DISTRICT BROCHURE OF MORADABAD DISTRICT, U.P.

(A.A.P.: 2008-2009)

By

R.C. Verma Scientist 'B'

CONTENTS

Chapter	Title	Page No.
	MORADABAD DISTRICT AT A GLANCE	3
I.	INTRODUCTION	6
II.	RAINFALL & CLIMATE	7
III.	GEOMORPHOLOGY & SOIL TYPES	7
IV.	GROUND WATER SCENARIO	9
	4.1 Hydrogeology4.2 Ground Water Resources4.3 Ground Water Quality4.4 Ground Water Development (Blockwise)	
V.	GROUND WATER MANAGEMENT STRATEGY	13
	5.1 Ground Water Development5.2 Water Conservation & Artificial Recharge	
VI.	GROUND WATER RELATED ISSUES AND PROBLEMS	14
VII.	AWARENESS & TRAINING ACTIVITY	15
	 7.1 Mass Awareness Programme (MAP) & Water Management Training Programme (WMTP) by CGWB 7.2 Participation in Exhibition, Mela, Fair etc. 7.3 Presentation and Lectures Delivered in Public Forum / Radio / T.V. / Institute of Repute / Grassroots Association / NGO / Academic Institution etc. 	

- VIII. AREA NOTIFIED BY CGWA / SGWA15
- IX. RECOMMENDATIONS

.....16

ANNEXURE:

I. STATUS OF GROUND WATER EXPLORATION IN MORADABAD DISTRICT AS ON 11.10.2006

PLATES:

- I. INDEX MAP SHOWING LOCATION OF BLOCK, HQ. BOUNDARY, DRAINAGE AND LOCATION OF EW, PZ, HYDROGRAPH NETWORK STATIONS AND TUBEWELLS.
- II. PREMONSOON DEPTH TO WATER LEVEL MAP OF MORADABAD, DISTRICT, U.P. (MAY, 2006).
- III. POSTMONSOON DEPTH TO WATER LEVEL MAP OF MORADABAD DISTRICT, U.P. (NOV. 2006).
- IV. WATER LEVEL ELEVATION MAP OF MORADABAD DISTRICT, U.P. (MAY, 2006)
- V. HYDROGEOLOGICAL MAP OF MORADABAD DISTRICT, U.P.
- VI. CATEGORIZATION OF BLOCKS SHOWING GROUND WATER RESOURCES/DRAFT ETC. MORADABAD DISTRICT, U.P.
- VII. MAP SHOWING SUITABLE AREA FOR ARTIFICIAL RECHARGE, MORADABAD DISTRICT, U.P.

MORADABAD DISTRICT AT A GLANCE

1. GENERAL INFORMATION

	i.	Geographical Area (Sq. Km.)	:	3759.79
	ii.	Administrative Divisions (as on 31.03.2007)	:	
		Number of Tehsil/Block		6/12
		Number of Panchayat/Villages		960/1794
	iii.	Population (as on 2001 census)	:	3,81,098
	iv.	Average Annual Rainfall (mm)	:	967
2.		GEOMORPHOLOGY		
		Major Physiographic Units	:	
		Major Drainages	:	Ramganga and its tributaries
3.		LAND USE (Sq. Km.)		
	a)	Forest area	:	0.64
	b)	Net area sown	:	3161.96
	c)	Cultivable area	:	
4.		MAJOR SOIL TYPES	:	
5.		AREA UNDER PRINCIPAL CROPS (as on 31.3.2007)	:	Wheat – 193910 ha Rice – 132537 ha
6.		IRRIGATION BY DIFFERENT SOURCES (Areas and Number of Structures) (Km ² / Nos)		
		Dugwells	:	
		Tubewells/Borewells	:	1260.62 by 105529 Nos
		Tanks/ponds	:	0.95 by 276 Nos
		Canals	:	160.88 by 511 Km length
		Other Sources	:	100.09 by 13357 Nos
		Net Irrigated Area	:	2685.72
		Gross Irrigated Area	:	4890.57
7.		NUMBER OF GROUND WATER MONITORING WELLS OF CGWB (As on 31-3-2007)		
		No. of Dugwells	:	4
		No. of Piezometers	:	3

8.	PREDOMINANT GEOLOGICAL FORMATIONS	:									
9.	HYDROGEOLOGY	:									
	Major water bearing formation	:									
	(Pre-monsoon Depth to water level during May'2007)	:	13.73 mbgl								
	(Post-monsoon Depth to water level during Nov'2007)	:	11.78 mbgl								
	Long term water level trend in 10 years (1997-2006) in m/yr (Based on CGWB data for 1998-2007)	:	Pre-monsoon : 0.068 Post-monsoon : 0.311								
10.	GROUND WATER EXPLORATION BY CGWB (As on										
	31-3-2007)										
	No of wells drilled (EW, OW, PZ, SH, Total)	:	EW-6, PZ-4, SH-2								
	Depth range (m)	:	225-430								
	Discharge (litres per second)	:									
	Storativity (S)	:	1.93×10 ⁻⁵								
	Transmissivity (m ² /day)	:	5951								
11.	GROUND WATER QUALITY										
	Presence of Chemical constituents more than permissible	:	Nil								
	limit (e.g. EC, F, As, Fe)										
	Type of water	:	Bicarbonate type								
12.	DYNAMIC GROUND WATER RESOURCES (2004)-in										
	MCM										
	Annual Replenishable Ground Water Resources	:	1155.34								
	Net Annual Ground Water Draft	:	1092.54								
	Projected Demand for Domestic and Industrial Uses upto 2025	:	-								
	Stage of Ground Water Development	:	94.56%								
13.	AWARENESS AND TRAINING ACTIVITY										
	Mass Awareness Programmes organized	:	Nil								
	Date	:	-								
	Place	:	-								
	No. of participants	:	-								
	Water Management Training Programmen organized	:	Nil								
	Date	:	-								
	Place	:	-								
	No. of participants	:	-								

14.	EFFORTS OF ARTIFICIAL RECHARGE & :											
	RAINWATER HARVESTING											
	Projects completed by CGWB (No & Amount spent)		Nil									
	Projects under technical guidance of CGWB (Numbers)		Nil									
15.	GROUND WATER CONTROL AND REGULATION	:										
	Number of OE Blocks	:	3 (1-Bahjoi, 2-Dingerpur, 3-Sambhal)									
	No of Critical Blocks	:	Nil									
	No of blocks notified	:	Nil									
16.	MAJOR GROUND WATER PROBLEMS AND ISSUES	:	Declining trend on ground water regime due to over- exploitation.									

Note : Latest available data may be incorporated.

DISTRICT BROCHURE OF MORADABAD DISTRICT, U.P.

(A.A.P.: 2008-2009)

By **R.C. Verma** Scientist 'B'

I. INTRODUCTION

Moradabad district forms a part of Gangetic alluvial plain and lies between $28^{0}20'$ and $29^{0}16'$ north latitudes and $78^{0}24'$ and $79^{0}0'$ east longitude covering an area of 3759.79 sq.km. It is bounded by Bijnor and Nainital district in east by Rampur district in south by Budaun district and in west by Jyotiba Phule Nagar district. The district is administratively divided into 6 tehsils and is further divided into 12 development blocks. Total population as per 2001 census is 38,1098. The density of population is 967 per sq. km.

The district Moradabad is drained by river Ramganga and its tributaries namely Dhela Nadi, Koshi Nadi, Gangan Nadi, Aril Nadi and Sot Nadi.

Irrigation in major part of the district is carried out by means of minor irrigation structures such as tubewells, cavity wells and surface irrigation system by canals. Canal irrigation practiced only in part of the blocks namely Thakurdwara, Bhagatpur, Dilari and Munda Pandey. Rest of the blocks are devoid of surface irrigation by canal. In the district only 260.97 Km² area i.e. 9.72% is irrigated by surface irrigation by means of canal & other sources and remaining 2685.72 Km² area i.e. 90.28% of the total irrigated area is irrigated by ground water.

The Central Ground Water Board has carried out 6 nos. of exploratory tubewell and two numbers slim hole to decipher subsurface aquifer geometry, to determine the aquifer parameters and quality of subsurface water. CGWB has constructed 4 nos. of piezometers to close monitor the depth to water level in data scare regions.

II. RAINFALL & CLIMATE

The average annual rainfall is 967.3 mm. The climate is sub-humid and it is characterised by hot summer, a bracing cold season and general dryness except in the south-west monsoon season. About 86% of rainfall takes place from June to September. During monsoon surplus water is available for deep percolation to ground water.

There is no meteorological observatory in the record of Bareilly, which may be taken as representative meteorological condition. May and early part of June form the hottest part of the year. In May, the mean daily maximum temperature is about 40° C and mean daily minimum temperature about 25° C and maximum temperature rises upto over 45° C. With the advancement of the monsoon in June there is a appreciable drop in day temperature. January is generally the coldest month with mean daily maximum temperature at about 21° C and the mean daily minimum is about 8° C. The mean monthly maximum temperature is 29.4° C and mean monthly minimum temperature is 12° C.

The air is very humid during south-west monsoon season and the rest of the period the humidity is comparatively less. The mean monthly relative humidity is 69% and mean monthly evening relative humidity is 51%.

Winds are generally light with a little strengthening in the summer and monsoon seasons. The mean wind velocity is 5.1 K.m.p.h.

Potential evapotranspiration is 1402.8 mm.

III. GEOMORPHOLOGY & SOIL TYPES

Geomorphologically, the area of the district can be divided into two broad geological units namely

- 1. Younger Alluvium
- 2. Older Alluvium

YOUNGER ALLUVIUM:

The area occupied by younger alluvium can be delineated along Ramganga and Dhela rivers draining the district. The younger alluvium is confined dominantly within the flood plain of these rivers.

The flood plain can be further differentiated into two geomorphic units -

(i) Flood Plain, (ii) Older Flood Plain

- (i) Flood Plain: The river channel and its adjacent areas forming terraces, which are subjected to periodic flooding consisting of sand, silt and silty sand with minor clays from the flood plain of river. This is a narrow zone along river channel and gets flooded regularly during rainy season.
- (ii) Older Flood Plain: Older flood plain of river Ramganga can be delineated extending to few kilometers. Locally it is known as Khadar. The zone is characterised by presence of fluvial land from such as meander scars, cut off meanders forming water bodies and paleochannels. The sediments are fine grained sand and silt with thin clay horizons. The zone can be separated from older alluvium by presence of natural levee, sand dunes and abrupt change in slope.

OLDER ALLUVIUM:

It occupies the entire upland or interfluve area between the major drainage Ramganga and Kosi and Sot & Ramganga. The soils are silty, clayey and sandy in varying proportions. The older alluvium can be differentiated into following geomorphic units:

(i) Sandy Tract and

(ii) Central Upland Plain of Interfluve Area.

- (i) Sandy Tract: These are occurring very close to old flood plain of Ramganga. This unit correspond to Bhur of physiographic unit. This unit is characterised by absence of drainage ways, indication of high permeability as coarse sand exists.
- (ii) Central Upland Plain or Interfluve Area: The unit occupies the central part as well as eastern part of the district and is characterised by presence of well drainage ways namely Ganga & Sot. The soils are clayey through at place these are sandy. Back swamp deposits can also be seen in this zone.

4.0 GROUND WATER SCENARIO

4.1 HYDROGEOLOGY:

The district is underlain by alluvial sediments having thickness of around 1000m (ONCG) comprising clay, silt and various grades of sand. Limited drilling carried out for ground water exploration down to a depth of 450 mbgl reveals the presence of potential aquifers with a marked change in sedimentation below 390mbgl. The sediments down to 390 m can be boradly divided into two aquifer groups. The upper aquifer group down to 180 m being exploited extensively by state & private tubewells. The second potential aquifer group present below 180 m depth, still remains to be fully harnessed for optimum utilization. For proper management of ground water resources, it is recommended to tap this aquifer in future. Deep drilling below 400 m is the need of the area for proper understanding of deeper aquifers.

Central Ground Water Board, Northern Region under its exploratory drilling programme has drilled 9 numbers of boreholes at Azad Nagar (Moradabad block), Bahjoi (Bahjoi block), Bhataua (Sambhol block), Budh Nagar & Dilari (Dilari block) and Maseri Rasoolpur (Boria Khera block), Budh Nagar (Thakurdwara block) down to a depth varying 50.00 to 350.00 mbgl with an objective of mapping of sub-surface sediments and aquifer system. The location of well shown in Annexure-1.

The cumulative thickness of screened granular zones in these aquifer groups varies from 36 to 112 m. The average yield varies from 1445 to 5220 lpm for drawdown ranging from 1.85 m to 8.7 m. The specific capacity of tubewells varies from 222 to 1263 lit/min/m of drawdown.

Depth to water level in the area during premonsoon period vary from 2.57 to 14.54 mbgl and in postmonsoon period vary from 1.70 to 13.69 mbgl. The water level is comparatively shallower in the vicinity of canal and in the flood plain of river Ramganga and its tributaries. The water level occurs comparatively at deeper in the southern west blocks of river Ramganga fallen in tehsil Bilari, Sambhal and Moradabad. During 2006 the annual seasonal water level fluctuation varies 0.04 to 0.60 m. The study of water level trend for almost all hydrograph stations shows a continuous declining except hydrograph of Thakurdwara located in the canal

command area. Due to insufficient data available with CGWB, no trend has been determined, however based on GWD data from year 2002 to 2006 the trend of water level of premonsoon period is 05.63 m/year and in postmonsoon period is 0.049m/year.

4.2 GROUND WATER RESOURCES:

To facilitate the ground water development judiciously, the ground water resources have been worked out. The blockwise resources are as follows:

Table-1

DYNAMIC GROUND WATER RESOURCES OF MORADABAD DISTRICT, U.P.

Sl. No.	Assessment Blocks	Annual ground	Net Annual ground	Existing gross	Net ground water	Stage of ground	Category of block
		water	water	ground	availability	water	
		recharge	availability	water draft	for future	development	
		(in nam)	(in nam)	for all uses	irrigation	(in %)	
				(in nam)	development (in hom)		
1	Asmoli	8474 21	7626 70	7471 77	(III IIaIII) 121 71	07.07	Somi Critical
1.	Asilioli	04/4.21	7020.79	/4/1.//	-121./1	91.91	Senn Chucai
2.	Bahjoi	6814.81	6474.07	8356.18	-2191.59	129.07	Over Exploited
3.	Bania Khera	9293.66	8828.98	7792.06	748.32	88.26	Safe
4.	Bhagatpur Tanda	14773.72	14035.04	11064.82	2560.41	78.84	Safe
5.	Bilari	8776.46	7898.82	7061.61	575.66	89.40	Semi Critical
6.	Dilari	12927.45	11634.70	11599.31	-240.78	99.70	Semi Critical
7.	Dingarpur	9211.82	8751.23	9500.16	-1100.78	108.56	Over Exploited
8.	Moradabad	4646.20	4413.89	3567.86	713.89	80.83	Safe
9.	Munda Pandey	13067.26	11760.54	10523.72	982.70	89.48	Safe
10.	Pawansa	10415.55	9373.99	9333.86	-183.29	99.57	Semi Critical
11.	Sambhal	10371.21	9334.09	12603.82	-3736.54	135.03	Over Exploited
12.	Thakurdwara	16212.71	15402.07	10378.47	4639.22	67.38	Safe
	Total	124985.07	115534.21	109253.63	2645.49	94.56	

(as on 31.03.2004)

The annual utilisable ground water resource in the district for the year 2003-04 have been marked as 115534.21 ham of which 109253.63 ham is utilized during same year, thus leaving balance 2645.49 ham for future development. Since the net

availability for future irrigation development in blocks Asmoli, Bahjoi, Dilari, Dingarpur, Pawansa and Sambhal is in negative, no further additional ground water structure may be recommended for utilizing dynamic ground water resources. Five blocks namely Bania Khera, Bhagatpur Tanda, Moradabad, Munda Pandey and Thakurdwara fall in safe category where ground water development varies from 67.38% to 89.48%. A review of blockwise ground water resource potential data table-1 reveals that Bahjoi, Dingarpur and Sambhol blocks are fall in over exploited category of block where stage of ground water development is more than 100%.

In the northern part of the district in blocks Thakurdwara, Dilari, Bhagatpur Tanda, Munda Pandey and in parts of Moradabad district, the irrigation by surface water is being carried out in 26097 ham i.e. 9.72% of the total irrigation by means of 511 Km. length of canal and other soruces. In the canal command area depth to water level is shallow and occurs less than 7 mbgl.

4.3 GROUND WATER QUALITY:

Ground water in phreatic aquifers in general is colourless, odourless and slightly alkaline in nature. The specific electrical conductance of ground water in the phreatic zone ranges from 300-1080 micro siemens/cm at 25^{0} C. The conductance below 750 micro siemens/cm at 25^{0} C have been observed in 67% of the samples analysed.

It is observed that ground water is suitable for drinking and domestic purpose in respect to constituents except nitrate. Nitrate is found in excess 45 mg/l in about 33% of sampels analysed which is due to the use of fertilizers for agriculture and other untreated waste disposal. Phosphate is not found in ground water. The As (Arsenic) has been found ranging from nd to 70 micro gm/litre in Moradabad block (Ashiyana 70 microgram/litre).

4.4 STATUS OF GROUND WATER DEVELOPMENT (BLOCKWISE):

In Moradabad district, the salient features of ground water structure is as follows:

Table-2

Sl. No.	Name of ground water structure	Depth range	Diameter	Discharge range	Type of pumps & water lift up	Use
		(mbgl)	(m)	(lpm)	devices	
1.	Dug well	7-28	0.90-2.50	-	Rope & bucket	Domestic but now not
						in use
2.	Private tubewell /	30-40	0.1-0.2	500-600	Electric / Diesel	Water supply for
	borings				operated	domestic & irrigation
3.	Public (state)	75-130	0.30-0.35	1445-5200	Electric	Water supply for
	tubewells				operated	domestic & irrigation

SALIENT FEATURES OF GROUND WATER STRUCTURE

The blockwise source of irrigation and irrigated area by different sources are given in Table-3

Table-3

BLOCKWISE SOURCE OF IRRIGATION AND IRRIGATED AREA BY DIFFERENT SOURCES AS ON 31.3.08

Sl. No.	Name of block	Irrigated area by canals	Canal length	Irrigation by other sources	Nos. of pump set on	Irrigation by public / tubewell	No. of public / tubewell	Irrigation by private tubewell /	No. of private tubewell
		(surface irrigation)	(Km)	surface (ham)	ground	(ham)		boring (ham)	/ boring
1.	Thakurdwara	5882	162	470	26	0	61	10333	8042
2.	Dilari	9380	119	625	27	0	17	8604	14215
3.	Asmoli	0	0	795	13	201	75	11215	4994
4.	Sambhal	0	0	620	31	302	112	17114	9196
5.	Pawansa	0	0	410	11	279	84	13192	10089
6.	Bhagatpur Tanda	0	107	715	6	8	23	8003	7116
7.	Moradabad	0	8	770	10	91	40	5201	4379
8.	Munda Pandey	28	28	695	22	35	35	12418	6944
9.	Dingarpur	0	0	1854	34	353	113	3700	9404
10.	Bania Khera	0	0	786	32	654	87	7258	9957
11.	Bilari	0	0	650	24	274	119	5534	9780
12.	Bahjoi	0	0	709	8	325	69	6703	6819
	Total Rural	15290	424	9099	244	2522	835	10975	98935
	Total Urban	456	0	240	0	57	11	3211	0
	Total District	15746	424	9339	244	2579	846	14186	98935

The long term data of National Hydrograph station of CGWB shows that except a few places, the entire district exhibit a declining trend of water level on an average 0.2848 m/year in last 20 years resulting in drying out the number of dugwells and also shallow ground water structures.

V. GROUND WATER MANAGEMENT STRATEGY

5.1 GROUND WATER DEVELOPMENT:

Keeping in view the availability of ground water resources and prevailing hydrogeological scenario, a blockwise future development plan for augmenting the irrigation water supply has been worked out Table-4 utilizing only 70% (6081.02ham) of ground water balance allocated for irrigation. It has been further proposed to exploit the 50% of this balance (i.e. 3040.51 ham) through private tubewells/borings of maximum 100 m depth and remaining through moderately deep state tubewells of 150-200 m depth. Thus by this way about 1695 private tubewells/borings and about 238 state tubewells may be constructed which will create additional irrigation potential for 11808.22 hact. in the district.

Table-4

BLOCKWISE PROPOSAL OF GROUND WATER DEVELOPMENT FOR IRRIGATION PURPOSE

Block	Ground water availability	Ground water allocated for domestic / industrial use 15% of Col. 2	Ind erGround water proposed to be utilized for supply of for stic / irrigationGround water proposed to be utilized for future future future irrigational 5%5%Col. 2development 70% of Col. 4		Proposed st per availab Private tubewell/bo ring with pumpsets taking 50% of Col. 5 (Unit draft 1.8 ham)	tructures as le potential STW tapping Gr. I & part of II Gr. Only taking 50% of Col. 5 (Unit draft 12.8 ham)	Feasible for deep tubewell tapping Aq Gr. II recomme nding drilling down to 350 m	Additional irr. Potential may be created through newly proposed T/w
	(ham)	(ham)	(ham)	(ham)	(ham)	(ham)		(ham)
1	2	3	4	5	6	7	8	9
Thakurdwara	4639.22	695.88	3943.34	2762.44	767	108	Feasible	5524.88
Dilari	(-)240.78	Nil	-	-	-	-	Feasible	Nil
Asmoli	(-)121.71	-	-	-	-	-	Feasible	Nil
Sambhal	(-)3736.54	-	-	-	-	-	Feasible	Nil
Pawansa	(-)183.29	-	-	-	-	-	Feasible	Nil

Block	Ground	Ground	Ground	Ground water	Proposed st	tructures as	Feasible	Additional
	water	water	water	proposed to be	per availab	le potential	for deep	irr.
	availability	allocated	available	utilized for	Private	STW	tubewell	Potential
		for	for	supply of	tubewell/bo	tapping Gr.	tapping	may be
		domestic /	irrigation	future	ring with	I & part of	Aq Gr. II	created
		industrial	85% of	irrigational	pumpsets	II Gr. Only	recomme	through
		use 15%	Col. 2	development	taking 50%	taking 50%	nding	newly
		of Col. 2		70% of Col. 4	of Col. 5	of Col. 5	drilling	proposed
					(Unit draft	(Unit draft	down to	T/w
					1.8 ham)	12.8 ham)	350 m	
	(ham)	(ham)	(ham)	(ham)	(ham)	(ham)		(1
		2			6			(nam)
1	2	3	4	5	6	7	8	9
Bhagatpur Tanda	2560.41	384.06	2176.35	1523.44	423	60	Feasible	3046.88
Moradabad	713.89	107.08	606.81	424.77	118	17	Feasible	849.54
Munda Pandey	982.70	117.40	865.30	605.70	168	24	Feasible	1211.40
Dingarpur	(-)1100.78	-	-	-	-	-	Feasible	Nil
Bania Khera	748.32	112.25	636.07	445.25	124	17	Feasible	490.50
Bilari	575.66	86.34	489.32	342.51	95	13	Feasible	685.02
Bahjoi	(-)2191.59	-	-	-	-	-	-	Nil
District Total	10220.20	1503.01	8687.17	6081.02	1695	238	-	11808.22

5.2 WATER CONSERVATION & ARTIFICIAL RECHARGE:

Effective and efficient water management options needs to incorporate both structural & non structural measures including water conservation, augmentation of this natural resource (especially ground water assets by artificial recharge techniques).

Depth to water levels are deep in parts of Moradabad and Dingarpur, Bilari, Bania Khera, Bahjoi, Pawansa, Sambhal and Asmoli blocks and show declining trend in ground water due to over exploitation. The surface water especially during monsoon can be then utilized for recharge to ground water in deeper depleting water level areas (Plate-VI). Suitable artificial recharge structures such as recharge shaft, recharge pit, abandoned handpumps/tubewells (as shown in Plate-VI). Rooftop rainwater harvesting structures (Moradabad district) in urban areas should be adopted.

VI. GROUND WATER RELATED ISSUES AND PROBLEMS

The major ground water related issue and problem is of deep ground water levels, declining water levels and in some parts of Moradabad town ground water pollution by Manganese near Brassware Industries are reported (Ref. Ground Water Studies by Dr. D.S. Pandey, March 1993). There is no any water logged, drought affected or water scarcity areas reported from the district. No drilling problems or risk to natural disorder etc. are faced in any parts of the district.

VII. AWARENESS & TRAINING ACTIVITY

7.1 MASS AWARENESS PROGRAMME (MAP) & WATER MANAGEMENT TRAINING PROGRAMME (WMTP) BY CGWB:

No Mass Awareness Programme (MAP) and Water Management Training Programme (WMTP) were organised by Central Ground Water Board in any part of the district.

7.2 PARTICIPATION IN EXHIBITION, MELA, FAIR ETC.:

No exhibition, Mela, Fair etc. were organised on the district so far.

7.3 PRESENTATION & LECTURES DELIVERED IN PUBLIC FORUM / RADIO / TV / INSTITUTION OF REPUTE / GROSS ROOTS ASSOCIATION / NGO / ACADEMIC INSTITUTION ETC.:

No presentation & lectures delivered in public forum by CGWB in any part of the district. However a national publicity for mass awareness programme on conservation of water, artificial recharge practices to adopt in the area for augmenting ground water resources etc. are being carried out by the Ministry of Water Resources, Government of India. (By Doordarshan Programme).

VIII. AREA NOTIFIED BY CGWA/SGWA

In the district no any area or block yet has been notified by CGWA/SGWA.

IX. RECOMMENDATIONS

Based upon studies carried out in the district, it is observed that water level is declining very fast in south west of river Ramganga and strongly recommended that exploitation of ground water through tubewells in first aquifer group in the blocks Asmoli, Sambhol, Pawansa, Bahjoi, Bania Khera, Bilari, Dingarpur and parts of Moradabad and in north of Ramganga in block Dilari (Semi critical block) be stopped. Artificial recharge practice to shallow aquifers by various methods should be adopted to raise the water level. Since about 90% of ground water requirements are being catered by aquifer group-I, a declining trend in ground water levels has regionally been observed. To check this trend and minimize the stress on shallow aquifers, withdrawal of ground water through shallow tubewells, tapping aquifer group-I should be restricted and efforts should be made, as for as possible to exploit the ground water in future from deeper aquifer (Group-II) through heavy duty tubewells. Scientific approach should be made while executing the future ground water development plan and water management practices should be utilized and public be made aware about the decline of water level.

Annexure-I

STATUS OF GROUND WATER EXPLORATION IN MORADABAD DISTRICT AS ON 1.10.2006

SI	. Location/Latitude/L	Type of	Drilled	Zones	Water	Yield	Draw	Transmiss	Storativity	Geology	Electrical	Chloride	Remarks
No	o. ongitude/Toposheet	Well	Depth/Bed	Tapped (mbgl)	Level (mbal)	(lpm)	down (m)	ivity T	S		Conductivity	(mg/l)	
			(mbgl)	(mogr)	(IIIDgi)		(111)	(m^2/dav)			cm at 25 [°] C)		
1.	Azad Nagar	EW	-	-	-	-	-	-	-	Alluvium	-	-	Drilling under progress
2.	Bahjoi	SH	450.35 N.EN	33-41 49-53 65-95 106-119 136-144 153-163 185-193 203-230 255-267 291-299 303-313 356-374	_	-	-	-	-	Alluvium	-	-	Zones encountered
				386-393 411-431									
3.	Bataua	EW	452.48 N.EN	265-274 285-297 300-315	-	-	-	-	-	Alluvium	-	-	
4.	Budh Nagar 29 ⁰ 11'36'' 78 ⁰ 50'12''	EW	450.00	110-122 148-157 175-184 214-226 253-259 295-307	-	-	-	-	-	Alluvium	-	-	

Sl. No	Location/Latitude/L ongitude/Toposheet	Type of Well	Drilled Depth/Bed	Zones Tapped	Water Level	Yield (lpm)	Draw down	Transmiss ivity	Storativity S	Geology	Electrical Conductivity	Chloride (mg/l)	Remarks
			rock (mbgl)	(mbgl)	(mbgl)		(m)	T (m ² /dav)			(micromhos/ cm at 25 [°] C)		
			(313-325				(111 / 444 5)			· · · · · · · · · · · · · · · · · · ·		
				331-337									
				349-355									
				391-403									
				421-427									
5.	Delari Changeri 29 ⁰ 02'12'' 78 ⁰ 45'18''	SH	450.00	165-185	-	-	-	-	-	Alluvium	553	25	Zone encountered
6.	Gajraula I 28 [°] 49'40'' 78 [°] 15'20''	EW	254.73	160-172 188-200 206-218 227-233	5.74	-	-	-	-	Alluvium	-	-	Not tested
7.	Gajraula II 28 ⁰ 49'40'' 78 ⁰ 15'20''	PZ	704.20	610-628 637-643	5.36	-	-	-	-	Alluvium	-	-	Not tested
8.	Mawesi Rasulpur 28 ⁰ 34'30'' 78 ⁰ 45'45'' 53L	EW	450.79	80-98 110-119 134-140 149-161 173-182 263-269 275-281 332-344	11.3	2480	3.72	5951	1.93×10E-5	Alluvium	-	-	
9.	M.D.A. Moradabad	EW	225.00	121-130 147-153 168-177 196-205 210-222	9.0	-	-	-	-	Alluvium	-	-	

CGWB, NR (N.Chandra) Drg. No. 2520/08(Raza) 3943/10.

CGWB NR INC Pander) Den No 3942/10 (Raza) 3944/10

CGW8_NR (N C Panday) Dra. No. 3942/10 (Raza) 3945/10

100-400**

Well

Major river

2000 - 3000

C 750

Electrical Conductivity (Micromhos/cm at 25° C)

in urban areas.

C G W B, N R, (RAKESH), Drg. No. 3947/10

CGWB, NR (N.C.Pandey) Drg. No. 3942/10, 3948/10