

# केंद्रीय भूमि जल बोर्ड

# जल संसाधन, नदी विकास और गंगा संरक्षण

## विभाग, जल शक्ति मंत्रालय

### भारत सरकार

### **Central Ground Water Board**

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

## AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES DURG DISTRICT, CHHATTISGARH

उत्तर मध्य छत्तीसगढ़ क्षेत्र, रायपुर North Central Chhattisgarh Region, Raipur

## स्वच्छ जल 🛛 स्वच्छ भारत



दितीय तल, एल.के. कॉर्पोरेट एवंलॉजिस्टिकपार्क, धमतरीरोड, डूमरतराई, रायपुर (छत्तीसगढ़)–492015 फोन–0771–2974405, फैक्स–2974405 ईमेल–rdnccr-cgwb@nic.in



# REPORT ON AQUIFER MAPPING IN DURG DISTRICT, CHHATTISGARH

**PREPARED BY** 

### DR. SUCHETANA BISWAS,

**Scientist-B** 

Government of India Ministry of Jal Shakti Department of Water Resources, River Development & GR Central Ground Water Board North Central Chhattisgarh Region, Raipur

**RAIPUR 2018** 

#### *Executive summary*

Aquifer mapping is a multidisciplinary scientific process wherein a combination of geological, hydrogeological, geophysical, hydrological and quality data is integrated to characterize the quantity, quality and movement of ground water in aquifers. However, due to paradigm shift in focus from development to management of ground water in last one decade, the need for more reliable and comprehensive aquifer maps on larger scale has been felt for equitable and sustainable management of the ground water resources at local scale. Volumetric assessment of ground water and strategies for future development and management are the primary objectives of aquifer mapping.

Under the aquifer mapping programme, an area of 2506 sq. km comprising of three(3) development blocks namely Dhamdha, Durg and Patan of Durg district was taken up for study. Durg district is situated in the Western part of the Chhattisgarh state. It falls in the Survey of India's Degree Sheet No. 64C, G and H between the Latitude 20.90°N : 21.50°N and Longitude 81.16 ° E : 81.6° E.

As per Census 2011 (provisional), the population of the district is 17, 21,726. In which 6, 17,184 is rural population and 11, 04,542 is urban population.

The study area experiences sub-tropical climate. Average annual rainfall in the study area is 1217.33 mm taking rainfall from 2011-2015 into consideration 50 to 60 rainy days out of which the monsoon rainfall contributes about 92 %.

Geomorphologically the study area displays Structural Plains, flood plains and pediment/pediplain with an elevation ranging from 241 to 470 masl.

The net sown area is 147146hectare, while double-cropped area is 43291hectare. Gross cropped area accounts 190437hectare. Rice is sown in nearly 95% of the net sown area.

The net irrigated area in the study area is 93215 hectares. The percentage of the irrigated area to net sown area is 61%. Irrigation by surface water covers almost 62.12 % of the net irrigated area while 30.41 % of the net irrigated area is irrigated by ground water.

This district has high quality rich deposits of limestone. The quarrying of limestone is ongoing at Nandini, Semariya, Khundani, Pithaura, Sahgaon, Deurjhaal, Ahiwara, Achcholi, Matragota, Ghotwani and Medesara. Limestone is utilized mainly by ACC for cement production and BSP for steel production.

The major aquifers present in the study area are (1) Tarenga formation calcareous shale (2) Chandi formation argillaceous limestone (3) Chandi formation sandstone (4) Gunderdehi formation calcareous shale; both in phreatic and fractured condition.

**UNCONFINED AQUIFER:** In the pre-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 3.9m bgl, maximum water level is 10.8 mbgl and average water level is 7.35 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 1.48 mbgl maximum water level is 17.07 mbgl, the average water level is 6.03 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 3.7 mbgl maximum water level is 7.5 mbgl, the average water level is 5.6 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 2.34 mbgl maximum water level is 9.72 mbgl, the average water level is 5.51 mbgl.

In the post-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 2.38m bgl, maximum water level is 7.26 mbgl and average water level is 4.82 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 0.84 mbgl maximum water level is 3.57 mbgl, the average water level is 2.14 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 1.2 mbgl maximum water level is 4.17 mbgl, the average water level is 2.69 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 1.13 mbgl maximum water level is 2.05 mbgl, the average water level is 1.53 mbgl.

However due to unplanned exploitation of ground water in the backdrop of more population and inadequate recharge, some of the areas shows water level deeper that is > 5mbgl. So these places are to be given special attention with regular monitoring and artificial recharge.

It has been observed that in Tarenga formation calcareous shale, the minimum water level fluctuation is 1.52m, maximum water level fluctuation is 3.54 m and average water level fluctuation is 2.53 m. It has been observed that in Chandi formation argillaceous limestone, the minimum water level fluctuation is 0.25 m, maximum water level fluctuation is 13.97 m, and the average water level fluctuation is 3.89 m. It has been observed that in Chandi formation sandstone, the minimum water level is fluctuation 2.5 m, maximum water level fluctuation is 3.33 m, and the average water level fluctuation is 2.92 m. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level fluctuation is 1.21 m, maximum water level fluctuation is 7.67 m, and the average water level fluctuation is 3.98 m.

The long term water level trend indicates that there is decline in pre-monsoon water level in Dhamdha block, decline in both pre-monsoon and post-monsoon water level in Durg block and no appreciable change in water level both in pre-monsoon and post-monsoon period in Patan block.

**SHALLOW CONFINED AQUIFER:** In the pre-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 27.54m bgl, maximum water level is 30.88 mbgl and average water level is 29.21 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 5.6 mbgl maximum water level is 23.1 mbgl, the average water level is 14.39 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 12.35 mbgl maximum water level is 25.2 mbgl, the average water level is 18.76 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 3.5 mbgl maximum water level is 12.42 mbgl, the average water level is 7.96 mbgl.

In the post-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 4.31m bgl, maximum water level is 7.86 mbgl

and average water level is 6.09 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 3.62 mbgl maximum water level is 12.22 mbgl, the average water level is 8.14 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 8.21 mbgl maximum water level is 13.57 mbgl, the average water level is 10.89 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 1.73 mbgl maximum water level is 7.62 mbgl, the average water level is 4.68 mbgl.

It has been observed that in Tarenga formation calcareous shale, the minimum water level fluctuation is 23.02m, maximum water level fluctuation is 23.23 m and average water level fluctuation is 23.13 m. It has been observed that in Chandi formation argillaceous limestone, the minimum water level fluctuation is 0.05 m, maximum water level fluctuation is 13.0 m, and the average water level fluctuation is 6.25 m. It has been observed that in Chandi formation sandstone, the minimum water level is fluctuation 4.14 m, maximum water level fluctuation is 11.63 m, and the average water level fluctuation is 7.89 m. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level fluctuation is 1.77 m, maximum water level fluctuation is 4.8 m, and the average water level fluctuation is 3.2 m.

Argillaceous limestone (Raipur group): The average thickness of the weathered portion in the area is around 18.5 m. The occurrences of fractures at depth in the area are not common and whenever occur are less potential in ground water point of view. Fractures are mostly confined to 100m depth. In general, the discharge varies from negligible to 3 lps with an average yield of 1.5 lps. The development in these formations is mostly by way of dug wells. The average drawdown of the formation is around 20.1 m. The thickness of fractured aquifer is around 0.2 m.

Tarenga shale: The average thickness of the weathered portion in the area is around 10.36 m. The occurrences of fractures at depth in the area are not common and whenever occur are less potential in ground water point of view. Generally 1 to 2 sets of fractures are encountered within 50 m depth and 1 to 2 sets of fractures are encountered within 50 to 200 m depth. The potential zones are present within 50 m depth below ground level. In general the discharge varies from negligible to 2 lps with an average yield of 1.5 lps. The The development in these formations is mostly by way of bore wells. The average drawdown of 35.2 m.

Chandi limestone is controlled by the solution cavities, joints and fractures. Generally 1 to 2 sets of fractures are encountered within 50 m depth, 1 to 3 sets of fractures within 50 to 200 m depth. The discharge varies from 0.1 to 2.0lps. At Shivkokri, Dhamdha exceptional discharge of 18lps was obtained. The drawdown varies widely from 2m to 29.7m. These formations are mostly developed by the way of dug wells, bore wells and tube wells.

The ground water in Gunderdehi shale occurs under phreatic/water table conditions in the weathered portion while semi-confined to confined conditions in deeper part consisting of fractures. The average thickness of the weathered portion in the area is around 12.7 m. Generally 1 to 2 sets of fractures are encountered within 50 m depth and 1 to 2 sets of fractures are encountered within 50 m depth and 1 to 2 sets of fractures are present within 50 m depth below ground level. In general the discharge varies from negligible to 0.5 lps. The development in these formations is mostly by way of bore wells. The average drawdown of 35.08 m.

So far as chemical quality is concerned, high iron content (>0.3 mg/l) is also found in ground water in Durg district. Other heavy metals like lead and chromium contamination in groundwater has been reported by CGWB during study around Durg industrial cluster( Industrial cluster report, Durg,2011-12)in locations around Bhilai Industrial Cluster. The Total Annual Replenishable Groundwater Resources and Net Available Groundwater Resources for the study area 28246.08 and 26364.13 Ham respectively. Out of this 17234.14 Ham is being used for irrigation, 4190.77 Ham for industrial and domestic sector taking the gross annual ground water draft for all uses to 21424.91 Ham. This translates to an overall stage of ground water development in the study area at 81.24 %. A ground water resource of 4825.31 Ham & 4304.68 Ham has been kept reserved for future domestic and industrial requirement and irrigation development respectively for next 25 years. So All the blocks fall in semi-critical category.

Sub Surface Potential to be recharged through other methods in the study area has been calculated to be 7.81 MCM.

(i) The major ground water issues identified during the survey in the study area are as follows: (i) The aquifers are low yielding ones in terms of groundwater. (ii) During summer, dugwells in most villages go dry except. Several handpumps also stop yielding water. Hence there is scarcity of water. (iii) It has been observed during fieldwork in pre-monsoon period, there is colossal wastage of groundwater through public water supply system. (iv) Contamination of groundwater by anthropogenic sources like industrial effluent sources as well as geogenic sources (vi)In some areas the water level remains below 5m during the postmonsoon period in the study area which needs to be attended for intervention.

So far as Management strategies are concerned, Artificial Recharge structures may be constructed in suitable locations especially in the areas where the water level remains deeper than 5m in the post-monsoon period, Desiltation of existing Tanks and Talabs to be carried out for efficient storage of rainwater. Also Rain water harvesting structures may be constructed in villages to reduce stress on groundwater. Massive awareness campaigns are essential to teach people about the importance community participation in saving water. Farmers may be encouraged to take up maize/ millets cultivation for Rabi period and practice of microirrigation. The problem of iron contamination in drinking water may be tackled by setting up of small filtration units in affected villages.

#### Acknowledgement

*I* wish to express my sincere gratitude and indebtedness to Shri D. Saha, Member (SAM), CGWB, for giving the opportunity to prepare and write this district report.

I wish to express my sincere gratitude and indebtedness to Shri C. Paul Prabhakar, Regional Director, CGWB, NCCR, Raipur for his useful suggestions and technical guidance from time to time to prepare and write this report.

I am extremely grateful to Sh. A.K. Biswal, Scientist-D, for his continuous guidance and technical support during preparation of this report.

The efforts made by Sh. T.S.Chouhan, Draftsman, for digitization of maps are thankfully acknowledged.

The author is also thankful to the state agencies for providing the various needful data without which the report could not have been completed.

Lastly I offer my thanks to all the individuals who helped at various stages in this endeavour.

Suchetana Biswas Scientist-'B'

### A Report on Aquifer Mapping In Durg district, Chhattisgarh

#### **CONTENTS**

| CHAPTER                                                                        | Page<br>No  |
|--------------------------------------------------------------------------------|-------------|
| 1 Introduction                                                                 | 1-12        |
| 1.1 Objective                                                                  | 1           |
| 1.2 Scope of study                                                             | 1           |
| 1.3 Approach and Methodology                                                   | 2           |
| 1.4 Area Details                                                               | 2-3         |
| 1.5 Data Availability, Data Adequacy, Data Gap Analysis and Data Generation    | 4           |
| 1.6 Rainfall-spatial, temporal and secular distribution                        | 4           |
| 1.7 Physiography/Geomorphology                                                 | 4-5         |
| 1.8 Landuse                                                                    | 6           |
| 1.9 Soll<br>1.40 Lludrology and Drainage                                       | 6<br>6 7    |
| 1.10 Hydrology and Drainage                                                    | 0-7<br>7 0  |
| 1.11 Geology & Hydrogeology                                                    | 7-9<br>0.12 |
| 1.12 Agriculture, ingation, Cropping pattern                                   | 9-12        |
| 2 Data collection and Generation                                               | 13-30       |
| 2.1Hydrogeological Data                                                        | 10-16       |
| 2.2 Hydrochemical Data                                                         | 17-22       |
| 2.3 Geophysical Data                                                           | 22-         |
| 2.4 Exploratory Data                                                           |             |
| 3 Data interpretation, Integration ,Aquifer mapping and Ground Water Resources | 31-34       |
| 4 Aquifer Characterization and geometry                                        | 35-40       |
| 5 Ground water related Issues                                                  | 41-42       |
| 6 Ground Water Management Plan                                                 | 42-43       |

#### AQUIFER MAPS AND MANAGEMENT PLANS OF DURG DISTRICT, CHHATTISGARH

#### 1. Introduction 1.1 Objective

Groundwater is one of the most valuable resource for a country. However, due to rapid and uneven development, this resource has come under stress in several parts of the country. Central Ground Water Board (CGWB) is, therefore, involved in hydrogeological investigations for Re-appraisal of ground water regime. CGWB has also carried out ground water exploration in different phases with prime objective of demarcating and identifying the potential aquifers in different terrains for evaluating the aquifer parameters and also for developing them in future. The reports and maps generated from the studies are mostly based on administrative units such as districts and blocks and depict the subsurface disposition of aquifer on regional scale. However, due to paradigm shift in focus from development to management of ground water in last one decade, the need for more reliable and comprehensive aquifer maps on larger scale has been felt for equitable and sustainable management of the ground water resources at local scale.

#### 1.2 Scope of study

The demand for ground water for various types of use is increasing day by day; consequently indiscriminate development of ground water has taken place and the ground water resource has come under stress in several parts of the country. On the other hand, there are also areas where adequate development of ground water resources has not taken place. These facts underscore the need for micro- level study of the aquifer systems of the country. The water resource managers and planners to develop and implement effective long term as well as short term aquifer management strategies, a host of of scientific questions must be answered. These questions can be best answered through a comprehensive process that integrates the available scientific data. Aquifer mapping study thus is a multidisciplinary scientific process wherein a combination of geological, hydrogeological, geophysical, hydrological and quality data is integrated to characterize the quantity, quality and movement of ground water in aquifers. It primarily depends on the existing data that are assembled, analysed and interpreted from available sources. The data gap analysis carried out helped to generate data from data newly collected through activities such as exploratory drilling, groundwater level monitoring on a regular basis for a considerable period and groundwater quality analysis. These existing as well as generated data were analysed in ordered to prepare regional hydrogeological, thematic, water quality maps, cross-sections, 2 –D and 3-D aquifer disposition maps. The aquifer maps are the maps depicting aquifer disposition, giving lateral and vertical extension. The maps will also provide information on the quantity and quality. It explains the components of the Aquifer Classification System, outlines the assumptions underlying the map information presented and summarizes the content of an aquifer classification map. The goal is to help the map users understand the strengths and limitations of the information contained on the aquifer classification maps so that they can apply that information appropriately to their particular water and land management needs. The system and maps are designed to be used together and in conjunction with other available information as a screening tool for setting groundwater management priorities. These provide a way of comparing aquifers within a consistent hydrogeological context and prioritizing future actions at

various planning levels. The maps may provide some background information for site-specific projects. However, the maps are not to be used for making site-specific decisions. The classification of an aquifer reflects the aquifer as a whole and at a specific time. Groundwater conditions, such as the degree of vulnerability and water quality, may vary locally and over time respectively. This variability in the data sometimes requires subjective decision-making and generalizing of information for an entire aquifer.

#### **1.3 Approach and Methodology**

The activities under the aquifer project can be summarized as follows:

i) **Data Compilation & Data Gap Analysis:** One of the important aspect of the aquifer mapping programme was the synthesis of the large volume of data already collected during specific studies carried out by the Central Ground Water Board and various other government organizations with a new set of data generated that broadly describe an aquifer system. The data were compiled, analyzed, synthesized and interpreted from available sources. These sources were predominantly non-computerized data that were converted into computer based GIS data sets. On the basis of these available data, Data Gaps were identified.

ii) **Data Generation:** It was evident from the data gap that additional data should be generated to fill the data gaps in order to achieve the objective of the aquifer mapping programme. This was done by multiple activities like exploratory drilling, hydrochemical analysis, use of geophysical techniques as well as detail hydrogeological surveys.

iii) Aquifer map Preparation: On the basis of integration of data generated through various hydrogeological and geophysical studies, aquifers have been delineated and characterized in terms of quality and potential. Various maps have been prepared bringing out the Characterization of Aquifers. These maps may be termed as Aquifer Maps depicting spatial (lateral and vertical) variation of the aquifers existing within the study area, quality, water level and vulnerability (quality and quantity).

iv) Aquifer Management Plan: Based on the integration of these generated, compiled, analysed and interpreted data, the management plan has been prepared for sustainable development of the aquifer existing in the area.

#### **1.4 Area Details**

Under the aquifer mapping programme, an area of 2506 sq. km comprising of three(3) development blocks namely Dhamdha, Durg and Patan of Durg district was taken up for study. Durg district is situated in the Western part of the Chhattisgarh state. It falls in the Survey of India's Degree Sheet No. 64C, G and H between the Latitude  $20.90^{\circ}N : 21.50^{\circ}N$  and Longitude  $81.16^{\circ} E : 81.6^{\circ} E$ . The district is bounded by Raipur and Dhamtari district in the East, Bemetara district in the north, Rajnandgaon district in the West, and Balod district in the South.

Located on the Howrah-Mumbai main line of South-Eatern Railway Zone, this district has National Highway i.e. NH 6 (Mumbai-Kolkata highway) passing through. Most of the destinations are well connected with tar roads in the district. The district has a well developed road network.

**1.4.1 Administrative Division :** District includes 03 blocks and 388 villages. The block headquarters are located at Dhamdha, Durg, and Patan towns. The administrative map for the study area is given in **Fig 1**.



Fig.1 Administrative Map of Durg District

#### 1.5 Data Availability, Data Adequacy and Data gap Analysis

The hydrogeological data already available including number of key wells, VES, exploratory wells, chemical parameters have been collected and analysed which shows that in the study area the required number of ground water monitoring stations is 80 against which only 30 stations are available leading to the data gap of 50. Similarly, the required number of ground water exploratory wells is 75 against which 64 stations are available leading to the data gap of 11. Likewise, the required number of ground water quality monitoring stations is 90 against which only 30 stations are available leading to the data gap of 60. Lastly, the required number of VES is 40 against which 34 are available leading to the data gap of 06.

#### 1.5.1 Data Gap Analysis

On the basis of the NHS data, VES data and chemical data available in the study area, the data gap analysis has been prepared to ascertain the data gap in the study area which is presented in summary in Table 2(A).

| Activity           | Required | Available | Gap |
|--------------------|----------|-----------|-----|
| Exploration EW/OW  | 75       | 64        | 11  |
| GW Monitoring      | 80       | 30        | 50  |
| Quality monitoring | 90       | 30        | 60  |
| VES                | 40       | 34        | 6   |

#### 1.6 Rainfall

The study area receives rainfall mainly from south-west monsoon. It sets in third/fourth week of June and continues till mid-August/September with heaviest showers in the months of July and August and nearly 95% of the annual rainfall is received during this period. The average annual rainfall for the study area is around 1217.33 mm (Average of the last three years i.e. 2010 to 2015) which is presented below in **Table 3**.

#### Table 3 Annual Rainfall (mm) in Durg district for the years (2010 to 2015)

| Durg 1205.33 1182.7 1154.37 1376.97 1168.17 | Year | 2010-11 | 2011-12 | 2012-13 | 2013-14 | 2014-15 |
|---------------------------------------------|------|---------|---------|---------|---------|---------|
| 8                                           | Durg | 1205.33 | 1182.7  | 1154.37 | 1376.97 | 1168.17 |

Source: IMD. Raipur

#### 1.7 Physiography/Geomorphology

Geomorphologically the study area displays structural plains, flood plain and pediment/pediplain which comes under the physiographic unit belonging to Chhattisgarh basin area. The Central Chhattisgarh Plain is represented by Structural Plain on Proterozoic rocks which cover major area of the study area. This unit is developed over rocks of Purana sedimentary basin of Chhattisgarh. Overall the topography in the district varies between 241 m to 470 m amsl. The

area has general slope towards north & north-east direction with average elevation of 300 m amsl. **Fig 2** shows the Geomorphology in the study area.



#### Fig 2 Geomorphology Of the study area.

#### 1.8 Land use

There is no revenue forest and protected forest, other forest in the district. Area not available for cultivation is 40294 ha. Details are presented in Table 4.

| Block    | Total         | Reven  | Area not    | Non         | Agricultur | Net        | Double  | Gross   |
|----------|---------------|--------|-------------|-------------|------------|------------|---------|---------|
|          | geographica u |        | available   | agricultura | al Fallow  | sown       | cropped | cropped |
|          | l area        | Protec | for         | l& Fallow   | land       | area       | area    | area    |
|          |               | ted    | cultivation | land        |            |            |         |         |
|          |               | forest |             |             |            |            |         |         |
|          |               | area   |             |             |            |            |         |         |
|          |               |        |             |             |            |            |         |         |
| Dhamdha  | 102100        | nil    | 9974        | 9320        | 5326       | 59649      | 16889   | 76538   |
|          |               |        |             |             |            |            |         |         |
| Durg     | E 7800        | انم    | 22021       | E 402       | 4242       | 4242 22549 |         | 44404   |
|          | 57800         |        | 22021       | 5403        | 4342       | 33548      | 10946   | 44494   |
|          |               |        |             |             |            |            |         |         |
| Patan    | 90700         | nil    | 8299        | 2839        | 8380       | 53949      | 15456   | 69405   |
|          |               |        |             |             |            |            |         |         |
| District |               |        |             |             |            |            |         |         |
| total    | 250600        | nil    | 40294       | 17562       | 18048      | 147146     | 43291   | 190437  |
|          |               |        |             |             |            |            |         |         |

#### Table 4: District Land Use Pattern (Ha)

#### 1.9 Soil

The soils in the district are having wide variations. They are Vertisols (Kanhar-clyey), Inceptisol (Matasi-sandy loam), Alfisol(Dorsa-clayloam), Bharri and Entisol(Bhata-gravely).

Lateritic soil is exposed in northern, extreme eastern, central and south- eastern part in the Durg district.

#### Vertisols:

Vertisol is a soil in which the content of clay size particles is 30% or more by mass in all horizons of the upper half-metre of the soil profile. They are are characterized by a high content of expanding and shrinking clay known as montmorillonite. They may also be characterized by salinity and well defined layers of calcium carbonate or gypsum.

Vertisols contain high level of plant nutrients, but, owing to their high clay content, they are not well suited to cultivation without painstacking management. Vertisols are especially suitable for rice because they are almost impermeable when saturated. Rainfaid farming is very difficult because vetisols can be worked only under a very narrow range of moisture conditions as they become very hard when dry and become very sticky when wet.

#### Alfisols

They are considered as very fertile soils and are frequently used for agriculture. This soil exhibit well developed contrasting soil horizons depleted in calcium carbonate but enriched in aluminum and iron bearing minerals. In this soil, below surface horizon accumulation of migrated layer

silicate clay is present which is called as argillic horizon and is characterized by a relatively high content of available calcium, magnesium, potassium and sodium ions.

#### 1.10 Hydrology and Drainage

The general slope of the district is towards the north and north east and locally in some places towards east. Sheonath and Kharun rivers contribute the most in the drainage system of the district. All the small rivulets and rivers are the tributaries either of Sheonath river or Kharun river. Sheonath river flows nearer to the western border of the district whereas river Kharun forms the eastern border of the district which ultimately joins Sheonath river. The river Sheonath itself forms the part of big Mahanadi basin.

Drainage pattern of the area is dendritic to sub-dendritic in nature. Drainage density is more or less same in most of the part of the study area. The drainage density is found comparatively low in the area which is attributed to plain area indicating somewhat low runoff and higher infiltration (Fig.3).



Fig.3 Drainage map of Durg

#### 1.11 Geology and Hydrogeology

Geologically, the district comprises of rocks of Raipur Group of Chhattisgarh Supergroup of Proterozoic age. The rocks of Raipur Group mainly represented by Gunderdehi formation, Chandi formation and Tarenga formation.

| Lithology                              |                         | Stratigraphic statu | IS                         | Age                        | Nature and Characteristics                                                                                                                                       |  |  |
|----------------------------------------|-------------------------|---------------------|----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pebble bed                             | Khamaria<br>Pebble bed  |                     |                            | Quaternary                 | Epiclastic, extra formatic, polymictic gravel of fluviatile origin                                                                                               |  |  |
| Laterite                               |                         |                     |                            | Cainozoic                  | Red, dark brown, pisolitic, massive,<br>cavernous, hard, compact,<br>ferrugenous                                                                                 |  |  |
|                                        | Maniyari<br>Formation   | Raipur Group        | Chhattisgarh<br>Supergroup | Neo to Meso<br>Proterozoic |                                                                                                                                                                  |  |  |
|                                        | Hirri                   | _                   |                            |                            |                                                                                                                                                                  |  |  |
|                                        | Formation               |                     |                            |                            |                                                                                                                                                                  |  |  |
| Shale with chert & green clay<br>bands | Tarenga<br>Formation    |                     |                            |                            | Shale is green, grey and purple in<br>colour and compact. Chert is<br>greenish grey hard, compact with<br>porcellinite. Clay is greenish,<br>compact and massive |  |  |
| Ferruginous sandstone                  | Chandi<br>Formation     | -                   |                            |                            | Reddish brown, fine to coarse<br>grained, hard, compactrock. Occures<br>as intercalations in Chandi<br>Formation(Deodongar Member)                               |  |  |
| Stromatolitic limestone                |                         |                     |                            |                            | Purple to grey, fine grained, hard<br>and compact, calcareous rock<br>showing stromatolitic structure                                                            |  |  |
| Purple caicareous shale                | Gunderdehi<br>formation |                     |                            |                            | Purple to white, fine<br>grained,friable,calcareous with<br>intercalations of stromatolitic<br>limestone                                                         |  |  |
|                                        | Charmuriya<br>Formation |                     |                            |                            |                                                                                                                                                                  |  |  |
|                                        |                         | Chandrapur<br>Group |                            |                            |                                                                                                                                                                  |  |  |
| Na                                     | andgaon Group(= K       | iotri Group)        |                            | Palaeo<br>Proterozoic      |                                                                                                                                                                  |  |  |

#### Table 1 Generalized geological successions in Durg district

| Bailadila Group                          | Paleao<br>Proterozoic to<br>Archaean |  |
|------------------------------------------|--------------------------------------|--|
| Basement Gneissic Complex(Bengpal Group) | Archean                              |  |

i) Gunderdehi Formation: Charmuria Formation is conformably overlain by Gunderdehi Formation, which is dominantly a calcareous argillite developed as a distinct facies in the subbasin. Although the purple-coloured shale with intercalated limestone is the dominate member, a buff-coloured shale and a ferruginous arenite are also two prominent members occurring at the middle of the formation. The purple shale is generally calcareous, highly friable in character and is associated with impersistent limestone bands. Locally intra-formational conglomerate lenses are present in the upper part. Besides this, lenses and pockets of stromatolitic limestone appearing towards top indicate a gradational contact with the overlying formation. It is reported that at subsurface Gunderdehi purple shale grades to black shale.

**ii)** Chandi Formation: This comprises a major stromatolitic limestone sequence developed in southern & western periphery of the district. Chandi Formation had been classified into three major carbonate members based on dominant carbonate facies. The Deodongar arenite include lensoidal pockets of siliciclastic rocks within Chandi Formation. They, however occupy a definite stratigraphic level within the formation. The revised sequence stands as Newari, Pendri, Deodongar and Nipania Member in ascending order.

**iii) Tarenga Formation:** The Chandi Formation is conformably overlain by Tarenga Formation which is classified into Kusmi argillite, Dagauri green clay-chert and Bilha dolomitic argillite from bottom to top. It is also developed in southern & western part of the district.

The rocks of the Chhattisgarh Super group show sub-horizontal dips. The overlying formations are nearly flat dipping. The district is also traversed by minor lineaments. The NE-SW trending lineaments are predominant. The most of the drainages are controlled by lineaments indicating drainage is probably due to structural disturbances (Fig.4).



Fig.4-Geology map of Durg district

Hydrogeologically Durg district can be categorized into Precambrian sedimentary province. The Precambrian sedimentary province of the district includes Chhattisgarh Super Group of rocks of Upper Proterozoic age of marine origin. This province occupies whole district area. It mainly consists of arenaceous-argillaceous-calcareous rocks and is dominated by limestone/ dolomite and calcareous shale. The ground water in these formations occurs under semi-confined and confined conditions. The weathered, cavernous and fractured part of the formation constitutes the aquifers in the area.

(i) Tarenga shale: The average thickness of the weathered portion in the area is around 10.36 m. The occurrences of fractures at depth in the area are not common and whenever occur are less potential in ground water point of view. Generally 1 to 2 sets of fractures are encountered within 50 m depth and 1 to 2 sets of fractures are encountered within 50 to 200 m depth. The potential zones are present within 50 m depth below ground level. In general the discharge varies from negligible to 2 lps with an average yield of 1.5 lps. The The development in these formations is mostly by way of bore wells. The average drawdown of 35.2 m.

(ii) Chandi limestone is controlled by the solution cavities, joints and fractures. Generally 1 to 2 sets of fractures are encountered within 50 m depth, 1 to 3 sets of fractures within 50 to 200 m depth. The discharge varies from 0.1 to 2.0lps. At Shivkokri, Dhamdha exceptional discharge of 18lps was obtained. The drawdown varies widely from 2m to 29.7m. These formations are mostly developed by the way of dug wells, bore wells and tube wells.

(iii) The ground water in Gunderdehi shale occurs under phreatic/water table conditions in the weathered portion while semi-confined to confined conditions in deeper part consisting of fractures. The average thickness of the weathered portion in the area is around 12.7 m. Generally 1 to 2 sets of fractures are encountered within 50 m depth and 1 to 2 sets of fractures are encountered within 50 m depth and 1 to 2 sets of fractures are encountered within 50 m depth. The potential zones are present within 50 m depth below ground level. In general the discharge varies from negligible to 0.5 lps. The development in these formations is mostly by way of bore wells. The average drawdown of 35.08 m.

In the district a total of 74 nos of wells were drilled under Aquifer mapping and exploration programme using DTH rigs as on March 2017. Out of this 53 number are EW, 5 is OW and 15 are Piezometers to delineate the aquifer geometry and to estimate different aquifer parameters in the district.

#### 1.12 Agriculture, Irrigation, Cropping Pattern

Agriculture is practiced in the area during Kharif and Rabi season every year. During the Kharif, cultivation is done through rainfall while during the Rabi season, it is done through ground water as well as partly through surface water like canals and other sources. The groundwater abstraction structures are generally Dug wells, Bore wells /tube wells. The principal crops in the block are Paddy, Wheat and Gram.

In some areas, double cropping is also practiced. The agricultural pattern, cropping pattern and area irrigated data of Durg district is given in Table 5 (A, B, C).

| Block&   |        |       |       | Cerea  | al                  |               |        |        | Fruits         | Fruits | D.d    | Sugar- |
|----------|--------|-------|-------|--------|---------------------|---------------|--------|--------|----------------|--------|--------|--------|
| District | Kharif | Rabi  | Wheat | Rice   | Jowar<br>&<br>Maize | Kodo<br>kutki | Pulses | Tilhan | Vegeta<br>bles | Reshe  | Masala | cane   |
| Dhamdha  | 55342  | 21173 | 3385  | 42901  | 77                  | 30            | 14656  | 7568   | 7391           | 30     | 22     | 379    |
| Durg     | 33099  | 11395 | 1537  | 32673  | 77                  | 6             | 7026   | 2773   | 2530           | nil    | 1      | 41     |
| Patan    | 53624  | 15654 | 1442  | 54893  | 331                 | 0             | 9900   | 678    | 2060           | nil    | 62     | 39     |
| Total    | 142065 | 48222 | 6364  | 130467 | 485                 | 36            | 31582  | 11019  | 11981          | 30     | 85     | 459    |

Table 5 (A): Cropping pattern (in ha)

Table 5 (B): Area irrigated by various sources (in ha)

| Block&<br>District | No. of<br>canal s<br>(private<br>and<br>Govt.) | Irrigated<br>area | No.of<br>bore<br>wells/<br>Tube<br>wells | Irrigated<br>area | No.<br>Of<br>dug<br>wells | Irrigated<br>area | No. of<br>Talabs | Irrigated<br>area | Irrigated<br>area by<br>other<br>sources | Gross<br>irrigat<br>ed<br>area | Net Irri-<br>gated area | % of<br>irrigated<br>area wrt.<br>Net<br>sown<br>area |
|--------------------|------------------------------------------------|-------------------|------------------------------------------|-------------------|---------------------------|-------------------|------------------|-------------------|------------------------------------------|--------------------------------|-------------------------|-------------------------------------------------------|
| Dhamd<br>ha        | 10075                                          | 10078             | 26978                                    | 16083             | 112                       | 96                | 206              | nil               | 799                                      | 28087                          | 27914                   | 50 %                                                  |
| Durg               | 14637                                          | 14637             | 11005                                    | 851               | 425                       | 425               | 857              | nil               | 1482                                     | 23773                          | 23033                   | 64 %                                                  |
| Patan              | 33194                                          | 33194             | 12763                                    | 10548             | 123                       | 123               | 424              | nil               | 1015                                     | 41526                          | 41525                   | 69 %                                                  |
| Total              | 57906                                          | 57909             | 50746                                    | 27482             | 660                       | 644               | 1487             | nil               | 3296                                     | 93386                          | 92476                   | 61%                                                   |

Table 5 (C): Statistics showing Agricultural land Irrigated (in ha)

| Block &District | Net Irrigated<br>Area | Net Irrigated Area<br>by ground water | Percentage of Area<br>Irrigated by ground<br>water |
|-----------------|-----------------------|---------------------------------------|----------------------------------------------------|
| Dhamdha         | 27914                 | 16179                                 | 57.95                                              |
| Durg            | 23033                 | 1276                                  | 34.75 %                                            |
| Patan           | 41525                 | 10671                                 | 25.7 %                                             |
| Total           | 92476                 | 28126                                 | 30.41%                                             |

#### 2.0 Data Collection and Generation

**2.1 Hydrogeological Data** The major aquifers present in the study area are (1) Tarenga limestone and shale (2) Chandi limestone/shale (3) Gunderdehi shale; both in phreatic and fractured condition In general two aquifers exist in the area although both are hydraulically connected. The first shallow unconfined/ phreatic aquifer between 0-20 mbgl and the second semi confined to confined aquifer below 20 mbgl. It has been found that within the second aquifer, there are 2-3 set of aquifers which are not well connected. The different sets of aquifers are of different thickness as well as of varying horizontal extent. In the study area, key wells were established during the pre-monsoon period and have been subsequently monitored in the post-monsoon period. The key wells are distributed throughout the study area (Fig.5) covering all the geological formations, the details of which are presented in the Table No 6.



Fig.5: Map showing location of keywell

|            | Table 6: Detail of Key (observation) Wells established in the study area |         |           |          |      |                                |                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------|---------|-----------|----------|------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SL.N<br>O. | LOCATIO<br>N                                                             | BLOCK   | LONGITUDE | LATITUDE | ТҮРЕ | Geology                        | DETAILS                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 1          | Kapasda                                                                  | Dhamdha | 81.51     | 21.31    | DW   | Chandi<br>limestone/sh<br>ale  | Govt.well infront of Ugal Kumari Sharma's house, near tank,about 5km from Kumhari                                                                                                                                                                       |  |  |  |  |  |  |
| 2          | Murmund<br>a                                                             | Dhamdha | 81.46     | 21.31    | DW   | Chandi<br>limestone/sh<br>ale  | In the house of Mayaram, RHS of main road from Kumhari towards Ahiwara                                                                                                                                                                                  |  |  |  |  |  |  |
| 3          | Girhola                                                                  | Dhamdha | 81.44     | 21.40    | DW   | Chandi<br>limestone/sh<br>ale  | Private well of Sh.Premraj, RHS of road from Ahiwara towards Berla, in the Gouthan                                                                                                                                                                      |  |  |  |  |  |  |
| 4          | Mohrenga                                                                 | Dhamdha | 81.44     | 21.48    | DW   | Tarenga<br>limestone/sh<br>ale | Govt. well Infront of Lekhram's house, LHS of road from Mohrenga towards Gota, near Yatri pratikshalay                                                                                                                                                  |  |  |  |  |  |  |
| 5          | Birjhapur                                                                | Dhamdha | 81.31     | 21.47    | DW   | Tarenga<br>limestone/sh<br>ale | Govt.well,3km from Dhamdha, just beside main road, adjacent to Andhra bank atm,<br>LHS of road from Dhamdha towards Gandai                                                                                                                              |  |  |  |  |  |  |
| 6          | Raunda                                                                   | Dhamdha | 81.20     | 21.47    | DW   | Chandi<br>limestone/sh<br>ale  | Private well in the house of Thanwar, end of village from bazar chowk, 15 km from<br>Dhamdha,Pendri>Jalbandha>Thelka Chowk>(turn right) ,after Paraskol<br>turn left near a four road cross-section point(where a woman fruitseller has set up<br>shop) |  |  |  |  |  |  |
| 7          | Arsi                                                                     | Dhamdha | 81.23     | 21.37    | DW   | Chandi<br>limestone/sh<br>ale  | Govt.well, 3km from Dodki on Dhamdha to Jalbandha road,near Yadav Samaj<br>Samudayik Bhawan                                                                                                                                                             |  |  |  |  |  |  |
| 8          | (Badi)Birej<br>har Kalan                                                 | Dhamdha | 81.20     | 21.31    | DW   | Chandi<br>limestone/sh<br>ale  | Govt.well infront of house of Mohan Ial, opposite to temple, near Sinha niwas and general store                                                                                                                                                         |  |  |  |  |  |  |

| 9  | Bori<br>buzurg | Dhamdha | 81.27 | 21.35 | DW | Chandi<br>limestone/sh<br>ale     | Govt.well beside anganwadi kendra, infront of Jaitkhamb                                              |
|----|----------------|---------|-------|-------|----|-----------------------------------|------------------------------------------------------------------------------------------------------|
| 10 | Meresara       | Dhamdha | 81.36 | 21.38 | HP | Chandi<br>limestone/sh<br>ale     | In the bazar chowk, close to water tank 100m from main road                                          |
| 11 | Urla           | Patan   | 81.49 | 21.23 | HP | Gunderdehi<br>shale/limesto<br>ne | Govt.well in Gandhi Chowk, infront of Adivasi Samaj memorial                                         |
| 12 | Dhaur          | Durg    | 81.37 | 21.27 | DW | Chandi<br>limestone/sh<br>ale     | Private well in Roopdas's house, about 3km from Jamul, LHS of main road from Jamul towards Kachandur |
| 13 | Samoda         | Durg    | 81.31 | 21.28 | DW | Chandi<br>limestone/sh<br>ale     | Girdhar Deshmukh's well behind Samoda Panchayat Bhawan                                               |
| 14 | Borai          | Durg    | 81.19 | 21.25 | DW | Chandi<br>limestone/sh<br>ale     | Govt.well infront of Dhanesh Yadav's house and Durga manch, Kuanchowk                                |
| 15 | Rasmara        | Durg    | 81.22 | 21.20 | DW | Chandi<br>limestone/sh<br>ale     | Govt.well near Rasmara Railway Station (behind railway station)                                      |
| 16 | Thanaud        | Durg    | 81.22 | 21.13 | DW | Chandi<br>limestone/sh<br>ale     | Govt.well infront of Deshmukh traders, near new ration shop, Thanaud                                 |
| 17 | Nikum          | Durg    | 81.20 | 21.06 | DW | Gunderdehi<br>limestone/sh<br>ale | Govt.well beside Samudayik Swasth Kendra, infront of Sai Baba Mandir                                 |
| 18 | Kuthrel        | Durg    | 81.28 | 21.09 | HP | Chandi<br>limestone/sh<br>ale     | Govt. well infront of Babla Chandrakar's house and Gayatri mandir manch, Bastipara, near talab(pond) |

| 19 | Bhilai          | Durg  | 81.39 | 21.21 | DW | Chandi<br>limestone/sh<br>ale | Ektanagar, before Khursipar Chowk, infront of Bishwanath Shiv Mandir, opposite side of road to Guru Ghasidas Satnam Dham(Shivaji nagar)                                    |
|----|-----------------|-------|-------|-------|----|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | Durg            | Durg  | 81.29 | 21.18 | DW | Chandi<br>sandstone           | govt.well near the entrance gate to satnami para, Santoshi chowk, ward no.44, near<br>Satrupa Shitala mandir,Menonite church>Ravi Shankar stadium>Utai road,Civil<br>lines |
| 21 | Khopli          | Durg  | 81.38 | 21.09 | HP | Chandi<br>limestone/sh<br>ale | infront of khopli govt.primary school, near pond and samudayik bhawan                                                                                                      |
| 22 | Machand<br>ur   | Durg  | 81.35 | 21.05 | HP | Chandi<br>limestone/sh<br>ale | govt.well infront of kala manch, close to bazar chowk                                                                                                                      |
| 23 | Risama          | Durg  | 81.32 | 21.05 | DW | Chandi<br>limestone/sh<br>ale | Atal chowk, bhatapara, near railway crossing                                                                                                                               |
| 24 | Gondpend<br>ri  | Patan | 81.45 | 21.08 | DW | Chandi<br>limestone/sh<br>ale | private well in the garden of Manohar Sahu, opposite to IDBI Bank and atm                                                                                                  |
| 25 | Manikcha<br>uri | Patan | 81.45 | 21.06 | DW | Chandi<br>limestone/sh<br>ale | at the end of village, beside Pardeshi Ram Sahu's house                                                                                                                    |
| 26 | Pahanda         | Patan | 81.54 | 21.21 | HP | Chandi<br>limestone/sh<br>ale | infront of up-swastha kendra, Pahanda, about 50m-60m from Anganwadi.infront of transformer, LHS of road                                                                    |
| 27 | Batang          | Patan | 81.51 | 21.18 | DW | Chandi<br>limestone/sh<br>ale | govt.well infront of Govt.Ayurvedic Aushadhalay                                                                                                                            |
| 28 | Ruhi            | Patan | 81.54 | 21.13 | DW | Chandi<br>limestone/sh<br>ale | infront of shiv mandir and anganwadi kendra no.1                                                                                                                           |

| 29 | Bathena        | Patan   | 81.55 | 21.07 | DW | Chandi<br>limestone/sh<br>ale     | govt.well near bazar chowk,bathena                                                                                                                  |
|----|----------------|---------|-------|-------|----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 | Teligundr<br>a | Patan   | 81.55 | 21.00 | HP | Chandi<br>limestone/sh<br>ale     | govt. well beside Samudayik bhawan (Kosaria Marar Patel Samaj), Infront of<br>Anganwadi Kendra no.5,opposite to Samudayik Bhawan (Adivasi Samaj), K |
| 31 | Karela         | Patan   | 81.49 | 20.94 | DW | Chandi<br>limestone/sh<br>ale     | near post office, infront of Baldau's house                                                                                                         |
| 32 | Surpa          | Patan   | 81.47 | 20.91 | DW | Gunderdehi<br>limestone/sh<br>ale | infront of Loma's house, just after crossing canal, near bazar chowk                                                                                |
| 33 | Aunri          | Patan   | 81.44 | 20.93 | DW | Gunderdehi<br>limestone/sh<br>ale | govt.well in Bajrang chowk, infront of Maanbodh's house                                                                                             |
| 34 | Bharar         | Patan   | 81.46 | 20.96 | DW | Chandi<br>limestone/sh<br>ale     | infront of Anganwadi kendra no.5 and big banyan tree and village stage                                                                              |
| 35 | Dhuma          | Patan   | 81.47 | 21.02 | DW | Chandi<br>limestone/sh<br>ale     | govt.well infront of Kala manch and Dr.G.R.Adil dawakhana                                                                                           |
| 36 | Pahandor       | Patan   | 81.45 | 21.15 | DW | Chandi<br>limestone/sh<br>ale     | govt.well inside the premises of Govt.ayurved aushadhalay                                                                                           |
| 37 | Aundhi         | Patan   | 81.47 | 21.18 | DW | Chandi<br>limestone/sh<br>ale     | govt.well infront of sarpaanch Rajesh Chandrakar's house                                                                                            |
| 38 | Murmund<br>a   | Dhamdha | 81.46 | 21.31 | HP | Chandi<br>limestone/sh<br>ale     | HP located in the premises of Shashakiya Purv Madhyamik Shala, beside gram panchayat karyalay                                                       |

| 39 | Pandritara<br>i     | Dhamdha | 81.44 | 21.43 | HP | Chandi<br>limestone/sh<br>ale  | HP located near Jaitkhamb, infront of Ram Khilawan's house                                                                                            |
|----|---------------------|---------|-------|-------|----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 | Pendri              | Dhamdha | 81.28 | 21.50 | HP | Tarenga<br>limestone/sh<br>ale | HP is located on LHS of main road from Dhamdha towards Gandai infront of Ujala<br>Bhawan                                                              |
| 41 | Hasda               | Dhamdha | 81.20 | 21.33 | HP | Chandi<br>limestone/sh<br>ale  | HP is licated infront of Gouthan, beside karyalay gram panchayat, Hasda, behind<br>Anganwadi Kendra                                                   |
| 42 | Nandini<br>Khundini | Dhamdha | 81.39 | 21.38 | HP | Chandi<br>limestone/sh<br>ale  | HP is located on RHS of road from nandini towards Ahiwara, beside pintu kirana stores                                                                 |
| 43 | Hathkhoj            | Durg    | 81.41 | 21.23 | HP | Chandi<br>limestone/sh<br>ale  | HP in Shitalapara, infront of Mandirwala house and tea stall                                                                                          |
| 44 | Bhendsar            | Durg    | 81.26 | 21.26 | HP | Chandi<br>limestone/sh<br>ale  | HP is located opposite to Kamalesh Deshmukh's house. Handpump No.523154/26                                                                            |
| 45 | Changori            | Durg    | 81.23 | 21.10 | HP | Chandi<br>limestone/sh<br>ale  | HP is located infront of Ganesh Chowri, under blackberry tree                                                                                         |
| 46 | Kolihapuri          | Durg    | 81.26 | 21.14 | HP | Chandi<br>limestone/sh<br>ale  | HP is on LHS of main road from Chandkhuri towards Durg, infront of Itwari Sahoo's house, near Rudra Dental clinic(Dr.Prashant Verma),near banyan tree |
| 47 | Dumardih            | Durg    | 81.39 | 21.12 | HP | Chandi<br>limestone/sh<br>ale  | HP is infroont of Jaitkhamb, 500m from village entrance, beside community water supply 500litre tank                                                  |
| 48 | Matang              | Patan   | 81.45 | 21.05 | HP | Chandi<br>limestone/sh<br>ale  | HP is located at the entrance to village, infront of house of Kaushal                                                                                 |

| 49 | Batang | Patan | 81.51 | 21.18 | HP | Chandi<br>limestone/sh<br>ale     | HP is located infront of Govt.Ayurved Aushadhalay                                         |
|----|--------|-------|-------|-------|----|-----------------------------------|-------------------------------------------------------------------------------------------|
| 50 | Pandar | Patan | 81.52 | 21.05 | HP | Chandi<br>limestone/sh<br>ale     | HP is located infront of Jwala Prasad's house, behind Satnam Bhawan near village entrance |
| 51 | Ashoga | Patan | 81.55 | 20.96 | HP | Chandi<br>limestone/sh<br>ale     | HP is located infront of Tilak Satnami's house                                            |
| 52 | Dhamna | Patan | 81.43 | 20.91 | HP | Gunderdehi<br>limestone/sh<br>ale | HP is located infront of Jagat's house and Gulshan Tandon's house.                        |

#### 2.2 Hydrochemical Data

To know the hydro chemical behaviour of the ground water in the study area, 72 nos. of ground water samples were collected from the key wells and 30 nos.NHNS during pre-monsoon period of measurement (June, 2016) and analysed in the chemical laboratory of Central Ground Water Board, NCCR, Raipur for determination of various chemical parameters. The results and findings are presented in Table no. 7(A), 7(B). Groundwater has high concentration of iron(>0.3 mg/l, BIS 2012) in the entire study area.

| S.<br>No | Block   | Location    | рН   | EC   | TH  | Ca  | Mg   | Na   | к   | ТА  | CO3 | HCO<br>3 | Cl    | SO4   | F   | SiO<br>2 | PO4 | Fe    |
|----------|---------|-------------|------|------|-----|-----|------|------|-----|-----|-----|----------|-------|-------|-----|----------|-----|-------|
| 1        | Dhamdha | Ahiwara     | 7.9  | 561  | 190 | 64  | 7.2  | 29.2 | 2   | 105 | 0   | 128      | 85.2  | 15.4  | 0.1 | 16.1     | 0.2 | 0.000 |
| 2        | Durg    | Anda        | 7.9  | 853  | 285 | 76  | 22.8 | 47.6 | 4.1 | 110 | 0   | 134      | 145.6 | 55.3  | 0.3 | 25.3     | 0.2 | 2.126 |
| 3        | Durg    | Bhilai      | 8.2  | 564  | 175 | 50  | 12   | 43.3 | 3.2 | 85  | 0   | 104      | 74.6  | 30.9  | 0.1 | 22.0     | 0.1 | 0.000 |
| 4        | Durg    | Binayakpur  | 8.3  | 496  | 105 | 22  | 12   | 70   | 1.2 | 205 | 3   | 244      | 21.3  | 15.7  | 1.6 | 34.0     | 0.2 | 0.000 |
| 5        | Dhamdha | Dargaon     | 8    | 849  | 330 | 72  | 36   | 47.2 | 2.1 | 150 | 0   | 183      | 28.4  | 257.0 | 0.2 | 12.7     | 0.2 | 0.000 |
| 6        | Patan   | Dewada      | 8.33 | 346  | 155 | 50  | 7.2  | 8.6  | 2.1 | 140 | 0   | 171      | 28.4  | 11.3  | 0.2 | 25.9     | 0.2 | 0.461 |
| 7        | Dhamda  | Dhaba       | 8.2  | 536  | 185 | 62  | 7.2  | 31.5 | 3.1 | 155 | 0   | 189      | 56.8  | 29.4  | 0.3 | 34.7     | 0.1 | 0.000 |
| 8        | Patan   | Funda       | 8.17 | 408  | 165 | 58  | 4.8  | 17.1 | 0.2 | 110 | 0   | 134      | 49.7  | 20.1  | 0.1 | 22.8     | 0.2 | 0.942 |
| 9        | Durg    | Ganiyari    | 7.92 | 1121 | 405 | 120 | 25.2 | 42.8 | 7.3 | 95  | 0   | 116      | 170.4 | 68.8  | 0.1 | 25.9     | 0.2 | 2.496 |
| 10       | Dhamdha | Girola      | 7.98 | 961  | 395 | 142 | 9.6  | 10.7 | 1.3 | 115 | 0   | 140      | 149.1 | 9.6   | 0.1 | 34.7     | 0.1 | 0.702 |
| 11       | Durg    | Janjgiri    | 7.85 | 1710 | 585 | 164 | 42   | 84.8 | 16  | 90  | 0   | 110      | 330.2 | 108.6 | 0.0 | 24.8     | 0.3 | 0.831 |
| 12       | Durg    | Jeora-sirsa | 8.09 | 514  | 205 | 66  | 9.6  | 14.1 | 0.3 | 115 | 0   | 140      | 71.0  | 25.3  | 0.1 | 28.6     | 0.2 | 0.276 |
| 13       | Durg    | Kachandur   | 8.16 | 639  | 160 | 48  | 9.6  | 62.3 | 11  | 205 | 0   | 250      | 63.9  | 31.0  | 0.3 | 25.3     | 0.2 | 0.000 |
| 14       | Patan   | Kashi       | 8.31 | 529  | 175 | 56  | 8.4  | 26.8 | 23  | 180 | 3   | 214      | 53.3  | 32.1  | 0.2 | 35.1     | 0.2 | 0.000 |
| 15       | Dhamdha | Kodiya      | 8.18 | 252  | 125 | 40  | 6    | 5.1  | 0.3 | 140 | 0   | 171      | 3.6   | 3.9   | 0.1 | 35.2     | 0.2 | 1.331 |
| 16       | Patan   | Marra       | 8.09 | 526  | 215 | 52  | 20.4 | 28   | 0.5 | 145 | 0   | 177      | 74.6  | 16.9  | 0.5 | 24.0     | 0.2 | 0.000 |
| 17       | Patan   | Motipur     | 8.06 | 798  | 200 | 62  | 10.8 | 35.2 | 53  | 165 | 0   | 201      | 92.3  | 63.8  | 0.1 | 37.9     | 0.2 | 0.110 |
| 18       | Durg    | Nagpura     | 7.84 | 1230 | 430 | 114 | 34.8 | 41.8 | 17  | 130 | 0   | 159      | 227.2 | 71.2  | 0.8 | 19.9     | 0.2 | 2.848 |
| 19       | Durg    | Powara      | 7.83 | 1044 | 375 | 122 | 16.8 | 50.5 | 12  | 115 | 0   | 140      | 181.1 | 66.2  | 0.1 | 19.2     | 0.3 | 0.091 |

Table 7 (A): Result of chemical analysis of ground water (NHNS samples), year 2016-17 (concentration in mg/l, EC in µS)

| 20 | Dhamdha | Ravelidih             | 8.06 | 523  | 215 | 70  | 9.6  | 17.8 | 1.3 | 70  | 0  | 85  | 78.1  | 7.3   | 0.0 | 13.1 | 0.2 | 0.276 |
|----|---------|-----------------------|------|------|-----|-----|------|------|-----|-----|----|-----|-------|-------|-----|------|-----|-------|
| 21 | Durg    | Selud                 | 8.18 | 309  | 150 | 48  | 7.2  | 10.6 | 0.3 | 145 | 0  | 177 | 21.3  | 9.9   | 0.2 | 14.6 | 0.2 | 0.165 |
| 22 | Patan   | Tarra                 | 8.13 | 457  | 195 | 56  | 13.2 | 19   | 1.6 | 135 | 0  | 165 | 46.2  | 17.6  | 0.1 | 16.3 | 0.2 | 2.163 |
| 23 | Durg    | Utai(Adars<br>hnagar) | 8.05 | 447  | 200 | 64  | 9.6  | 13.1 | 0.3 | 140 | 0  | 171 | 53.3  | 19.8  | 0.3 | 18.2 | 0.2 | 0.000 |
| 24 | Patan   | Zhit                  | 8.09 | 454  | 175 | 46  | 14.4 | 25.9 | 9.6 | 165 | 0  | 201 | 42.6  | 13.0  | 0.1 | 22.2 | 0.3 | 0.000 |
| 25 | Dhamda  | Murmunda              | 8.08 | 582  | 130 | 36  | 9.6  | 46.4 | 48  | 85  | 0  | 104 | 103.0 | 8.9   | 0.1 | 12.2 | 0.2 | 1.022 |
| 26 | Patan   | Kharra                | 7.97 | 1397 | 470 | 150 | 22.8 | 35   | 0.5 | 105 | 0  | 128 | 308.9 | 63.0  | 0.3 | 14.5 | 0.3 | 1.459 |
| 27 | Patan   | Bohardih              | 8.11 | 755  | 280 | 68  | 26.4 | 46.9 | 1.9 | 125 | 0  | 153 | 134.9 | 24.2  | 0.4 | 4.2  | 0.3 | 0.744 |
| 28 | Dhamdha | Dhamda-D              | 8.32 | 320  | 145 | 36  | 13.2 | 29.6 | 0.5 | 165 | 3  | 195 | 17.8  | 5.9   | 0.1 | 0.1  | 0.3 | 0.373 |
| 29 | Patan   | Kumhari               | 8.84 | 911  | 370 | 78  | 42   | 36.1 | 1.2 | 225 | 12 | 250 | 81.7  | 114.1 | 0.9 | 10.1 | 0.1 | 0.797 |
| 30 | Patan   | Patan                 | 8.23 | 526  | 145 | 50  | 4.8  | 55.3 | 1.3 | 110 | 0  | 134 | 60.4  | 22.5  | 0.2 | 5.3  | 0.1 | 1.009 |
|    |         |                       |      |      |     |     |      |      |     |     |    |     |       |       |     |      |     |       |

Table 7 (B): Result of chemical analysis of ground water (key wells), year 2016 (concentration in mg/l, EC in  $\mu$ S)

| S. No | Block   | Location       | Longitude | Latitude | рН    | EC  | CO3 | HCO3 | Cl  | SO4 | F    | TH  | Са | Mg  | Na  | К    | Si | PO4 | Fe    |
|-------|---------|----------------|-----------|----------|-------|-----|-----|------|-----|-----|------|-----|----|-----|-----|------|----|-----|-------|
| 1     | Dhamdha | Kapasda        | 81.509    | 21.307   | 7.500 | 492 | 0   | 122  | 50  | 55  | 0.71 | 230 | 52 | 24  | 31  | 42   | 15 | 0   | 0.003 |
| 2     | Dhamdha | Murmunda       | 81.464    | 21.308   | 7.380 | 201 | 0   | 73   | 35  | 0   | 0.74 | 60  | 12 | 7.2 | 22  | 0.39 | 5  | 0   | 0.104 |
| 3     | Dhamdha | Girhola        | 81.436    | 21.397   | 7.300 | 610 | 0   | 85   | 124 | 5   | 0.68 | 255 | 78 | 14  | 10  | 3.1  | 12 | 0   | 0.891 |
| 4     | Dhamdha | Mohrenga       | 81.445    | 21.479   | 7.370 | 226 | 0   | 110  | 14  | 7.2 | 0.56 | 100 | 20 | 12  | 7.2 | 0.8  | 11 | 0   | 0.028 |
| 5     | Dhamdha | Birjhapur      | 81.311    | 21.475   | 7.340 | 500 | 0   | 122  | 89  | 44  | 0.66 | 165 | 32 | 20  | 48  | 2.7  | 14 | 0   | 0.104 |
| 6     | Dhamdha | Raunda         | 81.202    | 21.468   | 7.340 | 276 | 0   | 134  | 25  | 5   | 0.7  | 115 | 30 | 9.6 | 14  | 3.12 | 4  | 0   | 0.028 |
| 7     | Dhamdha | Arsi           | 81.226    | 21.374   | 7.420 | 277 | 0   | 134  | 21  | 5   | 0.67 | 110 | 20 | 14  | 16  | 5.4  | 10 | 0   | 0.003 |
| 8     | Dhamdha | Birejhar Kalan | 81.195    | 21.307   | 7.320 | 300 | 0   | 92   | 50  | 0   | 0.67 | 120 | 32 | 9.6 | 8.4 | 9    | 13 | 0   | 0.003 |
| 9     | Dhamdha | Bori Buzurg    | 81.274    | 21.355   | 7.310 | 677 | 0   | 244  | 96  | 11  | 0.5  | 290 | 88 | 17  | 30  | 11   | 14 | 0   | 0.053 |
| 10    | Dhamdha | Meresara       | 81.358    | 21.377   | 7.510 | 208 | 0   | 79   | 21  | 10  | 0.7  | 80  | 20 | 7.2 | 13  | 1.6  | 7  | 0   | 0.231 |
| 11    | Patan   | Urla           | 81.491    | 21.225   | 7.420 | 364 | 0   | 110  | 53  | 20  | 0.66 | 145 | 32 | 16  | 16  | 1.9  | 14 | 0   | 0.307 |
| 12    | Durg    | Dhaur          | 81.368    | 21.273   | 7.420 | 295 | 0   | 122  | 32  | 22  | 0.61 | 110 | 20 | 14  | 21  | 1.1  | 11 | 0   | 0.028 |
| 13    | Durg    | Samonda        | 81.307    | 21.283   | 7.360 | 657 | 0   | 201  | 106 | 25  | 0.59 | 160 | 34 | 18  | 88  | 4.7  | 12 | 0   | 0.003 |

| 14 | Durg    | Borai            | 81.190 | 21.251 | 7.510 | 326 | 0 | 128 | 39  | 22 | 0.57 | 130 | 32  | 12  | 22  | 2    | 10 | 0 | 0.053 |
|----|---------|------------------|--------|--------|-------|-----|---|-----|-----|----|------|-----|-----|-----|-----|------|----|---|-------|
| 15 | Durg    | Rasmara          | 81.217 | 21.204 | 7.400 | 650 | 0 | 146 | 121 | 7  | 0.6  | 200 | 44  | 22  | 66  | 5.4  | 30 | 0 | 1.449 |
| 16 | Durg    | Thanaud          | 81.215 | 21.133 | 7.530 | 503 | 0 | 159 | 64  | 42 | 0.62 | 115 | 28  | 11  | 61  | 20   | 15 | 0 | 0.815 |
| 17 | Durg    | Nikum            | 81.202 | 21.057 | 7.520 | 604 | 0 | 183 | 85  | 22 | 0.58 | 160 | 40  | 12  | 75  | 7.8  | 16 | 0 | 0.282 |
| 18 | Durg    | Kuthrel          | 81.278 | 21.094 | 7.480 | 520 | 0 | 122 | 57  | 57 | 0.62 | 175 | 40  | 18  | 45  | 10   | 13 | 0 | 0.079 |
| 19 | Durg    | Bhilai           | 81.394 | 21.208 | 7.510 | 485 | 0 | 183 | 35  | 54 | 0.67 | 110 | 20  | 14  | 69  | 3.9  | 9  | 0 | 0.003 |
| 20 | Durg    | Durg             | 81.289 | 21.182 | 7.520 | 371 | 0 | 110 | 35  | 40 | 0.62 | 90  | 24  | 9.6 | 42  | 3.5  | 5  | 0 | 0.713 |
| 21 | Durg    | Khopli           | 81.380 | 21.091 | 7.560 | 248 | 0 | 85  | 14  | 24 | 0.62 | 80  | 16  | 9.6 | 17  | 0.39 | 8  | 0 | 0.256 |
| 22 | Durg    | Machandur        | 81.354 | 21.050 | 7.570 | 658 | 0 | 207 | 64  | 55 | 0.57 | 110 | 8   | 22  | 89  | 19   | 9  | 0 | 0.079 |
| 23 | Durg    | Risama           | 81.323 | 21.055 | 7.600 | 649 | 0 | 195 | 82  | 5  | 0.6  | 160 | 40  | 14  | 84  | 19   | 8  | 0 | 0.206 |
| 24 | Patan   | Gondpendri       | 81.454 | 21.085 | 7.640 | 362 | 0 | 85  | 35  | 66 | 0.64 | 150 | 40  | 12  | 32  | 13   | 7  | 0 | 0.459 |
| 25 | Patan   | Manikchauri      | 81.447 | 21.064 | 7.560 | 244 | 0 | 116 | 7   | 20 | 0.6  | 90  | 16  | 12  | 16  | 5.4  | 3  | 0 | 0.739 |
| 26 | Patan   | Pahanda          | 81.541 | 21.210 | 7.330 | 397 | 0 | 110 | 73  | 22 | 0.67 | 150 | 36  | 14  | 17  | 10   | 10 | 0 | 6.5   |
| 27 | Patan   | Batang           | 81.511 | 21.180 | 7.520 | 247 | 0 | 122 | 7   | 19 | 0.64 | 65  | 14  | 7.2 | 29  | 5.4  | 7  | 0 | 0.028 |
| 28 | Patan   | Ruhi             | 81.539 | 21.129 | 7.430 | 400 | 0 | 134 | 39  | 44 | 0.63 | 140 | 28  | 17  | 30  | 12   | 12 | 0 | 0.891 |
| 29 | Patan   | Bathena          | 81.547 | 21.070 | 7.380 | 565 | 0 | 159 | 71  | 27 | 0.55 | 230 | 60  | 19  | 31  | 1.9  | 10 | 0 | 0.459 |
| 30 | Patan   | Teligundra       | 81.552 | 20.999 | 7.480 | 399 | 0 | 183 | 21  | 23 | 0.54 | 130 | 24  | 17  | 32  | 6.2  | 11 | 0 | 0.536 |
| 31 | Patan   | Karela           | 81.494 | 20.944 | 7.360 | 559 | 0 | 122 | 106 | 43 | 0.58 | 200 | 56  | 14  | 46  | 4.3  | 16 | 0 | 0.459 |
| 32 | Patan   | Surpa            | 81.471 | 20.909 | 7.650 | 563 | 0 | 146 | 99  | 35 | 0.64 | 155 | 44  | 23  | 70  | 1.7  | 12 | 0 | 1.754 |
| 33 | Patan   | Aunri            | 81.440 | 20.933 | 7.510 | 892 | 0 | 110 | 177 | 67 | 0.61 | 390 | 120 | 34  | 45  | 1.1  | 10 | 0 | 1.779 |
| 34 | Patan   | Bharar           | 81.459 | 20.958 | 7.610 | 663 | 0 | 244 | 92  | 18 | 0.3  | 210 | 64  | 12  | 47  | 1.1  | 11 | 0 | 0.307 |
| 35 | Patan   | Dhuma            | 81.469 | 21.015 | 7.600 | 337 | 0 | 159 | 28  | 12 | 0.46 | 120 | 24  | 14  | 30  | 1.2  | 11 | 0 | 0.52  |
| 36 | Patan   | Pahandor         | 81.447 | 21.147 | 7.420 | 467 | 0 | 122 | 71  | 45 | 0.57 | 175 | 52  | 11  | 30  | 0.9  | 13 | 0 | 1.627 |
| 37 | Patan   | Aundhi           | 81.469 | 21.181 | 7.370 | 486 | 0 | 146 | 35  | 85 | 0.68 | 210 | 62  | 13  | 26  | 2.3  | 9  | 0 | 4.673 |
| 38 | Dhamdha | Murmunda         | 81.464 | 21.308 | 7.510 | 185 | 0 | 98  | 7   | 6  | 0.65 | 70  | 18  | 6   | 10  | 3.7  | 8  | 0 | 2.008 |
| 39 | Dhamdha | Pandritarai      | 81.440 | 21.431 | 7.320 | 510 | 0 | 171 | 60  | 23 | 0.72 | 220 | 64  | 14  | 19  | 0.7  | 9  | 0 | 4.926 |
| 40 | Dhamdha | Pendri           | 81.277 | 21.496 | 7.420 | 440 | 0 | 146 | 64  | 18 | 0.63 | 215 | 60  | 16  | 11  | 1.4  | 8  | 0 | 0.764 |
| 41 | Dhamdha | Hasda            | 81.203 | 21.326 | 7.420 | 768 | 0 | 183 | 156 | 0  | 0.68 | 130 | 36  | 9.6 | 117 | 3.4  | 8  | 0 | 0.434 |
| 42 | Dhamdha | Nandini Khundini | 81.392 | 21.384 | 7.600 | 152 | 0 | 85  | 7   | 0  | 0.62 | 55  | 16  | 3.6 | 12  | 0.7  | 0  | 0 | 1.348 |
| 43 | Durg    | Hathkhoj         | 81.407 | 21.228 | 7.470 | 218 | 0 | 91  | 28  | 0  | 0.67 | 100 | 24  | 9.6 | 7.8 | 0.3  | 5  | 0 | 11.86 |

| 44 | Durg    | Bhendsar              | 81.265 | 21.256 | 7.570 | 535  | 0 | 244 | 57  | 0   | 0.44 | 130 | 28  | 14  | 74  | 1.8  | 6  | 0 | 0.612 |
|----|---------|-----------------------|--------|--------|-------|------|---|-----|-----|-----|------|-----|-----|-----|-----|------|----|---|-------|
| 45 | Durg    | Changori              | 81.229 | 21.097 | 7.630 | 257  | 0 | 110 | 35  | 0   | 0.63 | 70  | 16  | 7.2 | 31  | 1.6  | 8  | 0 | 0.586 |
| 46 | Durg    | Kolihapuri            | 81.263 | 21.139 | 7.700 | 839  | 0 | 122 | 213 | 0   | 0.57 | 390 | 76  | 48  | 92  | 1.2  | 13 | 0 | 2.058 |
| 47 | Durg    | Dumardih              | 81.389 | 21.124 | 7.650 | 221  | 0 | 110 | 21  | 0   | 0.63 | 90  | 20  | 9.6 | 15  | 0.6  | 6  | 0 | 2.033 |
| 48 | Patan   | Matang                | 81.449 | 21.047 | 7.380 | 618  | 0 | 110 | 149 | 5   | 0.64 | 230 | 76  | 9.6 | 41  | 12.4 | 12 | 0 | 1.779 |
| 49 | Patan   | Batang                | 81.510 | 21.180 | 7.770 | 290  | 0 | 146 | 14  | 0   | 0.62 | 150 | 32  | 17  | 38  | 0.7  | 12 | 0 | 1.982 |
| 50 | Patan   | Pandar                | 81.521 | 21.046 | 7.540 | 432  | 0 | 134 | 71  | 0   | 0.62 | 190 | 34  | 25  | 22  | 0.9  | 15 | 0 | 2.312 |
| 51 | Patan   | Ashoga                | 81.550 | 20.959 | 7.360 | 1521 | 0 | 122 | 354 | 140 | 0.56 | 355 | 102 | 24  | 105 | 169  | 15 | 0 | 0.079 |
| 52 | Patan   | Dhamna                | 81.432 | 20.910 | 7.650 | 283  | 0 | 122 | 21  | 18  | 0.64 | 80  | 16  | 9.6 | 33  | 1    | 12 | 0 | 0.053 |
| 53 | Dhamdha | Dumar                 | 81.475 | 21.363 | 7.670 | 258  | 0 | 140 | 7   | 14  | 0.62 | 80  | 14  | 11  | 29  | 0.9  | 11 | 0 | 0.434 |
| 54 | Dhamdha | Sonesarar             | 81.359 | 21.442 | 7.570 | 221  | 0 | 98  | 14  | 16  | 0.64 | 65  | 16  | 6   | 24  | 1.9  | 14 | 0 | 0.536 |
| 55 | Dhamdha | Kutha                 | 81.290 | 21.488 | 7.470 | 336  | 0 | 73  | 67  | 11  | 0.7  | 150 | 36  | 14  | 10  | 0.4  | 11 | 0 | 0.079 |
| 56 | Dhamdha | Purda Kalan           | 81.239 | 21.337 | 7.530 | 203  | 0 | 91  | 21  | 5   | 0.69 | 95  | 16  | 13  | 13  | 0.5  | 13 | 0 | 7.871 |
| 57 | Patan   | Dev Baloda            | 81.476 | 21.220 | 7.560 | 227  | 0 | 134 | 35  | 13  | 0.67 | 75  | 18  | 7.2 | 17  | 0.7  | 6  | 0 | 0.815 |
| 58 | Patan   | Charoda               | 81.452 | 21.220 | 7.460 | 386  | 0 | 152 | 32  | 24  | 0.7  | 150 | 40  | 12  | 23  | 2.6  | 35 | 0 | 0.51  |
| 59 | Durg    | Jamul                 | 81.388 | 21.256 | 7.440 | 399  | 0 | 122 | 46  | 10  | 0.69 | 150 | 40  | 12  | 16  | 1.2  | 5  | 0 | 0.206 |
| 60 | Durg    | Rawelidi/<br>Boregaon | 81.337 | 21.326 | 7.510 | 279  | 0 | 134 | 28  | 13  | 0.73 | 85  | 20  | 8.4 | 29  | 1.1  | 7  | 0 | 0.688 |
| 61 | Durg    | Kapri(Kutelabhata)    | 81.309 | 21.239 | 7.510 | 280  | 0 | 98  | 35  | 16  | 0.74 | 90  | 8   | 17  | 17  | 1.9  | 16 | 0 | 1.322 |
| 62 | Durg    | Beloudi               | 81.271 | 21.238 | 7.820 | 403  | 0 | 189 | 21  | 24  | 0.46 | 70  | 8   | 12  | 12  | 1.1  | 11 | 0 | 5.231 |
| 63 | Durg    | Birejhar              | 81.205 | 21.116 | 7.720 | 222  | 0 | 79  | 28  | 14  | 0.62 | 65  | 16  | 6   | 6   | 2.3  | 18 | 0 | 0.764 |
| 64 | Durg    | Chingri               | 81.271 | 21.075 | 7.570 | 293  | 0 | 110 | 28  | 20  | 0.64 | 120 | 20  | 12  | 12  | 0.6  | 11 | 0 | 0.409 |
| 65 | Durg    | Konari                | 81.265 | 21.111 | 7.880 | 546  | 0 | 305 | 34  | 24  | 0.43 | 50  | 4   | 9.6 | 9.6 | 1.5  | 6  | 0 | 0.891 |
| 66 | Durg    | Ghugsidih             | 81.367 | 21.070 | 7.730 | 175  | 0 | 61  | 18  | 15  | 0.65 | 75  | 32  | 8.4 | 8.4 | 2.2  | 5  | 0 | 0.739 |
| 67 | Patan   | Chunkatta             | 81.420 | 21.109 | 7.520 | 294  | 0 | 85  | 28  | 18  | 0.55 | 110 | 24  | 12  | 12  | 0.5  | 13 | 0 | 0.612 |
| 68 | Patan   | Santra                | 81.466 | 21.050 | 7.500 | 203  | 0 | 73  | 21  | 12  | 0.65 | 90  | 28  | 4.8 | 4.8 | 0.6  | 14 | 0 | 0.18  |
| 69 | Patan   | Kurudih               | 81.518 | 21.204 | 7.370 | 372  | 0 | 134 | 43  | 27  | 0.55 | 150 | 32  | 17  | 17  | 1.9  | 14 | 0 | 3.53  |
| 70 | Patan   | Sawni                 | 81.536 | 21.112 | 7.500 | 364  | 0 | 159 | 32  | 20  | 0.5  | 120 | 24  | 14  | 14  | 1.1  | 13 | 0 | 1.246 |
| 71 | Patan   | Matiya                | 81.525 | 21.008 | 7.610 | 298  | 0 | 134 | 28  | 8   | 0.6  | 70  | 16  | 7.2 | 7.2 | 0.6  | 14 | 0 | 0.358 |
| 72 | Patan   | Kharra                | 81.544 | 20.987 | 7.260 | 284  | 0 | 116 | 28  | 15  | 0.6  | 55  | 12  | 6   | 6   | 2.7  | 11 | 0 | 0.354 |

#### 2.3 Geophysical Data

Geophysical surveys (Vertical Electrical Sounding or VES) have been conducted in the study area during AAP 2009-10 to delineate the disposition of the existing aquifer system and 34 nos. of soundings were carried out.

| VES No  | Location     | Longitudo | Latitudo | Resp | ective layer r | esistivity (oh | im-m) | Respect | ive layer de   | pth (m) |
|---------|--------------|-----------|----------|------|----------------|----------------|-------|---------|----------------|---------|
| VLS NO. | Location     | Longitude | Latitude | ρ1   | ρ2             | ρ3             | ρ4    | D 1     | D <sub>2</sub> | D 3     |
| VES1    | Rakhi        | 81.3394   | 21.5806  | 62   | 22             | 400            | -     | 7       | 26             | -       |
| VES2    | Saja         | 81.3161   | 21.6563  | 20   | 80             | 20             | 100   | 0.5     | 1.5            | 18      |
| VES3    | Parpori      | 81.2094   | 21.5859  | 400  | 62             | 2000           | -     | 1.4     | 33             | -       |
| VES4    | Binjapur     | 81.3069   | 21.4784  | 150  | 28             | 650            | -     | 0.8     | 5              | -       |
| VES5    | Medesara     | 81.3624   | 21.3737  | 150  | 48             | 1000           | -     | 1.3     | 6.5            | -       |
| VES6    | Chorbhati    | 81.571    | 21.6789  | 65   | 12             | 1100           | -     | 2       | 8              | -       |
| VES7    | Kachandur    | 81.3019   | 20.9736  | 300  | 120            | 16             | 250   | 0.7     | 1.5            | 10      |
| VES8    | Bori         | 81.2734   | 21.3527  | 14   | 98             | 21             | 2000  | 0.8     | 6.5            | 30      |
| VES9    | Charoda      | 81.4728   | 21.2267  | 385  | 108            | 21             | 180   | 1.8     | 5.4            | 37      |
| VES10   | Utai         | 81.3827   | 21.1162  | 7.5  | 25             | 62             | -     | 2.8     | 8.5            | -       |
| VES11   | Latabod      | 81.2641   | 20.785   | 5    | 33             | 700            | -     | 6       | 36             | -       |
| VES12   | Karhibhadar  | 81.3167   | 20.696   | 400  | 58             | 2000           | -     | 4.8     | 33             | -       |
| VES13   | Sankara      | 81.2044   | 20.8016  | 45   | 95             | 25             | 2000  | 1       | 7              | 20      |
| VES14   | Ghughuwa     | 81.5033   | 21.108   | 240  | 18             | 470            | -     | 1       | 13             | -       |
| VES15   | Gabhara      | 81.5142   | 21.1024  | 280  | 27             | 2000           | -     | 2       | 20             | -       |
| VES16   | Pahandor     | 81.5103   | 21.1202  | 4    | 16             | 650            | -     | 2.5     | 14             | -       |
| VES17   | Funda        | 81.526    | 21.0535  | 45   | 20             | 500            | 25    | 2.2     | 5              | 24      |
| VES18   | Dhour        | 81.3635   | 21.2706  | 7    | 21             | 350            | -     | 3.2     | 29             | -       |
| VES19   | Okhara       | 81.3709   | 21.2995  | 270  | 40             | 2000           | -     | 4.3     | 30             | -       |
| VES20   | Vinayakpur   | 81.2538   | 21.0669  | 45   | 210            | 40             | -     | 9.5     | 54             | -       |
| VES21   | Chandrakhuri | 81.2569   | 21.1225  | 6    | 21             | 850            | -     | 1.5     | 18             | -       |
| VES22   | Paura        | 81.3134   | 21.0985  | 45   | 278            | 2000           | -     | 4.5     | 37             | -       |
| VES23   | Kaudia       | 81.3517   | 21.092   | 7.5  | 1400           | -              | -     | 4       | -              | _       |
| VES24   | Hirri        | 81.1995   | 21.3478  | 300  | 10             | 2000           | -     | 1.8     | 10             | -       |

### Interpreted layer parameters of VES observed in Durg district

| VES25 | Nawagaon        | 81.2596 | 21.3204 | 135 | 20 | 500  | 45 | 2.8 | 14   | 45 |
|-------|-----------------|---------|---------|-----|----|------|----|-----|------|----|
| VES26 | Gajra Watershed | 81.587  | 21.918  | 135 | 20 | 250  | -  | 2.8 | 14   | -  |
| VES27 | Murkuta         | 81.6567 | 21.9564 | 6.3 | 38 | 800  | -  | 4.3 | 33   | -  |
| VES28 | Baba Mohtara    | 81.6916 | 21.7658 | 18  | 75 | -    | -  | 23  | -    | -  |
| VES29 | Tuma            | 81.7708 | 21.9173 | 9.5 | 18 | 1500 | -  | 7   | 19   | -  |
| VES30 | Junwanikhurd    | 81.6948 | 21.7116 | 10  | 60 | 1500 | -  | 10  | 90   | -  |
| VES31 | Mohrenga        | 81.3601 | 20.9095 | 95  | 28 | 700  | -  | 1   | 12   | -  |
| VES32 | Tandula Commond | 81.416  | 20.8264 | 6.4 | 30 | 2000 | -  | 6.3 | 27.3 | -  |
| VES33 | Armarikala      | 81.4285 | 20.7769 | 15  | 40 | 2000 | -  | 2.3 | 18   | -  |
| VES34 | Basin           | 81.481  | 20.7466 | 4.5 | 14 | 1000 | -  | 5   | 19   | -  |

#### 2.4 Exploratory Data

#### 2.4.1 Status of Groundwater Exploration

A total of 64 bore wells exist in the study area as on 31-03-2017 out of which 54 nos. are exploratory bore wells and 10 nos are observation bore wells in the study area. Table 9 summarizes the status of exploratory wells in the study area.

|     |                   |         |         | Та           | ible 9 De     | tail of Exploration in the      | study area                                                |               |                    |                 |
|-----|-------------------|---------|---------|--------------|---------------|---------------------------------|-----------------------------------------------------------|---------------|--------------------|-----------------|
| NO. | location          | LAT     | LONG    | Depth<br>(m) | Casing<br>(m) | Formation                       | Zone_encountered<br>(mbgl)                                | SWL<br>(mbgl) | Discharge<br>(lps) | Drawdown<br>(m) |
| 1   | Banbad            | 21.3347 | 81.3533 | 60.06        |               | chandi Lst                      | 15.22-18.22                                               | 3.73          | 2.5                | 2.4             |
| 2   | Birjhapur         | 21.475  | 81.3125 | 300.57       | 5.3           | Tarenga shale and Chandi<br>Lst | 8-11.0                                                    | 0.82          | 1.9                | 35.42           |
| 3   | Bolhari           | 20.875  | 81.45   | 84.35        |               | Charmuria Lst                   | 4.67-5.0,74.00-84.35                                      | 8.7           | 2.3                | 20.7            |
| 4   | Bori<br>(Dhamdha) | 21.3517 | 81.2733 | 304.57       | 25            | Chandi Lst                      | 19-25                                                     | 4.66          | 1.9                | 21.65           |
| 5   | Daragaon          | 21.4972 | 81.3936 |              |               | Charmuria Lst                   |                                                           |               |                    |                 |
| 6   | Dundera-I         | 21.1514 | 81.3944 | 69.09        | 14.1          | Chandi Lst                      | 14.5-15.00                                                | 4.35          | 0.27               | 29.7            |
| 7   | Gorhi             | 21.3208 | 81.4    | 69.85        |               | Chandi Lst                      |                                                           | 1.9           | 0.5                | 35              |
| 8   | Kapasada          | 21.3056 | 81.5056 | 58.86        | 25            | Chandi Lst                      | 19.00-25.00,25.00-<br>58.86                               | 5.01          | 3.15               | 19.04           |
| 9   | Kareli            | 21.4181 | 81.3125 | 114.5        | 24.5          | Chandi Lst                      | 23.35-34.35,46.15-<br>49.15,53.75-<br>68.95,109.55-114.55 | 4.96          | 9.1                | 0.47            |
| 10  | Kuthrel           | 21.0917 | 81.2833 | 196.7        | 6.5           | Gunderdehi Sh                   | 13.00-49.5                                                | 3.65          | 1                  |                 |
| 11  | Maresara          | 21.3608 | 81.3739 |              |               | Chandi Lst                      |                                                           |               |                    |                 |

| 12 | Nandini                | 21.3903 | 81.3944 | 71.02 |       | Chandi Lst       | 3.26, 21.7  | 7.5  | Negligible |     |
|----|------------------------|---------|---------|-------|-------|------------------|-------------|------|------------|-----|
| 13 | Pahanda                | 21.2069 | 81.5403 | 33.29 |       | Chandi Lst       | 10.00-33.29 | 15.1 | 0.5        | 0.8 |
| 14 | Patan                  | 21.0333 | 81.55   | 194   | 11    | Gunderdehi Sh    | 18-19,134   | 8.9  | 3.5        | 6.4 |
| 15 | Purana                 | 21.1931 | 81.4292 | 63.57 | 18.64 | Chandi Lst       | 26.09-38.77 | 4.71 | 3          | 7.4 |
| 16 | Purana OW              | 21.1931 | 81.4292 | 36.05 | 16    | Chandi Lst       |             | 4.01 |            |     |
| 17 | Ghughwa                | 21.1417 | 81.3733 | 123   | 9     | Chandi limestone | 54-60       | 10.7 | 12         |     |
| 18 | Gabhara                | 21.1528 | 81.475  | 122   | 12.5  | Chandi limestone | 1214        | 2.2  | 0.5        |     |
| 19 | Pahndore               | 21.1517 | 81.45   | 98    | 11.78 | Chandi limestone | 10.5-15     | 0.8  | 4          |     |
| 20 | Funda                  | 21.0764 | 81.4833 | 104   | 8.5   | Chandi limestone | 8-9.5       | 7    | 0.5        |     |
| 21 | Vinakpur               | 21.0717 | 81.2639 | 128   | 5.5   | Chandi limestone | 66.5        | 4.05 | 0.5        |     |
| 22 | Chandkhuri             | 21.125  | 81.2667 | 122   | 13.5  | Chandi limestone | 25,35       | 2.4  | 2.5        |     |
| 23 | Pauwara                | 21.0917 | 81.325  | 122   | 6     | Chandi limestone | 68          | 1.3  | 0.5        |     |
| 24 | Kodia                  | 21.1069 | 81.2967 | 116   | 7.75  | Chandi limestone | 1214        | 3.06 | 0.5        |     |
| 25 | Navagaon               | 21.3125 | 81.2667 | 98    | 12    | Chandi limestone | 1418        | 2.8  | 6          |     |
| 26 | Hirri                  | 21.2917 | 81.2083 | 150   | 14.5  | Chandi limestone | 2430        | 4.4  | 0.5        |     |
| 27 | Okhra                  | 21.3083 | 81.4317 | 150   | 20    | Chandi limestone | 2425        | 7    | 0.8        |     |
| 28 | Dhour                  | 21.2683 | 81.3556 | 65    | 23.8  | Chandi limestone | 2532        | 8    | 1.8        |     |
| 29 | Bhilai (Sector<br>VII) | 21.1806 | 81.3178 | 19.5  | 12    | Chandi limestone | 17-17.5     | 3    | 5.5        |     |
| 30 | Bhilai (Sector<br>VII) | 21.1806 | 81.3178 | 70    | 30.5  | Chandi limestone | 35-35.5     | 6.5  | 0.5        |     |

| 31 | Bhilai (Sector<br>I)  | 21.1817 | 81.3342 | 70    | 19.5  | Chandi limestone 20-25                      |                                                                 | 4.2   | 1.5   |       |
|----|-----------------------|---------|---------|-------|-------|---------------------------------------------|-----------------------------------------------------------------|-------|-------|-------|
| 32 | Bhilai (Sector<br>I)  | 21.1817 | 81.3342 | 28.3  | 18.3  | Chandi limestone 20.1-23.7                  |                                                                 | 4.67  | 0.5   |       |
| 33 | Bhilai (Sector<br>IV) | 21.1889 | 81.3339 | 70    | 16.6  | Chandi limestone                            | 23.7-24.7                                                       | 2.32  | 0.5   |       |
| 34 | Bhilai (Sector<br>IV) | 21.1889 | 81.3339 | 20    | 14    | Chandi limestone                            | 18.7-19                                                         | 1.97  | 0.5   |       |
| 35 | Deori                 | 21.5253 | 81.3344 | 204.1 | 18.5  | Shale both of Argillaceous<br>& Ferruginous | Shale both of Argillaceous72.90-76.00, 94.30-& Ferruginous76.00 |       | -Dry- | -     |
| 36 | Litia                 | 21.3528 | 81.2167 | 204.1 | 30    | Shale both of Argillaceous & Ferruginous    | 72.90-76.00, 91.20-<br>94.30                                    | 16.81 | 2.13  | 21.49 |
| 37 | Litia                 | 21.3528 | 81.2167 |       | 30    | Shale both of Argillaceous<br>& Ferruginous | 36.30-39.40, 60.70-<br>63.80                                    | 17.36 | 1.79  | 19.14 |
| 38 | Ghota                 | 21.4236 | 81.2278 | 131   | 25.5  | Shale                                       | 28-31,122.5-125.5                                               | 13.19 |       | 6.99  |
| 39 | Ghota                 | 21.4236 | 81.2278 | 202   | 27.5  | Shale                                       | nil                                                             |       |       |       |
| 40 | Potia                 | 21.2506 | 81.2083 | 202   | 31.7  | Shale                                       | 131-134                                                         | 12.95 |       | 27.32 |
| 41 | Potia                 | 21.2506 | 81.2083 | 202   | 22.5  | Shale                                       | 31-34,67-70,                                                    | 14.24 |       | 13.41 |
| 42 | Temri                 | 21.2833 | 81.1667 | 202   | 30    | Shale                                       | nil                                                             | 17.5  |       |       |
| 43 | Biroda                | 21.4736 | 81.3714 | 202   | 6     | Shale/sst                                   | 15.9-19                                                         | 11.65 | 0.5   | 40    |
| 44 | Raunda                | 21.4681 | 81.2056 | 204.1 | 14.5  | Shale                                       | 30-33                                                           | 20.55 | 1.12  | 28.75 |
| 45 | Girhola               | 21.3894 | 81.4297 | 202   | 31.7  | Shale                                       | 34-37,49-52                                                     | 22.25 | 1.12  | 11.21 |
| 46 | Balodi                | 21.2444 | 81.2833 | 202   | 11.5  | Shale/Sst                                   | 46-49,195-198                                                   | 7.55  | 0.1   |       |
| 47 | Kachandur             | 21.2494 | 81.3333 | 165.4 | 12    | Shale                                       | 162-165.4                                                       | 27.69 | 12    | 2     |
| 48 | Kachandur             | 21.2494 | 81.3333 | 165.4 | 12.75 | Shale                                       | 162-165.4                                                       | 12.1  | 12.75 | 2     |
| 49 | Gandadih              | 21.0347 | 81.425  | 202   | 12    | Shale                                       | Dry                                                             |       | dry   |       |

| 50 | Pahanda     | 21.2056 | 81.5361 | 202   | 14                                 | Shale                            | 28-34                         | 7.1   | 3    | 24.3  |
|----|-------------|---------|---------|-------|------------------------------------|----------------------------------|-------------------------------|-------|------|-------|
| 51 | Pahanda     | 21.2056 | 81.5361 | 202   | 18.5                               | Shale                            | 31-34,                        | 7.74  | dry  |       |
| 52 | Nikum       | 21.0556 | 81.2228 | 204.1 | 18.5                               | Shale/Lis                        | 24-27,33-36                   | 7.62  | 0.51 | 35.08 |
| 53 | Ganiyari    | 21.2167 | 81.2333 | 204.1 | 18.5                               | Shale                            | 191-194                       | 72.73 | 0.2  |       |
| 54 | Shiv kokri  | 21.3333 | 81.2494 | 130.9 | 19.6                               | Shale/Clayey                     | 45.5-48.5,76-79,              | 15    | 5    |       |
| 55 | Dhaurabhata | 21.0642 | 81.3894 | 204.1 | 5.99                               | Slale                            | 42682                         | 2.01  | 0.1  |       |
| 56 | Bharar      | 20.9542 | 81.4506 | 200   | 12.5                               | Shale                            | 57-60,137-140                 | 20.8  | 0.78 | 20.6  |
| 57 | Pachpedi    | 21.1569 | 81.45   | 201.1 | 18                                 | Shale                            | 36-39,66-69,76-<br>79,194-198 | 14.03 | 3.3  | 32.29 |
| 58 | Pachpedi    | 21.1569 | 81.45   | 201.1 | 18                                 | Shale                            | 36-39,66-69,76-<br>79,194-198 | 14    | 3    |       |
| 59 | Girhola     | 21.3894 | 81.4297 | 307.1 | 26.5                               | Clay/Shale                       | 34.5-37.6                     | 12.3  | 0.6  |       |
| 60 | Shiv Kokri  | 21.3333 | 81.2494 | 147.4 | 62.09                              | Clay/Shale                       | 22-25,31-34,                  |       |      |       |
| 61 | Phagunda    | 20.8819 | 81.4714 | 202   | 21                                 | Charmuria Formationa and Granite | 85                            | 26.73 | 1    | 7.74  |
| 62 | Dundera     | 21.1487 | 81.398  | 201.1 | 15.1                               | Sandstone Shale                  |                               |       |      |       |
| 63 | Shivkokri   | 21.3333 | 81.2494 | 202.3 | 27.6<br>(with<br>slotted<br>14.00) |                                  | 24-27                         |       | 16   |       |
| 64 | Ranitarai   | 20.9468 | 81.542  | 202   | 12                                 | Shale Gunderdehi                 | nil 19.5 0.01                 |       |      |       |

#### 3. Data Interpretation, Integration and Aquifer Mapping

Based on the depth to water level periodical monitoring data of the key wells established in the study area, pre-monsoon and post-monsoon depth to water level maps as well as seasonal fluctuation maps have been prepared.

<u>Water Level Behavior</u>: (i) Phreatic aquifer: In the pre-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 3.9m bgl, maximum water level is 10.8 mbgl and average water level is 7.35 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 1.48 mbgl maximum water level is 17.07 mbgl, the average water level is 6.03 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 3.7 mbgl maximum water level is 7.5 mbgl, the average water level is 5.6 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 2.34 mbgl maximum water level is 9.72 mbgl, the average water level is 5.51 mbgl.

Fractured aquifer: In the pre-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 27.54m bgl, maximum water level is 30.88 mbgl and average water level is 29.21 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 5.6 mbgl maximum water level is 23.1 mbgl, the average water level is 14.39 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 12.35 mbgl maximum water level is 25.2 mbgl, the average water level is 18.76 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 3.5 mbgl maximum water level is 12.42 mbgl, the average water level is 7.96 mbgl.

| District | Formation        | Phreatic Aquifer |       |      |  |  |  |
|----------|------------------|------------------|-------|------|--|--|--|
| Name     |                  | Min              | Max   | Avg  |  |  |  |
| Durg     | Tarenga shale    | 3.9              | 10.8  | 7.35 |  |  |  |
|          | Chandi limestone | 1.48             | 17.07 | 6.03 |  |  |  |
|          | Chandi sandstone | 3.7              | 7.5   | 5.6  |  |  |  |
|          | Gunderdehi shale | 2.34             | 9.72  | 5.51 |  |  |  |

Table 10A: Aquifer wise Depth to Water Level (Pre-monsoon)

Water Level (in mbgl)

Table10B: Aquifer wise Depth to Water Level (Pre-monsoon)

|                    | 1                | •                 |       | ,     |  |
|--------------------|------------------|-------------------|-------|-------|--|
| District           | Formation        | Fractured Aquifer |       |       |  |
| Name               |                  | Min               | Max   | Avg   |  |
| Durg Tarenga shale |                  | 27.54             | 30.88 | 29.21 |  |
|                    | Chandi limestone | 5.6               | 23.1  | 14.39 |  |
|                    | Chandi sandstone | 12.35             | 25.2  | 18.76 |  |
|                    | Gunderdehi shale | 3.5               | 12.42 | 7.96  |  |

(ii) Phreatic aquifer: In the post-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 2.38m bgl, maximum water level is 7.26 mbgl and average water level is 4.82 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 0.84 mbgl maximum water level is 3.57 mbgl, the average water level is 2.14 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 1.2 mbgl maximum water level is 4.17 mbgl, the average water level is 2.69 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 1.13 mbgl maximum water level is 2.05 mbgl, the average water level is 1.53 mbgl.

Fractured aquifer: In the post-monsoon period, it has been observed that in Tarenga formation calcareous shale, the minimum water level is 4.31m bgl, maximum water level is 7.86 mbgl and average water level is 6.09 mbgl. It has been observed that in Chandi formation argillaceous limestone, the minimum water level is 3.62 mbgl maximum water level is 12.22 mbgl, the average water level is 8.14 mbgl. It has been observed that in Chandi formation sandstone, the minimum water level is 8.21 mbgl maximum water level is 13.57 mbgl, the average water level is 10.89 mbgl. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level is 1.73 mbgl maximum water level is 7.62 mbgl, the average water level is 4.68 mbgl.

|          |                  | •                |      |      |  |
|----------|------------------|------------------|------|------|--|
| District | Formation        | Phreatic Aquifer |      |      |  |
| Name     |                  | Min              | Max  | Avg  |  |
| Durg     | Tarenga shale    | 2.38             | 7.26 | 4.82 |  |
|          | Chandi limestone | 0.84             | 3.57 | 2.14 |  |
|          | Chandi sandstone | 1.2              | 4.17 | 2.69 |  |
|          | Gunderdehi shale | 1.13             | 2.05 | 1.53 |  |

Table 5C: Aquifer wise Depth to Water Level (Post-monsoon)

Water Level (in mbgl)

Table 5D: Aquifer wise Depth to Water Level (Post-monsoon)

| District | Formation        | Fract | Fractured Aquifer |       |  |  |
|----------|------------------|-------|-------------------|-------|--|--|
| Name     |                  | Min   | Max               | Avg   |  |  |
| Durg     | Tarenga shale    | 4.31  | 7.86              | 6.09  |  |  |
|          | Chandi limestone | 3.62  | 12.22             | 8.14  |  |  |
|          | Chandi sandstone | 8.21  | 13.57             | 10.89 |  |  |
|          | Gunderdehi shale | 1.73  | 7.62              | 4.68  |  |  |

(iii) Seasonal water level fluctuation: Phreatic aquifer: It has been observed that in Tarenga formation calcareous shale, the minimum water level fluctuation is 1.52m, maximum water level fluctuation is 3.54 m and average water level fluctuation is 2.53 m. It has been observed that in Chandi formation argillaceous limestone, the minimum water level fluctuation is 0.25 m, maximum water level fluctuation is 13.97 m, and the average water level fluctuation is 3.89 m. It has been observed that in Chandi formation sandstone, the minimum water level is fluctuation 2.5 m, maximum water level fluctuation is 3.33 m, and the average water level fluctuation is 2.92 m. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level fluctuation is 1.21 m, maximum water level fluctuation is 7.67 m, and the average water level fluctuation is 3.98 m.

Fractured aquifer: It has been observed that in Tarenga formation calcareous shale, the minimum water level fluctuation is 23.02m, maximum water level fluctuation is 23.23 m and average water level fluctuation is 23.13 m. It has been observed that in Chandi formation argillaceous limestone, the minimum water level fluctuation is 0.05 m, maximum water level fluctuation is 13.0 m, and the average water level fluctuation is 6.25 m. It has been observed that in Chandi formation sandstone, the minimum water level is fluctuation 4.14 m, maximum water level fluctuation is 11.63 m, and the average water level fluctuation is 7.89 m. It has been observed that in Gunderdehi formation calcareous shale, the minimum water level fluctuation is 3.2 m.

| District | Formation        | Fractured Aquifer |       |      |  |
|----------|------------------|-------------------|-------|------|--|
| Name     |                  | Min               | Max   | Avg  |  |
| Durg     | Tarenga shale    | 1.52              | 3.54  | 2.53 |  |
|          | Chandi limestone | 0.25              | 13.97 | 3.89 |  |
|          | Chandi sandstone | 2.5               | 3.33  | 2.92 |  |
|          | Gunderdehi shale | 1.21              | 7.67  | 3.98 |  |

Table 5E: Aquifer wise Depth to Water Level Fluctuation

Water Level (in m)

Table 5F: Aquifer wise Depth to Water Level Fluctuation

| District | Formation        | Fractured Aquifer |       |       |  |  |  |  |
|----------|------------------|-------------------|-------|-------|--|--|--|--|
| Name     |                  | Min               | Max   | Avg   |  |  |  |  |
| Durg     | Tarenga shale    | 23.02             | 23.23 | 23.13 |  |  |  |  |
|          | Chandi limestone | 0.05              | 13.0  | 6.25  |  |  |  |  |
|          | Chandi sandstone | 4.14              | 11.63 | 7.89  |  |  |  |  |
|          | Gunderdehi shale | 1.77              | 4.8   | 3.2   |  |  |  |  |

The long term water level trend indicates that there is decline in pre-monsoon water level in Dhamdha block, decline in both pre-monsoon and post-monsoon water level in Durg block and no appreciable change in water level both in pre-monsoon and post-monsoon period in Patan block.

<u>Groundwater Resource Availability and Extraction</u>: Based on the resource assessment made, the resource availability in aquifer wise in Durg district upto 200 m depth is given in the table-6.

|      | Tarenga Shale    |             |             |          |  |  |  |
|------|------------------|-------------|-------------|----------|--|--|--|
|      | Phi              | reatic      | Fractured   |          |  |  |  |
|      |                  | Static      |             |          |  |  |  |
|      |                  | (below pre  | In-storage  |          |  |  |  |
|      |                  | monsoon     | ( below     | Total    |  |  |  |
|      | Dynamic          | water level | Weathered   | resource |  |  |  |
|      |                  | up to       | Zone to 200 |          |  |  |  |
|      |                  | weathered   | meter)      |          |  |  |  |
|      |                  | Zone)       |             |          |  |  |  |
|      | 3131.37          | 863.72      | 60.55       | 4055.64  |  |  |  |
|      | Chandi limestone |             |             |          |  |  |  |
|      | 20938.91         | 23091.11    | 369.09      | 44399.11 |  |  |  |
| Durg |                  | Chandi S    | andstone    |          |  |  |  |
|      | 320.36           | 181.08      | 6.56        | 508.00   |  |  |  |
|      |                  | Gunderd     | lehi shale  |          |  |  |  |
|      | 1435.62          | 508.0       | 26.2        | 1969.82  |  |  |  |

Table – 6: Aquiferwise Ground Water Resources of Durg district in Ham

Existing and Future Water Demand (2025): The existing demand for irrigation in the area is 17234.14 Ham while the same for domestic and industrial field is 4190.77 Ham. To meet the future demand for ground water, a total quantity of 9129.99 ham of ground water is available for future use.

Table – 7: Ground Water Resources of Durg district in Ham

| SI.No | District<br>Assessment<br>Unit / Block | Total<br>Annual<br>Recharge<br>in<br>Ham | Net<br>Ground<br>Water<br>Availability<br>in<br>Ham | Existing<br>Gross<br>Ground<br>Water<br>Draft for<br>Irrigation<br>in<br>Ham | Existing<br>Gross<br>Ground<br>Water<br>Draft for<br>Domestic<br>&<br>Industrial<br>Water<br>Supply in<br>Ham | Existing<br>Gross<br>Ground<br>Water<br>Draft for<br>All<br>Uses in<br>Ham | Allocation<br>For<br>Domestic<br>&<br>Industrial<br>Water<br>Supply in<br>Ham | Net Ground<br>Water<br>Availability<br>for Future<br>Irrigation<br>Development<br>in Ham | Stage of<br>Ground<br>Water<br>Development<br>in % |
|-------|----------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1.    | Dhamdha                                | 11851.09                                 | 11183.45                                            | 8041.63                                                                      | 660.24                                                                                                        | 8701.87                                                                    | 761.02                                                                        | 2380.80                                                                                  | 77.81                                              |
| 2.    | Durg                                   | 7677.39                                  | 7171.60                                             | 3918.23                                                                      | 2579.25                                                                                                       | 6497.48                                                                    | 3058.07                                                                       | 195.30                                                                                   | 90.60                                              |
| 3.    | Patan                                  | 8717.60                                  | 8009.08                                             | 5274.28                                                                      | 951.28                                                                                                        | 6225.56                                                                    | 1006.22                                                                       | 1728.58                                                                                  | 77.73                                              |
|       | DISTRICT<br>TOTAL                      | 28246.08                                 | 26364.13                                            | 17234.14                                                                     | 4190.77                                                                                                       | 21424.91                                                                   | 4825.31                                                                       | 4304.68                                                                                  | 81.27                                              |

#### 4. AQUIFER GEOMETRY AND CHARACTERIZATION

Based on the exploratory drilling data generated for the blocks, the existing aquifer systems in the area may be divided into two namely phreatic and deeper fractured aquifer. The major aquifers present in the study area are (1) Tarenga formation calcareous shale (2) Chandi formation argillaceous limestone (3) Chandi formation sandstone (4) Gunderdehi formation calcareous shale .These are presented in Fig no 15(A,B,C) and 16(A,B,C).



Fig 15A: Geological cross-section along NE-SW direction in Dhamdha block





Fig 15B: Geological cross-section along NW-SE direction in Durg block







Fig 16A: Fence diagram of Dhamdha block



Fig 16B: Fence diagram of Durg block



Fig 16C: Fence diagram of Patan block

#### 5. Ground water related Issues

- (i) Low water yielding aquifer and scarcity during summer months.
- (ii) As per Industrial cluster report, Durg,2011-12,nitrate contamination has been found at the following locations:- Ahiwara, Ravelidih, Anda, Jeora-Sirsa and Pauwara.
- (iii) As per Industrial cluster report, Durg,2011-12,Locations around Bhilai Industrial Cluster have problem of following contaminants:

| Element  | Location        | Conc.(mg/l), |  |
|----------|-----------------|--------------|--|
| Eluorido | Sirsabhata      | 1.8          |  |
| Fluoride | Parewadih       | 1.6          |  |
|          | Bhilai sector 1 | 0.83         |  |
| Iron     | Bhilai E block  | 0.47         |  |
|          |                 | 0.47         |  |
|          | Utai            | 0.5          |  |
|          | Somni           | 0.64         |  |
|          | Somni           | 0.106        |  |
| Chromium | Utai            | 0.53         |  |
|          | Maroda          | 0.53         |  |
|          | Somni           | 0.046        |  |
| Lood     | Dundera         | 0.027        |  |
| Leau     | Maroda          | 0.01         |  |
|          | Bhilai          | 0.01         |  |

Table – 8: Locations showing high value of fluoride

- (iv) Concentration of iron in groundwater is more than the acceptable limit of 0.3mg/l as prescribed by BIS 2012.
- (v) It has been observed during fieldwork in pre-monsoon period, there is colossal wastage of groundwater through public water supply system.

#### **Reasons for groundwater issues:**

(i) Durg district experienced drought situation because of poor monsoon in the year 2016.

(ii) Drying up of wells and depletion of groundwater level during pre-monsoon is due to excessive groundwater withdrawal for irrigation of paddy in Rabi season and wastage during domestic uses.

(iii) Uneven distribution of yield potential and fractures in rocks.

(iv) In Chhattisgarh, power available at subsidized cost has been continuously leading to long duration and uncontrolled pumping of ground water withdrawal.

(v) Contamination of groundwater by anthropogenic sources like industrial effluent sources as well as geogenic sources.

#### 6. MANAGEMENT STRATEGY

#### a) Supply side interventions:

(i) Durg district experiences drought like situation because of poor monsoon. Sanctuary wells may be constructed for drinking needs as a step towards crisis management.

(ii) It has been observed during fieldwork in pre-monsoon period, there is colossal wastage of groundwater through public water supply system. The government has dug borewells of about 150-200feet depth, lowered a pump in the well to draw out water and constructed a small tank to hold water. Unfortunately, people do not switch off the pump once the tank is full. Also the pipes are not fitted with taps to control the flow of water.

So Information, education and Communication (IEC) activities to be organized to sensitize people on the issues of depleting groundwater resource. Massive awareness campaigns are essential to teach people about the importance community participation in saving water.

(iii) De-siltation of existing Tanks and Talabs to be carried out for efficient storage of rainwater. Also Rain water harvesting structures may be constructed in villages to reduce stress on groundwater.

(iv) In command or non-command area wherever ground water has been used for field irrigation of pulses and vegetables should be replaced with micro irrigation methods such as sprinklers, drip irrigation etc which can save upto 30% to 40% groundwater.

(v) It has been observed that though the long term trend lines are declining during pre-monsoon period, so we have to go for artificial recharge on a long term sustainability basis. Artificial Recharge structures may be constructed at suitable locations especially in the areas where the water level remains more than 3m in the post-monsoon period in this block to arrest the huge non-committed run-off and augment the ground water storage in the area.

(vi) The practice of providing free electricity to operate irrigation borewells should be strictly monitored and put to an end in case of overconsumption. After a simple calculation it has been found that Rs 16000/ hectare is the expenses of electricity (@Rs. 2.5/unit) for paddy field. So monitoring mechanism for electricity consumption should be strengthened for farmers taking summer rice.

Even if farmers use solar pump or other method of ground water irrigation for summer paddy, it should not be flooding method. Proper pipes are to be used to transfer water from one plot to another.

Govt. may set up network of grids to purchase electricity generated from solar panels. This will encourage the farmers not to waste electricity by extracting groundwater unnecessarily and also provide alternative income.

(vii)The water user association body should be strengthened so that there will be a balance between cropping time and availability of surface water through canal.Hence Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) must be given priority in implementation to extend the coverage of irrigation 'Har Khet ko pani' and improving water use efficiency 'More crop per drop' in a focused manner with end to end solution on source creation, distribution, management, field application and extension activities.

(viii) Iron removing filters or plants may be set up at appropriate locations.

(ix) The industrial effluent has been discharged in Somni nala and all the heavy metals are present in water samples of Somni nala. Therefore monitoring measures are essential for keeping a close watch on Somni nala water quality.

(ix) Furthermore, in order to strike a balance between the ground water draft and the available resource, suitable artificial structures at appropriate locations be constructed through successive phases after tentatively every 20 no.s of groundwater abstraction structures become operative.