

## केंद्रीय भूमि जल बोर्ड

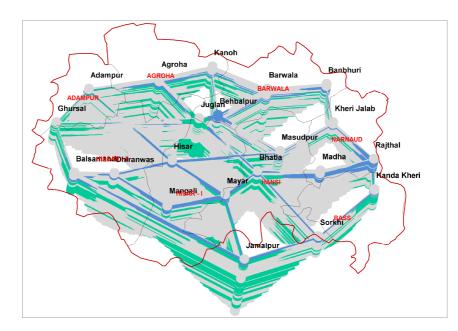
## जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

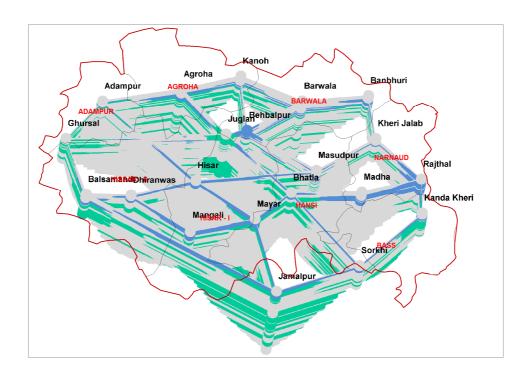
Report on AQUIFER MAPPING AND MANAGEMENT PLAN


Hissar District, Haryana

उत्तरी पश्चिम क्षेत्र, चंडीगढ़

North Western Region, Chandigarh




# राष्ट्रीय जलभृत मानचित्रण एवम प्रबंधन योजना हिसार जिला, हरियाणा



केंद्रीय भूमि जल बोड उत्तर पश्चिमि क्षेत्र, चंडीगढ़ जल संसाधन मंत्रालय,नदी विकास एवम गंगा संरक्षण भारत सरकार मार्च,2017



## AQUIFER MAPPING AND MANAGEMENT PLAN IN HISAR DISTRICT, HARYANA STATE



Central Ground Water Board North Western Region, Chandigarh Ministry of Water Resources, River Development & Ganga Rejuvenation Government of India March, 2017

## **AQUIFER MAPPING AND MANAGEMENT PLAN**

## **HISAR DISTRICT**

## (3860 Sq. Km)

## [PART-I: District Technical Report]

| CONTENT |       | Page No                                                      |       |
|---------|-------|--------------------------------------------------------------|-------|
| 1.0     | INTI  | RODUCTION                                                    | 1-11  |
| 1.1     | Intro | oduction and Physiographic setup                             | 1     |
| 1.2     | Hydı  | rology and Drainage network                                  | 1     |
| 1.3     | Agrie | culture and Cropping patterns                                | 3     |
| 1.4     | Rain  | fall and Climate                                             | 4     |
| 1.5     | Soils |                                                              | 5     |
| 1.6     | Geor  | norphology                                                   | 5     |
| 1.7     | Phys  | niography/DEM                                                | 6     |
| 1.8     | Land  | l Use                                                        | 7     |
| 1.9     | Prev  | ailing water conservation/recharge practices                 | 7     |
| 1.10    | Obj   | ective                                                       | 9     |
| 1.11    | Sco   | pe of the Study                                              | 9     |
| 1.12    | Me    | thodology                                                    | 9     |
| 1.13    | Dat   | a availability, Data adequacy and data gap analysis and data |       |
|         | gen   | eration                                                      | 10    |
| 2.0     | DA    | TA COLLECTION AND GENERATION                                 | 11-24 |
| 2.1     | Hy    | drogeological Data                                           | 11-18 |
| 2       | 2.1.1 | Geology of the area                                          | 11    |
| 2       | 2.1.2 | Water Level Behavior                                         | 12-15 |
| 2       | 2.1.3 | Ground water flow                                            | 15    |
| 2       | 2.1.4 | Hydrograph/Trend                                             | 16    |
| 2       | 2.1.5 | Pumping test data                                            | 17    |
| 2       | 2.1.6 | Exploratory drilling-CGWB, State and private wells           | 17    |
| 2.2     | Ge    | ophysical Studies                                            | 19-21 |
| 2.3     | Gre   | ound Water Quality                                           | 21-24 |

| 3.0 | DATA INTERPRETATION, INTEGRATION AND AQUIFER                         | 25-44 |
|-----|----------------------------------------------------------------------|-------|
|     | MAPPING                                                              |       |
| 3.1 | Hydrogeological Interpretations and results                          | 27    |
|     | 3.1.1 Aquifer Geometry and Disposition                               | 29    |
| 3.2 | Geophysical Interpretations and Ground Water Quality Issue           |       |
|     | Studies:                                                             | 32    |
|     | 3.2.1 Quantitative Interpretation of Geophysical data for Quality in |       |
|     | Hansi and Bass Blocks                                                | 32    |
|     | 3.2.1.1 Integration of geophysical data for delineation of           |       |
|     | quality issues.                                                      | 36    |
|     | 3.2.2 Geophysical data for delineation of Lithology                  | 38    |
|     | 3.2.2.1 Geo-electrical section E1, E2 between Depal,                 |       |
|     | Manikpur and Bar Chappar (W-E)                                       | 38    |
|     | 3.2.2.2 Geo-electrical section F1-F2 b/w Masudpur and                |       |
|     | Azampur along North-South                                            | 40    |
|     | 3.2.2.3 Geo-electrical section H1-H2 b/w Narnaud and                 |       |
|     | Sikandarpur along NE-SW.                                             | 41    |
|     | 3.2.2.4 Geo-electrical section G1-G2 b/w Khokha and                  |       |
|     | Singhwa-Khurd along NW-SE.                                           | 42    |
|     | 3.2.3 Surface and Sub-surface Geophysical data for delineation of    |       |
|     | fresh and saline Interfaces in the aquifer system.                   | 43    |
| 4.0 | GROUND WATER RESOURCES                                               | 44-45 |
| 4.1 | Resources in Single Aquifer group up to the depth of 300 m           | 45    |
|     | 4.1.1 Dynamic Groundwater Resources                                  | 45    |
|     | 4.1.2 In-storage Ground Water Resources                              | 46    |
| 5.0 | GROUND WATER RELATED ISSUES                                          | 51    |
| 5.1 | Ground Water Irrigation Scenario                                     | 52    |

| 6.0  | AQUIFER MANAGEMENT PLAN                                          | 53-62 |
|------|------------------------------------------------------------------|-------|
| 6.1  | Scope of Implementation Plans                                    | 53    |
| 6.2  | Potential of Enhancing the Ground Water Use Efficiency           | 54    |
| 6.3  | Artificial Recharge Rural, Urban and also Recharge pits in farm  | 56    |
| 6.4  | Recharge through village ponds and utility for irrigation        | 56    |
| 6.5  | Water saving Potential from Crop Diversification-Change Paddy to |       |
| Maiz | e/Soya-bean or Pulses.                                           | 60    |

## [ <u>PART-II</u> ]

### **BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLANS**

| <b>7. BLOC</b> | K WISE AQUIFER MAPS AND MANAGEMENT PLAN | 63-111  |
|----------------|-----------------------------------------|---------|
| I.             | Adampur Block (282.28 Sq. Km)           | 64-69   |
| II.            | Agroha Block (421.10 Sq. Km)            | 70-74   |
| III.           | Barwala Block (476.82 Sq. Km)           | 75-79   |
| IV.            | Hansi-I Block (523.61 Sq. Km)           | 80-84   |
| V.             | Hansi-II Block (301.40 Sq. Km)          | 85-89   |
| VI.            | Hisar-I Block (495.87 Sq. Km)           | 90-94   |
| VII.           | Hisar-II Block (737.73 Sq. Km)          | 95-100  |
| VIII.          | Narnaund Block (352.61 Sq. Km)          | 101-106 |
| IX.            | Uklana Block (269.10 Sq. Km)            | 107-111 |
|                |                                         |         |

#### CONCLUSIONS

#### 112-113

#### **LIST OF FIGURES**

| Fig-1: Drainage Network information in Hisar district & Haryana state | 2  |
|-----------------------------------------------------------------------|----|
| Fig-2: Canal Network of Hisar district                                | 3  |
| Fig-3: Geomorphology of Hisar district, Haryana state                 | 5  |
| Fig-4: Base Map of the Hisar district, Haryana state                  | 6  |
| Fig-5: Land Use and Land Cover Map of Hisar district, Haryana state   | 7  |
| Fig-6: Scattering of Village ponds in Hisar district & Haryana state  | 8  |
| Fig-7: Geology of Hisar district, Haryana state                       | 12 |

| Fig-8: Depth to water level map of Hisar district, Pre-monsoon, 2016     | 14 |
|--------------------------------------------------------------------------|----|
| Fig-9: Depth to water level map of Hisar district, Post-monsoon, 2016    | 14 |
| Fig-10: Ground Water level Fluctuation contour map of Hisar district     | 15 |
| Fig-11: Ground Water Flow map of Hisar district (also neighboring        |    |
| districts)                                                               | 16 |
| Fig-12: Long term Hydrograph chart of Hisar district                     | 16 |
| Fig 13: Distribution of validated and optimized well locations in Hisar  |    |
| district.                                                                | 18 |
| Fig 14: Locations of VES in blocks of Hisar district.                    | 20 |
| Fig-15: The interpreted VES curves in parts of Hisar district.           | 21 |
| Fig-16: Ground Water Quality Map of the Hisar district (May, 2015)       | 22 |
| Fig-17: The piper diagram of groundwater analysis in Hisar district &    |    |
| Fig-18: The USSL diagram of groundwater analysis in Hisar district       | 24 |
| Fig-19: Fluvial geomorphological studies carried out by different        |    |
| researchers to understanding the subsurface aquifer system in north      |    |
| western region                                                           | 26 |
| Fig-20: Elevation Contour Map-Hisar District                             | 29 |
| Fig-21: 3D Lithological Model of Hisar District                          | 30 |
| Fig-22: 3D Geometry of lithological fence diagram of Hisar               | 31 |
| Fig-23: Iso-Resistivity map at 10 m depth in Hansi-Bass blocks           | 33 |
| Fig-24: Iso-Resistivity map at 30 m depth in Hansi-Bass blocks           | 34 |
| Fig-25: Iso-Resistivity map at 60 m depth in Hansi-Bass blocks           | 35 |
| Fig-26: Iso-Resistivity map at 80 m depth in Hansi-Bass blocks           | 36 |
| Fig-26: Depth wise resistivity contours for salinity identification in   |    |
| Hansi-Bass blocks                                                        | 37 |
| Fig-27: Geo-electrical cross-section along the West to East direction of |    |
| area                                                                     | 40 |
| Fig-28: Geo-electrical cross-section along the North-South & NE-SW       |    |
| directions of area                                                       | 42 |
| Fig-29: Geo-electrical cross-section along the NW-SE direction of area   | 43 |
| Fig-30: The geophysical resistivity based interpretation for fresh and   |    |
| saline water interfaces in 3D model aquifer system                       | 44 |
| Fig-31: Conceptual figure for understand the fresh and saline water      | 47 |

| resource estimations in the single aquifer system up to 300 m depth.       |    |
|----------------------------------------------------------------------------|----|
| Fig-32: Irrigation tube wells as per depth wise distributions in Hisar     |    |
| district.                                                                  | 52 |
| Figure-33: A view of village tanks of five pond / three pond system.       | 58 |
|                                                                            |    |
| FLOWCHART                                                                  |    |
| Flowchart-1: Methodology of National Aquifer Mapping project.              | 10 |
|                                                                            |    |
| LIST OF TABLES                                                             |    |
| Table-1: Kharif Season Cropping Pattern                                    | 4  |
| Table-2: Summer Season Cropping Pattern                                    | 4  |
| Table-3: Meteorological data of Hisar district                             | 4  |
| Table-4: Water level data (2016) CGWB-GWMS in Hisar district               | 13 |
| Table-5: Ground Water exploration data of Hisar district                   | 17 |
| Table-6: Data availability of exploration wells in Hisar district          | 18 |
| Table-7: Analytical methods and equipments used for chemical analysis      | 23 |
| Table-8: Isopach details in CGWB wells of Exploratory, Piezometers in      |    |
| Hisar District                                                             | 27 |
| Table-9: Aquifers thickness at different depths data of different agencies |    |
| in Hisar.                                                                  | 27 |
| Table-10: Summary of block wise optimized exploration wells.               | 28 |
| Table-11: Dynamic Ground Water Resources estimation & Development          |    |
| Potential (As on 31.03.2013) of Hisar district                             | 45 |
| Table-12: Block wise In-storage Ground Water Resources of Fresh water      | 48 |
| in Aquifer up to average depth of 30 m (i.e Surface to 30 m)               |    |
| Table-13: Block wise In-storage Ground Water Resources of Saline water     | 49 |
| in Aquifer up to average depth of 300 M (i.e Between 30 m to 300 m)        |    |
| Table-14: Block Wise Total Availability of Total Fresh and Saline          |    |
| Groundwater Resources in Hisar District up to max. 300 m depth             | 50 |
| Table-15: Distribution of Tube wells According to Owner's holding Size     | 52 |
| Table-16: Distribution of Shallow Tube wells According to Depth of tube    |    |
| well                                                                       | 52 |
| Table-17: Type of Ground water distribution device                         | 52 |
|                                                                            |    |

| Table-18: Potential for reduction in overdraft by enhancing the          |    |
|--------------------------------------------------------------------------|----|
| groundwater use efficiency in irrigation tube wells, Hisar district      | 55 |
| Table-19: Potential recharge through Artificial Recharge structures in   |    |
| rural and urban areas of Hisar district                                  | 56 |
| Table-20: Utilization of waste water through village ponds and reduction |    |
| in stage of development estimations                                      | 59 |
| Table-21: Water saving Potential from Crop Diversification-Change        |    |
| Paddy to Maize/Soya-bean or Pulses                                       | 61 |
| Table-22: Scope of Quantitative Impact on Stage of Development after     |    |
| applying various management strategies.                                  | 62 |

#### ANNEXURES

| Annexure-1: Analytical results of Basic parameters of ground water           |         |
|------------------------------------------------------------------------------|---------|
| samples of Hisar district (GWMS-NHS-2015)                                    | 114     |
| Annexure-2: Analytical results of Arsenic and Iron parameters of             |         |
| groundwater samples of Hisar district (GWMS-NHS-2015)                        | 115     |
| Annexure-3: Borehole location details of Hisar district drilled by different |         |
| agencies.                                                                    | 116     |
| Annexure-4: Litholog data each boreholes drilled by different agencies in    |         |
| Hisar district                                                               | 117-121 |

### PHOTOGRAPHS

| 1. Hydrogeology and Engineering Domain:                                  |     |
|--------------------------------------------------------------------------|-----|
| 1. Site selection for exploratory well drilling and rig deployment and   |     |
| pin-pointing at site Thurana in Hisar district.                          | 122 |
| 2. Litholog preparation at Site Thurana                                  | 122 |
| 3. Discussions for depth wise in quality variations in the area and      |     |
| collection of well inventory data                                        | 123 |
| 4. Site Selection Proforma for Exploratory well constructed at Thurana   |     |
| site                                                                     | 123 |
| 5. Datasheet for Water Level monitoring data collection during NHS filed | 124 |
| 6. Data collection for making of NAQUIM report from CGWB-Data Centre     |     |
| (RODC)                                                                   | 124 |

### 2. Geophysical Domain:

| REFERENCES                                                              | 128 |
|-------------------------------------------------------------------------|-----|
| CGWB-NWR, Chandigarh                                                    | 127 |
| 2. Chemical Analysis results proforma for individual distribution at    |     |
| CGWB-NWR, Chandigarh                                                    | 127 |
| 1. Photograph of NABL Chemical laboratory for Groundwater Analysis at   |     |
| 3. Chemical Domain:                                                     |     |
| CGWB, NWR, Chandigarh                                                   | 126 |
| 2. Format for distribution of subsurface geophysical results for        |     |
| Hisar district constructed under NAQUIM (AAP: 2016-17)                  | 126 |
| 1. Subsurface Geophysical log analysis of Thurana site, Hansi-II block, |     |

## **PROJECT TEAM**

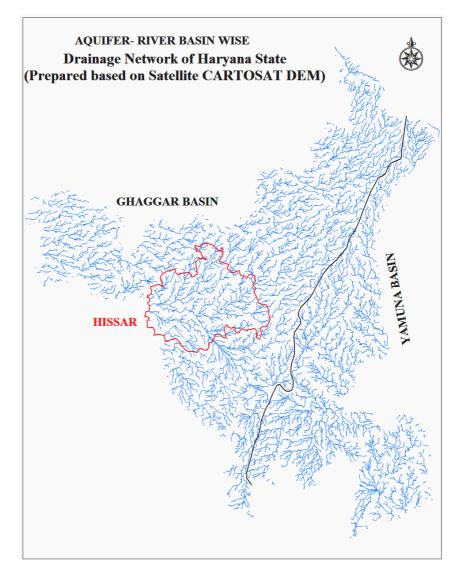
| <b>Regional Director:</b>                     | Dr. S.K. Jain                     |                                    |
|-----------------------------------------------|-----------------------------------|------------------------------------|
| Report Compilation:                           | <b>D. Anantha Rao</b><br>STA (HG) |                                    |
| Nodal Officer:                                | S. K. Saigal<br>Scientist 'D'     |                                    |
| Supporting Team:                              |                                   |                                    |
| Hydrogeology                                  | Geophysics                        | Chemical Quality                   |
| Iti Gupta,<br><i>Scientist 'B'</i>            | S. Bhatnagar,<br>Scientist 'B'    | Balender P. Singh<br>Scientist 'D' |
| Tarun Mishra,<br><i>Scientist 'B'</i>         | S. K Pali<br>Scientist 'D' (Rtd.) | K.S. Rawat,<br>Scientist 'B'       |
| Sanjay Pandey,<br><i>Asst. Hydrogeologist</i> |                                   | Rishi Raj<br>Asst. Chemist         |
|                                               |                                   | Kiran Lale<br>STA (Chem.)          |
| Engineering Section                           |                                   |                                    |
| H. K. Manocha                                 |                                   |                                    |

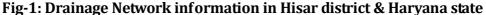
Executive Engineer

#### **1.0 INTRODUCTION**

#### **1.1** Introduction and Physiographic setup:

Hisar is the west central most district of Haryana State with a total geographical area of 3860 sq. km and it lies between the North latitudes 28° 56′ 00″ to 29° 38′ 30″ and East longitudes 75° 21′ 12″ to 76° 18′ 12″. Hisar district is one of the 21 districts of Haryana state, India. Hisar city serves as the district headquarters. Hisar is one of the five cities belonging to Indus Valley Civilization.


As of 2011 it is the second most populous of the 21 districts of Haryana, after Faridabad. Hisar is also known as the steel city because of the Jindal Stainless Steel Factories. It is also the largest producer of galvanized iron in India.


The 2011 census the district had a population of 1,742,815 and gave it a ranking of 276th in India out of a total of 640 districts. The district has a population density of 438 inhabitants per square kilometer. Its population growth rate over the decade 2001-2011 was 13.38%. Hisar has a sex ratio of 871 females for every 1000 males and a literacy rate of 73.2%. Haryanvi is the most spoken dialect in the district. Hisar is 98% Hindu, only about 40,000 are Muslims rests are mostly Jain and Sikhs.

The district is under control of Hisar division and administratively divided into nine community development blocks namely Agroha, Adampur, Barwala, Bass (Hansi-II), Hansi-I, Hisar-I, Hisar-II, Narnaund, and Uklana Mandi. The district has 05 towns namely Hisar, Hansi, Narnaund, Barwala and Uklana and 269 villages.

#### **1.2** Hydrology and Drainage network:

The district falls in Ghaggar basin of Indo-Gangitic plains. The area is traversed by two artificial drains which are confined in Bass, Hansi-I, Narnaund and Barwala blocks. There are a total of 39 drains existing in the area, which run for a distance of 126.25 km. The satellite based interpretation drainage map of Haryana state and Hisar district drainage system are shown in below (Fig-1) (Source-Remote sensing Data).





There is no major river in the district yet there is a good network of canal irrigation system. The district is located in the arid zone of the State. Rainfall is scanty and unreliable. The sub soil water is deep and unfit for irrigation in most parts of the district. This uncertainty of rainfall necessitated the development of irrigation through artificial sources of irrigation like canals and tube-wells. The area is irrigated by shallow tube wells and network of Bhakra Canal Systems and Western Yamuna Canal Systems. The main canals are the Fatehabad branch of Bhakra Canal, Barwala Branch, Balsamandh and Pabra Sub-branch of Barwala Link and Sirsa branch from Bhakra Main Line, Hisar major distributary and Deosar feeder of Western Yamuna canal System through Hansi branch. Canals are irrigating about 76.83 % (209000 ha) of the

area, 23.17 % (63000 ha) is irrigated by ground water. There are sand dunes in canal command area, over which rain fed crops are grown. A total of 269 villages of the district come under Canal Irrigation System. The Irrigation Canal network map of the Hisar district is shown below map (Fig-2) (Source-Irrigation dept., Haryana).

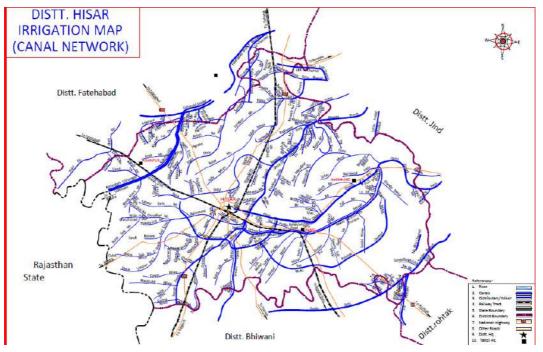



Fig-2: Canal Network of Hisar district

#### **1.3** Agriculture and Cropping patterns:

The district area is irrigated by shallow tube wells and of Bhakra Canal network system. Crop rotation is the planting of different crops in recurring succession in the same field. Hisar district has the major crop rotations of Paddy/Other Crops Fallow/Other Crops-Fallow-Moong-Veg. and Cotton/ Wheat/ Other Crops-Fallow-Moong-Veg. occupy 22.33%, 20.04% areas respectively based on three seasons viz. Kharif, Rabi and Summer (table-1) (Source-HARSAC Publication).

| S. No. | Crops  | Area (00'h) | Area%  |
|--------|--------|-------------|--------|
| 1.     | Cotton | 1167.52     | 30.22  |
| 2.     | Bajra  | 629.84      | 16.30  |
| 3.     | Paddy  | 293.67      | 7.60   |
| 4.     | Other  | 1552        | 40.18  |
| 5.     | Fallow | 220         | 5.70   |
| 6.     | Total  | 3863.03     | 100.00 |

| Crops       | Area (00'h) | Area % |
|-------------|-------------|--------|
| Moong       | 58.85       | 12.58  |
| Vegetables  | 28.39       | 6.07   |
| Other Crops | 38.2        | 8.16   |
| Fallow      | 342.49      | 73.19  |
| Total       | 467.93      | 100.00 |

Table-1: Kharif Season Cropping PatternTable-2: Summer Season Cropping Pattern

#### **1.4 Rainfall and Climate:**

The climate of Hisar owes to its continental location on the outer margins of the south-west (SW) monsoon region. It has tropical monsoonal climate and is characterized as arid type of climate. The district has characteristically four seasons during the year viz., Summer (March to May), SW Monsoon (June to September), Post-Monsoon (October to November) and Winter (December to February) season. SW monsoon also known as summer monsoon brings rain during last week of June to mid-September. The period from October onward until next June remains almost dry except, few light showers received due to westerly depressions/western disturbances (WDs). The summers are generally quite hot and winters are fairly cool. The main characteristics of climate in the district are its dryness, extremes of temperature and scanty rainfall.

The normal annual rainfall of the district is 330 mm which is unevenly distributed over the area 22 days .Around 75 to 80 per cent of the annual rainfall is received during South West Monsoon season (June to September) with 50 per cent coefficient of variation (CV). The average annual rainfall is around 450 mm, of which the average monthly rainfall received during July and August months is 133.4 and 116.2 mm, respectively. The average monthly rainfall during September is 54.5 mm and June 49.8 mm. The average rainfall received during normal monsoon season is 283 mm. Generally rainfall in the district increases from southwest to northeast (table-2) (Source-IMD Data).

| Normal Annual Rainfall  | 330 mm            |
|-------------------------|-------------------|
| Normal Monsoon Rainfall | 283 mm            |
| Temperature             |                   |
| Mean Maximum            | 43°C (May & June) |
| Mean Minimum            | 5°C (January)     |
| Normal Rainy days       | 22                |

Table-3: Meteorological data of Hisar district

#### **1.5** Soils:

The soils of the district are of three types i.e. Arid brown solonized (in north eastern parts covering north eastern part of Narnaund and Uklana Mandi blocks.), Sierozem (in major parts covering Barwala, Hansi-I, Bass (Hansi-II), Hisar-I & Agroha blocks and parts of Uklana, Narnaund, Adampur & Hisar-II blocks) and desert soils (in southern western parts covering part of Adampur and Hisar-II blocks). 81% of the total district i.e 327000 ha area occupied and layered with Sandy loam soils, these are useful for macro and minor irrigations in this area.

#### 1.6 Geomorphology:

The geomorphology of Hisar district is classified into two major categories they are fluvial origin and Aeolian origin landforms. The fluvial originated landforms existed in this district are older deep alluvial plains, palaeo-channels etc and the other landforms i.e dune complex, eolian plain deep, interdunal flat and sand dunes fall under eolian originated landforms. The details of landforms of the Hisar district are shown in the below map (Fig-3) (Source-NRSC-ISRO Thematic Data).

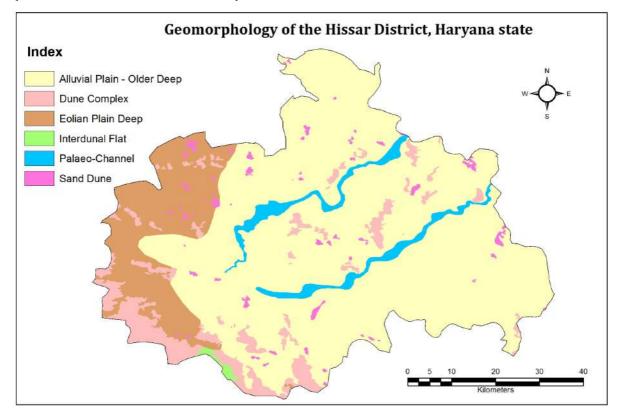
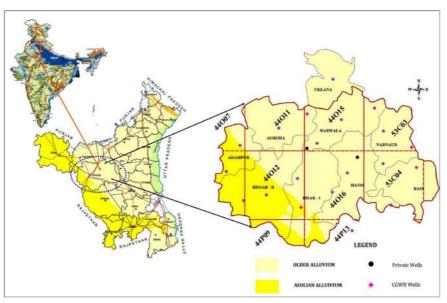




Fig-3: Geomorphology of Hisar district, Haryana state

#### 1.7 Physiography/DEM:

The general altitude of the area varies from 203 to 225 m amsl and having a gentle slope towards south-westerly direction. The district covered survey of India toposheet information 44 0/7, 0/8, 0/11, 0/12, 0/14, 0/15, 0/16, 44 P/9, P/13, 53 C/3, C/4. Physiographically, the district is characterized by two distinct features i.e. upland plains and Sand dune clusters. Base map of the Hisar district that includes location accessibility, toposheet information, district, block head quarters information, road network and general geological, Hydrogeological information are shown in detailed below map (Fig-4) (Source-CGWB & NRSC-ISRO Thematic Data).



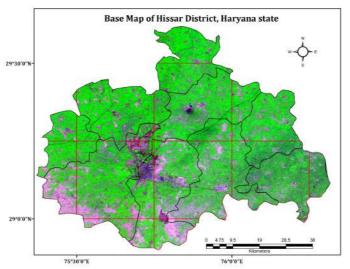



Fig-4: Base Map of the Hisar district, Haryana state (NCC Satellite image)

#### 1.8 Land Use:

Land use and Land cover of the study area are prepared based on the visual interpretation of satellite data and toposheets. The major land use class in this district is agricultural crop land, plantation and fallow type agricultural type and other land use classes observed in this district are build up rural and rural areas, forest area, barren land classes. The detailed land use classes of Hisar district is shown in the below map (Fig-5) (Source-NRSC-ISRO Thematic Data).

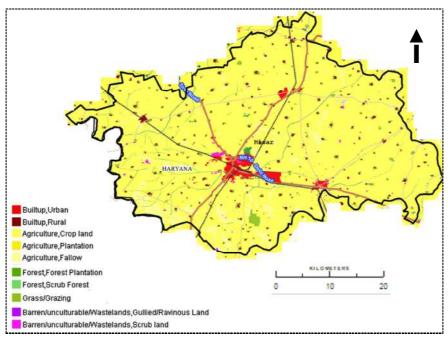
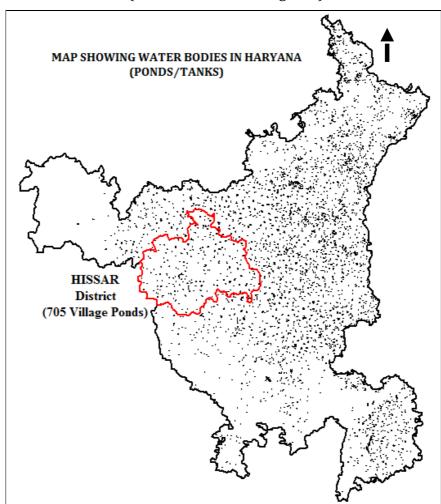




Fig-5: Land Use and Land Cover Map of Hisar district, Haryana state

#### **1.9** Prevailing water conservation/recharge practices:

The district has 705 village ponds and those can be utilized for water conservation in each village. The State government had a few projects taken up for such conservation, management and utilization of waste water. Their block-wise distribution as follows and satellite based interpreted village ponds of the district of Haryana state are shown synoptically in the below figure (Fig-6). The three multipurpose irrigation projects namely Hisar – Ghaggar Multipurpose Channel, Bass. Multipurpose Channel & Hansi Multipurpose Channel are being taken up by the Irrigation Department. The main purpose of these multipurpose channels is to store rain water and flood water and seepage from the field in water logged areas and to



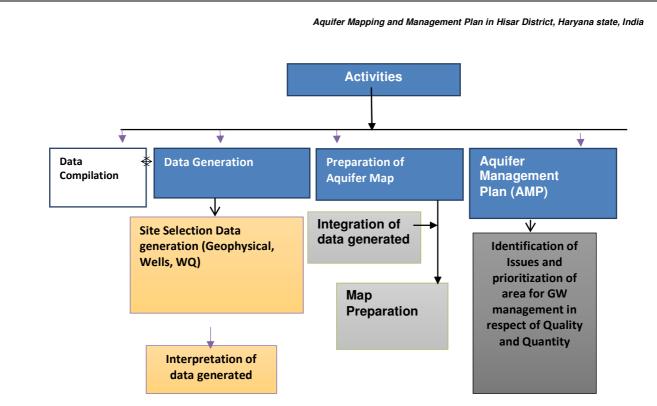
irrigate the area of its command (Source-Remote Sensing Data).

Fig-6: Scattering of Village ponds in Hisar district & Haryana state

Artificial recharge structures may help in balancing water levels at long term recharge. Recharge Trench with injection well structures are suitable artificial recharge structures at some areas. Water conservation methods like change in cropping pattern, change in Irrigation policy, lining of unlined channels, timely plantation of paddy, promotion of sprinkler and drip irrigation etc. may be adopted to overcome the ground water declining conditions in any area.

#### 1.10 Objective:

The primary objective of the Aquifer Mapping Exercise can be summed up as "Know your Aquifer, Manage your Aquifer". Demystification of Science and thereby involvement of stake holders is the essence of the entire project. The involvement and participation of the community will infuse a sense of ownership amongst the stakeholders. This is an activity where the government and the community work in tandem. Greater the harmony between the two, greater will be the chances of successful implementation and achievement of the goals of the Project. As per the Report of the Working Group on Sustainable Ground Water Management, "It is imperative to design an aquifer mapping programme with a clear-cut groundwater management purpose. This will ensure that aquifer mapping does not remain an academic exercise and that it will seamlessly flow into a participatory groundwater management programme. The aquifer mapping approach can help integrate ground water availability with ground water accessibility and quality aspects.


#### **1.11** Scope of the Study:

Systematic mapping of an aquifer encompasses a host of activities such as collection and compilation of available information on aquifer systems, demarcation of their extents and their characterization, analysis of data gaps, generation of additional data for filling the identified data gaps and finally, preparation of aquifer maps at the desired scale. This report attempts to evolve uniform protocols for these activities to facilitate their easy integration for the district as whole.

#### 1.12 Methodology:

National Aquifer Mapping Programme basically aims at characterizing the geometry, parameters, behaviour of ground water levels and status of ground water development in various aquifer systems to facilitate planning of their sustainable management. The major activities involved in this process include compilation of existing data, identification of data gaps, and generation of data for filling data gaps and preparation of aquifer maps. The overall activities of aquifer mapping are presented in the flowchart below (Flowchart-1) (Source-NAQUIM manual).

9



Flowchart-1: Methodology of National Aquifer mapping project.

#### **1.13** Data availability, Data adequacy and data gap analysis and data generation:

The district has been covered under Hydrogeological Studies and Geophysical Surveys (Hansi, Bass & Narnaund blocks) by the Central Ground Water Board. Besides, Ground Water Exploration has also been carried out at 11 sites exploratory wells including 02 slim holes and 15 piezometers. Under NAQUIM studies, Central Ground Water Board have carried out the ground exploration studies at village Thurana well site, (Hansi-II block) constructed to a depth of 100 m to know aquifer disposition system and also ground water quality issues in this district. The geophysical surveys also been conducted in two blocks of Hansi-I and Hansi-II (Bass) during 2004-05 under the project of conjunctive use of groundwater studies in Western Yamuna Canal command areas.

All datasets are sufficient to know the groundwater quality and aquifer delineation studies for district level itself but the information for block level aquifer delineation studies may not adequate so some more lithological datasets may be generated or acquired at 5\*5 minute quadrant levels of each toposheet. At present consequently, the Private organization data was gathered from different agencies of Haryana, Chandigarh regions and PHED department of

Haryana state government. The litholog locations of CGWB wells and Private wells data are plotted together at block level 5\*5 minutes quadrant interval on mapinfo software to see the datagap analysis at block level. Total 25 wells litholog information are collected from CGWB in-house and private agencies of Haryana, Chandigarh regions and lithologs of PHED, Govt. of Haryana data could not be accessed in this district. Under NAQUIM activity, additional three well-fields are proposed and will be constructed by outsourcing in the middle of 2B quadrant of each toposheet by constructing 3 sets of exploratory wells and observation wells in the depth range of 100 m to 300 m i.e (100 m, 200 m & 300 mts) for delineation of hydrogeological paraments and ground water quality in the area.

#### 2.0 DATA COLLECTION AND GENERATION

#### 2.1 Hydrogeological Data:

#### 2.1.1 Geology of the area:

The district is occupied by geological formations of Quaternary age comprising of maximum area of older alluvium i.e Ambala formation belonging to the vast Indus alluvial plains and small part of western part of district is occupied with aeolian deposits. The shallow aquifers, which are unconfined in nature, are being tapped chiefly by shallow tubewells for irrigation. The deeper aquifers, which are underlained and over-lained by extensive impermeable clays with existence of saline groundwater. The geological formations of Hisar district is shown in below map (Fig-7) (Source-NRSC-ISRO Thematic Data).

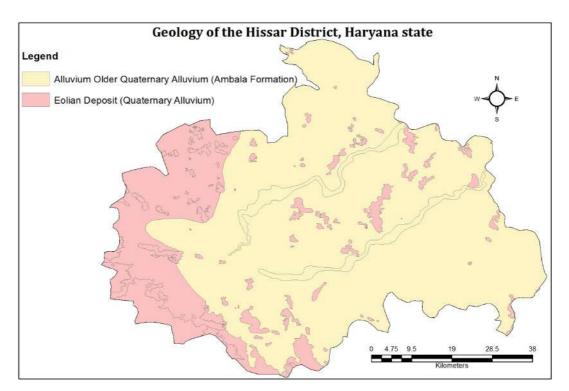



Fig-7: Geology of Hisar district, Haryana state.

#### 2.1.2 Water Level Behaviour:

Depth to water level in the district ranges from 1.50 mbgl at Gurana (Hansi block) to 17.88 mbgl at Basra (Adampur block) during pre-monsoon 2016 and post-monsoon, 2016 water levels ranges from 2.10 to 16.76 mbgl in respective locations (Table-3). The depth to water level contour maps is generated for pre and post monsoon seasons for the entire district and water level fluctuations map are shown in following maps (Fig-8, Fig-9 and Fig-10) (Source-CGWB-RODC Data).

About 60% of the Ground Water Monitoring Wells are showing rising of water levels and remaining 40% shows declining in water levels. The water levels are declining seasonal fluctuation in south west part, north east part, south east and north western parts of the Hisar district. The water level data of pre and post-monsoon periods, 2016 and its seasonal fluctuations data for all Ground Water Monitoring Wells of Hisar district are given in Table-4.

| Location     | Longitude | Latitude | de RL     | Water level,<br>2016 |       | Fluctuations |
|--------------|-----------|----------|-----------|----------------------|-------|--------------|
| Location     | Longitude | Latitude | <b>NL</b> | May                  | Nov   | ructuations  |
| Adampur      | 75.479    | 29.271   | 208.0     | 4.11                 | 3.97  | 0.14         |
| Agroha       | 75.650    | 29.308   | 212.5     | 8.20                 | 7.96  | 0.24         |
| Balawas      | 75.822    | 28.958   | 216.0     | 14.52                | 13.34 | 1.18         |
| Balsamand    | 75.492    | 29.075   | 209.3     | 13.52                | 14.32 | -0.80        |
| Barwala      | 75.921    | 29.371   | 220.7     | 9.42                 | 8.93  | 0.49         |
| Bas          | 76.200    | 29.108   | 224.0     | 3.87                 | 3.80  | 0.07         |
| Basra        | 75.525    | 29.217   | 208.7     | 17.88                | 16.76 | 1.12         |
| Chanaut      | 75.921    | 29.208   | 214.9     | 5.13                 | 3.84  | 1.29         |
| Chaudhriwali | 75.397    | 29.150   | 207.1     | 15.30                | 14.80 | 0.50         |
| Chawdhariwas | 75.600    | 29.008   | 210.1     | 9.19                 | 9.30  | -0.11        |
| Dhansu       | 75.796    | 29.217   | 211.2     | 4.72                 | 4.31  | 0.41         |
| Gurana       | 75.967    | 29.300   | 226.0     | 1.50                 | 2.10  | -0.60        |
| Hisar        | 75.717    | 29.154   | 268.0     | 7.42                 | 7.47  | -0.05        |
| Juglan       | 75.794    | 29.257   | 217.0     | 3.40                 | 3.26  | 0.14         |
| Kheri jalab  | 76.071    | 29.325   | 220.0     | 8.46                 | 8.34  | 0.12         |
| Khot kalan   | 76.175    | 29.388   | 222.3     | 11.38                | 11.73 | -0.35        |
| Kirori       | 75.800    | 29.300   | 214.3     | 16.03                | 15.31 | 0.72         |
| Kirtan       | 75.547    | 29.221   | 209.5     | 12.20                | 11.75 | 0.45         |
| Mirka        | 75.758    | 29.075   | 193.0     | 3.34                 | 3.66  | -0.32        |
| Mothmajri    | 76.096    | 29.208   | 217.0     | 10.81                | 11.08 | -0.27        |
| Narnaud      | 75.567    | 29.117   | 226.0     | 14.25                | 15.09 | -0.84        |
| Rajli cross  | 75.907    | 29.289   | 218.9     | 3.11                 | 1.99  | 1.12         |
| Rajthal      | 76.188    | 29.258   | 223.9     | 13.60                | 12.90 | 0.70         |
| Samani       | 75.683    | 29.408   | 215.6     | 4.06                 | 4.65  | -0.59        |
| Umra         | 75.913    | 29.053   | 213.4     | 6.22                 | 6.47  | -0.25        |

Table-4: Water level data (2016) CGWB-GWMS in Hisar district

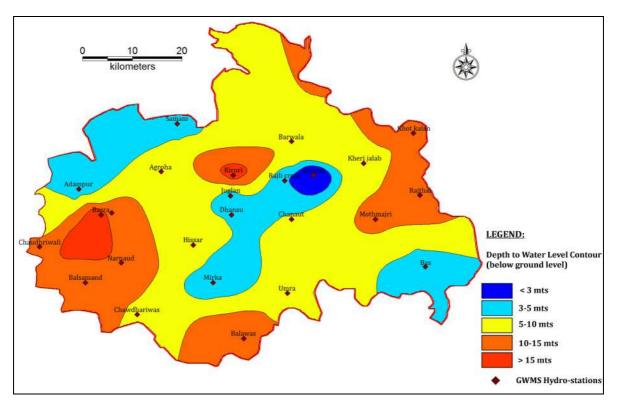



Fig-8: Depth to water level map of Hisar district, Pre-monsoon, 2016

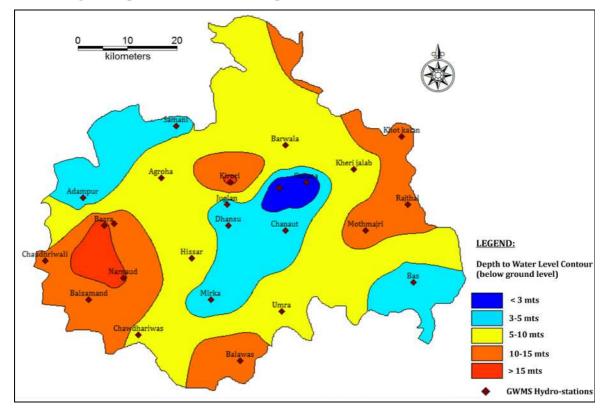



Fig-9: Depth to water level map of Hisar district, Post-monsoon, 2016

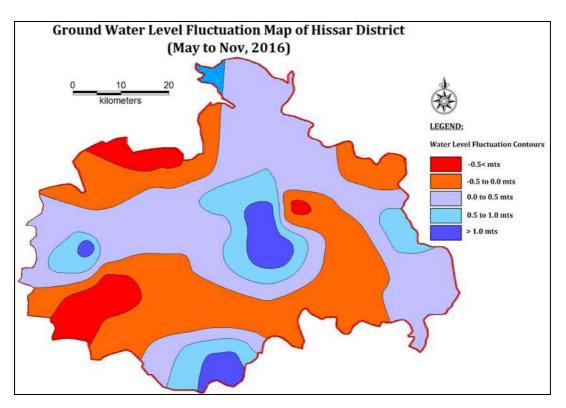



Fig-10: Ground Water level Fluctuation contour map of Hisar district

The long term trend in the water level reflected by water level hydrographs is indicative of the change in groundwater storage in phreatic zone with time. Maximum ground water monitoring stations show rising trend and this may be due to local hydrogeological conditions prevailing in the area. Whereas hydrographs of few GWMS show declining trend which may be due to over exploitation of ground water and these area require careful management of surface water and conjunctive use of surface water and ground water. For the rest of the stations, hydrograph neither indicate any substantial rise nor decline thus indicating that the storage (Dynamic) is being maintained at the normal level which is not disturbed by the present level of ground water development.

#### 2.1.3 Ground water flow:

In general the ground water table varies from 203 to 225 m a.m.s.l. and the regional ground water flow direction is towards western side or southwestern of the district and it may be due to water divide or local hydrological conditions existence in the area (Fig-1 and Fig-11) (Source-CGWB-RODC Data).

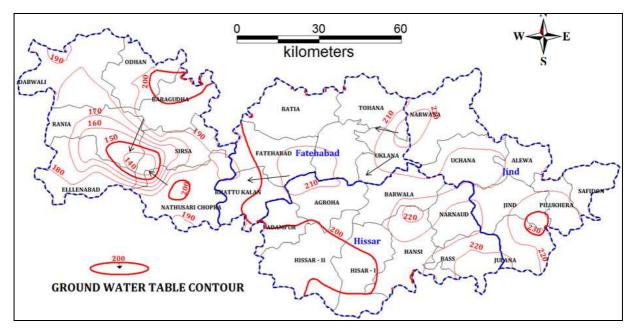



Fig-11: Ground Water Flow map of Hisar district (also neighboring districts)

#### 2.1.4 Hydrograph/Trend:

The available hydrographs of long term monitoring stations in district are shown in below Fig-12 and found that there are no major fluctuations in the district (Source-CGWB-RODC Data).

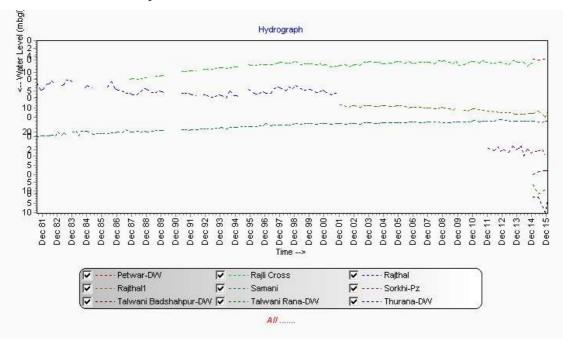



Fig-12: Long term Hydrograph chart of Hisar district

#### 2.1.5 Pumping test data:

Under ground water exploration studies, 24 exploratory wells were constructed to indentifies granular zones disposition, its aquifer parameters like Transitivity (T), Storativity (S), Hydraulic conductivity (K) and also discharge/drawdown of wells (as per GWER-Haryana, 2004). Maximum 45% of the exploratory wells show the success in ground water exploration and remaining wells are abandoned due to salinity or bad quality issues encountering at different depths and hydrogeological conditions in the Hisar district. The available aquifer parameters are given in below table-5 (Source-CGWB Data).

| District | Location of<br>Exploratory<br>wells | Depth<br>drilled<br>(mts) | Transmisivity<br>(T)<br>(m <sup>2</sup> /day) | Storativity<br>(S)    | Discharge<br>(Q)<br>(lpm) | Lithology<br>Type        |
|----------|-------------------------------------|---------------------------|-----------------------------------------------|-----------------------|---------------------------|--------------------------|
|          | Madha                               | 311                       | 2440                                          |                       | 1905                      | Sand. Clay<br>Kankar     |
|          | Hayanpur                            | 306                       | 1500                                          | 1.8*10 <sup>-2</sup>  | 2090                      | Clay, Kankar,<br>Sand    |
| Hisar    | Zalanla                             | 344                       | 350                                           | 1.47*10 <sup>-3</sup> | 2336                      | Sand, Clay &<br>Gravel   |
|          | Tibbi                               | 366                       | 1770                                          |                       | 1852                      | Sand, Clay &<br>Gravel   |
|          | Akhanwali                           | 305                       |                                               | 7.7*10 <sup>-3</sup>  | 1817                      | Sand, Clay               |
|          | Jamalpur                            | 305                       | 1930                                          |                       | 2121                      | Sand, Kankar &<br>Gravel |
| A        | Average                             |                           | 1332                                          | 4.5*10 <sup>-3</sup>  | 2020                      |                          |

Table-5: Ground Water Exploration data in Hisar district

#### 2.1.6 Exploratory drilling-CGWB, State and private wells:

The Lithologs of Exploratory Well/ Observation well/ Piezometer/ productive wells of CGWB and private wells have been collected and those supported electrical logs have been used to validation for preparation of aquifer maps. Deeper well data of CGWB is available and considered for validation of other agencies data. The validated wells available with different agencies and depth wise validated wells are given detailed in Table-6. The compromised logs derived from lithologs and geophysical well loggings have been taken as reliable data base.

CGWB and other private agencies well data of the Hisar district are plotted on 1:50000 scale with 5'X5'grid (9km x 9km) interval to know the spatial distribution of the

and also to find out the datagap analysis in the entire area. The validated and optimised wells of different agencies and its well location details are shown in map (Fig-13).

| The Validated and Optimized wells in Hisar<br>district (Total 21 wells) |      |         |         |      |
|-------------------------------------------------------------------------|------|---------|---------|------|
| Well Depth (Mt)                                                         |      |         |         |      |
| Agency                                                                  | <100 | 100-200 | 200-300 | >300 |
| CGWB                                                                    | 0    | 11      | 5       | 3    |
| PRIVATE                                                                 | 0    | 0       | 2       | 0    |
| PHED                                                                    | 0    | 0       | 0       | 0    |
| Total                                                                   | 0    | 11      | 7       | 3    |

| Table-6: Data ava | ilability of exp | loration wells | in Hisar district |
|-------------------|------------------|----------------|-------------------|
|                   |                  |                |                   |

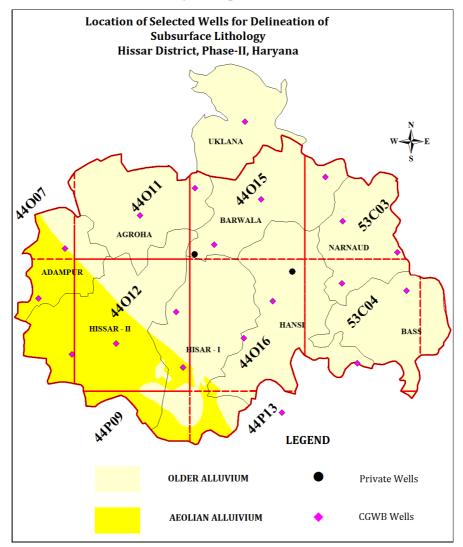



Fig 13: Distribution of validated and optimized well locations in Hisar district.

#### 2.2 Geophysical Studies:

The surface geophysical studies are carried out in Hansi and Bass blocks of Hisar district under Western Yamuna Command area by Central Ground Water Board, NWR, Chandigarh in FSP 2004-05. Hansi and Bass blocks cover eastern and south east parts of the Hisar district and surrounded by Jind and Bhiwani districts. The area covered for geophysical survey is 700 sq. km and has more or less flat topography. The location map of the area studied and Vertical Electrical Soundings (VES) conducted locations map are given below Fig-14 & 15 (Source-CGWB-NWR Data).

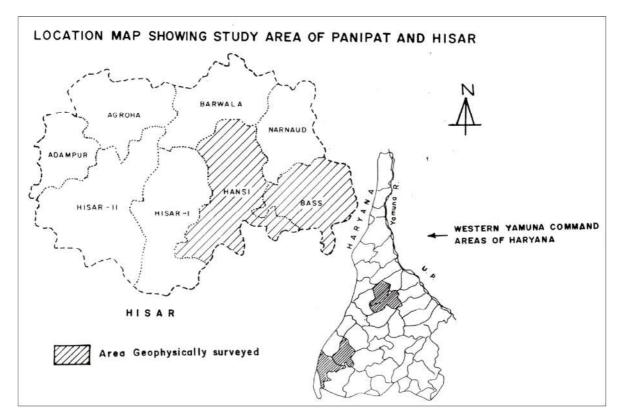



Fig 14: Area of Geophysical Surveys conducted in blocks of Hisar district.

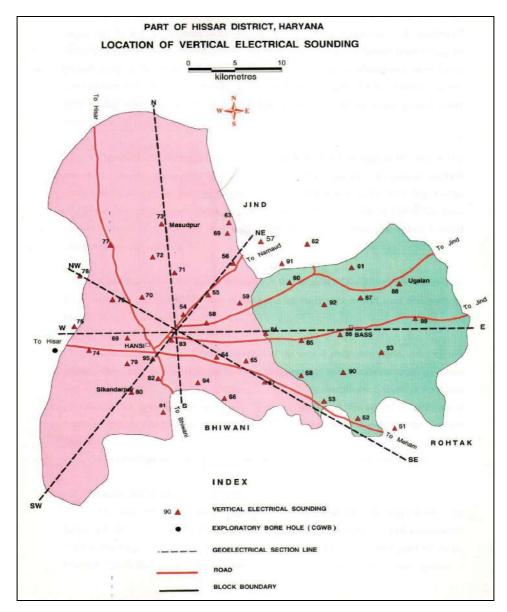



Fig 14: Locations of VES in blocks of Hisar district.

The most common and economical method of geophysical surveys for ground water investigation i.e electrical resistivity method was adopted to look into the sub-surface aquifer systems and ground water quality issues in the district. The instrument was used for this purpose Sweden made ABEM Terrameter. The total 46 Vertical Electrical Soundings (VES) were conducted with current electrodes separation in the range of 200 m and 600 m using Schlumberger configuration of electrode array. The generated VES resistivity database are interpreted for lithology and quality. Generally VES curves are recorded as Q, K and KQ type multilayered system in this area. Q type VES curves represent consequent fall of resistivities and K type curves represent initial rise and consequent fall of resistivities in the little part of the curves. H type of curves also found in the area and it represents fall in the initial part and rise in the little part of the curves. The interpretation of selected curves and type of VES curves observed from the field are given in the given figure-15.

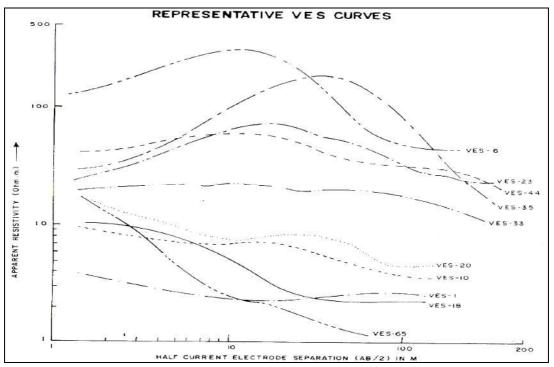



Fig-15: The interpreted VES curves in parts of Hisar district.

#### 2.3 Ground Water Quality:

Chemical data of ground water from shallow aquifer indicates that ground water is alkaline, fresh or moderately saline. The ground water sampling is carried out through Ground Water Observation Wells each year in pre-monsoon period by CGWB. The chemical quality data of pre-monsoon, 2015 is used in this report and the main observations are given as follows. The Electrical Conductivity (EC) values in 71% samples is <3000  $\mu$ S/cm (EC range minimum 299 to maximum 2830  $\mu$ S/cm at 25oC), and remaining 29% samples depict saline water conditions (EC ranges minimum 3120 to maximum 4910  $\mu$ S/cm at 25° C). The Nitrate (NO<sub>3</sub>) values in 62% groundwater samples show nitrate content less than permissible limits i.e. <45mg/l and 18% samples show high nitrate groundwater conditions i.e. more than permissible limits (>45mg/l) Nitrate concentration range from below

detection limit at Bass to a maximum of 609mg/l at Uklana). The Fluoride (F) values observed from groundwater analysis depict that 71% samples have fluoride content less than permissible limits i.e. <1.5mg/l while 29% samples depict fluoride rich groundwater conditions i.e more than BIS permissible limits of >1.5mg/l for drinking water. Fluoride concentration ranges from minimum 0.19mg/l at Samani to a maximum 4.04mg /l at Ghursal village. The groundwater quality map (Fig-16) has been prepared wherein Electrical conductivity contours are integrated with nitrate and fluoride point source values more 45 mg/l and 1.50 mg/l, respectively (BIS permissible limits) The results of GWMS chemical analysis for pre-monsoon, 2015 are attached in Annexure I and II and constituents above permissible limits of Bureau of Indian Standards (BIS), 2012 are highlighted in red colour (Source-CGWB-RODC Data).

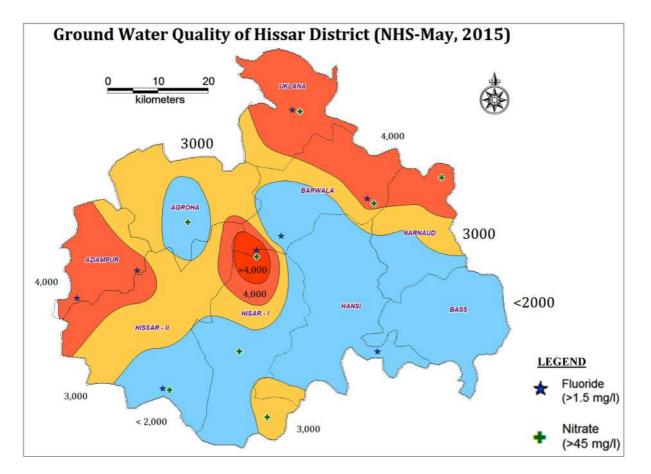



Fig-16: Ground Water Quality Map of the Hisar district (May, 2015).

As per the analytical data generated, it is observed that Arsenic concentration is within BIS desirable limit of >0.01mg/l in entire district. The concentration of iron (total) in ground water of the study area ranges from below detection limit to 1.0063 mg/l at Kirtan village.

Alkali hazards of irrigation ground waters are estimated through the computation of Residual Sodium Carbonate (RSC), also known as Eaton's Index. Waters with RSC value <1.25 meq/L are safe for irrigational uses, RSC between 1.25 and 2.5 are marginal and waters with RSC value >2.5 meq/L are unsafe for irrigation. Classification based on RSC indicates that area groundwater is useful for irrigational use and RSC of ground waters ranges from -23.75 to 0.57 meq/l The groundwater samples analyzing mechanism and used equipments for chemical analysis are given in table-7.

| S. No. | Parameters                                                             | Analytical Methods             |  |  |
|--------|------------------------------------------------------------------------|--------------------------------|--|--|
| A.     | Physico-chemical analysis                                              |                                |  |  |
| Π.     | pH                                                                     | Electrometric method           |  |  |
|        | Conductivity (EC)                                                      | Electrical conductivity method |  |  |
|        | Carbonate & bicarbonate                                                | Titrimetric method             |  |  |
|        | (CO <sub>3</sub> ,HCO <sub>3</sub> ) Chloride (Cl)                     | Argenotometric method          |  |  |
|        | Sulphate (SO <sub>4</sub> )                                            | Nephloturbidity method         |  |  |
|        | Nitrate (NO <sub>3</sub> )                                             | Spectro-photometric method     |  |  |
|        | Fluoride (F)                                                           | Ion metric method              |  |  |
|        | Total hardness (T.H)                                                   | EDTA-Titri metric method       |  |  |
|        | Calcium (Ca)                                                           | EDTA-Titri metric method       |  |  |
|        | Magnesium (Mg)                                                         | By difference                  |  |  |
|        | Sodium (Na)                                                            | Flame photometric method       |  |  |
|        | Potassium (K)                                                          | Flame photometric method       |  |  |
|        | Total Dissolved Solids (TDS)                                           | Gravimetric                    |  |  |
| B.     | Trace element                                                          | s/Heavy metals                 |  |  |
|        | Copper (Cu)                                                            | Digestion followed by          |  |  |
|        | Cadmium (Cd)                                                           |                                |  |  |
|        | Chromium (Cr)                                                          | Atomic Absorption              |  |  |
|        | Lead (Pb)                                                              | Spectrophotometer (AAS)        |  |  |
|        | Manganese (Mn) >                                                       |                                |  |  |
|        | Nickel (Ni)                                                            |                                |  |  |
|        | Cyanide (Cn)                                                           |                                |  |  |
|        |                                                                        |                                |  |  |
|        | Iron (Fe)                                                              | Spectrophotometer method       |  |  |
| Tab    | Table-7: Analytical methods and equipments used for chemical analysis. |                                |  |  |

The Basic chemical quality data of GWMS of Hisar district are used to interpret with Piper and USSL diagrams. As per the piper diagram (Fig-17)the groundwater is saline in 37% samples, mixed type in 33% samples while 24% samples have permanent or temporary hardness and remaining 6% samples are sodium alkaline water.

As per USSL salinity diagram (Fig-18), 70% samples are medium to high salinity and low sodicity, 20% samples have high salinity and medium sodicity while remaining 10% of the samples have very high salinity and very high sodicity. Such water when used for customary irrigation may cause both salinity and sodium hazards. However, these waters can be used for irrigating salt tolerant crops grown on soils with adequate permeability and only after addition of appropriate amounts of gypsum.

Based upon EC, Cl, NO3 & F contents 43% water samples are having potable quality as per BIS 2012 standards in the Hisar district. Overall 70% ground water in the Hisar district is suitable for irrigation purposes.

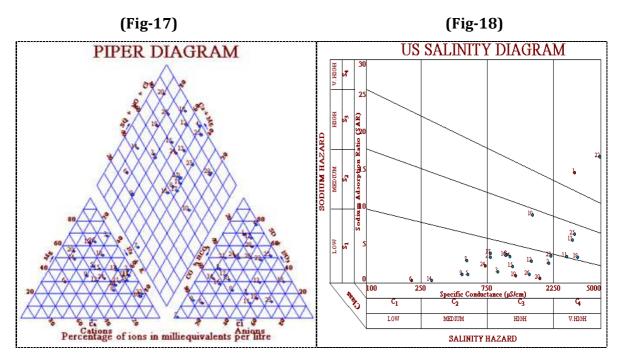



Fig-17: The piper diagram of groundwater analysis in Hisar district

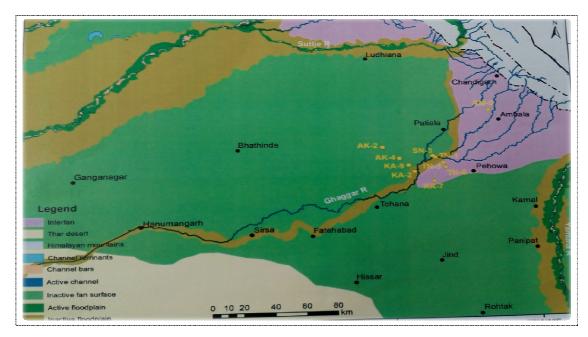

&

Fig-18: The USSL diagram of groundwater analysis in Hisar district

#### 3.0 DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical field and laboratory analyses are applied to characterize the quantity, quality and sustainability of ground water in aquifers. There has been a paradigm shift from "groundwater development" to "groundwater management". An accurate and comprehensive micro-level picture of groundwater in India through aquifer mapping in different hydrogeological settings will enable robust groundwater management plans at the appropriate scale to be devised and implemented for this common-pool resource. This will help achieving drinking water security, improved irrigation facility and sustainability in water resources development in large parts of rural India, and many parts of urban India as well. The aquifer mapping program is important for planning suitable adaptation strategies to meet climate change also. Thus the crux of NAQUIM is not merely mapping, but reaching the goal – that of ground water management through community participation.

The area of Hisar district occupied in Ghaggar basin and geological formations belongs to Quaternary age comprising of Aeolian deposits and older alluvial deposits of major Indus plains. Ground water at shallow depth occurs under unconfined to semi confined condition and deeper water levels under semi confined to confined conditions with huge clay dominance at deeper depths. The combined studies on fluvial geomorphology and Remote sensing studies in north western region are carried out by IITs and Delhi University. It has been observed that the huge flood depositions by river Ghaggar, Saraswati and other minor rivers at different time interval and channel migrations in different ages and also Aeolian depositions caused sand dunes in different time interval leads to difficulty in aquifer grouping. The studies are also conformed through sedimentological, core sampling analysis during the project. The observations are understood by regional geomorphology and channels migrations which shown in the below Fig-19:



# Fig-19: Fluvial geomorphological studies carried out by different researchers to understanding the subsurface aquifer system in north western region.

Central Ground Water Board has drilled 11 exploratory wells and 10 piezometers through in-house and 2 slim holes to delineate the aquifer zones and determine the potential evaluation of aquifer characteristics, aquifer water quality etc. The maximum drilling carried out at Madha (depth of 311 m) and other remaining wells of 10 locations with average depth of 269 m and also the shallow piezometers up to maximum depth of 110 m at 10 locations, all location are shown in the figure-13. The presence of potential granular zones with aggregate thickness varying from 17 to 153 m within the maximum considered depth of 275 to 311 m. The potential granular zones are existed average thickness i.e Isopach is 68 m within the exploratory wells of average depth of 272 m in the Hisar district and also the average thickness of granular zones 46 m at shallow aquifers presented in average depth of 105 m, these observations are estimated through Piezometers existed in the Hisar district. The exploratory well wise and piezometers wise locations, depth of the wells and thickness of potential granular zones thickness details are given below table-8. The granular zones consist of fine to medium sand, occasional kankar and clay presence in the major aquifers. The huge clay is dominantly presented in the major aquifers and this may be deposited during the different palaeo-floods and meandering of different channels of major ghaggar river at different geological cycles.

| Locations of<br>EW | Granular<br>Zones<br>Thickness (m) | Total<br>Depth (m) | Locations of<br>Pz | Granular Zones<br>Thickness (m) | Total<br>Depth (m) |
|--------------------|------------------------------------|--------------------|--------------------|---------------------------------|--------------------|
| Adampur            | 20                                 | 246                | Balsamand          | 71                              | 108                |
| Agroha             | 84                                 | 277                | Banbhuri           | 54                              | 102                |
| Barwala            | 60                                 | 306                | Behbalpur          | 39                              | 109                |
| Bhatla             | 45                                 | 214                | Ghursal            | 44                              | 108                |
| Danoda             | 51                                 | 308                | Kanda Kheri        | 55                              | 102                |
| Dhiranwas          | 65                                 | 229                | Kanoh              | 51                              | 108                |
| Hisar              | 17                                 | 275                | Kheri Jalab        | 24                              | 100                |
| Jamalpur           | 140                                | 304                | Mangali            | 49                              | 109                |
| Madha              | 24                                 | 311                | Sorkhi             | 15                              | 105                |
|                    |                                    |                    | Uklana             |                                 |                    |
| Mayar              | 94                                 | 295                | Mandi              | 58                              | 103                |
| Paoli              | 153                                | 309                | Avg. Hisar         | 46                              | 105                |
| Rajthal            | 67                                 | 152                |                    |                                 |                    |
| Uchana             | 66                                 | 307                | ]                  |                                 |                    |
| Avg. Hisar         | 68                                 | 272                |                    |                                 |                    |

Table-8: Isopach details in CGWB wells of Exploratory, Piezometers in Hisar District

## 3.1 Hydrogeological Interpretations and results:

In the area all exploratory boreholes (EW-Pz & SH wells of CGWB, private and PHED-HR state govt.) are used to optimise, validate and also considered for generation of aquifer map at district level and also at block level. The selections of optimised wells are based on the maximum depth availability and composite lithologs. The deepest well in each quadrant wise selected and plotted on the map of 1.50000 scale with 5'X5'grid (9 x 9km) and is shown in Fig-13. Based on the interpretations of the optimized well lithologs, the single aquifer system is observed up to the maximum depth of 300 m (up to depth of 300 m only considered for alluvial aquifers per NAQUIM methodology). The available potential aquifers thickness details within the depth of 300 m single aquifer system of Hisar district are given below table-9. The block wise distributions of well details are given in table-10.

| Aquifer system<br>Type | Agency  |      | n depth ranges<br>ble (m bgl) | Thickness of<br>Aquifer (m) |     |  |
|------------------------|---------|------|-------------------------------|-----------------------------|-----|--|
| турс                   |         | From | То                            | Min                         | Max |  |
| Single Aquifer         | CGWB    | 102  | 311                           | 15                          | 153 |  |
| system up to 300m      |         |      |                               |                             |     |  |
| depth                  | Private | 244  | 300                           | 60                          | 119 |  |

Table-9: Aquifers thickness at different depths data of different agencies in Hisar.

| Dlogh              | Toposhe |      | No   | of Well & D | epth range ( | m)   | Location with depth  |
|--------------------|---------|------|------|-------------|--------------|------|----------------------|
| Block              | grid Nu | mber | >300 | 200-300     | 100-200      | <100 | (m)                  |
| Ukhlana            | 44 0/14 | 2B   | -    | -           | 1            | -    | Uklana Mandi (103 m) |
|                    |         | 3A   | -    | 1           | -            | -    | Juglan (244m)        |
| Barwala            | 44 0/14 | JA   | -    | -           | 1            | -    | Behbalpur (109m)     |
| Dalwala            |         | 2B   | 1    | -           | -            | -    | Barwala (306m)       |
|                    | 53 C/3  | 2A   | -    | -           | 1            | -    | Banbhuri (102m)      |
| Agroha             | 44 0/11 | 3B   | -    | 1           | -            | -    | Agroha (277m)        |
| Agrona             | 44 0/15 | 2A   | -    | -           | 1            | -    | Kanoh (108m)         |
| Adampur            | 44 0/7  | 3C   | -    | 1           | -            | -    | Adampur (246m)       |
| Auampui            | 44 0/8  | 1C   | -    | -           | 1            | -    | Ghursal (108m)       |
| Hisar-II           | 44 0/8  | 3C   | -    | -           | 1            | -    | Balsamand (108m)     |
| 1115a1-11          | 44 0/12 | 2B   | -    | 1           | -            | -    | Dhiranwas (229m)     |
| Hisar-I            | 44 0/12 | 3C   | -    | -           | 1            | -    | Mangali (109m)       |
| 111581-1           | 44 0/12 | 2C   | -    | 1           | -            | -    | Hisar (275m)         |
|                    |         | 2B   | -    | 1           | -            | -    | Mayar (295m)         |
| Hansi-I            | 44 0/16 | 1C   | -    | 1           | -            | -    | Bhatla (214m)        |
| nalisi-i           |         | 1C   | 1    | -           | -            | -    | Masudpur (350m)      |
|                    | 53 C/4  | 3B   | -    | -           | 1            | -    | Sokri (105m)         |
|                    | F2 C /2 | 3A   | -    | -           | 1            | -    | Kheri Jalab (100m)   |
| Narnaud            | 53 C/3  | 3C   | -    | -           | 1            | -    | Rajthal (152m)       |
|                    | 53 C/4  | 1A   | 1    | -           | -            | -    | Madha (310m)         |
| Bass<br>(Hansi-II) | 53 C/4  | 1C   | -    | -           | 1            | -    | Kanda Kheri (102m)   |

Aquifer Mapping and Management Plan in Hisar District, Haryana state, India

Table-10: Summary of block wise optimized exploration wells.

The optimized wells of CGWB, state PHED and private data are used to compute the elevation or collar elevation map to know the topographic variations in the area, so that it can give the synoptic picture of gradient variations in the water levels in the aquifers. The topographic elevation values have been plotted to prepare the elevation contours and map is shown in Figure-20. The locations of validated wells are toposheet wise and grid wise distribution in respective blocks is shown Table-10 and the groundwater exploration and aquifer parameters wise details are also explained in sub-chapter 2.1.5 and Table-5.

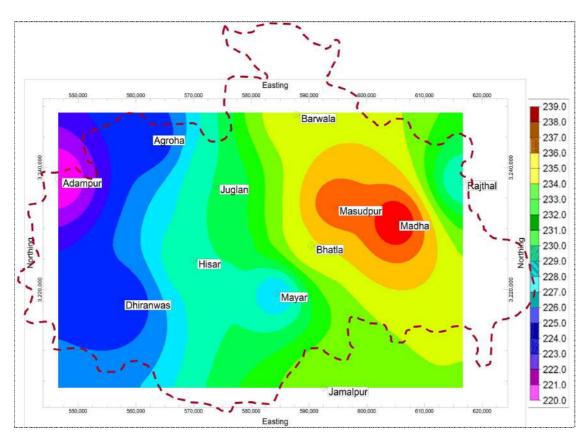



Fig-20: Elevation Contour Map-Hisar District

#### 3.1.1 Aquifer Geometry and Disposition:

To understand the lithological frame work and aquifer disposition in the sub surface aquifers, the litholog data of wells drilled by CGWB, PHED and Private agencies are used to compile, optimized and modeled into 3D, 2D systems by using the RockWorks16 software. The lithological model has been prepared along with distribution of wells are shown in Fig-21 and each location wise lithologs are given in Annexure-3 & 4. The 3D geometrical lithological fence diagram has been also prepared on the basis of distribution of wells in different blocks and the 3D lithological fence diagram is shown in Fig-22. The lithology model elucidates that the variations in lithology from surface to sub-surface disposition in whole district can be synoptically identified from this model (Fig-21), whereas lithological fence diagram (3D geometry) explains that how the each Lithologies are deposited at different directions at different depth intervals at blocks level/village level.

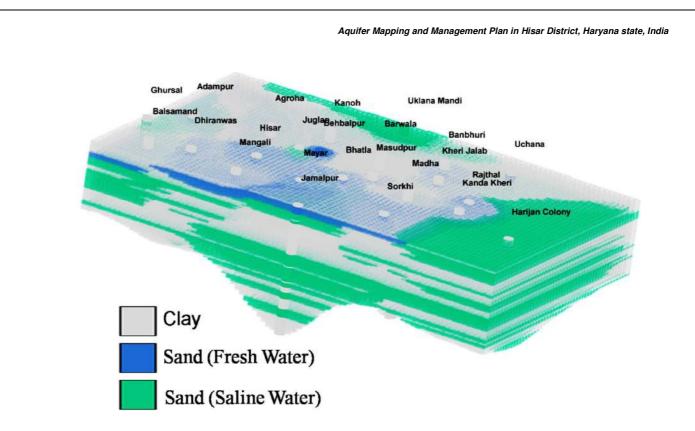



Fig-21: 3D Lithological Model of Hisar District

The major aquifer system of the Hisar district is composed of older alluvium in maximum area and aeolian deposits at minor part in western direction. The alluvium in major single aquifer group category mainly comprised of sand, clay, kankar and sand/clay with kankar lithology. In lithology model concept, the concised lithological formations are made in to two major lithological groups that are sand and clay only. Thick layering of clay with sand at many places and can be observed at deeper depths and also thin inter-layered of sand with saline water bearing zones in the thick clay beds at deeper levels observed in middle areas and its surroundings. The saline water is dominant resources below after 20-60 m to up to the depth of 300 m at relatively all places in Hisar district. The fresh water resources are limited in aquifer up to maximum depth of 60m in north and northeast, south east etc but towards west and southwestern side of the district salinity started from 3 m to 10 m depth range, the detailed explanations are below given sub-chapter. The fresh and saline water interfaces are explained in briefly in geophysical chapter. The 3D lithological fence will represent the much more clear representation about sub-surface lithology in space and dimension wise are shown in Fig-22.

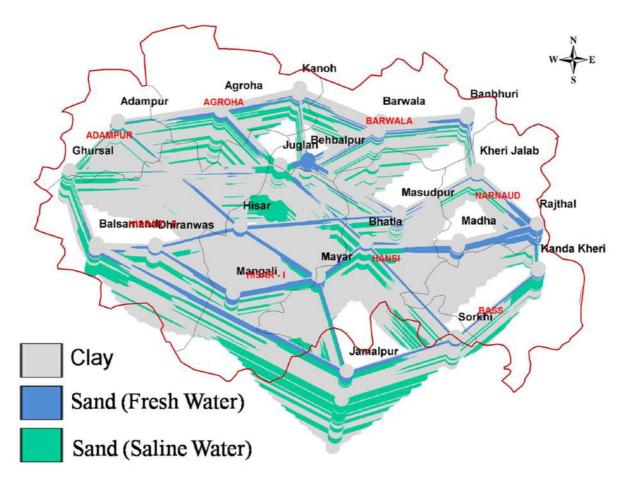



Fig-22: 3D Geometry of lithological fence diagram of Hisar District

In major part of district Hisar, sand content decreases and aquifers become thinner and quality of ground water also deteriorates to marginal and saline category below average 30 m depth, clay invariably forms the major portion of alluvium. Aquifers in these saline areas are mostly thin and pinch out at short distances, thus restricting the movement of ground water. In the clay predominant region Kankar (nodules of CaCo3 of secondary origin) is mixed with clay and also occasionally present in the sand layers. Kankar layers are distinctly present at different depth ranges. This is considered to be a characteristic of older alluvium and is mostly associated with saline ground water regime.

Hisar District falls under the Ghaggar river basin and also the area is confined to major single aquifer system up to the depth of 300m below ground level. The thin inter-layering of sand, clay and clay layers are thicker with increase in depth (Ghaggar River Project Report). The findings from litholog study in Ghaggar basin, the lithologs of each bore hole are not correlating with in another borehole Lithology at depth wise, therefore the lithologies are cannot be combined and it also presumes that each Lithology is existed at some extent i.e pinched (annexure-4). Based on the same criteria, to know the broad picture of the aquifer disposition, inter-relationship of granular zones, nature, geometry and extension of aquifers in the Hisar district, the Lithology grouping have been done and shown in three-dimensional aquifer model (Fig-22).

#### 3.2 Geophysical Interpretations and Ground Water Quality Issue studies:

A total 41 numbers of VES were conducted in Hansi, Bass and parts of Narnaund blocks of Hisar district to delineate sub-surface lithology and also to identify the fresh and saline ground water interfaces. The ABEB Terrameter was used for surface geophysical field investigations in parts of Hisar district. The analysis of resistivity data was done to assess the depth wise variation in groundwater quality with the help of apparent resistivity data at different current electrode separations and interpreted results of VES. Such analysis of data has yielded lateral and vertical distribution of ground water quality maps in the study area. Different geo-electrical sections in different directions (W-E, SW-NE, NW-SE and N-S) were prepared to study the vertical and lateral extent of fresh and saline ground water after interpretations of VES curves. Based on the analysis of data, portability of groundwater map showing depth wise and lateral variations in ground water quality has been prepared.

# **3.2.1** Quantitative Interpretation of Geophysical data for Quality in Hansi and Bass Blocks:

As part of qualitative interpretation data, apparent resistivity contours or Iso-resistivity maps and orthogonal patterns were prepared for qualitative interpretation of resistivity data. The inference were drawn on the basis of distribution of apparent resistivity contours at half current electrode separation AB/2 = 10m, 30m & 60m, 80m. The apparent resistivity contours though do not completely represent actual aerial and vertical extent of a particular parameter at a particular half current electrode separation, but the correlation with the existing borehole data helps in making important inference. After the detailed study of apparent resistivity data and interpreted results of VES it has been established that the contours with apparent resistivity value more than 15 ohm m represent the area available with fresh quality of ground water whereas contours with apparent resistivity less than 15 ohm m represent area available with saline ground water. The field based VES data (Figure-15) used to prepare the different iso-resistivity maps which are describe in the following section (Source-CGWB-NWR Data):

The iso-resistivity map at half current electrode separation 10 m indicates app. resistivity contour of less than 15 ohm m value are distributed over approx. 90% area affected with shallow ground water salinity at the surface level (Fig-23). Remaining area is dominated by contours of apparent resistivity values more than 15 ohm m. representing ground water within 10m depth. Such localities are Rajpura, Sorkhi, Rampura, Premnagar and Samain villages.

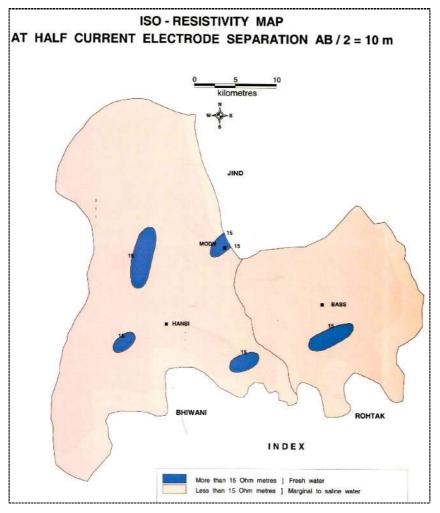



Fig-23: Iso-Resistivity map at 10 m depth in Hansi-Bass blocks

The iso-resistivity map at half current electrode separation 30m and 60 shows only one or two villages of entire study area are distributed by apparent resistivity contours of values more than 15 ohm m representing area with fresh water within 60m, these villages are Rajpura, Narnaud. The iso-resistivity maps at depth of 30m and 60m are shown in below figures-24 and 25. The remaining 97 to 98 % study area dominated mainly by apparent resistivity contours of values less than 15 ohm m bears saline water b/w 30-60m depth. This means major portion of study area in Hansi and Bass block is affected adversely with shallow ground water saline within a depth of mere 30-60m.

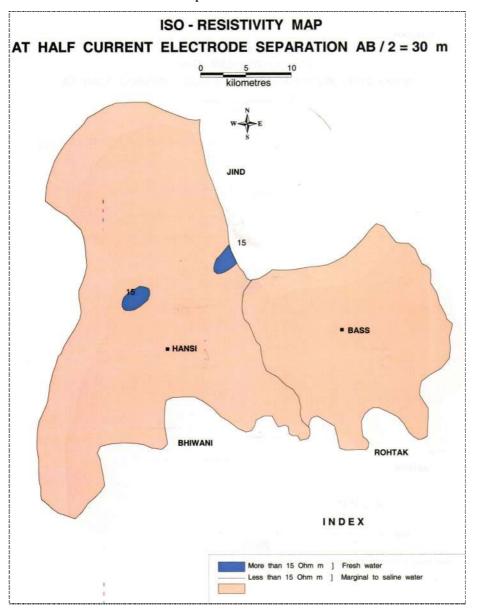



Fig-24: Iso-Resistivity map at 30 m depth in Hansi-Bass blocks.

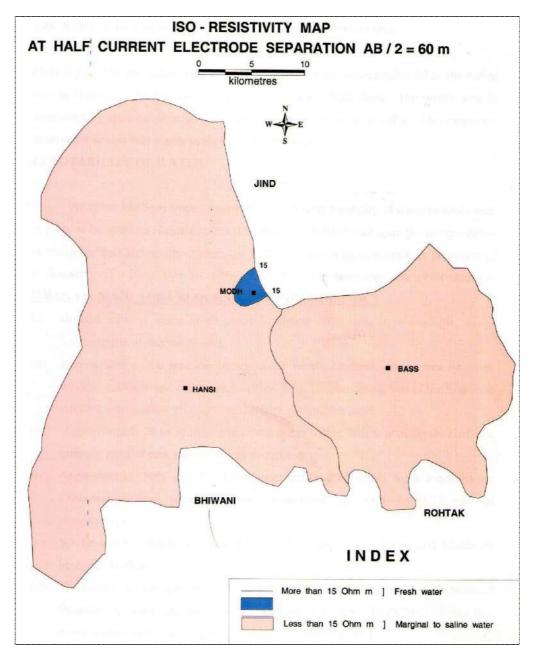



Fig-25: Iso-Resistivity map at 60 m depth in Hansi-Bass blocks

The iso-resistivity map at half current electrode separation 80m the entire area in Hansi and Bass blocks has saline water below 80m depth. The whole area is dominated by apparent resistivity contours of less than 15 ohm m value. This means no fresh water occurs below 80m in Hansi and Bass blocks and the map is shown in figure-26.

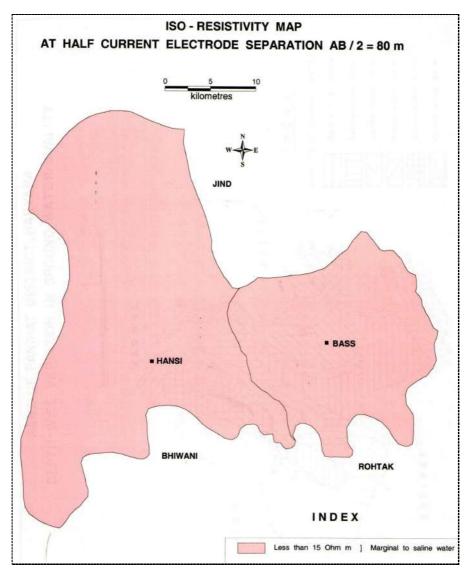



Fig-26: Iso-Resistivity map at 80 m depth in Hansi-Bass blocks

#### **3.2.1.1 Integration of geophysical data for delineation of quality issues:**

The integrated map has been prepared using iso-resistivity data for depth wise information data for delineation of quality issues in respective blocks of Hisar district. The map is shown in below figure-27. Ground water is saline at all level in almost 90% area. Only 10% of the area distributed in small patches has fresh water within 20-60m depth .These area lie over western, southern and central parts. No fresh water has been inferred below 60m depth over Hansi block of Hisar district. The results of chemical analysis of water samples indicate higher concentrations of fluorides in Narnaund showing that water at these

places not suitable for drinking. Ground water is saline at almost all levels in almost entire Bass block.

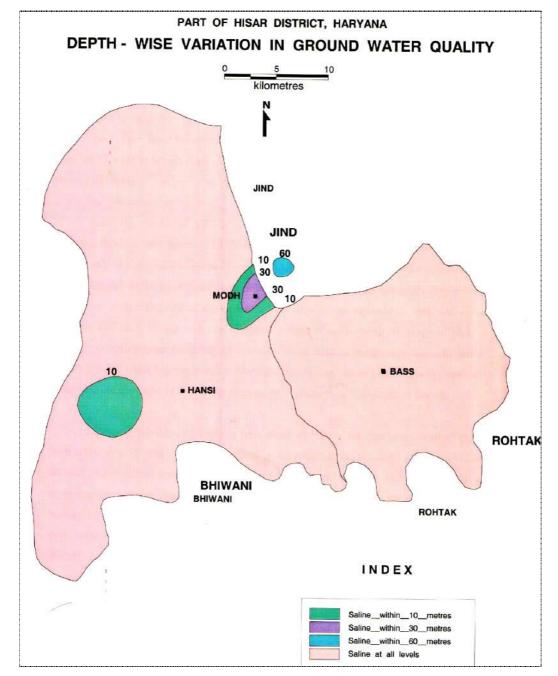



Fig-26: Depth wise resistivity contours for salinity identification in Hansi-Bass blocks

The quantitative interpretation of surface resistivity data was done to infer the extent of fresh and saline water interface. The interpreted results obtained by curve matching method were correlated with existing bore hole data and electrical conductivity of ground water in vicinity of VES .The interpreted results of VES were utilize to estimate the thickness of granular zones and expected quality of ground water at location of particular VES. To correlate the interpreted results of geo-electrical layers within lithology (Samain village) were conducted near the CGWB exploratory borehole location at these places. At Samain in Bass block of Hisar, the first geo-electrical layer with resistivity 12 ohm m and thickness 1m corresponds to the layer of top soil. The second geo-electrical layer of 24ohm m resistivity and thickness 13m corresponds to layer comprising clay sand and kankar containing saline water within the depth 14m. The bottom layer with decreased resistivity of the order of mere 7ohm m indicates vertical deterioration of ground water quality below 14 m depth at Samain. This layer comprises mainly clay, kankar lithology.

In order to prevent deterioration of ground water quality in affected areas due to water logging some preventive measures are to be taken , such as lining of unlined canals & repairs of broken linings to avoid seepage of water to the adjacent areas and installation of proper subsurface & surface drainage system to stop accumulation of flood water. Proper management of water resources by the users especially the ground water & canal water is essential.

#### 3.2.2 Geophysical data for delineation of Lithology:

The general classification of resistivities with respect to Lithology using VES interpreted data for the area as described as <40 ohm values for top soil with clay content, >15 ohm resistivity value for Lithology of sand with kankar, clay containing fresh water and <15 ohm indicates that lithology clay, kankar with sand containing saline water in the total district of Haryana. The VES interpreted resistivity data of each lithology in sub-surface layers of this district are used to prepare the cross-sections in each direction to observe the lithology disposition at sub-surface level. The prepared cross-section details are explained below:

#### 3.2.2.1 Geo-electrical section E1, E2 between Depal, Manikpur and Bar Chappar (W-E):

VES 74,69,83,54,58,59,84,85,92,86,87,93 and VES 89 (Fig:14) lie along this section covering localities of Depalmanikpur in the west, Hansi 2, Kundanpur, Shahpura in the central part and Jamuri, Khumba, Bhataul –Jattan, Badala, Petwar, Bass-Akbarpur, Bass,

Samain and Bar-Chappar in the east respectively. The section is shown through figure-27 and the interpreted results show three geo-electrical layers in general. The section in corroboration with litholog of the exploratory borehole near Samain (VES 93) reveals that:

- The top layer with thickness 5m has resistivity within 12 ohm m in general. This layer comprises top soil & clay.
- (2) The second underlying thin layer of fresh water is seen only at few places which are Hansi 2, Bass, Samain, and Bar Chappar (VES 69,87,93,89 respectively ) having thickness in the range of 6 and 13 m respectively and resistivity varying from 19 to 24 ohm m
- (3) The layer of fresh water is not seen in Depalmanikpur in the west, Kundanpur, Shahpura in the central part and Jamuri, Khamba, Bhataul-Jattan, Badala, Petwar, Bass-Akbarpur in the east (VES 74,83,54,58,59,84,85,92,86 respectively). Ground water is saline at all levels at these places.
- (4) The third or bottom layer is present all over the section with resiastivity less than 10 ohm m in general indicating saline horizon. This saline water horizon is seen immediately below top soil layer or fresh water layer all over the section. No improvement in ground water quality has been inferred at deeper depth. Thickness of the order of 47 to 62m has been computed for saline horizon at Depalmanikpur, Hansi-2 and Shahpura (VES 74, 69 and 54). The ground water salinity increases vertically due to decreasing resistivity of the bottom horizon. The layer is comprised of clay and kankar.
- (5) The fresh and saline water interface as per interpreted results along this section is at shallow depth of 10m and 17m at places where fresh water layer is present. No thick layer of fresh water is present all over this section along W-E. At other places along this section ground water is saline at all levels.

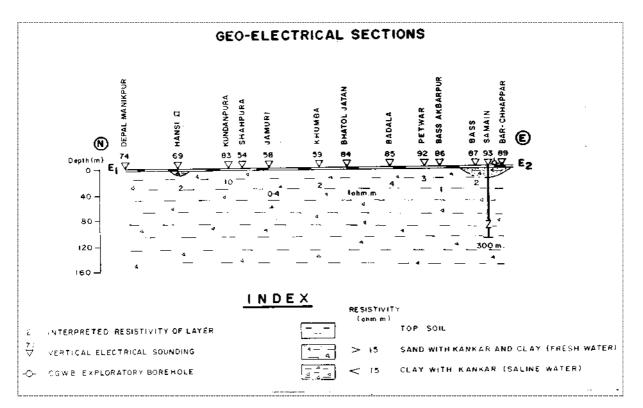



Fig-27: Geo-electrical cross-section along the West to East direction of area

#### 3.2.2.2 Geo-electrical section F1-F2 b/w Masudpur and Azampur along North-South:

VES-73,72,71,54,83,95,82,94 and VES 81 at Masudpur, Sisai in the north, Shahpura, kundanpura, Dhani-raju, Sikandarpur in the central part and Dhana-Khurd, Azampur in the southern direction respectively are located on this geo electrical section (Figure-28) between Masudpur and Azampur along North-South. The study of this section follows that:

- The top layer within resistivity within 26 ohm m and thickness within 3m in general is comprised of topsoil & clay.
- (2) Ground water is saline at all levels over this entire section along North-South which includes the localitiesa of Masudpur, Dhani-raju, Sikandarpur in the central part and Dhana-Khurd, Azampur in the south (VES-73,72,71,54,83,95,82,94 and VES 81 respectively) as the second geo electrical layer of fresh water is totally absent all over the section along north-south. This saline water layer with resistivity in t5he range of 0.1 and 4 ohm m comprises clay and kankar.

(3) The resistivity of the bottom layer has been inferred to be less than 4 ohm m in general which indicates serious vertical determination in the quality of ground water with increasing depth. This layer is comprised of clay, kankar.

#### 3.2.2.3 Geo-electrical section H1-H2 b/w Narnaud and Sikandarpur along NE-SW:

VES 57, 55, 63, 56, 58, 54, 83, 95, 79 and 80 lie along on the section (Figure-28) covering the locations of narnaud, Modha, Rajpura in northwest, Dhani-brahman, jamuri, Shahpura, Kundanpura, Dhani raju in the centra part, Premnagar, srikandarpura in southwestern parts respectively. After the study of this section following observations have been made in respect of different geo-electrical layers.

- 1. Thickness of the top layer has been inferred within 8 m and its resistivity is within 16 ohm in general. The layer is comprised of topsoil and clay.
- 2. The second layer of fresh water is seen only at Premnagar, Rajpura, Narnaud (VES 19, 56, 57) over northwest having thickness of the order of 18, 48, 64 m respectively. The resistivity of this fresh water layer has been inferred in the range of 22 and 28 ohm. This layer is comprised of sand, kankar with clay.
- 3. Over the areas where fresh water layer is present, the depth to fresh and saline water interface has been inferred between 31 and 72 m bgl, where it becomes shallow at other two places viz. Rajpura and Premnagar being within 30m.

In Modha, Dhani Brahman, Jamuri, Shahpura, Kundanpura, Dhani raju, Sikandarpur (VES 63, 55, 58, 54, 83, 95 and 80), the groundwater is saline at all levels and the salinity increases with depth as evident from the low resistivity of the order of 0.1 to 3 ohm for the bottom layer.

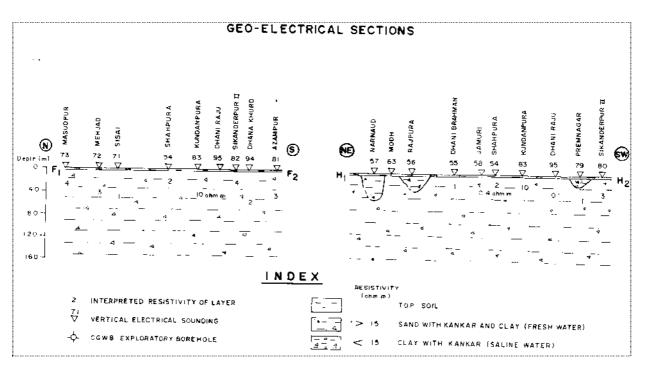



Fig-28: Geo-electrical cross-section along the North-South & NE-SW directions of area

#### 3.2.2.4 Geo-electrical section G1-G2 b/w Khokha and Singhwa-Khurd along NW-SE:

VES 78,76,70,54,83,58,64,65,67,68,53 and VES 52 covering the localities viz. Khokha, Kulana, Rampura in the northwest, Shahpura, Kundanpura, Jamuri, Rampura Kharkhauda in the central part,Sorkhi, Sisar, Mundhal-khurd and Sulakhani in the southeast respectively lie over this section. Following observations have been drawn after the study of this geo-electrical section shown in Figure-29.

- The top layer comprised of topsoil has thickness within 4m in general with resistivity less than 17ohm m.
- (2) The thin layer of fresh water below the top llayer has been inferred only at one place over this section i.e. VES 70 Rampura in central part having thickness of mere 7m. This layer is comprised of clay and kankar.
- (3) Ground water is saline at all levels over this section except at Rampura in Kahni ,as the fresh water layer is totaly absent at these places .This is evident from EC value of ground water in these areas. Very low resistivity of the order of 0.4 to 5 ohm was inferred for the bottom layers indicating thereby the vertical deterioration of groundwater quality at these locations all over this section.

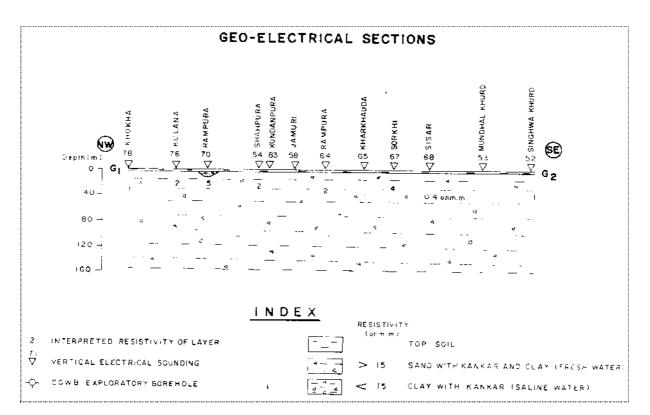



Fig-29: Geo-electrical cross-section along the NW-SE direction of area

## 3.2.3 Surface and Sub-surface Geophysical data for delineation of fresh and saline Interfaces in the aquifer system:

On the basis of existing geophysical electrical logs of CGWB exploratory wells and VES data are used to interpret the fresh and saline water interfaces in the aquifers at all wells of the district. The interpretations are made by using electrical resistivity surveys and VES sounding for saline and fresh water interface as <10  $\Omega$ m for saline water and above 40-60  $\Omega$ m represents sand lithology with fresh water content in the aquifers. The prepared interface 3D fence diagram for fresh and saline waters in the aquifers of Hisar district is shown in below Fig-30.

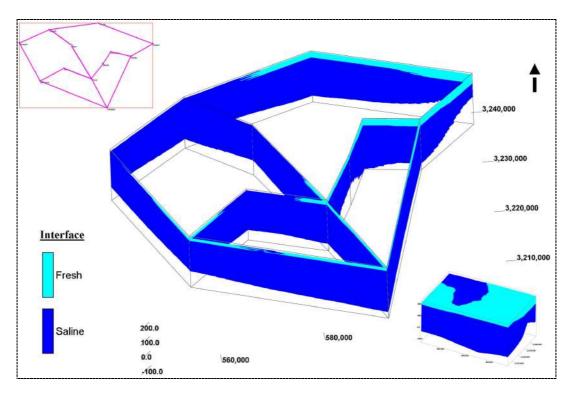



Fig-30: The geophysical resistivity based interpretation for fresh and saline water interfaces in 3D model aquifer system.

## 4.0 GROUND WATER RESOURCES

Ground water resource estimations have been calculated for both Dynamic and Static/In-storage resources of aquifer presented up to the depth of 300m in alluvial plains of the Hisar district. The assessment of dynamic ground water resources of the Hisar has been carried out jointly by CGWB and Ground Water Cell, Department of Agriculture, Haryana on the basis of available data using Ground Water Estimation Committee (1997) methodology and also revised methodology as on 31st March 2013.

The occurrence of potential granular zones in the single major aquifer up to 300 m depth has been counted on basis of aquifer mapping. The total saturated thickness of granular zones was derived from the exploratory borehole data of a particular block. The granular zones occurring below the zone of water level fluctuation up to the first confining layer has been considered as static unconfined zone. The ground water resource of this zone has been calculated considering 12% specific yield of the formation. The specific yield value for the unconfined aquifer has been taken as 60% of 0.12 which comes as 0.072 whereas for

the confined aquifer, Storativity value has been considered. Since the specific yield is likely to reduce with increase in depth due to compaction of overlying sediments.

Hence, the major data elements considered in this estimation are thickness of granular zones, specific yield/storativity, and area of both fresh water and saline/brackish water. It has been observed that in some of the blocks sufficient data on probable occurrence of granular zones was not available. In those cases, the existing exploratory data of adjoining block/district has been either extrapolated or interpolated to derive such parameters required for estimation. This assessment of total groundwater resources has been computed based on the available data with CGWB & Ground Water Cell, Department of Agriculture, Haryana.

## 4.1 Resources in Single Aquifer group up to the depth of 300 m:

#### 4.1.1 Dynamic Groundwater Resources:

The Stage of ground water development in the Hisar district has been assessed to be 112%. The details are explained in below Table-11. Out of nine blocks of Hisar district, 2 blocks are Over-exploited, 2 critical, 1 Semi-critical and 1 Safe blocks.

| Assessm<br>ent Unit/<br>Block | Net<br>Annual<br>Ground<br>Water<br>Availabil<br>ity | Existing<br>Gross<br>Ground<br>Water<br>Draft<br>for<br>irrigation | Existing<br>Gross<br>Ground<br>Water Draft<br>for domestic<br>and<br>industrial<br>water<br>supply | Existing<br>Gross<br>Ground<br>Water<br>Draft<br>for All<br>uses | Provision<br>for<br>domestic,<br>and<br>industrial<br>requireme<br>nt supply<br>to 2025 | Net Ground<br>Water<br>Availability<br>for future<br>irrigation<br>developme<br>nt | Groun<br>Devel | ge of<br>d Water<br>opment<br>%) |
|-------------------------------|------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|----------------------------------|
| Adampur                       | 4521                                                 | 4969                                                               | 0                                                                                                  | 4969                                                             | 41                                                                                      | -489                                                                               | 110            | OE                               |
| Agroha                        | 6432                                                 | 5194                                                               | 0                                                                                                  | 5194                                                             | 28                                                                                      | 1210                                                                               | 81             | SAFE                             |
| Barwala                       | 12970                                                | 10963                                                              | 32                                                                                                 | 10995                                                            | 69                                                                                      | 1938                                                                               | 85             | SAFE                             |
| Hansi-I                       | 8765                                                 | 11566                                                              | 23                                                                                                 | 11589                                                            | 85                                                                                      | -2886                                                                              | 132            | CRIT                             |
| Hansi-II/<br>Bass             | 6022                                                 | 9199                                                               | 0                                                                                                  | 9199                                                             | 28                                                                                      | -3205                                                                              | 153            | CRIT                             |
| Hisar-I                       | 8866                                                 | 6589                                                               | 211                                                                                                | 6800                                                             | 163                                                                                     | 2114                                                                               | 77             | SAFE                             |
| Hisar-II                      | 8272                                                 | 6321                                                               | 0                                                                                                  | 6321                                                             | 129                                                                                     | 1822                                                                               | 76             | SAFE                             |
| Narnaund                      | 9198                                                 | 18555                                                              | 21                                                                                                 | 18576                                                            | 21                                                                                      | -9378                                                                              | 202            | OE                               |
| Uklana                        | 5132                                                 | 4634                                                               | 23                                                                                                 | 4657                                                             | 46                                                                                      | 452                                                                                | 91             | S.CRIT                           |
| Total<br>(ham)                | 70178                                                | 77990                                                              | 310                                                                                                | 78300                                                            | 610                                                                                     | -8422                                                                              | 1              | 12                               |

Table-11: Dynamic Ground Water Resources estimation & Development Potential

(As on 31.03.2013) of Hisar district

#### 4.1.2 In-storage Ground Water Resources:

As per revised guidelines recommended by the Central Level Expert Group on ground water resources assessment, the resources are separately considered as dynamic and in-storage unconfined. In case of alluvial area, the in-storage resources of unconfined aquifer have been computed based on specific yield of the aquifer as detailed below:

| In-storage  | = | Thickness    | of                          | the   | aquifer    | X       | Sp. | Yield | X | Areal e | xtent |
|-------------|---|--------------|-----------------------------|-------|------------|---------|-----|-------|---|---------|-------|
| Ground      |   | (granular/p  | rodu                        | ctive | zone)      |         | of  | the   |   | of      | the   |
| Water       |   | below the :  | zone                        | of wa | ater level | aquifer |     |       |   | aquifer |       |
| resources   |   | fluctuation  | down                        | to th | e bottom   |         |     |       |   |         |       |
| (unconfined |   | layer of unc | layer of unconfined aquifer |       |            |         |     |       |   |         |       |
| Aquifer)    |   |              |                             |       |            |         |     |       |   |         |       |

The dynamic and in-storage ground water resources estimations have been calculated for single aquifer group of each block of Hisar district. In-storage ground water resources are estimated for fresh water and saline water resources based on the geophysical interpretations of depth of fresh and saline water interface for each block wise. The fresh and saline calculations are made based on the assumptions on aquifer is considered as unconfined aquifer so that the specific yield concept is used for resources estimations (Fig-31). The detailed resources estimations are calculated in detailed table for fresh and saline water resources in the below Table-12, 13 and Table-14.

#### "Total Availability of Ground Water Resources = Dynamic Resources + In-storage Resources"

The existing dynamic groundwater resources are 623 mcm and in-storage groundwater resources (both fresh and saline water resources) are 18493 mcm for total Hisar district. The fresh water resources are 3692 mcm existed upto the average depth of 30m bgl and saline water resources are 14801 mcm existed in depth of 30 m to 300m bgl.

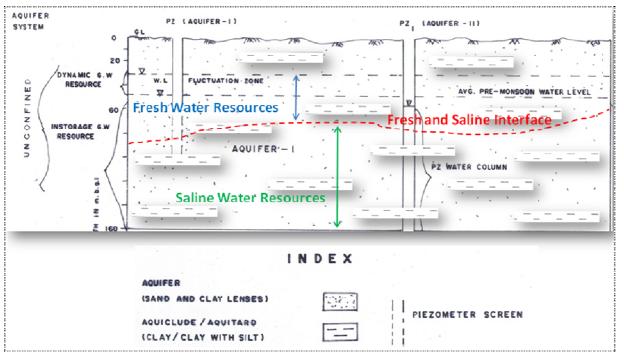



Fig-31: Conceptual figure for understand the fresh and saline water resource estimations in the single aquifer system up to 300 m depth (*Figure Not to Scale*).

(The clay lances are more dominant in the aquifer and sometimes huge thickness of clay deposits are also

observed in the lithologs

|            | Table-12: BLOCK WISE IN-STORAGE GROUND WATER RESOURCES OF FRESH WATER IN AQUIFER UPTO<br>AVERAGE DEPTH OF 30 M (i.e SURFACE TO 30 M) |                              |                                          |                                              |                                      |                                                        |                                                                                                          |                                                                                                  |                                                                                                                        |                                                                                                        |                                                                                                                                     |                                   |                                                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Sr.<br>No. | Name of<br>Assessme<br>nt Unit                                                                                                       | Type of<br>rock<br>formation | Ard<br>Total<br>Geogra<br>phical<br>Area | al extent (I<br>Area<br>of<br>Fresh<br>Water | ha)<br>Area<br>of<br>Saline<br>Water | Average<br>- Pre-monsoo<br>n Water<br>Level<br>(m bgl) | Bottom<br>Depth of<br>Fresh<br>water<br>Aquifer<br>(based on<br>Geophysic<br>al<br>Interface)<br>(m bgl) | Total<br>Thickness<br>of<br>formation<br>below<br>Pre-monso<br>on Water<br>Level<br>(m)<br>(9-8) | Total<br>thickness<br>of the<br>Granular<br>Zones up to<br>the depth<br>of Fresh<br>Water<br>Zones<br>available<br>(m) | Thickne<br>ss of the<br>unsatur<br>ated<br>granula<br>r Zones<br>up to<br>Pre-mo<br>nsoon<br>WL<br>(m) | Thickness<br>of the<br>saturated<br>granular<br>Zones up<br>to the<br>depth of<br>Fresh<br>water<br>aquifer<br>below (m)<br>(12-11) | Avera<br>ge<br>Specifi<br>c Yield | In-Storage<br>Ground<br>Water<br>Resources<br>up to the<br>depth of<br>Fresh<br>Water<br>Aquifer<br>(ham)<br>= 6*13*14 |
| 1          | 2                                                                                                                                    | 3                            | 4                                        | 6                                            | 7                                    | 8                                                      | 9                                                                                                        | 10                                                                                               | 11                                                                                                                     | 12                                                                                                     | 13                                                                                                                                  | 14                                | 15                                                                                                                     |
| 1          | Adampur                                                                                                                              | Alluvium                     | 28228                                    | 26262                                        | 1966                                 | 8.3                                                    | 15                                                                                                       | 6.7                                                                                              | 6                                                                                                                      | 1                                                                                                      | 5                                                                                                                                   | 0.072                             | 9454                                                                                                                   |
| 2          | Agroha                                                                                                                               | Alluvium                     | 42110                                    | 36958                                        | 5152                                 | 7.5                                                    | 40                                                                                                       | 32.5                                                                                             | 14                                                                                                                     | 1                                                                                                      | 13                                                                                                                                  | 0.072                             | 34593                                                                                                                  |

## Table 12: BLOCK WISE IN-STODACE COOLIND WATED DESCUDCES OF EDESH WATED IN AQUIEED UDTO

| (nam)<br>= 6*13*1<br>15 | 14                                                                            | aquifer<br>below (m)<br>(12-11)<br>13                                                                                                                | (m)<br>12 | (m)             | 10            | (m bgi)<br>9 | 8          | 7    | 6     |       | 3        | 2                  | 1 |
|-------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|---------------|--------------|------------|------|-------|-------|----------|--------------------|---|
| 15                      | 14                                                                            | 13                                                                                                                                                   | 12        | 11              | 10            | 9            | 8          | /    | 0     | 4     | 3        | 2                  | 1 |
| 9454                    | 0.072                                                                         | 5                                                                                                                                                    | 1         | 6               | 6.7           | 15           | 8.3        | 1966 | 26262 | 28228 | Alluvium | Adampur            | 1 |
| 34593                   | 0.072                                                                         | 13                                                                                                                                                   | 1         | 14              | 32.5          | 40           | 7.5        | 5152 | 36958 | 42110 | Alluvium | Agroha             | 2 |
| 47262                   | 0.072                                                                         | 14                                                                                                                                                   | 6         | 20              | 30            | 40           | 10         | 795  | 46887 | 47682 | Alluvium | Barwala            | 3 |
| 49933                   | 0.072                                                                         | 14                                                                                                                                                   | 3         | 17              | 25.5          | 32           | 6.5        | 2824 | 49537 | 52361 | Alluvium | Hansi-I            | 4 |
| 20722                   | 0.072                                                                         | 10                                                                                                                                                   | 1         | 11              | 16            | 20           | 4          | 1360 | 28780 | 30140 | Alluvium | Hansi-II<br>(Bass) | 5 |
| 54572                   | 0.072                                                                         | 17                                                                                                                                                   | 1         | 18              | 28.5          | 35           | 6.5        | 5002 | 44585 | 49587 | Alluvium | Hisar-I            | 6 |
| 53543                   | 0.072                                                                         | 11                                                                                                                                                   | 1         | 12              | 16.5          | 27           | 10.5       | 6168 | 67605 | 73773 | Alluvium | Hisar-II           | 7 |
| 36824                   | 0.072                                                                         | 15                                                                                                                                                   | 5         | 20              | 37.5          | 45           | 7.5        | 1165 | 34096 | 35261 | Alluvium | Narnaud            | 8 |
| 0                       | 0.072                                                                         | 0                                                                                                                                                    | 5         | 5               | 6.7           | 15           | 8.3        | 671  | 26239 | 26910 | Alluvium | Uklana             | 9 |
| 306903                  | 0.072                                                                         | District Total (ham)         386052         360949         25103         7.68         30         22.2         123         3         11         0.072 |           |                 |               |              |            |      |       |       |          |                    |   |
| 3069                    | n MCM)                                                                        | pth of 30m (in                                                                                                                                       | verage de | ole up to the a | urces availal | h Water Reso | Total Fres |      | L     | •     |          |                    |   |
| 3.1                     | Total Fresh Water Resources available up to the average depth of 30m (in BCM) |                                                                                                                                                      |           |                 |               |              |            |      |       |       |          |                    |   |

| Sr.<br>No.                                                                                            | Name of<br>Assessment | Type of<br>rock |                                | extent (ha)               | Aroa                          | Average<br>Specific | Depth to bottom<br>of Saline water                                                            | Total thickness<br>of the Granular                                    | In-Storage<br>Ground Water                                                 |  |
|-------------------------------------------------------------------------------------------------------|-----------------------|-----------------|--------------------------------|---------------------------|-------------------------------|---------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                                                                                                       | Unit                  | formation       | Total<br>Geographical<br>Area. | Area of<br>Fresh<br>Water | Area<br>of<br>Saline<br>Water | Yield               | Aquifer based<br>on Geophysical<br>Interface<br>(m bgl)<br>(Up to available<br>drilled depth) | Zones up to the<br>depth of Saline<br>Water Zones<br>available<br>(m) | Resources up<br>to the depth of<br>Saline Water<br>Aquifer (ham)<br>4*8*10 |  |
| 1                                                                                                     | 2                     | 3               | 4                              | 6                         | 7                             | 8                   | 9                                                                                             | 10                                                                    | 11                                                                         |  |
| 1                                                                                                     | Adampur               | Alluvium        | 28228                          | 26262                     | 1966                          | 0.072               | 177                                                                                           | 30                                                                    | 60972.5                                                                    |  |
| 2                                                                                                     | Agroha                | Alluvium        | 42110                          | 36958                     | 5152                          | 0.072               | 163                                                                                           | 50                                                                    | 151596.0                                                                   |  |
| 3                                                                                                     | Barwala               | Alluvium        | 47682                          | 46887                     | 795                           | 0.072               | 182                                                                                           | 51                                                                    | 175088.3                                                                   |  |
| 4                                                                                                     | Hansi-I               | Alluvium        | 52361                          | 49537                     | 2824                          | 0.072               | 286                                                                                           | 55                                                                    | 207349.6                                                                   |  |
| 5                                                                                                     | Hansi-II (Bass)       | Alluvium        | 30140                          | 28780                     | 1360                          | 0.072               | 104                                                                                           | 30                                                                    | 65102.4                                                                    |  |
| 6                                                                                                     | Hisar-I               | Alluvium        | 49587                          | 44585                     | 5002                          | 0.072               | 209                                                                                           | 54                                                                    | 192794.3                                                                   |  |
| 7                                                                                                     | Hisar-II              | Alluvium        | 73773                          | 67605                     | 6168                          | 0.072               | 182                                                                                           | 76                                                                    | 403685.9                                                                   |  |
| 8                                                                                                     | Narnaud               | Alluvium        | 35261                          | 34096                     | 1165                          | 0.072               | 126                                                                                           | 43                                                                    | 109168.1                                                                   |  |
| 9                                                                                                     | Uklana                | Alluvium        | 26910                          | 26239                     | 671                           | 0.072               | 103                                                                                           | 59                                                                    | 114313.7                                                                   |  |
| District Total (ham)         386052         360949         25103         0.072         170         50 |                       |                 |                                |                           |                               |                     |                                                                                               |                                                                       |                                                                            |  |
|                                                                                                       |                       | Тс              | otal Saline Water              | Resources a               | available a                   | fter the ave        | rage depth of 30m to                                                                          | o 300 m (in MCM)                                                      | 14801                                                                      |  |
| Total Saline Water Resources available after the average depth of 30m to 300 m (in BCM)               |                       |                 |                                |                           |                               |                     |                                                                                               |                                                                       | 14.80                                                                      |  |

## Table-13: BLOCK WISE IN-STORAGE GROUND WATER RESOURCES OF SALINE WATER IN AQUIFER UPTO DEPTH OF 300 M (i.e between 30 m to 300 m)

## Table-14: BLOCK WISE TOTAL AVAILABILITY OF TOTAL FRESH AND SALINE GROUNDWATER RESOURCES IN HISAR DISTRICT UPTO MAX. 300 M DEPTH (BASED ON THE DRILLED DATA AVAILABLE IN EACH BLOCK INFROMATION)

| Sl.<br>No | BLOCK              | Dynami<br>c<br>Ground<br>water<br>Resour<br>ces<br>(2013) | In-storag<br>e<br>Groundw<br>ater<br>Resource<br>s UP TO<br>FRESH | Total<br>Groundw<br>ater<br>Resource<br>s up to<br>Avg. 30 m<br>Depth | re Fresh Water G<br>Total R<br>m |                      | Total<br>Saline<br>Groundwa<br>ter<br>Resources<br>up to the<br>Depth of<br>wells |                      | Groundwater<br>Resources up to<br>300 m depth<br>[(5)+(7)] |         | Volume of<br>Unsaturated<br>Granular<br>Zones<br>(above<br>Water<br>Level) for | Unsaturated<br>Zone Block<br>wise                            |                      |                      |
|-----------|--------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|----------------------|-----------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|---------|--------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|----------------------|
|           |                    | (HAM)                                                     | WATER<br>ZONES                                                    | Fresh<br>Water<br>[(3)+(4)]<br>(HAM)                                  | Block<br>wise<br>MCM             | Block<br>wise<br>BCM | wells<br>available<br>in each<br>block<br>(HAM)                                   | Block<br>wise<br>MCM | Block<br>wise<br>BCM                                       | НАМ     | BCM                                                                            | Natural<br>Recharge<br>(Considered<br>below 3m<br>bgl to WL) | Block<br>wise<br>MCM | Block<br>wise<br>BCM |
| 1         | 2                  | 3                                                         | 4                                                                 | 5                                                                     | (                                | 5                    | 7                                                                                 | 8                    | 8                                                          | 9       | 10                                                                             | 11                                                           | 1                    | 2                    |
| 1         | Adampur            | 4809                                                      | 9454                                                              | 14263                                                                 | 142.6                            | 0.14                 | 60972                                                                             | 609.7                | 0.61                                                       | 75236   | 0.75                                                                           | 3387.36                                                      | 33.9                 | 0.03                 |
| 2         | Agroha             | 5601                                                      | 34593                                                             | 40194                                                                 | 401.9                            | 0.40                 | 151596                                                                            | 1516.0               | 1.52                                                       | 191790  | 1.92                                                                           | 5053.2                                                       | 50.5                 | 0.05                 |
| 3         | Barwala            | 8626                                                      | 47262                                                             | 55888                                                                 | 558.9                            | 0.56                 | 175088                                                                            | 1750.9               | 1.75                                                       | 230976  | 2.31                                                                           | 34331.0                                                      | 343.3                | 0.34                 |
| 4         | Hansi-I            | 9320                                                      | 49933                                                             | 59253                                                                 | 592.5                            | 0.59                 | 207350                                                                            | 2073.5               | 2.07                                                       | 266603  | 2.67                                                                           | 18850.0                                                      | 188.5                | 0.19                 |
| 5         | Hansi-II<br>(Bass) | 6032                                                      | 20722                                                             | 26754                                                                 | 267.5                            | 0.27                 | 65102                                                                             | 651.0                | 0.65                                                       | 91856   | 0.92                                                                           | 3616.8                                                       | 36.2                 | 0.04                 |
| 6         | Hisar-I            | 7286                                                      | 54572                                                             | 61858                                                                 | 618.6                            | 0.62                 | 192794                                                                            | 1927.9               | 1.93                                                       | 254652  | 2.55                                                                           | 5950.4                                                       | 59.5                 | 0.06                 |
| 7         | Hisar-II           | 7736                                                      | 53543                                                             | 61279                                                                 | 612.8                            | 0.61                 | 403686                                                                            | 4036.9               | 4.04                                                       | 464965  | 4.65                                                                           | 8852.8                                                       | 88.5                 | 0.09                 |
| 8         | Narnaud            | 8762                                                      | 36824                                                             | 45586                                                                 | 455.9                            | 0.46                 | 109168                                                                            | 1091.7               | 1.09                                                       | 154754  | 1.55                                                                           | 21156.6                                                      | 211.6                | 0.21                 |
| 9         | Uklana             | 4148                                                      | 0                                                                 | 4148                                                                  | 41.5                             | 0.04                 | 114314                                                                            | 1143.1               | 1.14                                                       | 118462  | 1.18                                                                           | 16146.0                                                      | 161.5                | 0.16                 |
|           | Total (HAM)        | 62320                                                     | 306903                                                            | 369223                                                                |                                  |                      | 1480071                                                                           |                      |                                                            | 1849293 | 18.49                                                                          | 117344                                                       |                      |                      |
|           | Total (MCM)        | 623                                                       | 3069                                                              | 3692                                                                  |                                  |                      | 14801                                                                             |                      |                                                            | 18493   |                                                                                | 1173                                                         |                      |                      |
| 1         | Total (BCM)        | 0.62                                                      | 3.07                                                              | 3.69                                                                  |                                  |                      | 14.80                                                                             |                      |                                                            | 18.49   |                                                                                | 1.17                                                         |                      |                      |

## 5.0 GROUND WATER RELATED ISSUES

Hisar is famous for its non-paddy and paddy cultivations. The quality of ground water in the district is potable for both the irrigation and drinking purposes therefore, the ground water is constantly being pumped for the irrigation due to its easy access through tube wells at shallow depths and they are the main source of irrigation.

This will lead to its major ground water issue which is deepening of ground water levels in parts of Uklana, Narnaud, Adampur, Agroha, Hisar-I blocks of Hisar district as the recharge of the groundwater through rainfall and other sources are less than the overall extraction. The hydrographs also indicates that some areas show the constant declining water level trend and the district is categorized as over-exploited (SOD=112%) based on GEC 1997 methodology. Other than this the main ground water issue is quality i.e saline water increases with depths and those resources are available more than fresh water resources. The Aquifers in these saline areas are mostly in thin sand beds and pinch out at short distances, thus restricting the movement of ground water and causes to water logging. In the clay predominant region Kankar is mixed with clay distinctly and also occasionally present in the sand layers at different depth ranges. This is considered to be a characteristic of older alluvium and is mostly associated with saline ground water regime in this district at an average depth of 30 m below ground level. The over-exploitation of groundwater levels are explained in sub-chapter-2.1.4.

The projected demand for domestic and industrial water supply is kept based on projected population for the year 2025 and present dependency on ground water. The ground water available for future irrigation is obtained by deducting the sum of projected demand for Domestic and Industrial use and existing gross irrigation draft from the Net Annual Ground Water Availability. Net Ground Water Availability for future irrigation development in the Hisar district is -84.22 mcm of water.

## 5.1 Ground Water Irrigation Scenario:

As per the data available from minor irrigation census 2006-07, the detailed number of shallow, deep, tube wells, lined, unlined water distribution system, land holdings of wells are given in Table 15, 16 and 17 and shown in Fig-32.

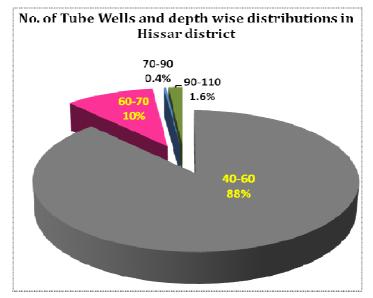



Fig-32: Irrigation tube wells as per depth wise distributions in Hisar district.

| Marginal<br>(0-1 ha) | Small<br>(1-2 ha) | Semi-Medium<br>(2-4 ha) | Medium<br>(4-10ha) | Public | Group of<br>Farmers/ | Total |
|----------------------|-------------------|-------------------------|--------------------|--------|----------------------|-------|
|                      |                   |                         |                    |        | Private              |       |
| 374                  | 4023              | 12750                   | 435                | 136    | 5486                 | 23204 |

## Table-16: Distribution of Shallow Tube wells According to Depth of tube well

| District | Depth of Tube Wells (m) |       |        |     |  |  |  |  |  |
|----------|-------------------------|-------|--------|-----|--|--|--|--|--|
| District | 40-60                   | 70-90 | 90-110 |     |  |  |  |  |  |
| Hisar    | 20407                   | 2360  | 69     | 368 |  |  |  |  |  |

## Table-17: Type of Ground water distribution device

| Open Water Channels              |      |       |  |  |  |  |  |  |  |
|----------------------------------|------|-------|--|--|--|--|--|--|--|
| Lined/pucca Unlined/kutcha Total |      |       |  |  |  |  |  |  |  |
| 15765                            | 7439 | 23204 |  |  |  |  |  |  |  |

#### 6.0 AQUIFER MANAGEMENT PLAN

An outline of the Aquifer mapping and management plan for each block is given in Part-II (Chapter-7). This includes details regarding population, rainfall, average annual rainfall, agriculture and irrigation, water bodies, ground water resource availability, ground water extraction and water level behavior. Aquifer disposition and various cross sections have also been given. Ground water resources, extraction and other issues including ground water resource enhancement and demand side innervations have been given.

Another focus has been given to minimize the gross draft by enhancing ground water use efficiency in irrigation system after replacing the water distribution system from unlined/kutcha channel to Under Ground Pipeline System (UGPS) in over exploited blocks of the district and recharge through artificial recharge structures, village ponds, drains/nallas and crop diversification process. The scopes of quantitative impact on stage of ground water development after applying various management strategies are mentioned for block wise and whole district in Table-22.

#### 6.1 Scope of Implementation Plans:

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the central or state government like MANERGA, IWSP, PMKSY (Prime Minister Krishi Sinchai Yojna), NABARD funded schemes, Urban Development schemes, departmentally funded projects etc may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, Engineering collages, academic and research institutions, and NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

#### 6.2 Potential of Enhancing the Ground Water Use Efficiency:

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced in the state of Haryana, particularly in overexploited blocks.

There are around 7439 tube wells (out of 23204) i.e 32% operated by farmers for irrigation through unlined/Katcha open channel system in Hisar district where water from the tube well is discharge to the agricultural field. In this process, huge (around 25%) quantity of ground water is wasted in soil moisture and evaporation losses. The wastage of water through unlined channels is estimated 55 mcm and 62.4 mcm for assessment years 2011 and 2013 respectively and datasheet is shown in table-18.

Around 88% of the tube wells are of shallow depth (40 to 60m) and remaining 12% of the wells are existed at deeper depth >60 to 110 m in the district. Thus majority of wells are tapping at shallow Aquifers.

Dynamic ground water resources (2013) indicate that Gross ground water draft for irrigation, domestic and industrial users in Hisar district is estimated at 783 mcm. It is expected that around 25% of over draft can be brought down by switching over to underground/surface pipeline based distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to the tune of 62.4 mcm assuming there is no crop diversification by the farmers (Table-18 & 22).

The benefit will lead to saving of precious ground water resources in over-exploited blocks. If implemented above adapted techniques in the areas then it will bring down the ground water overdraft from 112% to 102.7% at district level. The category of the blocks will also improve resulting in boosting of agriculture and industrial development otherwise not sustainable in over-exploited blocks.

The tubewells also consume enormous electricity which is subsidized and government incurs significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. This will also be useful in the waterlogged/ shallow water table areas as the seepage losses in these areas also aggravate the water logging. Government should make/launch a mission mode program for installing the underground pipe lines instead of having katcha channel in the entire Haryana. Heavy ground water overdraft can be reduced by these efforts. This will ensure more crops per drop. Reduction in stage of development after construction of Pacca channels in irrigated land is given in table-18.

| Assessment<br>Year | Assessment<br>Unit | Net<br>Annual<br>Ground<br>Water<br>Availabilit<br>y (mcm) | Total<br>Draft<br>(prese<br>nt)<br>(mcm) | Gross<br>Irrigati<br>on Draft<br>(presen<br>t)<br>(mcm) | Gross<br>Ground<br>Water<br>Draft for<br>Domestic<br>and<br>industrial<br>supply<br>(mcm) | Percent<br>age of<br>unlined<br>channel | Wastage<br>through<br>unlined<br>channel,<br>(mcm)<br>(Col 3 X<br>Col5 X<br>0.25#) | Potential<br>of Reduced<br>irrigation<br>overdraft<br>(Col3-col6)<br>(mcm) | Gross<br>draft<br>after<br>saving<br>of<br>water<br>(mcm)<br>(Col<br>7+Col4) | Presen<br>t Stage<br>of<br>develo<br>pment<br>(%) | Stage of<br>developm<br>ent<br>afterward<br>s<br>((Col8/Co<br>l1)X100)<br>% | Reduction<br>in stage of<br>developm<br>ent after<br>constructi<br>ng pucca<br>channel<br>(Col9-Col<br>10) (%) |
|--------------------|--------------------|------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                    |                    | 1                                                          | 2                                        | 3                                                       | 4                                                                                         | 5                                       | 6                                                                                  | 7                                                                          | 8                                                                            | 9                                                 | 10                                                                          | 11                                                                                                             |
|                    | Adampur            | 45.21                                                      | 49.69                                    | 49.69                                                   | 0                                                                                         | 32%                                     | 3.50                                                                               | 46.19                                                                      | 46.19                                                                        | 110                                               | 102                                                                         | 7.7                                                                                                            |
|                    | Agroha             | 64.32                                                      | 51.94                                    | 51.94                                                   | 0                                                                                         | 32%                                     | 3.66                                                                               | 48.28                                                                      | 48.28                                                                        | 81                                                | 75                                                                          | 5.7                                                                                                            |
|                    | Barwala            | 129.7                                                      | 109.95                                   | 109.63                                                  | 0.32                                                                                      | 32%                                     | 7.73                                                                               | 101.90                                                                     | 102.22                                                                       | 85                                                | 79                                                                          | 6.0                                                                                                            |
|                    | Hansi-I            | 87.65                                                      | 115.89                                   | 115.66                                                  | 0.23                                                                                      | 32%                                     | 8.15                                                                               | 107.51                                                                     | 107.74                                                                       | 132                                               | 123                                                                         | 9.3                                                                                                            |
| 2013               | Hansi-II           | 60.22                                                      | 91.99                                    | 91.99                                                   | 0                                                                                         | 32%                                     | 6.49                                                                               | 85.50                                                                      | 85.50                                                                        | 153                                               | 142                                                                         | 10.8                                                                                                           |
|                    | Hisar-I            | 88.66                                                      | 68.00                                    | 65.89                                                   | 2.11                                                                                      | 32%                                     | 4.65                                                                               | 61.24                                                                      | 63.35                                                                        | 77                                                | 71                                                                          | 5.2                                                                                                            |
|                    | Hisar-II           | 82.72                                                      | 63.21                                    | 63.21                                                   | 0                                                                                         | 32%                                     | 4.46                                                                               | 58.75                                                                      | 58.75                                                                        | 76                                                | 71                                                                          | 5.4                                                                                                            |
|                    | Narnaund           | 91.98                                                      | 185.76                                   | 185.55                                                  | 0.21                                                                                      | 32%                                     | 13.08                                                                              | 172.47                                                                     | 172.68                                                                       | 202                                               | 188                                                                         | 14.2                                                                                                           |
|                    | Uklana             | 51.32                                                      | 46.57                                    | 46.34                                                   | 0.23                                                                                      | 32%                                     | 3.27                                                                               | 43.07                                                                      | 43.30                                                                        | 91                                                | 84                                                                          | 6.4                                                                                                            |
| 2013               | Hisar Dist         | 701.78                                                     | 783                                      | 779.9                                                   | 3.1                                                                                       | 32%                                     | 62.4                                                                               | 717.5                                                                      | 720.6                                                                        | 112                                               | 102.7                                                                       | 9.3                                                                                                            |
| 2011               | Total              | 623.2                                                      | 582.93                                   | 578.41                                                  | 4.52                                                                                      | 32%                                     | 55.5                                                                               | 523.41                                                                     | 518.89                                                                       | 94                                                | 83                                                                          | 11                                                                                                             |

(Note: # 25% of losses from open kuchha channels)

Table-18: Potential for reduction in overdraft by enhancing the groundwater use efficiency in irrigation tube welk,

Hisar district (Assessment year-2013).

#### 6.3 Artificial Recharge rural, urban and also through recharge pits in farm:

Artificial recharge structures are to be constructed in rural and urban houses to conserve the rainwater harvesting to groundwater recharge in over-exploited blocks. The suitable methodology is adopted and estimations are made for rural village households, urban households and explained in block wise recharge in over-exploited blocks in mcm and reductions in stage of development are mentioned in below table-19 & 22.

| Assessment<br>Unit | Net Annual<br>Ground<br>Water<br>Availability<br>(mcm) | Total<br>Draft<br>(present)<br>(mcm) | Present<br>SOD % | AR in<br>Rural<br>&<br>Urban<br>(mcm) | Draft<br>reduced<br>in mcm | Draft<br>reduced<br>in % | Change<br>in<br>SOD%<br>by AR |  |
|--------------------|--------------------------------------------------------|--------------------------------------|------------------|---------------------------------------|----------------------------|--------------------------|-------------------------------|--|
|                    | 1                                                      | 2                                    | 3                | 4                                     | 5                          | 6                        | 7                             |  |
| Adampur            | 45.21                                                  | 49.69                                | 110              | 0.73                                  | 49.0                       | 108.3                    | 1.6                           |  |
| Agroha             | 64.32                                                  | 51.94                                | 81               | 0.00                                  | 51.9                       | 80.8                     | 0.0                           |  |
| Barwala            | 129.7                                                  | 109.95                               | 85               | 0.00                                  | 110.0                      | 84.8                     | 0.0                           |  |
| Hansi-I            | 87.65                                                  | 115.89                               | 132              | 0.00                                  | 115.9                      | 132.2                    | 0.0                           |  |
| Hansi-II           | 60.22                                                  | 91.99                                | 153              | 0.00                                  | 92.0                       | 152.8                    | 0.0                           |  |
| Hisar-I            | 88.66                                                  | 68.00                                | 77               | 0.00                                  | 68.0                       | 76.7                     | 0.0                           |  |
| Hisar-II           | 82.72                                                  | 63.21                                | 76               | 0.00                                  | 63.2                       | 76.4                     | 0.0                           |  |
| Narnaund           | 91.98                                                  | 185.76                               | 202              | 1.25                                  | 184.5                      | 200.6                    | 1.4                           |  |
| Uklana             | 51.32                                                  | 46.57                                | 91               | 0.00                                  | 46.6                       | 90.7                     | 0.0                           |  |

Table-19: Potential recharge through Artificial Recharge structures in rural andurban areas of Hisar district

#### 6.4 Recharge through village ponds and utility for irrigation:

The disposal of waste water in rural/villages is a major problem. The stagnant waste water smells bad and also acts as breading place for mosquitoes resulting in spread diseases like Denguem, Malaria, Filaria etc. Therefore proper disposal and reuse of waste water wherever possible will help in controlling diseases as well as meting out scarcity of water. The waste water of households called the grey water collected from bathroom, washing of cloths and kitchen requires less treatment than black water and generally contains fewer pathogens. The treated water can be used for gardening, fodder raising and kitchen gardening.

Under water management for rural areas is that it is revealed that more than 90% of waste water generated in rural areas is grey water. For the treatment of waste water at village level by natural way, a system has been evolved called 3/5 pond system. The grey water of the village collected through the drains/nallas collected at a common point and passed through the iron mesh of different sizes and then allowed to pass through large shallow basins or ponds. Its pathogenicity is reduced and stabilized water becomes reusable. The field photographs of this three and five pond systems adopted in different villages of Karnal district are given in Fig-33.

There are 705 village ponds existed in Hisar district and recharge to groundwater from few of village ponds are explained in sub-chapter-1.9. In addition to this Industrial sectors may also initiated to adopt the surrounding village ponds with a prime objective of artificial recharge to groundwater through rainwater runoff. Periodically desiltation and cleaning of ponds and plantation of trees along the pond banks improve the quality of water in the ponds and ultimately this water is used for irrigation and recharge to ground water.



Figure-33: A view of village tanks of five pond / three pond system of water treatment under natural process.

The above mentioned techniques can be adopted in every village ponds for ground water development. The utilization of waste water though ponds in Hisar district is given in table-19. The domestic demand is taken as person is 70 lpcd and out of this 80% will be domestic effluent. The 80% of water i.e waste can be saved in the ponds; the pond water can be treated and can be used for irrigation purpose. These are ultimately reflected to reduce in the draft of groundwater from tube well and reductions in change of present stage of development. The details are explained in block wise given in table-20 (Source is Census data, 2011).

| Name of<br>CD block | Total<br>number<br>of<br>inhabite      | Total<br>popula<br>tion of<br>C.D. | Domestic<br>demand in<br>litre per<br>day@70 | Domestic<br>demand in<br>litre per<br>day@70 | Domestic<br>effluent @<br>80% of after<br>use | through water of | Saving of water<br>through waste<br>water of pond<br>(ham) |       | Total<br>draft<br>(ham) | Modifie<br>d draft<br>(ham) | Existing<br>stage of<br>Development<br>(%) | SOD*<br>after<br>wards | Reduc<br>e the<br>%<br>chang |
|---------------------|----------------------------------------|------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------|------------------------------------------------------------|-------|-------------------------|-----------------------------|--------------------------------------------|------------------------|------------------------------|
|                     | d<br>villages<br>in the C.<br>D. block | block                              | lpcd                                         | lpcd/Annum                                   | (lpcd/annu<br>m)                              | cubic<br>meter   | In<br>Ham                                                  |       |                         |                             |                                            |                        | e in<br>prese<br>nt<br>SOD   |
| 1                   | 2                                      | 3                                  | 4                                            | 5                                            | 6                                             | 7                | 8                                                          | 9     | 10                      | 11                          | 12                                         | 13                     | 14                           |
| Adampur             | 19                                     | 86011                              | 6020770                                      | 2197581050                                   | 1758064840                                    | 1758065          | 176                                                        | 4521  | 4969                    | 4793                        | 110                                        | 106                    | 4                            |
| Agroha              | 23                                     | 101193                             | 7083510                                      | 2585481150                                   | 2068384920                                    | 2068385          | 207                                                        | 6432  | 5194                    | 4987                        | 81                                         | 78                     | 3                            |
| Barwala             | 38                                     | 157981                             | 11058670                                     | 4036414550                                   | 3229131640                                    | 3229132          | 323                                                        | 12970 | 10995                   | 10672                       | 85                                         | 82                     | 3                            |
| Hisar II            | 40                                     | 174733                             | 12231310                                     | 4464428150                                   | 3571542520                                    | 3571543          | 357                                                        | 8272  | 6321                    | 5964                        | 76                                         | 72                     | 4                            |
| Hisar I             | 40                                     | 144128                             | 10088960                                     | 3682470400                                   | 2945976320                                    | 2945976          | 295                                                        | 8866  | 6800                    | 6505                        | 77                                         | 73                     | 4                            |
| Uklana              | 12                                     | 92473                              | 6473110                                      | 2362685150                                   | 1890148120                                    | 1890148          | 189                                                        | 5132  | 4657                    | 4468                        | 91                                         | 87                     | 4                            |
| Narnaund            | 30                                     | 123638                             | 8654660                                      | 3158950900                                   | 2527160720                                    | 2527161          | 253                                                        | 9198  | 18576                   | 18323                       | 202                                        | 199                    | 3                            |
| Hansi I             | 40                                     | 207569                             | 14529830                                     | 5303387950                                   | 4242710360                                    | 4242710          | 424                                                        | 8765  | 11589                   | 11165                       | 132                                        | 127                    | 5                            |
| Hansi II            | 22                                     | 92451                              | 6471570                                      | 2362123050                                   | 1889698440                                    | 1889698          | 189                                                        | 6022  | 9199                    | 9010                        | 153                                        | 150                    | 3                            |

(SOD\* = Stage of Ground Water Development)

Table-20: Utilization of waste water from village ponds and reduction in stage of development estimations (2013).

# 6.5 Water saving Potential from Crop Diversification-Change Paddy to Maize/Soya-bean or Pulses:

As the requirement of water for paddy is much high therefore by changing paddy to maize/soya-bean will help in saving of water. For estimating the water saving by crop diversification it is assumed that *one mcm* of water will be saved in case of maize or soybean planted in *one sq km* of land. In case of pulses even higher amount of ground water can be saved.

The water saving through crop diversification is major challenge and it will give major impact on groundwater resources extraction. The paddy cultivation replaces by maise/soyabean or pulses are showing impact on groundwater draft. The calculations for block wise saving of water in mcm and reduction in draft after crop diversification technique like paddy replaced with maise/soyabean and paddy replaced with pulses are explained in detailed table-21.

In Hisar district, there are 2 Over-exploited (OE) blocks and remaining 7 blocks are Safe, Semi-critical & Critical blocks with less percentage of land for paddy cultivations. After adaptation of all methods of management plans like crop diversification paddy with maise/soyabeans or with pulses, AR (Artificial Recharge in rural, urban), UGPL and Ponds water usage/recharge are caused to reduce in the groundwater draft and also saving of water for different users. After adaptation of above methods of techniques in OE and Critical blocks are reduced 14 to 35% in their stage of development and ultimately these blocks fall in safe to semi-critical category. Adampur, Hansi-I & II blocks are reduced in stage of development to 96%, 92% & 97% after adaptation of all techniques like crop diversification paddy with maise/soyabeans or with pulses, AR (Artificial Recharge in rural, urban), UGPL and Ponds water usage/recharge, whereas Narnaund block is reached to 150-170% after included all management plans. The block wise saving of water in mcm by crop diversification, UGPL artificial recharge in rural, urban areas and pond recharge methods details are given in below table-22. The table shows that how much reduction of stage of development presents to after adaptation of all these management practices are explained in detail in this table-22.

| Sr.<br>No. | Block              | Net<br>Annual<br>Groun<br>d<br>Water<br>Availa<br>bility<br>(mcm) | Total<br>Draft<br>(prese<br>nt)<br>(mcm) | Overd<br>raft<br>(mcm<br>) | Stage<br>of<br>develo<br>pment<br>(prese<br>nt %) | Total<br>paddy<br>area<br>in sq.<br>km | Water saving<br>(mcm)<br>replacement<br>of paddy by<br>Maize/Soybe<br>an @0.13<br>mcm/sq.km | Draft<br>Reduced<br>due to<br>replacemen<br>t of paddy<br>by<br>Maize/Soyb<br>ean | Water<br>saving<br>replaceme<br>nt of paddy<br>by Pulses<br>@0.3<br>mcm/sq.k<br>m (mcm) | Draft<br>Reduce<br>d due to<br>replace<br>ment of<br>paddy<br>by<br>Pulses | SOD %<br>(Maize/<br>Soyabea<br>n) | SOD %<br>(Pulses<br>) | Reduc<br>ed<br>SOD<br>% by<br>Maize | Reduce<br>d SOD<br>% by<br>Pulses |
|------------|--------------------|-------------------------------------------------------------------|------------------------------------------|----------------------------|---------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|-----------------------|-------------------------------------|-----------------------------------|
|            |                    | 1                                                                 | 2                                        | 3                          | 4                                                 | 5                                      | 6                                                                                           | 7                                                                                 | 8                                                                                       | 9                                                                          | 10                                | 11                    | 12                                  | 13                                |
| 1          | Adampur            | 45.21                                                             | 49.69                                    | 4.48                       | 110                                               | 0.00                                   | 0.00                                                                                        | 49.69                                                                             | 0.00                                                                                    | 49.69                                                                      | 109.91                            | 109.91                | 0.1                                 | 0.1                               |
| 2          | Agroha             | 64.32                                                             | 51.94                                    | -12.38                     | 81                                                | 0.47                                   | 0.06                                                                                        | 51.88                                                                             | 0.14                                                                                    | 51.80                                                                      | 80.66                             | 80.53                 | 0.1                                 | 0.2                               |
| 3          | Barwala            | 129.7                                                             | 109.95                                   | -19.75                     | 85                                                | 30.56                                  | 3.97                                                                                        | 105.98                                                                            | 9.17                                                                                    | 100.78                                                                     | 81.71                             | 77.70                 | 3.1                                 | 7.1                               |
| 4          | Hansi-I            | 87.65                                                             | 115.89                                   | 28.24                      | 132                                               | 77.31                                  | 10.05                                                                                       | 105.84                                                                            | 23.19                                                                                   | 92.70                                                                      | 120.75                            | 105.76                | 11.5                                | 26.5                              |
| 5          | Hansi-II<br>(Bass) | 60.22                                                             | 91.99                                    | 31.77                      | 153                                               | 82.68                                  | 10.75                                                                                       | 81.24                                                                             | 24.80                                                                                   | 67.19                                                                      | 134.91                            | 111.57                | 17.8                                | 41.2                              |
| 6          | Hisar-I            | 88.66                                                             | 68                                       | -20.66                     | 77                                                | 30.35                                  | 3.95                                                                                        | 64.05                                                                             | 9.11                                                                                    | 58.90                                                                      | 72.25                             | 66.43                 | 4.5                                 | 10.3                              |
| 7          | Hisar-II           | 82.72                                                             | 63.21                                    | -19.51                     | 76                                                | 0.64                                   | 0.08                                                                                        | 63.13                                                                             | 0.19                                                                                    | 63.02                                                                      | 76.31                             | 76.18                 | 0.1                                 | 0.2                               |
| 8          | Narnaund           | 91.98                                                             | 185.76                                   | 93.78                      | 202                                               | 103.36                                 | 13.44                                                                                       | 172.32                                                                            | 31.01                                                                                   | 154.75                                                                     | 187.35                            | 168.25                | 14.6                                | 33.7                              |
| 9          | Uklana             | 51.32                                                             | 46.57                                    | -4.75                      | 91                                                | 14.53                                  | 1.89                                                                                        | 44.68                                                                             | 4.36                                                                                    | 42.21                                                                      | 87.06                             | 82.25                 | 3.7                                 | 8.5                               |

Table-21: Water saving Potential from Crop Diversification-Change Paddy to Maize/Soya-bean or Pulses

| Block              | Category          | Stage of<br>developm<br>ent (%) as<br>per GWR<br>2013 | Net Annual<br>Ground<br>Water<br>Availability<br>(mcm) | Total<br>Draft<br>(presen<br>t)<br>(mcm) | UG<br>(mc<br>m) | Redu<br>ction<br>in %<br>throu<br>gh UG | AR<br>(mcm) | Red<br>ucti<br>on<br>in %<br>thro<br>ugh<br>AR | Water S<br>Saving<br>by<br>replce.<br>Maize<br>(mcm) | Saving Mo<br>Redu<br>ction<br>in %<br>throu<br>gh<br>padd<br>y to<br>Maize | ethods<br>Pon<br>ds<br>(mc<br>m) | Red<br>uctio<br>n in<br>%<br>thro<br>ugh<br>Pon<br>ds | Tota<br>l<br>Savi<br>ngs<br>in %<br>by<br>all | Saving<br>by<br>replce.<br>Pulses<br>(mcm) | Reduct<br>ion in<br>%<br>throug<br>h<br>paddy<br>to<br>Pulses | SOD<br>%<br>after<br>ward<br>s<br>witho<br>ut<br>pulse<br>s | SOD<br>%<br>after<br>ward<br>s<br>witho<br>ut<br>Maize |
|--------------------|-------------------|-------------------------------------------------------|--------------------------------------------------------|------------------------------------------|-----------------|-----------------------------------------|-------------|------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| Adampur            | OVER<br>EXPLOITED | 110                                                   | 45.21                                                  | 49.7                                     | 3.5             | 7.7                                     | 0.73        | 1.6                                            | 0.0                                                  | 0.1                                                                        | 1.8                              | 4                                                     | 13                                            | 0.0                                        | 0.1                                                           | 96                                                          | 96                                                     |
| Agroha             | SAFE              | 81                                                    | 64.32                                                  | 51.9                                     | 3.7             | 5.7                                     | 0.00        | 0.0                                            | 0.1                                                  | 0.1                                                                        | 2.1                              | 3                                                     | 9                                             | 0.1                                        | 0.2                                                           | Sa                                                          | fe                                                     |
| Barwala            | SAFE              | 85                                                    | 129.7                                                  | 110.0                                    | 7.7             | 6.0                                     | 0.00        | 0.0                                            | 4.0                                                  | 3.1                                                                        | 3.2                              | 3                                                     | 12                                            | 9.2                                        | 7.1                                                           | 3d                                                          | lle                                                    |
| Hansi-I            | CRITICAL          | 132                                                   | 87.65                                                  | 115.9                                    | 8.2             | 9.3                                     | 0.00        | 0.0                                            | 10.1                                                 | 11.5                                                                       | 3.6                              | 4                                                     | 25                                            | 23.2                                       | 26.5                                                          | 107                                                         | 92                                                     |
| Hansi-II<br>(Bass) | CRITICAL          | 153                                                   | 60.22                                                  | 92.0                                     | 6.5             | 10.8                                    | 0.00        | 0.0                                            | 10.7                                                 | 17.8                                                                       | 3.0                              | 4                                                     | 33                                            | 24.8                                       | 41.2                                                          | 120                                                         | 97                                                     |
| Hisar-I            | SAFE              | 77                                                    | 88.66                                                  | 68.0                                     | 4.6             | 5.2                                     | 0.00        | 0.0                                            | 3.9                                                  | 4.5                                                                        | 1.9                              | 4                                                     | 14                                            | 9.1                                        | 10.3                                                          | Sa                                                          | fe                                                     |
| Hisar-II           | SAFE              | 76                                                    | 82.72                                                  | 63.2                                     | 4.5             | 5.4                                     | 0.00        | 0.0                                            | 0.1                                                  | 0.1                                                                        | 2.5                              | 3                                                     | 8                                             | 0.2                                        | 0.2                                                           | Sa                                                          | lie                                                    |
| Narnaun<br>d       | OVER<br>EXPLOITED | 202                                                   | 91.98                                                  | 185.8                                    | 13.1            | 14.2                                    | 1.25        | 1.4                                            | 13.4                                                 | 14.6                                                                       | 4.2                              | 5                                                     | 35                                            | 31.0                                       | 33.7                                                          | 167                                                         | 148                                                    |
| Uklana             | SEMI<br>CRITICAL  | 91                                                    | 51.32                                                  | 46.6                                     | 3.3             | 6.4                                     | 0.00        | 0.0                                            | 1.9                                                  | 3.7                                                                        | 1.9                              | 3                                                     | 13                                            | 4.4                                        | 8.5                                                           | Sa                                                          | fe                                                     |

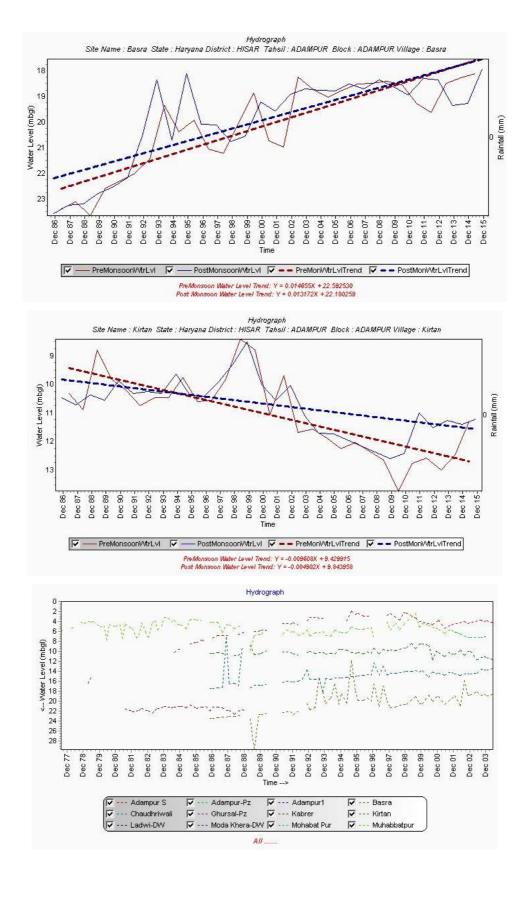
Table-22: Scope of Quantitative Impact on Stage of Development after applying various management strategies.

# [ PART-II ] 7. BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

# I. ADAMPUR BLOCK (282.28 SQ. KM)

| Population (2011)                      | Rural-86,011                                  |
|----------------------------------------|-----------------------------------------------|
|                                        | Urban-25,531                                  |
|                                        | Total- 111,542                                |
| Rainfall                               | Monsoon: 130 mm                               |
|                                        | Non Monsoon: 43 mm                            |
| Average Annual Rainfall                | 173 mm                                        |
| Agriculture and Irrigation             | Major Crops-Cotton, Sugarcane, Bajra, Wheat,  |
| Paddy Pulses Other crons-Raneseed Must | ard Potatoes Onions Ber Mangoes Citrus fruits |

Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.


|      | Net Area Sown:        | 25405 ha                           |
|------|-----------------------|------------------------------------|
|      | Total Irrigated Area: | Monsoon= 27489 ha                  |
|      |                       | Non-monsoon= 52174 ha              |
| tion |                       | 4 lined canals & 13 unlined canals |

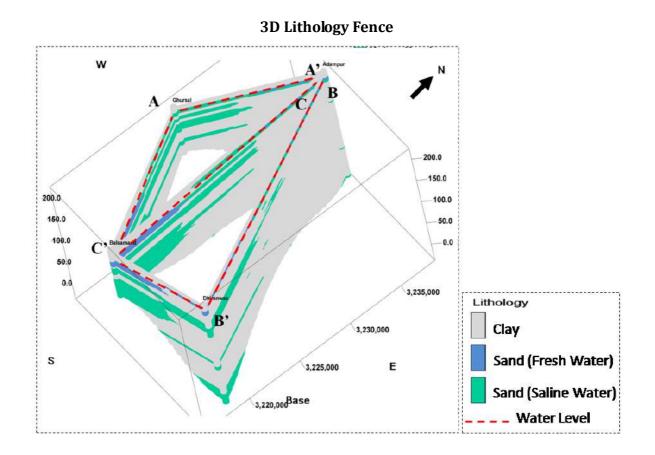
**Canal Irrigation** 

**Ground Water Resource Availability**: Ground Water Resources are available 0.75 bcm (0.14 bcm fresh and 0.61 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 15 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 6 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 162 m and the granular zones are counted after the depth of 30 m and available zones are 15 m. This Block is categorized as Over-Exploited as per 2013 assessment and present stage of development SOD is 110%.

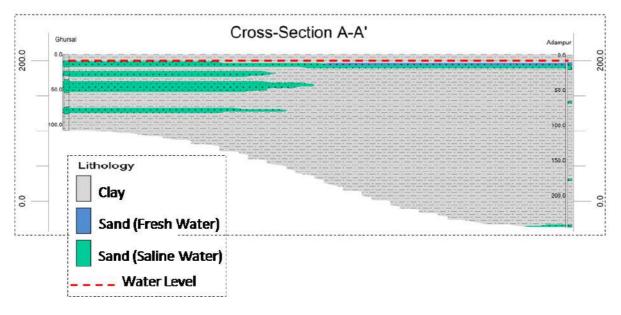
**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.


Water level Behavior (2016): Pre Monsoon ~12.4 m bgl.




| Aquifer                     | Geology                            | Туре о                               | Thickne   | ss of  | Transmis              | Specific     | Storativity |
|-----------------------------|------------------------------------|--------------------------------------|-----------|--------|-----------------------|--------------|-------------|
|                             |                                    | Aquifer                              | Granular  | •      | sivity                | Yield %      |             |
|                             |                                    |                                      | Zones (n  | n)     | (m <sup>2</sup> /day) |              |             |
| Single<br>aquifer<br>system | Quaternary<br>Alluvial<br>deposits | Unconfined<br>to<br>Semi<br>Confined | 36        |        |                       | 12           |             |
|                             | Qu<br>All<br>del                   | Sommed                               | Wells abo | andone | ed due to bad         | quality of v | water       |

Aquifer Disposition: There is single Aquifer System (up to 300 m)


The Aquifer comprises of both fresh and saline water and the main aquifer formation is sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.



#### 3D Lithology model



**Cross-Sections** 



67

Aquifer Mapping and Management Plan in Hisar District, Haryana state, India в B' Cross-Section B-B' Dh Adampu 200.0 200.0 0.0 3 Lithology Clay Sand (Fresh Water) Sand (Saline Water) Water Level Cross-Section C-C' 200.0 Lithology 00 00 Clay Sand (Fresh Water) Sand (Saline Water) - - - Water Level

| Ground Water            | Dynamic Fresh water        | 48.09                                    |  |  |
|-------------------------|----------------------------|------------------------------------------|--|--|
| Resources in Single     | resources                  |                                          |  |  |
| aquifer system upto     | In-storage Fresh water     | 94.54                                    |  |  |
| the depth of 300m (in   | resources                  |                                          |  |  |
| mcm)                    | In-storage Saline water    | 609.7                                    |  |  |
|                         | resources                  |                                          |  |  |
|                         | Total                      | 752.33                                   |  |  |
| Ground Water            | Irrigation                 | 49.69                                    |  |  |
| Extraction (in mcm)     | Domestic & Industrial      | 0                                        |  |  |
| (as per 2013)           |                            | 0                                        |  |  |
| Future Demand for dor   | mestic & Industrial sector | 0.41                                     |  |  |
| (2025) (in mcm) (as pe  | r 2013)                    |                                          |  |  |
| Chemical Quality of gro | und water                  | Maximum Saline water and it suits        |  |  |
|                         |                            | irrigation (EC is ranges between 3000 to |  |  |
|                         |                            | 4000 μS/cm at 25 <sup>0</sup> c)         |  |  |
| Other issues            |                            | Water levels are declining and rising    |  |  |
|                         |                            | trend in some areas. Present stage of    |  |  |
|                         |                            | development 110%.                        |  |  |

# Ground Water Resource, Extraction, Contamination and Other Issues

#### **Ground Water Resource Enhancement**

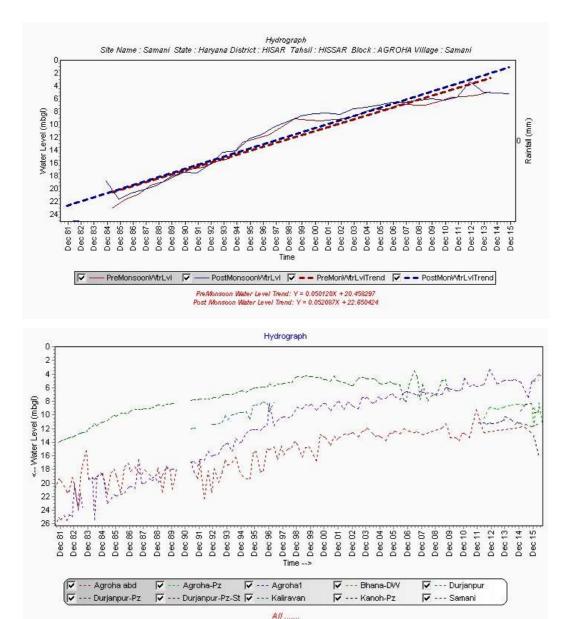
| Aquifer wise space available for    | Volume of unsaturated zone up to the average    |
|-------------------------------------|-------------------------------------------------|
| recharge and proposed interventions | depth to water level is 33.9 mcm.               |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL |
|                                     | and crop diversified from paddy to maize.       |
|                                     | Adaptation of all these practices will be saved |
|                                     | water up to 6.03 mcm.                           |

# **Demand Side Interventions**

| Advanced Irrigation Practices        | Lining of underground pipelines (Kutcha channel) will save 3.50 mcm volume of water wastage                                                                                           |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change in cropping pattern           | Proposed for change in cropping pattern from Paddy to<br>maize/soyabean in total area.<br>Anticipated volume of water to be saved by<br>maize/soyabean is 49.69 mcm from total draft. |
| Alternate water sources              | Tanks, ponds and canals                                                                                                                                                               |
| Regulation and Control               | -                                                                                                                                                                                     |
| Other interventions proposed, if any | Adopt a technique of 3 / 5 pond system in every village for utilization of waste water.                                                                                               |

# II. AGROHA BLOCK (421.10 SQ. KM)

| Population (2011)          | Rural- 101,193                               |
|----------------------------|----------------------------------------------|
|                            | Urban- 0                                     |
|                            | Total- 101,193                               |
| Rainfall                   | Monsoon: 220 mm                              |
|                            | Non Monsoon: 50 mm                           |
| Average Annual Rainfall    | 270 mm                                       |
| Agriculture and Irrigation | Major Crops-Cotton, Sugarcane, Bajra, Wheat, |
|                            |                                              |

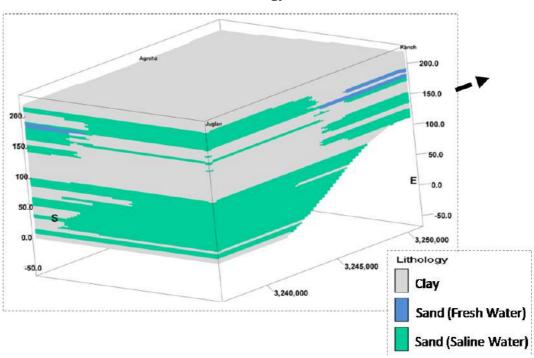

Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.

|                         | Net Area Sown:        | 37899 ha              |
|-------------------------|-----------------------|-----------------------|
|                         | Total Irrigated Area: | Monsoon= 24818 ha     |
|                         |                       | Non-monsoon= 26948 ha |
| <b>Canal Irrigation</b> |                       | 23 lined canals       |

**Ground Water Resource Availability**: Ground Water Resources are available 1.92 bcm (0.40 bcm fresh and 1.52 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 40 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 14 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 123 m and the granular zones are counted after the depth of 40 m and available zones are 50 m. This Block is categorized as safe as per 2013 assessment and SOD % is 81%.

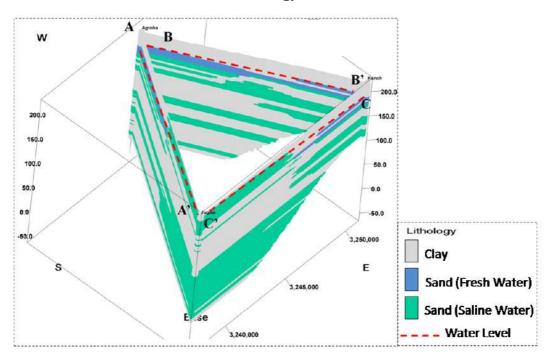
**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.

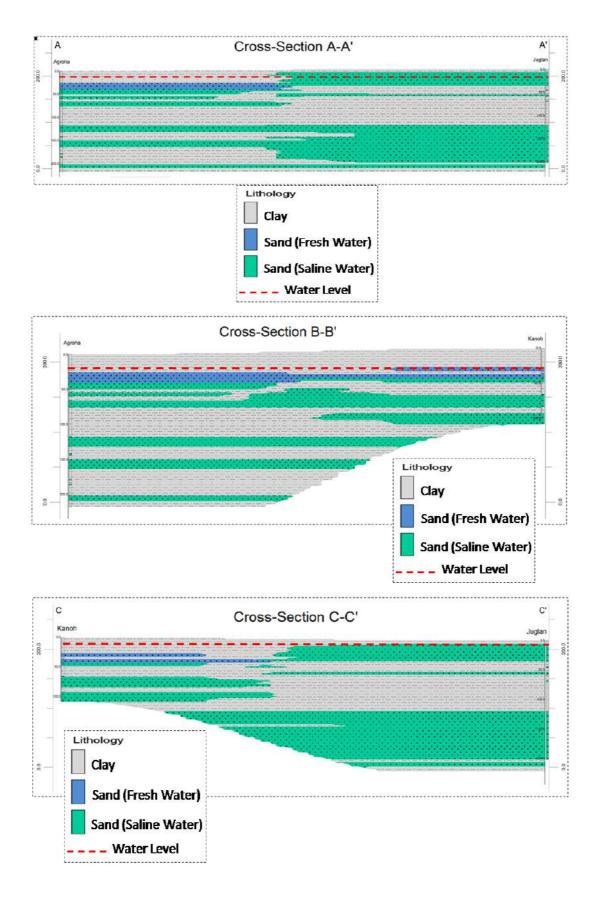
Water level Behavior (2016): Pre Monsoon ~6.13 m bgl.




Aquifer Disposition: There is single Aquifer System (up to 300 m)

| Aquifer                     | Geology                            | Type of<br>Aquifer                   | Thickness of<br>Granular<br>Zones (m) | Transmis<br>sivity<br>(m <sup>2</sup> /day) | Specific<br>Yield % | Storativity |
|-----------------------------|------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------|---------------------|-------------|
| Single<br>aquifer<br>system | Quaternary<br>Alluvial<br>deposits | Unconfined<br>to<br>Semi<br>Confined | 64                                    |                                             | 12                  |             |
|                             | Qu<br>Allı<br>dep                  | Commed                               | Wells abandone                        | ed due to bad                               | quality of          | water       |


The Aquifer comprises of both fresh and saline water and the main aquifer formation is


sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.



**3D Lithology model** 

**3D Lithology Fence** 





| Ground Water            | Dynamic Fresh water        | 56.01                                    |  |  |
|-------------------------|----------------------------|------------------------------------------|--|--|
| Resources in Single     | resources                  |                                          |  |  |
| aquifer system upto     | In-storage Fresh water     | 345.93                                   |  |  |
| the depth of 300m (in   | resources                  |                                          |  |  |
| mcm)                    | In-storage Saline water    | 1516.00                                  |  |  |
|                         | resources                  |                                          |  |  |
|                         | Total                      | 1917.90                                  |  |  |
| Ground Water            | Irrigation                 | 51.94                                    |  |  |
| Extraction (in mcm)     | Domestic & Industrial      | 0                                        |  |  |
| (as per 2013)           | Domestic & muusu lai       | 0                                        |  |  |
| Future Demand for do    | mestic & Industrial sector | 0.28                                     |  |  |
| (2025) (in mcm) (as pe  | r 2013)                    |                                          |  |  |
| Chemical Quality of gro | und water                  | Maximum Saline water and it suits        |  |  |
|                         |                            | irrigation (EC is ranges between 901 to  |  |  |
|                         |                            | <3000 µS/cm at 25ºc)                     |  |  |
| Other issues            |                            | Water levels are raising trend in some   |  |  |
|                         |                            | areas. Present stage of development 81%. |  |  |

# Ground Water Resource, Extraction, Contamination and Other Issues

# **Ground Water Resource Enhancement**

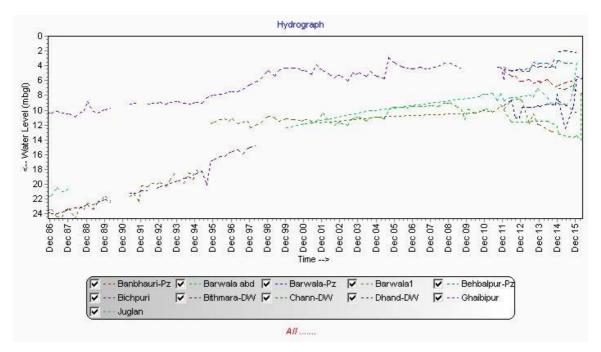
| Aquifer wise space available for    | Volume of unsaturated zone up to the average depth  |
|-------------------------------------|-----------------------------------------------------|
| recharge and proposed interventions | to water level is 50.5 mcm.                         |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL and |
|                                     | crop diversified from paddy to maize. Adaptation of |
|                                     | all these practices will be saved water up to 5.9   |
|                                     | mcm. The block falls under Safe category not        |
|                                     | required to adopt these interventions.              |

# **Demand Side Interventions**

| Advanced Irrigation Practices        | Lining of underground pipelines (Kutcha channel) will save 3.66 mcm volume of water wastage                                                                   |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change in cropping pattern           | If adapted these crop diversification method in this<br>area, the anticipated volume of water to be saved by<br>maize/soyabean is 51.88 mcm from total draft. |
| Alternate water sources              | Tanks, ponds and canals                                                                                                                                       |
| Regulation and Control               | -                                                                                                                                                             |
| Other interventions proposed, if any | Adopt a technique of 3 / 5 pond system in every village for utilization of waste water.                                                                       |

# III. BARWALA BLOCK (476.82 SQ. KM)

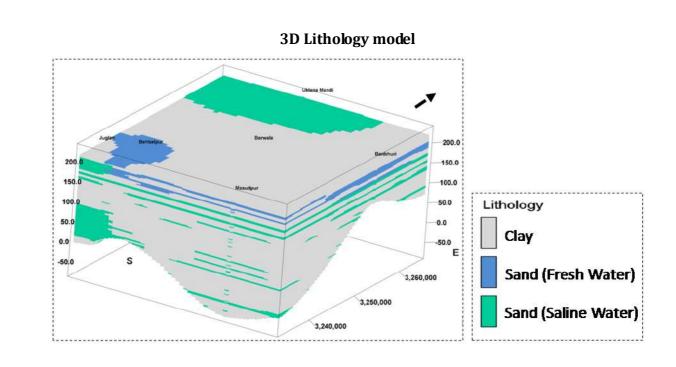
| Population (2011)          | Rural- 157,981                               |
|----------------------------|----------------------------------------------|
|                            | Urban- 43,384                                |
|                            | Total- 201,365                               |
| Rainfall                   | Monsoon: 306 mm                              |
|                            | Non Monsoon: 62 mm                           |
| Average Annual Rainfall    | 368 mm                                       |
| Agriculture and Irrigation | Major Crops-Cotton, Sugarcane, Bajra, Wheat, |
|                            |                                              |


Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.

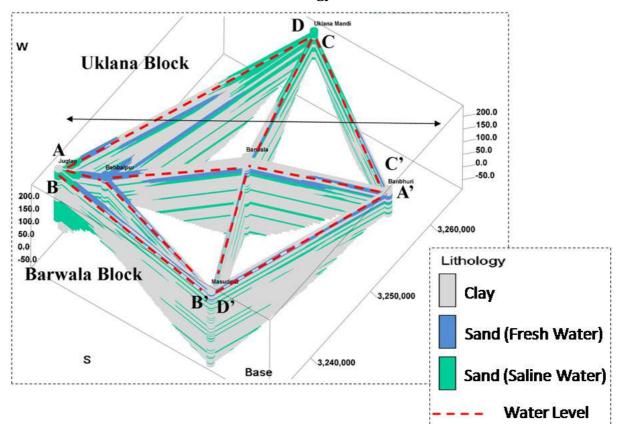
|                         | Net Area Sown:        | 42914 ha              |
|-------------------------|-----------------------|-----------------------|
|                         | Total Irrigated Area: | Monsoon= 39185 ha     |
|                         |                       | Non-monsoon= 42863 ha |
| <b>Canal Irrigation</b> |                       | 22 lined canals       |

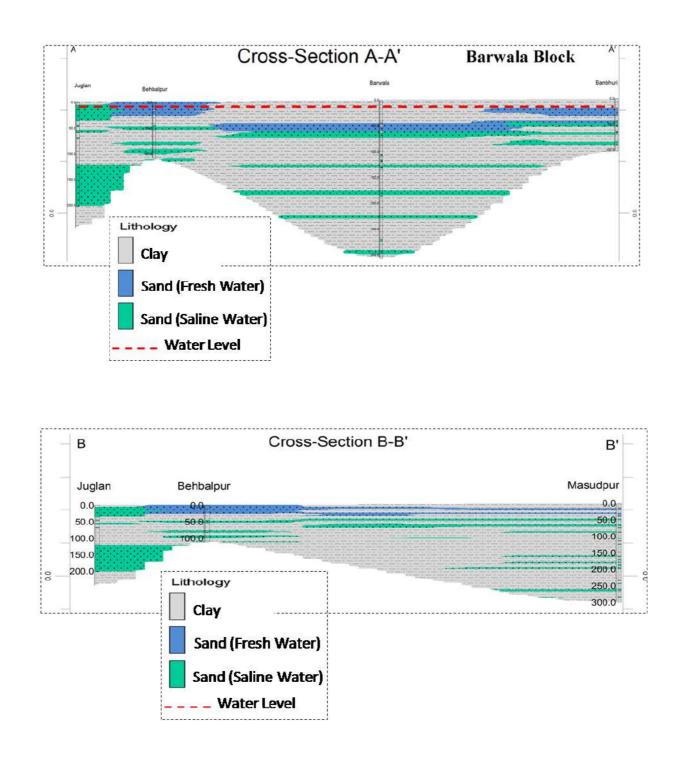
**Ground Water Resource Availability**: Ground Water Resources are available 2.31 bcm (0.56 bcm fresh and 1.75 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 40 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 20 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 142 m and the granular zones are counted after the depth of 40 m and available zones are 51 m. The block is safe category and present stage of development 85% as per 2013 assessment.

**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.


Water level Behavior (2016): Pre Monsoon ~8.00 m bgl.




Aquifer Disposition: There is single Aquifer System (up to 300 m)


| Aquifer                     | Geology                            | Type of                              | Thickness of   | Transmis              | Specific   | Storativity |
|-----------------------------|------------------------------------|--------------------------------------|----------------|-----------------------|------------|-------------|
|                             |                                    | Aquifer                              | Granular       | sivity                | Yield %    |             |
|                             |                                    | _                                    | Zones (m)      | (m <sup>2</sup> /day) |            |             |
| Single<br>aquifer<br>system | Quaternary<br>Alluvial<br>deposits | Unconfined<br>to<br>Semi<br>Confined | 71             |                       | 12         |             |
|                             | Quato<br>Alluv<br>depos            | Commed                               | Wells abandone | ed due to bad         | quality of | water       |

The Aquifer comprises of both fresh and saline water and the main aquifer formation is sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.



**3D Lithology Fence** 





| Ground Water                                   | Dynamic Fresh water               | 86.26                                            |  |
|------------------------------------------------|-----------------------------------|--------------------------------------------------|--|
| Resources in Single                            | resources                         |                                                  |  |
| aquifer system upto the                        | In-storage Fresh water            | 472.62                                           |  |
| depth of 300m (in                              | resources                         |                                                  |  |
| mcm)                                           | In-storage Saline water           | 1750.9                                           |  |
|                                                | resources                         |                                                  |  |
|                                                | Total                             | 2309.76                                          |  |
| Ground Water                                   | Irrigation                        | 109.63                                           |  |
| Extraction (in mcm) (as                        | Domestic & Industrial             | 0.32                                             |  |
| per 2013)                                      |                                   |                                                  |  |
| Future Demand for domestic & Industrial sector |                                   | 0.69                                             |  |
| (2025) (in mcm) (as per 2                      | 2013)                             |                                                  |  |
| Chemical Quality of groun                      | ıd water                          | Maximum Saline water and it suits irrigation     |  |
|                                                |                                   | (EC is ranges between 732 to <4000 $\mu S/cm$ at |  |
|                                                |                                   | 25°c)                                            |  |
| Other issues                                   |                                   | Water levels are declining and rising trend in   |  |
|                                                |                                   | some areas. Present stage of development $85\%$  |  |
|                                                |                                   | and Safe category.                               |  |
| Ground Water Res                               | Ground Water Resource Enhancement |                                                  |  |

# Ground Water Resource, Extraction, Contamination and Other Issues

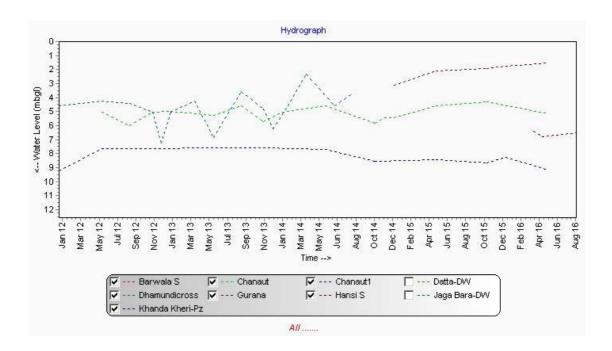
| Aquifer wise space available for    | Volume of unsaturated zone up to the average depth to water   |
|-------------------------------------|---------------------------------------------------------------|
| recharge and proposed interventions | level is 343.3 mcm.                                           |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL and crop      |
|                                     | diversified from paddy to maize. Adaptation of all these      |
|                                     | practices will be saved water up to 14.93 mcm. But this block |
|                                     | is Safe category not required to adopt these techniques.      |

#### **Demand Side Interventions**

| Advanced Irrigation Practices    | Lining of underground pipelines (Kutcha channel) will save 7.73 |
|----------------------------------|-----------------------------------------------------------------|
|                                  | mcm volume of water wastage                                     |
| Change in cropping pattern       | Proposed for change in cropping pattern from Paddy to           |
|                                  | maize/soyabean in total area.                                   |
|                                  | Anticipated volume of water to be saved by maize/soyabean is    |
|                                  | 105.98 mcm from total draft.                                    |
| Alternate water sources          | Tanks, ponds and canals                                         |
| Regulation and Control           | -                                                               |
| Other interventions proposed, if | Adopt a technique of 3 / 5 pond system in every village for     |
| any                              | utilization of waste water.                                     |

# IV. HANSI-I BLOCK (523.61 SQ. KM)

| Population (2011)          | Rural- 207,569                               |
|----------------------------|----------------------------------------------|
|                            | Urban- 0                                     |
|                            | Total- 207,569                               |
| Rainfall                   | Monsoon: 139 mm                              |
|                            | Non Monsoon: 50 mm                           |
| Average Annual Rainfall    | 189 mm                                       |
| Agriculture and Irrigation | Major Crops-Cotton, Sugarcane, Bajra, Wheat, |
|                            |                                              |

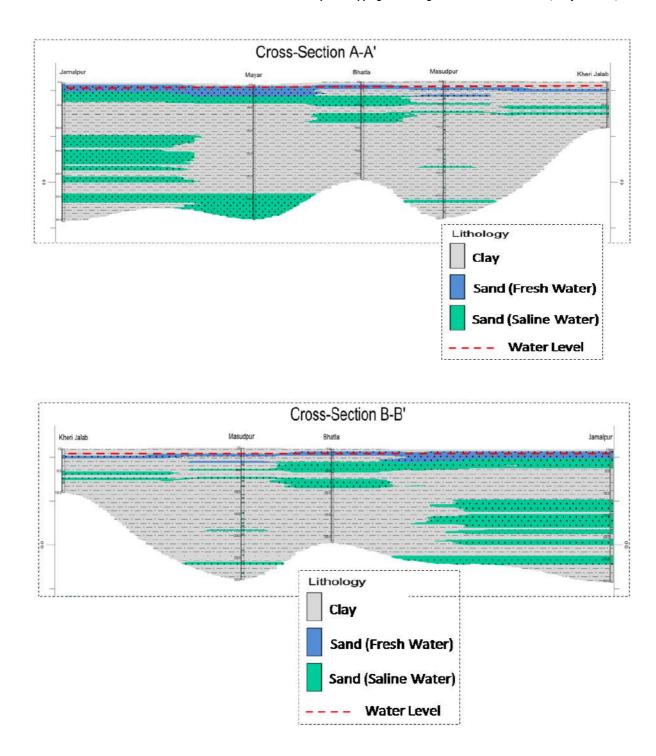

Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.

|                         | Net Area Sown:        | 47125 ha              |
|-------------------------|-----------------------|-----------------------|
|                         | Total Irrigated Area: | Monsoon= 46407 ha     |
|                         |                       | Non-monsoon= 49791 ha |
| <b>Canal Irrigation</b> |                       | 28 lined canals       |

**Ground Water Resource Availability**: Ground Water Resources are available 2.66 bcm (0.59 bcm fresh and 2.07 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 32 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 17 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 254 m and the granular zones are counted after the depth of 32 m and available zones are 55 m. This Block is categorized as Critical as per 2013 assessment and present SOD is 132%.

**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.

Water level Behavior (2016): Pre Monsoon ~4.00 m bgl




Aquifer Disposition: There is single Aquifer System (up to 300 m)

| Aquifer | Geology                            | Type of    |                | Transmis              | Specific     | Storativity |
|---------|------------------------------------|------------|----------------|-----------------------|--------------|-------------|
|         |                                    | Aquifer    | Granular       | sivity                | Yield %      |             |
|         |                                    |            | Zones (m)      | (m <sup>2</sup> /day) |              |             |
| Single  | ry                                 | Unconfined |                |                       |              |             |
| aquifer | na)<br>s                           | to         | 72             |                       | 12           |             |
| system  | Quaternary<br>Alluvial<br>deposits | Semi       |                |                       |              |             |
|         | luv<br>po                          | Confined   |                |                       |              |             |
|         | Qu<br>de                           |            | Wells abandone | ed due to bad         | quality of w | water       |

The Aquifer comprises of both fresh and saline water and the main aquifer formation is sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.

Aquifer Mapping and Management Plan in Hisar District, Haryana state, India **3D Lithology model** Masudou Kheri Jalab Rhat Mayar N 200.0 Madh: 150.0 200.0 Sorkhi 100.0 150.0 50.0 100.0 0.0 50.0 50.0 0.0 S Е -50 3,240,000 3,230,000 Lithology 3,220,000 3,210,000 Clay Sand (Fresh Water) Sand (Saline Water) **3D Lithology Fence** A' Kheri Jalab 200.0 R 50.0 100.0 50.0 -50 3,240,000 400.0 150.0 100.0 50.0 -50.0 200.0 3,230,000 Lithology B 3,220,000 Clay Base Sand (Fresh Water) 3,210,000 Sand (Saline Water) - Water Level



| Ground Water                                   | Dynamic Fresh water     | 93.20                                   |
|------------------------------------------------|-------------------------|-----------------------------------------|
| Resources in Single                            | resources               |                                         |
| aquifer system upto                            | In-storage Fresh water  | 499.33                                  |
| the depth of 300m (in                          | resources               |                                         |
| mcm)                                           | In-storage Saline water | 2073.5                                  |
|                                                | resources               |                                         |
|                                                | Total                   | 2666.03                                 |
| Ground Water                                   | Irrigation              | 115.66                                  |
| Extraction (in mcm)                            | Domestic & Industrial   | 0.23                                    |
| (as per 2013)                                  |                         | 0.25                                    |
| Future Demand for domestic & Industrial sector |                         | 0.85                                    |
| (2025) (in mcm) (as pe                         | r 2013)                 |                                         |
| Chemical Quality of gro                        | und water               | Maximum Saline water and it suits       |
|                                                |                         | irrigation (EC is ranges between 299 to |
|                                                |                         | 1217 μS/cm at 25ºc)                     |
| Other issues                                   |                         | Water levels are declining and rising   |
|                                                |                         | trend in some areas. Present stage of   |
|                                                |                         | development 132%.                       |

# Ground Water Resource, Extraction, Contamination and Other Issues

# **Ground Water Resource Enhancement**

| Aquifer wise space available for    | Volume of unsaturated zone upto the average     |
|-------------------------------------|-------------------------------------------------|
| recharge and proposed interventions | depth to water level is 188.5 mcm.              |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL |
|                                     | and crop diversified from paddy to maize.       |
|                                     | Adaptation of all these practices will be saved |
|                                     | water up to 21.77 mcm.                          |

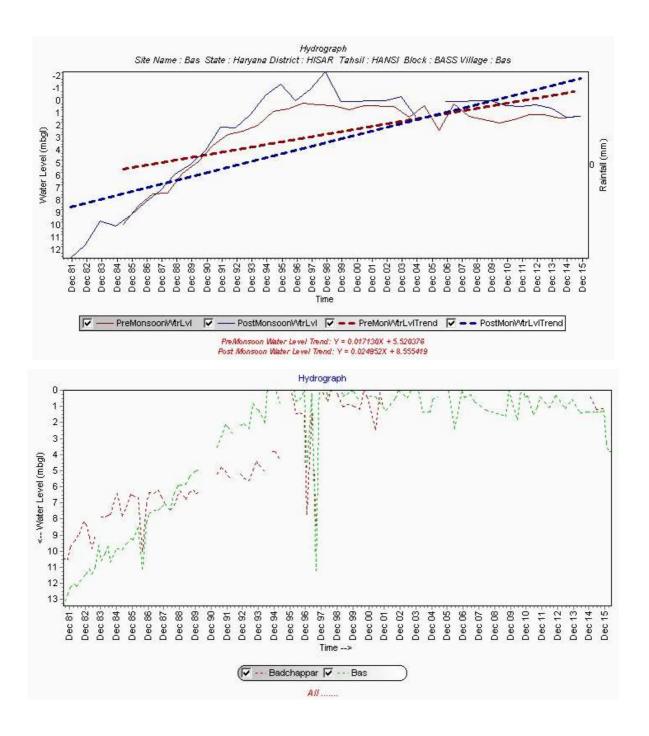
# **Demand Side Interventions**

| Advanced Irrigation Practices    | Lining of underground pipelines (Kutcha channel) will<br>save 8.2 mcm volume of water wastage                                                                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change in cropping pattern       | Proposed for change in cropping pattern from Paddy to<br>maize/soyabean in total area.<br>Anticipated volume of water to be saved by<br>maize/soyabean is 105.84 mcm from total draft. |
| Alternate water sources          | Tanks, ponds and canals                                                                                                                                                                |
| Regulation and Control           | -                                                                                                                                                                                      |
| Other interventions proposed, if | Adopt a technique of 3 / 5 pond system in every village                                                                                                                                |
| any                              | for utilization of waste water.                                                                                                                                                        |

# V. HANSI-II BLOCK (301.40 SQ. KM)

| Population (2011)                     | Rural- 92,451 |                |             |        |
|---------------------------------------|---------------|----------------|-------------|--------|
|                                       | Urban-        | 0              |             |        |
|                                       | Total- 9      | 2,451          |             |        |
| Rainfall                              | Monso         | on: 245 mm     |             |        |
|                                       | Non Mo        | onsoon: 50 mm  |             |        |
| Average Annual Rainfall               | 295 mr        | n              |             |        |
| Agriculture and Irrigation            | Major         | Crops-Cotton,  | Sugarcane,  | Bajra, |
| Wheat Daddy Dulage Other group Danges | d Mucha       | nd Dotatooo On | iona Don Ma | naooo  |

Wheat, Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.

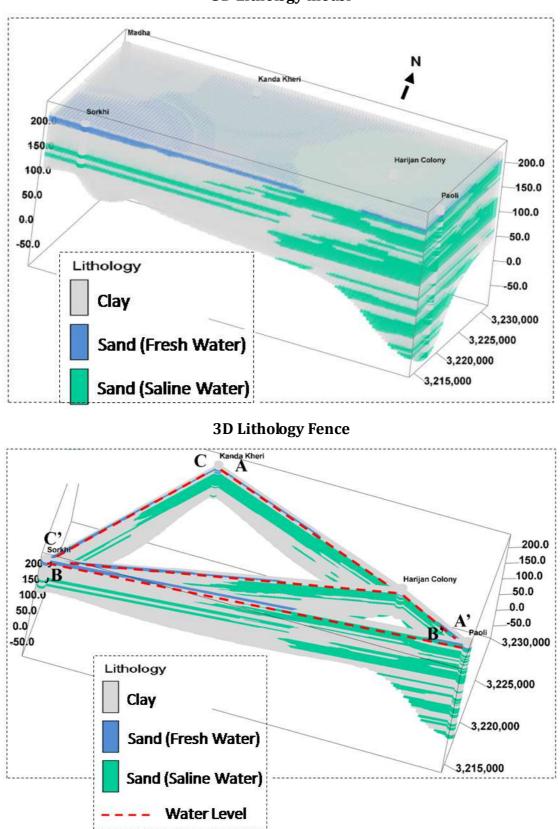

|   | Net Area Sown:        | 27126 ha              |
|---|-----------------------|-----------------------|
|   | Total Irrigated Area: | Monsoon= 19889 ha     |
|   |                       | Non-monsoon= 22952 ha |
| 1 |                       | 17 lined canals       |

Canal Irrigation

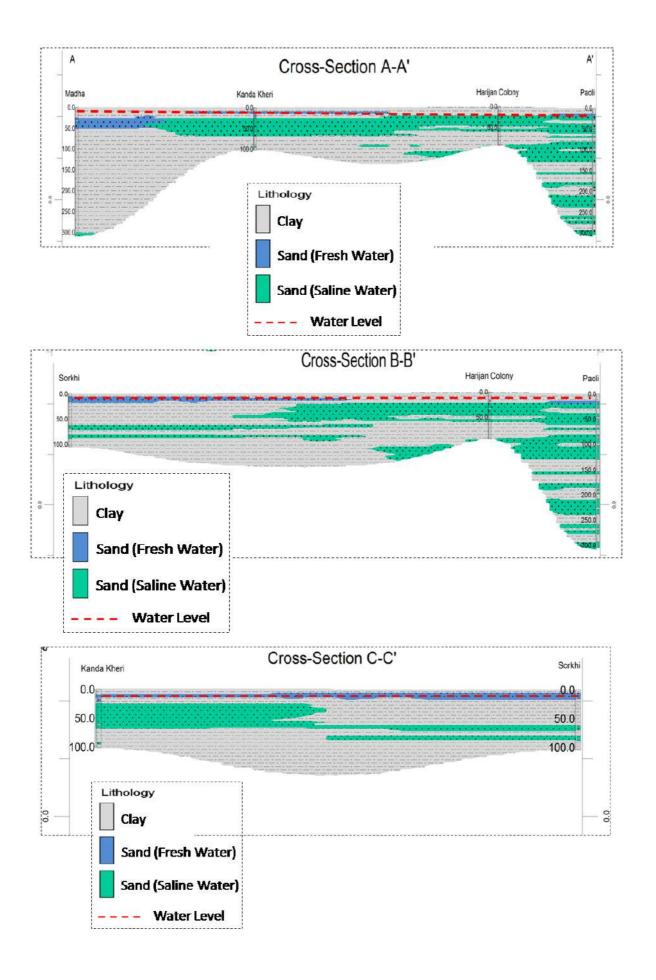
**Ground Water Resource Availability**: Ground Water Resources are available 0.92 bcm (0.27 bcm fresh and 0.65 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 20 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 11 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 84 m and the granular zones are counted after the depth of 20 m and available zones are 30 m. this block is Critical and present SOD is 153% (2013 assessment).

**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.

Water level Behavior (2016): Pre Monsoon ~8.7 m bgl




#### Aquifer Disposition: There is single Aquifer System (up to 300 m)


| Aquifer                     | Geology                            | Type of                  | Thickness of   | Transmis      | Specific   | Storativity |
|-----------------------------|------------------------------------|--------------------------|----------------|---------------|------------|-------------|
|                             |                                    | Aquifer                  | Granular       | sivity        | Yield %    |             |
|                             |                                    |                          | Zones (m)      | (m²/day)      |            |             |
| Single<br>aquifer<br>system | Quaternary<br>Alluvial<br>deposits | Unconfined<br>to<br>Semi | 41             |               | 12         |             |
|                             | Quato<br>Alluv<br>depos            | Confined                 | Wells abandone | ed due to bad | quality of | water       |

The Aquifer comprises of both fresh and saline water and the main aquifer formation is

sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.



**3D Lithology model** 



| Ground Water                                   | Dynamic Fresh water     | 60.32                                   |
|------------------------------------------------|-------------------------|-----------------------------------------|
| Resources in Single                            | resources               |                                         |
| aquifer system upto                            | In-storage Fresh water  | 207.22                                  |
| the depth of 300m (in                          | resources               |                                         |
| mcm)                                           | In-storage Saline water | 651.00                                  |
|                                                | resources               |                                         |
|                                                | Total                   | 918.56                                  |
| Ground Water                                   | Irrigation              | 91.99                                   |
| Extraction (in mcm)                            | Domestic & Industrial   | 0                                       |
| (as per 2013)                                  | Domestic & muusu lai    | 0                                       |
| Future Demand for domestic & Industrial sector |                         | 0.28                                    |
| (2025) (in mcm) (as per 2013)                  |                         |                                         |
| Chemical Quality of ground water               |                         | Maximum Saline water and it suits       |
|                                                |                         | irrigation (EC is ranges between 797 to |
|                                                |                         | <2000 µS/cm at 25°c)                    |
| Other issues                                   |                         | Water levels are raising trend in some  |
|                                                |                         | areas. Present stage of development     |
|                                                |                         | 153%.                                   |

# Ground Water Resource, Extraction, Contamination and Other Issues

# **Ground Water Resource Enhancement**

| Aquifer wise space available for    | Volume of unsaturated zone up to the average    |
|-------------------------------------|-------------------------------------------------|
| recharge and proposed interventions | depth to water level is 36.2 mcm.               |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL |
|                                     | and crop diversified from paddy to maize.       |
|                                     | Adaptation of all these practices will be saved |
|                                     | water up to 20.18 mcm.                          |

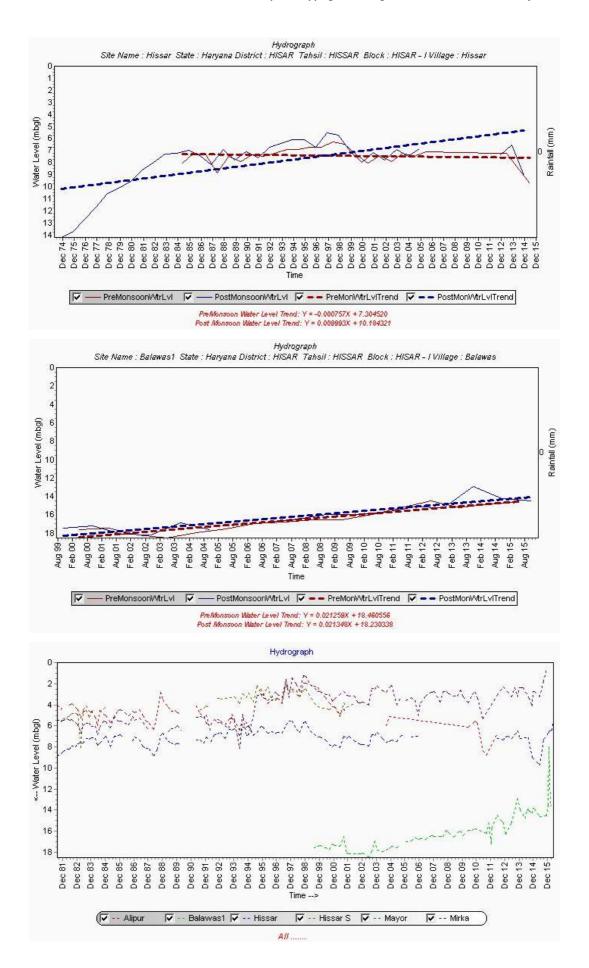
# **Demand Side Interventions**

| Advanced Irrigation Practices    | Lining of underground pipelines (Kutcha channel) will<br>save 6.49 mcm volume of water wastage                                                                                        |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change in cropping pattern       | Proposed for change in cropping pattern from Paddy to<br>maize/soyabean in total area.<br>Anticipated volume of water to be saved by<br>maize/soyabean is 81.24 mcm from total draft. |
| Alternate water sources          | Tanks, ponds and canals                                                                                                                                                               |
| Regulation and Control           | -                                                                                                                                                                                     |
| Other interventions proposed, if | Adopt a technique of 3 / 5 pond system in every village                                                                                                                               |
| any                              | for utilization of waste water.                                                                                                                                                       |

# VI. HISAR-I BLOCK (495.87 SQ. KM)

| Population (2011)          | Rural- 144,128                        |
|----------------------------|---------------------------------------|
|                            | Urban- 120,636                        |
|                            | Total- 264,764                        |
| Rainfall                   | Monsoon: 306 mm                       |
|                            | Non Monsoon: 62 mm                    |
| Average Annual Rainfall    | 368 mm                                |
| Agriculture and Irrigation | Major Crops-Cotton, Sugarcane, Bajra, |
|                            |                                       |

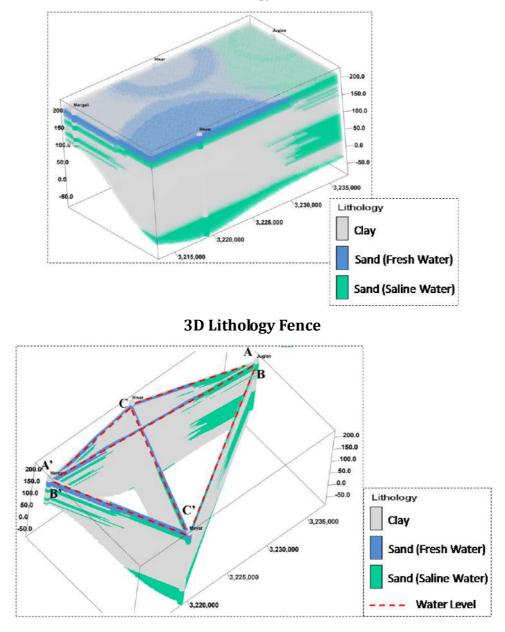
Wheat, Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.


|   | Net Area Sown:        | 44628 ha              |
|---|-----------------------|-----------------------|
|   | Total Irrigated Area: | Monsoon= 41261 ha     |
|   |                       | Non-monsoon= 41943 ha |
| 1 |                       | 22 lined canals       |

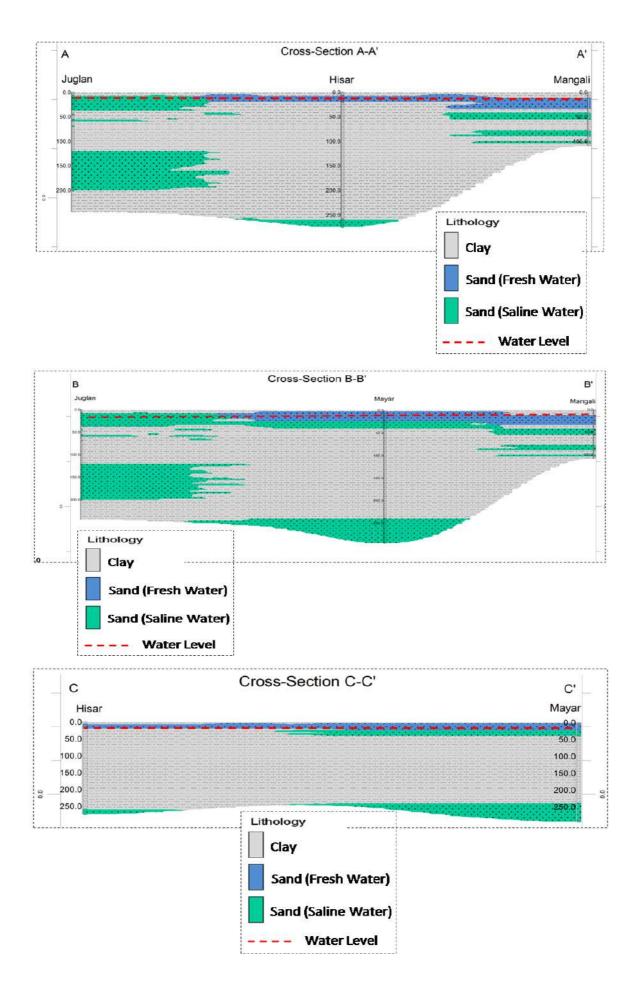
**Canal Irrigation** 

**Ground Water Resource Availability**: Ground Water Resources are available 2.55 bcm (0.62 bcm fresh and 1.93 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 35 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 18 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 174 m and the granular zones are counted after the depth of 35 m and available zones are 54 m. Block is categorized as Safe and SOD is 77% as per 2013 assessment.

**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.


Water level Behavior (2016): Pre Monsoon ~6.7 m bgl




| Aquifer                     | Geology                         | Type of                              | Thickness of                      | Transmis              | Specific     | Storativity  |
|-----------------------------|---------------------------------|--------------------------------------|-----------------------------------|-----------------------|--------------|--------------|
|                             |                                 | Aquifer                              | Granular                          | sivity                | Yield %      |              |
|                             |                                 |                                      | Zones (m)                         | (m <sup>2</sup> /day) |              |              |
| Single<br>aquifer<br>system | laternary<br>luvial<br>posits   | Unconfined<br>to<br>Semi<br>Confined | 72                                |                       | 12           |              |
|                             | Quaterr<br>Alluvial<br>deposits | commed                               | Wells abandone<br>and bad quality |                       | sence of gro | anular zones |

| Aquifer Disposition: There is single Aquifer System (up to 300 n | ystem (up to 300 m) |
|------------------------------------------------------------------|---------------------|
|------------------------------------------------------------------|---------------------|

The Aquifer comprises of both fresh and saline water and the main aquifer formation is sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.



3D Lithology model



| Ground Water                                   | Dynamic Fresh water     | 72.86                                   |
|------------------------------------------------|-------------------------|-----------------------------------------|
| Resources in Single                            | resources               |                                         |
| aquifer system upto                            | In-storage Fresh water  | 545.72                                  |
| the depth of 300m (in                          | resources               |                                         |
| mcm)                                           | In-storage Saline water | 1927.90                                 |
|                                                | resources               |                                         |
|                                                | Total                   | 2546.52                                 |
| Ground Water                                   | Irrigation              | 65.89                                   |
| Extraction (in mcm)                            | Domestic & Industrial   | 2.11                                    |
| (as per 2013)                                  | Domestic & maastrar     | 2.11                                    |
| Future Demand for domestic & Industrial sector |                         | 1.63                                    |
| (2025) (in mcm) (as per 2013)                  |                         |                                         |
| Chemical Quality of ground water               |                         | Maximum Saline water and it suits       |
|                                                |                         | irrigation (EC is ranges between 1570   |
|                                                |                         | to >4000 μS/cm at 25ºc)                 |
| Other issues                                   |                         | Water levels are raising trend in some  |
|                                                |                         | areas. Present stage of development 77% |
|                                                |                         | and safe category.                      |

# Ground Water Resource, Extraction, Contamination and Other Issues

# **Ground Water Resource Enhancement**

| Aquifer wise space available for    | Volume of unsaturated zone up to the average         |  |  |
|-------------------------------------|------------------------------------------------------|--|--|
| recharge and proposed interventions | depth to water level is 59.5 mcm.                    |  |  |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL      |  |  |
|                                     | and crop diversified from paddy to maize.            |  |  |
|                                     | Adaptation of all these practices will be saved      |  |  |
|                                     | water up to 10.48 mcm. Not required to adopt         |  |  |
|                                     | these techniques in this block due to being as Safe. |  |  |

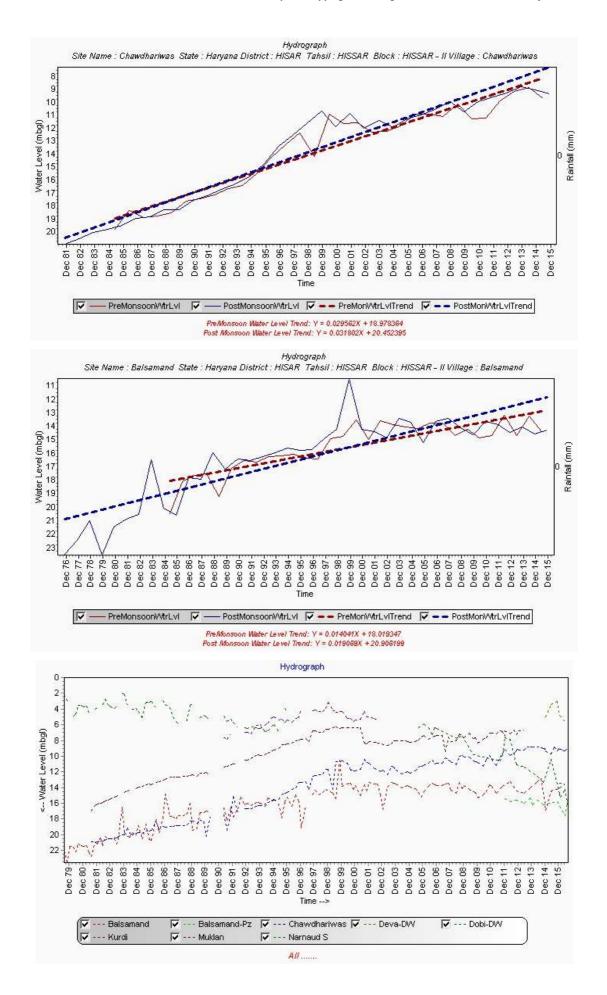
# **Demand Side Interventions**

| Advanced Irrigation Practices        | Lining of underground pipelines (Kutcha channel) will save 4.65 mcm volume of water wastage                                                                   |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change in cropping pattern           | If adapted these crop diversification method in this<br>area, the anticipated volume of water to be saved by<br>maize/soyabean is 64.05 mcm from total draft. |
| Alternate water sources              | Tanks, ponds and canals                                                                                                                                       |
| Regulation and Control               | -                                                                                                                                                             |
| Other interventions proposed, if any | Adopt a technique of 3 / 5 pond system in every village for utilization of waste water.                                                                       |

# VII. HISAR-II BLOCK (737.73 SQ. KM)

| Population (2011)          | Rural- 174,733                        |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
|                            | Urban- 5,641                          |  |  |  |  |
|                            | Total- 180,374                        |  |  |  |  |
| Rainfall                   | Monsoon: 306 mm                       |  |  |  |  |
|                            | Non Monsoon: 62 mm                    |  |  |  |  |
| Average Annual Rainfall    | 368 mm                                |  |  |  |  |
| Agriculture and Irrigation | Major Crops-Cotton, Sugarcane, Bajra, |  |  |  |  |
|                            |                                       |  |  |  |  |

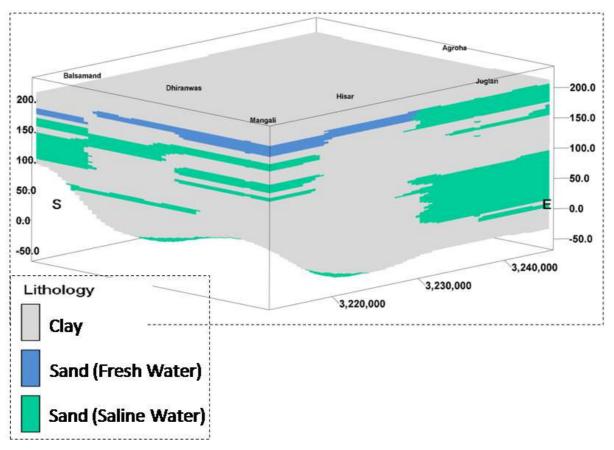
Wheat, Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.


| Net Area Sown:        | 66396 ha              |
|-----------------------|-----------------------|
| Total Irrigated Area: | Monsoon= 51456 ha     |
|                       | Non-monsoon= 51216 ha |
|                       | 26 lined canals       |

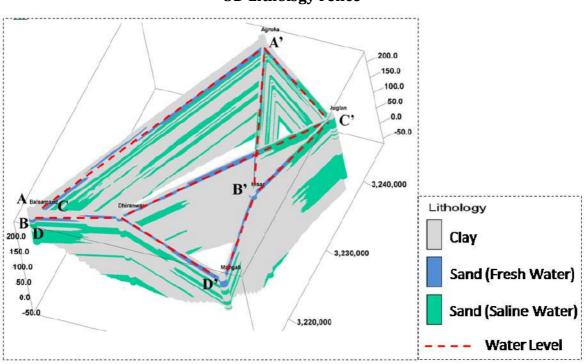
**Canal Irrigation** 

**Ground Water Resource Availability**: Ground Water Resources are available 4.65 bcm (0.61 bcm fresh and 4.04 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 27 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 12 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 137 m and the granular zones are counted after the depth of 27 m and available zones are 76 m. this block is falls under Safe category and SOD is 76% as per 2013 assessment.

**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.

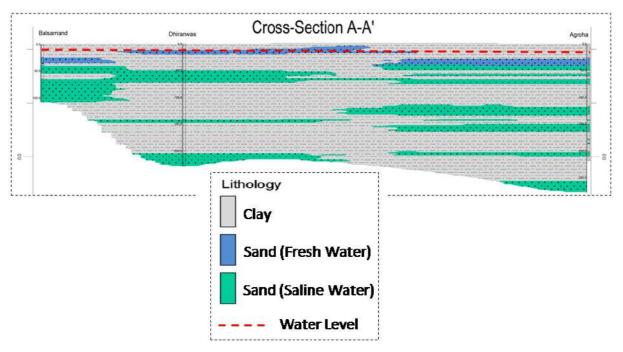

Water level Behavior (2016): Pre Monsoon ~12.3 m bgl

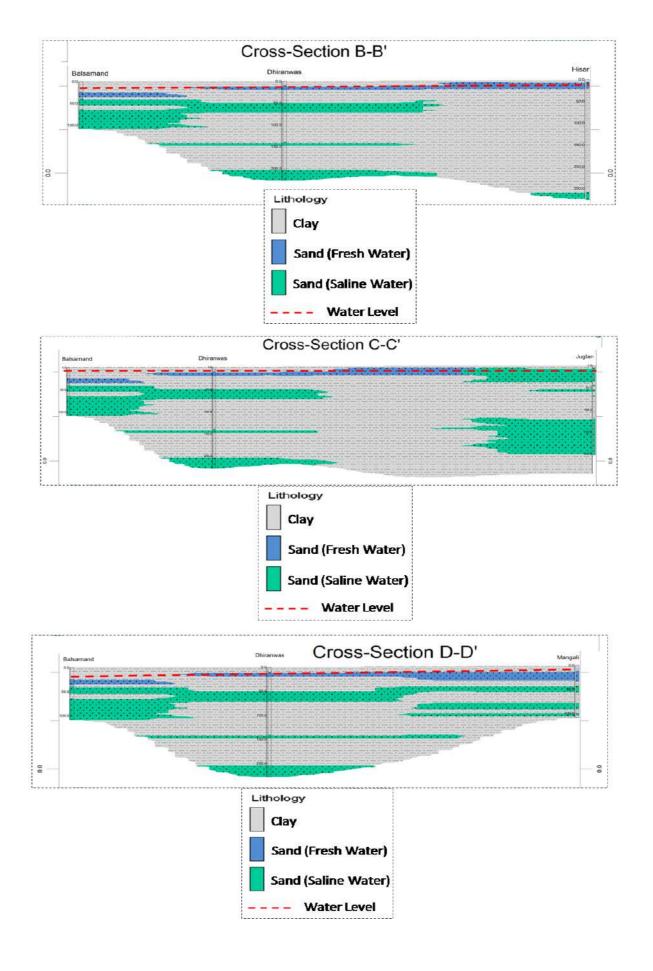



| Aquifer                     | Geology                         | Type of                  | Thickness of                                | Transmis | Specific | Storativity |
|-----------------------------|---------------------------------|--------------------------|---------------------------------------------|----------|----------|-------------|
|                             |                                 | Aquifer                  | Granular                                    | sivity   | Yield %  |             |
|                             |                                 |                          | Zones (m)                                   | (m²/day) |          |             |
| Single<br>aquifer<br>system | uaternary<br>lluvial<br>eposits | Unconfined<br>to<br>Semi | 88                                          |          | 12       |             |
|                             | Quat<br>Alluv<br>depo           | Confined                 | Wells abandoned due to bad quality of water |          |          |             |

**Aquifer Disposition:** There is single Aquifer System (up to 300 m)

The Aquifer comprises of both fresh and saline water and the main aquifer formation is sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.





**3D Lithology model** 



#### **3D Lithology Fence**

#### **Cross-Sections**





| Ground Water                                   | Dynamic Fresh water     | 77.36                                    |  |
|------------------------------------------------|-------------------------|------------------------------------------|--|
| Resources in Single                            | resources               |                                          |  |
| aquifer system upto                            | In-storage Fresh water  | 535.43                                   |  |
| the depth of 300m (in                          | resources               |                                          |  |
| mcm)                                           | In-storage Saline water | 4036.9                                   |  |
|                                                | resources               |                                          |  |
|                                                | Total                   | 4649.65                                  |  |
| Ground Water                                   | Irrigation              | 63.21                                    |  |
| Extraction (in mcm)                            | Domestic & Industrial   | 0                                        |  |
| (as per 2013)                                  |                         | 0                                        |  |
| Future Demand for domestic & Industrial sector |                         | 1.29                                     |  |
| (2025) (in mcm) (as pe                         | r 2013)                 |                                          |  |
| Chemical Quality of gro                        | und water               | Maximum Saline water and it suits        |  |
|                                                |                         | irrigation (EC is ranges between 1517 to |  |
|                                                |                         | <4000 µS/cm at 25°c)                     |  |
| Other issues                                   |                         | Water levels are raising trend in some   |  |
|                                                |                         | areas. Present stage of development 76%  |  |
|                                                |                         | and it is safe category.                 |  |

# Ground Water Resource, Extraction, Contamination and Other Issues

## **Ground Water Resource Enhancement**

| Aquifer wise space available for    | Volume of unsaturated zone upto the average       |  |  |
|-------------------------------------|---------------------------------------------------|--|--|
| recharge and proposed interventions | depth to water level is 88.5 mcm.                 |  |  |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL   |  |  |
|                                     | and crop diversified from paddy to maize.         |  |  |
|                                     | Adaptation of all these practices will be saved   |  |  |
|                                     | water up to 7.07 mcm. Not required to adopt these |  |  |
|                                     | techniques in this block due to being as Safe.    |  |  |

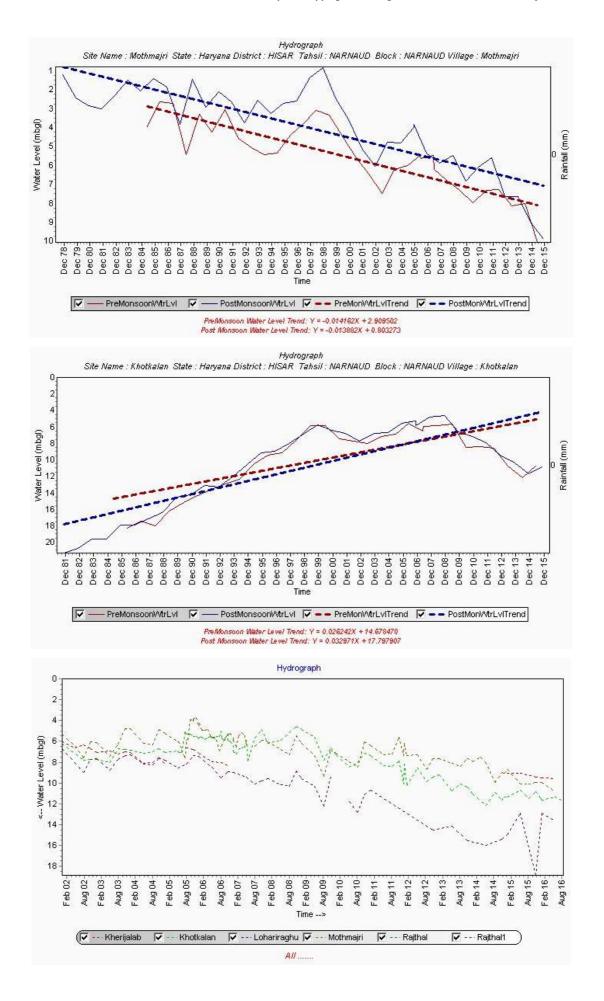
# **Demand Side Interventions**

| Advanced Irrigation Practices        | Lining of underground pipelines (Kutcha channel) will save 4.46 mcm volume of water wastage                                                                   |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Change in cropping pattern           | If adapted these crop diversification method in this<br>area, the anticipated volume of water to be saved by<br>maize/soyabean is 63.13 mcm from total draft. |  |  |
| Alternate water sources              | Tanks, ponds and canals                                                                                                                                       |  |  |
| Regulation and Control               | -                                                                                                                                                             |  |  |
| Other interventions proposed, if any | Adopt a technique of 3 / 5 pond system in every village for utilization of waste water.                                                                       |  |  |

# VIII. NARNAUND BLOCK (352.61 SQ. KM)

| Population (2011)          | Rural- 123,638                        |
|----------------------------|---------------------------------------|
|                            | Urban- 0                              |
|                            | Total- 123,638                        |
| Rainfall                   | Monsoon: 245 mm                       |
|                            | Non Monsoon: 50 mm                    |
| Average Annual Rainfall    | 295 mm                                |
| Agriculture and Irrigation | Major Crops-Cotton, Sugarcane, Bajra, |
|                            |                                       |

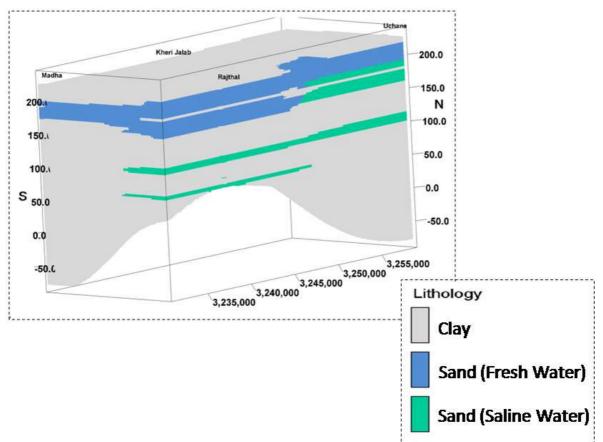
Wheat, Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.


| Net Area Sown:        | 31735 ha              |
|-----------------------|-----------------------|
| Total Irrigated Area: | Monsoon= 33359 ha     |
|                       | Non-monsoon= 35754 ha |
|                       | 16 lined canals       |

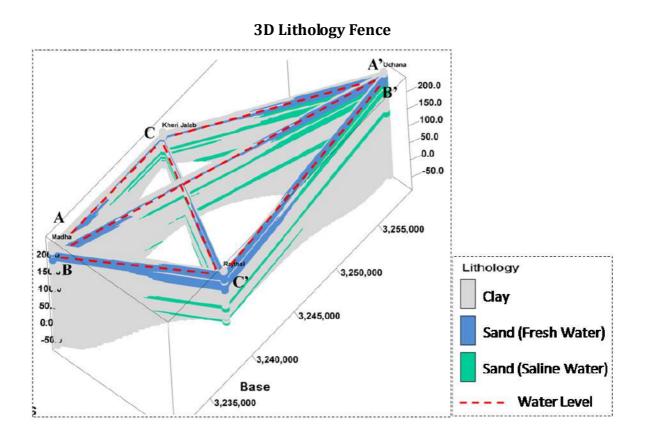
**Canal Irrigation** 

**Ground Water Resource Availability**: Ground Water Resources are available 1.55 bcm (0.46 bcm fresh and 1.09 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 45 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 20 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 111 m and the granular zones are counted after the depth of 45 m and available zones are 43 m. this block is falling over-exploited category and present SOD is 202% as per 2013 assessment.

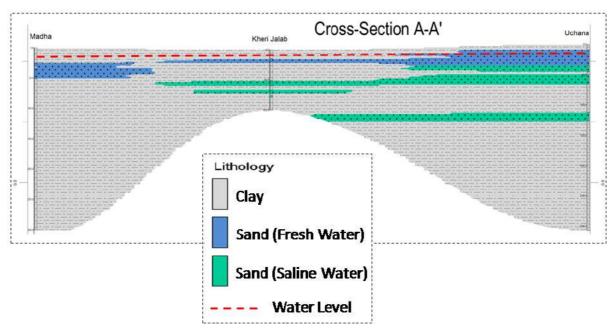
**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.

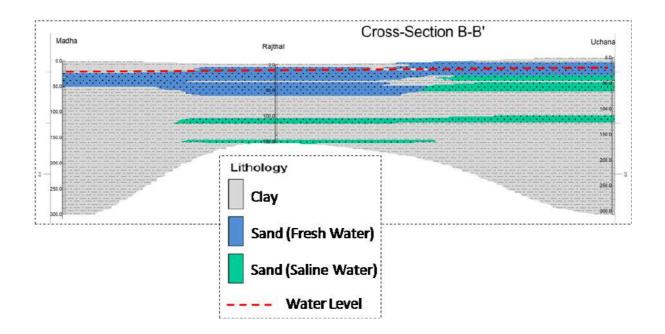

Water level Behavior (2016): Pre Monsoon ~11.2 m bgl.

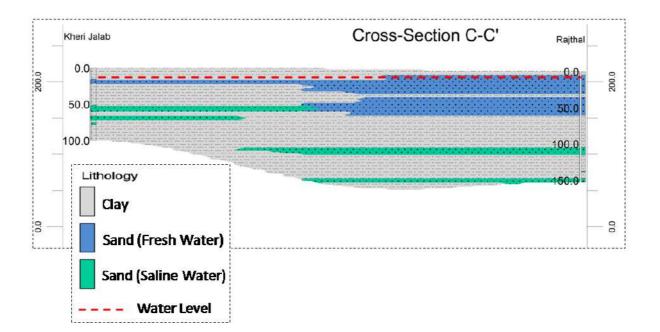



| Aquifer                     | Geology                            | Type of<br>Aquifer                   | Thickness of<br>Granular | Transmis<br>sivity | Specific<br>Yield % | Storativity |
|-----------------------------|------------------------------------|--------------------------------------|--------------------------|--------------------|---------------------|-------------|
|                             |                                    |                                      | Zones (m)                | (m²/day)           |                     |             |
| Single<br>aquifer<br>system | Quaternary<br>Alluvial<br>deposits | Unconfined<br>to<br>Semi<br>Confined | 63                       | 2240               | 12                  |             |

**Aquifer Disposition:** There is single Aquifer System (up to 300 m)


The Aquifer comprises of both fresh and saline water and the main aquifer formation is sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.





3D Lithology model



#### **Cross-sections**







| Ground Water                                   | Dynamic Fresh water                 | 87.62                                    |  |
|------------------------------------------------|-------------------------------------|------------------------------------------|--|
| Resources in Single<br>aquifer system upto     | resources<br>In-storage Fresh water | 368.24                                   |  |
| the depth of 300m (in                          | resources                           | 500.24                                   |  |
| mcm)                                           | In-storage Saline water             | 1091.7                                   |  |
|                                                | resources                           |                                          |  |
|                                                | Total                               | 1547.54                                  |  |
| Ground Water                                   | Irrigation                          | 185.55                                   |  |
| Extraction (in mcm)                            | Domestic & Industrial               | 0.21                                     |  |
| (as per 2013)                                  |                                     |                                          |  |
| Future Demand for domestic & Industrial sector |                                     | 185.76                                   |  |
| (2025) (in mcm) (as pe                         | r 2013)                             |                                          |  |
| Chemical Quality of gro                        | und water                           | Maximum Saline water and it suits        |  |
|                                                |                                     | irrigation (EC is ranges between 1026 to |  |
|                                                |                                     | <4000 µS/cm at 25 <sup>o</sup> c)        |  |
| Other issues                                   |                                     | Water levels are declining trend in some |  |
|                                                |                                     | areas. Present stage of development      |  |
|                                                |                                     | 202% and Over-exploited.                 |  |

# Ground Water Resource, Extraction, Contamination and Other Issues

# **Ground Water Resource Enhancement**

| Aquifer wise space available for    | Volume of unsaturated zone up to the average    |  |  |
|-------------------------------------|-------------------------------------------------|--|--|
| recharge and proposed interventions | depth to water level is 211.6 mcm.              |  |  |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL |  |  |
|                                     | and crop diversified from paddy to maize.       |  |  |
|                                     | Adaptation of all these practices will be saved |  |  |
|                                     | water up to 32.01 mcm.                          |  |  |

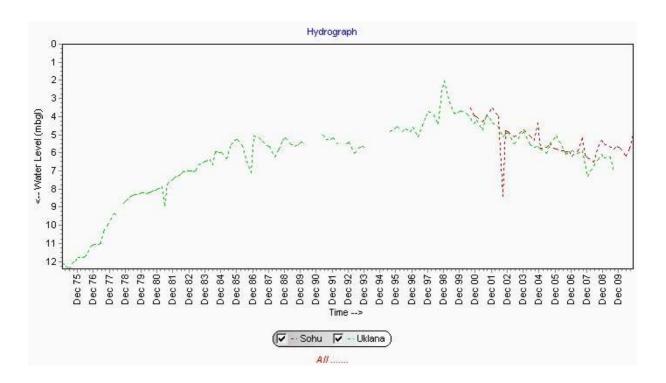
### **Demand Side Interventions**

| Advanced Irrigation Practices    | Lining of underground pipelines (Kutcha channel) will save 13.08 mcm volume of water wastage                                                                                           |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Change in cropping pattern       | Proposed for change in cropping pattern from Paddy to<br>maize/soyabean in total area.<br>Anticipated volume of water to be saved by<br>maize/soyabean is 172.32 mcm from total draft. |  |  |
| Alternate water sources          | Tanks, ponds and canals                                                                                                                                                                |  |  |
| Regulation and Control           | -                                                                                                                                                                                      |  |  |
| Other interventions proposed, if | Adopt a technique of 3 / 5 pond system in every village                                                                                                                                |  |  |
| any                              | for utilization of waste water.                                                                                                                                                        |  |  |

## IX. UKLANA BLOCK (269.10 SQ. KM)

| Population (2011)          | Rural- 92,473                         |
|----------------------------|---------------------------------------|
|                            | Urban- 13,219                         |
|                            | Total- 105,692                        |
| Rainfall                   | Monsoon: 259 mm                       |
|                            | Non Monsoon: 82 mm                    |
| Average Annual Rainfall    | 341 mm                                |
| Agriculture and Irrigation | Major Crops-Cotton, Sugarcane, Bajra, |
|                            |                                       |

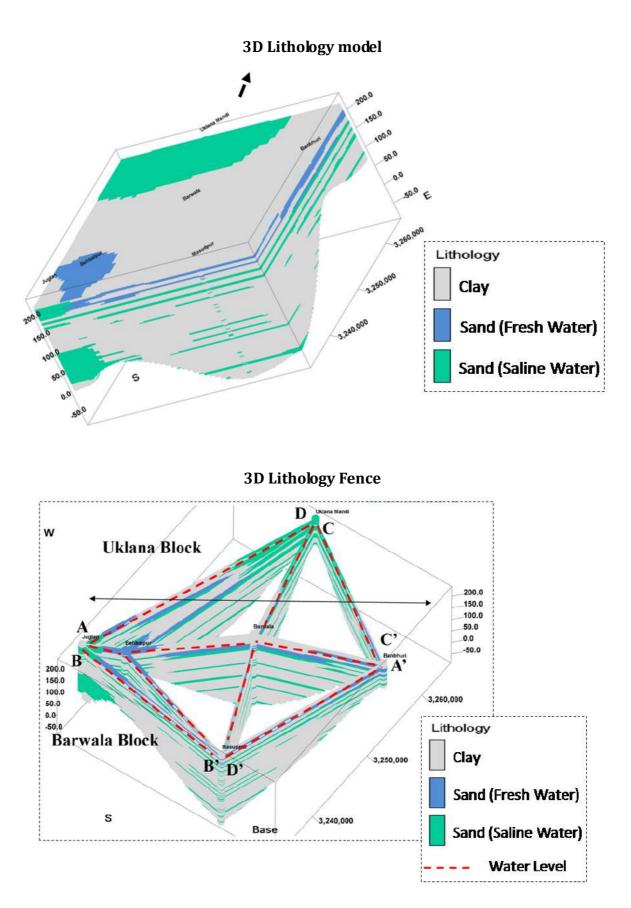
Wheat, Paddy, Pulses, Other crops-Rapeseed, Mustard, Potatoes, Onions, Ber, Mangoes, Citrus fruits, Pomegranate, Peach, Guava, Grapes & Papaya.

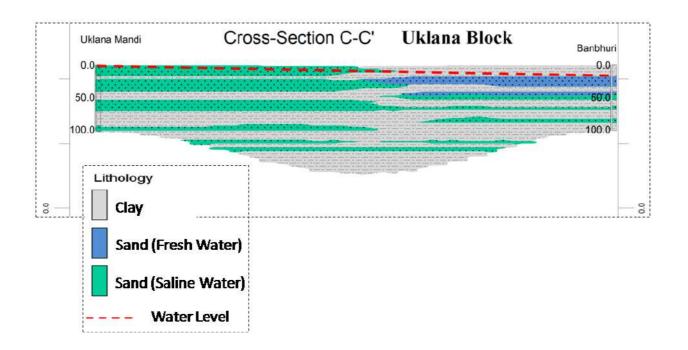

|   | Net Area Sown:        | 24219 ha                           |
|---|-----------------------|------------------------------------|
|   | Total Irrigated Area: | Monsoon= 18012 ha                  |
|   |                       | Non-monsoon= 19208 ha              |
| n |                       | 2 lined canals & 16 unlined canals |

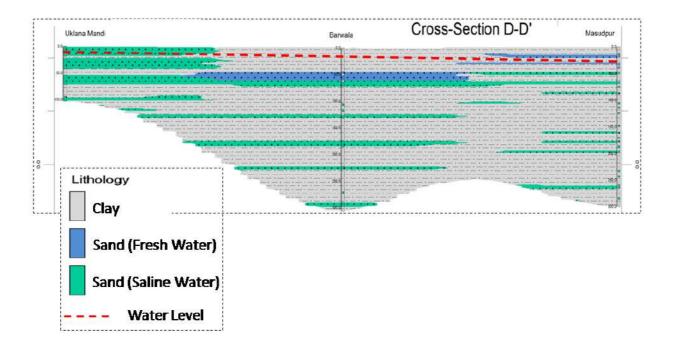
**Canal Irrigation** 

**Ground Water Resource Availability**: Ground Water Resources are available 1.18 bcm (0.04 bcm fresh and 1.14 bcm saline water resources) in the single aquifer group up to the depth of 300m. The fresh water resources are estimated up to the depth of 15 m based on geophysical interpretations interface. The potential granular zones are available for fresh water in this block as 5 m. Saline water resources are estimated based on the available depth of wells existed in this block i.e average depth of 73 m and the granular zones are counted after the depth of 15 m and available zones are 59 m. this block is falling in Semi-critical category and present SOD is 91% as per 2013 assessment.

**Ground water Extraction**: Deeper aquifer is totally saline and it is not suitable for irrigation purpose and all users are tapping at shallow aquifers i.e Domestic water supply, agricultural wells and industrial supply. It causes over exploitation in those demand areas, so that the proper ground water management techniques to be adapted.


Water level Behavior (2016): Pre Monsoon ~10.00 m bgl





Aquifer Disposition: There is single Aquifer System (up to 300 m)

| Aquifer                     | Geology                            | Type of                              | Thickness of   | Transmis      | Specific     | Storativity |
|-----------------------------|------------------------------------|--------------------------------------|----------------|---------------|--------------|-------------|
|                             |                                    | Aquifer                              | Granular       | sivity        | Yield %      |             |
|                             |                                    |                                      | Zones (m)      | (m²/day)      |              |             |
| Single<br>aquifer<br>system | Quaternary<br>Alluvial<br>deposits | Unconfined<br>to<br>Semi<br>Confined | 64             |               | 12           |             |
|                             | Qu<br>Al<br>de                     |                                      | Wells abandone | ed due to bad | quality of w | water       |

The Aquifer comprises of both fresh and saline water and the main aquifer formation is sand, sand with kankar. The non-aquifer material comprise of clay, clay with silt.







|                                   | 1                          |                                          |  |  |  |  |
|-----------------------------------|----------------------------|------------------------------------------|--|--|--|--|
| Ground Water                      | Dynamic Fresh water        | 41.48                                    |  |  |  |  |
| Resources in Single               | resources                  |                                          |  |  |  |  |
| aquifer system upto               | In-storage Fresh water     | 0                                        |  |  |  |  |
| the depth of 300m (in             | resources                  | (total saline area)                      |  |  |  |  |
| mcm)                              | In-storage Saline water    | 1143.1                                   |  |  |  |  |
|                                   | resources                  |                                          |  |  |  |  |
|                                   | Total                      | 1184.62                                  |  |  |  |  |
| Ground Water                      | Irrigation                 | 46.34                                    |  |  |  |  |
| Extraction (in mcm)               | Domestic & Industrial      | 0.23                                     |  |  |  |  |
| (as per 2013)                     | Domestic & muusu lai       | 0.23                                     |  |  |  |  |
| Future Demand for doi             | mestic & Industrial sector | 46.57                                    |  |  |  |  |
| (2025) (in mcm) (as pe            | r 2013)                    |                                          |  |  |  |  |
| Chemical Quality of grou          | und water                  | Maximum Saline water and it suits        |  |  |  |  |
|                                   |                            | irrigation (EC is ranges between 3530 to |  |  |  |  |
|                                   |                            | <4000 µS/cm at 25ºc)                     |  |  |  |  |
| Other issues                      |                            | Water levels are raising trend in some   |  |  |  |  |
|                                   |                            | areas. Present stage of development 91%  |  |  |  |  |
|                                   |                            | and semi-critical category.              |  |  |  |  |
| Ground Water Deseurce Enhancement |                            |                                          |  |  |  |  |

# Ground Water Resource, Extraction, Contamination and Other Issues

### **Ground Water Resource Enhancement**

| Aquifer wise space available for    | Volume of unsaturated zone upto the average     |
|-------------------------------------|-------------------------------------------------|
| recharge and proposed interventions | depth to water level is 161.5 mcm.              |
| Other interventions proposed        | Pond recharge system, Artificial Recharge, UGPL |
|                                     | and crop diversified from paddy to maize.       |
|                                     | Adaptation of all these practices will be saved |
|                                     | water up to 7.07 mcm.                           |

#### **Demand Side Interventions**

| Advanced Irrigation Practices        | Lining of underground pipelines (Kutcha channel) will<br>save 3.27 mcm volume of water wastage                                                                |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change in cropping pattern           | If adapted these crop diversification method in this<br>area, the anticipated volume of water to be saved by<br>maize/soyabean is 44.68 mcm from total draft. |
| Alternate water sources              | Tanks, ponds and canals                                                                                                                                       |
| Regulation and Control               | -                                                                                                                                                             |
| Other interventions proposed, if any | Adopt a technique of 3 / 5 pond system in every village for utilization of waste water.                                                                       |

# SUMMARY AND CONCLUSIONS:

- ✓ The area of Hisar district falls in Ghaggar basin and occupied by geological formations of older alluvial deposits and Aeolian deposits of Quaternary age and holding of single aquifer system up to the depth of 300 m bgl.
- ✓ The major lithological formations are Sand, Kankar and clay & silt and all are admixed with sand and clay formations.
- ✓ Thick layering of clay with sand at many places can be observed centre part and also towards south of the district at deeper depths.
- ✓ There is thin inter-layering of sand with saline water bearing zones in thick clay beds at deeper levels.
- The fresh water resources are limited in aquifer up to maximum average depth of 30m, whereas saline water is dominant resources below 30 m depth up to 300 m.
- ✓ The ground water development in two the blocks has exceeded the available recharge, thus two blocks have been categorized as over exploited. Stage of Ground Water Development of the district is 112% and it categorized as Over-exploitation.
- ✓ Dynamic & In- storage ground water resources has also been carried out to a depth of 300 meters for single aquifer group.
- ✓ Dynamic ground water resources of the district are 0.62 BCM, whereas In-storage ground water resources up to fresh water zones (about 30 m) are 3.07 BCM. Thus total fresh ground water resources up to average depth of 30 m are 3.69 BCM.
- ✓ Total saline water resources up to depth of 300 m are 14.80 BCM. Hence the total saline water resources are more than fresh water resources.
- Considering the high ground water abstraction (783 mcm) and overdraft (-81.22 mcm), it is suggested that proposed artificial recharge measures (1.97 mcm), crop diversification measures (44 to 102 mcm by paddy to maize and paddy to pulses) and conserving ground water through laying of pipe line (55.5 mcm) will be useful and also 24.13 mcm of waste water can be utilized through 3/5 pond system, this water can be used for irrigation, ultimately it reduce the ground water draft of tube wells.
- $\checkmark$  In case, the water table is <2 mt in some areas, the fish ponds/lotus type of crops

can be grown.

- ✓ However, long-term sustainability remains a serious issue as the major part of the area is under saline ground water.
- ✓ Other techniques of water saving and modern irrigation technology to be enforced to maximize per drop of water use in the district.

| Location    | Block    | pH* | EC* in<br>μS/cm<br>at 25º | CO3  | HCO3  | Cl*   | S04    | NO3*  | F*  | P04   | Ca*   | Mg*   | Na    | К     | SiO2 | T.H *as<br>CaCO3 | SAR  | RSC   |
|-------------|----------|-----|---------------------------|------|-------|-------|--------|-------|-----|-------|-------|-------|-------|-------|------|------------------|------|-------|
|             |          |     | С                         |      | <     |       |        |       |     | -mg/l |       |       |       |       | >    | I                |      |       |
| Agroha      | Agroha   | 8.7 | 901                       | 14.0 | 302.0 | 57.0  | 171.0  | 75.0  | 1.4 | 0.1   | 8.0   | 94.5  | 70.0  | 11.0  | 17.0 | 409.0            | 1.5  | -2.8  |
| Balawas- 1  | Hisar-I  | 9.0 | 2830                      | 58.6 | 622.0 | 540.6 | 140.0  | 61.0  | 0.3 | 0.0   | 28.0  | 141.0 | 208.0 | 410.0 | 12.0 | 650.5            | 3.5  | -0.8  |
| Barwala-2   | Barwala  | 7.8 | 1802                      | 0.0  | 158.6 | 182.5 | 138.0  | 521.9 | 2.7 | 0.0   | 124.0 | 124.0 | 42.0  | 8.0   | 16.0 | 821.0            | 0.6  | -13.8 |
| Bass        | Bass     | 8.7 | 797                       | 6.5  | 212.0 | 60.0  | 141.0  | 0.0   | 0.6 | 0.2   | 8.0   | 37.0  | 119.0 | 2.6   | 17.0 | 170.1            | 3.9  | 0.2   |
| Behbalpur   | Barwala  | 8.5 | 732                       | 6.5  | 132.0 | 55.0  | 198.0  | 0.2   | 2.5 | 0.0   | 37.0  | 32.0  | 78.0  | 4.4   | 12.0 | 223.0            | 2.3  | -2.1  |
| Chaudhariw  | Hisar-II | 8.6 | 1517                      | 13.0 | 178.0 | 195.3 | 389.0  | 45.0  | 4.0 | 0.0   | 52.0  | 136.0 | 67.0  | 20.0  | 22.0 | 691.0            | 1.1  | -10.4 |
| Dhamundi    | Hansi    | 8.4 | 1150                      | 6.5  | 212.0 | 105.0 | 295.0  | 24.0  | 2.9 | 0.0   | 60.1  | 66.0  | 105.0 | 13.0  | 15.0 | 420.3            | 2.2  | -4.7  |
| Gainpura    | Barwala  | 8.8 | 3120                      | 32.4 | 423.4 | 596.6 | 457.0  | 53.0  | 2.1 | 0.0   | 80.2  | 178.0 | 400.0 | 17.0  | 15.0 | 931.0            | 5.7  | -10.6 |
| Ghursal     | Adampur  | 8.5 | 3230                      | 27.0 | 330.0 | 261.0 | 1440.0 | 27.0  | 4.0 | 0.2   | 40.0  | 93.6  | 750.0 | 29.0  | 17.0 | 485.0            | 14.8 | -3.4  |
| Jugian      | Barwala  | 8.6 | 793                       | 6.5  | 191.0 | 40.0  | 213.0  | 2.6   | 0.5 | 0.0   | 25.0  | 33.0  | 112.0 | 5.8   | 16.0 | 197.0            | 3.5  | -0.6  |
| Juglan      | Barwala  | 8.5 | 4910                      | 26.0 | 383.0 | 781.3 | 1029.0 | 358.0 | 2.6 | 0.0   | 29.0  | 133.0 | 965.0 | 25.0  | 9.5  | 621.0            | 16.9 | -5.2  |
| Khotkalan   | Narnaud  | 8.2 | 3400                      | 0.0  | 139.0 | 926.6 | 488.0  | 123.1 | 0.7 | 0.0   | 116.2 | 246.0 | 285.0 | 28.0  | 22.0 | 1301.0           | 3.4  | -23.8 |
| Kirtan      | Adampur  | 8.2 | 3210                      | 0.0  | 95.0  | 606.2 | 936.0  | 6.4   | 1.5 | 0.0   | 137.0 | 122.0 | 438.0 | 43.0  | 24.0 | 846.0            | 6.6  | -15.3 |
| Mirka       | Hisar-I  | 8.1 | 1570                      | 0.0  | 106.0 | 140.0 | 494.0  | 62.0  | 0.9 | 0.0   | 100.0 | 63.0  | 153.0 | 5.6   | 22.0 | 510.0            | 3.0  | -8.4  |
| Mothmajri   | Narnaud  | 8.8 | 1026                      | 13.0 | 311.2 | 74.0  | 139.0  | 8.8   | 0.7 | 0.0   | 40.0  | 36.0  | 135.0 | 7.0   | 16.0 | 250.0            | 3.7  | 0.6   |
| Rajli Cross | Hansi    | 8.1 | 299                       | 0.0  | 106.0 | 14.0  | 48.0   | 1.6   | 0.8 | 0.0   | 24.0  | 19.0  | 10.0  | 1.8   | 13.0 | 140.0            | 0.4  | -1.0  |
| Samani      | Agroha   | 8.5 | 2180                      | 13.0 | 273.0 | 498.4 | 114.0  | 36.0  | 0.2 | 0.0   | 33.0  | 81.0  | 170.0 | 215.0 | 25.0 | 414.0            | 3.6  | -3.4  |
| Uklana      | Uklana   | 8.1 | 3530                      | 0.0  | 82.0  | 552.0 | 746.0  | 608.7 | 1.5 | 0.0   | 83.0  | 232.0 | 402.0 | 24.0  | 20.0 | 1160.0           | 5.1  | -21.9 |
| Umra        | Hansi    | 8.2 | 1217                      | 0.0  | 157.0 | 94.0  | 462.0  | 5.5   | 0.7 | 0.1   | 44.0  | 69.5  | 149.0 | 3.2   | 15.0 | 396.0            | 3.3  | -5.3  |
| Min         |          | 7.8 | 299                       | 0.0  | 82.0  | 14.0  | 48.0   | 0.0   | 0.2 | 0.0   | 8.0   | 19.0  | 10.0  | 1.8   | 9.5  | 140.0            | 0.4  | -23.8 |
| Max         |          | 9.0 | 4910                      | 58.6 | 622.0 | 926.6 | 1440.0 | 608.7 | 4.0 | 0.2   | 137.0 | 246.0 | 965.0 | 410.0 | 25.0 | 1301.0           | 16.9 | 0.6   |

Annexure-1: Analytical results of Basic parameters of ground water samples of Hisar district (GWMS-NHS-2015)

| Location     | Longitude | Latitude | As      | Fe      |
|--------------|-----------|----------|---------|---------|
|              | U         |          | (mg/lt) | (mg/lt) |
| Agroha       | 75.6228   | 29.3250  | 0.001   | 0.0078  |
| Balawas1     | 75.8222   | 28.9583  | 0.001   | BDL     |
| Banbahuri    | 76.0500   | 29.4000  | 0.001   | 0.0087  |
| Barwala2     | 75.9208   | 29.3708  | BDL     | 0.0974  |
| Bas          | 76.2000   | 29.1083  | 0.001   | BDL     |
| Behbalpur-Pz | 75.7894   | 29.2833  | Leaked  | Leaked  |
| Chaudhariwas | 75.6000   | 29.0083  | 0.001   | 0.0397  |
| Dhamundi     | 76.0417   | 29.0750  | 0.001   | 0.0096  |
| Rampur       |           |          |         |         |
| Gain Pura    | 75.9292   | 29.4250  | 0.001   | BDL     |
| Ghursal-Pz   | 75.4228   | 29.1708  | 0.001   | BDL     |
| Juglan       | 75.9956   | 29.4250  | 0.001   | BDL     |
| Kaliravan    | 75.5708   | 29.2972  | 0.001   | BDL     |
| Kanoh-Pz     | 75.7569   | 29.3728  | 0.005   | 0.0069  |
| Khotkalan    | 76.1750   | 29.3875  | 0.007   | 0.3465  |
| Kirtan       | 75.5472   | 29.2208  | BDL     | 1.0063  |
| Mirka        | 75.7583   | 29.0750  | 0.001   | BDL     |
| Mothmajri    | 75.5667   | 29.1167  | 0.001   | 0.9079  |
| Rajli Cross  | 75.9069   | 29.2889  | 0.001   | 0.1656  |
| Samani       | 75.6833   | 29.4083  | 0.003   | BDL     |
| Sohu         | 75.8333   | 29.4986  | 0.001   | Leaked  |
| Uklana       | 75.8583   | 29.5083  | BDL     | BDL     |
| Umra         | 75.9125   | 29.0528  | 0.001   | 0.3962  |

Annexure-2: Analytical results of Arsenic and Iron parameters of groundwater

samples of Hisar district (GWMS-NHS-2015)

| Location     | Longitude | Latitude | Depth | Elevation | Collar        | Agency   |
|--------------|-----------|----------|-------|-----------|---------------|----------|
|              |           |          | (m)   | (m)       | Elevation (m) |          |
| Adampur      | 75.479    | 29.271   | 246   | 208       | 208           | CGWB     |
| Agroha       | 75.642    | 29.333   | 277   | 211       | 211           | CGWB     |
| Juglan       | 75.760    | 29.260   | 244   | 215       | 215           | PRIVATE  |
| Mayar        | 75.867    | 29.100   | 295   | 213       | 213           | CGWB     |
| Barwala      | 75.905    | 29.364   | 306   | 219       | 219           | CGWB     |
| Masudpur     | 75.972    | 29.227   | 350   | 221       | 221           | PRIVATE  |
| Rajthal      | 76.200    | 29.263   | 152   | 214       | 214           | CGWB     |
| Madha        | 76.080    | 29.204   | 310   | 222       | 222           | CGWB     |
| Hisar        | 75.720    | 29.150   | 275   | 215       | 215           | CGWB     |
| Jamalpur     | 75.950    | 28.960   | 304   | 218       | 218           | CGWB     |
| Bhatla       | 75.930    | 29.170   | 214   | 219       | 219           | CGWB     |
| Dhiranwas    | 75.590    | 29.090   | 229   | 211       | 211           | CGWB     |
| Banbhuri     | 76.044    | 29.406   | 102   | 222       | 222           | CGWB-Pz  |
| Kanoh        | 75.761    | 29.385   | 108   | 220       | 220           | CGWB-Pz  |
| Kanda Kheri  | 76.220    | 29.190   | 102   | 221       | 221           | CGWB-Pz  |
| Balsamand    | 75.494    | 29.070   | 108   | 210       | 210           | CGWB-Pz  |
| Ghursal      | 75.421    | 29.175   | 108   | 209       | 209           | CGWB-Pz  |
| Uklana Mandi | 75.870    | 29.511   | 103   | 222       | 222           | CGWB-Pz  |
| Kheri Jalab  | 76.082    | 29.322   | 100   | 219       | 219           | CGWB-Pz  |
| Sorkhi       | 76.113    | 29.053   | 105   | 220       | 220           | CGWB-Pz  |
| Behbalpur    | 75.803    | 29.278   | 109   | 215       | 215           | CGWB-Pz  |
| Mangali      | 75.735    | 29.045   | 109   | 215       | 215           | CGWB-Pz  |
| Thurana      | 76.112    | 29.149   | 112   | 218       | 218           | CGWB-AQM |

Annexure-3: Borehole location details of Hisar district drilled by different agencies

| Name of  | me of Depth-1 Depth-2 Lithology |        | Lithology        | Thickness |
|----------|---------------------------------|--------|------------------|-----------|
| Borehole | (m)                             | (m)    | 8,               | (m)       |
| Adampur  | 0                               | 6.7    | Top Soil         | 6.70      |
| Adampur  | 6.7                             | 10.66  | Clay             | 3.96      |
| Adampur  | 10.6                            | 20.47  | Kankar           | 9.87      |
| Adampur  | 20.47                           | 65.6   | Clay             | 45.13     |
| Adampur  | 65.6                            | 68.45  | Sand with Kankar | 2.85      |
| Adampur  | 68.45                           | 176.04 | Clay             | 107.59    |
| Adampur  | 176.04                          | 178.96 | Kankar           | 2.92      |
| Adampur  | 178.96                          | 209.67 | Clay             | 30.71     |
| Adampur  | 209.67                          | 224.15 | Clay with Kankar | 14.48     |
| Adampur  | 224.15                          | 241.35 | Clay             | 17.20     |
| Adampur  | 241.35                          | 245.31 | Sand with Kankar | 3.96      |
| Agroha   | 0                               | 6      | Top Soil         | 6.00      |
| Agroha   | 6                               | 26     | Clay             | 20.00     |
| Agroha   | 26                              | 50     | Sand             | 24.00     |
| Agroha   | 50                              | 54     | Clay             | 4.00      |
| Agroha   | 54                              | 60     | Sand             | 6.00      |
| Agroha   | 60                              | 65     | Clay             | 5.00      |
| Agroha   | 65                              | 76     | Sand             | 11.00     |
| Agroha   | 76                              | 117    | Clay             | 41.00     |
| Agroha   | 117                             | 126    | Sand             | 9.00      |
| Agroha   | 126                             | 127    | Clay             | 1.00      |
| Agroha   | 127                             | 132    | Sand             | 5.00      |
| Agroha   | 132                             | 141    | Clay             | 9.00      |
| Agroha   | 141                             | 144    | Sand             | 3.00      |
| Agroha   | 144                             | 150    | Clay             | 6.00      |
| Agroha   | 150                             | 164    | Sand             | 14.00     |
| Agroha   | 164                             | 178    | Clay             | 14.00     |
| Agroha   | 178                             | 180    | Sand             | 2.00      |
| Agroha   | 180                             | 185    | Clay             | 5.00      |
| Agroha   | 185                             | 187    | Sand             | 2.00      |
| Agroha   | 187                             | 201    | Clay             | 14.00     |
| Agroha   | 201                             | 209    | Sand             | 8.00      |
| Agroha   | 209                             | 218    | Clay             | 9.00      |

| Name of  | Depth-1 | Donth 2        | Lithology        | Allexule-4 |
|----------|---------|----------------|------------------|------------|
| Borehole | (m)     | Depth-2<br>(m) | Lithology        | Thickness  |
|          |         |                | Tan Cail         | (m)        |
| Juglan   | 0       | 6              | Top Soil         | 6.00       |
| Juglan   | 6       | 36             | Sand             | 30.00      |
| Juglan   | 36      | 44.2           | Clay             | 8.21       |
| Juglan   | 44.2    | 46.6           | Sand             | 2.44       |
| Juglan   | 46.6    | 54.9           | Clay             | 8.23       |
| Juglan   | 54.9    | 58.8           | Sand             | 3.96       |
| Juglan   | 58.8    | 68.0           | Clay             | 9.15       |
| Juglan   | 68.0    | 69.8           | Sand             | 1.83       |
| Juglan   | 69.8    | 120.7          | Clay             | 50.91      |
| Juglan   | 120.7   | 201.8          | Sand             | 81.10      |
| Mayar    | 0       | 3              | Top Soil         | 3.00       |
| Mayar    | 3       | 6.1            | Sand             | 3.10       |
| Mayar    | 6.1     | 20.01          | Kankar           | 13.91      |
| Mayar    | 20.01   | 41.1           | Sand             | 21.09      |
| Mayar    | 41.1    | 85.9           | Clay with Kankar | 44.80      |
| Mayar    | 85.9    | 89.7           | Clay             | 3.80       |
| Mayar    | 89.7    | 92.7           | Clay with Kankar | 3.00       |
| Mayar    | 92.7    | 138.3          | Clay             | 45.60      |
| Mayar    | 138.3   | 144.8          | Clay with Kankar | 6.50       |
| Mayar    | 144.8   | 238.8          | Clay             | 94.00      |
| Mayar    | 238.8   | 294.8          | Sand             | 56.00      |
| Barwala  | 0       | 6              | Top Soil         | 6.00       |
| Barwala  | 6       | 44             | Clay             | 38.00      |
| Barwala  | 44      | 48             | Sand             | 4.00       |
| Barwala  | 48      | 52             | Clay             | 4.00       |
| Barwala  | 52      | 60             | Sand             | 8.00       |
| Barwala  | 60      | 64.5           | Clay             | 4.50       |
| Barwala  | 64.5    | 72             | Sand             | 7.50       |
| Barwala  | 72      | 105            | Clay             | 33.00      |
| Barwala  | 105     | 108            | Sand             | 3.00       |
| Barwala  | 108     | 115.5          | Clay             | 7.50       |
| Barwala  | 115.5   | 120            | Sand             | 4.50       |
| Barwala  | 120     | 126.5          | Clay             | 6.50       |

| Barwala  | 126.5 | 132    | Sand     | 5.50  |
|----------|-------|--------|----------|-------|
| Barwala  | 132   | 175    | Clay     | 43.00 |
| Barwala  | 175   | 186.5  | Sand     | 11.50 |
| Barwala  | 186.5 | 223    | Clay     | 36.50 |
| Barwala  | 223   | 228    | Sand     | 5.00  |
| Barwala  | 228   | 270    | Clay     | 42.00 |
| Barwala  | 270   | 274    | Sand     | 4.00  |
| Barwala  | 274   | 291    | Clay     | 17.00 |
| Barwala  | 291   | 298    | Sand     | 7.00  |
| Barwala  | 298   | 306.63 | Clay     | 8.63  |
| Masudpur | 0     | 3      | Top Soil | 3.00  |
| Masudpur | 3     | 13.4   | Clay     | 10.40 |
| Masudpur | 13.4  | 19.4   | Sand     | 6.00  |
| Masudpur | 19.4  | 29.8   | Clay     | 10.40 |
| Masudpur | 29.8  | 34.2   | Sand     | 4.40  |
| Masudpur | 34.2  | 37.4   | Clay     | 3.20  |
| Masudpur | 37.4  | 40     | Sand     | 2.60  |
| Masudpur | 40    | 47.2   | Clay     | 7.20  |
| Masudpur | 47.2  | 51     | Sand     | 3.80  |
| Masudpur | 51    | 65     | Clay     | 14.00 |
| Masudpur | 65    | 69.4   | Sand     | 4.40  |
| Masudpur | 69.4  | 74.2   | Clay     | 4.80  |
| Masudpur | 74.2  | 76.2   | Sand     | 2.00  |
| Masudpur | 76.2  | 86.3   | Clay     | 10.10 |
| Masudpur | 86.3  | 88.4   | Sand     | 2.10  |
| Masudpur | 88.4  | 105.6  | Clay     | 17.20 |
| Masudpur | 105.6 | 107.6  | Sand     | 2.00  |
| Masudpur | 107.6 | 113    | Clay     | 5.40  |
| Masudpur | 113   | 114.6  | Sand     | 1.60  |
| Masudpur | 114.6 | 123.4  | Clay     | 8.80  |
| Masudpur | 123.4 | 125.4  | Sand     | 2.00  |
| Masudpur | 125.4 | 147    | Clay     | 21.60 |
| Masudpur | 147   | 149    | Sand     | 2.00  |
| Masudpur | 149   | 160.2  | Clay     | 11.20 |
| Masudpur | 160.2 | 162.6  | Sand     | 2.40  |
| Masudpur | 162.6 | 169.8  | Clay     | 7.20  |

| Masudpur | 169.8 | 171.8  | Sand             | 2.00  |
|----------|-------|--------|------------------|-------|
| Masudpur | 171.8 | 177    | Clay             | 5.20  |
| Masudpur | 177   | 179    | Sand             | 2.00  |
| Masudpur | 179   | 185    | Clay             | 6.00  |
| Masudpur | 185   | 189.8  | Sand             | 4.80  |
| Masudpur | 189.8 | 195.4  | Clay             | 5.60  |
| Masudpur | 195.4 | 198.6  | Sand             | 3.20  |
| Masudpur | 198.6 | 231.8  | Clay             | 33.20 |
| Masudpur | 231.8 | 234.6  | Sand             | 2.80  |
| Masudpur | 234.6 | 242.6  | Clay             | 8.00  |
| Masudpur | 242.6 | 244.6  | Sand             | 2.00  |
| Masudpur | 244.6 | 259    | Clay             | 14.40 |
| Masudpur | 259   | 261    | Sand             | 2.00  |
| Masudpur | 261   | 262.6  | Clay             | 1.60  |
| Masudpur | 262.6 | 265.6  | Sand             | 3.00  |
| Masudpur | 265.6 | 283.4  | Clay             | 17.80 |
| Masudpur | 283.4 | 286.4  | Sand             | 3.00  |
| Rajthal  | 0     | 2      | Top Soil         | 2.00  |
| Rajthal  | 2     | 5      | Clay             | 3.00  |
| Rajthal  | 5     | 30     | Sand             | 25.00 |
| Rajthal  | 30    | 35     | Clay             | 5.00  |
| Rajthal  | 35    | 60     | Sand             | 25.00 |
| Rajthal  | 60    | 104    | Clay             | 44.00 |
| Rajthal  | 104   | 115    | Sand             | 11.00 |
| Rajthal  | 115   | 137    | Clay             | 22.00 |
| Rajthal  | 137   | 138    | Sand             | 1.00  |
| Rajthal  | 138   | 147    | Clay             | 9.00  |
| Rajthal  | 147   | 152    | Sand             | 5.00  |
| Rajthal  | 152   | 152.4  | Clay             | 0.40  |
| Madha    | 0     | 3.96   | Top Soil         | 3.96  |
| Madha    | 3.96  | 24.9   | Clay             | 20.94 |
| Madha    | 24.9  | 30.48  | Sand             | 5.58  |
| Madha    | 30.48 | 33.52  | Clay             | 3.04  |
| Madha    | 33.52 | 48.5   | Sand             | 14.98 |
| Madha    | 48.5  | 51.51  | Sand with Kankar | 3.01  |
| Madha    | 51.51 | 116.51 | Clay             | 65.00 |

| Madha    | 116.51 | 310.59 | Clay with Kankar | 194.08 |
|----------|--------|--------|------------------|--------|
| Hisar    | 0      | 6      | Top Soil         | 6.00   |
| Hisar    | 6      | 20.72  | Clay             | 14.72  |
| Hisar    | 20.72  | 59.74  | Clay with Kankar | 39.02  |
| Hisar    | 59.74  | 199.94 | Clay             | 140.20 |
| Hisar    | 199.94 | 220.18 | Clay with Kankar | 20.24  |
| Hisar    | 220.18 | 252    | Clay             | 31.82  |
| Hisar    | 252    | 259    | Clay with Kankar | 7.00   |
| Hisar    | 259    | 275.84 | Sand             | 16.84  |
| Jamalpur | 0      | 4      | Top Soil         | 4.00   |
| Jamalpur | 4      | 33.52  | Sand             | 29.52  |
| Jamalpur | 33.52  | 36.57  | Clay             | 3.05   |
| Jamalpur | 36.57  | 42.67  | Sand with Kankar | 6.10   |
| Jamalpur | 42.67  | 115.82 | Clay with Kankar | 73.15  |
| Jamalpur | 115.82 | 124    | Sand             | 8.18   |
| Jamalpur | 124    | 143    | Sand with Kankar | 19.00  |
| Jamalpur | 143    | 146    | Clay             | 3.00   |
| Jamalpur | 146    | 164    | Sand             | 18.00  |
| Jamalpur | 164    | 179    | Sand with Kankar | 15.00  |
| Jamalpur | 179    | 182    | Clay with Kankar | 3.00   |
| Jamalpur | 182    | 192    | Sand with Kankar | 10.00  |
| Jamalpur | 192    | 204    | Clay with Kankar | 12.00  |
| Jamalpur | 204    | 219    | Sand with Kankar | 15.00  |
| Jamalpur | 219    | 225    | Clay with Kankar | 6.00   |
| Jamalpur | 225    | 243    | Clay             | 18.00  |
| Jamalpur | 243    | 252    | Sand             | 9.00   |
| Jamalpur | 252    | 262    | Sand with Kankar | 10.00  |
| Jamalpur | 262    | 304    | Clay with Kankar | 42.00  |
| Bhatla   | 0      | 6      | Top Soil         | 6.00   |
| Bhatla   | 6      | 16.5   | Clay             | 10.50  |
| Bhatla   | 16.5   | 30.5   | Clay with Kankar | 14.00  |
| Bhatla   | 30.5   | 50.91  | Sand with Kankar | 20.41  |
| Bhatla   | 50.91  | 54.9   | Sand             | 3.99   |
| Bhatla   | 54.9   | 68     | Clay             | 13.10  |
| Bhatla   | 68     | 89     | Kankar           | 21.00  |
| Bhatla   | 89     | 102    | Clay             | 13.00  |

| Bhatla    | 102   | 116   | Clay with Kankar | 14.00 |
|-----------|-------|-------|------------------|-------|
| Bhatla    | 116   | 130   | Clay             | 14.00 |
| Bhatla    | 130   | 157   | Clay with Kankar | 27.00 |
| Bhatla    | 157   | 186   | Clay             | 29.00 |
| Bhatla    | 186   | 214   | Clay with Kankar | 28.00 |
| Dhiranwas | 0     | 4     | Top Soil         | 4.00  |
| Dhiranwas | 4     | 10    | Clay             | 6.00  |
| Dhiranwas | 10    | 19.8  | Kankar           | 9.80  |
| Dhiranwas | 19.8  | 50.2  | Clay with Kankar | 30.40 |
| Dhiranwas | 50.2  | 71    | Kankar           | 20.80 |
| Dhiranwas | 71    | 123   | Clay             | 52.00 |
| Dhiranwas | 123   | 136.9 | Clay with Kankar | 13.90 |
| Dhiranwas | 136.9 | 147.5 | Kankar           | 10.60 |
| Dhiranwas | 147.5 | 198   | Clay with Kankar | 50.50 |
| Dhiranwas | 198   | 204   | Clay             | 6.00  |
| Dhiranwas | 204   | 226   | Kankar           | 22.00 |
| Dhiranwas | 226   | 228   | Sand             | 2.00  |
| Banbhuri  | 0     | 9     | Top Soil         | 9.00  |
| Banbhuri  | 9     | 18    | Clay             | 9.00  |
| Banbhuri  | 18    | 33    | Sand with Kankar | 15.00 |
| Banbhuri  | 33    | 36    | Clay             | 3.00  |
| Banbhuri  | 36    | 42    | Clay with Kankar | 6.00  |
| Banbhuri  | 42    | 48    | Sand with Kankar | 6.00  |
| Banbhuri  | 48    | 54    | Sand             | 6.00  |
| Banbhuri  | 54    | 58    | Clay             | 4.00  |
| Banbhuri  | 58    | 64    | Clay with Kankar | 6.00  |
| Banbhuri  | 64    | 69    | Sand with Kankar | 5.00  |
| Banbhuri  | 69    | 83    | Clay             | 14.00 |
| Banbhuri  | 83    | 90    | Sand with Kankar | 7.00  |
| Banbhuri  | 90    | 102   | Clay with Kankar | 12.00 |
| Kanoh     | 0     | 5     | Top Soil         | 5     |
| Kanoh     | 5     | 15    | Clay             | 10    |
| Kanoh     | 15    | 27    | Clay with Kankar | 12    |
| Kanoh     | 27    | 33    | Sand             | 6     |
| Kanoh     | 33    | 36    | Clay             | 3     |
| Kanoh     | 36    | 42    | Sand             | 6     |

| Kanoh       | 42 | 48  | Sand with Kankar | 6  |
|-------------|----|-----|------------------|----|
| Kanoh       | 48 | 60  | Clay             | 12 |
| Kanoh       | 60 | 66  | Clay with Kankar | 6  |
| Kanoh       | 66 | 84  | Sand with Kankar | 18 |
| Kanoh       | 84 | 93  | Clay             | 9  |
| Kanoh       | 93 | 108 | Sand with Kankar | 15 |
| Kanda Kheri | 0  | 10  | Top Soil         | 10 |
| Kanda Kheri | 10 | 15  | Sand             | 5  |
| Kanda Kheri | 15 | 17  | Clay             | 2  |
| Kanda Kheri | 17 | 22  | Sand with Kankar | 5  |
| Kanda Kheri | 22 | 24  | Clay             | 2  |
| Kanda Kheri | 24 | 41  | Sand with Kankar | 17 |
| Kanda Kheri | 41 | 53  | Sand             | 12 |
| Kanda Kheri | 53 | 61  | Sand with Kankar | 8  |
| Kanda Kheri | 61 | 64  | Clay with Kankar | 3  |
| Kanda Kheri | 64 | 68  | Sand with Kankar | 4  |
| Kanda Kheri | 68 | 92  | Clay with Kankar | 24 |
| Kanda Kheri | 92 | 96  | Sand             | 4  |
| Kanda Kheri | 96 | 102 | Clay with Kankar | 6  |
| Balsamand   | 0  | 6   | Top Soil         | 6  |
| Balsamand   | 6  | 24  | Clay with Kankar | 18 |
| Balsamand   | 24 | 30  | Sand with Kankar | 6  |
| Balsamand   | 30 | 36  | Sand             | 6  |
| Balsamand   | 36 | 39  | Clay with Kankar | 3  |
| Balsamand   | 39 | 45  | Sand             | 6  |
| Balsamand   | 45 | 54  | Sand with Kankar | 9  |
| Balsamand   | 54 | 64  | Clay with Kankar | 10 |
| Balsamand   | 64 | 108 | Sand             | 44 |
| Ghursal     | 0  | 6   | Top Soil         | 6  |
| Ghursal     | 6  | 9   | Clay with Kankar | 3  |
| Ghursal     | 9  | 12  | Sand with Kankar | 3  |
| Ghursal     | 12 | 18  | Sand             | 6  |
| Ghursal     | 18 | 24  | Clay with Kankar | 6  |
| Ghursal     | 24 | 30  | Sand             | 6  |
| Ghursal     | 30 | 36  | Clay with Kankar | 6  |
| Ghursal     | 36 | 40  | Sand             | 4  |

| Ghursal      | 40 | 50  | Sand with Kankar | 10 |
|--------------|----|-----|------------------|----|
| Ghursal      | 50 | 55  | Sand             | 5  |
| Ghursal      | 55 | 75  | Clay with Kankar | 20 |
| Ghursal      | 75 | 81  | Sand             | 6  |
| Ghursal      | 81 | 85  | Sand with Kankar | 4  |
| Ghursal      | 85 | 108 | Clay with Kankar | 23 |
| Uklana Mandi | 0  | 6   | Top Soil         | 6  |
| Uklana Mandi | 6  | 18  | Sand             | 12 |
| Uklana Mandi | 18 | 23  | Clay             | 5  |
| Uklana Mandi | 23 | 33  | Sand             | 10 |
| Uklana Mandi | 33 | 42  | Sand with Kankar | 9  |
| Uklana Mandi | 42 | 48  | Clay             | 6  |
| Uklana Mandi | 48 | 54  | Clay with Kankar | 6  |
| Uklana Mandi | 54 | 60  | Sand with Kankar | 6  |
| Uklana Mandi | 60 | 72  | Sand             | 12 |
| Uklana Mandi | 72 | 94  | Clay             | 22 |
| Uklana Mandi | 94 | 98  | Sand with Kankar | 4  |
| Uklana Mandi | 98 | 103 | Sand             | 5  |
| Kheri Jalab  | 0  | 6   | Top Soil         | 6  |
| Kheri Jalab  | 6  | 15  | Clay             | 9  |
| Kheri Jalab  | 15 | 21  | Sand with Kankar | 6  |
| Kheri Jalab  | 21 | 51  | Clay with Kankar | 30 |
| Kheri Jalab  | 51 | 60  | Sand with Kankar | 9  |
| Kheri Jalab  | 60 | 66  | Clay with Kankar | 6  |
| Kheri Jalab  | 66 | 72  | Sand with Kankar | 6  |
| Kheri Jalab  | 72 | 75  | Clay             | 3  |
| Kheri Jalab  | 75 | 78  | Sand with Kankar | 3  |
| Kheri Jalab  | 78 | 100 | Clay with Kankar | 22 |
| Sorkhi       | 0  | 6   | Top Soil         | 6  |
| Sorkhi       | 6  | 21  | Clay             | 15 |
| Sorkhi       | 21 | 34  | Clay with Kankar | 13 |
| Sorkhi       | 34 | 63  | Clay             | 29 |
| Sorkhi       | 63 | 70  | Sand             | 7  |
| Sorkhi       | 70 | 81  | Clay with Kankar | 11 |
| Sorkhi       | 81 | 86  | Sand             | 5  |
| Sorkhi       | 86 | 89  | Sand with Kankar | 3  |

| Sorkhi    | 89 | 96  | Clay             | 7  | Mangali       | 56  | 63  | Clay with Kankar | 7  |
|-----------|----|-----|------------------|----|---------------|-----|-----|------------------|----|
| Sorkhi    | 96 | 105 | Clay with Kankar | 9  | Mangali       | 63  | 74  | Clay             | 11 |
| Behbalpur | 0  | 5   | Top Soil         | 5  | Mangali       | 74  | 79  | Clay with Kankar | 5  |
| Behbalpur | 5  | 15  | Sand             | 10 | Mangali       | 79  | 84  | Sand with Kankar | 5  |
| Behbalpur | 15 | 18  | Clay             | 3  | Mangali       | 84  | 90  | Sand             | 6  |
| Behbalpur | 18 | 25  | Sand             | 7  | Mangali       | 90  | 100 | Clay with Kankar | 10 |
| Behbalpur | 25 | 45  | Clay with Kankar | 20 | Mangali       | 100 | 104 | Sand with Kankar | 4  |
| Behbalpur | 45 | 54  | Sand             | 9  | Mangali       | 104 | 109 | Clay with Kankar | 5  |
| Behbalpur | 54 | 63  | Clay with Kankar | 9  | Thurna (NAQM) | 0   | 3   | Top Soil         | 3  |
| Behbalpur | 63 | 77  | Clay             | 14 | Thurna        | 3   | 16  | Clay             | 13 |
| Behbalpur | 77 | 83  | Sand             | 6  | Thurna        | 16  | 20  | Sand             | 4  |
| Behbalpur | 83 | 92  | Clay with Kankar | 9  | Thurna        | 20  | 36  | Clay             | 16 |
| Behbalpur | 92 | 99  | Sand with Kankar | 7  | Thurna        | 36  | 42  | Sand             | 6  |
| Behbalpur | 99 | 109 | Clay with Kankar | 10 | Thurna        | 42  | 51  | Clay             | 9  |
| Mangali   | 0  | 6   | Top Soil         | 6  | Thurna        | 51  | 54  | Sand             | 3  |
| Mangali   | 6  | 12  | Clay             | 6  | Thurna        | 54  | 68  | Clay             | 14 |
| Mangali   | 12 | 24  | Sand             | 12 | Thurna        | 68  | 77  | Sand             | 9  |
| Mangali   | 24 | 33  | Sand with Kankar | 9  | Thurna        | 77  | 90  | Clay             | 13 |
| Mangali   | 33 | 43  | Clay             | 10 | Thurna        | 90  | 94  | Sand             | 4  |
| Mangali   | 43 | 56  | Sand             | 13 | Thurna        | 94  | 112 | Clay             | 18 |

Annexure-4: Litholog data each boreholes drilled by different agencies in Hisar district.

# **PHOTOGRAPHS:**



Site selection for exploratory well drilling and rig deployment and pin-pointing at site Thurana in Hisar district.



Litholog preparation at site Thurana

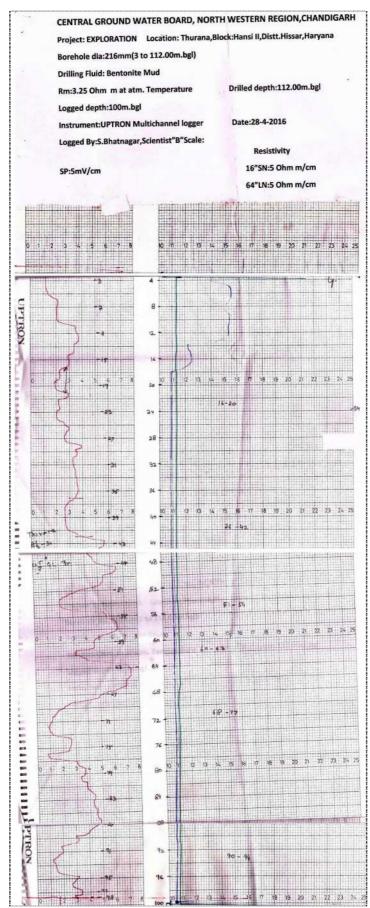


Discussions for depth wise in quality variations in the area and collection of

well inventory data.

| SITE SELECTION PROFORMA F                                                                                                                                                                                                                          | OR EXPLORATORY WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GOVERNMENT<br>CENTRAL GROUND<br>MINISTRY OF WAT                                                                                                                                                                                                    | OF INDIA<br>WATER BOARD<br>R RESOURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Site belones to Gancheya +                                                                                                                                                                                                                         | and a feature and a second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Topostut +10 \$3 C/4                                                                                                                                                                                                                               | nginde ward I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The above site has been jointly agreed to<br>Executive Engineer<br>Division No. B<br>CGWB, Ambala<br>Sufficient scope exists for utilization of<br>terms of performance fixed by the Government<br>to taken over free of cost as per Gove of India | Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Artig<br>Ar |
| Location of Observation Well                                                                                                                                                                                                                       | सरपंद्धी<br>आग पंचायत थुराना                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Executive Engineer Scientist<br>Division No. II CGWB<br>CGWB, Ambala                                                                                                                                                                               | Liaison Officer<br>Head of the Concerned<br>State (With full address)<br>Office Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Site Selection Proforma for Exploratory well constructed at Thurana site


| S     | DISTRICT:HISA/<br>STATE : HARYA | NA       | C            | ENTRAL<br>NA | GROUNI            | T. OF. IN<br>WATER<br>HYDROO | BOAR                    | D<br>STATIC          | DN;PZ                |                             |             | YEAI          | 2: 2016 |
|-------|---------------------------------|----------|--------------|--------------|-------------------|------------------------------|-------------------------|----------------------|----------------------|-----------------------------|-------------|---------------|---------|
| 5.No. | WELL No.                        | LOCATION | Depth<br>(m) | Dia (m)      | R.L of<br>M.P (m) | Ht. of<br>M.P (m)            | Date<br>and<br>Time     | D.T.W<br>bmp.<br>(m) | D.T.W<br>bgl.<br>(m) | Altitude<br>of W.L<br>amsl. | Temp.<br>°C | Sample<br>No. | Remarks |
|       | Barwala                         | 4403DP1  | 95           | 1.50         |                   | 0.60                         | 08-1116<br>1025<br>1075 | 14-76                | t476<br>8.93         |                             |             |               |         |
|       | Banbhauri                       | 53C3AP3  | 90.0         | 1.50         |                   | 0.60                         | 1855<br>1855            | 6.35                 | 5.75                 |                             |             |               |         |
| 1     | Kanoh                           | 4403DP4  | 102.0        | 1.50         |                   | 0.60                         | 07-11-16                | -                    | -                    |                             |             |               |         |
| -     | Agroha                          | 4403CP1  | 94.00        | 1.50         |                   | 0.60                         | 1225<br>1225            | 8.56                 | 7.96                 |                             |             |               |         |
|       | Adampur                         | 4403BP3  | 93.00        | 1.50         | a                 | 0.60                         | 11555<br>425            | 4.51                 | 3.97                 | -                           |             |               | 10      |
| 1     | Khanda Kheri                    | 53C4AP1  | 98.00        | 1.50         |                   | 0.60                         | 88.11.11<br>1405<br>brs | 7.51                 | 6-91                 |                             |             |               |         |
|       | Balsamand                       | 4403CP2  | 102.00       | 1.50         |                   | 0.60                         | 1545                    | 18-10                | 17.50                |                             |             |               |         |

Datasheet for Water Level monitoring data collection during NHS filed.



Data collection for making of NAQUIM report from CGWB-Data Centre (RODC).

# **2. GEOPHYSICAL DOMAIN**



76 07 08 27 08 46 Dated:29.4.2016

То

Regional Director Central Ground Water Board North Western Region Chandigarh

Sub: Borehole Logging Results of Exploratory/Peizometer borehole at Thurana ,Block:Hansi II , Distt. Hissar, Haryana

Sir,

The Geophysical logging (Electrical logging) of above mentioned borehole is conducted on 28-04-2016 down to depth of 100m.bgl respectively by UPTRON Multichannel logger. Drilled depth of the borehole was 112.00m.bgl. The resistivity of the drilling fluid Rm:3.25 Ohm m.

On the basis of geophysical log interpretation, following granular zones are deciphered:

| SI.No | Depth Ranges |       | Thickness(m) | Remarks                    |
|-------|--------------|-------|--------------|----------------------------|
| 1.    | 16.00        | 20.00 | 4.00         | 1. Quality of ground water |
| 2.    | 36.00        | 42.00 | 6.00         | interpreted to be saline.  |
| 3.    | 51.00        | 54.00 | 3.00         |                            |
| 4.    | 68.00        | 77.00 | 9.00         |                            |
| 5.    | 90.00        | 94.00 | 4.00         |                            |

Yours faithfully

( S. Bhatnagar) Junior Geophysicist

Copy to: 1. Dr. P.K.Nayak, Scientist "D" and OIC, Aquifer mapping, for information please.

2. Shri Sunil Kumar Saigal, Scientist "D" and OIC (Aq. Mapping Haryana) for Information please.

3. Site hydrogeologist for information and necessary action please.

4. File No. SB/GLR/2016-17/No.1.

4-2016 S. Bhatnagar)

 Subsurface Geophysical log analysis of Thurana site, Hansi-II block, Hisar district constructed under NAQUIM (AAP: 2016-17) &
 Format for distribution of subsurface geophysical results for

CGWB, NWR, Chandigarh

# **3. CHEMICAL DOMAIN**



Photograph of NABL Chemical laboratory for Groundwater Analysis at

# CGWB-NWR, Chandigarh.

| Sender:Sh Gyanendra Rai, S.T.A, "Log",<br>Lab No:102/16 |                                       |                       |               |              | CHEMICAL LABORATORY<br>CENTRAL GROUND WATER BOARD<br>NWR, CHANDIGARH<br>Test Report of Chemical Analysis of Ground Water Samples<br>Letter No.; Nil Dated: 11.5.2016 |                 |         |                       |            |                   |      |                      |      | Container: Polyethylene<br>Ountity III |        |         |        |      |                     |      |                      |        |       |      |                             |
|---------------------------------------------------------|---------------------------------------|-----------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-----------------------|------------|-------------------|------|----------------------|------|----------------------------------------|--------|---------|--------|------|---------------------|------|----------------------|--------|-------|------|-----------------------------|
|                                                         | State Haryana/Punjab/UT of Chandigarh |                       |               | Study-NAQUIM |                                                                                                                                                                      |                 |         |                       |            |                   |      |                      |      |                                        |        |         |        |      | Sample Condition:OK |      |                      |        |       |      |                             |
|                                                         |                                       |                       |               |              |                                                                                                                                                                      |                 |         | * Den                 | otes NA    | BL Aco            | redi | tated P              | aram | eters                                  |        |         |        |      |                     |      |                      |        |       |      |                             |
|                                                         |                                       |                       |               |              | Sys                                                                                                                                                                  | tematic/Pe      |         |                       |            |                   |      |                      |      |                                        | n/NA   | QUIN    | 1/Othe | irs  |                     |      |                      |        |       |      | Too Market                  |
| S.No                                                    | Unique ID                             | Location              | Block         | Source       | Longitude                                                                                                                                                            | Latitude        | Aquifer |                       |            | Analysis<br>Date  |      |                      |      |                                        |        |         | NO3    |      | PO,                 | Ca   | Mg                   | Na     | K     |      | TH *as<br>CaCO <sub>3</sub> |
|                                                         |                                       |                       |               |              |                                                                                                                                                                      |                 |         |                       |            |                   |      | at 25 <sup>4</sup> C | mg/l | mg/I                                   | mg/l   | mg/l    | mg/T   | ngd  | mg/l                | mg/l | mg/l                 | mg/l   |       | mg/l |                             |
| 1                                                       | 5./16                                 | Khanpur<br>Jattan     | Sahabp<br>ura | EW           | 76.87                                                                                                                                                                | 30 1201         | 0.0     | 200                   | May-16     | May-16            | 7.50 | 465                  | BEL  | 274                                    | 10     | 18      | BDI.   | 0.34 | 0.03                | 19   | 10                   | 78     | 3.1   | 16   | 68                          |
|                                                         |                                       |                       |               |              |                                                                                                                                                                      |                 |         |                       |            |                   |      |                      |      |                                        |        |         |        |      |                     |      |                      |        | -     |      |                             |
|                                                         |                                       |                       |               |              |                                                                                                                                                                      |                 |         |                       | . I,       |                   |      |                      | 1    |                                        |        |         |        |      |                     |      |                      |        |       |      |                             |
|                                                         |                                       | Mada                  | 101 - 111     |              |                                                                                                                                                                      |                 |         | 1                     | es a       |                   |      |                      |      |                                        |        |         |        |      |                     |      |                      |        |       |      |                             |
|                                                         |                                       | Note:<br>Test Meth    |               | est rest     | ults relate                                                                                                                                                          | only to h       | ne samp | ne tes                | leu        |                   |      |                      |      |                                        |        |         |        |      |                     |      |                      |        |       |      |                             |
|                                                         | pH-                                   | APRA 22"              |               | 4500 H*1     | à [                                                                                                                                                                  | C1-             | APHA 2  | et Edit               | iort. 4500 | CFB               | 1    | F.                   | API  | HA 22 <sup>54</sup>                    | Editio | n, 4500 | ŦĎ     |      | Mg                  |      | 22 <sup>nd</sup> Ec  |        |       |      | ]                           |
|                                                         | EC-                                   | APHA 22 <sup>nd</sup> | Edition.      | 2510 B       |                                                                                                                                                                      | NO <sub>1</sub> | APHA 2  | I <sup>nd</sup> Editi | ion, 4500  | NO <sub>3</sub> B |      | Ca-                  | AP   | HA 22rd                                | Editio | n, 3500 | CaB    | l.   | TH                  | APH  | A 22 <sup>nd</sup> E | dition | 23400 |      |                             |
|                                                         |                                       |                       |               |              |                                                                                                                                                                      |                 |         |                       |            |                   |      |                      |      |                                        |        | (Aut)   |        |      |                     |      |                      |        |       |      |                             |

Chemical Analysis results proforma for individual distribution at CGWB-NWR, Chandigarh.

### **REFERENCES:**

- 1. Agriculture Contingency Plan: Hisar, District Agriculture profile.
- 2. CGWB, CHQ, Faridabad & NRSC-ISRO thematic information data (Geology, Geomorphology etc.)
- 3. CGWB, CHQ, Faridabad-Concept Note on National Project on Aquifer Management plan.

- 4. CGWB, CHQ, Faridabad-Manual on Aquifer Mapping.
- 5. CGWB, NWR, Chandigarh- Ground Water Exploration Reoprt-2004.
- 6. CGWB, NWR, Chandigarh- Ground Water Information Booklet, Hisar district, Haryana state.
- CGWB, NWR, Chandigarh-Ground Water Potential of Hisar district, Haryana state, 1981.
- 8. CGWB, NWR, Chandigarh-Hydrogeology of Hisar district based on Reappraisal Surveys (1977-78), 1986.
- 9. CGWB, NWR, Chandigarh-Surface Geophysical surveys in parts of Panipat and Hisar districts, Haryana state under AAP: 2004-05, 2006.
- CGWB, NWR, Chandigarh & Ground Water Cell, Directorate of Agriculture, Govt. of Haryana-Report on Dynamic Ground Water Resources of Haryana State as on March 2013.
- 11. Crop diversification methodology received from PAU, Ludhiana, Punjab state.
- 12. Data of Census of India, Government of India, 2011.
- Department of Economic and Statistical Analysis, Haryana, Statistical Abstract (2012-13) for Haryana state, Government of Haryana, 2014.
- Geospatial Approach Cropping System Analysis: A Case Study of Hisar District in Haryana, Saroj et al, Int.J.Computer Technology & Applications, Vol 5 (2),457-461, IJCTA | March-April 2014.
- 15. <u>http://hisar.gov.in/</u>
- 16. <u>https://en.wikipedia.org/wiki/Hisar district</u>
- 17. Public Health Engineering Department, Government of Haryana, Haryana state wells lithology data received from <u>http://wss.hry.nic.in/</u>.
- 18. Rockworks software v.16 used for preparation of 3D diagrams & Mapinfo-6.5 for 2D thematic maps.
- 19. Village and Town Directory, District Census Handbook, Hisar district, Census of India 2011 & Directorate of Census Operations, Haryana, Series 7, Part XII-A.
- Village and Town Wise Primary Census Abstract (PCA), District Census Handbook, Hisar district, Census of India 2011 & Directorate of Census Operations, Haryana, Series 7, Part XII-B.