

केंद्रीय भूमि जल बोर्ड

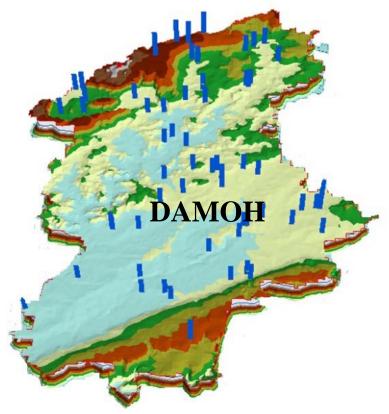
जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

AQUIFER MAPPING REPORT


Damoh District, Madhya Pradesh

उत्तरी मध्य क्षेत्र, भोपाल North Central Region, Bhopal

Government of India Central Ground Water Board Ministry of Water Resources, River Development & Ganga Rejuvenation

NATIONAL AQUIFER MAPPING PROGRAMME GROUND WATER MANAGEMENT PLAN OF DAMOH DISTRICT, MADHYA PRADESH

By Dr L.K.Mathur Scientist "D"

NORTH CENTRAL REGION BHOPAL December-2017

CONTENTS

	PREFACE
CHAPTER-I	INTRODUCTION
1.0	Location
1.1	Objective
1.2	Data Adequacy, Data Gap, Data Availability
1.3	Rainfall and Climate
1.4	Geomorphology
1.5	Drainage
1.6	Soil
1.7	Land Use
1.8	Agriculture, Irrigation and Cropping Pattern
1.9	Prevailing Recharge practices
CHAPTER-II	DATA COLLECTION AND GENERATION
2.0	Ground Water Senario
2.1	Hydrogeology
2.2	Water Levels
2.3	Exploratory Drilling
2.4	Ground Water Quality
CHAPTER-III	DATA INTERPRETATION/PREPARATION OF AQUIFER
	MAP
3.1	Data Interpretation
3.2	Lithological Model
3.3	Litho Cross Section
3.4	Fence Diagram
CHAPTER-IV	GROUND WATER RESOURCES
4.1	Dynamic Ground Water Resource and Draft
4.2	In Storage Static Ground Water Resource
4.3	Conceptual Model of Recharge
CHAPTER-V	GROUND WATER RELATED ISSUES
5.1	Ground Water Depletion
5.2	Ground Water Quality
CHAPTER-VI	GROUND WATER MANAGEMENT STRATEGIES
6.1	District Ground Water Management Plan
6.2	Intervention of Technology
6.2.1	Drip Irrigation Technology
6.2.2	Sprinkler Irrigation Technology
CHAPTER-VII	CONCLUSION AND RECOMMENDATION
CHAPTER-VIII	BLOCK WISE MANAGEMENT PLAN
8.1	Batiagarh Management Plan
8.2	Damoh Management Plan
8.3	Hatta Management Plan
8.4	Jabera Management Plan
8.5	Patera Management Plan
8.6	Patharia Management Plan
8.7	Tendukheda Management Plan
	ANNEXURES
ANN-I	LOCATION DETAILS OF EXPLORATORY BORE WELLS

PREFACE

Aquifer mapping is as a multi-disciplinary scientific process, wherein a combination of geological, geophysical, hydrological and geochemical studies are applied to characterize the quantity, quality and sustainability of ground water. Systematic aquifer mapping is a procedure to improve our understanding of the hydrogeological framework of aquifer system.

Under the project on National Aquifer Mapping (NAQUIM) in XII & XIII Plan to formulate sustainable aquifer management plan, Central Ground Water Board (CGWB), North Central Region, Bhopal has taken up Damohr disrtict to prepare the 3-Dimensional Model and 2-Dimensional Aquifer Maps for the entire district and formulate Block-wise Aquifer Management Plan.

Damoh district occupies an area of 7306 sq km out of which the ground water recharge worthy area is 4749 sq. km. and the rest is covered by hilly and forest area. The major rivers flowing through the area includes the river Ken ,Bina, Sonar and Bamner. The major part of the district is covered by the by Vindhayan sandstones ,Shale& Limestone. On the basis of the 68 Exploratory borewells drilled by CGWB, NCR under its Exploratory/NAQUIM program, it has been observed that the yield varies from 3-6 m³/hrshallow aquifer and 3 to 20m³/hr in deep aquifer. As per the Dynamic Ground Water Resource Assessment Report (2013), the net ground water availability in the district **392.03**MCM and ground water draft for all uses is 250.75 MCM, resulting the stage of ground water development to be 63.96 % as a whole for district.

The Damoh district falls under safe category. After the implemented of project interventions in the report, the stage of development is expected to improve by 7.9 % i.e. from 63.96% to 56.06% for the Damoh district.

Damoh district comprises of seven blocks, namely Batiyagarh, Damoh, Hatta, Jabera, Patera, Patera, Patheriya & Tendukheda .As per the Management plan prepared under NAQUIM of all the Block of Damo District, a total number of 100 Percolation Tanks, 258 Recharge Shafts/Tube wells and 693 Nala Bunds/Check Dams/Cement Plugs have been proposed and financial expenditure is expected to be Rs 124.33 Crores in Damoh District for sustainable development and management of ground water resources.

Before finalization of this report a three tier evaluation mechanism is adopted ,presentations were made at Regional level & State level Coordination Committee ,then the revised presentation were made before the Member and finally it was presented to National Level Expert Committee , after all corrections this report is prepared. Results of these comprehensive studies will contribute significantly to ground water sustainable management tools. It will not only enhance the long-term aquifer monitoring networks and but would also help in building the conceptual and quantitative regional ground-water-flow models for planners, policy makers and other stakeholders.

I would like to place on record my appreciation for *Dr. L.K. Mathur, Scientist 'D'* who had compiled this report. I fondly hope that this report will serve as a valuable guide for sustainable development of ground water in the Damoh District, Madhya Pradesh.

(Parvinder Singh) Regional Director

CHAPTER-I INTRODUCTION

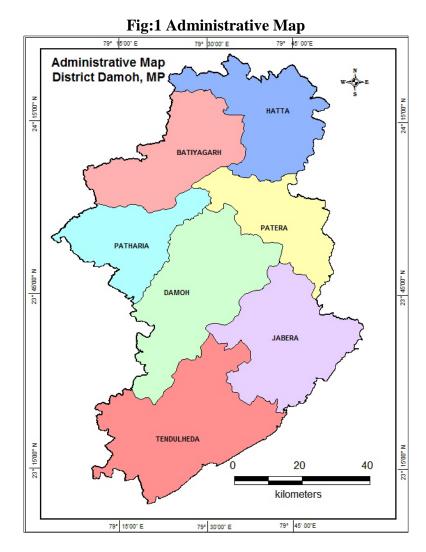
1.0 Location :

Damoh District lies between $23^{\circ}9'$ and $24^{\circ}27'$ North latitude and between $79^{\circ}3'$ and $79^{\circ}57'$ East longitude in the Northern part of Jabalpur Division. The shape of the district is irregular and elongated from North to South with projection in the East and West.

The District is bounded by the district of Chhatarpur in the North and Northwest, Damoh in the West, Narsimhapur and Jabalpur in the South and part of Jabalpur and Panna in the East.

The District is divided into 7 Tehsils and 7 development blocks (Fig:1).1225 Villages and 5 Towns in the District (Table-1).

S.No.	Block	Geographical Area	Recharge Worthy	No. of Towns
		in Sq.km	Area Sq.Km	
1.	Batiyagarh	1225	891.82	2
2.	Damoh	1304	849.00	1
3.	Hatta	865	491.00	
4.	Jabera	1262	634.00	1
5.	Patera	723	577.00	
6.	Patheriya	970	903.37	1
7.	Tendukheda	957	400.00	
8.	Total	7306	4746.19	


TABLE – 1: Administrative Divisions, District DAMOH, (M.P).

1.1 Objectives:

The aquifer mapping study primarily depends on the existing data that are assembled, analysed and interpreted from available sources. The data gaps analysis carried out helped to generate data from data-collection activities such as BDR of exploration drilling, water level measurements and groundwater quality analysis done by CGWB & State Department.

By analysing the existing data and the data generated, regional hydrogeological maps, thematic maps, water quality maps, cross-sections, 2-D and 3 –D aquifer dispositions and potentiometric maps were generated.

The objectives of the Management plan is to define the aquifer geometry, type of aquifers, ground water regime behaviors, hydraulic characteristics and geochemistry of Multi-layered aquifer systems on 1:50,000 scale .

1.2 Data Adequacy, Data Gap, Data Availability:

Aquifer Mapping can be envisaged as follows :

1. Data Compilation & Data Gap Analysis:

One of the important aspect of the aquifer mapping programme was the synthesis of the large volume of data already collected during specific studies carried out by Central Ground Water Board and various Government organizations with a new data set generated that broadly describe an aquifer system. The data were assembled, analysed, examined, synthesized and interpreted from available sources. These sources were predominantly non computerized data, which was converted into computer based GIS data sets. On the basis of available data, Data Gaps were identified.

2. Data Generation: There was also a strong need for generating additional data to fill the data gaps to achieve the task of aquifer mapping.

3. Previous studies Prior to this study, the groundwater hydrogeology has been studied only in separate parts with many areas left untouched. As a result, there was no hydrogeologic framework developed so as to understand the regional effects of groundwater development in the area.

4. Preparation of Block wise ground water management plan of the Damoh district that will guide the planers to manage the ground water resources in judicious manner and improve the ground water scenario of the district.

1.3 Rainfall & Climate:

The average annual rainfall of Damoh district is 1173.0 mm. Damoh district received maximum rainfall during southwest monsoon period i.e. June to September. About 90.4% of the annual rainfall received during monsoon season. Only 9.6% of the annual rainfall takes place between October to May period. Thus, surplus water for ground water recharge is available only during the southwest monsoon period.

The normal maximum temperature received during the month of May is 42.0°C and minimum during the month of December/January is 9.7°C. The normal annual means maximum and minimum temperatures of Damoh district is 32.6° and 18.9°C respectively (Table 2).

During the southwest monsoon season the relative humidity generally exceeds 88% (August month). In the rest of the year it is drier. The driest part of the year is the summer season, when relative humidity is less than 31%. May is the driest month of the year.

S.	Parameter	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Annual
N.														
1	Maximum	26.2	29.4	34.5	39.3	42.0	38.0	31.1	29.8	31.4	32.3	29.9	26.7	32.6
	Temp (°C)													
2	Minimum	9.7	12.1	16.6	21.9	26.4	26.6	24.2	23.7	23.3	19.2	13.1	9.7	18.9
	Temp (°C)													
3	Relative	69	58	43	33	31	59	85	88	82	70	65	70	63
	Humidity													
	(%)													
4	Wind	3.2	3.7	4.3	5.0	6.3	8.2	7.2	6.9	5.4	3.5	2.7	2.6	4.9
	(Km/Hr)													

Table-2: NORMAL CLIMATOLOGICAL PARAMETERS FOR DAMOH DISTRICT

1.4 Geomorphology:

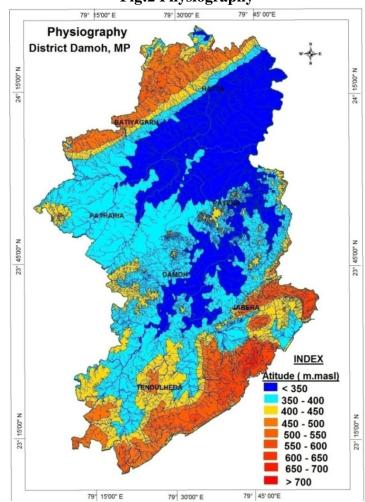
The district is divided into three physiographic sub-divisions, namely Vindhyan range, Vindhyan Scraps and Bundelkhand uplands. The Vindhyan Scrap covers the entire Sonar Valley and the southern plateau excluding the main line of hills belonging to Vindhyan range. The Sonar Valley can be considered to be separate divisions and the Vindhyan range may be grouped with the rest of the Southern hills. Thus, there are three distinct divisions in the district: -

- The Southern Plateau

 (a)The Vindhyan range and the Southern precipice.
 (b)The broad Southern Plateaus.
- 2. The Sonar Valley.
- 3. The Northwest hill range.

In Damoh the Southern part of Vindhyan range up to Katangi is called the Bharner range. Beyond this point, the escarpment enclosing the land- lock valley of Singrampur and the hill range in continuation is called Kaimur range. The Southern edge of the plateau and the hills scrap steeply to the South facing the Narmada Valley and the Valley of the Hiran.

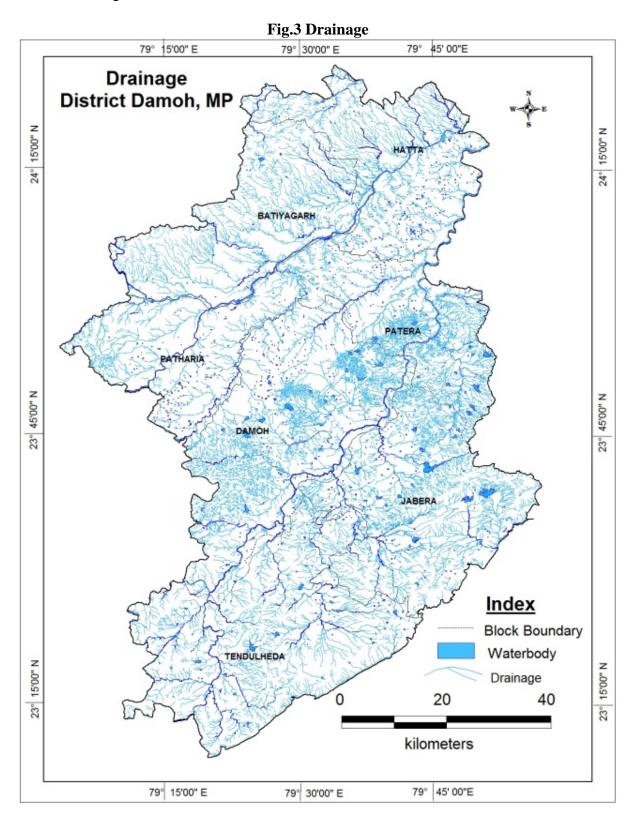
The greatest height in this range is that of the Kulumar hill 751 mamsl. On the Northeast of Singrampur Kheri 586.7 mamsl is the highest peak. Elsewhere the hills range from 550 to 580 meters high. North and Northwest of Bharner range and Northwest Kaimur range, the great tableland slopes towards the Northeast.


The drainage lines of the Sonar valley and the Kopra lies into a broad belt of the low alluvial country between the line dissected hills on the Southwest and the scraps of the Northwestern plateau. Thus, the plateau region has been separated from the Northwestern hill range.

The Southern plateaus extend in a broad belt from Southwest to Northeast. It is centrally drained by the Bearma and is transversed by a number of spurns and ridges of Vindhyan range.

The Sonar Valley (Haveli) extends in a belt across the North Central part of the district. It is about 80 Km long from Southwest to Northeast and 32 to 43 Km wide between the Scraps of the Southern and Northern plateau of the Vindhyans, which also forms the local watershed between the Sonar and the Bearma Nala to the Northwest. It lies at an elevation of 335 mamsl. The Bewas, the Kopra and the Bearma are the important tributaries of the Sonar going it at Damoh and flowing through the valley. The valley lying in the center of the district is composed of fertile soil formed from the detritus of volcanic rocks.

The Northwestern plateau rises about 120 m like a wall from the Sonar valley, locally known as Barana hills, the Central ridge (460 to 520 m) is marked by several flat topped hills and runs from Southwest to Northeast.


In the Southwestern part of Jabera block isolated hill ranges are more than 600m and at places they are more than 700m. amsl.

1.5 Drainage:

The area is mainly drained by SonarRiver and the BearmaRiver, which flow in the general slope of the country and flow a tributary of the Narmada, the entire district is drained by Sonar, Bearma and through the tributaries and feeders of the KenRiver into Yamuna.

1.6 Soil:

The Soils in the district are mainly of three types: -

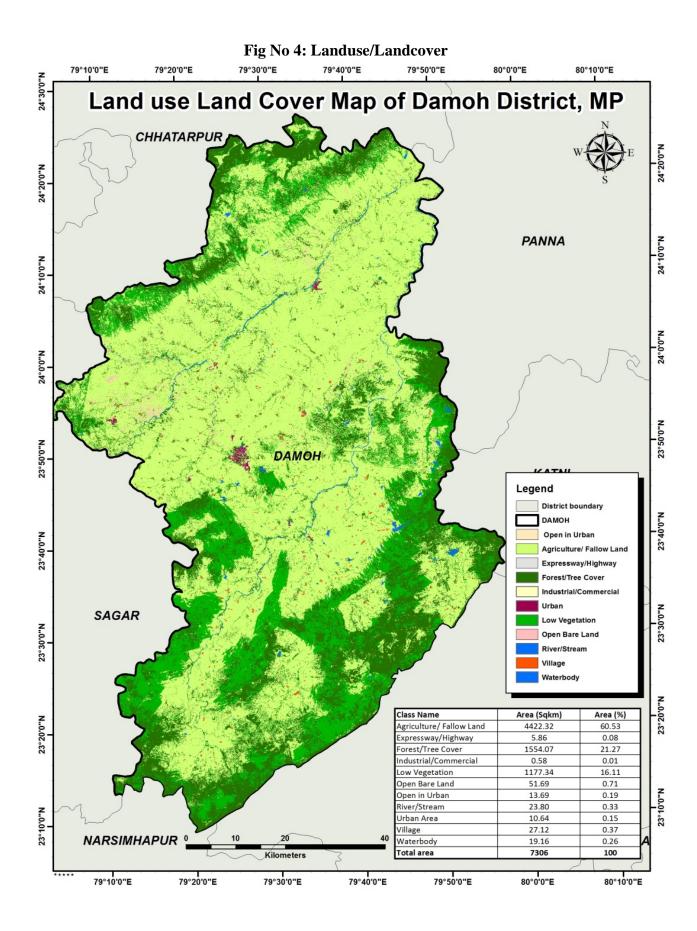
(1) Medium Black Soil:

This Soil is formed due to weathering of green and black shales. It is very fine grained and clayey in nature. All the agriculture fields located over shales are covered by this type of soil. It varies in thickness from place to place which ranges from 1 to 4 m.

(2) Shallow Black Soil:

This is alluvial type of soil occurring on the banks of Sonar and Bearma rivers. It is grey to black in colour, pebbly sandy to clayey in nature.

(3) Skeletal Soil:


This soil is formed due to the weathering of sandstone. This type of soil is observed near the foothills of quartzitic sandstone in the Southern part of the district.

1.7 Landuse:

Damoh district landuse map prepared by using LISS- IV Image data about 60% of the area is covered by Agriculture/Fallow land ie. about 4422 Sq.Km and other part of the area is covered by Forest/Tree cover and low vegetation , aerial distribution of the landuse cover of the district is given in table No 3

Table NU	.5 Lanuuse /Lanu cover	
Class Name	Area (Sqkm)	Area (%)
Agriculture/ Fallow Land	4422.32	60.53
Expressway/Highway	5.86	0.08
Forest/Tree Cover	1554.07	21.27
Industrial/Commercial	0.58	0.01
Low Vegetation	1177.34	16.11
Open Bare Land	51.69	0.71
Open in Urban	13.69	0.19
River/Stream	23.80	0.33
Urban Area	10.64	0.15
Village	27.12	0.37
Waterbody	19.16	0.26
Total area	7306	100

 Table No :3
 Landuse /Land cover

1.8 Agriculture/Irrigation/Cropping pattern

As shown in table No 4, Gross sown area of Damoh district is 202341 ha.

Area	Type of soil	Gross Area sown (ha) (2014-15)	Area irrigated by surface water (ha) (2014-15)	Area Irrigated by GW (ha) (2013-14)
Damoh District	Black Cotton soil, mixed soil, gravelly sandy soil and Red Loamy soil	317723	33453	84702

 Table No. 4:
 Gross Sown Area of DamohDistrict

Table No.5: Area Irrigated (Ha) by Different Source In Damoh District.

	Ground Wate	r Irrigated A	rea	Surface Water Irrigated Area				
Block	Area Irrigated by Dug Well	Area Irrigated by Tube Well	Total Area Irrigated by Ground Water Area in Ha	Area Irrigated by Balram Talab	Area Irrigated by Canals	Total Area Irrigated by Surface Water Area in Ha		
DAMOH	11940	4959	16899	3076	887	3963		
PATHARIYA	7088	7547	14635	3365	5517	8882		
JABERA	4810	3220	8030	1566	529	2095		
TENDUKHERA	5389	1985	7374	520	632	1152		
BATIYAGARH	6742	14792	21534	150	3952	4102		
НАТТА	3492	6341	9833	1008	1333	2341		
PATERA	4579	1782	6361	124	408	532		
Total	44040	40626	84666	9809	13258	23067		

1.9 Prevailing Recharge practices Artificial Recharge Studies by CGWB :

The Central Ground Water Board, under the Central Sector Scheme, has been extending technical and financial support to the State Government for implementing practices in rural and urban areas of the district. In Damoh district no such project has been taken up by CGWB ,however technical guidance for preparing DPR and other recharging has been guided to PHED and other state departments.

CHAPTER-II DATA COLLECTION AND GENERATION

2.0 GROUND WATER SCENARIO :

2.1 Hydrogeology - Aquifer System and Aquifer Parameters

Hydrogeology:

The Groundwater in the district occurs under Phreatic, semi- confined and confined conditions. The ground water occurrence is mainly controlled by topography, drainage, lithology and disposition of fractures and joints specially in hard rocks. The very hard and compact sandstone because of fractures act as good repository of groundwater. Shales are clayey in nature and have medium porosity and movement of groundwater through these pore spaces takes place by capillary action. Limestone is also very hard and compact in nature and has very poor porosity opening. Due to secondary porosity, Limestone form good aquifers. Alluvial formations are unconsolidated sediments having high porosity.

The main water bearing formations identified within the area are as follows: -

- 1. Alluvium
- 2. Shale- Unconsolidated sediments.
- 3. Sandstone- Consolidated (Hard Compact).
- 4. Limestone- Consolidated (Hard Compact).

Hydrogeological units : Alluvium:

Sonar and Bearma river forms alluvial tracts along the banks. The alluvial and soil covers in the area are unconsolidated formation having very high porosity. The alluvium has good water yielding capacity of the order of 50-60 m3 / day. The depth of the wells in this formation ranges from 8 to 14 m. bgl. The depth to water level ranges from 2 to 6 m. bgl.

Shale:

The shales are clayey in nature and have very high porosity & less permeability. In this unit water moves by capillary action. In the district shale formation area forms a fine dendritic drainage and rain water goes away as run- off. In shales due to secondary opening such as bedding planes and joints water is transmitted fast.

The shallow dug wells in the depth ranges between 6-13m. tapping shales , surprisingly, have water yielding capacity of 70-200 m^3 day.

The general range of water level in this formation is 4-12m. bgl. Number of bore wells drilled in shale formation are not in operation due to meager discharge as deeper aquifers are not productive. In summer dug wells run at the most for two hours and recoup in one or two days. Some shallow dug wells dry up in summer.

Sandstone:

Sand stone are very hard compact in nature, fine to medium in grain size and pinkish to reddish in colour, Sandstone is well cemented by silicious material and has very low porosity but their structural characters do give rise to a few large opening through which water is transmitted fast. These openings are bedding planes, current bedded layers, ripple marks and three prominent sets of joints. The volume of such opening, as

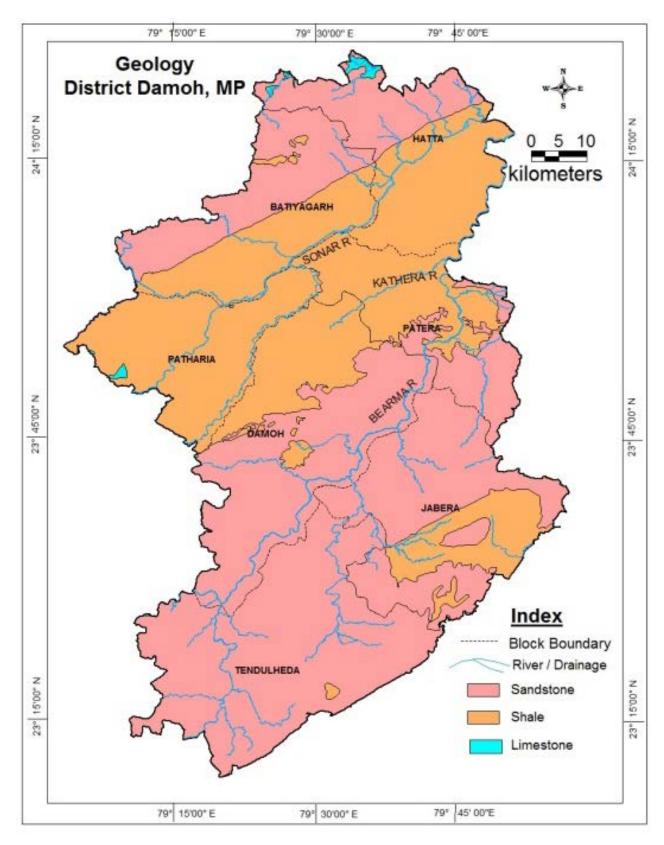
Limestone:

The limestone is very hard and compact in nature and has very poor primary opening and are characterized by secondary opening such as bedding planes, joint planes, solution channels and cavernous opening. The limestones are affected greatly by Chemical Weathering. Due to chemical reaction the joint planes are widened resulting in solution channels or caverns and sink holes. Due to Karstification , the limestone formations are suitable both for dugwell and tube wells. This type of karstification is observed in the Sonar river bed at Jamunia Khain village in Patera block. Test bore wells were drilled in Futera and Bakargarh village in Batiyagarh Block, Banjari and garish village in Hatta Block. Depth of bore holes are 60 m. bgl. and the yield is of the order of 70-200 m³ day. The depth of dug wells in this formation ranges from 8-12 mgl. The depth of water level ranges from 4 to 10m. bgl. The yield of shallow dug wells is of the order of 40-50 m³/ day.

Sub- Surface Geology and Yield Potential of Aquifers:

To meet the drinking water requirements of the rural population of the district, the Public Health Engineering Department of M.P. Govt. has drilled tubewells in almost all the villages.

From the perusal of Geological Cross-Section based on dug wells sections, bore hole logs and exposures in river section, some generalization have been made. The Vindhyan sandstone, Shales and limestone are the main litho logical units. The main aquifers are formed by shales and L.st.


The Patharia block around villages Sukha, Magardha, Sumera Lodhi, kisanganj, Narsinghgarh etc. Overburden thickness ranges from 6 to 9 m. and underlying formation is mainly Limestone, sandstone and shales. Limestone of this area is compact.

The bedding planes, joints cracks generally allow movement of groundwater due to widening of joints, fissure etc. by solution action. In Tendukheda block rate of success of dug well is about 70 with a discharges if $0.5m^3/hr$ to $1.60 m^3/hr$. Thus, chances of storage of groundwater occurs in weathered pockets, cracks & fissures. The average yield of wells in shales is $16 m^3/day$ to $30 m^3/day$. Vindhyan sandstone is compact, hard and groundwater Occurrencein this formation seems to be insignificant. The yield of dug well is $15 m^3/day$ to $40 m^3/day$. In Damoh block, major part of the area is covered by medium black soil underlain by clays mixed with kankar. The thickness of clay varies from 3 to 10m. The depth of shales ranges from 5 to 12 m. Limestone occurs in between shales.

Consolidated of aquifers formed by shales, jointed sandstone of Vindhyan are moderate in ground water potential Limestone is moderate to good. Shallow and deep aquifers occur between 20-25m. bgl and 60-120m. bgl. depth. These aquifers are of limited width and extension and get recharged by the base flow leakages of Sonar, Bearma and their tributaries.

The general geological formation of the area is Sandstone ,Shale& Limestone as shown in Fig:5.

Fig:5 Geology

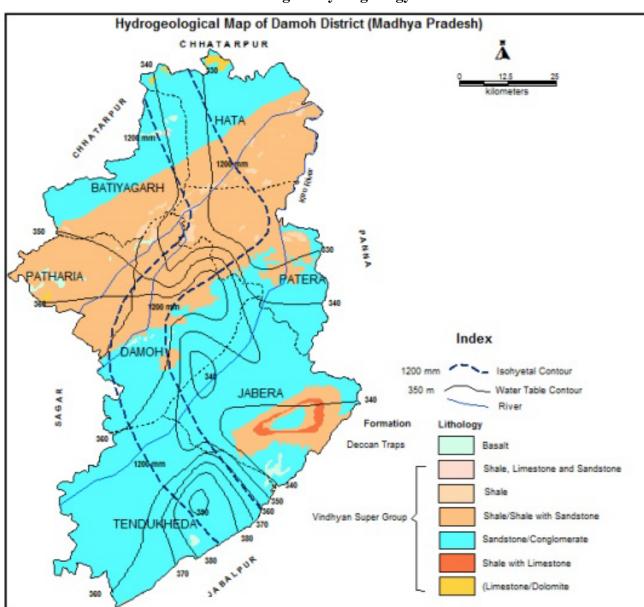


Fig:6 Hydrogeology

2.2 WATER LEVELS

Ground water levels form a very important parameter of the ground water system, as these are its physical reflection. The groundwater balance expresses itself in the change in water levels; hence a continuous record is important and useful. CGWB has 25 National Hydrograph Stations (NHS) and 08 Peizometers in Damohdistrict. Due to large-scale ground water development the dug wells are drying up.

Pre-monsoon (May 2015)

Depth to water level during pre-monsoon, 2015 yr ranged between1.5 m bgl at Patera and 24.47m bgl at Bhonrasa. Water levels, in general fall between 5 - 20 m bgl. Shallow water levels of less than 3 m bgl occur in a patch in the south-western part of the district falling in Tendukheda block , eastern & central part of Jabera block and central part of Patera block. Maximum part of the district lies between 3-10 mbgl. Deeper water levels, more than 15 m occur in western part of Patharia block. In Batiyagarh , Patharia and Jabera blocks wells are fast drying up perhaps due to higher ground water development. During May 2015, pre-monsoon the depth to water level in Damohdistrict as shown in Fig 5

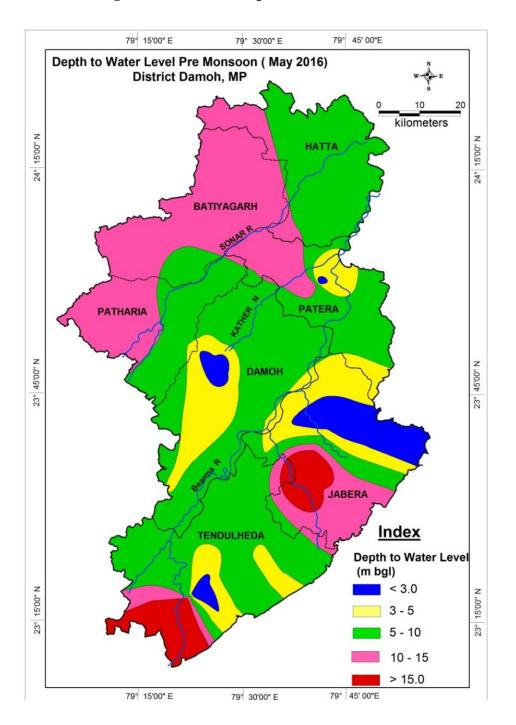


Fig 5.Pre -Monsoon Depth to Water Level (2015)

Post-monsoon (November 2015)

During post-monsoon period of the same year, November 2015, the water levels varied from 0.06m bgl at Dhayali to 15.19m bgl at Bhonrasa. The water level, in general lies between 2 to 10 m bgl during this period. Shallow water levels, less than 3 m bgl occur in a small part of the district covering parts of Hatta, Patharia,Patera,Jabera & Tendukheda blocks. Deep water levels above 10 m bgl occur in the northeastern part in Patta, and south western part of Jabera blocks as shown in Fig 6.

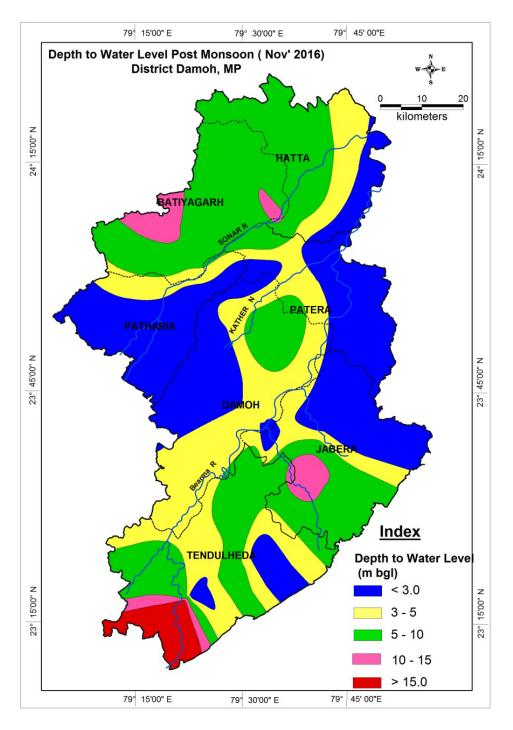
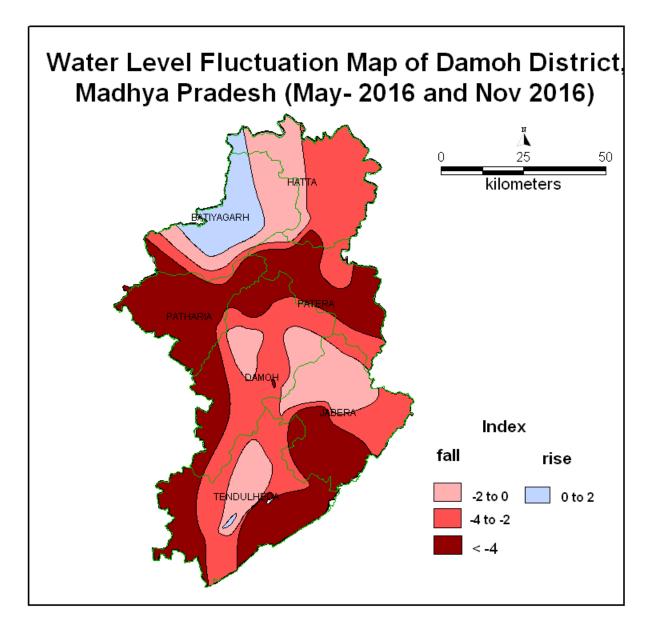
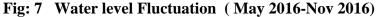
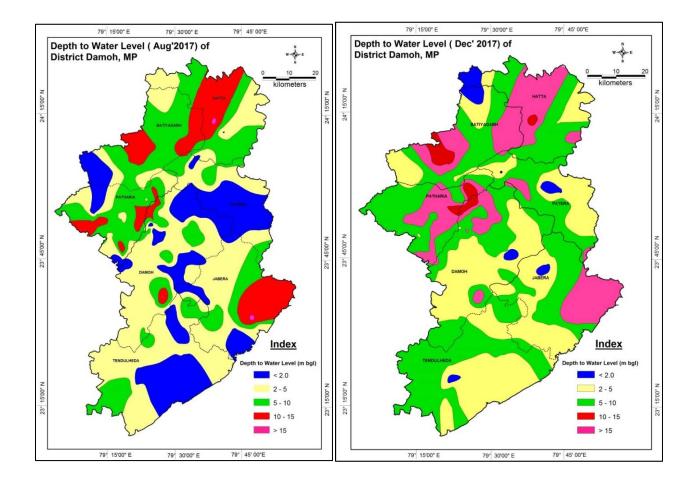




Fig 6. Post -Monsoon Depth to Water Level (2015)


Water level Fluctuation (May 2016-Nov 2016):

Major part of the district shows seasonal fluctuation rise more from 3-10m and in small parts of block Hatta, Patera Cetral part of Damoh, Jabera & Tendukeda blocks shows fluctuation fall from >3to >10m as shown in Fig 7.

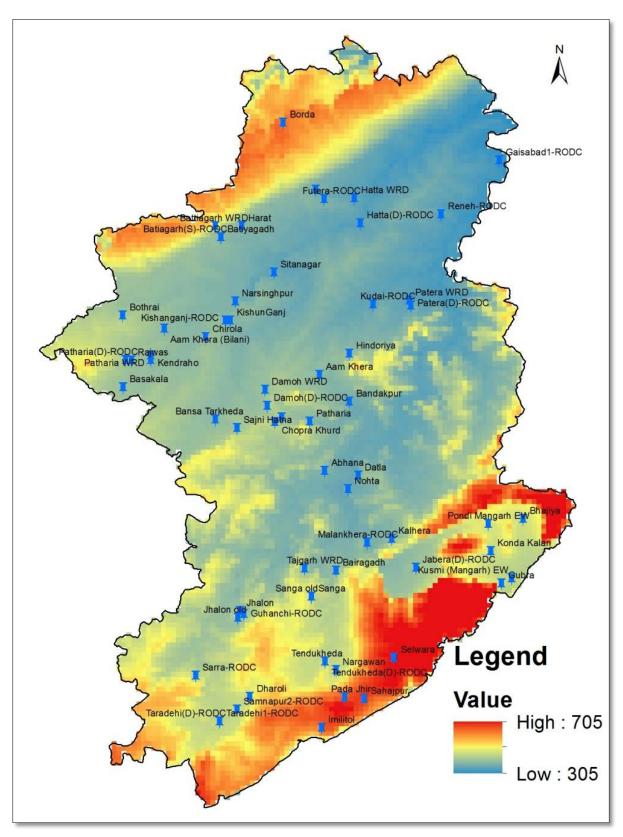
Data Generation: During the month of August 2017, 126 Key observation wells were established. The water level monitoring was conducted in the month of Aug & Dec, 2017 and ground water sample collection was done in the month of Aug, 2017. The depth to water level maps have been prepared and shown in figure 8 & 9.

Water level Aug' 2017

The minimum depth to water level of 0.5 mbgl was recorded in the Tindni village of Damoh block whereas the maximum depth to water level of 15.25 mbgl was recorded in the Kanti village of Hatta block. As per the depth to water level map it can be observed that shallow water levels of < 2m bgl occurs in patches dominantly in Patera block and small pockets all over the central and southern part of district. The major part of the district has depth to water level within the range from 2-10 m bgl. The deeper water levels of >10 mbgl are encountered in small pockets in the northern and south eastern part of Damoh district.

Water level Dec' 2017

The minimum depth to water level of 0.88 mbgl was recorded in the Jangpur village of Hatta block whereas the maximum depth to water level of 18.67 mbgl was recorded in the Dhingsar village of Damoh block. As per the depth to water level map it can be observed that shallow water levels of < 2m bgl occurs in very small pocketsin the northern, central and southern part of district. The major part of the district has depth to water level within the range from 2-10 m bgl. The deeper water levels of >10 mbgl are encountered predominantly in the north western and south eastern part of Damoh district.


2.3 Exploratory Drilling:

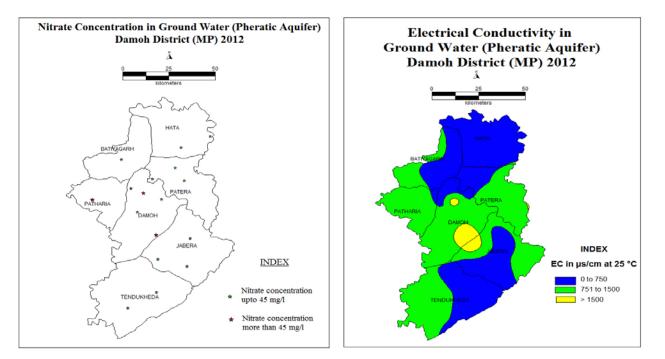
CGWB under its exploration programme drilled 35 borewells and 11 Piezometers on the basis of litholog and aquifer perimeter sub surface lithology of the area is inferred and 3-D, Section and Fence of the district has been prepared .and the salient detail of these drilled bore wells is given in Table No2.

Fig 8: Location of Exploratory Wells , Damoh District

Table-6: Salient Features of Exploratory Boreholes Drilled in DamohDistrict

S.N.	Name of site	Type of Well	Depth drilled in mbgl	Zones tapped	SWL	Disch arge	Drawdown	Formation
					(mbgl)	(lps)	(m)	
1	2	3	4	5	6	7	8	9
DAMO	H DISTRICT							
1	Abhana	EW	300		-	1		Shale
2	Abhana,	PZ	106.7	-	5.5	7.5		Shale
3	Aamchopda,	EW	268.4	-	-	-		Shale
4	Aamkheda,	EW	262	-	-	-		Shale
5	Bandakpur,	EW	250	-	-	0.2		Shale
6	Bansa Tar Khera	EW	305		30.37	0.2		Shale
7	Bansa Tar Khera,	PZ	66.75		8.43	0.25		Shale
8	Bataria,	EW	303.5	-	60	1.5		Shale
9	Batiagarh	PZ	153		70			Shale
10	Bhilani,	EW	231	_	-	-		Shale
11	Bothrai,	EW	134.2	-	4.5	3.4		Shale
12	Bothrai,	OW	134.2	_	4.5	2.5		Shale
13	Chirola,	EW	215	-	15	12.86		Shale, lime stone
14	Chirola,	OW	93.18	-	21.5	1.13		Shale, lime stone
15	Damoh, Collectorate,	EW	300.2 5	-	50	0.2		Shale
16	Hindoria	EW	276	Abandoned				Shale
17	Kendraho	EW	103.7	24-30, 68-74	12.6	10		Fractured shale
18	Kendraho	OW	103.7	24-30	12.95	2.75		Fractured lime stone
19	Kendraho	OW	103.7	24-30, 68-74	12.81	6		Fractured shale
20	Khejra Kher,	EW	262.3	-	-	-		Shale, lime stone
21	Kisanganj	EW	268		15	1		Shale
22	Kisanganj	PZ	81.7		12	1		Shale
23	Narsinghgarh	EW	305		90 m			Shale
24	Nohta	PZ	152.5	-	-	-		Shale
25	Nohta	PZ	61	-	-	-		Shale
26	Pandajhiri,	EW	145	-	-	0.5		Shale

27	Pathariya (Karasdev),	EW	54.9	-	15	12		Shale
28	Pathariya, (Karasdev)	OW	67.9	-	15	5.5		Shale
29	Polytechnic	EW	305		60.2	Ne	gligible	
30	Sahajpur,	EW	233.3 4	-	13	0.25		Shale
31	Sailwara,	EW	298.6	-	-	Dry		Shale
32	Sailwara,	PZ	97.25	-	47	-		Shale
33	Sanga,	EW	281	-		0.5		Shale
34	Sangrampur,	EW	157	-	-	meager		Shale
35	Sangrampur,	PZ	73.3	-	-	2		Shale
36	Sangrampur,	PZ	19.3	-	9.8	0.25		Shale
37	Sitanagar	EW	277		15	0.5		Shale
38	Sitanagar	OW	79		3.03	0.5		Shale
39	Nargawan,	EW	270	-	4		1	Lime-stone
40	Nargawan,	PZ	92.37	-	17		0.1	Lime-stone
41	Hardua,	EW	303.5	-	-		Meagre	-
42	Gubra-	EW	233.3 5	-	12		0.2	Sand S./ Shale
43	Gubra-	PZ	91	-	12.1		0.1	Sand S./ Shale
44	Kusmi-	EW	245.5 3	-	9.5		5.5	Sand S./ Shale
45	Kusmi-	OW	265.8	-	8		3	Shale
47	Kusmi-	PZ	61.7	-	9.5		5.5	Shale
48	Hinoti Khet Singh	EW	287		23		0.2	Sand S./ Shale
49	Magron	EW	125.7 7	84-87	8.64	3	1.97	Shale
50	Guhachi	EW	162.7 5	30-32, 73.5-74.5, 94.5-96.25	10.5	:-	:-	Shale
51	Singrampur	EW	200	37-42, 47-50, 73.5-75	12.44	2.1	4.06	Shale
52	Hardeshpur	EW	200			Dry		Shale
53	Kishanganj	EW	200			Dry		Shale
54	Lohari	EW	200	25-26	20	:-	:-	Shale
55	Patera	EW	200			Dry		Shale
56	Kudai	EW	196.5	25-27	5.72	1.2	16.28	Shale
57	Raneh	EW	200			Dry		Shale
58	Gaisabad	EW	200	84-87, 105-109, 131-134	8.41	1.9	4.97	Shale

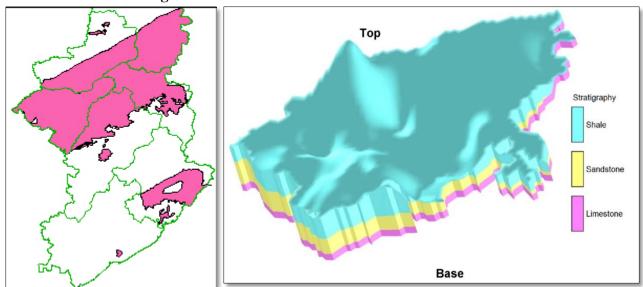

59	Fatehpur	EW	134.5	77-79, 83-91				Shale
60	Futera	EW	196.7 5	109-112.25	24.69	3	4.68	Shale
61	Samnapur	EW	184.1 2	103-105	8.26	Dry		Shale
62	Taradehi	EW	200			Dry		Shale
63	Sarra	EW	182	136-138, 146-148	7.36	3	3.41	Shale
64	Malankhera	EW	200			Dry		Shale
65	Nandrai	EW	200	27-28	6.45	:	:	Shale
66	Gugrakalan	EW	175	100-105, 140-152, 169-171	5.36	3	3.03	Shale
67	Khaderi	EW	200			Dry		Shale
68	Kerwana	EW	112.7 5	55-60.25, 108-111	4.41	3	1.63	Shale

2.4 Ground Water Quality

The electrical conductivity of ground water in Damoh district ranges between 417 to 2370 μ S/cm at 25°C. In most parts of the district the EC is less than 1500 μ S/cm 25°C. The EC of less than 750 μ S/cm 25°C is observed in northern part and in south. In north EC values of less than 750 μ S/cm 25°C are observed in an considerable area comprising Hatta, major parts of Batiagarh and adjoining areas of Patera and Damoh blocks, whereas, in south EC of less than 750 μ S/cm 25°C is observed in major part of Jabera and eastern half of Tendukheda blocks. EC of more than 1500 μ S/cm 25°C is observed in two small isolated patches in central part. The EC value less than 750 μ S/cm 25°C was recorded at 10 locations constituting about 60%, and at 7 locations i.e. 40% has recorded between 750 to 3000 μ S/cm 25°C. The highest EC value recorded in Abhana dug well of Damoh district i.e. 2370 μ S/cm at 25°C.

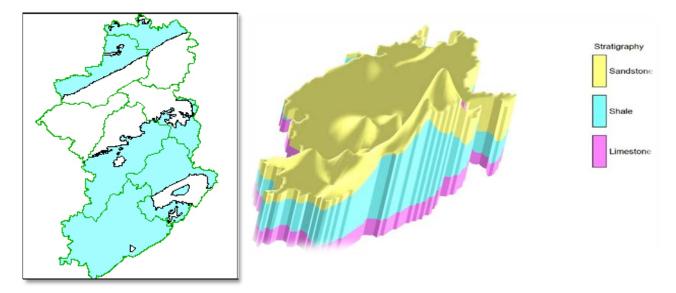
The fluoride concentration ranges between 0.14 to 1.20 mg/l.The fluoride concentration reveals that all the ground water samples of Damoh district are within maximum permissible limit as recommended by BIS i.e. 1.50 mg/l. Maximum concentration of fluoride (1.20 mg/l) recorded at dug well of Bamori.

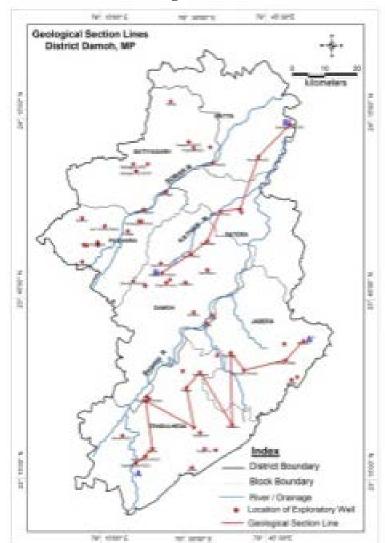
The nitrate concentration in the ground water samples ranges between 7 to 145 mg/l. In major part the concentration of nitrate is within acceptable limit recommended by BIS i.e 45 mg/l for drinking purpose, the concentration of nitrate beyond permissible limit was observed mainly in Damoh and Patharia blocks. The nitrate concentration within permissible limits (<45 mg/l) was recorded at 14 samples, whereas, at 3 locations the concentration of nitrate was more than 45 mg/l. The highest concentration of nitrate (145 mg/l) is recorded in ground water of dug well at Abhana.

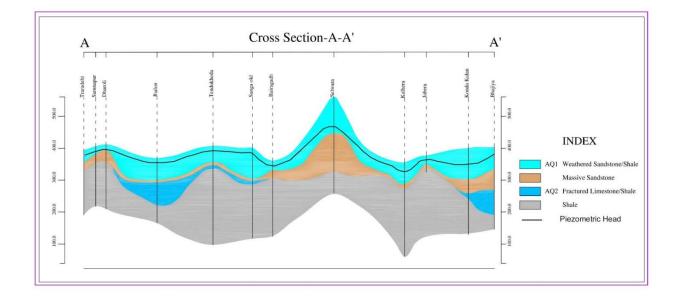

CHAPTER-III DATA INTERPRETATION/PREPARATION OF AQUIFER MAP

3.1 Data Interpretation:

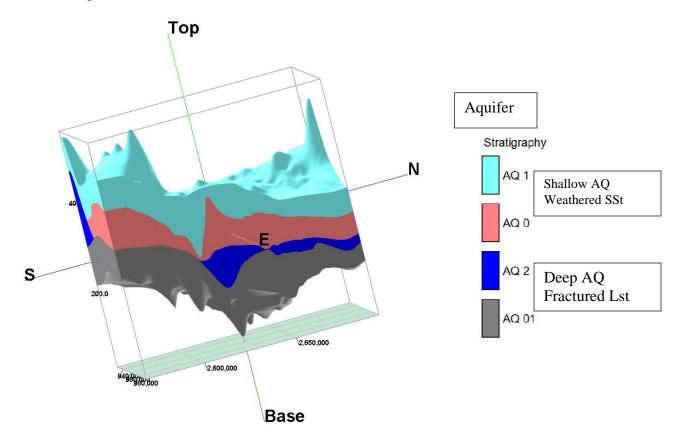
Lithological data collected from CGWB bore wells, Piezometers, State ground water Piezometers etc. were studied and aquifer geometry and properties interpreted . Detail Lithologs of boreholes were studied and compressed datain form of Rockworks data sheet.


3.2 Lithological Model :


Three formations Sirbu shale ,Lower vindhyan sandstone and Limestone


3.2.1 Shale - Lithological Model

3.2.2 Sand stone - Lithological Model



3.3 Lithological Cross section

3.4 Fence Diagram: 3- Disposition of Lithology

3-D interpretation of lithologs reveals that shallower and deeper weathered /fractured Sand stone, Shale and Limestone is separated by red bole and massive basalt in the district. Water levels are observed at different depth of shallower as well as deeper fractured formation. The deeper fracture rechargesfrom the leaky upper formations also.Table No 7.shows that shallow Piezometer/ Dug wells and deeper Piezometer water level.

						Post
Sr.No	BLOCK NAME	Location	Longitude	latitude	PRE 2015	2015
1	DAMOH	Piparia Champat	79.404444	23.955	4.35	1.8
2	JABERA	Jabera1	79.701389	23.5375	14.25	1.3
3	PATERA	Patera2	79.688611	23.99722	1.5	2.35
4	JABERA	Tejgarh	79.546389	23.575	8.25	11.44
5	BATIAGARH	*Batiagarh(S)	79.358889	24.10667	17.04	2.23
6	BATIAGARH	Batiagarh1	79.353056	24.11056	11.05	9.55
7	DAMOH	Abhana	79.536667	23.705	3.01	5.45
8	DAMOH	Damoh(D)	79.436667	23.82278	1.93	0.15
9	DAMOH	Damoh2	79.436111	23.82833	3.05	3.01
10	DAMOH	Hindoria	79.566667	23.89722	8.3	7.25
11	DAMOH	Palar	79.469444	23.92917	8.5	4.03
12	DAMOH	Piparia Champat	79.404444	23.955	3.61	5.21
13	ΗΑΤΤΑ	Gaisabad	79.826944	24.25556	5.15	15.43
14	ΗΑΤΤΑ	Hardua	79.670833	24.175	8.4	1.19
15	HATTA	Hatta(D)	79.593056	24.12972	11.37	4.22
16	JABERA	Bamhori	79.718889	23.7	2.4	0.87
17	JABERA	Jabera(D)	79.686667	23.56389	23.46	2.84
18	JABERA	Jabera1	79.701389	23.5375	14.32	20.18
19	JABERA	Khamaria	79.559167	23.65	3.42	40.43
20	JABERA	Nohta	79.573611	23.67833	3.25	10.25
21	JABERA	Tejgarh	79.546389	23.575	8.25	3.12
22	PATERA	Bangaon	79.5175	24.00556	5.58	4.9
23	PATERA	Kumhari	79.815	23.92556	4.9	3.17
24	PATERA	Majhgawa	79.639722	24.06556	10.1	2.37
25	PATERA	Patera(D)	79.678333	23.99139	6.5	3.53
26	PATERA	Patera2	79.688611	23.99722	1.65	3.09
27	PATERA	Bangaon New	79.516944	24.00667	7.37	3.5
28	PATHARIA	Pathria	79.195833	23.89472	15	2.57
29	TENDUKHEDA	Dhangor	79.477222	23.37667	6.75	0.92
30	TENDUKHEDA	Samnapur	79.386111	23.3125	1.52	4.76
31	TENDUKHEDA	Taradehi(D)	79.357222	23.29306	20.05	10.12
32	TENDUKHEDA	Tendukheda(D)	79.534167	23.39306	49.4	40.5
33	TENDUKHEDA	Tendukheda2	79.538889	23.39639	5.95	3.25

Table No 7. Shallow Piezometer (S)/ Dug wells and Deeper Piezometer (D) water level.

CHAPTER-IV GROUND WATER RESOURCES

4.1 Dynamic Ground Water Resource & Draft :

The dynamic ground water resources of the Madhya Pradesh State assessed jointly by the CGWB and State Ground Water Departments under the supervision of the State level Committees. The base year of computation of the resources is 2012-13.

The dynamic ground water resources are also known as Annual Replenishable Ground Water Resources since it gets replenished/ recharged every year. The Annual Replenishable Ground Water Resource for the DamohDistrict has been assessed as 78407.46ham. The major source of ground water recharge is the monsoon rainfall. Block - wise Ground Water Resources of DamohDistrict as on March, 2013 is given in Table No 8 and the presents the over-all scenario of ground water resource utilization and availability of the District. The contribution from other sources such as canal seepage , return flow from irrigation, seepage from water bodies etc in Annual Replenishable Ground Water Resource is more than of 33% in the states.

The assessment of ground water draft is carried out based on the Minor Irrigation Census data and sample surveys carried out by the State Ground Water Departments. The Annual Ground Water Draft of the entire district for 2012-13 has been estimated as 50149.58ham. Agriculture sector remained the predominant consumer of ground water resources. About 90% of total annual ground water draft i.e. 45546.8 ham is for irrigation use. Only 4602.78 ham is for Domestic & Industrial use which is about 10% of the total draft. An analysis of ground water draft figures indicates that in the district 63.96 % is stage of ground water development.

The status of ground water development is high in the two blocks i.e Hatta and Pathariya where the Stage of Ground Water Development is more than 80 %, which implies that in the block the annual ground water consumption is more .The stage of ground water development is 80% and above. In rest of the block the stage of ground water development is below 70%. The ground water development activities have increased generally in the areas where future scope for ground water development existed. This has resulted in increase in stage of ground water development . List of categorization of Blocks / Districts is given in Table No 8

Table No 8. Dyr	Fable No 8. Dynamic Ground Water Resource -2013, Damoh District (Zone of Fluctuation) (MCM)													
Assessment Unit / Block	Command / Non Command	Net Ground Water Availability in Ham	Existing Gross Ground Water Draft for Irrigation in Ham	Existing Gross Ground Water Draft for Domestic & Industrial Water Supply in Ham	Existing Gross Ground Water Draft for All Uses in Ham	Allocation For Domestic & Industrial Water Supply in Ham	Net Ground Water Availability for Future Irrigation Development in Ham	Stage of Ground Water Development in %	Category					
Batiyagarh	Non Command	5441.1	4035.42	309.9	4345.32	474	931.68	79.86	Safe					
	Block Total	5441.1	4035.42	309.9	4345.32	474	931.68	79.86						
Damoh	Command	1466.42	173.21	36.16	209.37	45	1248.21	14.28	safe					
	Non Command	6218.12	3701.7	411.17	4112.87	545.51	1970.91	66.14	Safe					
	Block Total	7684.54	3874.91	447.33	4322.24	590.51	3219.12	56.25						
Hatta	Non Command	3819.24	2794.66	273.28	3067.94	276	748.58	80.33	Semi critical					
	Block Total	3819.24	2794.66	273.28	3067.94	276	748.58	80.33						
Jabera	Command	2686.7	206.77	152.77	359.54	238.07	2241.86	13.38	Safe					
	Non Command	3916.41	2163.62	198.73	2362.35	339.93	1412.86	60.32	Safe					
	Block Total	6603.11	2370.39	351.5	2721.89	578	3654.72	41.22						
Patera	Command	204.24	38.02	37.48	75.5	59.9	106.32	36.97	Safe					
	Non Command	3805.74	1527.23	239.15	1766.38	389.1	1889.41	46.41	Safe					
	Block Total	4009.98	1565.25	276.63	1841.88	449	1995.73	45.93						
Patheriva	Non Command	8282.01	6674.66	333.35	7008.01	396	1211.35	84.62	Semi critical					
v	Block Total	8282.01	6674.66	333.35	7008.01	396	1211.35	84.62						
Tendukhera	Command	965.7	196.13	71.93	268.06	114.93	654.64	27.76	Safe					
	Non Command	2398.05	1261.98	237.47	1499.45	376.07	760	62.53	Safe					
	Block Total	3363.75	1458.11	309.4	1767.51	491	1414.64	52.55						
	District Total	39203.73	45546.8	4602.78	25074.14	6509.02	26351.64	63.96	Safe					

	Batiagarh	Damoh	Hatta	Jabera	Patera	Patharia	Tendukheda	Total
Shallow Aquifer								
Dynamic Resources (MCM)	54.411	76.8454	38.1924	66.0311	40.0998	82.8201	33.6375	392.037
In storage (MCM)	29.430	22.923	27.030	28.530	21.378	34.012	30.120	193.422
Total Resources (MCM)	83.841	99.768	65.222	94.561	61.478	116.832	63.758	585.460
Irrigation	15.739	30.714	13.626	14.894	10.185	21.464	10.196	116.819
Domestic+Industries	3.090	4.470	2.730	3.510	2.76	3.330	3.090	22.980
GW Draft (MCM)	18.829	35.184	16.356	18.404	12.945	24.794	13.286	139.799
Deeper Aquifer								
Static Resources (MCM)	33.443	16.980	19.149	19.020	19.907	48.782	14.400	242.056
GW Draft (MCM	24.61536	8.0352	14.3208	8.80956	5.46696	45.28224	4.3848	110.91492
Total GW Resources (MCM)	117.284	116.748	84.371	113.581	81.384	165.614	78.158	827.515
Gross Ground Water Draft (MCM)	43.444	43.219	30.677	27.214	18.412	70.077	17.671	250.714
Stage of Ground Water								
Development (%)	79.84	56.24	80.32	41.21	45.92	84.61	52.53	63.95
	Semi					Semi		
Category	critical	safe	Semi critical	safe	safe	critical	safe	safe

•

Table No 9. Ground Water Resource &Draft (in MCM) -NAQUIM:

4.2 In storage and Static Ground Water Resource & Draft :

Ground Water Resource of Weathered /fractured formation below zone of fluctuation upto 30m depth is **19342.2 ham** and 30-200 m bgl depth is computed **24205.6 ham**.**Total In storage Ground water resources of the district is 43547.8 ham** and draft of bore well /tube well is also calculated separately **13979.9 ham** and **11091.99 ham** given in table no 9.

4.3 Conceptualisation of Aquifer system, DamohDistrict

3-D Model Conceptual Model

II - (Deeper	aquifer -	Fractured	30-200 1	m.bgl)
II (Deeper	aquitor	I I actui tu	00 -00 -	

	K
First Aquifer	Total
Dynamic Resources (MCM)	392.037
In storage (MCM)	193.422
Total Resources (MCM)	585.460
Irrigation	116.819
Domestic+Industries	22.980
GW Draft (MCM)	139.799

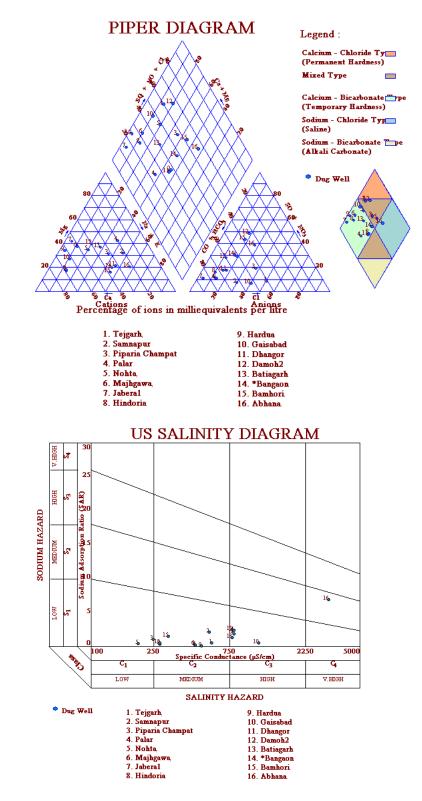
Second Aquifer	Total
Static Resources (MCM)	242.056
GW Draft (MCM	110.91492

Total GW Resources (MCM)	827.515
Gross Ground Water Draft	
(MCM)	250.714
Stage of Ground Water	
Development (%), category.	63.95, safe

CHAPTER-V GROUND WATER RELATED ISSUES

5.1 Ground Water Depletion

In last two decade Damohdistrict has shown growth in Industry as well as in Agriculture sector, resultant is pressure came on ground water utilization, Groundwater is the only source of irrigation in 90 % of the part of Jabera, Patera and Tendukhedablocks, where canal irrigation exists. Farmers solely depend on groundwater for irrigation. Every year number and depth of bore wells are increasing. The yield of the dug wells in shallow aquifer (0-30 mbgl) is reduced due to over development of deep fractured aquifer by bore wells. The phreatic aquifer is recharged during monsoon and the dug wells sustains for 3 to 4 months only The dug wells sustain only for 2 to 3 hours of pumping with a drawdown of 2 to 5 m. Decline in groundwater level is observed in last decade is 0.05m in Batiyagarh to maximum 2.26m in Pathariya blockand overall decline in last ten years in Damoh district is about 0.98m. The saturated thickness of the shallow aquifer in pre monsoon is 3.8 to 10 m. and post-monsoon : 1.16 to 12 m. In the year 2012-13, Ground water resource of District was computed and data reveals that Damoh. Jabera. Patera & Tendukhedablocks having stage of ground water development, 66.14%, 41.22%, 45.93%, 64.62, & 52.55%, respectively and they were categorized safe . In three blocks Batiyagarh , Hatta &Pathariya having stage of ground water development79.86%, 80.33% & 84.22% respectively and they were categorizedSemi Critical.


5.2 Ground Water Quality :

The water samples were collected from National Hydrograph Stations 16 different locations of Damoh district during May 2015

The pH of ground water of Damoh district ranged in between 7.50 to 9.08. As per BIS recommendation, all water samples recorded within the permissible limit of 6.5 to 8.5. In the Damoh district, pH has been observed more than 8.5 in the dug well of Bamori (8.58), Samnapur (9.00) and Piparia Champat (9.08). The ground water of the study area can be assessed as neutral to slightly alkaline in nature. The electrical conductivity of ground water in Damoh districtranged between 200 to 3160 μ S/cm at 25°C. The EC values more than the 3000 μ S/cm 25°C were recorded only at Abhana i.e. 3160 μ S/cm at 25°C. The electrical conductivity shows that the ground water in Damoh districtis good to slightly saline in nature.

The fluoride concentration in Damoh districtranged in between 0.28 to 0.89 mg/l. The BIS has set the maximum concentration of fluoride in drinking water is 1.5 mg/l as permissible limit. In the district has not been observed fluoride concentration more than 1.5 mg/l and the maximum concentration of fluoride has been recorded in the dug well of Damoh i.e. 0.89 mg/l.In the district, nitrate concentration in ground water ranged in between 10 to 154 mg/l.The 81% ground water recorded nitrate concentration within the acceptable limit of 45 mg/l and 19% water samples recorded more than 45 mg/l as BIS recommendation.The highest concentration of nitrate has been detected in ground water of Abhana (154 mg/l), Bangaon (54 mg/l) and Palar (47 mg/l). High nitrate in ground water appears may be due to anthropogenic activities or excessive use of fertilizers etc.Total hardness of ground water in the study area ranged in between 80 to 675 mg/l. The maximum concentration has been observed in the dug well of Abhana (675 mg/l).

In the district water is Mixed type, Sodium Chloride (saline), Calcium Bi-carbonate (temporary hardness) types of water. The US Salinity Diagram of Damoh districtshows the ground water is low to high salinity classes i.e. C_1S_1 , C_2S_1 , C_3S_1 , and C_4S_2 . C_3 and C_4 classes of water should not be used for irrigation purpose unless proper soil management.

CHAPTER-VI GROUND WATER MANAGEMENT STRATEGIES

6.1 District Ground Water Management Plan

The demand of fresh water for agriculture, drinking and industrial uses etc. has significantly increased due to population growth and socio-economic development. As surface water resources in the district are in-adequate, the dependability on ground water resources has increased substantially. This has resulted in rapid exploitation of ground water resources vis a vis depletion of ground water levels in various parts of the State.

The **District Damoh** is one of the under stress, rapid exploitation of ground water resources in the district, ground water resources in the area are under continuous depletion. Thus there is urgent need for taking up suitable water management interventions based on integrated approach, which on one hand includes augmentation of ground water resources through appropriate techniques, and on the other hand requires the adoption of suitable water conservation measures, such as ensuring water use efficiency through creation of additional water storage facility, maintenance/ renovation of existing water bodies etc. Water awareness and capacity building of the stakeholders are also the important attributes of water management interventions as envisaged in the National Water Policy.

Artificial recharge to ground water is one of the most efficient, scientifically proven and cost effective technology to mitigate the problems of over exploitation of ground water resources. The technology serves as a means for restoring the depleted ground water storage, ameliorate the ground water quality problems and also enhance the sustainability of wells in the affected areas. A detailed knowledge of geology, hydrogeology, land use pattern, geomorphology and hydro-meteorological features are however, essential for selection of appropriate artificial recharge techniques as well as design and sites of ground water recharge structures.

As per directions of Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India, preparation of Aquifer Management Plan for Damohdistrict in the State has been prepared block wise as shown in Table no12 and financial out lay plan is also shown in Table No13. Each Plan discusses the broad framework of ground water situation in the block, status of water availability (both surface and ground water), identification of feasible areas for

interventions, feasibility of artificial recharge and other water conservation structures, their design considerations, numbers and cost estimates. The expected outcomes of the proposed interventions have also been elucidated and given in table no 17. As Damohdistrict having **Stage Of Development 62.96%** after implementation of proposed intervention **Stage Of Development willbe 41.84%**.

Assessment	Net Ground Water Availability	Existing Gross Ground Water Draft for Irrigation	Existing Gross Ground Water Draft for Domestic & Industrial Water Supply in	Existing Gross Ground Water Draft for All Uses in	Stage of Ground Water Development	
Unit / Block	in MCM	in MCM	MCM	MCM	in %	Category
Batiyagarh	54.41	40.35	3.10	43.45	79.86	Safe
Damoh	76.84	38.74	4.47	43.22	56.25	Safe
Hatta	38.19	27.94	2.73	30.67	80.33	Semi- Critical
Jabera	66.03	23.70	3.52	27.21	41.22	Safe
Patera	40.09	15.65	2.77	18.41	45.93	Safe
Patheriya	82.82	66.74	3.33	70.08	84.62	Semi- Critical
Tendukhera	33.63	14.58	3.09	17.67	52.55	Safe
District Total	392.03	227.73	23.01	250.74	62.96	Safe

Table No 11: Dynamic Ground Water Resource

Block	Rainf all (m)	Area (Sq Km)	Area suitable for recharge (Sq Km)	Avera ge post- mons oon water level (m)	Unsatu rated zone (m)	Average SP Yield (%)	Sub- surface storage (mcm)	Surface water required (mcm)	Surface water (Run- off) available (mcm)	Non- commit ted Run-off (mcm)	Perc olati on tank	Rech arge shaft/ Tube well	NB/ CD/ CP	No of Villages
Batiagarh	1.173	1225	891.82	5.28	2.28	0.015	30.500	40.57	330.75	99.23	41	142	284	177
Damoh	1.173	1304	849	3.841	0.841	0.015	10.710	14.24	352.08	105.62	14	28	100	221
Hatta	1.173	865	491	3.78	0.78	0.015	5.745	7.64	233.55	70.07	8	15	53	57
Jabera	1.173	1262	634	3.35	0.35	0.015	3.329	4.43	340.74	102.22	4	9	31	179
Patera	1.173	723	577	3.49	0.49	0.015	4.241	5.64	195.21	58.56	6	11	39	156
Patharia	1.173	970	903.37	4.28	1.28	0.015	17.345	23.07	261.90	78.57	23	46	161	132
Tendukheda	1.173	957	400	3.44	0.44	0.015	2.64	3.51	258.39	77.52	4	7	25	181
TOTAL		7306	4746.19				74.509	99.10	1972.62	591.79	99	198	693	1103

Table No 12:DamohDistrict , Block Wise Management Plan- NAQUIM(Source Water for Artificial Recharge and number of Recharge Structure)

		Table No15:Financial Outlay Plan											
Block	Area Suitable for AR	Volume of Surface Water available for AR	Volume of Water required for recharge	Proportionate Surface water for planning AR	Percolation Tanks		NB/ CD/ CP		Recharge shaft/ Tube well		Renovation of Village Ponds		Total Cost of RS in crores
	Sq.Km	(MCM)	(MCM)	(MCM)	structure	cost	structure	cost	structure	cost	structure	cost	
					Nos	(crores)	Nos	(crores)	Nos	(crores)	Nos	(crores)	
Batiagarh	891.82	330.75	40.56	99.225	41	8.2	283.95	28.39	142	7.1	177	3.54	47.24
Damoh	849	352.08	14.24	105.624	14	2.8	99.71	9.97	28	1.4	221	4.42	18.59
Hatta	491	233.55	7.640	70.065	8	1.6	53.48	5.34	15	0.75	57	1.14	8.84
Jabera	634	340.74	4.42	102.222	4	0.8	30.98	3.09	9	0.45	179	3.58	7.93
Patera	577	195.21	5.64	58.563	6	1.2	39.48	3.94	11	0.55	156	3.12	8.82
Patharia	903.37	261.9	23.06	78.57	23	4.6	161.47	16.14	46	2.3	132	2.64	25.69
Tendukheda	400	258.39	3.51	77.517	4	0.8	24.57	2.45	7	0.35	181	3.62	7.23
TOTAL	4746.19	1972.62	99.09728	591.786	100	20	693.68	69.36	258	12.9	1103	22.06	124.33

Table No13:Financial Outlay Plan

6.2 Intervention of Technology

6.2.1 The drip irrigation technology

Rising demand for irrigation water amid concerns of growing water scarcity has brought into renewed focus the need for improving water use efficiency and raising crop water productivity. Great emphasis is being made on achieving water conservation through various demand side management interventions encompassing technological options and policy measures. Given the difficulties and political concerns associated with bringing about effective policy reforms to achieve the objective of water conservation, this emphasis has generally focused on technological solutions backed by soft policy interventions to aid and facilitate adoption of technological solutions by farmers.

Micro irrigation technologies such *drip and sprinkler* systems are being increasingly promoted as technological solutions for achieving water conservation. Of the two technologies, drip irrigation, its various forms, has been a relatively more important mode of micro irrigation in India. Enough empirical evidence is available from different parts of the country to suggest that drip technology saves water and is cost effective and has significant economic and social benefits. Drip irrigation saves water and electricity for pumping water, uses less labor and leads to higher crop productivity.

Farmers in India generally practice flood irrigation resulting in low water application and use efficiency. The estimated surface irrigation water use efficiency in India is 35-40%. With deteriorating surface water infrastructure and rapid declines in ground water tables in large parts of the country, and in the face of increasing demand for water from all sectors of the economy, there is a widespread concern for using the available water more efficiently. Micro irrigation systems, comprised of drip and sprinkler technologies, have emerged as an effective tool for water conservation and improving water use efficiency. While drip irrigation is ideally suited for horticulture crops such as pomegranates, grapes, mangoes, bananas, guava, coconuts, *amla*, and cash such sugarcane, being crops as it is used for cultivation of other crops as well. Sprinklers are generally useful in undulating landplanted with cereal crops. Despite substantial efforts in promoting demand side management technologies, in practice, drip and sprinkler technologies have been slow to be accepted by farmers. Of the two, drip irrigation is the more preferred technology.

Drip irrigation is an irrigation method which enables saving water by allowing water to drip slowly to the roots of plants, either on the soil surface or directly into the root zone. Drip irrigation methods range from simple bucket kit systems for small farms to automated systems linking release of water to soil moisture conditions measured continuously by tensio-meters. Drip Irrigation technologies can be categorized into two groups based on their technical, economic and social attributes. These are low cost drip irrigation technologies and pressurisedsystems.Thelowcostdripirrigationtechnologiesincludethe"pepsee³,"easydrip, various kinds of affordable drip irrigation systems designed by IDE, and micro tube drip systems.

Drip Irrigation in India: current status and potential application

It is now possible to use drip and sprinkler irrigation to a wide variety of crops. Various estimates of potential and actual are a under micro irrigation technologies have been made available by different researchers and institutions.

State	Drip	Sprinkler	Total
		Area In Ha	a
Madhya Pradesh	20,432	117,685	138,117

Table No14:Selectedareacovered(in hectares)under micro irrigation in Madhya Pradesh

6.2.2 Sprinkler Irrigation System

To reduce the ground water draft in Damoh district it is proposed that total irrigated Area 184919 ha which is irrigated by ground water, if 50% of this area i.e 92460 ha is to be irrigate by using sprinkler then total ground water save in one year is about 33.87 MCM. The block wise area proposed for irrigation through sprinkles is given in table no15.

Table No 15:Irrigated Area (ha) proposed for irrigation through SprinklerSystem ,Damoh District

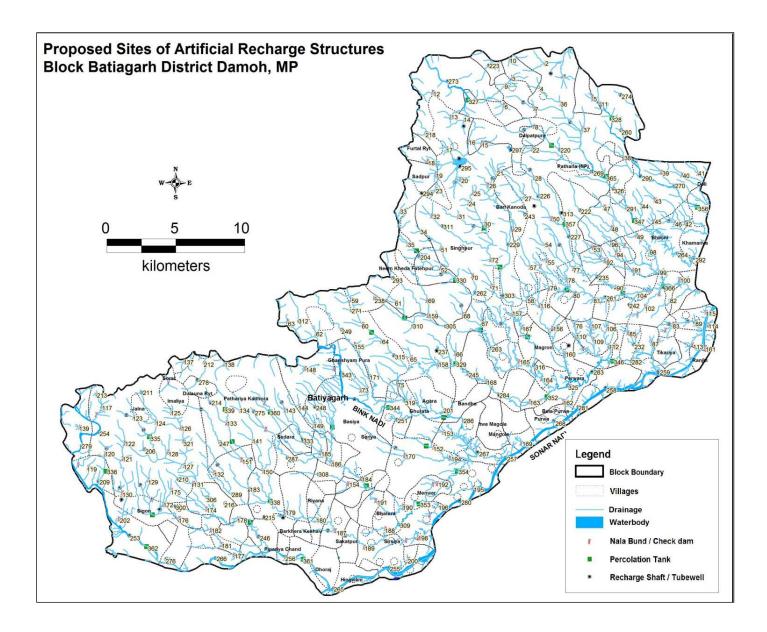
Block	Irrigated Area (ha)	50% Irrigated Area (ha) proposed for irrigation through sprinkler	No. of Sprinklers proposed/ ha	Saving by Sprinkler in MCM
DAMOH	16899	8449.5	25	6.76
PATHARIYA	14635	7317.5	25	5.85
JABERA	8030	4015	25	3.21
TENDUKHERA	7374	3687	25	2.95
BATIYAGARH	21534	10767	25	8.61
HATTA	9833	4916.5	25	3.93
PATERA	6361	3180.5	25	2.54
Total	84666	42333		33.87

Block	Net GW Availabilit y MCM	Gross Draft in MCM	Stage of Develo pment %	Water Saving by sprinkler in mcm @0.08 m	Additional GW created by AR str.in MCM	Net GW Availability after construction AR str. MCM	After intervention of AR Structure & utilization of 60% of additional GW created. in MCM	Draft after sprinkler & additional GW created for agriculture in MCM	Stage of Developm ent(%) after managem ent plan implemen tation	Additional area Irrigated by GW after Intervention in Ha
Batiyagarh	54.41	43.45	79.86	6.76	30.5	84.91	18.3	54.99	64.76	4575
Damoh	76.84	43.22	56.25	5.85	10.71	87.55	6.426	43.796	50.02	1606.5
Hatta	38.19	30.67	80.33	3.21	5.745	43.935	3.447	30.907	70.34	861.75
Jabera	66.03	27.21	41.22	2.95	3.329	69.359	1.9974	26.2574	37.85	499.35
Patera	40.09	18.41	45.93	8.61	4.241	44.331	2.5446	12.3446	27.84	636.15
Patheriya	82.82	70.08	84.62	3.93	17.345	100.165	10.407	76.557	76.43	2601.75
Tendukhera	33.63	17.67	52.55	2.54	2.64	36.27	1.584	16.714	46.08	396
Total	392.01	250.71	62.96	33.87	74.51	466.52	44.706	261.566	56.06	11176.5

Table No 16:DamohDistrict, Management Plan after Intervention

VII CONCLUSIONS AND RECOMMENDATIONS

- Damoh District occupies an area of 7306 Sq.Km and recharge worthy area is 4749sq. km. and the rest is covered by hilly and forest area.
- The major rivers flowing through the area includes the river Ken, Bewas, Sonar and Bamner.
- The major part of the district is covered by Vindhayan sandstones ,Shale and limestone.
- Damoh district comprises of seven blocks, namely Batiyagarh, Damoh, Hatta, Jabera, Patera, Patheriya& Tendukheda.
- The phreatic aquifer is recharged during monsoon and sustains for 3 to 4 months.
- More stress on Groundwater, 93.43 % of irrigation carried out by Ground water and 6.57% of irrigation by surface water.
- Groundwater decline more than 0.20 m/year. More decline in Jabera& Tendukheda Block.
- Isolated pockets of high concentration of Nitrate in parts of Damoh & Hatta Blocks (NO³> 45 mg/l)
- On the basis of the 63 Exploratory borewells drilled by CGWB, NCR under its Exploratory and 5 Exploratory borewells drilled under NAQUIM program, it has been observed that the yield varies from 3-6 m³/hrshallow aquifer and 3 to 20m³/hr in deep aquifer.
- As per the Dynamic Ground Water Resource Assessment Report (2013), the net ground water availability in the district is **392.03**MCM and ground water draft for all uses is 250.75 MCM, resulting the stage of ground water development to be 63.96 % as a whole for district. The Damoh district falls under safe category.
- 2 (semi critical) Hatta & Pathariya out of 7Blocks
- After the interventions suggested in the report, the stage of development is expected to improve by 7.9 % i.e. from 63.96% to 56.06% for the Damoh district.
- As per the Management plan prepared under NAQUIM of all the Block of Damoh District, a total number of 100 Percolation Tanks, 258 Recharge Shafts/Tube wells and 693 Nala Bunds/Check Dams/Cement Plugs have been proposed.
- Financial expenditure is expected to be Rs 124.33 Cores in Damoh District for sustainable development and management of ground water resources.


- The number of artificial recharge structure and financial estimation has been proposed based on the CGWB Master plan 2013. It may be differ from the field condition as well as Changes in dynamic Ground water recourses.
- It is also recommended implementation intervention would be in Two Phases, First Phase should be in those blocks where stage of Development is more than 80 %.

VIII BLOCK WISE MANGEMENT PLAN

8.1 BLOCK BATIAGARH MANGEMENT PLAN

Type of Structure	Number	Cost INR in Crores
Percolation Tanks	41	8.2 (Rs 20 Lakh Per Stucture)
NB/CD/CP	284	28.39 (Rs Five Lakh Per Stucture)
Recharge Shaft/ Tube Wells	142	7.10 (Rs 10 Lakh Per Stucture)
Renovation of Village Ponds	177	3.54 (Rs two Lakh Per Stucture)
Total Cost		47.24

Block	Net	Gross	Stage	Water	Additiona	Net GW	After	Draft	Stage of	Additional
	GW	Draft	of	Saving	1 GW	Availability	intervention	after	Development(area
	Availab		Develo	by	created	after	of AR	sprinkler	%) after	Irrigated
	ility	in MCM	pment	sprinkle	by AR	construction	Structure &	&	management	by GW
			%	r in	str.in	AR str.	utilization	additional	plan	after
	MCM			mcm	MCM	1.601.6	of 60% of	GW	implementatio	Interventio
				@0.08		MCM	additional	created	n	n in Ha
				m			GW	for		
							created. in	agricultur		
							MCM	e in MCM		
Batiyagarh	54.41	43.45	79.86	6.76	30.5	84.91	18.3	54.99	64.76	4575

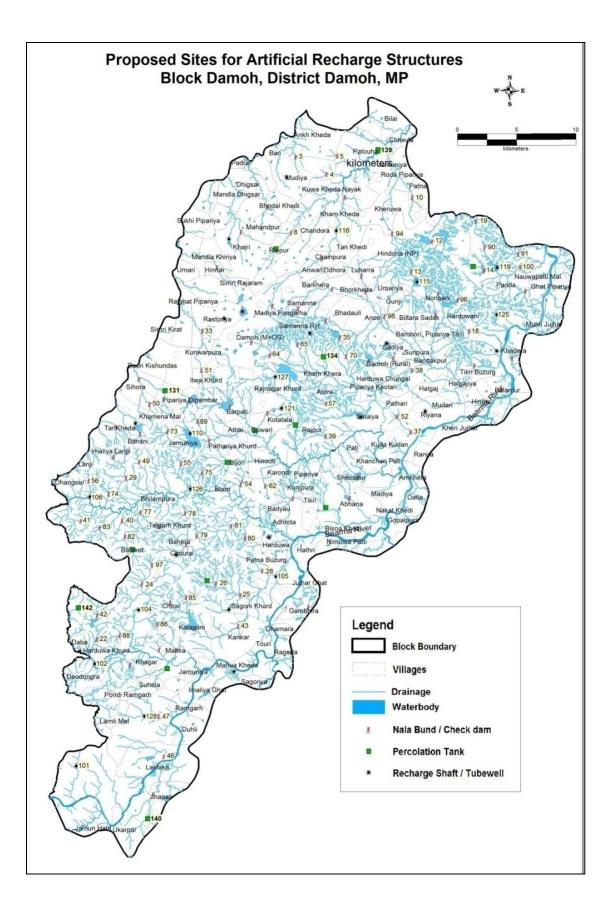
			Sr					
Sr no	Longitude	Latitude	no	Longitude	Latitude	Sr no	Longitude	Latitude
1	79.5053	24.3236	41	79.6023	24.2606	81	79.5274	24.1783
2	79.4932	24.3321	42	79.5934	24.2283	82	79.5828	24.1776
3	79.4693	24.3228	43	79.5715	24.2434	83	79.5845	24.1622
4	79.4896	24.3155	44	79.562	24.2391	84	79.5789	24.1585
5	79.5271	24.309	45	79.5703	24.2291	85	79.5521	24.1567
6	79.4634	24.3049	46	79.5855	24.2284	86	79.5581	24.1552
7	79.4856	24.3027	47	79.5354	24.2386	87	79.5691	24.15
8	79.4854	24.291	48	79.5406	24.2251	88	79.5736	24.1506
9	79.4647	24.3177	49	79.5584	24.2202	89	79.6	24.1638
10	79.468	24.3345	50	79.4975	24.231	90	79.5436	24.1863
11	79.533	24.3054	51	79.4187	24.2115	91	79.5561	24.1974
12	79.4127	24.3132	52	79.4184	24.1989	92	79.5357	24.2035
13	79.4256	24.2971	53	79.5274	24.2121	93	79.5323	24.2058
14	79.4353	24.2953	54	79.4935	24.2139	94	79.5438	24.2086
15	79.4477	24.2802	55	79.4944	24.2036	95	79.5498	24.2135
16	79.4381	24.2811	56	79.4896	24.2	96	79.5405	24.2154
17	79.4226	24.2766	57	79.4824	24.1994	97	79.5614	24.2175
18	79.409	24.2682	58	79.4803	24.1788	98	79.5679	24.2099
19	79.4148	24.2601	59	79.3543	24.1782	99	79.5749	24.1958
20	79.4326	24.2566	60	79.3628	24.162	100	79.5891	24.1915
21	79.4591	24.2615	61	79.3865	24.1764	101	79.5745	24.1821
22	79.4841	24.2763	62	79.3294	24.1558	102	79.5645	24.1737
23	79.4148	24.2501	63	79.3089	24.1639	103	79.5591	24.1689
24	79.4386	24.2413	64	79.3761	24.1512	104	79.5592	24.1819
25	79.4414	24.2478	65	79.3972	24.1406	105	79.5664	24.1847
26	79.4521	24.2529	66	79.4287	24.1435	106	79.5373	24.1602
27	79.4783	24.2452	67	79.448	24.1639	107	79.5253	24.1616
28	79.4853	24.2575	68	79.4346	24.1685	108	79.5255	24.1578
29	79.4705	24.2242	69	79.4084	24.1777	109	79.5277	24.1524
30	79.45	24.228	70	79.441	24.1938	110	79.5154	24.1551
31	79.4312	24.2322	71	79.4545	24.1871	111	79.5202	24.1464
32	79.412	24.2327	72	79.4539	24.2044	112	79.5383	24.1484
33	79.3899	24.2358	73	79.3612	24.1194	113	79.5981	24.149
34	79.4046	24.2227	74	79.3661	24.12	114	79.6096	24.1618
35	79.3949	24.2143	75	79.3872	24.1242	115	79.608	24.1702
36	79.5044	24.306	76	79.5141	24.1619	116	79.4887	24.1745
37	79.5197	24.2897	77	79.5133	24.1986	117	79.1761	24.1092
38	79.5493	24.2706	78	79.5084	24.191	118	79.1723	24.1034
39	79.5763	24.2611	79	79.4958	24.1857	119	79.1664	24.0688
40	79.5907	24.2595	80	79.5132	24.1812	120	79.1784	24.0778

(i) Nala bund

			Sr		
Sr no	Longitude	Latitude	no	Longitude	Latitude
121	79.191	24.0749	161	79.6076	24.1473
121	79.1923	24.0849	162	79.5061	24.1173
122	79.1925	24.1019	163	79.482	24.1119
123	79.215	24.0985	164	79.4905	24.1268
124	79.215	24.1046	165	79.4741	24.1200
125	79.2327	24.0948	166	79.4676	24.1386
127	79.2351	24.0703	167	79.4769	24.1604
128	79.2237	24.0791	168	79.4512	24.125
120	79.2094	24.0609	169	79.4758	24.0849
130	79.1907	24.0526	170	79.3926	24.0767
131	79.2416	24.0588	171	79.3673	24.1283
132	79.2566	24.0655	172	79.2198	24.0448
132	79.2653	24.0981	173	79.2138	24.0482
134	79.2755	24.1062	174	79.2511	24.0402
135	79.2925	24.1002	175	79.2258	24.0543
136	79.2236	24.1242	176	79.2315	24.0359
137	79.2347	24.1382	177	79.2706	24.012
138	79.2637	24.1363	178	79.2736	24.0356
139	79.1606	24.0952	179	79.3069	24.0402
140	79.1592	24.0707	180	79.3298	24.035
141	79.2844	24.0864	181	79.262	24.0188
142	79.2933	24.094	182	79.254	24.0282
143	79.3072	24.1064	183	79.2814	24.0549
144	79.3171	24.109	184	79.3615	24.0617
145	79.3264	24.1143	185	79.3322	24.0785
146	79.3398	24.1147	186	79.3409	24.072
140	79.3421	24.1334	187	79.3429	24.0279
148	79.3217	24.1334	188	79.3788	24.0275
149	79.3278	24.0965	189	79.3637	24.0172
150	79.2919	24.0666	190	79.3916	24.0439
151	79.2762	24.0741	191	79.372	24.0475
151	79.4133	24.0822	192	79.4159	24.0586
153	79.4205	24.0921	193	79.4128	24.0581
154	79.3521	24.0585	194	79.4248	24.0751
155	79.357	24.1491	195	79.4414	24.0558
156	79.4981	24.1596	196	79.4165	24.0445
157	79.4699	24.1693	197	79.4106	24.0383
158	79.4166	24.1362	198	79.402	24.0234
159	79.4093	24.1679	199	79.3936	24.0216
160	79.507	24.1431	200	79.3953	24.0093
100			201	79.4206	24.1062
			202	79.1883	24.0355

	charge shaft	1						
Sr	Longitudo	Latituda	C = = = =	Longitudo	Latituda	C = = = =	Longitudo	Latituda
no	Longitude	Latitude	Sr no	Longitude	Latitude	Sr no	Longitude	Latitude
203	79.4775	24.3066	243	79.4791	24.2334	284	79.4603	24.116
204	79.4031	24.2064	244	79.4854	24.239	285	79.3569	24.1135
205	79.218	24.0416	245	79.4385	24.1297	286	79.4351	24.0996
206	79.2069	24.0809	246	79.2883	24.024	287	79.3092	24.0753
207	79.1797	24.0815	247	79.2608	24.0854	288	79.3049	24.1114
208	79.1893	24.0558	248	79.3287	24.1085	289	79.27	24.0518
209	79.174	24.06	249	79.348	24.1586	290	79.5613	24.2584
210	79.231	24.0614	250	79.3861	24.0818	291	79.5518	24.238
211	79.2049	24.1177	251	79.3874	24.1	292	79.5994	24.2054
212	79.2499	24.137	252	79.3462	24.1369	293	79.3845	24.1922
213	79.1733	24.116	253	79.1962	24.0246	294	79.4053	24.2475
214	79.2543	24.1111	254	79.1746	24.0921	295	79.4324	24.265
215	79.2927	24.0368	255	79.3821	24.0038	296	79.4317	24.2702
216	79.2646	24.0457	256	79.3078	24.0108	297	79.4691	24.2757
217	79.3059	24.0363	257	79.4649	24.0751	298	79.435	24.2912
218	79.4083	24.2866	258	79.5364	24.1208	299	79.4972	24.3253
219	79.4782	24.2888	259	79.5739	24.131	300	79.2294	24.0435
220	79.5038	24.2759	260	79.5477	24.2885	301	79.1905	24.0481
221	79.4824	24.2628	261	79.5363	24.1797	302	79.2062	24.0934
222	79.5185	24.2364	262	79.4433	24.1828	303	79.463	24.1809
223	79.4531	24.3306	263	79.4552	24.1467	304	79.511	24.2936
224	79.4557	24.2572	264	79.5882	24.2081	305	79.4223	24.1608
225	79.4105	24.2174	265	79.3423	23.9901	306	79.2519	24.0494
226	79.4884	24.2455	266	79.2579	24.01	307	79.1939	24.1031
227	79.5102	24.2193	267	79.445	24.0787	308	79.3313	24.0645
228	79.4286	24.2545	268	79.4994	24.0993	309	79.3898	24.0315
229	79.4669	24.2141	269	79.5273	24.2616	310	79.399	24.1612
230	79.4421	24.2262	270	79.5857	24.2523	311	79.4201	24.2261
231	79.5814	24.2294	271	79.3552	24.1711	312	79.3173	24.1642
232	79.5565	24.1491	272	79.3504	24.0247	313	79.5049	24.2346
233	79.5816	24.1624	273	79.4237	24.3203	314	79.4332	24.1744
234	79.5951	24.1641	274	79.5472	24.3115	315	79.3851	24.1419
235	79.5308	24.193	275	79.2851	24.1054	316	79.4852	24.1355
236	79.4189	24.1947	276	79.2225	24.0093	317	79.5035	24.2139
237	79.4157	24.1449	277	79.2473	24.1068	318	79.4616	24.1626
238	79.3717	24.1788	278	79.2447	24.1258	319	79.3932	24.1122
239	79.5101	24.1483	279	79.1621	24.0829	320	79.2037	24.0576
240	79.5216	24.1547	280	79.432	24.0474	321	79.2352	24.0856
241	79.544	24.1482	281	79.517	24.1084	322	79.259	24.0708
242	79.5536	24.1748	282	79.5556	24.1386	323	79.2829	24.0743
			283	79.5267	24.1312	324	79.3379	24.0279
						325	79.5094	24.1224
						326	79.5421	24.2502

(ii) Recharge shaft


(iii) Percolation tank

	Latitude				
	24.3082				
	24.2963				
79.4293	24.1365				
79.4291	24.1909				
79.4471	24.1586				
79.341	24.0954				
79.3208	24.0867				
79.2695	24.0859				
79.2104	24.0891				
79.1792	24.0667				
79.2124	24.0383				
79.2966	24.0472				
79.2644	24.1068				
79.2822	24.0334				
79.4081	24.083				
79.369	24.157				
79.3474	24.1298				
79.3813	24.1081				
79.4206	24.1016				
79.5416	24.1382				
79.5569	24.2297				
79.4608	24.1995				
79.4013	24.2101				
79.4496	24.2249				
79.4977	24.2787				
79.4944	24.115				
79.4031	24.0454				
79.4302	24.0666				
79.5487	24.1825				
79.602	24.2385				
79.5073	24.2272				
79.3928	24.1663				
79.4806	24.1541				
79.2966	24.1051				
79.3202	24.0094				
79.2083	24.0175				
79.3654	24.0572				
79.5088	24.1847				
79.5364	24.2584				
	24.187				
	79.4291 79.3411 79.3208 79.3208 79.2695 79.2104 79.2104 79.2104 79.2104 79.2104 79.2695 79.2104 79.2696 79.2966 79.2964 79.2822 79.4081 79.369 79.3474 79.3813 79.4066 79.5569 79.4003 79.4008 79.4013 79.4031 79.4031 79.4031 79.4031 79.4031 79.4031 79.4031 79.4031 79.4032 79.5073 79.5073 79.3928 79.4806 79.2966 79.3022 79.3023 79.3024 79.3054 79.3054				

8.2 BLOCK DAMOH

Type of Structure	Number	Cost INR in Crores		
Percolation Tanks	14	2.8 (Rs 20 Lakh Per Stucture)		
NB/CD/CP	99	9.97 (Rs Five Lakh Per Stucture)		
Recharge Shaft/ Tube Wells	28	1.4 (Rs 10 Lakh Per Stucture)		
Renovation of Village Ponds	221	4.42 (Rs two Lakh Per Stucture)		
Total Cost		18.59		

Block	Net GW Availabi lity MCM	Gross Draft in MCM	Stage of Developm ent %	Water Saving by sprinkle r in mcm @0.08 m	Addition al GW created by AR str.in MCM	Net GW Availability after constructio n AR str. MCM	After interventio n of AR Structure & utilization of 60% of additional GW created. in MCM	Draft after sprinkler & additional GW created for agricultur e in MCM	Stage of Development(%) after management plan implementati on	Additional area Irrigated by GW after Interventi on in Ha
Damo h	76.84	43.22	56.25	5.85	10.71	87.55	6.426	43.8	50.02	1607

(i) Nala bund / Check dam

Sr no	Longitude	Latitude	Sr no	Longitude	Latitude	Sr no	Longitude	Latitude
	Longitude			-			-	
1	79.445	23.911	41	79.3112	23.6902	81	79.4364	23.6862
3	79.467	23.93	42 43	79.3249	23.6182	82	79.3481	23.6784
	79.4905	23.9682		79.4419	23.6097	83	79.3273	23.6852
4	79.5163	23.955	44	79.5002	23.6241	84	79.3854	23.6277
5	79.5251	23.9689	45	79.3707	23.4813	85	79.3988	23.6319
6 7	79.512	23.8903	46	79.3798	23.5103	86	79.3748	23.6116
	79.5314	23.9374	47	79.3756	23.541	87	79.3761	23.5916
8	79.4867	23.9103	48	79.3404	23.7621	88	79.3434	23.6026
9	79.4249	23.884	49	79.3601	23.7355	89	79.4087	23.7662
10	79.5872	23.9372	50	79.3687	23.7794	90	79.6473	23.8991
11	79.5206	23.8671	51	79.4119	23.8052	91	79.6751	23.8936
12	79.6036	23.9036	52	79.5743	23.7699	92	79.6064	23.8478
13	79.5863	23.8804	53	79.5422	23.7241	93	79.6698	23.8142
14	79.6465	23.8809	54	79.4443	23.718	94	79.5706	23.9094
15	79.681	23.8656	55	79.3946	23.734	95	79.5451	23.8768
16	79.5485	23.865	56	79.318	23.7208	96	79.6248	23.8586
17	79.6384	23.8083	57	79.5153	23.7799	97	79.3706	23.6566
18	79.6344	23.8351	58	79.4667	23.7726	98	79.564	23.8461
19	79.6403	23.9187	59	79.4874	23.7071	99	79.6088	23.8637
20	79.3902	23.5916	60	79.5347	23.7073	100	79.677	23.8838
21	79.4063	23.6079	61	79.4016	23.782	-		
22	79.3244	23.5996	62	79.4648	23.7167	-		
23	79.352	23.5801	63	79.4535	23.8266	-		
24	79.362	23.6419	64	79.469	23.817	-		
25	79.4436	23.6336	65	79.4918	23.8248	-		
26	79.4235	23.6424	66	79.5152	23.8432			
27	79.3988	23.6723	67	79.4922	23.8523			
28	79.4619	23.652	68	79.5713	23.8144			
29	79.3489	23.7232	69	79.5509	23.8124			
30	79.3597	23.7986	70	79.532	23.8159			
31	79.418	23.7517	71	79.3386	23.7389			
32	79.4355	23.7776	72	79.3607	23.7569			
33	79.4126	23.8348	73	79.3835	23.7585			
34	79.4781	23.8006	74	79.3346	23.711			
35	79.527	23.83	75	79.4122	23.7268			
36	79.471	23.8545	76	79.3766	23.6857			
37	79.5856	23.758	77	79.3611	23.6967			
38	79.5868	23.8049	78	79.3981	23.696			
39	79.5151	23.7548	79	79.4078	23.6787			
40	79.3457	23.6904	80	79.4479	23.6769			

(ii) Recharge Shaft

Sr no	Longitude	Latitude
101	79.3076	23.5029
102	79.3229	23.5809
103	79.4387	23.5751
104	79.3596	23.6222
105	79.4738	23.6476
106	79.3194	23.7088
107	79.4345	23.6224
108	79.468	23.6774
109	79.5443	23.7693
110	79.4028	23.757
111	79.4464	23.8501
112	79.4315	23.8447
113	79.5662	23.8257
114	79.5981	23.7739
115	79.5914	23.8725
116	79.5245	23.9118
117	79.4835	23.9524
118	79.4352	23.9056
119	79.6581	23.8835
120	79.6574	23.8198
121	79.4788	23.7761
122	79.3572	23.7648
123	79.391	23.6642
124	79.5025	23.8333
125	79.6578	23.8475
126	79.403	23.7145
127	79.4735	23.8002
128	79.3643	23.541

(iii) Percolation Tank

Sr no	Longitude	Latitude
129	79.4741	23.8982
130	79.638	23.8846
131	79.3816	23.79
132	79.4333	23.7351
133	79.4901	23.7636
134	79.5135	23.8156
135	79.4164	23.6448
136	79.4565	23.7594
137	79.5149	23.7005
138	79.383	23.5777
139	79.5596	23.9733
140	79.3666	23.4631
141	79.3542	23.6686
142	79.3094	23.624

Type of Structure	Number	Cost INR in Crores		
Percolation Tanks	8	1.6 (Rs 20 Lakh Per Stucture)		
NB/CD/CP	53	5.34 (Rs Five Lakh Per Stucture)		
Recharge Shaft/ Tube Wells	15	0.75 (Rs 10 Lakh Per Stucture)		
Renovation of Village Ponds	57	1.14 (Rs two Lakh Per Stucture)		
Total Cost		8.84		

8.3 BLOCK HATTA

Block	Net GW Availa bility MCM	Gross Draft in MCM	Stage of Develop ment %	Water Saving by sprink ler in mcm @0.08 m	Additio nal GW created by AR str.in MCM	Net GW Availabili ty after constructi on AR str. MCM	After interventi on of AR Structure & utilization of 60% of additional GW created. in MCM	Draft after sprinkle r & addition al GW created for agricult ure in MCM	Stage of Developmen t(%) after managemen t plan implementa tion	Additional area Irrigated by GW after Intervention in Ha
Hatta	38.19	30.67	80.33	3.21	5.745	43.94	3.447	30.91	70.34	861.8

(i) Nalabund

Sr no	Longitude	Latitude	Sr no	Longitude	Latitude
1	79.4085	24.3798	41	79.6475	24.1686
2	79.4588	24.3461	42	79.6416	24.1528
3	79.4622	24.3717	43	79.6211	24.1377
4	79.4727	24.3601	44	79.605	24.1203
5	79.5117	24.3555	45	79.5884	24.117
6	79.5217	24.3792	46	79.6738	24.1047
7	79.5633	24.4133	47	79.6765	24.1244
8	79.5793	24.4286	48	79.6857	24.1395
9	79.5408	24.3386	49	79.6663	24.0849
10	79.6054	24.3823	50	79.6959	24.3065
11	79.6209	24.3471	51	79.6676	24.3089
12	79.6394	24.3544	52	79.7496	24.2845
13	79.599	24.3432	53	79.6602	24.2556
14	79.5905	24.3314		·	
15	79.5706	24.318			
16	79.5804	24.2857			
17	79.6049	24.2985			
18	79.6429	24.3001			
19	79.6782	24.3612			
20	79.6973	24.3657			
21	79.7298	24.381			
22	79.7556	24.392			
23	79.7403	24.342			
24	79.7386	24.3525			
25	79.8231	24.285			
26	79.8011	24.289			
27	79.7892	24.2734			
28	79.7349	24.1378			
29	79.7027	24.1617			
30	79.7474	24.1867			
31	79.7266	24.1791			
32	79.7785	24.2064			
33	79.7638	24.2373			
34	79.7826	24.2445			
35	79.7946	24.2443			
36	79.7267	24.2493			
37	79.7104	24.2173			
38	79.6839	24.2006			
39	79.6678	24.1899			
40	79.6533	24.1765			

(ii)Recharge shaft

Sr no	Longitude	Latitude
54	79.422	24.3465
55	79.4831	24.3696
56	79.6076	24.3726
57	79.6592	24.3627
58	79.7542	24.3976
59	79.5981	24.2859
60	79.5727	24.3296
61	79.8028	24.2092
62	79.7647	24.2579
63	79.7568	24.349
64	79.659	24.1277
65	79.6717	24.2112
66	79.7016	24.2273
67	79.7359	24.195
68	79.7174	24.1195


(iii) Percolation tank

Sr no	Longitude	Latitude
69	79.4458	24.3562
70	79.523	24.3701
71	79.6151	24.3973
72	79.5662	24.2969
73	79.748	24.3716
74	79.7053	24.2072
75	79.7061	24.0884
76	79.8021	24.3428

8.4 BLOCK JABERA

Type of Structure	Number	Cost INR in Crores
Percolation Tanks	4	0.8 (Rs 20 Lakh Per Stucture)
NB/CD/CP	30	3.09 (Rs Five Lakh Per Stucture)
Recharge Shaft/ Tube Wells	9	0.45 (Rs 10 Lakh Per Stucture)
Renovation of Village Ponds	179	3.58 (Rs two Lakh Per Stucture)
Total Cost		7.93

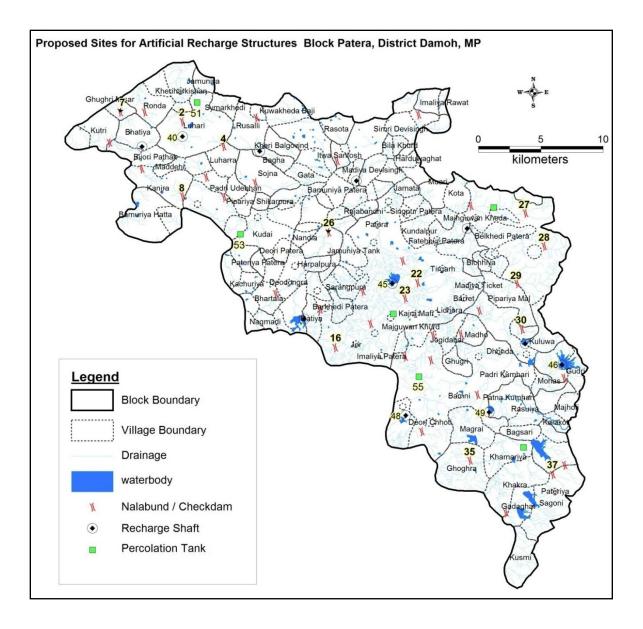
Block	Net	Gross	Stage of	Water	Additio	Net GW	After	Draft	Stage of	Additional area
	GW	Draft	Develop	Saving	nal GW	Availabili	interventi	after	Developmen	Irrigated by GW
	Availa		ment %	by	created	ty after	on of AR	sprinkle	t(%) after	after Intervention
	bility	in		sprink	by AR	constructi	Structure	r &	managemen	in Ha
		MCM		ler in	str.in	on AR str.	&	addition	t plan	
	MCM			mcm	MCM		utilization	al GW	implementa	
				@0.08		MCM	of 60% of	created	tion	
				m			additional	for		
							GW	agricult		
							created.	ure in		
							in MCM	MCM		
Jabera										
Jabela	66.03	27.21	41.22	2.95	3.329	69.36	1.997	26.26	37.85	499.4

(i)Nala bund

(i)Nala bund								
Longitude	Latitude							
79.7287	23.8077							
79.7125	23.7402							
79.6862	23.7635							
79.6181	23.7257							
79.5261	23.6382							
79.5558	23.6225							
79.6418	23.5887							
79.7268	23.6311							
79.7824	23.6623							
79.7795	23.7265							
79.647	23.6951							
79.91	23.6707							
79.8472	23.6454							
79.9214	23.6198							
79.8707	23.5697							
79.7872	23.5733							
79.7924	23.6249							
79.6814	23.6017							
79.6363	23.5336							
79.6215	23.5065							
79.5984	23.4816							
79.6977	23.4691							
79.7334	23.4905							
79.7593	23.4777							
79.6548	23.6331							
79.7122	23.785							
79.9237	23.6468							
79.7343	23.4426							
79.7316	23.5468							
79.8015	23.6918							
	Longitude 79.7287 79.7125 79.6862 79.6181 79.5261 79.5558 79.6418 79.7268 79.7824 79.7824 79.7795 79.647 79.91 79.8472 79.9214 79.8472 79.9214 79.8707 79.7872 79.7924 79.6814 79.6363 79.6363 79.6363 79.6215 79.5984 79.6363 79.6215 79.5984 79.7924 79.7934 79.7593 79.7593 79.6548 79.7122 79.7343 79.7343 79.7343							

(ii) Recharge shaft

Sr no	Longitude	Latitude
31	79.75	23.7881
32	79.6878	23.8019
33	79.6827	23.6815
34	79.5734	23.6572
35	79.6833	23.5319
36	79.8173	23.6146
37	79.8863	23.6374
38	79.7562	23.6902
39	79.8171	23.542

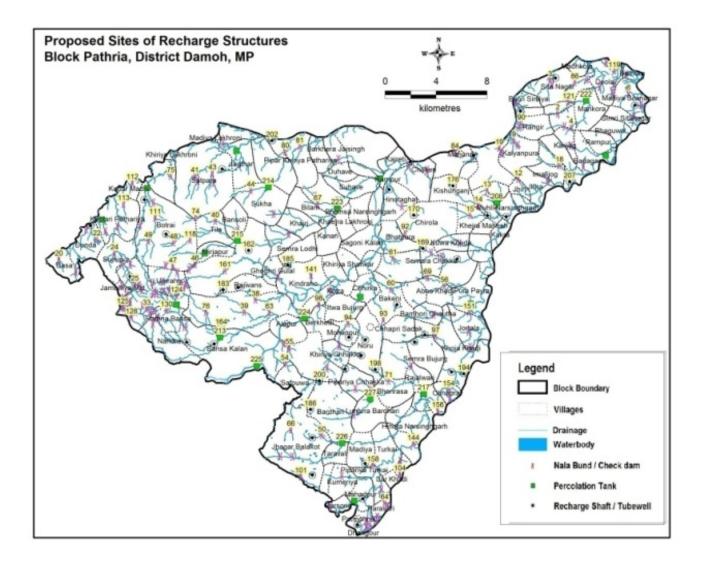

(iii)Percolation tank

Sr no	Longitude	Latitude
40	79.6504	23.4889
41	79.6698	23.7451
42	79.7916	23.5517
43	79.7455	23.6628

8.5 BLOCK PATERA

Type of Structure	Number	Cost INR in Crores
Percolation Tanks	23	4.6 (Rs 20 Lakh Per Stucture)
NB/CD/CP	161	16.14 (Rs Five Lakh Per Stucture)
Recharge Shaft/ Tube Wells	46	2.3 (Rs 10 Lakh Per Stucture)
Renovation of Village Ponds	132	2.64 (Rs two Lakh Per Stucture)
Total Cost		25.69

		r			1				I	
Block	Net	Gross	Stage of	Water	Additio	Net GW	After	Draft	Stage of	Additional area
	GW	Draft	Develop	Saving	nal GW	Availability	intervention	after	Developm	Irrigated by GW
	Avail		ment %	by	created	after	of AR	sprinkler	ent(%)	after
	abilit	in		sprink	by AR	construction	Structure &	&	after	Intervention in
	У	MCM		ler in	str.in	AR str.	utilization of	additional	managem	На
				mcm	MCM		60% of	GW	ent plan	
	MC			@0.08		MCM	additional	created	implemen	
	Μ			m			GW created.	for	tation	
							in MCM	agricultur		
								e in		
								MCM		
Patharia	82.82	70.08	84.62	3.93	17.35	100.2	10.41	76.56	76.43	2602
	02.02	70.00	34.02	3.33	17.55	100.2	10.41	70.50	70.43	2002



) NalaBu	nd / Checkdam	(ii) Recharge Shaft				
Sr No	Longitude	Latitude	Sr No	Longitude	Latitude	
1	79.5221	24.0829	40	79.5519	24.0651	
2	79.5518	24.076	41	79.52	24.0577	
3	79.61	24.0789	42	79.6129	24.0544	
4	79.5844	24.0579	43	79.689	24.0331	
5	79.5196	24.0417	44	79.6479	23.933	
6	79.4944	24.0606	45	79.7174	23.9588	
7	79.5027	24.0829	46	79.8512	23.8998	
8	79.5519	24.022	47	79.8222	23.9151	
9	79.5705	24.0358	48	79.7281	23.8631	
10	79.5847	24.0212	49	79.7937	23.8654	
11	79.6092	24.0317	50	79.7763	23.9985	
12	79.6736	24.0473				
13	79.6254	23.9514	(iii) Po	ercolation Tank		
14	79.6601	23.9399	Sr No	Longitude	Latitude	
15	79.7254	23.9751	51	79.5634	24.0901	
16	79.6722	23.9124	52	79.7181	23.9368	
17	79.7273	23.9056	53	79.5975	23.9947	
18	79.7476	23.9034	54	79.7972	24.0139	
19	79.7494	23.9215	55	79.7383	23.8915	
20	79.7859	23.9391	56	79.8207	23.8404	
21	79.7714	23.9221				
22	79.7372	23.9593				
23	79.7273	23.9481				
24	79.7	23.9297				
25	79.6939	23.9532				
26	79.6816	23.9649				
27	79.8223	24.0098				
28	79.837	23.9858				
29	79.8156	23.9587				
30	79.8195	23.9256				
31	79.7791	24.015				
32	79.738	24.0809				
33	79.7843	23.8782				
34	79.7405	23.8515				
35	79.7785	23.8304				
36	79.8069	23.7929				
37	79.8439	23.8205				
38	79.8532	23.8272				
39	79.8527	23.8906				

8.6 LOCK PATHARIA

Type of Structure	Number	Cost INR in Crores
Percolation Tanks	23	4.6 (Rs 20 Lakh Per Stucture)
NB/CD/CP	161	16.14 (Rs Five Lakh Per Stucture)
Recharge Shaft/ Tube Wells	46	2.3 (Rs 10 Lakh Per Stucture)
Renovation of Village Ponds	132	2.64 (Rs two Lakh Per Stucture)
Total Cost		25.69

Block	Net GW Avail abilit y MC M	Gross Draft in MCM	Stage of Develop ment %	Water Saving by sprink ler in mcm @0.08 m	Additio nal GW created by AR str.in MCM	Net GW Availability after construction AR str. MCM	After intervention of AR Structure & utilization of 60% of additional GW created. in MCM	Draft after sprinkler & additional GW created for agricultur e in MCM	Stage of Developm ent(%) after managem ent plan implemen tation	Additional area Irrigated by GW after Intervention in Ha
Patharia	82.82	70.08	84.62	3.93	17.35	100.2	10.41	76.56	76.43	2602

1. Nalabund

Sr no	Longitude	Latitude	Sr no	Longitude	Latitude	Sr no	Longitude	Latitude
1	79.4685	24.043	41	79.1688	23.9756	81	79.2491	23.9963
2	79.4461	24.0196	42	79.1712	23.9722	82	79.4157	23.9971
3	79.4404	24.0429	43	79.1823	23.9775	83	79.4032	23.9912
4	79.4565	24.0097	44	79.2117	23.9656	84	79.3676	23.9925
5	79.4894	24.0385	45	79.2406	23.9351	85	79.3466	23.9798
6	79.5004	24.0333	46	79.169	23.914	86	79.4593	24.0413
7	79.5044	24.0172	47	79.1521	23.9123	87	79.4418	24.0395
8	79.4565	23.9967	48	79.1528	23.9291	88	79.4879	24.0332
9	79.4126	24.0006	49	79.1333	23.9302	89	79.4988	24.0465
10	79.4167	24.0093	50	79.2661	23.7943	90	79.4184	24.0125
11	79.4385	23.9716	51	79.2435	23.7792	91	79.3712	23.9284
12	79.416	23.9734	52	79.2905	23.8083	92	79.3295	23.936
13	79.3922	23.9656	53	79.27	23.8408	93	79.3131	23.8752
14	79.3858	23.9552	54	79.2376	23.8444	94	79.2861	23.8724
15	79.3791	23.9484	55	79.241	23.8554	95	79.2794	23.8563
16	79.3325	23.9825	56	79.3597	23.8989	96	79.3782	23.8664
17	79.4658	23.9819	57	79.3577	23.9191	97	79.3528	23.8636
18	79.4475	23.983	58	79.3262	23.7764	98	79.2637	23.8859
19	79.4016	23.9952	59	79.3026	23.8257	99	79.2369	23.8583
20	79.0651	23.9173	60	79.3187	23.8965	100	79.2343	23.7794
21	79.0782	23.9081	61	79.3203	23.9182	101	79.25	23.7653
22	79.0941	23.9315	62	79.3497	23.9219	102	79.2725	23.744
23	79.1006	23.9368	63	79.2259	23.8803	103	79.3116	23.7563
24	79.1074	23.9217	64	79.3139	23.7469	104	79.3255	23.7669
25	79.1231	23.8998	65	79.3	23.7341	105	79.3085	23.737
26	79.1283	23.8955	66	79.2423	23.7983	106	79.3	23.7301
27	79.1196	23.8873	67	79.2629	23.9562	107	79.3027	23.7313
28	79.1168	23.8925	68	79.3513	23.8783	108	79.3071	23.7348
29	79.127	23.9411	69	79.3467	23.9045	109	79.1833	23.9705
30	79.1494	23.8953	70	79.3344	23.8424	110	79.1373	23.9568
31	79.1452	23.8946	71	79.317	23.8322	111	79.1387	23.9465
32	79.1398	23.8935	72	79.273	23.8948	112	79.1212	23.9708
33	79.132	23.8829	73	79.2813	23.7655	113	79.1144	23.9562
34	79.129	23.8849	74	79.1694	23.9467	114	79.1098	23.9399
35	79.1601	23.8973	75	79.1506	23.9756	115	79.2607	23.9616
36	79.1348	23.8797	76	79.1774	23.8804	116	79.2787	23.9874
37	79.1406	23.8759	77	79.161	23.8698	117	79.2014	23.9373
38	79.2154	23.889	78	79.1585	23.9003	118	79.1653	23.9309
39	79.2068	23.8805	79	79.1907	23.998	119	79.4895	24.0491
40	79.1846	23.9442	80	79.2381	23.9926	120	79.4784	24.0381

Sr no	Longitude	Latitude	Sr no	Longitude	Latitude	Sr no	Longitude	Latitude
121	79.4544	24.0272	136	79.1197	23.9134	151	79.3785	23.8803
122	79.1382	23.8812	137	79.1131	23.9138	152	79.2292	23.9489
123	79.1372	23.8928	138	79.1132	23.8988	153	79.3793	23.8559
124	79.155	23.8918	139	79.1263	23.8992	154	79.3629	23.8262
125	79.1138	23.884	140	79.1622	23.8992	155	79.3639	23.8201
126	79.1148	23.883	141	79.2577	23.9062	156	79.3546	23.8114
127	79.1127	23.8903	142	79.086	23.9381	157	79.3162	23.7448
128	79.1205	23.8768	143	79.1466	23.9129	158	79.3051	23.7733
129	79.1237	23.8803	144	79.3358	23.7883	159	79.2918	23.8266
130	79.1473	23.8818	145	79.3535	23.816	160	79.2326	23.9043
131	79.1369	23.8721	146	79.4513	24.0101	161	79.1919	23.9095
132	79.1364	23.9011	147	79.5098	24.0254			
133	79.1447	23.9017	148	79.4832	24.0549			
134	79.1556	23.9081	149	79.414	24.0264			
135	79.1644	23.91	150	79.3272	23.9544			

(ii) Recharge shaft

Sr no	Longitude	Latitude	Sr no	Longitude	Latitude	Sr no	Longitude	Latitude	
162	79.21	23.9236	177	79.3173	23.9662	192	79.3357	23.7933	
163	79.1468	23.935	178	79.4068	23.9471	193	79.365	23.8386	
164	79.189	23.8694	179	79.0892	23.9409	194	79.3744	23.8374	
165	79.2865	23.8629	180	79.1304	23.959	195	79.3368	23.8597	
166	79.3232	23.8858	181	79.1194	23.9053	196	79.2992	23.861	
167	79.3447	23.8647	182	79.1627	23.8595	197	79.296	23.8501	
168	79.3692	23.9175	183	79.1907	23.8961	198	79.3068	23.8404	
169	79.343	23.925	184	79.1898	23.9806	199	79.2836	23.8407	
170	79.3361	23.9483	185	79.24	23.9134	200	79.2641	23.8324	
171	79.382	23.9902	186	79.2572	23.8123	201	79.3925	23.9482	
172	79.5052	24.0252	187	79.2587	23.7663	202	79.2278	24.0005	
173	79.4176	24.0212	188	79.2586	23.7924	203	79.1836	23.8583	
174	79.4445	24.0441	189	79.2989	23.7745	204	79.2021	23.8976	
175	79.494	24.053	190	79.2971	23.7499	205	79.2777	23.9557	
176	79.3661	23.9688	191	79.293	23.7318	206	79.3334	23.9857	
						207	79.4554	23.9718	

(iii) Percolation tank

Sr no	Longitude	Latitude	Sr no	Longitude	Latitude	Sr no	Longitude	Latitude
208	79.3996	23.9571	216	79.2906	23.7487	224	79.2525	23.8761
209	79.1326	23.9675	217	79.3438	23.8234	225	79.216	23.8432
210	79.098	23.9454	218	79.3796	23.8866	226	79.2814	23.789
211	79.155	23.886	219	79.2953	23.8912	227	79.3028	23.8199
212	79.1764	23.9219	220	79.3102	23.9742	228	79.2007	23.9935
213	79.188	23.863	221	79.4827	23.9904			
214	79.2249	23.968	222	79.4677	24.0286			
215	79.2015	23.9306	223	79.2777	23.9533			

8.7 BLOCK TENDUKHEDA

Type of Structure	Number	Cost INR in Crores			
Percolation Tanks	4	0.8 (Rs 20 Lakh Per Stucture)			
NB/CD/CP	24	2.45 (Rs Five Lakh Per Stucture)			
Recharge Shaft/ Tube Wells	7	0.35 (Rs 10 Lakh Per Stucture)			
Renovation of Village Ponds	181	3.62 (Rs two Lakh Per Stucture)			
Total Cost		7.23			

Block	Net GW Availa bility MCM	Gross Draft in MCM	Stage of Develop ment %	Water Saving by sprinkle r in mcm @ 0.08 m	Addition al GW created by AR str.in MCM	Net GW Availability after constructio n AR str. MCM	After interventio n of AR Structure & utilization of 60% of additional GW created. in MCM	Draft after sprinkler & additional GW created for agricultur e in MCM	Stage of Development(%) after management plan implementati on	Additional area Irrigated by GW after Interventio n in Ha	
Tendukhera	33.63	17.67	52.55	2.54	2.64	36.27	1.584	16.71	46.08	396	

(i) Nalabund

Sr no	Longitude	Latitude	Sr no	Longitude	Latitude	Sr no	Longitude	Latitude
1	79.5351	23.5779	9	79.2466	23.3501	17	79.416	23.4226
2	79.5451	23.5119	10	79.2434	23.2739	18	79.5632	23.2996
3	79.4259	23.5326	11	79.3538	23.1939	19	79.6163	23.3739
4	79.6013	23.5851	12	79.389	23.2011	20	79.6167	23.418
5	79.5087	23.6251	13	79.426	23.2296	21	79.4561	23.4642
6	79.2457	23.4462	14	79.4569	23.2767	22	79.45	23.4014
7	79.2497	23.4034	15	79.4333	23.3088	23	79.5654	23.3369
8	79.198	23.3837	16	79.4191	23.3814	24	79.5982	23.4263

(ii)Recharge shaft

Sr no	Longitude	Latitude
25	79.2891	23.3307
26	79.4658	23.4278
27	79.5475	23.5491
28	79.6804	23.3845
29	79.5171	23.2831
30	79.463	23.3364
31	79.3166	23.2652

(iii)Percolation tank

Sr no	Longitude	Latitude
32	79.3116	23.4116
33	79.2233	23.4214
34	79.5207	23.3941
35	79.5068	23.549

Bore	Easting	Northing	Elevation	TD
Aam Khera	961010	2647766	352	262.3
Aam Khera (Bilani)	934113	2655564	360	231.8
Abhana	962432	2629918	345	300
Bairagadh	965014	2611337	358	233.14
Bandakpur	966271	2642999	344	268.4
Bansa Tarkheda	943413	2638886	359	304
Basakala	927387	2644446	367	200
Batiagarh(S)-RODC	943268	2672932	359	36
Batiyagadh	943268	2672932	454	153
Battiagarh WRD	942300	2674937	405	30.44
Bhajiya	996794	2622104	402	254.71
Borda	953247	2694655	506	200
Bothrai	926961	2657817	379	134.2
Chirola	941240	2654240	365	215
Chopra Khurd	953635	2638740	374	268.4
Damoh Polytechnic	954740	2639700	378	305.12
Damoh WRD	951746	2644696	366	38.1
Damoh(D)-RODC	952180	2641687	372	80
Datla	968222	2629209	341	200
Dharoli	950906	2587384	411	201.3
Fatehpur-RODC	959189	2682321	343	134.5
Futera-RODC	960746	2680583	346	107.5
Gaisabad1-RODC	990443	2688800	316	200
Gubra	993509	2609956	406	233.35
Guhanchi-RODC	949408	2602798	368	144.65
Harat	946768	2675077	356	200
Hatta WRD	965886	2680935	332	30.48
Hatta(D)-RODC	967030	2676252	325	85
Hindoriya	965982	2651937	363	269.4
Imilitol	963411	2581975	518	201.3
Jabera(D)-RODC	978690	2612395	377	49.25
Jhalon	948698	2603306	368	201.3
Jhalon old	948378	2602027	373	303.53
Kalhera	974337	2617653	356	294.24
Kendraho	931996	2650566	360	103.7
Kishanganj-RODC	944570	2657458	361	200
KishunGanj	945392	2657453	356	268
Konda Kalan	991459	2615905	399	269.09
Kudai-RODC	969733	2661253	336	168.49
Kusmi (Mangarh) EW	995183	2610939	391	245.53
Malankhera-RODC	970129	2616776	349	162.75
Nargawan	965600	2592845	392	271.09
Narsinghpur	946132	2661023	345	305
Nohta Dada Ibir	966514	2626656	339	152.5
Pada Jhir	967184	2587805	514	143
Patera WRD	975855	2662135	329	30.48

<u>AAEXURE-I</u> LOCATION DETAILS OF EXPLRATION BORE WELLS

Patera(D)-RODC	976227	2661190	333	200
Patharia	959588	2638990	357	54.9
Patharia WRD	932024	2649642	361	32
Patharia(D)-RODC	927717	2649575	375	70.2
Pondi Mangarh EW	990861	2620977	421	166.36
Rajwas	928683	2649480	371	200
Reneh-RODC	980834	2678410	327	200
Sahajpur	970609	2587606	535	231.75
Sajni Hatna	947147	2637458	370	200
Samnapur2-RODC	948757	2584921	402	184.12
Sanga	960903	2606425	549	201.3
Sanga old	960903	2606425	399	280.24
Sarra-RODC	941452	2591084	388	175
Selwara	975483	2595475	559	298.6
Sitanagar	952614	2666624	342	277
Tajgarh WRD	959601	2611628	363	31.69
Taradehi(D)-RODC	945862	2582674	391	105.6
Taradehi1-RODC	945862	2582674	391	200
Tendukheda	963646	2594326	402	303.5
Tendukheda(D)-RODC	963646	2594326	402	60

<u>ANEXURE-I I</u> LITHOLOGS DETAILS OF EXPLRATION BORE WELLS

Bore	Depth1	Depth2	Lithology
Aam Khera	0	14	Shale: weathered
Aam Khera	14	152	Shale
Aam Khera	152	154	Shale: Fractured
Aam Khera	154	262.3	Shale
Aam Khera (Bilani)	0	14	Shale: weathered
Aam Khera (Bilani)	14	142	Shale
Aam Khera (Bilani)	142	146	Shale: Fractured
Aam Khera (Bilani)	146	231.8	Shale
Abhana	0	4.83	Shale: Highly weathered
Abhana	4.83	300	Shale
Bairagadh	0	50.54	Shale
Bairagadh	50.54	233.14	Sandstone
Bandakpur	0	13	Shale: weathered
Bandakpur	13	147	Shale
Bandakpur	147	153	Shale: Fractured
Bandakpur	153	268.4	Shale
Bansa Tarkheda	0	1.83	Shale: weathered
Bansa Tarkheda	1.83	304	Shale
Basakala	0	10.84	Alluvium
Basakala	10.84	13.84	Alluvium
Basakala	13.84	200	Shale
Batiagarh(S)-RODC	0	19	Limestone:Highly weathered
Batiagarh(S)-RODC	19	30	Sandstone:weathered & Fractured
Batiagarh(S)-RODC	30	36	Sandstone
Batiyagadh	0	20.09	Alluvium
Batiyagadh	20.09	26.18	Shale
Batiyagadh	26.18	137	Sandstone
Batiyagadh	137	138	Sandstone:Fractured
Batiyagadh	138	153	Sandstone
Battiagarh WRD	0.00	16.72	Shale: Highly weathered
Battiagarh WRD	16.72	24.34	Shale: weathered & Fractured
Battiagarh WRD	24.34	30.44	Sandstone
Bhajiya	0	14.11	Sandstone:Weathered
Bhajiya	14.11	135.91	Shale
Bhajiya	135.91	138.91	Sandstone:Fractured
Bhajiya	138.91	166.36	Sandstone
Bhajiya	166.36	196.81	Shale
Bhajiya	196.81	221.17	Limestone
Bhajiya	221.17	245.53	Shale
Bhajiya	245.53	254.71	Limestone
Borda	0	27.33	Sandstone:weathered & Fractured
Borda	27.33	38.09	Sandstone
Borda	38.09	41	Shale:Fractured
Borda	41	200	Shale
Bothrai	0	4	Sandstone:Weathered
Bothrai	4	20	Shale:Fractured

Bothrai	20	134.2	Shale
Chirola	0	7.92	Sandstone:Weathered
Chirola	7.92	26.19	Shale:Fractured
Chirola	26.19	123.63	Shale
Chirola	123.63	172.35	Limestone
Chirola	172.35	208.89	Shale
Chirola	208.89	215	Sandstone:Fractured
Chopra Khurd	0	10	Shale: weathered
Chopra Khurd	10	268.4	Shale
Damoh Polytechnic	0	7.92	Shale: weathered
Damoh Polytechnic	7.92	305.12	Shale
Damoh WRD	0	5.17	Shale: weathered
Damoh WRD	5.17	9.14	Shale:Fractured
Damoh WRD	9.14	38.1	Shale
Damoh(D)-RODC	0	6.6	Shale: Highly weathered
Damoh(D)-RODC	6.6	29	Shale
Damoh(D)-RODC	29	32	Shale: weathered & Fractured
Damoh(D)-RODC	29.8	57.6	Shale
Damoh(D)-RODC	57.6	60	Shale:Fractured
Damoh(D)-RODC	60	80	Shale
Datla	0	16	Shale: weathered & Fractured
Datla	16	33.5	Shale
Datla	33.5	34	Shale:Fractured
Datla	34	200	Shale
Dharoli	0	10	Sandstone:weathered & Fractured
Dharoli	10	201.3	Sandstone
Fatehpur-RODC	0	15.75	Shale: Highly weathered
Fatehpur-RODC	15.75	30	Shale
Fatehpur-RODC	30	31.5	Shale: weathered & Fractured
Fatehpur-RODC	31.5	49	Shale
Fatehpur-RODC	49	77	Sandstone
Fatehpur-RODC	77	79	Sandstone:Fractured
Fatehpur-RODC	79	88	Sandstone
Fatehpur-RODC	88	91	Sandstone:Fractured
Fatehpur-RODC	91	134.5	Sandstone
Futera-RODC	0	16.25	Shale: Highly weathered
Futera-RODC	16.25	26.25	Shale
Futera-RODC	26.25	107.5	Sandstone
Gaisabad1-RODC	0	10.5	Shale: Highly weathered
Gaisabad1-RODC	10.5	47	Shale
Gaisabad1-RODC	47	50	Shale:Fractured
Gaisabad1-RODC	50	84	Shale
Gaisabad1-RODC	84	87	Shale:Fractured
Gaisabad1-RODC	87	105	Shale
Gaisabad1-RODC	105	109	Shale:Fractured
Gaisabad1-RODC	109	131.25	Shale
Gaisabad1-RODC	131.25	134	Sandstone:weathered & Fractured
Gaisabad1-RODC	134	160	Sandstone
Gaisabad1-RODC	160	200	Shale
Gubra	0	4.93	Sandstone:Weathered

Gubra	4.93	14.11	Shale: weathered
Gubra	14.11	233.35	Shale
Guhanchi-RODC	0	7.75	Shale: Highly weathered
Guhanchi-RODC	7.75	18.7	Sandstone:weathered
Guhanchi-RODC	30	32	Sandstone:Fractured
Guhanchi-RODC	32	73.5	Sandstone
Guhanchi-RODC	73.5	74.5	Shale: weathered & Fractured
Guhanchi-RODC	74.5	94.5	Shale
Guhanchi-RODC	94.5	97	Shale: weathered & Fractured
Guhanchi-RODC	97	131.25	Sandstone
Guhanchi-RODC	131.25	144.65	Shale
Harat	0	10.84	Shale: Highly weathered
Harat	1.84	16.37	Shale: weathered
Harat	16.37	200	Shale
Hatta WRD	0.00	3.04	Shale: Highly weathered
Hatta WRD	3.04	12.19	Sandstone:weathered & Fractured
Hatta WRD	12.19	22.86	Shale
Hatta WRD	22.86	30.48	Sandstone
Hatta(D)-RODC	0	8.1	Limestone:Weathered
Hatta(D)-RODC	8.1	18.7	Sandstone:weathered & Fractured
Hatta(D)-RODC	18.7	30.54	Shale
Hatta(D)-RODC	30.54	40.1	Limestone:Weathered & Fractured
Hatta(D)-RODC	40.1	71	Shale
Hatta(D)-RODC	71	76	Shale:Fractured
Hatta(D)-RODC	76	85	Shale
Hindoriya	0	12	Shale: weathered
Hindoriya	12	161	Shale
Hindoriya	161	166	Shale:Fractured
Hindoriya	166	269.4	Shale
Imilitol	0	6.4	Sandstone:Weathered
Imilitol	6.4	42.7	Sandstone
Imilitol	42.7	73.2	Shale
Imilitol	73.2	131.1	Sandstone
Imilitol	131.1	137.2	Shale
Imilitol	137.2	201.3	Sandstone
Jabera(D)-RODC	0	10.2	Shale: weathered
Jabera(D)-RODC	10.2	30.5	Limestone
Jabera(D)-RODC	30.5	35.5	Shale:Fractured
Jabera(D)-RODC	35.5	36	Shale
Jabera(D)-RODC	36	37	Sandstone
Jabera(D)-RODC	37	49.25	Limestone
Jhalon	0	5	Sandstone:Weathered
Jhalon	5	134.2	Sandstone
Jhalon	134.2	158.6	Shale
Jhalon	158.6	201.3	Sandstone
Jhalon old	0	75.01	Sandstone
Jhalon old	75.01	157.18	Shale
Jhalon old	157.18	190.72	Sandstone
Jhalon old	190.72	230	Shale
Jhalon old	230	303.53	Sandstone

Kalhera	0	8.2	Sandstone:Weathered
Kalhera	8.2	50.65	Shale
Kalhera	50.65	87.19	Sandstone
Kalhera	87.19	90.19	Shale:Fractured
Kalhera	90.19	111.55	Shale
Kalhera	111.55	123.73	Sandstone
Kalhera	123.73	193.72	Shale
Kalhera	193.72	266.8	Sandstone
Kalhera	266.8	269.89	Sandstone:Fractured
Kalhera	269.89	294.24	Sandstone
Kendraho	0	30	Shale: weathered
Kendraho	30	64	Shale
Kendraho	64	68	Limestone:Fractured
Kendraho	68	103.7	Shale
Kishanganj-RODC	0	120.75	Limestone
Kishanganj-RODC	120.75	200	Dolomite
KishunGanj	0	1.83	Limestone:Weathered
KishunGanj	1.83	25.29	Limestone
KishunGanj	25.29	70.72	Shale
KishunGanj	70.72	77.01	Shale: weathered & Fractured
KishunGanj	77.01	165.36	Shale
KishunGanj	165.36	201.9	Sandstone
KishunGanj	165.36	236	Sandstone
KishunGanj	236	238	Sandstone:Fractured
KishunGanj	238	268	Sandstone
Konda Kalan	0	14.11	Sandstone:Weathered
Konda Kalan	14.11	178.54	Sandstone
Konda Kalan	178.54	181	Shale: weathered & Fractured
Konda Kalan	181	269.09	Shale
Kudai-RODC	0	5.25	Shale: Highly weathered
Kudai-RODC	5.25	25	Slate
Kudai-RODC	25	27	Slate:Fractured
Kudai-RODC	27	133.75	Slate
Kudai-RODC	133.75	168.49	Shale
Kusmi (Mangarh)		0.22	
EW	0	8.32	Shale: weathered
Kusmi (Mangarh)		129.82	Shale
EW	8.32	129.82	Shale
Kusmi (Mangarh)		148.09	
EW	129.82	140.09	Sandstone
Kusmi (Mangarh)		233.35	Shale
EW	148.09	200.00	
Kusmi (Mangarh)		245.53	
EW	233.35	273.33	Limestone:Fractured
Malankhera-RODC	0	21	Sandstone :weathered
Malankhera-RODC	21	149.5	Sandstone
Malankhera-RODC	149.5	162.75	Shale
Nargawan	0	26.2	Sandstone
Nargawan	26.2	32.38	Shale: weathered
Nargawan	32.38	160.26	Shale
Inglamati	32.38	100.26	Single

Nargawan	160.26	271.09	Sandstone
Narsinghpur	0	20.1	Limestone:Weathered
Narsinghpur	20.1	105.35	Limestone
Narsinghpur	105.35	196.8	Shale
Narsinghpur	196.8	305	Sandstone
Nohta	0	21.3	Sandstone
Nohta	21.3	42.7	Shale
Nohta	42.7	152.5	Sandstone
Pada Jhir	0	23.2	Sandstone:weathered & Fractured
Pada Jhir	23.2	75.01	Sandstone
Pada Jhir	75.01	96.28	Shale
Pada Jhir	96.28	143	Sandstone
Patera WRD	0	4.57	Shale: Highly weathered
Patera WRD	4.57	9.14	Shale: weathered
Patera WRD	9.17	30.48	Shale
Patera(D)-RODC	0	3.05	Shale: Highly weathered
Patera(D)-RODC	3.05	6.5	Shale: weathered
Patera(D)-RODC	6.5	61	Shale
Patera(D)-RODC	61	64	Shale:Fractured
Patera(D)-RODC	64	200	Shale
Patharia	0	6.7	Sandstone:Weathered
Patharia	6.7	48.7	Shale
Patharia	48.7	54.9	Limestone:Fractured
Patharia(D)-RODC	0	3.6	Limestone:Highly weathered
Patharia(D)-RODC	3.6	22.6	Limestone:Weathered
Patharia(D)-RODC	22.6	36.75	Limestone
Patharia(D)-RODC	36.75	48.9	Sandstone:Fractured
Patharia(D)-RODC	48.9	70.2	Sandstone
Pondi Mangarh EW	0	5.03	Sandstone
Pondi Mangarh EW	5.03	26.33	Shale: weathered
Pondi Mangarh EW	26.33	56.81	Shale
Pondi Mangarh EW	56.81	90	Limestone
Pondi Mangarh EW	90	93	Limestone:Fractured
Pondi Mangarh EW	93	129.81	Limestone
Pondi Mangarh EW	129.81	139	Sandstone
Pondi Mangarh EW	139	154.18	Shale
Pondi Mangarh EW	154.18	157.27	Sandstone:weathered & Fractured
Pondi Mangarh EW	157.27	166.36	Shale
Rajwas	0	10.84	Shale: Highly weathered
Rajwas	10.84	34	Shale
Rajwas	34	36	Shale:Fractured
Rajwas	36	200	Shale
Reneh-RODC	0	5.25	Shale: Highly weathered
Reneh-RODC	5.25	91.75	Shale
Reneh-RODC	91.75	105	Sandstone
Reneh-RODC	105	200	Shale
Sahajpur	0	14	Sandstone:Weathered
Sahajpur	14	20.2	Sandstone
Sahajpur	20.2	231.75	Shale

Sajni Hatna	0	16.37	Shale: weathered
Sajni Hatna	16.37	46	Shale
Sajni Hatna	46	47	Shale:Fractured
Sajni Hatna	47	200	Shale
Samnapur2-RODC	0	3.5	Sandstone:weathered
Samnapur2-RODC	3.5	47.25	Sandstone
Samnapur2-RODC	47.25	49.75	Shale
Samnapur2-RODC	49.75	103	Sandstone
Samnapur2-RODC	103	105	Sandstone:Fractured
Samnapur2-RODC	105	118	Sandstone
Samnapur2-RODC	118	123.25	Shale
Samnapur2-RODC	123.25	184.12	Sandstone
Sanga	0	6.4	Sandstone:Weathered
Sanga	6.4	42.7	Sandstone
Sanga	42.7	73.2	Shale
Sanga	73.2	73.8	Sandstone:Fractured
Sanga	73.2	131.1	Sandstone
Sanga	131.1	137.2	Shale
Sanga	137.2	201.3	Sandstone
Sanga old	0	29.28	Sandstone
Sanga old	29.28	62.73	Shale
Sanga old	62.73	93.18	Sandstone
Sanga old	93.18	105.36	Shale
Sanga old	105.36	141.9	Sandstone
Sanga old	141.9	214.18	Shale
Sanga old	214.18	280.24	Sandstone
Sarra-RODC	0	18.25	Sandstone:weathered
Sarra-RODC	18.25	136	Sandstone
Sarra-RODC	136	138	Sandstone:Fractured
Sarra-RODC	138	146	Sandstone
Sarra-RODC	146	148	Sandstone:Fractured
Sarra-RODC	148	175	Sandstone
Selwara	0	139.68	Sandstone
Selwara	139.68	298.6	Shale
Sitanagar	0	26.17	Shale: weathered
Sitanagar	26.17	53	Shale
Sitanagar	53	56	Shale:Fractured
Sitanagar	56	115.45	Shale
Sitanagar	115.45	145.9	Limestone
Sitanagar	145.9	155.08	Limestone:Fractured
Sitanagar	155.08	225.07	Shale
Sitanagar	225.07	277	Sandstone
Tajgarh WRD	0	18.28	Alluvium
Tajgarh WRD	18.28	27.43	Alluvium
Tajgarh WRD	27.69	31.69	Sandstone
Taradehi(D)-RODC	0	18.6	Shale: Highly weathered
Taradehi(D)-RODC	18.6	105.6	Shale
Taradehi1-RODC	0	4.75	Sandstone:weathered
Taradehi1-RODC Tendukheda	4.75	200	Sandstone Shale

Tendukheda	68	68.92	Shale: weathered
Tendukheda	68.92	202.8	Sandstone
Tendukheda	202.8	208.89	Sandstone:Fractured
Tendukheda	208.89	303.5	Shale
Tendukheda(D)- RODC	0	3.6	Shale: Highly weathered
Tendukheda(D)- RODC	3.6	18.6	Shale: weathered
Tendukheda(D)- RODC	18.6	27.6	Shale
Tendukheda(D)- RODC	27.6	29.4	Shale: weathered & Fractured
Tendukheda(D)- RODC	29.4	45.6	Shale
Tendukheda(D)- RODC	45.6	60	Shale: weathered & Fractured