2328/NQM/2021

केंद्रीय भूमि जल बोर्ड

भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

CENTRAL GROUND WATER BOARD

Government of India

Ministry of Jal Shakti

Department of Water Resources,

River Development & Ganga Rejuvenation

AQUIFER MAPS AND GROUND WATER

MANAGEMENT PLAN

HINGOLI DISTRICT, MAHARASHTRA

AAP 2019-20

मध्य क्षेत्र, नागपुर Central Region, Nagpur मार्च 2021 /मार्च 2021

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN HINGOLI DISTRICT, MAHARASHTRA CONTRIBUTORS

Principal Authors		
Nelofar	:	Junior Hydrogeologist/
		Scientist-B
S.K. Bhatnagar		Senior Hydrogeologist/
		Scientist-D
Supervision & Guidance		
Dr. P. K. Jain	:	Regional Director
Dr. Umesh Balpande	:	Senior Hydrogeologist/
		Scientist-D
Hydrogeology, GIS maps and		
Management Plan		
Nelofar	:	Junior Hydrogeologist/
S.K. Bhatnagar		Scientist-B
		Senior Hydrogeologist/
		Scientist-D

HINGOLI DISTRICT AT A GLANCE

1. G	ENERAL INFORMATION		
	Geographical Area	:	4827 Sq. km.
	Administrative Divisions	:	Taluka-5; Hingoli, Sengaon, Aundha (Nagnath),
	(2011)		Kalmnuri and Basmath
	Villages (Census 2011)	:	710 Nos.
	Population	:	11,77,345
	Rainfall 2019	:	940.7 mm
	Normal rainfall	:	956.3 mm
	Long term rainfall Trend	:	Falling trend 4.61 mm/year
	(1998-2019)		
2. G	EOMORPHOLOGY AND DRAINA	GE	
	Major Physiographic unit	:	Part of Western Ghats, Malhivra hill range and
			Penganga plain
	Major Drainage	:	Penganga, Purna, Kayadhu Rivers
3. L	AND USE (2017-18) (sources: DSA 20	018)	1
	Forest Area	:	213.73 sq. km. (4.55 %)
	Cultivable Area	:	3811.64 sq. km. (81.22 %)
	Net Area Sown	:	3811.64 sq. km. (81.22 %)
	Area Sown more than Once		1164.52 Sq. km. (24.81%)
4.	SOIL TYPE	:	67% area of the district is covered by clayey
			and clay loam soil
5. P	RINCIPAL CROPS (2018)	1	1
	Oil Seeds	:	2298.99 sq. km.
	Pulses	:	1287.01 sq. km.
	Cereals	:	584.48 sq. km.
	Cotton	:	447.23 sq. km.
	Sugarcane	:	17.14 sq. km.
6.	HORTICULTURAL CROPS	1	1
	Banana	:	19.99 sq. km.
	Citrus fruit	:	9.75 sq. km.
	Mango	:	3.74 sq. km.
	Others	:	1.86 sq. km.
7. IF	RIGATION BY DIFFERENT SOUR	RCE	S (2006-07) –
Nos	. / Potential Created (ha)/ Pote	ntia	al Utilized(ha)
	Dug wells	:	29049/75956/75924
	Shallow Tube/Bore wells	:	3000 / 8111 /8086
	Deep Bore wells		340 /1056 /1056
	Other Minor Surface Sources	:	7352 /23525 /23024
	Net Irrigated Area	:	44401 ha
8. G		WE	LLS (As on March 2019)
	Dug wells	:	29
	Piezometers	:	Nil
9. G	EOLOGY	1	
	Recent	:	Alluvium (River Alluvium)

	Late Cretaceous-Eocene	:	Deccan Traps Basalt
10. ł	HYDROGEOLOGY		· · · ·
	Water Bearing Formation	:	Alluvium- Sand and Gravel
			Under phreatic condition
			Deccan Traps: Basalt weathered,
			amygdaloidal, fractured and jointed.
			Under phreatic to semi-confined.
	Depth to water level in Shallo	w /	Aquifer
	Pre-monsoon Depth to	•••	3.95 to 20.9 mbgl
	Water Level (May-2019)		
	Post-monsoon Depth to	•••	0.2 to 9.0 mbgl
	Water Level (Nov2019)		
	Depth to water level in Deepe	er A	Aquifer
	Post- monsoon Water Level	:	6.53 to 112 mbgl
	(Nov. 2019)		
	Water level Trend (2010-19)		
	Pre- monsoon Water Level	:	Rise: 0.0048 to 0.5145 m/year
	Trend (2010-2019)		Fall: 0.0030 to 1.9524 m/year
	Post-monsoon Water Level	:	Rise: 0.0018 to 0.6386 m/year
	Trend (2010-2019)		Fall: 0.0606 to 0.9376 m/year
11. 0	GROUND WATER EXPLORATION	I (A	s on March 2019)
			Basalt
	Wells Drilled (CGWB)	:	EW-10, Pz-03,
			Total -13
	Depth Range	:	30.00 to 200.2 mbgl
	SWL		3.1 to 112.4 mbgl
	Discharge	:	0.14 to 3.77 lps
	Transmissivity	:	0.51 to 15.17 m ² /day
12. 0	GROUND WATER QUALITY		
	The quality of ground water is	ge	nerally alkaline and suitable for drinking and
	irrigation purposes except Flue	oric	e and Nitrate affected Villages.
	Type of Water	:	Ca-Cl and Ca-HCO ₃
13. [DYNAMIC GROUND WATER RES	οι	JRCES- (2017)
	Net Annual Ground Water	:	738.16 MCM
	Availability		
	Total Draft (Irrigation +	:	392.15 MCM
	Domestic+ Industrial)		
	Projected Demand	:	74.08 MCM
	(Domestic + Industrial)		
	Stage of Ground Water	:	53.13 %
	Development		
	Category		Safe
14.	MAJOR GROUND WATER PROI	BLE	MS AND ISSUES

	Declining water level trend of more than 0.2 m/year has been observed in major				
	Deciming water level trend of more than 0.2 m/year has been observed in major				
	parts of Basmath, Hingoli and Sengaon blocks and in parts of Kalmnuri and				
	Aundha blocks.				
	Shallow aquifer is affected by Nitrate contamination at many places and deeper				
	aquifers are affected by high F	luc	pride concentration.		
	About 50% area of the district	is l	having low yield potential (<1 lps)		
	The area has experienced decl	lini	ng rainfall trend 4.6 m/year and nine time's		
	moderate drought.				
15.	Aquifer Management Plan				
	Supply side Management	:	Proposed AR structures: 41		
			Percolation tanks – 41		
			Check dams – 121		
			Leading to additional 8.80 MCM recharge		
	Demand side Management	:	Area proposed for Drip irrigation:		
			Sugarcane area: 17.14 sq.km		
			Cotton area: 13.0 sq.km		
			Ground water saving: 9.77 MCM		
	Expected Benefits	:	221.34 sq. km additional Area proposed for		
			Irrigation through 8632 Dugwells and 1439		
			Borewells.		

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN HINGOLI DISTRICT, MAHARASHTRA

Contents

1.	INTRODUCTION	1
1.1	About the Area	1
1.2	Geomorphology, Drainage and Soil Types	3
1.3	Climate and Rainfall	6
1.4	Geology	10
2.	HYDROGEOLOGY	13
2.1	Major Aquifer Systems	15
2.2	Aquifer Parameters	20
2.3	3-D and 2-D Aquifer Disposition	20
3.	WATER LEVEL SCENARIO	24
3.1	Depth to Water Level (Aquifer-I/Shallow Aquifer)	24
3.2	Depth to Water Level (Aquifer-II/ Deeper Aquifer)	26
3.3	Water Level Trend (2010-2019)	27
3.4	Hydrograph Analysis	29
4.	GROUND WATER QUALITY	31
4.1	Suitability of Ground Water for Drinking Purpose	34
4.2	Suitability of Ground Water for Irrigation	36
5.	GROUND WATER RESOURCES	39
5.1	Ground Water Resources – Aquifer-I	39
5.2	Ground Water Resources – Aquifer-II	39
6.	GROUND WATER RELATED ISSUES	42
6.1	Declining Water Level Trend	42
6.2	Rainfall and Droughts	43
6.3	Ground Water Quality Hazard	44
6.4	Sustainability	45
6.5	Ground Water Resources	46
7.	GROUND WATER MANAGEMENT PLAN	48
7.1	Supply Side Management	48
7.2	Demand Side Management	50
7.3	Expected Benefits	51
7.4	Development Plan	52
8.	SUM UP	54
9.	BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN	56
9.1	AUNDHA (NAGNATH) BLOCK	57
9.2	BASMATH BLOCK	67
9.3	HINGOLI BLOCK	77
9.4	KALMNURI BLOCK	88
9.5	SENGAON BLOCK	99

List of Figures

Figure 1.1 : Index map, Hingoli District	2
Figure 1.2 : Administrative map, Hingoli District	2
Figure 1.3: Locations of Existing Exploratory and Ground Water Monitoring Wells	3
Figure 1.4: Geomorphology, Hingoli District	4
Figure 1.5 : Soils, Hingoli District	6
Figure 1.6 : Annual Rainfall Pattern (1998-2019)	9
Figure 1.7: Isohyet map of Hingoli District	9
Figure 1.8: Geological Map, Hingoli district	12
Figure 2.1: Hydrogeology, Hingoli District	13
Figure 2.2: Water Table Contour, Hingoli district	15
Figure 2.3: Principal Aquifers, Hingoli district	16
Figure 2.4: Depth of Occurrence and Granular Zone/ Fractured rock thickness-Aquife	er-118
Figure 2.5: Yield Potential Aquifer-I	18
Figure 2.6: Depth of Occurrence and Fractured rock thickness -Aquifer-II	19
Figure 2.7: Yield Potential, Aquifer-II	19
Figure 2.8: 3D Aquifer Disposition	20
Figure 2.9: 3D Aquifer Disposition-Stratigraphic Model	21
Figure 2.10: 3D Fence Diagram	21
Figure 2.11: 3D-Bar Diagram	22
Figure 2.12: Lithological section (A-A')	22
Figure 2.13: Lithological section (B-B')	23
Figure 2.14 : Lithological section (C-C')	23
Figure 2.15: Lithological section (D-D')	23
Figure 3.1 : DTWL, Shallow Aquifer (May 2019)	24
Figure 3.2: DTWL, Shallow Aquifer (Nov. 2019)	25
Figure 3.3: DTWL, Deeper Aquifer (Nov. 2019)	26
Figure 3.4: Pre-monsoon Decadal Trend (2010-19)	27
Figure 3.5 : Post monsoon Decadal Trend (2010-19)	28
Figure 3.6: Behaviour of water level with time	30
Figure 4.1: Ground Water Quality, Aquifer-I	32
Figure 4.2: Ground Water Quality, Aquifer-II	33
Figure 5.1: Ground Water Resources (2017), Hingoli district	41
Figure 6.2: Issue- Declining Trends, Hingoli district	43
Figure 6.2: Cumulative Yield Potential	46
Figure 6.3: Draft Vs Availability Over the time	47
Figure 7.1: Location of Proposed Artificial Recharge Structures	49
Figure 7.2: Demand Side Intervention	51
Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation	53

List of Tables

Table 1.1: Block wise Annual rainfall data (2010-2019)	7
Table 1.2: Long Term Rainfall Analysis (1998 to 2019) of Hingoli District	8
Table 1.1: Generalized Geological sequence Hingoli district	10
Table 2.1: Aquifer Characteristic of Major aquifers of Hingoli district	17

Table 4.1: Aquifer wise ranges of chemical constituents in Hingoli district	31
Table 4.2: Aquifer wise Electrical conductivity analytical data	32
Table 4.3: Aquifer wise Nitrate and Fluoride concentration	34
Table 4.4: Concentration of Chemical constituents in shallow Aquifer	35
Table 4.5: Concentration of Chemical Constituents in Deeper Aquifer	35
Table 4.6 Classification of Ground water for Irrigation based on EC values	36
Table 4.7: Classification of Ground water for Irrigation based on SAR values	37
Table 4.8: Classification of Ground water for Irrigation based on RSC values	37
Table 5.1: Ground water resources, Aquifer-I (Shallow aquifer), Hingoli district (2017).	39
Table 5.2: Ground Water Resources of Aquifer-II (Deeper aquifer)	40
Table 6.1: Block wise Rainfall Analysis	43
Table 7.1: Area feasible and volume available for Artificial Recharge	48
Table 7.2: Proposed Artificial Recharge Structures	49
Table 7.3: Area proposed for Micro irrigation Techniques and water saving through	
Demand side interventions	50
Table 7.4: Expected benefits after management options	51
Table 7.5: Block wise additional area under assured GW Irrigation.	52

ANNEXURES

I: Salient Features of Ground Water Exploration (CGWB), Hingoli District

II: Details of GW exploration under of Hingoli district

III: Water level Data of monitoring wells in Hingoli District

IV: long term ground Water trend (2010-2019)

V: Results of Chemical analysis of ground water samples, Shallow aquifers (May 2019)

VI: Results of Chemical analysis of ground water samples, deeper aquifers VII: Location of proposed Percolation tanks in Hingoli district

VIII: Location of proposed check dam in Hingoli district

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN HINGOLI DISTRICT, MAHARASHTRA

1. INTRODUCTION

National Aquifer Mapping (NAQUIM) has been taken up in XII five-year plan by CGWB to carry out detailed hydrogeological investigation on 1:50,000 scale. The NAQUIM has been prioritized to study Over-exploited, Critical and Semi-Critical blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & poor sustainability of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulatory mechanism has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the **"Road Map"** for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus, the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the administration of Hingoli district, Maharashtra for its effective implementation.

The activities under NAQUIM are aimed at:

- Identifying the aquifer geometry,
- Aquifer characteristics and their yield potential
- Quality of water occurring at various depths,
- Aquifer wise assessment of ground water resources
- Preparation of aquifer maps and
- Formulate ground water management plan

1.1 About the Area

Hingoli district is a one of the districts of the Marathwada Region in Maharashtra State. Hingoli district became full-fledged district of Maharashtra from 1st May 1999 bifurcating from Parbhani District. It is situated in the eastern part of Maharashtra between North Latitude 19° 14' and 20° 01', and East Longitude 76° 16' and 77° 28'. The total area of the district is 4827 sq. km. and falls in parts of survey of India degree sheets 56 A & E. The district is demarcated by Penganga River in the east and Purna River in south. The district is bounded by Washim and Yavatmal districts in north, Parbhani district in west and Nanded district at south eastern side. Hingoli was known in history by different names like Wingoli, Vingmul, Lingili etc. In ancient times Hingoli was one of the main villages of Narsi parganas of Washim district. In the year 1903 Nizam has formed army base at Hingoli.

The district headquarters is located at Hingoli Town. For administrative convenience, the district is divided into 5 blocks viz., Aundha (Nagnath) Basmath, Hingoli, Sengaon, Kalmnuri, and It has a total population of 11, 77,345 as per 2011 Census. The district has 5 towns/blocks and 710 villages. The entire district lies in Penganga and Purna sub basins of Godavari basin. Penganga, Purna and Kayadhu are the main rivers flowing through the district. Kayadhu river is a tributary of Penganga river. The district is categorized as safe as per Ground Water Resources Estimation 2017. The Administrative and Index map of the Hingoli district is presented in **Figure 1.1 and Figure 1.2**.

Hingoli district has been taken up under NAQUIM study in the year 2019-20 (AAP 2019-20)

Ground water exploration in the district has been taken up in different phases since 1997-98. During 1997-98 purpose-built piezometers have been constructed through outsourcing and in 2004-05 ground water exploration was carried out in drought affected blocks namely Hingoli, Kalmnuri and Aundha (Nagnath) blocks.

The ground water exploration has been carried out in hard rock areas occupied by Deccan Trap Basalt. Existing ground water exploration data has been used for establishing the geometry, disposition, and potential of aquifers of the district. A total of 10 EWs and 03 Piezometers have been constructed in the year 1997-98 and 2004-05. Apart from this piezometer data of GSDA also been utilized for maps preparation. Salient Features of Ground Water Exploration are given in **Annexure-I** and details of exploration under NAQUIM are given in **Annexure-II**.

To assess the ground water regime, 29 existing ground water monitoring stations of CGWB and 51 monitoring stations of GSDA being monitored 4 times in a

year are used to acquire micro level hydrogeological data to decipher the water level scenario, sub-surface lithological disposition and hydrogeological setup of shallow aquifer (Aquifer-I). The details of monitoring wells are given in **Annexure-III**. Locations of existing ground water monitoring stations and exploratory wells are shown in **Figure 1.3**.

Figure 1.3: Locations of Existing Exploratory and Ground Water Monitoring Wells

1.2 Geomorphology, Drainage and Soil Types

The district forms a part of the Deccan Plateau. The area represents a plateau with low to moderate relief and it has few mesa and butte structures. In general, the ground surface slope in the district is towards south and southeast with general elevation of 450 m amsl.

The Malhivra hill ranges of the district divides Penganga and Kayadhu basin. 598 mts is highest point from msl in Mal Hiwara village of Hingoli tahsil while on the other hand 400 m amsl is the lowest point which lies in Basmath block of district.

Geomorphologically, District has plateaus or high plain or table lands with its elevations ranging from 400 to 598 m amsl, usually consisting of relatively flat terrain that is

raised significantly above the surrounding area with one or more sides having steep slopes and surrounded by a flood plain, an area adjacent to both the edges along the Kayadhu River in south eastern and northern sides of the study area.

Maximum area of district is covered with Slightly Dissected Plateaus (SDP)-27% area of the district; Plateau Weathered (PLWS)-21% area of the district with 1 to 2 m weathered thickness depending upon the extent of weathering and thickness of soil cover and Plateau Weathered under canal command (PLC)-19% area of the District. The geomorphology of the area is shown in **Figure 1.4**

Figure 1.4: Geomorphology, Hingoli District

Entire district lies in the Penganga and Purna sub basins of Godavari basin. There are three main drainage systems viz: (1) Penganga (2) Purna and (3) Kayadhu rivers. The river Penganga originates from Ajanta hills in Aurangabad. It enters the district from Sengaon Taluka in the north eastern corner and by making a journey of about 80.45 Kilometres in the district moves towards Yavatmal district. Isapur Dam, an irrigation project, is constructed on the river. It is one of the most important rivers of Deccan plateau and whole district of Hingoli falls in its great basin. The direct

tributary of the Penganga river is Kayadhu river. This tributary rise from the hill ranges near Risod block of Washim district. The length of the river in the district is 80.50 kms. It is an ephemeral river and dries up in summer. The Purna river rises from Ajnata hill ranges. It enters the district from Jalna district. After making a journey of nearly 100 kms it moves towards Parbhani district. Yeldari dam, an irrigation project and also caters to hydroelectricity production and Sidheshwar dam, an irrigation and also caters to drinking water supplies, are constructed on the river.

The district is well drained by rivers system forming dendritic type of drainage pattern. The district has been divided into 24 watersheds.

Soil plays a very important role in the agricultural activities and forest growth of the area. The fertility of the soil from agricultural point of view depends upon the texture and structure which controls the retaining and transmitting capacity of the soil to hold the moisture content and various nutrients such as nitrogen, phosphorous and potassium present in the parent rock. The process of formation of the soil in the area is influenced by the climate, geology, vegetation and topography.

The Soils of the district are derived from the basaltic lava flows. Thickness of the soil cover is less in northern and western regions where ground elevations are higher and consequently soil regur, gravels, murum are transported down to lower regions through gravity, water and winds. Soils in central, southern and eastern regions of the district near the banks of Penganga and Purna rivers are thicker. Here soils are black and rich in plant nutrients with depth ranging from 1 to 2 m.

Based on the thematic map, it has been observed that a major part of the district is occupied by clayey and clay loam soil types. Nearly 67 % of the area is covered by clayey soils; of which shallow to deep clayey soil, with 0 to > 1 m depth, cover 54% area followed by clay loam soil covering 12% area of the district. Remaining part of the district is covered by sandy clay loam, Gravelly clay loam, Gravelly clay, Gravelly sandy loam, Gravelly sandy clay loam and silty clay soils. Depth of soil is more in the vicinity of main drainages and shallow away from river channels and least in hilly terrains. The thematic map of soil distribution in the district is shown in **Figure 1.5**.

Figure 1.5 : Soils, Hingoli District

1.3 Climate and Rainfall

The district has dry and tropical climate with hot summer and mild winter with humid SW monsoon season of moderate rainfall. The climate can be divided into three main seasons viz, Hot to warm humid monsoon season from June to September, Cool dry winter season from October to February and Hot dry summer season from March to June. The minimum temperature of the district is 12.7°C and the maximum is 41.7°C.

The block wise annual rainfall data (2010-2019) of Hingoli district is shown in **Table 1.1.**

Year	Aundha	Basmath	Hingoli	Kalmnuri	Sengaon	District
	(Nagnath0					Average
2010	991.00	1223.00	1400.20	1368.00	1254.40	1247.32
2011	875.10	667.00	989.60	585.30	704.60	764.32
2012	684.00	772.90	776.00	685.30	636.00	710.84
2013	1295.70	994.50	1326.10	1153.80	1149.90	1184.00
2014	714.60	482.00	469.10	555.60	607.70	565.80
2015	696.30	441.40	812.50	686.80	810.20	689.44
2016	1064.30	994.50	1024.80	907.30	800.50	958.28
2017	815.00	631.70	659.40	495.90	655.50	651.50
2018	775.30	714.70	683.00	811.60	584.80	713.88
2019	877.50	884.60	973.60	1068.40	885.10	937.84
Decadal	878.88	780.63	911.43	831.80	808.87	
Average						
Normal	911.50	1040.90	946.60	983.70	898.90	956.30
RF						

 Table 1.1: Block wise Annual rainfall data (2010-2019)

The normal rainfall of the district is 956.3 mm spread over 22 years varying from 42 to 80 rainy days. Annual rainfall data of 1998-2019 is analysed and presented in **Figure 1.6**. This indicates that maximum rainfall occurred in 2010 (1246.9 mm) and minimum rainfall in 2008 (510.7 mm). The rainfall trend analysis shows that there is a falling trend @ 4.61 mm/year.

The rainfall analysis shows that the departure of annual rainfall from the normal rainfall, expressed in terms of percentage, varied from -47 to +30 percent. The departure percent analysed denotes the rainfall variation pattern with respect to normal rainfall during the period. The area experienced 2 times (9%) excess rainfall, 11 times (50%) normal rainfall and 9 times (41%) moderate drought conditions as given in **Table 1.2**. The coefficient of variation of the annual rainfall from the mean rainfall has been observed to be 28 % indicating that a range of ±28% of the mean rainfall varying from 598 to 1062.9 mm was received in the area during the period. Significantly, the analysis indicates that the 598 was minimum assured rainfall to have been received during the period, however exceptional years 2008 and 2014 falling out of this range were there in which the less rainfall was received during the period in the area. The isohyet map of the district is depicted in **Figure 1.7**.

Based on rainfall data analysis it is observed that:

- Decadal Average Annual rainfall varies from 780.63 (Basmath block) to 911.43 mm (Hingoli block).
- The Normal annual rainfall in the district varies between 898.9 mm in Sengaon block and 1040.9 mm in Basmath block.

Year	Annual	Normal	Departure	No of	Category
	Rainfall	Rainfall	(%)	Rainy	
	(mm)	(mm)		days	
1998	1084.8	956.3	13	80	NORMAL
1999	629.4	956.3	-34	57	MODERATE
2000	635.8	956.3	-34	47	MODERATE
2001	810.0	956.3	-15	54	NORMAL
2002	1215.2	956.3	27	44	EXCESS
2003	956.1	956.3	0	62	NORMAL
2004	613.7	956.3	-36	53	MODERATE
2005	1109.9	956.3	16	55	NORMAL
2006	1155.2	956.3	21	44	NORMAL
2007	731.3	956.3	-24	49	NORMAL
2008	510.7	956.3	-47	48	MODERATE
2009	659.6	956.3	-31	53	MODERATE
2010	1246.9	956.3	30	67	EXCESS
2011	764.1	956.3	-20	54	NORMAL
2012	711.1	956.3	-26	52	MODERATE
2013	1174.8	956.3	23	66	NORMAL
2014	549.1	956.3	-43	42	MODERATE
2015	718.9	956.3	-25	57	NORMAL
2016	954.4	956.3	0	60	NORMAL
2017	640	956.3	-33	51	MODERATE
2018	710.6	956.3	-26	49	MODERATE
2019	940.7	956.3	-2	72	NORMAL

Table 1.2: Long Term Rainfa	all Analysis (199	8 to 2019) of Hi	ngoli District
-----------------------------	-------------------	------------------	----------------

No. of years = 22						
NORMAL RAINFALL = 956.3 mm						
STANDARD DEVIATION = 233.96 mm						
COEFFICIENT OF VARIATION = 289	%					
MEAN=830.4						
MEDIAN=731.3						
SLOPE= -4.6 mm/Year						
INTERCEPT= 895.02 mm						
EQUATION OF TREND LINE= -4.61	.8 X +895.02					
CATEGORY	NUMBER OF YEARS	% OF TOTAL YEARS				
DEPARTURES						
POSITIVE	7	32				
NEGATIVE	15	68				
DROUGHTS						
MODERATE	9	41				
SEVERE	0	0				
ACUTE	0	0				
NORMAL & EXCESS R/F						
NORMAL	11	50				
EXCESS	2	9				

NOTE: Departure: EXCESS RAINFALL: > +25; NORMAL RAINFALL: +25 TO -25; MODERATE DROUGHT: -25 TO -50; SEVERE DROUGHT: -50 TO -75; ACUTE DROUGHT: < -75

Figure 1.6 : Annual Rainfall Pattern (1998-2019)

(Rainfall in mm)

Figure 1.7: Isohyet map of Hingoli District

1.4 Geology

Geologically, The Basalt (Deccan traps) is the major rock formation in the district. A major part of the district is underlain by a sequence of basaltic lava flows while alluvium occupies a very small portion along the course of major rivers. The Deccan Trap has succession of flows in the elevation range and are normally horizontally disposed over a wide stretch and give rise to table-land type of topography also known as plateau. These flows occur in layered sequence ranging in thickness from few centimetres to tens of meters. Each individual flow is massive at the bottom and becomes gradually vesicular/amygdaloidal towards top. The flows are separated from each other by marker horizon known as bole bed, however, the bole beds are discontinuous and generally inconsistent. The generalized geological sequence of the area is given in **Table 1.3** and the Geological Map of the district is depicted in **Figure 1.8**.

Geologic	Stratigraphic	Formation	lithology	Nature and
Period	unit			Characteristics
Sub- Recent to Recent	River Alluvium	Sand, silt and clay	Clay, mixed with sand and gravel	Brown calcareous silt, fine sand mixed with clay and silt.
		Buldhana/ Purandhargarh formation Chikhli/Diveghat	3 "aa" and 3 "compound Pahoehoe" flows 2 "aa" and 3	Basalt; Dark Grey, dense, moderately to highly porphyritic Basalt; Dark fine
Late Cretaceous to Eocene	Deccan trap (Sahyadri Group)	formation	"compound Pahoehoe" flows	grained, Sparsely porphyritic
		Ajanta/Indrayani formation	4 "aa" and 10 "compound Pahoehoe" flows	Basalt; Dark, medium grained, Sparsely to Moderately porphyritic

Table 1.1: Generalized Geological sequence Hingoli district

Alluvium:

Alluvium occurs as small patches along the course of Penganga and Purna rivers. These alluvial deposits have individual extent from 1 to 20 Km² and 5 to 30 m thickness. It comprises beds and lenses of sands, gravels and boulders in a matrix of clays. These granular zones form aquifers in which groundwater occurs under Phreatic and semi-confined conditions. The porosity of these granular zones ranges from 10 to 15 %.

Deccan trap basalt:

It consists of horizontal basaltic flow units and is of dark gray in color. Both "aa" and "pahoehoe" types of flow are present in the district. A typical pahoehoe unit comprises of basal vesicular part with pipe amygdule's, middle massive part and top vesicular part with spherical vesical. The "aa" flows are massive with persistent fragmentary top and impersistent clinkary base. The lava assemblages belong to Ajanta, Chikhli and Purandargarh Formations.

Ajanta Formations occupies an extensive area in the districts and comprises of 14 flows, of which 10 are "compound Pahoehoe" in nature and 4 are "aa" in nature. The massive part is dark, medium grained sparsely to moderately porphyritic. The Chikhali Formations comprises 3 "compound Pahoehoe" and 2 "aa" type. The massive part is dark, fine grained and sparsely porphyritic. The Purandargah/Buldhana Formations comprise of 3 "compound Pahoehoe" flows and 3 "aa" flows. The massive part is dense, dark grey and moderately to highly porphyritic in nature.

Inter-trappean beds:

These are represented by red boles and the exposures are seen near Hingoli on road to Washim, near Aundha and near Siddheshwar dam site. These beds are clayey in nature.

Figure 1.8: Geological Map, Hingoli district

2. HYDROGEOLOGY

Major part of the district is underlain by a sequence of basaltic lava flows (Deccan Trap) while alluvium occupies a small portion. The alluvium consisting of clay, Silt, Sand and Gravel occurs along the course of major rivers. The thickness of alluvium is very shallow. A map depicting hydrogeology of Hingoli district is presented in **Figure 2.1**.

Figure 2.1: Hydrogeology, Hingoli District

Alluvium occurs as small patches along banks, flood plains and meanders of main rivers. These alluvium patches have individual areal extent from 1 to 20 Km² and thickness 5 to 30 m. It comprises beds and lenses of sands, gravels and boulders in a matrix of clays. These granular zones form the aquifers in which groundwater occurs under Phreatic and semi-confined conditions. The porosity of these granular zones ranges from 10 to 15 %.

The basaltic lava flows belonging to the Deccan Traps occupy about 99% of the area of the district. The formation is very thick and comprises scores of lava flows of 5 to 25 meters individual thickness. Each flow comprises a lower zone of 40 to 70% hard, massive basalt which is devoid of primary porosity and permeability. The upper zone of 30 to 60% is vesicular basalt which has very limited primary porosity as the vesicles are of very small size and are found invariably filled with secondary minerals. However, the formation comprises secondary porosity and permeability acquired due to weathering, jointing, shearing, fracturing etc. When the thickness of these zones is appreciable (30 to 60% of a flow), the flow forms an aquifer of moderate potential. These structural and composite characteristics are repeated in all the lava flows in the area and thus evolves a multiple aquifer system which generally extends to depths of 150 to 250 meters.

Apart from the inherent properties of lava flows, the topography also plays an important role in groundwater potential of basaltic area. Hills and higher grounds are the least potential areas as the rocks are hard, compact and resistant to weathering. The steep gradient causes rainwater to run off rapidly without much infiltration. In contrast, the valleys depressions and areas of lower elevations are the most potential areas as the rocks are weaker, prone to weathering due to joints and fractures. In addition, rainwater runoff is less and infiltration is more.

Deccan basalts are hydro geologically in-homogeneous rocks. The weathered and jointed /fractured parts of the rock form the potential horizons for ground water storage and movement. The vesicles are of very small size generally varying from 1 to 5 mm and are invariably found filled with secondary minerals such as zeolites, calcite, silica etc., thereby reducing the primary porosity to almost nil however when weathered it forms potential aquifers. The existence of multiple aquifers is characteristic of basalt and is indicative of wide variation in the joint/fracture pattern and intensity. The potential of the aquifer is the function of nature of porous space and permeability of aquifer and it depends mainly upon the degree of weathering, intensity of joints\fractures and topographic setting of the aquifer. Due to wide variation in secondary openings, the aquifers in area are of smaller extent, generally localized. In general Ground water occurs under phreatic/unconfined to semiconfined conditions in basalts. Shallow Aquifer is generally tapped by the dug wells and average depth of dug wells ranges from 12.00 to 15.00 m with yield varying up to 100 m³/day. The deeper Aquifer is being tapped by bore wells with depth ranging from 40 to 200 m.

The vesicular/ zeolitic basalts are highly susceptible to weathering as interconnected vesicles form conduits from weathering agents. It is generally seen that "Pahoehoe" flows contain uniformly distributed vesicles and when weathered have good porosity and permeability and constitute potentials aquifers.

Water Table Contour

Based on the Premonsoon water level data, a Premonsoon water table contour map has been prepared and presented in **figure 2.2**. The map depicts occurrence and movement of ground water in the district. The ground water flow lines are marked to show the direction of ground water flow. The elevation of water table ranges from

380 to 550 m amsl and generally follows the topography. In general, the ground water movement is towards the south and south east. Though there is a hydraulic continuity between the trappeans units, still due to the heterogeneous nature of the rock formation constituting the aquifer, there is wide variation in the water table gradient from 2 to 20 m/km. The ground water movement is generally sluggish in the alluvial areas with high permeable zones and in the areas of convergent ground water flow. Such areas have been demarcated as ground water potential zones. In area of low permeability, the water table contours are closely spaced indicating steep gradient.

Figure 2.2: Water Table Contour, Hingoli district

2.1 Major Aquifer Systems

Deccan Trap Basalt of Late Cretaceous to Eocene age is the major rock formation in the district covering entire district. Although, Alluvium occurs in a narrow tract along the major rivers in the district and the aquifers in alluvium are of local extent and limited potential. A map depicting hydrogeological features is presented in **Figure 2.3**.

Figure 2.3: Principal Aquifers, Hingoli district

Based on the ground water exploration carried out in the district so far, aquifer wise characteristics have been delineated and are shown in **Table 2.1.** The aquifer units found in each of the formation are given below:

Basalt

Two aquifer systems, Aquifer I and Aquifer 2 Have been identified in Basaltic region.

Aquifer-I: Aquifer-I in Basalt formation is observed in the depth range of 6 to 22 m bgl with water levels of 0.2 to 20.9 mbgl and thickness of weathered/fractured zone varies from 8 to 15 m. The yield of the aquifer varies up to 200 m³/day. Depth of occurrence of aquifer -I is depicted in **Figure 2.4** and Yield in the **Figure 2.5**.

Aquifer- II: Aquifer-II in Basalt formation is observed in the depth range of 61 to 196 mbgl with water levels of 6 to 112 mbgl and thickness of weathered/fractured zone varying from 1 to 9 m. The aquifer-II is exploited mainly by bore wells and yield

of the aquifer generally varies up to 2.5 lps. Depth of occurrence of Aquifer-II is depicted in **Figure 2.6** and yield in the **Figure 2.7**.

Major Aquifer	Basalt			
Type of Aquifer	Aquifer-I	Aquifer-II		
Formation	Weathered/	Jointed/Fractured		
	Jointed Basalt	Basalt		
Depth to bottom of Aquifer	6 to 22	61 to 196		
(mbgl)				
Weathered/ Fractures zones	up to 22	up to 196		
encountered (mbgl)				
Weathered/Fractured rocks	8 to 15	1 to 9		
thickness (m)				
SWL (mbgl)	0.2 to 20.9	6.53 to 112		
Transmissivity (m2/day)	*30 to 50	0.51 to 15.17 m2/day		
Specific Yield/ Storativity	0.02	*0.00003 to 0.00005		
(Sy/S)				
Yield	up to 200 m3/day	up to 2.5 lps		
Sustainability	2 to 5 hrs	to 3 hrs		
*Values taken from Risod block, washim district.				

 Table 2.1: Aquifer Characteristic of Major aquifers of Hingoli district

2.2 Aquifer Parameters

Aquifer parameters have been obtained from ground water exploratory drillings carried out in the basalt covered areas of the district. The transmissivity of basaltic aquifers in the district is generally less than 20 m²/day. Dug wells are the most common ground water extraction structures in the area. The yield of dug wells during the post monsoon season varies between 80 to 615 m³/ day. The specific capacity of well gives an idea about the productivity of the well and is controlled by diameter and depth. The specific capacity of the dug wells varies from 25 to 976 lpm/m/dd. The pumping tests conducted on 3 exploratory wells in the areas indicate the transmissivity range from 0.51 to 15.17 m²/day.

2.3 3-D and 2-D Aquifer Disposition

Based on the existing data, aquifer disposition in 3D, Fence diagram, 3D Bar diagram, various hydrogeological sections have been prepared along section lines to understand the subsurface disposition of aquifer systems shown in Figure 2.8 to 2.13.

Figure 2.8: 3D Aquifer Disposition

Figure 2.9: 3D Aquifer Disposition-Stratigraphic Model

Figure 2.10: 3D Fence Diagram

Figure 2.12: Lithological section (A-A')

Figure 2.13: Lithological section (B-B')

Figure 2.14 : Lithological section (C-C')

Figure 2.15: Lithological section (D-D')

3. WATER LEVEL SCENARIO

3.1 Depth to Water Level (Aquifer-I/Shallow Aquifer)

Central Ground Water Board periodically monitors 29 Ground Water monitoring wells four times a year i.e. in May (Pre monsoon), August, November (Post monsoon) and January in the district. Apart from this data, the data obtained of 51 wells from GSDA has also been used for preparation of depth to water level maps of the district. Pre-monsoon and post monsoon water level data are given in **Annexure-III and IV**.

The depth to water levels during May 2019 were found ranging from 3.95 (Umara, Kalmnuri block) to 20.9 mbgl (Khandegaon, Basmath block). Shallow water level within 5 mbgl are observed in small, isolated patch in Kalmnuri block covering only 19 sq. km. area of the block. Water levels between 5 and 10 mbgl have been observed in eastern and western parts of the district and isolated patches in northern part of the district covering about 1322 sq. km. The depth to water level between 10 to 20 mbgl has been observed in major part of the district. Deeper water levels of more than 20 mbgl are observed in isolated patches in southern part of the district in Basmath block covering 65 sq. km area of the district. The pre monsoon depth to water level map is depicted in **Figure 3.1**.

Figure 3.1 : DTWL, Shallow Aquifer (May 2019)

The depth to water levels in the district during Nov. 2019 were found ranging from 0.2 (Bibgavhan, Kalmnuri block) to 9.0 mbgl (Aral, Basmath block). Shallow water levels less than 2 mbgl have been observed in 997 sq. km area in eastern and western parts of districts covering Sengaon, Hingoli, Aundha (Nagnath) blocks; isolated patches are also observed in Kalmnuri and Basmath blocks. Water levels between 2-5 mbgl have been observed in major part of district. Water levels between 5 and 10 mbgl are observed in southern half of the district and isolated patches in eastern and northern parts of the district covering about 406 sq km area. Spatial variation in post monsoon depth to water levels is shown in **Figure 3.2**.

Figure 3.2: DTWL, Shallow Aquifer (Nov. 2019)

3.2 Depth to Water Level (Aquifer-II/ Deeper Aquifer)

Data of 15 exploratory wells has been used for preparation of depth to water level maps of the Deeper Aquifer of the district. The post-monsoon (November 2019) depth to water level in Hingoli District ranges from 6.53 (Purjal, Aundha block) to 112 mbgl (Asegaon, Basmath block). The depth to water level less than 10 mbgl has been observed as isolated patches in Aundha (Nagnath) and Sengaon blocks. Water level between 10 and 20 mbgl has been observed in northern part of Sengaon block and southern part of Aundha blocks. Water level between 20 to 30 mbgl has been observed in parts of all the blocks except Kalmnuri block. The deeper water level more than 30 mbgl are observed in major part of Basmath, Kalmnuri and Hingoli blocks and parts of Aundha (Nagnath) and Sengaon blocks. This may be due to low potential of the deeper aquifer in the district. The postmonsoon depth to water level for Aquifer-II is given in **Figure 3.3**.

Figure 3.3: DTWL, Deeper Aquifer (Nov. 2019)

3.3 Water Level Trend (2010-2019)

During pre-monsoon period, rising water level trend has been recorded at 14 stations ranging from 0.0048 (Sakhara, Sengaon block) to 0.5145 m/year (Redgaon, Kalmnuri block) while falling trend was observed in 43 stations varying from 0.003 (Karanjala, Hingoli block) to 1.952 m/year (Khandegaon, Basmath block).

During pre-monsoon period, declining water level trend has been observed in about 3547 sq. km. area i.e., 75 % of the area. Significant decline of more than 0.20 m/year has been observed in 1839 sq. km., i.e., 39% of the area covering major parts of Basmath and Hingoli blocks and parts of Kalmnuri, Aundha and Sengaon blocks. Rise in water level trend has been observed in 1181 sq km area covering major part of Kalmnuri block and part of Aundha block and small isolated patches are observed in all other blocks. (Figure 3.4)

Fall @>0.2m/year 1839 Sq. km. (about 39 % area of the district)

Figure 3.4: Pre-monsoon Decadal Trend (2010-19)

During post monsoon period, rise in water level trend has been recorded at 9 stations and ranges from 0.0018 (Adgaon, Hingoli block) to 0.6386 m/year (Bolda, Kalmnuri block) while falling trend was observed at 48 stations varying from 0.0606 (Bhagvati, Sengaon block) to 0.9376 m/year (Khandegaon, Basmath block). Rising water level trend has been observed in parts of the Kalmnuri, Hingoli and Aundha blocks and small isolated patches in Basmath and Sengaon blocks covering about 548 sq. km. area. Fall in water level trend has been observed in 4180 sq. km. area covering major part of the district. Significant decline, more than 0.20 m/year has been observed in 1961 sq. km. area covering major parts of Basmath and Sengaon blocks and parts of Aundha (Nagnath), Hingoli and Kalmnuri blocks. (Fig 3.6) These declines may be due to the exploitation of ground water or low and erratic rainfall recevied in these areas. Water level trend data (2010-19) of observation wells of CGWB and GSDA is given in Annexure-V.

Fall @>0.2m/year 1961 Sq. km. (about 41.48% of the district) Figure 3.5 : Post monsoon Decadal Trend (2010-19)
3.4 Hydrograph Analysis

The variation in short term and long-term water level trends may be due to variation in natural recharge from rainfall and withdrawal of groundwater for various agricultural, domestic and industrial requirements. The analysis of hydrographs shows that the annual rising limbs in hydrographs indicate the natural recharge of groundwater regime due to monsoon rainfall, as the monsoon rainfall is the sole source of natural recharge to the ground water regime. However, continuous increase in the groundwater draft is indicated by the recessionary limb. The figure 3.7 shows selected hydrographs (time series) of water levels.

Figure 3.6: Behaviour of water level with time

4. GROUND WATER QUALITY

Ground water samples are being collected every year from GWM wells during pre-monsoon period (May). Ground water quality data of 40 monitoring wells of CGWB and GSDA representing shallow aquifer has been utilised to decipher the quality scenario of shallow aquifer. 51 exploratory wellstubewells/borewells data of CGWB and GSDA representing deeper aquifer has been utilised to decipher the quality scenario of deeper aquifer. The aquifer wise ranges of different chemical constituents present in ground water are given in Table 4.1. The details of chemical analysis are given in Annexure VI and VII.

Constituents	Shallow a	quifer	Deeper aquifer		
	Min	Max	Min	Max	
рН	7.0	8.5	7.3	8.5	
EC (µS/cm)	233	4380	404	2200	
TDS (mg/l)	151	2840	263	1378	
TH (mg/l)	76	664	30	560	
Ca (mg/l)	18	240	2	114	
Mg (mg/l)	5	112	1	140	
Na (mg/l)	16	121	2	426	
K (mg/l)	0.9	23.4	0.8	4	
HCO3 (mg/l)	137	416	49	299	
Cl (mg/l)	14	580	28	521	
SO4 (mg/l)	7	398	1	305	
NO3 (mg/l)	1.83	150	3.52	60	

Table 4.1: Aquifer wise ranges of chemical constituents in Hingoli district

Distribution of Electrical Conductivity in Shallow Aquifer:

The concentration of EC in shallow aquifer varies from 233 (Gadibori, Hingoli block) to 4380 μ S/cm (Sawangi Bk., Basmath block). Out of 40 samples collected from dug wells, only 3 samples are having EC more than 2250 μ S/cm. Concentration of EC >2250 μ S/cm has been observed in western and southern peripheral part of the district covering Basmath and Aundha blocks covering 94 sq. km. area. The ground water is potable in major part of district. The distribution of electrical conductivity in shallow aquifers is shown in **Figure 4.1** and analytical data is presented in Table 4.2.

(EC >2250 µS/cm in 94 sq. km. area)

Figure 4.1: Ground Water Quality, Aquifer-I

Distribution of Electrical Conductivity in Deeper Aquifer:

The concentration of EC in deeper aquifer varies from 404 (Khudaj, Sengaon block) to 2200 μ S/cm (Deulgaon Rama, Hingoli block). The ground water is potable in major parts of the district. The distribution of electrical conductivity in deeper aquifers is shown in **Figure 4.2** and analytical data is presented in Table 4.2.

	•		•	•		
S.	EC	shallow aquifer		Deeper Aquifer		
No.	(µS/cm)	No. of samples	% of samples	No. of samples	% of samples	
1	< 250	1	2.50	-	-	
2	>250-750	14	35.0	14	27.45	
3	>750-2250	22	55.0	37	72.55	
4	2250-3000	2	5.00	-	-	
5	3000-5000	1	2.50	-	-	
	Total samples	40	100%	51	100%	

Table 4.2: Aquifer wise Electrical conductivity analytical data

Figure 4.2: Ground Water Quality, Aquifer-II

Nitrate:

Nitrogen in the form of dissolved nitrate, a nutrient for vegetation and the element is essential to all living beings. The major contribution in ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. From shallow aquifer, 40 samples were analyzed; out of these 14 water samples show the nitrate concentrations exceeding the desirable limit of 45 mg/l. In Hingoli district nitrate concentration varies from 1.83 (Kalgaon, Hingoli block) to 150 mg/l (Basmath Shivar, Basmath block). As per BIS (2012) the desirable limit is 45 mg/l. The high concentration of Nitrate may be due to domestic waste and sewage in the urban and rural parts of district.

In deeper aquifer, water samples from 51 wells were analysed, out of these 5 water samples show nitrate concentration exceeding the desirable limit of 45 mg/l. In deeper aquifer nitrate concentration ranges from 3.52 (Khudaj,

Sengaon block) to 60 mg/l (Waranga, Kalmnuri block). The deeper aquifer is also affected by nitrate contamination; it may be due to percolation of nitrate contaminants from the ground surface as there are no other reasons for nitrate contamination in deeper aquifers. Aquifer wise nitrate concentration is given in Table 4.3.

Fluoride:

In shallow aquifer, concentration of fluoride ranges from 0.04 to 2.3 mg/l. out of 40 samples analysed, only 2 samples show fluoride concentration more than 1.5 mg/l. In shallow aquifer, the highest concentration of fluoride is found in Umara, Kalmnuri block (2.30 mg/l). In Deeper Aquifer, concentration of fluoride ranges from 0.01 to 10.7 mg/l. Out of 51 samples analysed, only 10 samples show fluoride concentration more than 1.5 mg/l. In Deeper aquifer, the highest concentration of fluoride is found in Deulgaon Rama (10.7 mg/L) in Hingoli block; it may be due to the geogenic reasons. Aquifer wise fluoride concentration is given in Table 4.3.

	No ₃ > 45 mg/l		fluoride >1.5 mg/l		
Block	No of samples	No of samples	No of samples	No of samples	
	Shallow Aquifer	Deeper Aquifer	Shallow Aquifer	Deeper Aguifer	
Aundha	1			2	
Basmath	9	1	1	1	
Hingoli	1	2		3	
Kalmnuri	1	2	1	4	
Sengaon	2				
Grand Total	14	5	2	10	

Table 4.3: Aquifer wise Nitrate and Fluoride concentration

4.1 Suitability of Ground Water for Drinking Purpose

In shallow aquifer, 2.5 % samples are having TDS more than maximum permissible limit (MPL) and 52.5% of samples have TDS concentration above the Desirable limit (DL) but below the MPL. The water from areas where TDS values are higher than MPL is not fit for drinking purpose if directly consumed without treatment. It is also seen that about 2.5 to 5 % samples are beyond the maximum permissible limit for the parameters like TDS, TH, Ca, Nitrate and Fluoride indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in shallow Aquifer is given in **Table 4.4**.

Parameter	Drink	ing water	Total	Shallow aquifer						
	Stand	lards	no of		Samples		Samples		Samples	
	(IS-10)500-2012)	ground water	(<di< td=""><td>L)</td><td>(DL-</td><td>MPL)</td><td>(>MP</td><td>L)</td></di<>	L)	(DL-	MPL)	(>MP	L)	
	DL	MPL	samples	No	%	No	%	No	%	
рН	6.5- 8.5	-	40	40	100	-	-	-	-	
TDS	500	2000	40	18	45	21	52.5	1	2.5	
ТН	300	600	40	17	42.5	22	55	1	2.5	
Ca (mg/L)	75	200	40	22	55	17	42.5	1	2.5	
Mg (mg/L)	30	100	40	14	35	26	65	-	-	
Cl (mg/L)	250	1000	40	37	92.5	3	7.5	-	-	
SO ₄ (mg/L)	200	400	40	39	97.5	1	2.5	-	-	
NO₃ (mg/L)	45	No relaxation	40	26	65	14	35	-	-	
F (mg/L)	1	1.5	40	34	85	4	10	2	5	

Table 4.4: Concentration of Chemical constituents in shallow Aquifer

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

In Deeper aquifer, 71 % of samples have TDS concentration above the Desirable limit (DL) but below the MPL. It is also seen that about 3.92 to 19.6 % samples are beyond the maximum permissible limit for the parameters like Ca, Mg, NO₃ and Fluoride indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in Deeper Aquifer is given in **Table 4.5**.

Parameter	Drink	king water	Total	Dee	per aqu	er aquifer				
	Standards		no of	Samples		Samples		Samples		
	(IS-10	0500-2012)	ground	(<di< td=""><td>_)</td><td>(DL-</td><td>MPL)</td><td colspan="2">(>MPL)</td></di<>	_)	(DL-	MPL)	(>MPL)		
	DL	MPL	water	No	%	No	%	No	%	
	_		samples							
nH	6.5-	-	51	51	100	-	-	-	_	
	8.5		51	5	100					
TDS	500	2000	51	15	29.4	36	70.6		0.00	
TH	300	600	51	42	82.4	9	17.6		0.00	
Ca (mg/L)	75	200	51	38	74.5	11	21.6	2	3.92	
Mg (mg/L)	30	100	51	25	49.0	24	47.1	2	3.92	
Cl (mg/L)	250	1000	51	46	90.2	5	9.8	-	-	
SO ₄ (mg/L)	200	400	51	48	94.1	3	5.9	-	-	
NO		No								
1003	45	relaxatio	51	46	90.2	5	9.8	-	-	
(mg/L)		n								
F (mg/L)	1	1.5	51	35	68.62	6	11.76	10	19.60	

 Table 4.5: Concentration of Chemical Constituents in Deeper Aquifer

Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

4.2 Suitability of Ground Water for Irrigation

The quality of Irrigation water affects the productivity, yield and quality of the crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria, which assess the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The concentration of dissolved ions in the water is represented by the electrical conductivity. The classification of water for irrigation, based on the EC values is given in Table 4.6 and details are as follows: -

Low Salinity Water (EC: < 250 \muS/cm): This water can be used for irrigation with most crops on most soils with little likelihood that salinity will develop.

Medium Salinity Water (EC: 250 – 750 μ S/cm): This water can be used if moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

High Salinity Water (EC: 750 – 2250 \muS/cm): This water cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very High Salinity Water (EC: >2250 μ S/cm): This water is not suitable for irrigation under ordinary condition. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and very salt tolerant crops should be selected.

S.	Water Quality Type	EC in	Shallow aquifer		Deeper Aquifer	
No		μS/cm	No. of	% of	No. of	% of
			Samples	samples	samples	samples
1	Low Salinity Water	< 250	1	2.50	-	-
2	Medium Salinity	>250-	1/	25.00	1/	27 / 5
	Water	750	14	55.00	14	27.45
3	High Salinity Water	>750-	22	55.00	27	77 55
		2250	22	55.00	57	72.55
4	Very High Salinity	> 2250	3	7 50	-	-
	Water			7.50		
Total			40		51	

Table 4.6 Classification of Ground water for Irrigation based on EC value	able 4.6 Classification	of Ground water for	r Irrigation based o	on EC values
---	-------------------------	---------------------	----------------------	--------------

In shallow aquifer, maximum numbers of samples fall under the category of medium to high salinity type of water. In deeper aquifer, maximum numbers of samples fall under the category of medium to high salinity type of water. In the areas where very high salinity prevails (>2250 μ S/cm), ground water can be used for irrigation for very high salt tolerant crops and with proper soil and crop management practices.

Sodium Adsorption Ratio (SAR)

Excess of sodium in water renders it unsuitable for irrigation on soil containing exchangeable Calcium and Magnesium ions. Soil containing exchangeable Calcium and Magnesium takes up sodium of irrigation water in exchange for Calcium and Magnesium, the ratio reflects the Sodium hazard. The SAR indicates the relative activity of the Sodium ions in exchange reactions with the soil. The main problem with high sodium concentration is its effect on soil permeability, hardening of soil & water irrigation system. Sodium also contributes directly to the total salinity of the water and may be toxic to sensitive crops such as fruit trees. The higher value of SAR indicates soil structure damage.

In shallow aquifer, of the 20 samples analysed, all the samples are having SAR value less than 10. In deeper aquifer, out of 10 samples, 1 sample (Deulgaon Rama, Hingoli block) is having SAR value more than 10 in Hingoli block. The classification of ground water samples based on SAR values for its suitability for irrigation purpose is shown in Table 4.7.

Characteristi	Quality	SAR value							
CS	Total	< 10)	10-18	10-18		26	> 26	
	Numbe	Goo	bd	Good to)	Dou	btfu	Bad	
	r of			Permiss	ible	Ι		(Unsuitable)	
	GW	Ν	%	No	%	No	%	No	%
	sample	0							
	S								
Shallow	20	20	100			_	_	_	_
Aquifer	20	20	100			_	_	_	_
Deeper	10	٩	90	1	10	_	_	_	_
Aquifer	10	5	50	1	10	_	_	_	_
Total	30	29	96.6 6	1	3.33	-	-	-	-

Table 4.7: Classification of Ground water for Irrigation based on SAR values

Residual Sodium Carbonate (RSC)

Residual Sodium Carbonate (RSC) is considered to be superior to SAR as a measure of sodacity particularly at low salinity levels. Calcium reacts with bicarbonate and precipitate as CaCO₃. Magnesium salt is more soluble in water so the chances of it getting precipitated is very less. When calcium and magnesium are lost from the water, the proportion of sodium is increased resulting in the increase in sodium hazard. This hazard is evaluated in terms of RSC. The classification of ground water samples based on RSC values for its suitability for irrigation purpose is shown in Table 4.8.

Characteristics	Quality	RSC values (meq/L)						
		< 1.25		1.25-2.50		> 2.50		
		Good		Doubtful		Bad (Unsuitable)		
	Total No	No	%	No	%	No	%	
	of							
	GW							
	samples							

Shallow Aquifer	20	19	95	1	5	-	-
Deeper Aquifer	10	8	80.0	1	10	1	10
Total	30	27	90.00	2	6.66	1	3.33

In shallow aquifer, it is observed that out of 21 samples, only 1 sample (Chikli, Hingoli block) shows RSC values more than 1.25 meq/L indicating that the ground water of the area is not suitable for irrigation while in deeper aquifer, out of 10 samples, 2 samples show RSC more than 1.25 meq/L indicating that the ground water of the area is not suitable for irrigation.

5. GROUND WATER RESOURCES

5.1 Ground Water Resources – Aquifer-I

Central Ground Water Board and Ground Water Survey and Development Agency (GSDA), Maharashtra have jointly estimated the ground water resources of Hingoli district based on GEC-2015 methodology. Block wise ground water resources are given in Table 5.1, and graphical representations of the resources on the map are shown in **Figure-5.1**.

Ground Water Resource estimation was carried out for 4827 sq. km. area out of which 1692 sq. km. is under canal command and 2970 sq. km. is in noncommand. About 164.69 sq. km. area is hilly and this is not considered for resource estimation. As per the estimation, the Annual extractable ground water resources are 738.17 MCM. The total Extraction is estimated at 392.15 MCM with irrigation sector being the major consumer having a draft of 370.53 MCM. The domestic and industrial water requirements are worked out at 21.61 MCM. The net ground water availability for future use is estimated at 293.56 MCM. Stage of ground water development varies from 41.12 % (Hingoli) to 61.39% (Basmath). The overall stage of ground water development for the district is 53.13%. Block wise assessments indicate that all the blocks in the district fall under "Safe" category.

Table 5.1: Ground water	resources,	Aquifer-I (Shallow	aquifer),	Hingoli	district
(2017)					

Administr ative Unit	Annual Extract able Ground Water Rechar ge	Annual Ground Water Extracti on- irrigati on use	Annual Ground Water Extracti on- industr ial use	Annual Ground Water Extracti on- domest ic use	Total Extract ion	Annua I GW Allocat ion for Domes tic Use as on 2025	Net Ground Water Availab ility for future use	Stage of Groun d Water Extract ion	Categ ory
Aundha (Nagnath)	149.48	65.73	0	6.521	72.252 7	14.680 6	68.545 6	48.34	Safe
Basmath	196.27	115.12	0.0102	5.37	120.51	15.555 8	64.340 4	61.4	Safe
Hingoli	121.61	46.27	0.0084	3.74	50.019	14.578 6	63.235	41.13	Safe
Kalmnuri	142.26	81.24	0.0068	3.77	85.017	12.223 3	48.308 8	59.76	Safe
Sengaon	128.55	62.16	0	2.20	64.361	17.044 4	49.130 7	50.07	Safe
Total	738.17	370.53	0.0253	21.61	392.15 5	74.082 7	293.56 05	53.13	Safe

(in MCM)

5.2 Ground Water Resources – Aquifer-II

The ground water resources of Aquifer-II (Basalt) were also assessed to have the correct quantification of resources so that proper management strategy can be framed. The total resources of aquifer-II have been estimated as 37.57

MCM. Block wise summarized Ground Water Resources of Aquifer-II are given in **Table 5.2.**

Block	Aquifer	Area (Sq km)	Mean Thickness (m)	Average of Sy	Average of S	Average Piezometric head	Resources above confining layer (MCM)	Resource within confining Aquifer (MCM)
Aundha (Nagnath)	Basalt Aq-II	924.2	3.75	0.002	0.0000145	76	1.018	6.93
Basmath	Basalt Aq-II	764.36	3.00	0.002	0.0000145	4	0.044	4.59
Hingoli	Basalt Aq-II	948.32	5.50	0.002	0.0000145	11.5	0.158	10.43
Kalmnuri	Basalt Aq-II	948.91	3.00	0.002	0.0000145	20.5	0.282	5.69
Sengaon	Basalt Aq-II	1241.21	4.00	0.002	0.0000145	55.5	0.999	9.93
Grand Total							2.502	37.57

Table 5.2: Ground Water Resources of Aquifer-II (Deeper aquifer)

Figure 5.1: Ground Water Resources (2017), Hingoli district

6. GROUND WATER RELATED ISSUES

6.1 Declining Water Level Trend

The ground water exploitation has resulted in decline of water levels over the period of time. In premonsoon season, decline of more than 0.20 m/year has been observed in 1839 sq. km., i.e., 39 % area covering major parts of Basmath and Hingoli blocks and parts of Kalmnuri, Aundha (Nagnath) and Sengaon blocks. In post monsoon season, decline of more than 0.20 m/year has been observed in 1961 sq. km., i.e., 41.48 % area covering in major parts of Basmath and Sengaon blocks and parts of Aundha (Nagnath), Hingoli and Kalmnuri blocks. The decline may be because the area has experienced increased irrigation draft and number of irrigation wells, in addition to this the district has received continuously less annual rainfall than the normal rainfall between the period from 2010-19.

Figure 6.2: Issue- Declining Trends, Hingoli district

6.2 Rainfall and Droughts

Based on the rainfall analysis from 1998 to 2019 it is observed that, nine times moderate drought were faced by the Hingoli district. Based on the block wise rainfall analysis from 1998 to 2019 it is observed that Basmath, Hingoli and Sengaon blocks have experienced declining rainfall trend ranging from 5.75 to 11.26 mm/year. All the blocks experienced Moderate droughts 3 to 7 times during last 22 years period.

Category	Aundha (Nagnath)	Basmath block	Hingoli block	Kalmnuri block	Sengaon block			
	block							
Period	1998-2019	1998-2019	1998-2019	1998-2019	1998-2019			
No of Years	22	22	22	22	22			
Normal								
Rainfall	911.5	1040.9	946.6	983.7	898.9			
(mm)								
Standard								
Deviation	220	258	306	272	255			
(mm)								
Coefficient								
of Variation	26%	31%	33%	34%	31%			
(%)								
Rainfall								
Trend/Slope	1.257	-11.26	-5.75	1.131	-9.901			
(mm/year)								
Departures (No. of years)								
Positive	11	10	11	10	8			
Negative	11	12	11	12	14			
Droughts								

Table 6.1: Block wise Rainfall Analysis

Category	Aundha (Nagnath) block	Basmath block	Hingoli block	Kalmnuri block	Sengaon block
Moderate	3 times	6 times	7 times	7 times	6 times
	(2000,	(2000,	(1999,2000,	(1999,	(1999 <i>,</i>
	2003,2008)	2007,	2003, 2008	2003,2008	2003,
		2008,2014,	2014,2017,	,2009,2011,	2008,2009,
		2015,2017))	2018)	2014,	2014,2018)
				2017)	
Severe	Nil	Nil	Nil	Nil	Nil
Acute	Nil	Nil	Nil	Nil	Nil
Normal & Exc	cess R/F (% of	years)			
Normal	59	50	45	45	46
Excess	27	23	23	23	27

6.3 Ground Water Quality Hazard

Nitrate:

High nitrate (> 45 mg/l) is observed in 35% samples in shallow Aquifer. The major contribution to ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. In shallow Aquifer nitrate concentration varies between 1.83 (Kalgaon, Hingoli block) to 150 mg/l (Basmath Shivar, Basmath block).

Fluoride:

In Deeper Aquifer, concentration of fluoride ranges from 0.04 to 10.7 mg/l. Out of 51 samples analysed, 10 samples show fluoride concentration more than 1.5 mg/l. In Deeper aquifer, the highest concentration of fluoride is found in Deulgaon Rama (10.7 mg/L) in Hingoli block; it may be due to the geogenic reasons.

Block	No of locations	No of	Block	No of locations	No of
	showing NO3	location	s	showing NO3	locations
	>45 mg/L	showing	gF	>45 mg/L	showing F
		>1.5 mg	;/L		>1.5 mg/L
Aundha (Nagnath)	1		Aundha (Nagnath)		2
Basmath	9	1	Basmath	1	1
Hingoli	1		Hingoli	2	3
Kalmnuri	1	1	Kalmnuri	2	4
Sengaon	2		Sengaon		
Grand Total	14	2	Grand	_	
			Total	5	10

6.4 Sustainability

A major part of the district is occupied by basaltic rock formation that inherently consists of limited extent of porous and pervious zone; absence of primary porosity; predominance of secondary porosity that has evolved from prevailing erratic joint pattern, absence of primary porosity and also, low rainfall results in poor sustainability of the aquifers. However, the erratic nature of existing joints/fractures pattern results in highly varying yield capacities of the aquifers in the area. In the area depth of potential aquifers is generally restricted up to 30 m. The potential of the fracture zones reduces substantially below 100 m depth. About 50% of area of the district is having low yield potential (<1 lps). In the district alluvium occurs along the major drainage/ valley fills and has shallow thickness (up to 30 m) with limited extent and with yield potential varying from 90 to 120 m³/day. However, moderate to high yield potential areas are found in southern part of district.

Figure 6.2: Cumulative Yield Potential

6.5 Ground Water Resources

Even though the district continues to be in safe category, the stage of ground water development has increased over the period of time from 2004 to 2017 from 23.99% (2004) to 53.13 % (2017)

Figure 6.3: Draft Vs Availability Over the time

7. GROUND WATER MANAGEMENT PLAN

A comprehensive ground water resources management plan has been proposed to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management. The supply side management is proposed based on surplus surface water availability and the unsaturated thickness of aquifer whereas the demand side management is proposed by use of micro irrigation techniques and change in cropping pattern.

7.1 Supply Side Management

The supply side management of ground water resources can be done through the artificial recharge by utilization of surplus runoff available within river sub basins and micro watersheds. Also, it is necessary to understand the unsaturated aquifer volume available for recharge. The unsaturated volume of aquifer was computed based on the area feasible for recharge, unsaturated depth below 5 mbgl and the specific yield of the aquifer. The table 7.1 gives the block wise volume available for the recharge.

Block	Geographical	Area feasible for	Unsaturated	
	Area (sq. km.)	recharge (sq. km.)	Volume (MCM)	
Aundha	924.20	128.17	256.34	
(Nagnath)				
Basmath	764.36	5.31	10.62	
Hingoli	948.32	217.45	434.9	
Kalmnuri	948.91	49.66	99.32	
Sengaon	1241.21	124.20	248.4	
Grand Total	4827.00	524.79	1049.58	

ilable for Artificial Recharge
ilable for Artificial Recharge

The total unsaturated volume available for artificial recharge is 1049.58 MCM ranging from 10.62 MCM in Basmath block to 434.9 MCM in Sengaon block. The available surplus runoff can be utilized for artificial recharge through construction of percolation tanks and Check dams at suitable sites.

Only 11.74 MCM of surplus water is available for recharge. This surplus water can be utilized for constructing 41 percolation tanks and 121 check dams at suitable sites (Table 7.2). The number of feasible artificial recharge structures was calculated by considering recharge of 0.20 MCM per percolation tanks and 0.03 MCM per check dam. This intervention should lead to recharge of about 8.80 MCM/year considering a 75% efficiency. Tentative locations of these structures are given in **Figure 7.1** and details also given in **Annexures VIII and IX.**

The rainwater harvesting in urban areas can be adopted in 25% of the household with 50 m² roof area. A total of 1.93 MCM potential can be generated by taking 80% runoff coefficient. However, the recharge through household rainwater harvesting may not be economically viable.

Block	Geograph ical Area (sq. km.)	Area feasible for	Unsatur ated Volume	Surplus water availabl	Proposed number of structures		Total recharged @ 75 %
		recharge (sq. km.)	(MCM)	e for AR (MCM)	РТ	CD	efficiency (MCM)
Aundha	924.20	128.17	256.34	2.87	10	29	2.15
Basmath	764.36	5.31	10.62	0.12	0	4	0.09
Hingoli	948.32	217.45	434.9	4.86	17	49	3.65
Kalmnuri	948.91	49.66	99.32	1.11	4	11	0.83
Sengaon	1241.21	124.20	248.4	2.78	10	28	2.09
Total	4827.00	524.79	1049.58	11.74	41	121	8.80

Table 7.2: Proposed Artificial Recharge Structures

Figure 7.1: Location of Proposed Artificial Recharge Structures

7.2 Demand Side Management

The Demand Side Management is proposed in areas where the Stage of Ground Water Development is relatively high and adopting micro-irrigation techniques for water intensive crops (Sugarcane/Cotton/Banana) or change in cropping pattern or both are required to save water.

It is proposed to cover about 17.14 sq. km area under sugarcane cultivation in Hingoli, Kalamnri and Sengaon talukas under drip irrigation. this would save about 9.77 MCM of water per year. Similarly, about 13.0 sq. km of area under cotton crop can be brought under drip irrigation, which may lead to saving of about 3.38 MCM per year. Thus, the total saving of water due to demand side intervention would be about 13.15 MCM/Year (Table 7.3). Change in cropping patterns is not proposed in any of the blocks. **Fig 7.2** depicts the proposed demand side interventions.

Table	7.3: Area	a proposed	for	Micro	irrigation	Techniques	and	water	saving
throu	gh Demar	nd side inter	ven	tions.					

Taluka	Sugarcane Area proposed to be covered under drip (sq.km)	Cotton Area proposed to be covered under drip (sq.km)	Sugarcane - Volume of Water expected to be saved with drip irrigation @.57m (MCM)	Cotton - Volume of Water expected to be saved with drip irrigation @0.26m (MCM)	Total Volume of water expected to be saved (MCM)
Aundha (Nagnath)	0.00	1.00	0.00	0.26	0.26
Basmath	0.00	12.00	-	3.12	3.12
Hingoli	0.08	-	0.05	0.00	0.05
Kalamnuri	16.95	-	9.66	0.00	9.66
Sengaon	0.11	-	0.06	0.00	0.06
TOTAL	17.14	13.00	9.77	3.38	13.15

Figure 7.2: Demand Side Intervention

7.3 Expected Benefits

The impact of implementation of groundwater management plans on the groundwater system in the district is evaluated and the outcome shows significant improvement in groundwater scenario in all blocks (Table 7.4). The Stage of ground water development gets reduced and comes below 70%.

Block	Annual Available Resource (MCM)	Total volume of water expected to be recharged/ conserved by Supply Side Intervention (MCM)	Total GW resource available after supply side interventio ns (MCM)	Gross Annual Draft (MCM)	Total volume of water expected to be saved due to Demand Side Interventi ons (MCM)	Total GW Draft after Demand side measures (MCM)	Stage of GWD after Supply and demand side interventio ns (%)
Aundha (Nagnath)	149.48	2.15	151.63	72.25	0.26	71.99	47.48
Basmath	196.27	0.09	196.36	120.50	3.12	117.38	59.78
Hingoli	121.61	3.63	125.24	50.02	0.05	49.97	39.90
Kalamnuri	142.26	0.83	143.09	85.02	9.66	75.36	52.67

Table 7.4: Expected benefits after management options

Block	Annual Available Resource (MCM)	Total volume of water expected to be recharged/ conserved by Supply Side Intervention (MCM)	Total GW resource available after supply side interventio ns (MCM)	Gross Annual Draft (MCM)	Total volume of water expected to be saved due to Demand Side Interventi ons (MCM)	Total GW Draft after Demand side measures (MCM)	Stage of GWD after Supply and demand side interventio ns (%)
Sengaon	128.55	2.1	130.64	64.36	0.06	64.3	49.22
TOTAL	738.17	8.8	746.98	392.15	13.15	379	50.74

7.4 Development Plan

The ground water development plan has been proposed with the view of developing the additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. The 143.87 MCM of ground water generated can bring additional 221.34 sq. km. Kharif Crop area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 8632 Dug wells and 1439 Bore wells. Block wise details are given in Table 7.5. The area feasible for ground development is shown in Figure 7.3.

Table 7.5: Block wise additional area under assured GW Irrigation.

Block	Balance GWR available for GW Development after STAGE OF GWD is brought to 70% (MCM)	Proposed No. of DW @1.5 ham for 90% of GWR Available)	Proposed No. of BW @1 ham for 10% of GWR Available)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m after 70% stage of GWD is achieved (Sq. km.)
Aundha	34.15	2049	342	52.54
(Nagnath)				
Basmath	20.07	1204	201	30.88
Hingoli	37.70	2262	377	58.00
Kalmnuri	24.80	1488	248	38.16
Sengaon	27.15	1629	271	41.77
Total	143.87	8632	1439	221.34

Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation

8. SUM UP

The study was carried out based on the data available in-house as well as acquired from State Govt. departments and in pursuit to fill up the data gaps, generated data in-house, prepared GIS maps for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of block wise aquifer maps and aquifer management plans of the district.

Hingoli district covering an area of about 4827 sq. km. with 164.69 sq. km. being hilly terrain is occupied by Basalt formation. The stage of ground water development of the district is 53.13%. The area has witnessed declining water level, low rainfall and drought; low yield potential of aquifers and Ground Water Quality hazards (No₃ and F) are the major issues in the district. Declining water level trend of more than 0.20 m/year has been observed in 1839 sq. km. (39% area of the total area) during pre-monsoon period (2010-19). Declining water level trend of more than 0.20 m/year has been observed in 1961 sq.km (41.48% area of the total area) during post monsoon period (2010-19). These declines may be due to less rainfall or exploitation of ground water resources more than the annual recharge in these areas.

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management.

About 11.74 MCM of surplus water is available for recharge. This surplus water can be utilized for constructing additional percolation tanks and check dams.

As a part of Supply side management, 41 percolation tanks and 121 check dams can be constructed at suitable sites utilizing 1174 MCM water available for recharg41 percolation tanks and 121 check dams at suitable sites. This may lead to additional recharge of about 8.80 MCM at 70% efficiency.

As a part of Demand side Management, it is proposed to bring about 17.14 sq. km area under sugarcane cultivation in Hingoli, Kalamnri and Sengaon talukas under drip irrigation. this would save about 9.77 MCM of water per year. Similarly, about 13.0 sq. km of area under cotton crop can be brought under drip irrigation, which may lead to saving of about 3.88 MCM per year. Thus, there would be saving of about 13.15 MCM of ground water.

The ground water development plan has been proposed with the view of developing the additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. The 143.87 MCM of ground water generated can bring additional 221.34 sq. km. Kharif Crop area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 8632 Dug wells and 1439 Bore wells

IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory ground water management. These types of programmes have helped the general public to understand the problems, that they will face in future if the ground water is continued to be exploited in unplanned way and also sewage wastes is not properly managed resulting in ground water pollution.

These interventions also need to be supported by regulations for deeper aquifer and hence it is recommended to regulate/ban deeper tube wells/bore wells of more than 60 m depth in these blocks, so that the deeper ground water resources are protected for future generation and serve as ground water sanctuary in times of distress/drought.

9. BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

- 1. AUNDHA (NAGNATH) BLOCK
- 2. BASMATH BLOCK
- 3. HINGOLI BLOCK
- 4. KALMNURI BLOCK
- 5. SENGAON BLOCK

9.1 AUNDHA (NAGNATH) BLOCK

1. SALIENT FEATURES					
1.1 Introduction					
Block Name	AUNDHA (N	AGNATH)			
Geographical Area (Sq.	924.20 Sq. k	m.			
km.)					
Hilly Area (Sq. km.)	104.59 Sq. k	m.			
Poor Ground Quality Area	Nil				
(Sq. km.)					
Population (2011)	1,81,148				
Climate	Sub-Tropica				
1.2 Rainfall Analysis	044.5				
Normal Rainfall	911.5 mm				
Annual Rainfall (2019)	877.5 mm				
Decadal Average Annual	878.8 mm				
Rainfall (2010-19)	Dicing Trand	1.25 mm///025			
	Probability of	1.25 IIIII/year			
(1998-2019)	Probability	of Drought-: 14 % Moderate			
Rainfall Trend Analysis (199	8 to 2019)				
	0 10 2023,				
1400		-			
1200					
1000					
200					
800					
600					
400					
200					
200					
	η 4 ΓΟ ΟΟ				
1999 1999 2000 2000 2000	200 200 200 200 200 200 200 200 200 200	200 200 200 201 201 201 201 201 201 201			
FOLIATION OF TREND LINE:	Y = 1.2572x +	837 54			
1.3 Geomorphology Soi		007.04			
Geomorphic Unit	Plateau (Slig	htly to Moderately dissected) and Plateau			
	weathered with 1-5 m weathered thickness				
Soil	Clavey soil (Shallow to Very deep 10 to >100 cm denth)				
	Clay loamy. Sandy clay loam and Gravelly clay Soil				
Geology	Alluvium (Purna Alluvium)				
	Age: Recent to Sub Recent				
	Deccan Traps (Basalt)				
	Age: Late Cretaceous to Eocene				
1.4. Hydrology & Drainage					
Drainage Purna and Kavadhu Rivers: tributary of Godavari river					
Hydrology	Major Completed: 01; Purna Project generating a				
(Reference year: June	project	gross irrigation Potential of 2630 ha in			
2018		Aundha (Nagnath) block, Gross Storage			
		Capacity of 1185 MCM (including Aundha,			

(<u>wrd.maharashtra.gov.in)</u>		Medium project Minor Irrigation Project (>250 Ha) Irrigation	Basmath and Kalmnuri blocks) and Live Storage Capacity of 891 MCM (including Aundha, Basmath and Kalmnuri blocks) Ongoing: Nil Completed: Nil Completed: 09; Minor projects generating a gross irrigation potential of 3892 ha. Ongoing: Nil Completed: 12; Through minor irrigation		
		(<250 Ha)	irrigation Potential of 331 ha. Ongoing: Nil		
1.5. Land Use. Agriculture		e, Irrigation	& Cropping Pattern		
Geographic	al Area	924.20 Sa. k			
Forest Area	-	54.32 Sa. kn	n.		
Cultivable A	Area	744.44. km.			
Net Sown A	rea	652.60 Sg. k	xm.		
Double Cro	pped Area	33.54 Sq. kn	n.		
Area	Surface	23.00 Sg. kn	n.		
under	Water				
Irrigation	Ground	8.00 Sq. km	0 Sg. km.		
_	Water				
Principal Crops		Crop Type	Area (Sq. km.)		
(Reference	(Reference year 2018)		326.07		
		Pulses	206.46		
			89.08		
		Cotton	77.70		
Horticultura	al Crops	Citrus	1.80		
		fruits			
			1.50		
		Banana	0.90		
		Others	0.65		
1.6. Water	Level Behavio	our			
1.6.1. Aquifer-I/Shallow Aquifer					
Pre-Monso	on Water Level (May 2018)	Post-Monsoon Water Level (Nov. 2019)		
AGUNTER L, PREMONBOOK, OTW (MAY 2018) AUHONA BLOCK, HINGOL/DISTRICT		EAR ALD The Star Star Star Star Star Star Star Star	AGUITERA, POSTNOHEDOH, DTW (NOX. 2019) AGUITERA, POSTNOHEDOH, DTW (NOX. 2019) Universe Reserves Reserves Biological Districts Reserves Res		
WL> 10 mbgl 554.20 sq. km.			WL>5 mbgl 314.60 sq. km.		

Major part of the block shows declining Major part of the block shows declining trend while rising trend up to 0.2 m/year trend up to 0.2 m/year while rising trend has been observed as continuous patch up to 0.2 m/year has been observed in from east to west in the block. Declining northern part of the block. Declining water level trend >0.2 m/year has been trend > 0.2 m/year has been observed in the southern and western parts of the observed in north eastern, eastern and southern parts of the block covering block covering about 203 sq.km. (25%) about 269.10 sq. km. (32.85%) area of area. the block.

2. Ground Water Issues

Declining water level Trend: -

Premonsoon (2010-19), decline in water level trend more than 0.2 m/year is observed in about 269.10 sq. km. covering about 33 % area of the block. Postmonsoon (2010-19), decline in water level trend more than 0.2 m/year is observed in about 203 sq. km. covering about 25% area of the block. Low yielding Aquifer resulting poor sustainability: -

Limited extent of porous and pervious zone because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also absence of primary porosity results in poor sustainability of the aquifers. About 51 % area of the block has low yield potential (< 1 lps) and can sustain pumping only for 1 to 1.5 hrs.

3.4. Basic Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer (Phreatic)/Semi confined/Confined) Depth to bottom of Aquifer (mbgl) B.5 to 18 Granular/Weathered/Fractured rocks Bype (mbgl) SWL (mbgl) Systemistics SWL (mbgl) Sustainability Sustainability Suitability for drinking/ irrigation Suitability for drinking/ irrigation Suitability for drinking/ irrigation * values taken from Risod block, Washim District. 4. Aquifer-I (Shallow Aquifer EC up to 750 up/Cm is observed in northern and north western part of the block whereas EC more than 2250 up/Cm is observed in major part of the block except 9 villages for drinking) * values taken from Risod block, Washim District. 4. Aquifer-I (Shallow Aquifer EC up to 750 up/Cm is observed in northern and north western part of the block whereas EC more than 2250 up/Cm has been observed in major part of the block except 9 villages for drinking) * values taken from Risod block, Washim District. 4. Aquifer-I (Shallow Aquifer EC up to 750 up/Cm has been observed in major part of the block except 9 villages for drinking) * values taken from Risod block, Washim District.	`				
3.4. Basic Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer (Phreatic/Semi confined/Confined) Depth to bottom of Aquifer (mbgl) B.5 to 18 G5 to 196 Zones/Fractures encountered (mbgl) Up to 18 Up to 196 Granular/Weathered/Fractured rocks Klickness (m) SWL (mbgl) 1 to 13.7 6.53 to 55.5 Specific yield/ SwtL (mbgl) 1 to 13.7 6.53 to 55.5 Specific yield/ Suitability 2 to 5 hrs 1 to 3 hrs Suitability for drinking/ irrigation Suitability for drinking/ irrigation Suitable for both (except Nitrate affected village for drinking) * values taken from Risod block, Washim District. 4. GROUND WATER QUALITY 4.1 Aquifer-I/Shallow Aquifer EC up to 750 u,S/cm is observed in northern and north western part of the block whereas EC more than 2250 µS/cm has been observed in major part of the block whereas EC more than 2250 µS/cm has been observed in major part of the block whereas EC more than 2250 µS/cm has been observed in major part of the block whereas EC more than 2250 µ	12 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -				
3.4. Basic Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer (onlined/Confined) Aquifer-I (Phreatic) Depth to bottom of Aquifer (mbgl) 8.5 to 18 65 to 196 Zones/Fractures encountered (mbgl) up to 18 up to 196 Granular/Weathered/Fractured rocks 8 to 14 1 to 7 SWL (mbgl) 1 to 13.7 6.53 to 55.5 Specific yield/ 0.019 to 0.028 *0.00003 -0.00005 Storativity (S) - - Transmissivity (T) *30 - 50 m²/day up to 2.5 lps Sustainability 2 to 5 hrs 1 to 3 hrs Suitability for drinking/ irrigation Suitable for both (except Nitrate affected village for drinking) affected village for drinking) * values taken from Risod block, Washim District. 4. Aguifer-I/ Shallow Aquifer EC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block whereas EC <th>A UNDECADN 200 0 Scale 5 km 200 100 m Aquiter I-1 Massive b</th> <th>LEGEND Basalt • Exploratory well Basalt • Fractured zone Water inver ADI scalt • DI</th> <th>ASSESSOR 200</th>	A UNDECADN 200 0 Scale 5 km 200 100 m Aquiter I-1 Massive b	LEGEND Basalt • Exploratory well Basalt • Fractured zone Water inver ADI scalt • DI	ASSESSOR 200		
Major Aquifer CharacteristicsBasalt (Deccan Traps)Type of AquiferAquifer-I (Phreatic)Aquifer-II (Semi confined/confined)Depth to bottom of Aquifer (mbgl)8.5 to 1865 to 196Zones/Fractures encountered (mbgl)up to 18up to 196Granular/Weathered/Fractured rocks8 to 141 to 7thickness (m)SWL (mbgl)1 to 13.76.53 to 55.5Specific yield/Storativity (S)Transmissivity (T)*30 - 50 m²/day0.51 to 15.17 m²/dayYieldup to 200 m³/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)affected village for drinking)* values taken from Risod block, Washim District. 4.4.4. Aquifer-I/ Shallow AquiferEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block whereas EC more than 2250 µS/cm is observed in and orth western parts of the block. Ground water is suitable for all purposes in major part of the block whereas EC more than 2250 µS/cm is observed in and village Sawangi Bk. (F=1.6 mg/L) which is affected by Nitrate contamination. 4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II) <td>3.4. Basic Aquifer Characteristics</td> <td></td> <td></td>	3.4. Basic Aquifer Characteristics				
Type of AquiferAquifer-I (Phreatic)Aquifer-II (Semi confined/confined)Depth to bottom of Aquifer (mbgl)8.5 to 1865 to 196Zones/Fractures encountered (mbgl)up to 18up to 196Granular/Weathered/Fractured rocks8 to 141 to 7thickness (m)1 to 13.76.53 to 55.5Specific yield/0.019 to 0.028*0.00003 -0.00005Storativity (S)* 30 - 50 m²/day0.51 to 15.17 m²/dayTransmissivity (T)* 30 - 50 m²/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both drinking)* values taken from Risod block, Washim District.4.GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in major part of the block whereas EC more than 2250 μS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination. 4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-II)Semi confined/Confined Aquifer (Aquifer II)	Major Aquifers	Basalt (Deccan Trans)		
Type of AquiferTracticlyConfined/confined)(Phreatic/Semi confined/Confined)8.5 to 1865 to 196Zones/Fractures encountered (mbgl)up to 18up to 196Granular/Weathered/Fractured rocks8 to 141 to 7thickness (m)1 to 13.76.53 to 55.5Specific yield/0.019 to 0.028*0.00003 -0.00005Storativity (S)*30 - 50 m²/day0.51 to 15.17 m²/dayTransmissivity (T)*30 - 50 m²/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)* values taken from Risod block, Washim District.4.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination. 4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Type of Aquifer	Aquifer-L (Phreatic)	/ Aquifer-II (Semi		
Depth to bottom of Aquifer (mbgl)8.5 to 1865 to 196Zones/Fractures encountered (mbgl)up to 18up to 196Granular/Weathered/Fractured rocks8 to 141 to 7thickness (m)1 to 13.76.53 to 55.5Specific yield/0.019 to 0.028*0.00003 -0.00005Storativity (S)* 30 - 50 m²/day0.51 to 15.17 m²/dayTransmissivity (T)* 30 - 50 m²/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both 	(Phreatic/Semi confined/Confined)	/ quiter i (i incutic)	confined/confined)		
Zones/Fractures encountered (mbgl)up to 18up to 196Granular/Weathered/Fractured rocks8 to 141 to 7thickness (m)1 to 13.76.53 to 55.5Specific yield/0.019 to 0.028*0.00003 -0.00005Storativity (S)*30 - 50 m²/day0.51 to 15.17 m²/dayTransmissivity (T)*30 - 50 m²/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both drinking)* values taken from Risod block, Washim District.4.GROUND WATER QUALITY4.GROUND WATER QUALITYEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination. 4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Depth to bottom of Aquifer (mbgl)	8.5 to 18	65 to 196		
Granular/Weathered/Fractured rocks thickness (m)8 to 141 to 7SWL (mbgl)1 to 13.76.53 to 55.5Specific yield/ Storativity (S)0.019 to 0.028*0.00003 -0.00005Transmissivity (T)*30 - 50 m²/day0.51 to 15.17 m²/dayYieldup to 200 m³/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both drinking)* values taken from Risod block, Washim District.4.GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Zones/Fractures encountered (mbgl)	up to 18	up to 196		
thickness (m)1 to 13.76.53 to 55.5Specific yield/ Storativity (S)0.019 to 0.028*0.00003 -0.00005Transmissivity (T)*30 - 50 m²/day0.51 to 15.17 m²/dayYieldup to 200 m³/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both drinking)* values taken from Risod block, Washim District.4.GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in major part of the block whereas EC more than 2250 μS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes. Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Granular/Weathered/Fractured rocks	8 to 14	1 to 7		
SWL (mbgl)1 to 13.76.53 to 55.5Specific yield/ Storativity (S)0.019 to 0.028*0.00003 -0.00005Transmissivity (T)*30 - 50 m²/day0.51 to 15.17 m²/dayYieldup to 200 m³/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	thickness (m)				
Specific yield/ Storativity (S)0.019 to 0.028*0.00003 -0.00005Transmissivity (T)*30 - 50 m²/day0.51 to 15.17 m²/dayYieldup to 200 m³/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both (except fluoride affected villages for drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	SWL (mbgl)	1 to 13.7	6.53 to 55.5		
Storativity (S)*30 - 50 m²/day0.51 to 15.17 m²/dayTransmissivity (T)*30 - 50 m²/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block.Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Specific yield/	0.019 to 0.028	*0.00003 -0.00005		
Transmissivity (T)*30 - 50 m²/day0.51 to 15.17 m²/dayYieldup to 200 m³/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both (except fluoride affected village for drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEEC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in major part of the block whereas EC more than 2250 μS/cm has been observed in southwestern parts of the block.Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Storativity (S)				
Yieldup to 200 m³/dayup to 2.5 lpsSustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both (except fluoride affected villages for drinking)* values taken from Risod block, Washim District.4.4. GROUND WATER QUALITY	Transmissivity (T)	*30 - 50 m²/day	0.51 to 15.17 m ² /day		
Sustainability2 to 5 hrs1 to 3 hrsSuitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both (except fluoride affected villages for drinking)* values taken from Risod block, Washim District.4.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block.Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Yield	up to 200 m ³ /day	up to 2.5 lps		
Suitability for drinking/ irrigationSuitable for both (except Nitrate affected village for drinking)Suitable for both (except fluoride affected villages for drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block.Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Sustainability	2 to 5 hrs	1 to 3 hrs		
(except Nitrate affected village for drinking)(except fluoride affected village for drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4. GROUND WATER QUALITYEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Suitability for drinking/ irrigation	Suitable for both	Suitable for both		
affected village for drinking)affected villages for drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 µS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 µS/cm is observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)		(except Nitrate	(except fluoride		
drinking)drinking)* values taken from Risod block, Washim District.4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 μS/cm is observed in northern and north western part of the block; ECvalue between 750 to 2250 μS/cm is observed in major part of the block whereas ECmore than 2250 μS/cm has been observed in southwestern parts of the block.Ground water is suitable for all purposes in major part of the block except 9 villagesthat are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L)which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for allpurposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)		affected village for	affected villages for		
 Values taken from Risod block, Washim District. 4. GROUND WATER QUALITY 4.1 Aquifer-I/ Shallow Aquifer EC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in major part of the block whereas EC more than 2250 μS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination. 4.2 Aquifer II/Deeper Aquifer EC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes. Phreatic Aquifer (Aquifer-I) 		drinking)	drinking)		
4. GROUND WATER QUALITY4.1 Aquifer-I/ Shallow AquiferEC up to 750 μS/cm is observed in northern and north western part of the block; EC value between 750 to 2250 μS/cm is observed in major part of the block whereas EC more than 2250 μS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	* values taken from Risod block, Washir	n District.			
4.1 Aquiter-I/ Shallow AquiterEC up to 750 μS/cm is observed in northern and north western part of the block; ECvalue between 750 to 2250 μS/cm is observed in major part of the block whereas ECmore than 2250 μS/cm has been observed in southwestern parts of the block.Ground water is suitable for all purposes in major part of the block except 9 villagesthat are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L)which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for allpurposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	4. GROUND WATER QUALITY				
EC up to 750 μS/cm is observed in northern and north western part of the block, ECvalue between 750 to 2250 μS/cm is observed in major part of the block whereas ECmore than 2250 μS/cm has been observed in southwestern parts of the block.Ground water is suitable for all purposes in major part of the block except 9 villagesthat are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L)which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for allpurposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	4.1 Aquiter-I/ Shallow Aquiter	arp and parth wastarp	part of the block FC		
 which between 750 to 2250 µS/cm has been observed in major part of the block whereas EC more than 2250 µS/cm has been observed in southwestern parts of the block. Ground water is suitable for all purposes in major part of the block except 9 villages that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L) which is affected by Fluoride contamination. 4.2 Aquifer II/Deeper Aquifer EC up to 2250 µS/cm is observed in entire block Ground water is suitable for all purposes. Phreatic Aquifer (Aquifer-I) Semi confined/Confined Aquifer (Aquifer II) 	EC up to 750 μ S/cm is observed in northern and north western part of the block; EC				
Ground water is suitable for all purposes in major part of the block except 9 villagesthat are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L)which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 µS/cm is observed in entire block Ground water is suitable for allpurposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	more than 2250 µS/cm has been observed in southwestern parts of the block				
that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/L)which is affected by Fluoride contamination.4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for allpurposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	Ground water is suitable for all nurnoses in major part of the block except 9 villages				
which is affected by Fluoride contamination and unage barrangi bit (F 216 mg/2)4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	that are affected by Nitrate contamination and village Sawangi Bk. (F=1.6 mg/l)				
4.2 Aquifer II/Deeper AquiferEC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	which is affected by Fluoride contamination.				
EC up to 2250 μS/cm is observed in entire block Ground water is suitable for all purposes.Phreatic Aquifer (Aquifer-I)Semi confined/Confined Aquifer (Aquifer II)	4.2 Aguifer II/Deeper Aguifer				
purposes. Phreatic Aquifer (Aquifer-I) Semi confined/Confined Aquifer (Aquifer II)	EC up to 2250 μS/cm is observed in entir	e block Ground water i	s suitable for all		
Phreatic Aquifer (Aquifer-I) Semi confined/Confined Aquifer (Aquifer II)	purposes.				
	Phreatic Aquifer (Aquifer-I)	Semi confined/Confir	ned Aquifer (Aquifer II)		

GROUND WATER QUALITY, AQUFER I AUNDHA BLOCK, HINGOLI DISTRICT			GROUND WATER QUALITY, AQIUFER-II AUNDHA BLOCK, HINGOLI DISTRICT			
	750-2250 2250-3000	Area 924.20 sq I No of Village 122 Taluka HQ	250	-750 Are -2250 Tak	a 924.20 sq km of Vitage 122 ka HQ	
	>3000	Drainage Sampling Station	+ Flour	ide >1.5 mg/L Dra San	nage aping Station	
5. GRC	UND WATER	KESOURCE				
Ground	Water Recharg	ge Worthy Area	819.61			
(Sq. km	n.)	,				
Total A	nnual Ground V	Vater Recharge	157.87			
(MCM)	Disekara	N 4)	<u>8.20</u>			
Natura	i Discharge (IMC	ivi) ater Availability	8.39 149.47			
(MCM)	Met Annual Ground Water Availability (MCM)			1,1,7,77		
Existing Gross Ground Water Draft for			65.73			
irrigatio	irrigation (MCM)			6.52		
Existing	Existing Gross Ground Water Draft for			6.52		
(MCM)	lic and muustflà	n water supply				
Existing Gross Ground Water Draft for			72.25			
All uses (MCM)						
Provisio	on for domestic	and industrial	14.68			
require	requirement supply to 2025 (MCM)					
future	Net Ground Water Availability for					
Stage o	Stage of Ground Water Development			48.34		
(%)						
Category			SAFE			
5.2 Aq	uifer-II/Deepe	er Aquifer				
Semi c	onfined/Confi	ned Aquifer (Ba	salt)	-		
Total	Mean	Av.	Av	Resources	Resource	
Area	aquiter	sy/storativity	Piezometric		within	
(Sy. km)	(m)		neau (m)	laver	Δαμifer	
NIII.)				(MCM)	(MCM)	
924.2	3.75	0.002/0.00001	76	1.018	6.93	

6.0. GROUND WATER RESOURCE MA	NAGEMENT			
Available Resource (MCM)	149.47			
Gross Annual Draft (MCM)	72.25			
6.1. Supply Side Management				
SUPPLY (MCM)				
Agricultural Supply -GW	65.73			
Agricultural Supply -SW	14.95			
Domestic Supply - GW	6.52			
Domestic Supply - SW	1.63			
Total Supply	88.83			
Area of Block (Sg. km.)	924.2			
Area suitable for Artificial recharge	128.17			
(Sq. km.)				
Type of Formation	Hard Rock	Soft Rock		
Area feasible for Artificial Recharge	128.17	-		
(WL >5mbgl) (Sq. km.)				
Volume of Unsaturated Zone (MCM)	256.34	-		
Average Specific Yield	0.02	-		
Volume of Sub Surface Storage Space	5.13	-		
available for Artificial Recharge (MCM)				
Surplus water Available (MCM)	2.87			
Proposed Structures	Percolation Tank (Av.	Check Dam (Av.		
	Gross Capacity-100	Gross Capacity-10		
	TCM*2 fillings = 200	TCM * 3 fillings =		
	TCM)	30 TCM)		
Number of Structures	10	29		
Volume of Water expected to be	2.15			
conserved / recharged @ 75%				
efficiency (MCM)				
Proposed Structures				
RTRWH Structures – Urban Areas				
Households to be covered (25% with 50	35,075			
m²area)				
Total RWH potential (MCM)	1.4889			
Rainwater harvested / recharged @	1.911			
80% runoff co-efficient	Economically not viable & Not			
	Recommended			
6.2. Demand Side Management				
Micro irrigation techniques				
Cotton area proposed for drip irrigation	1			
(sq. km.)				
Volume of Water Saving by use of drip	0.26			
(MCM), Surface Flooding req- 0.815 m.				
Drip Req. – 0.55, WUE- 0.26 m				
Proposed Cropping Pattern change				
Irrigated area under Water Intensive	Not proposed			
Crop (ha)				
Water Saving by Change in Cropping	Nil			
Pattern				
Alternate Sources	Nil			
---	---			
6.3. EXPECTED BENEFITS				
Net Ground Water Availability (MCM)	149.48			
Additional GW resources available after	2.15			
Supply side interventions (MCM)				
Ground Water Availability after Supply	151.63			
side intervention				
Existing Ground Water Draft for All	72.25			
Uses (MCM)				
GW draft after Demand Side	71.99			
Interventions (MCM)				
Present stage of Ground Water	48.34			
Development (%)				
Expected Stage of Ground Water	47.48			
Development after interventions (%)				
Other Interventions Proposed, if any				
Alternate Water Sources Available	Nil			
Recommendation				
Ground water development is recommer	nded to bring the stage of ground water			
development from 47.61% to 70%				
6.4. DEVELOPMENT PLAN				
Volume of water available for GWD to	34.15			
70% (MCM)				
Proposed Number of DW (@ 1.5 ham	2049			
for 90% of GWR Available for				
development)				
Proposed Number of BW (@ 1 ham for	342			
10% of GWR Available for				
development)				
Additional Area to be brought under	52.54			
assured GW irrigation with av. CWR of				
0.65 m (sq. km.)				
Regulatory Measures	60 m			
Supply Side Interventions	Demand Side Interventions			
Proposed locations for AR structures	Cotton Crop Area proposed for drip			
	Irrigation			

9.2 BASMATH BLOCK

1. SALIENT FEATURES		
1.1 Introduction		
Block Name	BASMATH	
Geographical Area	764.36 Sq. km.	
(Sq. km.)		
Hilly Area (Sq. km.)	Nil	
Poor Ground Quality Area	Nil	
(Sq. km.)		
Population (2011)	2,90,970	
Climate	Sub-Tropical	
1.2 Rainfall Analysis		
Normal Rainfall	1040.9 mm	
Annual Rainfall (2019)	884.6 mm	
Decadal Average Annual	780.63 mm	
Rainfall (2010-19)		
Long Term Rainfall Analysis	Declining Trend 11.26 mm/year.	
(1998-2019)	Probability of Normal and Excess Rainfall: - 50% & 23%.	
	Probability of Drought: 27% Moderate Drought	
Rainfall Trend Analysis (1998	to 2019)	
1400		
1200		
1000		
Ê 200	•••••••••••••••••••••••••••••••••••••••	
بت المراجع (600		
400		
200		
	004 007 004 007 004 007 004 007	
19 20 20 20 20 20 20 20 20 20 20 20 20 20		
	Year	
EQUATION OF TREND LINE: Y	′ = -11.264x + 969.8	
1.3. Geomorphology, Soil & (Seology	
Geomorphic Unit	Plateau Weathered-Canal Command (PLC), Plateau weathered	
	with 1 to 2 m weathered thickness, Plateau Undissected & Slightly	
	Dissected 0 to 1 m weathered thickness and, Plateau Moderately	
	Dissected (PLM)	
Soil	Clayey soil (shallow to very deep; 10 to >100 cm depth), Gravelly	
	ciay, Gravelly ciay loam, Gravelly sandy loam, Clay loam, Sandy	
	clay loam soils.	
Geology	Alluvium (Purna Alluvium)	
	Age. Recent to our recent	
	Age: Late Cretascous to Ecsena	
	Age. Late Cretateous to Eucene	

1.4. Hydrology & Drainage

Drainage		Asna and Purna rivers; tributary of Godavari River		
Hydrology		Major project	Completed: 02;	
(Reference ye	ar: June	1. Upper Penganga Project; generating a gro		
2018)			irrigation Potential of 7006 ha in Basmath	
			block Gross Storage Capacity of 1279.90	
			MCM (Basmath and, Kalmnuri blocks) and	
			Live Storage Capacity of 964.10 MCM	
			(Basmath and Kalmnuri blocks).	
			2. Purna Siddheswar Project; generating a	
			gross irrigation Potential of 19851 ha in	
			Basmath block Gross Storage Capacity of	
			Kalmpuri blocks) and Live Storage Capacity	
			of 891 MCM (Aundha Basmath and	
			Kalmpuri blocks)	
			Ongoing: Nil	
		Medium project	Completed: Nil	
			Ongoing: Nil	
		Irrigation Project	Completed: 01 irrigation project; generating a	
		(>250 Ha)	gross irrigation Potential of 44 ha.	
			Ongoing: Nil	
		Irrigation Project	Completed: 08 Through completed KT weirs	
		(<250 Ha)	generating a gross irrigation Potential of 156	
			ha.	
			Ongoing: Nil	
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern		Pattern		
Geographical Area 764.36 Sq. km.				
Forest Area		33.73 Sq. km.		
Cultivable Are	a	784.88 Sq. km.		
Net Sown Area 784.		784.88 Sq. km.	784.88 Sq. km.	
Double Cropped Area 390.55 Sq. km.				
Area under	Surface	86.84 Sq. km.		
Irrigation	Water			
	Ground	55.81 Sq. km.		
	Water			
Principal Crop)S	Сгор Туре	Area (Sq. km.)	
(Reference year 2018)		Oil Seeds	308.76	
		Pulses	263.05	
		Cereals	243.56	
		Cotton	195.16	
Horticultural Crops		Banana	4.89	
		Citrus fruits	3.12	
		Others	0.45	
1.6. Water Le	vel Behaviour			
1.6.1. Aquifer-I/Shallow Aquifer				
Pro	e-Monsoon (Ma	ay-2019)	Post-Monsoon (November-2019)	

Hydrograph shows declining water level trend @ 0.6733 m/year during Pre-monsoon and @ 0.26 m/year during post monsoon.

1.8. Water Level Trend (2010-19)	
Pre-Monsoon trend	Post-Monsoon trend
Rising 0.4733 m/year	Rising 0.1118 to 0.3148 m/year
Falling 0.2309 to 1.9524 m/year	Falling 0.2587 to 0.9375 m/year
Major part of the block shows declining trend	Major part of the block shows declining trend
more than 0.2 m/year covering about 629 sq. km.	more than 0.2 m/year covering about 649 sq.
area while rise in water level trend more than 0.2	km. area while rise in water level more than
m/year has been observed in eastern peripheral	0.2 m/year has been observed in eastern part
part and isolated patch in south central part of	and isolated patch in southern part of the
the block. Declining trend up to 0.2 m/year has	block. Declining trend up to 0.2 m/ year has
been observed in eastern part and isolated path	been observed in northern, eastern and
in south central part the block.	southern part the block.
Pre-Monsoon Water Level Trend (2010-19)	Post-Monsoon Water Level Trend (2010-19)
PREMONSOON, GROUND WATER LEVEL TREND (MAY 2010-MAY2016) BASMATH BLOCK, HINGOLI DISTRICT Depth to Water Level trend, May 2010 to May 2019 (m/year) Rise 0.4 to 0.6 Rise 0.2 to 0.4 Rise 0.0 to 0.2 Fall 0.0 to 0.2 Fall 0.0 to 0.2 Fall 0.4 to 0.6 Fall 0.4 to 0.6 to 0.6 to 0.6 to 0.6 to 0.6	POSTMONSOON, GROUND WATER LEVEL TREND (NOV 2010-NOV. 2019) BASMATH BLOCK, HINGOLI DISTRICT Depth to Water Level trend, Nov. 2010 to Nov. 2019 (m/year) Rise 0.2 to 0.4 Rise 0.0 to 0.2 Fat 0.2 to 0.4 Fat 0.4 to 0.6 Fat > 0.6 Fat > 0.6 Fat > 0.6 Depth to Water Level trend, No of Vilage Takka HQ Destination of the trend
Declining trend @>0.2 m/year 629 sq. km.	
2. Ground Water Issues	
Increase in stage of ground water development:	-

Despite being in Safe category, the stage of ground water development has continuously and sharply increased from 2004 (22.46%) to 2013 (61.40%). Further, the draft for irrigation and number of irrigation wells have also increased from 55.15 to 115.12 MCM and 5441 to 8434 wells implying increased utilization of ground water resources in agriculture sector.

Declining water level Trend and Deeper Water level: -

- Premonsoon water level trend (2010-19), decline in water level trend more than 0.2 m/year is observed in 70 % area of the block.
- Postmonsoon water level trend (2010-19), decline in water level more than 0.2 m/year is observed in 73 % area of the block.
- During Premonsoon (2019), Deeper water level i.e., more than 20 mbgl is observed in 64.69 sq. km. area of the block.

Low Rainfall and Drought Prone Area: -

Based on the rainfall data of 1998-2019 period; the average rainfall for the period is 840.25 mm. In addition, the long-term rainfall analysis indicates a falling trend @ 11.26 mm/ year with 27% (6 times) probability of moderate drought.

Nitrate Contamination: In shallow aquifer, out of 13 samples, 9 samples i.e., 69% samples are showing nitrate contamination; i.e., more than 45 mg/L whereas in deeper Aquifer, out of 1 sample i.e., Asegaon village is showing nitrate contamination ($NO_3 > 48$ mg/L).

3. AQUIFER DISPOSITION

3.3. Cross Section

3.4. Basic Aquifer Characteristics		
Major Aquifers	Basalt (Deccan Traps)	
Type of Aquifer	Aquifer-I (Phreatic)	Aquifer-II (Semi
(Phreatic/Semi confined/Confined)		confined/confined)
Depth to bottom of Aquifer (mbgl)	10 to 22	65 to 119
Zones/Fractures encountered (mbgl)	up to 22	up to 119
Granular/Weathered/Fractured rocks thickness	8 to 15	1 to 3
(m)		
SWL (mbgl)	0.8 to 20.9	112.4
Specific yield/Storativity (S)	0.019 to 0.028	*0.00003 -0.00005
Transmissivity (T)	*30 - 50 m ² /day	0.51 to 15.17 m ² /day
Yield	up to 100 m ³ /day	up to 2.5 lps
Sustainability	2 to 4 hrs	1 to 3 hrs

Suitability for drinking/ irrigation	Suitable for both	Suitable for both
	(except Nitrate and	(except Nitrate and
	Fluoride affected	Fluoride affected
	villages for drinking)	villages for drinking)
* ,	values taken from Risod	block, Washim District.
4. GROUND WATER QUALITY		
GROUND WATER QUALITY, AQIUFER-I BASMATH BLOCK, HINGOLI DISTRICT EC in microsiemension at 25°C Legend	GROUND WATER O BASMATH BLOCK	HINGOLI DISTRICT
750-2250 Principal aquifer No of aquifers BS 10 2250-3000 Area Tavo No of aquifers >3000 No of Vitage 185 Plouride ≥1.5 mg/L Takka HQ Nitrate >45 mg/L Drainage aampling Station	750-2250 Princ No of Area Drain samp	ipel aquifer BS Kitometres aquifers Two kitometres 764.36 sg km a HO age leg Station
Risemath	PURNAR	Real P
EC > 2250 μS/cm covering 60.65 sq. km.		
4.1 Aquifer-I/ Shallow Aquifer		
EC up to 750 μ S/cm is observed in northern part	of the block; EC values	between 750 to 2250
µS/cm are observed in major part of the block	whereas EC more than	2250 µS/cm has been
observed in southern and western parts of the blo	ock. Ground water is suit	able for all purposes in
major part of the block except 9 villages that are	affected by Nitrate cor	ntamination and village
Sawangi Bk. (F=1.6 mg/L) which is affected by Fluc	oride contamination.	
4.2 Aquifer II/Deeper Aquifer		
EC up to 2250 μ S/cm is observed in entire block. C	Fround water is suitable	for all purposes.
5. GROUND WATER RESOURCE		
5.1 Aquifer-I/ Shallow Aquifer		
Ground Water Recharge Worthy Area (Sq. km.)	764.36	
Total Annual Ground Water Recharge (MCM)	206.59	
Natural Discharge (MCM)	10.32	
Net Annual Ground Water Availability (MCM)	196.27	
Existing Gross Ground Water Draft for irrigation	115.12	
(MCM)		
Existing Gross Ground Water Draft for domestic	5.38	
and industrial water supply (MCM)	400.50	
(MCM)	120.50	
Provision for domestic and industrial	15.55	
requirement supply to 2025(MCM)		
Net Ground Water Availability for future	64.34	
irrigation development (MCM)		

Stage of Ground Water Development (%)		61.40				
Category		SAFE				
5.2 Aguifer-II/Deeper Aguifer						
Semi confined/Confined Aquifer (Basalt)						
Total Area	Mean	Av. Sy/Storativity	Av.	Resources	Resource within	
(Sq. km.)	aquifer		Piezometric	above	confining	
	thickness		Head (m)	confining	Aquifer (MCM)	
	(m)			layer		
				(MCM)		
764.36	3.00	0.002/0.0000145	4	0.044	4.59	
6.0. GROUN	D WATER RESC	OURCE MANAGEM	ENT			
Available Reso	ource (MCM)		196.27			
Gross Annual	Draft (MCM)		120.50	120.50		
6.1. Supply S	ide Managem	ent				
SUPPLY (MCN	1)					
Agricultural Su	upply -GW		115.12			
Agricultural Su	upply -SW		56.44			
Domestic Sup	ply - GW		5.37	5.37		
Domestic Sup	ply - SW		1.34	1.34		
Total Supply			178.28			
Area of Block	(Sq. km.)		764.36			
Area suitable	for Artificial rec	harge	5.31			
(Sq. km.)						
Type of Formation		Hard Rock		Soft Rock		
Area feasible for Artificial Recharge (WL >5mbgl)		5 31				
(Sq. km.)		5.51		-		
Volume of Unsaturated Zone (MCM)				-		
Average Specific Yield		0.02		-		
Volume of Sub Surface Storage Space available		0.212		-		
for Artificial Recharge (MCM)						
Surplus water Available (MCM)		0.12 -		-		
Proposed Stru	ictures		Percolation Tank (Av. Check Dam (A		Check Dam (Av.	
			Gross Capacity-100 Gross Capacity-		Gross Capacity-10	
			TCM*2 fillings = 200 TCM * 3 filling		TCM * 3 fillings =	
		TCM)		30 TCM)		
Number of Sti	ructures		0		4	
Volume of Water expected to be conserved /		0		0.09		
recharged @ 75% efficiency (MCM)						
Proposed Stru	ictures					
RTRWH Structures – Urban Areas		FF 404				
Households to be covered (25% with 50 m ² area)		55,184				
Total KWH po	tential (IVICIVI)		2.168/			
Kainwater har	vested / rechar	gea @ 80% runoff	1./350			
co-efficient		Economically not viable & Not				
R			Recommende	eu		
o.z. Demand	i side ivlanage	ment				

Micro irrigation techniques		
Cotton crop area proposed for drip irrigation	12	
(sq. km.)		
Volume of Water Saving by use of drip (MCM),	3.12	
Surface Flooding req- 0.815 m. Drip Req. – 0.55,		
WUE- 0.26 m		
Proposed Cropping Pattern change		
Irrigated area under Water Intensive Crop (ha)	Not proposed	
Water Saving by Change in Cropping Pattern	Nil	
Alternate Sources	Nil	
6.3. EXPECTED BENEFITS		
Net Ground Water Availability (MCM)	196.27	
Additional GW resources available after Supply	0.00	
side interventions (MCM)	0.09	
Ground Water Availability after Supply side	100.20	
intervention	196.36	
Existing Ground Water Draft for All Uses (MCM)	120.50	
GW draft after Demand Side Interventions	117.38	
(MCM)		
Present stage of Ground Water Development	61.40	
(%)	01.40	
Expected Stage of Ground Water Development	59.78	
after interventions (%)		
Other Interventions Proposed, if any		
Alternate Water Sources Available	Nil	
Recommendation		
Ground water development is recommended to bring the stage of ground water development		
from 59.78% to 70%		
6.4. DEVELOPMENT PLAN		
Volume of water available for GWD to 70%	20.07	
(MCM)	20.07	
Proposed Number of DW (@ 1.5 ham for 90% of		
GWR Available for development)	1204	
Proposed Number of BW (@ 1 ham for 10% of		
GWR Available for development)	201	
Additional Area to be brought under assured	30.88	
GW irrigation with av. CWR of 0.65 m (sq. km.)		
Regulatory Measures	60 m	
Supply Side Interventions	Demand Side Interventions	
Proposed locations for AR structures	Cotton crop Areas proposed for drip	
	Irrigation	

9.3 HINGOLI BLOCK

1. SALIENT FEATURES		
1.1 Introduction		
Block Name	HINGOLI	
Geographical Area (Sq.	948.32 Sq. km.	
km.)		
Hilly Area (Sq. km.)	Nil	
Poor Ground Quality	Nil	
Area (Sq. km.)		
Population (2011)	269546	
Climate	Sub-Tropical	
1.2 Rainfall Analysis		
Normal Rainfall	946.6 mm	
Annual Rainfall (2019)	973.6 mm	
Decadal Average	911.43 mm	
Annual Rainfall (2010-19)		
Long Term Rainfall	Declining Trend 2.80 mm/year.	
Analysis	Probability of Normal and Excess Rainfall - 45% &	
(1998-2019)	23%.	
	Probability of Droughts-: 32% Moderate	
Rainfall Trend Analysis (1	1998 to 2019)	
1600		
1200		
Ê 1000		
Boole Haine Goole		
400		
200		
001 002 002 002 002 002 002 002 002 002	003 004 004 005 005 005 005 005 005 005 005	
119 119 20 20 20 20 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
EQUATION OF TREND LIN	VE: v = -5.7539x + 983.39	
1.3. Geomorphology, Soi	l & Geology	
Geomorphic Unit	Plateau Undissected and Slightly Dissected 0 to 1 m	
·	weathered thickness, Plateau Moderately dissected.	
	Plateau Weathered with 1 to 5 m weathered	
	thickness and Escarpment Slope and Butte	
Soil	Clayey soil (shallow to very deep: 10 to >100 cm).	
	Sandy clay loam, Gravelly clay loam, Gravelly clav	
	and Silty Clay and Clay loam soils.	
Geology	Deccan Traps (Basalt)	
	Age: Late Cretaceous to Eocene	
1.4. Hydrology & Drainag	2e	

Drainage		Kayadhu and	d Penganga Rivers; tributaries of Godavari
		river	
Hydrology	/	Major Nil	
(Referenc	e Year: June	project	
2018)		Medium	Completed: Nil
		project	Ongoing: Nil
		Irrigation	Completed : 11; Through completed
		Project	minor and KT weir projects generating
		(>250 Ha.)	a gross irrigation Potential of 6731 ha.
			Ongoing: Nil
		Irrigation	Completed: Through completed KT
		Project	weir project generating a gross
		(<250 Ha.)	irrigation Potential of 846 ha.
			Ongoing: Nil
1.5. Land	Use, Agricultu	re, Irrigation &	k Cropping Pattern
Geograph	iical Area	948.32 Sq. km.	
Forest Are	еа	27.39 Sq. kn	n.
Cultivable	e Area	789.22 Sq. k	m.
Net Sown	Area	789.22 Sq. km.	
Double Cr	ropped Area	161.47 Sq. km.	
Area	Surface	35.00 Sq. km.	
under	Water		
Irrigatio	Ground	9.75 Sq. km.	
n	Water		
Principal	Crops	Crop Type	Area (Sq. km.)
(Referenc	e year 2018)	Oil Seeds	597.62
		Pulses	233.13
		Cereals	62.79
		Cotton	27.09
		Sugarcane	0.08
Horticultu	iral Crops	Citrus	2.30
		fruits	
		Mango	0.79
Others		Others	0.24
1.6. Wate	er Level Behavio	our	
1.6.1. Aquifer-I/Shallow Aquifer			
Pre-	Monsoon (Ma	y-2019)	Post-Monsoon (November-2019)

Pre-Monsoon trend	Post-Monsoon trend
Rising 0.0781 m/year	Rising 0.0017 to 0.1296 m/year
Falling 0.0030 to 0.8787 m/year	Falling 0.066 to 0.7877 m/year
Major part of the block shows	Major part of the block shows declining
declining trend more than 0.2 m/year	trend up to 0.2 m/year while rising
and covering about 634 sq. km. area	trend up to 0.2 m/year has been
while declining trend up to 0.2	observed in western part of block.
m/year have been observed in	Declining trend >0.2 m/year has been
eastern half and western part of the	observed in eastern, western and
block. Rising trend up to 0.2 m/year	southern parts of the block and cover
has been observed in south western	225 sq. km. area.
part and isolated patch in central part	
of block.	
Pre-Monsoon Water Level Trend	Post-Monsoon Water Level Trend
(2010-19)	(2010-19)
PREMONSCON, GROUND WATER LEVEL TREND (MAY 2010-MAY 201 HINGOLI BLOCK, HINGOLI DISTRICT	POSTMONEOON, GROUND WATER LEVEL TREND (NOV. 2010-NOV.2019)
	HINGOLI BLOCK, HINGOLI DISTRICT

Declining trend @>0.2 m/year 634	Declining trend @>0.2 m/year 225 sq.
sq. km.	km.

2. Ground Water Issues

Declining water level Trend: -

During Premonsoon period (2010-19), the decline in water level more than 0.2 m/year is observed in about 634 sq. km. covering 67 % area of the block.

During Postmonsoon period (2010-19), the decline in water level more than 0.2 m/year is observed in about 225 sq. km. covering 24% area of the block.

Low rainfall and Drought:

Based on the rainfall analysis for the period 1998-2019; the average rainfall for the period 1998 to 2019 is 917.21 mm. Also, the long-term rainfall analysis indicates a falling trend @ 5.75 mm/ year with 32% probability of moderate drought.

Ground Water Quality: -

Nitrate Contamination: In deeper aquifer, out of 11 samples, 2 samples i.e., 18% samples show nitrate contamination.

Fluoride contamination: In Deeper aquifer, out of 11 samples, 3 samples (Belura, Sawarkheda, Deulgaon Rama) i.e., 27% samples shows fluoride contamination.

Low yielding Aquifer resulting poor sustainability: -

Limited extent of porous and pervious zone because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also absence of primary porosity results in poor sustainability of the aquifers. About 67 % area of the block has low yield potential (< 1 lps) and can sustain pumping only for 1 to 1.5 hrs.

4.2 Aquifer II/Deeper Aquifer

EC up to 750 μ S/cm is observed in eastern, southern and western peripheral parts of the block whereas EC values between 750 to 2250 μ S/cm cover whole of the block. Ground water is suitable for all purposes except Santur Pimpari and Pangri villages that are having nitrate more than 45 mg/L and Deulgaon Rama, Sawarkheda and Belura villages that are affected by Fluoride contamination; In these villages ground water is not fit for drinking purpose without treatment.

5. GROUND WATER RESOURCE						
5.1 Aquifer-I/ Shallow Aquifer						
Ground Water Recharge Worthy			948.32			
Area (Sq.	km.)					
Total Ann	ual Groun	d Water	128.01			
Recharge	(MCM)					
Natural D	ischarge (I	MCM)	6.40			
Net Annua	al Ground	Water	121.61			
Availabilit	y (MCM)					
Existing G	ross Grou	nd Water Draft	46.27			
for irrigati	ion (MCM)				
Existing G	ross Grou	nd Water Draft	3.74			
for domes	stic and in	dustrial water				
supply (M	CM)					
Existing G	ross Grou	nd Water Draft	50.02			
for All use	s (MCM)					
Provision	for domes	stic and industrial	14.57			
requirement supply to 2025(MCM)						
Net Ground Water Availability for			63.23			
future irrigation development (MCM)						
Stage of Ground Water Development		41.13				
(%)						
Category	Category			SAFE		
5.2 Aquife	er-II/Deep	er Aquifer				
Semi confined/Confined Aquifer (Basalt)			lt)			
Total	Mean	Av. Sy/	Av.	Resources	Resource	
Area	aquifer	Storativity	Piezometr	above	within	
(Sq.	thickne		ic Head	confining	confining	
km.)	ss (m)		(m)	layer	Aquifer	
	-			(MCM)	(MCM)	
948.32	5.50	0.002/0.000014	11.5	0.158	10.43	
			121.01			
Gross Annual Draft (MCM)			50.02			

6.1. Supply Side Management				
SUPPLY (MCM)				
Agricultural Supply -GW	46.27			
Agricultural Supply -SW	22.75			
Domestic Supply - GW	3.74			
Domestic Supply - SW	0.94			
Total Supply	73.70	73.70		
Area of Block (Sq. km.)	948.32			
Area suitable for Artificial recharge				
(Sq. km.)	217.45			
Type of Formation	Hard Rock	Soft Rock		
Area feasible for Artificial Recharge	217 45			
(WL >5mbgl) (Sq. km.)	217.45	-		
Volume of Unsaturated Zone (MCM)	434.9	-		
Average Specific Yield	0.02	-		
Volume of Sub Surface Storage Space				
available for Artificial Recharge	8.69	-		
(MCM)				
Surplus water Available (MCM)	4.86	-		
Proposed Structures	Percolation Tank	Check Dam (Av.		
	(Av. Gross	Gross Capacity-10		
	Capacity-100	TCM * 3 fillings =		
	TCM*2 fillings =	30 TCM)		
	200 TCM)			
Number of Structures	17	49		
Volume of Water expected to be				
conserved / recharged @ 75%	2.55	1.10		
efficiency (MCM)				
Proposed Structures				
RTRWH Structures – Urban Areas				
Households to be covered (25% with	52,669			
50 m²area)				
Total RWH potential (MCM)	2.457			
Rainwater harvested / recharged @	1.965			
80% runoff co-efficient	Economically not viable & Not			
	Recommended			
6.2. Demand Side Management				
Micro irrigation techniques				
Sugarcane crop area proposed for	0.08			
drip irrigation (sq. km.)				

Volume of Water Saving by use of	0.05			
drip (MCM) Surface Flooding req-				
2.45 m. Drip Req1.88, WUE- 0.57 m				
Proposed Cropping Pattern change				
Irrigated area under Water Intensive	Not proposed			
Crop (ha)				
Water Saving by Change in Cropping	Nil			
Pattern				
Alternate Sources	Nil			
6.3. EXPECTED BENEFITS				
Net Ground Water Availability	121 01			
(MCM)	121.61			
Additional GW resources available				
after Supply side interventions	3.63			
(MCM)				
Ground Water Availability after	125.24			
Supply side intervention	125.24			
Existing Ground Water Draft for All	50.02			
Uses (MCM)	50.02			
GW draft after Demand Side				
Interventions (MCM)	49.97			
Present stage of Ground Water	11 12			
Development (%)	41.15			
Expected Stage of Ground Water	39.90			
Development after interventions (%)	39.90			
Other Interventions Proposed, if any				
Alternate Water Sources Available	Nil			
Recommendation				
Ground water development is recommended to bring the stage of ground				
water development from 39.90 % to 70%				
6.4. Development Plan				
Volume of water available for GWD	37.70			
to 70% (MCM)				
Proposed Number of DW (@ 1.5 ham	2262			
for 90% of GWR Available for				
development)				
Proposed Number of BW (@ 1 ham	377			
for 10% of GWR Available for				
development)				
Additional Area to be brought under	58.0			
assured GW irrigation with av. CWR				
of 0.65 m (sq. km.)				

9.4 KALMNURI BLOCK

SALIENT FEATURES				
1.1 Introduction				
Block Name	KALMNURI			
Geographical Area (Sq. km.)	948.91 Sq. km.			
Hilly Area (Sq. km.)	Nil			
Poor Ground Quality Area	Nil			
(Sq. Km.)				
Population (2011)	2,31,559			
Climate	Sub-Tropical			
1.2 Rainfall Analysis				
Normal Rainfall	983.7 mm			
Annual Rainfall (2019)	1068.4 mm			
Decadal Average Annual	831.8 mm			
Rainfall (2010-19)				
Long Term Rainfall Analysis	Rising Trend 1.131 mm/year.			
(1998-2019)	Probability of Normal and Excess Rainfall- 45% & 23%.			
	Probability of Droughts-: 32% Moderate Drought			
Rainfall Trend Analysis (1998 t	o 2019)			
1600				
1400				
1200				
E 1000				

EQUATION OF TREND LINE: y = 1.131x + 795.94

1.3. Geomorphology, Soil & Geology Geomorphic Unit Plateau weathered Canal Command, Plateau Undissected and Slightly Dissected 0 to 1 m weathered thickness, Plateau Weathered with 1 to 5 m weathered thickness, and **Escarpment Slope** Soil Clayey soil (shallow to very deep; 10 to >100 cm depth), Gravel sandy loam and Gravel clay loam soils. Deccan Traps (Basalt) Geology Age: Late Cretaceous to Eocene 1.4. Hydrology & Drainage Kayadhu and Penganga Rivers Drainage Hydrology Major Completed: 02; (Reference Year: June 2018) project 1. Upper Penganga Project; generating a gross irrigation Potential of 10496 ha in Kalmnuri

			block Gross Storage Capacity of 1279.90	
			MCM (Basmath and Kalmnuri blocks) and	
			Live Storage Capacity of 964.10 MCM	
			(Basmath and Kalmnuri blocks).	
			2. Purna Siddheswar Project; generating a	
			gross irrigation Potential of 177 ha in	
			Kalmnuri block Gross Storage Capacity of	
			1185 MCM (Aundha, Basmath and,	
			Kalmnuri blocks) and Live Storage Capacity	
			VI 891 MCW (Aunona, Basmath and Kalmpuri blocks)	
			Ongoing: Nil	
		Medium	Completed: Nil	
		project	Ongoing: Nil	
		Irrigation	Completed: 05; minor irrigation projects	
		Project	generating a gross irrigation Potential of 2504	
		(>250 Ha.)	ha.	
			Ongoing: Nil	
		Irrigation	Completed: 15; Through completed KT weir	
		Project	irrigation projects generating a gross	
		(<250 Ha.)	irrigation Potential of 569 ha.	
			Ongoing: Nil	
1.5. Land Us	se, Agriculture, Irri	gation & Croppin	ng Pattern	
Geographica	al Area	948.91 Sq. km.	948.91 Sq. km.	
Forest Area		36.16 Sq. km.	36.16 Sq. km.	
Cultivable Area		733.59 Sq. km.		
Net Sown A	rea	733.59 Sq. km.		
Double Crop	pped Area	246.89 Sq. km.	•	
Area	Surface Water	5.30 Sq. km.		
Irrigation	Ground Water	19.00 Sq. km.		
Principal Cro	 	Cron Type	Area (Sa. km.)	
(Reference yea	yr 2018)	Oil Seeds	434.01	
. , ,	·	Pulses	245.19	
		Cereals	118.95	
		Cotton	102.31	
		Sugarcane	16.95	
Horticultura	l Crops	Banana	14.20	
		Citrus fruits	1.83	
		Mango	0.55	
		Others	1.55	
1.6. Water Level Behaviour				
1.6.1. Aquifer-I/Shallow Aquifer				
Pre-Monsoon (May-2019)		2019)	Post-Monsoon (November-2019)	
Water levels less than 10 mb		bgl have been	Water level <2 mbgl has been observed in	
observed in northern and sou		thern parts of	isolated patch in northern part of the block;	
the block and isolated patch in		n west central		

Hydrograph shows Pre-monsoon rising water level trend @ 0.0776 m/year and Post monsoon declining water level trend @ 0.0915 m/year

1.8. Water Level Trend (2010-19)		
Pre-Monsoon trend	Post-Monsoon trend	
Rising 0.018 to 0.5145 m/year	Falling 0.0381 to 0.6385 m/year	
Falling 0.02 to 0.3632 m/year	Falling 0.0963 to 0.2393 m/year	
Major part of the block shows rising trend	Declining water level trend up to 0.2 m/year	
covering about 610 sq km area while decline	has been observed in major part of the block	
in water levels has been observed in northern	while declining trend > 0.2 m/year has been	
half of the block and cover about 338 sq. km.	observed in northern and eastern parts of the	
area. Decline in water level >0.2 m/year has	block and cover 136 sq. km. area. Rising water	
been observed in northern part of the block	level trend has been observed in western and	
and cover about 126 sq km area.	west central part of the block.	
Pre-Monsoon Water Level Trend (2010-19)	Post-Monsoon Water Level Trend (2010-19)	
PREMONSOON, GROUND WATER LEVEL TREND (MAY 2018-MAY 2019) KALMOUR BLOCK, HINGOLI DISTRICT	POSTMONBOON, GROUND WATER LEVEL TREND (NOV. 2010-NOV.2019) KALMNUR BLOCK, HINGOLI DISTRICT	
1 - +·	· · ·	
Ridminut Alometres	Alometres	
Stan C		
5. 20 .1		
Depth to Water Level trend, Legend May 2010 to May 2019 (m/year) Principal anufer DS	Depth to Water Level trend, Legend Nov. 2010 to Nov. 2019 (m/year) Principal acuiter	
Rise 0.4 to 0.6 No of aquifers Two	Rise 0.4 to 0.5 No of aquifers Two	
Rise 0.2 to 0.4 Area 948.91 sq km	Rise 0.2 to 0.4 Area 948.91 sq km	
Rise 0.0 to 0.2 Takika HQ	Rise 0.0 to 0.2 Taluka HQ .	
Fall 0.2 to 0.4 Monitoring well	Fail 0.2 to 0.2 Drainage - Fail 0.2 to 0.4 Monitoring well	

Declining trend @>0.2 m/year 126 sq. km.

2. Ground Water Issues

Increase in stage of ground water development: -

Declining water level Trend:

Premonsoon (2010-19): The decline in water level trend more than 0.2 m/year is observed in 126 sq. km. area covering 13% area of the block.

Premonsoon (2010-19): The decline in water level trend more than 0.2 m/year is observed in 136 sq. km. area covering 14% area of the block.

Low yielding Aquifer resulting poor sustainability:

Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also absence of primary porosity, results in poor sustainability of the aquifers. 48% area of the block has low yield potential (< 1 lps) and can sustain pumping only for 1-1.5 hrs.

Moderate Droughts:

Based on the rainfall analysis for the period 1998-2019; the average rainfall for the period 1998 to 2019 is 808.9 mm and the block experienced 7 times (32%) moderate droughts.

Ground Water Quality:

Nitrate Contamination: In shallow aquifer, out of 9 samples 1 sample i.e., 11% samples show nitrate contamination whereas in deeper aquifer, out of 22 samples 2 samples i.e., 9% of samples are also showing nitrate contamination ($NO_3 > 45 \text{ mg/L}$).

Fluoride contamination: In shallow aquifer, Fluoride contamination is found in Umra village (F=2.3 mg/L) whereas in deeper aquifer, out of 22 samples 4 samples i.e., 18% of samples are also showing Fluoride contamination (F >1.5mg/L).

3. AQUIFER DISPOSITION

3.1. Number of Aquifers	Basalt – Aquifer-I, Aquifer-II
3.2. Lithological disposition	

EC up to 750 μ S/cm is observed as continuous patch from north to east while EC values between 750 to 2250 μ S/cm are observed in major part of the block. Ground water is suitable for all purposes in major part of the block except Dongarkhada village that is affected by Nitrate contamination and village Umara is affected by Fluoride contamination (F=2.3 mg/L).

4.2 Aquifer II/Deeper Aquifer

EC up to 750 μ S/cm is observed in east central, eastern and western parts of the block while EC values between 750 to 2250 μ S/cm are found in major part of the block. Ground water is suitable for all purposes except Shivani and Waranga villages that are having nitrate more than 45 mg/L and Morwad, Wakodi, Shivani and Bolda villages are affected by Fluoride contamination (F>1.5 mg/L). These villages are not fit for drinking purpose without treatment.

5. GROUND WATER RESOURCE

5.1 Aquifer-I/ Shallow Aquifer	
Ground Water Recharge Worthy Area	948.91
(Sq. km.)	
Total Annual Ground Water Recharge (MCM)	149.74
Natural Discharge (MCM)	7.48
Net Annual Ground Water Availability (MCM)	142.26
Existing Gross Ground Water Draft for	81.24
irrigation (MCM)	
Existing Gross Ground Water Draft for	3.77
domestic and industrial water supply (MCM)	
Existing Gross Ground Water Draft for All	85.02
uses (MCM)	
Provision for domestic and industrial	12.22
requirement supply to 2025(MCM)	

Net Ground Water Availability for future			48.30			
irrigation development (MCM)						
Stage of Ground Water Development (%)			59.76			
Category			SAFE			
5.2 Aquifer-	II/Deeper A	quifer				
Semi confine	ed/Confined	l Aquifer (Basalt)				
Total Area	Mean	Av (Sy/S)	Av.	Resources	Resource	
(Sq. km.)	aquifer		Piezometric	above	within	
	thickness		Head (m)	confining	confining	
	(m)			layer (MCM)	Aquifer	
					(MCM)	
948.91	3.00	0.002/0.0000145	20.5	0.282	5.69	
6.0. GROUN	D WATER R	ESOURCE MANAGEME	NT			
Available Re	source (MC	M)	142.26			
Gross Annua	al Draft (MC	M)	85.02			
6.1. Supply	Side Manag	ement				
SUPPLY (MC	ΞM)					
Agricultural	Supply -GW	,	81.24			
Agricultural	Supply -SW		3.44			
Domestic Su	ipply - GW		3.77			
Domestic Su	ipply - SW		0.94			
Total Supply	1		89.39	89.39		
Area of Block (Sq. km.)			948.91			
Area suitable for Artificial recharge			49.66			
(Sq. km.)						
Type of Formation		Hard Rock	Soft Rock			
Area feasible for Artificial Recharge (WL		49.66				
>5mbgl) (Sq. km.)			-			
Volume of Unsaturated Zone (MCM)		99.32	-			
Average Specific Yield		0.02	-			
Volume of S	ub Surface S	Storage Space	10.20	_		
available for	Artificial Re	echarge (MCM)				
Surplus wate	er Available	(MCM)	1.11	-		
Proposed St	ructures		Percolation	Check Dam		
		Tank (Av. Gross (Av. Gross Capacity-10 TCI		Capacity-10 TCM		
			Capacity-100	* 3 fillings =	: 30 TCM)	
		TCM*2 filling	S			
		= 200 TCM)				
Number of Structures		4	11			
Volume of Water expected to be conserved /			0.6	0.24		
recharged @ 75% efficiency (MCM)						
Proposed Structures						
RTRWH Structures – Urban Areas						
Households to be covered (25% with 50			45,176			
m ² area)						
Total RWH potential (MCM)			1.9087			

Rainwater harvested / recharged @ 80%	1.5269	
runoff co-efficient	Economically not viable & Not	
	Recommended	
6.2. Demand Side Management		
Micro irrigation techniques		
Sugarcane crop area proposed for drip	16.95	
irrigation (sq. km.)		
Volume of Water Saving by use of drip (MCM)	9.66	
Surface Flooding req- 2.45 m. Drip Req1.88,		
WUE- 0.57 m		
Proposed Cropping Pattern change		
Irrigated area under Water Intensive Crop	Not proposed	
(ha)		
Water Saving by Change in Cropping Pattern	Nil	
Alternate Sources	Nil	
6.3. EXPECTED BENEFITS		
Net Ground Water Availability (MCM)	142.26	
Additional GW resources available after	0.83	
Supply side interventions (MCM)		
Ground Water Availability after Supply side	143.09	
intervention		
Existing Ground Water Draft for All Uses	85.02	
(MCM)		
GW draft after Demand Side Interventions	75.36	
(MCM)		
Present stage of Ground Water Development	59.76	
(%)		
Expected Stage of Ground Water	52.67	
Development after interventions (%)		
Other Interventions Proposed, if any		
Alternate Water Sources Available	Nil	
Recommendation		
Ground water development is recommended to bring the stage of ground water development		
from 52.67 % to 70%		
6.4. Development Plan		
Volume of water available for GWD to 70%	24.80	
(MCM)		
Proposed Number of DW (@ 1.5 ham for 90%	1488	
of GWR Available for development)		
Proposed Number of BW (@ 1 ham for 10%	248	
of GWR Available for development)		
Additional Area to be brought under assured	38.16	
GW irrigation with av. CWR of 0.65 m (sq.		
km.)		
Regulatory Measures	60 m	
Supply Side Interventions	Demand Side Interventions	

9.5 SENGAON BLOCK

1. SALIENT FEATURES				
1.1 Introduction				
SENGAON				
1241.21 Sq. km.				
60.00 Sq. km.				
Nil				
2,04,122				
Sub-Tropical				
898.9 mm				
885.1 mm				
808.8 mm				
Declining Trend 9.90 mm/year				
Probability of Normal and Excess Rainfall - 46% & 27%				
Probability of Drought -: 27% Moderate Drought				

EQUATION OF TREND LINE: y = -9.9011x + 941.61

1.3. Geomorphology, Soil & Geology			
Geomorphic Unit	Plateau Undissected and Slightly Dissected 0 to 1 m weathered		
	thickness, Plateau weathered with 1 to 5 m weathered thickness,		
	Escarpment Slope and Butte		
Soil	Clayey soil (shallow to very deep; 10 to >100 cm depth), Clay		
	loam, Sandy clay loam, Gravelly sandy loam, Gravelly Clay loam		
	and Silty Clay soils.		
Geology	Deccan Traps (Basalt)		
	Age: Late Cretaceous to Eocene		
1.4. Hydrology & Drainage			
Drainage	Kayadhu and Penganga Rivers		
Hydrology	Major	Completed: Nil	
(Reference Year: June 2018)	project	Ongoing: Nil	

· · · · · · · · · · · · · · · · · · ·		1	
		Medium	Completed: Nil
		project	Ongoing: Nil
		Irrigation	Completed: 07 irrigation projects; generating a
		Project	gross irrigation Potential of 2522 ha.
		(>250 Ha)	Ongoing: Nil
		Irrigation	Completed: 53; irrigation projects generating a
		Project	gross irrigation Potential of 1455 ha.
		(<250 Ha)	Ongoing: Nil
1.5. Land Use, Agriculture, Irrigation		& Cropping Pa	ttern
Geographical Area		1241.21 Sq. km.	
Forest Area		62.13 Sq. km.	
Cultivable Area		917.94 Sq. km.	
Net Sown Area		917.94 Sq. km.	
Double Cropped Area		201.33 Sq. km.	
Area under	Surface Water	3.40 Sq. km.	
Irrigation	Ground Water	38.00 Sq. km.	
Principal Crops		Crop Type	Area (Sq. km.)
(Reference year 2018)		Oil Seeds	632.53
		Pulses	339.18
		Cereals	70.10
		Cotton	44.97
		Sugarcane	0.11
Horticultural Crops		Citrus fruits	0.70
		Mango	0.20
		Others	0.30
1.6. Water Level Behaviour			
1.6.1. Aquifer-I/Shallow Aquifer			
Pre-Monsoon (May-2019)			Post-Monsoon (November-2019)
Water levels less than 10 mbgl have been observed			Water levels less than 5 mbgl have been observed
in western and is	olated patch in cent	ral part of the	in major part of the block; Water levels between
block; Water lev	els between 10 to	20 mbgl have	5 to 10 mbgl have been observed in isolated
been observed in major part of the block an		lock and cover	patches in central and western parts of the block
about 822.7 sq. km. area.			and cover about 20.38 sq. km. area.
Pre-Monsoon Water Level (May 2019)			Post-Monsoon Water Level (Nov. 2019)

Hydrograph shows Pre-monsoon falling water level trend @ 0.321 m/year and Post monsoon falling water level trend @ 0.213 m/year

C ,,	
1.8. Water Level Trend (2010-19)	
Pre-Monsoon trend	Post-Monsoon trend
Rising 0.0048 to 0.1145 m/year	Rising 0.0321 m/year
Falling 0.0066 to 0.5063 m/year	Falling 0.060 to 0.5142 m/year
Major part of the block shows declining trend up to	Declining water level trend up to 0.2 m/year has
0.2 m/year while rise in water level up to 0.2	been observed in northern and southern parts of
m/year has been observed in southern and isolated	the block while rise in water level up to 0.2
patch in west central parts of the block. Declining	m/year has been observed in isolated patch in
trend more than 0.2 m/ Year has been observed in	central part of the block. Declining trend > 0.2
eastern and western parts and isolated patch in	m/year has been observed in major part of the
central part of the block and cover about 181 sq.	block and cover 748 sq. km. area.
km. area.	

2. Ground Water Issues

Increased Stage of Ground Water:

The stage of ground water development has continuously increased from 27.46% (2004) to 50.07% (2017). Further, the draft for irrigation and number of irrigation wells have also increased from 44.16 MCM to 62.16 MCM and 3224 to 4065 wells implying increased utilization of ground water resources in agriculture sector.

Declining water level Trend : -

- Premonsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 181 sq. km. covering about 16 % area of the block.
- Postmonsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 748 sq. km. covering about 66 % area of the block.

Low rainfall and Drought: -

• Based on the rainfall analysis for the period 1998-2019; the average rainfall for the period 1998 to 2019 is 827.7 mm. In addition, the long-term rainfall analysis indicates a falling trend @ 9.9 mm/ year with 27% probability of moderate drought.

Ground Water Quality: -

Nitrate Contamination: In shallow aquifer, out of 8 samples 3 samples i.e., 38% samples show nitrate contamination.

Low yielding Aquifer resulting poor sustainability:

Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also absence of primary porosity, results in poor sustainability of the aquifers. Major part of the block (86% area) has low yield potential (< 1 lps) and can sustain pumping only for 1-1.5 hrs.

Specific yield/Storativity (S)	0.019 to 0.028 *0.00003 -0.00005						
Transmissivity (T)	*30 - 50 m ² /day 0.51 to 15.17 m ² /day						
Yield	up to 100 m ³ /day up to 2.5 lps						
Sustainability	2 to 4 hrs 1 to 3 hrs						
Suitability for drinking/ irrigation	Suitable for both Suitable for both						
	(except Nitrate affected (drinking and						
	villages for drinking) irrigation)						
	* values taken from Risod block, Washim District.						

4. GROUND WATER QUALITY

Phreatic Aquifer (Aquifer-I)	Semi confined/Confined Aquifer (Aquifer II)
------------------------------	---

4.1 Aquifer-I/ Shallow Aquifer

EC up to 750 μ S/cm is observed in northern part of the block and EC values between 750 to 2250 μ S/cm are observed in major part of the block. Ground water is suitable for all purposes in major part of the block except Songaon, Kutha and Hutta villages that are affected by nitrate contamination and in these villages ground water is not suitable for drinking purpose without treatment.

4.2 Aquifer II/Deeper Aquifer

EC up to 750 μ S/cm is observed in southern part of the block and EC values between 750 to 2250 μ S/cm are observed in major part of the block and Ground water is suitable for all purposes.

5. GROUND WATER RESOURCE

5.1 Aquifer-I/ Shallow Aquifer	
Ground Water Recharge Worthy Area (Sq. km.)	1181.21
Total Annual Ground Water Recharge (MCM)	135.31
Natural Discharge (MCM)	6.76
Net Annual Ground Water Availability (MCM)	128.55
Existing Gross Ground Water Draft for irrigation	62.15
(MCM)	
Existing Gross Ground Water Draft for domestic	2.20
and industrial water supply (MCM)	
Existing Gross Ground Water Draft for All uses	64.36
(MCM)	
Provision for domestic and industrial requirement	17.04
supply to 2025(MCM)	
Net Ground Water Availability for future irrigation	49.13
development (MCM)	

Stage of Gr	ound Water Develop	ment (%)	50.07						
Category			SAFE						
5.2 Aquife	r-II/Deeper Aquifer		1						
Semi confi	ned/Confined Aquife	r (Basalt)							
Total Area	Mean aquifer	Av. (S/Sy)	Av. Resources above			Resource			
(Sq. km.)	thickness (m)		Piezometric	confining la	ayer	within			
			Head (m)	(MCM)		confining			
						Aquifer			
						(MCM)			
1241.21	4.00	0.002/0.0000145	55.5	0.999		9.93			
6.0. GROU	ND WATER RESOURC	E MANAGEMENT	1						
Available R	esource (MCM)		128.55						
Gross Annu	ual Draft (MCM)		64.36						
6.1. Supply	Side Management								
SUPPLY (M	CM)		1						
Agricultura	l Supply -GW		62.15						
Agricultura	l Supply -SW		2.21						
Domestic S	Supply - GW		2.2						
Domestic S	Supply - SW		0.55						
Total Supp	ly		67.12						
Area of Blo	ock (Sq. km.)		1241.21						
Area suitat	ole for Artificial recha	rge (Sq. km.)	124.20						
Type of Fo	rmation		Hard Rock						
Area feasib	le for Artificial Recha	rge (WL >5mbgl)	124.20						
(Sq. km.)									
Volume of	Unsaturated Zone (N	ICM)	248.4						
Average Sp	ecific Yield		0.02						
Volume of	Sub Surface Storage S	Space available for	4.968						
Artificial Re	echarge (MCM)		2 79						
Surplus wa	ter Available (MCM)		2.78 Percelation Tank (Av. Check Dam (Av. Cross						
Proposed S	Structures		Percolation Tank (Av. Check Dam (Av. Gross						
			Gross Capaci	ty-100	Capacity-10 TCM * 3				
			TCM*2 filling	30 TCM)					
N					20				
Number of	Structures		10		28				
volume of	water expected to be	e conserved /	1.5		0.59				
recharged		_1V1)							
	uctures								
	s to be severed (25%	$\frac{15}{15}$	40.764						
	notential (MCM)	with JUIII alea)	1 6500						
	harvested / recharge	d @ 80% runoff co	1 22						
officient	narvesteu / recharge		Fronomically	not viable s	& Not				
Chiclent			Recommende	not viable d ad					
6.2. Dema	nd Side Management		Reconnicitu						
Micro irrig	ation techniques	•							
intere integ									

Sugarcane crop area proposed for drip irrigation	0.11
(sq. km.)	
Volume of Water Saving by use of drip (MCM)	0.06
Surface Flooding req- 2.45 m. Drip Req. – 1.88,	
WUE- 0.57 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop (ha)	Not proposed
Water Saving by Change in Cropping Pattern	Nil
Alternate Sources	Nil
6.3. EXPECTED BENEFITS	
Net Ground Water Availability (MCM)	128.55
Additional GW resources available after Supply	2.1
side interventions (MCM)	2.1
Ground Water Availability after Supply side	120.64
intervention	130.04
Existing Ground Water Draft for All Uses (MCM)	64.36
GW draft after Demand Side Interventions (MCM)	64.30
Present stage of Ground Water Development (%)	50.07
Expected Stage of Ground Water Development	49.22
after interventions (%)	
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
Recommendation	
Ground water development is recommended to brir	ng the stage of ground water development from
49.22% to 70%	
6.4. Development Plan	
Volume of water available for GWD to 70% (MCM)	27.15
Proposed Number of DW (@ 1.5 ham for 90% of	
GWR Available for development)	1629
Proposed Number of BW (@ 1 ham for 10% of	
GWR Available for development)	271
Additional Area to be brought under assured GW	41 77
irrigation with av. CWR of 0.65 m (sq. km.)	71.//
Regulatory Measures	60 m
Supply Side Interventions	Demand Side Interventions
Proposed locations for AR structures	Sugarcane Crop Area proposed for drip
	Irrigation

10. ANNEXURE

ANNEXURES

Annexure I: Salient Features of Ground Water Exploration (CGWB), Hingoli District	1
Annexure II: Details of GW exploration under of Hingoli district	2
Annexure III: Water level Data of monitoring wells in Hingoli District	3
Annexure IV: long term ground Water trend (2010-2019)	5
Annexure V: Results of Chemical analysis of ground water samples, Shallow aquifers (N	∕Jay
2019)	7
Annexure VI: Results of Chemical analysis of ground water samples, deeper aquifers	9
Annexure VII: Location of proposed Percolation tanks in Hingoli district	11
Annexure VIII: Location of proposed check dam in Hingoli district	12

S. No.	Taluka	Formation	Wells		Depth	SWL	Discharge (Ips)	Zones (mbgl)	
			EW	OW	Pz	(mbgl)	(mbgl)	(
1	Hingoli	Basalt	3	0	1	30- 200.2	3.8-112.4	0.14-3.77	29-31.50, 34-35, 40-47,56-61, 74-76.50,79-81, 164-167
2	Aundha (Nagnath)	Basalt	2	0	1	50- 200.2	3.1-55.5	0.14-0.99	17-18,21-22, 68-72,141-143,195-196
3	Kalmnuri	Basalt	4	0	0	200.2	49-66.4	0.07-3.12	16-18,44-48,59-63, 74-76,128-130.50
4	Basmath	Basalt	1	0	1	30- 200.2	112.4	0.38	16-18,116-119
Tota	l		10	0	3	30-200.2	3.1 to 112.4	0.14 to 3.77	16-196

Annexure I: Salient Features of Ground Water Exploration (CGWB), Hingoli District

SI. No	Agency	Block	Village	Typ e of Well	Topo sheet	Latitude	Longitude	Altitu de (mam sl)	Year	Depth drilled (mbgl)	Depth of casing (mbgl)	Aquifer zones encountered (mbgl)	Aquife r	SWL (mbgl)	Discharge (lps)	DD(m)	Transmissivity (m²/day)
1	CGWB	Hingoli	Belura	EW	56E/1	19.872	77.204	513	2004-05	200.2	5.4	34-35, 56-61	F VB & MB	43.5	0.99	35.47	2.15
2	CGWB	Hingoli	Deulgaon Rama	EW	56E/2	19.727	77.087	472	2004-05	200.2	5.5	40 -47, 164 -167	F VB	39.4	3.77	-	
3	CGWB	Hingoli	Sawarkheda	EW	56E/2	19.704	77.191	444	2004-05	200.2	22.25	29 -31.5, 74 -76.5	F VB	112.4	1.73	-	
4	CGWB	Kalmnuri	Shivani (Kh)	EW	56E/6	19.685	77.280	450	2004-05	200.2	5.4	79 -81	VB	49	0.07	-	
5	CGWB	Kalmnuri	Wakodi	EW	56E/6	19.687	77.420	423	2004-05	200.2	5.5	44 -48, 128 -130.5	F VB	61.4	0.38	-	
6	CGWB	Kalmnuri	Waranga	EW	56E/7	19.436	77.422	442	2004-05	200.2	5.5	16 -18, 74 -76	F VB	66.4	0.38	-	
7	CGWB	Kalmnuri	Bolda	EW	56E/6	19.5408	77.261	436	2004-05	200.2	5.5	59-63	F MB	40.39	3.12	19.75	15.17
8	CGWB	Aundha	Purjal	EW	56E/3	19.4533	77.0177	414	2004-05	200.2	5.4	17 -18, 68 -72, 195 -196, 141 -143	W V & F MB	6.53	0.99	46.8	0.51
9	CGWB	Aundha	Undegaon	EW	56A/14	19.500	76.886	400	2004-05	200.2	11.4	21 -22	F VB	55.5	0.14	-	
10	CGWB	Basmath	Asegaon	EW	56B/9	19.275	77.201	367	2004-05	200.2	5.5	16 -18, 116 -119	FV& MB	112.4	0.38	-	
11	CGWB	Hingoli	Basamba	Pz	56E/1	19.770	77.183	463	1997-98	30	5.5	6.2-9.2	FMB	3.8	0.14	-	
12	CGWB	Aundha	Aundha	Pz	56E/4	19.541	77.041	470	1997-98	50	30	21-29.50, 45-48	WF &FMB	3.1	traces	-	
13	CGWB	Basmath	Barashiv	Pz	56A/15	19.433	76.958	408	1997-98	30	3.35	-	-	-	-	-	
14	GSDA	Sengaon	Pankanhergaon	Pz	56A/13	19.875	76.833	522	2000	45	12	9-10.50	WFB	10.25	traces	-	
15	GSDA	Sengaon	Kapad singi	Pz	56A/9	19.841	76.630	516	2000	30	6.1	25-27	WFB	25	0.07	-	
16	GSDA	Hingoli	Adgaon	Pz	56E/6	19.812	77.183	503.1 5	2000	30	6.1	10-11.50	WFB	11		-	
17	GSDA	Sengaon	Sakhra	Pz	56A/13	19.835	76.758	535.1	2000	30	6.1	18-21	WFB	18		-	
18	GSDA	Sengaon	Goregaon	Pz	56E/1	19.918	77.031	506	2000	26	5	11.50-12	FMB	4.6	0.11	-	

Annexure II: Details of GW exploration under of Hingoli district

S. No.	Block	Village	Agency	Latitude	Longitude	Elevation	DTW (mbgl)	
						(amsl)	May- 19	Nov-19
1	Hingoli	Kanhergaon	CGWB	19.933	77.150	509	12.5	6.2
2	Hingoli	Narsi	CGWB	19.754	77.014	467	10.5	-
3	Basmath	Babulgaon	CGWB	19.267	77.133	401	10	2.7
4	Sengaon	Hatta	CGWB	19.767	76.800	508	13.5	2.55
5	Aundha	Aundha Nagnath	CGWB	19.542	77.042	469	7.15	6.3
6	Aundha	Barashiv-1 (Jawla bazar)	CGWB	19.439	76.958	405	10.8	5.95
7	Basmath	Chondi Amba-1	CGWB	19.433	77.150	412	10.4	-
8	Basmath	Aral-1	CGWB	19.333	76.983	392	20.7	6.4
9	Kalmnuri	Kalmnuri-1 (Morwadi)	CGWB	19.667	77.317	462	8.29	3.85
10	Aundha	Hivra	CGWB	19.637	77.083	458.9	13.7	3.1
11	Kalmnuri	Umara	CGWB	19.693	77.258	465.3	3.95	2.7
12	Kalmnuri	Dongarkada	CGWB	19.378	77.375	394.3	11.4	2.4
13	Basmath	Chikhli	CGWB	19.321	76.960	399.8	20.84	3.35
14	Basmath	Palasgaon	CGWB	19.313	77.233	395.8	15.5	-
15	Basmath	Kautha-Khudnapur	CGWB	19.362	77.190	391.1	18	3.45
16	Basmath	Kurundha	CGWB	19.406	77.231	394.3	14.9	2.9
17	Kalmnuri	Bolda	CGWB	19.548	77.275	433.7	7.4	4.1
18	Sengaon	Khutha	CGWB	19.828	76.859	503.7	13.9	5.35
19	Sengaon	Jambharun-Rodge	CGWB	19.771	76.957	493.7	15.5	3.65
20	Hingoli	Sawad	CGWB	19.737	77.061	471.3	5.2	-
21	Hingoli	Adgaon	CGWB	19.896	77.164	512.1	13	3.55
22	Kalmnuri	Salwa	CGWB	19.608	77.384	436	12	2.5
23	Kalmnuri	Balapur Akhada-1	CGWB	19.542	77.411	430	11.15	2.6
24	Kalmnuri	Tavha	CGWB	19.521	77.340	436.3	11.35	4
25	Hingoli	Hingoli-1	CGWB	19.709	77.154	452	11.3	3.5
26	Basmath	Vai Gorakhnath	CGWB	19.450	77.138	420.4	12.65	4.7
27	Basmath	Basmat Shivar	CGWB	19.326	77.126	407.7	12.8	7.1
28	Sengaon	Sengaon	CGWB	19.801	76.885	499.1	14.8	2.05
29	Basmath	Loni Bk	GSDA	19.248	77.112	396	14.1	0.8
30	Basmath	Hayat Nagar	GSDA	19.275	77.069	403	11.1	5.5
31	Basmath	Takalgaon	GSDA	19.293	77.179	375.9	16.5	2
32	Basmath	Malota	GSDA	19.327	77.211	381	16.1	2.6
33	Basmath	Basmath	GSDA	19.328	77.158	396.3	13.9	1.8
34	Basmath	Aral	GSDA	19.334	76.997	387	15.7	9
35	Basmath	Khandegaon	GSDA	19.344	77.101	401.4	20.9	8
36	Basmath	Borala	GSDA	19.371	77.181	391	17.6	7
37	Basmath	Sawangi bk	GSDA	19.378	76.896	388	20.2	4.2
38	Kalmnuri	Redgaon	GSDA	19.392	77.303	393	11.4	2.7
39	Kalmnuri	Bhategaon	GSDA	19.392	77.391	406.7	7.3	2.5
40	Aundha	Tapowan	GSDA	19.424	76.933	392	11.4	4
41	Aundha	Jawala Bazar II	GSDA	19.461	76.979	403.7	12.8	2.2
42	Aundha	Shiradh Shahapur	GSDA	19.469	77.095	433.3	9.7	1.7
43	Aundha	Salna	GSDA	19.525	76.938	401	9.2	1.6
44	Kalmnuri	Akhada Balapur	GSDA	19.533	77.419	424.9	11.7	3
45	Kalmnuri	Bolda	GSDA	19.540	77.261	435	11.1	2.6
46	Aundha	Aundha	GSDA	19.542	77.042	469	9.1	1.8
47	Aundha	Ajanwada	GSDA	19.579	77.025	489	13.4	1
48	Aundha	Suregaon	GSDA	19.583	77.076	455.2	9.6	1.8
49	Kalmnuri	Nandapur	GSDA	19.597	77.243	437	12.9	5.2
50	Kalmnuri	Arati	GSDA	19.627	77.363	449.4	12.8	0.5
51	Kalmnuri	Тирра	GSDA	19.629	77.419	444	11.8	2.5

Annexure III: Water level Data of monitoring wells in Hingoli District

S. No.	Block	Village	Agency	Latitude	Longitude	Elevation	DTW	(mbgl)
						(amsl)	May-	Nov-19
							19	
52	Sengaon	Pimpri Lingi	GSDA	19.639	76.893	411	8.1	0.9
53	Kalmnuri	Shivani bk	GSDA	19.655	77.417	438.7	10.1	2.6
54	Kalmnuri	Bibgavhan	GSDA	19.661	77.373	479	9.9	0.2
55	Hingoli	Karanjala	GSDA	19.685	77.013	482	9.4	2.8
56	Hingoli	Hingoli	GSDA	19.717	77.147	466.7	13.4	1.5
57	Sengaon	Limbala Tanda	GSDA	19.739	76.769	455.3	9.3	2.8
58	Sengaon	Hatta II	GSDA	19.754	76.800	502	9.85	1.3
59	Hingoli	Narsi namdeo	GSDA	19.755	77.013	469	11.7	4.3
60	Hingoli	Sarkali	GSDA	19.771	76.989	470	11.2	3.3
61	Hingoli	Idoli	GSDA	19.776	77.073	460	13.4	1.2
62	Hingoli	Chincholi Rumna	GSDA	19.776	77.248	495	8.2	0.9
63	Sengaon	Sonesangvi	GSDA	19.786	76.685	469.1	11.2	1.9
64	Hingoli	Gadibori	GSDA	19.799	77.377	441	8.6	2.5
65	Hingoli	Kalgaon	GSDA	19.801	77.166	480.3	5.3	1.6
66	Hingoli	Limbi	GSDA	19.804	77.293	472.7	11.2	2
67	Sengaon	Khadki	GSDA	19.806	76.681	467.8	10.9	2.6
68	Hingoli	Malhiwara	GSDA	19.827	77.171	528	12.3	1.5
69	Sengaon	Ban	GSDA	19.829	76.519	484	11.4	0.3
70	Sengaon	Dhanora Bk	GSDA	19.829	76.596	466	10.3	6
71	Sengaon	Sakhara	GSDA	19.838	76.767	536	9	2.3
72	Sengaon	Kapadsingi	GSDA	19.841	76.648	482	8.2	3.2
73	Sengaon	Ajegaon	GSDA	19.875	76.928	504	9	1.5
74	Hingoli	Bhatsawangi Tanda	GSDA	19.879	77.293	450.3	8.4	2
75	Hingoli	Adgaon	GSDA	19.894	77.183	504	11.1	2.3
76	Sengaon	Sawana	GSDA	19.925	77.086	483.3	10.1	1.8
77	Sengaon	Goregaon II	GSDA	19.925	77.031	507.9	10.5	4.2
78	Sengaon	Shegaon II	GSDA	19.946	76.838	555	13.4	3.5
79	Sengaon	Bhagwati	GSDA	19.996	77.040	489.7	-	3
80	Sengaon	Kolsa	CGWB	19.817	76.867	496	9	4.2

S.No.	Block	Village	Agency	Depth of	Prem	onsoon	Postmonsoon		
				Well	trend (trend (m/year)		m/year)	
					Rise	Fall	Rise	Fall	
1	Aundha	Aundha (Nagnath)	CGWB	8.5	0.0502	-	-	-0.0712	
2	Aundha	Barashiv-1	CGWB	14	-	-0.2240	-	-0.1676	
3	Aundha	Tapowan	GSDA	11.5	-	-0.1170	-	-0.1839	
4	Aundha	Jawala Bazar I	GSDA	11	-	-0.4524	-	-0.1429	
5	Aundha	Shiradh Shahapur	GSDA	10.1	0.0048	-	-	-0.1630	
6	Aundha	Salna	GSDA	10.1	0.1667	-	-	-0.2455	
7	Aundha	Ajanwada	GSDA	14.9	-	-0.1561	-	-0.2248	
8	Aundha	Suregaon	GSDA	9.6	-	-0.3291	-	-0.1182	
9	Basmath	Babulgaon	CGWB	10	-	-0.3652	0.3149	-	
10	Basmath	Aral-1	CGWB	17.65	-	-1.5270	-	-0.2675	
11	Basmath	Loni Bk	GSDA	15	-	-0.6733	-	-0.2600	
12	Basmath	Hayat Nagar	GSDA	11.3	-	-0.2309	-	-0.3436	
13	Basmath	Takalgaon	GSDA	17.6	-	-0.3539	-	-0.2588	
14	Basmath	Malota	GSDA	17.3	-	-0.2418	-	-0.3109	
15	Basmath	Basmath	GSDA	16.9	0.4733	-	0.1118	-	
16	Basmath	Khandegaon	GSDA	22.1	-	-1.9524	-	-0.9376	
17	Basmath	Borala	GSDA	21.1	-	-0.7061	-	-0.6455	
18	Basmath	Sawangi bk	GSDA	25.1	-	-1.0761	-	-0.5434	
19	Hingoli	Kanhergaon	CGWB	12.5	-	-0.0938	-	-0.1190	
20	Hingoli	Narsi	CGWB	10.5	-	-0.1096	-	-0.7877	
21	Hingoli	Adgaon	CGWB	13	-	-0.6036	0.0018	-	
22	Hingoli	Karanjala	GSDA	9.4	-	-0.0030	0.1297	-	
23	Hingoli	Hingoli	GSDA	15.1	-	-0.8788	-	-0.2094	
24	Hingoli	Sarkali	GSDA	11.2	-	-0.3067	-	-0.2909	
25	Hingoli	Idoli	GSDA	14.2	-	-0.4109	0.0970	-	
26	Hingoli	Chincholi Rumna	GSDA	9.5	-	-0.0218	0.0088	-	
27	Hingoli	Gadibori	GSDA	9.7	-	-0.0612	-	-0.2655	
28	Hingoli	Kalgaon	GSDA	5.8	0.0782	-	-	-0.2442	
29	Hingoli	Limbi	GSDA	12.7	-	-0.0303	-	-0.3679	
30	Hingoli	Malhiwara	GSDA	12.3	-	-0.2121	-	-0.0661	
31	Hingoli	Bhatsawangi Tanda	GSDA	9.5	-	-0.5109	-	-0.1721	
32	Kalmnuri	Kalmnuri-1	CGWB	8.3	-	-0.3632	-	-0.2092	
33	Kalmnuri	Bolda	CGWB	9.8	0.2946	-	0.6386	-	
34	Kalmnuri	Redgaon	GSDA	13.2	0.5145	-	-	-0.0964	
35	Kalmnuri	Bhategaon	GSDA	8.4	0.0788	ŀ	-	-0.0976	
36	Kalmnuri	Akhada Balapur	GSDA	11.7	0.0182	ŀ	-	-0.1218	
37	Kalmnuri	Nandapur	GSDA	13.5	0.0821	-	-	-0.1830	
38	Kalmnuri	Arati	GSDA	17	-	-0.2636	0.0382	-	
39	Kalmnuri	Тирра	GSDA	12.6	0.3158	-	-	-0.2394	
40	Kalmnuri	Shivani bk	GSDA	11	-	-0.0200	-	-0.1727	
41	Kalmnuri	Bibgavhan	GSDA	10.8	0.0764	-	-	-0.1158	
42	Sengaon	Hatta	CGWB	13.5	-	-0.3259	-	-0.2136	
43	Sengaon	Khutha	CGWB	15	-	-0.0938	-	-0.4429	
44	Sengaon	Pimpri Lingi	GSDA	9.9	0.1145	-	-	-0.1303	
45	Sengaon	Limbala Tanda	GSDA	9.45	-	-0.0339	-	-0.3000	
46	Sengaon	Sonesangvi	GSDA	11.2	-	-0.1833	-	-0.2430	
47	Sengaon	Khadki	GSDA	12.5	-	-0.0067	-	-0.2873	
48	Sengaon	Ban	GSDA	15.3	-	-0.5064	-	-0.1261	
49	Sengaon	Dhanora Bk	GSDA	10.3	-	-0.1102	-	-0.1830	
50	Sengaon	Sakhara	GSDA	9	0.0048	-	-	-0.2612	
51	Sengaon	Kapadsingi	GSDA	8.6	-	-0.0400	-	-0.1279	

Annexure IV: long term ground Water trend (2010-2019)

S.No.	Block	Village	Agency	Depth of Well	Premonsoon trend (m/year)		Postm trend (onsoon m/year)	
					Rise	Fall	Rise	Fall	
52	Sengaon	Ajegaon	GSDA	9	-	-0.1242	0.0321	-	
53	Sengaon	Goregaon I	GSDA	11.5	-	-0.1935	-	-0.5107	
54	Sengaon	Sawana	GSDA	10.1	-	-0.1103	-	-0.3115	
55	Sengaon	Shegaon I	GSDA	12.75	-	-0.0208	-	-0.5143	
56	Sengaon	Bhagwati	GSDA	10.5	-	-0.1650	-	-0.0606	
57	Sengaon	Kolsa	CGWB	9	-	-0.0219	-	-0.1942	

S.No.	Block	Village	Agency	Source	рН	EC	TDS	TH	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F	iron	SAR	RSC
						μs/cm							Mg,	/L							
1	Basmath	Vai Gorakhnath	CGWB	DW	8.1	615	326	260	45	35	17	1.7	0	178	34	54	92.00	0.26	-	0.47	-2.22
2	Sengaon	Hatta	CGWB	DW	7.4	732	384	362	100	27	23	0.9	0	303	21	42	80.00	0.28	-	0.53	-2.24
3	Basmath	Chondi Amba-1	CGWB	DW	7.7	774	407	342	92	27	28	6.9	0	303	46	53	50.00	0.32	-	0.65	-1.83
4	Basmath	Babulgaon	CGWB	DW	7.6	1118	548	505	155	28	35	2.3	0	309	93	79	92.00	0.33	-	0.68	-5.00
5	Sengaon	Jambharun-Rodge	CGWB	DW	7.6	744	396	347	53	51	29	3.5	0	226	81	75	7.00	1.20	-	0.69	-3.15
6	Kalmnuri	Balapur Akhada-1	CGWB	DW	7.4	314	167	102	33	5	16	5.8	0	137	14	24	4.00	0.28	-	0.70	0.21
7	Kalmnuri	Toha	CGWB	DW	8.2	738	394	316	37	53	35	2.4	0	280	48	64	19.00	0.52	-	0.87	-1.66
8	Kalmnuri	Dongarkada	CGWB	DW	7.5	1223	642	525	45	98	50	0.9	0	309	103	134	68.00	0.28	-	0.95	-5.28
9	Basmath	Aral-1	CGWB	DW	8.1	726	381	311	57	40	38	2.3	0	178	58	56	92.00	0.35	-	0.95	-3.24
10	Basmath	Palasgaon	CGWB	DW	7.7	805	422	321	22	63	50	4.0	0	250	48	69	86.00	0.43	-	1.23	-2.23
11	Sengaon	Khutha	CGWB	DW	8.1	497	263	173	35	21	38	1.2	0	155	34	39	78.00	0.61	-	1.27	-0.90
12	Hingoli	Hingoli-1	CGWB	DW	7.9	971	508	347	43	57	60	1.9	0	416	63	80	16.00	1.30	-	1.42	-0.02
13	Aundha	Aundha Nagnath	CGWB	DW	8.2	706	320	235	45	29	52	23.4	0	226	68	52	22.00	0.15	-	1.49	-0.94
14	Kalmnuri	Bolda	CGWB	DW	7.6	654	346	235	41	32	62	1.4	0	357	19	45	16.00	0.42	-	1.76	1.20
15	Basmath	Basmat Shivar	CGWB	DW	7.7	1636	867	571	102	75	121	2.5	0	232	172	196	150.00	0.45	-	2.22	-7.51
16	Kalmnuri	Umara	CGWB	DW	8.3	987	518	352	57	50	101	4.2	0	398	88	114	38.00	2.30	-	2.35	-0.43
17	Hingoli	Sawad	CGWB	DW	8	1005	532	321	53	45	106	2.9	0	262	76	146	88.00	0.57	-	2.60	-2.07
18	Aundha	Songaon	CGWB	DW	7.8	987	523	316	78	29	107	1.6	0	404	43	156	46.00	0.66	-	2.63	0.34
19	Basmath	Kurundha	CGWB	DW	8	1070	598	265	51	33	107	3.5	0	297	115	75	62.00	0.55	-	2.87	-0.38
20	Basmath	Chikhli	CGWB	DW	7.7	786	412	179	47	15	101	3.7	0	315	34	35	88.00	0.52	-	3.28	1.62
21	Basmath	Lon Bk.	GSDA	DW	7.2	3000	1950	520	109	100	-	-	-	-	580	51	42.22	0.43	0.20	-	-
22	Basmath	Hayatnagar	GSDA	DW	7.2	2300	1500	540	78	112	-	-	-	-	400	10	38.76	0.31	0.06	-	-
23	Basmath	Khandegaon	GSDA	DW	7.8	973	632	472	157	77	-	-	-	-	220	27	41.17	0.61	0.14	-	-
24	Basmath	Takalgaon	GSDA	DW	7.9	805	523	400	83	77	-	-	-	-	184	22	39.71	0.46	0.30	-	-
25	Basmath	Sawangi Bk.	GSDA	DW	7.0	4380	2840	664	240	96	-	-	-	-	576	398	70.81	1.57	1.23	-	-
26	Hingoli	Gadibori	GSDA	DW	7.7	233	151	212	41	42	-	-	-	-	174	25	18.42	0.23	0.02	-	-
27	Hingoli	Narsi Namdeo	GSDA	DW	8.5	1032	671	164	38	31	-	-	-	-	71	7	43.92	0.46	0.34	-	-
28	Hingoli	Kalgaon	GSDA	DW	8.3	503	327	84	18	16	-	-	-	-	106	25	1.83	1.14	0.24	-	-
29	Hingoli	Malhiwara	GSDA	DW	8.2	501	325	76	29	11	-	-	-	-	41	17	34.78	0.49	0.42	-	-

Annexure V: Results of Chemical analysis of ground water samples, Shallow aquifers (May 2019)

S.No.	Block	Village	Agency	Source	рН	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	iron	SAR	RSC
						µs/cm	m Mg/L														
30	Aundha	Salna	GSDA	DW	7.5	1023	660	344	96	60	-	-	-	-	150	21	7.46	0.53	0.48	-	-
31	Aundha	Suregaon	GSDA	DW	8.3	1046	679	172	48	30	-	-	-	-	158	31	11.73	0.42	0.02	-	-
32	Aundha	Tapowan	GSDA	DW	8.3	746	484	216	80	33	-	-	-	-	120	19	37.62	1.09	0.05	-	-
33	Kalmnuri	Bolda	GSDA	DW	7.7	1430	930	360	96	64	-	-	-	-	205	15	35.41	0.78	0.11	-	-
34	Kalmnuri	Bibgavhan	GSDA	DW	7.9	459	298	242	78	40	-	-	-	-	63	8	4.83	0.05	0.09	-	-
35	Kalmnuri	Тирра	GSDA	DW	7.8	1327	863	323	47	67	-	-	-	-	208	26	33.48	0.04	0.13	-	-
36	Kalmnuri	Nandapur	GSDA	DW	7.9	1456	947	500	56	108	-	-	-	-	160	18	34.95	0.28	0.15	-	-
37	Sengaon	Ban	GSDA	DW	8.2	1004	929	510	93	99	-	-	-	-	65	55	44.91	0.19	0.06	-	-
38	Sengaon	Khadaki	GSDA	DW	8.1	839	753	178	86	22	-	-	-	-	41	7	37.41	0.26	0.98	-	-
39	Sengaon	Ajegaon	GSDA	DW	7.8	642	417	162	98	16	-	-	-	-	24	15	41.27	0.64	0.04	-	-
40	Sengaon	Goregaon	GSDA	DW	8.1	1410	916	118	99	5	-	-	-	-	111	44	36.76	0.19	0.66	-	-

S. No.	Block	Village	Agency	District	Туре	рΗ	EC	TDS	TH	Са	Mg	Na	К	CO3	HCO₃	Cl	SO ⁴	NO ₃	F	Iron	SAR	RSC
							µs/cm		Mg/L													
1	Hingoli	Belura	CGWB	Hingoli	EW	7.5	1440	898	160	58	4	249	4	Nil	92	241	249	38.00	8.90	-	8.52	-1.69
2	Hingoli	Deulgaon Rama	CGWB	Hingoli	EW	7.6	2200	1362	165	62	2	426	4	Nil	49	521	305	7.00	10.70	-	14.50	-2.50
3	Hingoli	Sawarkheda	CGWB	Hingoli	EW	7.6	1700	1042	280	98	8	260	4	Nil	73	376	244	7.00	9.20	-	6.78	-4.40
4	Kalmnuri	Shivani (Kh)	CGWB	Hingoli	EW	7.8	900	542	150	42	11	136	3	Nil	232	92	81	57.00	5.22	-	4.82	0.80
5	Kalmnuri	Wakodi	CGWB	Hingoli	EW	7.8	550	331	30	10	1	109	3	Nil	201	60	1	42.00	4.52	-	8.78	2.69
6	Kalmnuri	Waranga	CGWB	Hingoli	EW	7.7	590	343	180	50	13	52	0.8	Nil	189	50	21	60.00	1.30	-	1.69	-0.50
7	Kalmnuri	Bolda	CGWB	Hingoli	EW	8	830	476	140	22	21	124	2	Nil	214	113	63	18.00	6.88	-	4.53	0.71
8	Aundha	Purjal	CGWB	Hingoli	EW	8	1080	648	180	48	15	164	2	Nil	214	142	149	12.00	8.52	-	5.29	-0.09
9	Aundha	Undegaon	CGWB	Hingoli	EW	7.8	910	532	70	22	4	175	3	Nil	299	78	87	11.00	3.54	-	9.00	3.50
10	Basmath	Asegaon	CGWB	Hingoli	EW	7.7	740	452	65	2	140	2	2	Nil	146	117	46	48.00	2.53	-	0.04	1.09
11	Sengaon	Bhandari	GSDA	Hingoli	BW	8.2	409	266	68	26	10	-	1	-	-	48	6	13.74	0.88	0.32	-	-
12	Sengaon	Garkheda	GSDA	Hingoli	BW	8.0	998	650	90	62	7	-	1	-	-	125	13	5.37	0.91	0.23	-	-
13	Sengaon	Gondala	GSDA	Hingoli	BW	8.2	660	429	334	94	58	-	-	-	-	61	14	8.76	0.68	0.59	-	-
14	Sengaon	Goregaon	GSDA	Hingoli	BW	8.5	1350	877	82	67	4	-	1	-	-	79	29	40.18	0.37	0.13	-	-
15	Sengaon	Gugulpimpri	GSDA	Hingoli	BW	8.4	2121	1378	64	46	4	-	-	-	-	79	33	13.28	0.94	0.48	-	-
16	Sengaon	Kadoli	GSDA	Hingoli	BW	7.7	2054	1335	182	45	33	-	-	-	-	114	39	5.32	0.59	0.34	-	-
17	Sengaon	Kahakar Bk	GSDA	Hingoli	BW	8.4	890	579	104	55	11	-	-	-	-	115	35	39.49	0.49	0.54	-	-
18	Sengaon	Kelsula	GSDA	Hingoli	BW	7.9	1443	938	64	98	8	-	-	-	-	172	26	6.16	0.90	0.26	-	-
19	Sengaon	Khudaj	GSDA	Hingoli	BW	7.9	404	263	348	90	63	-	-	-	-	32	14	3.52	0.59	0.33	-	-
20	Sengaon	Lingdari	GSDA	Hingoli	BW	8.2	918	597	188	114	18	-	-	-	-	112	18	11.58	0.79	0.48	-	-
21	Sengaon	Ridhora	GSDA	Hingoli	BW	8.1	695	452	82	45	9	-	-	-	-	76	34	35.52	0.89	0.37	-	-
22	Sengaon	Salegaon	GSDA	Hingoli	BW	7.4	889	578	94	53	10	-	-	-	-	64	25	14.18	0.17	0.70	-	-
23	Sengaon	Segaon	GSDA	Hingoli	BW	7.3	1179	766	142	62	99	-	-	-	-	72	30	10.18	0.80	0.91	-	-
24	Sengaon	Tapowan	GSDA	Hingoli	BW	8.0	1196	777	164	34	32	-	-	-	-	103	15	8.29	0.83	0.06	-	-
25	Sengaon	Walana	GSDA	Hingoli	BW	8.3	1445	993	402	78	79	-	-	-	-	78	46	10.94	0.67	0.71	-	-
26	Kalmnuri	Masod	GSDA	Hingoli	BW	7.7	993	645	280	64	52	-	-	-	-	145	29	30.50	0.35	0.02	-	-
27	Kalmnuri	Morgavhan	GSDA	Hingoli	BW	7.8	1009	655	300	112	46	-	-	-	-	120	32	28.66	1.09	0.11	-	-
28	Kalmnuri	Morwad	GSDA	Hingoli	BW	7.9	1724	1121	337	71	65	-	-	-	-	238	20	27.49	1.71	0.02	-	-
29	Kalmnuri	Nandapur	GSDA	Hingoli	BW	7.6	773	502	280	32	60	-	-	-	-	70	6	33.57	0.01	0.03	-	-

Annexure VI: Results of Chemical analysis of ground water samples, deeper aquifers

S. No.	Block	Village	Agency	District	Туре	рН	EC	TDS	TH	Са	Mg	Na	К	CO3	HCO ₃	Cl	SO ⁴	NO ₃	F	Iron	SAR	RSC
							μs/cm							Mg	/L							
30	Kalmnuri	Palodi	GSDA	Hingoli	BW	7.8	778	506	100	32	17	-	-	-	-	70	7	8.95	0.99	0.02	-	-
31	Kalmnuri	Pardi	GSDA	Hingoli	BW	7.7	837	544	280	48	56	-	-	-	-	110	10	36.28	0.74	0.19	-	-
32	Kalmnuri	Ramwadi	GSDA	Hingoli	BW	7.8	775	504	190	80	27	-	-	-	-	60	7	27.12	1.17	0.02	-	-
33	Kalmnuri	Renapur	GSDA	Hingoli	BW	7.8	630	410	200	48	37	-	-	-	-	100	6	34.33	0.37	0.09	-	-
34	Kalmnuri	Sawangi	GSDA	Hingoli	BW	7.5	829	539	150	96	13	-	-	-	-	80	12	26.64	0.86	0.04	-	-
35	Kalmnuri	Sodegaon	GSDA	Hingoli	BW	7.8	1670	1086	440	80	87	-	-	-	-	230	25	34.65	0.54	0.01	-	-
36	Kalmnuri	Sukalivir	GSDA	Hingoli	BW	7.9	1869	1215	301	48	61	-	-	-	-	130	43	31.52	1.49	0.02	-	-
37	Kalmnuri	Takalgavhan	GSDA	Hingoli	BW	7.7	633	412	280	80	49	-	-	-	-	70	5	34.44	0.15	0.10	-	-
38	Kalmnuri	Tondapur	GSDA	Hingoli	BW	7.8	1119	727	220	64	<u>38</u>	-	-	-	-	130	75	<u>27.79</u>	0.53	0.02	-	-
39	Kalmnuri	Tovha	GSDA	Hingoli	BW	7.8	734	477	200	64	33	-	-	-	-	50	7	28.78	0.69	0.02	-	-
40	Kalmnuri	Тирра	GSDA	Hingoli	BW	7.9	1135	738	160	62	24	-	-	-	-	131	26	33.75	0.03	0.21	-	-
41	Kalmnuri	Umardarawadi	GSDA	Hingoli	BW	7.8	523	340	304	72	56	-	-	-	-	45	12	29.03	0.23	1.88	-	-
42	Kalmnuri	Wai	GSDA	Hingoli	BW	7.9	1471	956	560	56	122	-	-	-	-	255	17	35.91	0.01	0.02	-	-
43	Kalmnuri	Yelki	GSDA	Hingoli	BW	8.0	418	272	150	86	15	-	-	-	-	80	121	30.66	0.02	0.43	-	-
44	Hingoli	Chorjawala	GSDA	Hingoli	BW	8.4	1157	752	300	64	57	-	-	-	-	65	56	18.78	0.23	0.07	-	-
45	Hingoli	Gadibori	GSDA	Hingoli	BW	8.4	618	401	188	90	24	-	-	-	-	268	26	27.23	0.84	0.22	-	-
46	Hingoli	Idoli	GSDA	Hingoli	BW	8.0	1601	1040	220	<u>32</u>	46	-	-	-	-	48	90	<u>24.36</u>	1.28	0.19	-	-
47	Hingoli	Kanadkheda Bk.	GSDA	Hingoli	BW	7.7	1204	782	80	64	4	-	-	-	-	80	31	42.56	0.89	0.50	-	-
48	Hingoli	Narsi Namdeo	GSDA	Hingoli	BW	8.5	712	462	222	46	43	-	-	-	-	64	49	38.45	0.45	0.17	-	-
49	Hingoli	Pangri	GSDA	Hingoli	BW	8.2	1211	787	264	61	49	-	-	-	-	251	32	47.55	1.03	0.44	-	-
50	Hingoli	Santuk Pimpari	GSDA	Hingoli	BW	8.0	842	547	226	56	41	-	-	-	-	28	94	47.12	0.42	0.04	-	-
51	Hingoli	Sarkali	GSDA	Hingoli	BW	7.9	910	591	320	50	66	-	-	-	-	35	76	31.30	0.13	1.14	-	-

S.No.	Village	Taluka	S.No.	Village	Taluka
	Takalgavhan Tarf		23	HINGOLI	Hingoli
1	Shahapur	Aundha	24	Bhogaon	Hingoli
2	Mahalajgaon	Aundha	25	Bori Shikari	Hingoli
3	Lakh	Aundha	26	Parola	Hingoli
4	Sirala Tanda (n.v.)	Aundha	27	Parda	Hingoli
5	Turk Pimpari	Aundha	28	Kasabe Dhawanda	Kalmnuri
6	Tamtitanda (n.v.)	Aundha	29	Nandapur	Kalmnuri
	Pimpaldari Tarf		30	Krishnapur Tarf Jawala	Kalmnuri
7	Nandapur	Aundha	31	Kanosa	Kalmnuri
8	Tembhurdara	Aundha	32	Kolsa	Sengaon
9	Rajdari	Aundha	33	Bramhapuri	Sengaon
10	Jalaldhaba	Aundha	34	Pusegaon	Sengaon
11	Bhandegaon	Hingoli	35	Pankanhergaon	Sengaon
12	Deulgaon Rama	Hingoli	36		Sengaon
13	Basamba	Hingoli	30	Garagaan	Sengaon
14	Kharbi	Hingoli	37	Goregaon	Sengaon
15	Idoli	Hingoli	38		Sengaon
16	Chikhalwadi	Hingoli	39	Watkali	Sengaon
17	Borala	Hingoli	40	Sengaon	Sengaon
18	Sawa	Hingoli	41	Makodiwadi	Sengaon
19	Pangri	Hingoli	42	Belkheda	Sengaon
20	Raiwadi	Hingoli	43	Sabalkheda	Sengaon
21	Digras	Hingoli	44	Sinagi Naga	Sengaon
21	Kalgaon	Hingoli			
22	raigauli	ппкоп			

Annexure VII: Location of proposed Percolation tanks in Hingoli district

Note: Construction of AR structures may be taken up at these sites after field checks/verification only

Annexure VIII: Location of proposed check dam in Hingoli district

S. No.	Village	Taluka
1	Lohara Bk	Aundha
2	Ranjala	Aundha
3	Umra	Aundha
4	Asonda	Aundha
5	Purjal	Aundha
6	Sawar Kheda	Aundha
7	Tamtitanda (n.v.)	Aundha
8	Dharkheda	Aundha
9	Yehalegaon	Aundha
10	Shirad Shahapur	Aundha
11	Shingi	Aundha
12	Kundkar Pimpri	Aundha
13	Aundha	Aundha
14	Dughala	Aundha
15	Matha	Aundha
	Bramhanwada	
16	Pr.aundha	Aundha
17	Dhar	Aundha
	Murtijapur	
18	Sawangi	Aundha
19	Suregaon	Aundha
20	Kondasi Bk	Aundha
21	Asola Traf Aundha	Aundha
22	Pota Kh.	Aundha
23	Perjabad	Aundha
24	Chincholi Nikoba	Aundha
25	Pardi[sawali]	Aundha
26	Keli	Aundha
27	Gojegaon	Aundha
28	Wadad	Aundha
29	Ajalsonda	Aundha
30	Undegaon	Aundha
31	Hiradgaon	Basmath
32	Phata	Basmath
33	Dhanora	Basmath
34	Korta	Basmath
35	Rajawadi	Basmath
36	Khandala	Hingoli
37	Chinchala	Hingoli
38	Ghota	Hingoli

S.	Villago	Taluka					
No.	Village	Тапика					
39	Dhotarwadi	Hingoli					
40	Pimparkhed	Hingoli					
41	Pedgaon	Hingoli					
42	Rajwadi	Hingoli					
43	Basamba	Hingoli					
44	Bori Shikari	Hingoli					
45	Durgdhamni	Hingoli					
46	Belura	Hingoli					
47	Idoli	Hingoli					
48	Sawad	Hingoli					
49	Deulgaon Rama	Hingoli					
50	Pangri	Hingoli					
51	Hiradi	Hingoli					
52	Bhingi	Hingoli					
53	Amla	Hingoli					
54	Kalkondi	Hingoli					
55	Satamba	Hingoli					
56	Santuk Pimpari	Hingoli					
57	Bhirda	Hingoli					
58	Bondala	Hingoli					
59	Navalgavhan	Hingoli					
60	Warud Gawali	Hingoli					
61	Lohagaon	Hingoli					
62	Dugheri	Hingoli					
63	Sasewadi	Hingoli					
64	Kesapur	Hingoli					
65	lsapur	Hingoli					
66	HINGOLI	Hingoli					
67	Pimplekhuta	Hingoli					
68	Chikhalwadi	Hingoli					
69	Ekamba	Hingoli					
70	Incha	Hingoli					
71	Kadti	Hingoli					
72	Raholi Kh.	Hingoli					
73	Jambwadi	Hingoli					
74	Narsi	Hingoli					
75	Wadad	Hingoli					
76	Dategaon	Hingoli					
77	Digras	Hingoli					
78	Sirsam Kh	Hingoli					

S. No.	Village	Taluka
79	Balsond	Hingoli
80	Khambala	Hingoli
81	Kharbi	Hingoli
82	Sawa	Hingoli
83	Digraswani	Hingoli
84	Kanka	Hingoli
85	Mauja	Hingoli
86	Girgaon	Kalmnuri
87	Tondapur	Kalmnuri
88	Bibthar	Kalmnuri
89	Hatmali	Kalmnuri
90	Ramwadi	Kalmnuri
91	Kalamkonda Bk.	Kalmnuri
92	Dongarkada	Kalmnuri
	Wadgaon Tarf	
93	Jawala	Kalmnuri
94	Devdari	Kalmnuri
95	Kanjara	Kalmnuri
96	Kasabe Dhawanda	Kalmnuri
97	Goregaon	Sengaon
98	Deulgaon Jahagir	Sengaon
99	Warud Saman	Sengaon
100	Warud Kaji	Sengaon
101	Jawala Bk.	Sengaon
102	Chondi Kh	Sengaon
103	Umra	Sengaon
104	Jamrun Bk	Sengaon
105	Babhulgaon	Sengaon
106	Bramhanwada	Sengaon
107	Jamthi Bk	Sengaon
108	Chondi Bk	Sengaon
109	Belkheda	Sengaon
110	Shivni Bk	Sengaon
111	Ridhora	Sengaon
112	Sawarkheda	Sengaon
113	Kolsa	Sengaon
114	Sinagi Naga	Sengaon
115	Sengaon	Sengaon
116	Palshi	Sengaon
117	Watkali	Sengaon
118	Kawatha Bk.	Sengaon
119	Sapatgaon	Sengaon

S. No.	Village	Taluka
120	Ajegaon	Sengaon
121	Sinagikhamba	Sengaon
122	Suldali Kh	Sengaon
123	Hatala	Sengaon
124	Shindephal	Sengaon

Note: Construction of AR structures may be taken up at these sites after field checks/verification only

