


CENTRAL GROUND WATER BOARD

MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION GOVERNMENT OF INDIA

ARTIFICIAL RECHARGE TO GROUND WATER AND WATER CONSERVATION PLAN OF BEHROR BLOCK, DISTRICT ALWAR, RAJASTHAN

ARTIFICIAL RECHARGE TO GROUND WATER AND WATER CONSERVATION PLAN BLOCK BEHROR, DISTRICT ALWAR

Plan at a Glance

1.	Area of the Behror Block	351.69 Sq.Km.						
2.	Area identified for Artificial Recharge	334.60 sq km						
3.	Dynamic Ground Water Resources (as on 31.03.2011)							
	Net Ground Water Availability	35.84 MCM						
	Annual Ground Water Draft	96.92 MCM						
	Stage of Ground Water Development	270.40 %						
4.	Runoff available in the block	1.3204 MCM						
	Volume of water recharged Volume of water conserved for other interventions	1.3204 MCM 0 MCM						
5.	Volume of unsaturated aquifer zone available for recharge	1647.623 MCM						
6.	Total number of structures to be proposed							
	Recharge structures Existing village pond with recharge shaft/ well	Numbers 18 shafts in 18 Nos. of existing village ponds						
	Percolation tank	4 Nos.						
	Water Conservation	4 1100.						
	Farm pond	0 Nos.						
	Expected Annual GW recharge	0.9243 MCM						
	Provision for supplemental irrigation, thus reducing GW withdrawal for irrigation	-						
	Total recharge/ saving of ground water	0.9243 MCM						
7.	Estimated Cost Artificial Recharge Plan Water conservation measures	2.7384 crore 2.5 crore nil						
	Piezometer construction Operation and maintenance	0.108 crore 0.1304 crore						

ARTIFICIAL RECHARGE TO GROUND WATER AND WATER CONSERVATION PLAN BLOCK BEHROR, DISTRICT

1 INTRODUCTION

The demand of fresh water for agriculture, drinking and industrial uses etc. has significantly increased due to population growth and socio-economic development. As surface water resources in the State of Rajasthan are meagre, the dependability on ground water resources in the State has increased substantially. This has resulted in over exploitation of ground water resources vis a vis depletion of ground water levels in various parts of the State.

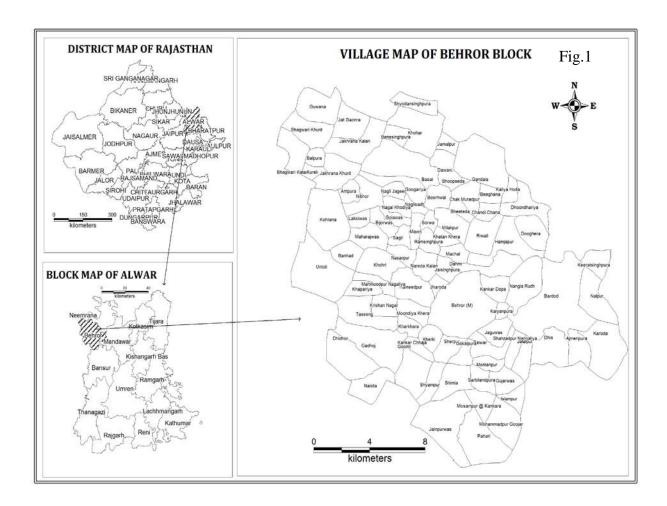
The **Behror Block**, **district Alwar** is one of the over exploited blocks of Rajasthan and is under severe stress, as evident from the stage of ground water development, which has attained an alarming level of **270.40%**. In view of over exploitation of ground water resources in the block, ground water resources in the area are under continuous depletion. Thus there is urgent need for taking up suitable water management interventions based on integrated approach, which on one hand includes augmentation of ground water resources through appropriate techniques, and on the other hand requires the adoption of suitable water conservation measures, such as ensuring water use efficiency through creation of additional water storage facility, maintenance/renovation of existing water bodies etc. Water awareness and capacity building of the stakeholders are also the important attributes of water management interventions as envisaged in the National Water Policy.

Artificial recharge to ground water is one of the most efficient, scientifically proven and cost effective technology to mitigate the problems of over exploitation of ground water resources. The technology serves as a means for restoring the depleted ground water storage, ameliorate the ground water quality problems and also enhance the sustainability of wells in the affected areas. A detailed knowledge of geology, hydrogeology, land use pattern, geomorphology and hydro-meteorological features are however, essential for selection of appropriate artificial recharge techniques as well as design and sites of ground water recharge structures.

As per directions of Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India and in pursuance to letter no 16-24/M(SML)/CGWB/ARP- OE Blocks/2015-6957, dated 13.7.2015 & 3.8.2015 & letter no 39(43)/TC/CHN/CGWB/2015-7929, dated 4.9.2015 from Central Headquarters, Central Ground Water Board, the preparation of Artificial Recharge and Rainwater harvesting Plan for Over exploited blocks in the State of Rajasthan has been taken up on priority by the Western Region, Central Ground Water Board, Jaipur. Each Plan discusses the broad framework of ground water situation in the block, status of water availability (both surface and ground water), identification of feasible areas for interventions, feasibility of artificial recharge and other water conservation structures, their design considerations, numbers and cost estimates. The expected outcomes of the proposed interventions have also been elucidated in the report. The GIS layers used in

the Plan include administrative (upto village level), Hydrogeology, Depth to Water level (pre and post monsoon), geomorphic, drainage, water bodies and the map of tentative locations of proposed interventions.

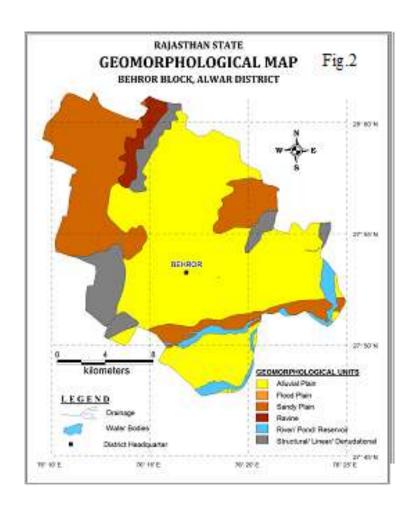
Methodology:


As per Ground Water Department, Government of Rajasthan direction the basin wise availability of surplus run off is calculated after taking into account 75 % dependability on the rain water for all uses. In furtherance, the sub basins with surplus run off available for recharge were taken into consideration. The block area falling in particular sub basin was taken into account and a proportionate area of the sub-basin draining the block was calculated. Based on this area of sub-basin draining the block, proportionate surplus run off, in the block by the sub basin, for recharge was calculated. Thus was calculated the final amount of surplus run off available for recharge in particular block by one particular sub-basin. The available run off was considered for Recharge through Recharge Shaft (@ 0.03 MCM) and Percolation tank (@ 0.2 MCM). If after allocating water for Recharge through Recharge Shaft, large amount of surface run off was left then the Water conservation through Farm Ponds, along with recharge through Percolation Tanks, was also taken into account. Besides the available run off the Average Water Level for the time span of ten years (Nov., 2005 to Nov. 2014) and the Decadal Water Level trend (Nov., 2005 to Nov. 2014) were also taken into account. The blocks showing average water level more than 5 m bgl and declining water level trend were considered suitable for Artificial Recharge Plan

Location of the block

The Behror Block of Alwar District covering an area of 351.69 Sq. Km. falls in north-western part of Alwar District and is located between North latitudes 27°48' & 28°01' and East longitudes 76°10' & 76°25'. As per 2011 census, the total population of the Block is 161723 persons consisting of 85188 males & 76535 females. Location map is shown in **Fig.1**.

Source wise Irrigated Area


More than 40% of area of block is irrigated through various sources. There is no area that falls under canal & pond irrigation. The wells irrigate almost entire area in this block.

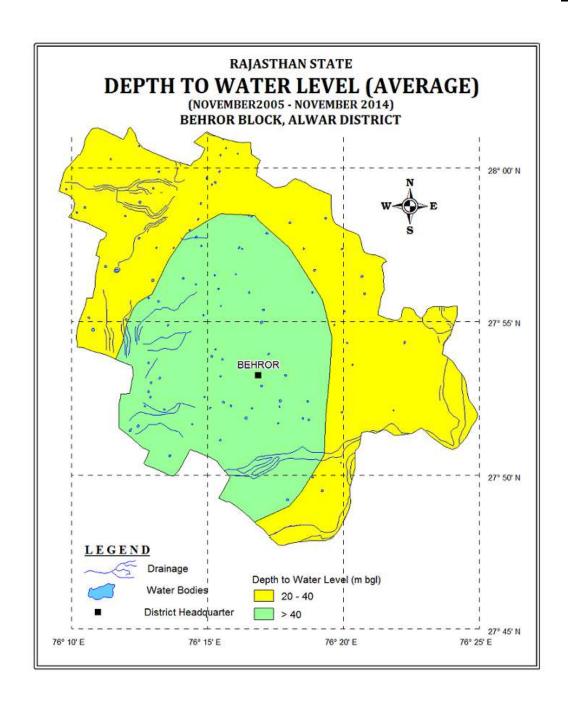
Physiography & Drainage

Physiographically (**Fig.2**), the block is characterized by presence of alluvial plains, sandy plains and hills. The minimum and maximum elevation of Block is 308.2 m and 771.1 m, respectively.

The southern parts of block are drained by Sota & Sahibi rivers. The entire block falls under Sabi river basin.

Rainfall and Climate

The climate of the block is semi arid. The Normal annual rainfall of block is 523 mm. Failure of rains has observed several times. The available data of rainfall indicates that larger part of annual rainfall is received through SW monsoon during July to September. In March, there is transition to summers. The summer months of April to June are the hottest months and temperature upto 48°C is reached. From end of June to September, south western monsoon is received. The months of July and August are the wettest months, receiving about 70% of total annual rainfall. Winter season starts from November and lasts upto February. Average temperature during these months remains between 15° to 18°C, however from end of December to mid January, temperature remains in the range of 5° to 10°C.

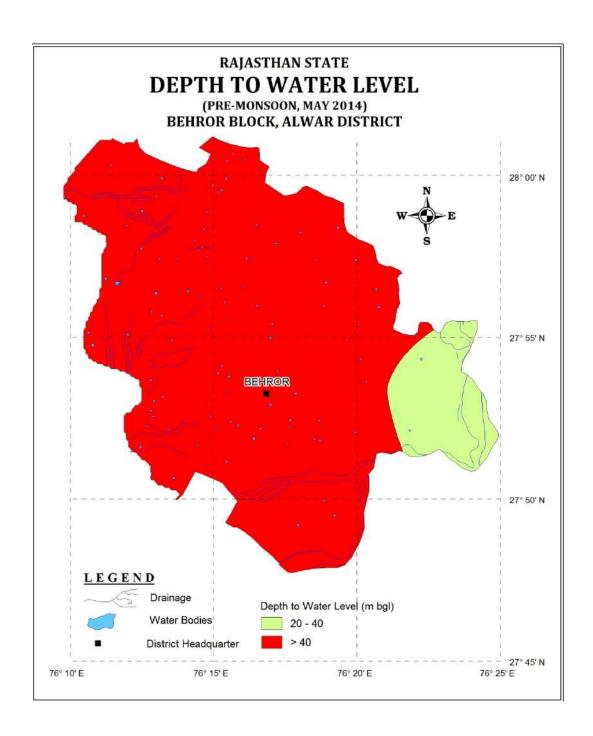
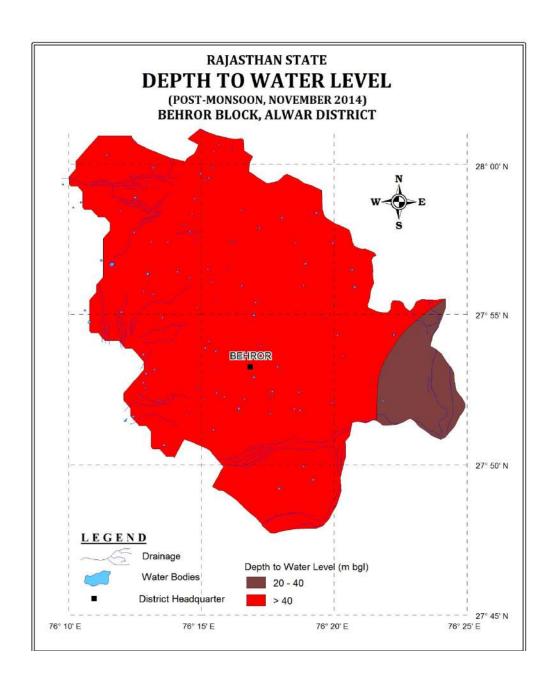

Hydrogeology of the Area

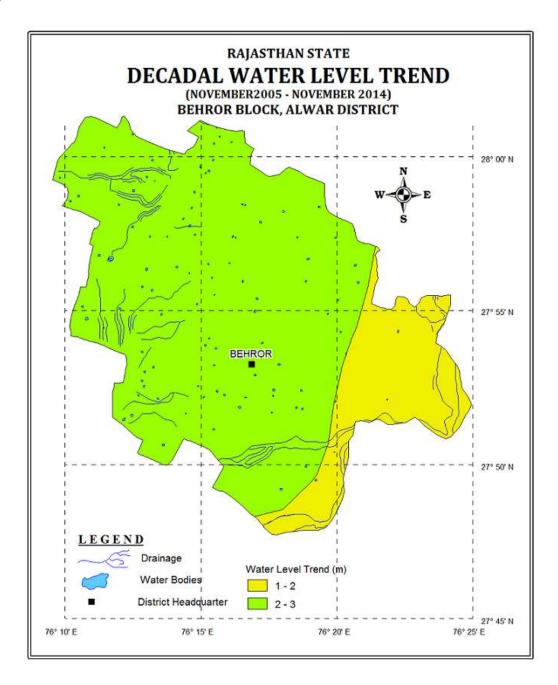
The aquifer system of the block is represented by Older Alluvium. Out of total geographical area of 351.69 Sq. Km, an area of 334.60 Sq. Km. (95.14%) forms aquifer system (potential zone) in the block and remaining 17.06 Sq. Km.(4.86%) area is represented by hills. Alluvium forms principal potential aquifer in the whole Block. Ground water occurs under phreatic conditions in the shallow aquifers and under semiconfined conditions in the deeper aquifer, which is the principal water bearing zone. Yield of wells mainly depends on the aquifer material and to some extent on the depth of the wells. Bored cavity tube wells are the most common ground water abstraction structures being used for irrigation purposes. In general yield of wells tapping older alluvial aquifers varies from 0.46 to 3.47 lps depending on the thickness of saturated granular zones.

Ground Water Level

As per Average decadal depth to water level (from November, 2005 to November, 2014), the block majorly falls in water level range 20-50 and 50-60 m bgl range. (Fig 4)

The average decadal depth to water level is 59.83 mbgl for Pre monsoon & 47.01 mbgl for Post monsoon. According to depth to water level maps of May 2014 & November 2014, the depth to water level is more than 40 mbgl in major part except some western part where it ranges between 20 to 40 mbgl. The Map showing Depth to water level for May, 2014 and November, 2014 is shown in **Fig 5 & 6.**


Fig: 6

Water Level Trend: All the hydrographs are showing declining water level trends over last 10 years. At these monitoring stations water level fall varying from 1.11 to 2.28 m/year during pre monsoon and 1.28 to 2.69 m/year during post monsoon has been observed.

As per the Decadal Water level trend (from November, 2005 to November, 2014), the declining trend is visible in the block. The fall in the range of 1-2 m and as high as 2-3 m/ year in ground water level is prevalent in the block. The map of Decadal Water Level Trend is shown in fig. 7.

Fig: 7

Subsurface Hydrogeology

As inferred from borehole data of the Behror Block; Older alluvium forms the principal aquifer in the block. The depth of drilling ranges from 30 to 115 mbgl and the average discharge ranges from 0.25 to 11.58 lps. The quality of water has 2 major problems, i.e., Salinity & Fluoride. Transmissivity value varies between 27 to 302 m²/day and Stortivity value is 0.0014.

Dynamic Ground Water Resource

The Ground water Resources for the block are given in Table 1 as per 31.03.2011 Ground Water Resource Assessment. The Net Ground water Availability of Block is 3584.46 ham and Annual Ground water draft is 9692.48 ham. Due to this excessive draft over recharge, stage of Ground water development has reached 270.40%.

Table 1: Ground Water Availability, Utilization and Stage of Development Behror Block, Alwar District (As on 31.3.2011).

Natural Discharge During Non Monsoon Period	398.27 ham				
Net Ground Water Availability	3584.46 ham				
Annual Ground Water Draft	9692.48 ham				
Net Ground water Availability for Future Irrigation Use	0 ham				
Stage of Ground Water Development 270.40%					
Source: Ground Water Resource Assessment 31.03.2011					

Need for artificial recharge and water conservation plan

The present artificial recharge and water conservation Plan aims to mitigate the problems of continuous decline in water levels over the area through techniques of artificial recharge utilizing surplus rainwater based on scientific manner for optimal results. The broad scope of the recharge plan is as follows:

- □ Establishing efficacy of integrated approach through various artificial recharge and water conservation techniques. Intervention is proposed in cluster mode basis wherever feasible to have a better impact.
- □ Enhancing water use efficiency for controlling excessive ground water draft, especially for irrigation purposes.
- Ensuring sustainability of ground water abstraction structures and improvement in quality of ground water.

Surface water availability

As per the studies carried out by Water Resources Department, Govt of Rajasthan there is hardly any surplus water available for further development at 75% dependability. However, after taking into account the availability of source water in the basins of Rivers flowing in the State proportionate amount of surplus runoff available in particular block by particular sub basin was calculated.

Accordingly about 1.3204 MCM has been considered for recharge plan in the block. Optimum utilization of rainwater runoff depends on availability of land, feasible conditions, etc. Surface water availability, allocation and number of structures are presented in table 2.

Table 2: Source water for artificial recharge and number of recharge structure

	District code		code	Block (Sq.km.)		Aquifer		Sp Yield
ALWAR	RJ02	BEHROR	RJ0202	351.690	334.600	alluvium	278.350	0.120
						hard rock	56.250	0.020

Table 2 (contd): Source water for artificial recharge and number of recharge structure

DTW (mbgl) NOV 2013	of unsaturated zone 3 m below ground level (m)	Volume of sub surface storage space available for artificial recharge (MCM)	Basin	Surplus available in the block (in Mm3)	used in Recharge		Remaining Surplus water for Percolation tank (PT)	PT (0.2
49.700	46.700	1559.873	Dohan	1.3204	0.54	18	0.7804	4
81.000	78.000	87.750						· · · · · · · · · · · · · · · · · · ·

Feasible Artificial Recharge and water conservation structures

A wide spectrum of techniques is in vougue, which are being implemented to recharge the ground water reservoir, conserve the utilizable rainfall and enhance the water use efficiency. Based on prevailing field conditions, out of total block area of 351.69 sq km practically 334.40 sq km area is feasible for implementing recharge measures. Based on available information about the area such as ground water scenario, hydrogeology, hydrology, topography, rainfall pattern, drainage, soil cover, utilizable rainfall etc. scope for various interventions has been studied and assessment of suitable areas, tentative design and costs of structures has been worked out in the present plan.

Identification of feasible areas

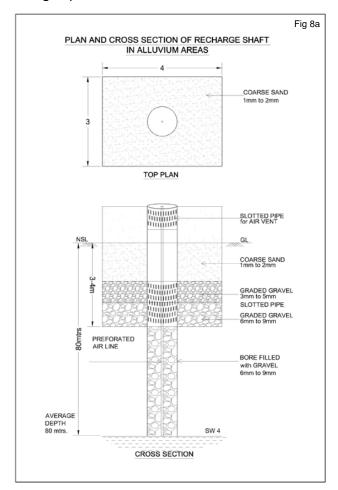
Behror block is having ground water level mostly more than 40m below ground level and as per dynamic ground water resource estimation, the block is over exploited with stage of ground water development at 270.40%. The Behror block is feasible for recharge due to presence of permeable zone above water table, favorable land slope and availability of water from rainfall.

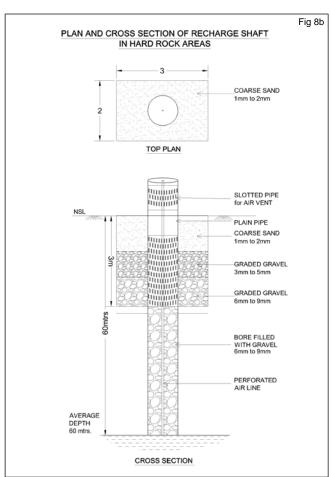
Generally the Artificial recharge structures suitable in this type of area are Check dams/ Anicuts/ Percolation tanks and Recharge Shafts/ Recharge wells. Since the ground water levels are quite deep in the block, the structures like ani-cuts and Check dams are not suitable and also their construction is regulated. Considering these aspect the proposal for Recharge Shaft/ Recharge wells and percolation tanks have been firmed up in the present Planare the most suitable structures in Behror block.

Details of Ground Water Recharge Measures

1. Existing Village Pond with recharge shaft/wells

Almost all the villages in the State of Rajasthan have one or two village ponds & other ponds. With time, these ponds get silted & hardly any water percolates downward. Also, any excess water coming into the pond goes away as a run off due to limited storage capacity. This surplus runoff can very well be utilized for recharging the ground water and also for enhancing conservation of water that can be further used for irrigation, thereby saving ground water withdrawal. Since natural recharge from these ponds is limited due to siltation and ground water levels are deep, the most effective ground water structure considered under the Plan is Recharge Shaft/ Recharge well constructed within the pond itself.


The above mentioned recharge well has been designed in a manner that maximum surplus water would likely to be utilized for recharge as well as sufficient water is retained in the pond for local use.


The model design of recharge well has been worked out in consultation with Ground Water Department, Government of Rajasthan and presented in Fig 8a & 8b. The major features required are:

- 1. The well should have sufficient diameter for recharge- 10 to 12 inch diameter well with bottom screen/ opening just above the highest ground water level.
- 2. The well should have screen/ opening at the top, which should be at least 1.5m above the bed level of the pond.

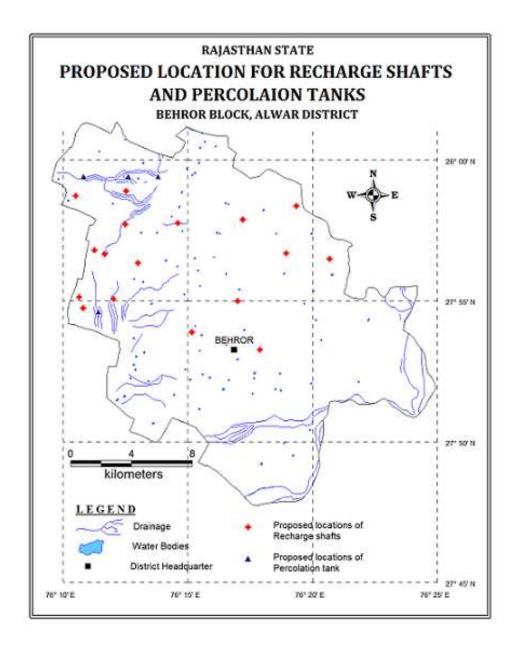
The upper opening should be surrounded with filter pack comprising graded filter media of medium, coarse sand & gravel, so that the Recharge well does not get silted.

The opening for inflow to the well has been proposed at 1.5m above Bed level of pond. This is necessary to ensure that the pond retains sufficient water for use by local consumers. However, this may necessitate further deepening of pond itself so that the pond is 3-4 m deep. A Single well as discussed above would be suitable for a pond upto area of about 2.5 ha. Therefore, more number of such Recharge wells are envisaged for larger ponds.

The tentative location of villages for construction of recharge shaft/well in existing village pond and their cost estimates are shown in Fig 9 and Table 3. The plan proposes construction of 18 recharges shafts/ wells in 18 identified existing village ponds at an estimated cost of 90 lacs.

Table 3: Tentative locations of village for village pond with recharge shaft.

S.N	Village	Long	Lat	Pond	No	Formation	Unit	Cost
		J		Area	of		cost	of
				(Ha)	Shaft		(Rs	Shaft
							in	(Rs
							lac)	in
_	DI	70.475	07.070	4 400	4	0 " 1		lac)
1	Bhagwari Kalan	76.175	27.979	1.100	1	Soft_rock	5	5
2	Untoli	76.180	27.912	2.180	1	Soft_rock	5	5
3	Untoli	76.177	27.919	1.080	1	Soft_rock	5	5
4	Kohrana	76.194	27.944	4.360	1	Soft_rock	5	5
5	Kohrana	76.187	27.947	1.340	1	Soft_rock	5	5
6	Untoli	76.200	27.918	1.200	1	Soft_rock	5	5
7	Antpura	76.208	27.962	1.070	1	Soft_rock	5	5
8	Jakhrana Kalan	76.209	27.981	1.300	1	Soft_rock	5	5
9	Laksiwas	76.216	27.939	1.720	1	Soft_rock	5	5
10	Nagli Jageer	76.243	27.962	1.150	1	Soft_rock	5	5
11	Hameedpur	76.253	27.898	1.080	1	Soft_rock	5	5
12	Jaisinghpura	76.283	27.916	1.650	1	Soft_rock	5	5
13	Bhoopseda	76.286	27.965	1.080	1	Soft_rock	5	5
14	Chandi Chana	76.316	27.945	1.110	1	Soft_rock	5	5
15	Gandala	76.322	27.973	1.160	1	Soft_rock	5	5
16	Dooghera	76.345	27.941	1.110	1	Soft_rock	5	5
17	Behror (M)	76.298	27.888	1.650	1	Soft_rock	5	5
18	Behror (M)	76.275	27.892	1.080	1	Soft_rock	5	5
					18			90


2. Percolation tanks

Percolation tanks are among the most common runoff harvesting structures in India. A percolation tank can be defined as an artificially created surface water body submerging a highly permeable land area so that the surface runoff is made percolate and recharge the ground water storage. These are not provide with sluices or outlests for discharging water from tank for irrigation or other purposes. They may, however, be provided with arrangements for spilling away the surplus water that may enter the tank so as to avoid over-topping of the tank bund. It is possible to have more than one percolation tank in a catchment if sufficient surplus runoff is available and the site characxterisitcs favor recahrge through such structures. Under the plan, 4 Nos. percolation tanks (200mx200mx1.5m) in the vicinity of respective villages. Location of percolation tanks is given in Fig 9 and Table 4.

Table 4: Tentative location of village proposed for percolation tank

SN	District	Block	Village	Longitude	Latitude
1	ALWAR	Behror	Bhagwari Khurd	76.180	27.990
2	ALWAR	Behror	Untoli	76.190	27.910
3	ALWAR	Behror	Jakhrana Kalan	76.210	27.990
4	ALWAR	Behror	Jakhrana Kalan	76.230	27.990

Fig: 9

B. Revival, repair of water bodies

The existing ponds and tanks in loose their storage capacity as well as the natural ground water recharge through these water bodies has also become negligible due to siltation and encroachment by farmers for agriculture purposes. There are several such villages where ponds/ tanks are in dilapidated condition. These existing village tanks, which are normally silted and damaged, can be modified to serve as recharge structure in case these are suitably located to serve as percolation tanks. Through desilting, coupled with providing proper waste weir, the village tanks can be converted into recharge structure.

Impact Assessment and Monitoring

Assessment of impact of the artificial recharge schemes implemented is essential to assess the efficacy of structures constructed. It helps in identification of cost-effective recharge mechanisms for optimal recharge into the ground water system. It also helps to make necessary modifications in site selection, design and construction of structures in future. The monitoring system should be designed judiciously to monitor impact of these structures individually as well as collectively. Demarcation of the zone of influence of the artificial recharge structure is one of the main objectives of monitoring.

It is proposed to utilize the existing data available with the Government of Rajasthan and CGWB baseline data. For assessment of the impact of proposed measures additional data will be generated by construction of the piezometer at suitable and strategic sites.

It is proposed to construct 18 piezometer, at suitable locations for monitoring of water levels, in the vicinity of proposed recharge structure. The depth of the piezometer may vary from 60 to 80 mbgl. This will help in assessing the impact of the project implementation.

Since the implantation of the Plan involves institutional framework, it is proposed to constitute State Level Technical Coordination Committee (SLTCC) and District Level Technical Coordination Committee (DLTCC) for proper monitoring and review of the implementation of the Plan.

Financial Outlay of the Plan

The total estimated cost of the Plan is 2.7384 cr, which includes Rs 2.50 cr for ground water recharge activities, 0.108 cr for ground water monitoring (Piezometer construction) and Rs 0.1304 cr towards operation and maintenance charges. The tentative cost estimates of the various activities of the Plan are shown in Table 5 & 6.

The tentative cost for different activities is given in table 6. The unit rates are as followed by the Govt. of Rajasthan (BSR). The total estimated cost of the project is **Rs 2.7384 Crores**.

Table 5: Cost of the recharge structures

Cost Percolation Tank in Rs in	Cost Recharge Shaft Rs in
crs (Unit cost Rs 0.4 cr)	crs (Unit cost Rs 0.05 cr)
Alluvium – 1.60	0.90

Table 6: Tentative cost of different activities

Feasible Artificial Recharge & Water Conservation structures/ activities	Tentative Design	Quantity (in nos. or area in sq. m)	Rainwater harvested (mcm)	Tentative unit cost (in Rs lakh)	Total tentative cost (in Rs lakh)	Expected Annual GW recharge/ conservation (mcm)				
	Re	echarge Str	uctures/ Activ	vities						
Recharge shaft within the pond	Alluvium – Depth 80m, Dia: 10-12" with filter pit	18	0.54	5	90	0.378				
/tanks	Hard rock: Depth -60m, Dia 10- 12"with filter pit	-	-	2.6	-	-				
Percolation tanks (3 fillings)	200m*200m*1.5m	4	0.7804	40	160	0.5463				
		total			250	0.9243				
	In	npact assess	ment & Mon	itoring						
Piezometer	Up to 80 m bgl	18		0.6	10.8					
Impact assessment will be carried out by implemneting agency										
O & M - 5% of	O & M - 5% of total cost of the scheme									
TOTAL					273.84					

Note: Type, number and cost of structure may vary according to site after ground verification

Time Schedule

The project is to be implemented in two years, however impact assessment will be carried out for five years. A time schedule for different activities is given in table 7.

Table 7: Time Schedule

Steps	1 st phase	2th Phase	3 rd Phase	4 th Phase	5 th Phase	6 th Phase	7 th Phase	8 th Phase
Constitution of State Level Technical Coordination Committee (SLTCC) and District Level Technical Coordination Committee (DLTCC)								
Arranging meeting of SLTCC for provision available under the scheme, request to implementing agencies for submission of DPR								
Scrutiny, recommendations & approval of AR Projects / Schemes in DLTCC & SLTCC								
Forwarding the DPR to Central Ground Water Board (CHQ), New Delhi for approval and issuing of sanction from the Ministry Meeting of TCC(CHQ) and release of sanction of funds								
Construction of artificial recharge structures & Monitoring of water levels in the area locally								
Completion and Utilisation certificate								
Impact Assessment and submission of report								

Expected Benefits or outcome of the Plan

Ground water recharge and water conservation Plan of Behror block, Alwar envisages gainful utilization of 0.9243 MCM of surplus monsoon runoff for recharging of depleted aquifer system.

With the additional recharge and water conservation interventions as proposed in the Plan, it is anticipated that with enhanced recharge and reduction in ground water draft, the stage of ground water development will reduce to 263.61% from the existing 270.40%. The projected status of ground water resources and utilization scenario is presented in table 8.

	Table 8: Projected Status of Groundwater Resource & Utilization											
Net G.W. Availability (Ham)	Additional Recharge from RWH & conservation (mcm)	Total Net G.W. Availability after intervention (mcm)	Existing G.W Draft for all purpose (mcm)	Saving of Ground water through projects (mcm)	Net GW draft after interventions (mcm)	Present stage of G.W. development (%)	Projected stage of G.W. Dev. (in %)					
35.8446	0.9243	36.7689	96.9248	0	96.9248	270.40	263.61					

- The implementation of the project would result in additional recharge. The other tangible/ non-tangible benefits of the project are:
- Recharging the ground water will help in arresting the rapid decline in ground water resources and will also ensure improvement in quality of ground water by way of dilution.
- Proposed structures and measures will also enhance the ground water potential and would ensure sustainability of ground water resources.
- □ Surface runoff water stored or harnessed can be used as supplemental irrigational resources and will reduce the stress on the ground water.
- □ Besides, it will also help in reducing the amount and spate of storm water being drained by river and controlling soil erosion.