Draft Report

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPS AND MANAGEMENT PLAN

Bhesan, Junagarh District, Gujarat

पश्चिमी मध्य क्षेत्र, अहमदाबाद West Central Region, Ahmedabad

भारत सरकार जल संसाधन, नदी विकास एवम् गंगा संरक्षण मंत्रालय केंद्रीय भूमि जल बोर्ड

GOVERNMENT OF INDIA MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT AND GANGA REJUVENATION

REPORT ON

AQUIFER MAPS & MANAGEMENT PLANS BHESAN, JUNAGADH DISTRICT, GUJARAT STATE

CENTRAL GROUND WATER BOARD WEST CENTRAL REGION

AHMEDABAD

REPORT ON AQUIFER MAPS & MANAGEMENT PLANS BHESAN TALUKA, JUNAGADH DISTRICT, GUJARAT STATE

1. SALIENT FEATURES

1	Name of the TALUKA	BHESAN - 4	38 Km ²					
	& Area, Location (Fig-	21°28'45" to 21	21°28'45" to 21°39'55" N					
	1)	70°33′56″ to 70	°35'36" E					
2	No. of Town, villages	0, 46	0,46					
3	District/State	Junagadh/Guja	Junagadh/Gujarat					
4	Population (2011	Male- 40711, 1	Female- 39001	, Tota	ıl- 79,7	12		
5	Vernsus)	716.25 mm N	Iongoon Dainfa	<u>,11 / IN</u>		(Long	Tomp) 50	
5	Normai Kaman (mm)	786.80 mm - A	verage Monso	on Ra	infall ((1001) (1001) (200)3-12)	
6	Agriculture (20015-16)	Khari	f Crops		Rabi	Crops		
		Crop	Area in Hact	C	rop	Area in Hac	t	
		Groundnut	10830	Whe	eat	275		
		Tal	50	Juva	r	0		
		Castor	50	Cast	or	0		
				Grar	n	50		
		Bajri	0	Bajri		0		
		Tuver	0	Tuve	er	0		
		Mug	20	Mug	5	0		
		Udad	105	Mus	tered	0		
		Cotton	21728	Isab	gol	0		
		Sugarcane	0	Suga	arcane	0		
		Vegetables	200	Vege	etables	50		
		Fodder	607	Fode	der	450		
		Gam Guvar	0	Jira		125		
		Soyabin	0	Onic	on	50		
				Cori	ander	650		
				Garl	ic	165		
				Met	hi	0		
		Total	33590	Tota	l	1815		
7	Existing and future	Sector			Existi	ng (MCM)	Future	
	water demands (MCM)						(MCM) (Year 2025)	
		Domestic and	Industrial		2.24		3.01	
		Irrigation			54.41		29.76	
8	Water level behaviour (2015) (Fig-2 & 3)	14.20-19.28 m	(Pre-monsoon	ı)				

1. Hydrogeology:

Main aquifer in the area is basaltic aquifer (Fig. 2) where the ground water exists upto the depth of weathering and in the fracture zones wherever encountered in the depth. Two hydrogeological Cross sections are given in Fig. 3.

Subsurface Hydrogeology

As inferred from borehole data of the Bhesan Taluka, weathered and fractured Basalt forms the principal aquifer in the Taluka. Groundwater in this aquifer occurs under unconfined conditions and in the fractures encountered in the massive basaltic formation in the depth. The movement of groundwater is controlled by the extent of weathering, fracture and joints in the trap formation. The depth of drilling ranges from 60 to 500 mbgl and the average discharge ranges from 1 to 20 lps by compressor during drilling.

2. AQUIFER DISPOSITION

Name of aquifer	Aquifer material	Nature of aquifer	Thickness (m)	Nature of porosity	Compr essor discha rge	Quality
Deccan Trap	Basalt	Unconfined (Weathered and fractured)	6 to 37	Secondary (weathered & fracture)	1 to 2 lps	Fresh
		Deep Fracture (Massive & amygdolidal) Redbole encountered at 120 to 125 m & 184 to 187 m	Explore up to the depth of 500 m, zone encountered at 64, 87, 91, 109, 120, 141, 157, 171, 184 & 437	Secondary (fractures, joints, shears and flow contacts)	Compre ssor discharg e 0.5 to 20 LPS (Chanaka EW)	Fresh

Depth to water level:

Large part of the taluka is having depth to water level between 14.20 to 19.28 m bgl (Fig. 4). Decadal average water level between the period of May 2006 and 2015 ranges from 7.45 to 25.50m bgl. (Fig 5). The decadal average depth to water levels also depict almost similar picture, except deepest water levels of more than 20 mbgl are on the south western parts and large area is occupied by water levels between 10 and 20 mbgl, whereas, shallow water levels are observed in central part of taluka (Fig.5).

Long term groundwater fluctuation of water level for pre-monsoon and post- monsoon period are depicted in Fig. 6 & 7 for the period of 1987 to 2015. Ranges of the long-term fluctuation is given in Table below.

Pre-monsoon(1987-2015)				Post-monsoon(1987-2015)			
Rise Fall		Rise		Fall			
Min	Max	Min	Max	Min	Max	Min	Max
3.50 5.20 1.40 10.15			1.25	9.0	Nil	Nil	

Water Table map (Fig 8) shows water table are ranges 14.20m below msl to 125.8 m above msl and groundwater flow direction is from East to West. A groundwater depression is shown in the Western side of the Taluka.

3. Groundwater resource extraction, contamination. Dynamic GW Resources in MCM

Total groundwater availability of the area is estimated in year 2013 is 60.81 MCM and total groundwater withdrawal for all purposes is 53.38 MCM. The stage of groundwater development is 87.79% and the taluka is categorized "Semi-critical". Ground Water Resources upto 200 m depth are given below in table 2.

S No.	Item	Fresh	Saline	Total
1	Area	438.60	-	438.60
2	Total GW Recharge (MCM)	91.77	-	91.77
3	Net GW Availability (MCM)	87.18	-	87.18
4	Gross Draft (MCM)	56.65	-	56.65
5	Net Availability for Future	29.76	-	29.76
	Irrigation (MCM)			
6	Stage of GW Development %	64.98 (safe)	-	64.98 (safe)

Table: 2 Groundwater resources 2013

In Storage GW Resources

Name of Assesment Unit	Typr of Rock Formation	Total Unit Area (sq km)	Fresh Area (sq km)	Saline/Brackish Area (sq km)	Depth of Bedrock(Soft Rock Areas/Depth upto which the aquifer is commonly Developed (HR Areas) (m)	Average Pre monsoon Water Level in (m)	Total saturated Thickness m	Thickness of the Granular Zone-Fracture zone/Productive Zone below Premonsoon WL(M)	Average Specific Yield (Sy) Fraction	FRESH In storage GW Resources (MCM)	BRACKISH/SALINE In storage GW Resources (MCM)
BHESAN	Basalt Weathered	435.22	434.65	0	18.43	13.59	4.84		0.02	42.07	0.00
BHESAN	Basalt- Massive- Fractured zone		434.65	0				10.47	0.01	45.51	0.00
BHESAN Total		435.22	434.65	0						87.58	0.00

Chemical quality of groundwater

Groundwater quality in general is good. Salinity is expressed in terms of total dissolved solids (TDS). Most of the area in the taluka (Fig. 9) falls TDS less than 1000 mg/litre. Min. &Max. ranges of some of the constituents is given in the following Table.

Taluka	Total diss	olved solids	Cl		F		HCO3	
	Min	Max	Min	Max	Min	Max	Min	Max
Bhesan	380	1770	56	840	0.04	1.59	146	634

Ground Water Issues

- Sustainability of hard rock Aquifers
- Non Availability of sufficient Surface Water for Irrigation.
- Lack of awareness and involvement of stake holders in decision making.

4. Groundwater resource enhancement.

Table- 3 Computation of volume (MCM) of water required for recharge

Aquifer	Volume of unsaturated zone avilable for artificial recharge	Specific yiled factor	Volume of water required for recharge MCM	Volume of rain water planned for Artificial recharge (MCM)
Basalt	335.56	0.02	6.71	0.74
	335.56		6.71	0.74
Basalt	702.90	0.02	14.06	1.76

Table: 4 Computation of Recharge structures.

Aquifer	Area feasible for artificial recharge Sq. Km	Volume of rain water planned for Artificial recharge (MCM)	Volume of water planned for conservation through Farm Pond	Volume of water planned for recharge through Check Dam	No of Farm Pond (Unit storage 0.05MCM)	No of Check Dam (Unit 0.05 MCM)
Basalt	100.18	2.13	1.35	0.74	27	14

Financial Outlay of the Plan

The total estimated cost of the Plan is 409.92 lakh, which includes Rs 112 lakh for ground water recharge activities, Rs 270 lakh (Farm ponds), 8.4 lakh for ground water monitoring (Piezometer construction) and Rs 19.52 lakh towards operation and maintenance charges. The tentative cost estimates of the various activities of the Plan are shown in Table 5.

Feasible Artificial Recharge & Water Conservation structures/ activities	Tentative Design	Quantity (in nos. or area in sq. m)	Rainwater harvested (mcm)	Tentative unit cost (in Rs lakh)	Total tentative cost (in Rs lakh)	Expected Annual GW recharge/ conservation (mcm)	
		Recharge	Structures/ A	Activities			
Check Dam		14	0.7	8	112	0.63	
		Sub total			112	0.63	
		Water	Conservation	Activities			
Farm Pond (3 fillings)	(30 m x 30m x 1.5 m) 900 sq.m or 0.1 ha	27	1.35	10	270	0.945	
		Impact as	ssessment & I	Monitoring			
Piezometer	Up to 80 m bgl	14		0.6	8.4		
Impact assessm	Impact assessment will be carried out by implemneting agency						
O & M - 5% of	total cost of	the scheme			19.52		
TOTAL					409.92		

 Table: 5 Cost estimates of Recharge structures and monitoring well (Piezometers):

Note: Type, number and cost of structure may vary according to site after ground verification

The tentative location of villages for construction of Check Dams and their cost estimates are shown in Fig. 11 and Table 6.

Table-6 : TENTATIVE LIST OF VILLAGES WHERE ARTIFICIAL RECHARGE STRUCTREUS CAN BE TAKEN UP

	Village	
Sr. no.	name	Taluka
1	Bhesan	BHESANA
2	Bhesan	BHESANA
3	Bhesan	BHESANA
4	Bhesan	BHESANA
5	Bhesan	BHESANA
6	Chhodvadi	BHESANA
7	Chhodvadi	BHESANA
8	Chhodvadi	BHESANA
9	Chhodvadi	BHESANA
10	Kharachiya	BHESANA
11	Mendpara	BHESANA
12	Ranpur	BHESANA
13	Ranpur	BHESANA
14	Vandarvad	BHESANA

1. Demand Side Management:

As the surface water is not available to improve the supply of water, demand side management is essential.

Table: 7 Crop wise area in Hectares covered under micro irrigation methods (sourceGujarat Green Revolution Company, Vadodara, Gujarat).

CROP	Crop area in Ha.	CROP	Crop area in Ha.
AMLA	1.09	LEMON	37.05
ANOLA	2	Mango	62.09
BITTER			
GUARD	26	NILGIRI	1.07
BOTTLE			
GUARD	224.89	ΡΑΡΑΥΑ	21.23
BRINJAL	8.9	ΡΑΡΑΥΑ	1.41
CASTOR	28.97	Pomogranate	14.61
CHILLI	17.59	PULSES	10.4

COTTON	2380.9	RIDGEGOURD	15.25
CUSTARD		SPONGE	
APPLE	17.22	GOURD	10
DRUMSTICK	10.2	SUGARCANE	5.05
GOURDS	6.4	TEAK	4.42
GRAM	5.2	ΤΟΜΑΤΟ	2
GREEN GRAM	4.16	WATERMELON	5.2
GROUNDNUT	3193.2	WHEAT	371.14
KANTOLA	4	Grand Total	6491.66

Water use efficiency by Drip Irrigation in Rabi crop season:

An area of 6492 hectare is covered by micro-irrigation scheme (MIS) under different crops grown in the district (Table 7). It is estimated the groundwater saving in the district by adopting the drip irrigation method to the main crop in Rabi season is about 0.22 MCM. It is estimated saving of groundwater through Drip irrigation separately to the Crop Cotton and Groundnut are 7.79 MCM and 2.18 MCM respectively (Table 8).

Table :8 Groundwater saving by Drip irrigation in MCM

Taluka	Rabi_Crops	Cotton	crop	Grounnu	Total	
		Summer Kharif		Summer		
Bhesan	0.22	0.49	7.30	0.16	2.02	10.20

Expected Benefits or outcome of the Plan

Ground water recharge and water conservation Plan of Bhesan Taluka, Junagadh district envisages gainful utilization of 0.74 MCM of volume of rain water planned for recharging of depleted aquifer system. Besides this, the proposed intervention would also lead to reduction of pre-existing ground water draft by 1.38 MCM annually through construction of farm ponds. By adopting the micro-irrigation area in the remaining area conserve the 10.20 MCM of groundwater draft in the district.

With the additional recharge and water conservation interventions as proposed in the Plan, it is anticipated that with enhanced recharge and reduction in ground water draft, the stage of ground water development will reduce to 51% from the existing 65%. The projected status of ground water resources and utilization scenario is presented in table 9.

 Table :9 Projected Status of Groundwater Resource & Utilization on Recharge and Micro-Irrigation Interventions

Taluka	Net G.W. Availabil ity (MCM)	Additional Recharge from RWH (mcm)	Total Net G.W. Availability after intervention (mcm)	Existing G.W Draft for all purpose (mcm)	Saving of Ground water through conserv ation (mcm)	Saving of Groun d water throug h MIS (mcm)	Net GW draft after intervention s (mcm)	Present stage of G.W. developm ent (%)	Project ed stage of G.W. Develo pemen t (in %)
Bhesan	87.18	0.74	87.93	56.65	1.38	10.20	45.07	65	51

Projected irrigation potential:

It is estimated 2092 Ha additional irrigation potential may be created in the taluka on 70% of groundwater development Table 10.

Table: 10 Irrigation cor	mmand area on 70% of	development of groundwater
--------------------------	----------------------	----------------------------

District	Development %	Net G.W. Availability (MCM)	Additional Recharge from RWH (mcm)	Total Net G.W. Availability after intervention (mcm)	Max GW avilable on 70% development MCM	Existing G.W Draft for all purpose (mcm)	Balanced GW avilable on 70% development and Existing Draft	Saving of Ground water through conservation (mcm)	Net GW avilable for withdrawl after interventions (mcm)	Average crop water requirement by Drip Irrigationm	Additional area to be Irrigate in sq. km	Area can be Irrigate in Ha
Bhesan	70.00	87.18	0.74	87.93	61.55	56.65	4.90	1.38	6.28	0.3	20.94	2094

CONCLUSION AND RECOMMENDATION:

- 1. It is recommended to increase the recharge of groundwater from external surface water sources. It is also important to properly maintain and timely operate the existing recharge and salinity control structures.
- 2. Recommended to construct the 14 check dam and 27 Farm ponds in the Taluka to recharge 0.74 MCM and conserve 1.35 MCM of rainfall runoff.
- 3. During the electrification of well/ bore wells, the micro-irrigation through drip/sprinkler irrigation should be made mendatory, so as to minimize use of groundwater.
- 4. 215 Hectares area may brought under micro-irrigation to adopt Drip method to save about 0.22 MCM of water during the Rabi crop season.
- 5. 4582 Hectare Groundnut crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 2.18 MCM of water.
- 6. 11600 Hectare Cotton crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 7.79 MCM of water.
- 7. 2094 Hectare land may additionally irrigated on 70% of groundwater development and observing all intervention proposed.

• The implementation of the project would result in additional recharge. The other tangible/ non-tangible benefits of the project are:

- Recharging the ground water will help in arresting the rapid decline in ground water resources and will also ensure improvement in quality of ground water by way of dilution.
- Proposed structures and measures will also enhance the ground water potential and would ensure sustainability of ground water resources.
- Surface runoff water stored or harnessed can be used as supplemental irrigational resources and will reduce the stress on the ground water.
- Besides, it will also help in reducing the amount and spate of storm water being drained by river and controlling soil erosion.