

Ground Water Year Book National Capital Territory, Delhi 2017-18

GOVERNMENT OF INDIA CENTRAL GROUND WATER BOARD STATE UNIT OFFICE, DELHI MINISTRY OF JAL SHAKTI DEPARTMENT OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION

December - 2019

FOREWORD

Ground Water Year Book is based on the information generated through field studies. The data has been analyzed by Officers of Central Ground Water Board, State Unit Office, Delhi and presented in the report. The reports, annexure and maps have been generated using GEMS Software, Version-2.1, developed indigenously by Central Ground Water Board.

Depiction of ground water conditions in Delhi provides information on availability of groundwater in terms of quantity and quality, development prospects and management options. I am happy to note that the scientific information in this report is presented in a simplified form. I sincerely hope this report will be of immense help not only to planners, administrators, researchers and policy makers in formulating development and management strategy but also to the common man in need of such information to make himself aware of the ground situation in NCT Delhi.

The untiring efforts made by Shri Prakash R Gupte, Senior Hydrogeologist (Scientist D) for bringing out this report is highly appreciated. Apart from this the contribution made by Shri Faisal Abrar, Assistant Hydrogeologist, Shri Ashok Kumar & Praveen Kumar, STA (Hydrogeology) is also duly acknowledged.

> (S K Junej) Officer in charge Central Ground Water Board State Unit Office, Delhi

EXECUTIVE SUMMARY

GROUND WATER YEAR BOOK 2017-18: NCT DELHI

National Capital Territory (NCT) of Delhi occupies an area of 1483 sq. km. and lies between 28° 24' 15" and 28° 53' 00" N latitudes and 76° 50' 24" and 77° 20' 30" E longitudes. The population of NCT Delhi, as per the census 2011 is 167.87 lakhs with a density of 11320 persons / sqkm area.

The normal annual rainfall of NCT Delhi is 611.8 mm. The rainfall increases from west to east. About 80% of the annual rainfall is received during the monsoon months July, August and September. The rest of the annual rainfall is received in the form of winter rain. Long-term rainfall data 1984 to 2017 shows that the rainfall in Delhi is highly variable and which in turn affects the natural recharge to ground water from year to year. The probability of rainfall exceeding normal rainfall of 611 mm is up to 62 % whereas there are 90 % chance that rainfall would limit to 450 mm.

The ground water availability in NCT Delhi is controlled by the hydrogeological charactericts of its varied geological formations namely Delhi Quartzite, Older & Younger Alluvium. Central Ground Water Board (CGWB) is monitoring groundwater levels and quality through its monitoring stations spread over both Alluvial as well as quartzitic area of NCT of Delhi. Total 93 hydrograph monitoring stations data (2017-18) have been analyzed for this report, out of which 19 are dug wells and 74 are Piezometers.

District wise distribution of hydrograph network stations is highly uneven and varies from one monitoring station per 1.4 sq. km in New Delhi district to one monitoring station per 30 sq. km in North East district. Considering this unevenness in distribution of monitoring stations, Central Ground Water Board is striving to increase the number of stations for better monitoring of the ground water regime in the diverse hydrogeological terrain.

An analysis for numbers of monitoring wells in the different categories of the water levels for all four monitoring periods of year 2017-18 reveals that water level depth up to 5 m varies considerably over two monitoring periods (May & other months) which shows that dynamic changes in ground water levels are conspicuously deciphered in shallow water zones. For depth range of 5 to 10 m and 10 to 20 m and more at few locations, changes in numbers of monitoring wells in August, November & January compared to May period not prominent. This may be interpreted as stressed water level conditions suppressing dynamic fluctuation in water levels. Whereas numbers of monitoring station showing water level below 40 m remain almost same in all four monitoring period, indicate stressed water conditions in deep aquifers of NCT Delhi.

The depth to water level recorded in NCT Delhi during 20017-18, in general varies from less than 2 m in areas of Yamuna Flood plain and parts of Northwest & West district to more than 78 m, mainly in areas underlain by Ridges rocks in Central, New Delhi and South districts. Water level in **May-2017** range from 1.13 to 78.1 m and around 16% of area have shallow water level up to 5 m bgl while deep water levels of 20 to 60 m are observed in around 30% area. In rest of NCT Delhi, 54 % areas water level range from 5 to 20 m bgl. In **August-2017** water level up to 5 m bgl while deep water levels of 20 to 60 m observed in around 30% of NCT Delhi. In rest of NCT Delhi, 52 % areas have water level in range of 5 to 20 m bgl. In **November-2017** water level range from 0.32 to 60.06 m. bgl and around 19% of

NCT Delhi areas have shallow water level up to 5 m bgl while deep water levels of 20 to 60 m observed in around 32% of NCT Delhi. In rest of NCT Delhi, 49 % areas have water level in range of 5 to 20 m bgl. In **January-2018** water level range from 0.35 to 60.21 m. bgl and around 16% of NCT Delhi areas have shallow water level up to 5 m bgl while deep water levels of 20 to 60 m observed in around 30% of NCT Delhi. In rest of NCT Delhi, 54 % areas have water level in range of 5 to 20 m bgl.

Analysis of seasonal water level fluctuation comparing **May 2017** period show rise in range of 0 to 4 m in 71 % monitoring stations during **August 2017**, 85% in **November 2017** and 70% in **January 2018**. Very few monitoring stations, 14% to 6% show rise in range of 2 to 4 m. Whereas nearly 26% to 20% monitoring stations show decline in range of 0 to 4 m and rest 2% to 5% in range of 2 to 4m, which reflect overstress conditions.

The fluctuation of water level between **May-2016 and May-2017** of NCT Delhi show rise by 46 % of wells, up to 3.8 m while other 47 % of monitoring wells show fall in range of 0 to 2 m ; rest of 7 % monitoring stations shows fall up to 4 m. Similarly, comparing **August-2016** water level with **August-2017** reveals that rise in the range of 0 to 2 m in nearly 23% of the wells, while 66 % wells shows falls in range of 0 to 2 m. Fall of more than 4 m is observed in small pocket of South district (4 % wells). Comparing water level data of **November 2016** with **November 2017**, it is revealed that 24 % wells show rise in range of 0 to 2 m whereas 4% show rise more than 2 m; max up to 10.06 m in Delhi Cantonment area. Rest 61 % wells shows fall more than 2 m. Comparing water level data of **January 2017** with **January 2018**, it is revealed that 41 % wells shows rise, mostly in range of 0 to 2 m whereas small pockets in Southeast & South district has rise up to 5.6 m at Mehroli area; whereas rest 49 % wells shows fall in range of 0 to 2 m.

Long-term behaviour of water levels was studied by comparing water level data of May-2017 with 10 year mean water level of May (2006 to 2016) reveals change in water level range from -8.8 m to 8.0 m. Nearly 71 % of monitoring wells show increase in fall of water level whereas rest 29 % wells show increase in rise of water levels. Comparing water level data of August-2017 with 10 year mean water level of August (2007 to 2016) reveals change in water range from – 7.8 m to 10.6 m. Nearly 31 % of monitoring wells show increase in rise of water level whereas rest 69 % monitoring wells show increase in fall of water level. Comparing water level data of November-2017 with 10 year mean water level data of November-2017 with 10 year mean water level of November (2007 to 2016) reveals change in water level range from -7.6 m 9.2 m. Nearly 31% of monitoring wells show increase in rise of water level whereas rest 69 % monitoring water level data of January-2018 with 10 year mean water level of January(2008 to 2017) reveals change in water level range from – 7.9 m to 9.01 m. Nearly 44 % of monitoring wells show increase in rise whereas rest 56 % monitoring wells show increase in fall.

Most of eastern part of NCT Delhi, in areas around Yamuna flood plain and Delhi Quartzite Ridge zones has EC within permissible range of 0 to 2250 μ S/cm at 25°C where as rest of NCT Delhi, except some pockets of Najafgarh and West District, has EC value of more than 3000 uS / cm at 25 °C. It is also observed that water from deeper aquifers have greater EC value than the water from shallow aquifer. The EC value increases with depth.

Chloride concentration in groundwater of NCT Delhi is related with EC content. It is observed that in areas having EC values within permissible limits (2250 to 3000 μ S/cm), the chloride

content also lies within permissible limit of 250 mg/l. In areas having high EC more than 3000 μ S/cm, chloride value is also high upto a maximum of 3000 mg/l.

Chemical analysis of ground water samples collected during May 2018 shows that nitrate content in groundwater of Delhi is within permissible limit of 45 mg/l at almost all places. Similarly, except 25 locations in Central & Western half of NCT Delhi, all 63 locations show fluoride concentration within permissible limit of 1.5 mg/l.

Foreword

Executive Summary

1. Introduc	tion	1							
1.1 A	dministrative Setup of NCT Delhi	1							
1.2 Pc	1.2 Population & Land use								
1.3 Cl	imate and Rainfall								
111	Climate	4 4							
1.1.1.	Rainfall	+ 5							
1 1 1	Rainfall Analysis	5 5							
1.1.2.	Other Climatic Parameters	7							
2. Ground	Water Reaime Monitorina	10							
2.1 Mon	itoring Objective and Method	10							
211	Monitoring Stations Status	1 0							
2.1.2.	Distribution of Monitoring Stations	10							
3. Hvdroae	oloav	13							
3.1 Pł	hysiography & Drainage	13							
3.2 G	eomorphology	14							
3.3 G	eology	16							
3.3.1.	Alluvium Deposits	17							
3.3.2.	Hard Rock Formation	17							
3.3.3.	Subsurface Aquifer Dispositions	17							
3.3.4.	Fresh –Saline Ground Water Interface	19							
3.3.5.	Basement Topography	21							
4. Ground	Water Behaviours During 2017-18	23							
4.1 D	epth to Water Level	23							
4.1.1.	May 2017	24							
4.1.2.	August 2017	25							
4.1.3.	November 2017	26							
4.1.4.	January 2018	27							
4.2 Se	asonal Water Level Fluctuation : 2017-18	28							
4.2.1.	May 2017 to August 2017	29							
4.2.2.	May 2017 to November 2017 (Pre & Post Monsoon)	30							
4.2.3.	May 2017 to January 2018	31							
4.3 Ai	nnual Water Level Fluctuation : 2017-18	32							
4.3.1.	Annual Fluctuation : May 2017 & May 2018	33							
4.3.2.	Annual Fluctuation: August 2016 & August 2017	34							
4.3.3.	Annual Fluctuation : November 2016 & November 2017	35							
4.3.4.	Annual Fluctuation : January 2017 & January 2018	36							
4.4 Lo	ng Term Ground Water Scenario	37							
4.4.1.	Decadal Fluctuation : (DM of May 2007-16 & May 2017)	38							
4.4.2.	Decadal Fluctuation: (DM of August 2007-16 & August 2017)	39							
4.4.3.	Decadal Fluctuation: DM of Nov 2007-16 & Nov 2017	40							
4.4.4.	Decadal Fluctuation: DM of January 2008–17 & January 2018	41							
4.5 W	ater Table Scenario	42							
5. Hydroge	ochemistry	43							
5.1 H	vdrogeochemistry of NCT Delhi	43							
5.2 Gi	roundwater Quality Monitoring	43							
5.2.1.	Electrical Conductance	44							
5.2.2.	Chloride	46							

5.2.3.	Nitrate	46
5.2.4.	Fluoride	47
Annexure :	I A List of Census Towns – NCT of Delhi	49
Annexure :	I A List of Census Towns – NCT of Delhi	49
Annexure :	I B List of Villages – NCT of Delhi	50
Annexure :	II Rainfall Data & Probability Analysis	51
Annexure :	IIIa Water Level Monitoring Data : (2017-18)	52
Annexure :	IIIB - Decadal Mean WATER LEVEL DATA	54
Annexure :	IV List Groundwater Samples & Chemical Analysis : May 201	7 57
Reference		60

PLATES / FIGURES:

- 1. Administrative Map : NCT of Delhi.
- 2. (a) Utilisation of land in Delhi (2015-2016).
 (b) Land utilization and area under Irrigation (2015-2016).
- 3. Climatological Data NCT of Delhi.
- 4. Isohyetal Map NCT of Delhi.
- 5. (a) Drought frequency Analysis of 33 years (1984-2016).(b) Plot of Annual Rainfall, Departure and Cumulative Departure NCT of Delhi.
- 6. Rainfall Probability curve NCT of Delhi.
- 7. National Hydrograph Monitoring station. NCT of Delhi.
- 8. Digital elevation map of NCT of Delhi.
- 9. River and Drainage NCT of Delhi.
- 10. Geomorphological Map of NCT of Delhi.
- 11. Geology : NCT of Delhi.
- 12. Map showing locations of Exploratory wells.
- 13. Dimensional Model Disposition of Aquifers in NCT of Delhi.
- 14. Thickness of fresh water zones (m bgl) May 2015.
- **15.** Panel diagram aquifer disposition, fresh-saline GW interface.
- 16. Depth of Bed rocks NCT of Delhi.
- 17. Monitoring Wells Vs. Water level depth range 2017-2018.
- 18. Monitoring Wells Vs. Water level depth range 2017-2018.
- 19. Depth of Water level Map: May 2017.
- 20. Water level Depth zone Area coverage: NCT of Delhi May 2017. (pie chart)
- 21. Depth of water level map: NCT of Delhi.
- 22. NCT of Delhi: Water level depth zone: Area Coverage August 2017.
- 23. Depth of Water level Map: November 2017.
- 24. Water level depth zone Area coverage: NCT of Delhi November 2017. (Pie chart)
- 25. Depth of water level map: January 2018.
- 26. Water level Depth zone: Area Coverage January 2018. (Pie chart)
- 27.(a) Fluctuation of water level: May 2017 to Aug 2017.
 - (b) Fluctuation of water level: May 2017 to Nov 2017.
 - (c) Fluctuation of water level: May 2017 to Jan 2018.
- 28. Seasonal Fluctuation in Ground water level: May 2017 to Aug 2017.
- 29. Seasonal Fluctuation WL May 2017 Aug 2017: Area Coverage. (Pie chart)
- 30. Seasonal Fluctuation in ground water level Pre-Monsoon May 2017 & Post Monsoon Nov 2017.
- 31. Seasonal Fluctuation in WL May-2017 to Nov-2017: Area coverage. (Pie Chart)
- 32. Seasonal Fluctuation in the ground water level May 2017 & Jan 2018.
- 33. Seasonal Fluctuation in WL May 2017- Jan 2018 Area coverage.
- 34.(a) Fluctuation of water level: May 2016 to May 2017.
 - (b) Fluctuation of water level: Aug 2016 to Aug 2017.
 - (c) Fluctuation of water level: Nov 2016 to Nov 2017.
 - (d) Fluctuation of water level: Jan 2017 to Jan 2018.
- 35. Annual Fluctuation in ground water level May 2016 May 2017.
- 36. Fluctuation in water level May 2016 May 2017: Area coverage.
- 37. Annual fluctuation in ground water level August 2016 August 2017.
- 38. Fluctuation in water level Aug 16 Aug 17: Area Coverage.
- 39. Annual Fluctuation in the ground water level November 16- November 17.
- 40. Fluctuation in water level Nov 16- Nov 17: Area Coverage.
- 41. Annual Fluctuation in ground water level January 2017- January 2018.

42. Fluctuation in water level Jan 2017- Jan 2018 : Area coverage.

- 43.(a) Fluctuation of water level DM of May 2007-2016 & May 2017.
 - (b) Fluctuation of water level DM of Aug 2007-2016 & Aug 2017.
 - (c) Fluctuation of water level DM of Nov 2007-2016 & Nov 2017.
 - (d) Fluctuation of water level DM of Jan 2008-2017 & Jan 2018.
- 44. Decadal fluctuation in Ground water level. DM of May 2007-2016 & May 2017.
- 45. WL fluctuation DM of May 2007-2016 & May 2017: Area Coverage.
- 46. DM of August (2007-2016) & August 2017.
- 47. WL fluctuation DM of Aug 2007-2016 & Aug 2017: Area Coverage.
- 48. DM of November (2007-16) & November 2017.
- 49. WL fluctuation DM of Nov 2007-2016 & Nov 2017: Area coverage.
- 50. DM of January (2008-2017) & January 2018.
- 51. WL fluctuation DM of Jan 2008-2017. & Jan 2018: Area coverage.
- 52. Water table map: May 2017.
- 53. Location: GW quality samples.
- 54. Electrical Conductivity in ground water: May 2017.
- 55. Distribution of EC in ground water May 2017: Area coverage.
- 56. Chloride in ground water. May 2017.
- 57. Nitrates in ground water. May 2017.
- 58. Fluoride in ground water. May 2017.

TABLES

- 1. Details of administrative units NCT of Delhi.
- 2.(a) Area, Populations& Details of towns & villages: NCT of Delhi.
- (b) Utilisation of land in Delhi (2015-16) Area in hectares.
- 3. Sources of irrigation and irrigated area (2015-16).
- 4.(a) Climate seasons in NCT of Delhi.
- (b) Climatological Parameters NCT of Delhi.
- 5. Rainfall Data Analysis NCT of Delhi
- 6. Rainfall Probabillity Analysis.
- 7. Normal and extremes of rainfall (Long term 1930-1980 IMD Normal).
- 8. Number of stations monitored during 2017-2018.
- 9. Generalized Stratigraphic units of NCT Delhi.
- 10. Thickness of Alluvium overburden over Bed rock.
- 11. Monitoring wells showing seasonal fluctuation in water level.
- 12. Monitoring wells showing annual fluctuation in water level.
- 13. Monitoring wells showing fluctuation in water level comparing Decadal Mean.

1. INTRODUCTION

The State Unit Office of Central Ground Water Board has jurisdiction over the National Capital Territory (NCT) of Delhi, covering an area of 1483 sqkm and lies between 28°24'15" & 28°53'00" North Latitudes and 76°50'24" & 77°20'30" East Longitudes, covered under Survey of India Toposheet Nos. 53D and 53H. The NCT of Delhi is surrounded on three sides by two States, i.e., on North, West and South by Haryana and in the East across the river Yamuna by Uttar Pradesh.

1.1 Administrative Setup of NCT Delhi

NCT of Delhi is divided in 11 Revenue District and one non-revenue unit along river Yamuna, named as *Nazul Land*. Each district is headed by a Deputy Commissioner and assisted by Additional District Magistrate & Sub Divisional Magistrates. The District Administration in Delhi is the *de-facto* enforcement department for all kinds of Government Policies and exercises supervisory powers over numerous other functionaries of the Government. As per District Census Hand Book¹, 11 districts of NCT of Delhi are further subdivided into 3 Tehsils for each district and there are total 33 Tehsils, with 112 villages, 110 Census Town and 3 Statutory Towns. Administrative map of NCT of Delhi is shown in figure 1 and list of districts, tehsils is presented in table 1 and detailed list of urban / rural areas given in annexure I.

Sr No.	District Name	Tehsil Name
		CIVIL LINES
1	CENTRAL	KOTWALI
		KAROL BAGH
		GANDHI NAGAR
2	EAST	MAYUR VIHAR
		PREET VIHAR
		CHANAKYA PURI
3	NEW DELHI	DELHI CANTONMENT
		VASANT VIHAR
		ALIPUR
4	NORTH	MODEL TOWN
		NARELA
		KARAWAL NAGAR
5	NORTH EAST	SEELAMPUR
		YAMUNA VIHAR
6		KHANJHAWALA
	NORTH WEST	ROHINI
		SARASWATI VIHAR
		SEEMAPURI
7	SHAHDARA	SHAHDARA
		VIVEK VIHAR
		HAUZ KHAS
8	SOUTH	MEHRAULI
		SAKET
		DEFENCE COLONY
9	SOUTH EAST	KALKA JI
		SARITA VIHAR
		DWARKA
10	SOUTH WEST	KAPASHERA
		NAJAFGARH
		PATEL NAGAR
11	WEST	PUNJAB BAGH
		RAJOURI GARDEN
Non	Revenue Unit Area	NAZUL LAND

Table 1 : Details of Administrative Units - NCT of Delhi

1.2 Population & Land use

As per Census of India Report² total population of NCT of Delhi is 167,87,944 persons. Out of total 1483 sqkm areas, only 25 % constitutes rural areas spread in 112 villages, which is sparsely populated having population density of 1135 persons / sqkm, where as rest 75 % is urban areas spread in 110 Census Towns and 3 Statutory Towns and it is densely populated with population density of 14,698 persons / sqkm. Details of villages & towns and its area & populations and land use pattern is given in table 2a & 2b respectively.

Population of Delhi has increased at a rate of 2.1% per annum during the decade 2001-2011². Considering the same growth rate for the present decade, it is estimated that the population of Delhi in 2019 will be about 184 lakhs and it would be about 188 lakhs in 2021, 208 lakhs by 2031. In order to evaluate the changes in ground water regime effect due to ever growing demand for ground water and the increasing numbers of abstraction

structures in the city, CGWB has been continuously monitoring the water level variation with its own network stations spread over the entire area of NCT Delhi.

Table 2a: Area , Population &	Details of Towns and	Villages : NCT of Delhi
-------------------------------	----------------------	-------------------------

Area & Population											
	Total Area 1483 sqkm : Total Population 167,87,941 persons										
\succ	Urban Area : 1114 sqkm (75 %) Urban Population 163,68,899 (98 %)										
>	Rural Area : 369 sqkm (25 %) Rural Population 4,19,042 (2 %)										
Details of Towns - Urban Area											
\succ	Statutory Towns : 3										
	• New Delhi Municipal Council : Area 42.74 sqkm : Population 2,57,803										
	 Delhi Cantonment Board : Area 42.97 sqkm : Population 1,10,351 										
	 Delhi Municipal Corporation : Trifurcated into 										
	 North Delhi Municipal Corporation (NDMC) 										
	 South Delhi Municipal Corporation (SDMC) 										
	 East Delhi Municipal Corporation (EDMC) 										
\succ	Census Towns : 110 - (List – Details Annexure I)										
	DMC & Census Town Area : 1028 sqkm : Population 160,00,74	15									
	Details of Villages - Rural Area										
\succ	 Villages : 112 List – Details Annexure I) 										
	Village Area: 363.35 sqkm: Population 4,19,042										
	Source ² : Delhi Statistical Handbook-2016 : www.des.del	hi.gov.in									

Land utilization data for year 2015-16 reveals that out of 1474.8 sgkm areas accounted for Land Records in NCT of Delhi, more than 65 % area is not available for cultivation where as only 92.70 sqkm is available for cultivation and nearly 34.75 sq km is gross cropped / agriculture areas. Nearly 6 % of total area is under forest, covering mostly notified ridge areas and other forest pockets under DDA & government forest land . Break up of land utilization is presented in table 2b and depicted graphically in figure 2a figure 2b.

Table : 2b Utilisation of Land in Delhi (2015-16) Area in Hectares

	LOJ Area in Hecta	ares
Area according to Land use Records (Exclude Fo	147488	
Area not Available for Cultivation	92700	
(a) Land Put to Non Agriculture Use -	76218	
(b) Barren and Uncultivated Land	16482	
Other Uncultivated Land		11124
(a) Permanent Pasture & Other Grazing Land	61	
(b) Land Use Under Miscellaneous Uses	1170	
(c) Cultivable Waste Land	9893	
Fallow Land		19225
Net Area Sown		23150
Area Sown more than once		11600
Total Cropped Area		34750
Area Under Forest		9453
(a) Forest Under DDA	1281	
(b) Notified Ridge Forest	7784	
(c) Other Forest Area	388	

Table : 3 Sources of Irrigation and Irrigated Area 2015-16

Sc	ource	Area Irrigated (in Hectare)			
Ca	anals		2225		
Т	anks		0		
Walls	TWs	18586	10561		
wens	Others	975	19501		
Net Are	a Irrigated		21786		
Area Irri	gated More		7000		
Tha	n Once		7900		
Gross Ar	ea Irrigated		29686		
2					

Source² : Joint Director of Agriculture, Govt of NCT

Main source for irrigation in NCT of Delhi is groundwater whereas surface water is also available from Trans Yamuna Canal Network. Details about sources of irrigation and areas under irrigation is presented in table 3.

Source² : Joint Director of Agriculture, Govt of NCT of Delhi

1.3 Climate and Rainfall

1.1.1. Climate

The climate of NCT Delhi is mainly influenced by its inland position and the prevalence of air of the continental type during the major part of the year. Extreme dryness with the intensely hot summer and cold winter are the characteristics of the climate. Only during the three-monsoon months July, August, and September does air of oceanic origin penetrate to this state and causes increased humidity, cloudiness and precipitation. The year can broadly be divided into three seasons (Table 4). Date on long-term average climatologic parameters covering monthly maximum / minimum temperature, relative humidity, evaporation and rainfall for NCT of Delhi is given in table 5 and presented graphically in figure 3.

Season	Begin	End
Cold/Winter	End of November	Middle of March
Summer	Middle/End of March	End of June
Rainy season	Early July	September

Table 4 : Climate Seasons in NCT of Delhi

Month	Max Temp (°C)	Mini Temp (°C)	Relative Humidity (%)	Rainfall (mm) Normal	Rainfall (mm) 2015	Rainy Days	Eto (mm/d)
January	18.8	8.2	98.0	21.7	24.1	4.0	7.1
February	22.5	9.7	92.0	18.0	1.8	0.0	10.1
March	28.1	15.1	80.0	15.9	97.4	6.0	17.7
April	34.9	19.9	57.0	12.2	27.7	2.0	30.0
May	38.6	24.3	52.0	19.7	3.1	0.0	40.0
June	41.3	28.1	57.0	65.5	61.7	4.0	33.3
July	36.5	27.7	72.0	210.6	235.2	10.0	23.3
August	36.3	27.1	72.0	247.7	181.6	9.0	13.3
September	34.8	25.0	74.0	125.1	22.0	1.0	14.7
October	33.7	20.0	77.0	28.0	0.4	0.0	14.9
November	29.0	12.2	72.0	5.6	1.1	0.0	10.2
December	21.6	8.1	85.0	9.0	0.0	0.0	7.8
Total	-	-	-	779.0	656.1	36.0	222.4
Average	31.3	18.8	74.0				

Table : 5 Climatological Parameters – NCT of Delhi (Source²)

1.1.2. Rainfall

For calculation of normal rainfall of NCT Delhi, rainfall records from 1930-1980 for 13 stations (Table : 7) were considered. The normal annual rainfall in NCT Delhi is 611.8 mm. The rainfall in NCT Delhi increases from the southwest to the northwest (figure 4). About 81% of the annual rainfall is received during the monsoon months July, August and September. The rest of the annual rainfall is received as winter rains and as thunderstorm rain in the pre and post monsoon months. The variation of rainfall from year to year is large.

1.1.1. Rainfall Analysis

Rainfall analysis of 34 years annual rainfall of data and probability analysis date is plotted in figure 5 & 6 and its finding, about probability of occurrence of quantum of rainfall with various probability is presented in table 6. (data analyzed for probability graph Annexure II).

A perusal of rainfall data from 1984 to 2017 shows that NCT Delhi received deficient rainfall during last 21 years corresponding to mild to severe drought conditions (Table 5 & Fig 5b and annexure >>>). Severe drought with departure of 50 % was experience in 1989. Normal drought, departure 25 to 50 % was experienced during year 1986,1987, 2002 and recently during 2014. Whereas, Mild drought, departure up to 25 %, was experienced during the year 1984, 1991, 19192, 19197, 1999, 2001, 2004 to 2007, 2009, 2100, 2012 and 20015 to 2017. The probability analysis shows that probability of rainfall exceeding normal rainfall of 669 mm is up to 48 % whereas there are 90 % chance that rainfall would limit to 476 mm.. Overall, thus the rainfall in Delhi is highly variable and which in turn affects the natural recharge to ground water from year to year.

1.1.2. Other Climatic Parameters

> Temperature:

The cold season starts after second week of November when both day and night temperature drop rapidly with the advance of the season. January is the coldest month with the mean daily maximum temperature at 21.3°C and the mean daily minimum at 7.3°C. In the winter months when western disturbances passes across north India, minimum temperatures may sometimes go down to the freezing point of water. From about the middle of March, temperature begins to rise fairly rapidly. May and June are the hottest months. While day temperature is higher in May the nights are warmer in June. From April the hot wind known locally as *'loo'* blows and the weather is unpleasant. In May and June maximum temperature may sometimes reach 46 or 47°C. With the advance of the monsoon

into the area towards the end of June or the beginning of July day temperatures drop appreciably while the night temperatures remain high. In October the day temperatures are as in the monsoon months but the nights are cooler.

> Humidity:

The air over Delhi is dry during the greater part of the year. Humidity is high in the monsoon months. April and May are the driest months with relative humidity of about 30% in the morning and less than 20% in the afternoons.

Cloudiness:

During the monsoon especially in July and August skies are heavily clouded and often overcast. In the rest of the year skies are clear or lightly clouded. But in the months January, February and early March skies become cloudy by western disturbances.

> Winds:

Winds are generally light during the post monsoon and winter months. They strengthen during the summer and monsoon months. Except during the monsoon months, winds are predominantly from a westerly or northwesterly direction and tend to be more northerly in the afternoon. Easterly and southeasterly winds are more common in the monsoon months.

Stations	No. of Years of DATA	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL	HIGHEST ANNUAL AS % OF (YEARS)**	lowest Rainfall - Normal &	HEAV RAINF In 24 F Amou (mn	IEST FALL HOURS * Int Date
Chandrawal	20 a	8.5	15.3	16.7	5.5	18.2	47.6	329.8	308.4	102.3	14.4	8.2	11.6	886.5	163	64	171.0	1976 Aug 08
(obsy)	b	0.6	1.2	1.2	0.5	1.5	2.2	10.5	10.4	3.9	0.9	0.2	0.8	33.9	(1977)	(1969)	_	
New Delhi	79 a	20.5	20.1	13.3	7.8	12.5	62.2	203.2	202.2	137.6	21.7	3.1	8.0	712.2	215	43	495.3	1875 Sep 09
(Safd)	b	1.8	1.5	1.2	0.8	1.4	3.6	9.2	9.5	5.1	1.0	0.2	0.7	36.0	(1933)	(1905)		
Delhi	29 a	20.7	18.3	19.1	5.1	16.4	62.2	281.6	263.5	147.4	41.6	4.1	7.6	887.6	209	52	250.0	1963 Sep 16
(University	b	1.6	1.4	1.5	0.7	1.5	2.8	10.3	10.5	5.2	1.6	0.2	0.8	38.1	(1957)	(1974)		
obsy)																		
New Delhi	22 a	14.7	14.1	9.3	6.1	18.9	54.2	241.1	284.3	119.4	16.8	6.4	8.6	793.9	164	51	265.8	1972 Jul
Palam	b	1.3	1.5	1.0	0.6	1.5	3.5	10.9	10.7	4.9	1.4	0.2	0.6	38.3	(1967)	(1965)	09	
Okhala	21 a	9.6	11.9	14.7	2.6	17.1	66.9	212.5	296.3	124.6	23.2	5.7	7.3	792.4	159	66	190.0	1967 Aug
(obsy)	b	0.9	1.3	0.9	0.3	1.4	3.4	9.3	10.7	5.1	0.9	0.3	0.6	35.1	(1964)	(1974)	26	
Mahruali	33 a	13.9	10.1	7.3	9.4	3.6	28.3	159.9	152.5	98.7	11.5	1.5	2.3	499.0	197	42	177.8	1911 Sep
	b	1.1	0.7	0.6	0.6	0.3	1.5	5.8	5.9	3.0	0.3	0.2	0.3	20.3	(1944)	(1954)	28	
Delhi	38 a	22.6	17.5	13.0	8.8	9.6	44.8	184.3	180.0	132.3	26.1	3.5	5.1	647.6	194	42	224.8	1942 Sep
Sadaer	b	1.9	1.4	1.4	0.6	0.9	2.4	7.6	8.9	4.7	1.0	0.3	0.6	31.7	(1964)	(1903)	05	
Nangloi	25 a	8.5	4.6	1.1	4.0	2.4	19.8	100.3	121.6	69.0	5.0	0.4	0.5	337.2	246	21	120.0	1964 Aug
	b	0.8	0.3	0.2	0.2	0.3	1.1	4.6	5.4	3.1	0.4	0.0	0.0	16.4	(1964)	(1950)	14	
Sahadra	12 a	15.5	17.9	5.6	5.3	2.8	24.8	170.7	125.8	74.9	7.9	0.0	0.6	451.9	206	42	129.5	1944 Sep
	b	0.7	0.8	0.7	0.3	0.5	1.4	6.1	5.0	2.8	0.3	0.0	0.1	18.7	(1944)	(1948)	04	
Najafgarh	23 a	8.9	8.2	4.7	4.2	3.0	25.1	122.0	122.8	75.9	21.7	0.5	1.8	398.9	171	10	139.7	1954 Oct 01
	b	0.8	0.7	0.2	0.4	0.4	1.3	5.5	5.6	3.2	0.8	0.0	0.2	19.1	(1942)	(1959)		
Badli	23 a	13.7	8.6	9.6	3.6	1.4	21.8	154.2	181.3	88.2	32.9	0.8	0.0	516.1	257	37	205.7	1962 Jul 17
	b	1.0	0.7	0.6	0.4	0.2	1.1	5.8	6.4	3.7	0.8	0.0	0.0	20.7	(1961)	(1951)		
Alipur	21 a	11.7	10.6	3.3	3.6	6.0	26.7	146.1	137.1	87.7	13.7	1.3	1.1	448.9	202	12	162.1	1961 Jul 17
	b	1.3	0.7	0.4	0.4	0.4	1.5	4.7	6.0	2.9	0.7	0.1	0.1	19.3	(1961)	(1959)		
Narela	19 a	19.9	14.5	10.6	4.9	7.2	20.6	184.7	190.4	111.2	14.8	1.1	1.4	581.3	196	29	184.1	1947 Sep
	b	1.5	0.9	1.1	0.6	0.4	1.6	6.4	8.2	4.0	0.5	0.1	0.2	25.3	(1961)	(1965)	15	-
Delhi	а	14.5	13.2	9.9	5.5	9.2	38.8	191.6	197.4	105.3	19.3	2.8	4.3	611.8	251	44		
(District)	b	1.2	1.0	0.8	0.5	0.8	2.1	7.4	7.9	4.0	0.8	0.1	0.4	27.0	(1933)	(1951)		

Table : 7 Normal and Extremes of Rainfall (Long Term 1930 to 1980 IMD Normal)

(a) Normal rainfall in mm.

(b) Average number of rainy days (i.e. days with rainfall of 2.5 mm or more)
 * Based on all available data up to 1980.

** Years given in brackets.

2. GROUND WATER REGIME MONITORING

Monitoring of ground water regime is an effort to obtain information on variation in ground water levels and chemical quality through representative sampling, both in time and space. Systematic and regular monitoring of groundwater levels and quality brings out various information about the changes taking place in the groundwater regime.

2.1. Monitoring Objective and Method

Main objective is to record the response of ground water regime to the natural and artificial conditions of recharge and discharge with reference to geology, climate, physiography, land-use pattern and other hydrologic characteristics. The database generated, in forms of reports and maps, are of immense help for regional groundwater flow modeling which serves as a groundwater management tool to provide the necessary advance information to the user agencies to prepare contingency plans in case of unfavorable groundwater recharge situation. The data also has immense utility in deciding the legal issues arising out of conflicting interests of groundwater users and also form the basis for ground water development and management programme.

2.1.1. Monitoring Stations Status

Central Ground Water Board, as a part of its national programme, has established a network of observation wells in the NCT of Delhi with this objectives. Number of wells monitored during 2017-18 in NCT of Delhi varied from 93 in May 2017 to 81 in January 2018. Details of monitoring wells, with district wise breakup and types of wells (dug wells / piezometers etc) is given in Table 8 and their distribution in NCT of Delhi shown in map in figure 7.

		May-17			Aug-17			Nov-17		Jan-18			
	DW	Pz	Total	DW	Pz	Total	DW	Pz	Total	DW	Pz	Total	
Central	2	3	5	2	3	5	1	3	4	2	4	6	
East	0	4	4	0	4	4	0	4	4	0	3	3	
New Delhi	5	16	21	4	15	19	3	13	16	4	11	15	
North	2	14	16	1	14	15	1	14	15	1	13	14	
North East	0	3	3	0	1	1	0	0	0	0	1	1	
North West	2	4	6	2	5	7	2	5	7	2	5	7	
Shahdra	0	0	0	0	0	0	0	0	0	0	0	0	
South	3	5	8	3	5	8	3	5	8	3	5	8	
South East	0	4	4	0	5	5	0	4	4	0	5	5	
South West	1	12	13	1	13	14	1	14	15	1	12	13	
West	4	7	11	4	7	11	3	5	8	3	6	9	
Nazul Land	0	2	2	0	2	2	0	2	2	0	0	0	
TOTAL	19	74	93	17	74	91	14	69	83	16	65	81	

Table :8 Numbers of Stations Monitored by CGWB During 2017-18 - NCT Delhi

DW : Dug well & Pz : Piezometer ; * Non Revenue Land Area – Yamuna Flood Plain Area

It is observed that at present district wise distribution of monitoring network stations has became highly uneven. Over the period, mainly during last three years, numbers of monitoring stations became defunct largely due to corrosion of well assembly and at some places, destroyed / filled up due to other unavoidable urban development activities. During last two decade, at places, continuous decline in ground water level is observed. Such condition necessitate more attention and close monitoring at micro level. It is fact that establishing of new Peizometers or identifying new working dug wells in metropolitan city of Delhi is very difficult due to non-availability of space, although Central Ground Water Board is striving to increase the number of monitoring stations in NCT Delhi to have close observation in the diverse hydrogeological domain. To ensure optimum network density of monitoring station for scientific analysis of the dynamics of ground water regime, in exceedingly developing areas of NCT Delhi is most inevitable. CGWB has taken up groundwater exploration programme to drill and construct new piezometers to replace existing defunct piezometers at 10 sites of NCT Delhi during the Annual Action Plan of year 2018-19 onward. Map showing locations of existing monitoring stations of CGWB is presented in figure 7.

2.1.2. Distribution of Monitoring Stations

Central Ground Water Board has carried out extensive hydrogeological mapping and groundwater exploration in NCT of Delhi and its surrounding States. The information generated from these studies has helped to figure out the subsurface disposition and inter-relationship of the aquifers spatially and depth wise. This information has enabled to decide grouping of interrelated aquifers into one aquifer system for the purpose of monitoring.

In alluvial areas of NCT of Delhi, number of sand zones constituting individual local aquifers are grouped into major one main aquifer system and piezometers have been installed accordingly. Three distinct potential aquifer groups within the depth of 450 m below ground level, identified and grouped on basis of various hydrogeological mapping and ground water exploration, are as follows.

- 1. Aquifer Group I Down to 65 m below ground level (Un-confined)
- 2. Aquifer Group II- Between 65 to 200 m below ground level (Confined/ Semi-Confined)
- 3. Aquifer Group III- Between 200 to >300 m below ground Level (Confined)

Separate piezometers are installed, tapping the two aquifer groups, the first one in the phreatic zone deep enough to accommodate long term fluctuation (i.e. up to 65 m deep) and the other one tapping

the middle parts of the aquifer groups II, lying between 65 to 200 m. The Aquifer group III is not being monitored at present.

Similarly, hard rock area of NCT Delhi is being monitored through piezometric nests, which are installed in a single borehole tapping the weathered and fractured aquifers combined. Generally, the depth of the well goes up to 80 m, but in some cases it goes up to 140 m.

Besides piezometers, numbers of dug wells, tapping phreatic aquifer zone are included in monitoring network. Over the period, numbers of dug wells are becoming defunct due to lack of their use and maintenance. Still, there are 22 dug wells integrated with monitoring network of NCT Delhi (figure 7).

3. HYDROGEOLOGY

Occurrence and movement of groundwater in subsurface aquifer system depends upon topography, geology, climate, water yielding and water bearing properties of subsoils / rocks in the zones of aeration and saturation. The upper surface of the zone of saturation is the Water Table which is measured during water level monitoring. In case of wells penetrating confined aquifers, the water level represents the pressure or Piezometric Head at that point. For effective water level monitoring, it is essential to have a complete understanding of aquifer disposition and geometry in the area before establishing monitoring network.

3.1 Physiography & Drainage

NCT of Delhi represents a mature topography with vast, gently undulatory plains dominated by Yamuna River, low linear ridges and isolated hillocks. Physiography of Delhi is dominated by the Yamuna river, the Aravalli range, and the plains in between formed by alluvium deposits of Recent age. The SSW- NNE trending Aravalli Ranges are designated as *Delhi Ridge*, occupy the south central part of Delhi and extend up to western bank of Yamuna River near Okhla in the south and Wazirabad in the north-east. Ecologically, in western part of the India, the Aravalli Ridge acts as a barrier between the Thar desert and the plains and slows down the movement of dust and wind from the desert. In NCT Delhi, the ridge area are covered with forests, acts as city's lungs and help maintain its environment. This green belt, a natural forest, has a moderate influence on temperature, besides bestowing other known benefits to the people.

The area towards east of ridge has a gentle slope of 3.5 m/km towards Yamuna. The area towards west of ridge representing Older Alluvial Plain is mostly covered by sand dunes and has a westerly slope. Yamuna River flows across Delhi in a southsoutheasterly direction with vast flood plain, marked by a bluff of 3 to 4 m on either bank. Digital Elevation Model Map of Delhi is presented in Fig. 8. Surface elevation varies from 332 m above mean sea level at the ridge to 62 m above mean sea level at river Yamuna. The low-lying Yamuna flood plains, with an elevation as low as 198 m amsl, provide fertile alluvial soil suitable for agriculture but are prone to recurrent floods.

The Yamuna river flowing in a southernly direction in the eastern part of the NCT of Delhi is the only perennial river in the area besides the number of micro watersheds originating from the quartzite ridge. The drainage on the East of the ridge enters river Yamuna, whereas on the West, it enters natural depressions located in Najafgarh Tehsil of South-West district. The NCT of Delhi can be

divided into seven sub basins, ultimately discharging into the Yamuna (figure 9), namely (I) The Najafgarh Drain is about 39 Km long, flows North-Easterly and joins Yamuna River at Wazirabad in North Delhi. (ii) Supplementary drain, (iii) Barapullah drain (iv) Wild life sanctuary area, (v) Drainage of Shahadra area, (vi) Bawana drain basin, (vii) Other drains directly out falling into river Yamuna on right bank. Swamp areas are common along the flood plains of Yamuna.

3.2 Geomorphology

The ground water availability in NCT of Delhi indirectly relates with its distinct landforms units, which in turn represent underlying intrinsic geological features. Map showing these landforms of NCT of Delhi are presented in Fig. 10. All these landforms of NCT, Delhi can be grouped into three broad geomorphic units: namely Rocky surface, Older Alluvial Plain and Flood Plain of Yamuna River.

Rocky Surface : The rocky surface represents structurally controlled relict linear ridges and isolated hillocks comprising of rocks of Delhi Supergroup. This distinct landform comprising of isolated hills is most prominent in the south and south central parts, and extends from Mahipalpur to Wazirabad in the north. Towards south of Mahipalpur the ridge gets bifurcated, one arm extends towards Mandi and further south while the other arm takes a turn towards southeast and extends upto Tughlakabad-Greater Kailash-Nehru Place and Okhla. It attains a maximum elevation of 362 m amsl which gradually diminishes towards north where rocks are exposed on the western bank of Yamuna near Wazirabad.

Older Alluvial Plain: The gently undulatory terrain on either side of the rocky surface is described as Older Alluvial Plain. This surface is separated from the Yamuna Flood Plain by a bluff. Depending upon

the morphological expressions / features, this unit is further divided into different subunits: namely, (i) Najafgarh Older Alluvial Plain , (ii) Delhi Older Alluvial Plain and (iii) Maidan Garhi Plain. Najafgarh Older Alluvial Plain occupying western and southwestern part of the region is partly covered by sand dunes and sandy sheets. The gently sloping surface including the covered pediment along the eastern flank of the ridge represents the Delhi Older Alluvial Plain. Maidan Garhi Plain is a relatively higher plain surface and forms part of Chhatarpur Basin. A narrow zone of badland has formed mostly along the western margins of structural ridges due to intense development of gullies and rills.

Flood Plain of river Yamuna: The low-lying flat surface representing the Flood Plain of river Yamuna occupying northern, northeastern and eastern parts of the NCT is an important geomorphic unit. North of Narela, the width of flood plain varies from 15 to 17 km. The wider Older Yamuna flood plain indicates lateral migration of river Yamuna over large areas. This belt has good potential for ground water development. It forms the erosional terrace. The Yamuna Active Flood Plain represents the wide belt bounded on both the sides by Eastern and Western bunds and is naturally prone to annual / periodic floods being in the flood way and flood fringe zone of river Yamuna. It forms depositional terrace and is characterized by abandoned channels, cut-off meanders, meander scrolls, point bars and channel bars. Presence of number of cut- off meanders in the Yamuna Flood Plain suggests oscillatory shifting of river. The lakes near Bhalsawa, Kondli and Khichdipur are remnants of large meanders.

3.3 Geology

The rock formations exposed in the National Capital Territory of Delhi are mainly quartzite interbedded with thin bands of micaceous schist. These Proterozoic age rocks occur along the ridge, extending from Harchandpur (Haryana) in the South to Wazirabad (Delhi) in the North. Quaternary sediments consisting alluvium deposit directly overlie the Proterozoic rocks. Systematic geological and geomorphologic studies carried out by the Geologists of Geological Survey of India³ has revealed three Stratigraphic horizons and underlying three distinct lithostratigraphic units of NCT Delhi. The highest of these is the erosional surface forming the top of denudational hills. The second surface is Older Alluvial plain and the third is depositional Younger Alluvial plain (Yamuna). All three lithostratigraphic units corresponding them have undergone changes due to widespread and uncontrolled urban activity over the period. The geological map of Delhi after Kachroo and Bagchi (1999)³, showing these main units is shown in figure 11 and generalized stratigraphy of NCT of Delhi is presented in table 9.

Alluvium Unconsolidated, inter-bedded lenses of sand, silt gravel and clay confined to narrow flood plains of Yamuna river and Aeolian deposit of South Delhi. Unconsolidated thickness varies upto 300m. Interbedded, inter-fingering deposits of sand, clay and kankar, poor to moderately sorted.	Table 9 General	ble . 9 Generalized stratigraphic offics of NCT Defin (complied after GSI study)				
Newer Alluvium clay confined to narrow flood plains of Yamuna river and Aeolian deposit of South Delhi. Alluvium Unconsolidated thickness varies upto 300m. Interbedded, inter-fingering deposits of sand, clay and kankar, poor to moderately sorted.			Unconsolidated, inter-bedded lenses of sand, silt gravel and			
Alluvium Alluvium Alluvium Aeolian deposit of South Delhi. Unconsolidated thickness varies upto 300m. Interbedded, Older Alluvium inter-fingering deposits of sand, clay and kankar, poor to moderately sorted.	Alluvium	Newer Alluvium	clay confined to narrow flood plains of Yamuna river and			
Older Alluvium Older Alluvium Older alluvium Older Alluvium Older Alluvium			Aeolian deposit of South Delhi.			
Older Alluvium inter-fingering deposits of sand, clay and kankar, poor to moderately sorted.		Older Alluvium	Unconsolidated thickness varies upto 300m. Interbedded,			
moderately sorted.			inter-fingering deposits of sand, clay and kankar, poor to			
			moderately sorted.			
Well stratified, thick bedded, brown to buff colour, hard	Dolhi Supor		Well stratified, thick bedded, brown to buff colour, hard			
Alwar Quartzite and compact, intruded locally by pegmatite and quartz	Crown	Alwar Quartzite	and compact, intruded locally by pegmatite and quartz			
veins interbedded with mica schist.	Group		veins interbedded with mica schist.			

Table : 9 Generalized Stratigraphic Units of NCT Delhi (compiled after GSI Study³)

3.3.1. Alluvium Deposits

In NCT Delhi region, exposures of the oldest lithostratigraphic unit, the Delhi Quartzite ridge acts as main recharge zone to subsurface aquifer system. The Quaternary deposits in the form of aeolian and alluvial deposits constitute the major repository of ground water in the area. In the East of the ridge, the thickness of unconsolidated sediments gradually increases away from the ridge, with the maximum reported thickness being 170 m. In the Southwestern, Western and Northern parts of the area, the thickness of sediments is more than 300 m except at Dhansa where the bedrock has been encountered at 297 m below land surface. In Chhattarpur basin, the maximum thickness of sediments is 116 m. The aeolian deposits of South Delhi are mainly comprised of loam, silty loam and sandy loam. The bedrock is overlain by these deposits. Older alluvial deposits consist mostly of interbedded, lenticular and inter fingering deposits of clay, silt, and sand along with kankar. These deposits are overlain by the newer alluvium, which occurs mostly in the flood plains of river Yamuna.

3.3.2. Hard Rock Formation

Quartzite is one of the most physically durable and chemically resistant rocks found in NCT of Delhi. The suits of quartzite and associated mica schist /phyllite bands of Delhi system have undergone multiple folding and different phases of metamorphism. When the mountain ranges are worn down by weathering and erosion, less-resistant and less-durable rocks are destroyed, but the quartzite remains. This is why Delhi Quartzite is so often the rock found as linear ridges ranges and covering their flanks as a litter of scree. One of the research study on weathering of Proterozoic quartzite in the semi-arid conditions around Delhi⁴, it is suggested that Quartzite being a resistant rock, dissolution of small amount of pyrites presence, by moving water produced a sulphate-bearing acidic solution and ferrous iron which reacted with aluminosilicate minerals and quartz respectively and has made the Delhi Quartzite porous and subsequent friable. The coupled weathering mechanism, from the core outward and also proceeded initially from fractures towards the inside, produced weathering rinds and subsequent physical erosion of loose sand, produced during rind development in the outermost zones, has given rise to features like tors, spheroids, gullies, cavities and small-scale caves on these quartzites. Thus, the terrain has acquired ruggedness in semi-arid conditions.

In one of the studies of GSI⁵ it is reported three generations of folding in the rocks of Delhi. The fold axes of first generation folds follow the trend of main ridge i.e. NNE-SSW, the second generation folds trending NE-SW are observed at Tughlaqabad - Mehrauli area, and third generation fold trending NW-SE is observed at Anand Parbat. The rocks are highly jointed and two sets of conjugate vertical to sub-vertical joints have been reported ³. Another study of GSI⁶ has inferred a number of faults trending NNE-SSW, NE-SW and WNW-ESE.

3.3.3. Subsurface Aquifer Dispositions

Central Ground Water Board had been engaged in Ground Water Exploration in National Capital Territory of Delhi since its inception in 1972 and till date more than 327 boreholes are drilled out of which 151 are Exploratory Well (EW), 176 are Observation Well (OW) / Piezometers (Pz) / Slim holes⁷. Locations of exploratory boreholes are shown in figure 12. All these boreholes were electrically logged to identify granular zones with fresh ground water and other lithological characteristics of subsurface litho units. All these studies has revealed that there is distinct variations in sub surface lithology characteristics and thickness of individual subunits of the main aquifer zone, within the Younger and Older alluvium deposits of NCT Delhi (refer Fig 11) which make the aquifer geometry of Delhi complicated and complex. Younger Alluvium confined to the flood plains of Yamuna River and also along the courses of major streams, comprises of clay/silt mixed with small mica flakes, and medium to coarse-grained sand and gravel whereas Older Alluvium comprises interbedded and lenticular deposits of clay, silt and sand ranging from very fine to very coarse with occasional kankar. In general, the Younger alluvium, the disposition of different sediments particularly the pervious layer constituting the unconfined aquifer is well delineated in the Yamuna flood plain area while in the

older alluvium, the disposition of different lithological units is not well defined and they are heterogeneous in nature, making it difficult to identify the deep aquifer zones which are regionally extensive, both vertically and laterally. In the Yamuna flood plain, Younger Alluvium thickness is about 40m thick and underlain with silty clay with kankar whereas the thickness of the Older Alluvium, mainly west of Delhi Ridge is highly variable and is dependent mainly on the configuration of the basement ; at Shahbad Mohammadpur near IGI airport the thickness of the older alluvium is 560 meters overlying the bed rock. Whereas in areas underlain by hard rock units, mainly South, South East, Parts of New Delhi and Central district of NCT of Delhi, the aquifers are defined by the presence of fractured zones at different depths. These fractured zones at places are locally well defined but not regionally extensive.

The subsurface configuration of aquifers, in entire NCT of Delhi has been deciphered on basis of available lithological and geophysical logs of exploratory wells drilled by Central Ground Water Board under the Ground Water Exploration Programme. To mark the aquifer geometry, on the basis of

these litholog data, the different sediments i.e. clay, silt, kankar and different grades of sand, and their admixture has been categorized as pervious (silt + kankar + sand) and impervious (mostly clay with some silt + kankar). In the areas underlain by hard rock formation, upper most wreathed regolith and quartzite with fractured zones at different depths and associated mica schist band constitutes unique hard rock aquifer system.

In recent report of CGWB taken up under NAQUIM, the detailed aquifer geometry on regional scale has been established in the NCT, Delhi. All available information about subsurface aquifer configuration, deciphered on basis lithological and geophysical logs of exploratory wells drilled by Central Ground Water Board under the Ground Water Exploration Programme along with interpreted records of various geophysical studies etc., are integrated to prepare the aquifer map. From the geological sections and fence diagrams prepared, principal aquifers in the area have been delineated by grouping the fine, medium, coarse sand and sand with gravels as sand. Top soil and silty clay or silt at the surface have been grouped together. Weathered and fractured quartzite and the massive quartzite/ bedrock have been grouped together as weathered/ fractured quartzite (Figure 13).

3.3.4. Fresh – Saline Ground Water Interface

Various hydrogeological and groundwater exploration studies in NCT of Delhi by CGWB has revealed that thickness of fresh water in major part of the State varies from 20 to 40 m. It is also observed that no fresh water is available in a few pockets in Narela and Alipur tehsils of North District, Saraswati Vihar tehsil of Northwest district, Punjabi Bagh and Patel Nagar tehsils of West District, Najafgarh tehsil of Southwest district and Kalkaji tehsil of Southeast District. (Figure 14).

In one of the recent study undertaken under NAQUIM projects by WAPCOS, the granular zones (the aquifers) with varied resistivity were picked up from the combined interpretations of electrical resistivity (64 inches Normal) and gamma radioactivity logs of the boreholes drilled in the area. It shows that resistivity values greater than 10 ohm m to 50 ohm m represents predominately sand with fresh ground water. Resistivity less than 10 ohm m indicates predominately clay and kankar with saline water. Further lowering of resistivity values to 1 ohm m indicates further deterioration of water quality with depth. Resistivity of the order of 50 to 500 ohm m in hard rock (quartzite) area is represented by weathered/ fractured/ jointed quartzite which forms potential aquifer with potable water. In general, it is clear that fresh water sediments are followed by the saline water sediments in

all over NCT of delhi. The thickness of fresh water sediments is thin in major parts of NCT, Delhi. The depth to fresh – saline water interface varies from 10 m bgl to 80 m bgl. Ground water quality below fresh saline water interface is saline all through up to the bedrock. At a few locations like Dhansa, Qutabgarh and Bankner, saline ground water is present at a very shallow depth range. Panel diagram showing fresh – saline ground water interface in subsurface aquifer system of NCT of Delhi, from NAQUIM report of CGWB, is presented in figure 15.

Perusal of figure 15 shows that in the Southwest district of NCT Delhi, bedrock are encountered at many places i.e. in Dhansa, Samalkha, Kabul lines, Jhuljhuli where fresh/saline water interface also varies greatly in entire area. All along the Najafgarh Drain and two depressions i.e Gummanhera & Pindwalan Kalan, fresh water layer is somewhat deeper i.e. up to 35 m bgl but rest of the area is having thin layer of fresh water i.e. up to the depth 25 to 28 m bgl only. In the western parts of the district, the thickness of fresh water zone is limited. At a few locations like Dhansa, the saline ground water is present at a very shallow depth and as we move towards areas in the eastern part of the district, where hard rock is present, the thickness of fresh water aquifers is more and fresh/saline water interface occurs at deeper depth i.e. generally around 80 to 90 m bgl. At Rajolkri, the depth of fresh/ saline water interface has been observed to be 150 m bgl.

In West district, the depth of fresh/saline interface varies from 25 to 50 m bgl. The depth of fresh water zone varies from 10 to 45m. At places like Dichau Kalan and Kakrola, the thickness of fresh water aquifers is more and fresh/saline interface is at deeper depths while in the areas around Janakpuri, Mundka, the saline water is present at shallow depths.

In South district, depth of fresh/ saline water interface varies from 75 to 100 m. The thickness of fresh water zone varies from 30 to 85 m. At locations like Gadaipur, Bhatti and Munirka, fresh water aquifers are followed by hard rock (Delhi quartzite). In Southeast district, at places around Madanpur Khadar, the thickness of fresh water zones is limited. Here, fresh water aquifers are followed by saline water zone and bedrock is encountered at depth of around of 300 m.

In North West district, the depth of fresh/ saline water interface varies greatly. The thickness of fresh water aquifers is limited in this district. At locations like Auchandi, Qutabgarh & Bankner, the saline water is present at shallower depths. In areas along Yamuna Flood Plain fresh/ saline water interface is at deeper depth i.e around 40 to 70 m bgl, whereas in rest of the area it is 22 to 40 m. No bedrock has been observed up to the depth of 250 m.

In Northeast district, thickness of fresh water aquifers is more in areas around Yamuna Flood Plain. The depth of fresh/ saline water interface in Yamuna Flood Plain ranges between 32 and 50 mbgl whereas in rest of the area, it ranges from 25 to 38 m bgl.

In New Delhi and Central Districts, fresh water sediments are followed by saline water and then by quartzites (Delhi Ridge). In East & Shahdara districts, thickness of fresh water aquifers is more at locations like Kalyanpuri, Kondli and Shakarpur up to 60 m bgl.

3.3.5. Basement Topography

The pre- Cambrian basement rocks are exposed in form of series of isolated hillocks with different dimension, usually termed as Ridge, trending almost in NNE- SSW direction in NCT of Delhi. Main exposures are Northern Ridge near Delhi University (0.87 Sq. Km), Central Ridge near Dhaula Kuan (8.69 Sq. Km), South Central Ridge near Vasant Kunj (6.26 Sq. Km) and Southern Ridge near Asola (62 Sq. Km). The strike of these rocks varies from north-east and south-west to north north-east and south south-west with steep dips towards east and south-east except for some local variation due to folding.

The Central Ground Water Board carried out a regular programme to drill exploratory wells in NCT

Delhi and its surrounding States. So far, in NCT of Delhi alone, nearly 350 wells have been drilled in various parts of Delhi, which covers diverse terrain i.e. Yamuna flood plain, older alluvium area, Chattarpur Enclosed Basin and Delhi Quartzite terrain, for their aguifer evaluation and guality determination of ground water. Moreover, as a short term basis electrical resistivity survey was also carried out along Najafgarh Drain and , along Rajpath (India gate) as well as in different parts of south district. All these has helped to configure extension of basement rock topography, below variable thickness of alluvium, from the land surfaces of exposed ridge in all the stretches in &

around NCT of Delhi. Earlier, during 2000, bed rock configuration map prepared on the basis of subsurface geological data generated from exploratory drilling and supplementary geophysical data input, indicated that the contour of the bed rock up to 200 m almost follows the Ridge alignment indicating the slope of the bed rock to be uniform. As such, taking into consideration of geological and tectonic processes undergone by basement rocks during the Pre-Cambrian and subsequent periods, the basement topography of NCT, Delhi is presumed to be highly uneven with the presence of sub-

surface ridges and valleys. A simplified basement topography map, an abridged information derived by all available explorations & survey reports, mainly by using exploratory data of NCT Delhi, reproduced from old report of CGWB is shown in figure 16. Taking into account of thickness of alluvium overburden, the area of NCT Delhi has been classified into three zones Viz, A, B, C, which is shown in the table 10.

Zone	Depth of Bed rock or overburden in m bgl	Area of NCT Delhi
Zone A	< 30	Lal Quila, Delhi Gate, Firoj Shah Kotla, Ramlila Ground,
		Azmeri Gate, Sdar Bazar, Dhir pur, Timarpur, Majanu
		Ka Tila, Gandhi Nagar (Rail Bridge) Nehrupark, Sbji
		Mandi, Chandani Chauk- Sadar Bazar, Greater Kailash-
		Kalakaji, North of Connaught Place & Moti Bagh.
Zone B	30 to 100	Usmanpur, Loni border, Metro rail Depot, Mayur Vihar
		Phase-II (Block BD), Geeta colony, Khajuri Khas,
		Shakarpur Khas, Gadaipur, Jaunapur, Ayanagar, Hauj
		Khas, Vayusena Bad.Jamia Univ. (Okhala), Arvindo
		Marg, Gulabi Bagh, Trilokpuri, Mayur Vihar-Ph-II,
		Ghazipur, Kondli (Loni Bdr).
Zone C	> 100	MdanPur Khadar, JagatPur, Jaitpur, WEST of Najafgarh
		Nala, Kirbi Place , Palam Village, Shastri Nagar , CBD
		Shahadara, Anada Vihar, Dilsad Garden, Bawan,
		Nangloi ,Tikri Kala.

Table 10 Thickness of Alluvium overburden over Bed rock

4. GROUND WATER BEHAVIOURS DURING 2017-18

The monitoring of ground water levels has been carried out four times in a year simultaneously throughout the NCT of Delhi during following periods.

- a) May 20th to 30th (water level of pre-monsoon period)
- b) August 20th to 30th (peak monsoon water level)
- c) November 1st to 10th (water levels of post-monsoon period)
- d) January 1st to 10th (the recession stage of water level)

The data is analysed for each set of measurement, and report prepared which include following maps to understand the groundwater regime in NCT of Delhi.

- a) Depth to water level water level with reference to ground level.
- b) Seasonal fluctuation water level fluctuation in comparison to pre-monsoon.
- c) Annual fluctuation water level fluctuation in comparison to same month in the previous year.
- d) Decadal fluctuation water level fluctuation in the month of measurement with reference to the decadal average for the same month.
- e) Ground Water Flow Net water level with reference to mean sea level.

4.1 Depth to Water Level

An analysis for numbers of monitoring wells in the different categories of the water levels for all four

monitoring periods of vear 2017-18 reveals that water level depth up to 5 m varies considerably over two monitoring periods (May & other months) which shows that dynamic changes in ground water levels conspicuously are deciphered in shallow water

zones. For depth range of 5 to 10 m and 10 to 20 m and more at few locations, changes in numbers of monitoring wells in August, November & January compared to May

period not prominent. This may be interpreted as stressed water level conditions suppressing dynamic fluctuation in water levels. Whereas numbers of monitoring station showing water level below 40 m remain almost same in all four monitoring period, indicate stressed water conditions in deep aquifers of NCT Delhi.

4.1.1. May 2017

The Depth to water level recorded in NCT Delhi during **May-2017** ranges from 1.13 at Deorala to 78.1 m. bgl at Gadaipur. A map showing May 2017 ground water levels in NCT of Delhi is given in figure 19 and areas under various depth zones is presented in figure 20. Around 16% of NCT Delhi areas, in parts of North, North West & Central districts have shallow water level up to 5 m bgl. Deep water levels of 20 to 60 m observed in around 30% of NCT Delhi, in South, South East, New Delhi & South West districts. In rest of NCT Delhi, 54 % areas have water level in range of 5 to 20 m bgl.

24

4.1.2. August 2017

The Depth to water level recorded in NCT Delhi during **August-2017** ranges from 0.42 at Deorala to 64.25 m. bgl at Pusp Vihar. A map showing August 2017 ground water levels in NCT of Delhi is given in figure 21 and areas under various depth zones presented in figure 22. Around 18% of NCT Delhi areas, in parts of North, North West, Northeast, East, Central and Southwest districts have shallow water level up to 5 m bgl. Deep water levels of 20 to 60 m observed in around 30% of NCT Delhi, in South, South East, New Delhi & South West districts. In rest of NCT Delhi, 52 % areas have water level in range of 5 to 20 m bgl.

4.1.3. November 2017

The Depth to water level recorded in NCT Delhi during **November-2017** ranges from 0.32 at Deorala to 60.06 m. bgl at Gadaipur. A map showing November 2017 ground water levels in NCT of Delhi is given in figure 23 and areas under various depth zones presented in figure 24. Around 19% of NCT Delhi areas, in parts of North, North West, Northeast, East, Central and Southwest districts have shallow water level up to 5 m bgl. Deep water levels of 20 to 60 m observed in around 32% of NCT Delhi, in South, South East, New Delhi & South West districts. In rest of NCT Delhi, 49 % areas have water level in range of 5 to 20 m bgl.

4.1.4. January 2018

The Depth to water level recorded in NCT Delhi during **January-2018** ranges from 0.35 at Deorala to 60.21 m. bgl at Gadaipur. A map showing January 2018 ground water levels in NCT of Delhi is given in figure 25 and areas under various depth zones presented in figure 26. Around 16% of NCT Delhi areas, in parts of North, North West and some small pockets of Central & Southwest districts have shallow water level up to 5 m bgl. Deep water levels of 20 to 60 m observed in around 30% of NCT Delhi, in South, South East, New Delhi & South West districts. In rest of NCT Delhi, 54 % areas have water level in range of 5 to 20 m bgl.

4.2 Seasonal Water Level Fluctuation : 2017-18

The seasonal water level fluctuation, i.e. the changes in depth of water levels of August 17, November 17 and January 18 with respect to May 17 water level reveals the effect of subsequent utilisation of groundwater for various needs like agriculture, irrigation, domestic etc., on overall groundwater regime of the area. Number of wells showing change in groundwater levels in the region over different periods is presented in figure 27 (a,b & c) and table 11.

Table	11 : Monitorir	ng Wells Sh	owing Sea	sonal Fluct	uation in W	/ater Level	
V	Vater Level	May17 -	- Aug 17	May17	- Nov17	May17 - Jan 18	
Fluct	tuation Range	Rise	Fall	Rise	Fall	Rise	Fall
	0 to 2 m	48	22	50	15	44	20
>	⊳ 2 to 4 m	6	2	2	2	1	3
	> 4 m	6	0	5	1	4	1
	Total	60	24	57	18	49	24
	Total	8	4	7	5	7	3

4.2.1. May 2017 to August 2017

A perusal of figure 27a and table 11 reveals that comparing water levels of May 17 to August 17, total 58 (71%) monitoring wells of the NCT of Delhi show a rise whereas rest shows decline. The extent of rise and decline in water levels is shown in map presented in figure 28 and also as pie chart in figure 29.

4.2.2. May 2017 to November 2017 (Pre & Post Monsoon)

A perusal of figure 27(b) and table 11 reveals that comparing water levels of May 17 to November 17, total 103 (85%) monitoring wells of the NCT of Delhi show a rise whereas rest shows decline. The extent of rise and decline in water levels is shown in map presented in figure 30 and also in pie chart in figure 31.

4.2.3. May 2017 to January 2018

A perusal of figure 27(c) and table 11 reveals that comparing water levels of May 17 to January 18, total 78 (70%) monitoring wells of the NCT of Delhi show a rise whereas rest shows decline. The extent of rise and decline in water levels is shown in map presented in figure 32 and also in pie chart in figure 33.

Figure : 33

4.3 Annual Water Level Fluctuation : 2017-18

Annual Fluctuation in the water levels of the ground water monitoring wells during 2017-18 for different monitoring periods were compared with same period of 2016-17 and wells showing change in groundwater levels over different periods is presented in figure 34 (a,b,c & d) and table 12.

Та	Table : 12 Monitoring Wells Showing Annual Fluctuation in Water Level								
	Water	May 16-	May 17	Aug 16	- Aug 17	Nov 16-	Nov 17	Jan 17	- Jan 18
	Level	Rise	Fall	Rise	Fall	Rise	Fall	Rise	Fall
	0 to 2 m	32	39	21	60	21	50	32	39
	> 2 to 4 m	10	5	1	3	3	2	1	4
	> 4 m	0	6	2	4	3	3	1	2
	Total	42	50	24	67	27	55	34	45
	rotai	9	2	9	1	82		79	

4.3.1. Annual Fluctuation : May 2017 & May 2018

The fluctuation of water level between **May-2016** and **May-2017** of NCT Delhi shows that except parts of North, North West, West and some pockets of South and South–West districts, represented by 46 % of wells show rise up to 3.8 m. Rest of major parts of NCT Delhi areas, represented by 47 % of monitoring wells, show fall in range of 0 to 2 m while rest of 7 % monitoring stations shows fall up to 4 m with respect to the previous year water level. (Figure 19). Chart showing extent of areas having rise and fall, computed from map grid, is presented in figure 20.

4.3.2. Annual Fluctuation: August 2016 & August 2017

The variation of water level from August-2016 and August-2017 reveals that there is a rise in the range of 0 to 2m in nearly 23% of the wells, while 66 % wells shows falls in range of 0 to 2 m. Fall of more than 4 m is observed in small pocket of South district (4 % wells). Nearly 18 % areas shows rise up to 2 m while rest 74 % area has fall up to 0 to 4 m (Figure 37 & chart Figure 38).

Figure : 37

Figure : 38

4.3.3. Annual Fluctuation : November 2016 & November 2017

Comparing water level data of November 2016 to November 2017, it is revealed that 24 % wells show rise in range of 0 to 2 m whereas 4% show rise more than 2 m; max up to 10.06 m in Delhi Cantonment area.. Rest 61 % wells shows fall, mostly in range of 0 to 2 m except small pockets of New Delhi & South district shows fall more than 2 m (Figure 39). Nearly 26% area shows rise up to 2 m while 65 % area show fall in range of 0 to 2 m. Rest 2 % area has fall up to 2 to 5.36 m while 3 % area has rise up to 10.06 m (Figure 40).

Figure : 40

4.3.4. Annual Fluctuation : January 2017 & January 2018

Comparing water level data of January 2017 to January 2018, it is revealed that 41 % wells shows rise, mostly in range of 0 to 2 m whereas small pockets in Southeast & South district has rise up to 5.6 m at Mehroli area; whereas rest 49 % wells shows fall in range of 0 to 2 m (Figure 39). Nearly 35 % area shows rise up to 2 m while rest 57 % area show fall in range of 0 to 2 m. Rest 1 % area has fall in range of 2 to 8.3 m while 4 % area has rise in range of 2 to 5.6 m (Figure 40).

Figure : 42

4.4 Long Term Ground Water Scenario

Long-term behaviour of water levels was studied by analysing water level change of decadal mean water levels data of 2007-16 for May, August & November and 2008-17 decade for January month with corresponding water level data of 2017-18. Statistical analysis of numbers of monitoring wells and range of water levels showing decadal change is presented as charts in figure 43 (a, b, c & d) and also in table 13.

1onitoring '	Wells sho	wing Chan	ge in Wa	ter level co	mparing	Decadal M	ean
DM of May 07-16 & May 17		M of May 07-16 DM of Aug 07-16 & May 17 & Aug 17		DM of Nov 07-16 & Nov 17		DM of Jan 08-17 & Jan 18	
Rise	Fall	Rise	Fall	Rise	Fall	Rise	Fall
23	28	23	32	25	23	28	18
16	15	4	21	3	18	3	17
2	16	2	9	5	9	4	11
41	59	29	62	33	50	35	46
100 91		83		81			
	Ionitoring N DM of Ma & May Rise 23 16 2 41 41	Ionitoring Wells sho DM of May 07-16 & May 17 Rise Fall 23 28 16 15 2 16 41 59 100 100	Ionitoring Wells showing ChanDM of May 07-16 & May 17DM of Au & AugRiseFallRise23282316154216241592910091	Ionitoring Wells showing Change in Wa DM of May 07-16 & May 17 DM of Aug 07-16 & Aug 17 Rise Fall Rise Fall 23 28 23 32 16 15 4 21 2 16 2 9 41 59 29 62 100 91 91	Ionitoring Wells showing Change in Water level color DM of May 07-16 & May 17 DM of Aug 07-16 & Aug 17 DM of No & Nov Rise Fall Rise Fall Rise 23 28 23 32 25 16 15 4 21 3 2 16 2 9 5 41 59 29 62 33 100 91 83	Ionitoring Wells showing Change in Water level comparingDM of May 07-16 & May 17DM of Aug 07-16 & Aug 17DM of Nov 07-16 & Nov 17RiseFallRiseFallRiseFall2328233225231615421318216295941592962335010091838310	Ionitoring Wells showing Change in Water level comparing Decadal MDM of May 07-16 & May 17DM of Aug 07-16 & Aug 17DM of Nov 07-16 & Nov 17DM of Jan JanRiseFallRiseFallRiseFallRise23282332252328161542131832162959441592962335035100918381

Maps showing change in water level scenario over May, August, November and January for year 2017-18 with decadal mean of May, August & November for 2007-16 and January 2008-17 respectively are presented in figure 44, 46, 48 and 50 and pie diagrams showing areas under different ranges of water level change are presented in figure 45, 47, 49 and 51 respectively for month corresponding May, August, November and January of 2017-18.

4.4.1. Decadal Fluctuation : (DM of May 2007-16 & May 2017)

Comparing water level data of May-2017 with 10 year mean water level of May (2006 to 2016), the change in water level ranges from -8.8 m to 8.0 m. Nearly 71 % of monitoring wells show increase in fall of water level of May 2017 when comparing decadal mean of May water level of 2006-15, whereas rest 29 % wells show increase in rise of water levels. This increase in rise mainly confined to east parts of Southwest & West districts, central part of New Delhi and South districts; entire northeast of NCR Delhi covering parts of North East, Shahdra and East district and northern parts of North district. (figure 44). Nearly 28 % areas shows increase in fall up to 2 m, 21% up to 4 m and rest 22 % up to 8.0 m. Similarly increase in rise up 2 m is recorded in 23 % areas and 5 % areas shows rise in range to 2 to 4 m. Chart showing extent of areas having change in rise and fall of water level, computed from map grid, is presented in figure 45.

28%

Rise > 4 m

4.4.2. Decadal Fluctuation: (DM of August 2007-16 & August 2017)

Comparing water level data of August-2017 with 10 year mean water level of August (2007 to 2016). the change in water ranges from – 7.8 m to 10.6 m. Nearly 31 % of monitoring wells show increase in rise of water level of August 2017, comparing decadal mean of August water level of 2007-16, whereas rest 69 % monitoring wells show increase in fall of water level. This rise mainly confined to central parts of NCT Delhi, covering parts of Northwest, West, Southwest and New Delhi district; south parts of South district; patches of North, North East, Shahdra and East districts (figure 46). Nearly 33 % areas shows increase in rise up to 2 m, 4% from 2 to 10.6 m. Similarly increase in fall up 2 m is recorded in 45 % areas, 22% upto 4 m and rest 6% from 4 to 7.8 m. Chart showing extent of areas having change in rise and fall, computed from map grid, is presented in figure 47.

4.4.3. Decadal Fluctuation: DM of Nov 2007-16 & Nov 2017

Comparing water level data of November-2017 with 10 year mean water level of November (2007 to 2016), the change in water level ranges from -7.6 m 9.2 m. Nearly 31% of monitoring wells show increase in rise of water level of November 2017, comparing decadal mean of November water level of 2007-16, whereas rest 69 % monitoring wells show increase in fall of water level. This rise mainly confined to two parts of NCT Delhi; i.e. in western part of Southwest, West and Northwest districts and in Southeast, South and New Delhi district of NCT Delhi (figure 48). Nearly 37 % areas shows increase in fall up to 2 m, 23% up to 4 m and rest 9 % up to 7.6 m. Similarly increase in rise up 2 m is recorded in 25 % areas and 6 % areas shows rise in range to 2 to 9.2 m. Chart showing extent of areas having change in rise and fall, computed from map grid, is presented in figure 49.

Figure : 49

4.4.4. Decadal Fluctuation: DM of January 2008–17 & January 2018

Comparing water level data of January-2018 with 10 year mean water level of January(2008 to 2017), the change in water level ranges from – 7.9 m to 9.01 m. Nearly 44 % of monitoring wells show increase in rise whereas rest 56 % monitoring wells show increase in fall. This rise mainly confined to western half of NCT Delhi covering parts of Southwest, West, Northwest and North districts. Similarly parts of Southeast, South, New Delhi and Central districts also shows rise. (figure 50). Nearly 31 % areas shows increase in fall up to 2 m, 21% up to 4 m and rest 18 % up to 7.9 m. Similarly increase in rise up 2 m is recorded in 22 % areas and 6 % areas shows rise in range to 2 to 9.01 m. Chart showing extent of areas having change in rise and fall, computed from map grid, is presented in figure 51.

4.5 Water Table Scenario

Water table contour map of May 2017 is presented in figure 52. The perusal of the map shows that the water table elevation ranges from 154 m amsl at Pusp Vihat in Hauz Khas Tehsil to 255 m amsl at Balbir Nagar in Saket tehsil in south part of NCT Delhi. Aravalli Ridge areas is main recharge zones for NCT Delhi. In these areas water table ranges from 210 to 230 m amsl. Closely spaced contours on the eastern side of the ridge indicate steep gradient and high rate of flow of ground water, while widely spaced contours on the western side of the ridge indicate gentle gradient. Two trough of lowest water table observed indicate high development of groundwater; one is around Pusp Vihar in Huzkhas tehsil and another is in Dwarka area of Dwarka tehsil. In rest part of NCT Delhi, water table counter follows general topography of the areas. Yamuna river flood zone shows water table in range of 185 to 198 m amsl. Major parts of Yamuna flood zone in NCT of Delhi, on either banks, water table configuration indicate influent nature of river Yamuna while in small section passing through South East district it shows effluent nature on right bank, in Southeast part of NCT Delhi whereas left bank area, in adjoin Uttar Pradesh it shows influent nature.

Figure : 52

WATER TABLE MAP : NCT DELHI May 2017 210 0km 2km 4km 6km North Dist 28.75 orth Ea North West Dist Shah Ira ntra W**gQt Dis** 180 South West Dist *2*00 <u>_</u>00 Suth a ž, 28.5 Yamuna River Water Table Contour (in m amsl) **G** with flow direction 00 State Boundary **District Boundary** CGWB, SUO, Delhi Map : P R Gupte, Sr HG (Sc D) Aravalli Ridge 77.25 77

5. HYDROGEOCHEMISTRY

The water that falls as rain and snow infiltrates into the subsurface soil and rock. Some water remains in the shallow soil layer whereas large portion infiltrate deeper and becomes part of groundwater system. The chemical characteristics of groundwater are mainly based on the surface and subsurface environment, such as the chemical composition of rain, composition of infiltrating surface water, properties of soil and rock in which the groundwater moves. It varies as per duration of contact time and contact surface between groundwater and geological material along its flow path, rate of geochemical (oxidation/reduction ion exchange, dissolution, evaporation, precipitation) process and microbiological process.

Hydrochemistry is an interdisciplinary science that deals with all these aspects responsible for the chemical composition of the groundwater and as such, it is helpful in knowing about residence time, flow path and aquifer characteristics, as the chemical reactions are time and space dependent. The classical use of chemical characteristics in hydrochemistry is to provide information about the regional distribution of water qualities. At the same time, hydrochemistry has a potential use for tracing the origin and history of water. The hydrochemistry can also be of immense help in yielding information about the environment through which water has circulated.

5.1 Hydrogeochemistry of NCT Delhi

The diverse physiographic, topographic and geologic conditions have given rise to diversified groundwater situations and groundwater quality of NCT of Delhi and it varies with depth and space. It is mainly influenced by local geology and inherent salinity, and uneven development of groundwater.

In alluvial formations, in general, the quality of ground water deteriorates with depth, which is variable in different areas. The fresh ground water aquifers mainly exist up to a depth of 25 to 35 m in North West, West and parts of South west districts and in minor patches in North and Central districts. In South, Southeast & Southwest district, especially in Najafgarh *Jheel* area the fresh water occurs up to a depth of 30 to 45 m. A localized area located just north of Kamala Nehru Ridge (part of Delhi ridge falling in Central District) covering area of Dhirpur, Wazirabad and Jagatpur are characterized by shallow depth of fresh water aquifers that is in the range of 22 to 28m, regardless of proximity to River Yamuna. In the flood plains of Yamuna, in general, fresh water aquifers exist down to depth of 30-45m and especially in Palla it reaches to the depth of 60 to 75m below which brackish and saline water exists. The ground water is fresh at all depths in the areas around the ridge falling in Central, New Delhi, South and eastern part (Ridge Area) of South-West districts and also in Chattarpur basin. In the areas west of the ridge, in general, the thickness of fresh water aquifers decreases towards North-West, the thickness of fresh water zone is limited in most parts of west and southwest districts.

5.2 Groundwater Quality Monitoring

Monitoring of groundwater quality is an effort to obtain information on chemical quality through representative sampling in different parts of NCT Delhi. Groundwater is commonly tapped from phreatic aquifers through representative dug well / bore wells or hand pump located nearest to the monitoring station. A total number of 62 water samples were collected from NCT of Delhi, as part of groundwater quality monitoring work, during May 2017. List of locations and result of chemical analysis for its basic parameters such as pH, EC, TDS, CO3, HCO3, Cl, NO3, SO4, F, Ca, Mg, TH, is presented in annexure IV. Map showing locations of water sample locations is presented in figure 53.

The overall results of hydro chemical analysis are attached in Annexure IV whereas distribution of major groundwater quality parameters in NCT of Delhi are described as under.

5.2.1. Electrical Conductance

Electrical conductivity represents total number of *cations* and *anions* present in groundwater, indicating ionic mobility of different ions, total dissolved solids and saline nature of water. Electrical Conductivity (EC)⁸ is a measures of salinity of the groundwater in terms of saltiness, calculated as Micro Sieman / cm at 25°C. Similar expression is Total Dissolved Solid (TDS), a measure of total dissolved salt contents in mg / liter of groundwater. Different substances dissolve in groundwater giving it taste and odour. In fact, human beings have developed senses, which are able to evaluate

the potability of water. In general water having EC < 1500 uS/cm, is considered as fresh water, EC 1500 - 15000 uS/cm is considered as brackish water and EC > 15000 uS/cm is considered as saline water.

Map showing distribution of electrical conductance in groundwater of NCT Delhi is presented in figure 54. Most of eastern part of NCT Delhi, in areas around Yamuna in district of Central, North East, East, Shahdara, South East & South has EC within permissible range, upto to 2250 μ S/cm at 25°C. The area of Najafgarh, Singhola, Balswa and some pockets of south Delhi are showing exceptionally high EC Values, even in shallower depth. It is also observed that deeper aquifer water have greater EC value than the shallow aquifer, value increases with increase in depth. The major part of the area underlain by Delhi quartzite ridge have EC values in range of 600 μ s/cm to 2000 μ s/cm.

It is observed that nearly 41 % areas of New Delhi falling in North, North West, West and South West districts show EC more than $3000 \ \mu$ S/cm at 25°C whereas rest 59 % area has EC in range from 0 to $3000 \ \mu$ S/cm at 25°C. Nearly 6 % (85 sqkm) areas of North East, South East, Central & South district has EC of 0 to 750 μ S/cm at 25°C (figure 55).

5.2.2. Chloride

Chloride is present in all natural waters being highly soluble and moves freely through soil and rock. In groundwater Chloride content is mostly below 250 mg/l except in cases where inland salinity is prevalent. BIS have recommended a desirable limit of 250mg/l of chloride in drinking water; this concentration limit can be extended to 1000 mg/l of chloride in cases where no alternative source of water with desired concentration is available. The map showing distribution of Chloride in NCT Delhi is presented in figure 56.

It is observed major part of NCT Delhi, in areas having EC with in permissible limits, up to 2250 to 3000 μ S/cm, has chloride also within permissible limit of 250 mg/l. In areas having high EC more than 3000 μ S/cm, chloride value is more than 1000 mg/l to high up to 3000 mg/l (figure 56).

5.2.3. Nitrate

Nitrate is a naturally occurring compound that is formed in the soil when nitrogen and oxygen combine. The primary source of all nitrates is atmospheric nitrogen gas. This is converted into organic nitrogen by some plants by a process called nitrogen fixation. Dissolved nitrogen in the form of nitrate is the most common contaminant of groundwater. Nitrate in groundwater generally originates from non point sources such as leaching of chemical fertilizers and animal manure, groundwater pollution from septic and sewage discharges etc. It is difficult to identify the natural and man-made sources of nitrogen contamination of ground water. Some chemical and microbiological processes

such as nitrification and denitrification also influence the nitrate concentration in ground water. As per the BIS standard for drinking water the maximum desirable limit of nitrate concentration in groundwater is 45 mg/l. Though nitrate is considered relatively non-toxic, a high nitrate concentration in drinking water is an environmental health concern arising from increased risks of methaemoglobinemia particularly to infants.

The map (figure 57) shows NHS having nitrates in ground water of Delhi, as point source of pollution, within permissible and beyond permissible limit of 45 mg / ltr.

5.2.4. Fluoride

Fluorine is a fairly common element but it does not occur in the elemental state in nature because of its high reactivity. Fluorine is the most electronegative and reactive of all elements that occur naturally within many type of rocks. Most of the fluoride found in groundwater is naturally occurring from the breakdown of rocks and soils or weathering and deposition of atmospheric particles. Most of the fluorides are sparingly soluble and are present in groundwater in small amount. The map showing distribution of Fluoride in NCT Delhi is presented in figure 58.

It is well known that small amount of fluoride (>1.0 mg/l) have proven to be beneficial in reducing tooth decay. Community water supplies commonly are treated with sodium fluoride or fluorosilicates to maintain fluoride level ranging from 0.8 to 1.2 mg/l to reduce the incidents of dental carries. However, high concentrations (>1.5mg/l) have resulted in staining of tooth enamel while at still

higher levels of fluoride (> 5.0 mg/l) further critical problems such as stiffness of bones. BIS has recommended an upper desirable limit of 1.0 mg/l of fluoride concentration in drinking water, which can be extended to 1.5 mg/l in case no alternative source of drinking water is available. Water having fluoride concentration more than 1.5mg/l is not suitable for drinking purposes.

The map (figure 58) shows NHS locations having fluoride in ground water of Delhi, within permissible limits & beyond permissible limit of 1.5 mg / liter.

ANNEXURE : I A LIST OF CENSUS TOWNS - NCT OF DELHI

District	Tehsil	Town Name Name
CENTRAL	Civil Lines	Burari (CT)
CENTRAL	Civil Lines	Jharoda Majra Burari (CT)
CENTRAL	Civil Lines	Kamal Pur Majra Burari (CT)
CENTRAL	Civil Lines	Mukund Pur (CT)
EAST	Gandhi Nagar	Shakar Pur Baramad (CT)
EAST	Mayur Vihar	Chilla Saroda Bangar (CT)
EAST	Mayur Vihar	Chilla Saroda Khadar (CT)
EAST	Mayur Vihar	Dallo Pura (CT)
EAST	Mayur Vihar	Gharoli (CT)
EAST	Mayur Vihar	Gharonda Neemka Bangar alias Patpar Ganj (CT)
EAST	Mayur Vihar	Kondli (CT)
	Delhi	Moradabad Pahari (CT)
	Cantonment	
NEW DELHI	Vasanat Vihar	Ghitorni (CT)
NEW DELHI	Vasanat Vihar	Kusum Pur (CT)
NEW DELHI	Vasanat Vihar	Malik Pur Kohi alias Rang Puri (CT)
NEW DELHI	Vasanat Vihar	Rajokri (CT)
NEW DELHI	Vasanat Vihar	Sambhalka (CT)
NORTH	Alipur	Ali Pur (CT)
NORTH	Alipur	Bakhtawar Pur (CT)
NORTH	Alipur	Bankauli (CT)
NORTH	Alipur	Ibrahim Pur (CT)
NORTH	Alipur	Khera Kalan (CT)
NORTH	Alipur	Libas Pur (CT)
NORTH	Alipur	Mukhmel Pur (CT)
NORTH	Alipur	Qadi Pur (CT)
NORTH	Alipur	Sahibabad Daulat Pur (CT)
NORTH	Alipur	Siras Pur (CT)
NORTH	Model Town	Bhalswa Jahangir Pur (CT)
NORTH	Narela	Bankaner (CT)
NORTH	Narela	Barwala (CT)
NORTH	Narela	Bawana (CT)
NORTH	Narela	Bhor Garh (CT)
NORTH	Narela	Darva Pur Kalan (CT)
NORTH	Narela	Khera Khurd (CT)
NORTH	Narela	Peblad Pur Bangar (CT)
NORTH	Narela	
NORTH	Narela	Tikri Khurd (CT)
NORTH FAST	Karwal Nagar	Bagiabad (CT)
NORTH FAST	Karwal Nagar	liwan Pur alias Johri Pur (CT)
NORTH FAST	Karwal Nagar	Karawal Nagar (CT)
NORTH FAST	Karwal Nagar	Sadat Pur Guiran (CT)
NORTH FAST	Seelam Pur	Daval Pur (CT)
NORTH FAST	Seelam Pur	Khajoori Khas (CT)
NORTH FAST	Seelam Pur	Khan Pur Dhani (CT)
NORTH FAST	Seelam Pur	Mir Pur Turk (CT)
NORTH FAST	Seelam Pur	Tukhmir Pur (CT)
NORTH FAST	Yamuna Vihar	Gokal Pur (CT)
NORTH FAST	Yamuna Vihar	Mustafabad (CT)
NORTH FAST	Yamuna Vihar	Ziauddin Pur (CT)
NORTH WEST	Kanihawala	Gheora (CT)
	Kanjhawala	Kanibawala (CT)
	Kanibawala	Karala (CT)
	Kanihawala	
NORTH WEST	KanjnaWala	Lau Pur (CT)
NORTH WEST	KanjnaWala	
NORTH WEST	Kanjnawala	Quitab Garn (CT)
NUKTH WEST	Konini	Begum Pur (CT)

District	Tehsil	Town Name Name
SHAHDARA	Seema Puri	Mandoli (CT)
SHAHDARA	Shahdara	Babar Pur (CT)
SHAHDARA	Shahdara	Jaffrabad (CT)
SOUTH	Mehrauli	Aya Nagat (CT)
SOUTH	Mehrauli	Chandan Hola (CT)
SOUTH	Mehrauli	Dera Mandi (CT)
SOUTH	Mehrauli	Fateh Pur Beri (CT)
SOUTH	Mehrauli	Jona Pur (CT)
SOUTH	Mehrauli	Sultan Pur (CT)
SOUTH	Saket	Asola (CT)
SOUTH	Saket	Bhati (CT)
SOUTH	Saket	Chhatar Pur (CT)
SOUTH	Saket	Deoli (CT)
SOUTH	Saket	Maidan Garhi (CT)
SOUTH	Saket	Neb Sarai (CT)
SOUTH	Saket	Raj Pur Khurd (CT)
SOUTH	Saket	Saidul Azaib (CT)
SOUTH	Saket	Tigri (CT)
SOUTH EAST	Defence Colony	Saidabad (CT)
SOUTH EAST	, Kalkaji	Pul Pehlad (CT)
SOUTH EAST	Sarita Vihar	Aali (CT)
SOUTH EAST	Sarita Vihar	Jaitpur (CT)
SOUTH EAST	Sarita Vihar	Kotla Mahigiran (CT)
SOUTH EAST	Sarita Vihar	Mithe Pur (CT)
SOUTH EAST	Sarita Vihar	Molar Band (CT)
SOUTH EAST	Sarita Vihar	Tai Pul (CT)
SOUTH WEST	Dwarka	Nangli Sakrawati (CT)
SOUTH WEST	Kapeshera	Chhawla (CT)
SOUTH WEST	Kapeshera	Dindar Pur (CT)
SOUTH WEST	Kapeshera	Kapas Hera (CT)
SOUTH WEST	Najafgarh	Jaffar Pur Kalan (CT)
SOUTH WEST	Najafgarh	Jharoda Kalan (CT)
SOUTH WEST	Najafgarh	Kair (CT)
SOUTH WEST	Najafgarh	Khera (CT)
SOUTH WEST	Najafgarh	Mitraon (CT)
COLITIUMECT		Roshan Pura alias
SOUTH WEST	Najatgarn	Dichaon Khurd (CT)
SOUTH WEST	Najafgarh	Ujwa (CT)
WEST	Patel Nagar	Hastsal (CT)
WEST	Patel Nagar	Raja Pur Khurd (CT)
WEST	Punjabi Bagh	Bakkar Wala (CT)
WEST	Punjabi Bagh	Bapraula (CT)
WEST	Punjabi Bagh	Mundaka (CT)
WEST	Punjabi Bagh	Nangloi Jat (CT)
WEST	Punjabi Bagh	Nilothi (CT)
WEST	Punjabi Bagh	Quammruddin Nagar (CT)
WEST	Puniabi Bagh	Shafi Pur Ranhola (CT)
WEST	Punjabi Bagh	Tikri Kalan (CT)
WEST	Punjabi Bagh	Tilang Pur Kotla (CT)
NORTH WEST	Rohini	Kirari Suleman Nagar
NORTH WEST	Rohini	Mubarak Pur Dabas
NORTH WEST	Rohini	Nithari (CT)
	Rohini	Pooth Kalan (CT)
NORTH WEST	Rohini	Rani Khera (CT)
NORTH WEST	Rohini	Sultan Pur Maira (CT)
NUNIH WEST	NOTIITI	Sultan Fui Majia (CI)

ANNEXURE : I B LIST OF VILLAGES – NCT OF DELHI

District	Tehsil	Village Name
CENTRAL	Civil Lines	Badar Pur Majra Burari
CENTRAL	Civil Lines	Jagat Pur ilaqa Delhi
CENTRAL	Civil Lines	Jagat Pur ilaqa Shahdara (un-inhabited)
CENTRAL	Civil Lines	Salem Pur Majra Burari
EAST	Mayur Vihar	Shamas Pur
NORTH	Alipur	Akbar Pur Majra
NORTH	Alipur	Bodh Pur Bija Pur
NORTH	Alipur	Fateh Pur Jat
NORTH	Alipur	Garhi Khasru
NORTH	Alipur	Hamid Pur
NORTH	Alipur	Hiranki
NORTH	Alipur	Jhangola
NORTH	Alipur	Kham Pur
NORTH	Alipur	Mohd. Pur Ramzan Pur
NORTH	Alipur	Nangli Poona
NORTH	Alipur	Palla
NORTH	Alipur	Qullak Pur
NORTH	Alipur	Singhola
NORTH	Alipur	Singhu
NORTH	Alipur	Sunger Pur Delhi
	Alipur	Sunger Pur Shahdara (un-
NUNTH	Ailpui	inhabited)
NORTH	Alipur	Taj Pur Kalan
	Alipur	Tehri Daulat Pur (Un-
NORTH	Апри	inhabited)
NORTH	Alipur	Tigi Pur
NORTH	Alipur	Zind Pur
NORTH	Model Town	Shanjar Pur(un-inhabited)
NORTH	Narela	Bazid Pur Thakran
NORTH	Narela	Ghoga
NORTH	Narela	Hareoli
NORTH	Narela	Holambi Kalan
NORTH	Narela	Holambi Khurd
NORTH	Narela	Iradat Nagar alias Naya Bans
NORTH	Narela	Kankar Khera
NORTH	Narela	Katewara
NORTH	Narela	Kureni
NORTH	Narela	Lam Pur
NORTH	Narela	Mamoor Pur
NORTH	Narela	Mungesh Pur
NORTH	Narela	Ochandi
NORTH	Narela	Pansali
	Narola	Raja Pur Kalan (Un-
NUKIH	Ndreid	inhabited)
NORTH	Narela	Sanoth
NORTH	Narela	Shah Pur Garhi
NORTH	Narela	Sultan Pur Dabas
NORTH EAST	Karwal Nagar	Badar Pur Khadar
NORTH EAST	Karwal Nagar	Bihari Pur
NORTH EAST	Karwal Nagar	Pur Delhi
NORTH EAST	Karwal Nagar	Pur Shahdara
NORTH EAST	Karwal Nagar	Saba Pur Delhi
NORTH EAST	Karwal Nagar	Saba Pur Shahdara
NORTH EAST	Karwal Nagar	Sadat Pur Musalmanan (un-inhabited)
NORTH EAST	Seelam Pur	Garhi Mendu
NORTH EAST	Seelam Pur	Sher Pur
NORTH	Kanikannala	Budhan Pur
	Kanihawala	

District	Tehsil	Village Name
NORTH WEST	Kanjhawala	Chand Pur
NORTH WEST	Kanjhawala	Chatesar
NORTH WEST	Kanjhawala	Garhi Rindhala
NORTH WEST	Kanjhawala	Jat Khor
NORTH WEST	Kanjhawala	Jonti
NORTH WEST	Kanjhawala	Nizam Pur Rashid Pur
NORTH WEST	Kanjhawala	Punjab Khor
NORTH WEST	Kanjhawala	Salah Pur Majra
NORTH WEST	Rohini	Madan Pur Dabas
NORTH WEST	Rohini	Rasool Pur
NORTH WEST	Saraswati Vihar	Saoda
SOUTH	Mehrauli	Gadai Pur
SOUTH	Saket	Satberi
SOUTH	Saket	Shahur Pur
SOUTH WEST	Kapeshera	Asalat Pur Khawad
SOUTH WEST	Kapeshera	Badhosra
SOUTH WEST	Kapeshera	Darya Pur Khurd
SOUTH WEST	Kapeshera	Daulat Pur
SOUTH WEST	Kapeshera	Deorala
SOUTH WEST	Kapeshera	Goela Khurd
SOUTH WEST	Kapeshera	Goman Hera
SOUTH WEST	Kapeshera	Hasan Pur
SOUTH WEST	Kapeshera	Jain Pur(Un-inhabited)
SOUTH WEST	Kapeshera	Jhatikra
SOUTH WEST	Kapeshera	Kangan Heri
SOUTH WEST	Kapeshera	Kharkhari Jatmal
SOUTH WEST	Kapeshera	Kharkhari Rond
SOUTH WEST	Kapeshera	Nanak Heri
SOUTH WEST	Kapeshera	Paprawat
SOUTH WEST	Kapeshera	Pindwala Kalan
SOUTH WEST	Kapeshera	Pindwala Khurd
SOUTH WEST	Kapeshera	Qutab Pur
SOUTH WEST	Kapeshera	Raghu Pur
SOUTH WEST	Kapeshera	Raota
SOUTH WEST	Kapeshera	Rewla Kham Pur
SOUTH WEST	Kapeshera	Salah Pur
SOUTH WEST	Kapeshera	Shikar Pur
SOUTH WEST	Kapeshera	Taj Pur Khurd
SOUTH WEST	Najafgarh	Bagar Garh
SOUTH WEST	Najafgarh	Dhansa
SOUTH WEST	Najafgarh	Dichaon Kalan
SOUTH WEST	Najafgarh	Ghalib Pur
SOUTH WEST	Najafgarh	Isa Pur
SOUTH WEST	Najafgarh	Jhuljhuli
SOUTH WEST	Najafgarh	Kharkhari Nahar
SOUTH WEST	Najafgarh	Khera Dabar
SOUTH WEST	Najafgarh	Malik Pur zer-Najafgarh
SOUTH WEST	Najafgarh	Mundhela Kalan
SOUTH WEST	Najafgarh	Mundhela Khurd
SOUTH WEST	Najafgarh	Qazi Pur
SOUTH WEST	Najafgarh	Samas Pur Khalsa
	Najafgarh	Sarang Pur
SOUTH WEST		
SOUTH WEST SOUTH WEST	Naiafgarh	Sher Pur Deri
SOUTH WEST SOUTH WEST SOUTH WEST	Najafgarh Najafgarh	Sher Pur Deri Surakh Pur
SOUTH WEST SOUTH WEST SOUTH WEST SOUTH WEST	Najafgarh Najafgarh Najafgarh	Sher Pur Deri Surakh Pur Surera
SOUTH WEST SOUTH WEST SOUTH WEST SOUTH WEST WEST	Najafgarh Najafgarh Najafgarh Punjabi Bagh	Sher Pur Deri Surakh Pur Surera Jaffar Pur alias Hiran Kudna

ANNEXURE : II RAINFALL DATA & PROBABILITY ANALYSIS

Rainfal & Occu	Rainfall, Departure and Cumulative Departure & Occurrence of Drought - NCT of Delhi							
Year	Rainfall (mm)	Departure	Cumulative Departure	Type of Drought				
1984	579.2	-0.14	-0.14	Mild				
1985	771.6	0.15	0.02					
1986	446.4	-0.33	-0.32	Normal				
1987	434.2	-0.35	-0.67	Normal				
1988	1025.2	0.53	-0.14					
1989	303.6	-0.55	-0.68	Severe				
1990	800.6	0.20	-0.49					
1991	614.7	-0.08	-0.57	Mild				
1992	641.6	-0.04	-0.61	Mild				
1993	861.4	0.29	-0.33					
1994	784.6	0.17	-0.15					
1995	827.6	0.24	0.08					
1996	974.6	0.46	0.54					
1997	617.4	-0.08	0.46	Mild				
1998	853.3	0.27	0.73					
1999	544.2	-0.19	0.55	Mild				
2000	808.0	0.21	0.75					
2001	646.2	-0.04	0.72	Mild				
2002	459.5	-0.31	0.40	Normal				
2003	925.9	0.38	0.79					
2004	531.5	-0.21	0.58	Mild				
2005	603.3	-0.10	0.48	Mild				
2006	618.7	-0.08	0.40	Mild				
2007	588.0	-0.12	0.28	Mild				
2008	852.8	0.27	0.56					
2009	595.6	-0.11	0.44	Mild				
2010	951.9	0.42	0.87					
2011	661.8	-0.01	0.85	Mild				
2012	559.4	-0.16	0.69	Mild				
2013	708.9	0.06	0.75					
2014	440.4	-0.34	0.41	Normal				
2015	547.5	-0.18	0.22	Mild				
2016	656.1	-0.02	0.20	Mild				
2017	533.7	-0.20	0.00	Mild				

	Probability	ARFin	
Rank	in %	decresing	
		order	
1	2.03	1025.2	
2	5.09	974.6	
3	8.08	951.9	
4	11.08	925.9	
5	14.07	861.4	
6	17.07	853.3	
7	20.06	852.8	
8	23.05	827.6	
9	26.05	808.0	
10	29.04	800.6	
11	32.04	784.6	
12	35.03	771.6	
13	38.02	708.9	
14	41.02	661.8	
15	44.01	656.1	
16	47.01	646.2	
17	50.00	641.6	
18	52.99	618.7	
19	55.99	617.4	
20	58.98	614.7	
21	61.98	603.3	
22	64.97	595.6	
23	67.96	588.0	
24	70.96	579.2	
25	73.95	559.4	
26	76.95	547.5	
27	79.94	544.2	
28	82.93	533.7	
29	85.93	531.5	
30	88.92	459.5	
31	91.92	446.4	
32	94.91	440.4	
33	97.90	434.2	
34	100.90	303.6	

DISTRICT	TEHSIL	SITE_NAME	May-2017	Aug 2017	Nov 2017	Jan 2018	Type_w
ENTRAL	CIVIL LINES	Burarai-Pz	NA	2.85	2.75	2.73	Pz
ENTRAL	CIVIL LINES	Burari Auger Pz	3.76	NA	NA	NA	Pz
ENTRAL	CIVIL LINES	ISBT (Kashmiri Gate) Dw	2.41	1.59	1.79	2.46	DW
ENTRAL	CIVIL LINES	Jagatpur Pz-1	2.50	1.82	1.90	2.46	Pz
ENTRAL	CIVIL LINES	Jagatpur Pz-2	2.83	2.24	2.28	1.76	Pz
ENTRAL	CIVIL LINES	Majanu Ka Tila Dw	9.11	7.86	NA	7.71	DW
ENTRAL	KOTWALI	Rajghat Pz	NA	NA	NA	1.05	Pz
AST	GANDHI NAGAR	Cbd Shahdara Pz	NA	11.38	12.93	NA	Pz
AST	MAYUR VIHAR	Chilla Regulator	9.47	8.75	9.85	9.88	Pz
AST	MAYUR VIHAR	Chillasaroda Pz	10.42	10.02	NA	NA	Pz
AST	MAYUR VIHAR	Mayur Vihar B Block	8.27	NA	9.13	8.97	Pz
AST	PREET VIHAR	Ghazipur Crossing Pz	22.42	21.75	12.92	23.6	Pz
IAZUL LAND	NAZUL LAND	Nizamuddin Bridge-1	4.50	4.52	3.91	NA	Pz
IAZUL LAND	NAZUL LAND	Nizamuddin Bridge-2	5.09	3.78	4.54	NA	Pz
IEW DELHI	CHANAKPURI	Birla mandir	11.18	7.95	NA	10.29	DW
IEW DELHI	CHANAKPURI	Humayun Tomb	8.68	8.07	7.91	7.83	DW
IEW DELHI	CHANAKPURI	India gate	8.39	7.65	7.44	NA	Pz
IEW DELHI	CHANAKPURI	Lodhi Garden (D)	6.90	8.03	7.90	7.73	Pz
IEW DELHI	CHANAKPURI	Lodhi Garden.(SH)	6.72	7.85	7.75	7.55	Pz
EW DELHI	CHANAKPURI	Lodhi Graden Dw	11.92	11.46	11.41	11.05	DW
EW DELHI	CHANAKPURI	Mahabir Vansth.	24.65	NA	28.30	28.45	Pz
EW DELHI	CHANAKPURI	Nehru Park Dw	43.34	NA	NA	NA	DW
EW DELHI	CHANAKPURI	Safdarjung tomb	16.19	14.73	17.15	14.37	DW
EW DELHI	CHANAKPURI	Shram Shakti Bhawan 1	13.24	13.28	12.49	NA	Pz
EW DELHI	CHANAKPURI	Shram Shakti Bhawan 2	NA	NA	NA	11.43	Pz
EW DELHI	CHANAKPURI	Shram Shakti Bhawan 3	14.02	13.24	12.30	NA	Pz
EW DELHI	CHANAKPURI	Sundar Nursery Pz	7.90	7.29	7.21	7.42	Pz
EW DELHI	DELHI CANTONMENT	CVD Depot Cant (Dp)	26.16	26.66	16.10	26.90	Pz
EW DELHI	DELHI CANTONMENT	Kabul Line Pz	28.92	29.17	29.33	29.18	Pz
EW DELHI	DELHI CANTONMENT	Kitchner road	26.35	20.32	NA	NA	Pz
EW DELHI	DELHI CANTONMENT	PUSA (WTC)	23.80	24.25	24.20	NA	Pz
IEW DELHI	DELHI CANTONMENT	PUSA Indrapuri Gate	24.40	24.00	NA	NA	Pz
IEW DELHI	DELHI CANTONMENT	Shekhawati Line Pz	64.39	42.23	NA	46.09	Pz
IEW DELHI	VASANT VIHAR	JUN Pz-13 Upstreem	29.13	21.68	27.71	27.74	Pz
IEW DELHI	VASANT VIHAR	JUN Pz-3 (D) Downstream	20.79	20.79	20.43	20.29	Pz
IEW DELHI	VASANT VIHAR	Sultanpur IMS	59.95	59.65	59.81	60.06	Pz
IORTH	ALIPUR	Bakoli - Shallow Pz	12.02	12.92	11.60	11.39	Pz
IORTH	ALIPUR	Bakoli- Deep Pz	12.13	13.51	11.76	11.48	Pz
IORTH	ALIPUR	Delhi College of Engineering	NA	7.52	7.92	7.95	Pz
IORTH	ALIPUR	Haiderpur Pz	12.05	12.07	12.14	11.81	Pz
ORTH	ALIPUR	Palla Temple	9.91	7.32	7.91	8.75	Pz
IORTH	ALIPUR	Palla Zero RD	9.81	10.63	9.92	9.01	Pz
ORTH	ALIPUR	Rohini Sec-28	6.50	5.92	6.43	6.88	Pz
ORTH	ALIPUR	Singhola Pz	14.08	14.14	19.44	19.07	Pz
ORTH	ALIPUR	Tiggipur Deep Pz	10.59	11.52	10.30	9.89	Pz
ORTH	ALIPUR	Tiggipur Shallow Pz	8.54	8.62	7.25	8.20	Pz
ORTH	MODEL TOWN	Balswa Lake	2.25	1.44	1.62	1.67	Pz
ORTH	NARELA	Auchandi Pz	3.96	1.76	2.24	3.26	Pz
ORTH	NARELA	Bankner-Pz	NA	NA	22.35	NA	Pz
ORTH	NARELA	Barwala Pz	6.01	5.69	NA	NA	Pz
ORTH	NARELA	Bawana Dw New	15.38	NA	NA	NA	DW
ORTH	NARELA	BBMB Narela Pz	21.5	NA	NA	NA	Pz
ORTH	NARELA	Hareoli Dw	4.72	4.36	2.45	3.06	DW
ORTH	NARELA	Kingsway Camp Police Ground Pz	9.01	8.58	8.86	9.16	Pz
ORTH EAST	SEELAM PUR	Ushmanpur Pz	6.02	4.78	NA	9.21	Pz
ORTH EAST	YAMUNA VIHAR	Gokulpuri E Pz	14.43	NA	NA	NA	Pz
ORTH EAST	YAMUNA VIHAR	Gokulpuri W Pz	14.43	NA	NA	NA	Pz
ORTH WEST	KANJHAWALA	Jaunti Dw	11.85	11.82	11.57	11.66	DW
ORTH WEST	KANJHAWALA	Kanjhawala (pz)	1.47	NA	1.29	1.47	Pz
ORTH WEST	KANJHAWALA	Nizampur	7.20	6.87	6.97	7.39	Pz
ORTH WEST	ROHINI	Mangolpuri Pz	NA	2.86	NA	6.44	Pz
IORTH WEST	ROHINI	Rani Khera	2.36	0.78	1.55	1.71	DW
IORTH WEST	ROHINI	Rohini Sector - 11	7.09	6.53	6.80	6.72	Pz
ORTH WEST	SARASWATI VIHAR	Majara Dabas	NA	2.74	3.08	3.60	Pz

ANNEXURE : IIIA WATER LEVEL MONITORING DATA : (2017-18)

Continue Previous Page

DISTRICT	TEHSIL	SITE NAME	May-2017	Aug 2017	Nov 2017	Jan 2018	Type well
SOUTH	HAUZ KHAS	Hauz Khas Pz	33.32	33.16	32.82	32.49	Pz
SOUTH	HAUZ KHAS	Pusp Vihar Pz	61.20	64.25	54.92	54.15	Pz
SOUTH	MEHRAULI	Gadaipur Pz	78.10	60.75	60.06	60.21	Pz
SOUTH	MEHRAULI	Jamali Kamali	26.98	24.26	23.62	23.04	DW
SOUTH	MEHRAULI	Jaunapur DJB	55.25	56.65	56.55	56.19	Pz
SOUTH	MEHRAULI	Jheel Khoh	54.13	56.53	56.30	58.05	DW
SOUTH	SAKET	Balbir Nagar	28.26	17.35	18.24	20.28	DW
SOUTH	SAKET	Bhatti-Pz	50.61	48.58	49.02	50.05	Pz
SOUTH EAST	DEFFENCE COLONY	Nagali Rajapur Pz	NA	3.23	3.53	3.69	Pz
SOUTH EAST	KALKAJI	Asola Pz	48.64	48.64	47.78	47.28	Pz
SOUTH EAST	SARITA VIHAR	Jaitpur Khadar RD-2600	6.37	5.11	5.26	5.90	Pz
SOUTH EAST	SARITA VIHAR	Jaitpur Khadar RD-3500	6.15	4.72	NA	7.10	Pz
SOUTH EAST	SARITA VIHAR	Madanpur Khadar	7.05	6.59	6.78	5.51	Pz
SOUTH WEST	DWARKA	Dwarka Sec-16 (Tp)	21.92	22.33	22.21	22.10	Pz
SOUTH WEST	DWARKA	Palam Signal Camp	NA	58.14	56.57	NA	Pz
SOUTH WEST	KAPESHERA	Chawla	15.44	15.01	14.87	15.14	Pz
SOUTH WEST	KAPESHERA	Daulatpur Pz	14.48	14.06	14.43	14.89	Pz
SOUTH WEST	KAPESHERA	Deorala Pz	1.13	0.42	0.32	0.35	Pz
SOUTH WEST	KAPESHERA	Raota	2.80	2.20	2.25	2.15	Pz
SOUTH WEST	KAPESHERA	Sikarpur Deep	10.77	11.99	10.94	10.42	Pz
SOUTH WEST	KAPESHERA	Sikarpur Shallow	10.79	12.02	10.72	10.70	Pz
SOUTH WEST	NAJAFGARH	Daryapur Khurd	NA	NA	3.42	3.99	Pz
SOUTH WEST	NAJAFGARH	Issapur Khera Pz	10.28	10.26	10.18	NA	Pz
SOUTH WEST	NAJAFGARH	Jharoda Kalan Pz	14.46	14.17	14.17	14.28	Pz
SOUTH WEST	NAJAFGARH	Jhuljhuli Dw	2.79	1.03	2.03	1.98	DW
SOUTH WEST	NAJAFGARH	Mandela Khurd Pz	11.95	11.75	11.87	12.55	Pz
SOUTH WEST	NAJAFGARH	Najafgarh Town	22.47	22.77	22.63	22.59	Pz
SOUTH WEST	NAJAFGARH	Ojwah Pz	15.16	15.78	15.23	16.02	Pz
WEST	PATEL NAGAR	Janakpuri Pz	12.94	12.31	12.24	12.31	Pz
WEST	PATEL NAGAR	PUSA (NRL)	28.00	25.36	27.35	27.36	Pz
WEST	PATEL NAGAR	Vikashpuri Pz	15.62	15.30	14.77	14.53	Pz
WEST	PUNJABI BAGH	Baprola Dw	4.35	3.53	2.48	2.94	DW
WEST	PUNJABI BAGH	Hiran Kudna Dw	3.52	2.55	2.47	2.55	DW
WEST	PUNJABI BAGH	Peera Garhi Pz	4.98	4.53	4.53	4.65	Pz
WEST	PUNJABI BAGH	Tikri Kalan Pz	8.85	8.72	NA	NA	Pz
WEST	PUNJABI BAGH	Tilangpur Kotla Dw	12.00	6.22	NA	NA	DW
WEST	RAJOURI GARDEN	Mayapuri Pz	37.36	37.39	37.76	38.00	Pz
WEST	RAJOURI GARDEN	Tagore Garden Pz	13.45	13.00	NA	12.09	Pz

· · ·	Decadal Mean Water Level in m bgl										
SITE_NAME	DM(2007-16)May	DM(2007-16)Aug	DM(2007-16)Nov	M(2007-16)Nov DM(2008-17)Ja							
Asola Pz	50.84	48.46	47.54	48.18							
Auchandi Pz	3.41	1.68	1.8	2.62							
Bakoli - Shallow Pz	9.21	10.45	9.28	9.14							
Bakoli- Deep Pz	9.25	10.66	9.36	9.29							
Balbir Nagar	23.94	15.55	17.44	20.75							
Balswa Lake	2.17	1.51	1.46	1.59							
Bankner-Pz			17.13								
Baprola Dw	4.49	3.12	3.04	3.2							
Barwala Pz	6.06	5.68									
Bawana Dw New	6.57										
BBMB Narela Pz	16.55										
Bhatti-Pz	47.17	44.07	44.22	45.8							
Birla mandir	10.95	7.44		5							
Burarai-Pz		3.12	3.05	3.54							
Burari Auger Pz	3.86										
Cbd Shahdara Pz		8.77	9.08								
Chawla	15.16	13.84	13.82	14.0							
Chilla Regulator	8.44	8.11	7.87	7.9							
Chillasaroda Pz	8.9	8.95									
CVD Depot Cant (Dp)	20.78	19.93	19.93	20.4							
Darvapur Khurd			3.96	4.9							
Daulatour Pz	17.24	16.14	16.29	17.0							
Delhi College of Engineering		5.26	5	5.3							
Deorala Pz	2.52	1.46	1.63	1.7							
Dwarka Sec-16 (Tp)	16.66	16.77	17.39	1							
Gadaipur Pz	53.62	54.74	54.87	55.5							
Ghazipur Crossing Pz	16.91	17.96	17.97	16.8							
Gokulpuri E Pz	7.78										
Gokulpuri W Pz	7.64										
Haiderpur Pz	10.05	9,94	9.76	9.1							
Hareoli Dw	4.62	3.73	2.83	3.4							
Hauz Khas Pz	35.3	35.24	35.06	34.9							
Hiran Kudna Dw	2.93	2.08	2.31	2.7							
Humayun Tomb	6.68	6.05	6.01	6.1							
India gate	6.97	5.77	6.08	0.1							
ISBT (Kashmiri Gate) Dw	3.1	1.71	2.57	2.7							
Issanur Khera Pz	10 59	10 34	10 24								
lagatour Pz-1	2 69	1 77	2 07	2.1							
lagatnur Pz-2	2.03	1.77	1 58	1.7							
Jaitnur Khadar RD-2600	/ 88	3.08	1.30	1.7							
laitpur Khadar RD-3500	5 77	J. 38 1 FO	4.44	5 Q							
Jamali Kamali	29.95	27.98	28.02	28.0							
Janaknuri Pz	11 22	10 99	10.02	11 0							
	£2 02	۲0.00 ۲0.00	ر دع د دع	52 C							
Jaunapui Dib	12.92	12.30	JZ.7 17 71	10.2							
Jaunu Dw Ibarada Kalan Dz	12.92	14.0	14.31	14.0							
	15.46	14.9	14. / 51. 25	14.9							
	50.3	50.23	51.35	50.1							
	2.63	1.29	2.22	2.3							

ANNEXURE : IIIB - DECADAL MEAN WATER LEVEL DATA

Continue Previous Page

INU Pz-3 (D) Downstream	28.79	27.71	27.25	27.
Kabul Line Pz	25.68	26.09	25.93	26.2
Kabila (nz)	23.00	20.05	1.24	1 /
Kingsway Camp Police Ground	2.55		1.24	1
Pz	6.22	5.78	5.93	6.5
Kitchner road	18.61	17.99		
Lodhi Garden (D)	9.48	8.86	8.64	8.4
Lodhi Garden.(SH)	9.4	8.38	8.43	8
Lodhi Graden Dw	12.4	12.71	11.9	11.
Madanpur Khadar	4.68	3.88	4.08	4.
Mahabir Vansth.	25.62		25.64	25.
Majanu Ka Tila Dw	8.87	7.66		
Majara Dabas		2.56	2.94	3.1
Mandela Khurd Pz	13.89	14.21	12.85	13.
Mangolpuri Pz		3.29		2.8
Mayapuri Pz	34.15	34.59	34.8	34.0
Mayur Vihar B Block	6.41		6.55	6
Nagali Bajapur Pz	0.112	2 52	2 82	3
Najafgarh Town	18 87	19 31	18 83	
Nebru Park Dw	23.07	15.51	10.05	10.
Nizampur	8.63	7 51	7 36	7
Nizamuddin Bridge-1	0.05 // 5	3 38	3.47	/.
Nizamuddin Bridge-2	4.5	2 12	2 22	
	16.02	16 22	5.25	16
Dalam Signal Camp	10.82	E4 00	54 55	10.
Palla Tomplo	6 91	54.99 6.01	6 25	6
	0.01	0.01	7.70	0.4
Palla Zero KD	0.10	0.52	7.79	7.3
Peera Garni Dw	7.14	8.43	8.32	8.
Peera Garni Pz	5.63	4.82	4.76	4.6
PUSA (NRL)	19.23	19.4	19.39	19.
PUSA (WIC)	18.9	19.35	19.08	
PUSA Indrapuri Gate	21.68	21.88		
Pusp Vihar Pz	63.92	64.04	64.49	63.
Rajghat Pz				1.
Rani Khera	3.28	2.31	2.44	2.9
Raota	2.8	1.58	2.19	2.2
Rohini Sec-28	5.02	4.35	4.38	4.0
Rohini Sector - 11	6.12	5.55	5.46	5.4
Satdarjung tomb	16.47	15.19	15.06	14.
Sainik Vihar Pz	2.29	1.34	1.77	
Shekhawati Line Pz	39.07	39.25		39.
Shram Shakti Bhawan 1	14.71	13.81	13.81	
Shram Shakti Bhawan 2				13.2
Shram Shakti Bhawan 3	15.26	14.25	14.49	
Sikarpur Deep	14.29	13.35	12.6	12.
Sikarpur Shallow	12.91	12.9	11.88	11.
Singhola Pz	13.44	13.83	13.02	13.
Sultanpur IMS	51.37	51.21	51.92	52.
Sundar Nursery Pz	7.99	7.45	7.3	7
Tagore Garden Pz	9.76	9.25		9.
Tiggipur Deep Pz	7.75	8.02	7.65	7.

Tiggipur Shallow Pz	7.43	7.18	7.09	6.81
Tikri Kalan Pz	8.44	7.77		
Tilangpur Kotla Dw	6.45	5.61		
Ushmanpur Pz	4.38	2.6		3.18
Vikashpuri Pz	12.31	12.73	13.07	12.56

ANNEXURE : IV LIST GROUNDWATER SAMPLES & CHEMICAL ANALYSIS : MAY 2017

Г

0.	Location	ec	CO₃	HCO₃	CI [*]	SO4	NO ₃ *	F	PO ₄	Ca [*]	Mg [*]	Na	к	SiO ₂	TH *as
															CaCO
1	Akshardham temple	1831	0	232	351	300	4.4	0.05	<0.10	105	59	227	7	19	505
2	Asola	658	0	244	71	90	18	0.32	<0.10	61	20	81	3.8	39	233
3	Auchandi	5826	0	695	333	1898	5.68	3.30	<0.10	88	139	1200	11	15	790
4	Bakoli	4665	0	341	1031	830	0.2	0.8	<0.10	213	191	589	10	22	1317
5	Balbir nagar	316	0	195	20	35	3.0	0.10	<0.10	53	12	22	1.4	26	182
6	Balsawa lake	6385	0	390	1595	972	3.81	0.82	<0.10	240	165	1051	20	22	1281
7	Bapraula	4750	0	659	990	416	75	2.06	<0.10	93	150	725	10	23	849
8	Barwala	7345	0	195	1262	722	110	0.56	<0.10	769	306	421	7.8	22	3183
9	BBMB Narela	1925	0	341	281	262	30	0.85	<0.10	120	78	174	8.6	22	620
10	Bhatti mines	910	0	451	66	50	13	0.30	<0.10	101	32	67	1.2	30	384
11	Birla mandir	751	0	232	84	85	4.1	0.44	<0.10	74	22	59	4.9	18	275
12	Burari	1781	0	317	203	200	112	0.05	<0.10	145	34	155	11	15	505
13	Chilla regulator	886	0	342	119	18	1.1	0.13	<0.10	73	39	54	7.2	20	344
14	Chilla saroda	2110	0	378	295	501	0.2	0.29	<0.10	73	54	384	11	19	404
15	Gadaipur	118	0	500	66	16	59	0.44	<0.10	57	29	139	3.8	35	263
16	Gazipur crossing	185	0	49	6.9	40	2.8	0.05	<0.10	24	7.4	0	0.8	5.8	91
17	Haiderpur	470	0	232	14	40	4.69	0.98	<0.10	53	26	7.33	3.09	16	240
18	Hareoli	2770	0	427	435	452	42	0.82	<0.10	100	129	315	10	20	781
19	Hauz khas	3796	0	293	613	780	298	0.44	<0.10	283	147	392	2.5	29	1313
20	Hirankudna	30500	0	317	10564	2288	90	1.41	<0.10	660	1604	4310	25	22	8250
21	Humayan tomb	2730	0	756	316	272	74	1.25	<0.10	45	42	390	221	19	285
22	I.S.B.T	245	0	73	14	46	1.9	0.05	<0.10	28	9.8	8.6	2.5	5.9	111
23	India gate	980	0	195	119	86	121	0.52	2.15	65	30	98	18	16	285
24	Isapur khera	7591	0	537	1923	260	439	1.15	<0.10	156	285	980	59	20	1561
25	Jagatpur-2	1305	0	305	140	238	1.9	0.05	<0.10	85	44	138	4.6	14	394

Sr No.	Location	ec	CO3	HCO₃	CI*	SO₄	NO ₃ *	F	PO ₄	Ca [*]	Mg [*]	Na	к	SiO2	TH *as CaCO₃
26	Jaitpur RD 2600	1532	0	390	213	130	19	0.52	<0.10	88	46	160	16	14	410
27	Jaitpur RD last	1505	0	402	206	144	2.61	0.48	<0.10	100	39	165	7.9	23	410
28	Jamali kamali	1710	0	647	167	180	32	2.36	<0.10	61	37	300	7.6	29	303
29	Jaunapur	1824	0	537	281	94	28	0.73	<0.10	78	50	254	8.3	31	398
30	Jautni	4460	0	879	449	660	415	1.10	<0.10	40	79	270	1076	15	420
31	Jharoda kalan	5484	0	403	1658	240	58	1.15	0.116	234	189	733	15	26	1364
32	JNU Campus	721	0	342	66	56	16	0.53	<0.10	65	37	61	1.4	32	313
33	JNU South	776	0	366	46	72	16	0.56	<0.10	77	32	60	1.4	32	323
34	Kanjhawala	1868	0	939	77	100	15	23	<0.10	12	4.98	440	3.5	12	51
35	Katlupur	477	0	305	14	0	1.4	0.54	<0.10	36	24	39	2.03	15	190
36	Madanpur khadar	1548	0	464	213	150	85	0.46	<0.10	109	56	181	10	18	505
37	Mahabir Vanasthali	1117	0	280	196	60	6.79	0.68	<0.10	78	25	130	2.4	23	296
38	Majnu ka tilla	390	0	110	49	42	6.3	0.24	<0.10	32	15	30	3.3	7.1	142
39	Majradabas	3785	0	927	386	825	62	16	<0.10	56	32	903	23	14	270
40	Mangolpuri	613	0	281	42	46	0.33	0.05	<0.10	53	27	44	1.7	15	243
41	Mayur vihar ph-I	1446	0	427	246	45	58	0.38	<0.10	109	37	163	13	18	424
42	Mubarakpur Dabas	810	0	305	49	82	4.62	7.80	<0.10	48	15	90	4.24	15	230
43	Najafgarh	4680	0	427	1298	102	85	1.30	<0.10	184	203	475	29	22	1296
44	Nehru park	641	0	85	91	120	0.61	0.30	<0.10	37	17	75	3.4	4.23	163
45	Nizamuddin bridge-1	1478	0	403	225	140	26	0.17	<0.10	109	34	174	17	16	414
46	Nizamuddin bridge-2	1814	0	342	407	60	7.9	0.03	<0.10	137	39	194	4.5	15	505
47	Ojwah	2468	0	671	428	90	55	1.25	<0.10	61	52	423	10	21	367
48	Palla (zero Rd)	1853	0	353	237	318	2.85	0.05	<0.10	92	61	219	6.85	19	480
49	Peera garhi	5300	0	415	1299	466	7.0	1.59	<0.10	162	235	587	17	4	1374
50	PUSA (NRL)	1972	0	439	393	78	24	0.78	<0.10	110	69	210	1.4	25	561

No.	Location	ec	CO ₃	HCO₃	CI [*]	SO ₄	NO₃ [*]	F	PO ₄	Ca [*]	Mg [*]	Na	к	SiO2	TH *as CaCO₃
51	PUSA (WTC)	1910	0	293	491	42	25	0.56	<0.10	143	37	225	2.6	28	510
52	Pushp vihar	2465	0	244	425	52	460	0.38	<0.10	272	54	150	3.5	30	901
53	Raota	9600	0	525	2808	442	36	1.36	<0.10	128	175	1760	10	22	1041
54	Rohini sec-28	674	0	220	14	72	5.24	2.15	<0.10	32	27	41	6.7	13	194
55	Sainik vihar	15040	0	305	4724	872	15	0.90	<0.10	433	365	2400	26	22	2583
56	Satbari	967	0	476	60	0	22	0.75	<0.10	20	36	135	2.1	29	200
57	Sunder nursery	2125	0	561	281	195	126	1.01	<0.10	82	55	337	5	28	428
58	Surheda	8442	0	427	1546	2550	85	2.75	<0.10	357	377	1300	24	20	2442
59	Tagore garden	12100	0	354	470	5730	26	0.52	<0.10	327	437	1988	12	25	2616
60	Tiggipur	925	0	293	98	102	0.2	0.70	<0.10	96	17	82	4.43	22	310
61	Usmanpur	1128	0	390	126	118	3.1	0.05	<0.10	113	44	56	31	18	465
62	Wazirabad	1412	0	451	190	142	1.4	0.05	<0.10	93	52	152	13	17	445

(EC in μ S/cm at 25°C, other Constituents in mg /l)

REFERENCE

- ¹ District Census Hand Book 2016, Directorate of Economics & Statistics, Government of NCT, Delhi
- ² Census of India Report -2011 ; District Census Handbook, Directorate of Census Operations, Delhi
- ³ GSI Study Report : Kachroo and Baghchi, 1999.
- ⁴ Jayant K. Tripathi & V. Rajmani : 'Weathering control over geomorphology of Supermature Proterozoic Delhi Quartzites of India' Earth Surface Processes & Landforms – Vol 28, Issue 13, Dec 2003.
- ⁵ GSI Study Reports : Naha et.al 1944 & 1987; Roy 1988 ; Gangopadhyay and Sen, 1968)
- ⁶ GSI Study Report : Srivastava et al. (1980)
- ⁷ NAQUIM Report "Aquifer Mapping and Groundwater Management Plan of Delhi", CGWB, SUO, New Delhi , 2016.
- ⁸ Freeze R A & Cherry J A, "Groundwater", Textbook ; 1979 Prentice Hall Inc .