For official use

Technical Report Series

GROUND WATER BROCHURE AHMEDABAD DISTRICT GUJARAT

Compiled by R.K.Verma Assistant Hydrogeologist

Government of India Central Ground Water Board West Central Region Ahmedabad

March 2014

AHMEDABAD DISTRICT AT A GLANCE

SL No.	Items		Statistics				
1.	General Information						
	i) Geographical Area (Sq. Km)		8087				
	ii) Administrative Divisions (207 Number of Taluka	11					
	Number of Villages		512				
	iii) Populations (As per 2011 ce	ensus)	72,08,2	200			
	iv) Average Annual Rainfall (m	m)	612				
2.	GEOMORPHOLOGY						
	Major Physiographic Units		Alluvia	al plain			
	Major Drainages		Sabarı	mati			
3.	LAND USE (Sq. Km)						
	a) Forest area b) Net area sown c) Cultivable area	106.82 5389 5760					
4.	MAJOR SOIL TYPES		Sandv soil				
5.	AREA UNDER PRINCIPALFO	ODGRAIN CROPS (sg.km.)					
6	Rice-790, Jowar-20, Bajra-210, Wheat-1190, Total cereals 2220, Gram 110, other pulses-50, Total pulses-160, Total food crops-2380,Seasam -140, Rapes and Mustard-30, Total oil seeds- 290.						
0.	IRRIGATION BT DIFFERENT	SOURCES		Aroa			
	(Areas and numbers of struc	ctures) 2011	No.	(sq. km.)			
	Dugwells		15024	1064			
	Tube wells & other wells		3123	1424			
	Tanks/Ponds		1425	45			
	Canals		-	610			
	Other Sources	Dury Malla	-	16			
	Net Irrigated area (sq. km.)	Tube Wells	694 730				
		Dua Wells	931				
	Gross Irrigated area (sq. km.)	Tube Wells	1064				
7.	NUMBERS OF GROUND WA	TER MONITORING WELLS					
	CGWB (As on 31-03-2012) No of Dug Wells No of Piezometers						
8.	PREDOMINANT GEOLOGICA	L FORMATIONS					
	Alluvium (Major portion, 2785.10 Sq.km.) Limestone and Deccan traps (Few minor portion 562.33 Sq.km)						

9.	HYDROGEOLOGY								
	Major Water Bearing Formation: Quaternary alluvium								
	Depth to water Level during 2011-12								
	Period	Phreatic Ac	quifer (DTW)	Semi-con	fined Aquifer (PZ head)				
		Min	Max	Min	Max				
	Pre Monsoon	3.11 (Viramgam)	22.32 (Vastrapur Lake-II)	6.62 (Bagodara	a) (Kankariya PZ-I)				
	Post Monsoon	1.34 (Paccham)	22.87 (Vastrapur-II)	5.27 (Bagodara	a) (Vastrapur-I)				
	Lon	Long Term (10 Years) Water Level Trend (2001 to 2010)							
	Trend	Pre-Mo	nsoon	Post	- Monsoon				
	Rise (m/Yr)	0.025 (Ranpur) t	o 0.58 (Barvala)	0.16 (Ranpu	0.16 (Ranpur) to 1.08 (Barvala)				
	Fall (m/Yr)	0.016 (Viramgam)	to 0.50 (Dholka)	0.30 (City Daskroi) to 0.95 (Dholka)					
10									
10.	No of wells driller		N BY CGWB (A	AS ON 31 -03 -2	2012)				
	FW		SH	Total					
	29	10	01	125					
	Depth Range(m)				27- 565.4				
	Discharge (Litres	per second)			0.1 – 15 lps				
	Storativity (S)								
	Transmissivity (m	n²/day)			10- 3867				
11.	GROUND WATE								
	Presence of cher	nical constituents	s more than perr	nissible limit	Fluoride - 161 villages EC - 101 villages Nitrate - 2 villages				
	Type of water				Predominant bicarbonate- Chloride type				

12.	DYNAMIC GROUND WATER RESOURCES (2011)- in mcm					
	Annual Replenish		616.86			
	Net Annual Grour	nd Water Availability			583.09	
	Projected Demand for Domestic and industrial Uses up to 202				95.97	
	Stage of Ground Water Development				78.36	
13.	AWARENESS/ T	RAINING ACTIVITIE	ES Etc. as on 31-03	3-2014		
	SI. No. Activity 1 Mass A 2 Water r 3 Worksh 4 State L 5 World v	Nos. 03 05 05 04 01				
14.	EFFORTS OF AF	RTIFICIAL RECHAR	GE & RAINWATER	HARV	ESTING	
	Projects complete Sr. No. 1. 2.		Two (Sola High Court & PRL)			
	Projects under technical guidance of CGWB (Numbers) Nil					
15.	GROUND WATER CONTROL AND REGULATION					
	Number of OE Blocks01 (City-Daskroi)					
	Number of Critica	l Blocks			01 (Dholka)	
	Number of Critica	l Blocks Critical Blocks			01 (Dholka) 02 (Detroj- Rampura, Viramgam)	
	Number of Critica Number of Semi (Number of Safe B	l Blocks Critical Blocks Blocks			01 (Dholka) 02 (Detroj- Rampura, Viramgam) 05 (Barwala, Bavla, Mandal,Ranpur, Sanand)	
	Number of Critica Number of Semi (Number of Safe B Number of Saline	I Blocks Critical Blocks Blocks Blocks			01 (Dholka) 02 (Detroj- Rampura, Viramgam) 05 (Barwala, Bavla, Mandal,Ranpur, Sanand) 01 (Dhanduka)	
	Number of Critica Number of Semi (Number of Safe B Number of Saline No. of Blocks Not	I Blocks Critical Blocks Blocks Blocks ified by CGWA			01 (Dholka) 02 (Detroj- Rampura, Viramgam) 05 (Barwala, Bavla, Mandal,Ranpur, Sanand) 01 (Dhanduka) Nil	
16.	Number of Critica Number of Semi (Number of Safe B Number of Saline No. of Blocks Not	I Blocks Critical Blocks Blocks Blocks ified by CGWA D WATER PROBLE	MS AND ISSUES		01 (Dholka) 02 (Detroj- Rampura, Viramgam) 05 (Barwala, Bavla, Mandal,Ranpur, Sanand) 01 (Dhanduka) Nil	

DISTRICT GROUND WATER BROCHURE AHMEDABAD

1. Introduction

Ahmedabad is an Industrial hub for textiles and is popularly known as the "Manchester of India". The district headquarter, Ahmedabad was also the State Capital from May 1960 to May 1970, before it was shifted to the new township at Gandhinagar. Ahmedabad district occupies 8087 sq. km. area between 21°58' and 23°30' north latitudes and 71°35' and 73°02' east longitudes in the central part of Gujarat state. It falls in the survey of India degree sheet numbers 41N, 41M, 46A and 46B. It is bounded by Mahesana and Gandhinagar in north, Sabarkantha in north east, Kheda in east Gulf of Cambay (Khambat), Bhavnagar in South and Surendranagar in west.

1.1 Administrative Details

Administratively, Ahmedabad is divided in ten talukas, viz. Barvala, Bavla, City-Dascroi, Detroj-Rampura, Dhandhuka, Dholka, Mandal, Ranpur, Sanand and Viramgam. The district comprises of 547 villages and 25 towns/cities. The geographical area is 8086.81 sq. kms. Taluka-wise geographical area is given in table 1 below.

S.No.	Taluka		Area (sq. kms)
1.	Barvala		45436.41
2.	Bavla		75185.7
		City	5367.14
3.	3. City- Dascroi	Dascroi	62416.55
4.	Detroj-Rampura		35365.02
5.	Dhandhuka		170321.15
6.	Dholka		101195.95
7.	Mandal		41491.7
8.	Ranpur		4713.44
9.	Sanand		74410.43
10.	Viramgam		87646.89

Table: 1 - Taluka wise geographical area in Ahmedabad District

The total population of the district as per 2011 census is 72,08,200 having 11,49,436 rural and 60,58,764 as urban population. The sex ratio is 903 females per 1000 males. The population density is 890 persons per sq. km. The literacy rate in the district is 86.65%.

1.2 Basin/ Sub-basin

Major portion of the district falls under Sabarmati basin. Rupen, Saraswati, Banas form the sub basins.

1.3 Drainage

River Sabarmati is the principal river of the district. It originates from Dhebar lake in Aravalli Range of Udaipur District, Rajasthan and finally debauches into Gulf of Khambat near Vataman village of Dholka taluka. Sabarmati forms the eastern boundary of the district flowing from NE to SW direction in Ahmedabad and Gandhinagar districts. The river Vatrak flows for a smaller length and joins Sabarmati near village Wauta of Dholka taluka. The Khari river and the Meshwo river drain Dascroi taluka. The river Bhogavo with its branches Chatori and Omkar drains Dholka and Dhandhuka talukas. The Bhadar river with its branch Goma, Lilka, Utavali and Ghela drains Dhandhuka taluka of the district. River Rodh drains Sanand and Dholka talukas. Rivers Shelwa and Andhli drain Dholka taluka. There is no river or rivulet in Viramgam taluka.

1.4 Irrigation Practices

			Are	ea in '00 Hect.
Rice (Paddy)	Jowar	Bajra	Maize	Wheat
817	-	20	1	492

Table: 3- Area irrigated under the major crops in Ahmedabad District

Table [.] 4-	Maior source	of irrigation	in Ahmedahad	District
1 anic. 4-		or in rigation		DISTINC

S.No.	Taluka	Ground	d Water			Surface Water			Total
		Dug Wells	Shallow Tube Wells	Deep Tube Wells	Total	Surface Flow	Surface Lift	Total	
1.	Barvala	477	0	68	545	17	0	17	562
2.	Bavla	1634	251	343	2228	195	0	195	2423
3.	City-Dascroi	3026	0	2219	5245	1043	0	1043	6288
4.	Detroj-Rampura	375	0	450	825	193	7	200	1025
5.	Dhandhuka	570	0	16	586	28	0	28	614
6.	Dholka	761	114	1539	2414	252	5	257	2671
7.	Mandal	333	1	368	702	11	0	11	713
8.	Ranpur	1532	0	517	2049	0	0	0	2049
9.	Sanand	2046	122	694	2862	259	5	264	3126
10.	Viramgam	2660	129	472	3261	496	0	496	3757
	Total	13414	617	6686	20717	2494	17	2511	23228

1.5 Studies /Activities carried out by CGWB

1.5.1 Systematic hydrogeological studies

Systematic hydrogeological studies carried out by Central Ground Water Board are as given in table 5 below.

Table: 5- Systematic hydrogeological studies

Name	Taluka	Year
R.C.Jain	Dhanduka, Dholka, Sanand, and part of Viramgam, Dascroi & City Talukas	1981-82, 1983-84 and 1986-87.
P.K.Parchure	Part of Viramgam Taluka	1986-87

1.5.2 Reappraisal hydrogeological survey

Reappraisal hydrogeological survey of the entire district was carried out by following officers of CGWB during 1989-90.

Table: 6- Reappraisal hydrogeological survey

Name	Area covered (Talukas)
P.K.Jain	Dhandhuka Taluka
P.R. Gupte	Viramgam, Sanand, City, and Dascroi (Part) Talukas
A.B.Kawde	Dholka, and Dascroi (Part) Talukas

1.5.3 Ground Water Exploration

Ground water exploration by test drilling commenced in the fifties by the erstwhile Exploratory Tubewell Organisation (ETO) and continued later by CGWB. Apart from the exploratory wells, Piezometer of various depths are also constructed in the district for periodic monitoring of the ground water regime in the district and is continued till date. Total 109 wells have been constructed in the district which includes 26 Exploratory wells, 09 Observation Wells, 73 Piezometers and one Slim Hole. Details of the wells drilled are given in table 7 below.

Table: 7- Ground Water Exploration

Salient Features	Exploratory Wells	Observation Wells	Piezometers
Total Nos.	26	09	73
Drill Depth range (mbgl)	80.47- 565.4	156.17 to 337.76	27-201
Depth Constructed range (mbgl)	151.00 to 427	154	24- to 200
Static Water Level (mbgl)	3.46 to 67.90	7.03	1.99 to 67.90
Draw down (m)	7.13 to 14.85	-	0.56 to 14.00
Transmissivity (m ² / day)	-	-	1.78 to 687

2. Rainfall and climate

The climate of the district is characterised by hot summer and general dryness except during the southwest monsoon seasons. The year can be divided into four seasons. The period from March to May is the hot season (summer) followed by southwest monsoon from June to September. October and November constitute the post-monsoon or retreating monsoon season. The cold season (winter) starts from December and ends in February.

The mean maximum temperature ranges between 28.4°C during January to 41.8°C during May and the mean minimum temperatures vary between 11.7°C during January and 27°C during June. The relative humidity varies between 32 % (March) and 79% (August). The wind velocity varies from 74 km/d (November) and 174.2 km/d (June). The potential Evapo-transpiration varies between 3.2 mm (December) and 7.8 mm/d (June). Long-term average annual rainfall recorded by IMD station at Ahmedabad is 799.6 mm. Most of the rainfall (about 766 mm) is received from south-west monsoon between June to September. Climatological data of Ahmedabad IMD station which is nearest is given in the table 8.

Month	Max Temp (°C)	Mini Temp (°C)	Humidity (%)	Wind Spd. Kmpd	Sunshine (Hours)	Solar Rad. (MJ/m2/d)	Evapotran spiration (mm/d)	Rainf all (mm)
January	28.4	11.7	43.0	100.1	9.6	17.5	3.4	2.6
February	31.3	13.8	36.0	101.8	10.2	20.5	4.2	1.1
March	36.0	18.8	32.0	108.7	9.3	21.7	5.3	1.0
April	39.9	23.4	34.5	120.8	10.0	24.5	6.6	0.9
Мау	41.8	26.2	42.5	158.7	10.6	25.9	7.8	6.0
June	38.4	27.0	59.5	174.2	8.8	23.2	6.7	108.7
July	33.3	25.7	76.0	150.1	4.6	16.8	4.4	265.3
August	31.9	24.8	79.0	124.2	4.3	16.0	3.9	219.8
September	33.4	24.1	71.0	103.5	6.7	18.5	4.4	171.9
October	35.8	20.9	50.5	74.2	9.5	20.3	4.4	10.8
November	33.2	16.5	43.0	79.4	9.7	18.1	3.6	8.9
December	29.8	13.0	45.0	91.4	9.5	16.7	3.2	2.6
Total	-	-	-	-	-	-	-	799.6
Average	34.4	20.5	51.0	115.6	8.6	20.0	4.8	-

Table: 8- Climatological data of Ahmedabad IMD station

3. Geomorphology and Soil Type

3.1 Geomorphology

Geomorphologically the district can be divided into two zones, the major portion of it forms a flat planar topography except for a few rocky features in the extreme southern portion.

3.1.1 Flat Alluvial Peneplain

It includes the low-lying land of Dholka and Dhandhuka taluka (falling below 20 m) contour characterised by marshy land, which is believed to be under sea in the past. Water logging is common in these tracts at high tides during monsoon. This barren low land is termed as "The Bhal" area and characterised by high coastal salinity. The spreading of alluvial bed of Sabarmati river from end to end of the district is an important natural feature being observed. Below the city, on the left bank of the river and also midway between it and the Khari river are few small rises. But every where else, the surface of the ground is unbroken on every side, except the north, with groves of various trees. Along the Right Bank of Sabarmati river, the prominent characteristics of Dascroi pass into Dholka. However towards west and south-west they pass into fertile but absolutely flat and monotonous black soil of the Bhal. The area from Dholka to Bavliari creek along the coast is characterised by salty and marshy land. Along the western border, the land passes into a reddish form.

3.1.2 Low hills

A series of low hills are present few kilometres west of Rampur in the western Dhandhuka taluka. The hills around Ninana in the most westerly part of Dhandhuka are covered with fragments of quartz and limestone. Some hills are located around Vasai and Miroli in the southern section of the district, also near Thaltej and Gota of Dascroi taluka in the north, and Chandisar in Dholka and Vastrapur in the City Taluka.

3.2 Soils

The soils in the district can broadly be classified as:

Black Soils: Black soils cover the southern part of Dholka and eastern part of Dhandhuka taluka popularly known as 'Bhal' tract, where cotton is grown in the initial stage of monsoon. It is not very clayey and contains above 20% of clay and about 40 % of sand. Sub-soil invariably contains horizons of lime nodules. This type of soil is highly suitable for cultivation of rabi wheat, which is the main crop raised on this soil. If rains are sufficient in the late monsoon, rabi jowar and grams are sown. Medium Black Soils are found in Viramgam, Sanand and Dholka talukas. This soil is suitable for growing bajri, jowar and cotton.

Goradu Soils: Goradu soils vary from fertile brown to sandy loam and is found in City, Dascroi and parts of Sanand, Dholka and Viramgam talukas. This soil is mostly fertile and responds very well to irrigation and manuring. Practically all kinds of crops can grow on this soil.

Kyari: Kyari soils are found in several parts of City, Dascroi, Sanand, Dholka and Viramgam talukas. It is the most fertile soil with very good moisture and retentive capacity. Well known varieties of paddy such as Pankali, kamod, Jirasar, Sukhvel, Sutarsal and Basumati are grown on this soil.

Rocky soils: Rocky soils are found in Dhandhuka taluka and is known as Kaner tract. It is shallow, light in texture and fit for early maturing crops like cotton, Bajri, Jowar and Math.

4. Ground Water Scenario

4.1 Hydrogeology

The district forms a part of the CAMBAY BASIN. The stratigraphic succession of the formations encountered within the drilled depth of the wells in the district along with its thickness and generalised lithology are presented below.

Age	Formation	Thick ness	Lithology				
Holocene	Gujarat Alluvium,	100	Unconsolidated coarse sand, pebbly with kankar and minor clays.				
Pleistocene	Jambusar	100	Sand, coarse grained with occ. Gravel				
Pliocene	Broach	125	Greenish brown clays and sand clay alteration with variegated claystone.				
	Unconformity						
Upper to middle Miocene	Jhagadia	300	Greenish grey to variegated claystone with coarse to medium grained sand and minor coal.				
Middle to lower Miocene	Kand	200	Greenish grey clay-stone with occasional bands of med to fine grained sands				
Lower Miocene	Babaguru	125	Alternate bands of claystone and shale with minor sandstone beds.				
Lower Miocene, to upper Oligocene	Tarakeshwar	125	Shale with minor clays and claystone with coarse to medium grained sands towards bottom.				
		Ur	nconformity				
Lower Oligocene to upper Eocene	Tarapur shale.	175	Grey to greenish grey shale with argillaceous sandstone in the basal part.				
Upper Eocene to middle Eocene	Kalol	250	Grey to dark grey shale with silty sandstone, siltstone and coal beds with minor sideritic claystones and oolite with sideritic matrix in Bavla and Ambaliyara areas.				
		Ur	nconformity				
Lower Eocene	Cambay shale vagadkhol	>150 0	Dark grey to black fissile, pyritic, carbonaceous shale with occasional siltstone bands towards bottom and reddish brown shale. The cambay shale Facies changes towards the basin margin to Vagadkhol formation with the lithology of trapo conglomerate, trap wash and brown clay / clay stone.				
		Ur	conformity				
Lower Eocene to upper Cretaceous	Deacon traps with intertrappea n beds.	-	-				

Table: 9- Strategraphic succession of geological formations

4.1.1 Ground water in the fissured formations (Hard rocks)

The Deccan trap and the limestone formations occupying the western part of the Dandhuka taluka forms the only hard rock aquifers in the district. It occupies the south western extremity of the district and can be termed as fissured formation. Occurrence and movement of ground water is governed by the extent and thickness of weathered zone, presence and interconnections of joint and fracture systems, which provides secondary porosity. The thickness of the weathered zone of the basalt ranges from less than one meter to more than 6 m and the joints and fracture system is prevalent down to a maximum depth of 80 to 90 mbgl in the basaltic terrain. The occurrence of vesicles and amygdales in the flows of the trap rocks and solution cavities in the limestone formations and the geological contact between limestone and basalt are other factors favourable for ground water storage and movement. Ground water occurs in the weathered and fissured zones mainly under water table conditions. It occasionally occurs under semi-confined conditions in the event of comparatively deeper fracture system in these formations. These fissured formations do not form good repository of groundwater, compared to porous unconsolidated sedimentary formations. Groundwater is being developed in these formations by means of dug and dug-cum-bored wells. Depth of dugwells ranges between 5 and 38.5 mbgl whereas depth of dug-cum-bored wells varies between 15 and 78 mbgl in the case of fissured basaltic formations. Depth of dugwells in the limestone formations varies between 12 and 38 mbgl. Deeper wells are constructed in the western part in these formations. Depth to water levels in basaltic formation varies between 4 and 25 mbgl. In the limestone formation it varies between 12 and 33 mbgl. The deeper water levels are recorded towards western part of the area. The average yield of the wells in the trap formations varies between 50 and 1000 cu.m/day and of the wells in the limestone varies between 50 and 200 cu.m/day.

The general range of aquifer parameters, based on pumping tests conducted at select dug well in these formations are given as under.

FOR	FORMATION		Specific capacity m ³ /day/m of d.d		eability day	Transmissivity m²/day		
		From	То	From	То	From	То	
t rock	Unconfined	0.12	38.48	0.49	105	10.58	3867.29	
Sof	Confined	0.12	38.48	0.49	472	10.58	13316	
ırd	Deccan trap	7.44	234.6	3.18	17.00	3.54	114	
Нŝ	Lime stone	42.77	70.73	19.58	33.95	4.85	21.33	

 Table: 10- The general range of aquifer and well parameters

4.1.2 Ground water in Porous Formations (Sedimentaries)

It occupies the major part (93.5%) of the district. It includes the post-Miocene alluvial deposits at the top underlained by older Miocene formations. The sedimentary formations mainly consist of fine to coarse-grained sand, gravel, silt, clay, clay stone, siltstone and kankar. The thickness of the post-Miocene alluvial formations exceeds 419m near Dholka at Rampur Ground water occurs under phreatic as well as confined conditions in the granular horizons with in the sedimentaries.

Unconfined aquifer (phreatic)

The unconfined aguifer occurs in the upper horizons down to a maximum depth of 60-75 mbg consisting of medium to fine grained sand, silt with local lenses of sandy clay and clay. Medium to fine grained sands are found in the north-eastern part of the district. In this area where only phreatic aquifer is present, base of the alluvium is marked by gravel. Fine grained sands with silt are found further south and south-west at Dholka and Sanand taluka. The thickness of aquifer varies between 20 and 45 m in general, met with in the depth range of 3 and 75 mbgl and can be considered as aguifer 'A'. Ground water occurs under phreatic conditions in the north eastern part of the district. However, the intercalations of silt, at places, induces semi-confined conditions in the south and south western directions of Sanand and Dholka taluka. It bears potable and good quality water in the north eastern part of the district and eastern part of Dascroi taluka (east of Khari river). It is being developed by dug, dug-cum-bored wells and tube wells. The depth of the dug wells and dug-cum-bored wells usually varies between 10 and 60 mbgl. The tube wells range between 42 and 167 mbgl. In the rest part of the area it bears brackish to saline ground water. Hence ground water development is meagre and dug wells are constructed in or vicinity of ponds to meet the local demands. Hydraulic characters of this aguifer are not separately estimated. Tube wells, tapping this aguifer invariably tap one or more aguifers occurring underneath. Yields of such tube wells varies between 225 and 3032 m3/day. Specific capacity of tube wells varies between 0.12 and 38.48 lpm/m, permeability varies between 0.49 and 105 m/day and transmissivity varies between 10.58 and 3867.29 m²/dav.

Confined aquifers

The upper unconfined aguifer is underlained by persistent clay formations of considerable thickness in the entire area of porous sedimentary formations. This separates the lower unit consisting of a few hundred meters of alternating sandy and argillaceous beds forming the confined aquifer system. The arenaceous horizons of the confined aguifer, consists of medium to coarse-grained sand with gravel interstratified locally with silty or clayey sand and clay lenses. As mentioned earlier, the confined aquifers are grouped and designated as B, C & D with in the post Miocene alluvial sediments and G and F aquifers in Miocene sediments with in the drilled depth of 565 m in the district. The distribution of the confined aquifers varies considerably in the district. The sand content of the aquifer decreases considerably both in depth and space. It resulted in the pinching out of certain aguifers occurring below 150 mbgl in the south and south western directions, as seen, in Kalvangarh and Bagodra bore holes. The development of these aguifers hence depends upon the aquifer geometry, yield characters of the individual aquifers and / or salinity of formation waters.

Confined aquifers with potable water occurs down to 300 to 350 m in the area towards north and north east of the low lying 'Bhal' land in the district. The aquifers that are developed include B and C and to some extent the upper part of the D aquifers of the post Miocene alluvial aquifer and can be termed as user confined aquifers (UCA).

4.1.3 Ground Water Regime Monitoring

Ground Water Regime monitoring is being carried out four times in a year during May, August, November and January. In all 71 Hydrograph stations (17 Open Wells and 54 Purpose built Piezometers)spread over the entire district are being monitored during 2012-13.

Premonsoon (May 2012)

The ground water level during the premonsoon period (May 2012) ranged from 2.28 to 22.58 mbgl. The shallowest Water level of 2.28 mbgl was recorded at Gamph and the deepest water level of 22.28 m was recorded at Vastrapur lake Pz-II. The range of ground water level in the district is given as below.

No of well	DTWL mbgl		No of well in different Depth Ranges						
analysed	Min	Max	0 to 2 (m)	2 to 5 (m)	5 to 10 (m)	10 to 20 (m)	20 to 40 (m)	>40(m)	
26	2.28	22.58	0	8 30.77 %	6 23.08%	9 34.62%	3 11.54%	0 0.00%	

Table: 11- Range of Ground Water Level during Pre Monsoon (May 2012)

Postmonsoon (November 2012)

The ground water level during the postmonsoon period (November 2012) ranged from 1.06 to 16.52 mbgl. The shallowest Water level of 1.06 mbgl was recorded at Fedra and the deepest water level of 16.52 m was recorded at Jholapur. The range of ground water level in the district is given as below.

Table: 12-Range of Ground Water Level during Post Monsoon (Nov-2012)

No of well	DTW	L mbgl	No of well in different Depth Ranges							
analysed	Min	Max	0 to 2 (m)	2 to 5 (m)	5 to 10 (m)	10 to 20 (m)	20 to 40 (m)	>40(m)		
25	1.06	16.52	3 12.00%	8 32.00%	8 32.00%	4 16.00%	2 8.00%	0 0.00%		

73.91 % of the wells in the district showed rise in the ground water level between May to November 2012. Rise in the district ranged form 0.04 to 7.58m. 43.48% of the wells showed rise between 0 to 2 m , 8.70 % of the wells showed rise between 2 to 4 m. and 21.74 % of the wells showed rise > 4 m.

26.08 % of the wells in the district showed fall in the ground water level between May to November 2012. Fall in the district ranged form 0.07 to 0.93 m. 26.09 % of the wells showed fall between 0 to 2 m.

No of	Rar	nge of F	luctuatio	on (m)	N	No. of Wells Showing Fluctuation						Total No.	
well	R	ise	Fall Rise F				Fall	of W		/ells			
analy sed	Min	Max	Min	Max	0 to 2	2 to 4	>4	0 to 2	2 to 4	>4	Rise	Fall	
					10	2	5	6	0	0			
23	0.04	7.58	0.07	0.93	43.48 %	8.70 %	21. 74 %	26.09 %	0 %	0 %	17	6	

Table: 13- Range of Fluctuation

4.1.3.1 Long Term Fluctuations

Long Term Fluctuations- May (2002 to 2011)

A comparison of the water level observed in May 2011 with the average water level observed in the month of May during last one decade (2002-2011) reveals that rise in water level ranged from 0.75 to 3.33 mbgl and fall ranged from 0.75 to 7.88 mbgl. 64% of the wells had shown rise in the ground water level whereas only 36 of the wells have shown fall in the water level.

Table: 14- Categorisation of Changes In Water Level During May 2012with respect to Decadal Average of May (2002 to 2011)

No of well analysed	Range of Fluctuation (m)				No. of Wells Showing Fluctuation						Total No.	
	Rise		Fall		Rise		Fall			of W	ells	
	Min	Max	Min	Max	0 to 2	2 to 4	>4	0 to 2	2 to 4	>4	Rise	Fall
25	0.75	3.33	0.75	7.88	11 44.0%	5 20.00%	0 0%	2 8%	5 20%	2 8%	16	9

Long Term Fluctuations- November (2002 to 2011)

A comparison of the water level observed in November 2012 with the average water level observed in the month of November during last one decade (2002-2011) reveals that rise in water level ranged from 0.01 to 5.89 mbgl and fall ranged from 0.15 to 9.77 mbgl. 44% of the wells had shown rise in the ground water level whereas 56 % of the wells have shown fall in the water level.

Table: 15- Categorisation of Changes In Water Level During November2012 with respect to Decadal Average of November (2002 to 2011)

	Range of Fluctuation (m)					No. of Wells Showing Fluctuation						Total No.	
No of well analysed	Rise Fall		all	Rise			Fall			of Wells			
	Min	Max	Min	Max	0 to 2	2 to 4	>4	0 to 2	2 to 4	>4	Rise	Fall	
25	0.01	5 90	0.15	0.77	8	2	1	10	1	3	11	1.1	
	0.01 5.89	.01 5.89 0.15	9.77	32 %	8 %	4 %	40%	4%	12 %	11	14		

4.2 Ground Water Resources

The ground water resources of the district were calculated as on March 2011 in collaboration with the Government of Gujarat using the methodlogy suggested by Ground Water Resource Estimation Committee (GEC-97). These resources were computed after reorganisation of the districts.

4.2.1 Ground Water Recharge

The Annual Ground Water Recharge varies form 1601.62 ha.m (Barwala taluka) to 20271.87 ha.m (City-Dascroi Taluka). The Gross Annual Ground Water Recharge in the district is 61686.37 ha.m. The net available recharge after leaving natural discharge from monsoon period varies from1521.54 ha.m (Barvala Taluka) to 19258.28 ha.m (City-Dascroi Taluka). The net available recharge in the district is 58309.42 ha.m.

4.2.2 Ground Water Draft

The ground water draft from irrigation and Domestic /Industrial sources is presented in Table:16. The Existing Gross Ground Water Draft for all uses varies form 942.90 ha.m (Barwala taluka) to 19977.50 ha.m (City-Dascroi Taluka). The Gross Ground Water Draft for All uses in the district is 45693.67ha.m.

4.2.3 Ground Water Balance for Irrigation

The irrigation potential available for future use of ground water has been computed leaving the ground water projected for allocation for the domestic and industrial requirements (for Next 25 Years) for all the talukas. It varies from -14341 ha.m (City-Dascroi Taluka) to 576 ha.m (Ranpur taluka). The total irrigation potential available for future use of ground water in the district is -13247 ha.m.

Sr. No.	Assessment Unit/ District	Total Annual Ground Water Recharge	Natural Discharge during non- monsoon season	Net Annual Ground Water Availability	Existing Gross Ground Water Draft for irrigation	Existing Gross Ground Water Draft for domestic & industrial water supply	Existing Gross Ground Water Draft for All uses
1	Barvala	1601.62	80.08	1521.54	816.40	126.50	942.90
2	Bavla	4573.27	228.66	4344.61	1341.40	255.00	1596.40
3	City-Dascroi	20271.87	1013.59	19258.28	14685.50	5292.00	19977.50
4	Detroj- Rampura	5852.75	585.28	5267.48	3851.60	147.00	3998.60
5	Dhandhuka			5	SALINE		
6	Dholka	4624.67	231.23	4393.43	3641.60	406.77	4048.37
7	Mandal	3599.21	179.96	3419.24	1555.00	99.00	1654.00
8	Ranpur	4372.32	218.62	4153.71	2689.60	144.30	2833.90
9	Sanand	11668.25	583.41	11084.83	6316.00	366.00	6682.00
10	Viramgam	5122.41	256.12	4866.29	3594.00	366.00	3960.00
	TOTAL	61686.37	3376.96	58309.42	38491.10	7202.57	45693.67

Table: 16- Ground Water Resource Potential

(in ha m)

4.2.4 Level of Ground Water Development & Stage

The level of Ground Water Development varies between 36.74 % (Bavla Taluka) and 103.73 % (City-Dascroi Taluka). The overall development in the district is 78.36 %. One taluka is categorised as Over Exploited and one taluka as Critical. Two talukas are categorised as Semi Critical and Five Talukas are Safe. One taluka is Saline.

								(in ha m)
Sr. No.	Assessment Unit/ Taluka	Net Annual Ground Water Avail- ability	Existing Gross Ground Water Draft for irrigation	Existing Gross Ground Water Draft for All uses (4+5)	Allocation for domestic and industrial require-ment supply upto next 25 years	Net Ground Water Availability for future irrigation developme nt (3-4-7)	Stage of Ground Water Development {(6/3)*100} (%)	Categorizat ion for future ground water develop- ment
1	2	3	4	6	7	8	9	
1	Barvala	1521.54	816.40	942.90	169.00	536.14	61.97	Safe
2	Bavla	4344.61	1341.40	1596.40	342.00	2661.21	36.74	Safe
3	City- Dascroi	19258.28	14685.50	19977.50	7091.00	0.00	103.73	Over Exploited
4	Detroj- Rampura	5267.48	3851.60	3998.60	197.00	1218.88	75.91	Semi critical
5	Dhandhuka				SALINE			
6	Dholka	4393.43	3641.60	4048.37	545.00	206.83	92.15	Critical
7	Mandal	3419.24	1555.00	1654.00	133.00	1731.24	48.37	Safe
8	Ranpur	4153.71	2689.60	2833.90	193.00	1271.11	68.23	Safe
9	Sanand	11084.83	6316.00	6682.00	490.00	4278.83	60.28	Safe
10	Viramgam	4866.29	3594.00	3960.00	437.00	835.29	81.38	Semi critical
тот	AL	58309.42	38491.10	4569.67	9597.00	12739.54	78.36	Semi critical

Table: 17- Stage of Ground Water Development

4.3 Ground Water quality

4.3.1 Unconfined aquifer (Phreatic)

The chemical quality of ground water in the phreatic aquifer shows considerable variation. Highly saline nature of formation water, akin to brine occurs in the 'Bhal' area. It is fresh a) in the north eastern part of the district at taluka, b) in the north eastern of the district, covering upper eastern half of Viramgam taluka and in the south western part of the district covering western part of Dhandhuka Taluka.

4.3.2 Confined aquifers

The ground Water quality in the deeper aquifers (with-in about 300m depth) which may also be called as user confined aquifer is generally fresh (TDS< 2000 ppm) in the north eastern and central parts and is good for drinking as wells as Irrigation purpose. Deterioration of ground water quality is observed

from recharge area in the north-east to discharge area in south west. chemical quality of ground water down to 300 to 350 m is generally good with TDS less than 2000 ppm in the area north covering part of Sanand taluka and further north-east covering Dascroi taluka. Gradual increase in salinity toward 'Bhal' area in south and south-western direction and towards west in the northern half of Viramgam taluka is recorded. The tube wells tapping the deeper aquifer (i.e. below 250 meters) at the 'Bhal' area in Dholka taluka (Kalyangadh, Bagodara) etc recorded better quality of ground water (EC around 3000 μ s/cm) under artesian conditions during early sixties and seventies.

The fluoride concentration in the ground water of both phreatic and confined aquifer exceeds permissible limit (1.5 ppm) at many places in the district.

Ground water Quality is monitored through Ground water Monitoring stations in the district. Analysis of ground water quality data for May 2012 is presented as below.

Chemical constituents	Unit	Minimum	Maximum
TDS		541 - Kundali	8435- Dalod
рН		8.10- Davalia	8.80- Mandal
Sp. Conductanc e	µS/cm at 25⁰C	808- Kundali	12590- Dalod
HCO ₃	mg/l	232-Rajpada	1074- Dalod
CI	mg/l	71-Kundali	3302- Dalod
NO ₃	mg/l	6-Viramgam	70 -Kumarkhan
SO4	mg/l	36-Kundali	1300-Kumarkhan
F	mg/l	0.45- Endla, Rajpada	6.25-Kumarkhan
Ca ⁺⁺	mg/l	16-Barwala	220-Kumarkhan
Mg ⁺⁺	mg/l	22-Dealia	207- Dalod
Fe	mg/l	0.00 – Barwala, Endla, Ghuma, Kumarkhan, Viramgam	0.6 -Rajpada
ТН	mg/l	150- Devalia	1300- Dalod
Na⁺	mg/l	74- Kundali	2246-Kumarkhan
K⁺	mg/l	0.0- Barwala	193- Ghuma

Table: 18-Range of Different Chemical Constituents in Ground Water

Status of Ground Water Development (Taluka wise)

4.3.3 Feasibility, Yield potential, Depth and Dia of ground water abstraction structures.

Taluka wise Feasibility, Yield potential, Depth and Diameter of ground water abstraction structuresis presented in Table 19.

Taluka	Area Type	Wells feasible	Suitable drilling technique	Depth of well (m)	Diameter	Discharg e (Ipm)
	Soft	Dug well	Manual	10-25	1-3 m	200-300
	Rock		Direct/	50-100	200-250 mm	200-300
Parvala	Area	Tubewells	Reverse Rotary	100-200	200-250 mm	600-1000
Darvala		Dug well	Manual	10-25	1-3 m	60-150
	Hard Rock Area	Shallow Tube Wells	Down to the Hole Hammer (DTH)	100-200	200-250 mm	100-300
Bavla, Dholka,	Soft	Dug Well	Manual	15-30	1-3 m	200-300
Mandal,	Rock		Direct/ 10		200-250 mm	600-1000
Sanand & Viramgam	Area	Tube Wells	Reverse Rotary	100-300	00-300 200-250 mm	
			Manual	10-25	1-3 m	200-300
City- Dascroi	Soft	Dug wen	Martual	15-30	1-3 m	200-300
	Rock		Direct/	50-100	200-250 mm	200-400
	Area	Tube Wells	Reverse Rotary	100-300	200-250 mm	1000-1200
Detroi-	Soft	Dug Well	Manual	15-30	1-3 m	200-300
Rampura	Rock Area	Tube Well	Direct/ Reverse Rotary	100-300	200-250 mm	1000-1200
			Manual	10-25	1-3 m	200-300
	Soft	Dug wen	Mariuar	15-30	1-3 m	200-300
Dhandhuka	Rock		Direct/	50-100	200-250 mm	200-400
	Area	I ube Wells	Reverse Rotary	100-200	200-250 mm	600-1000
	Soft	Dug well	Manual	10-25	1-3 m	200-300
	Rock Area	Tube Wells	Direct/ Reverse Rotary	50-100	200-250 mm	200-400
Ranpur		Dug well	Manual	10-25	1-3 m	60-150
	Hard Rock Area	Shallow Tube Wells	Down to the Hole Hammer (DTH)	100-200	200-250 mm	100-300

Table: 19- Feasibility, Yield potential, Depth and Dia of ground water abstraction structures

4.3.4 Drinking water wells and water supply based on groundwater sources

Taluka	No. of Dugwell	No. of Tube Wells	No. of Hand Pumps	Depth Range (m)	Discharge range (LPM)
Barvala	16	1	11	16-90	10
Bavla	-	48	-	150-300	400-800
City-Dascroi	-	93	-	120-300	400-800
Detroj-Rampura	-	55	-	230-400	400-800
Dhandhuka	67	-	1	8-35	10
Dholka	5	66	-	12-280	400-800
Mandal	-	37	-	230-350	400-800
Ranpur	-	-	34	60-90	-
Sanand	-	67	-	200-300	400-800
Viramgam	-	69	-	180-400	400-800

Table: 20- Drinking water wells and water supply

Source: GWS&SB

4.3.5 Type of pumps and water lifting devices for Irrigation dugwells, shallow tubewells and deep tubewells.

Table: 21-Dugwells

Taluka	Electric pumps	Diesel pumps	Wind mills	Solar pumps	Man/Ani. Operated	Others	Total
Barvala	242	231	4	0	0	0	477
Bavla	443	1114	26	1	41	9	1634
City-Dascroi	1554	1354	3	0	67	48	3026
Detroj-Rampura	118	146	41	16	54	0	375
Dhandhuka	277	289	4	0	0	0	570
Dholka	333	423	5	0	0	0	761
Mandal	247	55	3	0	28	0	333
Ranpur	265	1256	4	2	5	0	1532
Sanand	1495	545	3	0	1	2	2046
Viramgam	3	859	7	0	1	1790	2660

Table: 22- Shallow Tubewells

Taluka	Electric pumps	Diesel pumps	Wind Solar mills pumps		Man/Ani. Operated	Others	Total
Bavla	79	168	0	0	1	3	251
Dholka	63	50	1	0	0	0	114
Mandal	1	0	0	0	0	0	1
Sanand	50	71	1	0	0	0	122
Viramgam	34	93	0	0	2	0	129

Table: 23- Deep Tubewells

Taluka	Submersible pumps	Turbine pumps	Others	Total
Barvala	68	0	0	68
Bavla	342	0	1	343
City-Dascroi	2218	0	1	2219
Detroj-Rampura	444	0	6	450
Dhandhuka	16	0	0	16
Dholka	1525	5	9	1539
Mandal	368	0	0	368
Ranpur	497	12	8	517
Sanand	655	5	34	694
Viramgam	428	24	20	472

4.3.6 Irrigation scenario from ground water sources

4.3.6.1.1 Dugwells

As per MI census 2000-01 there are 13414 dugwells out of which 2406 are in use. Irrigation potential created through these dugwells is 77251 sq. km and potential utilized is 62349 sq. km. area.

4.3.6.1.2 Shallow tubewells

As per MI Census 2000-01 there are 617 shallow tubewells out which 564 are in use. The irrigation potential created is 6550 sq. km and utilized is 5186 sq. km. area.

4.3.6.1.3 Deep Tubewells

As per MI census 2000-01 there are 6686 deep tubewells in the district out of which 5254 are in use. The irrigation potential created is 109303 sq. km. are and potential utilized is 77748 sq. km. area.

Following is the talukawise detail of irrigation potential for ground water sources

Table: 24- Talukawise detail of irrigation potential for ground water sources

	Dug	wells	Shallow t	ubewells	Deep tubewells			
Taluka	Potential created	Potential utilized	Potential created	Potential utilized	Potential created	Potential utilized		
Barvala	61592	51143	0	0	14025	11595		
Bavla	4829	3090	2816	2333	5670	3608		
City- Dascroi	280	224	0	0	15685	11040		
Detroj- Rampura	0	0	0 0		10307	7913		
Dhandhuka	3159	2411	0	0	59	44		
Dholka	2041	1711	1274	995	20936	15959		
Mandal	12	8	0	0	7118	6957		
Ranpur	1209	974	0	0	2381	1670		
Sanand	766	497	836	664	20359	10353		
Viramgam	3327	2291	1624	1194	12763	8609		

5. Ground Water Management Strategy

5.1 Ground Water Development

As per the GWRE, 2011 report, out of Ten Talukas of the district, One Taluka is Over Exploited and One Taluka is Critical, Three talukas are categorised as Semi Critical, Five Talukas are Safe and One Taluka as Saline. The level of Ground Water Development varies from 36.74 % (Bavla Taluka) to 103.73 % (City-Dascroi Taluka). The overall development in the district is 78.36 %, and as a whole the Ahmedabad district is Semi Critical. Improvement in Groundwater development is observed as a perusal of GWRE 2004, 2009 and 2011. The district was categorized as Over Exploited during GWRE 2004 and 2009 and now as per GWRE 2011 it falls in Semi Critical Category, leaving some scope for development of the ground water resources. Dhandhuka taluka has potential but the phreatic aquifer being saline, further development is not possible. In the semi critical blocks the ground water may be developed along with rain water harvesting measures.

5.2 Water Conservation and Artificial Recharge

The suitable recharge structures feasible in the district are Percolation tanks/ponds, Recharge wells, recharge shaft, check dams, nalla bunds etc depending on the terrain conditions.

In the phreatic aquifers with deep water levels and desaturation, spreading channels, recharge pits, recharge ponds etc are suitable to utilize surplus runoff and tail end releases from the canals.

In the confined aquifers artificial recharge by indirect injection technique is suitable that is dual purpose connector wells. These recharge wells should have screens against upper saturated aquifer and also against the targeted confined aquifer. it would function under gravity since the piezometric level of confined aquifer is much below phreatic water level.

Various rainwater harvesting schemes depending on the suitable hydrogeological conditions have been constructed in the district viz. Check dams, Recharge tube wells, deepening the of the village ponds etc and have shown good impact on the groundwater scenario.

In the South- western parts of the district in regions of hard rock formations suitable recharge structures are percolation tanks/ Ponds, Recharge wells, Check Dams, Nalla bunds etc.

Taluka	Formation /Aquifer	Suitable Artificial Recharge Structures			
Barvala					
Bavla					
City-Dascroi		Percoaltion Tanks/ Ponds, Recharge Wells, Recharge Shafts			
Detroj-Rampura					
Dhandhuka	Soft Rock				
Dholka					
Mandal					
Sanand					
Viramgam					
Ranpur	Hard Rock	Percolation Tanks/ Ponds, Recharge Wells, Check Dams, Nalla bunds			

Table: 25- Taluka wise Suitable Artificial Recharge Structures

6. Ground Water Related Issues and Problems

- Over exploitation of ground water is a major issue in some parts of the district resulting in the fast depletion of this resource. Piezometric heads of deep confined aquifer has also declined sharply owing to the huge withdrawal. In some parts of the district phreatic aquifers are desaturated needing urgent attention.
- Replacement wells, increase in well depth, prime mover, declining well yields are also the major issues.
- Flood irrigation technique which is practised in the area is also the major cause of wastage of ground water as there is no control on the watering depth.
- Control on the area under fodder crops like alfalfa is also to be done asthis is water intensive crop and consumes much more water compared to other crops like wheat, bajra, castor, mustard etc.
- Although ground water quality for irrigation practice is within the limit in most parts of the district but many parts of the district are having high fluoride (>1.5 ppm) content (more than 161 villages) (Source: GWSSB)
- Awareness among the people regarding rainwater harvesting and artificial recharge.

7. Mass awareness and Training Activity

7.1 Masawareness Programmes

Till now three mass awareness programme have been conducted in the district at Village Vatva, Bhawda and Ahmedabad.

S.No	Taluka	Place	Date	No. of Participants		
1.	City	SDA School	10 th Feb. 2005	200		
2.	Dascroi	Primary School Bhawda	29 th March 2005	200 (Including Students and Teachers)		
3.	City	Kendryia Vidhalaya	25 th July 2003	200		

Table: 26 Mass Awareness Programmes

7.2 Water Management Training Programmes

Till now three Water management training programme have been conducted in the district by CGWB.

S.No	Taluka	Place	Date	No. of Participants (App.)
1.	City	MGL Institute	01-3 rd Dec. 2005	20
2.	City	AMA Seminar Room	07 th March 2008	20
3.	City	Hotel Inder Residency	5 th March 2011	30

Table: 27 Water Management Training Programmes

8. Areas Notified by CGWA/SGWA

None of the talukas have been notified by CGWA.

9. Recommendations

- There is a great need for management of resources for sustainable development. The north-eastern part of the district comprising Dascroi City taluka and Dholka taluka needs immediate attention of the authorities to safeguard the groundwater scenario. These areas need conservation and augmentation measures of the groundwater resources. The declining trend of the groundwater level over the years has resulted to near complete desaturation of the aquifers in certain parts of the region.
- Suitable ground water legislation may be enforced and all future ground water exploitation by deep tube wells be completely banned
- As a conservation measure, farmers should be encouraged and educated to adopt modern irrigation techniques like drip, sprinkler irrigation etc. to effect minimum withdrawal and maximum utilisation of groundwater. Suitable cropping pattern can also be conceived and implemented that require lesser water-consumption.
- The augmentation measures like diverting of excess flow to artificial recharge ponds and other suitable structures, designing and construction of rainwater harvesting structures in the city area are to be planned and implemented. Liberal institutional finance with some attractive subsidy can be made available for those who come forward to implement the above schemes.
- The land holding of the group of farmers under public tubewell irrigation should be brought under the provision of the change in crops, irrigation practices and installation of drip/sprinkler irrigation technique, soft term institutional finances to the farmers and liberal subsidies in equipments are suggested.

- The district bears a multi-layered aquifer systems. Development is taking place at considerable rate without proper assessment of parameters of individual aquifer systems. Precise data of individual aquifer groups are to be collected for proper assessment and management of the same.
- The potable water bearing deeper aquifers encountered in wells with artesian flow in the border area of 'Bhal' in Dholka taluka are to be studied properly. Its aquifer geometry towards further south and southwest are to be ascertained along with its parameters by taking a few more exploratory drilling at suitable locations in the district.
- The aquifers of the deeper Miocene formations identified at some deep exploratory boreholes, needs further detailed study in the area. Its aquifer geometry is to be delineated and parameters are to be collected properly by planning and implementing suitable exploratory drilling programmes in the district.
- Since considerable areas are characterised by saline water bearing aquifers, research can be taken up to find suitable salt resistant crops for the area for effective use of saline waters.
- In the areas where poor quality water overlies potable water bearing aquifers, the poor quality water can be used for washing and the nondrinking uses. The potable water can be tapped for drinking and other kitchen uses only where domestic water supply depends on groundwater.
- The fluoride occurrence in the ground water in the district is of considerable amount at many places. A detailed study has to be made so that necessary measures can be taken up in the proposed water supply scheme.

Annexure 1	Taluka w	vise Hyd	Irogeolog	gical Para	ameters
-------------------	----------	----------	-----------	------------	---------

	Min.		Depth	zones		Cemen	t seal	Swl														T
			constru									>				-						
	Max.	ed		From	То	Betwee	n	mbgl		c	0	ivit		÷	.≥	- e						
		Ē	-						ogl	ŇO	r-ge	s s		ö	stivi	No ₂			с,			
	Avg.	рч	cted(m)	(m)	(m)	(m)			Ē	p -/	sha	S		< i-fi		dis.			ŠA			0
		n)				(m)			ML	raw	is.	an	<u>ч</u>	pec	lect	otal oli-c	ء	AR	2	SP	sc	ŏ
		<u> </u>							д_			F	₽.	νä	шС	о н об	₽.	S	A	S	R	Ö
	Min.	133.24	115.66	40.25	112.41	66	60	14.10	20.85	1.10	420	75.00	1.25	0.89	1060	690	7.4	3.94	10.60	52.44	0.10	0.23
	Max.	700.00	269.73	164.89	266.67	191	188	88.35	92.40	21.20	3420	13316.73	472.74	15.99	3900	2350	8.20	19.33	45.28	88.82	10.15	7.51
ē																						_
asc	Avg.	212.4	195.66	99.18	191.22	105	104	49.69	55.33	5.68	1588	1072.47	22.47	6.44	2083	1301	9.97	11.08	25.73	78.17	5.34	1.15
ő																						_
	Min	165.00	159 65	84 93	156 01	74	69	10 20	12 50	1 60	699	184 64	3 28	1.35	2000	1220	7 60	0.29	14 99	57 49	0.65	1 28
		100.00	100.00	04.00	100.01			10.20	12.00			101.01	0.20		2000			0.20	14.00	01.40	0.00	
	Max.	242.00	206.70	132.00	203.50	125	120	50.10	60.85	14.00	3032	2844.00	59.68	15.79	3770	2430	8.00	22.13	42.04	91.71	5.4	6.25
ka						-	_											-	-	-	-	
P	Avg.	209.15	187.13	101.29	183.64	91	87	26.40	31.95	5.52	1636	787.67	15.20	6.36	2738	1667	7.77	10.25	23.91	72.14	2.45	3.19
															•			•			<u> </u>	
	Min.	161.53	156.25	82.00	153.00	63	58	8.60	14.40	3.80	757	57.55	0.99	0.57	1610	980	7.60	6.20	13.65	63.21	0.20	1.05
																					<u> </u>	-
Þ	мах.	347.87	336.00	152.00	332.00	143	138	56.40	//.09	33.00	2274	1035.02	22.16	9.35	2700	1670	8.00	28.34	44.74	94.71	3.60	3.28
nar	Ava	221 29	220 70	114.02	217 29	104	00	22.62	44.92	12 27	1276	220 70	6.54	2.06	1069	1220	7 76	12 70	22 72	79.22	1 97	2.08
Sa	Avg.	231.30	220.70	114.95	217.20	104	33	33.02	44.05	12.27	13/0	330.79	0.34	2.90	1900	1229	1.10	12.75	23.75	10.25	1.07	2.00
																					<u> </u>	
	Min.	181.36	163.10	89.00	159.47	70	65	15.10	25.73	2.05	757	52.30	1.03	0.39	1800	1090	7.6	6.79	15.61	59.19	0.50	1.09
ε	Max.	270.00	260.52	156.56	258.08	225	220	80.56	94.35	33.70	2274	1798.22	21.55	9.59	5780	3470	8.00	30.92	57.69	95.13	4.20	9.18
ma																						
lira	Avg.	228.17	217.75	119.87	212.88	109	105	46.56	56.82	10.14	1377	398.96	6.65	3.10	2707	1650	7.75	15.44	29.82	80.53	2.27	4.41
> ·	1																					

HYDROEOLOGICAL MAP AHMEDABAD DISTRICT

Legend

	Wells Feasible	Rigs Suitable	Depth of Well (m)	Discharge (lpm)	Artificial Recharge Structure Suitable		
- o - o -	Dug Well	Manual	10-25	200-300	Percolation Tanks/ Ponds, Recharge Wells,		
Soft Rock Aquifer	Tubewell	Direct Rotary, Reverse Rotary	50-100	200-400			
_ o _ o _	Dug Well	Manual	15-30	200-300	Percolation Tanks/ Ponds, Recharge Wells,		
Soft Rock Aquifer	Tubewell	Direct Rotary Reverse Rotary	100-200	600-1000	Recharge Shaft		
	Dug Well	Manual	15-30	200-300	Percolation Tanks/ Ponds, Recharge Wells,		
Soft Rock Aqyufer	Tubewell	Direct Rotary Reverse Rotary	100-300	1000-1200	Recharge Shaft		
× × × × × × × ×	Dug Well	Manual	10-25	60-150	Percolation Tanks/ Ponds, Recharge Wells,		
Hard Rock Aquifer	Shallow Tubewell	Down the Hole Hammer (DTH)	100-200	100-300	Check Dams, Nalla Bunds.		
Saline Area	Not Suitable fresh water po	except localised ockets					
20	Pre-monsoon (1993-2000) I Level (mbgl)	Decadal mean Depth to Water	2000	Electrical Con	ductivity (µS/cm at 25° C)		
E	Fluoride > N Permissible L	/laximum .imit (1.5 mg/l)	đ	Nitrate > Maximum Permissible Limit (100 mg/l)			
€£	Over Exploite	ed Taluka	est a	Dark Taluka	Dark Taluka		
\sim	Drainage		⊠/奢	District/Taluka	a HQ		

Other Information

Geographical Area	7,396 sq. km
No of Blocks/ Talukas	11
Population (2001 Census)	58,08,378
Average Annual Rainfall	827 mm
Range of Average Temperature	20-31 °C
Major Drainage System	Sabarmati
Major/ Medium Irrigation Scheme	Fatehwadi
Major Geological Formation	Soft Rock: Alluvium
	Hard Rock: Deccan Trap
Utilizable Ground Water Resources	642 MCM/Yr
Net Ground Water Draft	469 MCM/Yr
Stage of Ground Water Development	73 %
Blocks Showing Intensive Ground Water	Ahmedabad City, Bavla, Daskroi,
Development	Dholka, Sanand

State Govt. Data

Monitoring Network carried out by Gujarat Water Resources Development Corporation Ltd. (GWRDC) Govt. of Gujarat Monitoring Network carried out by Gujarat Water Resources Development Corporation Ltd. (GWRDC) Govt. of Gujarat

1. Introduction

Gujarat Water Resources Development Corporation Ltd. is functioning under the Narmada Water Supply & Water Resources Department of Govt. of Gujarat and is carrying out ground water investigation, exploration, management & recharge works in the State of Gujarat.

2. Monitoring Network carried out by (GWRDC)

At present Regional Data Processing center monitors 10 Nos. of observation wells and 07 Nos of tubewells monitored during May & October every year i.e. Pre & Post monsoon. In addition to these 30 Nos. of Narmada Canal Command area piezometer are monitored four times in a year i.e. January, May, August & October since 1992-93. In Ahmedabad district 42 Nos., of piezometers drilled under Hydrology Project, are also monitored monthly from 2001-02. Water samples are collected in the month of May & October (Pre & Post monsoon) and during the month of Jan, May, August and October for Narmada Canal Command area piezometers and Hydrology project piezometers. In Ahmedabad district to observe water level rise due to construction of check dams under different schemes, total 07 wells are monitored. Monitoring of these wells is carried out during four times i.e., in January, May, April & October in a year along with collection of water samples.

3. Ground water condition

Ground water occurs under Unconfined and Confined conditions. The average rise in water level for five years (2003-2007) in the district for unconfined aquifer is observed to vary from 01.82 m. to 03.03 m. in alluvial formation and in hard rock formation, it is observed to vary from 04.87 m. to 06.97 m.

4. Taluka wise information on water level behaviour, hydrogeology and rainfall

Barwala: The average water level rise during pre and post-monsoon is 04.87 m. in Hard-rock area. The average rainfall is 618.51 mm.

Bavla: The average water level rise during pre and post-monsoon is 02.42 m. in Alluvium area. The average rainfall is 667.07 mm.

City-Daskroi : The average water level rise during pre and post-monsoon is 01.96 m. in Alluvium area. The average rainfall is 736.18 mm.

Detroj-Rampura : As there is no purpose built observation station for water level measurement to study the water level behavior Rp. formula is used for the ground water estimation. The average rainfall is 613.00 mm.

Dhandhuka : The entire area consist of alluvium formation which is totally saline The average rainfall is 636.00 mm.

Dholka :The average water level rise during pre and post-monsoon is 02.43 m. in Alluvium area. The average rainfall is 683.96 mm.

Mandal : The average water level rise during pre and post-monsoon is 03.03 m. in Alluvium area. The average rainfall is 609.62 mm.

Ranpur : The average water level rise during pre and post-monsoon is 06.97 m. in Hard-rock area. The average rainfall is 629.73 mm.

Sanand : The average water level rise during pre and post-monsoon is 01.82 m. in Alluvium area. The average rainfall is 662.58 mm.

Viramgam : The average water level rise during pre and post-monsoon is 01.91 m. in Alluvium area. The average rainfall is 622.67 mm.

Taluka TDS (ppm) Barwala: 690-50000 Bavla 1000-4000 City-Daskroi 900-2500 Detroj-Rampura 1500-3500 Dhandhuka Saline Dholka 1500-3500 Mandal 1600-3200 Ranpur 300-1900 Sanand 1200-4000 Viramgam 1500-3200

5. Taluka wise Ground Water Quality

