| 8      | SLEEMANABAD    | 10              | 23.6273 | 80.2423 |
| 9      | LAKHAPATERI    | 5               | 23.7179 | 80.3272 |
| 10     | TIWARI         | 5               | 23.6757 | 80.2910 |
| 11     | MURWARI        | 5               | 23.4482 | 80.3028 |
| 12     | JINNA PIPARIYA | 5               | 23.4835 | 80.4162 |
| 13     | KHAMHARIYA     | 5               | 23.5978 | 80.5570 |
| 14     | DEORA KALAN    | 5               | 23.9517 | 80.5305 |
| 15     | BIJEYRAGOGARH  | 5               | 23.9977 | 80.6152 |
| 16     | SINGAURI       | 5               | 23.9313 | 80.6784 |
| 17     | BANSARI        | 5               | 23.8289 | 80.6243 |
| 18     | KEOLARI        | 5               | 23.7875 | 80.8259 |
| 19     | BARWARA KALAN  | 5               | 23.7535 | 80.5630 |
| 20     | JOHLA          | 5               | 23.8352 | 80.4572 |
| 21     | TIKARIYA       | 5               | 23.7041 | 80.6531 |
| 22     | KATNI          | 5               | 23.7829 | 80.3445 |
| 23     | KAILWARA       | 5               | 23.9202 | 80.4024 |
|        | Total          | 120             |         |         |

Table.3.3. Location details of TEM conducted in Katni District, Madhya Pradesh

#### 1. SAIDA

Saida is located in Rithi Block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10m each. The resistivity of the top soil ranges from 101 to140 Ohm m with the thickness ranging from 0.9 to 1.5 m. This layer is followed by weathered sandstone with resistivity ranging from 69 to 103 Ohm m with the thickness of 14.6 to 33 m and this layer is followed by weathered limestone with the resistivity ranging from 46 to 80 Ohm m with the thickness ranging from 14 to 24 and this layer is followed by fractured sandstone with resistivity value ranging from 22 to 64 Ohm m with the thickness ranging from 4.7 to 20m and last layer resistivity ranging from 5.9 to 7.2 Ohm m indicates Clayey formation and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.16. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.17. Based on the pseudo section, it is inferred that there is no recorded ground level to 25 m due to poor signal and low conductance ranging in depth ranging from 25 to 80 m indicating massive sandstone at first three points where as other two points up to 100 m and high conductance values below the depth of 80m, indicating Clay at first three points.





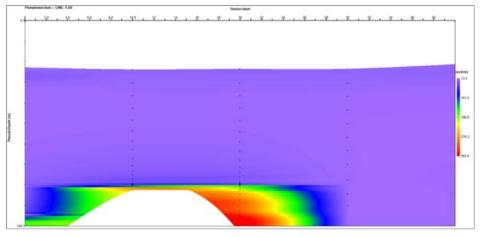



Fig. 3.17 Pseudo Section showing Conductance at Saida

### 2. RITHI

Rithi is located in Rithi Block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10m each. The resistivity of the top soil ranges from 107 to 304 Ohm m with the thickness ranging from 0.5 to 1.9 m. This layer is followed by weathered sandstone with resistivity ranging from 34 to 56 Ohm m with the thickness of 8 to 11m and this layer is followed by fractured sandstone with the resistivity ranging from 24 to 72 Ohm m with the thickness ranging from 9 to 11.5 m and last layer resistivity ranging from 63 to 196 Ohm m indicates massive Sandstone formation and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.18. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.19. Based on the pseudo section, it is inferred that there is no data recorded up to 10 m due to poor signal and high conductance ranging in depth ranging from 10 to 30 indicating weathered sandstone.

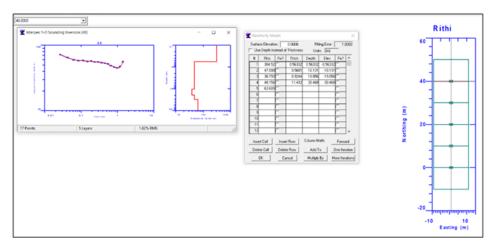



Fig. 3.18. Resistivity Curve Layers of Rithi

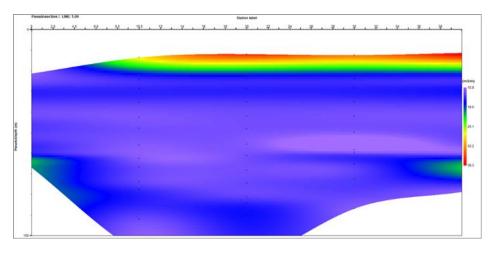



Fig. 3.19. Pseudo Section showing Conductance at Rithi

#### 3. BHARATPUR

Bharatpur is located in Rithi Block. In total, 5 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 81.6 to 180 Ohm m with the thickness ranging from 1.2 to 1.6 m. This layer is followed by weathered sandstone with resistivity ranging from 14.8 to 30.2 Ohm m with the thickness of 5.5 to 13m and this layer is followed by fractured sandstone with the resistivity ranging from 7.6 to 11m and last layer resistivity ranging from 76 to 149 Ohm m indicates massive Sandstone formation and extends with depth. Selected TEM sounding, pseudo section has been drawn and shown in Fig. 3.21. Based on the pseudo section, it is inferred that there is no data recorded up to 10 m due to poor signal and high conductance ranging in depth ranging from 10 to 30 indicating sandstone.

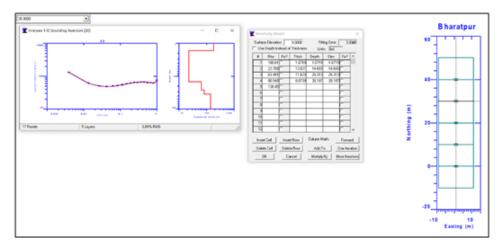



Fig. 3.20 :Resistivity Curve Layers of Bharatpur

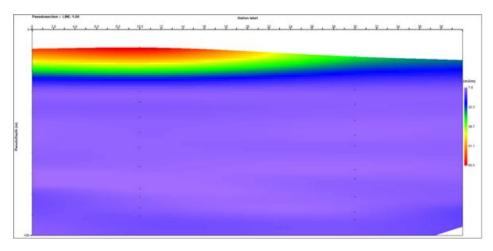
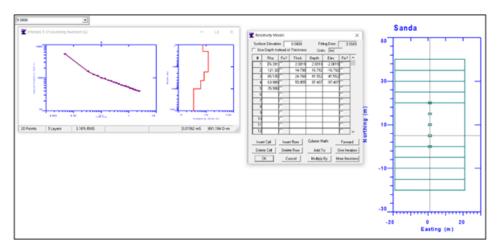




Fig. 3.21. Pseudo Section showing Conductance at Bharatpur

#### 4. SANDA

Sanda is located in Bahoriband Block. In total, 5TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10m each. The resistivity of the top soil ranges from 52 to 76 Ohm m with the thickness ranging from 1.9 to 2.6 m. This layer is followed by weathered sandstone with resistivity ranging from 85 to 122 Ohm m with the thickness of 14 to 29 m and this layer is followed by massive sandstone with the resistivity ranging from 85 to 142 Ohm m with the thickness ranging from 24 to 66 m and this layer is followed by fractured sandstone with resistivity value ranging from 62 to 74 Ohm m with the thickness ranging from 36 to 43 Ohm m indicates fractured Sandstone/Limestone formation and extends with depth. Selected TEM sounding, pseudo section has been drawn and shown in Fig. 3.33. Based on the pseudo section, it is inferred that there is no data recorded up to 35 m due to poor signal and low conductance ranging in depth ranges from 35 to 140 m indicating massive sandstone with conductance values below the depth of 140 m, indicating fractured sandstone/limestone with water bearing zones.



#### Fig. 3.22. Resistivity Curve Layers of Sanda

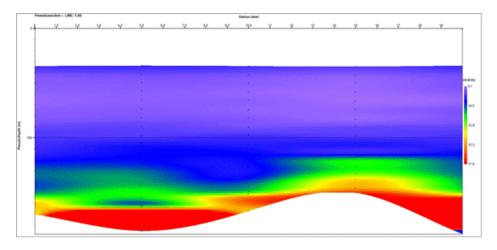



Fig.3.33. Pseudo Section showing Conductance at Sanda

#### 5. KHAKKARA

Khakkara is located in Bahoriband Block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10 m each. The resistivity of the top soil ranges from 179 to 320 Ohm m with the thickness ranging from 0.6 to 2.2 m. This layer is followed by weathered sandstone/limestone with resistivity ranging from 88 to 151 Ohm m with the thickness of 11 to 27 m and this layer is followed by fractured sandstone with resistivity value ranging from 39 to 53 Ohm m with the thickness ranging from 9 to 12.8 m and last layer resistivity ranging from 89 to 157 Ohm m indicating meta sediment formation and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.34. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.35. Based on the pseudo section, it is inferred that there is no data recorded up to 28 and below 60 m due to poor signal and low conductance ranging in depth ranging from 28 to 35 and below 35 m indicating massive sandstone/limestone and high conductance values between the depth of 35 and 42 m, indicating fractured sandstone/limestone.

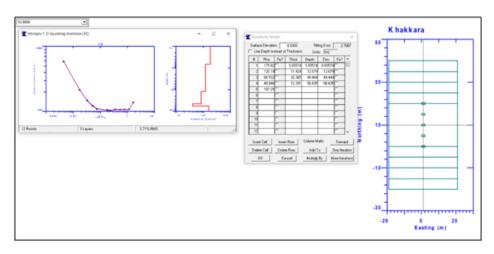



Fig.3.34. Resistivity Curve Layers of Khakkara

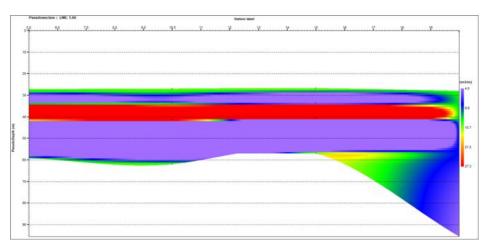



Fig.3.35. Pseudo Section showing Conductance at Khakkara

#### 6. PIPARIYA

Pipariya is located in Bahoriband Block. In total, 5TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 67 to 164 Ohm m with the thickness ranging from 1.2 to 2.5 m. This layer is followed by weathered sandstone with resistivity ranging from 54 to 78 Ohm m with the thickness of 8 to 26.6m and this layer is followed by fractured sandstone with the resistivity ranging from 17 to 34.5 Ohm m with the thickness ranging from 8.5 to 27.7m and the last layer resistivity ranging from 3.1 to 5.3 Ohm m indicating Clay/Shale formation and extends with depth. Selected TEM sounding, pseudo section has been drawn and shown in Fig. 3.37. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.37. Based on the pseudo section, it is inferred that there is no data recorded up to 12 due to poor signal and low conductance ranging in depth ranging from 12 to 45 m indicating massive sandstone/limestone and high conductance values between the depth of below 50 m indicating Clay / Shale formation.

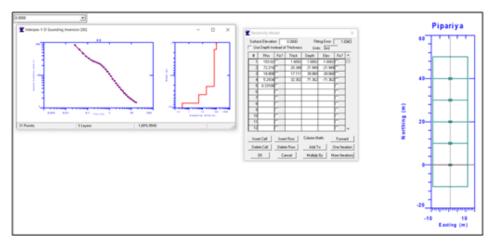



Fig.3.36. Resistivity Curve Layers of Pipariya

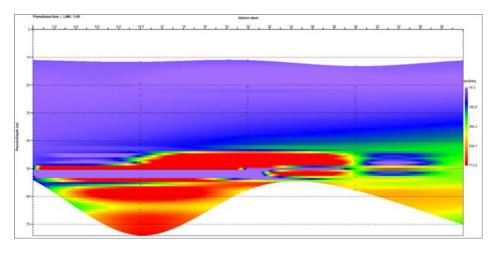



Fig.3.37: Pseudo Section showing Conductance at Pipariya

#### 7. BARKHERA

Barkhera is located in Bahoriband block. In total, 5TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 87 to 135 Ohm m with the thickness ranging from 0.7 to 4 m. This layer is followed by weathered sandstone with resistivity ranging from 39 to 81 Ohm m with the thickness of 21.8 to 32m and this layer is followed by fractured sandstone with the resistivity ranging from 13.5 to 35 Ohm m with the thickness ranging from 12.7 to 15m and the last layer resistivity ranging from 3.5 to 5.4 Ohm m indicating Clay/Shale formation and extends with depth. Selected TEM sounding, pseudo section has been drawn and shown in Fig. 3.40. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.40. Based on the pseudo section, it is inferred that there is no data recorded up to 12 to 20 m due to poor signal low conductance ranging in depth ranging up from 12 to 40 indicating massive sandstone/limestone, moderate conductance value ranging in depth from 40 to 55 m and high conductance values between the depth of below 55, indicating Clay / Shale formation.

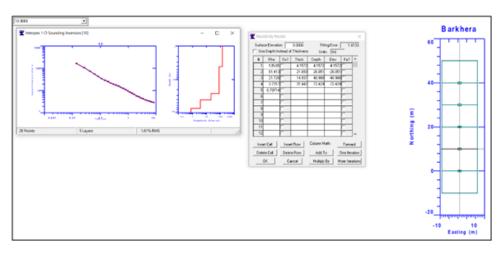



Fig. 3.40:Resistivity Curve Layers of Barkhera

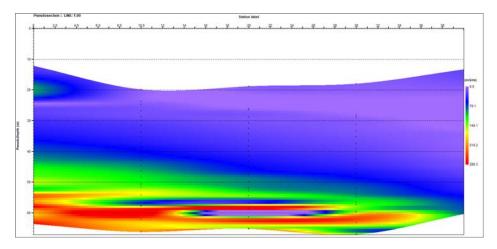



Fig. 3.41. Pseudo Section showing Conductance at Barkhera

#### 8. SLEEMANABAD

Sleemanabad is located in Bahoriband block. In total, 10 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 5 m each. The resistivity of the top soil ranges from 96.8 to 182 Ohm m with the thickness ranging from 0.8 to 2.8 m. This layer is followed by weathered Limestone with resistivity ranging from 40 to 95.6 Ohm m with the thickness of 10 to 18.2m and this layer is followed by fractured Sandstone with the resistivity ranging from 24 to 56 Ohm m with the thickness ranging from 16.4 to 20.6m and the last layer resistivity ranging from 7.9 to 23 Ohm m water bearing fractured sandstone formation and extends with depth. Selected TEM sounding analysed and interpreted using IX1D software is shown in Fig: 3.44. Based on the TEM sounding, pseudo section has been drawn and shown in Fig: 3.45. Based on the pseudo section, it is inferred that there is no data recorded up to 20 and below 50 m due to poor signal and low conductance ranging in depth ranging from 25 to 50m at centre of the section and high conductance values between the depth of below 50, indicating fractured sandstone.

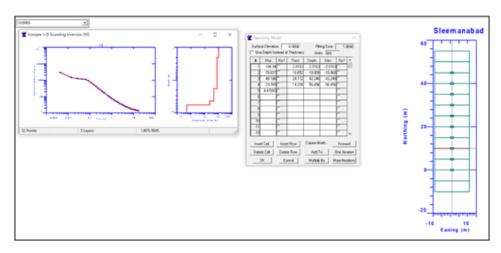



Fig. 3.42. Resistivity Curve Layers of Sleemanabad

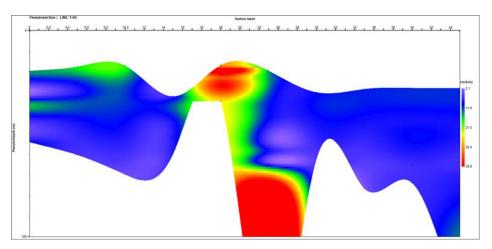



Fig. 3.43. Pseudo Section showing Conductance at Sleemanabad

#### 9. LAKHAPATERI

Lakhapateri is located in Rithi block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10m each. The resistivity of the top soil ranges from 99 to 179 Ohm m with the thickness ranging from 1.7 to 4 m. This layer is followed by weathered limestone with resistivity ranging from 29 to 72 Ohm m with the thickness of 6.5 to 13.7 m and this layer is followed by fractured sandstone with the resistivity ranging from 18.7 to 34 Ohm m with the thickness ranging from 11 to 16 m and the last layer resistivity ranging from 15.5 to 38 Ohm m water bearing fractured sandstone formation and the last resistivity layer value ranging from 22 to 58 Ohm m, which extends with depth indicates sandstone/limestone. Selected TEM sounding analysed and interpreted using IX1D software is shown in Fig. 10(a). Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 10(b). Based on the pseudo section, it is inferred that there is no data recorded up to 18 due to poor signal and low conductance ranging in depth ranging from 18 to 25 indicating massive sandstone/limestone and high conductance values below 50 indicating fractured sandstone.

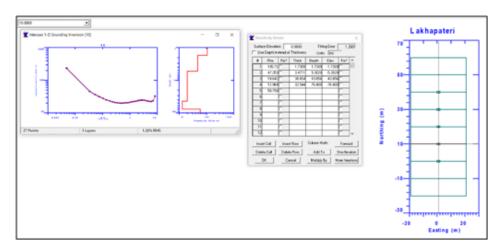



Fig. 3.44. Resistivity Curve Layers of Lakhapateri

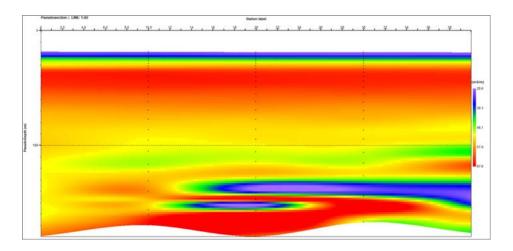



Fig.3.45. Pseudo Section showing Conductance at Lakhapateri

#### 10. TIWARI

Tiwari is located in Bohoriband block. In total, 5 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 120 to 315 Ohm m with the thickness ranging from 1.9 to 2.7m. This layer is followed by weathered sandstone/limestone with resistivity ranging from 38 to 80 Ohm m with the thickness of 8.7 to 13.9m and this layer is followed by fractured sandstone/limestone with the resistivity ranging from 13.6 to 28m and the last layer resistivity ranging from 180 to 356 Ohm m indicating fractured granitic rock, which extends with depth and selected TEM sounding, pseudo section has been drawn and shown in Fig. 3.47. Based on the pseudo section, it is inferred that there is no data recorded from 10 to 30 m due to poor signal and high conductance ranging in depth ranging from 10 to 22 indicating weathered sandstone/limestone and high conductance values below 22 m massive granitic rock.

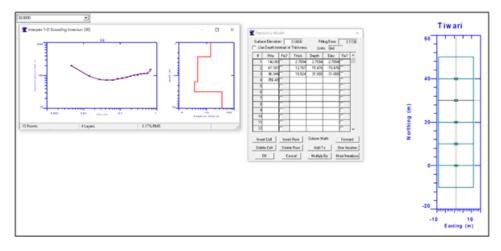



Fig. 3.46. Resistivity Curve Layers of Tiwari

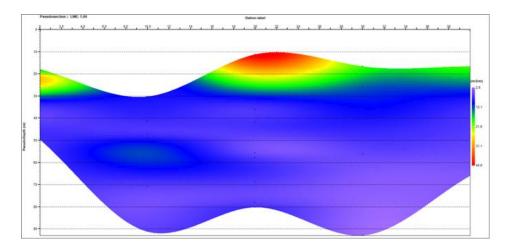



Fig. 3.47. Pseudo Section showing Conductance at Tiwari

### 11. MURWARI

Murwari is located in Dhimarkheda block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10 m each. The resistivity of the top soil ranges from 160 to 374 Ohm m with the thickness ranging from 2 to 3.4m. This layer is followed by sand with resistivity ranging from 10 to 25 Ohm m with the thickness of 8.5 to 31m and this layer is followed by weathered sandstone with the resistivity ranging from 24 to 63 Ohm m with the thickness ranging from 9.2 to 17m and the last layer resistivity ranging from 70 to 107 Ohm m indicating Meta sediments, which extends with depth Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.48. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.49. Based on the pseudo section, it is inferred that there is no data recorded up to 15 due to poor signal and low conductance value ranging in depth from 15 to 25 indicating sand, moderate conductance value ranging in depth from 15 to 25 indicating sand, moderate conductance values below 100 m indicates meta sediments.

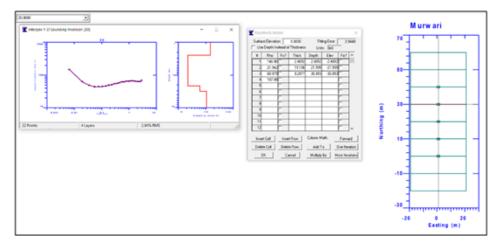



Fig.3.48. Resistivity Curve Layers of Murwari

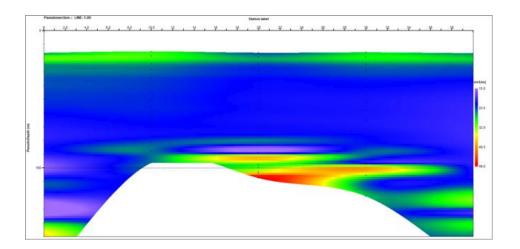



Fig.3.49. Pseudo Section showing Conductance at Murwari

#### 12. JINNA PIPARIYA

Jinna Pipariya is located in Bahoriband block. In total, 5 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 120 to 231 Ohm m with the thickness ranging from 1.4 to 2m. This layer is followed by weathered sandstone with resistivity ranging from 15 to 25 Ohm m with the thickness of 10 to 17m and this layer is followed by weathered limestone with the resistivity ranging from 42 to 56 Ohm m with the thickness ranging from 11 to 14m, this layer is followed by fractured sandstone with the resistivity values ranging from 64 to 96 Ohm m with the thickness ranging from 10 to 10.5 and the last layer resistivity ranging from 108 to 388 Ohm m indicating Meta sediments, which extends with depth Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.50. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.51. Based on the pseudo section, it is inferred that there is no data recorded properly due to poor signal and low conductance values showing in the section indicating meta sediments.

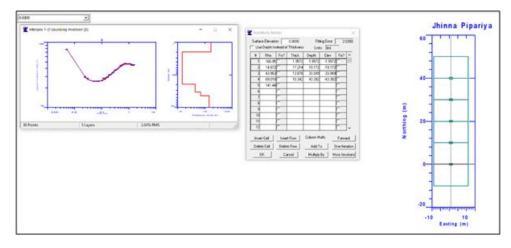



Fig. 3.50. Resistivity Curve Layers of Jinna Pipariya

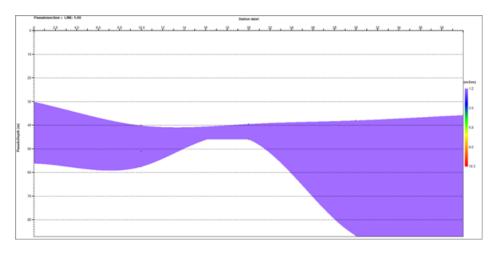



Fig. 3.51. Pseudo Section showing Conductance at Jinna Pipariya

#### 13. KHAMHARIYA

Khamariya is located in Dhimarkheda block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10 m each. The resistivity of the top soil ranges from 96.7 to 168 Ohm m with the thickness ranging from 2 to 3.7m. This layer is followed by weathered sandstone with resistivity ranging from 30.4 to 48 Ohm m with the thickness of 9.5 to 13.6m and this layer is followed by weathered limestone with the resistivity ranging from 53 to 80 Ohm m with the thickness ranging from 6.6 to 14.4m, this layer is followed by fractured sandstone with depth with the resistivity values ranging from 64.6 to 140 Ohm m and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.52. Based on the TEM sounding, pseudo section has been drawn and shown in Fig: 3.53. Based on the pseudo section, it is inferred that there is no data recorded up to 28 due to poor signal and high conductance value ranging in depth from 45 to 80 indicating limestone cavities and low conductance values below 100 m indicating meta sediments.

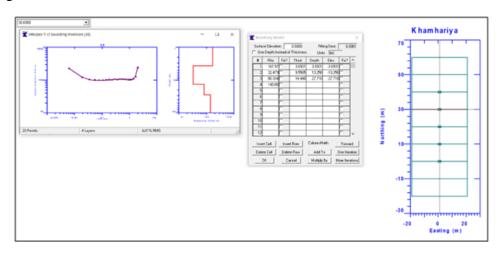



Fig. 3.52. Resistivity Curve Layers of Khamhariya

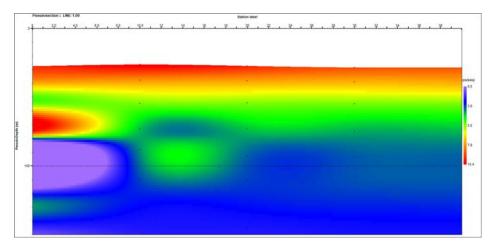



Fig. 3.53.Pseudo Section showing Conductance at Khamhariya

#### 14. DEORA KALAN

Deora Kalan is located in Bijeraghavgarh Block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10m each. The resistivity of the top soil ranges from 345 to 866 Ohm m with the thickness ranging from 1.8 to 3.8m. This layer is followed by weathered sandstone with resistivity ranging from 167 to 248 Ohm m with the thickness of 8.3 to 22.6m and this layer is followed by weathered limestone with the resistivity ranging from 15 to 43m, this layer is followed by fractured sandstone with the resistivity values ranging from 58 to 80 Ohm m with the thickness ranging from 11.6 to 69m and the last layer resistivity value ranging from 34 to 40 Ohm m and extends with depth indicating fractured sandstone. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig 3.54. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.55. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 32 due to poor signal and low conductance value ranging in depth from 40 to 100 m indicating inmestone.

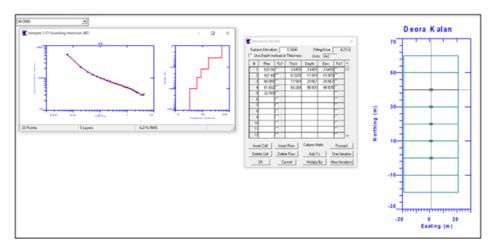



Fig.3.54. Resistivity Curve Layers of Deora Kalan

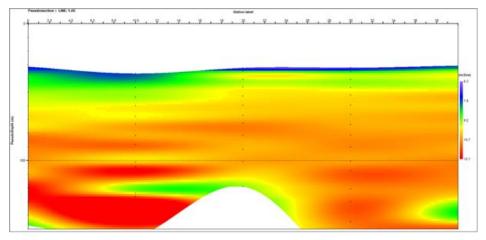



Fig.3.55. Pseudo Section showing Conductance at Deora Kalan

#### 15. BIJERAGAVGARH

Bijeragavgarh is located in Bijeraghavgarh Block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10 m each. The resistivity of the top soil ranges from 120 to 528 Ohm m with the thickness ranging from 2 to 3m. This layer is followed by weathered sandstone with resistivity ranging from 90 to 238 Ohm m with the thickness of 10.3 to 21m and this layer is followed by weathered limestone with the resistivity ranging from 63 to 113 Ohm m with the thickness ranging from 25 to 36m, this layer is followed by fractured sandstone with the resistivity values ranging from 35 to 79 Ohm m with the thickness ranging from 15 to 42 Ohm m and extends with depth indicating fractured sandstone. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig: 3.56. Based on the TEM sounding, pseudo section has been drawn and shown in Fig: 3.57. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 20 due to poor signal and low conductance value indicating massive sandstone/limestone and high conductance values indicating fractured sandstone.

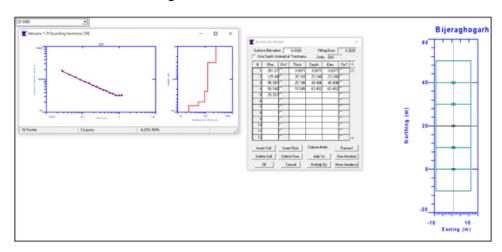



Fig.3.56. Resistivity Curve Layers of Bijeyragogarh

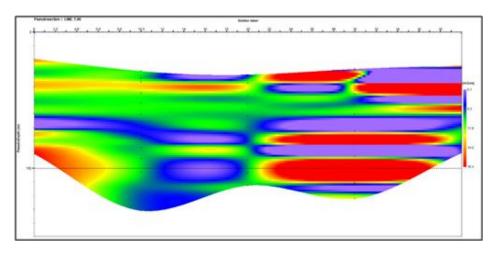



Fig.3.57. Pseudo Section showing Conductance at Bijeyragogarh

#### 16. SINGAURI

Singauri is located in Bijeyragogarh Block. In total, 5 TEM soundings were carried out in this site with the loop size 40 X 40 m and space interval of 10m each. The resistivity of the top soil ranges from 105 to 260 Ohm m with the thickness ranging from 1.9 to 2.9m. This layer is followed by weathered sandstone with resistivity ranging from 12.5 to 70 Ohm m with the thickness of 9 to 18.8m and this layer is followed by fractured sandstone with the resistivity ranging from 17 to 20 Ohm m with the thickness ranging from 27 to 48m, this layer is followed by fractured sandstone with the resistivity values ranging from 61 to 108 Ohm m and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.58. Based on the TEM sounding, pseudo section has been drawn and shown in Fig.3.59. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 15 due to poor signal and high conductance value ranging in depth from 15 to 50 indicating fractured sandstone, moderate conductance value ranging in depth from 50 to 70 indicating limestone cavities and fractured sandstone and low conductance values below 70 m indicating massive sandstone.

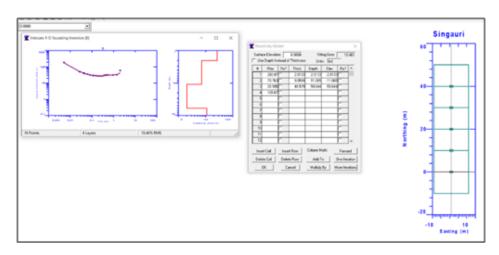



Fig. 3.58. Resistivity Curve Layers of Singauri

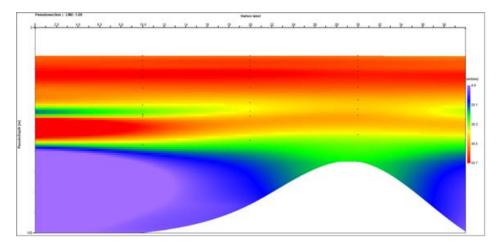



Fig. 3.59. Pseudo Section showing Conductance at Singauri

#### 17. BANSARI

Bansari is located in BundwaraBlock.In total,5TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 148 to 212 Ohm m with the thickness ranging from 2.2 to 2.6m. This layer is followed by weathered sandstone with resistivity ranging from 110 to 136 Ohm m with the thickness of 6.5 to 15.8 m and this layer is followed by weathered limestone with the resistivity ranging from 38 to 60 Ohm m with the thickness ranging from 20.6 to 52m, this layer is followed by fractured sandstone with the resistivity values ranging from 12.2 to 19 Ohm m with the thickness ranging from 56.7 to 72.3 and the last layer resistivity ranging from 32 to 35.5 Ohm m and extends with depth fractured sandstone. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.61. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 20 due to poor signal and low conductance value indicating massive sandstone and and high conductance values below 100 m indicating fractured.

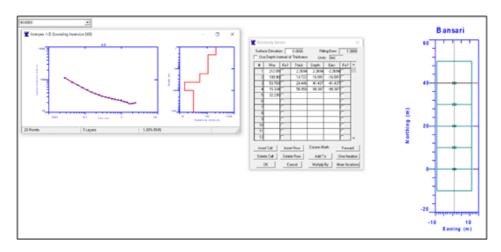



Fig.3.60. Resistivity Curve Layers of Bansari

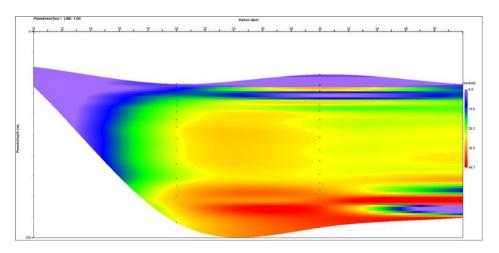



Fig.3.61. Pseudo Section showing Conductance at Bansari

#### 18. KEOLARI

Keolari is located in Bundwara Block. In total, 5 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 215 to 235 Ohm m with the thickness ranging from 1.2 to 1.9m. This layer is followed by weathered sandstone with resistivity ranging from 102 to 122 Ohm m with the thickness of 6.3 to 7.6m and this layer is followed by weathered limestone with the resistivity ranging from 22 to 52 Ohm m with the thickness ranging from 11.3 to 45.2 m, this layer is followed by fractured sandstone with the resistivity values ranging from 14 to 18.8 Ohm m with the thickness ranging from 27.8 to 57.5 and the last layer resistivity ranging from 42 to 55.7 Ohm m and extends with depth indicating fractured sandstone. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig 3.62. Based on the TEM sounding, pseudo section has been drawn and shown in Fig 3.63. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 20 due to poor signal and low conductance value indicating massive sandstone and high conductance values below 80 m indicating fractured sandstone.

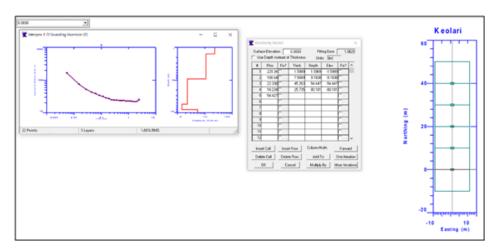



Fig. 3.62. Resistivity Curve Layers of Keolari

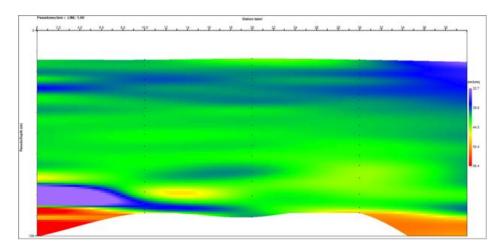



Fig. 3.63. Pseudo Section showing Conductance at Keolari

#### 19. BARWARA KALAN

Barwara Kalan is located in Bundwara Block. In total, 5TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 95.9 to 122 Ohm m with the thickness ranging from 2.1 to 3.2m. This layer is followed by weathered limestone with resistivity ranging from 35.1 to 48.5 Ohm m with the thickness of 15 to 22.5m and this layer is followed by weathered sandstone with the resistivity ranging from 9.5 to 16.9 Ohm m with the thickness ranging from 10.6 to 33.5m, this layer is followed by Clay/Shale with the resistivity values ranging from 2.1 to 7.1 Ohm m and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.64. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.65. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 20 m and below 60 m due to poor signal and low conductance value ranging in depth from 20 to 40 m indicating massive sandstone and high conductance values below 50 m are indicating Clay/Shale.

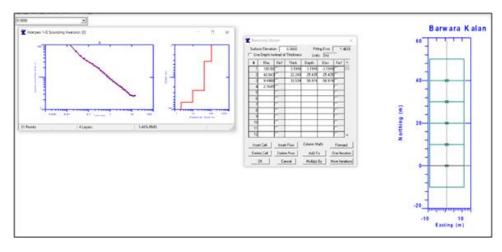



Fig.3.64. Resistivity Curve Layers of Barwara Kalan

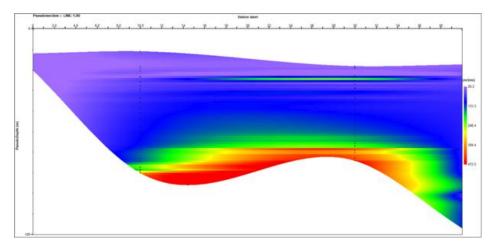



Fig.3.65. Pseudo Section showing Conductance at Barwara Kalan

#### 20. JOHLA

Johla is located in Bundwara Block. In total, 5 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 120.4 to 206 Ohm m with the thickness ranging from 1.4 to 3m. This layer is followed by weathered limestone with resistivity ranging from 51.9 to 87.5 Ohm m with the thickness of 8.9 to 16.4m and this layer is followed by weathered sandstone with the resistivity ranging from 18 to 40.4 Ohm m with the thickness ranging from 24.3 to 48.9 m, this layer is followed by Meta sediments with the resistivity values ranging from 69.2 to 85.4 Ohm m and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.66. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.67. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 20 due to poor signal and high conductance value indicating massive limestone/sandstone and low conductance values indicating Meta sediments.

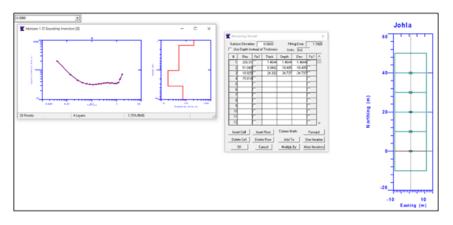



Fig.3.66. Resistivity Curve Layers of Johla

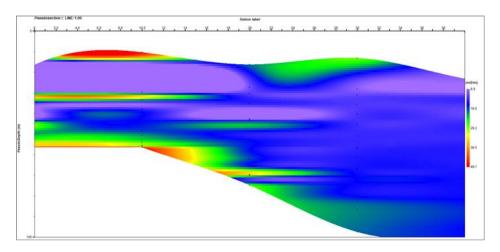



Fig. 3.67. Pseudo Section showing Conductance at Johla

### 21. TIKARIYA

Tikariya is located in Bundwara Block. In total, 5 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 119.1 to 128.4 Ohm m with the thickness ranging from 2.5 to 3m. This layer is followed by weathered sandstone with resistivity ranging from 31.7 to 39.7 Ohm m with the thickness of 11.6 to 14.8m and this layer is followed by weathered limestone with the resistivity ranging from 13.1 to 18m, this layer is followed by Meta sediments with the resistivity values ranging from 111 to 125.7 Ohm m and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.68. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.69. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded from 10 to 30 m due to poor signal and high conductance values indicating fractured sandstone and low conductance values indicating Meta sediments.

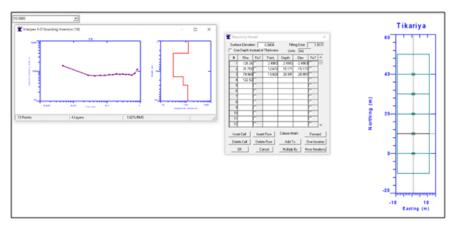



Fig.3.68. Resistivity Curve Layers of Tikariya

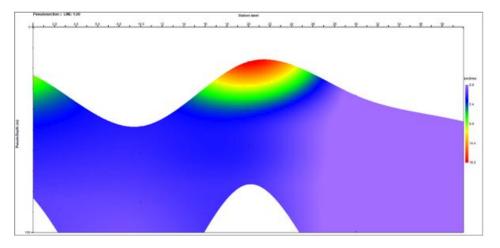



Fig.3.69. Pseudo Section showing Conductance at Tikariya

## 22. KATNI

Katni is located in Katni Block. In total, 5TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 73.5 to 112.5 Ohm m with the thickness ranging from 2 to 3m. This layer is followed by weathered sandstone with resistivity ranging from 33.1 to 50.5 Ohm m with the thickness of 13.5 to 19.3m and this layer is followed by fractured sandstone with the resistivity ranging from 22.1 to 27.8 Ohm m with the thickness ranging from 18 to 28.8m, this layer is followed by Clay/Shale with the resistivity values ranging from 4.3 to 8.6 Ohm m and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.70. Based on the TEM sounding, pseudo section has been drawn and shown in Fig. 3.71. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 15 due to poor signal and low conductance values massive sandstone and high conductance values indicating Clay/Shale.

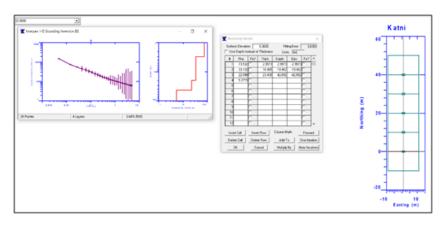



Fig. 3.70. Resistivity Curve Layers of Katni

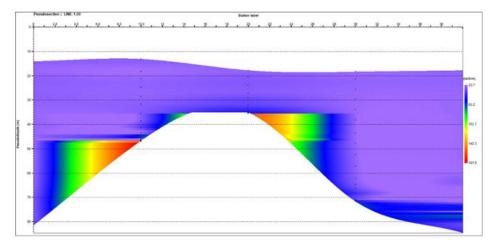



Fig. 3.71. Pseudo Section showing Conductance at Katni

#### 23. KAILWARA

Kailwara is located in Katni Block. In total, 5 TEM soundings were carried out in this site with the loop size 20 X 20 m and space interval of 10m each. The resistivity of the top soil ranges from 60 to 78.9 Ohm m with the thickness ranging from 1.9 to 2.7m. This layer is followed by sand with resistivity ranging from 14.9 to 17.2 Ohm m with the thickness of 14.7 to 19m and this layer is followed by weathered sandstone with the resistivity ranging from 30.7 to 39.7 Ohm m with the thickness ranging from 21.9 to 36.2m, this layer is followed meta sediments with the resistivity values ranging from 54.8 to 67.2 Ohm m and extends with depth. Selected TEM sounding analyzed and interpreted using IX1D software is shown in Fig. 3.72. Based on the TEM sounding, pseudo section has been drawn and shown in Fig.3.73. Based on the pseudo section, it is inferred that it is inferred that there is no data recorded up to 10 to 20 m due to poor signal and high conductance values sand and fractured sandstone and low conductance values indicating meta sediments.

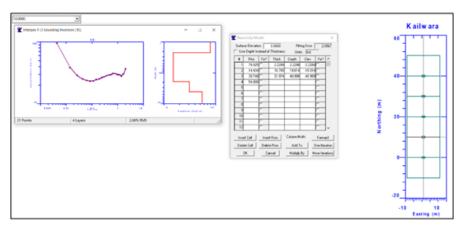



Fig.3.72. Resistivity Curve Layers of Kailwara

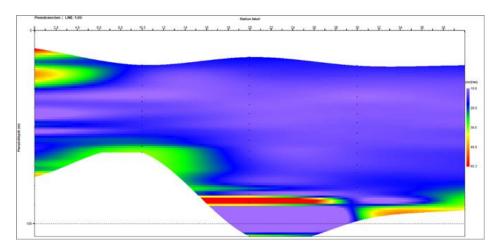



Fig 3.73. Pseudo Section showing Conductance at Kailwara

# CHAPTER-4 GROUND WATER RESOURCES

In Katni district the Ground Water Resources are estimated considering entire area as a single aquifer system. Block wise Dynamic Ground Water Resources are computed as per the guidelines laid down in GEC methodology 2015. The ground water resources have been assessed for two types of aquifers existing in the area i.e., Aquifer-I and Aquifer-II. The details of the assessment are discussed below as on GWRE 2022.

# 4.1 Ground Water Resources – Aquifer-I

The ground water resource assessment has been carried out for Katni district and the salient features of the resources are given in **Table.4.1**, **4.2 and 4.3**.

As per **Table.4.1**, out of the total 489400 ha area, recharge worthy areas are 33404 ha in command areas and 433244 ha in non-command areas, whereas 86300 ha area is not worthy for recharge on account of its hilly nature.

| District | Predominant<br>Formation                                 | Total<br>Geographical<br>Area (ha) | Hilly<br>Area<br>(ha) | Ground Water<br>Recharge Worthy Area<br>Command<br>area (ha) Non-<br>command<br>area (ha) |        |
|----------|----------------------------------------------------------|------------------------------------|-----------------------|-------------------------------------------------------------------------------------------|--------|
| Katni    | Laterite, Alluvium,<br>Gondwana &<br>Vindhyan formations | 489400                             | 22752                 | 33404                                                                                     | 433244 |

# Table 4.1: Ground Water Recharge Worthy Areas for Resource Estimation.

## 4.1.1 Recharge Component

During the monsoon season, the rainfall recharge is the main recharge parameter, which is estimated as the sum total of the change in storage and gross draft. The change in storage is computed by multiplying groundwater level fluctuation between pre and post monsoon periods with the area of assessment and specific yield. Monsoon recharge can be expressed as:-

 $R = h \times S y \times A + DG$ 

where,

h= rise in water level in the monsoon season, Sy= specific yield

A= area for computation of recharge, DG= gross ground water draft

The monsoon ground water recharge has two components- rainfall recharge and recharge from other sources. The other sources of groundwater recharge during monsoon season include seepage from canals, surface water irrigation, tanks and ponds, ground water irrigation, and water conservation structures.

During the non-monsoon season, rainfall recharge is computed by using Rainfall Infiltration Factor (RIF) method. Recharge from other sources is then added to get total non-monsoon recharge.

The season wise assessment of recharge from various components such as rainfall and other sources was done and presented in **Table.4.2**, **Table.4.4** and **Fig.4.1**. During monsoon season recharge from rainfall contributes maximum component (33540.81 ham) and recharge from other sources is 1637.48 ham, whereas during non-monsoon season, recharge from rainfall is 0.00 ham and the recharge from other sources is 4560.65 ham. The total annual ground water recharge is 39738.94 ham and Annual Extractable Ground Water Resource after natural discharge is estimated as 37236.74 ham.

| Command<br>/ Non-<br>Command<br>/ Total | Re charge<br>from<br>rainfall<br>during<br>mons oon<br>se ason<br>(ham) | Recharge<br>from other<br>sources<br>during<br>monsoon<br>season<br>(ham) | Recharge<br>from<br>rainfall<br>during non-<br>mons oon<br>se ason<br>(ham) | Recharge<br>from other<br>sources<br>during non-<br>mons oon<br>se ason (ham) | Total<br>Annual<br>Ground<br>Water<br>Recharge<br>(ham) | Total Natural<br>Discharges<br>(ham) | Annual<br>Extractable<br>Ground<br>Water<br>Resource<br>(ham) |
|-----------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|
| Total                                   | 33540.81                                                                | 1637.48                                                                   | 0.00                                                                        | 4560.65                                                                       | 39738.94                                                | 2502.2                               | 37236.74                                                      |

 Table 4.2: Recharge Components evaluated for Resource Estimation.

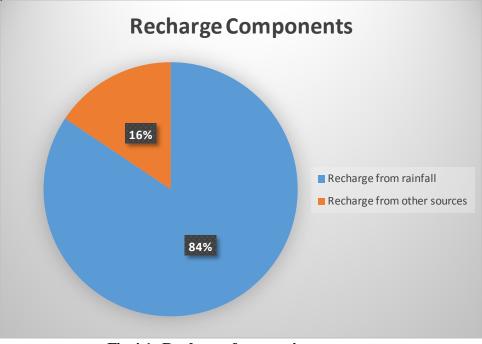



Fig.4.1: Recharge from various sources



Fig.4.2: GW availability and Draft

The utilisation of available ground water resources for various purposes is provided in **Table.4.3**. The annual gross draft for all uses is estimated at 17536.688 ham with irrigation sector being the major consumer having a draft of 14014.728 ham. The annual draft for domestic and industrial use was estimated as 3521.96 ham. The allocation for domestic & industrial requirement supplies up to 2025 is about 2996.11 ham. the static ground water resource of Aquifer-I was estimated as 516.30 MCMis provided in **Table.4.5** 

The stage of ground water development is 47.10% as on GWRE 2022.

| Table 4.3: Dynamic Ground | Water Resources Availability, Draft and Stage of GW |
|---------------------------|-----------------------------------------------------|
|                           | Extraction                                          |

| Assessment Unit Name | Ground<br>Water<br>Extraction<br>for<br>Irrigation<br>Use (Ham) | Ground<br>Water<br>Extraction<br>for<br>Industrial<br>Use (Ham) | Ground<br>Water<br>Extraction<br>for<br>Domestic<br>Use (Ham) | Total<br>Extraction<br>(Ham) | Stage of<br>Ground<br>Water<br>Extraction<br>(%) | Categorization |
|----------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|------------------------------|--------------------------------------------------|----------------|
| BADWARA              | 3517.47                                                         | 53.36                                                           | 548.58                                                        | 4119.41                      | 51.89                                            | safe           |
| BAHORIBAND           | 2345.63                                                         | 1.35                                                            | 538.17                                                        | 2885.15                      | 34.08                                            | safe           |
| DHIMAR KHEDA         | 1184.87                                                         | 0.00                                                            | 481.12                                                        | 1665.98                      | 32.10                                            | safe           |
| MURWARA              | 3089.88                                                         | 240.40                                                          | 331.80                                                        | 3662.06                      | 55.97                                            | safe           |
| RITHI                | 1398.28                                                         | 0.00                                                            | 344.17                                                        | 1742.44                      | 45.98                                            | safe           |
| VIJAYRAGHAVGARH      | 2478.60                                                         | 487.50                                                          | 495.51                                                        | 3461.61                      | 65.19                                            | safe           |
| DISTRICT TOTAL       | 14014.73                                                        | 782.62                                                          | 2739.34                                                       | 17536.65                     | 47.10                                            | safe           |

| Assessment Unit Name | Recharge<br>from<br>Rainfall-<br>Monsoon<br>Season<br>(Ham) | Recharge<br>from<br>Other<br>Sources-<br>Monsoon<br>Season<br>(Ham) | Re charge<br>from<br>Rainfall-<br>Non-<br>Monsoon<br>Se ason<br>(Ham) | Re charge<br>from<br>Other<br>Sources-<br>Non-<br>Monsoon<br>Se ason<br>(Ham) | Total<br>Annual<br>Ground<br>Water<br>Recharge<br>(Ham) | Total<br>Natural<br>Discharges<br>(Ham) | Annual<br>Extractable<br>Ground<br>Wate r<br>Resource<br>(Ham) |
|----------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| BADWARA              | 6532.95                                                     | 514.3                                                               | 0                                                                     | 1379.61                                                                       | 8426.86                                                 | 488.06                                  | 7938.8                                                         |
| BAHORIBAND           | 7608.21                                                     | 342.6                                                               | 0                                                                     | 1023.47                                                                       | 8974.28                                                 | 508.36                                  | 8465.92                                                        |
| DHIMAR KHEDA         | 5062.47                                                     | 114.42                                                              | 0                                                                     | 285.97                                                                        | 5462.86                                                 | 273.14                                  | 5189.72                                                        |
| MURWARA              | 5885.52                                                     | 399.4                                                               | 0                                                                     | 984.6                                                                         | 7269.52                                                 | 726.95                                  | 6542.57                                                        |
| RITHI                | 3523.06                                                     | 121.84                                                              | 0                                                                     | 371.11                                                                        | 4016.01                                                 | 226.22                                  | 3789.79                                                        |
| VIJAYRAGHAVGARH      | 4928.6                                                      | 144.92                                                              | 0                                                                     | 515.89                                                                        | 5589.41                                                 | 279.47                                  | 5309.94                                                        |
| DISTRICT TOTAL       | 33540.81                                                    | 1637.48                                                             | 0                                                                     | 4560.65                                                                       | 39738.94                                                | 2502.2                                  | 37236.74                                                       |

## Table.4.4: Ground Water Recharge

Table.4.5: Static Ground Water Resources of Aquifer-I

|                                            | Units    |         |
|--------------------------------------------|----------|---------|
| Recharge worthy Area                       | Sq. km   | 4666.48 |
| Pre-monsoon (average) depth to water level | m        | 9.81    |
| Av. depth of Dug well                      | m        | 14.43   |
| Specific Yield (Sy)%                       | Fraction | 0.024   |
| Saturated thickness of aquifer (ST)        | m        | 4.61    |
| Resource (A * Sy * ST)                     | МСМ      | 516.30  |

## 4.2 Ground Water Resources – Aquifer-II

The ground water resource of the Aquifer –II was also assessed to have the correct quantification of resources so that proper management strategy can be framed. To assess these resources, the average thickness of fractures in deeper aquifers from exploratory wells was calculated and the following formula for static ground water resources was utilised i.e.

GWR = Recharge worthy Area x Thickness of fractures in deep aquifer x Specific yield By applying above formula, the static ground water resource of Aquifer-II was estimated as 420.823 MCM and is presented below in **Table.4.6** 

|                                         | Units    | Total   |
|-----------------------------------------|----------|---------|
| Recharge worthy Area                    | Sq.km    | 4666.48 |
| Thickness of fracture in deeper aquifer | М        | 3.34    |
| Specific yield(Sy)%                     | Fraction | 0.024   |
| Resource (A * Sy * ST)                  | MCM      | 420.823 |

Table.4.6: Ground Water Resources of Aquifer-II.

As a part of NAQUIM project 2021-22, groundwater resources of dynamic and static aquifers were calculated using water level fluctuation methods draft is calculated using unit draft method for each block in Katni district as given in the **Table.4.7** below.

Table 4.7: Block-wise Unit draft of Katni District (in mcm)

| Block              | BADWARA     | BORIBAND    | DHERKHEDEA | MURWARA     | RITHI       | VIJAYRAGHOGARH |
|--------------------|-------------|-------------|------------|-------------|-------------|----------------|
| Dug Well with Pump | 0.920203545 | 0.922500478 | 0.972      | 0.872591057 | 0.755547104 | 0.648          |
| Bore Well          | 1.900836288 | 1.816126235 | 1.458      | 1.554013958 | 1.221851375 | 2.268          |

### **CHAPTER-5**

#### **GROUND WATER RELATED ISSUES**

#### **5.1 DECLINING WATER LEVEL**

The decline in the water level both in pre and post monsoon is observed in major part of the district. The decadal pre-monsoon water level trend is presented in the **Fig.5.1**, which indicates that during pre-monsoon period, more than 80 % of the area showing declining trend. Similarly, the decadal post-monsoon water level trend is presented in the **Fig.5.2**, which indicates that the whole district is showing declining trend.

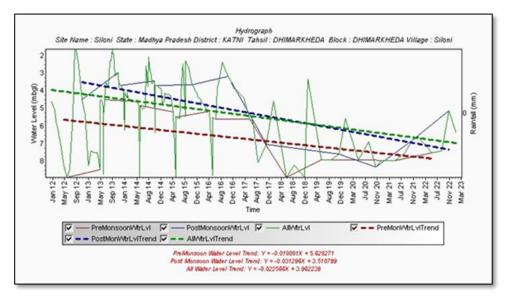



Fig.5.1: Hydrograph showing declining water level trend at site Siloni village, Dhimarkheda

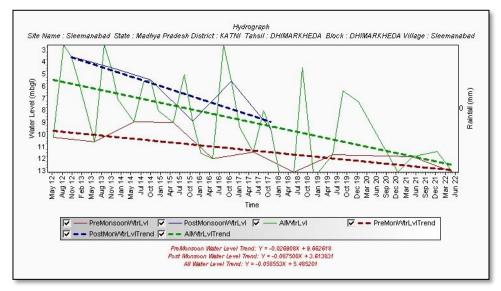



Fig.5.2:Hydrograph showing declining water level trend at site Sleemanabad village, Block-Dhimarkheda

#### 5.2 INFERIOR GROUND WATER QUALITY AT SOME PLACES

In some parts of the district there is higher concentration nitrate, It is observed that 21.59% samples have nitrate concentration more than the acceptable limit i.e. 45 mg/l, while rest 78.41% samples have concentration less than acceptable limit. Highest concentration (more than 100 mg/L) of nitrate is reported in the water samples of Kothi (110 mg/l), Bhamka (114 mg/l), Majhgawan (117 mg/l), Takhala (123 mg/l), Hardwara (156 mg/l), Neemkhere (186 mg/l) and Banson (310 mg/L). High nitrate in ground water samples may be due to anthropogenic activities or excessive use of fertilizers.

#### 5.3 AQUIFERS HAVING LIMITED YIELD POTENTIAL

Hard rock shallow aquifer occupies the first few 8-14 of meters from the top. Groundwater occurs in weathered zone, lateritic zone and clay zone (alluvium) under the unconfined condition, which has specific hydrodynamic properties from top to bottom. The shale formation which has negligible effective porosity and ground water mostly found in bedding planes.

# 5.4 LACK OF AWARNESS AND INVOLVEMENT OF STAKE HOLDERS IN DECISION MAKING

Lack of awareness and involvement of stake holders in decision making related to groundwater is also a very important issue. Stakeholders need to participate because management decision taken by the regulatory agency without social consensus is often impossible to implement. Essential management activities (such as monitoring, inspection, etc.) can be carried out more effectively and economically through cooperative efforts and shared burdens. Benefits that arise from the stakeholder's participation are-

- more informed and transparent decision-making
- Conflict prevention by development of consensus and information sharing.
- Economic benefits, because it tends to optimize pumping and reduce energy costs.
- Technical benefits, because it usually involves stakeholders in maintenance and leads to better estimates of water abstraction
- Management benefits, because the trigger local stakeholder initiatives to implement demand and supply measures and reduce the cost of regulation.

Stakeholder involvement should be seen as on-going, long-term process that adapts to the contextual conditions needs and changes therein.

### **CHAPTER-6**

#### PART I-GROUND WATER MANAGEMENT STRATEGIES

India is the largest user of groundwater in the world and therefore highly dependent on it and it will remain the lifeline for years to come. In the current scenario about 70-80 % water supply for agriculture is from groundwater rather than surface water irrigation. Groundwater is the major source of drinking water, agriculture and industry which is increasing day by day because of increased population growth and socio-economic development in the district. This rapid over-exploitation of groundwater and intensive irrigation has posed serious problems in the district e.g. declining water level, drying of aquifers and groundwater pollution. If this trend continuous unchecked, district is going to face a major water crisis in the near future. In district sufficient and adequate amount of **rainfall** is there each year almost (except for some years) which is sufficient to rise the water table and can met the water requirement and demand of the district with good socio-economic conditions but because of lack of awareness, involvement of stake holders in decision making, lack of groundwater management the condition of the district is same since decades. Groundwater management is recognized as critical to support the long-term viability of aquifers, sustainability of aquifers and improving socio-economic condition. Effective groundwater management is underpinned by sound science that actively engages the wider community and relevant stake holders in the decision-making process. Therefore, an integrated approach is needed to overcome this major problem, which includes augmentation of groundwater resources through appropriate techniques and adoption of suitable water conservation measures such as creation of water storage facility, maintenance of existing structures, proposing different structure for recharge.

#### 6.1 District Ground Water Management Plan (Outcome of NAQUIM)

Groundwater management entails both quality and quantity related groundwater resource management. Quantification of groundwater resources and understanding of hydrogeological processes is a basic pre-requisite for efficient and sustainable management of groundwater resource development and management because **fresh water resource is shrinking** at an alarming rate or it is under used. For managing the groundwater resource, to control the decline of water level, to increase the area under more irrigation and for sustaining the aquifers, groundwater management plan is to be prepare for the district. As per the directions of **Ministry of Jal Shakti**, Department of Water Resources, River Development and Ganga Rejuvenation preparation of Aquifer Management Plan and its financial layout for the Katni district in the State has been prepared **block wise**.

Katni district has been facing problems of under developed and not using the resources available in a correct direct so that they will be benefited in terms of availability of groundwater and in terms of getting developed socially & financially. This needs to evolve sustainable water conservation and management practices through an integrated approach. The ground water management plan for Katni district has been made keeping in view the area specific details and includes the strategies like enhancing the ground water resources through construction of artificial recharge structures such as percolation tanks, check dams with recharge shaft, nala bands/cement plugs, village/farm ponds. Also, adoption of micro-irrigation techniques such as sprinkler irrigation/drip irrigation, which would not only conserve ground water resources by reducing the draft, but would also increase the net cropping area thereby, augmenting the agricultural economy of the district.

#### 6.2 Supply Side Management Plan

Supply side management plan is proposed to overcome the above said major issues through rainwater harvesting and artificial recharge. Recharge to ground water artificially is one of the most efficient, scientifically proven and cost-effective technology for sustainable groundwater management. The artificial recharge aims at augmentation of groundwater reservoir and addresses important things in these crises. It addresses-

- To enhance the sustainable yield in areas where-development has depleted the aquifer.
- Conservation and storage of excess surface water for future requirements.
- Improve the quality of existing groundwater through dilution.

For Katni district, the supply side management plan has been formulated using the basic concepts of hydrogeology. Sub-surface storage is calculated by multiplying the total area with the respective specific yield and the unsaturated zone thickness obtained by subtracting 3 mts from the post-monsoon water level. The volume of ground water recharge generated through pre-existing rain water harvesting/water conservation structures is subtracted from the sub-surface storage to assess the available storage potential. Thus, the surface water requirement to completely saturate the sub-surface storage is obtained by multiplying a factor of 1.33 to available storage potential. The volume of unsaturated zone available in the Khargone district is 250.12 MCM. The volume of water required for recharging this much amount of water in the area is 332.6 MCM, but non commuted runoff available in the district the water available in the district is 204.08 MCM and artificial recharge created as per the sub-surface storage and non-commuted runoff available is 153.44 MCM.

The number of recharge structures as mentioned above, required to store and recharge the ground water reservoir has been worked out as follows.

The artificial recharge Structures are proposed shown in **Fig.6.1**: on the basis of Geology of the study area having slope less 20%, Pre-Monsoon water level more than 3.00mbgl, Weathering or Alluvium thickness of the area, drainage and Forest cover of the area.

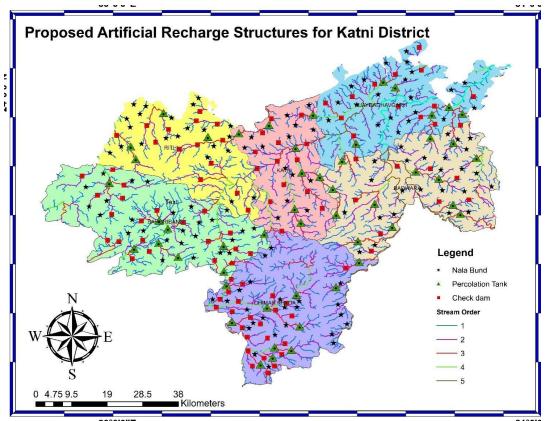



Figure 6.1: Proposed Artificial Recharge Structures for Phase-I in Katni District

A runoff coefficient factor of 0.1 per sq. km has been considered for Katni district to calculate the total surface water runoff, 30% of which accounts to the non-committed runoff which is available to sustain the proposed artificial recharge structures. Further, the number of structures has been calculated by allotting 35%, 45%, 15% and 5% of non-committed runoff to Percolation tanks, check dam with recharge shafts, Nala bund/Cement Plugs and village/farm ponds respectively. Supply Side Ground Water Management given in **Table 6.1** & 6.2

A financial outlay plan has also been formulated, assuming the cost for the artificial recharge structures to be Rs. 20 lakhs each for percolation tanks, Rs. 7 lakhs each for check dam with recharge shafts/Tube wells, Rs. 1 lakh each for nala bund/cement plugs and Rs. 2.5 lakhs each village/farm ponds. This accounts to a total of Rs.341.78 crores to successfully implement the supply side management strategy. **Table.6.3** represents the complete financial outlay plan- Supply Side Management for the district.

#### 6.3 Demand Side Management

Micro-irrigation is a modern method of irrigation and there is scope for increasing areas under this irrigation because of the increasing demand of water especially for the purpose of agriculture. Micro-irrigation is transforming the lives of millions of farmers across the world. **Micro-irrigation** is a slow application of water as discrete or continuous drips, tiny streams or miniature spray on, above or below the soil by surface drip, sub-surface drip, bubbler and micro-sprinkler systems. It is applied through emitters connected to a water delivery line through low pressure delivery. Drip irrigation methods range from simple bucket kit systems for small farms to automated systems linking release of water to soil moisture conditions measured continuously by tension meters. Micro-irrigation is of two types -**drip irrigation** in a pressurized form. This form of irrigation provides water efficiently. In drip irrigation emitters directly deliver water to the plant root into the soil. These emitters optimize and distribute the pressure from the water source using vents, twisters and convoluted or long flow paths which allows only a limited amount of water to pass through. Emitters can place on the ground or can also be planted deep in the soil.(**Fig.6.2**)

Micro-irrigation is often promoted by Central and State governments as a way to tackle the **growing water crises** or ground water related issued. Because of the rapid increase in the demand of water especially in agriculture sector this micro-irrigation has become a policy priority in India and technological solutions for achieving water conservation. These micro-irrigation techniques also called as low volume irrigation and have the potential to save water and nutrients by allowing water to drip slowly to the roots of plants. The goal is to place both saves conveyance losses and improves water application efficiency by applying water near the root-zone of the plant. Some benefits of the micro-irrigation have been listed below:

- The increase in yield for different crops ranges from 27 per cent to 88 per cent and water saving ranges from 36 per cent to 68 per cent vis-à-vis conventional flow irrigation systems (Phansalker and Verma, 2005).
- It enables farmers to grow crops which would not be possible under conventional systems since it can irrigate adequately with lower water quantities and higher yield.
- It saves costs of hired labour and other inputs like fertilizer.
- Joint management of irrigation and fertilization.
- Reducing pest problem.
- It reduces the energy needs for pumping, thus reducing energy per ha of irrigation because of its reduced water needs. However, overall energy needs of the agriculture sector may not get reduced because most farmers use the increased water efficiency to bring more area under irrigation.

• It suits for all type of soils, e.g., clay soil requires a slow procedure to avoid surface water collection and runoff and for sandy soils needs higher emitter discharge rates to ensure sufficient wetting of the soil.

Adoption of Sprinkler irrigation techniques would save 30 % of gross ground water draft for irrigation. Also, additional recharge created by construction of artificial recharge structures can be utilized to increase the total cropping area, thereby enhancing the productivity and economy of the district. In Badwara, Bahoriband, Dhimarkheda, Murwara and Rithi block 100%, in Vijayraghavgarh block 80% of the additional recharge created by construction of AR structures is utilizing to increase the cropping area and in Badwara, Bahoriband, Dhimarkheda, Murwara and Rithi block 10 % of the net groundwater available as per GWRE 2022 is also utilizing to increase the cropping area in the mentioned blocks. A summarized table for the demand side management is given in the **Table.6.4**.

#### 6.4 Management Plan for Ground Water Quality

Higher Concentration of nitrate has been encountered in the district. The use of fertilizers and sewage/domestic waste is one of the reasons for ground water contamination. Therefore, it is recommended for proper lining of sewage lines and proper waste management in the district. In agriculture field, the use of organic fertilizers instead of the use of harmful fertilizers.

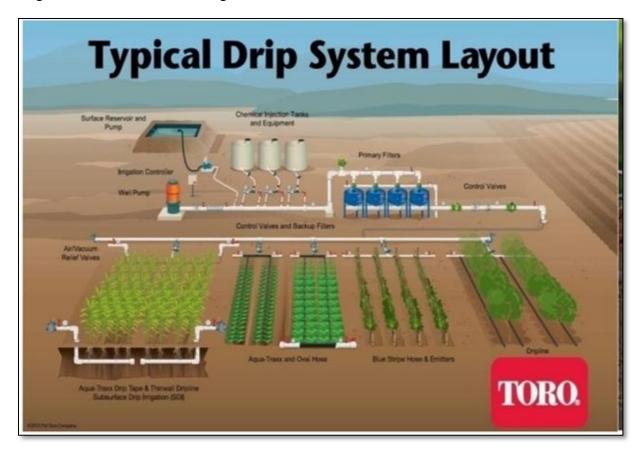



Figure 6.2: Schematic Diagram of Micro-irrigation (Drip Irrigation system)



Fig.6.3 Cultivation through drip irrigation



Fig.6.4 Cultivation through sprinkler irrigation

# Table.6.1: Ground Water Management– Supply Side, Katni District, Madhya Pradesh

| SI.<br>No | District | Assessment Unit Name | Area<br>(Sq.KM) | Annual<br>Rainfall<br>5 years<br>(mm) | Average<br>Post-<br>mons oon<br>Wate r<br>Le vel<br>(mbgl) | Suitable<br>Area<br>for AR<br>(sq.km) | Un<br>Saturated<br>Zone | Specific<br>Yield | Sub-<br>surface<br>storage<br>(mcm) | Surface<br>water<br>required<br>(mcm) | Available<br>water for<br>AR<br>(MCM) | Artificial<br>Recharge<br>created<br>against<br>the sub-<br>surface<br>storage<br>and non-<br>commuted<br>runoff<br>available<br>(MCM) |
|-----------|----------|----------------------|-----------------|---------------------------------------|------------------------------------------------------------|---------------------------------------|-------------------------|-------------------|-------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Katni    | BADWARA              | 942             | 1072.00                               | 5.68                                                       | 928.58                                | 2.68                    | 0.02              | 49.77                               | 66.20                                 | 39.28                                 | 29.53                                                                                                                                  |
| 2         | Katni    | BAHORIBAND           | 979             | 1072.00                               | 5.68                                                       | 979.00                                | 2.68                    | 0.02              | 52.47                               | 69.79                                 | 40.82                                 | 30.69                                                                                                                                  |
| 3         | Katni    | DHIMAR KHEDA         | 925             | 1072.00                               | 5.68                                                       | 841.20                                | 2.68                    | 0.02              | 45.09                               | 59.97                                 | 38.57                                 | 29.00                                                                                                                                  |
| 4         | Katni    | MURWARA              | 662             | 1072.00                               | 5.68                                                       | 662.00                                | 2.68                    | 0.02              | 35.48                               | 47.19                                 | 27.61                                 | 20.76                                                                                                                                  |
| 5         | Katni    | RITHI                | 635             | 1072.00                               | 5.68                                                       | 512.70                                | 2.68                    | 0.02              | 27.48                               | 36.55                                 | 26.48                                 | 19.91                                                                                                                                  |
| 6         | Katni    | VIJAYRAGHAVGARH      | 751             | 1072.00                               | 5.68                                                       | 743.00                                | 2.68                    | 0.02              | 39.82                               | 52.97                                 | 31.32                                 | 23.55                                                                                                                                  |
|           | Total    |                      | 4894.00         |                                       |                                                            | 4666.48                               |                         | 0.02              | 250.12                              | 332.66                                | 204.08                                | 153.44                                                                                                                                 |

| SI.<br>No | District | Assessment Unit Name | Runoff<br>/sq.km | Runoff<br>MCM | Non-<br>Commuted<br>Runoff | No. of<br>percolation<br>tanks | No. of<br>Check<br>Dams with<br>Recharge<br>shaft in<br>each CD | No. of nala<br>bunds/ce ment<br>plugs | No. of<br>village<br>ponds/<br>Farm<br>Ponds |
|-----------|----------|----------------------|------------------|---------------|----------------------------|--------------------------------|-----------------------------------------------------------------|---------------------------------------|----------------------------------------------|
| 1         | Katni    | BADWARA              | 0.14             | 130.94        | 39.28                      | 69.00                          | 589.00                                                          | 589.00                                | 196.00                                       |
| 2         | Katni    | BAHORIBAND           | 0.14             | 136.08        | 40.82                      | 71.00                          | 612.00                                                          | 612.00                                | 204.00                                       |
| 3         | Katni    | DHIMAR KHEDA         | 0.14             | 128.58        | 38.57                      | 68.00                          | 579.00                                                          | 579.00                                | 193.00                                       |
| 4         | Katni    | MURWARA              | 0.14             | 92.02         | 27.61                      | 48.00                          | 414.00                                                          | 414.00                                | 138.00                                       |
| 5         | Katni    | RITHI                | 0.14             | 88.27         | 26.48                      | 46.00                          | 397.00                                                          | 397.00                                | 132.00                                       |
| 6         | Katni    | VIJAYRAGHAVGARH      | 0.14             | 104.39        | 31.32                      | 55.00                          | 470.00                                                          | 470.00                                | 157.00                                       |
|           | Total    |                      |                  |               | 204.08                     | 357.00                         | 3061.00                                                         | 3061.00                               | 1020.00                                      |

### Table.6.2: Ground Water Management– Supply Side, Katni District, Madhya Pradesh

| SI.<br>No | Distri<br>ct | Assessment Unit<br>Name | Sub-<br>surface<br>storage<br>(mcm) | Surface<br>water<br>required<br>(mcm) | Availabl<br>e water<br>for AR<br>(MCM) | Artificia<br>l<br>Recharg<br>e<br>created<br>against<br>the sub-<br>surface<br>storage<br>and<br>non-<br>commut<br>ed<br>runoff<br>availabl<br>e | Non-<br>Commu<br>ted<br>Runoff | No. of<br>percola<br>tion<br>tanks | cost of<br>percolatio<br>n tanks in<br>crores<br>@0.2cror<br>es per pt. | No. of<br>Check<br>Dams<br>with<br>Rechar<br>ge shaft<br>in each | cost of<br>Check<br>Dams<br>with<br>rechar<br>ge shaft<br>in<br>crores<br>@0.07<br>crores<br>per pt | No. of<br>nala<br>bunds/ce<br>ment<br>plugs | cost of<br>nala<br>bund/c<br>ement<br>plugs in<br>crores<br>@0.01<br>crores<br>per pt | No. of<br>village<br>ponds/<br>Farm<br>Ponds | cost of<br>village<br>pond in<br>crores<br>@0.025<br>crores<br>per pt | Total<br>cost |
|-----------|--------------|-------------------------|-------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|---------------|
| 1         | Katni        | BADWARA                 | 49.77                               | 66.20                                 | 39.28                                  | 29.53                                                                                                                                            | 39.28                          | 69                                 | 13.80                                                                   | 589                                                              | 41.23                                                                                               | 589                                         | 5.89                                                                                  | 196                                          | 4.90                                                                  | 65.82         |
| 2         | Katni        | BAHORIBAND              | 52.47                               | 69.79                                 | 40.82                                  | 30.69                                                                                                                                            | 40.82                          | 71                                 | 14.20                                                                   | 612                                                              | 42.84                                                                                               | 612                                         | 6.12                                                                                  | 204                                          | 5.10                                                                  | 68.26         |
| 3         | Katni        | DHIMAR KHEDA            | 45.09                               | 59.97                                 | 38.57                                  | 29.00                                                                                                                                            | 38.57                          | 68                                 | 13.60                                                                   | 579                                                              | 40.53                                                                                               | 579                                         | 5.79                                                                                  | 193                                          | 4.83                                                                  | 64.75         |
| 4         | Katni        | MURWARA                 | 35.48                               | 47.19                                 | 27.61                                  | 20.76                                                                                                                                            | 27.61                          | 48                                 | 9.60                                                                    | 414                                                              | 28.98                                                                                               | 414                                         | 4.14                                                                                  | 138                                          | 3.45                                                                  | 46.17         |
| 5         | Katni        | RITHI                   | 27.48                               | 36.55                                 | 26.48                                  | 19.91                                                                                                                                            | 26.48                          | 46                                 | 9.20                                                                    | 397                                                              | 27.79                                                                                               | 397                                         | 3.97                                                                                  | 132                                          | 3.30                                                                  | 44.26         |
| 6         | Katni        | VIJAYRAGHAV<br>GARH     | 39.82                               | 52.97                                 | 31.32                                  | 23.55                                                                                                                                            | 31.32                          | 55                                 | 11.00                                                                   | 470                                                              | 32.90                                                                                               | 470                                         | 4.70                                                                                  | 157                                          | 3.93                                                                  | 52.53         |
|           |              | TOTAL                   | 250.12                              | 332.66                                | 204.08                                 | 153.44                                                                                                                                           | 204.08                         | 357                                | 71.40                                                                   | 3061                                                             | 214.27                                                                                              | 3061                                        | 30.61                                                                                 | 1020                                         | 25.50                                                                 | 341.78        |

### Table.6.3: Financial Outlay Plan- Supply Side Management, Katni District, Madhya Pradesh

| Block           | Net<br>GW<br>Availab<br>ility<br>(MCM) | GW<br>Draft<br>for<br>Irriga<br>tion<br>(MC<br>M) | GW<br>Draft<br>for<br>Dome<br>stic &<br>Indust<br>rial<br>(MC<br>M) | Gross<br>Draft<br>(MCM) | Stage<br>of<br>Devel<br>opme<br>nt (%) | Savin<br>g by<br>micro<br>irrigat<br>ion in<br>(MC<br>M) | Additi<br>onal<br>re char<br>ge<br>cre ate<br>d by<br>AR<br>(MCM<br>) | After<br>interven<br>tion of<br>AR<br>Structur<br>e Net<br>GW<br>Availabi<br>lity<br>(MCM) | After<br>interven<br>tion of<br>AR<br>Structur<br>e &<br>utilisatio<br>n of<br>addition<br>al GW<br>created<br>(MCM)/<br>Utilizati<br>on of<br>Net<br>Ground<br>Water<br>Availabi<br>lity | After<br>utilizati<br>on of<br>Net<br>Groun<br>d water<br>availab<br>ility<br>(2022<br>resourc<br>e) | Draft<br>after<br>sprinkl<br>er &<br>additio<br>nal<br>are a<br>cre ated<br>for<br>agricul<br>ture<br>(MCM | Stage of<br>Develop<br>ment<br>W/O GW<br>use for<br>additiona<br>l Area<br>Irrigatio<br>n (%) | Additio<br>nal area<br>irrigate<br>d by<br>GW<br>after<br>interven<br>tion<br>(Ha) |
|-----------------|----------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|-------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| BADWARA         | 79.38                                  | 35.17                                             | 6.01                                                                | 41.19                   | 51.88                                  | 10.55                                                    | 29.53                                                                 | 108.91                                                                                     | 29.53                                                                                                                                                                                     | 7.94                                                                                                 | 68.10                                                                                                      | 62.53                                                                                         | 9368.22                                                                            |
| BAHORIBAND      | 84.65                                  | 23.45                                             | 5.39                                                                | 28.85                   | 34.07                                  | 7.04                                                     | 30.69                                                                 | 115.34                                                                                     | 30.69                                                                                                                                                                                     | 8.47                                                                                                 | 60.96                                                                                                      | 52.85                                                                                         | 9789.99                                                                            |
| DHIMAR KHEDA    | 51.89                                  | 11.84                                             | 4.81                                                                | 16.65                   | 32.10                                  | 3.55                                                     | 29.00                                                                 | 80.89                                                                                      | 29.00                                                                                                                                                                                     | 5.19                                                                                                 | 47.29                                                                                                      | 58.46                                                                                         | 8547.72                                                                            |
| MURWARA         | 65.42                                  | 30.89                                             | 5.72                                                                | 36.62                   | 55.97                                  | 9.27                                                     | 20.76                                                                 | 86.18                                                                                      | 20.76                                                                                                                                                                                     | 6.54                                                                                                 | 54.64                                                                                                      | 63.41                                                                                         | 6824.48                                                                            |
| RITHI           | 37.89                                  | 13.98                                             | 3.44                                                                | 17.42                   | 45.97                                  | 4.19                                                     | 19.91                                                                 | 57.80                                                                                      | 19.91                                                                                                                                                                                     | 3.79                                                                                                 | 36.92                                                                                                      | 63.88                                                                                         | 5924.60                                                                            |
| VIJAYRAGHAVGARH | 53.09                                  | 24.78                                             | 9.83                                                                | 34.61                   | 65.19                                  | 7.43                                                     | 23.55                                                                 | 76.64                                                                                      | 18.84                                                                                                                                                                                     | 0.00                                                                                                 | 46.01                                                                                                      | 60.04                                                                                         | 4709.28                                                                            |
| TOTAL           | 372.32                                 | 140.11                                            | 35.20                                                               | 175.34                  | 47.09                                  | 42.03                                                    | 153.44                                                                | 525.76                                                                                     | 148.73                                                                                                                                                                                    | 31.92                                                                                                | 313.93                                                                                                     | 59.71                                                                                         | 45164.30                                                                           |

### Table.6.4: Post-Intervention Impact – Demand side of Katni District, Madhya Pradesh

#### **6.5 Post-Intervention Impact**

The supply side interventions by implementation of artificial recharge/water conservation will increase the resource by 153.44 mcm. These supply side interventions are not sufficient to bring the district under sustainable management. Therefore, demand side interventions are also proposed in which micro-irrigation system is taken up to tackle the issues related to groundwater. Therefore, after the supply side and demand side interventions the outcome of the proposed interventions has been described in **Table.6.4** and **Table.6.5**. The Stage of ground water extraction for the entire Katni district, changed from 47.09 % to 59.71 % with 45164.30 ha additional area irrigated by ground water after intervention for sustainable ground water management so that district will remain in safe category with more area under irrigation

| Block           | Stage of GW<br>Extraction (%) | Stage of GW<br>Extraction after<br>intervention (%) | Additional area<br>irrigated by GW<br>after intervention<br>(Ha) |
|-----------------|-------------------------------|-----------------------------------------------------|------------------------------------------------------------------|
| BADWARA         | 51.88                         | 62.53                                               | 9368.22                                                          |
| BAHORIBAND      | 34.07                         | 52.85                                               | 9789.99                                                          |
| DHIMAR KHEDA    | 32.10                         | 58.46                                               | 8547.72                                                          |
| MURWARA         | 55.97                         | 63.41                                               | 6824.48                                                          |
| RITHI           | 45.97                         | 63.88                                               | 5924.60                                                          |
| VIJAYRAGHAVGARH | 65.19                         | 60.04                                               | 4709.28                                                          |
| TOTAL           | 47.09                         | 59.71                                               | 45164.30                                                         |

Table 6.5 Quantitative impact on GW Resources after the supply side and demand side interventions

#### 6.6 Block-wise Ground Water Management Plan (Outcome of NAQUIM)

As per directions of Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India, Aquifer Management Plan for district has been prepared block-wise. The plan for each block discusses the broad framework of ground water situation in the block, status of water availability, feasibility of artificial recharge and other water conservation structures and their numbers and cost estimates.

### CHAPTER 7

# PART II-BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN 7.1 BADWARA BLOCK

|             |                    | Area                             | Sq Km | 942                               |  |
|-------------|--------------------|----------------------------------|-------|-----------------------------------|--|
| Normal R    | ainfall            |                                  | mm    | 1171.4                            |  |
|             | P                  | rincipal crops                   |       | Paddy, pulses<br>seeds,Wheat,Gram |  |
| Data Ut     | ilizo d            | Monitoring Wells for Water Level |       | Dugwell-04                        |  |
| Data Ut     | llizeu             | Monitoring Wells for Quality     |       | Dugwell-04                        |  |
| Water level | Challow            | Pre-monsoon WL (2022)            |       | Min-6.41,Max-14.72                |  |
| be havior   | Shallow<br>Aquifer | Post-monsoon WL (2022)           | mbgl  | Min-4.31,Max-7.78                 |  |

### Table.7.1. Salient Information

### Table.7.2. Aquifer Disposition

| Major Aquifer                              | Alluvium/Weather   | red and Fractured Granite      |  |  |  |
|--------------------------------------------|--------------------|--------------------------------|--|--|--|
| Type of Aquifer                            | Aquifer-I          | Aquifer-II                     |  |  |  |
| Formation                                  | Laterite/Limestone | Lametas/Gondwana<br>sandstone/ |  |  |  |
| Depth of Occurrence<br>(mbgl)              | 1 to 30            | 30 to 200                      |  |  |  |
| We athered/Fractured<br>rocks thickness(m) | 0.5 to 18          | 2 to 5.5                       |  |  |  |
| Fractures encountered<br>(mbgl)            | Upto30             | Upto200                        |  |  |  |
| Yield (lps)                                | -                  | 4.4 to 10.2                    |  |  |  |
| Transmissivity (m <sup>2</sup> /day)       | -                  | 23.6 to 110.65                 |  |  |  |

| GROUND WATER RESOURCE OF BAD WARA BLOCK   |        |  |  |  |  |  |  |  |  |  |
|-------------------------------------------|--------|--|--|--|--|--|--|--|--|--|
| Shallow Aquife r                          |        |  |  |  |  |  |  |  |  |  |
| Dynamic Resources (MCM)                   | 79.39  |  |  |  |  |  |  |  |  |  |
| Static Resources (MCM)                    | 114.05 |  |  |  |  |  |  |  |  |  |
| Total Resources (MCM)                     | 193.44 |  |  |  |  |  |  |  |  |  |
| Deeper Aquifer                            |        |  |  |  |  |  |  |  |  |  |
| Static Resources (MCM)81.06               |        |  |  |  |  |  |  |  |  |  |
| Total GW Resources (MCM)                  | 274.50 |  |  |  |  |  |  |  |  |  |
| Irrigation GW Draft (MCM)                 | 35.17  |  |  |  |  |  |  |  |  |  |
| Domestic + Industries GW Draft (MCM)      | 6.02   |  |  |  |  |  |  |  |  |  |
| Gross Ground Water Draft (MCM)            | 41.19  |  |  |  |  |  |  |  |  |  |
| Stage of Ground Water Extraction (%)51.89 |        |  |  |  |  |  |  |  |  |  |
| Category                                  | safe   |  |  |  |  |  |  |  |  |  |

### Table.7.3. Ground Water Resource

Table.7.4 Supply Side Management Plan

| Area suitable for recharge (Sq. Km)                                                                       | Sq. km | 928.58 |
|-----------------------------------------------------------------------------------------------------------|--------|--------|
| SP Yield (%)                                                                                              | %      | 0.029  |
| Sub-surface storage (mcm)                                                                                 | М      | 49.77  |
| Surface water required (mcm)                                                                              | mcm    | 66.20  |
| Available water for AR (mcm) as per<br>non commuted runoff available (mcm)                                | mcm    | 39.28  |
| Artificial Recharge created against the<br>sub-surface storage and non-commuted<br>runoff available (mcm) | mcm    | 29.53  |
| Surface water (Run-off) available (mcm)                                                                   | mcm    | 130.94 |
| Non-committed Run-off (mcm)                                                                               | Mcm    | 39.28  |

Table.7.6. Artificial Recharge Structures Proposed

| <b>Type of Structure Proposed</b> | Number | Cost in crores                   |
|-----------------------------------|--------|----------------------------------|
| Percolation tanks                 | 69     | 13.80 (0.2 crore per structure)  |
| Check Dams with recharge          | 589    | 41.23 (0.07 crore per structure) |
| Nala bunds/cement plugs           | 589    | 5.89 (0.01 crore per structure)  |
| Village ponds/ Farm Ponds         | 196    | 4.90 (0.025 crore per structure) |
| Total Cost                        |        | 65.82 crore                      |

| Block       | Net GW<br>Availabili<br>ty<br>(MCM) | GW<br>Draft<br>for<br>Irrigati<br>on<br>(MCM) | GW<br>Draft<br>for<br>Domesti<br>c &<br>Industri<br>al<br>(MCM) | Gross<br>Draft<br>(MC<br>M) | Stage of<br>De welopme<br>nt (%) | Saving<br>by<br>micro<br>irrigati<br>on in<br>(MCM) | Addition<br>al<br>recharge<br>created<br>by AR<br>(MCM) | After<br>interventi<br>on of AR<br>Structure<br>Net GW<br>AvL.<br>(MCM) | After<br>interventi<br>on of AR<br>Structure<br>&<br>utilisation<br>of<br>additional<br>GW<br>created<br>(MCM)/<br>Utilizatio<br>n of Net<br>Ground<br>Water<br>Availabili<br>ty | After<br>utilizatio<br>n of Net<br>Ground<br>water<br>availabili<br>ty (2022<br>resource) | Draft<br>after<br>sprinkler<br>&<br>additiona<br>l area<br>created<br>for<br>agricultu<br>re<br>(MCM | Stage of<br>Developme<br>nt W/O<br>GW use for<br>additional<br>Area<br>Irrigation(<br>%) | Additiona<br>l area<br>irrigated<br>by GW<br>after<br>inter venti<br>on (Ha) |
|-------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| BADWA<br>RA | 79.38                               | 35.17                                         | 6.01                                                            | 41.19                       | 51.88                            | 10.55                                               | 29.53                                                   | 108.91                                                                  | 29.53                                                                                                                                                                            | 7.94                                                                                      | 68.10                                                                                                | 62.53                                                                                    | 9368.22                                                                      |

# Table.7.7 Demand Side Management Plan

# 7.2 BAHORIBAND BLOCK

|                         |                    | Area                            | Sq Km | 979                                 |
|-------------------------|--------------------|---------------------------------|-------|-------------------------------------|
| Normal I                | Rainfall           |                                 | mm    | 1171.4                              |
|                         | I                  | Principal crops                 |       | Paddy, pulses seeds,<br>Wheat, Gram |
|                         |                    | Monitoring Wells for WaterLevel |       | Dugwell-01                          |
| Data U                  | tilize d           | Monitoring Wells for Quality    |       | Dugwell-01                          |
|                         | Shallow<br>Aquifer | Pre-monsoon WL (2022)           |       | Min-5.69,Max-15.56                  |
| Water level<br>behavior |                    | Post-monsoon WL (2022)          | mbgl  | Min-3.68,Max-7.23                   |

#### Table 7.8 Salient Information

# Table 7.9: Aquifer Disposition

| Major Aquifer                                 | Vindhyan Sandstone/Fractured Slate        |                                 |  |  |  |  |  |
|-----------------------------------------------|-------------------------------------------|---------------------------------|--|--|--|--|--|
| Type of Aquifer                               | Aquifer-I                                 | Aquifer-II                      |  |  |  |  |  |
| Formation                                     | Laterite/Limestone<br>Weathered Sandstone | Fractured<br>Marble/Shale/Slate |  |  |  |  |  |
| Depth of Occurrence<br>(mbgl)                 | 1 to 30                                   | 30 to 200                       |  |  |  |  |  |
| We athe re d/Fracture d<br>rocks thickness(m) | 0.5 to 10                                 | 2 to 5.5                        |  |  |  |  |  |
| Fractures encountered<br>(mbgl)               | Up to30                                   | Up to200                        |  |  |  |  |  |
| Yield (lps)                                   | -                                         | 0.27 to 6.3                     |  |  |  |  |  |
| Transmissivity (m <sup>2</sup> /day)          | -                                         | 0.558 to 6.2                    |  |  |  |  |  |

| GROUND WATER RESOURCE OF BAHORIBAND BLOCK |        |  |  |  |  |  |  |  |  |
|-------------------------------------------|--------|--|--|--|--|--|--|--|--|
| Shallow Aquife r                          |        |  |  |  |  |  |  |  |  |
| Dynamic Resources (MCM)                   | 84.66  |  |  |  |  |  |  |  |  |
| Static Resources (MCM)                    | 118.67 |  |  |  |  |  |  |  |  |
| Total Resources (MCM)                     | 203.33 |  |  |  |  |  |  |  |  |
| Deeper Aquifer                            |        |  |  |  |  |  |  |  |  |
| Static Resources (MCM)                    | 85.91  |  |  |  |  |  |  |  |  |
| Total GW Resources (MCM)                  | 289.23 |  |  |  |  |  |  |  |  |
| Irrigation GW Draft (MCM)                 | 23.46  |  |  |  |  |  |  |  |  |
| Domestic+IndustriesGW Draft (MCM)         | 5.40   |  |  |  |  |  |  |  |  |
| Gross Ground Water Draft (MCM)            | 28.86  |  |  |  |  |  |  |  |  |
| Stage of Ground Water Extraction (%)      | 34.08  |  |  |  |  |  |  |  |  |
| Category                                  | safe   |  |  |  |  |  |  |  |  |

### Table.7.10. Groundwater Resources

 Table 7.11:
 Supply Side Management Plan

| Area suitable for recharge (sq. Km)                                                                        | Sq. km | 979    |
|------------------------------------------------------------------------------------------------------------|--------|--------|
| SP Yield (%)                                                                                               | %      | 0.027  |
| Sub-surface storage (mcm)                                                                                  | М      | 52.47  |
| Surface water required (mcm)                                                                               | mcm    | 69.79  |
| Available water for AR (mcm) as per non commuted runoff available (mcm)                                    | mcm    | 40.82  |
| Artificial Recharge created against the sub-<br>surface storage and non-commuted runoff<br>available (mcm) | mcm    | 30.69  |
| Surface water (Run-off) available (mcm)                                                                    | mcm    | 136.08 |
| Non-committed Run-off (mcm)                                                                                | Mcm    | 40.82  |

Table 7.12: Proposed Artificial Recharge Structres

| Type of Structure Proposed     | Number | Cost in crores                   |
|--------------------------------|--------|----------------------------------|
| Percolation tanks              | 71     | 14.20 (0.2 crore per structure)  |
| Check Dams with recharge shaft | 612    | 42.84 (0.07 crore per structure) |
| Nala bunds/cement plugs        | 612    | 6.12 (0.01 crore per structure)  |
| Village ponds/ Farm Ponds      | 204    | 5.10 (0.025 crore per structure) |
| Total Cost                     |        | 68.26 crore                      |

| Bloc<br>k  | Net GW<br>Availabili<br>ty<br>(MCM) | GW<br>Draft<br>for<br>Irrigati<br>on<br>(MCM) | GW<br>Draft<br>for<br>Domesti<br>c &<br>Industri<br>al<br>(MCM) | Gross<br>Draft<br>(MC<br>M) | Stage of<br>Developme<br>nt (%) | Saving<br>by<br>micro<br>irrigati<br>on in<br>(MCM) | Addition<br>al<br>recharge<br>created<br>by AR<br>(MCM) | After<br>interventi<br>on of AR<br>Structure<br>Net GW<br>AvL.<br>(MCM) | After<br>inter venti<br>on of AR<br>Structure<br>&<br>utilisation<br>of<br>additional<br>GW<br>created<br>(MCM)/<br>Utilization<br>of Net<br>Ground<br>Water<br>Availabilit<br>y | After<br>utilizatio<br>n of Net<br>Ground<br>water<br>availabili<br>ty (2022<br>resource) | Draft<br>after<br>sprinkler<br>&<br>additiona<br>l area<br>created<br>for<br>agricultu<br>re (MCM | Stage of<br>Developme<br>nt W/O<br>GW use for<br>additional<br>Area<br>Irrigation(<br>%) | Additiona<br>l area<br>irrigated<br>by GW<br>after<br>inter venti<br>on (Ha) |
|------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| BAHORIBAND | 84.65                               | 23.45                                         | 5.39                                                            | 28.85                       | 34.07                           | 7.04                                                | 30.69                                                   | 115.34                                                                  | 30.69                                                                                                                                                                            | 8.47                                                                                      | 60.96                                                                                             | 52.85                                                                                    | 9789.99                                                                      |

# 7.3 DHIMARKHEDA BLOCK

|                         |                    | Area                             | Sq.Km | 925                                 |
|-------------------------|--------------------|----------------------------------|-------|-------------------------------------|
| Normal I                | Rainfall           |                                  | mm    | 1171.4                              |
|                         | ]                  | Principal crops                  |       | Paddy, pulses seeds,<br>Wheat, Gram |
| Data U                  | tilizo d           | Monitoring Wells for Water Level |       | Dugwell-04                          |
| Data U                  | liiizeu            | Monitoring Wells for Quality     |       | Dugwell-04                          |
|                         |                    | Pre-monsoon WL(2022)             |       | Min-7.51,Max-8.46                   |
| Water level<br>behavior | Shallow<br>Aquifer | Post-monsoon WL(2022)            | mbgl  | Min-3.91,Max-5.13                   |

### Table 7.13: Salient Information

# Table 7.14: Aquifer Disposition

| Major Aquifer                              | Alluvium / Gondwana sandstone/Fractured Shale |                               |  |  |  |  |  |
|--------------------------------------------|-----------------------------------------------|-------------------------------|--|--|--|--|--|
| Type of Aquifer                            | Aquifer-I                                     | Aquifer-II                    |  |  |  |  |  |
| Formation                                  | Alluvium/ Laterite / Gondwana sandstone       | Fractured<br>Shale/Sandstones |  |  |  |  |  |
| Depth of Occurrence<br>(mbgl)              | 1 to 30                                       | 30 to 200                     |  |  |  |  |  |
| We athered/Fractured<br>rocks thickness(m) | 0.5 to 19                                     | 4 to 13.56                    |  |  |  |  |  |
| Fractures encountered<br>(mbgl)            | Up to30                                       | Up to200                      |  |  |  |  |  |
| Yield (lps)                                | -                                             | 4.6 to 22.64                  |  |  |  |  |  |
| Transmissivity (m <sup>2</sup> /day)       | -                                             | 11.20 to 60.88                |  |  |  |  |  |

| GROUND WATER RESOURCE OF DHIMARKHEDA BLOCK |        |  |  |  |  |  |  |  |  |
|--------------------------------------------|--------|--|--|--|--|--|--|--|--|
| Shallow Aquife r                           |        |  |  |  |  |  |  |  |  |
| Dynamic Resources (MCM)                    | 51.90  |  |  |  |  |  |  |  |  |
| Static Resources (MCM)                     | 31.01  |  |  |  |  |  |  |  |  |
| Total Resources (MCM)                      | 82.91  |  |  |  |  |  |  |  |  |
| Deeper Aquifer                             |        |  |  |  |  |  |  |  |  |
| Static Resources (MCM)                     | 27.09  |  |  |  |  |  |  |  |  |
| Total GW Resources (MCM)                   | 109.99 |  |  |  |  |  |  |  |  |
| Irrigation GW Draft (MCM)                  | 11.85  |  |  |  |  |  |  |  |  |
| Domestic+IndustriesGW Draft (MCM)          | 4.81   |  |  |  |  |  |  |  |  |
| Gross Ground Water Draft (MCM)             | 16.66  |  |  |  |  |  |  |  |  |
| Stage of Ground Water Extraction (%)       | 32.10  |  |  |  |  |  |  |  |  |
| Category                                   | Safe   |  |  |  |  |  |  |  |  |

### Table 7.15: Ground Water Resource

### Table 7.16 Supply Side Management Plan

| Area suitable for recharge (sq. Km)                                                                        | Sq. km | 841.2  |  |
|------------------------------------------------------------------------------------------------------------|--------|--------|--|
| SP Yield (%)                                                                                               | %      | 0.014  |  |
| Sub-surface storage (mcm)                                                                                  | М      | 45.09  |  |
| Surface water required (mcm)                                                                               | mcm    | 59.97  |  |
| Available water for AR (mcm) as per non commuted runoff available (mcm)                                    | mcm    | 38.57  |  |
| Artificial Recharge created against the sub-<br>surface storage and non-commuted runoff<br>available (mcm) | mcm    | 29.00  |  |
| Surface water (Run-off) available (mcm)                                                                    | mcm    | 128.58 |  |
| Non-committed Run-off (mcm)                                                                                | Mcm    | 38.57  |  |

### Table 7.17 Proposed Artificial Recharge Structres

| Type of Structure Proposed     | Number | Cost in crores                   |  |  |  |
|--------------------------------|--------|----------------------------------|--|--|--|
| Percolation tanks              | 68     | 13.60 (0.2 crore per structure)  |  |  |  |
| Check Dams with recharge shaft | 579    | 40.53 (0.07 crore per structure) |  |  |  |
| Nala bunds/cement plugs        | 579    | 5.79 (0.01 crore per structure)  |  |  |  |
| Village ponds/ Farm Ponds      | 193    | 4.83(0.025 crore per structure)  |  |  |  |
| Total Cost                     |        | 64.75 crore                      |  |  |  |

| Bloc<br>k   | Net GW<br>Availabili<br>ty<br>(MCM) | GW<br>Draft<br>for<br>Irrigati<br>on<br>(MCM) | GW<br>Draft<br>for<br>Domesti<br>c &<br>Industri<br>al<br>(MCM) | Gross<br>Draft<br>(MC<br>M) | Stage of<br>Dewelopme<br>nt (%) | Saving<br>by<br>micro<br>irrigati<br>on in<br>(MCM) | Addition<br>al<br>recharge<br>created<br>by AR<br>(MCM) | After<br>inter venti<br>on of AR<br>Structure<br>Net GW<br>AvL.<br>(MCM) | After<br>inter venti<br>on of AR<br>Structure<br>&<br>utilisation<br>of<br>additional<br>GW<br>created<br>(MCM)/<br>Utilization<br>of Net<br>Ground<br>Water<br>Availabilit<br>y | After<br>utilizatio<br>n of Net<br>Ground<br>water<br>availabili<br>ty (2022<br>resource) | Draft<br>after<br>sprinkler<br>&<br>addi tiona<br>l area<br>created<br>for<br>agricultu<br>re (MCM | Stage of<br>Dewelopme<br>nt W/O<br>GW use for<br>additional<br>Area<br>Irrigation(<br>%) | Additiona<br>l area<br>irrigated<br>by GW<br>after<br>inter venti<br>on (Ha) |
|-------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------|-----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| DHIMARKHEDA | 51.89                               | 11.89                                         | 4.81                                                            | 16.65                       | 32.10                           | 3.55                                                | 29.00                                                   | 80.89                                                                    | 29.00                                                                                                                                                                            | 5.19                                                                                      | 47.29                                                                                              | 58.46                                                                                    | 8547.72                                                                      |

# Table 7.18: Demand Side Management Plan

# 7.4 MURWARA BLOCK

|             |          | Area                             | Sq.Km | 662                                 |
|-------------|----------|----------------------------------|-------|-------------------------------------|
| Normal I    | Rainfall |                                  | mm    | 1171.4                              |
|             | ]        | Principal crops                  |       | Paddy, pulses seeds,<br>Wheat, Gram |
| Data U      | tilizo d | Monitoring Wells for Water Level |       | Dugwell-04                          |
| Data U      | unizeu   | Monitoring Wells for Quality     |       | Dugwell-04                          |
| Water level | Shallow  | Pre-monsoon WL (2022)            |       | Min-4.3,Max-21.15                   |
| behavior    | Aquifer  | Post-monsoon WL(2022)            | mbgl  | Min-2.98,Max-10.81                  |

### Table.7.19: Salient Information

### Table.7.20: Aquifer Disposition

| Major Aquifer                                 | Alluvium/ Laterite /Fractured Slate/Marble |                        |  |  |  |
|-----------------------------------------------|--------------------------------------------|------------------------|--|--|--|
| Type of Aquifer                               | Aquifer-I                                  | Aquifer-II             |  |  |  |
| Formation                                     | Alluvium/ Laterite                         | Fractured Slate/Marble |  |  |  |
| Depth of Occurrence<br>(mbgl)                 | 1 to 30                                    | 30 to 200              |  |  |  |
| We athe re d/Fracture d<br>rocks thickness(m) | 2.5 to 17                                  | 7.5 to 14.2            |  |  |  |
| Fractures encountered<br>(mbgl)               | Up to 30                                   | Up to 200              |  |  |  |
| Yield (lps)                                   | -                                          | 0.642 to 11.543        |  |  |  |
| Transmissivity (m <sup>2</sup> /day)          | -                                          | 0.8 to 8.34            |  |  |  |

| GROUND WATER RESOURCE OF MURWARA BLOCK |        |  |  |  |  |  |  |  |
|----------------------------------------|--------|--|--|--|--|--|--|--|
| Shallow Aquife r                       |        |  |  |  |  |  |  |  |
| Dynamic Resources (MCM)                | 65.43  |  |  |  |  |  |  |  |
| Static Resources (MCM)                 | 158.25 |  |  |  |  |  |  |  |
| Total Resources (MCM)                  | 223.68 |  |  |  |  |  |  |  |
| Deeper Aquifer                         |        |  |  |  |  |  |  |  |
| Static Resources (MCM)                 | 60.77  |  |  |  |  |  |  |  |
| Total GW Resources (MCM)               | 284.45 |  |  |  |  |  |  |  |
| Irrigation GW Draft (MCM)              | 30.90  |  |  |  |  |  |  |  |
| Domestic + IndustriesGW Draft (MCM)    | 5.72   |  |  |  |  |  |  |  |
| Gross Ground Water Draft (MCM)         | 36.62  |  |  |  |  |  |  |  |
| Stage of Ground Water Extraction (%)   | 55.97  |  |  |  |  |  |  |  |
| Category                               | safe   |  |  |  |  |  |  |  |

### Table.7.21: Ground Water Resource

Table 7.23 Supply Side Management Plan

| Area suitable for recharge (sq. Km)                                                                       | sq. km | 662   |
|-----------------------------------------------------------------------------------------------------------|--------|-------|
| SP Yield (%)                                                                                              | %      | 0.034 |
| Sub-surface storage (mcm)                                                                                 | М      | 35.48 |
| Surface water required (mcm)                                                                              | mcm    | 47.19 |
| Available water for AR (mcm) as per non<br>commuted runoff available (mcm)                                | mcm    | 27.61 |
| Artificial Recharge created against the<br>sub-surface storage and non-commuted<br>runoff available (mcm) | mcm    | 20.76 |
| Surface water (Run-off) available (mcm)                                                                   | mcm    | 92.02 |
| Non-committed Run-off (mcm)                                                                               | Mcm    | 27.61 |

Table 7.24: Proposed Artificial Recharge Structures

| Type of Structure Proposed     | Number | Cost in crores                   |
|--------------------------------|--------|----------------------------------|
| Percolation tanks              | 48     | 9.60 (0.2 crore per structure)   |
| Check Dams with recharge shaft | 414    | 28.98 (0.07 crore per structure) |
| Nala bunds/cement plugs        | 414    | 4.14 (0.01 crore per structure)  |
| Village ponds/ Farm Ponds      | 138    | 3.45(0.025 crore per structure)  |
| Total Cost                     |        | 46.17 crore                      |

| Bloc<br>k | Net GW<br>Availabili<br>ty<br>(MCM) | GW<br>Draft<br>for<br>Irrigati<br>on<br>(MCM) | GW<br>Draft<br>for<br>Domesti<br>c &<br>Industri<br>al<br>(MCM) | Gross<br>Draft<br>(MC<br>M) | Stage of<br>De vel opme<br>nt (%) | Saving<br>by<br>micro<br>irrigati<br>on in<br>(MCM) | Addition<br>al<br>recharge<br>created<br>by AR<br>(MCM) | After<br>interventi<br>on of AR<br>Structure<br>Net GW<br>AvL.<br>(MCM) | After<br>interventi<br>on of AR<br>Structure<br>&<br>utilisation<br>of<br>additional<br>GW<br>created<br>(MCM)/<br>Utilization<br>of Net<br>Ground<br>Water<br>Availabilit | After<br>utilizatio<br>n of Net<br>Ground<br>water<br>availabili<br>ty (2022<br>resource) | Draft<br>after<br>sprinkler<br>&<br>additiona<br>l area<br>created<br>for<br>agricultu<br>re (MCM | Stage of<br>Dewelopme<br>nt W/O<br>GW use for<br>additional<br>Area<br>Irrigation(<br>%) | Additiona<br>l area<br>irrigated<br>by GW<br>after<br>inter venti<br>on (Ha) |
|-----------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------|-----------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| MURWARA   | 65.42                               | 30.89                                         | 5.72                                                            | 36.62                       | 55.97                             | 9.27                                                | 20.70                                                   | 86.18                                                                   | y<br>20.76                                                                                                                                                                 | 6.54                                                                                      | 54.64                                                                                             | 63.41                                                                                    | 6824.48                                                                      |

# Table 7.24: Demand Side Management Plan

# 7.5 RITHI BLOCK

|                         |                    | Area                             | Sq.Km | 662                                 |  |  |
|-------------------------|--------------------|----------------------------------|-------|-------------------------------------|--|--|
| Normal 1                | Rainfall           |                                  | mm    | 1171.4                              |  |  |
|                         | J                  | Principal crops                  |       | Paddy, pulses seeds,<br>Wheat, Gram |  |  |
|                         |                    | Monitoring Wells for Water Level |       | Dugwell-02                          |  |  |
| Data U                  | tilize d           | Monitoring Wells for Quality     |       | Dugwell-02                          |  |  |
|                         | Shallow<br>Aquifer | Pre-monsoon WL (2022)            |       | Min-10.59,Max-13.12                 |  |  |
| Water level<br>behavior |                    | Post-monsoon WL(2022)            | mbgl  | Min-1.83,Max-2.62                   |  |  |

### Table.7.25. Salient Information

### Table 7.26: Aquifer Disposition

| Major Aquifer                                 | Laterite /Fractured Vindhyan Shale/Sandstone |                 |  |  |  |  |
|-----------------------------------------------|----------------------------------------------|-----------------|--|--|--|--|
| Type of Aquifer                               | Aquifer-I                                    | Aquifer-II      |  |  |  |  |
| Formation                                     | Laterite/ Fractured Vindhyan<br>Sandstone    | Fractured Shale |  |  |  |  |
| Depth of Occurrence<br>(mbgl)                 | 1 to 30                                      | 30 to 200       |  |  |  |  |
| We athe re d/Fracture d<br>rocks thickness(m) | 2.0 to 10.5                                  | 3.5 to 58.9     |  |  |  |  |
| Fractures encountered<br>(mbgl)               | Up to30                                      | Up to200        |  |  |  |  |
| Yield (lps)                                   | -                                            | 0.2 to 4.56     |  |  |  |  |
| Transmissivity (m <sup>2</sup> /day)          | -                                            | 0.553 to 6.67   |  |  |  |  |

| GROUND WATER RESOURCE OF RITHI BLOCK |        |  |  |  |  |  |  |  |
|--------------------------------------|--------|--|--|--|--|--|--|--|
| Shallow Aquife r                     |        |  |  |  |  |  |  |  |
| Dynamic Resources (MCM) 37.90        |        |  |  |  |  |  |  |  |
| Static Resources (MCM)               | 49.53  |  |  |  |  |  |  |  |
| Total Resources (MCM)                | 87.43  |  |  |  |  |  |  |  |
| Deeper Aquifer                       |        |  |  |  |  |  |  |  |
| Static Resources (MCM)               | 24.94  |  |  |  |  |  |  |  |
| Total GW Resources (MCM)             | 112.37 |  |  |  |  |  |  |  |
| Irrigation GW Draft (MCM)            | 13.98  |  |  |  |  |  |  |  |
| Domestic+IndustriesGW Draft (MCM)    | 3.44   |  |  |  |  |  |  |  |
| Gross Ground Water Draft (MCM)       | 17.42  |  |  |  |  |  |  |  |
| Stage of Ground Water Extraction (%) | 45.98  |  |  |  |  |  |  |  |
| Category                             | safe   |  |  |  |  |  |  |  |

### Table 7.27: Ground Water Resource

#### Table 7.28:Supply Side Management Plan

| Area suitable for recharge (sq. Km)                                                                       | sq. km | 512.7 |
|-----------------------------------------------------------------------------------------------------------|--------|-------|
| SP Yield (%)                                                                                              | %      | 0.019 |
| Sub-surface storage (mcm)                                                                                 | М      | 27.48 |
| Surface water required (mcm)                                                                              | mcm    | 36.55 |
| Available water for AR (mcm) as per non commuted runoff available (mcm)                                   | mcm    | 26.48 |
| Artificial Recharge created against the<br>sub-surface storage and non-commuted<br>runoff available (mcm) | mcm    | 19.91 |
| Surface water (Run-off) available (mcm)                                                                   | mcm    | 88.27 |
| Non-committed Run-off (mcm)                                                                               | Mcm    | 26.48 |

Table 7.29: Proposed Artificial Recharge Structures

| Type of Structure Proposed     | Number | Cost in crores                   |
|--------------------------------|--------|----------------------------------|
| Percolation tanks              | 46     | 9.20 (0.2 crore per structure)   |
| Check Dams with recharge shaft | 397    | 27.79 (0.07 crore per structure) |
| Nala bunds/cement plugs        | 397    | 3.97 (0.01 crore per structure)  |
| Village ponds/ Farm Ponds      | 132    | 3.30(0.025 crore per structure)  |
| Total Cost                     |        | 44.26 crore                      |

| Bloc<br>k | Net GW<br>Availabili<br>ty<br>(MCM) | GW<br>Draft<br>for<br>Irrigati<br>on<br>(MCM) | GW<br>Draft<br>for<br>Domesti<br>c &<br>Industri<br>al<br>(MCM) | Gross<br>Draft<br>(MC<br>M) | Stage of<br>Developme<br>nt (%) | Saving<br>by<br>micro<br>irrigati<br>on in<br>(MCM) | Addition<br>al<br>recharge<br>created<br>by AR<br>(MCM) | After<br>inter venti<br>on of AR<br>Structure<br>Net GW<br>AvL.<br>(MCM) | After<br>inter venti<br>on of AR<br>Structure<br>&<br>utilisation<br>of<br>additional<br>GW<br>created<br>(MCM)/<br>Utilization<br>of Net<br>Ground<br>Water<br>Availabilit<br>y | After<br>utilizatio<br>n of Net<br>Ground<br>water<br>availabili<br>ty (2022<br>resource) | Draft<br>after<br>sprinkler<br>&<br>additiona<br>l area<br>created<br>for<br>agricultu<br>re (MCM | Stage of<br>Dewelopme<br>nt W/O<br>GW use for<br>additional<br>Area<br>Irrigation(<br>%) | Additiona<br>l area<br>irrigated<br>by GW<br>after<br>inter ven ti<br>on (Ha) |
|-----------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------|-----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| RITHI     | 37.89                               | 13.98                                         | 3.44                                                            | 17.42                       | 45.97                           | 4.19                                                | 19.91                                                   | 57.80                                                                    | 19.91                                                                                                                                                                            | 3.79                                                                                      | 36.92                                                                                             | 63.88                                                                                    | 5924.60                                                                       |

# Table.7.30. Demand Side Management Plan

## 7.6 VIJAYRAGHAVGARH BLOCK

|                         |                    | Area                             | Sq.Km | 751                                 |  |  |
|-------------------------|--------------------|----------------------------------|-------|-------------------------------------|--|--|
| Normal I                | Rainfall           |                                  | mm    | 1171.4                              |  |  |
|                         | J                  | Principal crops                  |       | Paddy, pulses seeds,<br>Wheat, Gram |  |  |
|                         |                    | Monitoring Wells for Water Level |       | Dugwell-04                          |  |  |
| Data Ut                 | tilize d           | Monitoring Wells for Quality     |       | Dugwell-04                          |  |  |
| Watarlayal              | Shallow<br>Aquifer | Pre-monsoon WL (2022)            |       | Min-7.75,Max-15.63                  |  |  |
| Water level<br>behavior |                    | Post-monsoon WL(2022)            | mbgl  | Min-5.16,Max-8.79                   |  |  |

### Table 7.31: Salient Information

### Table 7.32: Aquifer Disposition

| Major Aquifer                              | Alluvium/Laterite /Fractured Vindhyan<br>Shale/Sandstone/ Limestone |                                         |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Type of Aquifer                            | Aquifer-I                                                           | Aquifer-II                              |  |  |  |  |
| Formation                                  | Alluvium/Laterite/ Fractured<br>Vindhyan Sandstone                  | Fractured shale/Limestone<br>/Sandstone |  |  |  |  |
| Depth of Occurrence<br>(mbgl)              | 1 to 30                                                             | 30 to 200                               |  |  |  |  |
| We athered/Fractured<br>rocks thickness(m) | 0.5 to 20                                                           | 5.5 to 35                               |  |  |  |  |
| Fractures encountered<br>(mbgl)            | Up to30                                                             | Up to200                                |  |  |  |  |
| Yield (lps)                                | -                                                                   | 1.75 to 8.6                             |  |  |  |  |
| Transmissivity (m <sup>2</sup> /day)       | -                                                                   | 3.34 to 27.5                            |  |  |  |  |

| GROUND WATER RESOURCE OF VIJAYRAGHAVGARH BLOCK |        |  |  |  |  |  |  |  |
|------------------------------------------------|--------|--|--|--|--|--|--|--|
| Shallow Aquife r                               |        |  |  |  |  |  |  |  |
| Dynamic Resources (MCM) 53.10                  |        |  |  |  |  |  |  |  |
| Static Resources (MCM)                         | 63.10  |  |  |  |  |  |  |  |
| Total Resources (MCM)                          | 116.20 |  |  |  |  |  |  |  |
| Deeper Aquifer                                 |        |  |  |  |  |  |  |  |
| Static Resources (MCM)                         | 47.70  |  |  |  |  |  |  |  |
| Total GW Resources (MCM)                       | 163.89 |  |  |  |  |  |  |  |
| Irrigation GW Draft (MCM)                      | 24.79  |  |  |  |  |  |  |  |
| Domestic+IndustriesGW Draft (MCM)              | 9.83   |  |  |  |  |  |  |  |
| Gross Ground Water Draft (MCM)                 | 34.62  |  |  |  |  |  |  |  |
| Stage of Ground Water Extraction (%)           | 65.19  |  |  |  |  |  |  |  |
| Category                                       | safe   |  |  |  |  |  |  |  |

### Table 7.32:Ground Water Resource

# Table 7.33: Supply Side Management Plan

| Area suitable for recharge (sq. Km)                                                                       | sq. km | 743    |
|-----------------------------------------------------------------------------------------------------------|--------|--------|
| SP Yield (%)                                                                                              | %      | 0.02   |
| Sub-surface storage (mcm)                                                                                 | М      | 39.82  |
| Surface water required (mcm)                                                                              | mcm    | 52.97  |
| Available water for AR (mcm) as per non commuted runoff available (mcm)                                   | mcm    | 31.32  |
| Artificial Recharge created against the<br>sub-surface storage and non-commuted<br>runoff available (mcm) | mcm    | 23.55  |
| Surface water (Run-off) available (mcm)                                                                   | mcm    | 104.93 |
| Non-committed Run-off (mcm)                                                                               | Mcm    | 31.32  |

| Table 7 3/1 Pro | posed Artificial | Recharge Structures |
|-----------------|------------------|---------------------|
| 14010 7.54.110  | Josed Antile M   | Recharge Structures |

| Type of Structure Proposed     | Number | Cost in crores                   |
|--------------------------------|--------|----------------------------------|
| Percolation tanks              | 55     | 11.00 (0.2 crore per structure)  |
| Check Dams with recharge shaft | 470    | 32.90 (0.07 crore per structure) |
| Nala bunds/cement plugs        | 470    | 4.70 (0.01 crore per structure)  |
| Village ponds/ Farm Ponds      | 157    | 3.33(0.025 crore per structure)  |
| Total Cost                     |        | 52.53 crore                      |

# Table.7.35: Demand Side Management Plan

| Block           | Net GW<br>A vailability<br>(MCM) | GW<br>Draft for<br>Irrigation<br>(MCM) | GW<br>Draft for<br>Domestic<br>&<br>Industrial<br>(MCM) | Gross<br>Draft<br>(MCM) | Stage of<br>Development<br>(%) | Saving<br>by micro<br>irrigation<br>in<br>(MCM) | Additional<br>recharge<br>created by<br>AR<br>(MCM) | After<br>intervention<br>of AR<br>Structure<br>Net GW<br>AvL.<br>(MCM) | After<br>intervention<br>of AR<br>Structure &<br>utilisation<br>of<br>additional<br>GW created<br>(MCM)/<br>Utilization<br>of Net<br>Ground<br>Water<br>Availability | After<br>utilization<br>of Net<br>Ground<br>water<br>availability<br>(2022<br>resource) | Draft after<br>sprinkler<br>&<br>additional<br>area<br>created for<br>agriculture<br>(MCM | Stage of<br>Development<br>W/O GW use<br>for additional<br>Area<br>Irrigation(%) | Additional<br>area<br>irrigated by<br>GW after<br>inter vention<br>(Ha) |
|-----------------|----------------------------------|----------------------------------------|---------------------------------------------------------|-------------------------|--------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| VIJAYRAGHAVGARH | 53.09                            | 24.78                                  | 9.83                                                    | 34.61                   | 65.19                          | 7.43                                            | 23.55                                               | 76.64                                                                  | 18.84                                                                                                                                                                | 0.00                                                                                    | 46.01                                                                                     | 60.04                                                                            | 4709.28                                                                 |

### **CHAPTER-8**

### **CONCLUSION AND RECOMMENDATIONS**

- Katni District occupies an area of 4894 Sq.Km and recharge worthy area is 4666.48 sq. km, and the rest is covered by hilly areas i.e., 227.52 sq.km.
- The main body of the district is drained by the five important rivers, viz, the Son, Ken, Mahanadi, Katni and Hiran river.
- Agriculture is the prominent land use aspects in Katni district. Crop land forms 58 % and fallow land form 5.50 % of total area followed by forest land (23.64%), water bodies and Shrubland.
- Major Socio-economy of the district is dependent on Agriculture. The livelihood of rural population of district is dependent on Agriculture.
- The maximum elevation is 669 m amsl in Bahoriband block and minimum elevation is 291 mamsl in Vijayraghavgarh Block. The surface gradient is from south to north.
- In the district mostly two types of soil are present namely Clayey and loamy ,black soil.
- Main geological units of the district are Laterite, Lameta beds, Gondwana Group and Mahakoshal group and Vindhyan formations.
- The principal aquifers in the area are Alluvium, Sandstone ,Shale and Slate and Limestone, Lameta beds.
- In the shallow aquifer water levels between 10 to 20 mbgl in pre-monsoon and between 2to 5, 5 to 10 and 10 to 20 mbgl in the post-monsoon are observed in major parts of the district. The decadal pre-monsoon water level trend analysis indicates that during pre-monsoon period, more than 54 % of the area showing rising trend. Similarly, the decadal post-monsoon water level trend analysis indicates that about 65% of the area showing declining trend. Maximum falling trend is ranged between-0.1 to -0.2m/yr.
- Electrical conductivity of ground water in Katni district ranged between 248 to 3628 µS/cmat 25°C in pre-monsoon season and EC ranged between 295 to 2413 µS/cmat 25°C in post-monsoon season range in between 6.94 to 7.96, fluoride concentration was ranged in between 0.11 to 1.17 mg/l, nitrate concentration ranged inbetween1 to 310mg/l. Total hardness range in between 50 to990 mg/l.
- On the basis of the 16 Exploratory wells drilled by CGWB, NCR under its NAQUIM program, it has been observed that the yield varies upto18.33lps and Transmissivity

varies in ranges of 4 to 3173  $m^2/day$ .

- During annual recharge from rainfall contributes maximum component (335.41 mcm) and recharge from other sources is 61.98 mcm. The Annual Extractable Ground Water Resource is 372.36 mcm, which is 93.7% of the total annual Groundwater recharge. Total extraction of ground water for all uses in district is calculated as 175.37 mcm. The overall stage of groundwater extraction in the district is 47.10 %.
- All the blocks are categorised as 'Safe'. The stage of groundwater extraction for Bahoriband block is 34.08%, for Dhimarkheda block is 32.10%, for Murwara block is 55.97% and for Rithi block is 45.98%. In these blocks GW extraction can be increase for irrigation in additional irrigated area created for cultivation of more crops i.e., pulses.
- In Katni district, the main groundwater issues are Limited Alluvium thickness, Decline in the water level, Limited Aquifer Thickness/Sustainability of hard rock, and high nitrate concentration in aquifers of some areas.
- As per the Management plan prepared under NAQUIM of all the Block of Katni District, a total number of 357 Percolation Tanks, 3061 check dams/Recharge Shafts, 3061 Nala Bunds / Cement Plugs and 1020 village ponds / farm ponds have been proposed and financial expenditure is expected to be Rs.341.78 Crores in Katni District for sustainable development and management of ground water resources.
- The number of artificial recharge structure and financial estimation has been proposedbasedontheCentralGroundWaterBoardMasterplan2022.Itmaybedifferedfrom thefieldconditionas well as changes in Dynamic Groundwater resources.

| S  |                 |           | Coor                                                   | Coordinates |                      | Comple                  | Drilling       | Wate           | Casing       | Well Assembly     | Aquifer zone                                                                                         | Formatio                                                                                                                           | Discharge                                                                                                  |                                             |         |
|----|-----------------|-----------|--------------------------------------------------------|-------------|----------------------|-------------------------|----------------|----------------|--------------|-------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|
| No |                 |           |                                                        | Туре        |                      |                         | date           | tion<br>date   | Depth<br>(M) | r<br>Level<br>(M) |                                                                                                      |                                                                                                                                    |                                                                                                            | n                                           |         |
| 1  | Bohariba<br>nd  | Tigawan   | In the<br>premises<br>of govt<br>middle<br>school      | EW-1        | <b>Lat</b><br>23.693 | <b>Long</b><br>80.06538 | 29.07.2<br>022 | 03.08.20<br>22 | 200.2        | 19.1              | 0.5 magl to<br>38.0 mbgl<br>with 7"<br>blank pipe                                                    | 0.5 magl to 38.0<br>mbgl - 7" blank<br>pipe, 38.0 to<br>200.20 mbgl-<br>Naked hole                                                 | 11.00-14.00                                                                                                | Laterite<br>and Shale                       | Merger  |
| 2  | Bohariba<br>nd  | Khamariya | Inside the<br>premises<br>of Govt<br>Primary<br>School | EW-2        | 23.771               | 79.93241                | 24.08.2<br>022 | 28.08.20<br>22 | 200.2        | 30.8              | 0.5 magl to<br>14.70 mbgl<br>with 7"<br>blank pipe                                                   | 0.5 magl to<br>14.70 mbgl - 7"<br>Blank pipe,<br>14.70 to 200.20<br>mbgl - Naked                                                   | 11.00-14.00                                                                                                | Alluvium<br>and Shale                       | Merger  |
| 3  | Bohariba<br>nd  | Tewari    | Inside the<br>premises<br>of khel<br>ground,<br>teori  | EW-3        | 23.678               | 80.28638                | 01.09.2<br>022 | 25.09.20<br>22 | 69.1         | 17.05             | 0.5 m agl to<br>7.0 mbgl<br>with 10"<br>blank pipe<br>and 7.0 to<br>64 mbgl with<br>7" blank<br>pipe | 0.5 magl to 7.00<br>mbgl - 10" blank<br>pipe, 7.00 to<br>64.00 mbgl - 7"<br>blank pipe &<br>64.00 to 69.10<br>mbgl - Naked<br>hole | Seepage zone<br>at 61 m with<br>0.5" discharge<br>and Water zone<br>at 68.5 m with<br>0.8 lps<br>discharge | Laterite,<br>bauxite                        | 0.8 lps |
| 4  | Dhimerk<br>heda | Paharua   | Inside the<br>campus of<br>H.S school                  | Ew-4        | 23.551               | 80.54146                | 30.09.2<br>022 | 04.10.20<br>22 | 200.2        | 10.32             | 0.5 magl to<br>18.00 mbgl<br>with 7"<br>blank pipe                                                   | 0.5 magl to<br>18.00 mbgl with<br>7" blank pipe,<br>18.00 to 200.20<br>mbgl - Naked                                                | Wet zone at 26<br>m with 1.5"<br>discharge and<br>Water zone at<br>140 m with 3.5 "                        | Clay,unco<br>nsolidate<br>d sand,<br>Marble | 2.6 lps |
| 5  | Dhimerk<br>heda | Sailarpur | Inside the<br>campus of<br>H.S School,<br>Jhinna       | Ew-5        | 23.636               | 80.41496                | 03.01.2<br>3   | 23.01.23       | 200.2        | 6.34              | 0.5 magl - 12<br>m bgl with<br>7" blank<br>pipe                                                      | 0.5 magl - 12 m<br>bgl with 7"<br>blank pipe , 12m<br>- 200.2 mbgl                                                                 | 17.2 - 20.3 m,<br>41.6 - 44.7 m                                                                            | Dolomite                                    | 1.5 lps |

#### ANNEXURE - I: Hydrogeological Details of EWs Drilled in 2022-23 and 1997-2000

| S.<br>No. | Location                                          | Depth<br>Drilled(M) | Zones tapped (m)                                                        | Discharge(lps) | W.L.M.<br>bgl | Draw<br>Down(m) | Formation                                          |
|-----------|---------------------------------------------------|---------------------|-------------------------------------------------------------------------|----------------|---------------|-----------------|----------------------------------------------------|
| 1.        | Dharmapur<br>23º13'45" / 80º17'55"                | 81.75               | 18.00-19.50<br>22.50-31.00<br>41.50-53.00<br>65.50-73.00                | 2.00           | 5.72          | 14.41           | Clay Kankar slate                                  |
| 2.        | KoluBarkhera<br>23º13'45" / 80º17'55"             | 77.30               | 52.00-61.00<br>64.00-67.00<br>70.00-73.00                               | 3.50           | 5.32          | 21.48           | Laterite, clays and, slate                         |
| 3.        | Basari<br>23º13'45" / 80º17'55"                   | 80.00               | 36.00-39.00<br>41.00-43.00<br>45.00-51.00<br>56.00-59.00<br>61.00-63.00 | 5.25           | 9.7           | 8.44            | Laterite, sandstone<br>(Gondwana shale)            |
| 4.        | IG Ward Katn<br>i23º13'45" / 80º17'55"            | 70.00               | 34.00-43.00<br>59.00-65.00                                              | 7.00           | 10.20         | 7.49            | Laterites and stone<br>(Gondwana clay & limestone) |
| 5.        | Khirhani (Pipariya)<br>23º13'45'' / 80º17'55''    | 70.00               | 25.00-31.00<br>37.00-55.00                                              | 4.7            | 15.05         | 3.57            | Clay/sandstone (Gondwana)                          |
| 6.        | Bramhanwara (Kailwara)<br>23º13'45'' / 80º17'55'' | 70.00               | 50.00-70.00                                                             | 14.67          | 6.16          | 37.64           | Clay limestone                                     |
| 7.        | Barkhera<br>23º13'45" / 80º17'55"                 | 183.00              | Abandoned                                                               | meagre         | discharge     |                 |                                                    |
| 8.        | Lakha-Khera<br>23º13'45" / 80º17'55"              | 92.8                | 17.00-30.00<br>33.00-38.00<br>52.00-62.00                               | 15.71          | 12.41         | 4.05            | Sandstone (Gondwana)                               |
| 9.        | Nadawar<br>23º13'45" / 80º17'55"                  | 95.00               | 33.00-42.00<br>51.00-60.00                                              | 2.6            | 9.31          | 36.37           | Aluv ium shale                                     |
| 10.       | Gulwara<br>23º13'45" / 80º17'55"                  | 135.2               | 44.00-75.00<br>134.00-135.00                                            | 5.5            | 6.37          | 22.91           | Shale's                                            |
| 11.       | Dev riHatai<br>23º13'45" / 80º17'55"              | 183.00              | 44.00-48.50<br>119.00-122.00<br>146.00-152.5                            | 2.66           | 51.00         | 408.85          | Shale's                                            |
| 12.       | Kuan<br>23º13'45" / 80º17'55"                     | 59.00               | 13.70-26.70<br>37.00-55.00                                              | 18.00          | 6.3           | 4.00            | Clay limestone (cavernous)                         |
| 13.       | Kauriya<br>23º13'45" / 80º17'55"                  | 82.00               | 35.00-37.00<br>43.00-44.50                                              | 1.50           | 12.85         | 19.00           | shale's                                            |

| S.No | District | Village        | Type of Well | Latitude | Longitude | Post<br>monsoon WL | Pre_Water<br>level (bmp) | Elevation | RL     |
|------|----------|----------------|--------------|----------|-----------|--------------------|--------------------------|-----------|--------|
| 1    | Katni    | Amuwari        | Keywell      | 23.9876  | 80.5413   | 6.41               | 10.8                     | 377.2     | 366.4  |
| 2    | Katni    | Badapar        | Keywell      | 24.0489  | 80.6181   | 1.21               | 2.8                      | 386.5     | 383.7  |
| 3    | Katni    | Banjari        | Keywell      | 23.9894  | 80.6163   | 4.28               | 6.8                      | 368.5     | 361.7  |
| 4    | Katni    | Jamuwani Khurd | Keywell      | 24.1032  | 80.7135   | 2.15               | 8.1                      | 393.5     | 385.4  |
| 5    | Katni    | Karatilai      | Keywell      | 24.0598  | 80.7214   | 3.92               | 10.2                     | 374       | 363.8  |
| 6    | Katni    | Patharhata     | Keywell      | 23.9247  | 80.6801   | 6.99               | 12                       | 379.1     | 367.1  |
| 7    | Katni    | Hatheda        | Keywell      | 23.8964  | 80.6602   | 4.02               | 5.2                      | 379       | 373.8  |
| 8    | Katni    | Nanhwara Khurd | Keywell      | 23.8421  | 80.5343   | 6.67               | 8.4                      | 389.1     | 380.7  |
| 9    | Katni    | Itama          | Keywell      | 24.0348  | 80.8497   | 6.85               | 10.8                     | 349.8     | 339    |
| 10   | Katni    | Devra Khurd    | Keywell      | 23.9515  | 80.7667   | 7.22               | 8.7                      | 349.1     | 340.4  |
| 11   | Katni    | Lurmi          | Keywell      | 23.9048  | 80.7355   | 9.35               | 8.9                      | 369.8     | 360.9  |
| 12   | Katni    | Karaundi Khurd | Keywell      | 23.8738  | 80.8057   | 6.22               | 6.9                      | 374.2     | 367.3  |
| 13   | Katni    | Jajagarh       | Keywell      | 23.8645  | 80.866    | 8.58               | 7.4                      | 387.6     | 380.2  |
| 14   | Katni    | Salaiya Sihora | Keywell      | 23.7873  | 80.7946   | 9.08               | 7.8                      | 392.3     | 384.5  |
| 15   | Katni    | Baran Mahgawan | Keywell      | 23.729   | 80.777    | 5.82               | 7.8                      | 397       | 389.2  |
| 16   | Katni    | Bagdara        | Keywell      | 23.6991  | 80.8792   | 4.05               | 4.4                      | 423.8     | 419.4  |
| 17   | Katni    | Harrwah        | Keywell      | 23.7631  | 80.8861   | 8.15               | 10.1                     | 416.8     | 406.7  |
| 18   | Katni    | Barmani        | Keywell      | 23.7945  | 80.8608   | 5.38               | 9.4                      | 401.4     | 392    |
| 19   | Katni    | Surajpura      | Keywell      | 23.81    | 80.7282   | 4.26               | 6.7                      | 373.8     | 367.1  |
| 20   | Katni    | Luharwara      | Keywell      | 23.6184  | 80.5844   | 2.32               | 7.4                      | 422.8     | 415.4  |
| 21   | Katni    | Jharela        | Keywell      | 23.6862  | 80.6456   | 5.43               | 5.15                     | 405.6     | 400.45 |
| 22   | Katni    | Bhajiya        | Keywell      | 23.6307  | 80.5715   | 2.05               | 9.5                      | 442.2     | 432.7  |
| 23   | Katni    | Nanhwara Sejha | Keywell      | 23.7021  | 80.5219   | 5.12               | 9.3                      | 439.2     | 429.9  |
| 24   | Katni    | Pondi          | Keywell      | 23.7613  | 80.5224   | 8.18               | 10.7                     | 412.2     | 401.5  |
| 25   | Katni    | Bhadoura       | Keywell      | 23.8258  | 80.5376   | 4.12               | 4.2                      | 389.4     | 385.2  |

# ANNEXURE-II-Water level of Key wells pre-monsoon 2022

| 26 | Katni | Majhgawan    | Keywell | 23.3856 | 80.436  | 4.92 | 5.3   | 459.1 | 453.8  |
|----|-------|--------------|---------|---------|---------|------|-------|-------|--------|
| 27 | Katni | Pipariya     | Keywell | 23.4343 | 80.3831 | 0.78 | 2.7   | 428.9 | 426.2  |
| 28 | Katni | Kothi        | Keywell | 23.4413 | 80.4545 | 2.68 | 5.4   | 455.7 | 450.3  |
| 29 | Katni | Katariya     | Keywell | 23.4486 | 80.5386 | 5.22 | 8.7   | 448.5 | 439.8  |
| 30 | Katni | Khamtara     | Keywell | 23.578  | 80.5225 | 8.38 | 8     | 426.4 | 418.4  |
| 31 | Katni | Khamahariya  | Keywell | 23.5914 | 80.5529 | 6.59 | 10.3  | 421.6 | 411.3  |
| 32 | Katni | Jirri        | Keywell | 23.5581 | 80.4493 | 5.39 | 14.65 | 453.4 | 438.75 |
| 33 | Katni | Bhamka       | Keywell | 23.5159 | 80.4385 | 9.67 | 11.2  | 431   | 419.8  |
| 34 | Katni | Harrai       | Keywell | 23.4506 | 80.4313 | 3.49 | 6.3   | 443.1 | 436.8  |
| 35 | Katni | Ghughari     | Keywell | 23.4833 | 80.2708 | 8.89 | 9.4   | 408.2 | 398.8  |
| 36 | Katni | Sagawan      | Keywell | 23.5126 | 80.4045 | 3.11 | 8     | 420.5 | 412.5  |
| 37 | Katni | Pahadi       | Keywell | 23.7035 | 80.3721 | 2.1  | 5.2   | 407.9 | 402.7  |
| 38 | Katni | Pakar        | Keywell | 23.6968 | 79.9888 | 2.05 | 3.7   | 456.8 | 453.1  |
| 39 | Katni | Banson       | Keywell | 23.7258 | 79.9723 | 3.48 | 7.5   | 454.3 | 446.8  |
| 40 | Katni | Bartari      | Keywell | 23.7195 | 80.0072 | 1.56 | 4     | 460.2 | 456.2  |
| 41 | Katni | Kishanpatan  | Keywell | 23.676  | 80.0629 | 6.85 | 8.7   | 424.2 | 415.5  |
| 42 | Katni | Kuwan        | Keywell | 23.6199 | 80.1248 | 3.48 | 4.5   | 420   | 415.5  |
| 43 | Katni | Pondi        | Keywell | 23.6124 | 80.0585 | 3.51 | 3     | 407.6 | 404.6  |
| 44 | Katni | Kaudiya      | Keywell | 23.6682 | 80.1731 | 4.05 | 12.3  | 427.6 | 415.3  |
| 45 | Katni | Neemkhere    | Keywell | 23.6436 | 80.115  | 4.82 | 5.7   | 411   | 405.3  |
| 46 | Katni | Padwar       | Keywell | 23.6318 | 80.22   | 7.22 | 8.8   | 431   | 422.2  |
| 47 | Katni | Harduwa      | Keywell | 23.9048 | 80.2878 | 3.92 | 3.9   | 391.2 | 387.3  |
| 48 | Katni | Deori Phatak | Keywell | 23.9128 | 80.1969 | 1.42 | 6.1   | 407.2 | 401.1  |
| 49 | Katni | Bargaon      | Keywell | 23.9077 | 80.039  | 3.28 | 6.4   | 432.1 | 425.7  |
| 50 | Katni | Majhgawan    | Keywell | 23.7715 | 79.954  | 1.99 | 6     | 448.6 | 442.6  |
| 51 | Katni | Sakarwara    | Keywell | 23.7703 | 79.9079 | 2.25 | 6.8   | 475.7 | 468.9  |
| 52 | Katni | Patauha      | Keywell | 23.7606 | 79.8589 | 5.15 | 5.9   | 510.5 | 504.6  |
| 53 | Katni | Patori       | Keywell | 23.7959 | 79.9592 | 6.21 | 10.8  | 452.2 | 441.4  |
| 54 | Katni | Patna        | Keywell | 23.7681 | 80.0044 | 0.75 | 5.3   | 452.8 | 447.5  |

| 55 | Katni | Pithradi      | Keywell | 23.7159 | 80.0882  | 3.36 | 5.4   | 422.9 | 417.5  |
|----|-------|---------------|---------|---------|----------|------|-------|-------|--------|
| 56 | Katni | Herdua        | Keywell | 23.9444 | 80.5165  | 6.48 | 3.7   | 373.4 | 369.7  |
| 57 | Katni | Kauwara       | Keywell | 23.9321 | 80.3997  | 6.78 | 9.6   | 390.1 | 380.5  |
| 58 | Katni | Gulwara       | Keywell | 23.7996 | 80.33    | 2.51 | 3     | 392.1 | 389.1  |
| 59 | Katni | Deori         | Keywell | 23.9127 | 80.1823  | 4.59 | 10    | 413.2 | 403.2  |
| 60 | Katni | Umariya Muhas | Keywell | 23.908  | 80.1144  | 1.09 | 8.2   | 420.5 | 412.3  |
| 61 | Katni | Bheda         | Keywell | 23.94   | 80.018   | 3.51 | 5.9   | 409.4 | 403.5  |
| 62 | Katni | Gurji Kalan   | Keywell | 23.8748 | 79.9954  | 6.22 | 14.3  | 421   | 406.7  |
| 63 | Katni | Khamh         | Keywell | 23.9257 | 80.0981  | 2.01 | 7.6   | 420.3 | 412.7  |
| 64 | Katni | Hardwara      | Keywell | 23.9395 | 80.1838  | 2.02 | 5.8   | 409.7 | 403.9  |
| 65 | Katni | Badkhera      | Keywell | 23.772  | 80.2248  | 7.57 | 7.6   | 404.6 | 397    |
| 66 | Katni | Bharauli      | Keywell | 23.762  | 80.3658  | 2.62 | 4.9   | 403.9 | 399    |
| 67 | Katni | Takhala       | Keywell | 23.7272 | 80.37546 | 8.79 | 11.3  | 417.6 | 406.3  |
| 68 | Katni | Deori Hatia   | Keywell | 23.721  | 80.4935  | 0.85 | 8.4   | 426   | 417.6  |
| 69 | Katni | Katni South   | Keywell | 23.8231 | 80.3981  | 4.82 | 12.2  | 388.2 | 376    |
| 70 | KATNI | Badwara       | NHS     | 23.7486 | 80.5769  | 8.58 | 10.45 | 408   | 397.55 |
| 71 | KATNI | Basadi        | NHS     | 23.8269 | 80.6217  | 9.76 | 14.72 | 386.8 | 372.08 |
| 72 | KATNI | Deogawan      | NHS     | 23.9028 | 80.2514  | 2.71 | 13.12 | 410.8 | 397.68 |
| 73 | KATNI | Katni1        | NHS     | 23.8306 | 80.3986  | 3.62 | 5.95  | 389   | 383.05 |
| 74 | KATNI | Kewlari       | NHS     | 23.7972 | 80.83    | 7.48 | 9.11  | 418.3 | 409.19 |
| 75 | KATNI | Khamtra       | NHS     | 23.8917 | 80.4681  | 4.89 | 9.05  | 376.1 | 367.05 |
| 76 | KATNI | Khitoli       | NHS     | 23.7106 | 80.8319  | 5.31 | 6.41  | 407.8 | 401.39 |
| 77 | KATNI | Lakhapateri   | NHS     | 23.7083 | 80.3172  | 3.98 | 4.3   | 425   | 420.7  |
| 78 | KATNI | Majhgawan1    | NHS     | 23.8217 | 80.4986  | 7.76 | 11.91 | 405.3 | 393.39 |
| 79 | KATNI | Piparia2      | NHS     | 23.8619 | 80.6986  | 5.62 | 7.75  | 392.4 | 384.65 |
| 80 | KATNI | Rithi         | NHS     | 23.9094 | 80.1419  | 3.48 | 10.59 | 433.4 | 422.81 |
| 81 | KATNI | Siloni        | NHS     | 23.3458 | 80.3778  | 5.73 | 7.51  | 429.8 | 422.29 |
| 82 | KATNI | Ubra          | NHS     | 23.9361 | 80.8144  | 7.48 | 10.32 | 355.3 | 344.98 |
| 83 | KATNI | Umariapan     | NHS     | 23.5217 | 80.2917  | 4.41 | 8.46  | 413   | 404.54 |

| S.<br>No. | Location       | Source | Lat.    | Long.   | pH at<br>25°C | EC µS/cm at<br>25°C | HCO₃ | CI  | SO4 | NO <sub>3</sub> | F    | PO₄ | \$iO2 | тн  | Ca  | Mg | Na  | К    |
|-----------|----------------|--------|---------|---------|---------------|---------------------|------|-----|-----|-----------------|------|-----|-------|-----|-----|----|-----|------|
| 1         | Amuwari        | DW     | 23.9876 | 80.5413 | 7.42          | 1565                | 439  | 210 | 22  | 90              | 0.53 | 0   | 22    | 580 | 178 | 33 | 109 | 0.6  |
| 2         | Nanhwara Kalan | DW     | 24.0089 | 80.5555 | 7.58          | 577                 | 275  | 30  | 14  | 5               | 0.76 | 0   | 56    | 240 | 64  | 19 | 25  | 6.2  |
| 3         | Badapar        | DW     | 24.0489 | 80.6181 | 7.2           | 2345                | 354  | 535 | 45  | 4               | 0.75 | 0   | 48    | 865 | 296 | 30 | 152 | 11.2 |
| 4         | Banjari        | DW     | 23.9894 | 80.6163 | 7.47          | 1245                | 427  | 161 | 14  | 49              | 0.19 | 0   | 29    | 350 | 104 | 22 | 133 | 3.2  |
| 5         | Ghunaur        | DW     | 23.9339 | 80.6432 | 7.06          | 439                 | 220  | 17  | 12  | 5               | 0.12 | 0   | 24    | 150 | 34  | 16 | 35  | 0.8  |
| 6         | Jamuwani Khurd | DW     | 24.1032 | 80.7135 | 7.61          | 645                 | 317  | 17  | 24  | 3               | 0.99 | 0.2 | 19    | 255 | 64  | 23 | 27  | 11.1 |
| 7         | Karatilai      | DW     | 24.0598 | 80.7214 | 7.47          | 812                 | 214  | 111 | 32  | 19              | 0.48 | 0   | 26    | 350 | 98  | 26 | 30  | 0.6  |
| 8         | Harduwa        | DW     | 24.0543 | 80.7634 | 7.46          | 712                 | 244  | 89  | 14  | 11              | 0.16 | 0   | 38    | 285 | 82  | 19 | 38  | 1    |
| 9         | Singhanpura    | DW     | 23.9745 | 80.6781 | 7.63          | 612                 | 305  | 17  | 16  | 7               | 0.26 | 0.1 | 27    | 195 | 38  | 24 | 51  | 8.2  |
| 10        | Patharhata     | DW     | 23.9247 | 80.6801 | 7.28          | 256                 | 110  | 12  | 10  | 5               | 0.28 | 0   | 43    | 80  | 18  | 9  | 21  | 4.6  |

## ANNEXURE-III Chemical Quality Parameters of Key Well Water Pre-Monsoon samples May 2022

| 11 | Hatheda           | DW | 23.8964 | 80.6602 | 7.63 | 248 | 79  | 17  | 24 | 1  | 0.12 | 0   | 29 | 50  | 10 | 6  | 28 | 9.5  |
|----|-------------------|----|---------|---------|------|-----|-----|-----|----|----|------|-----|----|-----|----|----|----|------|
| 12 | Suddi             | DW | 23.857  | 80.626  | 7.14 | 536 | 250 | 15  | 16 | 30 | 0.23 | 0   | 35 | 165 | 42 | 15 | 46 | 2.8  |
| 13 | Nanhwara Khurd    | DW | 23.8421 | 80.5343 | 6.94 | 401 | 92  | 67  | 18 | 12 | 0.12 | 0.1 | 34 | 115 | 36 | 6  | 44 | 1.2  |
| 14 | Itama             | DW | 24.0348 | 80.8497 | 7.18 | 723 | 354 | 25  | 22 | 6  | 0.21 | 0   | 29 | 235 | 48 | 28 | 56 | 9.5  |
| 15 | Devra Khurd       | DW | 23.9515 | 80.7667 | 7.52 | 552 | 244 | 25  | 24 | 21 | 0.28 | 0   | 24 | 205 | 50 | 19 | 29 | 10.4 |
| 16 | Devra Khurd       | HP | 23.9515 | 80.7667 | 7.21 | 812 | 366 | 52  | 16 | 4  | 0.24 | 0   | 19 | 270 | 72 | 22 | 65 | 1.2  |
| 17 | Lurmi             | DW | 23.9048 | 80.7355 | 7.72 | 623 | 342 | 22  | 2  | 5  | 0.12 | 0.3 | 23 | 220 | 76 | 7  | 45 | 1.3  |
| 18 | Karaundi Khurd    | DW | 23.8738 | 80.8057 | 7.59 | 555 | 287 | 20  | 5  | 3  | 0.25 | 0   | 41 | 195 | 64 | 9  | 40 | 1.8  |
| 19 | Jajagarh          | DW | 23.8645 | 80.866  | 7.31 | 542 | 281 | 17  | 12 | 2  | 0.35 | 0   | 34 | 205 | 62 | 12 | 33 | 2.6  |
| 20 | Salaiya Sihora    | DW | 23.7873 | 80.7946 | 7.52 | 612 | 281 | 12  | 45 | 6  | 0.21 | 0   | 29 | 230 | 70 | 13 | 36 | 2.7  |
| 21 | Baran<br>Mahgawan | DW | 23.729  | 80.777  | 7.74 | 485 | 214 | 17  | 14 | 30 | 0.18 | 0   | 34 | 140 | 36 | 12 | 48 | 0.9  |
| 22 | Bagdara           | DW | 23.6991 | 80.8792 | 7.87 | 989 | 220 | 139 | 65 | 21 | 0.18 | 0   | 28 | 280 | 84 | 17 | 99 | 11.1 |

| 23 | Harrwah       | DW | 23.7631 | 80.8861 | 7.26 | 587  | 281 | 45  | 8  | 18  | 0.16 | 0.2 | 24 | 200 | 64  | 10 | 54  | 2.9 |
|----|---------------|----|---------|---------|------|------|-----|-----|----|-----|------|-----|----|-----|-----|----|-----|-----|
| 24 | Barmani       | DW | 23.7945 | 80.8608 | 7.29 | 645  | 299 | 59  | 15 | 5   | 0.26 | 0   | 31 | 200 | 62  | 11 | 68  | 2.4 |
| 25 | Surajpura     | DW | 23.81   | 80.7282 | 7.25 | 722  | 360 | 30  | 20 | 8   | 0.25 | 0   | 38 | 180 | 58  | 9  | 85  | 1.6 |
| 26 | Luharwara     | DW | 23.6184 | 80.5844 | 7.7  | 808  | 421 | 17  | 12 | 2   | 0.21 | 0   | 29 | 265 | 84  | 13 | 65  | 2.6 |
| 27 | Jharela       | DW | 23.6862 | 80.6456 | 7.42 | 785  | 421 | 17  | 5  | 4   | 1.17 | 0   | 34 | 290 | 86  | 18 | 48  | 2.9 |
| 28 | Bargawan      | DW | 23.74   | 80.6124 | 7.62 | 698  | 384 | 17  | 2  | 6   | 0.32 | 0.2 | 42 | 285 | 82  | 19 | 27  | 4.2 |
| 29 | Bargawan      | HP | 23.74   | 80.6124 | 7.28 | 895  | 445 | 17  | 16 | 44  | 0.16 | 0   | 28 | 295 | 96  | 13 | 75  | 1.2 |
| 30 | Rohaniya      | DW | 23.7679 | 80.6212 | 7.31 | 1802 | 445 | 282 | 85 | 5   | 0.15 | 0   | 26 | 375 | 112 | 23 | 250 | 1.6 |
| 31 | Bhajiya       | DW | 23.6307 | 80.5715 | 7.6  | 735  | 317 | 35  | 16 | 37  | 0.52 | 0   | 32 | 225 | 70  | 12 | 69  | 2.3 |
| 32 | NanhwaraSejha | DW | 23.7021 | 80.5219 | 7.35 | 1202 | 427 | 156 | 6  | 6   | 0.56 | 0.3 | 29 | 295 | 84  | 21 | 145 | 5.6 |
| 33 | Pondi         | DW | 23.7613 | 80.5224 | 7.26 | 423  | 171 | 15  | 45 | 4   | 0.23 | 0   | 35 | 125 | 36  | 9  | 45  | 1.1 |
| 34 | Bhadoura      | DW | 23.8258 | 80.5376 | 7.07 | 365  | 140 | 12  | 35 | 10  | 0.21 | 0   | 24 | 80  | 24  | 5  | 45  | 2.1 |
| 35 | Bhadoura      | HP | 23.8258 | 80.5376 | 7.65 | 255  | 116 | 15  | 5  | 6   | 0.26 | 0   | 26 | 75  | 22  | 5  | 25  | 0.8 |
| 36 | Majhgawan     | DW | 23.3856 | 80.436  | 7.39 | 802  | 415 | 20  | 10 | 8   | 0.14 | 0   | 34 | 250 | 70  | 18 | 75  | 1.2 |
| 37 | Majhgawan     | HP | 23.3856 | 80.436  | 7.07 | 1045 | 458 | 22  | 15 | 117 | 0.33 | 0   | 29 | 265 | 76  | 18 | 118 | 8.8 |

| 38 | Pipariya    | DW | 23.4343 | 80.3831 | 7.82 | 1765 | 354 | 376  | 43 | 12  | 0.35 | 0.2 | 31 | 765 | 272 | 21 | 59  | 0.9 |
|----|-------------|----|---------|---------|------|------|-----|------|----|-----|------|-----|----|-----|-----|----|-----|-----|
| 39 | Kothi       | DW | 23.4413 | 80.4545 | 7.59 | 989  | 397 | 37   | 24 | 110 | 0.58 | 0   | 29 | 275 | 72  | 23 | 97  | 8.2 |
| 40 | Katariya    | DW | 23.4486 | 80.5386 | 7.55 | 892  | 287 | 101  | 12 | 4   | 0.37 | 0   | 34 | 280 | 68  | 27 | 62  | 1.8 |
| 41 | Khamtara    | DW | 23.578  | 80.5225 | 7.78 | 302  | 122 | 15   | 11 | 17  | 0.19 | 0   | 29 | 100 | 24  | 10 | 25  | 2.7 |
| 42 | Khamahariya | DW | 23.5914 | 80.5529 | 7.13 | 1372 | 604 | 89   | 17 | 61  | 0.14 | 0   | 38 | 355 | 86  | 34 | 156 | 1.9 |
| 43 | Jirri       | DW | 23.5581 | 80.4493 | 7.23 | 522  | 98  | 54   | 42 | 63  | 0.97 | 0   | 42 | 160 | 36  | 17 | 50  | 1.2 |
| 44 | Jirri       | HP | 23.5581 | 80.4493 | 7.46 | 365  | 122 | 15   | 54 | 12  | 0.4  | 0.1 | 29 | 60  | 18  | 4  | 59  | 1.6 |
| 45 | Bhamka      | DW | 23.5159 | 80.4385 | 7.52 | 1189 | 397 | 94   | 32 | 114 | 0.47 | 0   | 32 | 330 | 98  | 21 | 124 | 6.2 |
| 46 | Harrai      | DW | 23.4506 | 80.4313 | 7.47 | 698  | 256 | 42   | 42 | 31  | 0.44 | 0   | 19 | 330 | 76  | 34 | 14  | 1.2 |
| 47 | Ghughari    | DW | 23.4833 | 80.2708 | 7.05 | 844  | 262 | 74   | 28 | 72  | 0.45 | 0   | 28 | 285 | 74  | 24 | 63  | 6.7 |
| 48 | Sagawan     | DW | 23.5126 | 80.4045 | 7.43 | 765  | 397 | 20   | 14 | 3   | 0.16 | 0.1 | 38 | 320 | 102 | 16 | 29  | 2.3 |
| 49 | Pahadi      | DW | 23.7035 | 80.3721 | 7.7  | 585  | 281 | 22   | 27 | 3   | 0.24 | 0   | 29 | 280 | 84  | 17 | 6   | 1.2 |
| 50 | Pakar       | DW | 23.6968 | 79.9888 | 7.19 | 1125 | 268 | 200  | 21 | 35  | 0.45 | 0   | 34 | 270 | 78  | 18 | 135 | 3.6 |
| 51 | Banson      | DW | 23.7258 | 79.9723 | 7.3  | 2205 | 372 | 347  | 22 | 310 | 0.42 | 0   | 42 | 610 | 196 | 29 | 242 | 1.1 |
| 52 | Bartari     | DW | 23.7195 | 80.0072 | 7.54 | 3628 | 500 | 1064 | 22 | 8   | 0.12 | 0.1 | 18 | 990 | 312 | 51 | 445 | 1.7 |
| 53 | Kishanpatan | DW | 23.676  | 80.0629 | 7.32 | 826  | 226 | 89   | 28 | 23  | 0.41 | 0   | 26 | 315 | 98  | 17 | 36  | 1.6 |

| 54 | Kuwan        | DW | 23.6199 | 80.1248 | 7.07 | 430  | 134 | 47  | 12 | 29  | 0.11 | 0   | 31 | 180 | 62  | 6  | 17  | 1.4 |
|----|--------------|----|---------|---------|------|------|-----|-----|----|-----|------|-----|----|-----|-----|----|-----|-----|
| 55 | Pondi        | DW | 23.6124 | 80.0585 | 7.37 | 686  | 201 | 87  | 27 | 13  | 0.23 | 0   | 27 | 235 | 64  | 18 | 48  | 2.5 |
| 56 | Pondi        | HP | 23.6124 | 80.0585 | 7.78 | 478  | 195 | 35  | 12 | 9   | 0.24 | 0   | 34 | 210 | 58  | 16 | 15  | 1.6 |
| 57 | Kaudiya      | DW | 23.6682 | 80.1731 | 7.78 | 312  | 67  | 27  | 15 | 47  | 0.53 | 0   | 42 | 115 | 34  | 7  | 20  | 2.3 |
| 58 | Kaudiya      | HP | 23.6682 | 80.1731 | 7.62 | 402  | 171 | 27  | 12 | 5   | 0.29 | 0   | 51 | 170 | 38  | 18 | 15  | 1.8 |
| 59 | Neemkhere    | DW | 23.6436 | 80.115  | 7.15 | 1565 | 384 | 188 | 28 | 186 | 0.34 | 0.2 | 26 | 510 | 162 | 26 | 132 | 1.9 |
| 60 | Padwar       | DW | 23.6318 | 80.22   | 7.33 | 1102 | 427 | 92  | 22 | 49  | 0.29 | 0   | 34 | 330 | 84  | 29 | 112 | 2.7 |
| 61 | Harduwa      | DW | 23.9048 | 80.2878 | 7.83 | 810  | 366 | 45  | 24 | 5   | 0.61 | 0   | 28 | 305 | 88  | 21 | 43  | 2.9 |
| 62 | Harduwa      | HP | 23.9048 | 80.2878 | 7.52 | 789  | 378 | 32  | 27 | 2   | 0.54 | 0   | 19 | 295 | 94  | 15 | 47  | 3.5 |
| 63 | Deori Phatak | DW | 23.9128 | 80.1969 | 7.96 | 565  | 244 | 17  | 14 | 48  | 0.82 | 0   | 34 | 205 | 62  | 12 | 36  | 2.4 |
| 64 | Bargaon      | DW | 23.9077 | 80.039  | 7.14 | 389  | 140 | 20  | 12 | 43  | 0.15 | 0   | 26 | 140 | 38  | 11 | 29  | 1.9 |
| 65 | Majhgawan    | DW | 23.7715 | 79.954  | 7.49 | 612  | 183 | 74  | 8  | 50  | 0.29 | 0   | 31 | 235 | 58  | 22 | 32  | 1.8 |
| 66 | Sakarwara    | DW | 23.7703 | 79.9079 | 7.04 | 430  | 92  | 47  | 18 | 65  | 0.34 | 0.1 | 28 | 180 | 48  | 15 | 23  | 2.3 |
| 67 | Patauha      | HP | 23.7606 | 79.8589 | 6.98 | 422  | 98  | 54  | 24 | 29  | 0.23 | 0   | 34 | 160 | 38  | 16 | 22  | 3.4 |
| 68 | Patauha      | DW | 23.7606 | 79.8589 | 7.14 | 623  | 195 | 45  | 23 | 75  | 0.36 | 0   | 26 | 240 | 62  | 21 | 34  | 2.8 |

| 69 | Patori       | DW | 23.7959 | 79.9592 | 7.25 | 1069 | 122 | 243 | 14 | 32  | 0.33 | 0   | 31 | 360 | 104 | 24 | 77  | 2.6 |
|----|--------------|----|---------|---------|------|------|-----|-----|----|-----|------|-----|----|-----|-----|----|-----|-----|
| 70 | Patna        | DW | 23.7681 | 80.0044 | 7.26 | 748  | 153 | 124 | 32 | 42  | 0.49 | 0   | 39 | 280 | 78  | 21 | 53  | 2.4 |
| 71 | Pithradi     | DW | 23.7159 | 80.0882 | 7.39 | 345  | 85  | 40  | 12 | 28  | 0.29 | 0   | 42 | 145 | 36  | 13 | 13  | 3.1 |
| 72 | Herdua       | DW | 23.9444 | 80.5165 | 7.82 | 732  | 366 | 32  | 5  | 16  | 0.12 | 0   | 28 | 260 | 68  | 22 | 49  | 2.7 |
| 73 | Kauwara      | DW | 23.9321 | 80.3997 | 7.82 | 785  | 384 | 25  | 14 | 29  | 0.23 | 0.1 | 26 | 260 | 72  | 19 | 62  | 1.9 |
| 74 | Gulwara      | DW | 23.7996 | 80.33   | 7.29 | 812  | 360 | 47  | 14 | 34  | 0.33 | 0.1 | 31 | 275 | 64  | 28 | 59  | 1.9 |
| 75 | Gulwara      | HP | 23.7996 | 80.33   | 7.86 | 1365 | 525 | 161 | 11 | 2   | 0.28 | 0   | 37 | 300 | 82  | 23 | 182 | 2.6 |
| 76 | Biruhali     | DW | 23.8626 | 80.2704 | 7.1  | 734  | 384 | 20  | 14 | 5   | 0.35 | 0   | 28 | 220 | 62  | 16 | 68  | 2.5 |
| 77 | Deori        | DW | 23.9127 | 80.1823 | 7.49 | 845  | 421 | 37  | 22 | 10  | 0.38 | 0   | 42 | 255 | 86  | 10 | 82  | 3.2 |
| 78 | UmariyaMuhas | DW | 23.908  | 80.1144 | 7.75 | 623  | 165 | 101 | 10 | 18  | 0.52 | 0.1 | 35 | 235 | 72  | 13 | 34  | 2.3 |
| 79 | UmariyaMuhas | HP | 23.908  | 80.1144 | 7.59 | 712  | 268 | 74  | 14 | 8   | 0.23 | 0.1 | 26 | 225 | 64  | 16 | 57  | 1.8 |
| 80 | Bheda        | DW | 23.94   | 80.018  | 7.55 | 545  | 244 | 25  | 8  | 24  | 0.48 | 0   | 15 | 205 | 60  | 13 | 30  | 3.4 |
| 81 | Gurji Kalan  | DW | 23.8748 | 79.9954 | 7.75 | 635  | 299 | 25  | 13 | 10  | 0.23 | 0.2 | 36 | 245 | 68  | 18 | 36  | 4.6 |
| 82 | Khamh        | DW | 23.9257 | 80.0981 | 7.59 | 542  | 146 | 30  | 19 | 87  | 0.45 | 0.1 | 26 | 200 | 58  | 13 | 26  | 6.2 |
| 83 | Hardwara     | DW | 23.9395 | 80.1838 | 7.29 | 3156 | 433 | 698 | 68 | 156 | 0.35 | 0   | 27 | 510 | 156 | 29 | 515 | 1.2 |

| 84 | Badkhera    | DW | 23.772  | 80.2248 | 7.77 | 756  | 403 | 25  | 12 | 5   | 0.15 | 0.1 | 32 | 220 | 70  | 11 | 78  | 1.9 |
|----|-------------|----|---------|---------|------|------|-----|-----|----|-----|------|-----|----|-----|-----|----|-----|-----|
| 85 | Bharauli    | DW | 23.762  | 80.3658 | 7.41 | 765  | 348 | 25  | 14 | 6   | 0.52 | 0   | 29 | 195 | 44  | 21 | 72  | 2.1 |
| 86 | Takhala     | DW | 23.7272 | 80.3755 | 7.1  | 1185 | 445 | 54  | 35 | 123 | 0.26 | 0.2 | 34 | 360 | 102 | 26 | 108 | 3.2 |
| 87 | Deori Hatia | DW | 23.721  | 80.4935 | 7.49 | 865  | 409 | 25  | 12 | 24  | 0.37 | 0.1 | 28 | 355 | 106 | 22 | 35  | 2.3 |
| 88 | Katni South | DW | 23.8231 | 80.3981 | 7.48 | 985  | 336 | 116 | 24 | 8   | 0.52 | 0   | 25 | 245 | 76  | 13 | 116 | 1.4 |

| S.<br>No. | Block               | Location     | Source | Lat.    | Long.   | pН        | EC               | HCO <sub>3</sub> | Cl  | $SO_4$ | NO <sub>3</sub> | F    | $\mathbf{PO}_4$ | SiO <sub>2</sub> | тн  | Ca  | Mg   | Na  | К   |
|-----------|---------------------|--------------|--------|---------|---------|-----------|------------------|------------------|-----|--------|-----------------|------|-----------------|------------------|-----|-----|------|-----|-----|
|           | DIOCK               | Location     | bource | Lat     | Long.   | at<br>25℃ | μS/cm<br>at 25°C | 1003             | CI  | 004    | 1103            |      | 104             | 5102             |     | Cu  | 1118 | 114 |     |
| 1         | Dhimerkhed<br>a     | Bhamka       | DW     | 23.5159 | 80.4385 | 7.49      | 1251             | 323              | 117 | 32     | 150             | 0.32 | BDL             | 44               | 365 | 108 | 23   | 105 | 6.5 |
| 2         | Bohriband           | Neemkhere    | DW     | 23.6436 | 80.115  | 7.28      | 1336             | 415              | 150 | 20     | 105             | 0.69 | 0.2             | 35               | 450 | 150 | 18   | 95  | 5.7 |
| 3         | Bohriband           | Padwar       | DW     | 23.6318 | 80.22   | 6.98      | 1181             | 464              | 107 | 18     | 41              | 0.41 | BDL             | 35               | 395 | 116 | 26   | 87  | 3   |
| 4         | Bohriband           | Takhala      | DW     | 23.7272 | 80.3755 | 7.49      | 472              | 189              | 30  | 10     | 15              | 0.53 | BDL             | 23               | 170 | 42  | 16   | 26  | 2   |
| 5         | Bohariband          | Majhgawan    | DW     | 23.3856 | 80.436  | 7.33      | 762              | 183              | 135 | 24     | 10              | 0.53 | BDL             | 15               | 240 | 64  | 19   | 62  | 1.7 |
| 6         | Bohriband           | Patori       | DW     | 23.7959 | 79.9592 | 7.27      | 1511             | 336              | 300 | 28     | 32              | 0.94 | BDL             | 29               | 400 | 122 | 23   | 159 | 5.8 |
| 7         | Bohariband          | Banson       | DW     | 23.7258 | 79.9723 | 7.14      | 2413             | 500              | 407 | 25     | 232             | 0.67 | BDL             | 50               | 560 | 188 | 22   | 296 | 9.8 |
| 8         | Bohriband           | Sakarwara    | DW     | 23.7703 | 79.9079 | 7.67      | 565              | 220              | 47  | 14     | 20              | 0.3  | 0.2             | 13               | 125 | 26  | 15   | 68  | 4.1 |
| 9         | Rithi               | Deori Phatal | DW     | 23.9128 | 80.1969 | 7.57      | 532              | 262              | 15  | 12     | 12              | 0.95 | BDL             | 22               | 210 | 42  | 26   | 23  | 2.2 |
| 10        | Rithi               | Khamh        | DW     | 23.9257 | 80.0981 | 7.49      | 402              | 171              | 20  | 15     | 11              | 0.3  | BDL             | 12               | 170 | 38  | 18   | 11  | 2.2 |
| 11        | Rithi               | Hardwara     | DW     | 23.9395 | 80.1838 | 7.45      | 2261             | 543              | 355 | 51     | 105             | 0.73 | BDL             | 49               | 430 | 126 | 28   | 310 | 1.6 |
| 12        | а                   | Khamahariy   | DW     | 23.5914 | 80.5529 | 6.96      | 1176             | 433              | 107 | 30     | 50              | 0.14 | BDL             | 28               | 390 | 114 | 26   | 86  | 5.5 |
| 13        | Dhimerkhed<br>a     | Katariya     | DW     | 23.4486 | 80.5386 | 7.38      | 1230             | 342              | 160 | 23     | 98              | 0.49 | BDL             | 26               | 450 | 146 | 21   | 72  | 4   |
| 14        | Vijay ragavg<br>arh | Banjari      | DW     | 23.9894 | 80.6163 | 7.34      | 1071             | 378              | 107 | 30     | 42              | 0.31 | BDL             | 19               | 410 | 128 | 22   | 55  | 1.4 |
| 15        | Vijay ragavg<br>arh | Amuwari      | DW     | 23.9876 | 80.5413 | 7.1       | 1182             | 421              | 107 | 29     | 60              | 0.67 | 0.2             | 27               | 370 | 106 | 26   | 96  | 7.1 |
| 16        | Bohriband           | Kaudiya      | DW     | 23.6682 | 80.1731 | 6.91      | 295              | 110              | 17  | 8      | 10              | 0.27 | BDL             | 15               | 100 | 24  | 10   | 15  | 7.1 |
| 17        | Dhimerkhed<br>a     | Jirri        | DW     | 23.5581 | 80.4493 | 6.9       | 391              | 153              | 27  | 15     | 10              | 0.53 | BDL             | 26               | 115 | 26  | 12   | 30  | 8.4 |
| 18        | a                   | Majhgawan    | DW     | 23.7715 | 79.954  | 7.48      | 805              | 427              | 20  | 8      | 12              | 0.57 | BDL             | 45               | 310 | 86  | 23   | 38  | 3   |
| 19        | Dhimerkhed<br>a     | Ghughari     | DW     | 23.4833 | 80.2708 | 7.11      | 1152             | 305              | 160 | 30     | 75              | 0.32 | 0.2             | 31               | 375 | 112 | 23   | 88  | 5.1 |

ANNEXURE - IV Chemical Quality of Water Samples of Post-Monsoon 2022

| S. No. | District | Location          | Source | Lat.    | Long.          | Fe    | Cu  | Ni       | Zn    | Min   |
|--------|----------|-------------------|--------|---------|----------------|-------|-----|----------|-------|-------|
|        |          |                   |        |         |                |       |     | mg/liter |       |       |
| 1      | Katni    | Amuwari           | DW     | 23.9876 | 80.5413        | 0.023 | BDL | BDL      | BDL   | 0.011 |
| 2      | Katni    | Jamuwani<br>Khurd | DW     | 24.1032 | 80.7135        | 0.013 | BDL | BDL      | 0.085 | 0.116 |
| 3      | Katni    | Devra<br>Khurd    | DW     | 23.9515 | 80.7667        | 0.018 | BDL | BDL      | 0.092 | 0.015 |
| 4      | Katni    | Salaiya<br>Sihora | DW     | 23.7873 | 80.7946        | 0.024 | BDL | BDL      | BDL   | BDL   |
| 5      | Katni    | Bargawan          | DW     | 23.74   | 80.6124        | 0.121 | BDL | BDL      | 0.135 | BDL   |
| 6      | Katni    | Bhadoura          | DW     | 23.8258 | 80.5376        | 0.144 | BDL | BDL      | BDL   | 0.381 |
| 7      | Katni    | Majhgawa<br>n     | DW     | 23.3856 | 80.436         | 0.11  | BDL | BDL      | BDL   | 0.389 |
| 8      | Katni    | Jirri             | DW     | 23.5581 | 80.4493        | 0.154 | BDL | BDL      | 0.182 | 0.224 |
| 9      | Katni    | Pahadi            | DW     | 23.7035 | 80.3721        | 0.2   | BDL | BDL      | BDL   | 0.447 |
| 10     | Katni    | Banson            | DW     | 23.7258 | 79.9723        | 0.037 | BDL | BDL      | 0.226 | 0.504 |
| 11     | Katni    | Pondi             | DW     | 23.6124 | 80.0585        | BDL   | BDL | BDL      | BDL   | BDL   |
| 12     | Katni    | Kaudiya           | DW     | 23.6682 | 80.1731        | 0.204 | BDL | BDL      | 0.082 | 0.014 |
| 13     | Katni    | Harduwa           | DW     | 23.9048 | 80.2878        | 1.136 | BDL | BDL      | 0.432 | BDL   |
| 14     | Katni    | Bargaon           | DW     | 23.9077 | 80.039         | 0.029 | BDL | BDL      | BDL   | BDL   |
| 15     | Katni    | Patna             | DW     | 23.7681 | 80.0044        | 0.018 | BDL | BDL      | BDL   | BDL   |
| 16     | Katni    | Umariya<br>Muhas  | DW     | 23.908  | 80.1144        | 0.113 | BDL | BDL      | 0.138 | 0.082 |
| 17     | Katni    | Badkhera          | DW     | 23.772  | 80.2248        | 0.114 | BDL | BDL      | 0.112 | BDL   |
| 18     | Katni    | Katni<br>South    | DW     | 23.8231 | 80.3981<br>116 | 0.013 | BDL | BDL      | BDL   | 0.028 |

# ANNEXURE - V Heavy Metals Analysis of Key Wells Water Samples (Pre-monsoon 2022)

|            |                   |          | Proposed      | Check      | Dam/N             | lala Bund/Pe | rcola <b>ti</b> on Tanl | c for Ph   | ase-l             |          |           |
|------------|-------------------|----------|---------------|------------|-------------------|--------------|-------------------------|------------|-------------------|----------|-----------|
| SI.N<br>o. | Stru<br>ctur<br>e | Latitude | Longitud<br>e | SL.<br>No. | Str<br>uct<br>ure | Latitude     | Longitude               | SL.<br>No. | Stru<br>ctur<br>e | Latitude | Longitude |
| 1          | NB                | 23.3444  | 80.3631       | 1          | CD                | 23.3461      | 80.3236                 | 1          | PT                | 23.7343  | 80.6173   |
| 2          | NB                | 23.3744  | 80.3297       | 2          | CD                | 23.382       | 80.3138                 | 2          | PT                | 23.679   | 80.6594   |
| 3          | NB                | 23.4208  | 80.3783       | 3          | CD                | 23.3645      | 80.3517                 | 3          | PT                | 23.6449  | 80.5768   |
| 4          | NB                | 23.4369  | 80.3158       | 4          | CD                | 23.3294      | 80.362                  | 4          | PT                | 23.595   | 80.58     |
| 5          | NB                | 23.4494  | 80.3258       | 5          | CD                | 23.3737      | 80.394                  | 5          | PT                | 23.5349  | 80.5243   |
| 6          | NB                | 23.4816  | 80.311        | 6          | CD                | 23.3458      | 80.3767                 | 6          | PT                | 23.5165  | 80.4294   |
| 7          | NB                | 23.4616  | 80.3492       | 7          | CD                | 23.4126      | 80.36                   | 7          | PT                | 23.4409  | 80.4375   |
| 8          | NB                | 23.469   | 80.5367       | 8          | CD                | 23.4149      | 80.3122                 | 8          | PT                | 23.3846  | 80.4172   |
| 9          | NB                | 23.4937  | 80.5293       | 9          | CD                | 23.438       | 80.2996                 | 9          | PT                | 23.3909  | 80.3771   |
| 10         | NB                | 23.4013  | 80.5189       | 10         | CD                | 23.3998      | 80.4024                 | 10         | PT                | 23.3501  | 80.3433   |
| 11         | NB                | 23.4868  | 80.4013       | 11         | CD                | 23.4463      | 80.3428                 | 11         | PT                | 23.3665  | 80.3726   |
| 12         | NB                | 23.5015  | 80.436        | 12         | CD                | 23.4625      | 80.3197                 | 12         | PT                | 23.4516  | 80.2752   |
| 13         | NB                | 23.4872  | 80.4308       | 13         | CD                | 23.4761      | 80.2751                 | 13         | PT                | 23.4861  | 80.359    |
| 14         | NB                | 23.528   | 80.2932       | 14         | CD                | 23.5053      | 80.2465                 | 14         | PT                | 23.5395  | 80.2616   |
| 15         | NB                | 23.5059  | 80.2286       | 15         | CD                | 23.4861      | 80.237                  | 15         | PT                | 23.572   | 80.2554   |
| 16         | NB                | 23.502   | 80.2637       | 16         | CD                | 23.4795      | 80.3792                 | 16         | PT                | 23.6337  | 80.2547   |
| 17         | NB                | 23.548   | 80.3188       | 17         | CD                | 23.4655      | 80.4185                 | 17         | PT                | 23.6072  | 80.1455   |
| 18         | NB                | 23.5059  | 80.3904       | 18         | CD                | 23.4962      | 80.4057                 | 18         | PT                | 23.6403  | 80.0987   |
| 19         | NB                | 23.6104  | 80.3544       | 19         | CD                | 23.5424      | 80.3005                 | 19         | PT                | 23.6271  | 80.0401   |
| 20         | NB                | 23.6291  | 80.3692       | 20         | CD                | 23.5229      | 80.2671                 | 20         | PT                | 23.6937  | 80.1001   |
| 21         | NB                | 23.6174  | 80.2472       | 21         | CD                | 23.5001      | 80.2904                 | 21         | PT                | 23.6749  | 80.121    |
| 22         | NB                | 23.617   | 80.2689       | 22         | CD                | 23.5532      | 80.2732                 | 22         | PT                | 23.7837  | 79.9805   |
| 23         | NB                | 23.6057  | 80.1826       | 23         | CD                | 23.5145      | 80.3723                 | 23         | PT                | 23.8713  | 80.0321   |
| 24         | NB                | 23.5996  | 80.1084       | 24         | CD                | 23.5981      | 80.2333                 | 24         | PT                | 23.8413  | 80.0439   |
| 25         | NB                | 23.6473  | 80.1188       | 25         | CD                | 23.5918      | 80.2763                 | 25         | PT                | 23.9515  | 80.1106   |
| 26         | NB                | 23.6703  | 80.157        | 26         | CD                | 23.6148      | 80.3193                 | 26         | PT                | 23.8943  | 80.217    |
| 27         | NB                | 23.6404  | 80.1539       | 27         | CD                | 23.6262      | 80.2843                 | 27         | PT                | 23.903   | 80.2916   |
| 28         | NB                | 23.6573  | 80.1878       | 28         | CD                | 23.6444      | 80.2178                 | 28         | PT                | 23.9229  | 80.3635   |
| 29         | NB                | 23.6894  | 80.196        | 29         | CD                | 23.6023      | 80.036                  | 29         | PT                | 23.9477  | 80.4692   |
| 30         | NB                | 23.6482  | 80.2759       | 30         | CD                | 23.647       | 80.0611                 | 30         | PT                | 24.0269  | 80.6377   |
| 31         | NB                | 23.6699  | 80.3006       | 31         | CD                | 23.6436      | 80.0039                 | 31         | PT                | 24.0129  | 80.6667   |
| 32         | NB                | 23.6959  | 80.2273       | 32         | CD                | 23.6473      | 79.9764                 | 32         | PT                | 23.9662  | 80.7958   |
| 33         | NB                | 23.7276  | 80.1774       | 33         | CD                | 23.6898      | 80.1578                 | 33         | PT                | 23.9498  | 80.8275   |
| 34         | NB                | 23.7129  | 80.134        | 34         | CD                | 23.6927      | 80.0573                 | 34         | PT                | 23.8434  | 80.8617   |
| 35         | NB                | 23.6643  | 80.0263       | 35         | CD                | 23.7086      | 79.9861                 | 35         | PT                | 23.7318  | 80.8048   |
| 36         | NB                | 23.6964  | 80.0355       | 36         | CD                | 23.7178      | 80.095                  | 36         | PT                | 23.7098  | 80.8226   |
| 37         | NB                | 23.6699  | 80.0624       | 37         | CD                | 23.7543      | 79.9526                 | 37         | PT                | 23.7942  | 80.771    |
| 38         | NB                | 23.7077  | 79.9591       | 38         | CD                | 23.779       | 80.0154                 | 38         | PT                | 23.8919  | 80.7508   |
| 39         | NB                | 23.7281  | 79.9322       | 39         | CD                | 23.748       | 80.0121                 | 39         | PT                | 23.88    | 80.8059   |

### Annexure-VI Proposed Artificial Recharge Structures Locations for Phase-I Implementation

| 40 | NB | 23.7415 | 79.9743 | 40 | CD | 23.6198 | 80.0766 | 40 | PT | 23.8783 | 80.5725 |
|----|----|---------|---------|----|----|---------|---------|----|----|---------|---------|
| 41 | NB | 23.7749 | 79.9244 | 41 | CD | 23.8008 | 79.9155 | 41 | PT | 23.8678 | 80.4274 |
| 42 | NB | 23.807  | 79.9665 | 42 | CD | 23.8158 | 79.9887 | 42 | PT | 23.8092 | 80.4424 |
| 43 | NB | 23.8565 | 79.9825 | 43 | CD | 23.898  | 79.9985 | 43 | PT | 23.7987 | 80.4856 |
| 44 | NB | 23.7901 | 80.0355 | 44 | CD | 23.9209 | 80.0704 | 44 | PT | 23.7698 | 80.5167 |
| 45 | NB | 23.7875 | 80.0728 | 45 | CD | 23.8811 | 80.0917 | 45 | PT | 23.7223 | 80.4253 |
| 46 | NB | 23.8717 | 80.0094 | 46 | CD | 23.9122 | 80.1225 | 46 | PT | 23.6895 | 80.4403 |
| 47 | NB | 23.9177 | 80.0307 | 47 | CD | 23.865  | 80.1484 | 47 | PT | 23.7084 | 80.525  |
| 48 | NB | 23.8782 | 80.058  | 48 | CD | 23.9328 | 80.1897 | 48 | PT | 23.662  | 80.3523 |
| 49 | NB | 23.9724 | 80.0394 | 49 | CD | 23.9552 | 80.1982 | 49 | PT | 23.8372 | 80.5392 |
| 50 | NB | 23.968  | 80.0684 | 50 | CD | 23.8756 | 80.1918 | 50 | PT | 23.9474 | 80.7546 |
| 51 | NB | 23.9494 | 80.0541 | 51 | CD | 23.8861 | 80.2528 | 51 | PT | 23.8116 | 80.7159 |
| 52 | NB | 23.9381 | 80.0224 | 52 | CD | 23.9246 | 80.24   |    |    |         |         |
| 53 | NB | 23.9403 | 80.1296 | 53 | CD | 23.8308 | 80.2254 |    |    |         |         |
| 54 | NB | 23.8917 | 80.1166 | 54 | CD | 23.7918 | 80.2001 |    |    |         |         |
| 55 | NB | 23.8964 | 80.1448 | 55 | CD | 23.8582 | 80.3312 |    |    |         |         |
| 56 | NB | 23.9724 | 80.1821 | 56 | CD | 23.9035 | 80.3481 |    |    |         |         |
| 57 | NB | 23.9876 | 80.1947 | 57 | CD | 23.8805 | 80.3867 |    |    |         |         |
| 58 | NB | 23.9155 | 80.1683 | 58 | CD | 23.8774 | 80.454  |    |    |         |         |
| 59 | NB | 23.9116 | 80.2082 | 59 | CD | 23.8178 | 80.3353 |    |    |         |         |
| 60 | NB | 23.9207 | 80.2715 | 60 | CD | 23.8364 | 80.3839 |    |    |         |         |
| 61 | NB | 23.8726 | 80.2312 | 61 | CD | 23.8399 | 80.4317 |    |    |         |         |
| 62 | NB | 23.8617 | 80.2655 | 62 | CD | 23.7796 | 80.3996 |    |    |         |         |
| 63 | NB | 23.8938 | 80.3219 | 63 | CD | 23.9379 | 80.3695 |    |    |         |         |
| 64 | NB | 23.8951 | 80.2691 | 64 | CD | 23.9465 | 80.4416 |    |    |         |         |
| 65 | NB | 23.8687 | 80.3056 | 65 | CD | 23.9747 | 80.4992 |    |    |         |         |
| 66 | NB | 23.8456 | 80.2167 | 66 | CD | 23.9398 | 80.5376 |    |    |         |         |
| 67 | NB | 23.8712 | 80.3486 | 67 | CD | 23.8971 | 80.5672 |    |    |         |         |
| 68 | NB | 23.8951 | 80.4118 | 68 | CD | 23.9909 | 80.5635 |    |    |         |         |
| 69 | NB | 23.9462 | 80.4074 | 69 | CD | 24.0199 | 80.6173 |    |    |         |         |
| 70 | NB | 23.9227 | 80.4272 | 70 | CD | 24.0436 | 80.6667 |    |    |         |         |
| 71 | NB | 23.9705 | 80.4597 | 71 | CD | 24.0543 | 80.7294 |    |    |         |         |
| 72 | NB | 23.9344 | 80.5068 | 72 | CD | 23.9671 | 80.6736 |    |    |         |         |
| 73 | NB | 23.977  | 80.5295 | 73 | CD | 23.9416 | 80.728  |    |    |         |         |
| 74 | NB | 23.9714 | 80.5745 | 74 | CD | 23.9909 | 80.8545 |    |    |         |         |
| 75 | NB | 24.0156 | 80.5615 | 75 | CD | 23.922  | 80.8228 |    |    |         |         |
| 76 | NB | 24.0314 | 80.5919 | 76 | CD | 23.9249 | 80.7619 |    |    |         |         |
| 77 | NB | 24.0716 | 80.6447 | 77 | CD | 23.8241 | 80.6714 |    |    |         |         |
| 78 | NB | 24.074  | 80.695  | 78 | CD | 23.8412 | 80.5722 |    |    |         |         |
| 79 | NB | 24.0995 | 80.6933 | 79 | CD | 23.818  | 80.7508 |    |    |         |         |
| 80 | NB | 24.0501 | 80.7067 | 80 | CD | 23.7394 | 80.7721 |    |    |         |         |
| 81 | NB | 24.0318 | 80.6909 | 81 | CD | 23.7437 | 80.8434 |    |    |         |         |
| 82 | NB | 23.9888 | 80.7043 | 82 | CD | 23.7432 | 80.5714 |    |    |         |         |
| 83 | NB | 23.9961 | 80.6256 | 83 | CD | 23.6627 | 80.6316 |    |    |         |         |

| 07  |    | 23.9405 | 80.6556 | 84 | CD | 23.621  | 80.6097 |  |  |
|-----|----|---------|---------|----|----|---------|---------|--|--|
| 85  | NB | 24.0075 | 80.8012 | 85 | CD | 23.7234 | 80.4914 |  |  |
| 86  | NB | 24.0237 | 80.8337 | 86 | CD | 23.7634 | 80.4555 |  |  |
| 87  | NB | 23.9641 | 80.856  | 87 | CD | 23.6687 | 80.3942 |  |  |
| 88  | NB | 23.9373 | 80.783  | 88 | CD | 23.5804 | 80.5482 |  |  |
| 89  | NB | 23.9535 | 80.7152 | 89 | CD | 23.7388 | 80.3669 |  |  |
| 90  | NB | 23.906  | 80.6739 | 90 | CD | 23.6644 | 80.2707 |  |  |
| 91  | NB | 23.9012 | 80.7927 | 91 | CD | 23.7599 | 80.2874 |  |  |
| 92  | NB | 23.8914 | 80.8467 | 92 | CD | 23.7161 | 80.2094 |  |  |
| 93  | NB | 23.8886 | 80.8167 | 93 | CD | 23.7186 | 80.3139 |  |  |
| 94  | NB | 23.8444 | 80.7862 | 94 | CD | 23.9683 | 80.7604 |  |  |
| 95  | NB | 23.8651 | 80.8373 | 95 | CD | 23.7957 | 80.8143 |  |  |
| 96  | NB | 23.8444 | 80.7367 | 96 | CD | 24.1076 | 80.7241 |  |  |
| 97  | NB | 23.8156 | 80.7761 |    |    |         |         |  |  |
| 98  | NB | 23.818  | 80.8264 |    |    |         |         |  |  |
| 99  | NB | 23.8075 | 80.8617 |    |    |         |         |  |  |
| 100 | NB | 23.7758 | 80.8978 |    |    |         |         |  |  |
| 101 | NB | 23.7645 | 80.8325 |    |    |         |         |  |  |
| 102 | NB | 23.7146 | 80.8422 |    |    |         |         |  |  |
| 103 | NB | 23.7126 | 80.7956 |    |    |         |         |  |  |
| 104 | NB | 23.7665 | 80.7797 |    |    |         |         |  |  |
| 105 | NB | 23.7689 | 80.7274 |    |    |         |         |  |  |
| 106 | NB | 23.7661 | 80.684  |    |    |         |         |  |  |
| 107 | NB | 23.8383 | 80.695  |    |    |         |         |  |  |
| 108 | NB | 23.8363 | 80.6171 |    |    |         |         |  |  |
| 109 | NB | 23.8712 | 80.6808 |    |    |         |         |  |  |
| 110 | NB | 23.7913 | 80.6094 |    |    |         |         |  |  |
| 111 | NB | 23.9328 | 80.699  |    |    |         |         |  |  |
| 112 | NB | 23.9231 | 80.6252 |    |    |         |         |  |  |
| 113 | NB | 23.7093 | 80.6633 |    |    |         |         |  |  |
| 114 | NB | 23.7016 | 80.6301 |    |    |         |         |  |  |
| 115 | NB | 23.6359 | 80.6179 |    |    |         |         |  |  |
| 116 | NB | 23.6193 | 80.581  |    |    |         |         |  |  |
| 117 | NB | 23.5442 | 80.5351 |    |    |         |         |  |  |
| 118 | NB | 23.4469 | 80.551  |    |    |         |         |  |  |
| 119 | NB | 23.4225 | 80.5147 |    |    |         |         |  |  |
| 120 | NB | 23.4444 | 80.4046 |    |    |         |         |  |  |
| 121 | NB | 23.6758 | 80.3283 |    |    |         |         |  |  |
| 122 | NB | 23.7194 | 80.2629 |    |    |         |         |  |  |
| 123 | NB | 23.74   | 80.2744 |    |    |         |         |  |  |
| 124 | NB | 23.7492 | 80.3277 |    |    |         |         |  |  |
| 125 | NB | 23.7004 | 80.3851 |    |    |         |         |  |  |
| 126 | NB | 23.7418 | 80.4075 |    |    |         |         |  |  |
| 127 | NB | 23.8198 | 80.4029 |    |    |         |         |  |  |

| 128 | NB | 23.8037 | 80.4201 |  |  |  |  |
|-----|----|---------|---------|--|--|--|--|
| 129 | NB | 23.9116 | 80.4701 |  |  |  |  |
| 130 | NB | 23.7136 | 80.5452 |  |  |  |  |
| 131 | NB | 23.7188 | 80.4551 |  |  |  |  |
| 132 | NB | 23.79   | 80.4637 |  |  |  |  |

|     |           |         |          | Interpreted 1 | EM Resu | ults in Ka | tni Dist     | rict, MP |     |    |     |       |      |      |    |              |
|-----|-----------|---------|----------|---------------|---------|------------|--------------|----------|-----|----|-----|-------|------|------|----|--------------|
| TEM | LOCATION  | Station | Latitude | Le neitheola  |         | Re         | esistivity i | n ohm.m  |     |    |     | Total |      |      |    |              |
| NO  | LOCATION  | Station | Latitude | Longitude     | P1      | P2         | P3           | P4       | P5  | P6 | h1  | h2    | h3   | h4   | h5 | Depth<br>(H) |
| 1   |           | 0       | 23.9427  | 80.2168       | 140     | 80         | 61           | 24       | 6.6 |    | 0.9 | 14.6  | 15.2 | 4.7  |    | 35.4         |
| 2   | SAIDA     | 10      | 23.9427  | 80.2168       | 101     | 69         | 46           | 22       | 7.2 |    | 1.2 | 17.7  | 14.4 | 5    |    | 38.3         |
| 3   |           | 20      | 23.9428  | 80.2168       | 130     | 72         | 46           | 33       | 6.3 |    | 0.9 | 33    | 24   | 8    |    | 65.9         |
| 4   |           | 30      | 23.9428  | 80.2167       | 156     | 85         | 56           | 44       | 5.9 |    | 1.5 | 23    | 15   | 15   |    | 54.5         |
| 5   |           | 40      | 23.9428  | 80.2167       | 151     | 103        | 80           | 64       | 6   |    | 1.4 | 24    | 14   | 20   |    | 59.4         |
| 6   |           | 0       | 23.9192  | 80.1417       | 214     | 34         | 24           | 72       | 196 |    | 1.3 | 8     | 11   | 15   |    | 35.3         |
| 7   | RΠHI      | 10      | 23.9192  | 80.1418       | 196     | 36         | 24           | 61       | 123 |    | 1.9 | 11    | 11   | 9.1  |    | 33           |
| 8   |           | 20      | 23.9192  | 80.1418       | 107     | 56         | 34           | 55       | 94  |    | 1   | 9.8   | 11.5 | 8.8  |    | 31.1         |
| 9   |           | 30      | 23.9192  | 80.1419       | 238     | 48         | 39           | 71       | 91  |    | 0.7 | 11    | 9    | 10   |    | 30.7         |
| 10  |           | 40      | 23.9192  | 80.1419       | 304     | 47         | 38           | 48       | 63  |    | 0.5 | 9.5   | 9    | 11.4 |    | 30.4         |
| 11  |           | 0       | 23.9087  | 80.0643       | 81.6    | 16.3       | 32           | 66.2     | 76  |    | 1.6 | 7.4   | 8.1  | 10.1 |    | 27.2         |
| 12  | BHARATPUR | 10      | 23.9087  | 80.0644       | 89.6    | 16         | 43           | 73       | 99  |    | 1.2 | 8     | 9    | 6    |    | 24.2         |
| 13  |           | 20      | 23.9086  | 80.0644       | 171     | 30.2       | 64           | 80.8     | 149 |    | 2   | 5.5   | 10.9 | 13.8 |    | 32.2         |
| 14  |           | 30      | 23.9086  | 80.0644       | 180     | 22.7       | 64           | 80.5     | 138 |    | 1.6 | 13    | 11   | 9    |    | 34.6         |
| 15  |           | 40      | 23.9086  | 80.0644       | 102     | 14.8       | 39           | 55       | 99  |    | 2   | 8     | 7.6  | 8.5  |    | 26.1         |
| 16  |           | 0       | 23.7016  | 80.0122       | 76      | 122        | 87           | 66       | 37  |    | 1.9 | 15    | 25   | 56   |    | 97.9         |
| 17  | SANDA     | 5       | 23.7017  | 80.0122       | 76      | 121        | 85           | 64       | 36  |    | 2   | 14    | 24   | 55   |    | 95           |
| 18  |           | 10      | 23.7017  | 80.0122       | 58      | 85         | 110          | 70       | 43  |    | 2.6 | 29    | 66   | 23   |    | 121          |
| 19  |           | 15      | 23.7017  | 80.0122       | 52      | 97         | 142          | 62       | 37  | 1  | 2.2 | 20    | 55   | 21   |    | 98.2         |
| 20  |           | 20      | 23.7017  | 80.0121       | 61      | 86         | 131          | 66       | 36  |    | 2   | 22    | 58   | 25   |    | 107          |
| 21  | KHAKKARA  | 0       | 23.7743  | 80.0020       | 269     | 151        | 104          | 49       | 89  |    | 2.2 | 25    | 10.4 | 9.9  |    | 47.5         |
| 22  |           | 5       | 23.7743  | 80.0020       | 320     | 88         | 143          | 53       | 98  |    | 0.8 | 27    | 16.6 | 12.8 |    | 57.2         |

#### Annexure-VII Interpreted TEM Results in Katni District, MP

|     |                |           |          | Interpreted T | EM Resu | ults in Ka | ıtni Dist    | rict, MP |     |    |     |      |          |       |    |              |
|-----|----------------|-----------|----------|---------------|---------|------------|--------------|----------|-----|----|-----|------|----------|-------|----|--------------|
| TEM |                | Charlin a | Latitude | l e n eitude  |         | Re         | esistivity i | n ohm.m  |     |    |     | Thic | kness in | meter |    | Total        |
| NO  | LOCATION       | Station   | Latitude | Longitude     | P1      | P2         | P3           | P4       | P 5 | P6 | h1  | h2   | h3       | h4    | h5 | Depth<br>(H) |
| 23  |                | 10        | 23.7743  | 80.0019       | 179     | 120        | 84           | 41       | 157 |    | 0.6 | 11   | 32       | 12    |    | 55.6         |
| 24  |                | 15        | 23.7743  | 80.0019       | 239     | 150        | 100          | 39       | 99  |    | 2   | 24   | 15       | 9     |    | 50           |
| 25  |                | 20        | 23.7742  | 80.0019       | 224     | 127        | 104          | 44       | 99  |    | 2.5 | 15.3 | 27       | 9.4   |    | 54.2         |
| 26  |                | 0         | 23.6292  | 80.0897       | 103     | 72.2       | 18.8         | 5.3      |     |    | 1.6 | 20   | 17       |       |    | 38.6         |
| 27  | P IP AR IY A   | 10        | 23.6293  | 80.0898       | 99.4    | 57.7       | 34.5         | 3.1      |     |    | 1.3 | 8    | 27.7     |       |    | 37           |
| 28  |                | 20        | 23.6293  | 80.0898       | 164     | 78         | 28           | 3.2      |     |    | 2.5 | 12.3 | 17.4     |       |    | 32.2         |
| 29  |                | 30        | 23.6294  | 80.0898       | 85      | 55         | 27           | 2.2      |     |    | 2.4 | 11.3 | 18.3     |       |    | 32           |
| 30  |                | 40        | 23.6295  | 80.0898       | 67      | 54         | 17           | 2        |     |    | 1.2 | 22.6 | 8.5      |       |    | 32.3         |
| 31  |                | 0         | 23.6746  | 80.1581       | 102     | 39         | 13.5         | 3.5      |     |    | 0.7 | 23   | 11       |       |    | 34.7         |
| 32  | BARKHERA       | 10        | 23.6745  | 80.1581       | 135     | 81         | 21           | 3.7      |     |    | 4   | 22   | 15       |       |    | 41           |
| 33  |                | 20        | 23.6745  | 80.1581       | 87      | 70         | 30           | 3.6      |     |    | 2   | 29   | 12.7     |       |    | 43.7         |
| 34  |                | 30        | 23.6744  | 80.1582       | 114     | 68.5       | 35           | 5.5      |     |    | 1.6 | 32   | 13.6     |       |    | 47.2         |
| 35  |                | 40        | 23.6743  | 80.1582       | 95      | 66         | 33           | 4        |     |    | 1.8 | 21.8 | 14       |       |    | 37.6         |
| 36  |                | 0         | 23.6274  | 80.2423       | 109     | 48         | 33           | 12.5     |     |    | 2.2 | 11.1 | 24.3     |       |    | 37.6         |
| 37  |                | 5         | 23.6274  | 80.2422       | 179     | 95.6       | 42.2         | 11       |     |    | 2   | 13.4 | 16.4     |       |    | 31.8         |
| 38  | SLEEMAN AB AD  | 10        | 23.6274  | 80.2422       | 104     | 78         | 48           | 23       |     |    | 2   | 16   | 24       |       |    | 42           |
| 39  |                | 15        | 23.6274  | 80.2421       | 182     | 98         | 56           | 21       |     |    | 2   | 10   | 25       |       |    | 37           |
| 40  |                | 20        | 23.6273  | 80.2421       | 185     | 40         | 24           | 7.9      |     |    | 0.8 | 12.8 | 17.4     |       |    | 31           |
| 41  |                | 25        | 23.6273  | 80.2421       | 135     | 69         | 27           | 19.9     |     |    | 2.3 | 13.8 | 17.4     |       |    | 33.5         |
| 42  |                | 30        | 23.6273  | 80.2421       | 138     | 60         | 37           | 13       |     |    | 2.6 | 18.2 | 19.4     |       |    | 40.2         |
| 43  |                | 35        | 23.6273  | 80.2420       | 117     | 54         | 25           | 17.5     |     |    | 2.8 | 18.4 | 45       |       |    | 66.2         |
| 44  |                | 40        | 23.6273  | 80.2420       | 125     | 57         | 33           | 20       |     |    | 2.4 | 15.4 | 20.4     |       |    | 38.2         |
| 45  |                | 45        | 23.6273  | 80.2419       | 96.8    | 47.2       | 33.1         | 16.1     |     |    | 2.2 | 15.4 | 20.6     |       |    | 38.2         |
| 46  | LAKH AP ATER I | 0         | 23.7176  | 80.3271       | 179     | 72         | 34           | 11       | 22  |    | 1.8 | 11.8 | 12.5     | 30.6  |    | 56.7         |
| 47  |                | 10        | 23.7177  | 80.3271       | 105     | 47         | 19           | 13       | 58  |    | 1.7 | 3.4  | 38       | 32    |    | 75.1         |

|     |                      |             |                 | Interpreted 1 | EM Resu | ults in Ka | ıtni Dist    | rict, MP |     |    |     |      |          |       |    |                 |
|-----|----------------------|-------------|-----------------|---------------|---------|------------|--------------|----------|-----|----|-----|------|----------|-------|----|-----------------|
| TEM |                      | C tarti a m | ا منائلہ ، ما م | l e n eitude  |         | Re         | esistivity i | n ohm.m  |     |    |     | Thic | kness in | meter |    | Total<br>Doubth |
| NO  | LOCATION             | Station     | Latitude        | Longitude     | P1      | P2         | P3           | P4       | P5  | P6 | h1  | h2   | h3       | h4    | h5 | Depth<br>(H)    |
| 48  |                      | 20          | 23.7177         | 80.3270       | 116     | 42         | 33           | 16       | 25  |    | 2.5 | 13.7 | 15.5     | 25.3  |    | 57              |
| 49  |                      | 30          | 23.7178         | 80.3270       | 126     | 29         | 19           | 12       | 35  |    | 2   | 12   | 23       | 31    |    | 68              |
| 50  |                      | 40          | 23.7179         | 80.3270       | 99      | 39         | 18.7         | 11.7     | 40  |    | 4   | 6.5  | 23       | 34    |    | 67.5            |
| 51  |                      | 0           | 23.6759         | 80.2910       | 315     | 40         | 24           | 286      |     |    | 2.3 | 18   | 16       |       |    | 36.3            |
| 52  | TIWARI               | 10          | 23.6759         | 80.2909       | 120     | 80         | 36           | 180      |     |    | 2.4 | 13.9 | 28       |       |    | 44.3            |
| 53  |                      | 20          | 23.6758         | 80.2909       | 164     | 46         | 33           | 259      |     |    | 1.9 | 8.7  | 20       |       |    | 30.6            |
| 54  |                      | 30          | 23.6757         | 80.2909       | 142     | 47         | 36           | 356      |     |    | 2.7 | 12.7 | 15.5     |       |    | 30.9            |
| 55  |                      | 40          | 23.6757         | 80.2909       | 151     | 38         | 30           | 301      |     |    | 2.4 | 10.3 | 13.6     |       |    | 26.3            |
| 56  |                      | 0           | 23.4481         | 80.3029       | 243     | 25         | 46           | 70       |     |    | 2.8 | 13.2 | 10       |       |    | 26              |
| 57  | MURWARI              | 10          | 23.4482         | 80.3030       | 341     | 10         | 24           | 75       |     |    | 2   | 31   | 17       |       |    | 50              |
| 58  |                      | 20          | 23.4482         | 80.3031       | 374     | 19         | 63           | 78       |     |    | 3.4 | 8.5  | 28       |       |    | 39.9            |
| 59  |                      | 30          | 23.4482         | 80.3032       | 147     | 22         | 61           | 107      |     |    | 2.5 | 19   | 9.2      |       |    | 30.7            |
| 60  |                      | 40          | 23.4482         | 80.3032       | 160     | 17.4       | 51.6         | 106      |     |    | 2.7 | 14.2 | 9.8      |       |    | 26.7            |
| 61  |                      | 0           | 23.4833         | 80.4162       | 166     | 15         | 44           | 69       | 141 |    | 2   | 17   | 14       | 10    |    | 43              |
| 62  | JIN N A P IP AR IY A | 10          | 23.4834         | 80.4162       | 231     | 16         | 56           | 96       | 212 |    | 1.4 | 17   | 14       | 10    |    | 42.4            |
| 63  |                      | 20          | 23.4834         | 80.4161       | 120     | 16         | 42           | 64       | 388 |    | 2   | 13   | 11       | 10.5  |    | 36.5            |
| 64  |                      | 30          | 23.4835         | 80.4161       | 136     | 16         | 51           | 85       | 200 |    | 2   | 10   | 12       | 10    |    | 34              |
| 65  |                      | 40          | 23.4835         | 80.4161       | 208     | 25         | 44           | 77       | 108 |    | 2   | 14   | 11       | 10    |    | 37              |
| 66  |                      | 0           | 23.5978         | 80.5571       | 96.7    | 30.4       | 54.4         | 64.6     |     |    | 2.5 | 12.1 | 8        |       |    | 22.6            |
| 67  | KHAMHARIYA           | 10          | 23.5978         | 80.5571       | 148     | 48         | 86           | 113      |     |    | 3.8 | 10   | 6.6      |       |    | 20.4            |
| 68  |                      | 20          | 23.5978         | 80.5572       | 128     | 32         | 53           | 94       |     |    | 2   | 13.6 | 9.5      |       |    | 25.1            |
| 69  |                      | 30          | 23.5978         | 80.5573       | 168     | 32         | 80           | 140      |     |    | 3.7 | 9.5  | 14.4     |       |    | 27.6            |
| 70  |                      | 40          | 23.5978         | 80.5574       | 130     | 30         | 67           | 135      |     |    | 3.7 | 7.2  | 9.5      |       |    | 20.4            |
| 71  | DEORA KALAN          | 0           | 23.9516         | 80.5305       | 866     | 212        | 112          | 80       | 35  |    | 3.2 | 19.2 | 19.7     | 34    |    | 76.1            |
| 72  |                      | 10          | 23.9517         | 80.5304       | 348     | 230        | 150          | 60       | 35  |    | 3.8 | 22.6 | 43       | 11.6  |    | 81              |

|     |                      |         |          | Interpreted T | EM Resu | lts in Ka | tni Dist     | rict, MP |      |    |     |      |          |       |    |                |
|-----|----------------------|---------|----------|---------------|---------|-----------|--------------|----------|------|----|-----|------|----------|-------|----|----------------|
| TEM | LOCATION             | Station | Latitude | Longitudo     |         | Re        | esistivity i | n ohm.m  |      |    |     | Thic | kness in | meter |    | Total<br>Donth |
| NO  | LOCATION             | Station | Latitude | Longitude     | P1      | P2        | P3           | P4       | P 5  | P6 | h1  | h2   | h3       | h4    | h5 | Depth<br>(H)   |
| 73  |                      | 20      | 23.9517  | 80.5303       | 559     | 248       | 129          | 86       | 40   |    | 3   | 12   | 15       | 31    |    | 61             |
| 74  |                      | 30      | 23.9517  | 80.5302       | 728     | 170       | 84           | 58       | 34   |    | 1.8 | 11.3 | 15.6     | 47.6  |    | 76.3           |
| 75  |                      | 40      | 23.9517  | 80.5301       | 525     | 167       | 88           | 61       | 34   |    | 3.6 | 8.3  | 17.5     | 69    |    | 98.4           |
| 76  |                      | 0       | 23.9978  | 80.6152       | 120     | 90        | 64           | 35       | 15   |    | 2   | 21   | 34       | 22    |    | 79             |
| 77  | BIJEYRAGOGARH        | 10      | 23.9978  | 80.6153       | 146     | 104       | 63           | 55       | 17   |    | 2.1 | 10.3 | 36       | 15.2  |    | 63.6           |
| 78  |                      | 20      | 23.9978  | 80.6153       | 251     | 125       | 95           | 55       | 25   |    | 3   | 20.1 | 25       | 15    |    | 63.1           |
| 79  |                      | 30      | 23.9977  | 80.6154       | 528     | 238       | 113          | 79       | 42   |    | 2.1 | 14.4 | 25       | 36.8  |    | 78.3           |
| 80  |                      | 40      | 23.9977  | 80.6155       | 254     | 105       | 85           | 64       | 32   |    | 2.8 | 14.3 | 25       | 25    |    | 67.1           |
| 81  |                      | 0       | 23.9312  | 80.6783       | 260     | 70        | 20           | 108      |      |    | 2   | 9    | 48       |       |    | 59             |
| 82  | SINGAURI             | 10      | 23.9312  | 80.6783       | 260     | 70        | 20           | 109      |      |    | 2   | 9    | 48       |       |    | 59             |
| 83  |                      | 20      | 23.9312  | 80.6782       | 105     | 24        | 17           | 61       |      |    | 2.9 | 12.8 | 32       |       |    | 47.7           |
| 84  |                      | 30      | 23.9313  | 80.6782       | 152     | 66        | 19           | 107      |      |    | 1.9 | 18.8 | 37.5     |       |    | 58.2           |
| 85  |                      | 40      | 23.9313  | 80.6781       | 101     | 12.5      | 18           | 75       |      |    | 2.3 | 10   | 27       |       |    | 39.3           |
| 86  |                      | 0       | 23.8291  | 80.6242       | 148     | 112.8     | 38           | 12.2     | 33   |    | 2.2 | 6.5  | 52       | 72.3  |    | 133            |
| 87  | BANSARI              | 10      | 23.8290  | 80.6242       | 197     | 112       | 50.8         | 18.5     | 35.4 |    | 2.5 | 13.2 | 20.6     | 65.9  |    | 102.2          |
| 88  |                      | 20      | 23.8290  | 80.6241       | 218     | 136       | 60           | 16       | 32   |    | 2.6 | 15.8 | 23       | 56.7  |    | 98.1           |
| 89  |                      | 30      | 23.8289  | 80.6241       | 193.5   | 122       | 56           | 19       | 35.5 |    | 2   | 14.4 | 21.5     | 58.4  |    | 96.3           |
| 90  |                      | 40      | 23.8289  | 80.6241       | 212     | 110       | 54           | 15       | 32   |    | 2.2 | 14.7 | 24.4     | 57    |    | 98.3           |
| 91  |                      | 0       | 23.7872  | 80.8259       | 229     | 108       | 22           | 14       | 54   |    | 1.6 | 7.6  | 45.2     | 27.8  |    | 82.2           |
| 92  | KEOLARI              | 10      | 23.7873  | 80.8259       | 235     | 102       | 52           | 16       | 55.7 |    | 1.9 | 6.3  | 18.6     | 57.5  |    | 84.3           |
| 93  |                      | 20      | 23.7873  | 80.8259       | 215     | 121       | 50           | 17       | 53.3 |    | 1.5 | 6.8  | 14       | 54    |    | 76.3           |
| 94  |                      | 30      | 23.7874  | 80.8259       | 218     | 106       | 51           | 16.6     | 46.5 |    | 1.2 | 7.2  | 11.3     | 56.4  |    | 76.1           |
| 95  |                      | 40      | 23.7875  | 80.8260       | 225     | 122       | 51           | 18.8     | 42   |    | 1.5 | 7.2  | 12.8     | 50.6  |    | 72.1           |
| 96  | <b>BARWARA KALAN</b> | 0       | 23.7532  | 80.5630       | 105.5   | 42        | 9.5          | 2.1      |      |    | 3.2 | 22.4 | 33.5     |       |    | 59.1           |
| 97  |                      | 10      | 23.7532  | 80.5630       | 98.5    | 35.1      | 10.8         | 4.3      |      |    | 2.6 | 21.3 | 23       |       |    | 46.9           |

|     |          |         |          | Interpreted 1 | EM Resu | lts in Ka | ıtni Dist    | rict, MP |     |    |     |      |            |       |    |                |
|-----|----------|---------|----------|---------------|---------|-----------|--------------|----------|-----|----|-----|------|------------|-------|----|----------------|
| TEM | LOCATION | Station | Latitude | Longitudo     |         | Re        | esistivity i | n ohm.m  |     |    |     | Thic | kness in 1 | neter |    | Total<br>Depth |
| NO  | LOCATION | Station | Latitude | Longitude     | P1      | P2        | P3           | P4       | P 5 | P6 | h1  | h2   | h3         | h4    | h5 | Uepm<br>(H)    |
| 98  |          | 20      | 23.7533  | 80.5630       | 95.9    | 39.7      | 10.9         | 2.5      |     |    | 2.6 | 22   | 18.3       |       |    | 42.9           |
| 99  |          | 30      | 23.7534  | 80.5631       | 103.1   | 48.4      | 16.7         | 3.3      |     |    | 2.1 | 15   | 20.8       |       |    | 37.9           |
| 100 |          | 40      | 23.7535  | 80.5631       | 120     | 48.5      | 16.9         | 7.1      |     |    | 2.9 | 16.9 | 10.6       |       |    | 30.4           |
| 101 |          | 0       | 23.8355  | 80.4572       | 206     | 51.9      | 18           | 75.8     |     |    | 1.4 | 8.9  | 24.3       |       |    | 34.6           |
| 102 | JOHLA    | 10      | 23.8354  | 80.4573       | 120.7   | 81.6      | 40.4         | 85.4     |     |    | 2.4 | 9.4  | 48.9       |       |    | 60.7           |
| 103 |          | 20      | 23.8353  | 80.4573       | 120.4   | 63.2      | 34.7         | 77.2     |     |    | 1.9 | 11.3 | 36.4       |       |    | 49.6           |
| 104 |          | 30      | 23.8353  | 80.4574       | 146     | 56.2      | 33.9         | 69.2     |     |    | 3   | 12   | 37         |       |    | 52             |
| 105 |          | 40      | 23.8352  | 80.4574       | 147     | 87.5      | 35           | 80.6     |     |    | 3.1 | 16.4 | 38         |       |    | 57.5           |
| 106 |          | 0       | 23.7044  | 80.6532       | 121.3   | 36.2      | 61.3         | 118.2    |     |    | 2.5 | 13.3 | 13.1       |       |    | 28.9           |
| 107 | TIKARIYA | 10      | 23.7043  | 80.6532       | 126.2   | 31.7      | 80           | 122.2    |     |    | 2.5 | 12.6 | 13.8       |       |    | 28.9           |
| 108 |          | 20      | 23.7042  | 80.6533       | 119.1   | 37.5      | 77.3         | 125.7    |     |    | 2.7 | 11.6 | 18         |       |    | 32.3           |
| 109 |          | 30      | 23.7042  | 80.6534       | 128.4   | 39.4      | 70.3         | 113      |     |    | 2.5 | 14.8 | 16         |       |    | 33.3           |
| 110 |          | 40      | 23.7041  | 80.6534       | 120.8   | 38.2      | 66.8         | 111      |     |    | 2.6 | 14.1 | 16.3       |       |    | 33             |
| 111 |          | 0       | 23.7832  | 80.3445       | 73.5    | 33.1      | 22.1         | 5.3      |     |    | 3   | 16.4 | 23.4       |       |    | 42.8           |
| 112 | KATNI    | 10      | 23.7831  | 80.3445       | 94.3    | 44.3      | 22.4         | 4.3      |     |    | 3   | 13.5 | 21.5       |       |    | 38             |
| 113 |          | 20      | 23.7830  | 80.3445       | 98.5    | 42.3      | 25           | 4.8      |     |    | 3   | 19.3 | 18         |       |    | 40.3           |
| 114 |          | 30      | 23.7830  | 80.3445       | 112.5   | 48.3      | 25.3         | 5.8      |     |    | 2   | 16.8 | 28.8       |       |    | 47.6           |
| 115 |          | 40      | 23.7829  | 80.3445       | 100     | 50.5      | 27.8         | 8.6      |     |    | 2.6 | 17.1 | 23         |       |    | 42.7           |
| 116 |          | 0       | 23.9201  | 80.4024       | 68.5    | 15.2      | 34.5         | 67.2     |     |    | 1.9 | 15.2 | 36.2       |       |    | 53.3           |
| 117 | KAILWARA | 10      | 23.9201  | 80.4025       | 78.9    | 14.9      | 30.7         | 54.8     |     |    | 2.2 | 16.7 | 21.9       |       |    | 40.8           |
| 118 |          | 20      | 23.9201  | 80.4026       | 75.8    | 17.2      | 35.3         | 58.5     |     |    | 2.2 | 15.1 | 25.4       |       |    | 42.7           |
| 119 |          | 30      | 23.9201  | 80.4026       | 63.5    | 15.9      | 39.7         | 55       |     |    | 2.3 | 14.7 | 23.9       |       |    | 40.9           |
| 120 |          | 40      | 23.9202  | 80.4027       | 60      | 16.5      | 34           | 64.6     |     |    | 2.7 | 19   | 24.1       |       |    | 45.8           |

### ACKNOWLEDGEMENT

The author is grateful to the Central Ground Water Board (CGWB) for providing the assignment to prepare and write this report.

The author is deeply indebted to Sh.Ashok Kumar Biswal, Head of office, CGWB, NCR, Bhopal for providing consistent encouragement, motivation, support, valuable guidance and advice in completing this assignment.

The author is thankful to Dr V Arul Prakasham, Sc -D, for providing geophysical data, Dr Vinay Kumar Kulshretha, Sc-C for providing chemical data, Mrs Anakha Ajai, Sc-C for providing NHS water level monitoring data.

The author is thankful to young professional Mr. Alok Mishra, Young professional for monitoring & sampling of Key wells during post-monsoon; Mr. Kamlesh Birla, Young Professional for preparation of maps and data compliation.

Lastly, the author is grateful to other officers an officials of Central Ground Water Board, North Central Region, Bhopal for their guidance and cooperation from time to time.

### **ABBREVIATION**

µS: Micro siemens °C: Degree Centigrade2-D:2-Dimensional D: 3-DimensionalAR:ArtificialRecharge bcm: Billion Cubic Meter BGC: Bundelkhand Granitoid Complex BIS: bureau of Indian Standards CD: Check Dam CGWB: Central Ground Water Board cm: Centimeter CR: Corrosivity Ratio DEM: Digital Elevation Model DIP : District Irrigation Plan E: East EC: Electrical Conductivity EFC: Expenditure Finance Committee ERT: Electrical Resistivity Tomography are collected and compiled EW : ExploratoryWell GEC: Groundwater Estimation Committee GRP: Gradient Resistivity Profiling GSI: Geological Survey of IndiaGW : Ground Water Ha:hectare Ham: Hectaremeter IMD: India Meteorological Department KI: Kelly's Index Km: Kilometer I: liter Ips: Liter PerSecond M.P.: Madhya Pradesh m: Meter Max: Maximum mbgl: Meter below Ground Level mcm: Million Cubic Meter mg: Milligram MGNREGA: Mahatma Gandhi National Rural Employment Guarantee Act 2005 Min: Minimum N:North NAQUIM: National Aquifer Mapping and Management Plan NB: Nala Bund NCR: North Central Region Nov: November **OW: Observation Well** PI: Permeability Index PL: Permissible Limit PMKSY: Pradhan Mantri Krishi Sinchayee Yojana PT: PercolationT ank RS: Recharge Structure RSC: Residual Sodium Carbonate S: South SAR: Sodium Absorption Ratio Sq:Square SSP: Soluble Sodium Percentage TEM: Transient Electromagnetic TH: Total Hardness USSL:U.S. Salinity Laboratory VES: Vertical Electrical Sounding VP: Village Pond W:West WL: Water Level

## **CENTRALGROUNDWATERBOARD**

North Central Region, Bhopal DepartmentofWaterResources,RD& GR Ministry of Jal Shakti Government of India <u>Email:rdncr-cgwb@nic.in</u>