

For official use Technical Report Series

DISTRICT GROUNDWATER BROCHURE MAHESANA DISTRICT GUJARAT

Compiled By A. K. Sinha Assistant Hydrogeologist

Government of India Ministry of Water Resources CENTRAL GROUND WATER BOARD West Central Region Ahmedabad

March 2014

MAHESANA DISTRICT AT A GLANCE

SL	Items	Statistic	S		
No.	Concret Information				
1	General Information	4 271			
	i) Geographical area (Sq. Km)ii) Administrative Divisions (As on 3/2011)	4,371			
	Number of Talukas	9			
	Number of Villages	593			
	iii) Populations (As per 2011 census)	20,27,72	7		
	iv) Average Annual Rainfall (mm)	827			
2.	GEOMORPHOLOGY	021			
	Major Physiographic Units	Alluvial	olain		
	Major Drainages	Rupen &			
3.	LAND USE (Sq. Km)				
•-	a) Forest area	72			
	b) Net area sown	3,516			
	c) Cultivable area	4,509			
4.	MAJOR SOIL TYPES: Sandy soil, rocky soil	· ·			
5.	AREA UNDER PRINCIPAL CROPS (sq.km)				
	Rice-80, Jowar-10, Bajra-720, Wheat-520, Total Cerea	ls-1370, Gra	m-10,		
	Other Pulses-260, Total Pulses-260, Total Food Grains	-1630, Grou	ndnut-30,		
	Seasemum-130, Rapes and Mustard-420, Total Oil Sea	eds-990.			
6.	IRRIGATION BY DIFFERENT SOURCES				
	(Areas and numbers of structures)	No.	Area		
			(Sq.		
			Km.)		
	Dugwells	8,202	206		
	Tube wells/Borewells	11,220	2289		
	Tanks/Ponds/Water conservation structures		18		
	Canals		206		
	Other Sources		9		
	Net Irrigated area (sq. km.)	2186			
	Gross Irrigated area (sq. km.)	2733			
7.	NUMBERS OF GROUND WATER MONITORING WELLS				
	CGWB (As on 31-03-2012)	60			
	No of Dug Wells	16			
	No of Piezometers	44			
8.	PREDOMINANT GEOLOGICAL FORMATIONS:				
	Alluvium in major parts, granite, gneiss in eastern and r district.	north easterr	n part of		

9.	HYDROGEOLO	DGY										
		r Water Bearing Format unconfined to confined condit under unconfined condition in g	ion in C	Quaternary alluvium and								
		Depth to water Level	during	2011-12								
	Period	Phreatic A	quifer (DTW)								
		Minimum		Maximum								
	Pre Monsoon	2.15 (Budasan)	(Ra	34.35 ampur Kot Juna Pz I)								
	Post Monsoon	1.10 (Visnagar IV)	33.77 (Rampur Kot Juna Pz I)									
	Long	Term (10 Years) Water Level	Trend	(2003 to 2012)								
	Trend											
	Rise (m/Yr)	0.0048 (Asjol) to 7.4589 (Vijapur I)		6 (Jaska Sy_4) Pz II to 8 (Mahesana IV)								
	Fall (m/Yr)	0.0803 (Karali II) to 3.5682 (Motipura Pz III		0803 (Karali II) to 3.5682 Aotipura Pz III)								
10.	GROUND WAT	ER EXPLORATION BY CGW	B (As o	n 31-03-2012)								
		ed (EW, OW, Pz, SH, Total) PZ 15, SH 1, Total:.37										
	Depth Range(m	, ,	22 - 6									
4.4	Discharge (Litre	• • •	180 - 2	2496								
11		emical constituents more than		Fluoride:189 Villages Salinity :107 Villages Nitrate : 18 Villages								
	Type of water			Predominant bicarbonate-Chloride type								
12.	DYNAMIC GRO	OUND WATER RESOURCES	(2011)- i									
	(MCM)	ishable Ground Water Resour	ces	880.25								
	Net Ground wa	ater Availability (MCM)		836.24								
	Projected Dem upto 2025 (MC	nand for Domestic and industria CM)	al Uses	74.55								
	Stage of Grou	nd Water Development (%)		116.08%								
13	AWARENESS	AND TRAINING ACTIVITY (as	on 3/20	12)								
	No of Participar			1 300 Thol Village								
	Water Manager	ment Training Programmes		Not Organised								

	organized (No of Participants)	
14	EFFORTS OF ARTIFICIAL RECHARGE & RAIN WA	TER HARVESTING (31-
	3-2014)	•
	Projects completed by CGWB (No & Amount spent)	Nil
	Projects under technical guidance of CGWB	Nil
	(Numbers)	
15	GROUND WATER CONTROL AND REGULATION (3/2012)
	Number of OE Blocks	8
		(Becharaji, Kadi,
		Kheralu, Mahesana,
		Satlasana, Unjha,
		Vijapur, Visnagar)
	Number of Critical Blocks	1
		(Vadnagar)
	Number of Semi Critical Blocks	Nil
	Number of Safe Blocks	-
	Number of Saline Blocks	3
		(Becharaji, Kadi,
		Mahesana)
	No. Of Blocks Notified by CGWA	Nil
16	MAJOR GROUND WATER PROBLEMS AND ISSUE	S
	i) Declining Groundwater levels/ Piezometric	heads in user aquifers
	ii) Increasing depth of tubewells	
	iii) Increasing instances of high fluoride	
	iv) Groundwater contamination due to unplann	ed construction and poor
	technical design of tube wells	
	 v) Awareness amongst villagers on water cons 	servation techniques
	vi) Demand supply management	

DISTRICT GROUNDWATER BROCHURE MAHESANA DISTRICT

1.0 Introduction

Mahesana district occupies 4371 sq. km. area between 23°00' and 24°09' north latitudes and 71°26' and 72°51' east longitudes in the northern part of Gujarat state. It falls in the survey of India degree sheet numbers 45D and 46A. It is bounded by Banaskantha and Patan in north, Patan and Surendranagar in west, Ahmedabad and Gandhinagar in south and by Sabarkantha in east. It has nine talukas, having 593 villages. total population of the district as per 2011 census is **20,27,727.**Location Map of the district is presented as Figure-1 and Administrative Map as Figure-2..

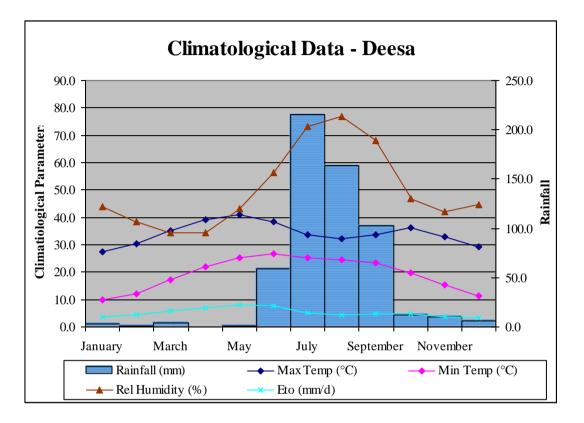
Rivers Rupen and Khari drain part of the district. Both these rivers are ephemeral in nature and flow only during good monsoon years. The river Sabarmati forms the eastern boundary of the district with very limited catchment area in the district. Major part of the area in the district is devoid of any drainage network and does not fall in any catchment.

The surface water resources of the district are very limited. Groundwater is the main source of irrigation, about 93% of the area is irrigated by groundwater.

Studies/Activities by CGWB

Before central Ground Water Board came to existence, Heron & Ghosh, 1938 (GSI) carried out geological mapping in the north eastern part of the district. Auden, 1938 carried short term investigation of the subsoil water in the district. The first Hydrogeological investigation was carried out by B. K. Baweja during 1953-55. V. V. Rane, 1962-63 (GSI), investigated the causes of decline of water level and discharge of tubewells. M.M. Oza, 1963-67 (GSI), continued hydrogeological studies and broadly identified three aquifer systems in the district.

CGWB under UNDP assisted phase II programme carried out extensive hydrogeological studies including exploratory drilling in the area. A phreatic and confined aquifer system was deciphered down to the explored depth of 600m.


Arun Kumar (1979-80), CGWB, carried out reappraisal hydrogeological study, covering parts of Mahesana and Banaskantha districts. P. N. Phadtare (1981), CGWB, compiled "hydrogeology of Gujarat State" and discussed groundwater resource potential of the district based on earlier studies.

During 1980-85, CGWB with UNDP assistance carried out pilot project for artificial recharge of groundwater to figure out technical feasibility and economic viability of the various artificial recharge techniques/experiments in the alluvial area of the district.

Groundwater exploration by test drilling in the district commenced in fifties and was continued till 2002-2003. Apart from the exploratory wells Piezometer of various depths are also constructed in the district for periodic monitoring of the ground water regime in the district and is continued till date.

2.0 Rainfall and climate

The district has semi arid climate. Extreme temperatures, erratic rainfall and high evaporation are the characteristic features of this type of climate. Climatological data of Deesa IMD station (1951-1980) which is nearest is given in the table 1.

Table 1

Month			Humidity	Wind	Sunshine	Evapotra	Rainfall
	Maximum	Minimum	(%)	Speed	(Hours)	nspiratio	(mm)
	Temp.	Temp.		(n (
	(°C)	(°C)		kmpd)		mm/Day	
)	
January	27.3	9.8	44	129.4	8.9	3.5	2.7
February	30.2	12.0	38.5	127.7	9.5	4.3	0.9
March	35.1	17.1	34.5	136.3	10.1	5.7	4.3
April	39.0	21.9	34.5	134.6	10.8	6.8	0.1
May	41.0	25.3	43.0	184.6	11.4	8.2	1.4
June	38.5	26.7	56.5	246.7	8.7	7.5	59.2
July	33.6	25.4	73.0	201.8	5.3	5.0	215.7
August	32.2	24.5	77.0	162.2	5.4	4.4	163.2
September	33.7	23.5	68.0	122.5	7.9	4.8	102.2
October	36.1	19.7	47.0	100.1	9.6	4.7	12.6
November	33.0	15.2	42.0	103.5	9.3	3.8	10.2

December	29.3	11.2	44.5	115.6	8.9	3.3	6.3
Total							578.8
Average	34.1	19.4	50.2	147.1	8.8	5.2	

3.0 Geomorphology and Soil Type

Geomorphologically the district can be divided into three major zones

- a) Dissected hilly terrain: The north eastern part of Satlasana taluka which is made up of Delhi metasediments and post Delhi intrusives is characterised by high hills and linear ridges with narrow intermontain valleys.
- **b) Piedmont plain with inselbergs:** A belt of about 20-30 km width fringing the hilly terrain in the north eastern part of the district is characterised by moderate relief (2m/km) and is comprised of shallow alluvium with boulder/gravel beds and occasional inliers of older rocks.
- c) Alluvial plain: It is a vast sandy tract characterised by gently sloping, slightly rolling to undulatory topography owing to presence of sand dunes. the most prominent unit and covers the most part of the district.

In major part the soils are sandy in nature. In general the soils are poor to medium in fertility and water retention capacity. Most soils have good aeration, porosity and permeability. The hydraulic conductivity of the soils ranges from as low as 0 for saline and alkali soils in the western part to more than 7cm/hr for calcareous sandy soils in the north and west. Soils of the district fall in five broad categories as below.

I) Saline and alkali soils: These are typically deep, grey calcareous sandy clay loams of low permeability.

II) Calcareous sandy loams: These are generally Deep, light grey or brown sandy loams of moderate to good permeability and drainage.

III) Calcareous sandy soils: These are mostly pale yellow and brown sands & loamy sands of good depth and high permeability.

IV) Non calcic brown soils: These are characterised by pale brown to brown deep loamy sands and sandy loams of adequate to good permeability.

V) Non calcic red brown soils: These are of mixed colluvial and alluvial derivations from rocks of the Aravali system. Mostly deep loamy sands to sandy loams with adequate to good hydraulic conductivity.

4.0 Ground Water Scenario

4.1 Hydrogeology

Precambrian hard rocks, semi-consolidated Mesozoic and tertiary formations and unconsolidated quaternary alluvial deposits form multi layer aquifer system in the district. Groundwater occurs both under phreatic and confined conditions, however its development is restricted depending upon the aquifer geometry and yield characteristic of individual aquifer and/or ground water quality of the formation water. Occurrence of groundwater can be divided in two groups .Hydrogeological Map of the district is presented in figure-3

a) Ground water in fissured formation (Hard rock): The northeastern part of the district mainly in Satlasna taluka is occupied by metasediments and Post Delhi intrusives. The occurrence and movement of ground water is governed by secondary porosity i.e. thickness and extent of weathering and size& interconnections of fractures/joints.

These formations generally don't form good aquifer system. The depth of dugwells range from 15-30 mbgl and of borewells from 100-120 mbgl.Depth to water level in the dug wells varies from 5 -14mbgl and in borewells fro 15to 60 mbgl. The yield of wells range from $30-120m^3/day$ with an average of $75m^3/day$.

b) Groundwater in porous formations (Sedimentaries): Major part of the district is underlain by post Miocene alluvium and older sedimentary formations. These sediments are mainly consisted by Coarse sand, gravel, kankar, silt, clay and clay stones. Groundwater occurs both under phreatic and confined conditions in arenaceous horizons within sedimentaries. The occurrence and movement of groundwater is mainly controlled by intergranular pore spaces.

Two major aquifer units have been identified the upper unit is mostly phreatic but becomes semi confined to confined in some parts. It is designated as aquifer A and consists of relatively coarse grained sediments. The lower unit comprising a few hundred metre of alternating sand and clay beds form confines aquifer system. It is subdivided into B, C D and E in post Miocene sediments and aquifer F and G in the Miocene sediments. Himmatnagar sandstone (Cretaceous) forms local aquifer in the north eastern part and has been designated as aquifer H. The post Miocene aquifers are generally coarse to fine grained sand with occasional gravel beds. The Miocene aquifers are mainly fine to medium grained sand, sandstone interbedded with clay, clay stone and siltstone. Himmatnagar sandstone is generally coarse grained and friable.

4.1.1 Aquifer parameters:

Unconfined aquifer: Aquifer A: Specific capacity of phreatic aquifer in the district ranges from 31m³/hr/m to less than 1 m³/hr/m and transmissivity from 30m²/day to 1000m²/day.

Confined Aquifers

Aquifer B: Specific capacity ranges from $1.8m^3/hr/m$ to $49m^3/hr$ hr/m. Transmissivity ranges between 47 and 3400 m²/day, however it is mostly between 200-600m²/day. Storativity ranges from 0.6 -12.3x10⁻⁴.

Aquifer C: Specific capacity calculated for wells at Saola and Charasan ranges from 21.3 and 2.8m²/day/m respectively. Transmissivity was 94m²/day at Charasan EW.

Aquifer D: Specific capacity calculated for EW at Dhinoj was found to be 1.3 $m^{3}/hr/day$, the transmissivity being 69 m^{2}/day .

Aquifer E: No pumping test carried in this aquifer.

Aquifer F & G: Specific capacity calculated for wells at Charasan and Pilwai was 1.1 m³/hr/m and 1.7m³/hr/m respectively. Transmissivity was 59m²/day and 70m²/day.

4.1.2 SUBSURFACE GEOLOGY OF MAHESANA DISTRICT WITH DESCRIPTION OF AQUIFER PROPERTIES

Table 2

Stratigraphy	Formation	Lithology	Depth	Thicknes	S	Remarks
	group		to top of aquifer (m)	Range (m)	Average (m)	_
	Aquifer A	Coarse sand, gravel, pebbles and fine and clayey sand	5-71	35-125	62	Variable water quality
	Aquitard I	Clay interbedded with sand and sandy clay	78- 162	13-88	39	-
Recent to post Miocene	Aquifer B	Medium to coarse sand and gravel interbedded with sandy clay	78- 162	10-80	45	Generall y good water quality
ecent to po	Aquitard II	Clay interbedded with sand and sandy clay		13-80	37	-
Rec	Aquifer C	Medium to coarse sand in north east and fine to medium in central part interbedded with sandy clay and clay	154- 274	13-62	34	Generall y good water quality
	Aquitard III	Clay interbedded		19-172	73	-

		with sand				
		and sandy				
		clay				
	Aquifer D	Medium	229-	11-105	52	Variable
		sand	402			water
		interbedded				quality
		with sandy clay				
	Aquitard IV	Clay		11-76	44	_
		interbedded				
		with sandy				
		clay				
	Aquifer E	Fine to	300-	15-57	24	Develop
		medium sand and	542			ed in central
		sandy clay				part .
						water
						quality
						good
	Aquiclude V	Grey clay		13-148	41	-
		and claystone				
	Aquifer F	Fine to	200-	7-68	39	Variable
		medium	574			water
		sand ,				quality
		sandstone				
ЭС		interbedded with				
Miocene		siltstone				
lio	Aquiclude	Clay and		34-49	40	-
2	VI	clay stone				
	Aquifer G	Fine to	264-	9-124	48	Water
		medium	513			generally
		sand , sandstone				saline
		interbedded				
		with				
		siltstone				
Paleocene	-	Basalt			267	
Cretaceous	Aquifer H	Himatnagar	214-	98-145	121	Variable
		sandstone	547			water
						quality

Source : CGWB/UNDP Phase II

4.2 Ground Water Regime Monitoring

Groundwater regime monitoring are being carried out four times in a year during May, August, November & January. In all 60 hydrograph stations (16 Open wells & 44

purpose build Piezometers) spread over the entire district were monitored during the 2012. The groundwater level during the premonsoon period (May 2012) ranged from 2.15 m to 34.35 mbgl. Depth to water level map for the pre-monsoon period 2012 is given in figure -4. Shallowest water level of 2.15 mbgl was recorded in Budasan Village and the deepest water level of 34.35 mbgl was recorded in Rampur Kot Juna village of the district. The range of groundwater level in the district is table -4.

Table -3 Range Of Groundwater Level in Mahesana District DuringPre monsoon May 2012.

	No of well analysed	DTWL	. mbgl	No of well in different Ranges & %					
District		Min	Max	0 to 2 (m)	2 to 5(m)	5 to 10(m)	10 to 20(m)	20 to 40(m)	
Mahesana	23	3.55	34.3	NIL	4	7	9	3	
Wanesana		3.33	5	-	17.39%	30.04%	39.13%	13.04%	

The groundwater level during the post-monsoon period (Nov 2012) ranges from 1.10 mbgl to 33.77 mbgl. Spatial distribution of groundwater level in the district is shown in figure -5. Shallowest water level of 1.10 mbgl was recorded in Visnagar village and the deepest water level of 33.77 mbgl was recorded in Rampur Kot Juna village of the district. The range of groundwater level in the district is given in table-5

Table -4 Range Of Groundwater Level In Mahesana District DuringPost Monsoon November 2012.

District	No of well analysed	DTWL	_ mbgl	No of well in different Ranges & %					
		Min	Max	0 to 2 (m)	2 to 5(m)	5 to 10(m)	10 to 20(m)	20 to 40(m)	>40(m)
Mahesana	22	1.10	33.7 7	NIL	4	10	6	2	-
				-	18.18 %	45.45%	27.27%	9.09%	-

68.18% of the wells in the district showed rise in the groundwater level between May to November 2012. Rise in the district ranges from 0.32 to 9.46 m. fall is observed in 31.82% wells. Fall in the district ranges from 0.02 to 2.90 m.

Minimum rise of 0.32 m was recorded in Unava village and the Maximum rise of 9.46m was recorded in Kheralu village. Minimum fall of 0.02 m was recorded in Bhandupara and Tarabh villages and the Maximum Fall of 2.90 m was recorded in Budasan village.

Of the wells showing rise, 56.25% wells recorded rise between 0 to 2 m, 18.75 % wells recorded rise between 2 to 4m and 25% wells show rise of more than 4m between May to November 2012.

Of the wells showing fall, 57.14% wells recorded fall of 0 to m and 42.86% wells show fall between 2 to 4m. Water level fluctuation map for the pre and post-monsoon 2012 is given in figure-6.

Long term water level trend during pre-monsoon period (2003 to 2012) shows rise in water level between 0.0048 to 7.4589 m/yr and fall between 0.0803 to 3.5682 m/yr. Long term water level trend during post monsoon period shows rise in water level from 0.0096 to 2.6633m/yr and fall from 0.0803 to 3.5682m/yr.

Confined (Deep) Aquifer

Ground water from the confined aquifer system is under exploitation in a major way for various uses in the district. Tube wells range in depth from 120 to 300 m and have copious yield. The piezometric surface of confined aquifer ranges from less than 60 mbgl to to more than 150 m bgl. However, in major part, it is more than 90 m bgl. Because of excessive ground water development, consistent decline of piezometric surface is observed in the district.

4.3 Ground Water Resources

The ground water resources with talukawise details are presented below in table no 5 and presented as figure-7

			Taluka V	Vise Grour	d Water R	esources,		, Utilization		e of Grour	d Wate	r Developr	nent (2011))	
	1	1						rict : Mahes					1		
Sr	Taluka	ANNUA		NISHABLE			Natural Dischar	Net Annual		JAL GROU R DRAFT (I	ncm)	Project ed	Ground Water	Stage of Ground	Category
N o.		Rechar ge from rainfall	soon Rechar ge from other source s	Rechar ge from rainfall	Rechar ge from other source s	Total Annual Ground Water Rechar ge (3+4+5+ 6)	ge during non- monsoo n season (mcm) (5 % of 7)	Ground Water Availabil ity (mcm) (7- 8)	Irrigati on	Domest ic And Industri al uses	Total (10 + 11)	Deman d for Domest ic and Industri al uses upto 2025 (mcm)	Availabil ity for future irrigation (mcm) {(9)- (10+13)}	Water Developm ent (%) (12/9) * 100	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Becharaj i	21.37	5.83	0.00	5.47	32.68	1.63	31.04	39.70	2.79	42.4 9	3.74	0.00	136.87	Over Exploited
2	Kadi	108.32	15.00	0.00	14.42	137.74	6.89	130.85	146.88	8.98	155. 86	12.04	0.00	119.11	Över Exploited
3	Kheralu	71.21	6.24	0.00	6.80	84.24	4.21	80.03	90.42	3.47	93.8 9	4.65	0.00	117.31	Över Exploited
4	Mahesan a	147.67	16.33	0.00	17.97	181.96	9.10	172.86	189.65	13.96	203. 61	18.70	0.00	117.78	Over Exploited
5	Satalasa na	48.21	5.85	0.00	5.18	59.24	2.96	56.28	56.20	2.30	58.5 0	3.08	0.00	103.95	Over Exploited
6	Vadnaga r	51.59	4.92	0.00	18.58	75.09	3.75	71.33	61.80	3.95	65.7 5	5.30	4.23	92.17	Critical
7	Visnagar	87.48	9.58	0.00	23.47	120.53	6.03	114.50	123.25	7.67	130. 92	10.29	0.00	114.34	Over Exploited
8	Vijapur	110.84	9.83	0.00	13.16	133.82	6.69	127.13	146.34	7.22	153. 56	9.68	0.00	120.79	Over Exploited
9	Unjha	50.87	5.14	0.00	12.35	68.36	3.42	64.94	61.23	5.28	66.5 1	7.07	0.00	102.41	Över Exploited
Dis	strict Total	697.56	78.71	0.00	117.39	893.66	44.68	848.98	915.46	55.62	971. 1	74.55	4.23	114.38	Over Exploited

' Computation by RIF Method

4.4 Ground Water Quality

Ground Water Quality in the district can be divided into two groups for understanding viz. Quality in phreatic aquifers and Quality in confined/user aquifers

4.4.1 Ground Water quality in Phreatic aquifers: The ground water quality in phreatic aquifer shows wide variation in chemical quality. The entire district can be divided into three distinct zones as below.

North eastern zone characterised by fresh water of bicarbonate type with TDS less than 1000 ppm.

Central zone with water of mixed, bicarbonate-chloride type with TDS up to 3000 ppm.

South western zone with water of chloride type containing TDS more than 3000 ppm.

4.4.2 Ground Water quality in confined aquifers: The ground Water quality in the deeper aquifers (with in about 300m depth) which may also be called user confined aquifer is generally fresh (TDS< 2000 ppm) in the north eastern and central parts and is good for drinking as wells as Irrigation purpose. Deterioration of ground water quality is observed from recharge area in the north-east to discharge area in south west.

4.5 Status of Ground Water Development (Taluka wise)

Table 6					
Taluka	Wells feasible	Suitable drilling technique	Depth of well (m)	Diameter	Discharge (Ipm)
Becharaji	Tubewells	Direct Rotary, Reverse Rotary	100-300	200-250 mm	600-1200
Kadi	Dugwell	Manual	15-30	2.5-5 m	200-300
	Tubewells	Direct Rotary, Reverse Rotary	100-300	200-250 mm	600-1200
Kheralu	Dugwell	Manual	10-25	2.5-5 m	200-300
	Tubewells/ Borewell	Direct Rotary, Reverse Rotary	50-150	200-250 mm	500-800
Mahesana	Tubewells	Direct Rotary, Reverse Rotary	100-300	200-250 mm	600-1200
Satlasana	Dugwell	Manual	10-25	2.5-5 m	60-100
	Borewells	Down the Hole Hammer (DTH)	50-100	200-250 mm	60-150
Unjha	Tubewells	Direct Rotary, Reverse	100-300	200-250 mm	600-1200

4.5.1 Feasibility, Yield potential, Depth and Dia of ground water abstraction structures

		Rotary			
Vadnagar	Dugwell	Manual	15-30	2.5-5 m	200-300
	Tubewells	Direct Rotary,	50-300	200-250	500-800
		Reverse		mm	
		Rotary			
Vijapur	Tubewells	Direct Rotary,	50-300	200-250	500-800
		Reverse		mm	
		Rotary			
Visnagar	Tubewells	Direct Rotary,	100-300	200-250	600-1200
		Reverse		mm	
		Rotary			

4.5.2 Drinking water wells and water supply based on groundwater sources

Table 7

Taluka	No. of Dugwell	No. of Tubewell	Depth Range (m)	Discharge range (LPM)
Satlasna	0	0	0	0
Kheralu	0	0	0	0
Unjha	0	0	0	0
Visnagar	0	44	130-300	400-800
Vadnagar	0	9	120-150	200-400
Vijapur	0	62	60-240	200-800
Mahesana	0	117	220-400	400->800
Becharaji	0	47	250-400	400->800
Kadi	0	120	220-300	400-800

Source: GWS&SB

4.5.3 Type of pumps and water lifting devices for Irrigation dugwells, shallow tube wells and deep tube wells

Table 8: Dugwells

Taluka	Electric	Diesel	Wind	Solar	Man/Ani.	Others	Total
	pumps	pumps	mills	pumps	Operated		
Becharaji	0	2	0	0	0	0	2
Kadi	510	529	12	0	31	0	1082
Kheralu	2164	118	12	7	8	18	2327
Mahesana	25	77	1	1	2	9	115
Satlasana	2226	130	2	4	3	2	2367
Unjha	38	0	0	0	0	0	38
Vadnagar	1699	91	0	11	2	1	1804
Vijapur	17	0	0	0	0	0	17
Visnagar	5	55	0	0	5	6	71

Table 9: Shallow Tubewells

Taluka	Electric	Diesel	Wind	Solar	Man/Ani.	Others	Total
	pumps	pumps	mills	pumps	Operated		
Becharaji	0	0	0	0	0	0	0
Kadi	179	446	0	0	12	0	637
Kheralu	0	0	0	0	0	0	0
Mahesana	4	0	0	0	0	0	4
Satlasana	0	0	0	0	0	0	0
Unjha	0	0	0	0	0	0	0
Vadnagar	0	0	0	0	0	0	0
Vijapur	65	2	0	0	0	0	67
Visnagar	0	0	0	0	0	0	0

Table 10: Deep Tubewells

Taluka	Submersible	Turbine	Others	Total
	pumps	pumps		
Becharaji	480	0	0	480
Kadi	1629	0	0	1629
Kheralu	1231	3	10	1244
Mahesana	2178	1	0	2179
Satlasana	528	25	2	555
Unjha	670	7	2	679
Vadnagar	458	0	0	458
Vijapur	1496	13	0	1509
Visnagar	1176	27	2	1205

4.5.4 Irrigation scenario from ground water sources Dugwells

As per MI census 2000-01 there are 7823 dugwells out of which 2879 are in use. Irrigation potential created through these dugwells is 110.14 sq. km and potential utilized is 58.54 sq. km. area.

Shallow tubewells

As per MI Census 2000-01 there are 708 shallow tubewells out which 206 are in use. The irrigation potential created is 13.59 sq. km and utilized is 11.77 sq. km. area.

Deep Tubewells

As per MI census 2000-01 there are 9938 deep tubewells in the district out of which 9270 are in use. The irrigation potential created is 1902.20 sq. km. are and potential utilized is 1493.20 sq. km. area.

Following is the talukawise detail of irrigation potential for ground water sources presented in table no 11.

Table 11

	Dugwells		Shallow	tubewells	Deep tubewells	
Taluka	Potential	Potential	Potential	Potential	Potential	Potential
	created	utilized	created	utilized	created	utilized
Becharaji	0.02	0	0	0	182.49	165.70
Kadi	2.54	1.97	8.70	7.08	361.52	247.35
Kheralu	57.30	35.51	0	0	158.68	90.71
Mahesana	1.47	1.08	0.32	0.28	449.29	374.93
Satlasana	20.09	0.04	0	0	47.23	28.24
Unjha	1.82	1.79	0	0	161.73	141.89
Vadnagar	25.17	16.68	0	0	59.55	44.24
Vijapur	0.49	0.47	4.57	4.41	187.42	163.41
Visnagar	1.24	1.00	0	0	294.29	236.73

5.0 Ground Water Management Strategy

5.1Ground Water Development

Eight talukas in the district are categorised as **Over exploited** and one as **critical** and as stage of development is 151.17% in the GWRE, 2004 report hence there is **no further scope** for development of the ground water resources.

5.2 Water Conservation and Artificial Recharge

The suitable recharge structures feasible in the district are Percolation tanks/ponds, Recharge wells, recharge shaft, check dams, nalla bunds and gully plugs etc depending on the terrain conditions.

In the phreatic aquifers with deep water levels and desaturation, spreading channels, recharge pits, recharge ponds etc are suitable to utilize surplus runoff and tail end releases from the canals.

In the confined aquifers artificial recharge by indirect injection technique is suitable that is dual purpose connector wells. These recharge wells should have screens against upper saturated aquifer and also against the targeted confined aquifer. it would function under gravity since the piezometric level of confined aquifer is much below phreatic water level.

Various rainwater harvesting schemes depending on the suitable hydrogeological conditions have been constructed in the district viz. Check dams, Recharge tube wells, deepening the of the village ponds etc and have shown good impact on the groundwater scenario. Following is the list which shows impact of the recharge structures on ground water in the district.

6.0 Ground Water Related Issues and Problems

Over exploitation of ground water is the single major issue in the district resulting in the fast depletion of this resource. Piezometric heads of deep confined aquifer has also declined sharply owing to the huge withdrawal. In many parts of the district phreatic aquifers are desaturated needing urgent attention.

Replacement wells, increase in well depth, prime mover, declining well yields are also the major issues.

Since groundwater is the main source for irrigation and the farmers don't have control over power supply, therefore they irrigate the crops when power supply is available rather than waiting for the wilting to start.

Flood irrigation technique which is practised in the area is also the major cause of wastage of ground water as there is no control on the watering depth.

Control on the area under fodder crops like alfalfa is also to be done as

this is water intensive crop and consumes much more water compared to other crops like wheat, bajra, castor, mustard etc.

Although ground water quality for irrigation practice is within the limit in most parts of the district but many parts of the district are having high fluoride (>1.5 ppm) content (more than 145 villages mostly in Kheralu, Kadi, Satlasana talukas) (Source: GWSSB)

Awareness among the people regarding rainwater harvesting and artificial recharge.

7.0 Awareness and Training Activity

Till now one mass awareness programme has been conducted in the district at Village **Thol**, Taluka Kadi on 29/3/2006 where about three hundred villagers and school children participated.

No Water management training programme has been conducted in the district by CGWB.

8.0 Areas Notified by CGWA/SGWA

None

9.0 Recommendations

- There is an urgent need for management of resources for sustainable development.
- Suitable ground water legislation may be enforced and all future ground water exploitation by deep tube wells be completely banned
- Creating awareness among the farmers regarding water conservation through judicious use of water and adoption of efficient irrigation techniques like drip/sprinkler irrigation.
- The land holding of the group of farmers under public tubewell irrigation should be brought under the provision of the change in crops, irrigation practices and installation of drip/sprinkler irrigation technique. soft term institutional finances to the farmers and liberal subsidies in equipments are suggested.
- Resorting to artificial recharge practices by diverting surplus run-off during monsoon into ponds, percolation tanks,. Spreading basins, abandoned dugwells etc.
- Taking up artificial recharge on large scale through appropriate techniques on a local scale with active community participation.
- Institutional finance and appropriate technology should be freely made available to any individual or cooperative group of farmers that undertake resource augmentation and management measures.

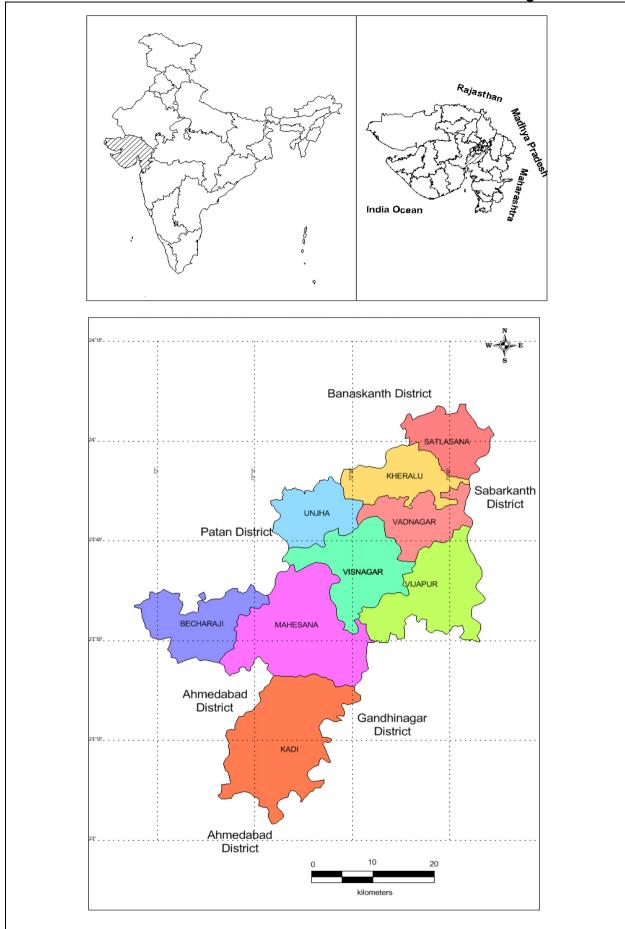
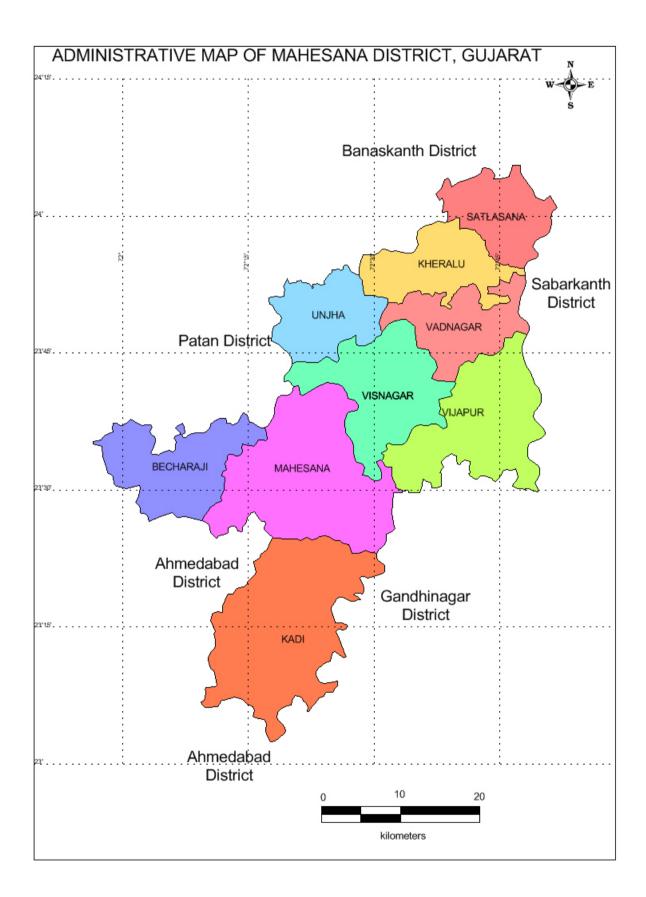
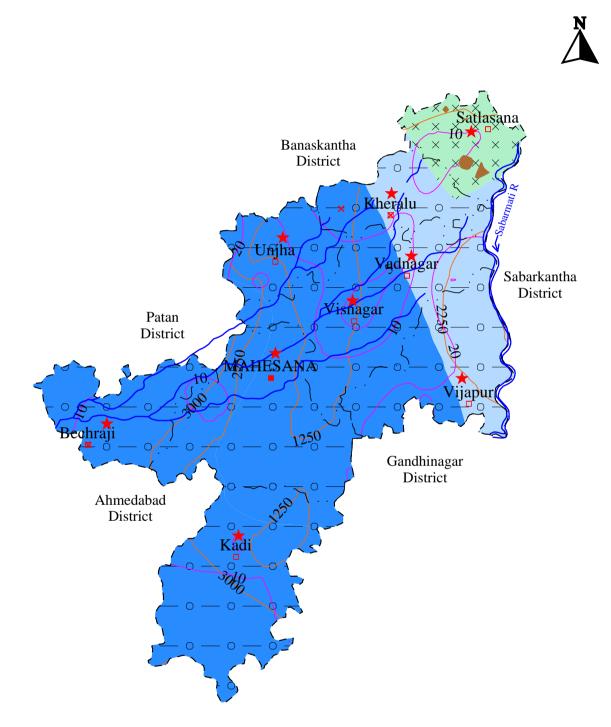
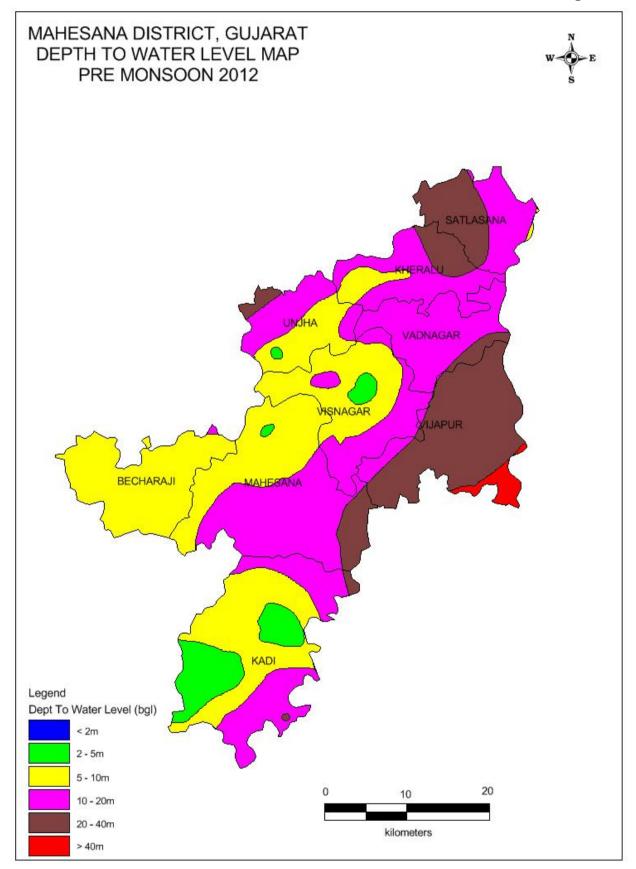
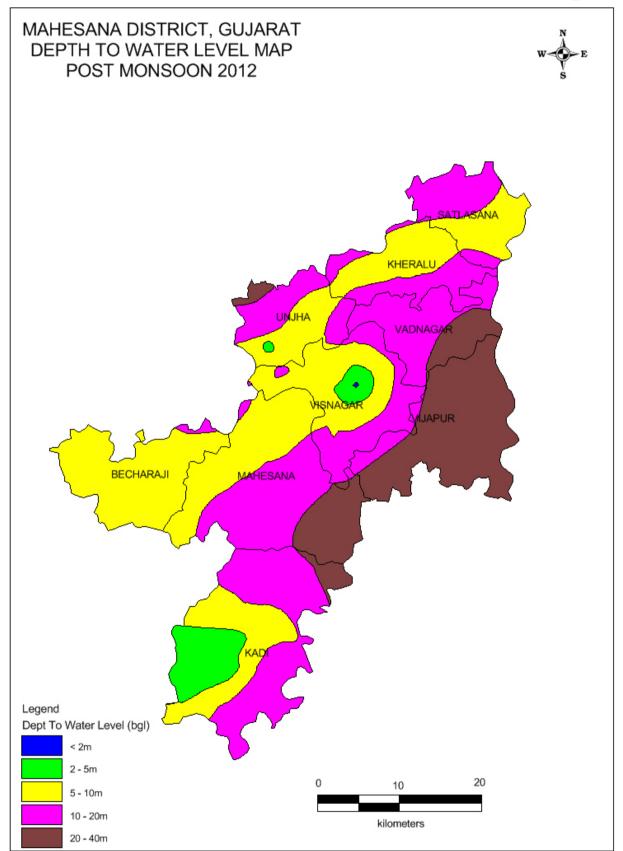




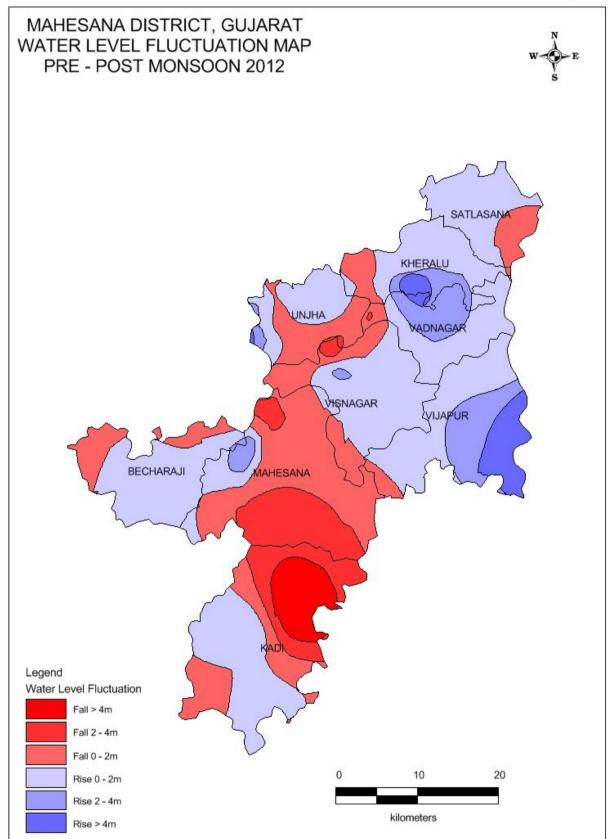
Figure-2

HYDROGEOLOGICAL MAP MAHESANA DISTRICT, GUJARAT

Figure-3


Mahesana District Legend


	Wells Feasible	Rigs Suitable	Depth of Well (m)	Discharge (lpm)	Artificial Recharge Structure Suitable
_ o _ o _	Dug Well Manual		10-25	200-300	Percolation Tanks/ Ponds, Recharge Wells,
Soft Rock Aquifer	Tubewell	Direct Rotary, Reverse Rotary	50-150	500-800	
	Dug Well	Manual	15-30	200-300	Percolation Tanks/
Soft Rock Aquifer	Tubewell	Direct Rotary Reverse Rotary	100-300	600-1200	Ponds, Recharge Wells, Recharge Shaft
\times \times \times \times	Dug Well	Manual	10-25	60-100	Percolation Tanks/
Hard Rock Aquifer	Borewell	Down the Hole Hammer (DTH)	50-100	60-150	Ponds, Recharge Wells, Check Dams, Nalla Bunds.
Hilly Areas	Not Suitable				Check Dam, Nalla Bund, Gully Plug
20			1999	Electrical Con C)	nductivity (μS/cm at 25°
	Fluoride > Permissible	Maximum Limit (1.5 mg/l)	2 kg	Over Exploited Taluka	
	[–] Drainage		×/	District/Taluk	ca HQ


Other Information

Geographical Area	4,371 sq. km
No of Blocks/ Talukas	9
Population (2011 Census)	20,27,727
Average Annual Rainfall	827 mm
Range of Average Temperature	21-31 °C
Major Drainage System	Sabarmati, Rupen
Major/ Medium Irrigation Scheme	Dharoi
Major Geological Formation	Soft Rock: Alluvium
	Hard Rock: Grainte, Meta
	Sediments
Utilizable Ground Water Resources	848.98 MCM/Yr
Net Ground Water Draft	971.1 MCM/Yr
Stage of Ground Water Development	116.08 %
Blocks Showing Intensive Ground Water	Bechraji, Kadi, Kheralu,
Development	Mahesana, Satlasana,
	Unjha, Vadnagar, Vijapur,
	Visnagar

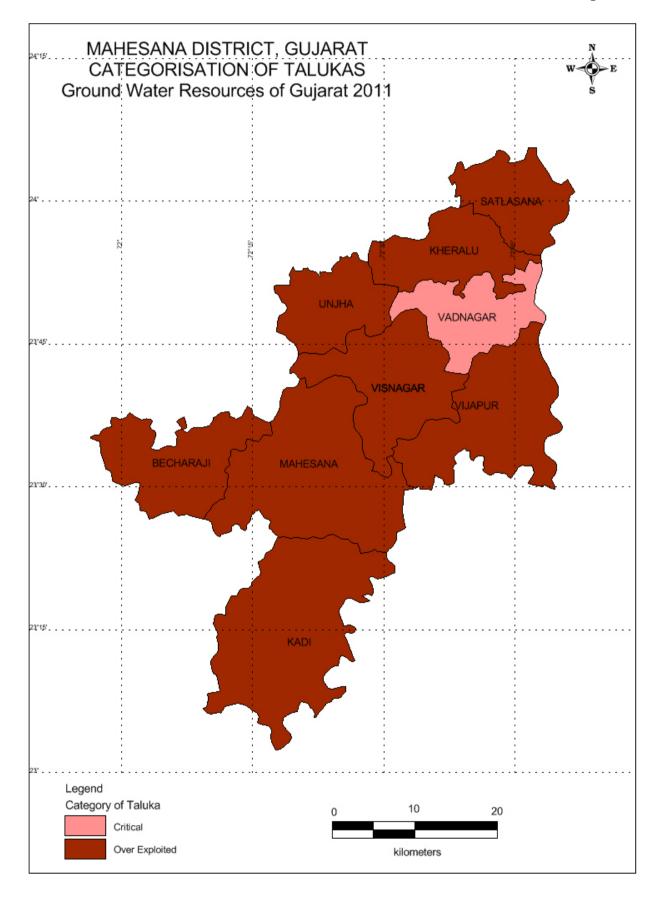

Figure-4

Figure-7

