

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPS AND MANAGEMENT PLAN

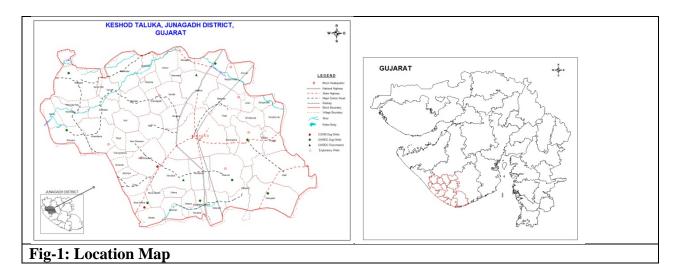
Keshod, Junagarh District, Gujarat

पश्चिमी मध्य क्षेत्र, अहमदाबाद West Central Region, Ahmedabad

भारत सरकार जल संसाधन, नदी विकास एवम् गंगा संरक्षण मंत्रालय केंद्रीय भूमि जल बोर्ड

GOVERNMENT OF INDIA MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT AND GANGA REJUVENATION

REPORT ON


AQUIFER MAPS & MANAGEMENT PLANS KESHOD TALUKA, JUNAGADH DISTRICT, GUJARAT STATE

> CENTRAL GROUND WATER BOARD WEST CENTRAL REGION AHMEDABAD

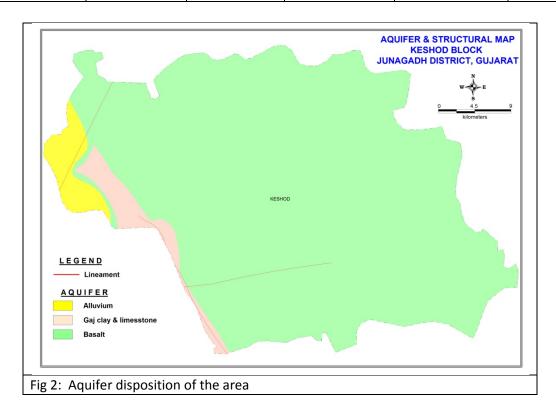
REPORT ON AQUIFER MAPS & MANAGEMENT PLANS KESHOD TALUKA, JUNAGADH DISTRICT, GUJARAT STATE

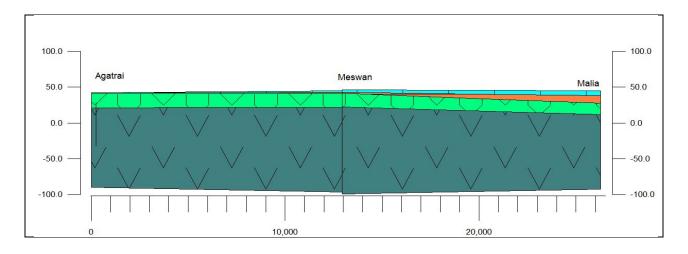
1. SALIENT FEATURES

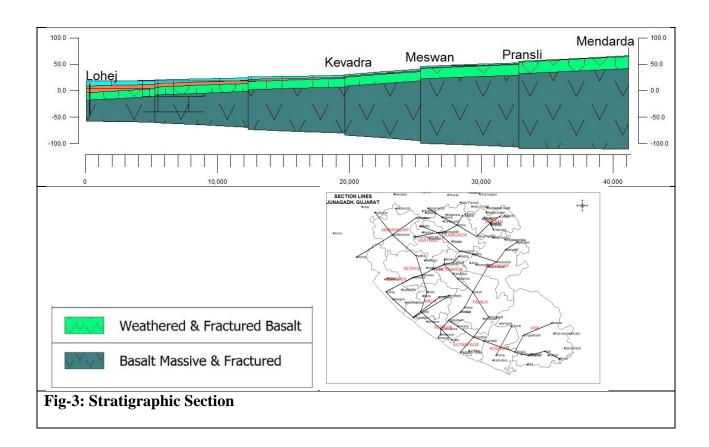
1	Name of the	Keshod - 51	Keshod - 514.74 Km ²					
	TALUKA& Area,	21°11′41" to 2	1°24′31″ N					
	Location(Fig-1)	70°03′01″ to 7	0°24′13″ E					
2	No. of Town, villages	0, 53						
3	District/State	Junagadh/Gu	jarat					
4	Population (2011	Male- 61031,	Female- 57522	2, Tota	ıl- 118	,553		
	Census)							
5	Normal Rainfall (mm)		Monsoon Rainf	`	, ,	/ \ C	·	
	(20015.16)	<u> </u>	992.80 mm -Average Monsoon Rainfall (in mm) (2003-12)					
6	Agriculture (20015-16)		f Crops			Crops		
		Crop	Area in Hact	Cr	ор	Area in Hact		
		Groundnut	40100	Whea	at	950		
		Tal	5	Juvar		60		
		Castor 0 Cas			r	25		
		Gram				430		
		Bajri	0	Bajri		110		
		Tuver	0	Tuver		0		
		Mug 10 Mug		150				
		Udad	10	Must	ered	0		
		Cotton	930	Isabg	ol	10		
		Sugarcane	0	Sugarcane		0		
		Vegetables	350	Veget	Vegetables 200			
		Fodder	1095	Fodde	er	1550		
		Gam Guvar	0	Jira		300		
		Soyabin	0	Onior	ı	25		
				Coria	nder	8000		
				Garlio	:	30		
				Meth	i	0	1	
		Total	42500	Total		11840		
7	Existing and future	Sector			Exist	ing (MCM)	Future	
	water demands (MCM)					- ′	(MCM) (Year	
						2025)		
		Domestic and Industrial			5.34 79.69		7.16	
		Irrigation					36.49	
8	Water level behaviour	11.60-38.25 r	n (Pre-monsoo	n)				
	(2015)(Fig-2 & 3)							

1. Hydrogeology:

Main aquifer in the area is basaltic aquifer (Fig. 2) where the ground water exists upto the depth of weathering and in the fracture zones wherever encountered in the depth. Two hydrogeological Cross sections are given in Fig. 3.

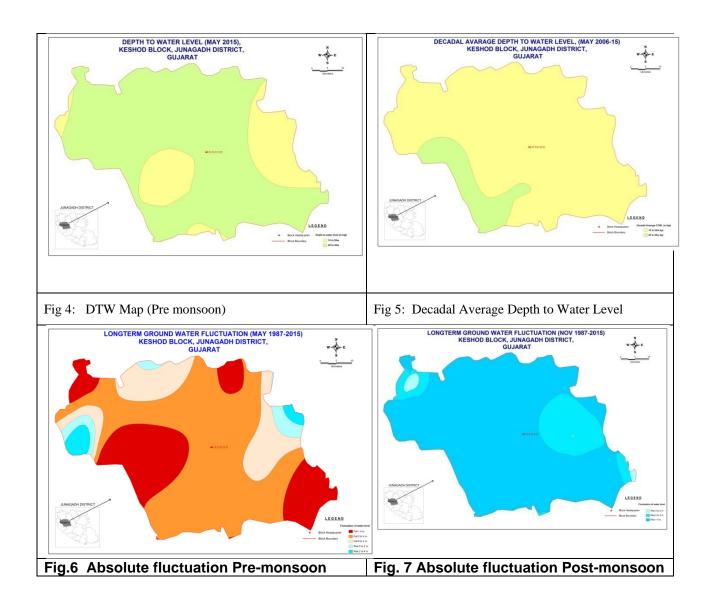

Subsurface Hydrogeology


As inferred from borehole data of the Keshod Taluka, weathered and fractured Basalt forms the principal aquifer in the Taluka. Groundwater in this aquifer occurs under unconfined conditions and in the fractures encountered in the massive basaltic formation in the depth. The movement of groundwater is controlled by the extent of weathering, fracture and joints in the trap formation. Groundwater exploration has been done down to a max. depth of 500 mbgl and the average discharge ranges from 2 to 35 lps by compressor during drilling.

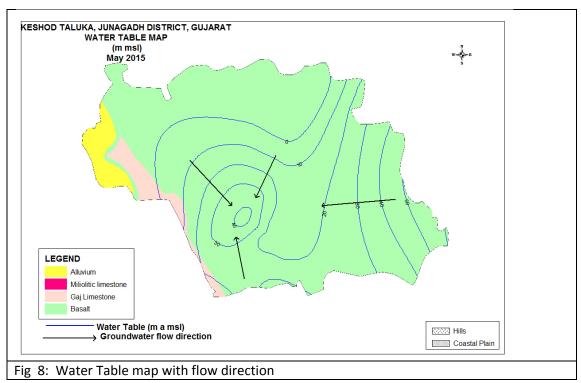

2. AQUIFER DISPOSITION

Name of aquifer	Aquifer material	Nature of aquifer	Aquifer depth and zone encountered (m)	Nature of porosity	Compres sor discharg e	Quality
Deccan Trap	Basalt	Unconfined (Weathered and fractured)	0 to 50	Secondary (weathered & fracture)	1 to 2 lps	Fresh

Deep Fracture	Explore up to the	Secondary	Compress	Fresh
(Massive &	depth of 500 m,	(fractures, joints,	or	
amygdolidal)	zone	shears and flow	discharge	
	encountered at	contacts)	2 to 35 LPS	
	165, 209 & 339			
	m			



Depth to water level:


Large part of the taluka is having depth to water level mostly between 20 to 40 m bgl except the isolated patches of water level ranges 10 m to 20 m bgl. Decadal average water level mostly between the period of May 2006 and 2015 ranges from 10 to 20 m bgl. (Fig5). The decadal average depth to water levels becomes shallower in comparison to the water level in May 2015 (Fig.5).

Long term groundwater fluctuation of water level for pre-monsoon and post- monsoon period are depicted in Fig. 6 & 7 for the period of 1987 to 2015. Ranges of the long-term fluctuation is given in Table below.

	Pre-monsoon(1987-2015)					Post-monsoon(1987-2015)							
Rise				Fa	all		Rise Fall			all			
Min		Max	Min		Max		Min		Max	Min		Max	
	3.90	3.90		0.10		6.80		2.00	12.90		0.10		0.10

Water Table map (Fig 8) shows water table are ranges 9.75 m below msl to 41.50 m above msl and groundwater flow direction is towards SW direction. A groundwater trough is shown in the South-West corner of the Taluka.

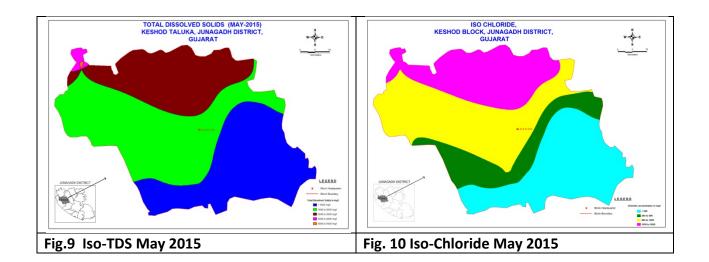
3. Groundwater resource extraction, contamination.

Dynamic GW Resources in MCM

Total groundwater availability of the area is estimated in year 2013 is 123.34 MCM and total groundwater withdrawal for all purposes is 85.03 MCM. The stage of groundwater development is 68.94% and the taluka is categorized "Safe" (Table 2).

Table: 2 Groundwater resources 2013

S No.	Item	Fresh	Saline	Total
1	Area	514.74	1	514.74
2	Total GW Recharge (MCM)	129.83	-	129.83
3	Net GW Availability (MCM)	123.34	-	123.34
4	Gross Draft (MCM)	85.03	-	85.03
5	Net Availability for Future	36.49	-	36.49
	Irrigation (MCM)			
6	Stage of GW Development %	68.94 (safe)	-	68.94 (safe)


In Storage GW Resources

Typr of Rock Formation	Total Unit Area (sq km)	Fresh Area (sq km)	Saline/Brackish Area (sq km)	Depth of Bedrock(Soft Rock Areas/Depth upto which the aquifer is commonly Developed (HR Areas) (m)	Average Pre monsoon Water Level in (m)	Total saturated Thickness m	Thickness of the Granular Zone-Fracture zone/Productive Zone below Premonsoon WL(M)	Average Specific Yield (Sy) Fraction	FRESH In storage GW Resources (MCM)	BRACKISH/SALINE In storage GW Resources (MCM)
Alluvium	18.50	18.5	0	9.85	9.83	0.02		0.1	0.04	0.00
Basalt Weathered	524.87	519.6	5.27	18.43	13.59	4.84		0.02	50.30	0.51
Basalt-Massive-										
Fractured zone		519.6					15.52	0.01	80.64	0.00
Gaj Shale &			_							
Limestone	19.84	19.84	0	50.58	13.51	37.07		0.04	29.42	0.00
Total	563.22	557.94	5.27						160.39	0.51

Chemical quality of groundwater

Groundwater quality in general is good. Salinity is expressed in terms of total dissolved solids (Fig. 9). About 66% of the area in the central and southern parts shows TDS < 2000 mg/l whereas Northern part quality is inferior and TDS ranges 2000 to 4000 mg/l. Min. &Max. ranges of some of the constituents is given in the following Table.

Taluka	Total dissolved							
	solids		(Cl		=	HCO3	
	Min	Max	Min	Max	Min	Max	Min	Max
Keshod	370	2690	64	1240	0	0.61	189	427

Ground Water Issues

- Sustainability of hard rock Aquifers
- Non Availability of sufficient Surface Water for Irrigation.
- Lack of awareness and involvement of stake holders in decision making.

4. Groundwater resource enhancement. Table-3Computation of volume (MCM) of water required for recharge

Aquifer	Volume of unsaturated zone avilable for artificial recharge	Specific Yield factor	Volume of water required for recharge MCM	Volume of rain water planned for Artificial recharge (MCM)
Basalt	399.09	0.02	7.98	0.90
Gaj Shale & Limestone	10.71	0.05	0.54	0.03
Total	409.80		8.52	0.93

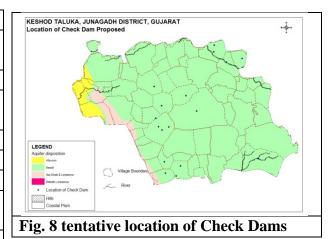
Table: 4 Computation of Recharge structures.

Aquifer	Area feasible	Volume	Volume of	Volume	No of	No of
	for artificial	of rain	water	of water	Farm	Check
	recharge Sq.	water	planned for	planned	Pond	Dam
	Km	planned	conservation	for	(Unit	(Unit
		for	through	recharge	storage	0.05
		Artificial	Farm Pond	through	0.05MCM)	MCM)
		recharge		Check		
		(MCM)		Dam		
Basalt	124.03	3.32	2.43	0.90	48	17
Gaj Shale &	2.18	0.06	0.03	0.03	0	0
Limestone						
Total	126.20	3.38	2.46	0.93	48	17

Financial Outlay of the Plan

The total estimated cost of the Plan is 657.51 lakh, which includes Rs 136 lakh for ground water recharge activities, Rs 480 lakh (Farm ponds), 10.20 lakh for ground water monitoring (Piezometer construction) and Rs 31.31 lakh towards operation and maintenance charges. The tentative cost estimates of the various activities of the Plan are shown in Table 5.

Table: 5 Cost estimates of Recharge structures and monitoring well (Piezometers):


Feasible Artificial Recharge & Water Conservation structures/ activities	Tentative Design	Quantity (in nos. or area in sq. m)	Rainwater harvested (mcm)	Tentative unit cost (in Rs lakh)	Total tentative cost (in Rs lakh)	Expected Annual GW recharge/ conservation (mcm)					
	Recharge Structures/ Activities										
Check Dam		17	0.85	8	136	0.77					
		Sub total			136	0.77					
		Water (Conservation	Activities							
Farm Pond (3 fillings)	(30 m x 30m x 1.5 m) 900 sq.m or 0.1 ha	48	2.4	10	480	1.68					
		Impact as	ssessment & I	Monitoring							
Piezometer	Up to 80 m bgl	17		0.6	10.2						
Impact assessm	Impact assessment will be carried out by implemneting agency										
O & M - 5% of	total cost of		31.31								
TOTAL					657.51						

Note: Type, number and cost of structure may vary according to site after ground verification

The tentative location of villages for construction of Check Dams and their cost estimates are shown in Fig. 8 and Table 6.

Table-6 : TENTATIVE LIST OF VILLAGES WHERE ARTIFICIAL RECHARGE STRUCTREUS CAN BE TAKEN UP

Sr. No.	VNAME	Sr. No.	VNAME
			Moti
1	Bava Simroli	9	Ghansari
2	Dervan	10	Movana
			Nani
3	Keshod (M)	11	Ghansari
4	Magharwada	12	Padodar
5	Manekwada	13	Pankhan
6	Manekwada	14	Pankhan
	Moti		
7	Ghansari	15	Pipli
	Moti		
8	Ghansari	16	Shergadh
		17	Silodar

1. Demand Side Management:

As the surface water is not available to improve the supply of water, demand side management is essential.

Table: 7 Crop wise area in Hectares covered under micro irrigation methods (source Gujarat Green Revolution Company, Vadodara, Gujarat).

CROP	Area in Ha.	CROP	Area in Ha.	CROP	Area in Ha.
Banana	11.77	GREEN GRAM	15.75	RIDGEGOURD	2.57
BER	1.21	GROUNDNUT	13513.3	SANDLEWOOD	1
BITTER GUARD	33.05	GUVAR	2.4	SESAMUM	10.77
BOTTLE GUARD	99.77	KANTOLA	3.59	SPONGE GOURD	2.2
BRINJAL	5.12	LEMON	2.99	SUGARCANE	0.45
CASTOR	42.93	Mango	14.67	TERMARIK	0.51
CHILLI	9.3	ONION	2.4	томато	1.9
COCONUT	1.2	PAPAYA	20.68	VEGETABLE	1.6
COTTON	594.62	Pomogranate	13.83	WATERMELON	2.82
CUSTARD APPLE	1.36	РОТАТО	0.8	WHEAT	458.89
GARLIC	1.65	PULSES	5.31	Grand Total	14882
GRAM	2				·

Water use efficiency by Drip Irrigation in Rabi crop season:

An area of 14882 hectare is covered by micro-irrigation scheme (MIS) under different crops grown in the district (Table 7). It is estimated the groundwater saving in the district by adopting the drip irrigation method to the main crop in Rabi season is about 0.98 MCM. It is estimated saving of groundwater through Drip irrigation separately to the Crop Cotton and Groundnut are 0.14 MCM and 11.07 MCM respectively (Table 8).

Table :8 Groundwater saving by Drip irrigation in MCM

Taluka	Rabi_Crops	Cotton crop		Groundnu	Total	
		Summer	Kharif	Summer	Kharif	
Keshod	0.98	0.01	0.13	5.19	5.88	12.18

Expected Benefits or outcome of the Plan

Ground water recharge and water conservation Plan of Mendarda Taluka, Junagadh district envisages gainful utilization of 0.93 MCM of volume of rain water planned for recharging of depleted aquifer system. Besides this, the proposed intervention would also lead to reduction of pre-existing ground water draft by 2.46 MCM annually through construction of farm ponds. By adopting the micro-irrigation area in the remaining area conserve the 12.18 MCM of groundwater draft in the district.

With the additional recharge and water conservation interventions as proposed in the Plan, it is anticipated that with enhanced recharge and reduction in ground water draft, the stage of ground water development will reduce to 57% from the existing 69%. The projected status of ground water resources and utilization scenario is presented in table 9.

Table :9 Projected Status of Groundwater Resource & Utilization on Recharge and Micro-Irrigation Interventions

Taluka	Net G.W. Availabil ity (MCM)	Additio nal Rechar ge from RWH (mcm)	Total Net G.W. Availabilit y after interventi on (mcm)	Existing G.W Draft for all purpose (mcm)	Saving of Ground water through conserv ation (mcm)	Saving of Groun d water throug h MIS (mcm)	Net GW draft after interventi ons (mcm)	Present stage of G.W. developmen t (%)	Project ed stage of G.W. Develo pemen t (in %)
Keshod	123.34	0.93	124.26	85.03	2.46	12.18	70.39	69	57

Projected irrigation potential:

It is estimated 1472 Ha additional irrigation potential may be created in the taluka on 70% of groundwater development Table 10.

Table: 10 Irrigation command area on 70% of development of groundwater

District	Development %	Net G.W. Availability (MCM)	Additional Recharge from RWH (mcm)		Max GW avilable on 70% development MCM	Existing G.W Draft for all purpose (mcm)	Balanced GW avilable on 70% development and Existing Draft	Saving of Ground water through conservation (mcm)	Net GW avilable for withdrawl after interventions (mcm)	Average crop water requirement by Drip Irrigationm	Additional area to be Irrigate in sq. km	Area can be Irrigate in Ha
Keshod	70	123.34	0.93	124.26	86.99	85.03	1.96	2.46	4.42	0.30	14.72	1471.76

CONCLUSION AND RECOMMENDATION:

- 1. It is recommended to increase the recharge of groundwater from external surface water sources. It is also important to properly maintain and timely operate the existing recharge and salinity control structures.
- 2. Recommended to construct the 17 check dam and 48 Farm ponds in the Taluka to recharge 0.77 MCM and conserve 1.68 MCM of rainfall runoff.
- 3. During the electrification of well/ bore wells, the micro-irrigation through drip/sprinkler irrigation should be made mendatory, so as to minimize use of groundwater.
- 4. 210 Hectares area may brought under micro-irrigation to adopt Drip method to save about 0.98 MCM of water during the Rabi crop season.
- 5. 15952 Hectare Groundnut crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 11.07 MCM of water.
- 6. 2 Hectare Cotton crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 0.13 MCM of water.

- 7. 1472 Hectare land may additionally irrigated on 70% of groundwater development and observing all intervention proposed.
- The implementation of the project would result in additional recharge. The other tangible/ non-tangible benefits of the project are:
- □ Recharging the ground water will help in arresting the rapid decline in ground water resources and will also ensure improvement in quality of ground water by way of dilution.
- □ Proposed structures and measures will also enhance the ground water potential and would ensure sustainability of ground water resources.
- □ Surface runoff water stored or harnessed can be used as supplemental irrigational resources and will reduce the stress on the ground water.
- □ Besides, it will also help in reducing the amount and spate of storm water being drained by river and controlling soil erosion.