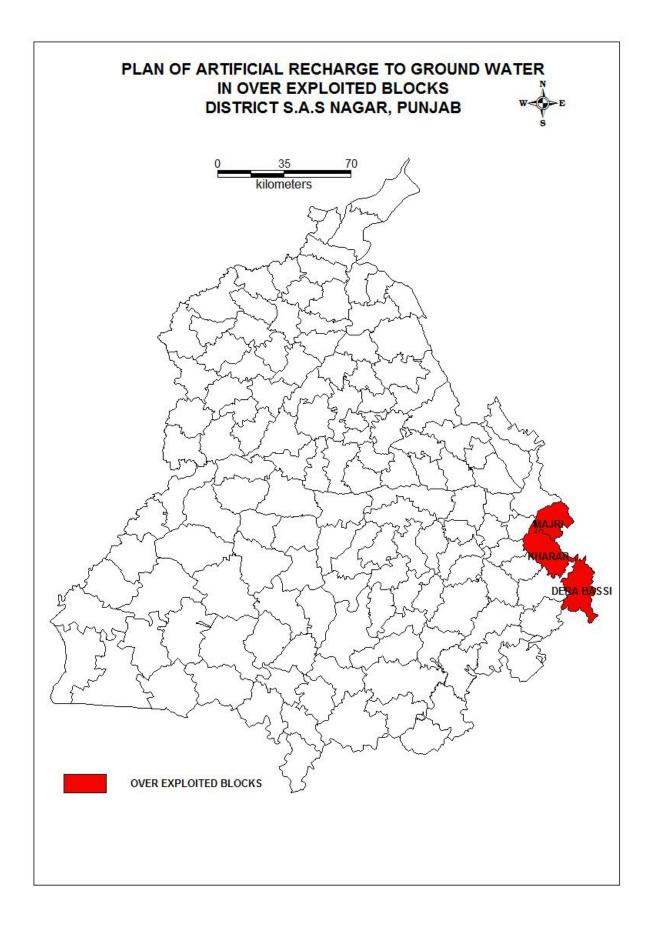
For Office Use Only


Government of India Ministry of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Board

PLAN ON

ARTIFICIAL RECHARGE TO GROUND WATER AND WATER CONSERVATION IN

OVEREXPLOITED BLOCKS OF S.A.S NAGAR DISTRICT, PUNJAB

Central Ground Water Board North Western Region Chandigarh

PLAN OF ARTFICIAL RECHARGE TO GROUND WATER IN OVER EXPLOITED BLOCKS, DISTRICT S.A.S NAGAR PUNJAB

INTRODUCTION

S.A.S Nagar district is located in the eastern part of the Punjab state and lies between North latitudes of 30°21'00" and 30°56'00" and East longitudes of 76°30'00" and 76°55'00" covering a geographic ambience of 1189 sq.km. The district is bounded by Patiala and Fatehgrah Sahib district in the southwest, Ropar district in the northwest, Chandigarh and Panchkula in the east and Ambala district of Haryana state in the south.

The district was created by carving out 2 blocks (Sialba Majra and Kharar) from Ropar district and one block (Derabassi) from Patiala district. Administratively, the district is divided into 3 tehsil viz.,Derabassi, Mohali & Kharar comprising of 3 development blocks. The total population of the district is 9,86,147. The decennial growth rate (2001-2011) of population in the district is 30.02%. The literacy rate is 84.9 % and the population density is 830 persons/sq.km.

The Ghaggar River and its tributaries form the natural drainage system on Derabassi block of the district. While north-eastern part is drained by Siswan Nadi, Jainti Devi Ki Rao and Patiali Rao, which emerge from the Siwalik Hills. The Siswan Nadi drains the northern part of the district and finally converges with Sutlej River in the Ropar district. While Jainti Devi Ki Rao and Patiali Rao drains in NE-SW direction and joins the Ghaggar River.

CLIMATE & RAINFALL

The climate of S.A.S district can be classified as subtropical monsoon. The normal annual rainfall of the district is 1061 mm which is unevenly distributed over the area in 49 days. The south west monsoon contributes about 80% of annual rainfall.

GEOMORPHOLOGY AND SOIL TYPES

The area can be broadly grouped into two depending upon its geomorphic features as alluvial fan and alluvial plains. Alluvial fans are deposited by hill torrents with a wavy plain rather than a steep slope. Adjacent to the alluvial fan are the alluvial plains which forms a part of large Indo-Gangetic Quaternary basin comprises of thick sand and silty sand layers interbedded with silt and clay beds. The alluvial plains are of vital economic value as it supports the dense population of the district. The soils are mainly developed on alluvium under the dominant influence of climate followed by topography and time. The major soil type of the district is weakly solonized tropical arid brown soils.

HYDROGEOLOGY

The CGWB has drilled 11 exploratory wells, 2 slim holes and 1 piezometer in the district in the depth range of 295-590 m bgl to determine the various aquifer systems and its extent. All the exploratory wels drilled in the Derabassi block were abandoned due to insufficient thickness of aquifer zones and low yield. Exploratory drilling has revealed 4-13 saturated granular zones comprising of fine to coarse sand, silt and kankar up to the total drilled depth of 460 m in Kharra and Sialba Majra blocks. The discharge ranges from 870-2407 lpm for 21.65 and 11.36 m drawdown respectively. The transmissivity and hydraulic conductivity varies between 55 to 862 m2/day and 7.4 - 48m/day respectively. The storativity value ranges between 7.3*10-4- 2.4*10-3, which clearly indicates a leaky confined condition.

The S.A.S Nagar district is occupied by Quaternary Alluvial deposits belonging to the vast Indo-Gangetic alluvial plains, which forms the main aquifer system. Groundwater occurs under phreatic conditions in the shallow aquifers while leaky confined to confine conditions occur along the deeper aquifers of Quaternary alluvial deposits.

The principal aquifer system of the district is Alluvium and major aquifer system is Depth to water level maps of pre monsoon (May 2011), post monsoon (Nov. 2011) and seasonal fluctuation (May 2011 to Nov. 2011) are given in plate III,IV & V respectively. In major part of the district, the water level ranges between 5 and 10 m while the water level in the north western and eastern part is between 10 to 20 meters, in the extreme western part of the district water levels are around 30 meters. In the southern part of the district water level ranges from 2 to 5 meters. Seasonal fluctuation shows that, in general, there is an overall decline in the water level except few isolated patches.

Depth to water level ranges from 2.14 to 32.24 m bgl during pre-monsoon and 2.61 to 33.37 m bgl during post monsoon period. Seasonal fluctuations (pre & post 2011) in the district ranges from -1.03 to 3.67 meters. The long-term trend of water level (2002 to 2011) also shows that there is decline in water level on major part of the area ranging from 0.16 to 0.35 m/yr except a few isolated patches where there is rise at the rate 0.02 to 0.06 m/yr which is insignificant.

GROUND WATER RESOURCES

Groundwater resource potential of the district has been assessed as per Groundwater Resource Estimation Methodology (GEC-97) as on 31.03.11 by considering administrative block as the assessment unit. Net ground water development of the district is 27484 ham and exiting ground water draft for all users is 28194 ham. Net ground water availability for future irrigation development is - 1626 ham. The stage of groundwater development in the district as a whole is 103%. It falls under Over Exploited category.

The stage of groundwater development in Dera Bassi ,& Kharar blocks is 134 % & 101% respectively and falls under Over Exploited category, whereas stage of ground water development of Sialba Majri Block is 46 % and falls in safe category.

HYDROCHEMISTRY

The ground water in the district is slightly alkaline in nature with medium to high salinity. The pH values ranges from 7.38 to 8.08. Chloride, nitrate & fluoride are the important parameters that are normally considered for evaluating the suitability of ground water for drinking uses and it is found that the ground water in the district is suitable for domestic use as all cations and anions are within the permissible limits as per BIS 10,500-1991 standard. Iron which is an essential plant and animal nutrient is found to be within permissible limit except in some parts of the district. Arsenic is below permissible limits in whole of the district.

Salinity (Ec), sodium absorption ration (SAR) and Residual Sodium Carbonate (RSC) are the basic parameters considered for ascertaining the suitability of ground water. The chemical data indicates that most of water fall in C_2S_1 category in USSL plot and is suitable for irrigation purposes.

GROUND WATER IRRIGATION SCENARIO

As per the data available from minor irrigation census 2006-07 the detailed number of shallow, deep, tubewells, lined, unlined water distribution system, land holdings of wells are given below for reference.

	No. of shallow tube wells by size class of individual owner										
Sr.no	district	Marginal	Small	Semi-Medium	Medium	Big	Total				
		(0-1 ha)	(1-2 ha)	(2-4 ha)	(4-10ha)	(>=10 ha)					
1	S.A.S	601	1850	3577	2484	538	9050				
	NAGAR										

Distribution of Shallow Tubewells According to Owner's Holding Size

Distribution of Deep Tubewells According to Owner's Holding Size

	No. of deep tube wells by size class of individual owner										
Sr.no	district	Marginal	Small	Semi-Medium	Medium	Big	Total				
		(0-1 ha)	(1-2 ha)	(2-4 ha)	(4-10ha)	(>=10 ha)					
1	S.A.S	50	325	877	1067	267	2586				
	NAGAR										

Distribution of Shallow Tubewells According to Depth of tube well

	No. by the depth of shallow Tube well										
Sr.no	district	(0-20 mts)	(20-40 mts)	(40-60 mts)	(60-70 mts)	(>70 mts)	Total				
1	S.A.S NAGAR	0	2570	2891	3589	0	9050				

Number of Ground Water Schemes and Potential Utilized by water distribution device

	Ground Water Scl	nemes according t	o water Distribution	System
		Open Water Cha	nnel	
Sr.no	District	Lined/pucca	Unlined/kutcha	Under ground pipe
1	S.A.S NAGAR	1821	9815	0

PLAN OF THIS REPORT

In this plan 2 types of the recharge structures are proposed such as Roof Top Rain water harvesting in rural & urban areas and Recharge pits in agriculture lands of 5mt x5mt x3mt size. The pit will be surrounded by angle irons and barbed fencing. The size and depth depend on the availability of the land. The extra water available on the field will be stored in the pit and that will also be recharged to the ground water.

A summery outline of the artificial recharge plan for the entire district of each block is given at the beginning in tabular forms. This is followed by the salient features of each block along with the detailed structure-wise recharge plan and cost estimates.

Details of the block wise type of suitable recharge structures and volume of water assured for annual recharge for each block, schematic design of recharge structures are annexed at annexure I & II.

This plan is focusing on the technical aspects of the ground water recharge through various means so that various implementing agencies may get the appropriate technical guidelines. The existing/ongoing schemes of the central or state govt. like MANERGA, IWSP, PMKVY, NABARD funded schemes, Urban Development schemes, departmentally funded projects etc. may be benefitted from the recharge plan by incorporating the input in the operational guidelines/ design and for locating the specific sites.

Agriculture University, engineering Collages, Academic and Research Institution, NGO may also take up the pilot or demonstrative projects in the blocks suitable to them to plan at local level as per local conditions.

Sr.no.	Type of Structure	No. of structures	Unit cost in	Total cost of	Annual
			Lakhs	structure in Crores	Recharge
					(MCM)
	ROOF TOP R	AIN WATER HA	RVESTING IN	N RURAL AND URBI	EN AREAS
1	Artificial Recharge Plan For	10407	0.25		1.291
	Urban Areas.			26.02	
2	Roof Top Rain Water	6042	0.25		0.562
	Harvesting in Rural Areas			15.11	
	Total	16449	0.25	41.12	1.853
	ARTIFIC	IAL RECHARG	E IN FARMS	8	
1	Artificial Recharge Plan	6959	0.35	24.35	8.094
	Through Recharge Pits.				
	1	1	Total	24.35	8.094

By the implementation of the proposed recharge structures there will be a reduction of 4.04 % in stage of ground water development as tabulated below

Sr.	Total	Overdraft	Additional	Draft	Stage of	Stage of	Reduction in
no.	Draft	(mcm)	Recharge	Reduced due	development	development	stage of
	(present)		through	to Recharge	(present)	after recharge	development
	(mcm)		proposed	(mcm)			after recharge
			structures				
			(mcm)				
1	281.94	-162.6	9.947	271.993	103%	98.96%	4.04 %

ARTIFICIAL RECEHARGE PLAN THROUGH RECHARGE PITS IN OVER EXPLOITED BLOCKS S.A.S NAGAR DISTRICT

Block Name	Total area of the village (in hectares)	10%of village area taken for farm recharge (in hectares)	Total number of recharge pits	Annual recharge (MCM)= (Area*Runoff 15%*Rainfall)	Cost of Pit @ Rs.0.35 lakh (Crores)
KHARAR	35502.80	3553	3553	4.125	12.44
DERA BASSI	34055.90	3406	3406	3.969	11.92
			6959	8.094	24.36

Number of Recharge pits are based on following factors:

Availability of Irrigation wells In the farmer land

Area of sandy strata at shallow depth identified

Type of structure will be recharge pit/ Recharge well(where top three meters is clay)

ROOF TOP R	AINWA	ATER HARVESTIN	G IN RURAL OF PUNJAB	AREAS OF	S.A.S. NA	GAR DIST	TRICT	
Name of District	Sr.no	Name of CD Block	Total area of the village (in hectares)	Number of households (2011 census)	No of Houses taken for Artificial Recharge	Total No of AR Structures	Total recharge in MCM	Cost @ 0.25Lacs/structure (Crores)
	1	KHARAR	35502.80	32773	3277	3277	0.304	8.19
S.A.S NAGAR	2	DERA BASSI	34055.90	27646	2765	2765	0.258	6.91
		Total	218780	60419	6042	6042	0.562	15.11

ARTIFICIAL RECHARGE PLAN FOR URBAN AREAS OF DISTRICT S.A.S NAGAR PUNJAB

District	Block	Town Name	Total Households	Total Population of Town	Households taken for Artificial Recharge (10%)	Total Roof Top Area (sqm)	Vol of water available for recharge (MCM)	Cost @Rs.0.25 lakh
	KHARAR	KURALI (MCL)	6388	31060	639	127760	0.079	1.60
	KHARAR	KHARAR (MCL)	15930	74460	2000	400000	0.248	5.00
	KHARAR	NAYA GAON (NP)	11332	50869	2833	566600	0.351	7.08
	DERA BASSI	ZIRAKPUR (MCL)	20587	95553	1000	200000	0.124	2.50
	DERA BASSI	DERA BASSI (MCL)	5871	26295	1468	293550	0.182	3.67
S.A.S NAGAR	DERA BASSI	BHANKHARPUR (CT)	2176	10768	544	108800	0.068	1.36
	DERA BASSI	MIRPUR (CT)	1191	5967	298	59550	0.037	0.75
	DERA BASSI	MUBARAKPUR (CT)	1098	5217	275	54900	0.034	0.69
	DERA BASSI	DAPPER (CT)	1309	5963	327	65450	0.041	0.82
	DERA BASSI	LALRU (CT)	4093	21394	1023	204650	0.127	2.56
	TOTAL		69975	327546	10407	2081260	1.291	26.02

B. POTENTIAL FOR REDUCTION IN OVERDRAFT BY ENHANCING THE GROUND WATER USE EFFICIENCY OF IRRIGATION TUBE WELLS

The micro level transformation in the ground water management have vast impact potential to counter extensive ground water depletion faced by the state of Punjab, particularly in overexploited blocks. There are around 11636 tubewells operated by farmers for irrigation through unlined/Katcha (84.35%) open channel system in SAS Nagar district where water from the tube-well is discharge to the agricultural field. In this process huge quantity of ground water is wasted in soil moisture and evaporation losses.

Dynamic ground water resources (2011) indicate that Gross ground water draft for irrigation in SAS Nagar district is estimated at 233.20 MCM. It is expected that around 20% of over draft can be brought down by switching over to underground/surface pipeline based distribution from the prevailing unlined open channels. Thereby gross draft will be reduced to the tune of 224.72 MCM assuming there is no crop diversification by the farmers.

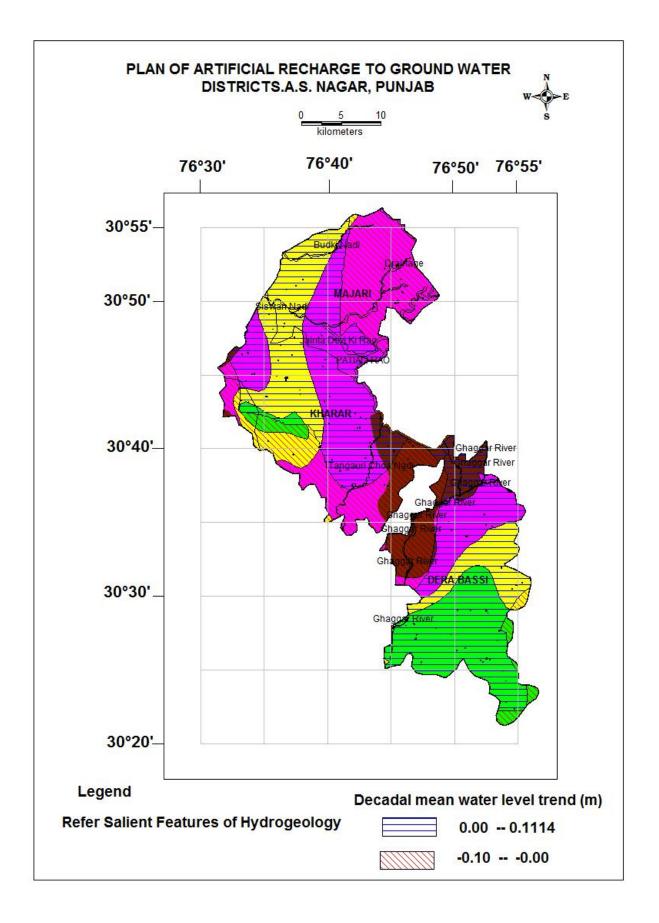
The benefit will lead to saving of precious ground water resources in overexploited blocks of SAS Nagar Districts. The measure if implemented will bring down the ground water overdraft from 98% to 78%. The category of the blocks will also improve drastically resulting in boosting of agriculture and industrial development otherwise not sustainable in majority of the blocks in the state.

The tubewells also consume enormous electricity which is subsidized and government incurs significant revenue on this account. The measures therefore will result in saving of energy and money. Pollution impact will be reduced whenever diesel engines are used by the farmers. The environmental and ecological condition in the irrigated land will improve. Unwanted weed growth will also be controlled inside the farm land. This will also be useful in the waterlogged/ shallow water table areas as the seepage losses in these areas also aggravate the water logging. Government should make/launch a mission mode program for installing the underground pipe lines instead of having *katcha* channel in the entire Punjab. Heavy ground water overdraft can be reduced by these efforts. This will ensure more crop per drop.

POTENTIAL FOR REDUCTION IN OVERDRAFT BY ENHANCING THE GROUND WATER USE EFFICIENCY IN IRRIGATION TUBEWELLS, SAS NAGAR DISTRICT

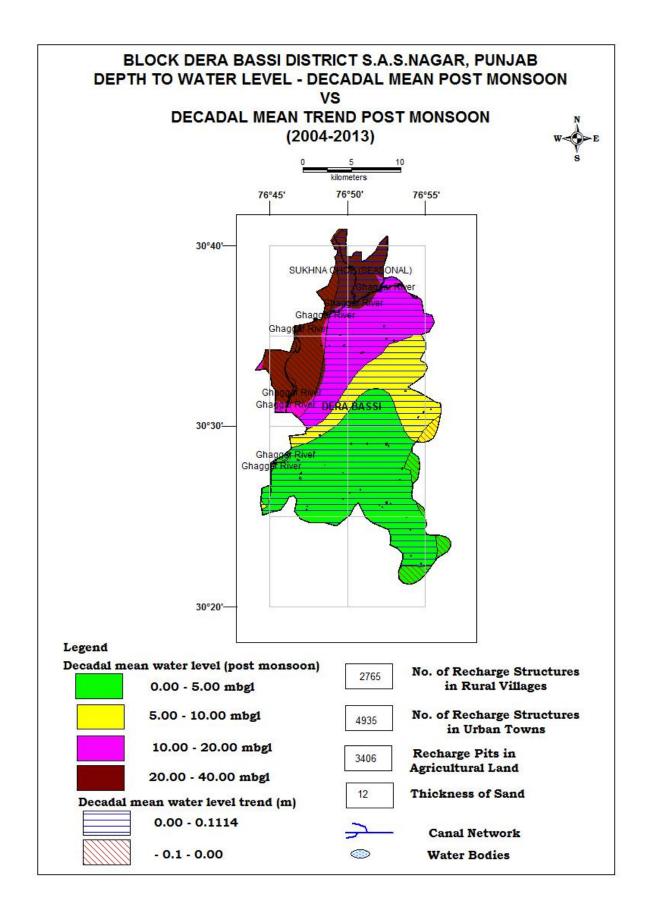
Net	Total	Gross	Gross Ground	Pecent	Wastage	Potential o	of	Gross draft	Present	Stage of	Reduction i
Annual	Draft	Irrigation	Water Draft	age of	through	Reduced		after saving of	Stage of	development	stage o
Ground	(present)	Draft	for Domestic	unline	unlined	irrigation		water (mcm)	developm	afterwards((development
Water	(mcm)	(present)	and industrial	d	channel,	overdraft		(Col 7+Col4)	ent (%)	Col	after
Availabilit		(mcm)	supply (mcm)	chann	(mcm)	(Col3-col6)				8/Col1)X100)	constructing
y (mcm)				el	(Col 3 X Col5	(mcm)				(%)	pucca canal
					X 0.30 [#])						(Col9-Col10) (%)
1	2	3	4	5	6	7		8	9	10	11
289.60	283.70	233.20	50.5	84.35	59.02	174.21		224.72	98	78	20

losses from open kuchha channel are around 30%.


COST ESTIMATE OF UNDERGROUND PIPE LINE

District	Block	Irrigated area	Percentage	Area under	Total cost @Rs.0.50 lack per	Total Cost in
		by ground	of Unlined	unlined	hector(in cr) =Total irrigated	Rs. Crores.
		water scheme	Channel (%)	Channels	area (by ground water scheme)	District wise
		(ha)			of the block *0.5 *Col4	
1	2	3	4	5	6	7
	Majri	11464.4	84.35	9670	48.35	
SAS NAGAR	Kharar	21873.1	84.35	18450	92.25	212.96
	Dera Bassi	17156.6	84.35	14472	72.36	

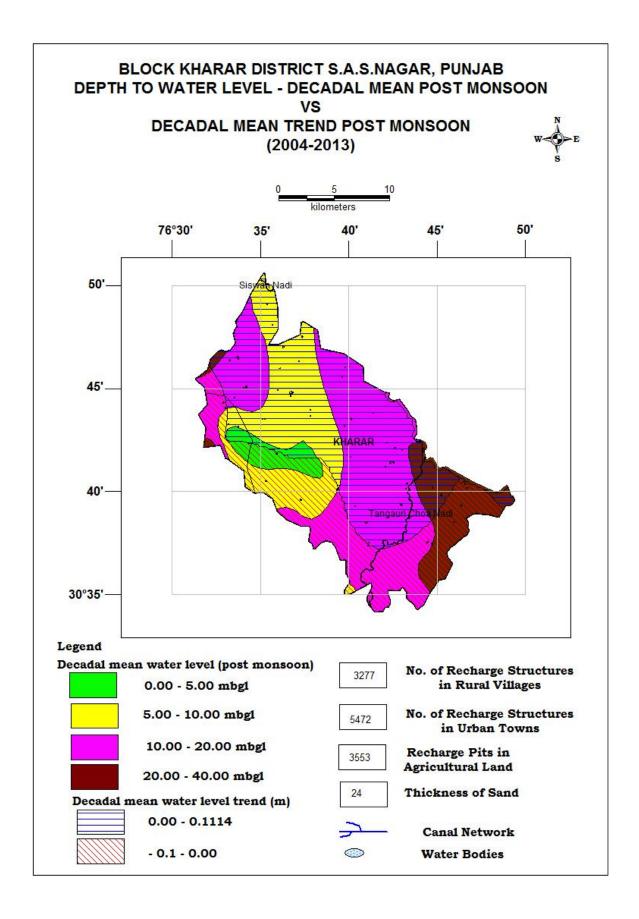
Wells Feasible			Depth of Discharge Well (m) (lpm)		ole Artificial ge Structures
Tube Wells	Direct and Reverse Rotary	<mark>35 - 185</mark>	1300 - 2500	1	rge Shaft And ge Trench
Tube Wells	Direct and Reverse Rotary	50 - 220	1000 - 1300		arge Shaft And ge Trench
Tube Wells	Direct and Reverse Rotary	<mark>25 - 1</mark> 80	600 - 1000	a second	arge Shaft And ge Trench
	O WATER LEVEL EMBER 2014				International
	0.00 - 5.00 mbgl	— N	ational Highway		Boundary
	5.00 - 10.00 mbgl	X	Canals)	State Boundary
	10.00 - 20.00 mbgl		Water Bodies	~	Block Boundary
	20.00 - 40.00 mbgl	×	Major Drainage		Block Headquarter


OTHER INFORMATION

Name of State	Punjab
Name of District	S.A.S. NAGAR
Geographical Area	1189 sq.km
Major Geological Formation	Alluviam and Shivaliks
Major Drainage System	Sutlej and Ghaggar
Population (as on 2011)	9,86,147
Total Number of Blocks	3
Existing Major/Medium Irrigation Projects	Nil
Utillizable Ground Water Resources 2011	274.84 (mcm)
Net Ground Water Draft	281.94 (mcm)
Stage of Ground Water Development	103 %
Average Annual Rainfall	1061 mm
Range of Mean Daily Temperature	7° - 40° C
Over Exploted Blocks	DERA BASSI KHARAR MAJRI

BLOCK WISE PLAN OF DISTRICT S.A.S NAGAR PUNJAB

(2 OE BLOCKS)

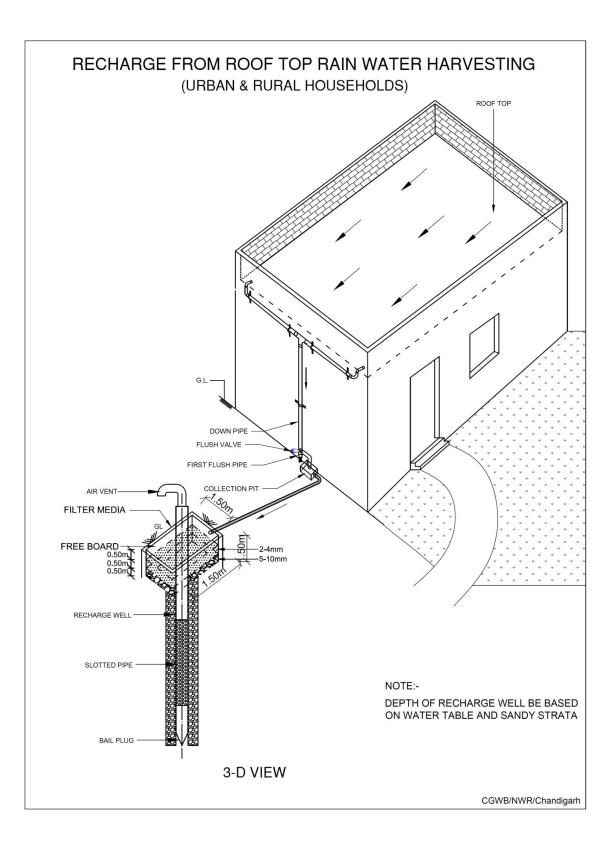


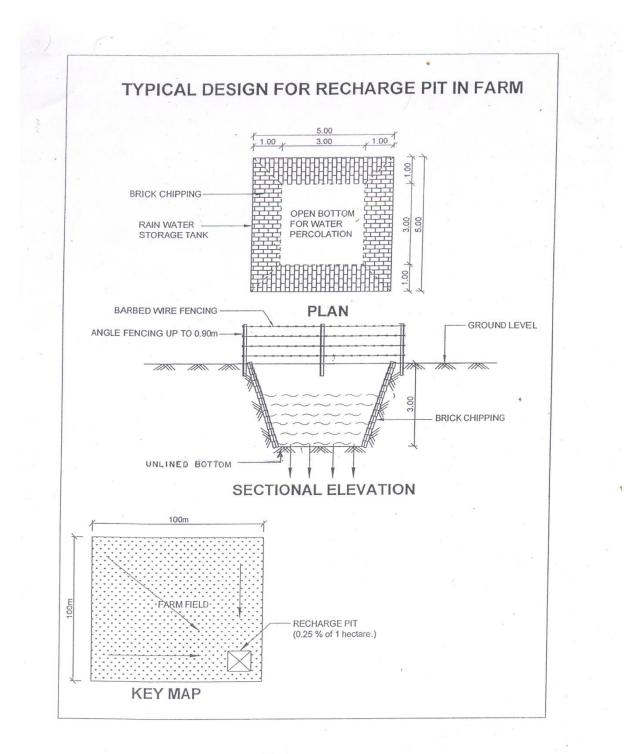
ict:- Moha	li Sta	State:- PUNJAB		
	GENERAL INFORMATION			
1.	i) Geographical area (sq km)	479.9		
	 Number of Villages inhabited Un-inhabited 	122		
	• Un-minablied	7		
	ii) Average Annual Rainfall (mm)	782		
	iii) Area feasible for Artificial Recharge	408		
	iv) Village identified under scarcity of Water	135		
	v) Village covered under water supply	112		
	vi) Water Tank exists in the village	58		
2.	GEOMORPHOLOGY			
	Major Physiographic	Alluvium Plain		
	Major drainages			
	Basin			
	Sub-Basin	Ghaggar100%		
3.	LAND USE			
	• Area According to Village Papers (Sq.Km)	312.23		
	• Net Area Sown (Sq.Km)	199.64		
	• Area Sown More than Once (Sq.Km)	162.21		
	Total Cropped Area (Sq.Km)	361.85		
	Cropping Intensity	181		
	• Area under Thur and Sem (Sq.Km)	89		
4.	PREDOMINAT GEOLOGICAL FORMATIONS	Recent alluvium		

Ground Water Scenario of Block

5.	HYDROGEOLOGY			
	Major Water bearing Formation (Aquifer)	Fine to coarse Sand		
	Avg. Depth to water level (decadal)	Depth to water level May 2015 (mbgl)		
	 Pre- monsoon: (May 2015) 3.25-29.60(mbgl) Post -monsoon: (Nov2014) 	2.00 -40.00(mbgl)		
	• 0.88-25.30(mbgl)			
6.	GROUND WATER EXPLORATION BY CGWB (As on 31.03.2015)			
	No of wells drilled	5		
	• Depth Range (m)	75.80-562.	97	
	Discharge (Ipm)	870-1984		
	Aquifer Parameters			
	Transmissivity (m2/day)	55-862		
	Stortivity	$1.2*10^{-3}$ to $7.3*10^{-4}$		
	Specified yield	0.072		
7.	GROUND WATER QUALITY	Min	Max	
	• EC in μ S/cm at 25 ^o c	658	954	
	• NO3 (mg/l)	1.3	76	
	• F (mg/l)	0.35	0.69	
	• As (mg/l)	0.0014	0.0023	
8.	DYANMIC GROUND WATER RESOURCES in MCM	2011		
	Net Ground Water Availability (MCM)	119.00		
	• Existing Gross Ground Water Draft for Irrigation (MCM)	139.59		
	• Existing Gross Ground Water Draft for Domestic and Industrial Water Supply (MCM)	19.65		
	• Existing Gross Ground Water Draft for all Uses (MCM)		159.23	
	Allocation for Domestic and Industrial Requirement Supply up to next 25 years (MCM)	22.55		

		• Net Ground Water Availability for Future Irrigation Development (MCM)			-43.14	
	Stage of Ground Water Development/ Over Draft (%) Category of Block Any specific reasons for high stress on ground water leading to Overexploitation and decline in ground water level			134 OE		
				Extensive irrigation	Extensive Irrigation	
9.	Percentage of sand thickness up to 50 m depth (Average)			Thickness(m) 12	Percentage % 24	
10	Volume of unsaturated zone available for recharge (MCM)			3'	71.09	
11.	Volume of water required for recharge (MCM)			2	493.70	
12.	Volume of surplus water available for recharge(MCM)			11.63		
	RECHARGE/ CONSERVATION STRUCTURES	Total Number of Recharge Structures	Total Cost (Rs. in crores)	Tota	l Recharge/ aving in MCM	
13	Farm Recharge @Rs. 35000/-	3406	11.92	3.969		
14	RWH Rural @ Rs. 25000/-	2765	6.91	0.258		
15	RWH Urban@ Rs. 25000/-	4935	12.34	0.613		
16	Underground pipe line (area in hectares) @ Rs. 50000/-	14472	72.36	34.94		
TOTAL			103.53	:	39.78	




Block Name:-K				
District:- Moha		tate:- PUNJAB		
	GENERAL INFORMATION			
1.	vii) Geographical area (sq km)	416.2		
	Number of Villages inhabitedUn-inhabited	148 4		
	viii) Average Annual Rainfall (mm)	780		
	ix) Area feasible for Artificial Recharge	416.2		
	x) Village identified under scarcity of Water	142		
	xi) Village covered under water supply	123		
	xii) Water Tank exists in the village	58		
2.	GEOMORPHOLOGY			
	Major Physiographic	Alluvium Plain		
	Major drainages			
	Basin Sub-Basin	<i>Ghaggar 97%</i> Satluj 3%		
3.	LAND USE			
	• Area According to Village Papers (Sq.Km)	327.13		
	Net Area Sown (Sq.Km)	229.69		
	Area Sown More than Once (Sq.Km)	185.66		
	Total Cropped Area (Sq.Km)	415.35		
	Cropping Intensity	181		
	• Area under Thur and Sem (Sq.Km)	0		
4.	PREDOMINAT GEOLOGICAL FORMATIONS	Recent alluvium		
5.	HYDROGEOLOGY			
	Major Water bearing Formation (Aquifer)	Fine to coarse Sand		
	Avg. Depth to water level (decadal)	Depth to water level May 2015 (mbgl)		
	• Pre- monsoon: (May 2015)	5.00 – 20.00 (mbgl)		

Ground Water Scenario of Block

 Post –monsoon: (Nov2014) 4.53-17.35 (mbgl) GROUND WATER EXPLORATION BY CGWB 			
As on 31.03.2015)			
• No of wells drilled	5		
• Depth Range (m)	75.80-562.97		
• Discharge (Ipm)	870-1984		
Aquifer Parameters			
• Transmissivity (m2/day)	55-862		
Stortivity	$1.2*10^{-3}$ to $7.3*10^{-4}$		
Specified yield	0.072		
GROUND WATER QUALITY	Min	Max	
• EC in μ S/cm at 25 ^o c	678	1000	
• NO3 (mg/l)	1.9	14	
• F (mg/l)	0.24	2.15	
• As (mg/l)	0.0005	0.0023	
DYANMIC GROUND WATER RESOURCES in //CM		2011	
• Net Ground Water Availability (MCM)	92.21		
• Existing Gross Ground Water Draft for Irrigation (MCM)	69.46		
• Existing Gross Ground Water Draft for Domestic and Industrial Water Supply (MCM)	23.88		
• Existing Gross Ground Water Draft for all Uses (MCM)	93.34		
Allocation for Domestic and Industrial Requirement Supply up to next 25 years (MCM)	28.71		
• Net Ground Water Availability for Future Irrigation Development (MCM)	-5.96		
 Stage of Ground Water Development / Over Draft(%) 	101		
Category of Block	OE		
Any specific reasons for high stress on ground water leading to Overexploitation and decline in ground water level	Extensive irrigation	Extensive Irrigation	
	Irrigation (MCM)• Existing Gross Ground Water Draft for Domestic and Industrial Water Supply (MCM)• Existing Gross Ground Water Draft for all Uses (MCM)• Allocation for Domestic and Industrial Requirement Supply up to next 25 years (MCM)• Net Ground Water Availability for Future Irrigation Development (MCM)• Stage of Ground Water Development / Over Draft(%)• Category of BlockAny specific reasons for high stress on ground water leading to Overexploitation and decline in	Irrigation (MCM)• Existing Gross Ground Water Draft for Domestic and Industrial Water Supply (MCM)• Existing Gross Ground Water Draft for all Uses (MCM)• Allocation for Domestic and Industrial Requirement Supply up to next 25 years (MCM)• Net Ground Water Availability for Future Irrigation Development (MCM)• Stage of Ground Water Development / Over Draft(%)• Category of BlockAny specific reasons for high stress on ground water leading to Overexploitation and decline in	

9.	Percentage of sand thickness up to 50 m depth (Average)			Thickness(m) 24	Percentage %	48
10	Volume of unsaturated zone available for recharge (MCM)					
11.	Volume of water required for recharge (MCM)					
12.	Volume of surplus water available for recharge(MCM)					
	RECHARGE/	Total	Total Cost			
	CONSERVATION STRUCTURES	Number of Recharge Structures	(Rs. in crores)	Total Recharge/ Water saving in MCM		
13	Farm Recharge @Rs. 35000/-	3553	12.44	4.125		
14	RWH Rural @ Rs. 25000/-	3277	8.19	0.304		
15	RWH Urban@ Rs. 25000/-	5472	13.68	0.678		
16	Underground pipe line (area in hectares) @ Rs. 50000/-	18450	92.25	17.39		
TOTAL			126.56		22.497	

