Draft Report

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

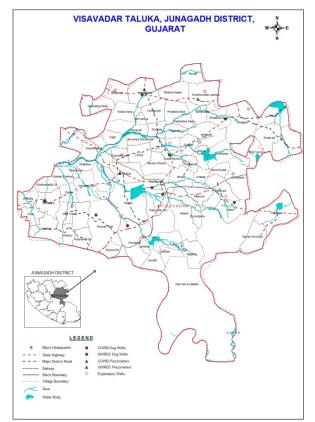
भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPS AND MANAGEMENT PLAN


Visavadar, Junagarh District, Gujarat

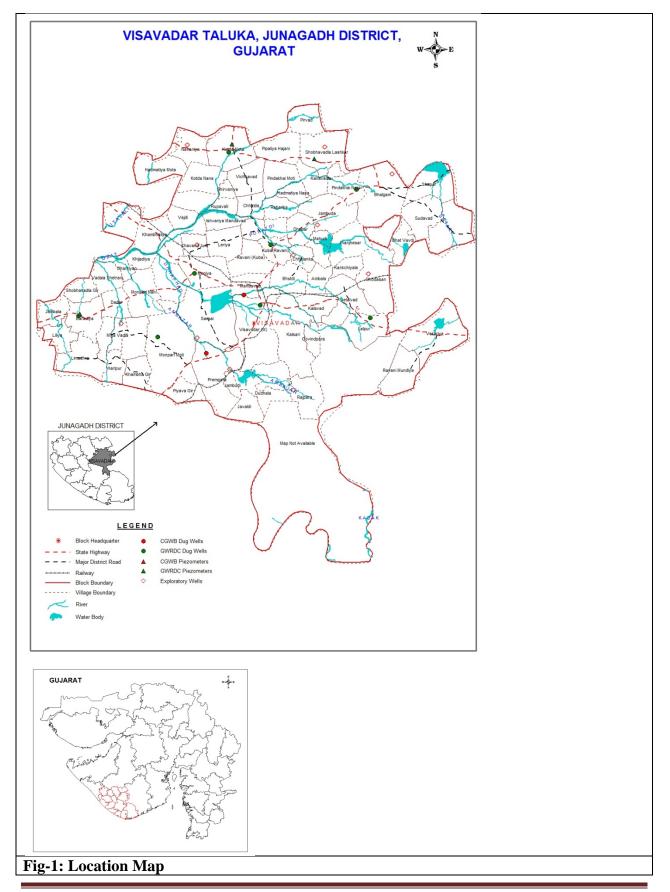
पश्चिमी मध्य क्षेत्र, अहमदाबाद West Central Region, Ahmedabad

भारत सरकार जल संसाधन, नदी विकास एवम् गंगा संरक्षण मंत्रालय केंद्रीय भूमि जल बोर्ड

GOVERNMENT OF INDIA MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT AND GANGA REJUVENATION

REPORT ON

AQUIFER MAPS & MANAGEMENT PLANS VISAVADAR TALUKA, JUNAGADH DISTRICT, GUJARAT STATE


> CENTRAL GROUND WATER BOARD WEST CENTRAL REGION

AHMEDABAD

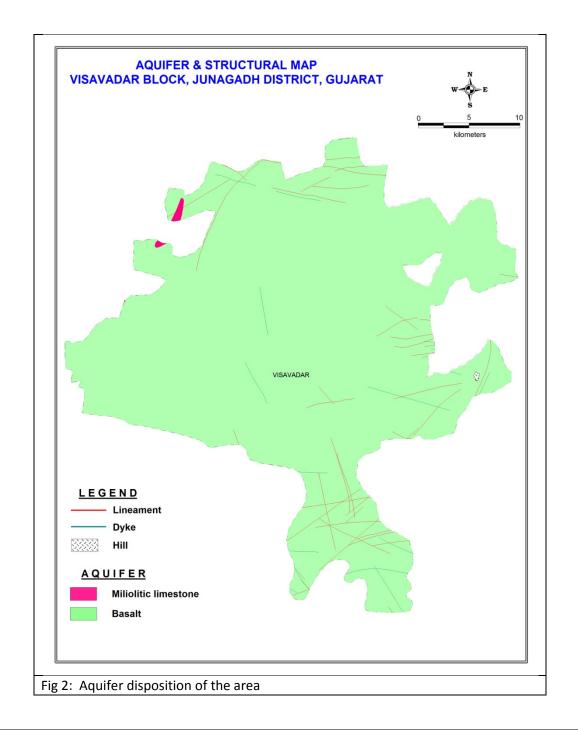
REPORT ON AQUIFER MAPS & MANAGEMENT PLANS VISAVADARTALUKA, JUNAGADH DISTRICT, GUJARAT STATE

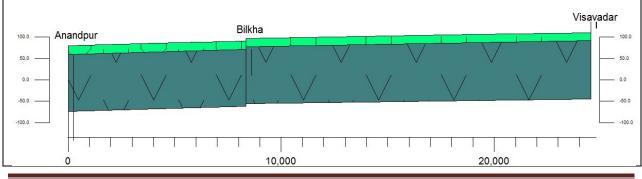
1. SALIENT FEATURES

1	Name of the	Visavadar -	714.79 Km ²				
	TALUKA& Area,	21°07′09″ to 2					
	Location(Fig-1)	70°32′37″ to 7					
2	No. of Town, villages	1,100					
3	District/State	Junagadh/Guj	arat				
4	Population (2011		Female- 5879	3. Tota	al- 120	.508	
	Census)			-,		,	
5	Normal Rainfall (mm)	866.60 mm- N	Monsoon Rainf	fall (IN	/ID) (i	n mm) (Long	g Term) 50
		1118.70 mm -	-Average Mon	soon R	lainfal	l (in mm) (20	003-12)
6	Agriculture (20015-16)	Khari	f Crops		Rabi	Crops	
		Crop	Area in Hact	Cr	ор	Area in Hact	
		Groundnut	31265	Whea	ət	750	
		Tal	0	Juvar		0	
		Castor	215	Casto	or	0	
				Gram	۱	110	
		Bajri	0	Bajri O			
		Tuver	95	Tuver 0			
		Mug 130 Mug			20		
		Udad	415	Must	ered	0	
		Cotton	17690	Isabg	ol	10	
		Sugarcane	0	Sugar	rcane	0	
		Vegetables	190	Vege	tables	120	
		Fodder	977	Fodd	er	370	
		Gam Guvar	30	Jira		250	
		Soyabin	50	Onior	n	60	
				Coria	nder	3580	
				Garlio		340	
				Meth	i	0	
		Total	51057	Total		5610	
7	Existing and future water demands (MCM)	Sector			Exist	ing (MCM)	Future (MCM) (Year
		Demostia	T., J.,		4.01		2025)
		Domestic and	Industrial	4.01 106.25		5	5.39 48.14
8	Water level behaviour	Irrigation	n (Pre-monsoo	n)	100.2	J	40.14
0	(2015)(Fig-2 & 3)	12.03-38.731	II (FIC-III0II800	11)			

AQUIFER MAPS & MANAGEMENT PLANS VISAVADAR TALUKA, JUNAGADHDISTRICT, GUJARAT STATE

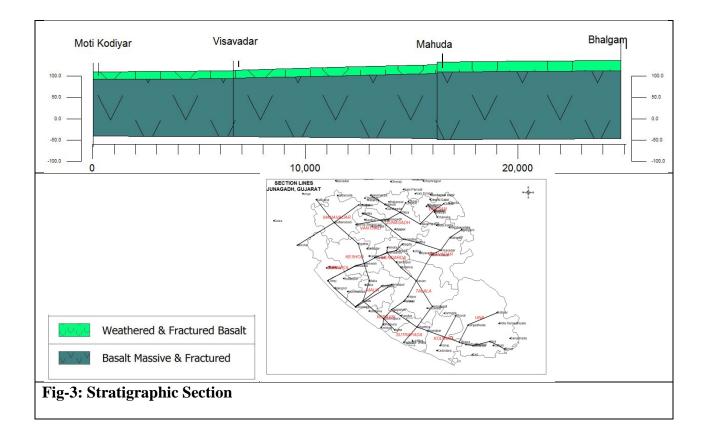
1. Hydrogeology:


Main aquifer in the areais basaltic aquifer (Fig. 2) where the ground water exists upto the depth of weathering and in the fracture zones wherever encountered in the depth. Two hydrogeological Cross sections are given in Fig. 3.

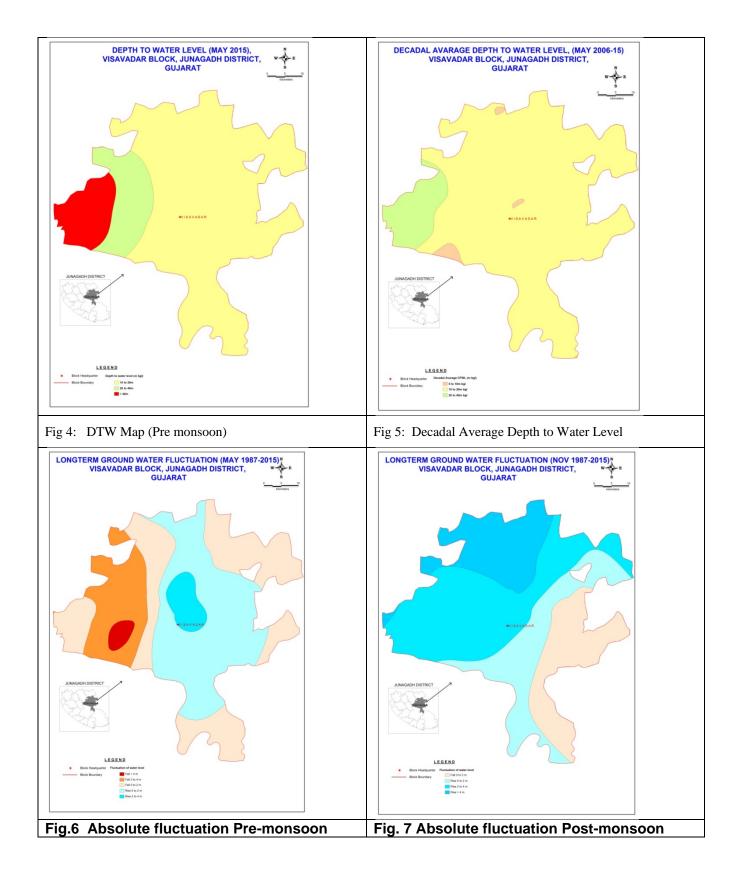

Subsurface Hydrogeology

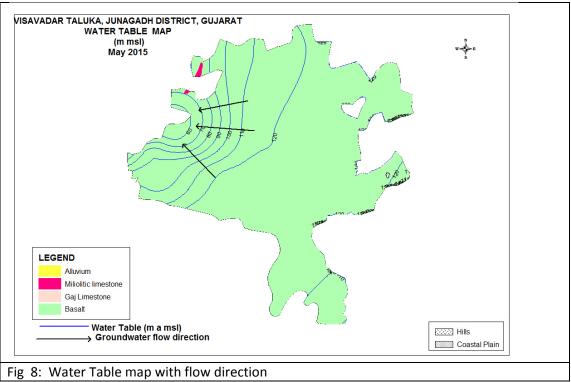
As inferred from borehole data of the Visavadar Taluka, weathered and fractured Basalt forms the principal aquifer in the Taluka. Groundwater in this aquifer occurs under unconfined conditions and in the fractures encountered in the massive basaltic formation in the depth. The movement of groundwater is controlled by the extent of weathering, fracture and joints in the trap formation. Groundwater exploration has been done down to a max. depth of 468 mbgl and the average discharge ranges from 6 to 20 lps by compressor during drilling.

2. AQUIFER DISPOSITION


Name of aquifer	Aquifer material	Nature of aquifer	Aquifer depth and zone encountered (m)	Nature of porosity	Compres sor discharg e	Quality
Miliolitic Limestone	Limestone	Unconfined	Negligible	Primary and secondary (Poreses, fractures and solution cavities)	-	-
Deccan Trap	Basalt	Unconfined (Weathered and fractured)	0 to 34	Secondary (weathered & fracture)	1 to 2 lps	Fresh
		Deep Fracture (Massive & amygdolidal)	Explore up to the depth of 490 m, zone encountered at 56, 60, 78, 197, 236, 192, 202, 224 and 486.	Secondary (fractures, joints, shears and flow contacts)	Compress or discharge 6 to 20 LPS	Fresh

AQUIFER MAPS & MANAGEMENT PLANS VISAVADAR TALUKA, JUNAGADHDISTRICT, GUJARAT STATE


299


Depth to water level:

Large part of the taluka is having depth to water level mostly between 10 to 20 m bgl except isolated patch in western side is > 20 m bgl (Fig. 4). Decadal average water level mostly between the period of May 2006 and 2015 ranges from 9.21 to 40.00 m bgl. (Fig5). The decadal average depth to water levels also depict almost similar picture as that of DTWL May 2015. Long term groundwater fluctuation of water level for pre-monsoon and post- monsoon period are depicted in Fig. 6 & 7 for the period of 1987 to 2015. Ranges of the long-term fluctuation is given in Table below.

	Pre-monsoon(1987-2015)					Post-monsoon(1987-2015)					
Rise Fall				Rise			Fall				
Min		Max	Min	Max		Min		Max	Min	Max	
	2.20	3.59	0.7	5	4.60		3.01	7.10			1.00

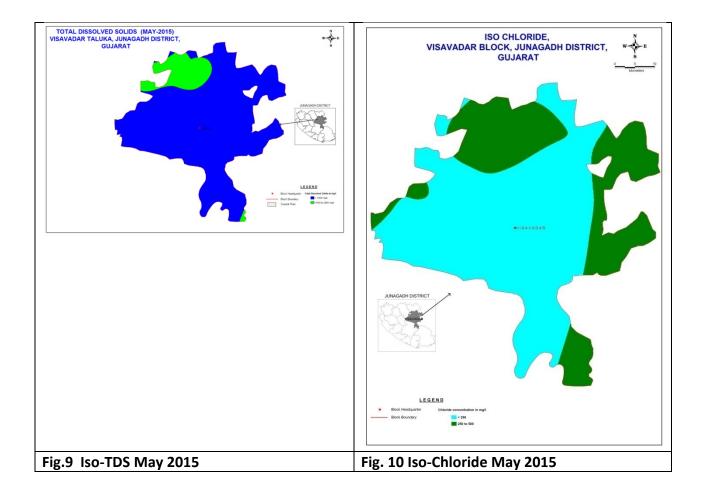
Water Table map (Fig 8) shows water table are ranges 90.70 m to 128.97 m above msl. Groundwater flow direction is from East to West with stepper slop in West and flatten in the East.

3. Groundwater resource extraction, contamination. Dynamic GW Resources in MCM

Total groundwater availability of the area is estimated in year 2013 is 159.77 MCM and total groundwater withdrawal for all purposes is 110.26 MCM. The stage of groundwater development is 69.01% and the taluka is categorized "Safe" (Table 2).

S No.	Item	Fresh	Saline
1	Area	901.70	-
2	Total GW Recharge (MCM)	168.18	-
3	Net GW Availability (MCM)	159.77	-
4	Gross Draft (MCM)	110.26	-
5	Net Availability for Future Irrigation (MCM)	48.14	-
6	Stage of GW Development %	69.01 (safe)	-

Table: 2 Groundwater resources 2013


In Storage GW Resources

Typr of Rock Formation	Total Unit Area (sq km)	Fresh Area (sq km)	Saline/Brackish Area (sq km)	Depth of Bedrock(Soft Rock Areas/Depth upto which the aquifer is commonly Developed (HR Areas) (m)	Average Pre monsoon Water Level in (m)	Total saturated Thickness m	Thickness of the Granular Zone-Fracture zone/Productive Zone below Premonsoon WL(M)	Average Specific Yield (Sy) Fraction	FRESH In storage GW Resources (MCM)	BRACKISH/SALINE In storage GW Resources (MCM)
Basalt Weathered	889.38	887.82	0	18.43	13.59	4.84		0.02	85.94	0.00
Basalt- Massive- Fractured zone		887.82					11.49	0.01	102.01	0.00
Milliolitic		007.02					11.43	0.01	102.01	0.00
Limestone	1.64	1.64	0	21.79	14.96	6.83		0.1	1.12	0.00
	891.02	889.46	0						189.07	

Chemical quality of groundwater

Groundwater quality in general is good and TDS is within 2000 mg/l (Fig. 9). Min. & Max. ranges of some of the constituents is given in the following Table.

Taluka	Total	dissolved							
	solids		(Cl		F		HCO3	
	Min	Max	Min	Max	Min	Max	Min	Max	
Visavadar	420	1410	64	448	0.11	1.58	159	464	

Ground Water Issues

- Sustainability of hard rock Aquifers
- Non Availability of sufficient Surface Water for Irrigation.
- Lack of awareness and involvement of stake holders in decision making.

4. Groundwater resource enhancement.

Table-3Computation of volume (MCM) of water required for recharge

Aquifer	Volume of unsaturated zone avilable for artificial recharge	Specific yiled factor	Volume of water required for recharge MCM	Volume of rain water planned for Artificial recharge (MCM)
Basalt	2570.74	0.02	51.41	4.59
Milliolitic Limestone	4.90	0.1	0.49	0.02
Total	2575.64		51.90	4.62

Table: 4 Computation of Recharge structures.

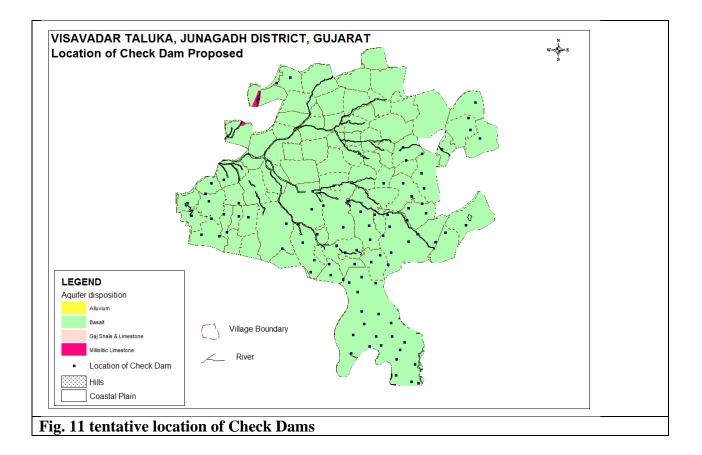
Aquifer	Area feasible for artificial recharge Sq. Km	Volume of rain water planned for Artificial recharge (MCM)	Volume of water planned for conservation through Farm Pond	Volume of water planned for recharge through Check Dam	No of Farm Pond (Unit storage 0.05MCM)	No of Check Dam (Unit 0.05 MCM)
Basalt	567.18	17.13	12.54	4.59	250	91
Milliolitic Limestone	1.63	0.05	0.02	0.02	0	0
	568.81	17.18	12.56	4.62	250	91

Financial Outlay of the Plan

The total estimated cost of the Plan is 3447 lakh, which includes Rs 728 lakh for ground water recharge activities, Rs 2500 lakh (Farm ponds), 54.60 lakh for ground water monitoring (Piezometer construction) and Rs 164.13 lakh towards operation and maintenance charges. The tentative cost estimates of the various activities of the Plan are shown in Table 5.

Feasible Artificial Recharge & Water Conservation structures/ activities	Tentative Design	Quantity (in nos. or area in sq. m)	Rainwater harvested (mcm)	Tentative unit cost (in Rs lakh)	Total tentative cost (in Rs lakh)	Expected Annual GW recharge/ conservation (mcm)					
Recharge Structures/ Activities											
Check Dam		91	4.55	8	728	4.10					
		Sub total			728	4.10					
	Water Conservation Activities										
Farm Pond (3 fillings)	(30 m x 30m x 1.5 m) 900 sq.m or 0.1 ha	250	12.5	10	2500	8.75					
		Impact as	ssessment & I	Monitoring							
Piezometer	Up to 80 m bgl	91		0.6	54.6						
Impact assessm	ent will be co	arried out by	implemneting	agency							
O & M - 5% of	O & M - 5% of total cost of the scheme 164.13										
TOTAL					3446.73						

 Table: 5 Cost estimates of Recharge structures and monitoring well (Piezometers):


Note: Type, number and cost of structure may vary according to site after ground verification

The tentative location of villages for construction of Check Dams and their cost estimates are shown in Fig. 11 and Table 6.

Table-6 : TENTATIVE LIST OF VILLAGES WHERE ARTIFICIAL RECHARGE STRUCTREUS CAN BE TAKEN UP

Sr.		Sr.			
No.	Village Name	No.	Village Name	Sr. No.	Village Name
					Probably forest
1	Adri	31	Jetalvad	61	area
					Probably forest
2	Ajotha	32	Jhanjhesar	62	area
					Probably forest
3	Chamoda	33	Jhanjhesar	63	area
4	Hasnavadar	34	Jhanjhesar	64	Miya Vadla
5	Khandheri	35	Kalsari	65	Monpari Moti

6	Kodidara	36	Kalsari	66	Monpari Moti
7	Kukras	37	Kalsari	67	Navaniya
8	Lumbha	38	Lalpur	68	Navaniya
9	Mathasuriya	39	Lalpur	69	Prempara
10	Nakhada	40	Liliya	70	Prempara
11	Tantivela	41	Limadhra	71	Prempara
12	Ukadiya	42	Limadhra	72	Prempara
13	Vavdi Adri	43	Lunghiya	73	Prempara
14	Ambala	44	Manandiya	74	Rajpara
15	Baradiya	45	Manandiya	75	Rajpara
16	Baradiya	46	Manandiya	76	Rajpara
17	Bhat Vavdi	47	Mandavad	77	Ratang
18	Dadar	48	Probably forest area	78	Ratang
19	Dudhala	49	Probably forest area	79	Ravani Mundiya
20	Ghodasan	50	Probably forest area	80	Sarsai
21	Ghodasan	51	Probably forest area	81	Sarsai
22	Govindpara	52	Probably forest area	82	Sarsai
	Hadmatiya				
23	Mota	53	Probably forest area	83	Shapar
24	Ishvariya (Gir)	54	Probably forest area	84	Shobhavadla Gir
25	Jambala	55	Probably forest area	85	Shobhavadla Gir
26	Javaldi	56	Probably forest area	86	Sudavad
27	Javaldi	57	Probably forest area	87	Sudavad
28	Javaldi	58	Probably forest area	88	Vadala Shetranj
29	Jetalvad	59	Probably forest area	89	Vekariya
30	Jetalvad	60	Probably forest area	90	Visavadar (M)
				91	Visavadar (M)

1. Demand Side Management:

As the surface water is not available to improve the supply of water, demand side management is essential.

Table: 7 Crop wise area in Hectares covered under micro irrigation methods (sourceGujarat Green Revolution Company, Vadodara, Gujarat).

	Area		Area in		Area in		Area in
CROP	in Ha.	CROP	Ha.	CROP	Ha.	CROP	Ha.
BAJRA	1	COTTON	2427.16	LEMON	122.98	SANDLEWOOD	1.37
		CUSTARD					
Banana	12.49	APPLE	78.1	Mango	218.26	SESAMUM	25.07
BITTER						SMOOTHGUAR	
GUARD	57.1	DRUMSTICK	6.67	PAPAYA	12.01	D	3.54
BOTTLE	525.4					SPONGE	
GUARD	7	GARLIC	2	Pomogranate	81.51	GOURD	10.02
BRINJAL	6.66	GOURDS	2.4	ΡΟΤΑΤΟ	1.5	ΤΟΜΑΤΟ	3.29
CABBAGE	0.6	GRAM	11.4	PULSES	6.18	VEGETABLE	2.6
CASTOR	50.49	GREEN GRAM	29.46	RIDGEGOURD	68.01	WATERMELON	1.61
CHILLI	8.61	GROUNDNUT	6418.7	ROSE	0.64	WHEAT	513.57
		KANTOLA	5.28	SAG	1.62	Grand Total	10717.37

Water use efficiency by Drip Irrigation in Rabi crop season:

An area of 10717 hectare is covered by micro-irrigation scheme (MIS) under different crops grown in the district (Table 7). It is estimated the groundwater saving in the district by adopting the drip irrigation method to the main crop in Rabi season is about 0.95 MCM. It is estimated saving of groundwater through Drip irrigation separately to the Crop Cotton and Groundnut are 8.58 MCM and 9.08 MCM respectively (Table 8).

Table :8 Groundwater saving by Drip irrigation in MCM

Taluka	Rabi_Crops	Cotton	crop	Grounnu	Total	
		Summer	Kharif	Summer	Kharif	
Visavadar	0.95	3.63	4.95	3.16	5.92	18.61

Expected Benefits or outcome of the Plan

Ground water recharge and water conservation Plan of Mendarda Taluka, Junagadh district envisages gainful utilization of 4.62 MCM of volume of rain water planned for recharging of depleted aquifer system. Besides this, the proposed intervention would also lead to reduction of pre-existing ground water draft by 12.56 MCM annually through construction of farm ponds. By adopting the micro-irrigation area in the remaining area conserve the 18.61 MCM of groundwater draft in the district.

With the additional recharge and water conservation interventions as proposed in the Plan, it is anticipated that with enhanced recharge and reduction in ground water draft, the stage of ground water development will reduce to 48% from the existing 69%. The projected status of ground water resources and utilization scenario is presented in table 9.

Table :9 Projected Status of Groundwater Resource & Utilization on Recharge and Micro-Irrigation
Interventions

Taluka	Net G.W. Availabil ity (MCM)	Additio nal Rechar ge from RWH (mcm)	Total Net G.W. Availabilit y after interventi on (mcm)	Existing G.W Draft for all purpose (mcm)	Saving of Ground water through conserv ation (mcm)	Saving of Groun d water throug h MIS (mcm)	Net GW draft after interventi ons (mcm)	Present stage of G.W. developmen t (%)	Project ed stage of G.W. Develo pemen t (in %)
Visavadar	159.77	4.62	164.39	110.255	12.56	18.61	79.08	69	48

Projected irrigation potential:

It is estimated 5794 Ha additional irrigation potential may be created in the taluka on 70% of groundwater development Table 10.

District	Development %	Net G.W. Availability (MCM)	Additional Recharge from RWH (mcm)	Total Net G.W. Availability after intervention (mcm)	Max GW avilable on 70% development MCM	Existing G.W Draft for all purpose (mcm)	Balanced GW avilable on 70% development and Existing Draft	Saving of Ground water through conservation (mcm)	Net GW avilable for withdrawl after interventions (mcm)	Average crop water requirement by Drip Irrigationm	Additional area to be Irrigate in sq. km	Area can be Irrigate in Ha
Visavadar	70	159.77	4.62	164.39	115.07	110.26	4.82	12.56	17.38	0.30	57.94	5793.93

Table: 10 Irrigation command area on 70% of development of groundwater

CONCLUSION AND RECOMMENDATION:

- 1. It is recommended to increase the recharge of groundwater from external surface water sources. It is also important to properly maintain and timely operate the existing recharge and salinity control structures.
- 2. Recommended to construct the 91 check dam and 250 Farm ponds in the Taluka to recharge 4.62 MCM and conserve 12.56 MCM of rainfall runoff.
- 3. During the electrification of well/ bore wells, the micro-irrigation through drip/sprinkler irrigation should be made mendatory, so as to minimize use of groundwater.
- 4. 389 Hectares area may brought under micro-irrigation to adopt Drip method to save about 0.95 MCM of water during the Rabi crop season.
- 5. 14908 Hectare Groundnut crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 9.08 MCM of water.

- 6. 9200 Hectare Cotton crop area during pre-Kharif season and last phase of Kharif season may brought under Drip irrigation to save 8.58 MCM of water.
- 7. 5794 Hectare land may additionally irrigated on 70% of groundwater development and observing all intervention proposed.

• The implementation of the project would result in additional recharge. The other tangible/ non-tangible benefits of the project are:

- Recharging the ground water will help in arresting the rapid decline in ground water resources and will also ensure improvement in quality of ground water by way of dilution.
- Proposed structures and measures will also enhance the ground water potential and would ensure sustainability of ground water resources.
- □ Surface runoff water stored or harnessed can be used as supplemental irrigational resources and will reduce the stress on the ground water.
- □ Besides, it will also help in reducing the amount and spate of storm water being drained by river and controlling soil erosion.