2332/NQM/2021

केन्द्रीय भूमि जल बोर्ड

जल शक्ती मंत्रालय

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

भारत सरकार

CENTRAL GROUND WATER BOARD

Ministry of Jalshakti, Division of Water Resources, River Development & Ganga Rejuvenation Government of India

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN NAGPUR DISTRICT, MAHARASHTRA

(AAP 2019-20)

मध्य क्षेत्र, नागपुर, Central Region, Nagpur

मार्च 2021/ March 2021

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN NAGPUR DISTRICT, MAHARASHTRA (AAP 2019-20)

CONTRIBUTORS

:	Jr. Hydrogeologist/Scientist-B		
:	STA (Hydrogeology)		
:	Regional Director/ Superintending		
:	Hydrogeologist		
:	Senior Hydrogeologist/ Scientist-D		
	Scientist-D		
Hydrogeology, GIS maps and Management Plan			
:	Draughtsman		
:	Jr. Hydrogeologist/Scientist-B		
:	STA (Hydrogeology)		
:	Chief Draughtsman		
:	Jr. Hydrogeologist/Scientist-B		
:	Jr. Hydrogeologist/Scientist-D		
:	Scientist B		
:	Assistant Hydrogeology		
:	Scientist B (Chemist)		
	Scientist B (Chemist)		
:	Assistant Chemist		
	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		

NAGPUR DISTRICT AT A GLANCE

1. G	ENERAL INFORMATION	-		
	Geographical Area	:	9892 sq.km	
	Administrative Divisions	:	14; Ramtek, Umred, Kalmeshwar, Katol,	
	(2011)		Kamthi, Kuhi, Narkhed, Nagpur, Nagpur	
			(Rural), Parseoni, Bhiwapur, Mauda, Saoner,	
			Hingna.	
	Villages	:	1859	
	Population (2011)	:	46,53,570	
	Average Annual Rainfall	:	1138.84 mm	
	Normal Rainfall	:	1139.4 mm	
	Actual Rainfall (2019)	:	1129.1 mm	
2. G	EOMORPHOLOGY			
	Major Physiographic unit	:	Three; Northern hilly area, Western hilly area	
			and Kanhan & Wena river valley area	
	Major Drainage	:	Two; Wardha and Wainganga	
3. LA	ND USE (2018) (source: mahad	les.	maharashtra.gov.in/district Report)	
	Forest Area	:	2564.19 sq. km.	
	Net Area Sown	:	3964.69 sq. km.	
	Cultivable Area	:	6332.12sq. km.	
4.	SOIL TYPE	:	Loamy-clayey soils.	
5. PF	RINCIPAL CROPS (2016-17)			
	Cereals	:	187015 ha	
	Pulses	:	92405 ha	
	Cotton	:	142789 ha	
	Oil seeds	:	202096 ha	
	Sugarcane	:	1214 ha	
6. IR	RIGATION BY DIFFERENT SOUR	CES	S (2017-18)	
Nos.	/ Potential Created (ha)			
	Irrigation wells	:	65218/68275.9 ha	
	Minor Irrigation	:	14106/65774 ha	
	Medium Irrigation	:	16/65786 ha	
	Major Irrigation	:	3/218205 ha	
	Net Irrigated Area	:	150293 ha	
7. G	ROUND WATER MONITORING	NE	LLS (2019)	
	Dugwells	:	82	
	Piezometers	:	15	
8. G	EOLOGY			
	Recent	:	Alluvium	
	Upper Cretaceous-Lower	:	Deccan Trap Basalt	
	Eocene			
	Cretaceous	:	Lameta	
	Permo-carboniferous		Gondwana	
	Archeans		Sausars and Granitic gneiss	

9. HYDROGEOLOGY				
Water Bearing For	rmation :	Basalt- weathered/fractured/ jointed		
		vesicular/massive, under phreatic and semi-		
		confined to confined conditions. Alluvium-		
		Sand and Gravel under phreatic and semi-		
		confined to confined conditions.		
Pre-monsoon Dep	th to :	1.5 mbgl (Sawali, Kuhi)- 32.4 mbgl (Parsodi		
Water Level (May	-2019)	wakil, Kalmeshwar)		
Post-monsoon De	pth to :	0.1 mbgl (kadoli, kamtee)- 20.2 mbgl (Parsodi		
Water Level (Nov.	-2019)	wakil, Kalmeshwar)		
Pre-monsoon Wat	ter Level :	Rise: 0.18 m/yr (Wadi naka-2.35 m/yr		
Trend (2010-2019)	(Chichbhuwan)		
		Fall: 0.002 m/yr (Amgaon) – 4.94 m/yr		
		(Jalalkheda)		
Post-monsoon Wa	ater Level :	Rise: 0.006 m/yr (Ramdaspeth) – 2.69 m/yr		
Trend (2010-2019)	(Kondhali)		
		Fall: 0.006 m/yr (Amgaon)-14.79 m/yr		
		(Paradsinga)		
10. GROUND WATER EX	(PLORATION (Upto 2019)		
Wells Drilled	:	EW-137 OW-57, Pz-38		
Depth Range	:	30.00 to 307.00 m bgl		
Discharge	:	0.14 – 14.00 lps		
Storativity	:	3.1 x 10 ⁻³ to 6.6 x 10 ⁻⁶		
Transmissivity	:	8.10 to 1638.73 m ² /day (Basalt)		
11. GROUND WATER Q	UALITY			
Good and suitable	e for drinking a	nd irrigation purpose, however localized nitrate/		
fluoride contamin	ation is observ			
12. DYNAMIC GROUND	WATER RESO	URCES (ham) - (2017)		
Net Annual Groun Availability	d Water :	89604.53		
Total Extraction (I	rrigation + :	45961.83		
Domestic+ Indust	rial)			
Projected Demand	: k	10660.92		
(Domestic + Indus	trial)			
Stage of Ground V	Vater :	51.29		
Development				
Overall Category		Safe		
13. MAJOR GROUND W	ATER PROBLE	MS AND ISSUES		
Ground water qua	ality is adversel	y affected by nitrate / fluoride contamination.		
Declining water le	Declining water level trend both pre-monsoon and post-monsoon			
14. Aquifer Managem	nent Plan			

:	Proposed AR structures
	Percolation tanks: 354
	Check dams: 1010
	Expected Augmentation: 75.78 MCM/year
:	Area Proposed for drip irrigation for
	Sugarcane: 2.02 sq km.
	Area Proposed for drip irrigation for Cotton:
	28.75 sq km.
	Expected Saving: 9.88 MCM /year
:	Stage of groundwater development gets
	reduced from 51.3 % to 46.28%.
	Balance Groundwater resource available:
	230.53 MCM.
:	Proposed no. of Dugwells: 13832
	Proposed no. of Borewells:2305
	These can provide assured irrigation to about
	472.99 sq km.
	:

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS NAGPUR DISTRICT, MAHARASHTRA (AAP 2019-20)

CONTENTS

т.	INTRODUCTION1				
1.1	About the study area1				
1.2	Geomorphology, Drainage and Soil Types4				
1.3	Climate and Rainfall7				
1.4	Geology	9			
2.	HYDROGEOLOGY	12			
2.1	Aquifer Parameters	. 18			
2.1	.1 Specific Yield Tests	.18			
2.2	Soil Infiltration Tests18				
2.3	2-D Aquifer Disposition	. 20			
3.	WATER LEVEL SCENARIO	23			
3.1	Depth to water level (Aquifer-I /Shallow Aquifer)	. 23			
3.1	.1 Depth to Water Level – Pre-monsoon (May-2019)	.23			
3.1	.2 Depth to Water Level – Post monsoon (Nov-2019)	.24			
3.2	Depth to water level (Aquifer-II / Deeper Aquifer)	. 24			
3.2	.1 Pre-monsoon Depth to Water Level (May-2019)	.24			
3.2	.2 Post-monsoon Depth to Water Level (Nov2019)	.25			
3.3	Water Level Trend (2010-2019)	. 26			
3.4	Hydrograph Analysis	. 28			
4.	GROUND WATER QUALITY	33			
4.1	Electrical Conductivity (EC)	. 33			
41	1 Distribution of Electrical Conductivity in Aquifer-1 / Shallow Aquifer-	~ ~			
7.1	Distribution of Electrical Conductivity in Aquifer 17 Shahow Aquifer	.33			
4.1	.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer:	33			
4.1 4.2	.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate	33 34 35			
4.1 4.2 4.3	.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate	33 34 35 35			
4.1 4.2 4.3 4.4	.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes	33 34 .35 .35 .36			
4.1 4.2 4.3 4.4 4.5 4.6	.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sadium Absorption Patio (SAP)	33 34 .35 .35 .36 .36 .37			
4.1 4.2 4.3 4.4 4.5 4.6 4.6	.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC)	33 34 35 35 36 37 38 38			
4.1 4.2 4.3 4.4 4.5 4.6 4.7	2 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC)	33 34 35 35 36 37 38 38 38			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.	2 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC) GROUND WATER RESOURCES	33 34 35 35 36 37 38 38 38 38			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2	2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC) GROUND WATER RESOURCES Ground Water Resources – Aquifer-I	33 34 .35 .35 .36 .37 .38 .38 .38 .40 .40			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2	 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer: Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC) GROUND WATER RESOURCES Ground Water Resources – Aquifer-I Ground Water Resources – Aquifer-II 	33 34 35 35 36 37 38 38 38 38 40 40 42			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2 6.	2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate	33 34 35 35 36 37 38 38 38 38 40 42 42 42			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2 6. 6.1	 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer: Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC) GROUND WATER RESOURCES Ground Water Resources – Aquifer-I Ground Water Resources – Aquifer-II GROUND WATER RELATED ISSUES Declining Water Levels 	33 34 35 35 36 37 38 38 38 40 42 43			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2 6. 6.1 7.	.2 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC) GROUND WATER RESOURCES Ground Water Resources – Aquifer-I GROUND WATER RELATED ISSUES Declining Water Levels GROUND WATER MANAGEMENT PLAN Declining Water Levels	33 34 35 35 36 37 38 38 38 38 40 40 42 42 43 43 44			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2 6. 6.1 7. 7.1	.2 Distribution of Electrical Conductivity in Aquifer I/ Deeper Aquifer: Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC) GROUND WATER RESOURCES Ground Water Resources – Aquifer-I GROUND WATER RELATED ISSUES Declining Water Levels GROUND WATER MANAGEMENT PLAN Supply Side Management	33 34 35 35 36 37 38 38 38 38 40 42 43 43 44			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2 6. 6.1 7. 7.1 7.2	2 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer Nitrate	33 34 35 35 36 37 38 38 38 38 38 38 38 38 38 38 38 34 34 34 35 36 37 38 32 36 37 38 40 42 42 44 44 44 44 44			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. 5.1 5.2 6. 6.1 7. 7.1 7.2 7.3	2 Distribution of Electrical Conductivity in Aquifer 17 Junifow Aquifer 2 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer Nitrate Fluoride Suitability of Ground Water for Drinking Purposes Suitability of ground water for irrigation Sodium Absorption Ratio (SAR) Residual Sodium Carbonate (RSC) GROUND WATER RESOURCES Ground Water Resources – Aquifer-I Ground Water Resources – Aquifer-II GROUND WATER RELATED ISSUES Declining Water Levels Supply Side Management Expected Benefits	33 34 35 35 36 37 38 38 38 38 38 38 38 38 38 38 38 34 34 34 35 36 35 36 37 38 40 42 43 44 44 44 44			

CGWB, CR, Nagpur 6

7.4	Development Plan
8.	SUM UP 50
9.	BLOCK WISE AQUIFER MAPS AND GROUND WATER
MAN	AGEMENT PLAN
9.1	UMRED BLOCK, NAGPUR DISTRICT, MAHARASHTRA52
9.2	HINGNA BLOCK, NAGPUR DISTRICT, MAHARASHTRA61
9.3	BHIWAPUR BLOCK, NAGPUR DISTRICT, MAHARASHTRA
9.4	KUHI BLOCK, NAGPUR DISTRICT, MAHARASHTRA78
9.5	NAGPUR BLOCK, NAGPURDISTRICT, MAHARASHTRA
9.6	KATOL BLOCK, NAGPUR DISTRICT, MAHARASHTRA94
9.7	NARKHED BLOCK, NAGPUR DISTRICT, MAHARASHTRA 103
9.8	KALMESHWAR BLOCK, NAGPUR DISTRICT, MAHARASHTRA 111
9.9	KAMPTEE BLOCK, NAGPUR DISTRICT, MAHARASHTRA 122
9.10	MAUDA BLOCK, NAGPUR DISTRICT, MAHARASHTRA 132
9.11	PARSEONI BLOCK, NAGPUR DISTRICT, MAHARASHTRA 141
9.12	RAMTEK BLOCK, NAGPUR DISTRICT, MAHARASHTRA 152
9.13	SAVNER BLOCK, NAGPUR DISTRICT, MAHARASHTRA 162
10.	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN 173
10.1	WATERSHEDS WGKN-2 and WGKN-3, SUKALI, UMRED BLOCK, NAGPUR
DIST	RICT, MAHARASHTRA 173
10.2	WATERSHEDS WGKN-2, VILLAGE SALAI GODHANI, NAGPUR (RURAL) BLOCK,
NAG	PUR DISTRICT, MAHARASHTRA 181
10.3	WATERSHEDS WGA- 4 and WRWN-1, VILLAGE MANDWA, BHIWAPUR BLOCK,
NAG	PUR DISTRICT, MAHARASHTRA 188
10.4	WATERSHEDS WGKN-2 AND WGKN-3, VILLAGE DHANOLI, KUHI BLOCK,
NAG	PUR DISTRICT, MAHARASHTRA 195
11.	ANNEXURES

LIST OF FIGURES

Figure 1.1. Index map of Nagpur District	2
Figure 1.2. Administrative map of Nagpur District	3
Figure 1.3: Geomorphology	4
Figure 1.4: Drainage	5
Figure 1.5: Soils	6
Figure 1.6: Land Use	7
Figure 1.7: Isohyet map of Nagpur District	8
Figure 1.8: Long term annual rainfall (1998-2019)	9
Figure 1.9: Geological Map, Nagpur district	12
Figure 2.1: Hydrogeology	15
Figure 2.2: Aquifer wise Depth of occurrence and fractured rock thickness	16
Figure 2.3: Aquifer wise yield Potential	17
Figure 2.4: Soil Infiltration test	20

CGWB, CR, Nagpur 7

Figure 2.5: 3D Fence Diagram	21
Figure 2.6: Bar Diagram	21
Figure 2.7(a): Lithological section along A – A'	22
Figure 2.7(b): Lithological section along B – B'	22
Figure 2.7(c): Lithological section along C – C'	22
Figure 3.1: DTWL Aquifer-I Shallow aquifer (May 2019)	23
Figure 3.2: DTWL Aquifer-I Shallow aquifer (November 2019)	24
Figure 3.3: DTWL Aquifer-II deeper aquifer (May 2019)	25
Figure 3.4: DTWL Aquifer-II deeper aquifer (Nov. 2019)	26
Figure 3.5: Pre-monsoon decadal trend (Shallow aquifer) (2010-2019)	27
Figure 3.6: Post-monsoon decadal trend (Shallow aquifer) (2010-2019)	27
Figure 3.7 a: Hydrograph (2010-19), Deolapar, Ramtek Block, Nagpur District	28
Figure 3.7 b: Hydrograph (2010-19), Rohna, Narkhed Block, Nagpur District	28
Figure 3.7 c: Hydrograph (2010-19), Chacher, Mauda Block, Nagpur District	29
Figure 3.7 d: Hydrograph (2010-19), Mohpa, Kalmeshwar Block, Nagpur District	29
Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu	ır
Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District	ır 29
Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District	ır 29 30
Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District	ır 29 30 30
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District 	ır 29 30 30 30
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District 	ır 29 30 30 30 31
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District 	ır 29 30 30 30 31 31
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District 	ır 29 30 30 31 31 31
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District 	ur 29 30 30 31 31 31 31 32
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District Figure 4.1: Ground water quality, Aquifer-I / Shallow aquifer 	ur 29 30 30 31 31 31 31 32 34
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District. Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District. Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District. Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District. Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District. Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District. Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District. Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District. Figure 4.1: Ground water quality, Aquifer-I / Shallow aquifer. Figure 4.2: Ground water quality, Aquifer-II/Deeper aquifer. 	ur 29 30 30 31 31 31 31 32 34 35
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District. Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District. Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District. Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District. Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District. Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District. Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District. Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District. Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District. Figure 4.1: Ground water quality, Aquifer-II/Deeper aquifer. Figure 5.1. Groundwater resources (2017), Nagpur district, Maharashtra. 	ur 29 30 31 31 31 31 31 32 34 35 40
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District Figure 3.7 l: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District Figure 4.1: Ground water quality, Aquifer-I / Shallow aquifer Figure 5.1. Groundwater resources (2017), Nagpur district, Maharashtra	ur 29 30 30 31 31 31 32 34 35 40 45
 Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpu District. Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District. Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District. Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District. Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District. Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District. Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District. Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District. Figure 3.7 l: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District. Figure 4.1: Ground water quality, Aquifer-I / Shallow aquifer. Figure 5.1. Groundwater resources (2017), Nagpur district, Maharashtra. Figure 7.1: Location of Proposed Artificial Recharge structures . 	ur 29 30 31 31 31 31 31 32 34 35 40 45 47

LIST OF TABLES

Table 1.1: Long term (1998-2019) Rainfall Analysis, Nagpur district, Maharashtra8
Table 2.1: Aquifer Characteristic of Nagpur district 14
Table 2.2: Salient features of pumping tests – shallow aquifer (dug well) using
Kumarswamy method18
Table 2.3: Salient Features of Infiltration Tests19
Table 4.1: Aquifer wise ranges of chemical constituents in Nagpur district
Table 4.2: Concentration of Chemical constituents in aquifer I/shallow Aquifer36
Table 4.3: Concentration of Chemical constituents in Deeper Aquifer
Table 4.4: Classification of Ground water for Irrigation based on EC values
Table 4.5: Classification of Ground water for Irrigation based on SAR values
CGWB, CR, Nagpu

8

Table 4.6: Classification of Ground water for Irrigation based on RSC values	39
Table 5.1: Ground water resources, Aquifer-I (Shallow aquifer), Nagpur district	
(2017)	41
Table 5.2: Ground Water Resources of Aquifer-II (Deeper aquifer)	42
Table 7.1: Area feasible and volume available for Artificial Recharge	44
Table 7.2: Proposed Artificial Recharge Structures	45
Table 7.3: Demand side interventions proposed	46
Table 7.4: Expected benefits after implementation of management options	47
Table 7.5: Block wise additional area under assured GW Irrigation.	48

LIST OF ANNEXURES

Annexure-I: Salient Features of Ground Water Exploration, Nagpur District Annexure-II: Details of KOWs in Nagpur district

Annexure-III: Details of GW monitoring wells in Nagpur district Annexure IV: Soil Infiltration Test

Annexure-V: Chemical analysis of ground water samples, Aquifer- I / Shallow aquifers

Annexure-VI: Chemical analysis of ground water samples, Aquifer- II / Deeper aquifers47

Annexure-VII: Water Level of Ground water monitoring wells (2019) with long term trend (2010-2019)

Annexure VIII: Location of Percolation Tanks

Annexure IX Location of Check Dams

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS NAGPUR DISTRICT, MAHARASHTRA

1. INTRODUCTION

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once ample alluvial aquifers, lack of regulation mechanism has a negative effect on ground water scenario of the Country in last decade. To defeat the aftermath of this effect on groundwater, National Aquifer Mapping (NAQUIM) has been taken up in XII five year plan by CGWB to carry out detailed hydrogeological investigation on toposheet scale of 1:50,000. The NAQUIM has been prioritized to study Over-exploited, Critical and Semi-Critical blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus, the crux of NAQUIM is not merely mapping, but reaching the goal of ground water management through community participation. The aquifer maps and management plans will be shared with the Administration of Nagpur district, Maharashtra for its effective implementation.

The activities under NAQUIM are aimed at:

- Identifying the aquifer geometry,
- Aquifer characteristics and their yield potential
- Quality of water occurring at various depths,
- Aquifer wise assessment of ground water resources
- Preparation of aquifer maps and
- Formulate ground water management plan

1.1 About the study area

Nagpur district is one of the eleven districts of Vidarbha Region and is located in the eastern region of Vidharbha of Maharashtra State. Nagpur Districts is located on 20°35' & 21° 44'N longitude & 78° 15' & 79° 40' E latitude. As per Survey of India toposheets Nagpur lies in 55/O, 55/K, 55/L & 55/P degree sheets. Towards the northern border of District, the Chindawara & Shiwani Districts of Madhya- Pradesh state is located, Bhandara District is towards eastern border, & towards southern border is Wardha District of Maharashtra. While towards south east border is Chandrapur District of Maharashtra & towards north-west border is Amravati District of Maharashtra.

In 1853, after the death of Raghoji III, the princely state of Nagpur was annexed by the British and the territory occupied by the present district became part of the then Nagpur Province. In 1861, it was merged with the Central Provinces. In 1903 it became part of the Central Provinces and Berar. In 1950 Nagpur district was created as became part of the newly formed Madhya Pradesh state and Nagpur became its capital. In 1956, after a reorganisation of Indian states, Nagpur district was incorporated into Bombay state. On 1 May 1960, it became a district of Maharashtra state. It is the part of Nagpur Division. The district headquarters is located at Nagpur town. "Zero Mile" located in Nagpur, from here the distances throughout India are measured. All the Major highways & railways pass via Nagpur. This district is divided into 14 talukas - Ramtek, Umred, Kalmeshwar, Katol, Kamthi, Kuhi, Narkhed, Nagpur, Nagpur (Rural), Parseoni, Bhiwapur, Mauda, Saoner, Hingna. The Index and Administrative map of the district is presented in **Figure 1.1 and 1.2** respectively.

Figure 1.1. Index map of Nagpur District

Figure 1.2. Administrative map of Nagpur District

The district forms part of Godavari basin. Wainganga River is the main river flowing through the district.

Nagpur district has been taken up under NAQUIM study during the year 2019-20. The total area of the district is about 9892 sq.km. The district is categorized as safe as per Ground Water Resources Estimation as on March 2017. Central Ground Water Board has taken up several studies in the district since 1970 to 2019 including Systematic Hydrogeological Survey, Reappraisal Hydrogeological Studies, Pollution Studies, Pilot Project of Aquifer Mapping, NAQUIM studies etc. The data generated have been shared with the Central, State agencies as well as with the stake holders in the form of reports, maps etc. Salient Features of Ground Water Exploration are given in **Annexure-I** and details of KOW established during AAP 2019-20 under NAQUIM are given in **Annexure-II**.

To assess the ground water regime, 94 existing ground water monitoring stations of CGWB being monitored 4 times in a year were used. Ground water exploration data was used to decipher sub-surface lithological disposition and hydrogeological setup of shallow aquifer (Aquifer-I) and deep aquifer (Aquifer). The details of monitoring wells are given in **Annexure-III**.

CGWB, CR, Nagpur 3

1.2 Geomorphology, Drainage and Soil Types

The Satpuda mountain ranges constitute the northern & north western part of Nagpur district. They show plateaus & hillocks landforms. Towards the east & north- east side of the district, few Satpuda mountain ranges are seen. The district forms part of Deccan Plateau having flat topped and terraced features. Eastward and north-eastwards the landscape changes due to the change in the underlying rocks. The rocks of Gondwana series present a low rolling topography with a poor soil cover and vegetation. On the north the upland ranges are the extension of Satpuras which gradually narrows down towards west. South of these upland range stretches the Ambegad hills, the western extremity of which is the Nagpur district. The Ramtek temple is on the spur of this range. The Girad hill range extends along the southeast and separates the valley of the Kar from that of Jamb up to Kondhali. Another main hill range runs northwards through Katol taluka from Kondhali to Kelod separating the Wardha and Wainganga valleys. The central part of the district is plain terrain. District has the highest altitude of 652m above mean sea level, in the northern side and the lowest altitude of 274m above mean sea level near the Kanhan River of the district.

Figure 1.3: Geomorphology

Nagpur District is drained by the Wainganga and Wardha Rivers, the northern, north-eastern & south-eastern part of the district is occupied by Wainganga river basin. The Wainganga basin has its river sub basin like Kanhan, Pench, Kolar, Bawanthadi, Sur, Aam & Maru. All these rivers flow form north, north-CGWB, CR, Nagpur east towards south, south-east. The Chandrabhaga & Nag River flow from west towards east & meet the Kolar Sub Rivers. The Kanhan, Pench, kolar, Bawanthadi Chandrabhaga & Nag Rivers are perennial.

The North –west, west & south-west part of the district are occupied by the Wardha river basin, with Jam, Kad, vena, Nand & Bor sub river basins. The Wardha River, the Bor & the vena rivers are perennial.

Figure 1.4: Drainage

There are six types of soils found in Nagpur district. The details are as follows:

1) Kali soils: These are black cotton soils which are fine grained clayey in texture and varies in depth from 1 to 6 m or more and retain moisture. They are found around Kalmeshwar, Saoner and Nagpur.

2) **Morand soils**: These are predominant in the district. They are black cotton soils with higher percentage of lime than the Kali soils. They are black, grey or light to dark brown in colour, clayey in texture and have a depth of about 1 to 3 m.

3) **Khardi soils**: They are shallow soils mixed with sand and found mainly in hills. These are grey in colour, clay loam in texture.

4) **Bardi soils**: They are red gravel covered with boulders found on summits and slopes of trap hills and are less fertile in nature.

5) **Kachchar soils**: They are mainly found in the banks of Kanhan River and are alluvial soils, loamy in nature and vary in depth from 1 to 3 m.

6) **Wardi soils**: They are red soils with a large amount of sand. They are shallower and clayey loam in nature. They are mainly found in the paddy tracts in the eastern part of the district.

Figure 1.5: Soils

Figure 1.6 shows the Land Use details in the district. It is observed that the major parts of the district are covered by agricultural land with net sown area of 3964.69 Sq.km (40.08 %). Forest covers area of 2564.19 Sq.km (25.92 %) and double cropped area covers 2290 Sq.km (23.15 %). The built-up area is reflected wherever settlements have come up.

Figure 1.6: Land Use

1.3 Climate and Rainfall

Nagpur District has a semi-arid climate, winter lasts from October to February, the December & January are severely cold. The average day temperature is about 27°C while that of night is about 11°C & sometimes it can drop down even by 5°C. From the month of March temperature starts increasing. May is the hottest Month, with average temperature of about 40°C rising even up to 47°C. Nagpur District mainly experiences rainfall from south-west monsoon. It rains from June to September. The western parts of the District receive on an average rainfall of 800-900 mm and other parts of District receive 1000- 1200mm annual rainfall. The long-term rainfall analysis (1998-2019) is presented in **Table 1.1**. The special distribution of the rainfall is given in **figure 1.7** and **figure 1.8** show the variation of data with time. The minimum rainfall occurred in 2004 (699.2 mm) and maximum rainfall in 2001 (1455.8mm). The rainfall trend analysis shows a falling trend @ 18.44 mm/year.

The rainfall analysis shows that the departure of annual rainfall from the normal rainfall, expressed in terms of percentage, varied from -38 to +27 percent. The departure percent analysed denotes the rainfall variation pattern with respect to normal rainfall during the period. The area experienced 1 time (5%) excess rainfall, 17 times (77%) normal rainfall and 4 times (18%) moderate drought conditions as given in **Table 1.1**. The coefficient of variation of the annual rainfall from the mean rainfall has been observed to be 21.1 %.

Figure 1.7: Isohyet map of Nagpur District

	0 1			
YEAR	AVERAGE	NORMAL	DEPARTURE	CATEGORY
1998	1385	1139.4	21.55520449	Normal
1999	1385	1139.4	21.55520449	Normal
2000	1384.5	1139.4	21.51132175	Normal
2001	1455.8	1139.4	27.76900123	Excess
2002	870.1	1139.4	-23.63524662	Normal
2003	1075.8	1139.4	-5.581885203	Normal
2004	699.2	1139.4	-38.63436897	Moderate
2005	1333.5	1139.4	17.03528173	Normal
2006	1002.3	1139.4	-12.03264876	Normal
2007	1150.2	1139.4	0.947867299	Normal
2008	849.6	1139.4	-25.43443918	Normal
2009	947.8	1139.4	-16.815868	Normal
2010	1263	1139.4	10.84781464	Normal
2011	943.5	1139.4	-17.19325961	Normal
2012	1030.5	1139.4	-9.557661927	Normal
2013	1030.5	1139.4	-9.557661927	Normal
2014	797.3	1139.4	-30.02457434	Moderate
2015	1100.9	1139.4	-3.378971388	Normal

Table 1.1: Long term (1998-2	2019) Rainfall Analysis,	Nagpur district, Maharashtra

CGWB, CR, Nagpur

YEAR	AVERAGE	NORMAL	DEF	PARTURE	CATEGORY		
2016	823.6	1139.4	-27.7	1634193	Moderate		
2017	821.5	1139.4	-27.9	0064946	Moderate		
2018	902.6	1139.4	-20.7	8286818	Normal		
2019	1129.1	1139.4	-0.90	3984553	Normal		
PERIOD	:	1998 to 2019					
No. of years	:	22		MEAN :1062.8			
Normal Rainfa	II :	1139.4		MEDIAN	: 1030.5		
Standard Devia	ation :	223.83 mm		MODE :1	.385		
COEFFICIENT C	OF VARIATION	21.1 %					
SLOPE		-18.438 mm/yr					
INTERCEPT		1274.8					
EQUATION OF	TREND LINE	y = -18.438x +	1274.8				
CATEGORY		NUMBER OF YEARS %OF 7			TAL YEARS		
DEPARTURES							
POSITIVE			7		32		
NEGATIVE			15		68		
DROUGHTS							
MODERATE			4		18		
SEVERE			0		0		
ACUTE			0		0		
NORMAL & EXCESS R/F							
NORMAL			17		77		
EXCESS			1		5		
ainfall departure: EXCESS: > +25; NORMAL: +25 TO -25; MODERATE: -25 TO -50; SEVERE: -50 TO -75; ACUTE: <75							

y = -18.438x + 1274.8

(Source-website of Maharashtra Government: mahaagri.gov.in)

Figure 1.8: Long term annual rainfall (1998-2019)

1.4 Geology

Nagpur District has varied Geology. The District has all the rock types like igneous, sedimentary, and metamorphic. The geological map is shown in **Figure 1.9.** The Geological formation of the Nagpur Districts is as follows:

S.	Age	Formation	Lithology	Name of Talukas included
				CGWB, CR, Nagpur

No.				
1	Recent to subrecent	Alluvial	Sand, Silt & Caly	Saoner, Kamptee, Parseoni, Mouda, Kuhi, Narkhed
2	Upper cretaceous to lower Eocene		Basaltic lava flows with associated intertrappean sediments	Nagpur, Hingana, Kalmeshwar, Katol, Kuhi, Narkhed, & Saoner
3	Upper carboniferous to lower cretaceous	Lameta	Calcareous Sandstone, Sandy Limestone with intercalations of chert and clay	Nagpur, Hingana, Saoner, Kalmeshwar, Umred, Kuhi & Bhiwapur
4	Lower Permian to upper Permian	Gondwana	Kamthi, Barakar and Talchir stages. (Sandstone, grit , clay, carboniferous shales and basal conglomerates	Nagpur, Saoner, Kalmeshwar, Parsioni, Kamptee, Narkhed, Umred, Bhiwapur
5	Archean	Saucer and Sakoli formations	Streaky Granite Gniess and metasediments of Sausar and Sakoli formations	Nagpur, Saoner, Ramtek, Parseoni, Kamptee, Mouda, Umred, Kuhi, Bhiwapur

Archean Formations:

The Archeans comprise two lithological units, the older unit comprising of various Gneisses, granulites and Schists resulting from metamorphism of ancient sediments and younger group of Gneisses.

Tirodi Gneissic Complex of Archaean to paleo Proterozoic age comprising Migmatite, ortho gneiss, and Granite occupies the eastern and north eastern part. An Outcrop of granulite is marked at 14 km NE of Mauda.

Amgaon Gneissic complex of Archaean to paleo Proterozoic age occupies the South Eastern part and comprises granitic gneisses, Migmatite gneiss, calc- silicates, quartzite, Ultramafics and Amphibolites. Sakoli Group of Meso Proterozoic age occupies the southern part and comprises mica schist, phyllite, and carbonaceous phyllite, metabasalt with associated tuff, metarhyolite and felsic volcanics with associated tuff.

Sausar and Sakoli Group of Meso Proterozoic age occupies the northern part and comprises quartz-muscovite schist, feldspar-muscovite schist and intercalated quartzite (Sitasawangi Formation); calc-gneiss and manganiferous marble with pockets of manganese ore (Lohangi Formation); muscovite biotite schist with manganese ore (Mansar Formation); quartzite and quartzite muscovite schist (Chorbaoli Formation); muscovite –biotite schist and quartzite-biotite granite (Junewani Formation) and crystalline Limestoneand dolomite(Bichua Formation) which are repeatedly tight folded. Sausar group is a store house of Manganese ore deposits. Sakoli group is considered to be continuation of Saucer group.

Gondwana Group

Rocks comprising of Talchir, barakar and kamthi stages of Gondwana formation are of fluviatile and lacustrine origin. These sediments were deposited in troughs and synclines, consolidated and lifted and now preserved in troughs produced by faults. The Kelod kamptee line which marks the north-east boundary of Kamthi beds with Archeans is a boundary fault.

Talchir Formation:

Basal beds of Gondwana group comprising green shales and sandstones with minor intercalations of clay and a basal conglomerate and rest unconformable over the Archean rocks. These are exposed at Kodadonagri (north of Patansaongi) and 9 km north of Nagpur near Suradevi hills.

Barakars:

Following Talchirs Barakar consists of white and grey sandstones and grits, fire clays and carbonaceous shales with workable coal seams.

Kamthis:

These are predominantly conmposed of soft and coarse-grained sandstones with some micaceous sandstones and homogenous and compact shales. These rocks occupy an area which is bounded by Kelod- Kamtee line towards north-east along which Kamtees have been faulted. Southwards they stretch upto Bokhara 6km north of Nagpur. At Silewara about 8 km north west of Kamtee a low range of hills composed of Kamthis and extending upto Bokhara forms the type area. Two inliers of of Kamth rocks are seen in deccan trap basalt area to the west of Nagpur. One of these lies to the north east of Bazargaon and another north west of Nagpur at Gonkheri.

Lametas:

Lametas also known as infratrappeans are fresh water deposits and rest horizontally over the older Gondwana and Archean rocks. Lametas have limited extent and rarely attains a thickness of more than 15-20 m. They comprises of calcareous sandstones, to sandy limestones, with intercalations of chert and clay. They occurss at foothills of Kelod and sitabuldi (Nagpur) hills. A large spread of Lametas is seen immediately west of Umrer.

Deccan Trap:

Basalt is the main formation of the District which occupies an area of about 4300 sq.km, i.e., about 50% of the total area of the District. The area covering Katol, Narkhed, Hingna & umred talukas and some part of Nagpur, Saoner, Kalmeshwar, Bhiwapur & Kuhi taluka. The thickness of the layer is generally 15 to 30 mts. Within the two layers intertrapean clay deposits are found known as red bole beds. Individual flow is is generally massive at bottom and Vesicular or amygdaloidal at top. Secondary fillings of vesicles comprise calcite, zeolite and quartz.

Alluvium:

Alluvium deposits of recent age deposited by the tributaries of Kanhan and Wainganaga rivers. The Alluvium is composed of sand, garvel, clay and kankar and its thickness seldom exceeds 30m. They overlie the older formations such as Archaeans, Gondwana and Basalt and have thickness more than 25 m.

Figure 1.9: Geological Map, Nagpur district

2. HYDROGEOLOGY

The important water bearing formations of Nagpur district are discussed below. A map depicting the hydrogeological features is shown in Figure 2.1.

Consolidated Formations

Archaean and the Deccan trap basalts are the two consolidated formations, which form the hard rock aquifers occurring in the district.

a) Archaean- The crystalline rocks comprising of gneiss, schist, pegmatite and quartzite are the main formations occurring in north-eastern and south eastern parts of the district. In these rocks, weathered parts, in general, observed down to a depth of 25 mbgl, forms the important shallow aquifers being exploited through dug wells. In crystalline rocks, besides weathered parts of the rock, the occurrence and movement of ground water is controlled mainly by joints and fractures. The yields are generally controlled by the density, intensity and interconnection of joints/fractures in the rock formations.

b) Deccan Traps- Basalt is the main rock formation of the district and occupies an area of about 4300 sq. km. Deccan basalts are hydrogeologically inhomogeneous rocks. The weathered and jointed /fractured parts of the rock constitute the zone of ground water flow. Each individual lava flow consists of lower massive part becoming vesicular/amygdaloidal towards top, range in their individual thickness from a few centimetres to tens of meters. The groundwater occupies under phreatic conditions in the exposed lava flows and in semi confined to confine in the subsurface flows. Groundwater is present in pore spaces in the vesicular units of each flow and in the jointed and fractured portions of massive basalt. However secondary porosity and permeability developed due to weathering, fracturing & joints play a very important role in the storage and movements of ground water. This has given rise to good aquifer in Deccan trap.

Semi-Consolidated Formations

Two types of semi consolidated formations i.e. Lameta and Gondwanas occur in the district. They along with the unconsolidated Alluvial formation form the soft rock aquifers occurring in the district.

a) Lameta beds- Lameta beds, found to the north of the district in a small patch are compact, clayey and poor in permeability. Hence it is not a good water bearing formation.

b) Gondwana Sediments- Gondwana formation, occupying a total area of about 470 sq.km, occurs in the northern part of the Nagpur city extending from Kamptee to Saoner, and an isolated patch also occurs near north of Satnaori. Among the Gondwanas, the Barakars and Kamthis generally consist of medium to coarsegrained friable sandstone. These constitute the important water bearing formations in the district. Barakars are usually associated with coal seams of economic importance. The depth of this aquifer is about 45 to 50 m bgl.

Unconsolidated Alluvial Formations

Alluvium consisting of sand, silt, clay and kankar forms the potential water bearing formations and occurs in southern part of the district from Butibori to Bela. The alluvium of recent to sub-recent age and are found to have been deposited along the Kanhan and Pench Rivers and their tributaries. These formations are highly productive aquifers and sustain long duration pumping with very less drawdown and fast recuperation. Ground water occurs in water table and semi-confined conditions in the alluvial formation.

Deccan basalts are hydro geologically in-homogeneous rocks. The weathered and jointed /fractured parts of the rock constitute the zone of ground water storage and flow. The existence of multiple aquifers is characteristic of basalt and is indicative of wide variation in the joint/fracture pattern and intensity. The yield of wells is function of the permeability and transmissivity of aquifer, and it depends upon the degree of weathering, intensity of joints\fractures and topographic setting of the aquifer. Due to wide variation in secondary openings, the potential areas for ground water are generally localized. In general Ground water occurs under phreatic/unconfined to semi-confined conditions in basalts. Based on Ground Water Exploration, aquifer wise characteristics are given in **Table 2.1.** Maps depicting aquifer wise depth of occurrence and fractured/granular zone's thickness and yield potential are shown in **Figure 2.2 and 2.3** respectively.

Major Aquifers	Basalt (Deccan		Gondwana		Granite	
	Traps)		(Sandstone	(Sandstone)		tite gneiss
Type of Aquifer	Aquifer-l	Aquifer-II	Aquifer-l	Aquifer-II	Aquifer-l	Aquifer-II
Formation	Weather	Jointed /	Weather	TCG	Weather	Jointed/F
	ed/Fract	Fracture	ed		ed	ractured
	ured	d Basalt	Sandston			
	Basalt		е			
Depth of	05 - 32	32-186	12-28	26-194	11 - 25	25-172
occurrence						
Granular/	0.2-11	1-36.36	Upto 28	2-54	0.3-7	1-40.35
Weathered						
/Fractured						
rocks thickness						
(m)						
SWL (mbgl)	1-20	1.2-	5-11	2.32-22	0.1-19.4	1-24.15
		29.03				
Yield	10 to	50 to	20-80	1.37 to	10-33	18-33
	100	150	m³/day	17.90	m3/day	m3/day
	m3/day	m3/day		(lps)		
Transmissivity	30 to	25 to	15.00 to	9.32	130.00	198.35
(m²/day)	131.80	210	70.50		to	to 336.5
			m²/day		279.13	
Specific Yield/	0.02	1.2 x10 ⁻⁴	0.015 to	9.8 x 10-		2.37 x
Storativity		to	0.020	3 to 1.14		10 ⁻⁴ to 8
(Sy/S)		3.57x10 ⁻⁴		x 10-4		x 10 ⁻⁵
Suitability for	or Suitable for both (except high EC, Fluoride and Nitrate affe			fected		
drinking/	villages) dr	rinking & ag	riculture.			
irrigation						

Table 2.1:	Aauifer	Characteristic	of Nagpur	district

Figure 2.1: Hydrogeology

Figure 2.2: Aquifer wise Depth of occurrence and fractured rock thickness CGWB, CR, Nagpur 16

Figure 2.3: Aquifer wise yield Potential

2.1 Aquifer Parameters

Aquifer parameters are available from historic data of ground water exploration carried out in the district as well as from the pumping tests. Pumping tests conducted on wells in the district show that transmissivity of shallow aquifer in basalts ranges from 52.57 to 701.22 m²/day, specific capacity of wells ranges from 157.14 to 1250 lpm/m. Specific capacity of wells and transmissivity in alluvium ranges from 130 to 2050 lpm/m and 120 to 210 m³ / day respectively. On an average, specific yield of basalt aquifers comes to be only 2%.

2.1.1 Specific Yield Tests

To estimate the aquifer parameters of shallow aquifer (Aquifer-I) in the area, 2 pumping tests on open dug wells have been conducted during the year 2019-20. The data has been analysed by Kumarswamy method. The salient features of pumping tests are given in **Table 2.2**. The discharge of the wells ranged 350 lpm for pumping duration of 60 minutes.

The drawdown observed at the end of the pumping ranged from 0.28 to 2.1 m and the residual drawdown for the 1st minute was observed to be ranging from 0.08 to 0.47 m. The aquifer parameter values estimated by Kumarswamy method are observed to be well within the general range of values for weathered and jointed basalt i.e., the transmissivity value was observed from 52.57 to 1349.99 m²/day, whereas the specific yield 0.010 to 0.019, whereas specific capacity values ranged from 157.14 to 1250 lpm/m.

Table 2.2: Salient features of pumping tests – shallow aquifer (dug well) using Kumarswamy method.

S. No	Village	Diameter (m)	Depth (mbgl)	SWL (mbgl)	Q (lpm)	Pt (min)	DD (m)	RDD (m)	C (lpm/m)	T m2/day	Sy
1	Titur	8	15	4.3	350	60	0.28	0.08	1250	52.57	0.010
2	Mangli	7	13	8.03	350	60	0.91	0.47	384.62	324.33	0.019
3	Wadamba	10.2	18	4.5	450	100	1.9	0.09	236.84	1349.99	0.018
4	Tekadi	9.6	15.5	3.1	330	100	2.1	0.42	157.14	701.22	0.019

Here, SWL – Static Water Level, Q – Discharge, Pt - Pumping duration, D/D – Drawdown, RDD - Residual drawdown, C - Specific Capacity, T – Transmissivity, Sy - Specific Yield

2.2 Soil Infiltration Tests

Soil infiltration tests were carried out to estimate the actual rate of infiltration of various soil cover and their impact on recharge to ground water. Total 4 infiltration tests have been conducted at Titur, Haladgaon, Wadamba and Kodamendi in various soil types. The data has been analysed and the salient features of the infiltration tests are presented in **Table 2.3**, whereas the data is presented in **Annexure-IV** and the plots of soil infiltration tests are presented in **Figure 2.4**. The duration of the test ranged from 60 to 140 minutes, the depth of water infiltrated varied from 2.90 cm to 28.90 cm and the final infiltration rate in the area ranged from 1.2 cm/hr at Titur to 11.4 cm/hr at Haladgaon.

S.	Village	ge Date		Ouration Water Level Final		Final Infiltration
No.			(min)	(cm agl)	Water Depth (cm)	Rate (cm/hr)
1	Titur	12.01.2020	60	12	2.90	1.2
2	Haladgaon	13.02.2020	140	14	26.4	11.4
3	Wadamba	01.10.2019	140	15	28.90	4.8
4	Kodamendi	21.02.2020	140	14	25.50	5.4

Table 2.3: Salient Features of Infiltration Tests

⁵⁰ Time (min)

Figure 2.4: Soil Infiltration test

2.3 2-D Aquifer Disposition

Based on the existing data, aquifer disposition in, Fence diagram, Bar diagram and few hydrogeological sections have been prepared along section lines shown in **Figure 2.5, 2.6, 2.7 and 2.8 (a to d)** to understand the subsurface disposition of aquifer system.

Figure 2.5: 3D Fence Diagram

Figure 2.6: Bar Diagram

CGWB, CR, Nagpur 21

Figure 2.7(a): Lithological section along A – A'

Figure 2.7(c): Lithological section along C – C'

3. WATER LEVEL SCENARIO

3.1 Depth to water level (Aquifer-I /Shallow Aquifer)

Central Ground Water Board periodically monitors 98 Ground Water Monitoring Wells (GWMWs) including 82 dugwells and 16 piezometers in the Nagpur district, four times a year i.e., in January, May (Pre-monsoon), August and November (Post-monsoon). Apart from this under NAQUIM study, 174 KOW were also established and monitored during the year 2019. These data have been used for preparation of depth to water level maps of the district. Pre-monsoon and postmonsoon water levels along with long-term water level trends (2010-2019) are given in **Annexure-VII**.

3.1.1 Depth to Water Level – Pre-monsoon (May-2019)

The depth to water levels in aquifer-I (Shallow aquifer) Nagpur district during May 2019 ranges between 1.5 mbgl (sawali, Kuhi block) and 32.4 mbgl (Parsodi Wakil, Kalmeshwar block). The depths to water levels between 5 to 10 mbgl are observed in major part of district. The water levels between 2 to 5 mbgl are observed in isolated patches in central part of the district as well as in Umred, Bhiwapur, Kuhi, Hingna, Ramtek and Mauda blocks. The water levels from 10 to 20 mbgl are observed as patches in Saoner, Katol, Narkhed, Kalmeshwar, Parseoni, Hingna, Mauda kuhi and Bhiwapur blocks. The deeper water levels i.e., from 20 to 40 mbgl and > 40 mbgl are observed in isolated patches in Salted patches in North West part of the district where major part of the patch fall in Kalmeshwar block and remaining in Katol block. The pre-monsoon depth to water level map is depicted in **Figure 3.1**.

Figure 3.1: DTWL Aquifer-I Shallow aquifer (May 2019)

3.1.2 Depth to Water Level – Post monsoon (Nov-2019)

The depth to water levels in Nagpur district during Nov. 2019 ranges between near ground level / 0.1 mbgl at Kadoli, Kamptee and 20.2 mbgl (Parsodi wakil, kalmeshwar block). Shallow water levels within 5 m bgl are observed in major part of the district and moderate water level 5 to 10 mbgl are observed in North-West and few central parts and in patches in East and South-East parts of the district. Deeper water levels 10 to 20 m bgl are observed as small isolated patch in Narkhed, Kamtee Savner Maud, Nagpur rural and Katol blocks. Spatial variation in post-monsoon depth to water levels is shown in **Figure 3.2**.

Figure 3.2: DTWL Aquifer-I Shallow aquifer (November 2019)

3.2 Depth to water level (Aquifer-II / Deeper Aquifer)

3.2.1 Pre-monsoon Depth to Water Level (May-2019)

In Aquifer-II (Deeper Aquifer), the pre-monsoon depth to water levels, in Nagpur District during May 2019, range from 11.4 (Sonoli, Katol block) to 30 mbgl (Makardhokda Pz, Umred block). The depth to water level more than 20 mbgl is observed only in some parts of Hingna, Katol and Kalmeshwar blocks. The major parts of the district show depth to water level between 0 and 5 mbgl. The water level between 5 and 20 mbgl are observed in major parts of Nagpur, Hingna, kalmeshwar, katol, Narkhed, Saoner, Umred, and Bhiwapur blocks. The pre-monsoon depth to water level for Aquifer -II is given in **Figure 3.3**.

CGWB, CR, Nagpur 24

Figure 3.3: DTWL Aquifer-II deeper aquifer (May 2019)

3.2.2 Post-monsoon Depth to Water Level (Nov.-2019)

In Aquifer-II, the post-monsoon depth to water levels in Nagpur District during Nov. 2019 range between 1.00 (Rewral, Mauda block) and 29.6 mbgl (K. Pipla, Kalmeshwar block). Depth to water level less than 2 m bgl has been observed in eastern part of the district covering parts of Mauda, Bhiwapur, Kuhii and Ramtek blocks. A major part of the district shows deeper water levels ranging between 2 and 5 mbgl. The deeper water level between 10 to 20 and more than 20 mbgl are observed in Hingna, katol, narkhed, saoner and Parseoni blocks. The post-monsoon depth to water level for Aquifer –II is given in **Figure 3.4**.

Figure 3.4: DTWL Aquifer-II deeper aquifer (Nov. 2019)

3.3 Water Level Trend (2010-2019)

During pre-monsoon, rise in water level trend has been recorded at 7 stations ranging from 0.184 (Wadi Naka, Nagpur Urban block) to 2.35 m/year (Chichbhuvan, Nagpur Urban block) while falling trend was observed in 65 stations varying from 4.95 (Jalalkheda, Narkhed block) to 0.002 m/year (Amgaon, Hingna block). During pre-monsoon, declining water level trend has been observed in area covering almost all blocks. Rise in water level trend has been observed in area covering small parts of Hingna, Nagpur, Parseoni, Ramtek and Narkhed blocks of the district **(Figure 3.5)**.

During post-monsoon, rise in water level trend has been recorded at 24 stations ranging between 0.0058 m/year (Ramdaspeth, Nagpur block) to 2.7 (Kondhali, Katol block) while falling trend was observed in 52 stations varying from 14.8 (Paradsinga, Katol block) to 0.0056 m/year (Amgaon, Hingna block). Rising water level trend has been observed in covering parts of Katol, Narkhed, Umred, Ramtek and Nagpur blocks of the district. Fall in water level trend has been observed in major parts of the district covering major pats of Kuhi, Bhiwapur, Mauda, Nagpur Rural and parts of Umred, Katol, Narkhed, Ramtek and Parseoni, also small portion of the Saoner block (Figure 3.6).

Figure 3.5: Pre-monsoon decadal trend (Shallow aquifer) (2010-2019)

Figure 3.6: Post-monsoon decadal trend (Shallow aquifer) (2010-2019) CGWB, CR, Nagpur 27
3.4 Hydrograph Analysis

The variation in short term and long-term water level trends may be due to variation in natural recharge due to rainfall and withdrawal of groundwater for various agricultural activities, domestic requirements, and industrial needs. The analysis of hydrographs show that the continuous increase in the groundwater draft is indicated by the recessionary limb.

Figure 3.7 a: Hydrograph (2010-19), Deolapar, Ramtek Block, Nagpur District

Figure 3.7 b: Hydrograph (2010-19), Rohna, Narkhed Block, Nagpur District

Figure 3.7 c: Hydrograph (2010-19), Chacher, Mauda Block, Nagpur District

Figure 3.7 d: Hydrograph (2010-19), Mohpa, Kalmeshwar Block, Nagpur District

Figure 3.7 e: Hydrograph (2010-19), Navegaon Deshmukh, Bhiwapur Block, Nagpur District

Figure 3.7 f: Hydrograph (2010-19), Kelod, Saoner Block, Nagpur District

Figure 3.7 g: Hydrograph (2010-19), Nagalwadi, Parseoni Block, Nagpur District

Figure 3.7 h: Hydrograph (2010-19), Pachgaon, Umred Block, Nagpur District

Figure 3.7 i: Hydrograph (2010-19), Kanolibara, Hingna Block, Nagpur District

Figure 3.7 j: Hydrograph (2010-19), Chargaon, Katol Block, Nagpur District

Figure 3.7 k: Hydrograph (2010-19), Koradi, Kamptee Block, Nagpur District

Figure 3.7 I: Hydrograph (2010-19), Mangli, Kuhi Block, Nagpur District

4. GROUND WATER QUALITY

Ground Water sampling is being done every year from GWM wells during pre-monsoon period (May). The data gap analysis has been carried out to find out the adequacy of information on water quality. To decipher the ground water quality scenario, 263 samples from aquifer-I / shallow aquifer and 84 from aquifer-II / deeper aquifers have been utilised including monitoring wells/exploratory wells, tubewells/borewells of CGWB and GSDA; data from earlier studies. The aquifer wise ranges of different chemical constituents present in ground water are given in **Table 4.1**. The details of chemical analysis are given in **Annexure V and VI**.

-		-				
Constituents	Aquifer-I / S	Shallow aqu	ifer	Aquifer-II / Deeper aquifer		
	Min	Max	Avg.	Min	Max	Avg.
рН	7.1	8.2	7.6	6.8	8.7	7.8
EC	215	4920	1067.51	179	3020	981.14
TDS	140	3213	622	55	1963	551.93
TH	64.7	976.1	305.2	60	960	274.44
Са	18.4	305.4	74.62	10	246	47.32
Mg	2	163	37.27	1.2	127.6	37
Na	2.24	1035	74.65	2	338.1	64.44
К	0.06	114.2	9.8	0.11	47.47	5.3
HCO3	39	927.81	313.97	36.61	793.26	203.98
CI	11.2	14.50	106.61	21.27	694.82	130.6
SO4	2	374	47.97	7	460.29	100.2
NO3	1	93	26.47	0.75	286	32.92
F	0.11	2.49	0.71	0.03	4.4	0.75

Table 4.1: Aquifer wise ranges of chemical constituents in Nagpur district

4.1 Electrical Conductivity (EC)

4.1.1 Distribution of Electrical Conductivity in Aquifer-I / Shallow Aquifer:

The concentration of EC in shallow aquifer varies between 215 (Tembhurdoh, Saoner block) and 4920 μ S/cm (Belgaon, Umred block). Out of 263 samples collected from dug wells, 2 samples are having EC in range of more than 3000 μ S/cm observed in 22.05 sq km area. EC in the range 2250-3000 μ S/cm is observed in few patches in Southern and South-east part of the district covering 1500 sq km area in major parts of Umred, Bhiwapur and Mauda blocks. The ground water is potable. EC in the range of 750-2250 μ S/cm is observed in major part of the district covering 3635 sq.km area of the district. The distribution of electrical conductivity in aquifer – 1 / shallow aquifers is shown in Figure 4.1.

Figure 4.1: Ground water quality, Aquifer-I / Shallow aquifer

4.1.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer:

The concentration of EC in deep aquifer varies between 179 μ S/cm (Amgaon, Ramtek block) and 3020 μ S/cm (Besur, Bhiwapur block). Out of 84 samples collected from tube wells/bore wells, 7 samples are having EC in range of 2000 to 3000 μ S/cm observed in Hingna and Katol blocks. EC in the range 250-750 μ S/cm area in northern parts of Nagpur district major part in Saoner, ramtek and Parseoni blocks. The ground water is potable.EC in the range 750-2250 μ S/cm covering major area of the district. The distribution of electrical conductivity in aquifer – I / shallow aquifers is shown in **Figure 4.1**.

Figure 4.2: Ground water quality, Aquifer-II/Deeper aquifer

4.2 Nitrate

Nitrogen in the form of dissolved nitrate nutrient for vegetation, and the element is essential to all life. The major contribution in ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. As per BIS (2012) the desirable limit is 45 mg/l. In aquifer – I / shallow aquifer, nitrate concentration varies between 1 to 93 mg/l. Out of 263 samples 35 water samples show the nitrate concentrations exceeding the desirable limit of 45 mg/l (**Figure 4.1**). The high concentration of Nitrate may be due to domestic waste and sewage in the urban and rural parts of district.

In aquifer – II / deeper aquifer, nitrate concentration varies between 0.75 to 286 mg/l. Out of 84 samples analysed, 17 water samples show nitrate concentration exceeding the desirable limit of 45 mg/l (**Figure 4.2**). The deeper aquifer affected by nitrate contamination may be due to percolation of nitrate contaminants from the ground surface as there are no other reasons for nitrate contamination in deeper aquifers.

4.3 Fluoride

In aquifer–I / shallow aquifer, concentration of fluoride ranges from 0.11 to 2.49 mg/I. Out of 263 samples were analysed, 6 samples show fluoride concentration more than 1.5 mg/I. The highest concentration of 2.49 mg/I fluoride is found in Ramdaspeth, Nagpur city and Khat, Mauda Block. In aquifer – II / deeper Aquifer, concentration of fluoride ranges from 0.03 to 4.4 mg/I. Out of 84 samples analysed, 4 samples show fluoride concentration

more than 1.5 mg/l. The highest concentration of fluoride is found in Sukali gharapure village, Hingna block (4.4 mg/l).

4.4 Suitability of Ground Water for Drinking Purposes

In aquifer-I / shallow aquifer Ca, Mg, NO₃, and TH is found beyond the maximum permissible limit while most of the parameters are within MPL (**Table 4.2**). About 1.5 % of samples have fluoride concentration above the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment. For rest of the area ground water quality is good and fit for drinking purpose except few locations.

Parameter	Drinking	water	Total no	Aquifer-I	/Shallow aq	uifer			
	Standard	s	of	Samples		Sample	S	Samples	
	(IS-10500)-2012)	ground	(<dl)< td=""><td></td><td>(DL-MP</td><td>PL)</td><td>(>MPL)</td><td></td></dl)<>		(DL-MP	PL)	(>MPL)	
	DL	MPL	water	No	%	No	%	No	%
			samples						
рН	6.5-8.5	-	263	263	100	0		0	
TDS	500	2000	263	121		121		1	
TH	300	600	263	160		85		18	
Ca (mg/L)	75	200	263	163		95		5	
Mg (mg/L)	30	100	263	116		145		2	
Cl (mg/L)	250	1000	263	243		19		1	
SO ₄ (mg/L)	200	400	263	258		5		0	
NO₃ (mg/L)	45	No	263	228				35	
		relaxat							
		ion							
F (mg/L)	1	1.5	263	131	49.80	26	10.64	6	1.5

Table 4.2: Concentration of Chemical constituents in aquifer I/shallow Aquifer

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

Likewise, in aquifer-II / deeper aquifer, TH, Ca, Mg & SO₄ found more than maximum permissible limit (MPL) and about 3 % of samples have fluoride concentration above the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment (**Table 4.3**). For rest of the area ground water quality is good and fit for drinking purpose except few locations.

Parameter	Parameter Drinking water Standards (IS-10500-2012)		Total no of	Aquifer-	II/Deeper	aquifer			
			ground water		Samples (<dl)< td=""><td colspan="2">Samples (DL-MPL)</td><td>es .)</td></dl)<>		Samples (DL-MPL)		es .)
	DL	MPL	samples	No	%	No	%	No	%
рН	6.5-8.5	-	84	83		1			
TDS	500	2000	69	37		35			
ТН	300	600	84	56		26		2	
Ca (mg/L)	75	200	69	60		9		1	
Mg (mg/L)	30	100	69	33		32		5	
Cl (mg/L)	250	1000	84	73		11			
SO ₄ (mg/L)	200	400	79	68		10		1	
NO ₃ (mg/L)	45	No relaxation	84	66		18			
F (mg/L)	1	1.5	84	67		11		4	

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

4.5 Suitability of ground water for irrigation

The quality of Irrigation water affects the productivity, yield and quality of the crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria, which asses the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The amount of dissolved ions in the water is represented by the electrical conductivity. As discussed in 4.1 with reference to Figure 4.2 & 4.3, the classification of water for irrigation based on the EC values is given in Table 4.4 and discussed as follows: -

Low Salinity Water (EC: 100-250 μ S/cm): This water can be used for irrigation with most crops on most soils with little likelihood that salinity will develop.

Medium Salinity Water (EC: 250 – 750 \muS/cm): This water can be used if moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

High Salinity Water (EC: 750 – 2250 \muS/cm): This water cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very High Salinity Water (EC: >2250 μ S/cm): This water is not suitable for irrigation under ordinary condition. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and very salt tolerant crops should be selected.

In aquifer-I/shallow aquifer as well as in aquifer-II/deeper aquifer, maximum numbers of samples fall under the category of medium to high salinity type of water. While the areas with very high salinity prevails (>2250 μ S/cm), very high salt tolerant crops and with proper soil and crop management practices are recommended (**Figure 4.1 & 4.2**).

S.	Water Quality	EC in	Aquifer-I / shallow		Aquifer-II / Deeper			
No	Туре	μS/cm	aquifer		Aquifer	Aquifer		
			No. of	% of	No. of	% of		
			Samples	samples	samples	samples		
1	Low Salinity Water	< 250	2	0.8	3	4		
2	Medium Salinity	>250-	00	22.02	22	20		
	Water	750	69	55.65	52	20		
3	High Salinity Water	>750-	150	60.07	11	E 2		
		2250	158	00.07	44	52		
4	Very High Salinity	> 2250	14	БЭ	E	c		
	Water		14	5.5	5	0		
Tota			263	100	84	100		

Table 4.4: Classification of Ground water for Irrigation based on EC values

4.6 Sodium Absorption Ratio (SAR)

Excess of sodium in water renders it unsuitable for irrigation on soil containing exchangeable Calcium and Magnesium ions. Soil containing exchangeable Calcium and Magnesium takes up sodium of irrigation water in exchange for Calcium and Magnesium, the ratio reflects the Sodium hazard. The SAR indicates the relative activity of the Sodium ions in exchange reactions with the soil. The main problem with high sodium concentration is its effect on soil permeability, hardening of soil & water irrigation system. Sodium also contributes directly to the total salinity of the water and may be toxic to sensitive crops such as fruit trees. The higher value of SAR indicates soil structure damage. I

In both the aquifer-I and aquifer-II, 99 % of samples fall in 'Good' category and 1% fall in **Good to Permissible category** whereas no sample fall in bad category. The classification of ground water samples based on SAR values for its suitability for irrigation purpose is shown in **Table 4.5**.

Characteris	Total	SAR v	SAR value							
tics	Number	< 10	< 10		10-18		18-26		> 26	
	of	Good		Good to)	Doubt	ful	Bad		
	GW			Permiss	ible			(Unsu	itable)	
	samples	No	%	No	%	No	%	No	%	
Aquifer-I/	263	261	99	2	1	-	-	-	-	
Shallow										
Aquifer										
Aquifer-II/	84	83	99	1	1	-	-	-	-	
Deeper										
Aquifer										

 Table 4.5: Classification of Ground water for Irrigation based on SAR values

4.7 Residual Sodium Carbonate (RSC)

Residual Sodium Carbonate (RSC) is considered to be superior to SAR as a measure of sodacity particularly at low salinity levels. Calcium reacts with bicarbonate and precipitate as CaCO₃. Magnesium salt is more soluble and so there are fewer tendencies for it to precipitate. When calcium and magnesium are lost from the water, the proportion of sodium is increased resulting in the increase in sodium hazard. This hazard is evaluated in terms of RSC. The classification of ground water samples based on RSC values for its suitability for irrigation purpose is shown in **Table 4.6**.

In aquifer I/shallow aquifer, it is observed that only 2.28% samples show RSC values within 'Bad' category while only 93.92 % fall in 'good' category indicating that the ground water of the area is suitable for irrigation. In aquifer-II/deeper aquifer, about 93 % samples show RSC less than 1.25 meq/L indicating ground water of the area is suitable for irrigation while about 6 % samples fall in 'doubtful to Unsuitable' category and 1% samples fall in 'bad' category indicating that the ground water of the area is bad and not suitable for irrigation.

Characteristics	Total No of	RSC values (meq/L)					
	GW	< 1.25		1.25-2.5	0	> 2.50	
	samples	Good		Doubtfu	I	Bad (Uns	suitable)
		No	%	No	%	No	%
Aquifer-l /	262	247	02.02	10	2 00	c	2 20
Shallow Aquifer	205	247	95.92	10	5.60	0	2.20
Aquifer-II /	04	70	02	F	c	1	1
Deeper Aquifer	84	/8	93	5	0	L	

Table 4.6: Classification of Ground water for Irrigation based on RSC values

5. GROUND WATER RESOURCES

5.1 Ground Water Resources – Aquifer-I

Central Ground Water Board and Groundwater Surveys and Development Agency (GSDA) have jointly estimated the ground water resources of Nagpur district based on GEC-2015 methodology. Block wise ground water resources are given in **Table 5.1**, and graphical representations of the resources on the map are shown in **Figure 5.1**.

Figure 5.1. Groundwater resources (2017), Nagpur district, Maharashtra

Ground Water Resources estimation was carried out for 9802.01 sq. km. area out of which 2269.24 sq. km. is under command and 5721.18 sq. km. is noncommand. As per the estimation, the Annual Extractable Ground Water Recharge comes to be 896.05 MCM. The Annual Ground Water Extraction is estimated at 459.62 MCM with irrigation sector being the major consumer having a draft of 356.43 MCM. The domestic water requirements are worked at 103.19 MCM. Net Ground Water Availability for future use is estimated at 433.01 MCM. The Stage of ground water development varies from 25.64 % (Mauda) to 79.02 % (Katol). The overall stage of ground water development for the district is 51.29 % (SAFE Category). Block wise assessments indicates that two blocks i.e, Katol and Saoner fall under "Semi-Critical" category whereas the other blocks of the district fall under "Safe" category.

Assessment Unit	Total	Total	Annual	Current Annua	l Ground Water	Extraction (Ha	m)	Annual GW	Net Ground	Stage of	Categorization
Name	Annual	Natural	Extractable	Irrigation	Industrial	Domestic	Total	Allocation	Water	Ground	(OE/Critical/
	Ground	Discharges	Ground	Use	Use	Use	Extraction	for for	Availability for	Water	Semi critical/ Safe)
	Water		Water					Domestic	future use)	Extraction	
	(Ham)		Recharge					Use as on			
	Recharge		(Ham)					2025			
	Ha.m	Ha.m 1	Ha.m	Ha.m	Ha.m	Ha.m	Ha.m	Ha.m	Ha.m	%	
Bhiwapur	4207.57	301.04	3906.53	1691.51	0.00	421.00	2112.51	421.00	1780.54	54.08	Safe
Hingana	7857.47	392.87	7464.60	2562.84	0.00	858.13	3420.98	911.00	4010.18	45.83	Safe
Kalameshwar	6407.01	400.73	6006.28	3572.68	0.00	462.25	4034.93	507.87	1989.64	67.18	Safe
Kamtee	6485.25	335.76	6149.50	2112.36	0.00	711.21	2823.56	711.21	3233.67	45.92	Safe
Katol	8720.94	492.57	8228.37	5519.58	0.00	982.86	6502.44	982.86	1647.54	79.02	Semi Critical
Kuhi	6822.44	341.12	6481.32	3193.41	0.00	677.39	3870.81	752.66	2613.10	59.72	Safe
Mouda	11137.86	556.89	10580.96	1672.06	0.00	1040.70	2712.76	1061.81	7847.08	25.64	Safe
Nagpur	6045.56	322.94	5722.62	1954.01	0.00	750.14	2704.14	834.31	3041.98	47.25	Safe
Narkhed	9382.03	518.78	8863.24	5047.30	0.00	972.68	6019.98	972.68	2831.76	67.92	Safe
Parshioni	7432.54	388.83	7043.71	1875.46	0.00	810.99	2686.45	827.85	4291.66	38.14	Safe
Ramtek	6186.23	312.57	5873.66	1276.16	0.00	913.27	2189.43	931.68	3714.58	37.28	Safe
Saoner	5004.76	332.06	4672.70	2913.22	0.00	654.01	3567.23	681.68	1097.31	76.34	Semi Critical
Umred	9079.97	468.93	8611.04	2252.29	0.00	1064.33	3316.62	1064.33	5201.68	38.52	Safe

Table 5.1: Ground water resources, Aquifer-I (Shallow aquifer), Nagpur district (2017)

5.2 Ground Water Resources – Aquifer-II

The ground water resource of Aquifer-II was also assessed to have the correct quantification of resources so that proper management strategy can be framed. Block wise summarized Ground Water Resources of Aquifer-II is given in **Table 5.2**.

Taluka	Mean	Area	Average	Sy	S	Resource
	thickness		Piezometric			(MCM)
	(m)		head (m)			
Bhiwapur	3.15	557.65	61.17	0.015	0.00008	0.140528
Hingna	3.16	634.14	53.64	0.015	0.00035	0.700725
Kalmeshwar	8.52	471.12	48.47	0.015	0.000055	0.220767
Kamptee	4.60	536.04	6.235	0.015	0.00035	0.863024
Kuhi	4.15	749.97	47.18	0.015	0.00008	0.248990
Mauda	4.80	753.58	34.75	0.015	0.00089	0.863024
Nagpur	4.03	535.25	32.5	0.015	0.00035	0.248990
Parseoni	3.60	536.51	12.03	0.015	0.00089	3.219294
Ramtek	7.00	632.71	157.6	0.015	0.00089	0.755595
Savner	13.44	562.37	49.97	0.015	0.000482	1.718978
Umred	3.19	824.92	76.07	0.015	0.00035	3.941783
Katol	30.03	552.93	37.66	0.015	0.000114	3.642400
Narkhed	31.23	643.23	31.71	0.015	0.006434	0.921023

Table 5.2: Ground Water Resources of Aquifer-II (Deeper aquifer)

6. GROUND WATER RELATED ISSUES

6.1 Declining Water Levels

The ground water exploitation has resulted in decline of water levels over the period of time. In pre-monsoon season, declining water level trend has been observed in about 9321 sq km area covering major part of district. In post-monsoon season, decline has been observed in about 7228.7 sq.km area covering major parts of Kuhi, Bhiwapur, Umred, Mauda, Hingna, Nagpur Rural, Kalmeshwar blocks and parts in Katol, Narkhed, Saoner, Ramtek blocks.

Pre-monsoon Fall in 9321 Sq km area Post-monsoon Fall 7228.7 Sq km area.

7. GROUND WATER MANAGEMENT PLAN

The aquifer management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management. The supply side management is proposed based on surplus surface water availability and the unsaturated thickness of aquifer whereas the demand side management is proposed by use of micro irrigation techniques and change in cropping pattern.

7.1 Supply Side Management

The supply side management of ground water resources can be done through the artificial recharge of surplus runoff available within river sub basins and micro watersheds. Also, it is necessary to understand the unsaturated aquifer volume available for recharge. The unsaturated volume of aquifer was computed based on the area feasible for recharge, unsaturated depth below 5 mbgl and the specific yield of the aquifer. The **Table 7.1** gives the block wise volume available for the recharge.

Block	Geographical Area	Area feasible for recharge	Unsaturated Volume
	(sq. km.)	(Sq. km.)	(MCM)
Umred	979.1	93.00	37.65
HIngna	785.64	526.73	1594.42
Bhiwapur	701.97	251.39	206.70
Kuhi	829.48	782.90	3754.03
Nagpur (R)	886.4	178.66	558.47
Mauda	612.87	263.58	571.09
Saoner	618.59	336.45	841.12
Ramtek	1142.9	62.40	77.95
Kamtee	423.82	197.10	330.15
Kalmeshwar	543.45	466.43	2023.67
Katol	841.82	780.39	1935.41
Narkhed	768.25	297.52	1084.65
Parseoni	786.94	400.27	2042.39
Total	9921.23	4636.82	15057.70

The total unsaturated volume available for artificial recharge is **15057.70** MCM and it ranges from 37.65 MCM in Umred block to 3754.03 MCM in Kuhi block. The available surplus runoff can be utilized for artificial recharge through construction of percolation tanks, Check dams and Recharge shafts at suitable sites After taking into consideration all the factors, 101.04 MCM of surplus water can be utilized for recharge, which is given in **Table 7.2**. This surplus water can be utilized for constructing **354** percolation tanks and 1010 check dams at suitable sites.

The number of feasible artificial recharge structures was calculated by considering 0.20 MCM per percolation tanks and 0.03 MCM per check dam. This intervention should lead to recharge about 75.78 MCM/year. The tentative locations CGWB, CR, Nagpur

of these structures are given in **Figure 7.1** and details also given in **Annexure VIII and IX**.

The rainwater harvesting in urban areas can be adopted in 25% of the household with 50 sq. km roof area. A total of 1.4631 MCM potential can be generated by taking 80% runoff coefficient. However, it is economically not viable & hence, not recommended.

Figure 7.1: Location of Proposed Artificial Recharge structures

Table 7.2: Proposed	l Artificial	Recharge	Structures
---------------------	--------------	----------	------------

Block	Surplus water available Considered for AR (MCM)	Proposed number of structures		Total Volume of Water expected to be recharged@ 75 % efficiency (MCM)		Total recharged @ 75 % efficiency (MCM)
		PT	CD	РТ	CD	
Umred	0.75	3	8	0.40	0.17	0.56
HIngna	11.80	41	118	6.19	2.65	8.85
Bhiwapur	4.13	14	41	2.17	0.93	3.10
Kuhi	17.54	61	175	9.21	3.95	13.15
Nagpur	4.00	14	40	2.10	0.90	3.00
Mauda	5.90	21	59	3.10	1.33	4.43
Saoner	7.54	26	75	3.96	1.70	5.65

Block	Surplus water available Considered for AR (MCM)	Proposed number of structures		Total Volume of Water expected to be recharged@ 75 % efficiency (MCM)		Total recharged @ 75 % efficiency (MCM)
		PT	CD	РТ	CD	
Ramtek	1.40	5	14	0.73	0.31	1.05
Kamtee	4.42	15	44	2.32	0.99	3.31
Kalmeshwar	10.45	37	104	5.49	2.35	7.84
Katol	17.48	61	175	9.18	3.93	13.11
Narkhed	6.66	23	67	9.18	3.93	5.00
Parseoni	8.97	31	90	4.71	2.02	6.72
Total	101.04	354	1010	58.72	25.17	75.78

7.2 Demand Side Management

The Demand Side Management is proposed in areas where the stage of ground water development is relatively high and adopting micro-irrigation techniques for water intensive crops or change in cropping pattern or both are required to save water.

The micro-irrigation techniques are proposed to be adopted in 30.77 Sq. Km area in the district. In Saoner Block 2.02 sq.km sugarcane area and in Katol Block 28.75 sq.km of Cotton area is proposed. This intervention would lead to saving of about 9.88 MCM as given **Table 7.3. Figure 7.2** depicts the proposed demand side interventions in the area.

No change in cropping patterns is proposed in any of the blocks.

Table 7.3: Demand side interventions proposed.

Block	Crop Type	Area proposed for micro irrigation. (Sq. Km.)	Volume of Water saved (MCM)
Saoner	Sugarcane	2.02	1.14
Katol	Cotton	28.75	8.74
Total		30.77	9.88

Figure 7.2: Proposed Demand side intervention, Nagpur district

7.3 Expected Benefits

The impact of groundwater management plans on the groundwater system in the district after its implementation is evaluated and the outcome shows significant improvement in groundwater scenario in all blocks as given in the **Table 7.4**.

Block	Current Net Ground water availabi- lity (MCM)	Current Total ground water draft (MCM)	Current Stage of GW Develo pment %	Water Recharge d by Supply side inter- vention (MCM)	Water saving by deman d side interve ntions. (MCM)	Ground water resources after supply side managemen t (MCM) (2+5)	Ground water Draft after demand side manage ment (MCM) (3-6)	Expected stage of Develop ment. % [(8/7) * 100]
1	2	3	4	5	6	7	8	9
Umred	86.11	33.17	38.52	0.56		86.67	33.17	38.27
HIngna	74.65	34.21	45.83	8.85		83.5	34.21	40.97
Bhiwapur	39.07	21.13	54.08	3.1		42.17	21.13	50.1

 Table 7.4: Expected benefits after implementation of management options

Kuhi	64.81	38.71	59.72	13.15		77.96	38.71	49.65
Nagpur	57.23	27.04	47.25	3		60.23	27.04	44.89
Mauda	105.8	27.13	25.64	4.43		110.23	27.13	24.61
Saoner	46.72	35.67	76.34	5.65	1.14	52.37	36.81	65.93
Ramtek	58.74	21.89	37.28	1.05		59.79	21.89	36.61
Kamtee	61.5	28.24	45.92	3.31		64.81	28.24	43.57
Kalmeshw ar	60.06	40.35	67.18	7.84		67.9	40.35	59.43
Katol	82.28	65.02	79.02	13.11	8.74	95.39	73.76	59
Narkhed	88.63	60.2	67.92	5		93.63	60.2	64.3
Parseoni	70.44	26.86	38.14	6.72		77.16	26.86	34.82
Total	896.03	459.62	51.3	75.78	9.88	971.81	469.74	46.28

7.4 Development Plan

The ground water development plan is proposed in the view of developing the additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70 %. about 230.53 MCM of ground water generated can bring 472.99 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 13832 Dug wells and 2305 Borewells. The area feasible for ground development is shown in **Figure 7.3** while block wise details are given in **Table 7.5**.

Block	Balance GWR available for GW Development after STAGE OF GWD is brought to 70%	Proposed No. of DW @1.5 ham for 90% of GWR Available)	Proposed No. of BW @1.5 ham for 10% of GWR Available)	Additional Area (sq.km.) proposed to be brought under assured GW (sq. Km)
	(MCM)			
Umred	27.51	1650	275	43.19
HIngna	24.24	1454	242	50.9
Bhiwapur	8.39	503	84	17.68
Kuhi	15.86	952	159	44.64
Nagpur	15.12	907	151	27.88
Mauda	50.03	3002	500	83.78
Saoner	2.13	128	21	13.73
Ramtek	19.96	1198	200	32.32
Kamtee	17.13	1028	171	31.44
Kalmeshwar	7.18	431	72	23.1
Katol	10.49	630	105	36.31
Narkhed	5.34	320	53	15.9
Parseoni	27.15	1629	271	52.11
Total	230.53	13832	2305	472.99

Table 7.5: Block wise additional area under assured GW Irrigation.

Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation

8. SUM UP

A thorough study was carried out based on data gap analysis, data generated inhouse; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of block wise aquifer maps and aquifer management plans of Nagpur district.

Nagpur district covering an area of 9802 Sq.km, out of this 1811.59 sq km (18.48 %) is hilly area. Geologically, the area is occupied by Archeans, Gondwana, Lameta, Deccan Trap Basalt, and local river Alluvium. The Stage of ground water development varies from 25.64 % (Mauda) to 79.02 % (Katol). The overall stage of ground water development for the district is 51.30 % (SAFE Category). The area has witnessed declining water level which is the major issue in the district. Declining water level trend has been observed in 9321 sq km during pre-monsoon while it is 7228.7 sq km during post monsoon.

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management.

As a part of **Supply Side Management**, a total 354 Percolation tanks and 1010 Check dams are proposed, which will augment ground water resources to the tune of **75.78** MCM (58.72 MCM by Percolation tanks and 25.17 MCM by Check dams).

As a part of **Demand Side Management**, the micro-irrigation techniques are proposed to be adopted in 30.77 Sq. Km area in entire district by saving a total of 9.88 MCM.

The **ground water development plan** has been proposed in view of the developing additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. About 230.53 MCM volume of ground water generated can bring 472.99 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 13832 Dug wells and 2305 Borewells.

These interventions also need to be supported by regulation for deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewells of more than 60 m depth in these blocks, so that the deeper ground water resources are protected for future generation and serve as ground water sanctuary in times of distress/drought. IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory ground water management.

9. BLOCK WISE AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN

- 1. UMRED BLOCK
- 2. HINGNA BLOCK
- 3. BHIWAPUR BLOCK
- 4. KUHI BLOCK
- 5. NAGPUR BLOCK
- 6. KATOL BLOCK
- 7. NARKHED BLOCK
- 8. KALMESHWAR
- 9. KAMTEE
- 10. MAUDA
- 11. PARSEONI
- 12. RAMTEK

9.1 UMRED BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Block Name		Umred				
Geographical Area (S	Sq. Km.)	989.45				
Hilly Area (Sq. Km)		164.53				
Population (2011)	53971					
Climate						
1.2 Rainfall Analysis						
Normal Rainfall		1179.7 mm				
Annual Rainfall (201	9)	1209 mm				
Decadal Average An	nual Rainfall (2010-19)	1016.94 mm				
Long Term Rainfall	Rising trend 8.7 mm/year.					
Analysis (2000-	Probability of Normal/Excess Rainfall- 40% / 20%.					
2019)	Probability of Drought (Moderate/Severe/Acute)-: 30% Moderate /					
	Severe-nil & Acute –10.					

1.3. Geomorphology, Soil & Geology						
Geomorphic Unit	Plateau, weathered (shallow) slightly	y o moderately dissected				
Geology	Deccan Traps (Basalt) Age: Late Cretaceous	to Eocene				
	Gneissic complex: Archean					
Soil	Shallow to very deep BCS consisting mostly	of clay and loam				
1.4. Hydrology & Dr	ainage					
Drainage	Godavari river basin.					
	Major and Medium projects	1				
Hydrology	Minor Irrigation Projects (Local)	28				
	Minor Irrigation Projects (ZP Level)	13				
		PT-2, KT-118, UGB-367				
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern						
Forest Area	298.73 Sq. Km.					
Cultivable Area	555.45 Sq. Km.					

Net Sown	Area	462.31 Sq. Km.					
Double Cro	opped Area	138.37 Sq. km	138.37 Sq. km				
Area	Surface	69.05 Sq. Km.					
under	Water						
Irrigation	Ground	66.05 Sq. Km.					
	Water						
Principal Crops		Сгор Туре	Area (Sq. Km.) (Reference year 2014-15)				
		Cotton	146.13				
		Cereals	76.04				
		Pulses	78.86				
		Oil Seeds	226.92				
Horticultu	ral Crops	Citreous fruit	1.82				
		Sugarcane	1.06				
		Vegitable	13.92				
1.6. Water Level Behaviour							

1.6.1 Aquifer-I (Shallow Aquifer)

Pre-Monsoon (May-2019) DTWL 05 to 10 mbgl is observed in entire block except in few isolated small patches of the block where water level in the range of 2 to 5 mbgl is observed. Water level in the range of 10 to 20 mbgl is observed in north and south west regions in small patches. Post-Monsoon (November-2019) DTWL less than 2 mbgl is observed in isolated patches in north, central and eastern part of the block. Water level in the range of 2 to 5 mbgl is observed in the entire block except in some patches in North-western, south-western and in one isolated patch in north-eastern part of the block where water level ranges between 5 to 10 mbgl.

1.6.2 Water Level Behaviour – Aquifer-II (Deeper Aquifer)

				layer)		(MCM)
824.92	3.19	0.015	0.00035	76.1		3.94
6.0. GROUN	ID WATER MAN	AGEMEN	Т			
6.1. Supply	Side Manageme	nt				
SUPPLY (MC	CM)					
Available Re	esource (MCM)					86.11
Gross Annu	al Draft (MCM)					33.17
Agricultural	Demand –GW					22.52
Agricultural	Demand –SW					44.88
Domestic D	emand – GW					10.64
Domestic D	emand – SW					2.66
Total Dema	nd					80.71
Area of Bloo	ck (Sq. Km.)					990.40
Area suitab	le for Artificial re	echarge (Sq. Km)			93
Type of Aqu	lifer					
Area feasibl	e for Artificial R	echarge	(WL >3mbgl)	(Sq. Km.)		93
Volume of l	Jnsaturated Zon	e (MCM)			37.65
Average Spe	ecific Yield					0.015
Volume of S	Sub Surface Stor	age Spac	e available fo	r Artificial R	echarge	0.56
(MCM)						
Surplus wat	er Available (M	CM)	<u> </u>			0.75
Proposed St	ructures	Per	colation Tank	(Av. Gross	Check Dam	(Av. Gross
		Cap		M*2	Capacity-10	
Number of C		filli	ngs = 200 TCN	/I)	fillings = 30	ICM)
Number of S	tructures	3			8	
Volume of W	ater expected to	be 0.4			0.17	
conserved /	recharged @ 75%					
efficiency (M	ICM)					
RTRWH Stru	uctures – Urban	Areas				
Households	to be covered (25% with	n 50 m²area)			12277
Total RWH	potential (MCM)					0.6064838
Rainwater h	narvested / recha	arged @	80% runoff c	o-efficient		1.1718
However, it	is economically	not viab	le & hence, n	ot recomme	ended.	·
6.2. Demand Side Management						
Micro irriga	tion techniques					Nil
Proposed Cropping Pattern change						
Irrigated area under Water Intensive Crop(ha)					Not proposed	
Water Saving by Change in Cropping Pattern					Nil	
6.3. Expected Benefits						
Net Ground Water Availability (MCM) 8						86.11
Additional ((MCM)	GW resources av	ailable a	fter Supply si	de intervent	tions	0.56
Ground Wa	ter Availability a	fter Sup	oly side interv	ention (MC	M)	86.68
Existing Gro	und Water Draf	t for All l	Jses (MCM)	•		33.17

GW draft after Demand	33.17		
Present stage of Ground	38.52		
Expected Stage of Grou	nd Water Developme	ent after interventions (%)	38.26
Other Interventions Pro	posed, if any		
Alternate Water Source	s Available		Nil
6.4. Development Plan			
Volume of water availab	ole for GWD after sta	ge of GWD brought to 70 %	27 51
(MCM)	27.51		
Proposed Number of D	1650		
Proposed Number of BV	275		
Additional Area (sq.km.	43.19		
irrigation with av. CWR			
Regulatory Measures60m borewells/tube wells			
	ARTIFICIAL RECH UMRED BLOCK, NAGPUR	ARGE STRUCTURE DISTRICT, MAHARASHTRA	

9.2 HINGNA BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURE	5		
1.1 Introduction			
Block Name			Hingna
Geographical Area (S	q. Km.)		802.45
Hilly Area (Sq. Km)			168.31
Population (2011)			121151
Climate			Monsoon
			Tropical
1.2 Rainfall Analysis			
Normal Rainfall			1171.5mm
Annual Rainfall (2019			1010.6 mm
Decadal Average Anr	ual Rainfall (2010-2019)		885.32 mm
Long Term Rainfall	Insignificantly falling trend -10.58 m	nm/year.	
Analysis (2000-	Probability of Rainfall: 35% Normal	rainfall and 5%	6 Excess rainfall
2019)	Probability of Drought-: 55% Mode	ate AND 5% S	EVER Drought
	Rainfall Trend Analysis (2000	- 2019)	
2000 1870.7		40	
1800		y = -10.57	/6X + 1003.3
1600			
1400 1188.6		1235.7	
1000	920.4920.4 942.2	956.2	1010.6
800	683.1 ^{724.7}	778.6	779.5 ^{815.3}
600 479.2	5.3		
400			
200			
0			
2000 2001 2001 2003	2004 2003 2000 2001 2000 2003 2010 2022 2024	2013 2014 2015 20	010 2011 2018 2013
1.3. Geomorphology	, Soil & Geology		
Geomorphic Unit	Plateau (Slightly to Highly d Disse	cted) with we	athered thickness
	ranging from 0 to 5 m.		
Geology	Deccan Traps (Basalt) Age: Upper	Cretaceous to	o Lower Eocene
Soil	Fine loamy to clayey soil.		
1.4. Hydrology & Dra	inage		
Drainage	Godavari river basin.		
	Major projects	0	
	Medium projects	1	
Hydrology	Minor Irrigation Projects (Local)	11	
	Minor Irrigation Projects (ZP	7	
	Level)		
		PT-8, KT-148	, UGB-155
		1	

1.5. Land Use, Agriculture, Irrigation & Cropping Pattern

1	105.23 Sq. Km.	
Area	471.30 Sq. Km.	
Area	321.65 Sq. Km.	
pped Area	34.99 Sq. Km.	
Surface	7.34 sq. km.	
Water		
Ground	3123ha	
Water		
ops	Crop Type	Area (Sq. Km.)(Reference year 2014-15)
	Cotton	188.12
	Cereals	28.91
	Pulses	0
	Oil Seeds	89.04
Horticultural Crops	Sugarcane	0.37
	Citreous fruit	5.25
	Vegetables	8.58
1.6. Water Level Behaviour		
1.6.1 Aquifer-I (Shallow Aquifer)		
Pre-Monsoon (May-2019)		Post-Monsoon (November-2019)
DTWL 5 to 10 mbgl is observed in major		DTWL 2 to 5 mbgl is observed in entire
parts of the block while water level in the		block except western and small area in
range of 2 to 5 mbgl is observed in		north-west and north part of the block
northern, northwestern parts. Deeper		where DTWL ranging 5 to 10. DTWL less
DTWL 10 to 20 mbgl is observed as in a		than 2 mbgl are observed as patches in
long horizontal patch in southern part and		north-east and south-east-west parts of
north western part.		the block.
PRE-MONSOON DEPTH TO WATER LEVEL (MAY 2019)		POST-MONSOON DEPTH TO WATER LEVEL (NOV 2019)
HINGNA BLOCK, NAGPUR DISTRICT		HINGNA BLOCK, NAGPUR DISTRICT
	Area Area pped Area Surface Water Ground Water ops al Crops Level Behave er-I (Shallow on (May-20 10 mbgl is of block while to 5 mbgl is northwester 20 mbgl is ntal patch in ern part.	105.23 Sq. Km. Area 471.30 Sq. Km. yrea 321.65 Sq. Km. pped Area 34.99 Sq. Km. Surface 7.34 sq. km. Water

EC ranging from 750 to 2250 μ S/cm has been observed in major part of block & ground water is suitable for all purpose. Ground water with EC ranges from 250 to 750 μ S/cm is observed in an isolated patch in south western part while EC<750 is observed in 176.7 sq.km area in southern, southwestern part of the block. EC ranging from 750 to 2250 μ S/cm has been observed in major part of block & ground water is suitable for all purpose. Whereas EC ranging from 2250 to 3000 has been observed in southern, south-western and north western part of the block. Few villages are affected by Nitrate contamination.

5. GROUND WATER RESOURCE	
5.1 Aquifer-I/ Shallow Phreatic Aquifer (Basalt)	
Ground Water Recharge Worthy Area (Sq. Km.)	634.14
Total Annual Ground Water Recharge (MCM)	78.57
Natural Discharge (MCM)	3.93
Annual Extractable Ground Water Recharge (MCM)	74.646
Current Annual Ground Water Extraction for irrigation (MCM)	25.63
Current Annual Ground Water Extraction for domestic water supply	8.58
(MCM)	
Current Annual Ground Water Extraction for All uses (MCM)	34.2098
Annual GW Allocation for for Domestic Use as on 2025 (MCM)	9.11
Net Ground Water Availability for future use (MCM)	40.10
Stage of Ground Water Development (%)	45.83
Category	Safe

5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)

Total Area	Mean aquifer	SY	S		Piezometri	ic Head	Total Resource	
(Sq. Km.)	thickness (m)				(m above confining		(MCM)	
					layer)			
634.14	3.16	0.015	5 0.0003	5	53.64		0.7	
6.0. GROUN	ND WATER RESO	URCE	ENHANCE	MENT				
6.1. Supply	Side Manageme	ent						
SUPPLY (M	CM)						-	
Available Re	esource (MCM)						74.646	
Gross Annu	al Draft (MCM)						34.2098	
Agricultural	Demand –GW						25.63	
Agricultural	Demand –SW						4.77	
Domestic D	emand – GW						8.58	
Domestic D	emand – SW						2.15	
Total Dema	ind						41.13	
Area of Bloo	ck (Sq. Km.)						786.3	
Area suitab	le for Artificial re	charge	e (Sq. Km)				634.14	
Type of Aqu	uifer							
Area feasib	le for Artificial Re	echarg	e (WL >3n	nbgl) ((Sq. Km.)		526.73	
Volume of U	Jnsaturated Zon	e (MCl	M)				1594.42	
Average Specific Yield					0.02			
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)						31.89		
Surplus wat	Surplus water Available (MCM) 11.80							
Proposed St	tructures	Р	ercolation	Tank	(Av. Gross	Check Da	am (Av. Gross	
		C	apacity-10	00 TCN	И*2	Capacity	'-10 TCM * 3	
		fi	llings = 20	0 TCIV	1)	fillings =	30 TCM)	
Number of	Structures	4	1			118		
Volume of V	Nater expected	to 6	.19			2.65		
be conserve	ed / recharged @)						
75% efficier	ncy (MCM)							
RTRWH Str	uctures – Urban	Areas						
Households	to be covered (25% w	ith 50 m² a	area)			30325	
Total RWH	potential (MCM)						1.29791	
Rainwater h	narvested / recha	arged (@ 80% rur	noff co	o-efficient			
However, it	is economically	not via	able & her	nce, no	ot recomme	nded.		
6.2. Deman	d Side Manager	nent						
Micro irriga	ition techniques							
Sugarcane crop area, proposed to be covered under Drip (sq.km.)					Nil			
Volume of Water expected to be saved (MCM). Surface Flooding req-					ing req-			
0.36 m. Drij	o Req 0.24, Wl	JE- 0.1	.2 m					
Proposed C	ropping Pattern	chang	ge					
Irrigated ar	ea under Water	Intensi	ive Crop(h	a)			Not proposed	
Water Savir	ng by Change in (Croppi	ng Pattern	1			Nil	
6.3. Expect	ed Benefits							
Net Ground Water Availability (MCM) 74.646						74.646		

Additional GW resources available after Supply side interventions	8.85
(MCM)	0.00
Ground Water Availability after Supply side intervention (MCM)	83.50
Existing Ground Water Draft for All Uses (MCM)	34.21
GW draft after Demand Side Interventions (MCM)	34.21
Present stage of Ground Water Development (%)	45.83
Expected Stage of Ground Water Development after interventions	40.07
(%)	40.97
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to	24.24
70% (MCM)	24.24
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	1454
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	242
Additional Area (sq.km.) proposed to be brought under assured GW	50.90
irrigation with av. CWR of 0.65 m after 70% stage of gwd is achieved	
Regulatory Measures60 m borewells/tube v	vells
HINGNA BLOCK, NAGPUR DISTRICT, MAHARASHTRA	

9.3 BHIWAPUR BLOCK, NAGPUR DISTRICT, MAHARASHTRA

	,	,				
1. SALIENT FEATUR	ES					
1.1 Introduction						
Block Name	<u> </u>		Bhiwapur			
Geographical Area (Sq. Km.)		701.97			
Hilly Area (Sq. Km)			111.65			
Population (2011)						
Climate			Monsoon Tropical			
1.2 Rainfall Analysis	5					
Normal Rainfall			1309.5 mm			
Annual Rainfall (201	.9)		1602.3 mm			
Decadal Average An	nual Rair	nfall (2010-2019)	1226.85 mm			
Long Term Rainfall	Rising t	rend 32 mm/year.				
Analysis (2000 to	Probab	ility of Rainfall: 50% Normal	Rainfall; 10 % Excess Rainfall			
2019)	Probab	ility of Drought: 30 % Moder	ate Drought; 10% Acute			
	Drough	nt				
Rainfall Trend Analy	ysis (200	0 to 2019)				
	Pain	fall Trend Analysis (2000	2019)			
	Nam	Tall Trend Analysis (2000	-2013			
2000		1690.1	1788.2 y - 52.405x + 724.07			
	1431.243	31.2 1211.0	1602.3			
1500	1500 1341.8 1275.3 1320.7					
1000 923.3		1045.6 993.7 1088.4 852.2	855.4906.3997.8			
7	40.4					
500 251.1						
7.4						
0 _						
2000 2001 2002 200	13 200A 200E	2,006,001,008,009,010,011,012	2013 2014 2015 2016 2017 2018 2019			
13 Geomorpholog	v Soil &	Geology				
Geomorphic Unit	Pedinla	in to moderately dissected n	lateau			
Geology	Deccan T	rans (Basalt) Age: Upper Cretaceo	is to Lower Focene: TCG Age: Permo-			
Geology	carbonife	erous; Granite Gneiss Age : Archea	ns			
Soil	Fine to co	barse loamy soil.				
1.4. Hydrology & Dr	ainage					
Drainage	Wainga	nga river and its tributaries.				
U	Major and Medium project Nil					
Hydrology	30					
,	Minor Irrigation Projects (7P Level) 8					
			PT-6 KT-129 LIGB-132			
15 Land Use Agric	ultura Ir	rigation & Cronning Pattern	0, KT 120, 000 102			
Forest Area	uituie, II	105 72 Sa Km				
		171 25 Sa Km				
Not Sown Area		271 44 Sa Km				
INEL SUWITATED		5/1.44 SY. NIII.				

Double Crop	ped Area	139.69 sq. Km.	
Area under	Surface	18.91 Sq. Km.	
Irrigation	Water		
	Ground	64.57 Sq. Km.	
	Water		
Principal Cro	ops	Crop Type	Area (Sq. Km.) (Reference year 2014-15)
		Cotton	125.08
		Cereals	85.30
		Pulses	0.5
		Oil Seeds	176.48
		Sugarcane	1.22
		Citreous fruit	1.35
		Others	12.21
1.6. Water L	evel Behaviour		
1.6.1 Aquife	er-I (Shallow Aqu	uifer)	
Pre-Monsoc	on (May-2019)		Post-Monsoon (November-2019)
DTWL 5 to 1	0 mbgl is observ	ed in entire	Water level in the range of 5 to 10mbgl is
block engulf	ing DTWL patche	es of 10 to 20	observed in southern part and in patch in
mbgl. Shallo	w DTWL 2-5 mb	gl is observed	north-estern part of the block. DTWL 2 to 5
as isolated p	atch in eastern-	western part of	mbgl is observed in major part of the
the block.			block. Water level in the range of 10 to 20
			mbgl is observed only as small isolated
			patch in south-east part of the block.
PRE-MONSOON BHIWAP	DEPTH TO WATER LEVEL (MAY UR BLOCK, NAGPUR DISTRICT	Constitution of the second sec	POST-MONSOON DEPTH TO WATER LEVEL (NOV 2019) BHIWAPUR BLOCK, NAGPUR DISTRICT
1.6.2 Water	Level Behaviou	r - Aquifer-II (De	eper Aquifer)
Pre-Monsoc	on (May-2019)		Post-Monsoon (November-2019)
DTWL 10-20	mbgl is observe	d in south-	DTWL 2-5 mbgl is observed in major part
south west p	part of the block	. DTWL 5-10	except small patch of DTWL 0 - 2 mbgl in
mbgl is obse	rved in the cent	ral and north-	north east parts of the block.
eastern part	s of the block. D	TWL 2-5 mbgl	
is observed	in the northern p	part in small	

EC ranging from 750 to 2250 $\mu\text{S/cm}$ has been observed in major part of block & ground water is suitable for all purpose. Patches of EC ranging 250-750 µS/cm are observed in northcentral-eastern and western parts of the block. Patches of EC ranging >2250 μ S/cm observed in isolated patches in southern and northern part of the hlock

EC ranging from 750 to 2250 μ S/cm has been observed in entire part of block & ground water is suitable for all purpose except a small patch of EC ranging from 250-750µS/cm in the north east part at the border. Few villages are also affected by Fluoride contamination.

63 m 200

Acres

and another state

-

DIOCK.							
5. GROUND	WATER RES	OURCE					
5.1 Aquifer	-I/ Shallow P	hreatic A	Aquifer (Bas	alt)			
Ground Wa	ter Recharge	Worthy	Area (Sq. Ki	m.)		55765	
Total Annua	al Ground Wa	ater Rech	arge (MCM)		42.07	
Natural Dise	charge (MCN	1)				3.01	
Annual Extr	actable Grou	ind Wate	r Recharge	(MCM)		39.07	
Current Ani	nual Ground	Water Ex	traction for	rirrigation (MCM)		16.91	
Current Ani	nual Ground	Water Ex	traction for	[•] domestic water		4.21	
supply (MC	M)						
Current Ani	nual Ground	Water Ex	traction (M	CM)		21.13	
Annual GW Allocation for for Domestic Use as on 2025 (MCM)						4.21	
Net Ground Water Availability for future use (MCM)						17.80	
Stage of Ground Water Development (%)						54.08	
Category Safe						Safe	
5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)							
Total Area	Mean	SY	S	Piezometric	То	tal Resource (MCM)	
(Sq. Km.)	aquifer			Head			
	thickness			(m above			
(m) (m)							
557.65	557.65 3.15 0.015 0.00008 61.16 0.14						
6.0. GROUN	ND WATER R	ESOURCE	ENHANCE	MENT			
6.1. Supply	Side Manag	ement					
SUPPLY (M	CM)						

Available Resource (MCM)	39.07			
Gross Annual Draft (MCM)	21.1251			
Agricultural Demand –GW	16.92			
Agricultural Demand –SW			12.2915	
Domestic Demand – GW			4.21	
Domestic Demand – SW			1.0525	
Total Demand			34.47	
Area of Block (Sq. Km.)			669.30	
Type of Aquifer				
Area feasible for Artificial I	Recharge (WL >3mbgl) (Sq. K	(m.)	251.39	
Volume of Unsaturated Zo	ne (MCM)		206.7	
Average Specific Yield			0.015	
Volume of Sub Surface Sto	rage Space available for Arti	ficial	3.10	
Recharge (MCM)				
Surplus water Available (M	ICM)	1	4.134	
Proposed Structures	Percolation Tank (Av.	Check Dam	(Av. Gross Capacity-	
	Gross Capacity-100	10 TCM * 3	fillings = 30 TCM)	
	TCM*2 fillings = 200			
	TCM)			
Number of Structures	14	41		
Volume of Water	2.17	0.93		
expected to be				
conserved / recharged @				
75% efficiency (IVICIN)	•			
RIRWH Structures – Urba	n Areas			
Households to be covered	(25% with 50 m ² area)		Nil	
Total RWH potential (MCN	1)			
Rainwater harvested / rech	narged @ 80% runoff co-effi	cient		
However, it is economically	y not viable & hence, not red	commended.		
6.2. Demand Side Manage	ement			
Micro irrigation technique	S		Γ	
Sugarcane crop area, prop	osed to be covered under D	rip (sq.km.)	Nil	
Volume of Water expected	to be saved (MCM). Surface	e Flooding		
req- 2.45 m. Drip Req 1.8	38, WUE- 0.57 m			
Proposed Cropping Patter	n change		1	
Irrigated area under Water	Not proposed			
Water Saving by Change in	Nil			
6.3. Expected Benefits			1	
Net Ground Water Availab	ility (MCM)		39.07	
Additional GW resources a	vailable after Supply side int	terventions	3.10	
(MCM)	0 0 1 11 1 1 1			
Ground Water Availability	after Supply side interventio	on (MCM)	42.32	
Existing Ground Water Dra	ITT FOR All Uses (MCM)		21.13	
GW draft after Demand Sid	te interventions (MCM)		21.13	
Present stage of Ground W	54.08%			

9.4 KUHI BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES					
1.1 Introduction						
Block Name		Kuhi				
Geographical Area (Sq. Km.)	825.19				
Hilly Area (Sq. Km)		75.22				
Population (2011)		123977				
Climate		Monsoon Tropical				
1.2 Rainfall Analysis	5					
Normal Rainfall		1309.5 mm				
Annual Rainfall (201	.9)	1602.3 mm				
Decadal Average An	nual Rainfall (2010-2019)	1172.67 mm				
Long Term Rainfall	Significantly rising trend 33.931 mm	n/year.				
Analysis (2000-	Probability of Rainfall: 50% Normal	Rainfall; 5 % Excess Rainfall				
2019)	Probability of Drought: 30% Modera	ate Drought; 5% Severe				
	Drought& 10% Acute drought					
Rainfall Trend Analy	rsis (2000 to 2019)					
D		00 2010)				
Ka	aintali Trend Analysis (20	00 - 2019)				
2000		1807.9 y = 33.931x + 660.4				
	1543.8543.8					
1500	1286 1291.5	1243.5				
950 3 1024.7 123.8 1111.7						
1000 859.2 828.6 <u>817.9</u> 880.8 894.4						
145.4						
35.3						
200 20 ¹ 20 ² 20	$\beta \sim \phi^{*} \sim $	and and and and and and				
25, 55, 55, 56	· 2 ³ ·	20, 20, 20, 20, 20, 20, 20,				
1.3. Geomorpholog	y & Geology					
Geomorphic Unit	Shallow Pedi plain area with weathe	red thickness ranging from 0 to				
	2 m.					
Geology	Granite Gneiss: Age- a\Archeans					
Soil	Fine loamy soil.					
1.4. Hydrology & Di	rainage					
Drainage	Arunavati river, tributary of Paingan	ga river, Godavari river basin				
	with sub-dendritic to dendritic drain	age.				
	Major project	1				
	Medium project	1				
Hydrology Minor Irrigation Projects (Local) 6						
Minor Irrigation Projects (ZP Level) 2						
	PT-16, KT-159, UGB-110					
1.5. Land Use, Agric	ulture, Irrigation & Cropping Pattern					
Forest Area	96.79 Sq. Km.					

Cultivable A	rea	587.50 Sq. Km			
Net Sown Area 483.73 Sq. Km		483.73 Sq. Km	l.		
Double Crop	ped Area	93.34 Sq. Km.			
Area under	Surface	0.40 sq km			
Irrigation	Water				
	Ground	100 ha			
	Water				
Area under [Orip & Sprinkler				
Irrigation					
Principal Cro	ps	Crop Type	Area (Sq. Km.) (Reference year 2014-15)		
		Cotton	27.24		
		Cereals	177.06		
		Pulses	93.04		
		Oil Seeds	283.37		
		Sugarcane	0.78		
		Citreous fruit	0.94		
		Vegetables	8.94		
1.6. Water L	evel Behaviour				
1.6.1 Aquife	r-I (Shallow Aqu	ifer)			
Pre-Monsoo	n (May-2019)		Post-Monsoon (November-2019)		
DTWL 5 to 1	0 mbgl is observ	ed in major	DTWL 2 to 5 mbgl is observed in half of the		
area engulfir	ng DTWL 2 to 5 r	nbgl. DTWL 10	area engulfing small patch of DTWL 5 to 10		
to 20 mbgl is observed in north-eastern		rth-eastern	mbgl. DTWL 0 to 2 mbgl is observed in		
and western part in patches.			north-eastern and eastern part.		
PRE-MONSOON DEPTH TO WATER LEVEL (MAY 2019) KUHI BLOCK, NAGPUR DISTRICT		EL (MAY 2019)	AQUIFER- II, POST-MONSOON DEPTH TO WATER LEVEL (NOV 2019) KUHI BLOCK, NAGPUR DISTRICT		
NORTH		XA .	NORTH MORTH		
Show			A DESCRIPTION OF A DESC		
5		1200			
: .0	RUM		# 		
	<u> </u>	3	LEGEND		
Depth to Water Level III mitigi			int int		
2 10.5 TE 10	» "	-206			
No of Aquifers . 11 Area . 808.19 States		~ 4	Presuper Agenter: Alternational		
Dianego - 1	вания Д	Summer /	Datage Barrow Datage Datage Datage Datage Datage		
	~~ "	Car	N/0 N/0		
1.6.2 Water Level Behaviour - Aguifer-II (Deeper Aguifer)					
Pre-Monsoon (May-2019)			Post-Monsoon (November-2019)		
DTWL 2-5 m	bgl is observed i	n major part.	DTWL 2-5 mbgl is observed in major part of		
DTWL 0-2 m	bgl is observed i	n eastern and	the block. DTWL 0-2 mbgl is observed in		
DTWL 5-10 v	vestern part of t	he block	eastern part of the block whereas small		
engulfing de	eper DTWL i.e.,	10 to 20 mbgl.	patch of DTWL 5-10 mbgl is observed in		
		-	western parts of the block.		

Major Aquifers	Granite Gneiss	
Type of Aquifer	Granite Gneiss	Granite Gneiss
(Phreatic/Semi-	Aquifer-I (Phreatic /	Aquifer-II (Semi-confined /
confined/Confined)	Shallow aquifer)	confined / Deeper aquifer)
Static Water Level (mbgl)	0.3-19.4	1.3-3.4
Depth of Occurrence (mbgl)	6-24	25-172.3
weathered/fractured rocks	0.2-2	3-28
thickness (m)		
Yield	10-33 m3/day	18-33 m3/day
Specific yield/ Storativity (S)	2.37 x 10-4 to 8 x	2.37 x 10-4 to 8 x 10-5
	10-5	
Transmissivity (T) m ² /day	130.00 to 279.13	198.35 to 336.5

4. GROUND WATER QUALITY

4.1 Phreatic Aquifer (Aquifer-I/ Shallow aquifer)

EC ranging 750 to 2250 µS/cm has been observed in major part of the block while EC ranging 250 to 750 µS/cm is observed in central part in long narrow patch of the block (336.2 sq.km). The ground water is suitable for all purpose.

EC ranging from 750 to 2250 μ S/cm has been observed in entire part. The ground water is suitable for all purpose.

5. GROUND WATER RESOURCE	
5.1 Aquifer-I/ Shallow Phreatic Aquifer (Basalt)	
Ground Water Recharge Worthy Area (Sq. Km.)	74997
Total Annual Ground Water Recharge (MCM)	68.22
Natural Discharge (MCM)	3.41
Annual Extractable Ground Water Recharge (MCM)	64.81
Current Annual Ground Water Extraction for irrigation (MCM)	31.93
Current Annual Ground Water Extraction for domestic water supply	6.77
(MCM)	
Current Annual Ground Water Extraction for All uses (MCM)	38.71
Annual GW Allocation for for Domestic Use as on 2025 (MCM)	7.52
Net Ground Water Availability for future use (MCM)	26.13
Stage of Ground Water Development (%)	59.72

Category							Safe	
5.2 Aquifer	-II (Semi-confine	ed/Confi	ned Deeper B	asaltic Aqui	ifer)			
Total Area	Mean aquifer	SY	S	Piezometri	ic Head	To	otal Resource	
(Sq. Km.)	thickness (m)			(m above		(M	CM)	
				confining l	ayer)			
749.97	4.15	0.015	0.00008	47.18		0.2	25	
6.0. GROUN	ND WATER RESO	URCE EN	HANCEMEN	Γ				
6.1. Supply	Side Manageme	ent						
SUPPLY (M	CM)							
Available Re	esource (MCM)						64.81	
Gross Annu	al Draft (MCM)						38.71	
Agricultural	Demand –GW						31.94	
Agricultural	Demand –SW						0.26	
Domestic D	emand – GW						6.77	
Domestic D	emand – SW						1.6925	
Total Dema	nd						40.6625	
Area of Bloo	ck (Sq. Km.)						82519	
Type of Aqu	uifer							
Area feasible for Artificial Recharge (WL >3mbgl) (Sq. Km.)						782.9		
Volume of Unsaturated Zone (MCM)				3754.03				
Average Sp	ecific Yield							
Volume of S	Sub Surface Stor	age Spac	e available fo	r Artificial R	echarge			
(MCM)								
Surplus wat	Surplus water Available (MCM)17.53696							
Proposed St	Proposed Structures Percolation Tank (Av. Gross Check Dam (Av. Gross					(Av. Gross		
		Cap	bacity-100 TCI	M*2	Capacity	y-10) TCM * 3	
		filli	ngs = 200 TCN	/)	fillings =	= 30	TCM)	
Number of	Structures	61			175			
Volume of V	Nater expected	to 9.2	1		3.95			
be conserve	ed / recharged @)						
75% efficier	ncy (MCM)							
RTRWH Stru	uctures – Urban	Areas	-				Nil	
Households	to be covered (25% with	n 50 m²area)					
Total RWH	potential (MCM)							
Rainwater h	narvested / recha	arged @	80% runoff co	o-efficient				
However, it	is economically	not viab	le & hence, n	ot recomme	ended.			
6.2. Deman	d Side Manager	nent						
Micro irrigation techniques								
Cotton crop area proposed to be covered under Drip (sq.km.) Nil					Nil			
Volume of V	Volume of Water expected to be saved (MCM). Surface Flooding req-							
2.45 m. Drip Req 1.88, WUE- 0.57 m								
Proposed C	Proposed Cropping Pattern change							
Irrigated ar	Irrigated area under Water Intensive Crop(ha) Not propose					Not proposed		
Water Savir	ng by Change in (Cropping	g Pattern				Nil	
6.3 EXPECTED BENEFITS								

Net Ground Water Availability (MCM)	64.81	
Additional GW resources available after Supply side interventions	13.15	
(MCM)		
Ground Water Availability after Supply side intervention (MCM)	77.96	
Existing Ground Water Draft for All Uses (MCM)	38.71	
GW draft after Demand Side Interventions (MCM)	38.71	
Present stage of Ground Water Development (%)	59.72	
Expected Stage of Ground Water Development after interventions (%)	49.65	
Other Interventions Proposed, if any		
Alternate Water Sources Available	Nil	
6.4 Development Plan		
Volume of water available for GWD after stage of GWD brought to 70%	15.86	
(MCM)		
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	952	
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	159	
Additional Area (sq.km.) proposed to be brought under assured GW	44.64	
irrigation with av. CWR of 0.65 m after 70% stage of gwd is achieved		
Regulatory Measures 60m borewells/tube wells		
ARTIFICIAL RECHARGE STRUCTURE		
KUHI BLOCK, NAGPUR DISTRICT, MAHARASHTRA		
NORTH 15 15		
MAUDA		
a sumetres wertes		
	88 - E	
	5	
LEGEND UMRED		
+ Percolation Tank	/	
Disinger	410	
Principal Aquifer : Grantle Greess		
No of Vilage 100		
79 10° 79 10°		

9.5 NAGPUR BLOCK, NAGPURDISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES					
1.1 Introduction						
Block Name			Nagpur			
Geographical Area (Sq. Km.)		640.74			
Hilly Area (Sq. Km)			105.49			
Population (2011)			2559442			
Climate			Monsoon Tropical			
1.2 Rainfall Analysis	5					
Normal Rainfall			1186.7 mm			
Annual Rainfall (201	.)		1013.7 mm			
Decadal Average An	nual Rair	nfall (2010-19)	1040.53 mm			
Long Term Rainfall	Falling	trend -11.46 mm/year.				
Analysis (2000-	Probab	ility of Rainfall : 75 % Norma	l Rainfall; 5 % Excess Rainfall			
2019)	Probab	ility of Drought: 20 % Moder	ate Drought			
Rainfall Trend Analy	sis (2000) to 2019)				
Da	infall	Trand Analysis (20	00 2010)			
Γ	aman	Trend Analysis (20	v = -11.459x + 1183.3			
1600 1339 3		1494.7	1389.9			
1400 1237	12/4.1/2	^{/4} ·1205.5 119	7.9			
1200 <u>- 966.7</u> 1000		966.3953.2947.4 913.8	768 7 856.3 ^{937.9}			
800	589		684.6			
600						
200						
0						
2000 2001 2002 200	13 200A 200E	200° 2001 200° 2009 2010 2012 2012	2013 2014 2015 2016 2017 2018 2019			
	~ ~					
1.3. Geomorpholog	y & Geol	ogy				
Geomorphic Unit	Plateau	(slightly dissected to modera	ately dissected) with weathered			
	thickne	ss ranging from 0 to 2 m.				
Geology	Deccan	Traps (Basalt) Age: Late Cret	aceous to Eocene / granite			
	Gneiss	Age: Archeans				
Soil	Shallow	to moderate deep clayey to	loamy soil.			
1.4. Hydrology & Dr	ainage					
Drainage	itic to dendritic drainage.					
	Major p	project	0			
	Mediun	n project	1			
Hydrology	Minor I	rrigation Projects (Local)	12			
	Minor I	rrigation Projects (ZP Level)	2			
		· · · · ·	PT-0, KT-60, UGB-70			
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern						
Forest Area		49.31 Sq. Km.				
Cultivable Area		444.20 Sq. Km.				
Net Sown Area						

Double Cropped Area 19.47 Sq. Kr		19.47 Sq. Km.				
Area under	Surface	0.7 Sq. Km.				
Irrigation	Water					
	Ground	19.07 Sq. Km.				
	Water					
Area under [Drip & Sprinkler	ha				
Irrigation						
Principal Cro	ps	Crop Type	Area (Sq. Km.) (Reference year 2014-15)			
		Cotton	85.50			
		Cereals	18.29			
		Pulses	0.01			
		Oil Seeds	92.96			
Horticultura	Crops	Sugarcane	0.43			
		Citreous fruit	4.85			
		vegetables	8.40			
1.6 Water Le	evel Behaviour	_				
1.6.1 Aquife	r-I (Shallow Aqu	ifer)				
Pre-Monsoo	n (May-2019)		Post-Monsoon (November-2019)			
DTWL 5 to 1	0 mbgl is observ	ed in major	DTWL 2 to 5 mbgl is observed in major			
part engulfir	ng DTWL 10 to 20) mbgl is	part. DTWL of 0 to 2 mbgl is observed as			
observed in	Central, eastern,	, north-	isolated patches in north and south part of			
western part	t. DTWL 2 to 5 m	bgl observed	the block. While DTWL 5 to 10 mbgl in			
in small patc	hes in north-eas	t and central	isolated patch in north- west part and also			
parts.			in south east and western part of the			
			block.			
AQUIFER- I, PRE-MONSOON DEPTH TO WATER LEVEL (MAY 2019) NAGPUR BLOCK, NAGPUR DISTRICT		ATER LEVEL	AQUIFER- I, POST-MONSOON DEPTH TO WATER LEVEL (NOV 2019) NAGPUR BLOCK, NAGPUR DISTRICT			
NORTH 10 13 10 10 RALMEDIMMAR LEGEND		- MAGRAN	LECEND			
Area : 685 40 bic 4	m Reserver	5	Proceedings Applier Advancements			
Monitoring Wells : Magner Linbar Box Dopth to Water Level in m	o Dance HO nday	P	Meeting Yeek 3 Centrics Nager Unter Boundary Depth to House Level in might Thus 2			
2 m 5 5 m 12 9 m 23			2 m3 1 m 12			
a nta	AND THE IN		17 N 42 16 N 18			
1.6.2 Water	Level Behaviou	⁻ - Aquifer-II (De	eper Aquifer)			
Pre-Monsoon (May-2019) Post-Monsoon (Nove			Post-Monsoon (November-2019)			
DTWL 10 to 20 mbgl is observed in major DTV			DTWL 10-20 mbgl is observed in major			

Cross-Section	B-B'					
В	B'		Stratigraphy Inc	lex		
Khandala 0.0 25.0 100.0 200.0	a Lonara 0.0 100.0	Functioneral Frankrund Frankrund Frankrund Manathema & Statist Manathema & Statist				
3.4. Aquifer Characteristics						
Major Aquifers	Basalt (Deccar	n Traps)			
Type of Aquifer	Basalt –		Basalt –	TCG-aquifer II		
(Phreatic/Semi-	Aquifer	-	Aquifer-II	(Semi-confined /		
confined/Confined)	(Phreatic /		(Semi-confined	confined / Deeper		
	Shallow		/ confined /	aquifer)		
	aquifer)		Deeper aquifer)			
Static Water Level (mbgl)	0.4-6.8		1.9-26.9	0.8-29.6		
Depth of Occurrence (mbgl)	2-8		32-120	Upto 120		
weathered/fractured rocks thickness (m)	1-7.5		3-12.2	9.5-11		
Yield	10 – 100 m³/day		0.2 - 0.75 lps	-		
Specific yield/ Storativity (S)	0.018 -	0.20	0.0000145	-		
Transmissivity (T)	20 - 50 m²/day		20 - 60 m2/day -			
4. GROUND WATER QUALITY						
4.1 Phreatic Aquifer (Aquifer-I/ Shallow 4.2 Semi-confined/Confined Aquifer						
aquifer) (Aquifer II/ Deeper aquifer)						

contamination. However, the water from such area is not fit for drinking purpose without treatment.

near border. The ground water is suitable for all purpose. Two isolated patches of EC ranging 2250-3000 μ S/cm is observed in eastern and western parts of the block. Ground water is suitable for irrigation purpose with proper salinity control measures. However, the water from such area is not fit for drinking purpose without treatment.

5. GROUND WATER RESOURCE	
5.1 Aquifer-I/ Shallow Phreatic Aquifer (Basalt)	
Ground Water Recharge Worthy Area (Sq. Km.)	535.25
Total Annual Ground Water Recharge (MCM)	60.46
Natural Discharge (MCM)	3.23
Annual Extractable Ground Water Recharge (MCM)	57.23
Current Annual Ground Water Extraction for irrigation (MCM)	19.54
Current Annual Ground Water Extraction for domestic water supply	7.50
(MCM)	
Current Annual Ground Water Extraction for All uses (MCM)	27.04
Annual GW Allocation for for Domestic Use as on 2025 (MCM)	8.34
Net Ground Water Availability for future use (MCM)	30.41
Stage of Ground Water Development (%)	47.25
Category	SAFE

5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)							
Total Area	Mean aquifer	SY	S	Piezometr	Total Resource		
(Sq. Km.)	thickness (m)			(m above (M		(MCM)	
				confining layer)			
535.25	4.03	0.015	0.00035	32.5		0.25	
6.0. GROUN	ND WATER RESO	URCE EN	HANCEMEN	Г			
6.1. Supply	Side Manageme	ent					
SUPPLY (MO	CM)						
Available R	esource (MCM)					57.23	
Gross Annu	al Draft (MCM)					27.05	
Agricultura	Demand –GW					19.54	
Agricultura	Demand –SW					0.46	
Domestic D	emand – GW					7.5	
Domestic D	emand – SW					1.875	
Total Dema	nd					29.37	
Area of Blo	ck (Sq. Km.)					886.4	
Type of Aqu	uifer		((a)			
Area feasib	le for Artificial R	echarge	(WL >3mbgl)	(Sq. Km.)		178.66	
Volume of I	Jnsaturated Zon	e (MCM)			558.47	
Average Sp	ecific Yield						
Volume of S	Sub Surface Stor	age Spac	e available fo	r Artificial R	lecharge		
(MCM)							
Surplus wat	er Available (Mi	JM)	Deveoletien		Charle D	4.001984	
Proposed Structures Percolation Tank (Av. Check Dam (Av						7 10 TCM * 2	
Gross Capacity-100 Capacity-10 ICM * 3						- 20 TCNI - 3	
				gs – 200	mings -	- 50 1 CIVI)	
Number of	Structures		14		40		
Volume of V	Nater expected	to he	2 10		0.9		
conserved	recharged @ 7	5%	2.10		0.5		
efficiency (I	MCM)						
RTRWH Stru	uctures – Urban	Areas				564149	
Households	to be covered (25% with	n 50 m²area)			29.54762	
Total RWH potential (MCM)						282074.5	
Rainwater harvested / recharged @ 80% runoff co-efficient							
However, it	is economically	not viab	le & hence, n	ot recomme	ended.		
6.2. Demand Side Management							
Micro irrigation techniques							
Sugarcane crop area proposed to be covered under Drip (sq.km.) Nil						Nil	
Volume of Water expected to be saved (MCM). Surface Flooding req-							
2.45 m. Drip Req 1.88, WUE- 0.57 m							
Proposed Cropping Pattern change							
Irrigated ar	ea under Water	Intensive	e Crop(ha)			Not proposed	
Water Saving by Change in Cropping Pattern Nil					Nil		
6.3. Expected Benefits							

Net Ground Water Availability (MCM)	57.23
Additional GW resources available after Supply side interventions	3.00
(MCM)	
Ground Water Availability after Supply side intervention (MCM)	60.23
Existing Ground Water Draft for All Uses (MCM)	27.04
GW draft after Demand Side Interventions (MCM)	27.04
Present stage of Ground Water Development (%)	47.25
Expected Stage of Ground Water Development after interventions (%)	44.89
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 70 %	15.12
(MCM)	
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	907
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	151
Additional Area (sq.km.) proposed to be brought under assured GW	27.88
irrigation with av. CWR of 0.65 m after 70% stage of GWD is achieved	

9.6 KATOL BLOCK, NAGPUR DISTRICT, MAHARASHTRA

r						
1. SALIENT FEATURES						
1.1 Introduction						
Block Name Katol						
Geographical Area (Sq. Km.)	734.63				
Hilly Area (Sq. Km)		181.70				
Population (2011)		43267				
Climate		Monsoon Tropical				
1.2 Rainfall Analysis	5					
Normal Rainfall		973 mm				
Annual Rainfall (201	.9)	990.6 mm				
Decadal Average An	nual Rainfall (2010-2019)	873.97 mm				
Long Term Rainfall	Rising trend 20.60 mm/year.					
Analysis (2000-	Probability of Rainfall: 65 % Normal	Rainfall; 5 % Excess Rainfall				
2019)	Probability of Drought: 20 % Modera	ate and 10% Acute Drought				
Rainfall Trend Analy	sis (2000 to 2019)					
Ra	ainfall Trend Analysis (20	00 - 2019)				
1400	1271.8	y = 20.596x + 587.11				
1200	1092.8092.3	11065.2 1025.2				
1000	937.4 888.4	1035.2 990.6				
800 640 6	773.2 801.8	7/3 766.7				
600	55.1	581.7				
400						
400						
0						
2000 2001 2002 200	13 200° 201° 200° 200° 200° 200° 201° 201°	2013 2014 2015 2016 2017 2018 2019				
1.3. Geomorpholog	v & Geology					
Geomorphic Unit	Plateau (slightly dissected to modera	ately dissected and weathered				
•	plateau) with weathered thickness ra	, anging from 0 to 5 m.				
Geology	Deccan Traps (Basalt) Age: Late Creta	aceous to Eocene				
Soil	Moderately deep BCS consisting mostly of clay, 25-100 cm thick.					
1.4. Hydrology & Di	ainage					
Drainage	Wardha river and its tributaries and	Wainanga river and its				
tributaries, Godavari river basin with sub-dendritic to dendritic						
	drainage.					
	Major project	0				
	Medium project	1				
Hydrology	Minor Irrigation Projects (Local)	41				
,	Minor Irrigation Projects (ZP Level)	6				
		PT-34, KT-316, UGB-370				
1.5. Land Use. Agric	ulture. Irrigation & Cropping Pattern					
Forest Area	132.63 Sa. Km.					

Cultivable Area 609.34 Sq. Km.						
Net Sown Area 486.65 Sq. Km.		486.65 Sq. Km.				
Double Crop	ped Area	158.41 Sq. Km.				
Area under	Surface	0 Sq. Km.				
Irrigation	Water					
	Ground	70.47 Sq. Km.				
	Water					
Principal Cro	ps	Crop Type	Area (Sq. Km.) (Reference year 2014-15)			
		Cotton	57.50			
		Cereals	38.05			
		Pulses	81.12			
		Oil Seeds	289.27			
Horticultural	Crops	Sugarcane	0.06			
		Citreous fruit	60.45			
		vegetables	8.68			
1.6 Water Le	vel Behaviour	. –				
1.6.1 Aquifer	-I (Shallow Aqui	ifer)				
Pre-Monsoo	n (May-2019)		Post-Monsoon (November-2019)			
DTWL 5 to 10) mbgl is observ	ed in major	DTWL 5 to 10 mbgl is observed in major			
part while D	FWL 10 to 20 ml	ogl is observed	part. DTWL of 2 to 5 mbgl is observed as			
in Central, ea	astern, north, no	orth-western	long patch in south-west and east part also			
and souther	n part. DTWL 2 t	o 5 mbgl	in west part of the block in a small patch.			
observed in s	small patch in sc	outh-east part	While DTWL 10 to 20 mbgl in isolated			
near border.			patch in southern part and part of the			
			block.			
AQUIFER- I, PRE	MONSOON DEPTH TO	WATER LEVEL	AQUIFER- I, POST-MONSOON DEPTH TO WATER LEVEL			
KATOL BLOCK, NAGPUR DISTRICT		TRICT	KATOL BLOCK, NAGPUR DISTRICT			
	Som	NORTH	NORTH			
a s te		Allumeters	Likernations			
Same Co		Salara.	and the second			
m S.	and a second	2 marco				
	·	~~~	at the second se			
" <u>< (</u>	· 2					
20	- · ·	5				
No.4		Sar	The E Set			
		S BOR				
LEGEND	<u> </u>	SI	LEGEND			
2 to 5	The work		Depth to Water Level # m.bgl 2 to 5			
5 to 10	21	a la	5 10			
	BELOO	Charage	sel.oo			
No of Aquifers : 01	humant Basan	Reserver	Principal Aquifer : Altuvium/Basalt Montoring Yorks No of Aquifers : 01 Annoir			
Area 1905-00 Sq.km U Talua HQ 761-37 781-49 781-30 781-30						
1.6.2 Water	Level Behaviou	r - Aquifer-II (De	eper Aquifer)			
Pre-Monsoon (May-2019)			Post-Monsoon (November-2019)			
DTWL 10 to 20 mbgl is observed in major			DTWL 10 to 20 mbgl is observed in major			

Cross-Section G-G'				Lege	ends	
G				G'	Westwed track	und bacat
KHANGAON	Katol				Woothersel SIV	
				Dorli	washered from	The Quantum
					hatest latest	Granite Status
H-sel	and profile.				Contrast Sectored	(beaut)
					Mandre basel	
					for here a block	Gaudumui 187
0	10,000	2	20,000		Starth Barn	
3.4. Aquifer Characte	eristics					
Major Aquifers		Basalt (D	eccan Tra	aps)		
Type of Aquifer		Basalt –A	quifer-l	Basalt -	-Aquifer-	TCG-aquifer II
(Phreatic/Semi-		(Phreatic	/	II (Semi	-confined	(Semi-confined
confined/Confined)		Shallow aquifer)		/ confined /		/ confined /
				Deeper	aquifer)	Deeper aquifer)
Static Water Level (m	ıbgl)	2.8-13.5		5-28.3		0.8-29.6
Depth of Occurrence	(mbgl)	13.7-34		70-198.8		26-194.5
weathered/fractured	rocks	1-25 0.		0.5-36.36		2-41.67
thickness (m)						
Yield 10 – 10		10 - 100) m³/day 0.2 - 0.		75 lps	-
Specific yield/ Storativity (S) 0.018 – 0		.20	4.69-2.99×10 ⁻⁴ -		-	
Transmissivity (T) 20 - 50 m			² /day	20 - 60	m2/day	-
4. GROUND WATER	QUALITY					
4.1 Phreatic Aquifer	(Aquifer-I/ Sł	nallow	4.2 Sem	ni-confin	ed/Confin	ed Aquifer
aquifer)			(Aquife	r II/ Dee	per aquife	r)

5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)								
Total Area	Mean aquifer	SY	S	Piezometric Head Total Resource				
(Sq. Km.)	thickness (m)			(m above (M			1)	
				confining layer)				
552.93	30.03	0.015	0.000114	37.66		3.64		
6.0. GROUN	ND WATER RESO		NHANCEMEN	Г				
6.1. Supply	Side Manageme	nt						
SUPPLY (MO	CM)							
Available Re	esource (MCM)					82	2.28	
Gross Annu	al Draft (MCM)					65	5.02	
Agricultural	Demand –GW					55	5.19	
Agricultural	Demand –SW					0		
Domestic D	emand – GW					9.	.83	
Domestic D	emand – SW					2.	46	
Total Dema	nd					67	7.48	
Area of Bloo	ck (Sq. Km.)					73	34.63	
Type of Aqu	uifer							
Area feasib	le for Artificial Re	charge	(WL >3mbgl)	(Sq. Km.)		78	780.39	
Volume of U	Jnsaturated Zon	e (MCM)			19	1935.41	
Average Sp	ecific Yield					0.	.02	
Volume of S	Volume of Sub Surface Storage Space available for Artificial Recharge 38.71							
(MCM)							- 40	
Surplus wat	er Available (MC	M)		(1		1/	/.48	
Proposed S	tructures	Pe		(AV. Gross	Check L	am (A)	V. Gross	
		Ca		VI*Z		γ-10 IC	_IVI * 3	
Number of	Structures		ngs = 200 TCN	/1)		30 TC	1VI)	
Number of	Structures	01	0		2.02			
be concorry	water expected	.0 9.1	.8		3.93			
75% officion	eu / Techaigeu @	, 						
PTR//H Stri	icy (MCM)	Aroas						
Households	to be covered (5% wit	h 50 m ² area)			92	866	
Total BWH	notential (MCM)					0	4262112	
Rainwater	potential (MeM)	irged @	80% runoff c	n-efficient		<u></u>	933	
However it	is economically	not viał	le & hence n	ot recomme	nded			
6.2. Deman	d Side Managen	nent	ie a nenee, n	otrecomme	inaca.			
Micro irrigation techniques								
Micro Irrigation Techniques proposed in 50% Cotton cropped area of 28.75								
57.5 sa.km.								
Volume of Water expected to be saved (MCM). Surface Flooding reg- 8.74							.74	
2.45 m. Drip Reg 1.88, WUE- 0.57 m								
Proposed C	ropping Pattern	change				I		
Irrigated area under Water Intensive Crop(ha) Not proposed								
Water Savir	ng by Change in (Croppin	g Pattern			Ni	<u></u> il	
6.3. Expected Benefits								

Net Ground Water Availability (MCM)	82.28
Additional GW resources available after Supply side interventions	13.11
(MCM)	
Ground Water Availability after Supply side intervention (MCM)	95.39
Existing Ground Water Draft for All Uses (MCM)	65.02
GW draft after Demand Side Interventions (MCM)	56.28
Present stage of Ground Water Development (%)	79.02
Expected Stage of Ground Water Development after interventions (%)	59
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 70 %	10.49
(MCM)	
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	630
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	105
Additional Area (sq.km.) proposed to be brought under assured GW	36.31
irrigation with av. CWR of 0.65 m after 70% stage of GWD is achieved	
Regulatory Measures 60m borewells/tube wells	
ARTIFICIAL RECHARGE STRUCTURE KATOL BLOCK, NAGPUR DISTRICT, MAHARASHTRA	

9.7 NARKHED BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES							
1.1 Introduction								
Block Name Narkhed								
Geographical Area (Sq. Km.)		79820					
Hilly Area (Sq. Km)								
Population (2011)			29904					
Climate			Monsoon Tropical					
1.2 Rainfall Analysis	5							
Normal Rainfall			1029.3 mm					
Annual Rainfall (201	.9)		1034.9 mm					
Decadal Average An	nual Rair	nfall (2000-2019)	782.72 mm					
Long Term Rainfall	Rising t	rend 17.09 mm/year.						
Analysis (2000-	Probab	ility of Rainfall: 55 % Normal	Rainfall;					
2019)	Probab	ility of Drought: 35 % Moder	ate and 10% Acute Drought					
Rainfall Trend Analy	sis (2000	to 2019)						
	Deinf	all Trand Analysia (2000 2010)					
	Kaint	all Trend Analysis (2000 - 2019)					
1400		1281.3	1189.7 y = 17.09x + 603.27					
1200	014 001	954 1	1034.9					
1000 822.8	914.991	768.6	.4 876.1					
800 6	06.7	671	642.3 571.4					
600								
201.3								
0								
00 00 002 002	3 0 ⁰ 0 ⁵	, 00 00 00 00 00 00 00 00	13 14 15 16 17 18 19					
12 12 12 12	20 20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
1.3. Geomorphology	y & Geolo	ogy						
Geomorphic Unit	Plateau	(slightly dissected to moderate	ately dissected and weathered					
	plateau) with weathered thickness r	anging from 0 to 1 m.					
Geology	Deccan	Traps (Basalt) Age: Late Cret	aceous to Eocene					
Soil	Shallow	to deep loamy soil.						
1.4. Hydrology & Di	rainage							
Drainage	Wardha	a river, Kar and Kolar rivers a	nd tributaries; Godavari river					
	basin w	ith sub-dendritic to dendritic	drainage.					
	Major p	project	0					
	Mediun	n project	0					
Hydrology	Minor I	rrigation Projects (Local)	20					
	Minor I	rrigation Projects (ZP Level)	2					
PT-30, KT-129, UGB-272								
1.5. Land Use, Agric	ulture, li	rigation & Cropping Pattern						
Forest Area		69.62 Sq. Km.						
Cultivable Area		157.80 Sq. Km.						
Net Sown Area								

Double Crop	ped Area	143.32 Sq. Km.					
Area under	Surface	0 Sq. Km.					
Irrigation	Water						
	Ground	94.51 Sq. Km.					
	Water						
Principal Cro	ps	Crop Type	Area (Sq. Km.) (Reference year 2014-15)				
		Cotton	162.50				
		Cereals	71.75				
		Pulses	114.27				
		Oil Seeds	370.85				
Horticultura	l Crops	Sugarcane	0.02				
		Citreous fruit	62.39				
		Others	3.57				
1.6 Water Le	evel Behaviour						
1.6.1 Aquife	r-I (Shallow Aqu	uifer)					
Pre-Monsoo	n (May-2019)		Post-Monsoon (November-2019)				
DTWL 5 to 1	0 mbgl is observ	ed in southern	DTWL 5 to 10 mbgl is observed in major				
and eastern	part while DTW	L 10 to 20 mbgl	part. DTWL of 2 to 5 mbgl is observed in a				
is observed i	n Central, weste	ern part.	patch in south part part of the block in a				
			small patch. While DTWL 10 to 20 mbgl in				
			isolated patch in central part and part of				
			the block.				
AQUIFER- I, P	RE-MONSOON DEPTH TO WATER	R LEVEL (MAY 2019)	AQUIFER-1, POST-MONSOON DEPTH TO WATER LEVEL (NOV 2019)				
1 08083-525-543	NARKHED BLOCK, NAGPUR DIS	TRICT	NARIOHED BLOCK, NAGPUR DISTRICT				
El Doorage	for the	And	I A Design the second s				
Heservor	малисние		Teldy HG				
Principal Repulse : Allovium/D		SAGARE	Processi Asaline Adactore Rener				
Area : 892.00 36.60		-	Ans BLAS Sq in a start of the s				
	And the second	- Susan	and the second				
-	- Charles	LEGEND	- C LEGEND				
My .	ns	Depth to Woter Level In mbg					
# (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	40 to 20	6 C and a second				
NEIE SHOWIN	nger	•1# • • • • • • • • • • • • • • • • • • •	ajis ajus ajus				
1.6.2 Water	Level Benaviou	r - Aquiter-II (De	eper Aquiter)				
Pre-ivionsoo	n (IVIay-2019)		Post-Monsoon (November-2019)				
UTWL 5 to 10 mbgi is observed in major			DIWL 2 to 5 mbgl is observed in major part				
part. DTWL >20 mbgl is observed in south			of the block. DTWL 2 to 10 mbgl is				
east part wh	ereas DIWL 2 to	5 mbgi is	observed in south east and east part				
observed in	south-east part	engulting a	enguiring a small isolated patch of DTWL of				
patch of DTWL of 0 to 2 m bgl.			DTWL >20 mbgl near border.				

Block shows declining water level trend more than 0.6 m/year								
Frequent droughts (35% Moderate) which is ultimately responsible for less ground water								
recharge and non-availability of surface & ground water for irrigation.								
Less ground water potential basa	tic aquifer.							
3. AQUIFER DISPOSITION								
3.1. Number of Aquifers	Aquifer-	I Basalt (Phreatic / S	shallow aquifer)					
	Aquifer-	II Basalt; TCG (Semi-	-confined /					
	confined	l / Deeper aquifer)						
3.2. Lithological Disposition								
NARKHED Rind Kom Britishenia Britishenia								
3.3. Cross Section								
Cross A 0007 0007 0 10	-Section A-A' A' KORH KHE 000 20,000	Legen	- -					
3.4. Aquifer Characteristics	-							
Major Aquifers	Basalt (Deccan Tra	ps)						
Type of Aquifer	Basalt –Aquifer-I	Basalt –Aquifer-	TCG-aquifer II					
(Phreatic/Semi-	(Phreatic /	II (Semi-confined	(Semi-					
confined/Confined)	Shallow aquifer)	/ confined /	confined /					
		Deeper aquifer)	confined /					
			Deeper					
			aquifer)					
Static Water Level (mbgl)	3-17	2-33.37	1.9-29					
Depth of Occurrence (mbgl)	15-40	19-171	26-194.5					
weathered/fractured rocks	3-27	0.5-20	2-54					
thickness (m)								
Yield	35-110 m ³ /day	1->2 lps	Moderate to					
			high					
Specific yield/ Storativity (S)	0.018 - 0.20	5.6×10 ⁻⁴	-					
Transmissivity (T)	3.5-45 m ² /day	10-300 m ² /day	-					
4. GROUND WATER QUALITY								

EC ranging 750-2250 μ S/cm has been observed in major part & EC ranging 250 to 750 μ S/cm in patches in south and east parts of the block. The ground water is suitable for all purpose.

EC ranging 750 - 2250 μ S/cm has been observed in major part except EC ranging 250 -750 μ S/cm in) in patch in north-west and south part near border. The ground water is suitable for all purpose. Few villages are also affected by nitrate contamination. However, the water from such area is not fit for drinking purpose without treatment.

5. GROUND	WATER RESOU	RCE							
5.1 Aquifer	5.1 Aquifer-I/ Shallow Phreatic Aquifer (Basalt)								
Ground Wa	Ground Water Recharge Worthy Area (Sq. Km.) 643.23								
Total Annua	al Ground Water	Recharg	e (MCM)			93.82			
Natural Disc	charge (MCM)					5.2			
Annual Extr	actable Ground	Water R	echarge (MCN	Л)		88.63			
Current Anr	nual Ground Wa [.]	ter Extra	ction for irriga	ation (MCM)		50.47			
Current Anr (MCM)	nual Ground Wa	ter Extra	ction for dom	estic water supply		9.73			
Current Anr	nual Ground Wa	ter Extra	ction for All u	ses (MCM)		60.2			
Annual GW Allocation for Domestic Use as on 2025 (MCM) 9.7									
Net Ground	28.32								
Stage of Gro	67.92								
Category SAFE									
5.2 Aquifer	-II (Semi-confine	ed/Confi	ned Deeper B	asaltic Aquifer)					
Total Area	Mean aquifer	SY	S	Piezometric Head	То	tal Resource			
(Sq. Km.)	thickness (m)			(m above	(M	ICM)			
				confining layer)					
643.23	31.23	0.015	0.006434	31.71	0.9	9210			
6.0. GROUN	ID WATER RESO	URCE EN	HANCEMEN	Γ					
6.1. Supply	Side Manageme	ent							
SUPPLY (MC	CM)								
Available Resource (MCM)88.63									
Gross Annu	al Draft (MCM)					60.2			
Agricultural	Agricultural Demand –GW 50.47								

Agricultural Domand SM				
Agricultural Demand – GW			0	
Domestic Demand – SW	3.7 2.4			
Total Demand			62.63	
Area of Block (Sq. Km.)			79820	
Area suitable for Artificial recha	rge (Sa Km)		73820	
Area feasible for Artificial Recha	arge (WI >3mbgl) (Sg. Km.)		297 52	
Volume of Unsaturated Zone (M			1084 65	
Average Specific Yield			0.02	
Volume of Sub Surface Storage	Space available for Artificial R	echarge	21.69	
(MCM)		centarge	21.03	
Surplus water Available (MCM)			6.66	
Proposed Structures	Percolation Tank (Av. Gross	Check Dam	(Av. Gross	
	Capacity-100 TCM*2	Capacity-10) TCM * 3	
	fillings = 200 TCM)	fillings = 30	TCM)	
Number of Structures	23	67		
Volume of Water expected to	3.50	1.50		
be conserved / recharged @				
75% efficiency (MCM)			1	
RTRWH Structures – Urban Area				
Households to be covered (25%	6760			
Total RWH potential (MCM)	0.293384			
Rainwater harvested / recharge	3380			
However, it is economically not	viable & hence, not recomme	nded.		
6.2. Demand Side Managemen	t			
Micro irrigation techniques				
Micro Irrigation Techniques pro	posed in Cotton cropped area	a @ WUE	Nil	
Volume of Water expected to b	e saved (MCM). Surface Flood	ing req-		
0.815 m. Drip Req0.511, WUE	- 0.304 m			
Proposed Cropping Pattern char	nge			
Irrigated area under Water Inte	nsive Crop(ha)		Not proposed	
Water Saving by Change in Crop	pping Pattern		Nil	
6.3. Expected Benefits				
Net Ground Water Availability (MCM)		88.63	
Additional GW resources availal	ble after Supply side intervent	ions	5.00	
(MCM)				
Ground Water Availability after	M)	93.63		
Existing Ground Water Draft for		60.20		
GW draft after Demand Side Int		60.20		
Present stage of Ground Water	67.92			
Expected Stage of Ground Wate	tions (%)	64.30		
Other Interventions Proposed, i	t any			
Alternate Water Sources Availa	Nil			

Aquifer Maps and Ground Water Management Plan, Nagpur District, Maharashtra-2020

9.8 KALMESHWAR BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES														
1.1 Introduction														
Block Name									KA	۹LN	1ESH	IW/	٩R	
Geographical Area (Sq. km.)								51	18.1	L3Sq	. kn	n.	
Hilly Area (Sq. km.)									47	7.01	L Sq.	km	າ.	
Poor Ground Quality Area									N	il				
(Sq. km.)														
Population (2011)									1,	22,	363			
Climate									Su	ıb-	Tropi	ical		
1.2 Rainfall Analysis														
Normal Rainfall									98	35.4	10 m	m		
Annual Rainfall (2019)									10	007	.0mr	n		
Decadal Average Annual Ra	infal	l (2010-19))						95	58.2	10 m	m		
Long Term Rainfall	Risir	ng Trend 0	.676	52 mn	n/yea	ar								
Analysis	Prob	bability of	Nor	mal a	nd Ex	ces	is Ra	ainfa	all 5	57.2	14%	& 2	3.81	%
(1999-2019)	Prob	bability of	Dro	ughts	-: 14	.29	% N	lode	erat	e a	nd 4.	.76	% Ac	ute
Rainfall Trend Analysis (199	9 to	2019)												
1400	-			y =	= 0.676	5x + 9	918.6	5						
1200 -				1										
1000 -														
				_	╞╴╋		t			-				
800 -														
600 -														
400 -														
200 -														
0			-			, ,								
1999 2000 2001 2002 2003 2003	2005	2007 2008 2008	2010	2011	2013	2014	2015	2016	2017	2018	2019			
EQUATION OF TREND LINE v = -0.6762x+.	918.63													
1.3. Geomorphology, Soil &	& Ge	ology												
Major Geomorphic Unit		Weather	ed, S	Slight	ly, M	ode	rate	ely a	nd	hig	hly d	lisse	ected	ł
		Plateau; alluvium plain;												
Soil		Extremely Shallow Clayey, Deep moderate loamy, Very					ry							
		Shallow L	.oan	ny, Ve	ery de	eep	Мо	dera	atel	y Lo	bamy	y		
Geology	Unconsol	idat	ed Se	dime	ents	, De	ecca	n Tr	rap	s (Ba	sal	t)		
	Age: Late Cretaceous to Eocene													
	Gondwana Super group (Permian to Carboniferous)													
1.4. Hydrology & Drainage		_												
Drainage		Nil												
Hydrology		Major		Nil										
(Reference DSA Year: June 2016-17)		project												
		Medium		Com	plete	ed: ()2 n	nedi	ium	irri	igatio	on j	proje	ects
		project		gene	eratin	ng a	gro	ss ir	riga	atio	n Po	ten	itial o	of

			2698 ha out of 5687 ha area.					
		Small	Completed: 18 small irrigation projects					
		project	generating	g a gross irrigation Potential of				
			2403 ha oi	out of 3494 ha area.				
		Irrigation	Completed	1: 01 irrigation projects;				
		Project	generating	g a gross irrigation Potential of				
		(100-250	133 ha.					
		Ha)/other	6 PT, 119 I	Kolhapur Bandhara, 92 surface				
		S	storage ba	ndhara, 6538 irrigation well, 99				
			diesel pun	וף, 6736 electric pump				
1.5. Land Us	se, Agriculture, Irriga	tion & Crop	ping Pattern					
Geographica	al Area	518.13Sq.	km.					
Forest Area		54.35 Sq. k	m.					
Cultivable A	rea	385.41 Sq.	km.					
Net Sown A	rea	443.95 Sq.	km.					
Double Crop	oped Area	52.67 Sq. k	m.					
Area	Surface Water	1.67 Sq. kr	n.					
under	Ground Water	78.80 Sq. km.						
Irrigation								
Principal Crops		Crop Type		Area (Sq. km.)				
(Reference year 2019)		Cereals		43.55				
		Pulses		50.39				
		Soyabean		127.20				
		Sugarcane		12.01				
		Cotton		184.42				
		Orange		41.41				
		Other fruit	S	0.15				
Horticultura	l Crops	Banana		0				
		Vegetables	5	49.24				
1.6. Water I	evel Behavior							
1.6.1. Aquif	er-I/Shallow Aquifer	•						
Pre-Monsoo	on (May-2019)		Post-Monsc	oon (November-2019)				
Water level	between 2-5 mbgl h	as been	Water level	between 2-5 mbgl has been				
observed as	a very tiny isolated p	oatch in	observed in	central, western and eastern				
northern pa	rt of the block; Wate	er level	part as a co	ntinuous patch of the block;				
between 5 t	o 10 mbgl has been o	observed	Water level	between 5 to 10 mbgl have				
in central, western and eastern part as		part as a	been observ	ved in southern, western and				
continuous patch of the block whereas		hereas	central part	of the block. Whereas water				
water levels between 10-20 mbgl have		gl have	levels between 10-20 mbgl is observed in					
been observ	ed in southern, west	tern and	entire northern part. Water levels > 20 mbgl					
central part	of the block. Water	evels > 20	as a very tin	y isolated patch in northern part				
mbgl is observed in entire northern part.			of the block.					

continuous patch along central, northern, southern and western parts of the block; Water levels> 20 mbgl is seen as a continuous patch in north-western part of the block.

and also in western part; Water levels

between 10 to 20 mbgl are observed as

continuous patch along central, northern, western parts of the block; Water levels>

2. Ground Water Issues

Exploitation of Ground Water: -

The stage of ground water development has increased during 2011 to 2013 from 69.85% to 74.21% and afterwards decreased during 2013 to 2017 from 74.21% to 67.18% in Kalmeshwar block of Nagpur District. Further, the net ground water availability increased during 2011 to 2013 from 74.71 MCM to 78.34 MCM again decreased from 78.34 MCM to 60.06 MCM during 2013 to 2017. Whereas the draft for irrigation first increased during 2011 to 2013 from 49.97 MCM to 54.92 MCM and again decreased from 54.92 MCM to 35.73 MCM during 2013 to 2017.

Declining water level Trend: -

Pre monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 527 sq. km. covering about 97% area of the block.

Post monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 244 sq. km. covering about 45 % area of the block.

Low rainfall and Droughts:

The long-term rainfall analysis for the period 1999-2019 indicates that normal rainfall of Kalmeshwar block is 958.40 mm, and also indicates a rising rainfall trend @ 0.6762 mm/year with 14.29% probability of moderate drought & 4.76 % probability of acute drought.

Based on the short-term rainfall data from 2010-2019 for the block, the analysis indicates that average rainfall is 958.10 mm. The rainfall from last ten years shows that the area continuously experienced low and declining rainfall with frequent moderate droughts.

Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also the absence of primary porosity, results in poor sustainability of the aquifers. About 60% area of the block has low yield potential (< 50 m³/day) and can sustain pumping only for 1-1.5 hrs.

15.00 to 70.50

9.32 to

Transmissivity (T)

10-4

 $9.32 \text{ m}^2/\text{day}$

	m²/day	250m ² /day	
Yield	20-80 m ³ /day	10 to 200	20-80
		m³/day	
Sustainability	2 to 4 hrs	1 to 5 hrs	2-5 hrs

4. GROUND WATER QUALITY

4.1 Aquifer-I/ Shallow Aquifer

EC values between 750-2250 μ S/cm are observed in almost entire parts of the block and EC values between 250-750 μ S/cm are observed in north, west, south and central part as very tiny isolated patches of the block; whereas EC values >2250 μ S/cm are observed as very tiny isolated patch in eastern fringe of the block. Ground water is suitable for all purposes except some villages having Nitrate values more than 45 mg/L.

4.2 Aquifer II/Deeper Aquifer

EC between 250-750 μ S/cm is observed in entire eastern part of the block and as isolated patches along west, south, south-east extremities of the block and EC values between 750 to 2250 μ S/cm is observed in almost entire block except entire eastern part of the block and some isolated patches along west, south, south-east extremities of the block. Ground water is suitable for all purposes except some villages having Nitrate values more than 45 mg/L.

5. GROUND WATER RESOURCE

5.1 Aquifer-I/ Shallow Aquifer	
Ground Water Recharge Worthy Area (Sq. km.)	471.12
Total Annual Ground Water Recharge (MCM)	64.07
Natural Discharge (MCM)	4.00
Annual Extractable Ground Water Recharge (MCM)	60.06
Current Annual Ground Water Extraction for irrigation (MCM)	35.72
Current Annual Ground Water Extraction for domestic water supply	4.62
(MCM)	
Current Annual Ground Water Extraction for All uses (MCM)	40.34
Provision for domestic and industrial requirement supply to	5.07
2025(MCM)	

Net Gro	19.89								
Stage of	f Ground Wat	ter Developi	ment (%)				67.18		
Categor	У						SAFE		
5.2 Aqu	ifer-II/Deepe	er Aquifer							
Semi co	nfined/Confi	ned Aquifer	(Basalt)						
Distric	Taluka	Mean	Area	Average	Sy	S		Resource	
t		thicknes		Piezometri				(MCM)	
		s (m)		c head (m)					
Nagp	Kalmeshw	8.52	471.12	48.47	0.015	0.0	00055	0.220767	
ur	ar								
6.0. GR	OUND WATE	R MANAGE	MENT						
6.1. Sup	oply Side Mar	nagement							
SUPPLY	(MCM)						Γ		
Availab	le Resource (I	MCM)					60.06		
Gross A	nnual Draft (I	MCM)					40.35		
Agricult	ural Demand	–GW					35.727	5	
Agricult	ural Demand	–SW					1.0855		
Domest	ic Demand –	GW					4.6225		
Domest	ic Demand –	SW					1.15562	1.155625	
Total De	emand						42.591	125	
Area of	Block (Sq. Kn	n.)	10 11	,			543.45		
Area suitable for Artificial recharge (Sq. Km)522.75									
Type of Aquifer									
Area tea	asible for Arti		rge(WL>3	mbgi) (Sq. Kr	n.)		466.43		
Volume	of Unsaturat	ed Zone (IVI	CIVI)				0.020		
Average	e Specific Yiel						0.020	4	
	OT SUD SUITA	ce Storage S	pace avair	able for Artifi	cial Recha	rge	40.4734	+	
	Recharge PO	amont @ 7	VI)				E2 0641		
Surnluc	water requir						10 449022		
Surplus	water Availar	bie (IVICIVI)	nning (M	NA) @ 7E0//1	0.00/		10.448032		
Bropos	d Structures	aered for pla	anning (ivit		.00%		7.836024		
Propose					() Canacity, '	100			
					(AV. Gross Capacity-100)			(AV. Gross	
					Λ^{*2} fillings = 200 Capacity-10 I			s – 30	
				TCIVIJ			TCM)	5 - 50	
Numbe	r of Structure	S		37			104		
Volume	of Water exp	ected to be	1	5.49			2.35		
conserv	ed / recharge	ed @ 75 % e	fficiencv						
(MCM)	,		1	1					
RTRWH	Structures –	Urban Area	S						
Househ	olds to be co	vered (25%	with 50 m	2 area)			8623		
Total R\	NH potential	(MCM)		,			0.4035564		
Rainwa	ter harvested	/ recharged	to DW or	BW of 50% h	nousehold		4311.5		
Howeve	However, it is economically not viable & hence, not recommended.								

6.2. Demand Side Management					
Micro irrigation techniques	Nil				
Proposed Cropping Pattern change					
Irrigated area under Water Intensive	Not proposed				
Water Saving by Change in Cropping F	Pattern	Nil			
6.3. Expected Benefits					
Net Ground Water Availability (MCM)		60.06			
Additional GW resources available aft	er Supply side	7.84			
interventions (MCM)					
Ground Water Availability after Suppl	y side intervention(MCM)	67.89			
Existing Ground Water Draft for All Us	ses (MCM)	40.35			
GW draft after Demand Side Interven	40.35				
Present stage of Ground Water Devel	67.18				
Expected Stage of Ground Water Deve	50 / 3				
interventions (%)	55.45				
Other Interventions Proposed, if any					
Alternate Water Sources Available	Nil				
6.4. Development Plan					
GW available for Development Plan to	7.18				
Proposed no. of DW (@ 1.5 ham for 9	431				
Proposed no. of BW (@ 1 ham for 109	72				
Additional Area (sq.km.) proposed to	23.10				
GW irrigation with av. CWR of 0.65 m					
achieved					
Regulatory Measures					

9.9 KAMPTEE BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES					
1.1 Introduction					
Block Name	KAMPTEE				
Geographical Area (Sq	. km.)	585.24Sq. km.			
Hilly Area (Sq. km.)		49.20 Sq. km.			
Poor Ground Quality A	Area	Nil			
(Sq. km.)					
Population (2011)		2,38,870			
Climate		Sub-Tropical			
1.2 Rainfall Analysis					
Normal Rainfall		1171.50 mm			
Annual Rainfall (2019)		1269.80mm			
Decadal Average Annu	ual Rainfall	ll (2010-19) 987.86 mm			
Long Term Rainfall	Declining	g Trend 7.115 mm/year			
Analysis	Probabili	ity of Normal and Excess Rainfall 66.67 % & 4.76%			
(1999-2019)	Probabili	ity of Droughts -: 28.57% Moderate			
Rainfall Trend Analysis	s (1999 to	2019)			
1600		y = -7.115x + 1119.			
1400 -					
1200 -					
1000 -	1 1				
800					
000					
600 -					
400 -					
200 -					
o + • • • • • • • • • • • • • • • • • •		, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,			
1999 2000 2001 2002	2003 2004 2005	2006 2007 2008 2008 2010 2011 2013 2013 2015 2015 2015 2015 2016 2019 2019 2019 2019			
	115v+1110				
1.3. Geomorphology, Soil & Geology					
Maior Geomorphic Unit Alluvium plain: Pediplain					
Soil	-	Very deep Moderately Loamy to Shallow Loamy soil			
Geology		Unconsolidated Sediments			
		Gondwana Super group (Permian to Carboniferous)			
1.4. Hvdrology & Drai	nage				
Drainage	- 0 -	Kanhan river and its tributaries			
Hydrology		Major project Nil			
(Reference DSA Year: June 2016-17)		Medium project Nil			
		Small project Completed: 2 small irrigation			
		projects.			
		Irrigation Project Completed: 54 Kolhapur			
		(100-250 Bandhara, 104 surface storage			

Ha)/otl		Ha)/othe	rs	ban	bandhara, 2781 irrigation well.		
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern							
Geographic	al Area	585.24Sc	585.24Sq. km.				
Forest Area		42.38 Sq.	42.38 Sq. km.				
Cultivable A	rea	348.91 S	348.91 Sq. km.				
Net Sown A	rea	347.40 S	347.40 Sq. km.				
Double Cro	pped Area	111.84 S	q. km.				
Area	Surface Water	43.57 Sq.	. km.				
under Irrigation	Ground Water	57.30 Sq.	. km.				
Principal Cr	ops	Crop Typ	е		Area (Sg. km.)		
(Reference year 2	019)	Cereals			127.50		
		Pulses			48.38		
		Soyabear	า		119.54		
		Cotton			13.51		
Horticultura	al Crops	Orange			2.02		
		Other fruits			0.09		
		Banana			0.02		
		Vegetables			71.02		
1.6. Water Level Behaviour							
1.6.1. Aqui	fer-I/Shallow Aquife	r					
Pre-Monsoon (May-2019)			Post-Mo	ost-Monsoon (November-2019)			
Water level between 2-5 mbgl has bee		ias been	Water level between 0-2 mbgl has been				
observed in north-western and south-		south-	observed as isolated patches covering an				
eastern parts of the block covering a		ing an	area of 59 sq km; Water level between 2-5				
area of 88sq km; Water level betw		tween 5	mbgl has been observed in north-wester		n observed in north-western		
to 10 mbgl has been observed in n		n major	and south-eastern parts of the block		stern parts of the block		
parts of the block covering an area of		rea of	covering an area of 117 sq km; Water				
321 sq km; whereas Water level		level between 5 to 10 mbgl has been					
between 10 to 20 mbgl has been		n . r	observed in major parts of the block				
observed in central to northern parts of		parts of	covering an area of 351 sq km; whereas				
the block covering an area of 176 sq km		ь sq km	Water level between 10 to 20 mbgl has				
			been observed in central to northern				
			parts of the block covering an area of 49				
			sq km				

KAMPTEE Village: Kamptee

2. Ground Water Issues

Exploitation of Ground Water: -

The stage of ground water development has increased during 2011 to 2013 from 43.52% to 47.33% and afterwards decreased during 2013 to 2017 from 47.33% to 45.92% in Kamptee block of Nagpur District. Further, the net ground water availability increased during 2011 to 2013 from 72.90 MCM to 73.51 MCM again decreased from 73.51 MCM to 61.49 MCM during 2013 to 2017. Whereas the draft for irrigation first increased during 2011 to 2013 from 28.77 MCM to 30.35 MCM and again decreased from 30.35 MCM to 21.12 MCM during 2013 to 2017.

Declining water level Trend : -

Pre monsoon (2010-19): decline in water level trend more than 0.6 m/year is observed in about 104 sq. km. covering about 20% area of the block. Post monsoon (2010-19): decline in water level trend more than 0.6 m/year is observed in about 131 sq. km. covering about 25 % area of the block. Low rainfall and Droughts:

The long-term rainfall analysis for the period 1999-2019 indicates that normal rainfall of Kamptee block is 1171.50 mm, and also indicates a falling rainfall trend @ 7.115 mm/year with 28.57% probability of moderate drought.

Based on the short-term rainfall data from 2010-2019 for the block, the analysis indicates that average rainfall is 987.86 mm. The rainfall from last ten years shows that the area continuously experienced rise in rainfall with frequent moderate droughts.

Decadal Rainfall Pattern (2010-2019)

Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also the absence of primary porosity, results in poor sustainability of the aquifers. About 50% area of the block has low yield potential (< 100 m³/day) and can sustain pumping only for 1-1.5 hrs.

4.1 Aquifer-I/ Shallow Aquifer

EC values up to 750 μ S/cm is observed in north-western and southern-eastern parts of the block and EC values between 750 to 2250 μ S/cm are observed in major part of the block, whereas EC value between 2250-3000 μ S/cm is observed as isolated patch in northern fringe of the block. Ground water is suitable for all purposes except some villages having Nitrate more than 45 mg/L.

4.2 Aquifer II/Deeper Aquifer

EC values up to 750 μ S/cm is observed in north-western part of the block and EC value between 750 to 2250 μ S/cm is observed in majority of the block; whereas EC value between 2250-3000 μ S/cm is observed as isolated patch in southern fringe of the block. Ground water is suitable for all purposes.

Current Annual Ground Water Extraction for irrigation (MCM)						21.12	
Current Annual Ground Water Extraction for domestic water					7.11		
supply	(MCM)						
Curren	t Annual G	Fround Wa	ter Extra	ction for All uses	(MCM)	28.23	
Annual	GW Alloc	ation for f	or Dome	stic Use as on 20)25	7.11	
(MCM)							
Net Gro	ound Wate	er Availabi	lity for fu	ture use (MCM)		32.33	
Stage c	of Ground	Water Dev	velopmen	nt (%)		45.92	
Category					SAFE		
5.2 Aqu	uifer-II/De	eper Aquif	er				
Semi co	onfined/Co	onfined Ac	uifer (Ba	salt)			
District Taluka Mean Area Average Sy Piezometric head (m) (m)				S	Resource (MCM)		
Nagpur Kamptee 4.6 536.04 6.235 0.015						0.00035	0.863024
6.0. GR		ATER MAN	IAGEMEN	NT			
6.1. Su	pply Side	Managem	ent				

SUPPLY (MCM)						
Available Resource (MCM)		61.5				
Gross Annual Draft (MCM)	28.24					
Agricultural Demand –GW			21.1279			
Agricultural Demand –SW			28.3205			
Domestic Demand – GW			7.1121			
Domestic Demand – SW			1.778025			
Total Demand			58.338525			
Area of Block (Sq. Km.)			423.82			
Type of Aquifer						
Area feasible for Artificial R	echarge (WL >3mbgl) (Sq. Km.)		197.1			
Volume of Unsaturated Zor	ne (MCM)		330.15			
Average Specific Yield			0.015			
Volume of Sub Surface Stor	rage Space available for Artificial	Recharge	4.95225			
(MCM)/Recharge Potential	(MCM)					
Surface water requirement	@ 75% efficiency (MCM)		6.603			
Surplus water Available (M	CM)		4.42			
Proposed Structures	Percolation Tank	Check Dam				
	(Av. Gross Capacity-100	(Av. Gross (Capacity-10			
	TCM*2 fillings = 200 TCM)	TCM * 3 fill	ings = 30 TCM)			
Number of Structures	Number of Structures1544					
Volume of Water	2.32	0.99				
expected to be conserved						
/ recharged @ 75 %						
efficiency (MCM)						
RTRWH Structures – Urban	RTRWH Structures – Urban Areas					
Households to be covered	28547					
Total RWH potential (MCM	1.3759654					
Rainwater harvested / recharged to DW or BW of 50% household 14						
However, it is economically not viable & hence, not recommended.						
6.2. Demand Side Management						
Micro irrigation techniques	Nil					
Proposed Cropping Pattern change						
Irrigated area under Water	Not .					
	proposed					
Water Saving by Change in	Nil					
b.3. Expected Benefits						
Net Ground Water Availabi	61.50					
Additional GW resources available after Supply side interventions 3.31 (MCM)						
Ground Water Availability	64 81					
Existing Ground Water Dra	28.24					
GW draft after Demand Sid	28.24					
Present stage of Ground W		45.92				
Expected Stage of Ground	43.57					

Aquifer Maps and Ground Water Management Plan, Nagpur District, Maharashtra-2020

9.10 MAUDA BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES				
1.1 Introduction				
Block Name		MAUDA		
Geographical Area (Sq. km.		800.91Sq. km.		
Hilly Area (Sq. km.)		47.33 Sq. km.		
Population (2011)		1,39,776		
Climate		Sub-Tropical		
1.2 Rainfall Analysis				
Normal Rainfall		1248.50 mm		
Annual Rainfall (2019)		1148.50mm		
Decadal Average Annual Ra	ainfall (2010-19)	1156.90 mm		
Long Term Rainfall	Rising Trend 9.873 m	nm/year		
Analysis	Probability of Norma	al and Excess Rainfall 52.38 % &		
(1999-2019)	9.52 %			
	Probability of Drough	hts -: 33.33% Moderate and 4.76%		
	Acute			
Rainfall Trend Analysis (199	99 to 2019)			
1800 y = 9.873	x + 971.04			
1600 -				
1200 -				
1000 -				
600				
400 -				
200 -				
	└╷┛╷┛╷┛╷┛╷┛╷			
999 900 901 903 903	005 006 007 008 008 009 010)11)12)13)14)15)15)17)17)13)19)19		
51 52 50 50 50 50 50 50 50 50 50 50 50 50 50	5 5 5 5 5 5 5 5 5 5 5			
EQUATION OF TREND LINE y = 9.873x+97	71.04			
1.3. Geomorphology, Soil &				
Major Geomorphic Unit	Pediplain			
Soil	Very Deep Moderate	ely Loamy to Deep Moderately		
	Loamy to Moderately Loamy soil			
Geology	Tirodi Gneissic Complex (Dharwar Super Group-			
	Archaeans)			
1.4. Hydrology & Drainage	1			
Drainage	Kanhan river and its	tributaries		
Hydrology	Major project	Nil		
(Reference DSA Year: June 2016-	Medium project	Nil		
17)	Small project	Completed: 3 small irrigation		
		projects generating a gross		
		irrigation Potential of 197 ha out of		
		323 ha area.		
	Irrigation Project	Completed: 56 Kolhapur Bandhara.		

		(100-250	100-250 186 su		Irface storage bandhara,			
Ha)/others			2322 irrigation well.					
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern					'n			
Geographi	cal Area	800.91Sq. kn	n.					
Forest Are	а	61.28 Sq. km						
Cultivable	Area	440.06 Sq. kı	m.					
Net Sown	Area	102.37 Sq. kı	m.					
Double Cro	opped Area	389.84 Sq. kı	m.					
Area	Surface Water	463.29 Sq. kı	m.					
under	Ground	110.87 Sq. kı	m.					
Irrigation	Water							
Principal C	rops	Crop Type			Area (Sq. km.)			
(Reference year	2019)	Cereals			637.46			
		Pulses			83.08			
		Soyabean			83.86			
		Cotton			5.70			
		Orange			0.43			
		Other fruits			0.15			
Horticultu	ral Crops	Banana			0.20			
		Vegetables			25.01			
1.6. Water	Level Behaviour							
1.6.1. Aqui	ifer-I/Shallow Aq	uifer						
Pre-Monso	oon (May-2019)		Post-Monsoon (November-2019)					
Water leve	el between 5-10 i	mbgl has	Water level between 0-2 mbgl has been					
been obse	rved in major pa	rts of the	observed in entire central part, eastern					
block cove	ring an area of 6	41 sq km;	part covering an area of 210 sq km;		an area of 210 sq km;			
whereas w	ater levels more	than 10 whereas Wate		as Wat	er level between 2-5 mbgl			
mbgl have	been observed i	n eastern has been ob		en obs	served in north-western,			
and southern part of the block cove		ock covering	eastern, northern parts of the block					
about 161 sq. km. area.			covering an area of 390 sq km; water					
			levels between 5 to 10 mbgl have been					
			observed in north-east, north-west and					
			south eastern fringes of the block covering					
		an area of 119 sq km; whereas water levels more than 10 mbgl have been observed as isolated patches in south						
						easter	n parts	of the block covering about
							101 sg. km. area.	
		Pre-Monsoon Water Level (May 2019)		Post-Monsoon Water Level (Nov. 2019)				

Exploitation of Ground Water: -

The stage of ground water development has decreased during 2011 to 2013 from 30.65% to 29.52% and afterwards further decreased during 2013 to 2017 from 29.52% to 25.64% in Mouda block of Nagpur District. Further, the net ground water availability increased during 2011 to 2013 from 130.50 MCM to 131.94 MCM again decreased from 131.94 MCM to 105.81 MCM during 2013 to 2017. Whereas the draft for irrigation decreased during 2011 to 2013 from 35.64 MCM to 33.62 MCM and again decreased from 33.62 MCM to 16.72 MCM during 2013 to 2017.

Declining water level Trend:

Pre monsoon (2010-19): decline in water level trend more than 0.6 m/year is observed in about 800 sq. km. covering about 100% area of the block. Post monsoon (2010-19): decline in water level trend more than 0.6 m/year is observed in about 440 sq. km. covering about 55 % area of the block. Low rainfall and Droughts:

The long-term rainfall analysis for the period 1998-2019 indicates that normal rainfall of Mauda block is 718.5 mm, and also indicates a falling rainfall trend @ 11.33 mm/year with 15% probability of moderate drought.

Based on the short-term rainfall data from 2009-2019 for the block, the analysis indicates that average rainfall is 677.18 mm. The rainfall from last ten years shows that the area continuously experienced low and declining rainfall with frequent moderate droughts.

Decadal Rainfall Pattern (2010-2019)

Low yielding Aquifer resulting poor sustainability: Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also the absence of primary porosity, results in poor sustainability of the aquifers. About 80% area of

EC values up to 750 μ S/cm is observed as isolated patches in southern parts of the block and EC values between 750 to 2250 μ S/cm are observed in major part of the block, whereas EC values between 2250 to 3000 μ S/cm are observed as thin patches in northern and central parts of the block. Ground water is suitable for all purposes except some villages having Fluoride more than 1 mg/L.

4.2 Aquifer II/Deeper Aquifer

EC up to 750 μ S/cm is observed in eastern part of the block and EC value between 750 to 2250 μ S/cm is observed in entire block. Ground water is suitable for all purposes.

5. GROUND WATER RESOURCE

5.1 Aquifer-I/ Shallow Aquifer	

Ground	Ground Water Recharge Worthy Area (Sq. km.) 753.58					58		
Total Ar	nnual Gr	ound Water R	echarge	(MCM)			111.	37
Natural	Dischar	ge (MCM)					5.56	
Net Anr	nual Gro	und Water Av	ailability	(MCM)			105.	80
Current	Annual	Ground Wate	r Extracti	ion for irrigation (N	1CM)		16.7	2
Current	Annual	Ground Wate	r Extracti	ion for domestic w	ater		10.4	0
supply (MCM)							
Current	Annual	Ground Wate	r Extracti	ion for All uses (M0	CM)		27.1	2
Annual	GW Allo	cation for for	Domesti	ic Use as on 2025 ((MCM)		10.6	1
Net Gro	und Wa	ter Availability	/ for futu	re use (MCM)			78.4	7
Stage of	f Ground	Water Devel	opment ((%)			25.6	4
Categor	Category SAFE							
5.2 Aqu	ifer-II/D	eeper Aquife	r					
Semi co	nfined/0	Confined Aqui	fer (Basa	lt)				
District Taluka Mean Area Average Piezometric Sy S Resource (MCM)					Resource (MCM)			
Nagpur Mauda 4.8 753.58 34.75 0.015 0.00089 0.863024					0.863024			
6.0. GR	6.0. GROUND WATER MANAGEMENT							
6.1. Supply Side Management								

SUPPLY (MCM)					
Available Resource (MCM)			105.80		
Gross Annual Draft (MCM)			27.13		
Agricultural Demand –GW			16.72		
Agricultural Demand –SW			301.1385		
Domestic Demand – GW			10.41		
Domestic Demand – SW			2.6025		
Total Demand			330.871		
Area of Block (Sq. Km.)			612.87		
Area suitable for Artificial recha	arge (Sq. Km)		263.58		
Type of Aquifer					
Area feasible for Artificial Rech	arge (WL >3mbgl) (Sq. Km.)		263.58		
Volume of Unsaturated Zone (MCM)		571.09		
Average Specific Yield			0.015		
Volume of Sub Surface Storage	Space available for Artificia	I	0 50005		
Recharge (MCM)/Recharge Pot	ential (MCM)		8.56635		
Surface water requirement @ 7	75% efficiency (MCM)		11.42		
Surplus water Available (MCM)			5.90		
Proposed Structures	Percolation Tank	Che	ck Dam		
	(Av. Gross Capacity-100	(Av.	Gross Capacity-10		
	TCM*2 fillings = 200	TCN	1 * 3 fillings = 30		
	TCM)	TCN	1)		
Number of Structures	21	59			
Volume of Water expected to	3.10	1.33			
be conserved / recharged @					
75 % efficiency (MCM)					
RTRWH Structures – Urban Are	as				
Households to be covered (25%	6 with 50 m2 area)		3476		
Total RWH potential (MCM)			0.20336338		
Rainwater harvested / recharge	ed to DW or BW of 50%		1738		
household					
However, it is economically not	t viable & hence, not recom	mend	ed.		
6.2. Demand Side Managemer	it				
Micro irrigation techniques			Nil		
Proposed Cropping Pattern cha	inge				
Irrigated area under Water Inte	ensive Crop(ha)		Not proposed		
Water Saving by Change in Cropping Pattern Nil					
6.3. Expected Benefits					
Net Ground Water Availability	105.80				
Additional GW resources available after Supply side					
interventions (MCM)					
Ground Water Availability after	r Supply side intervention		110 23		
(MCM)			110.23		
Existing Ground Water Draft fo	r All Uses (MCM)		27.13		
GW draft after Demand Side Interventions (MCM)					

Present stage of Gro	ound Water Develo	opment (%)	25.64	
Expected Stage of G	Fround Water Deve	elopment after		
interventions (%)				
Other Interventions	Proposed, if any			
Alternate Water Sou	urces Available		Nil	
6.4. Development P	Plan			
GW available for Development Plan to bring SOD to 70%			50.03	
Proposed no. of DW (@ 1.5 ham for 90% of GWR Available)			3002	
Proposed no. of BW (@ 1 ham for 10% of GWR Available)			500	
Additional Area (sq.km.) proposed to be brought under 83.78			83.78	
assured GW irrigation with av. CWR of 0.65 m AFTER 65 %				
STAGE OF GWD IS ACHIEVED				
Regulatory Measures Regulation of wells below 60 m				
Proposed locations for AR structures				
ARTIFICIAL RECHARGE STRUCTURE MAUDA BLOCK, NAGPUR DISTRICT, MAHARASHTRA				

9.11 PARSEONI BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Block Name		PARSEONI				
Geographical Area (Sq. km	.)	865.38 Sq. km.				
Hilly Area (Sq. km.)		328.87 Sq. km.				
Poor Ground Quality Area		Nil				
(Sq. km.)						
Population (2011)		1,43,019				
Climate	Sub-Tropical					
1.2 Rainfall Analysis						
Normal Rainfall		1040.20 mm				
Annual Rainfall (2019)		1213.70mm				
Decadal Average Annual R	1037.88 mm					
Long Term Rainfall Declining Trend 11.71 mm/year						
Analysis	nalysis Probability of Normal and Excess Rainfall 90.48% & 9.52%					
(1999-2019) Probability of Droughts -: Nil						
Rainfall Trend Analysis (1999 to 2019)						

Soil		Very Deep Moderately Loamy to Moderately Deep Loamy to			
		Moderately Loamy to slightly Deep Loamy soil			
Geology		Granite Gr	neisses, Schist meta sediments of Saucer group		
		belonging	to Dharwar Super Group and Archaen Age		
1.4. Hydrol	ogy & Drainage	e			
Drainage		Pench, Kar	han river and its tributaries		
Hydrology		Major	Completed: 01 Major irrigation project generating		
(Reference DSA	A Year: June 2016-	project	a gross irrigation Potential of 90.70 ha out of		
17)			188.15 ha area.		
		Medium	Completed: 01 medium irrigation projects.		
		project			
		Small	Completed: 7 small irrigation projects generating		
		project	a gross irrigation Potential of 8.71 ha out of 48.32		
			ha area.		
		Irrigation	Completed: 1 PT, 54 Kolhapur Bandhara, 136		
		Project	surface storage bandhara, 2960 irrigation well.		
		(100-250			
		Ha)/othe			
		rs			
1.5. Land U	lse, Agriculture	, Irrigation	& Cropping Pattern		
Geographic	cal Area	865.38 Sq.	km.		
Forest Area	à	78.69 Sq. k	km.		
Cultivable A	Area	407.77 Sq.	km.		
Net Sown Area		126.48 Sq. km.			
Double Cropped Area		85.33 Sq. k	km.		
Area	Surface	75.58 Sq. k	km.		
under	Water				
Irrigation	Ground	31.78 Sq. k	km.		
	Water				

Crop Type

Principal Crops

Area (Sq. km.)

(Reference year 2019)	Cereals		128.06
	Pulses		19.09
	Soyabean		55.15
	Cotton		128.80
	Orange/Lemon		3.01
	Other fruits		0.17
Horticultural Crops	Banana		0.03
	Vegetables		12.20
1.6. Water Level Behaviou	ır		
1.6.1. Aquifer-I/Shallow A	quifer		
Pre-Monsoon (May-2019)		Post-Monsoon (Nove	ember-2019)
Water level less than 5 mb	ogl has been	Water levels less that	n 2 mbgl have been
observed in isolated patch	in southern and	observed in central a	nd northern parts of
western part of the block	covering an area	the block covering ar	n area of 130 sq km;
of 43 sq km; Water level b	etween 5 to 10	Water level between	2-5 mbgl has been
mbgl has been observed in	n major parts of	observed in major pa	irts of the block
the block covering an area	of 410 sq km;	covering an area of 5	19 sq km; water
whereas water levels more	e than 10 mbgl	levels between 5 to 1	.0 mbgl have been
have been observed in no	rthern and	observed in north, so	outh, central part of
southern part of the block	covering about	the block covering ar	n area of 259 sq km;
398 sq. km. area.		whereas water levels	more than 10 mbgl
		have been observed	as isolated patches in
		southern parts of the	e block covering
		about 83 sq. km. area	а.
Pre-Monsoon Water Level	(May 2019)	Post-Monsoon Wate	r Level (Nov. 2019)
AQUITER-1, PRE-MC	INSOON DEPTH TO WATER LEVEL (MAY 2018)	AQUIFER-1, POST-MONSO (NO	ON DEPTH TO WATER LEVEL
1499-1470. 1991	-		astra
		- man and a	Hormon Hormon
5		5	
4	that the second	5-1	1 Berge
	Tanet Tanet		Teart
5	1 Destauround the		Dept. in some Rest in strips
l N⊱ P			2245
	-ranges.		AREEDAN.
		8	
Transit laste there		Barrand Ageller, Alternational	
No. of Aquillett. 41 No 195 AL Re. 101	100	No of Aquilies (0) deals (0) 10 Mg/an	- VA
WI >10 mbgl 398 sg. km	10	W/I >10 mbgl 82 cg. k	m
1 6 2 Aquifor II/Doopor A	auifor	VVL>10 IIDgi 05 Sq. K	
Pro-Monsoon (May-2019)	quilei	Post-Monsoon (Novo	mbor_2010)
Water levels betwoon 2 to	5 mbgl are	Water levels between	n 2 to 5 mbgl aro
observed in optime parth	ast control and	observed in couther	n 2 to 3 mugi are
southern parts of the bloc	k covering an	covering an area of 1	73 sa km: water
southern parts of the bloc	k covering an	Covering an area of I	i sy kill, water
area of E10 callminister	ovals more than	lovals more than 5 m	hal have been

Exploitation of Ground Water: -

The stage of ground water development has increased during 2011 to 2013 from 33.98% to 37.73% and afterwards further increased during 2013 to 2017 from 37.73% to 38.14% in Parshioni block of Nagpur District. Further, the net ground water availability decreased during 2011 to 2013 from 85.78 MCM to 83.20 MCM again decreased from 83.20 MCM to 70.44 MCM during 2013 to 2017. Whereas the draft for irrigation increased during 2011 to 2013 from 26.00 MCM to 27.85 MCM again decreased from 27.85 MCM to 18.75 MCM during 2013 to 2017.

Declining water level Trend:

Pre monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 649 sq. km. covering about 75 % area of the block.

Post monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 778 sq. km. covering about 90 % area of the block.

Low rainfall and Droughts:

The long-term rainfall analysis for the period 1999-2019 indicates that normal rainfall of Parseoni block is 1040.20 mm, and also indicates a falling rainfall trend @ 11.71 mm/year with 0% probability of moderate drought.

Based on the short-term rainfall data from 2010-2019 for the block, the analysis indicates that average rainfall is 1037.88 mm. The rainfall from last ten years shows that the area continuously experienced normal rainfall with no droughts.

Low yielding Aquifer resulting poor sustainability:

Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also the absence of primary porosity, results in poor sustainability of the aquifers. About 51% area of the block has low yield potential (< 100m³/day) and can sustain pumping only for 1-1.5 hrs.

Weathered/Fractured zones	up to 28	up to 171
encountered (mbgl)		
Weathered/Fractured rocks thickness	1 to 10	1 to 18
(m)		
SWL (mbgl)	7.70 to 15.85	6 to 48.50
Specific yield/Storativity (S)	0.020 to 0.030	3.35 x10 ⁻⁴ to 3.65 x10 ⁻⁵
Transmissivity (T)	15.00 to 70.50	15.00 to 110.00 m ² /day
	m²/day	
Yield	5-120 m ³ /day	up to to 4.43 lps
Sustainability	2 to 4 hrs	1 to 5 hrs

4. GROUND WATER QUALITY

4.1 Aquifer-I/ Shallow Aquifer

EC values up to 750 μ S/cm are observed in northern and southern parts of the block and EC values between 750 to 2250 μ S/cm are observed in major part of the block. Ground water is suitable for all purposes except some village having Nitrate more than 45 mg/L.

4.2 Aquifer II/Deeper Aquifer

EC up to 750 μS/cm is observed in northern part of the block and EC value between 750					
to 2250 μS/cm is observed in entire block. Ground water is suitable for all purposes.					
Phreatic Aquifer (Aquifer-I) Semi confined/Confined Aquifer (Aquifer					
	11)				

S. GROUND WATER RESOURCE 5.1 Aquifer-I/ Shallow Aquifer Ground Water Recharge Worthy Area (Sq. km.) 536.51 Total Annual Ground Water Recharge (MCM) 74.36 Natural Discharge (MCM) 3.88 Net Annual Ground Water Availability (MCM) 70.43 Current Annual Ground Water Extraction for irrigation (MCM) 18.75 Current Annual Ground Water Extraction for All uses (MCM) 8.10 (MCM) 26.86 Provision for domestic and industrial requirement supply to 2025(MCM) 8.27 Net Ground Water Availability for future use (MCM) 42.91 Stage of Ground Water Development (%) 38.14 Category SAFE S.2.4 quifer-II/Deeper Aquifer SAFE S.2.4 quifer-II/Deeper Aquifer Safes Semi confined/Confined Aquifer (Basalt) 0.015 0.0089 District Taluka Mean thickness (m) Area (m) Sy S Resource (MCM) Nagpur Parsoni 3.6 536.51 12.03 0.015 0.0089 3.219294 6.0. GROUND WATER MANAGEMENT 50.51 12.03 0.015 0.0088 3.219294 6.1	ADUIFER - L GROUND WATER GUALITY (MAY 2019) RABECON BLOCK, MAGPUR DISTRICT							V 2019) V 2019 V	
5.1 Aquifer-I/ Shallow Aquifer Ground Water Recharge Worthy Area (Sq. km.) 536.51 Total Annual Ground Water Recharge (MCM) 74.36 Natural Discharge (MCM) 3.88 Net Annual Ground Water Availability (MCM) 70.43 Current Annual Ground Water Extraction for irrigation (MCM) 18.75 Current Annual Ground Water Extraction for domestic water supply 8.10 (MCM) 26.86 Provision for domestic and industrial requirement supply to 8.27 2025(MCM) 42.91 Net Ground Water Availability for future use (MCM) 42.91 Stage of Ground Water Development (%) 38.14 Category SAFE 5.2 Aquifer-II/Deeper Aquifer SAFE Semi confined/Confined Aquifer (Basalt) 0.015 0.0089 District Taluka Mean thickness (m) Area Average Piezometric head (m) S Resource (MCM) Nagpur Parseoni 3.6 536.51 12.03 0.015 0.0089 3.219294 6.0. GROUND WATER MANAGEMENT 6.1. Supply Side Management 26.8645 Agricultural Demand – GW 18.7546 Agricultural Demand – GW	5 GRO								
Structure Values 536.51 Ground Water Recharge Worthy Area (Sq. km.) 74.36 Natural Discharge (MCM) 74.36 Natural Discharge (MCM) 70.43 Current Annual Ground Water Availability (MCM) 70.43 Current Annual Ground Water Extraction for irrigation (MCM) 18.75 Current Annual Ground Water Extraction for domestic water supply 8.10 (MCM) 26.86 Provision for domestic and industrial requirement supply to 8.27 2025(MCM) 42.91 Net Ground Water Availability for future use (MCM) 42.91 Stage of Ground Water Development (%) 38.14 Category SAFE S.2 Aquifer-II/Deeper Aquifer SaFE Semi confined/Confined Aquifer (Basalt) 0.015 0.0089 District Taluka Mean thickness (m) Area Average Piezometric head (m) S Resource (MCM) Nagpur Parseoni 3.6 536.51 12.03 0.015 0.0089 3.219294 G. GROUND WATER MANAGEMENT 6.1. Supply Side Management 70.4371 Gross Annual Draft (MCM) 26.8645 Agricultural Demand –	5.0KO	lifer-I/Sha	allow Aquifer	-					
Total Annual Ground Water Recharge (MCM) 74.36 Natural Discharge (MCM) 3.88 Net Annual Ground Water Availability (MCM) 70.43 Current Annual Ground Water Extraction for irrigation (MCM) 18.75 Current Annual Ground Water Extraction for domestic water supply (MCM) 8.10 Current Annual Ground Water Extraction for All uses (MCM) 26.86 Provision for domestic and industrial requirement supply to 2025(MCM) 8.27 Net Ground Water Availability for future use (MCM) 42.91 Stage of Ground Water Development (%) 38.14 Category SAFE 5.2 Aquifer-II/Deeper Aquifer Sy Semi confined/Confined Aquifer (Basalt) 0.015 0.00089 District Taluka Mean thickness (m) Average Piezometric head (m) 0.015 Nagpur Parseoni 3.6 536.51 12.03 0.015 0.00089 3.219294 6.0. GROUND WATER MANAGEMENT 50.68645 Sy S Resource (MCM) 70.4371 Gross Annual Draft (MCM) 26.8645 Agricultural Demand –GW 18.7546 Agricultural Demand –GW 49.127 Domestic Demand – GW 8.1099 2.0274	Ground	Water Re	charge Worth	v Area (So	ı. km.)		536	.51	
Natural Discharge (MCM) 3.88 Net Annual Ground Water Availability (MCM) 70.43 Current Annual Ground Water Extraction for irrigation (MCM) 18.75 Current Annual Ground Water Extraction for domestic water supply 8.10 (MCM) 26.86 Provision for domestic and industrial requirement supply to 8.27 2025(MCM) 8.27 Net Ground Water Availability for future use (MCM) 42.91 Stage of Ground Water Development (%) 38.14 Category SAFE 5.2 Aquifer-II/Deeper Aquifer SAFE Semi confined/Confined Aquifer (Basalt) 0.015 0.00089 District Taluka Mean thickness (m) Area Piezometric head (m) S Resource (MCM) Nagpur Parseoni 3.6 536.51 12.03 0.015 0.00089 3.219294 6.0. GROUND WATER MANAGEMENT 6.1. Supply Side Management SUPPLY (MCM) 26.8645 26.8645 Agricultural Demand –GW 18.7546 49.127 Domestic Demand – GW 8.1099 20.27475 <td>Total A</td> <td>nual Grou</td> <td>und Water Re</td> <td>charge (M</td> <td>CM)</td> <td></td> <td>74.3</td> <td>36</td>	Total A	nual Grou	und Water Re	charge (M	CM)		74.3	36	
Net Annual Ground Water Availability (MCM)70.43Current Annual Ground Water Extraction for irrigation (MCM)18.75Current Annual Ground Water Extraction for domestic water supply (MCM)8.10Current Annual Ground Water Extraction for All uses (MCM)26.86Provision for domestic and industrial requirement supply to 2025(MCM)8.27Net Ground Water Availability for future use (MCM)42.91Stage of Ground Water Development (%)38.14CategorySAFES.2 Aquifer-II/Deeper AquiferSAFES.2 Aquifer-II/Deeper Aquifer (Basalt)SyDistrictTalukaMean thickness (m)Area (m)Average Piezometric head (m)SNagpurParseoni3.6536.5112.030.0150.000893.2192946.0. GROUND WATER MANAGEMENTGross Annual Draft (MCM)26.8645Agricultural Demand –GW18.7546Agricultural Demand –GW8.1099Domestic Demand – SW2.027475	Natural Discharge (MCM)						3.88	3.88	
Current Annual Ground Water Extraction for irrigation (MCM)18.75Current Annual Ground Water Extraction for domestic water supply (MCM)8.10Current Annual Ground Water Extraction for All uses (MCM)26.86Provision for domestic and industrial requirement supply to 2025(MCM)8.27Net Ground Water Availability for future use (MCM)42.91Stage of Ground Water Development (%)38.14CategorySAFE5.2 Aquifer-II/Deeper AquiferSas.14Semi confined/Confined Aquifer (Basalt)Net Ground Water Availability for future (Basalt)DistrictTalukaMean thickness (m)Area (MCM)AgepurParseoni3.6536.5112.030.0150.0089SUPPLY (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.754649.12718.7546Agricultural Demand –GW8.10992.02747510.027475	Net Anr	nual Grour	nd Water Avai	ilabilitv (M	CM)		70.4	13	
Current Annual Ground Water Extraction for domestic water supply (MCM)8.10Current Annual Ground Water Extraction for All uses (MCM)26.86Provision for domestic and industrial requirement supply to 2025(MCM)8.27Net Ground Water Availability for future use (MCM)42.91Stage of Ground Water Development (%)38.14CategorySAFES.2 Aquifer-II/Deeper AquiferSemi confined/Confined Aquifer (Basalt)DistrictTalukaMean thickness (m)Area Piezometric head (m)SySResource (MCM)Napply Side ManagementSUPPLY (MCM)Available Resource (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GWAgricultural Demand –GW8.1099Domestic Demand – GW8.1099Domestic Demand – SW2.027475	Current	Annual G	round Water	Extraction	for irrigation (N	1CM)	18.7	⁷ 5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Current	Annual G	round Water	Extraction	for domestic w	ater supply	8.10)	
Current Annual Ground Water Extraction for All uses (MCM)26.86Provision for domestic and industrial requirement supply to 2025(MCM)8.27Net Ground Water Availability for future use (MCM)42.91Stage of Ground Water Development (%)38.14CategorySAFE5.2 Aquifer-II/Deeper AquiferSAFESemi confined/Confined Aquifer (Basalt)SasterDistrictTalukaMean thickness (m)AreaAverage Piezometric head (m)SySResource (MCM)NagpurParseoni3.6536.5112.030.0150.00893.2192946.0. GROUND WATER MANAGEMENT6.1. Supply Side ManagementSUPPLY (MCM)70.4371Gross Annual Draft (MCM)26.8645Available Resource (MCM)70.437126.8645Agricultural Demand –GW49.12718.7546Agricultural Demand – GWS.10992.0274758.109920.027475	(MCM)					,			
Provision for domestic and industrial requirement supply to8.272025(MCM)42.91Net Ground Water Availability for future use (MCM)42.91Stage of Ground Water Development (%)38.14CategorySAFES.2 Aquifer-II/Deeper AquiferSemi confined/Confined Aquifer (Basalt)DistrictTalukaMean thickness (m)Average Piezometric head (m)SySResource (MCM)NagpurParseoni3.6S36.5112.030.0150.00893.2192946.0. GROUND WATER MANAGEMENTG.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)70.4371Genes Annual Draft (MCM)26.8645Agricultural Demand –GW49.127Domestic Demand – GW8.1099Domestic Demand – GW2.027475	Current	Annual G	round Water	Extraction	for All uses (MO	CM)	26.8	36	
2025(MCM)42.91Net Ground Water Availability for future use (MCM)42.91Stage of Ground Water Development (%)38.14CategorySAFE5.2 Aquifer-II/Deer Aquifer (Basalt)DistrictTalukaMean thickness (m)Area Piezometric head (m)SySResource (MCM)NagpurParseoni3.6536.5112.030.0150.000893.2192946.0. GROUND WATER MANAGEMENT6.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	Provisio	on for dom	estic and ind	ustrial requ	uirement supply	' to	8.27	7	
Net Ground Water Availability for future use (MCM)42.91Stage of Ground Water Development (%)38.14CategorySAFE5.2 Aquifer-II/Deeper AquiferSaslt)Semi confined/Confined Aquifer (Basalt)SDistrictTalukaMean thickness (m)AreaAverage Piezometric head (m)SySResource (MCM)NagpurParseoni3.6536.5112.030.0150.00893.2192946.0. GROUND WATER MANAGEMENT536.5112.030.0150.00893.2192946.1. Supply Side ManagementS70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.754649.127Domestic Demand – GW8.10992.027475Domestic Demand – SW2.0274752.027475	2025(N	ICM)							
Stage of Ground Water Development (%) 38.14 Category SAFE 5.2 Aquifer-II/Deeper Aquifer SasIt Semi confined/Confined Aquifer (Basalt) Semi confined/Confined Aquifer (Basalt) District Taluka Mean thickness (m) Area Average Piezometric head (m) Sy S Resource (MCM) Nagpur Parseoni 3.6 536.51 12.03 0.015 0.00089 3.219294 6.0. GROUND WATER MANAGEMENT 6.1. Supply Side Management 536.51 12.03 0.015 0.00089 3.219294 6.1. Supply Side Management 536.51 12.03 0.015 0.00089 3.219294 6.2. GROUND WATER MANAGEMENT 536.51 12.03 0.015 0.00089 3.219294 6.3. Supply Side Management 5 536.51 12.03 0.015 0.00089 3.219294 6.4. Supply Side Management 5 536.51 12.03 0.015 0.00089 3.219294 6.5. Agricultural Demand – GW 5 70.4371 5 5 5 5 5 5 5 5 5 5 5 5 5 <td>Net Gro</td> <td>ound Wate</td> <td>r Availability</td> <td>for future</td> <td>use (MCM)</td> <td></td> <td>42.9</td> <td>91</td>	Net Gro	ound Wate	r Availability	for future	use (MCM)		42.9	91	
SAFE5.2 Aquifer-II/Deeper AquiferSasalt)Semi confined/Confined Aquifer (Basalt)Semi confined/Confined Aquifer (Basalt)DistrictTalukaMean thickness (m)AreaAverage Piezometric head (m)SySResource (MCM)NagpurParseoni3.6536.5112.030.0150.00893.2192946.0. GROUND WATER MANAGEMENT6.1. Supply Side ManagementSUPPLY (MCM)VVSUPPLY (MCM)V70.4371Co.8645Available Resource (MCM)26.864526.8645Agricultural Demand –GW18.754649.127Domestic Demand – GW8.109920.27475	Stage o	f Ground \	Nater Develo	pment (%)			38.1	4	
5.2 Aquifer-II/Deeper Aquifer Semi co-fined/Co-fined Aquifer (Basalt) District Taluka Mean thickness (m) Area Average Piezometric head (m) Sy S Resource (MCM) Nagpur Parseoni 3.6 536.51 12.03 0.015 0.00089 3.219294 6.0. GROUND WATER MANAGEMENT 6.1. Supply Side Management SUPPLY (MCM) Available Resource (MCM) 70.4371 Gross Annual Draft (MCM) 26.8645 Agricultural Demand –GW 18.7546 49.127 Domestic Demand – GW 8.1099 8.1099 Domestic Demand – SW 2.027475 2.027475	Catego	Ъ					SAF	E	
Semi confined/Confined Aquifer (Basalt)DistrictTalukaMean thickness (m)AreaAverage Piezometric head (m)SySResource (MCM)NagpurParseoni3.6536.5112.030.0150.00893.2192946.0. GROUND WATER MANAGEMENT6.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.7546Agricultural Demand –GW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	5.2 Aqu	ifer-II/Dee	eper Aquifer						
DistrictTalukaMean thickness (m)AreaAverage Piezometric head (m)SySResource (MCM)NagpurParseoni3.6536.5112.030.0150.000893.2192946.0. GROUND WATER MANAGEMENT6.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.7546Agricultural Demand –GW9.1027Domestic Demand – GW8.1099Domestic Demand – SW2.027475	Semi co	nfined/Co	onfined Aquife	er (Basalt)					
Nagpur Parseoni 3.6 536.51 12.03 0.015 0.00089 3.219294 6.0. GROUND WATER MANAGEMENT 6.1. Supply Side Management	District	Taluka	Mean thickness (m)	Area	Average Piezometric head	Sy	S	Resource (MCM)	
6.0. GROUND WATER MANAGEMENT6.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)Gross Annual Draft (MCM)26.8645Agricultural Demand –GWAgricultural Demand –SWDomestic Demand – GW8.1099Domestic Demand – SW2.027475	Nagpur	Parseoni	3.6	536.51	12.03	0.015	0.00089	3.219294	
6.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.7546Agricultural Demand –SW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	6.0. GR		TER MANAG	EMENT				•	
SUPPLY (MCM)Available Resource (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.7546Agricultural Demand –SW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	6.1. Sup	oply Side N	Management						
Available Resource (MCM)70.4371Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.7546Agricultural Demand –SW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	SUPPLY	(MCM)							
Gross Annual Draft (MCM)26.8645Agricultural Demand –GW18.7546Agricultural Demand –SW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	Available Resource (MCM) 70.4371								
Agricultural Demand –GW18.7546Agricultural Demand –SW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	Gross Annual Draft (MCM) 26.					26.8645			
Agricultural Demand – SW49.127Domestic Demand – GW8.1099Domestic Demand – SW2.027475	Agricultural Demand –GW 18.					18.7546			
Domestic Demand – GW8.1099Domestic Demand – SW2.027475	Agricultural Demand –SW 49.					49.127			
Domestic Demand – SW 2.027475	Domestic Demand – GW 8.10					8.1099			
	Domest	ic Deman	d – SW				2.02747	5	

Total Demand		78.018975		
Area of Block (Sq. Km.)		786.94		
Area suitable for Artificial recharge (Sq. K	ím)	410.42		
Type of Aquifer				
Area feasible for Artificial Recharge (WL :	>3mbgl) (Sq. Km.)	400.27		
Volume of Unsaturated Zone (MCM)		2042.39		
Average Specific Yield		0.020		
Volume of Sub Surface Storage Space ava	ailable for Artificial	40.85		
Recharge (MCM)/Recharge Potential (MC	CM)			
Surface water requirement @ 75% efficie	ency (MCM)	54.46		
Surplus water Available (MCM)		8.97		
Proposed Structures	Percolation Tank	Check Dam (
	(Av. Gross Capacity-100	Av. Gross Capacity-		
	TCM*2 fillings = 200	10 TCM * 3 fillings =		
	TCM)	30 TCM)		
Number of Structures	31	90		
Volume of Water expected to be	4.71	2.02		
conserved / recharged @ 75 %				
efficiency (MCM)				
RTRWH Structures – Urban Areas				
Households to be covered (25% with 50 r	m2 area)	9391		
Total RWH potential (MCM)		0.47659325		
Rainwater harvested / recharged to DW or BW of 50% household		4695.5		
However, it is economically not viable &				
6.2. Demand Side Management				
Micro irrigation techniques	Nil			
Proposed Cropping Pattern change				
Irrigated area under Water Intensive Crop(ha)		Not proposed		
Water Saving by Change in Cropping Pattern		Nil		
6.3. Expected Benefits		1		
Net Ground Water Availability (MCM)		70.4371		
Additional GW resources available after S	Supply side interventions	6.72		
(MCM)				
Ground Water Availability after Supply si	de intervention(MCM)	77.16		
Existing Ground Water Draft for All Uses	(MCM)	26.86		
GW draft after Demand Side Interventior	26.86			
Present stage of Ground Water Development (%)		38.14		
Expected Stage of Ground Water Develop	34 82			
(%)	5 1102			
Other Interventions Proposed, if any	1			
Alternate Water Sources Available	Nil			
6.4. Development Plan		Γ		
GW available for Development Plan to br	27.15			
Proposed no. of DW (@ 1.5 ham for 90%	of GWR Available)	1629		
Proposed no. of BW (@ 1 ham for 10% of GWR Available)		271		

9.12 RAMTEK BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES					
1.1 Introduction					
Block Name			RAMTEK		
Geographical Area (Sq. km	.)		896.96 Sq. km.		
Hilly Area (Sq. km.)			264.25 Sq. km.		
Poor Ground Quality Area			Nil		
(Sq. km.)					
Population (2011)			1,58,643		
Climate			Sub-Tropical		
1.2 Rainfall Analysis					
Normal Rainfall			1164.20 mm		
Annual Rainfall (2019)			893.10mm		
Decadal Average Annual R	ainfall (2010-19)		981.26 mm		
	<u> </u>				
Long Term Rainfall	Declining Trend 15.	48 mm/year			
Analysis	Probability of Norm	al and Excess Rainfall 6	1.90% & 9.52%		
(1999-2019)	Probability of Droug	ghts -: 28.57% Moderate	е		
Rainfall Trend Analysis (19	99 to 2019)				
y = -15	3.48x + 1227.				
1600 -		-			
1400 -					
1200 -					
1000 -					
800 -					
600 -					
400 -					
200					
200 -					
01 00 00 00 00 00 00 00 00 00 00 00 00 0	04 05 06 07 08	11 11 11 11 11 11 11 11 11 11 11 11 11	16 17 18 19		
19 20 20 20 20	20 20 20 20 20	20 20 20 20 20 20 20 20	20 20 20 20		
EQUATION OF TREND LINE y = -15.480x	+1227				
1.3. Geomorphology, Soil	& Geology				
Major Geomorphic Unit	Pediplain, structura	l Hills, Pediments			
Soil Very Deep Moderately Loamy to Moderately Deep Loamy					
to Moderately Loamy to slightly Deep Loamy soil					
Geology Granite Gneisses, Schist meta sediments of Saucer group					
belonging to Dharwar Super Group and Archaen Age					
1.4. Hydrology & Drainage	2				
Drainage	Pench river and its	tributaries			
Hydrology	Major project	Nil			
(Reference DSA Year: June 2016-	Medium project	Completed: 1 medium	irrigation		
		projects generating a g	gross irrigation		
		Potential of 1437 ha o	ut of 5000 ha		

			are	area.		
		Small project	Со	Completed: 75 small irrigation proje		
			ger	generating a gross irrigation Potentia		
			of	of 1691 ha out of 5253 ha area.		
		Irrigation Project	t Co	mpleted: 02 Lift irri	gation projects;	
		(100-250	10	PT, 190 Kolhapur Ba	andhara, 325	
		Ha)/others	sur	face storage bandh	ara, 1662	
			irrigation well.			
1.5. Land Us	se, Agriculture	, Irrigation & Cro	pping Pattern			
Geographica	al Area			896.96 Sq. km.		
Forest Area				114.29 Sq. km.		
Cultivable A	rea			292.26 Sq. km.		
Net Sown A	rea			375.29 Sq. km.		
Double Crop	oped Area			70.80 Sq. km.		
Area	Surface Wate	r		139.66 Sq. km.		
under	Ground Wate	r		29.67 Sq. km.		
Irrigation						
Principal Crops				Crop Type	Area (Sq.	
(Reference year 2019)					km.)	
				Cereals	187.69	
				Pulses	42.95	
				Soyabean	42.60	
				Cotton	24.72	
Horticultural Crops				Orange	6.59	
				Other fruits	0.29	
				Banana	0	
				Vegetables	14.57	
1.6. Water I	evel Behaviou	ır				
1.6.1. Aquif	er-I/Shallow A	quifer				
Pre-Monsoon (May-2019)				Post-Monsoon (November-2019)		
Water level less than 5 mbgl has been			Water levels less than 2 mbgl have been			
observed in isolated patch in central part			observed in central, southern, northern			
of the block; Water level between 5 to 10			and eastern parts of the block; Water			
mbgl has been observed in entire part of				levels between 2-5 mbgl have been		
the block whereas water levels more than			observed in major parts of the block; water			
10 mbgl hav	e been observ	ed as isolated	levels between 5 to 10 mbgl have been			
patches in c	entral and sou	thern part of	observed in central and southern part of			
the block covering about 79 sq. km. area.				the block covering about 99 sq. km. area.		

Hydrograph shows Pre-monsoon falling water level trend @ 0.034548 m/year and Post monsoon falling water level trend @ 0.018024 m/year

Pre-Monsoon trendPost-Monsoon trendDecline in water level up to 0.2 m/year has been observed in western and north western parts of the block while rise in water level from 0-0.6 m/year has been observed in western in parts of the block; whereas Declining trend more than 0.2 m/year has been observed in north-west, western part of the block covering about 627 sq. km. area.Post-Monsoon trend Declining water level trend up to 0.2 m/year has been observed in major part of the block covering 268 sq km are	1.8. Water Level Trend (2010-19)	
Decline in water level up to 0.2 m/year has been observed in western and north western parts of the block while rise in water level from 0-0.6 m/year has been observed in western in parts of the block; whereas Declining trend more than 0.2 m/year has been observed in major part of the block covering about 627 sq. km. area.Declining water level trend up to 0.2 m/year has been observed in west cent part to east central part of the block wh rise in water level up to 0-0.60 m/year has been observed in north-west, western p of block. Decline more than 0.2 m/year been observed in south-east, south-west part of the block covering 268 sq km are	Pre-Monsoon trend	Post-Monsoon trend
of the block covering about 627 sq. km. part of the block covering 268 sq km area.	Decline in water level up to 0.2 m/year has been observed in western and north western parts of the block while rise in water level from 0-0.6 m/year has been observed in western in parts of the block; whereas Declining trend more than 0.2 m/year has been observed in major part	Declining water level trend up to 0.2 m/year has been observed in west central part to east central part of the block while rise in water level up to 0-0.60 m/year has been observed in north-west, western part of block. Decline more than 0.2 m/year has been observed in south-east, south-west
area.	of the block covering about 627 sq. km.	part of the block covering 268 sq km area.
area.	of the block covering about 627 sq. km.	part of the block covering 268 sq km area.
	area.	

Pre-Monsoon Water Level Trend (2010-19)

Post-Monsoon Water Level Trend (2010-19)

Declining trend @>0.2 m/year 627 sq. km. Declining trend @>0.2 m/year 268 sq. km.

2. Ground Water Issues

Exploitation of Ground Water: -

The stage of ground water development has increased during 2011 to 2013 from 35.74% to 38.76% and afterwards further decreased during 2013 to 2017 from 38.76% to 37.28% in Ramtek block of Nagpur District. Further, the net ground water availability

increased during 2011 to 2013 from 66.53 MCM to 69.60 MCM again decreased from 69.60 MCM to 58.74 MCM during 2013 to 2017. Whereas the draft for irrigation increased during 2011 to 2013 from 19.53 MCM to 21.78 MCM and again decreased from 21.78 MCM to 12.76 MCM during 2013 to 2017.

Declining water level Trend:

Pre monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 627 sq. km. covering about 69% area of the block.

Post monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 268 sq. km. covering about 30 % area of the block.

Low rainfall and Droughts:

The long-term rainfall analysis for the period 1999-2019 indicates that normal rainfall of Ramtek block is 1164.20 mm, and also indicates a declining rainfall trend @ 15.48 mm/year with 28.57% probability of moderate drought.

Based on the short-term rainfall data from 2009-2019 for the block, the analysis indicates that average rainfall is 981.26 mm. The rainfall from last ten years shows a declining rainfall trend @ 12.984 mm/year showing that the area is continuously experiencing low and declining rainfall with frequent moderate droughts.

Low yielding Aquifer resulting poor sustainability:

Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also the absence of primary porosity, results in poor sustainability of the aquifers. About 55% area of the block has low yield potential (< 100m³/day) and can sustain pumping only for 1-1.5 hrs.

3. AQUIFER DISPOSITION 3.1. Number of Aquifers

	W/Fr Granite Gneisses – Aquifer-I, Aquifer-
--	---

4.2 Aquifer II/Deeper Aquifer

EC values up to 250 μ S/cm are observed as isolated patch in central parts of the block. EC values between 250-750 μ S/cm are observed in major parts of the block and EC values between 750 to 2250 μ S/cm are observed in south-west part of the block. Ground water is suitable for all purposes.

Agricultural Demand –GW	12.757				
Agricultural Demand –SW	90.779				
Domestic Demand – GW			9.133		
Domestic Demand – SW			2.28325		
Total Demand			114.95225		
Area of Block (Sq. Km.)			1142.9		
Area suitable for Artificial recharge (Sq.	Km)		62.4		
Type of Aquifer					
Area feasible for Artificial Recharge (WL	. >3mbgl) (Sq. Km.)		62.4		
Volume of Unsaturated Zone (MCM)			77.95		
Average Specific Yield			0.015		
Volume of Sub Surface Storage Space av	vailable for Artificial Rech	arge	1.16925		
(MCM)/Recharge Potential (MCM)					
Surface water requirement @ 75% effic	iency (MCM)		1.559		
Surplus water Available (MCM)			1.39776		
Surplus runoff considered for planning ((MCM) @ 75%/100%		1.04832		
Proposed Structures	Percolation Tank (Av.	Chec	k Dam		
	Gross Capacity-100	(Av. (Gross Capacity-10		
	TCM*2 fillings = 200	TCM	* 3 fillings = 30		
	TCM)	TCM	CM)		
Number of Structures	5	14			
Volume of Water expected to be	0.73	0.31			
conserved / recharged @ 75 %					
efficiency (MCM)					
RTRWH Structures – Urban Areas					
Households to be covered (25% with 50	m2 area)		6081		
Total RWH potential (MCM)			0.29888115		
Rainwater harvested / recharged to DW	or BW of 50% household	d	3040.5		
However, it is economically not viable 8	hence, not recommend	ed.			
6.2. Demand Side Management					
Micro irrigation techniques			Nil		
Proposed Cropping Pattern change					
Irrigated area under Water Intensive Cro	Not proposed				
Water Saving by Change in Cropping Pat	Nil				
6.3. Expected Benefits					
Net Ground Water Availability (MCM)	58.74				
Additional GW resources available after	1.05				
(MCM)	1.05				
Ground Water Availability after Supply s	59.79				
Existing Ground Water Draft for All Uses	21.89				
GW draft after Demand Side Intervention	21.89				
Present stage of Ground Water Develop	37.28				
Expected Stage of Ground Water Develo	opment after intervention	ns (%)	36.61		
Other Interventions Proposed, if any					
Alternate Water Sources Available	Nil				

6.4. Development Plan					
GW available for Development Plan to brin	19.96				
Proposed no. of DW (@ 1.5 ham for 90% of	f GWR Available)	1198			
Proposed no. of BW (@ 1 ham for 10% of G	iWR Available)	200			
Additional Area (sq.km.) proposed to be br	ought under assured GW	32.32			
irrigation with av. CWR of 0.65 m AFTER 70	0 % STAGE OF GWD IS				
ACHIEVED					
Regulatory Measures	60 m				
ARTIFICIAL REC RAMTEK BLOCK, NAGPU	HARGE STRUCTURE R DISTRICT, MAHARASHTRA				

9.13 SAVNER BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES	1. SALIENT FEATURES				
1.1 Introduction					
Block Name		SAVNER			
Geographical Area (Sq. km.)		675.43Sq. km.			
Hilly Area (Sq. km.)		113.06Sq. km.			
Poor Ground Quality Area		Nil			
(Sq. km.)					
Population (2011)		2,29,450			
Climate		Sub-Tropical			
1.2 Rainfall Analysis					
Normal Rainfall		1012.70 mm			
Annual Rainfall (2019)		816.40mm			
Decadal Average Annual Rai	nfall (2010-19)	962.90 mm			
Long Term Rainfall	Rising Trend 4.349 mm/year				
Analysis	Probability of Normal and Excess Ra	infall 76.19% & 9.52%			
(1999-2019)	Probability of Droughts -: 4.76% Mc	derate and 9.52%			
	Acute				
Rainfall Trend Analysis (199	9 to 2019)				
1800 y = 4.34	5x+312.7				
1600 -					
1400 -					
1200 -					
1000 -					
800 -					
600 -					
400 -					
200					
200					
000 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	117 117 117 119			
190 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	20 20 20 20 20 20			
EQUATION OF TREND LINE y = 4.349x+912.70					
Major Geomorphic Unit	Weathered Slightly Moderately and highly dissected				
	Plateau: alluvium plain: Pediplain, structural Hills				
	Pediments				
Soil	Deep moderate loamy to Moderately Deep Loamy to				
	Moderately Loamy to slightly Deep Loamy to very shallow				
	loamy to extremely shallow clayey soil				
Geology	Unconsolidated Sediments, Deccan Traps (Basalt)				
	Age: Late Cretaceous to Eocene				
	Gondwana Super group (Permian to	o Carboniferous)			
	Granite Gneisses, Schist meta sedim	nents of Saucer group			

belonging to			harwar S	uper Gr	oup and Archaen Age	
1.4. Hydrology & Drainage						
Drainage		Kanhan river and its tributaries				
Hvdrology		Major project		Nil		
(Reference DSA Y	ear: June 2016-17)	Medium projec	ct	Comp	leted: 05 medium irrigation	
				projec	ts generating a gross	
		irrigat		irrigat	ion Potential of 100069 ha	
		out of 22401 ha area.		22401 ha area.		
		Small project	Completed: 15 small irrigation		leted: 15 small irrigation	
		projects generating a gross		ts generating a gross		
		irrigat		irrigat	ion Potential of 813 ha out	
				of 347	'8 ha area.	
		Irrigation Proje	ect	Comp	leted: 2 PT, 92 Kolhapur	
		(100-250 Ha)/d	others	Bandh	ara, 132 surface storage	
				bandh	ara, 2 Lift Irrigation	
				schem	ie, 5549 irrigation well.	
1.5. Land Use	e, Agriculture, I	Frigation & Cro	oping Pat	ttern		
Geographical Area		6/5.4359. Km				
Forest Area		161 39 Sq. km				
Net Sown Ar		501 41 Sq. km				
Double Cremed Area		51 65 Sg. km				
Area under	Surface	0.00 Sq. km				
Irrigation	Water					
Ground		28.04 Sq. km.				
	Water					
Principal Cro	ps	Сгор Туре			Area (Sq. km.)	
(Reference year 20:	19)	Cereals		28.04		
		Pulses		89.47		
		Soyabean		20.82		
		Cotton			278.67	
		Orange			17.24	
		Other fruits			0.28	
Horticultural Crops		Banana		0.02		
		Vegetables 31.16			31.16	
1.6. Water Le	evel Behaviour					
1.6.1. Aquiter-I/Shallow Aquifer						
Pre-Monsoon (May-2019)		Post-Monsoon (November-2019)				
Water level k	between 2-5 ml	bgl has been	Water level between 0-2 mbgl has been		tween 0-2 mbgl has been	
observed in I	solated patch i	n western part	observe	ed in iso	lated patch in western and	
of the block;	water level be	tween 5 to 10	eastern	i part of	the DIOCK; Water level	
	en observed in (east, south	perween 2-5 mbgi has been observed in		ingi ilas been observed in	
whereas water levels between 10-20 m			block: Water lovel between 5 to 10 mb-			
whereas water levels between 10-20 r			DIUCK, V	ivaler le	wei berween 2 to to mbgi	

Exploitation of Ground Water: -

The stage of ground water development has increased during 2011 to 2013 from 74.45% to 77.54% and afterwards further decreased during 2013 to 2017 from 77.54% to 76.34% in Savner block of Nagpur District. Further, the net ground water availability increased during 2011 to 2013 from 62.00 MCM to 65.13 MCM again decreased from 65.13 MCM to 46.73 MCM during 2013 to 2017. Whereas the draft for irrigation increased during 2011 to 2013 from 43.10 MCM to 47.28 MCM and again decreased from 47.28 MCM to 29.13 MCM during 2013 to 2017.

Declining water level Trend : -

Pre monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 473 sq. km. covering about 69% area of the block.

Post monsoon (2010-19): decline in water level trend more than 0.2 m/year is observed in about 405 sq. km. covering about 60 % area of the block.

Low rainfall and Droughts:

The long-term rainfall analysis for the period 1999-2019 indicates that normal rainfall of Savner block is 1012.70 mm, and also indicates a rising rainfall trend @ 4.349 mm/year with 4.76% probability of moderate drought.

Based on the short-term rainfall data from 2010-2019 for the block, the analysis indicates that average rainfall is 962.90 mm. The rainfall from last ten years shows that the area continuously experienced low and declining rainfall but with no droughts.

Low yielding Aquifer resulting poor sustainability:

Limited extent of porous and pervious zone, because of predominance of secondary porosity that has evolved from prevailing erratic joint pattern and also the absence of primary porosity, results in poor sustainability of the aquifers. About 55% area of the block has low yield potential (< 100m3/day) and can sustain pumping only for 1-1.5 hrs.

Semi confined/Confined Aquifer (Basalt)								
District	Taluka	Mean thickness (m)	Area	Average Piezometric head (m)	Sy	S	Resource (MCM)	
Nagpur	Savner	13.4375	562.37	49.9675	0.015	0.000482	1.718978	
6.0. GROU	ND WATER	MANAGE	MENT					
6.1. Suppl	y Side Mana	agement						
SUPPLY (N	1CM)							
Available I	Resource (N	ICM)				46.72	46.72	
Gross Ann	ual Draft (N	1CM)				35.67	35.67	
Agricultur	al Demand -	-GW				29.1299	29.1299	
Agricultur	al Demand -	-SW				0	0	
Domestic	Demand – G	3W				6.5401	6.5401	
Domestic	Demand – S	,W				1.635025	; ;	
Total Dem	and					37.30502	!5	
Area of Blo	ock (Sq. Km.	.)				618.59		
Area suita	ble for Artif	icial rechar	rge (Sq. k	(m)		497.69		
Type of Ac	quifer							
Area feasi	ble for Artifi	icial Recha	rge (WL	>3mbgl) (Sq. K	m.)	336.45	336.45	
Volume of	Unsaturate	ed Zone (M	CM)			841.12	841.12	
Average S	pecific Yield					0.020	0.020	
Volume of	Sub Surface	e Storage S	space ava	ailable for Arti	ficial	16.8224		
Recharge	(MCM)/Recl	harge Pote	ntial (M	CM)				
Surface wa	ater require	ment @ 75	5% efficie	ency (MCM)		22.42986	22.42986667	
Surplus wa	ater Availab	le (MCM)				7.53648		
Proposed	Structures			Percolation Ta	ank	Check Da	im	
				(Av. Gross Cap	bacity-10) (Av. Gros	s Capacity-	
				TCM*2 fillings	= 200		* 3 fillings =	
TCM)								
Number o	r Structures			26		/5		
Volume of Water expected to be 3.96					1.70			
conserved	conserved / recharged @ 75 %							
KIKWIT Structures – Urban Areas								
Total DW/H potential (ACM)						1 007097	1 007097	
Painwater harvested / recharged to DW/ or DW/ of 50%					11026			
household								
However, it is economically not viable & hence, not recommended								
6.2 Demand Side Management								
Micro irrigation techniques								
Sugarcane crop of about 2.02 solve area is ground water 2								
irrigated, 100 % ground water irrigated (2.02 sokm) proposed to					, ²			
he covere	be covered under Drip (sq.km.)							
Volume of	Volume of Water expected to be saved (MCM). Surface Flooding 1.14							
req- 2.45 m. Drip Req 1.88, WUE- 0.57 m								

Proposed Cropping Pattern change					
Irrigated area under Water Intensive Crop(ha)	Not proposed				
Water Saving by Change in Cropping Pattern	Nil				
6.3. Expected Benefits					
Net Ground Water Availability (MCM)	46.72				
Additional GW resources available after Supply side	5.65				
interventions (MCM)					
Ground Water Availability after Supply side intervention	on (MCM) 52.37				
Existing Ground Water Draft for All Uses (MCM)	35.67				
GW draft after Demand Side Interventions (MCM)	34.53				
Present stage of Ground Water Development (%)	76.34				
Expected Stage of Ground Water Development after	65.02				
interventions (%)	05.93				
Other Interventions Proposed, if any					
Alternate Water Sources Available	Nil				
6.4. Development Plan					
GW available for Development Plan to bring SOD to 70	0% 2.13				
Proposed no. of DW (@ 1.5 ham for 90% of GWR Avail	able) 128				
Proposed no. of BW (@ 1 ham for 10% of GWR Availab	ole) 21				
Additional Area (sq.km.) proposed to be brought unde	r assured 13.73				
GW irrigation with av. CWR of 0.65 m AFTER 70 % STA	GE OF				
GWD IS ACHIEVED					
Regulatory Measures	60 m				
Proposed locations for AR structures					

79

Arius - BATLDY Gapters No. of Vitinget - 1287

iei ie

10 100

ANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN

- I. Sukali
- II. Mandwa
- III. Salai Godhni
- IV. Dhanoli

10. PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN

10.1 WATERSHEDS WGKN-2 and WGKN-3, SUKALI, UMRED BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Village Name	Sukali					
Geographical Area (Sq. Km.)			5.9659 sq km			
Hilly Area (Sq. Km)			NII			
Population (Predicted -2019)			54			
Climate			Monsoon Tropical			
Normal Rainfall (mm) (nearest ra	ain gauge statio	on-Umred)	1179.7 mm			
Annual Rainfall (mm) 2009-18 (n	learest rain gau	ge station-	1209 mm			
Umred)						
1.2. Geomorphology, Soil & Geo	ology					
Geomorphic Unit	Plateau (slight	ly to moderately	/ dissected).			
Geology	Deccan Traps	(Basalt) Age: Lat	e Cretaceous to Eocene			
Soil	BCS – Clayey t	o loamy.				
1.3. Hydrology & Drainage		1				
Watershed		WGKN -2; WG	KN - 3			
Drainage		Godavari basir	a, Wainganga River with sub-			
		dendritic drainage pattern.				
Irrigation Project (Major/Mediur	m/Minor etc.)	Nil				
WC structures (PT / KT / CD / FP	etc.)	01-CD, 1- Villa	ge Pond			
1.4. Land Use, Agriculture, Irriga	ation & Croppir	ng Pattern				
Specifics			Area (Sq. Km.)			
Forest Area			1.76			
Cultivable Area			1.556			
Net Sown Area			1.556			
Double Cropped Area			1.1			
Irrigation Dug wells			Nil			
Irrigation Bore wells			Nil			
Area under Drip & Sprinkler Irrig	ation		Nil			
Area under Irrigation	Surface \	Water	Nil			
	Ground	Water	144.60 ha			
Principal Crops	Cotton		75.40 ha			
(Reference year 2019-20)	Soyabear	1	50.20 ha			
Pulses			18.70 ha			
	Wheat		18.20 ha			
Gram			12.10 ha			
	Vegetab	les	5 ha			
1.5. Water Level Behaviour: Aqu	uifer-I (Shallow	Aquifer)				
Pre-Monsoon (May-2019)		Post-Monsoon	(November-2019)			
Based on pre-monsoon data from	m Key	Based on post-	monsoon data from Key			
Observation wells in and around	the village it	Observation wells in and around the village				

5. GROUND WATER RESOURCES- Aquifer-I/ Shallow Phreatic Aquifer (Basalt)					
5. 1 Water budgeting					
A. Water availability					
Area (ha)		596.59			
Rainfall (m)		1.209			
Water precipitated, ham, (Area X R	F)		721.28		
90 % of precipitations (ham)			1.088		
AR recharge by artificial recharge s	tructure (mcm)		0.0012		
Runoff (2.5%) (RF-AR) (ham)			16.23		
Evaporation (35%) (ham)			227.20		
Water retained in ground Tank, Na	la etc. (5%) (ham)		32.46		
Recharge to phreatic aquifer (10%)	(ham)		64.92		
Enhance soil moisture, utilised by r	oot system (ham)		194.75		
Total Water availability (MCM)			2.92		
B. Requirement					
Domestic @60 lpcd X total person ((54) (MCM)		0.0012		
Animal @40 lpad X total animal (21	.0) (MCM)		0.0031		
Irrigation water applied (MCM)			0.31		
Non agriculture use (MCM)			0.06		
Total Requirement (MCM)			0.38		
C. GW available for Planning (MCM)		2.54		
Stage of GW Development (%)		13.06			
6.0. GROUND WATER RESOURCE N	/IANAGEMENT				
6.1. Supply Side Management					
SUPPLY (MCM)			ſ		
Available Resource (MCM)		2.92			
Agricultural Supply –GW			0.31		
Agricultural Supply -SW			0.00		
Domestic Supply - GW			0.0042		
Domestic Supply - SW			0.00		
Non agriculture use (MCM)			0.06		
Total GW availability (MCM)			2.54		
Gross Annual Draft (MCM)			0.38		
Area of Block (Sq. Km.)			5.9659		
Area suitable for Artificial recharge	(Sq. Km)		5.97		
Type of Aquifer		Hard rock			
Area feasible for Artificial Recharge		5.368			
Volume of Unsaturated Zone (MCN		0.000013			
Average Specific Yield	0.02				
Volume of Sub Surface Storage Space available for Artificial Recharge 0.00000027					
(MCM)					
Surplus water Available (MCM) 16.23					
Proposed Structures	Percolation Tank (Av.	Check Da	am (Av. Gross		
	Gross Capacity-100	Capacity	-10 TCM * 3 fillings =		
	TCM*2 fillings = 200	30 TCM)			

	TCM)				
Number of Structures	Number of Structures Not Proposed Not				
Volume of Water expected to be					
conserved / recharged @ 75%					
efficiency (MCM)					
Specific Recommendations			Not Prop	osed	
As per State Govt. Resolution, segn	nent wise nal	la/stream (on			
2 nd and 3 rd order streams /nala's) d	esilting, dee	pening and			
widening upto 3 m depth or upto w	veathered ro	ck			
considering the local hydrogeologic	cal condition	without			
disturbing the ecology/aquifer/env	ironmental f	low of			
nala/stream.					
Considering average hala deepenin storage	g of 1 m dep	th, additional			
Considering average nala deepenin	g of 1 m dep	th. additional			
recharge @ 75%	8 e e.ep	,			
RTRWH Structures					
Households to be covered (25% wit	th 50 m ² area	a)		227	
Total RWH potential (MCM)		,		0.0000499	
Rainwater harvested / recharged @	80% runoff	co-efficient		0.0000400	
However, RTRWH is economically r	not viable & r	not Recommen	ided.	I	
6.2. Demand Side Management					
Micro irrigation techniques					
Area is proposed to be covered und		Not Proposed			
Proposed Cropping Pattern change					
Irrigated area under Water Intensiv	ve Crop(ha)			Not proposed	
6.3. Expected Benefits					
Net Ground Water Availability (MC	M)			2.92	
Additional GW resources available	ons	0.00			
(MCM)					
Ground Water Availability after Supply side intervention (MCM) 2.92					
Existing Ground Water Draft for All	Uses (MCM)			0.38	
GW draft after Demand Side Interv	entions (MCI	M)		0.00	
Present stage of Ground Water Dev		13.06			
Expected Stage of Ground Water D	ions (%)	13.06			
Other Interventions Proposed, if any					
Alternate Water Sources Available		Nil			
6.4. Development Plan				ſ	
Volume of water available for GWD after stage of GWD brought to 1.52					
65% (MCM)					
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available) 91					
Proposed Number of BW (@ 1.0 ha	<u>im tor 10% o</u>	t GWR Availabl	le)	15	
Area (ha) proposed to be brought under assured GW irrigation with av. 233.44 CWR of 0.65 m after 65% stage of GWD is achieved					
Regulatory Measures60m borewells/tube v				ells	

dissected plateau. In the south-east part of	except in the small part in north-west and
the village undissected plateau is observed,	north, north-east part of the village is covered
while few structural hillocks are found in	by residual Laterite capping.
the village in north, central and south-east	
parts.	

Village – Sukali, Umred Block, Nagpur District

Aquifer	Current	Geology	Geomorphology	Ground water	Recommendations for Aquifer Development				Aquifer Management	
(Prominent Lithology)	Scenario			quanty	Type/number	Zones/Depth to be tapped	HP of pump to be lowered	Pumping Hours	Yield (Cu. m / Day)	Fian
Aquifer I (Basalt- Weathered and fractures)	144.60 ha cultivable land, 1 CD, 1 village farm, 17- DW, SOD-13.06 %	Deccan Trap Basalt	Plateau (Moderately dissected to un dissected)	Quality of ground water is good and fit for drinking, domestic and irrigation purpose; All parameters are within MPL except sulphate contamination.	Dug well / 91	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	 About 255.91 ha area is proposed to be brought under assured GW irrigation during Rabi. The DW should be used for irrigation purpose. Desilting of existing water conservation and artificial recharge structures.
Aquifer II (Basalt- Jointed & Fractures)	-	-		Not assessed	Bore well / 15	Depth : 60 m	3 to 5	3 to 8	0.14-2.16 lps	 The BW should be used for drinking purpose. BW should not be drilled down below the red bole and depth not more than 60 m

Note: DW (d) = Dug well Domestic; DW (i) = Dug Well Irrigation; BW(d) = Bore Well Domestic; BW(i) = Bore Well Irrigation

10.2 WATERSHEDS WGKN-2, VILLAGE SALAI GODHANI, NAGPUR (RURAL) BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1.1 Introduction Salai Godhni Village Name Salai Godhni Geographical Area (Sq. Km.) Nil Population (Current year -2019) 871 Climate Monsoon Sub-Tropical Normal Rainfall (mm) (nearest rain gauge station- Nagpur) 1.2 Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 1.2 Geomorphology. Soil & Geology International Station- Nagpur) 1.1 1.3. Exponded Station (Current year rain gauge station- Nagpur) 1.1 1.4 Geomorphology. Soil & Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eccene Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Dariage Godavari basin with dendritic to sub-dendritic drainage pattern. Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil Free WC structures (PT / KT / CD / FP etc.) 01-Village farm 1.4. Land Use, Agricurter, Irrigation & Cropping Pattern Sill Specifics Area Forest Area Nil Cuttvable Area 210 ha Double Cropped Area Nil Irrigation Dug wells Surface Water Nil Area	1. SALIENT FEATURES						
Village NameSalai GodhniGeographical Area (Sq. Km.)7.26Hilly Area (Sq. Km.)NilPopulation (Current year -2019)871ClimateMonsoon Sub-TropicalNormal Rainfall (mm) (nearest rain gauge station- Nagpur)1.2Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur)1.1Annual Rainfall (mm) 2019Godavari basin with dendritic nearest rain gauge station- Nagpur)Annual Rainfall (mm) 2019WGKN-2Nagpur)Annual Rainfall (mm) 2019NilInternoAntar (tring in Project (Major/Medium)/Mino Projec	1.1 Introduction						
Geographical Area (Sq. Km.) 7.26 Hilly Area (Sq. Km.) Nil Population (Current year -2019) 871 Climate Monsoon Sub-Tropical Normal Rainfall (mm) (nearest rain gauge station- Nagpur) 1.2 Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 1.2 Geomorphic Unit Plateau (Sightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Creacous to Eocene Soil Very shallow loamy to deep moderately loamy soil. 1.3 1.3. Hydrology & Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Trrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farm Specifics Area Forest Area Nil Cultivable Area Sil Specifics Nil Forest Area Nil Cultivable Area Sil Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Dug wells Sordace Ground Water	Village Name				Salai Godhni		
Hilly Area (Sq. Km.) Nil Population (Current year -2019) 871 Climate Monsoon Sub-Tropical Normal Rainfall (mm) (nearest rain gauge station- Nagpur) 1.2 Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 1.2. Geomorphology, Soil & Geology 1.1 Geomorphic Unit Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamey to deep moderately dissected). Godavari basin with dendritic to sub-dendritic drainage pattern. Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil Nil VC structures (PT / KT / CD / FP etc.) 01-Village far- sectifics Area Forest Area Nil 1.1 Cultivable Area 210 ha 1.2 Double Cropped Area Nil 39 Irrigation Dug wells 39 39 Irrigation Bore wells 10 39 Area under Drip & Sprinkler Irrigation Nil 30 ha Area under Drip & Sprinkler Irrigation Surface Water Nil Area	Geographical Area (S	Sq. Km.)			7.26		
Population (Current year -2019) 871 Climate Monsoon Sub-Tropical Normal Rainfall (mm) (nearest rain gauge station- Nagpur) 1.2 Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 1.2. Geomorphology, Soil & Geology 1.1 Geomorphic Unit Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Dranage Godavari basin with dendritic to sub-dendritic drainage pattern. Tirigation Project (Major/Medium//Minor etc.) Nil VC structures (PT / KT / CD / FP etc.) 01-Village farm 1.4. Land Use, Agriculture, Irrigation & Cropping Pattern Nil Specifics Area Forest Area Nil Cultivable Area Nil Ouble Cropped Area Nil Irrigation Bore wells 39 Area under Irrigation Surface Water Area under Irrigation Us wells 10 Area under Irrigation Dig wells 10 Area under Irrigation Surface Water Pincipal Crops Surface Water	Hilly Area (Sq. Km.)				Nil		
Climate Monsoon Sub-Tropical Normal Rainfall (mm) (nearest rain gauge station- Nagpur) 1.2 Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 1.2. Geomorphology, Soil & Geology 1.1 Geomorphic Unit Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately clissected). 1.3. Hydrology & Drainage WGKN-2 Watershed WGKN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil VC structures (PT / KT / CD / FP etc.) 01-Village farm Specifics Area Forest Area Nil Cultivable Area Nil Cultivable Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Irrigation Surface Water Nil Ground Water Irrigation Bore wells So ha Ground Water 30 ha (Reference year 2019) Wheat 30 ha Gram 5 ha Jawari 5 ha Jawari 5 ha Jawari 5 ha </td <td>Population (Current</td> <td>year -2019)</td> <td></td> <td></td> <td>871</td>	Population (Current	year -2019)			871		
Normal Rainfall (mm) (nearest rain gauge station- Nagpur) 1.2 Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 1.2. Geomorphology, Soil & Geology 1.1 Geomorphic Unit Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately dissected). Geology Mereaniage attransport attra	Climate				Monsoon Sub-Tropical		
Nagpur) Initial (mm) ≥ 019 (nearest rain gauge station- Nagpur) 1.1 1.1 Initial (mm) ≥ 019 (nearest rain gauge station- Nagpur) 1.1 1.2. Geomorphology, Soil & Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Data Wery shallow loamy soil. 1.3. Hydrology & Data Wery shallow loamy soil. 1.4. Land Use, Agriculture, Irrigation & Creping Pattern Nil Specifics Area Forest Area Nii Net Sown Area 210 ha Double Cropped Area Nil	Normal Rainfall (mm	ı) (nearest ra	in gauge st	ation-	1.2		
Annual Rainfall (mm) 2019 (nearest rain gauge station- Nagpur) 1.1 1.2. Geomorphology, Soil & Geology 1.1 Geomorphic Unit Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretacous to Eocene Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Drainage WGKN-2 Watershed WGKN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farmetere Specifics Area Forest Area Nil Cultivable Area Nil Cultivable Area Nil Irrigation Dug wells 39 Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Irrigation Nil Area under Irrigation Surface Water Nil Reference year 2019 Surface Water Nil Qitonu Water 210 ha 10 Area Grann 25 ha Pulses 15 ha 15 ha	Nagpur)						
Nagpur) I.2. Geomorphology. Soil & Geology Geomorphic Unit Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shalow loamy to deep moderately loamy soil. 1.3. Hydrology & Drainage WGKN-2 Watershed WGGN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor Nil Vec structures (PT / KT / CD / FP etc.) 01-Village farmetern. Specifics Seconderational structures (PT / KT / CD / FP etc.) Specifics Ver shalow loamy structures (PT / KT / CD / FP etc.) Specifics Area Forest Area Seconderational structures (PT / KT / CD / FP etc.) Specifics Vill Forest Area Sufface Water Sufface Marea Sufface Water Nil Seconderational structures (PT / KT / CD / FP etc.) Specifics Seconderational structures (PT / KT / CD / FP etc.) Specifics Nil Forest Area Structures (PT / KT / CD / FP etc.) Specifics Nil Forest Area Structures (PT / KT / C	Annual Rainfall (mm) 2019 (near	est rain gau	uge station-	1.1		
1.2. Geomorphology, Soil & Geology Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Drainage WGKN-2 Watershed WGKN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farm Specifics 01-Village farm Forest Area 01-Village farm Specifics Xera Forest Area 210 ha Cultivable Area 39 Nil Specifics Forest Area 10 Cultivable Area 39 Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Irrigation Surface Water Nil Reference year 2019) Surface Water Nil Reference year 2019) Surface Water Suface Quadati Longe Soyabean 80 ha Reference year 2019) Metat 30 ha	Nagpur)						
Geomorphic Unit Plateau (slightly dissected to Weathered, moderately dissected). Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Drainage WGKN-2 Watershed WGKN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farm Specifics Area Forest Area Vil Nil Cultivable Area Vil Nil Double Cropped Area Nil Nil Irrigation Dug wells 39 Nil Irrigation Bore wells 10 Nil Area under Drip & Sprinkler Irrigation Nil Nil Area under Drip & Corops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Miles 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha Assee Level Behaviour: Aquifer-1 (1.2. Geomorphology	, Soil & Geo	logy				
Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Drainage WGKN-2 Watershed WGKN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farm Specifics Area Forest Area Nil Cultivable Area Nil Sown Area 210 ha Double Cropped Area Nii Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Niil Ground Water 210 ha Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Ground Water 25 ha Pulses 15 ha Jawari 5 ha 5 ha Cotton 75 ha 75 ha Other 31 ha 15 ha	Geomorphic Unit	Plateau (sli	ghtly dissed	ted to Weath	ered, moderately dissected).		
Soil Very shallow loamy to deep moderately loamy soil. 1.3. Hydrology & Drainage Watershed WGKN-2 Watershed Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farm Specifics ✓ Forest Area Nil Forest Area Nil Cultivable Area 10 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Soraface Water Reference year 2019) Wheat 30 ha (Reference year 2019) Wheat 30 ha I awari 5 ha 10 Area 25 ha 13 I awari 5 ha 14 </td <td>Geology</td> <td>Deccan Tra</td> <td>ps (Basalt)</td> <td>Age: Late Cret</td> <td>aceous to Eocene</td>	Geology	Deccan Tra	ps (Basalt)	Age: Late Cret	aceous to Eocene		
1.3. Hydrology & Drainage Watershed WGKN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil wC structures (PT / KT / CD / FP etc.) 01-Village farm MC structures (PT / KT / CD / FP etc.) 01-Village farm Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Ground Water 210 ha 10 Area under Irrigation Surface Water Nil Ground Water 210 ha 10 Area Under Irrigation Ground Water 210 ha Irredu More Song (May 2019) Wheat 30 ha Index Irredu More Song (May 2019) </td <td>Soil</td> <td>Very shallow</td> <td>w loamy to</td> <td>deep modera</td> <td>tely loamy soil.</td>	Soil	Very shallow	w loamy to	deep modera	tely loamy soil.		
Watershed WGKN-2 Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil wC structures (PT / KT / CD / FP etc.) 01-Village farm 1.4. Land Use, Agriculture, Irrigation & Cropping Pattern Mil Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Reference year 2019) Wheat 30 ha (Reference year 2019) Wheat 30 ha Isawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were estalished to decipher the water level scenario.	1.3. Hydrology & Dr	ainage					
Drainage Godavari basin with dendritic to sub-dendritic drainage pattern. Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village far- 1.4. Land Use, Agriculture, Irrigation & Croppin Pattern Specifics Forest Area Area Cultivable Area 10 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Ground Water 210 ha Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha PrevMonson (Maw 2019) Post Manscon (Maw 2019)	Watershed			WGKN-2			
Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farm 1.4. Land Use, Agriculture, Irrigation & Cropping Pattern Area Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Surface Water Nil Surface Water Principal Crops Soyabean (Reference year 2019) Wheat 30 ha Quises 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Acuifer-I (Shallow Aquifer) Stala In the village, 08 KOW were estabilished to decipher the water level scenario. Prevements - 2010)	Drainage			Godavari bas	sin with dendritic to sub-dendritic		
Irrigation Project (Major/Medium/Minor etc.) Nil WC structures (PT / KT / CD / FP etc.) 01-Village farm 1.4. Land Use, Agriculture, Irrigation & Cropping Pattern Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Reference year 2019) Wheat 80 ha Ground Water 210 ha Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha 10 Pulses 15 ha 13a Jawari 5 ha 13a 1.5. Water Level Behaviour: Aquifer Irriget Ir				drainage pat	tern.		
etc.) 01-Village farm MC structures (PT / KT / CD / FP etc.) 01-Village farm 1.4. Land Use, Agriculture, Irrigation & Cropping Pattern Area Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Surface Water Area under Irrigation Surface Water Principal Crops Soyabean (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario.	Irrigation Project (M	ajor/Mediun	n/Minor	Nıl			
WC structures (PT / KT / CD / FP etc.) 01-Village farm 1.4. Land Use, Agriculture, Irrigation & Cropping Pattern Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Surface Water Ground Water 210 ha Principal Crops Soyabean (Reference year 2019) Wheat Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario.	etc.)						
1.4. Land Use, Agriculture, Irrigation & Cropping Pattern Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Mil Ground Water Principal Crops Soyabean (Reference year 2019) Wheat Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha	WC structures (PT /	KT / CD / FP (etc.)	01-Village fa	rm		
Specifics Area Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Surface Water Area under Irrigation Surface Water Principal Crops Soyabean (Reference year 2019) Wheat Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha	1.4. Land Use, Agric	ulture, Irriga	tion & Cro	pping Pattern			
Forest Area Nil Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses Is ha Jawari 5 ha Jawari 5 ha Other Is ha 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Prest Monscon (Mays 2019)	Specifics				Area		
Cultivable Area 210 ha Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses Jawari 5 ha Jawari 5 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario.	Forest Area				NI		
Net Sown Area 210 ha Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses Jawari 5 ha Cotton Jawari 5 ha Other 15. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were estal-ished to decipher the water level scenario.	Cultivable Area				210 ha		
Double Cropped Area Nil Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Nil Area under Irrigation Surface Water Nil Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario.	Net Sown Area	_					
Irrigation Dug wells 39 Irrigation Bore wells 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Nil Area under Irrigation Ground Water 210 ha Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses Is ha Jawari 5 ha Cotton 75 ha Other In the village, 08 KOW were established to decipher the water level scenario. Prest-Monscon (Maw-2019)	Double Cropped Are	а					
Irrigation Bore Weils 10 Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Nil Area under Irrigation Ground Water 210 ha Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha	Irrigation Dug wells				39		
Area under Drip & Sprinkler Irrigation Nil Area under Irrigation Surface Water Nil Ground Water 210 ha Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha	Irrigation Bore Wells						
Area under Irrigation Surface Water Nil Ground Water 210 ha Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019) Post-Monsoon (November 2019)	Area under Drip & S	prinkier irriga		Veter			
Principal Crops (Reference year 2019)Soyabean80 haWheat30 haGram25 haPulses15 haJawari5 haCotton75 haOther31 ha1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer)In the village, 08 KOW were established to decipher the water level scenario.Pre-Monsoon (May-2019)Post-Monsoon (November 2019)	Area under irrigation	1	Surface V	Vater			
Principal Crops Soyabean 80 ha (Reference year 2019) Wheat 30 ha Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019) Post-Monsoon (November 2019)	Dringing Crons		Ground v	vater	210 ha		
(Rejerence year 2019) Wheat 30 ha Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019) Post-Monsoon (November 2019)	Principal Crops	0)	Soyabean				
Gram 25 ha Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019) Post-Monsoon (November 2019)	(Reference year 201)	9)	wneat		30 na		
Pulses 15 ha Jawari 5 ha Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019)			Gram		25 na		
Jawari 5 na Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019)			Puises		15 ha		
Cotton 75 ha Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019)			Jawari		5 na		
Other 31 ha 1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019)	Cotton				75 Na		
In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2019) Pre-Monsoon (May-2019)	1 F Materiland Pri				31 U9		
Pre-Monsoon (May-2019) Post-Monsoon (November 2019)	In the village, 08 KOW were established to decipher the water level scenario.						
	Pre-Monsoon (May-	2019)		Post-Monsoo	n (November-2019)		

A. Water availability	
Area (ha)	726.07
Rainfall (m)	1.1
Water precipitated, ham, (Area X RF)	798.68
90 % of precipitations (ham)	718.81
AR recharge by artificial recharge structure	nil
Runoff (2.5%)(RF-AR) (ham)	17.9702
Evaporation (35%) (ham)	251.5833
Water retain in ground Tank, Nala etc. (5%) (ham)	35.9405
Recharge to phreatic aquifer (10%) (ham)	71.8809
Enhance soil moisture, utilised by root system (ham)	215.6428
Total Water availability (MCM)	3.2346
B. Requirement	
Domestic @60 lpcd X total person (MCM)	0.0190749
Animal @40 lpad X total animal (MCM)	0.0139868
Irrigation water applied (MCM)	0.43
Non agriculture use (MCM)	0.14
Total Requirement (MCM)	0.61
C. GW available for Planning (MCM)	2.63
Stage of GW Development (%)	18.74
GROUND WATER RESOURCE MANAGEMENT	
6.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	3.23
Agricultural Supply –GW	0.43
Agricultural Supply -SW	0.00
Domestic Supply - GW	0.03
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.14
Total GW availability (MCM)	2.63
Gross Annual Draft (MCM)	0.61
Area of village (Sq. Km.)	7.2607
Area suitable for Artificial recharge (sq km)	7.26
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	4.119
Volume of Unsaturated Zone (MCM)	0.000010297500
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge	0.00000205950
(MCM)	
Surplus runoff considered for planning (MCM) @ 100%	17.97
Proposed AR Structures (Check Dam, Av. Gross Capacity-10 TCM * 3	Not proposed
fillings = 30 TCM)	
Proposed AR Structures Gabion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75%	

efficiency (MCM)	
Specific Recommendations -	Not proposed
As per State Govt. Resolution, segment wise nala/stream desilting,	
deepening, and widening upto 3 m depth or upto weathered rock	
considering the local hydrogeological condition without disturbing the	
ecology/aquifer/environmental flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	
Considering average nala deepening of 1 m depth, additional recharge	
@ 75%	
RTRWH Structures	
Households to be covered (Pakka House only)	<mark>378</mark>
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However, RTRWH is economically not viable & not Recommended	
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM). Surface Flooding req-	
0.36 m. Drip Reg 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	· ·
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	3.23
Additional GW resources available after Supply side interventions	0.00
(MCM)	
Ground Water Availability after Supply side intervention (MCM)	3.23
Existing Ground Water Draft for All Uses (MCM)	0.61
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	18.74
Expected Stage of Ground Water Development after interventions (%)	18.74
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 65%	1.39
(MCM)	
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	83
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	14
Area (ha) proposed to be brought under assured GW irrigation with av.	214.02
CWR of 0.65 m after 65% stage of GWD is achieved	

Village – Salai Godhni, Nagpur (Rural) Taluka, Nagpur District

Aquifer	Current Scenario	Geology	Geomorphology	GW quality		Recommendati	ons for Aqui	fer Develop	ment	Aquifer Management Plan
(Prominent Lithology)					Туре	Zones/Depth to be tapped	HP of pump to be lowered	Pumping Hours	Yield (Cu. m / Day)	
Aquifer I (Basalt- Weathered and fractures)	210 ha cultivable land by GW, 1 village farm, 40 DW, 13 BW, SOD-18.74%	DT Basalt	Plateau (slightly dissected to Weathered, moderately dissected).	Quality of ground water is good and fit for drinking, domestic and irrigation purpose; All parameters are within MPL.	Dug well 83	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	 About 255.07 ha area is proposed to be brought under assured GW irrigation during Rabi. Desilting of existing water conservation and artificial recharge structures. The DW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed & Fractures)	13 BW	As above		Not assessed	Bore well 14	Depth : 60 m	3 to 5	1 to 3	0.14-2.16 lps	 The BW should be used for drinking purpose. The BW should not be drilled down below the red bole.

Note: DW(d)= Dug well Domestic; DW (i)= Dug Well Irrigation; BW(d)= Bore Well Domestic; BW(i)= Bore Well Irrigation

10.3 WATERSHEDS WGA- 4 and WRWN-1, VILLAGE MANDWA, BHIWAPUR BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Village Name		Mandwa				
Geographical Area (Sq. Km.)	11.49				
Hilly Area (Sq. Km.)						
Population (Current	: year -2019)	197	4			
Climate		Mor	nsoon Sub-Tropical			
Normal Rainfall(mm	n)(nearest rain gauge	1.3				
station-Bhiwapur)						
Annual Rainfall (mm	n) 2009-18(nearest	1.6				
rain gauge station-E	Bhiwapur)					
1.2. Geomorpholog	y, Soil & Geology					
Geomorphic Unit	Plateau moderately to	o slig	htly dissected.			
Geology	Deccan Traps (Basalt)	Age:	Late Cretaceous to Eocene			
Soil	Shallow to deep loam	iy soi	l			
1.3. Hydrology & D	rainage					
Watershed			WGA -4 and WRWN -1			
Drainage			Wainganga river and its tributaries. Godavari			
			basin with dendritic to sub-dendritic			
			drainage pattern.			
Irrigation Project (N	1ajor/Medium/Minor		Nil			
etc.)						
WC structures (PT/H	(T/CD/FP etc.)	10-CD, 02-PT				
1.4. Land Use, Agric	culture, Irrigation & C	ropping Pattern				
Specifics		Area (sq km)				
Forest Area		5.3				
Cultivable Area		4.65				
Net Sown Area		4.65				
Double Cropped Are	ea	Nil				
Irrigation Dug wells	(no.)	110				
Irrigation Bore wells	s(no.)	-				
Area under Drip & S	prinkler Irrigation	-				
Area under	Surface Water	Nil				
Irrigation	Ground Water	464	I.78 ha			
Principal Crops	Soyabean	100) ha			
(Reference year	Maize	4 h	a			
2018)	Cotton	300) ha			
	Soyabean	100) ha			
	Gram	30	ha			
	Wheat	40	ha			
	Vegetables	91 ha				
1.5. Water Level Be	1.5. Water Level Behaviour: Aquifer-I (Shallow Aquifer)					
In the village, 07 KO	W were established to	o dec	ipher the water level scenario.			

Rainfall (m)	1.23		
Water precipitated, ham, (Area X RF)	1409.74		
90 % of precipitations (ham)	1268.76		
AR recharge by artificial recharge structure		0.8120	
Runoff (2.5%) (RF-AR) (ham)		31.6988	
Evaporation (35%) (ham)		444.0672	
Water retained in ground Tank, Nala etc. (5%)	(ham)	63.4382	
Recharge to phreatic aquifer (10%) (ham)		126.8763	
Enhance soil moisture, utilised by root system	(ham)	380.6290	
Total Water availability (MCM)		5.7176	
B. Requirement			
Domestic @60 lpcd X total person (MCM)		0.0432306	
Animal @40 lpad X total animal (MCM)		0.0292000	
Irrigation water applied (MCM)		1.48	
Non agriculture use (MCM)		0.13	
Total Requirement (MCM)		1.68	
C. GW available for Planning (MCM)		4.04	
Stage of GW Development (%)		29.40	
6.0. GROUND WATER RESOURCE MANAGEMI	ENT		
6.1. Supply Side Management			
SUPPLY (MCM)			
Available Resource (MCM)	5.72		
Agricultural Supply –GW	1.42		
Agricultural Supply -SW	0.00		
Domestic Supply - GW	0.07		
Domestic Supply - SW	0.00		
Non agriculture use (MCM)	0.13		
Total GW availability (MCM)	4.10		
Gross Annual Draft (MCM)	1.68		
Area of village (Sq. Km.)	11.4893		
Area suitable for Artificial recharge (sq km)	11.49		
Type of Aquifer	Hard rock		
Area feasible for Artificial Recharge (WL	4.119		
>5mbgl) (Sq. Km.)			
Volume of Unsaturated Zone (MCM)	0.000010297500		
Average Specific Yield	0.02		
Volume of Sub Surface Storage Space	0.00000205950		
available for Artificial Recharge (MCM)			
Surplus runoff considered for planning	31.70		
(MCM) @ 100%			
Proposed AR Structures (Check Dam Av.	Not proposed		
Gross Capacity-10 TCM * 3 fillings = 30 TCM))			
Proposed AR Structures Gabion	Not proposed		
Proposed AR Structures Other	Not proposed		
Volume of Water expected to be conserved /	Not proposed		

recharged @ 75% efficiency (MCM)	
Specific Recommendations -	0.00
As per State Govt. Resolution, segment wise	
nala/stream desilting, deepening and	
widening upto 3 m depth or upto weathered	
rock considering the local hydrogeological	
condition without disturbing the	
ecology/aquifer/environmental flow of	
nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
Considering average nala deepening of 1 m	0.00
depth, additional recharge @ 75%	
RTRWH Structures	
Households to be covered (Pakka House	
only)	
Total RWH potential (MCM) (25% with 50 m2	
area)	
Rainwater harvested / recharged @ 80%	
runoff co-efficient (MCM)	
However, RTRWH is economically not viable &	not Recommended
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Volume of Water expected to be saved	
(MCM). Surface Flooding req- 1.4 m. Drip	
Req 0.95, WUE- 0.45 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive	Not proposed
Crop(ha)	
Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	5.72
Additional GW resources available after	0.00
Supply side interventions (MCM)	
Ground Water Availability after above	5.72
intervention (MCM)	
Existing Ground Water Draft for All Uses	1.68
(MCM)	
GW draft after Demand Side Interventions	0.00
(MCM)	
Present stage of Ground Water Development	29.40
(%)	
Expected Stage of Ground Water	29.40
Development after interventions (%)	

Village – Mandwa, Bhiwapur Taluka, Nagpur District

Aquifer	Current Scenario	Geology / Basalt flow	Geomorphology	GW quality		Recommendatio	ons for Aqui	nent	Aquifer Management Plan		
(Prominent Lithology)		Dasait now			Туре	Zones/Depth to be tapped	HP of pump to be lowered	Pumping Hours	Yield (Cu. m / Day)		
Aquifer I (Basalt- Weathered and fractures)	464.78 ha cultivable land, 30- CD, 02-PT, 40 LBS, 123 DW;	DT Basalt (Sahyadri Group), Aa /pahoehoe /simple basaltic lava flows (Buldana / Purandargarh Formation)	Plateau moderately dissected to slightly dissected	Quality of ground water is good and fit for drinking, domestic and irrigation purpose; All parameters are within MPL.	Dug wells- 122	Depth Range of Zones: 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	1. 2. 3.	About 313.15 ha area is proposed to be brought under assured GW irrigation during Rabi. Desilting of existing water conservation and artificial recharge structures. The DW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed & Fractures)	-	As above			Bore wells- 20	Depth: 60 m	3 to 5	1 to 3	0.14-2.16 lps	1.	The BW should be used for drinking purpose.

Note: DW(d)= Dug well Domestic; DW (i)= Dug Well Irrigation; BW(d)= Bore Well Domestic; BW(i)= Bore Well Irrigation

10.4 WATERSHEDS WGKN-2 AND WGKN-3, VILLAGE DHANOLI, KUHI BLOCK, NAGPUR DISTRICT, MAHARASHTRA

1. SALIENT FEATURES										
1.1 Introduction										
Village Name				Dhanoli						
Geographical Area (Sq. Km.)									
Hilly Area (Sq. Km.)										
Population (Current	year -2019)									
Climate				Monsoon Sub-Tropical						
Normal Rainfall (mn	n) (nearest rair	n gauge sta	ation-Kuhi)	1309.5						
Average Annual Rair	nfall (mm) 201	9 (nearest	rain gauge	1356						
station-Kuhi)										
1.2. Geomorpholog	y, Soil & Geolo	ogy								
Geomorphic Unit	Pediplain are	a.								
Geology	Granite Gneis	ssAge: Arcl	heans							
Soil	Very deep me	oderately l	oamy soil.							
1.3. Hydrology & Dr	ainage									
Watershed			WGKN-2, WGKN	1-3						
Drainage			Godavari basin;	Dendritic to sub-dendritic						
			drainage patterr	1.						
Irrigation Project (M	lajor/Medium/	/Minor	Nil							
etc.)			AT'1							
WC structures (PT /	KI/CD/FP et	tC.)	N1l							
*CFP-Community Fa	irm pond									
(Data collected field	/Irriaation De	on & Crop pt)	ping Pattern							
Specifics	,g	/		Area Sg km						
Forest Area				Nil						
Cultivable Area				2.64						
Net Sown Area				2.64						
Double Cropped Are	a			0.2						
Irrigation Dug wells				Nil						
Irrigation Bore wells	;			Nil						
Area under Drip & S	prinkler Irrigat	ion		Nil						
Area under Irrigation	n	Surface V	Vater	Nil						
		Ground V	Vater	263.99 ha						
Principal Crops		Soyabean	l	23.50 ha						
(Reference year 201	9)	Cotton		176.39 ha						
		Wheat		26.20 ha						
		Gram		11.20 ha						
		Sugarcan	е	4 ha						
1.5. Water Level Be	haviour: Aquif	fer-I (Shall	ow Aquifer)							
In the village, 9 KOV	V were establis	shed to de	cipher the water l	evel scenario.						
Pre-Monsoon (May-	2019)		Post-Monsoon (November-2019)						
In the entire area th	e DTWL range	S	Major area of th	e village shows DTWL in the						

AR recharge by artificial recharge structure	0.0000
Runoff (2.5%) (RF-AR) (ham)	8.2374
Evaporation (35%) (ham)	115.3235
Water retained in ground Tank, Nala etc. (5%) (ham)	16.4748
Recharge to phreatic aquifer (10%) (ham)	32.9496
Enhance soil moisture, utilised by root system (ham)	98.8487
Total Water availability (MCM)	1.4827
B. Requirement	0.0067671
Domestic @60 lpcd X total person(3000) (MCM)	0.0014600
Animal @40 lpad X total animal (1111) (MCM)	0.54
Irrigation water applied (MCM)	0.03
Non agriculture use (MCM)	0.58
Total Requirement (MCM)	0.91
C. GW available for Planning (MCM)	38.90
Stage of GW Development (%)	
6.0. GROUND WATER RESOURCE MANAGEMENT	·
6.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	1.48
Agricultural Supply –GW	0.52
Agricultural Supply -SW	0.00
Domestic Supply - GW	0.01
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.03
Total GW availability (MCM)	0.92
Gross Annual Draft (MCM)	0.58
Area of village (Sq. Km.)	2.6999
Area suitable for Artificial recharge (sq km)	2.70
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	2.6999
Volume of Unsaturated Zone (MCM)	0.000006749750
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge	0.000000134995
(MCM)	
Surplus runoff considered for planning (MCM) @ 100%	8.24
Proposed AR Structures (Check Dam, Av. Gross Capacity-10 TCM * 3	Not proposed
fillings = 30 TCM))	
Proposed AR Structures Gabion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75%	Not proposed
efficiency (MCM)	not proposed
Specific Recommendations -	0.00
As per State Govt. Resolution, segment wise nala/stream desilting,	
deepening and widening upto 3 m depth or upto weathered rock	
considering the local hydrogeological condition without disturbing	

the ecology/aquifer/environmental flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
Considering average nala deepening of 1 m depth, additional	0.00
recharge @ 75%	
RTRWH Structures	
Households to be covered (Pakka House only)	42
Total RWH potential (MCM)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient	0.0000400
However, RTRWH is economically not viable & not Recommended	
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM). Surface Flooding req-	-
0.36 m. Drip Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	1.48
Additional GW resources available after Supply side interventions	0.00
(MCM)	
Ground Water Availability after Supply side intervention(MCM)	1.48
Existing Ground Water Draft for All Uses (MCM)	0.58
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	38.90
Expected Stage of Ground Water Development after interventions	38.90
(%)	
Other Interventions Proposed, if any	1
Alternate Water Sources Available	Nil
6.4. Development Plan	-
Volume of water available for GWD after stage of GWD brought to	0.39
65% (MCM)	
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	23
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	4
Additional Area (sq.km.) proposed to be brought under assured GW	59.54
irrigation with av. CWR of 0.65 m after 65% stage of gwd is achieved	
Regulatory Measures 60m borewells/tube well	S
Panchayat Management Plan	

Village – Dhanoli, Kuhi Taluka, Nagpur District

Aquifer	Current Scenario	Geology / Basalt flow	Geomorphology	Ground water	Reco	mmendations fo	Aquifer Management			
(Prominent Lithology)		basait now		quanty	Type/number	Zones/Depth to be tapped	HP of pump to be lowered	Pumping Hours	Yield (Cu. m / Day)	, Flan
Aquifer I (Granite GneissWeathered and fractures)	263.99 ha cultivable land by GW, DW 20 DW SOD – 38.9 %	Granite Gniess	Entire area of the village falls under pediplain area.	The groundwater is affected by high salinity, sulphates and fluoride. Hence, the ground water is not suitable for drinking purposes.	Dug well / 23	Depth Range of Zones 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	 i. About 59.54 ha area is proposed to be brought under assured GW irrigation during Rabi. ii. The DW should be used for irrigation purpose. iii. Desilting of existing water conservation and artificial recharge structures.
Aquifer II (Granite gneiss- Jointed & Fractures)	2 BW	As above		Not assessed	Bore well / 4	Depth 60 m	3 to 5	3 to 8	0.14-2.16 lps	 The BW should be used for drinking purpose. BW should not be drilled more than 60 m

Note: DW(d)= Dug well Domestic; DW (i)= Dug Well Irrigation; BW(d)= Bore Well Domestic; BW(i)= Bore Well Irrigation

11. ANNEXURES

Annexure-I: Salient Features of Ground Water Exploration, Nagpur District	2
Annexure-II: Details of KOWs in Nagpur district	13
Annexure-III: Details of GW monitoring wells in Nagpur district	22
Annexure IV: Soil Infiltration Test	26
Annexure-V: Chemical analysis of ground water samples, Aquifer- I / Shallow aquifers	34
Annexure-VI: Chemical analysis of ground water samples, Aquifer- II / Deeper aquifers	48
Annexure-VII: Water Level of Ground water monitoring wells (2019) with long term trend (2010-2019)	53
Annexure VIII: Location of Percolation Tanks	56
Annexure IX: Location of Check Dams	63

S.N o.	Taluka	Village	Longitude	Latitude	Altitude (m)	Year	Туре	Aquifer	Drilling depth	Casing	Aquifer Zones	Drilling SWL	Disch arge
1	Kalamesh war	K.Pipala	78.7486	21.4042	382.3	1989-90	EW	Basalt/ Sandstone	162	60.6	100 -114, 116 -132	29.06	14.4
2	Kalamesh war	K.Pipala	78.7486	21.4042	382.3	1989-90	ow	Sandstone	164.6	-	97 -113, 116 -119	22.12	4.43
3	Katol	Katol	78.6167	21.25	421	1989-90	EW		254	10	12.2 -18.3, 183 -186	28.3	1.05
4	Karanja	Khairi	78.5972	21.1083	492	1991-92	EW	F Basalt	115.9	6.33	21 -24, 27.4 -33.4, 76 -79, 52 -55, 101 -104, 113 -115.9	7.45	38.5
5	Kalamesh war	Zunki (Shindi)	78.9292	21.2667	324	2003-04	EW	Basalt/ Sandstone	132	127.5	7 -15, 34 -54	-	1.37
6	Savner	Saoner	78.9167	21.3875	326.1	1999-00	ΡZ		43	30	25 -30	11.9	0.78
7	Kalamesh war	Adasa	78.9403	21.3319	329.5	1994-95	OW	Sandstone	218.57	2	28 -34	-	5.15
8	Kalamesh war	Adasa	78.9403	21.3319	329.5	1994-95	OW	Sandstone	151	50.5	62.25 -65.25, 72 -75	-	4.43
9	Katol	Dorli	78.7833	21.2667	375.9	1989-90	EW	F Basalt	125	2	36.6 -39.6, 88.4 -100.6	14.22	1.37
10	Katol	Dorli	78.7833	21.2667	375.9	1989-90	OW	F Basalt	153.5	1.5	30.5 -33.5, 115.5 -125	13.88	13.96
11	Kalamesh war	Kanyado h	78.8667	21.3333	342.1	1989-90	EW		100.65	43.1	42.5 -46, 48 -54, 61 -64, 59.6 -60, 71 -93, 80.5 -81.5, 93.94 -94, 96 -98	19.48	1.37
12	Savner	Khapa	78.9833	21.425	301.3	1989-90	EW		183	35.5	35 -48	6.27	3.77
13	Kalamesh war	Mandvi	78.8167	21.35	388	1989-90	EW		159.5	4.45	85.05 -85.4, 90 -107, 128 - 138.5, 108 -116, 154 -158.5	25	3.16
14	Kalamesh war	Mandvi	78.8167	21.35	388	1989-90	OW		115.9	6.5	85.05 -88, 95 -106.5	28.5	1.36
15	Savner	Sawangi	78.8833	21.3792	338	1989-90	EW		109.8	44.6	44 -61, 82 -104	17.42	5.15
16	Kalamesh war	Waruda Baroka	78.9042	21.2611	328.6	1991-92	EW	Sandstone / Granite	122	32.5	32 -40, 51 -54	13.5	1.37
17	Nagpur (Rural)	Satnaori Tola	78.8083	21.1411	358.7	1998-99	ΡZ	Kamthis	76.59	45	16 -24, 42 -43.5	-	2.64

Annexure-I: Salient Features of Ground Water Exploration, Nagpur District

S.N	Taluka	Village	Longitude	Latitude	Altitude	Year	Туре	Aquifer	Drilling	Casing	Aquifer Zones	Drilling	Disch
0.					(11)				ueptii			SVVL	arge
18	Nagpur (Rural)	Yerla	78.9883	21.2361	341	2002-03	EW	J MB & Granite Gneiss	159.45	5.15	29.75 -, 46.55 -49.65	24.15	2.64
19	Nagpur (Rural)	Gondkhe ri	78.9083	21.1375	317.9	1989-90	EW	Basalt/ Sandstone	134.2	8.1	97 -103, 115 -120	26.9	13.05
20	Kalamesh war	Gumtala	78.8708	21.1986	362.7	1989-90	EW		134.2	10.25	79.3 -85.4, 97.6 -100.6	4.55	0.78
21	Hingna	Yerangao n	78.8067	21.045	429.1	1990-91	OW		118.9	2.5	94.50-97.30;115.80-118.9	22.82	3.77
22	Hingna	Yerangao n	78.8067	21.045	429.1	1990-91	EW		107.7	2.5	42.70-45.70; 103.70-107.70	24.85	19.57
23	Hingna	Yerangao n	78.8067	21.045	429.1	1990-91	OW		134.2	2.5	91.50-94.50; 113.00-114.00	25.19	9.8
24	Hingna	Yerangao n	78.8067	21.045	429.1	1990-91	ow		85.4	2.6	57.90-61.0082.30-85.40	14.68	21.33
25	Nagpur (Rural)	Yerla	78.9667	21.2167	338	1989-90	EW	F Basalt	79.3	3.2	33.5 -39.6, 51.8 -57.9	7.7	14
26	Nagpur (Rural)	Yerla	78.9667	21.2167	338	1989-90	OW	F Basalt	100	3	30.5 -36.6, 39.6 -42.7	8.07	9.84
27	Narkhed	Arambhi	78.3486	21.2694	415.6	2012-13	OW	FMB	155	5.6	40-43 & 153-156	31.72	0.78
28	Narkhed	Arambhi	78.3486	21.2694	415.6	2012-13	EW	Deccan Trap Basalt	200	5.6	24-27 & 105-108	33.37	3.17
29	Narkhed	Belona	78.4864	21.4833	405.5	2012-13	EW	FVB	200	5.6	9-12 & 28-31	6.55	2.16
30	Narkhed	Indarwad a	78.4622	21.3519	389	2012-13	EW	FMB	128.6	5.6	16-19	20	0.14
31	Narkhed	Jamgaon (Bk)	78.4333	21.3208	398	2011-12	Pz	FMB	40		3.00-6.00 and 24.00-27.00	4.25	Traces
32	Narkhed	Jamgaon Bk.	78.4478	21.3278	393.7	2012-13	EW	FB	31	5.6	24-27	1.9	1.05
33	Narkhed	Lohari Sawanga	78.4044	21.26	399.7	2012-13	EW	FMB	200	5.6	168.10-171.40	>80	0.78
34	Narkhed	Tinkheda	78.4903	21.4033	393.3	2012-13	EW	FMB	200	5.6	9-12, 37-40, 140-143 & 165- 168		2.16
35	Warud	Mohogao n	78.3944	21.4025	375	1993-94	EW	Sandstone	300.76	62.5	68-271	-	-

S.N o.	Taluka	Village	Longitude	Latitude	Altitude (m)	Year	Туре	Aquifer	Drilling depth	Casing	Aquifer Zones	Drilling SWL	Disch arge
		(Bhadade)											
36	Savner	Pota	79.1028	21.2778	293.9	2002-03	EW	Sandstone	135.15	130	80 -86, 100 -128	5.94	8.85
37	Parseoni	Gondega on	79.1925	21.2672	292	2002-03	EW	Sandstone	130.73	129	17.5 -23.5, 31 -33	19.3	3.77
38	Parseoni	Gondega on	79.2056	21.2675	288.4	2002-03	EW	Sandstone	32.5	32	20 -23, 27 -30	16.95	4.43
39	Parseoni	Gondega on I	79.1981	21.2519	288	1998-99	ΡZ		124.24	105.5	49.5 -51.5, 64 -67, 96 -98, 74 -76, 102 -103.5	-	0.78
40	Parseoni	Gondega on II	79.1981	21.2519	288	1998-99	ΡZ	Barakar Sandstone	39	36	16 -16.5, 31 -34	-	-
41	Parseoni	Juni Kamthi	79.1828	21.2522	286.5	2002-03	EW	Sandstone	75	33	16 -21, 25 -30	17.12	1.05
42	Parseoni	Tekadi	79.2278	21.2583	282.6	2002-03	EW	J F Granite Gneiss	31.75	29.3	22.55 -28	6.69	3.17
43	Parseoni	Tekadi	79.2278	21.2583	282.6	2002-03	EW	J F Granite Gneiss	50	-	23 -26, 29 -32	6.77	-
44	Parseoni	Wagholi	79.2417	21.2986	302.3	2002-03	EW	J F Granite Gneiss	50	20.8	14 -20, 35 -42	8.03	1.37
45	Parseoni	Warada	79.2167	21.2806	286.7	2002-03	EW	J F Granite Gneiss	50	-	15 -18, 23 -26, 45 -47, 34 - 39	6.3	0.56
46	Parseoni	Warada	79.2167	21.2806	286.7	2002-03	EW	J F Granite Gneiss	50	-	6 -12, 20 -24	13	-
47	Parseoni	Yeshamb a	79.2486	21.2917	300.3	2002-03	EW	J F Granite Gneiss	50	15.5	24 -, 42 -45	12.75	-
48	Savner	Bhanega on	79.1389	21.2675	288.6	2004-05	EW	Sandstone	200.34	196	98 -116, 121 -126, 138 -143, 131.5 -133.5, 152 -164, 170 -173, 179 -185, 191.5 -194.5	12.95	6.21
49	Savner	Bhanega on	79.1389	21.2675	288.6	2004-05	OW	Sandstone	201.64	196	104 -110, 122 -125, 182 - 185, 155 -161, 191 -194	-	-
50	Savner	Patansaw angi	79.0247	21.3211	295.1	2004-05	EW	Sandstone	100.15	90	47 -50, 56 -71	6.98	3.25

S.N o.	Taluka	Village	Longitude	Latitude	Altitude (m)	Year	Туре	Aquifer	Drilling depth	Casing	Aquifer Zones	Drilling SWL	Disch arge
51	Savner	Patansaw angi	79.0247	21.3211	295.1	2004-05	OW	Sandstone	196.38	170	109 -115, 125 -128, 144 150, 136 -139, 164 -168	-	-
52	Savner	Patansaw angi	79.0247	21.3211	295.1	2004-05	OW	Sandstone	90.15	90	47 -50, 58 -70	6	1.5
53	Parseoni	Bachera	79.1667	21.4639	335.8	1994-95	EW	F Gneiss	199.65	13.4	19 -21, 90 -, 160.05 -163.05, 99.05 -102.05	4.05	0.56
54	Nagpur (Rural)	Brahman wada	79.0083	21.2556	324.2	2006-07	EW	SEMICON	103.7	38	15-36		
55	Savner	Isapur	79.075	21.3342	300.9	2005-06	Pz		72.5	35	12.00-33.00		4.25
56	Parseoni	Karambh an New	79.1125	21.3736	303.6	1994-95	EW	F Granite	104.95	29.5	40.85 -61.8, 95.75 -104.55	-	-
57	Savner	Silewara (B1OW3)	79.1167	21.2917	285	1980-81	OW	Sandstone	117.5	65	5.5 -21.32, 28.35 -54.2	15.95	-
58	Savner	Silewara (B1M)	79.1167	21.2917	285	1980-81	OW	Sandstone	123	58	32.92 -50.6, 54.86 -88.09	17.56	8
59	Savner	Silewara (B1OW1)	79.1167	21.2917	285	1980-81	OW	Sandstone	133	75	20.23 -26.56, 34.14 -38.4, 47.24 -68.58, 41.45 -42.67, 72.85 -109.73, 114.6 - 131.98	16.94	-
60	Savner	Silewara (B1OW2)	79.1167	21.2917	285	1980-81	OW	Sandstone	157	70	32 -35.97, 52.73 -57.91, 67.06 -89.3, 61.26 -62.79, 93.27 -134.42, 137.16 - 155.45	16.04	-
61	Savner	Silewara (B1OW4)	79.1167	21.2917	285	1980-81	ow	Sandstone	119.1	68	11.05 -34.36, 47.72 -58, 64.93 -118.9, 64.93 -118.9	18.54	-
62	Savner	Silewara (B2MW)	79.1167	21.2917	285		OW	Sandstone	148.21	117	5.25 -7.35, 10.5 -44.75, 112.1 -132.27, 47.75 - 109.76, 135.27 -176.21	19.55	2.5
63	Savner	Silewara (B2OW)	79.1167	21.2917	285		OW	Sandstone	152.55	125	7.9 -11.05, 14.05 -29.05, 53.05 -113.05, 32.05 -53.05, 119.05 -152.05	19.06	-
S.N	Taluka	Village	Longitude	Latitude	Altitude	Year	Туре	Aquifer	Drilling	Casing	Aquifer Zones	Drilling	Disch
-----	---------	-------------------------	-----------	----------	----------	---------	------	---------------------------------	----------	--------	---	----------	-------
0.					(11)				depth			SVVL	arge
64	Savner	Silewara (BHE I)	79.1167	21.2917	285		OW	Sandstone	307	-	21.85 -31, 34.14 -39.62, 62.79 -64.01, 53.34 -60.05, 68.88 -90.22, 93.88 -137.16, 139.6 -162.76, 165.11 - 187.15, 188.87 -199.34, 220.37 -250.55, 275.84 - 286.27, 287.73 -296.57	-	-
65	Savner	Silewara (BHE II)	79.1167	21.2917	285		OW	Sandstone	303	-	30.78 -35.66, 40 -64, 114 - 132.89, 69.49 -110.94, 138.38 -157.28, 160.63 - 170.99, 187.45 -224.33, 232.87 -238.44	-	-
66	Savner	Silewara (BHE III)	79.1167	21.2917	285		OW	Sandstone	302	-	21.64 -24.08, 32.94 -49.68, 67.06 -85.66, 52.73 -64.31, 90.53 -110.03, 115.52 - 135.03, 137.16 -140.22, 167.34 -235, 243.84 - 255.12, 256.34 -260.43, 273.13 -142.93	-	-
67	Savner	Silewara (WTM)	79.1167	21.2917	285	1980-81	EW	Sandstone	67.11	38	19.21 -21.95, 35.66 -56.08	15.4	6
68	Savner	Silewara (WTOW 2)	79.1167	21.2917	285	1980-81	OW	Sandstone	50.2	34	7.01 -49.38	16.81	-
69	Savner	Silewara (WTOW)	79.1167	21.2917	285	1980-81	ow	Sandstone	53.32	37	14.8 -52.73	15.81	-
70	Kamptee	Kamptee	79.1917	21.2042	283	2004-05	EW	Alluvium & Granite Gneiss	30.44	28	11 -14, 18 -26	8.89	7.85
71	Kamptee	Kamptee	79.1917	21.2042	283	2004-05	OW	Alluvium & Granite Gneiss	29.93	26	12 -14, 18 -24	8.88	1.5
72	Kamptee	Kamptee Cantonm	79.1756	21.2408	288.9	2002-03	EW	Sandstone	81.43	30	18 -22.5, 24.5 -28.5	16.45	3.17

S.N	Taluka	Village	Longitude	Latitude	Altitude	Year	Туре	Aquifer	Drilling	Casing	Aquifer Zones	Drilling	Disch
о.					(m)				depth			SWL	arge
		ent											
73	Nagpur (Urban)	Nara	79.0806	21.2083	304.3	1999-00	PZ		162.36	30	21.5 -32	10.05	-
74	Parseoni	Inder Colliery	79.2067	21.2494	281.9	2002-03	EW	Sandstone	91.48	89	56 -74, 80 -86	-	1.73
75	Parseoni	Kandri	79.2403	21.2386	286.8	2002-03	EW	Sandstone	95	78	15 -18, 25 -32, 71 -77, 44 - 48	19.1	0.8
76	Parseoni	Kandri (WCL)	79.2392	21.2489	281	2001-02	EW	Sandstone	100	73.5	13.5 -19.5, 66 -72	9.32	-
77	Parseoni	Kandri (WCL)	79.2392	21.2489	281	2001-02	EW	Sandstone	150	105	21 -30, 28 -102	14.42	1.37
78	Parseoni	Kanhan	79.2417	21.2283	285	2002-03	EW	Sandstone	70	28	20 - 26	19.6	-
79	Parseoni	Pipri	79.2203	21.2375	279.4	2002-03	EW	Sandstone	50	43	15 -18, 24 -30	10.35	4.43
80	Parseoni	WCL MAGAZI NE	79.2122	21.2367	282	2001-02	EW	Sandstone	82.75	54	18 -14, 34 -37	14.4	7.76
81	Parseoni	WCL MAGAZI NE	79.2122	21.2367	282	2001-02	OW	Sandstone	42	37	21 -24, 31 -34	14.47	2.16
82	Parseoni	WCL MAGAZI NE	79.2122	21.2367	282	2001-02	OW	Sandstone	56.5	50	18 -24, 29 -32	16.5	7.76
83	Kamptee	Asoli	79.2056	21.1414	279.5	1994-95	EW	Sandstone	202.45	37.75	15.45 -18.45, 45 -47, 66 -72, 52 -60.8	4.53	1.37
84	Nagpur (Rural)	Bokhara	79.0694	21.2278	319	2005-06	Pz		107		57.00-67.00		
85	Nagpur (Rural)	Lonara	79.0578	21.2389	310.8	2005-06	Pz		113.65	41	36-39.00		0.2
86	Ramtek	Bothia Palora	79.3403	21.5528	393.9	1994-95	EW	F Gneiss	172.05	7.8	161-168	4.7	4.43
87	Ramtek	Bothia Palora	79.3403	21.5528	393.9	1994-95	OW	F Gneiss	146	11.5	161-168	5.05	-

S.N	Taluka	Village	Longitude	Latitude	Altitude (m)	Year	Туре	Aquifer	Drilling denth	Casing	Aquifer Zones	Drilling SWI	Disch
0.					(,				ucpin			5002	uige
88	Mauda	Rewral	79.4736	21.2667	284.4	1994-95	EW	F Gneiss	187.25	27	34.75 -37.85, 46.5 -53.05, 83.55 -89.65, 71.35 -74.45, 142.55 -147.65	1	1.37
89	Parseoni	Titur	79.2569	21.3181	298.3	1994-95	EW	F Gneiss	201.55	12.25	15 -18, 137.45 -140.45	6.26	2.16
90	Umred	WCL I	79.2917	20.8769	277	1998-99	ΡZ	Barakars	148.45	124	114 -116, 120 -122	-	-
91	Umred	WCL II	79.2917	20.8769	277	1998-99	ΡZ	Barakars	67.52	39	35.5 -37.5	-	0.78
92	Bhiwapur	Kargaon	79.425	20.7833	271.1	1995-96	EW		100.2	35.5	22 -26, 54 -56	-	-
93	Bhiwapur	Kargaon	79.425	20.7811	271.3	1995-96	OW		74.75	-	28 -34, 38 -40	4.92	0.78
94	Kuhi	Katara	79.4361	20.9917	263.7	1994-95	EW		109.5	20	20.5 -29, 35 -36, 62 -64, 51 - 53	3.42	6.81
95	Kuhi	Katara	79.4356	20.9894	267.4	1994-95	OW		200	25	25 -28, 42 -46	3.22	5.84
96	Umred	Tirkhura	79.3731	20.8478	285.7	1994-95	EW	F Gneiss	200	23.5	24 -26.5, 34.5 -38	3.64	1.37
97	Bhiwapur	Nand I	79.2897	20.6556	268	1998-99	ΡZ	Barakars	151.95	142	136 -140	-	1.37
98	Bhiwapur	Nand II	79.2897	20.6556	268	1998-99	ΡZ	Kamthis	36.5	35	28 - 34	-	-
99	Kuhi	Gothang aon	79.5478	20.8981	246.3	1995-96	EW		81.55	7.5	5 -15, 22 -30, 63 -66, 44 -48, 72 -75	3.12	-
100	Kuhi	Gothang aon	79.5644	20.8981	237.2	1995-96	OW	Granite	62.25	11	19 -22, 29 -31	3.4	10.98
101	Bhiwapur	Somnala	79.5167	20.8375	251.1	1995-96	EW	F Gneiss	106	16.85	59.15 -60.25, 71.35 -74.45	5.3	0.78
102	Kuhi	Veltur	79.57	20.9967	267.9	1994-95	EW		36.5	15	10 -15, 20 -25	1.3	25.04
103	Kuhi	Veltur	79.57	20.9967	267.9	1994-95	ow		101.75	6	19 -19.55, 28.5 -35, 90 -94, 42 -45, 97.75 -99.75	1.33	6.81
104	Hingna	Khairi pannase	78.9330555 6	21.09772 222		2019-20	EW	F Basalt	111.3		19.80-22.80 ; 80.80-83.80		
105	Kuhi	Dhanoli	79.2645277 8	21.04183 333		2019-20	EW	Schist/Gne iss	200		144.80-147.90		
106	Kuhi	Pachkhed i	79.39418	20.91222 3		2019-20	EW	F Granite	190.6		38.10-41.10		
107	Bhiwapur	Mandaw	79.2587222	20.75152		2019-20	EW	F Basalt	50.3		35.00-38.10		

S.N	Taluka	Village	Longitude	Latitude	Altitude	Year	Туре	Aquifer	Drilling	Casing	Aquifer Zones	Drilling	Disch
0.					(111)				ueptii			SVVL	arge
		а	2	778									
108	Nagpur	Salai	79.1309583	21.01483		2019-20	EW	F Basalt	68.6		28.90-32.00; 50.30-53.30		
	(R)	Godhni	3	056					_				
109	Nagpur (R)	Salairani	79.03639	20.78306		2019-20	EW	F Basalt	111.3		59.40-62.50		
110	kuhi	Salwa	79.44444	21.04972		2019-20	EW	Gneiss	200		28.90-32.00;59.40-62.50		
111	Umred	Manori	70.11462	20.70829		2019-20	EW	F Basalt	105.2		96.00- 99.10		
112	Umred	Champa	79.19889	20.97615		2019-20	EW	F Basalt	200		68.60-71.60		
113	Hingna	Sukali Gharapur e	78.947275	20.98292 222		2019-20	EW	F Basalt	200		80.80-86.30		
114	Kuhi	Silli	79.36117	20.99233		2019-20	EW	F Granite	200		19.80-22.80;120.40- 123.50;169.20-172.30		
115	Umred	Davha	79.1691	20.91022		2019-20	EW	F Basalt			96.00-99.10		
116	Hingna	Haladgao n	78.8743	20.8461		2019-20	EW	F Basalt			31-32;41.10-44.20		
117	Hingna	Haladgao n	78.8743	20.8461		2019-20	OW- 1	F Basalt/Am ygdaloidal			31-32;41.10-44.20		
118	Nagpur	Mangli	78.92569	20.82875		2019-20	EW	F Basalt			32.35; 68.60-71.60		
119	Katol	Dorli	78.7833	21.2667		2015-16	EW	F Basalt	125	2	36.6 -39.6, 88.4 -100.6		
120	Katol	Dorli	78.7833	21.2667		2015-16	OW	F Basalt	153.5	1.5	30.5 -33.5, 115.5 -125		
121	Katol	Katol	78.6167	21.25		2015-16	EW	F Basalt	254	10	12.2 -18.3, 183 -186		
122	Katol	Khairi	78.5972	21.1083		2015-16	EW	F Basalt	115.9	6.33	21 -24, 27.4 -33.4, 76 -79, 52 -55, 101 -104, 113 -115.9		
123	Katol	Katol	78.6167	21.25	421	2015-16	EW	F Basalt	254	10	12.2 -18.3, 183 -186		
124	Narkhed	Arambhi	78.3486	21.2694	415.6	2015-16	EW	F Basalt	200	5.6	40-43 & 153-156		
125	Narkhed	Belona	78.4864	21.4833	405.5		EW	F Basalt	200	5.6	9-12 & 28-31		
126	Narkhed	Indarwad a	78.4622	21.3519	389		EW	F Basalt	128.6	5.6	16-19		

S.N	Taluka	Village	Longitude	Latitude	Altitude (m)	Year	Туре	Aquifer	Drilling depth	Casing	Aquifer Zones	Drilling SWI	Disch
0.					(,				acpui				uige
127	Narkhed	Jamgaon Bk.	78.4478	21.3278	393.7		EW	F Basalt	31	5.6	24-27		
128	Narkhed	Lohari Sawanga	78.4044	21.26	399.7		EW	F Basalt	200	5.6	165-168		
129	Narkhed	Tinkheda	78.4903	21.4033	393.3		EW	F Basalt	200	5.6	9-12, 37-40, 140-143 & 165- 168		
130	Katol	Maragsur	78.7071111	21.20731	512	2015-16	EW	F Basalt	126.5	20	114.30-117.40		
131	Katol	Ladgaon	78.5646944	21.22706	538	2015-16	EW	F Basalt	200	20	28.90-32; 114.30-117.40		
132	Katol	Ladgaon	78.5646944	21.22706	538	2015-16	OW	F Basalt	200	20	28.90-32;114.30-117.40		
133	Katol	KHANGA ON	78.5466944	21.29417	418	2015-16	EW	F Basalt	181.5	20	16-17		
134	Katol	KHANGA ON	78.5468056	21.29417	418	2015-16	OW	F Basalt	181.5	20	157 (Basalt-Gondwana contact)		
135	Katol	SAWARG AON	78.6342222	21.40108	420	2015-16	EW	F Basalt	200	20	10.3-13.70		
136	Narkhed	KONI	78.5824722	21.43964	421	2015-16	EW	F Basalt	200	25	16.70-19.80, 126.50-129.60		
137	Narkhed	KHEDI	78.6445556	21.45894	421	2015-16	EW	F Basalt	105.2	25	53.30-56.40		
138	Narkhed	MANIKW ADA	78.4998889	21.49717	417		EW	F Basalt	200	25	19.80, 41.10, 108.2		
139	Katol	SONKHA MB	78.7225277 8	21.27225	411		EW	F Basalt	197.75	11.2	11.10 - 11.20, 22.60 - 23.00, 76.45 - 79.10		
140	Katol	RAULGA ON	78.7831388 9	21.23755 556	394		EW	F Basalt	200	59.37	150.34 - 162.45, 174.55 - 198.80		
141	Narkhed	PIPLA	78.7333333 3	21.4	348		EW	F Basalt	162	100	100-114, 116-132		
142	Narkhed	MOHGA ON BHADAD E	78.722222 2	21.39166 667	400		EW	F Basalt	300	68	68-72, 89-97, 107-113, 118- 123, 143-147, 148-154, 165- 172, 176-178, 184-204, 218- 225, 232-238, 244-257, 266- 271		
143	Ramtek	Amgaon	79.3483333 3	21.38888 889		2019-20	EW	FGN	200	11.5	45-46		
144	Ramtek	Wadamb a	79.3805555 6	21.60527 778		2019-20	EW	FGN	172	18.5	34-36		

S.N	Taluka	Village	Longitude	Latitude	Altitude	Year	Туре	Aquifer	Drilling	Casing	Aquifer Zones	Drilling	Disch
0.					(11)				ueptii			SVVL	arge
145	Ramtek	Wadamb	79.3805555	21.60527		2019-20	OW	FGN	177	18.5	36-37;155-156		
		а	6	778									
146	Ramtek	Borda	79.2797222	21.44416		2019-20	EW	FGN	160	24.5	33-34;115-117;157-159		
			2	667									
147	Ramtek	Borda	79.2797222	21.44416		2019-20	OW	FGN	200	24	40-44;89.70-92;120-		
			2	667							123;144-147		
148	Ramtek	Chichala	79.3416666	21.34833		2019-20	EW	FGN	200	12.5	35-37		
			7	333									
149	Mauda	Tarsha	79.3811111	21.22805		2019-20	EW	FGN	44	24	34.80-37.90		
			1	556									
150	Mauda	Tarsha	79.3811111	21.22805		2019-20	OW	FGN	200	36	42-43		
			1	556									
151	Parseoni	Nayakun	79.1961111	21.36944		2019-20	EW	FGN	200	24	dry		
		d	1	444									
152	Savner	Nandago	78.7711111	21.4225		2019-20	EW	FMB	200	24	150.70-153.80		
		mukh	1										
153	Savner	Kelwad	78.8675	21.4625		2019-20	EW	FMB	200	18	50-53		
154	Parseoni	Tekadi	79.1633333	21.46305		2019-20	EW	FGN	190.4	18	22-25;132-133;156-159		
			3	556									
155	Parseoni	Tekadi	79.1633333	21.45861		2019-20	OW	FGN	190.4	18	26-27;135-136;169-171		
			3	111									
156	Mauda	Rewral	79.4586111	21.26388		2019-20	EW	FGN	196.5	24	48-49		
			1	889									
157	Mauda	Navergao	79.4994444	21.25888		2019-20	EW	FGN	200	18	35-36		
		n	4	889									
158	Mauda	Khondam	79.4747222	21.32138		2019-20	EW	FGN	200	18	35-37;40-44;		
		endi	2	889									
159	Mauda	Khondam	79.4747222	21.32138		2019-20	OW	FGN	166	24	41-43		
		endi	2	889									
160	Ramtek	Ghoti	79.4330555	21.35861		2019-20	EW	FGN	200	23.5	38.00-41.00;151.00-153.00		
			6	111									
161	Ramtek	Ghoti	79.4330555	21.35861		2019-20	OW	FGN	200	23.5	41-44		
			6	111									

Annexure-II: Details of KOWs in Nagpur district

S.	Taluka	Site name	Depth	D.T.W.	D.T.W.	Fluctuatio	EC (Pre –	EC (Post –	Depth to	Thicknes
No.			(m)	(Pre -	(Post -	n	Monsoon -	Monsoon	Fracture	s of
				2019)	2019)		2019)	2019)	S	fracture
				(m bgl)	(m bgl)		(micromho	(micromhos	(mbgl)	zone
							s))		
1	Nagpur	Hudkeshwar Bk.	8.30	7.92	4.5	3.42	1170	2080	7.6	3
2	Umred	Wadegaon	12.40	11.80	3.4	8.40	898	664	8.2	3.3
3	Nagpur (R)	Salai Godhni	10.50	2.80	2	0.80	1172	965	5.6	4.2
4	Nagpur (R)	Banawadi	7.00	5.35	2	3.35	724	780	4.2	4
5	Umred	Matkazari	4.70	2.60	1.4	1.20	288	1205	8.6	3
6	Umred	Jamgarh	7.00	5.00	4	1.00	658	1254	5.9	2
7	Umred	Junapani	9.00	4.50		4.50	444		6	4
8	Umred	Chargaon	8.50	7.00	2.7	4.30	653	990	5.5	8
9	Nagpur (R)	Chimnazari	11.00	5.00	2.8	2.20	865	1145	3.9	3
10	Nagpur (U)	Saubhagyanagar	12.20	10.40		10.40	956		8.6	5
11	Nagpur	Jaitala	4.75	4.00		4.00	266		6.4	6
12	Hingna	Panjari	9.00	8.40	5.05	3.35	574	935	4.3	2
13	Hingna	Nagalwadi	10.00	Dry	2.2	#VALUE!		731	6.2	8
14	Nagpur (U)	Pioli Nadi	7.30	4.65	3.7	0.95	861	1056	5.2	2
15	Hingna	Salai Dabha	10.00	9.30	3.5	5.80	1204	838	5	4
16	Hingna	Lakhmpur	7.80	3.20	2.9	0.30	545	1085	6.2	7
17	Hingna	Khairi kh.	8.00	5.40	3.3	2.10	965	1505	6	3
18	Hingna	Chauki	6.00	5.60	4.2	1.40	670	998	7.1	1.9
19	Hingna	Deoli	5.00	4.85	1.3	3.55	1026	1116	5.3	5
20	Hingna	Navegaon	12.00	7.00		7.00	554		4.6	7
21	Hingna	Kavdas	8.50	7.30	4.1	3.20	1214	945	6.3	3
22	Hingna	Ambazari	12.50	11.60	3.7	7.90	826		4.3	2.9
23	Umred	Paradgaon	12.20	5.10	4	1.10	460	576	4.6	8

S.	Taluka	Site name	Depth	D.T.W.	D.T.W.	Fluctuatio	EC (Pre –	EC (Post –	Depth to	Thicknes
No.			(m)	(Pre -	(Post -	n	Monsoon -	Monsoon	Fracture	s of
				2019)	2019)		2019)	2019)	S	fracture
				(m bgl)	(m bgl)		(micromho	(micromhos	(mbgl)	zone
							s))		
24	Umred	Virali	11.30	10.20	6.8	3.40	1054	1204	5.5	7
25	Umred	Barva	11.00	Dry	4.8	#VALUE!		2308	5.6	4
26	Umred	Bramhni	12.50	3.40	1.9	1.50	2574	2133	7.7	6
27	Umred	Tirkhura	9.50	Dry	4.3	#VALUE!	862	2445	8	6
28	Umred	Belgaon	9.20	6.40	2.6	3.80	7540	1568	6.9	4
29	Umred	Dighori	10.00	3.90	2.2	1.70	740	980	6.5	5
30	Umred	Devli	10.00	7.00	3.2	3.80	645	648	4.1	7
31	Nagpur (R)	Shiwa	8.7	7.85	2.1	5.75	647	850	8.5	6
32	Hingna	Digdoh	5	3.55	3.2	0.35	1270	1028	7.2	4
33	Hingna	Turagondi	17	7.7	5.3	2.40	633	605	6	6
34	Umred	Belpeth/	8	7.9	3	4.90	1661	1790	4.5	3
		Shedeshwar								
35	Umred	Kinhala	13	8.5	9.6	-1.10	274	618	6.3	4
36	Umred	Sirsi	8.5	8.4	2.4	6.00	745	1516	5.6	5
37	Nagpur (R)	Kharda	8	Dry	6.8	#VALUE!			5.9	4
38	Nagpur (R)	Bori	8	6.55	3.5	3.05	2055	1834	4.6	6
39	Nagpur	Pitesur	9	Dry	1.1	#VALUE!		719	5.8	6
40	Nagpur	Gowari	9	7.25		7.25	1025		9.6	8
41	Umred	Walad	12.55	11.65	7.3	4.35	1183	1453	4.8	4
42	Umred	Davha	5.5	5	2.2	2.80	558	605	7.6	3
43	Umred	Marasghat	12.2	10.55	6	4.55	685	685	5.7	3
44	Umred	Wakeshwar	11	10		10.00	608		4.5	9
45	Hingna	Tembhari	5.5	4.2	2.6	1.60	1092	1564	3.6	4
46	Bhiwapur	Kaodasi	5.4	4.2	2.3	1.90	593	596	5.2	0.8

S.	Taluka	Site name	Depth	D.T.W.	D.T.W.	Fluctuatio	EC (Pre –	EC (Post –	Depth to	Thicknes
No.			(m)	(Pre -	(Post -	n	Monsoon -	Monsoon	Fracture	s of
				2019)	2019)		2019)	2019)	S	fracture
				(m bgl)	(m bgl)		(micromho	(micromhos	(mbgl)	zone
							s))		
47	Bhiwapur	Mandawa	9	5.35	3.15	2.20	826	786	7	0.6
48	Bhiwapur	Besur	10	5.7	4.5	1.20	2374	2204	7	0.5
49	Bhiwapur	Chikhalapur	10	0	2.9	0.00		1682	8	0.3
50	Bhiwapur	Zamkoli	6.8	5.4	3.3	2.10	683	558	4.5	1
51	Bhiwapur	Kholdoda	9	7.9	7.7	0.20	3265	2390	6	1.5
52	Bhiwapur	Taka	17	14.6	13.1	1.50	815	730	14	0.5
53	Bhiwapur	Botezari	13	7.8	3.87	3.93	741	458	9	1
54	Bhiwapur	Gardapar	9	5.05	1.45	3.60	634	544	5	1
55	Bhiwapur	Malewada	13	11.2	6.3	4.90	1590	1627	7	0.5
56	Bhiwapur	Zibodi	11.3	11.3	11.3	0.00			10	1.2
57	Bhiwapur	Seloti	15	6.7	0.9	5.80	594	331	8.5	1
58	Bhiwapur	Mokhana	13	3.4	3	0.40	829	279	7.5	0.4
59	Bhiwapur	Adyal	18	16.05	9.75	6.30	654	626	16	0.6
60	Bhiwapur	Somnala	11.7	#VALUE!	6.7	#VALUE!		1673	10	0.5
61	Kuhi	Murabhi	9	5.6	1.5	4.10	1259	1768	7	0.6
62	Kuhi	Virkhedi	16	8.2	4.1	4.10	2785	1652	10	0.4
63	Kuhi	Mandhal	12	6	1.8	4.20	2218	2050	8	0.8
64	Kuhi	Taroli	12	8.8	6.45	2.35	673	649	9	2
65	Kuhi	Gothangaon	9	7.4	3.6	3.80	730	624	8.5	0.2
66	Bhiwapur	Jiwanapur	13	10	3.8	6.20	791	684	12	0.7
67	Bhiwapur	Tutanbori	13.8	9.7	6.4	3.30	684	575	11	0.2
68	Bhiwapur	Gondbori	13	8.1	2.4	5.70	1067	922	9	1
69	Kuhi	Adam	15	6.1	1.6	4.50	690	645	7	0.7
70	Kuhi	Channa	13	5.4	1.6	3.80	1488	1570	7.5	0.5

S.	Taluka	Site name	Depth	D.T.W.	D.T.W.	Fluctuatio	EC (Pre –	EC (Post –	Depth to	Thicknes
No.			(m)	(Pre -	(Post -	n	Monsoon -	Monsoon	Fracture	s of
				2019)	2019)		2019)	2019)	S	fracture
				(m bgl)	(m bgl)		(micromho	(micromhos	(mbgl)	zone
							s))		
71	Kuhi	Mendha Kh	15	9.3	2.5	6.80	1265	755	11	0.2
72	Kuhi	Ruyad	14	8.5	5	3.50	1609	961	10	0.8
73	Kuhi	Pauni	12.3	0	11.3	0.00		658	6	1.7
74	Kuhi	Sarawa	11	5.9	2.4	3.50	978	1258	10	0.3
75	Kuhi	Bhiwakund	12	9.8	2.4	7.40	621	965	12	1.5
76	Kuhi	Rajola	15	11.4	8.9	2.50	1655	1430	6	2
77	Kuhi	Sawarkhanda	9	4.6	0.5	4.10	378	385	6	0.5
78	Kuhi	Kuhi	11	8	1.8	6.20	1080	958	9	2
79	Kuhi	Dhanoli	29	25.3	19.4	5.90	997	979	24	2
80	Kuhi	Dodama	12	6.1	4.2	1.90	1930	1782	7	2
81	Kuhi	Sasegaon	11	4.4	1	3.40	1914	1858	7	2
82	Kuhi	Ambadi	10	5.3	2.5	2.80	990	755	7	2
83	Kuhi	Sawali	11	1.5	0.8	0.70	2058	785	6	1.2
84	Bhiwapur	Mandawa-1	14	11.2	3	8.20	820	727	11	2
85	Bhiwapur	Mandawa-2	10	5.6	3.5	2.10	780	651	6	2
86	Bhiwapur	Mandawa-3	10	5.7	3.3	2.40	813	618	6	1.5
87	Bhiwapur	Mandawa-4	9	5.9	4.1	1.80	490	632	7	2
88	Bhiwapur	Mandawa-5	10	5	4.35	0.65	1260	548	7	2
89	Bhiwapur	Mandawa-6	12	10.5	6.4	4.10	653	799	7	2
90	Kuhi	Dhanoli-2	13.3	12.7	12.4	0.30	640	512	11	0.5
91	Kuhi	Dhanoli-3	16	14.4	13.8	0.60	950	899	13	2
92	Kuhi	Dhanoli-4	19	12.3	12	0.30	833	859	12	1
93	Kuhi	Dhanoli-5	14	11.9	11.2	0.70	811	762	13	0.9
94	Kuhi	Dhanoli-6	14	11.8	9.5	2.30	800	899	12	1

S.	Taluka	Site name	Depth	D.T.W.	D.T.W.	Fluctuatio	EC (Pre –	EC (Post –	Depth to	Thicknes
No.			(m)	(Pre -	(Post -	n	Monsoon -	Monsoon	Fracture	s of
				2019)	2019)		2019)	2019)	S	fracture
				(m bgl)	(m bgl)		(micromho	(micromhos	(mbgl)	zone
							s))		
95	Kuhi	Dhanoli-7	24.4	21.5	18.8	2.70	1524	1154	13	1
96	Kuhi	Dhanoli-8	19.5	19.5	19.2	0.30	1056	964	12	2
97	Kuhi	Dhanoli-9	12	7.3	7.3	0.00	1145	923	12	2
98	Ramtek	Karwahi	9.8	9.8	3.15	6.65	1500	1741	9	1
99	Ramtek	Pathrai	15.6	5.15	3.1	2.05	577	1062	15	1
100	Ramtek	Kamthi	9	3.8	2.3	1.5	446	512	8.5	1
101	Ramtek	Lakhapur	5.1	4.8	2.1	2.7	322	499	4.9	1
102	Ramtek	Murda	10	9.1	5.9	3.2	1285	1591	9	1
103	Ramtek	Gugaldoh/	10.5	5	3.4	1.6	1408	1287	9	1
		Ghogra								
104	Kamthi	Asoli Sakwa	12.5	11.85	10.1	1.75	1140	1359	12	1
105	Kamthi	Gumthala	16.2	11	8.2	2.8	717	796	15	1
106	Kamthi	Palsad	11.9	8.8	7.15	1.65	1050	1189	9.5	1
107	Kamthi	Chikli	15	11.7	6.4	5.3	686	2356	14.5	1
108	Kamthi	Badoda/ Wadoda	8.7	8.1	7.5	0.6	276	320	7	2
109	Mauda	Vanjara	12.5	10.7	10.2	0.5	613	670	11.5	2
110	Mauda	Chirvha	17.4	16.5	15.4	1.1	1038	815	17	2
111	Mauda	Marodi	15.6	12.2	10.8	1.4	805	2732	15	1
112	Mauda	Dhanala	7.55	5.2	3.1	2.1	1950	1590	7	2
113	Mauda	Govri	12.6	10.45	1.7	8.75	1321	1780	12	1
114	Mauda	Panjra	9.4	7.1	3.45	3.65	1511	652	9	1
115	Mauda	Sirsoli	9.2	7.9	7.35	0.55	803	1947	8.5	2
116	Mauda	Bori Ghiwari	10.1	9.05	5.7	3.35	2346	692	8	1
117	Mauda	Aroli	6.2	5.45	4.15	1.3	862	692	6	2

S.	Taluka	Site name	Depth	D.T.W.	D.T.W.	Fluctuatio	EC (Pre –	EC (Post –	Depth to	Thicknes
No.			(m)	(Pre -	(Post -	n	Monsoon -	Monsoon	Fracture	s of
				2019)	2019)		2019)	2019)	S	fracture
				(m bgl)	(m bgl)		(micromho	(micromhos	(mbgl)	zone
							s))		
118	Mauda	Kumbhapur	16.7	14.8	13	1.8	717	774	16	1
119	Mauda	Bhendala	9.2	5.7	1.7	4	1438	1310	9	1
120	Mauda	Hingna	10	6.6	3.25	3.35	1613	2778	9	2
121	Mauda	Chacher	12.7	5.6	3.7	1.9	2456	2850	12	1
122	Mauda	Rewral	9.5	7.8	3.65	4.15	860	1168	9	1
123	Kamthi	Waregaon	22.2	15.8	13.3	2.5	2268	2230	22	0.2
124	Kamthi	Suradevi	9.8	2.1	1.7	0.4	1578	1727	9	0.8
125	Kamthi	Ghorpada	10.7	9.2	6.5	2.7	1635	1814	9	1.7
126	Kamthi	Gada	20.3	17.8	14.4	3.4	264	712	20	0.3
127	Kamthi	Ungaon	17.7	14.8	13.6	1.2	926	1371	15	1.5
128	Parseoni	Khandala	15.4	13.6	12.6	1	771	715	13	2
129	Kalmeshwa	Kalmeshwar	14	13.2	4.2	9	1655	1748	13.5	0.5
	r									
130	Kalmeshwa r	Uparvani	14.8	14.4	11.4	3	1185	1278	12	2
131	Kalmeshwa	Wathoda	8.5	7.75	4.5	3.25	1465	82.7	6	2
	r									-
132	Kalmeshwa	Mohpa	19.2	15.45	8.1	7.35	1164	1209	1/	2
100	r		7.0		2.0		0.17	4220		2
133	Kalmeshwa	Khairi	1.2	5.9	2.8	3.1	947	1230	4	2
124	r Kalasala a			6.2	2.0	2.4	000	1102		2
134	r r	Ivianovi	/	0.2	2.8	3.4	899	1193	5.5	2
135	Kalmeshwa	Tishti	12.2	11.9	6.9	5	963	1332	11	1.2

S. No.	Taluka r	Site name	Depth (m)	D.T.W. (Pre - 2019) (m bgl)	D.T.W. (Post - 2019) (m bgl)	Fluctuatio n	EC (Pre – Monsoon - 2019) (micromho s)	EC (Post – Monsoon 2019) (micromhos)	Depth to Fracture s (mbgl)	Thicknes s of fracture zone
136	Kalmeshwa r	Parsodi Wakil	35.2	32.4	20.2	12.2	786	814	32	2
137	Kalmeshwa r	Tel-Kamthi	8.3	4.7	2.2	2.5	1046	1373	5	2
138	Kalmeshwa r	Dadhera	10.5	9.8	4.8	5	884	850	9	1.5
139	Saoner	Khursipar	20.2	16.52	14.5	2.02	559	658	18	2
140	Saoner	Jatamkhor	17.2	13.8	8.6	5.2	1135	1117	15	2
141	Saoner	Umri	13	3	2.1	0.9	492	788	10	2
142	Saoner	Rampuri	14	11.9	7.4	4.5	1181	1343	13.5	0.5
143	Saoner	Kelwad	13	8.7	5.45	3.25	1181	1315	11	2
144	Parseoni	Satak	11	9.2	3.95	5.25	1238	1295	10	1
145	Ramtek	Amgaon	14.9	3.4	4.2	-0.8	239	165	14	0.9
146	Parsioni	Tamaswadi	23	18.8	15.3	3.5	671	694	22	1
147	Parsioni	Guramde	13	11.4	8.6	2.8	688	700	12	1
148	Parsioni	Kharanbad	10	3.4	3.6	-0.2	1561	1598	7	2
149	Parsioni	Sakarla	11	8.5	6.5	2	1505	1099	9	2
150	Parsioni	Salai	9	7.5	2.1	5.4	430	192	8	1
151	Parsioni	Khubala	17	10.1	4.65	5.45	821	1134	16	1
152	Saoner	Tembhurdoh	22	19.4	16.4	3	622	449	21	1
153	Saoner	Tekadi	14	16.8	4.4	12.4	1142	1242	13	1
154	Saoner	Waki	14	9.8	6.85	2.95	910	4645	13	1
155	Saoner	Gujarwadi	20	16.9	13.9	3	1134	1161	19	1

S.	Taluka	Site name	Depth	D.T.W.	D.T.W.	Fluctuatio	EC (Pre –	EC (Post –	Depth to	Thicknes
No.			(m)	(Pre -	(Post -	n	Monsoon -	Monsoon	Fracture	s of
				2019)	2019)		2019)	2019)	S	fracture
				(m bgl)	(m bgl)		(micromho	(micromhos	(mbgl)	zone
							s))		
156	Saoner	Khurajgaon	18	14.2	7.8	6.4	728	503	17	1
157	Saoner	Nanda Kuurd	21	17.5	14.1	3.4	775	1091	20	1
		Nandapur								
158	Saoner	Kawatha	13	9.3	5.3	4	1324	1391	12	1
159	Saoner	Ramdongri	17	13.6	10.7	2.9	821	925	16	1
160	Parseoni	SuwarDhara	10	6.3	2.65	3.65	611	626	7	2
161	Parseoni	Bitoli	10	6.5	8.6	-2.1	1397	581	7	2
162	Parseoni	Mahul	14	9.2	4.2	5	1489	1405	10	2
163	Parseoni	Khandala	17	14	9.1	4.9	794	697	16	1
		Ghatate								
164	Parseoni	Kherdi	8	5.2	2.57	2.63	1026	1210	6	2
165	Parseoni	Keradi	9	4.4	2.85	1.55	2020	173	8	1
166	Ramtek	Chinchala	12	10.1	4.1	6	1821	2264	11	1
167	Ramtek	Kachurwadi	11	8.2	2.8	5.4	513	1430	9	2
168	Mohda	KhaperKhedi	12	8.8	7.2	1.6	985	1377	11	1
169	Ramtek	Patgavri	10	6.1	1.9	4.2	1072	911	7	2
170	Borda	Ramtek	9	5.7	3.85	1.85	1312	1769	8	1
171	Warghat	Ramtek	12	11.4	7.5	3.9	1171	1105	11	1
172	Karwahi	Ramtek	12	9.1	4.42	4.68	1246	1225	9	2
173	Dongri	Ramtek	8	4	1.75	2.25	1485	1398	7	1
174	Parsodi	Mauda	18	14.6	13	1.6	884	1339	17	1

S. No.	District	Site Name	Aquifer	Lat	Long	DTW_May 2019	DTWL_Nov.19
1	Nagpur	Amgaon	Unconfined	20.99444	78.925	6.4	2.7
2	Nagpur	Ashti	Unconfined	21.20194	78.96833	11.15	4.5
3	Nagpur	Bela_Pz	Unconfined	20.775	79.0125	7.6	3.2
4	Nagpur	Bhasali Takli	Unconfined	21.35333	78.99056	12.9	15
5	Nagpur	Bhiwapur	Unconfined	20.76639	79.51639	9.7	6.4
6	Nagpur	Bokhara_Pz	Semi/Confined	21.22778	79.06944	5.85	2.1
7	Nagpur	Borkhedi	Unconfined	20.88333	78.975		3.6
8	Nagpur	Borkhedi_Pz	Unconfined	20.86444	78.96972	8.04	
9	Nagpur	Chacher	Unconfined	21.28333	79.34167	8.05	3.2
10	Nagpur	Chargaon (Punarwasi)	Unconfined	21.26667	78.75833	5.05	3.2
11	Nagpur	Chorbaoli	Unconfined	21.46667	79.31667	8.95	3.9
12	Nagpur	Deolapar	Unconfined	21.58333	79.36667	13.2	4
13	Nagpur	Dhapewada	Unconfined	21.30278	78.91389	8.7	12.8
14	Nagpur	Dongargaon Gumgaon	Unconfined	20.98778	79.03111	1.8	5.2
15	Nagpur	Fetri_Pz	Unconfined	21.2025	78.99806	7.7	
16	Nagpur	Gahuhivra	Unconfined	21.25278	79.24389	11.9	3.8
17	Nagpur	Ghumthala	Unconfined	21.135	79.3025	8.1	9.7
18	Nagpur	Gonkhedi	Unconfined	21.13639	78.90083		3.9
19	Nagpur	Gumthala_Pz	Unconfined	21.25917	79.04722	10	3
20	Nagpur	Hingna (Dhangarpura)	Unconfined	21.07389	78.95778		4.6
21	Nagpur	Jamgaon Bk_Pz	Unconfined	21.32083	78.43333	5.3	2.5
22	Nagpur	Kalmeshwar	Unconfined	21.23333	78.91667	11	2.2
23	Nagpur	Kamptee	Unconfined	21.20833	79.20833	7.9	6.95
24	Nagpur	Kanholi bara	Unconfined	20.93333	78.85	10	5.7

Annexure-III: Details of GW monitoring wells in Nagpur district

S. No.	District	Site Name	Aquifer	Lat	Long	DTW_May 2019	DTWL_Nov.19
25	Nagpur	Kanholibara_Pz	Unconfined	20.93583	78.85389	13.95	4
26	Nagpur	Katol	Unconfined	21.28333	78.58333	9.85	5.1
27	Nagpur	Kelod	Unconfined	21.45972	78.87639	10.9	10.35
28	Nagpur	Khairgaon	Unconfined	21.18583	78.95667	7.2	3.5
29	Nagpur	Khapri	Unconfined	21.23528	78.835	4.88	5.8
30	Nagpur	Kharpada	Unconfined	21.53083	79.3475	4.8	4
31	Nagpur	Khat	Unconfined	21.24167	79.54583	11.25	1.3
32	Nagpur	Khubala	Unconfined	21.45	78.96667	4.8	3.6
33	Nagpur	Kohli	Unconfined	21.25222	78.81611	8.8	7.2
34	Nagpur	Koradi	Unconfined	21.25278	79.08	8.8	3.1
35	Nagpur	Kothulna	Unconfined	21.41944	79.03833	5.3	1.6
36	Nagpur	Kuhi-1	Unconfined	21.015	79.36028	9.5	6.8
37	Nagpur	Linga	Unconfined	21.20278	78.82139	5.7	3.5
38	Nagpur	Lohara	Unconfined	21.26583	78.40833	5.74	1.85
39	Nagpur	Lohgad	Unconfined	21.34222	78.72306	30	3.5
40	Nagpur	Makardhokda	Unconfined	20.86667	79.21944	9.6	2.5
41	Nagpur	Makardhokda_Pz	Unconfined	20.87417	79.20944	10.05	4.4
42	Nagpur	Malapur	Unconfined	21.43222	78.65944	11.5	12.5
43	Nagpur	Manegaon Tek	Unconfined	21.68056	79.42222	10.32	6.3
44	Nagpur	Mangli1	Unconfined	21.02833	79.305	19	7
45	Nagpur	Metpanjara	Unconfined	21.26583	78.71278	10.85	5.7
46	Nagpur	Mohad	Unconfined	21.46861	78.44583	11.7	10
47	Nagpur	Mohgaon Zelpi	Unconfined	21.06833	78.8875	8.25	6.6
48	Nagpur	Mohpa	Unconfined	21.14167	78.7625	10.8	
49	Nagpur	Mouda-1	Unconfined	21.14722	79.40028	10.55	10.4
50	Nagpur	Nagalwadi	Unconfined	21.56667	79.01667	7.4	8.7
51	Nagpur	Nagpur_Chinchbhawan	Unconfined	21.06611	79.06111	7.5	7.1

S. No.	District	Site Name	Aquifer	Lat	Long	DTW_May 2019	DTWL_Nov.19
52	Nagpur	Nagpur_Hanuman nagar	Unconfined	21.12639	79.10556	4.3	1.9
53	Nagpur	Nagpur_Koradi naka	Unconfined	21.20861	79.07722	7	2.3
54	Nagpur	Nagpur_Police line takli	Unconfined	21.17639	79.06528		2.2
55	Nagpur	Nagpur_Punapur	Unconfined	21.16083	79.16917	4	0.4
56	Nagpur	Nagpur_Ramdaspeth	Unconfined	21.13056	79.06389	6	3.6
57	Nagpur	Nagpur_Wadi naka	Unconfined	21.15222	79.01778	10.4	0.4
58	Nagpur	Nandora	Unconfined	21.17056	78.61111	4.4	3
59	Nagpur	Nara_Pz	Semi/Confined	21.20833	79.08056	10.5	12.8
60	Nagpur	Narkhed	Unconfined	21.46667	78.53333	15.35	6
61	Nagpur	Narkhed_Pz	Unconfined	21.47083	78.53694	13	3
62	Nagpur	Nawegaon (Deshmukh)	Unconfined	20.80278	79.42861	8.45	4.4
63	Nagpur	Nayakund	Unconfined	21.36667	79.18333		10.8
64	Nagpur	Pallora	Unconfined	21.55556	79.33472	8.6	12
65	Nagpur	Panchgaon	Unconfined	21.03333	79.1	12	4.1
66	Nagpur	Paradsinga_Pz	Unconfined	21.31806	78.51944	5.4	25.2
67	Nagpur	Parseoni	Unconfined	21.55	79.16667	8.9	5
68	Nagpur	Patansaongi-2	Unconfined	21.33528	79.01667	10.3	8.7
69	Nagpur	Pipaldol	Unconfined	20.83306	79.26556	7.79	2
70	Nagpur	Pipla Wadi	Unconfined	21.40444	78.84417	11.2	6
71	Nagpur	Ramgiri	Unconfined	21.30194	78.75139	8.1	2.5
72	Nagpur	Ramtek	Unconfined	21.4	79.3	10	4.3
73	Nagpur	Ridhora	Unconfined	21.23222	78.62056	12.1	13
74	Nagpur	Ringnabodi-1	Unconfined	21.12833	78.71694	10.5	5.2
75	Nagpur	Rohna	Unconfined	21.34917	78.48	10.2	5.2
76	Nagpur	Rohna_Pz	Unconfined	21.34722	78.48	8.45	7.2
77	Nagpur	Rui_Gavsi Manapur	Unconfined	21.02	79.04861	14.1	7.7
78	Nagpur	Saoner-1	Unconfined	21.38972	78.94056	10.8	8.7

S. No.	District	Site Name	Aquifer	Lat	Long	DTW_May 2019	DTWL_Nov.19
79	Nagpur	Satgaon	Unconfined	20.92972	79.00361	10.53	4.1
80	Nagpur	Sathnaori	Unconfined	21.13333	78.8	6.25	11
81	Nagpur	Sawargaon	Unconfined	21.39167	78.635	4.65	5.6
82	Nagpur	Sillori	Unconfined	21.30222	78.97306	5.55	8.8
83	Nagpur	Singori	Unconfined	20.74528	79.06972	18.9	3
84	Nagpur	Sirpur Toli	Unconfined	21.36667	79.4	10.4	4.2
85	Nagpur	Sivani	Unconfined	21.4	79.47083	12.2	6.3
86	Nagpur	Sonoli_Pz	Unconfined	21.3625	78.62583	19.2	5.6
87	Nagpur	Takalghat	Unconfined	20.91444	78.94389	1.1	7.4
88	Nagpur	Tarsha	Unconfined	21.22583	79.38111	4.85	3.6
89	Nagpur	Tondakhairi	Unconfined	21.26917	78.9525	9.6	16.2
90	Nagpur	Umrer	Unconfined	20.85	79.33333	8	1
91	Nagpur	Uti	Unconfined	20.95	79.21667	10.6	2
92	Nagpur	Wagholi	Unconfined	21.33333	79.21667	12	3.3
93	Nagpur	Wardhamna	Unconfined	21.14167	78.93333		1.4
94	Nagpur	Wasboli	Unconfined	21.21889	78.70222	14.5	2.3

Annexure IV: Soil Infiltration Test

Date	12-01-2019
Unique ID no.	
Village	Titur
Taluka	Kuhi
District	Nagpur
Coordinates	21.075734, 79.26151
Elevation/RL (mamsl)	278
Initial water level	12
Geology	Granitic gneiss
	Clayey Moderately
Soil Type	Deep
Final Infiltration Rate	1.2
Total Precipitation	2.90 cm

Duration (min)	Cum Time (min)	Water level Depth (cm)	Infiltrated water depth (cm)	Infiltration rate (cm/hr)
1.00	1	12.30	0.30	18
1.00	2	12.20	0.20	12
1.00	3	12.20	0.20	12

Duration (min)	Cum Time (min)	Water level Depth (cm)	Infiltrated water depth (cm)	Infiltration rate (cm/hr)
2.00	5	12.20	0.20	6
2.00	7	12.20	0.20	6
3.00	10	12.20	0.20	4
5.00	15	12.40	0.40	4.8
5.00	20	12.30	0.30	3.6
10.00	30	12.30	0.30	1.8
10.00	40	12.20	0.20	1.2
10.00	50	12.20	0.20	1.2
10.00	60	12.20	0.20	1.2

Soil Infiltration Test_II

Date	13.02.2020
Unique ID no.	
Village	Haladgaon
Taluka	Ngapur
District	Nagpur
	20.842977,
Coordinates	78.866043

Elevation/RL (mamsl)	260
Initial water level	14
Geology	Deccan trap
Soil Type	Black cotton soil
Final Infiltration Rate	11.4
Total Precipitation	26.40 cm

Duration (min)	Cum Time (min)	Water level Depth (cm)	Infiltrated water depth (cm)	Infiltration rate (cm/hr)
1.00	1	15.10	1.10	66
1.00	2	14.50	0.50	30
1.00	3	14.40	0.40	24
2.00	5	14.30	0.30	9
2.00	7	14.40	0.40	12
3.00	10	14.40	0.40	8
5.00	15	14.60	0.60	7.2
5.00	20	14.70	0.70	8.4
10.00	30	14.60	0.60	3.6
10.00	40	15.60	1.60	9.6
10.00	50	15.30	1.30	7.8

Duration (min)	Cum Time (min)	Water level Depth (cm)	Infiltrated water depth (cm)	Infiltration rate (cm/hr)
10.00	60	16.20	2.20	13.2
10.00	70	16.20	2.20	13.2
10.00	80	16.20	2.20	13.2
10.00	90	16.30	2.30	13.8
10.00	100	16.00	2.00	12
10.00	110	15.90	1.90	11.4
10.00	120	15.90	1.90	11.4
10.00	130	15.90	1.90	11.4
10.00	140	15.90	1.90	11.4

Soil Infiltration Test _III

Date	21.02.2020
Unique ID no.	
Village	Kondamendi
Taluka	Mauda
District	Nagpur
Coordinates	21°19'17", 79°28'26"
Elevation/RL (mamsl)	352

Initial water level	14
Geology	Granite Gneisses
Soil Type	Moderately Deep loamy soil
Final Infiltration Rate	5.4
Total Precipitation (cm)	25.50

Duration (min)	Cum Time (min)	Water level Depth (cm)	Infiltrated water depth (cm)	Infiltration rate (cm/hr)
1.00	1	15.10	1.10	66
1.00	2	15.00	1.00	60
1.00	3	14.90	0.90	54
2.00	5	15.10	1.10	33
2.00	7	15.20	1.20	36
3.00	10	15.30	1.30	26
5.00	15	15.30	1.30	15.6
5.00	20	15.50	1.50	18
10.00	30	15.80	1.80	10.8
10.00	40	16.10	2.10	12.6
10.00	50	15.90	1.90	11.4

10.00	60	15.60	1.60	9.6
10.00	70	15.40	1.40	8.4
10.00	80	15.30	1.30	7.8
10.00	90	15.20	1.20	7.2
10.00	100	15.10	1.10	6.6
10.00	110	15.00	1.00	6
10.00	120	14.90	0.90	5.4
10.00	130	14.90	0.90	5.4
10.00	140	14.90	0.90	5.4

Soil Infiltration Test _IV

Date	01.10.2019
Unique ID no.	
Village	Wadamba
Taluka	Ramtek
District	Nagpur
	21°36'19.00",
Coordinates	79°22'50.00"

Elevation/RL (mamsl)	507
Initial water level	15
Geology	Granite Gneisses
	Moderately Deep loamy
Soil Type	soil
Final Infiltration Rate	4.8
Total Precipitation (cm)	28.90

Duration (min)	Cum Time (min)	Water level Depth (cm)	Infiltrated water depth (cm)	Infiltration rate (cm/hr)
1.00	1	16.60	1.60	96
1.00	2	16.50	1.50	90
1.00	3	16.40	1.40	84
2.00	5	16.80	1.80	54
2.00	7	16.60	1.60	48
3.00	10	16.40	1.40	28
5.00	15	16.30	1.30	15.6
5.00	20	16.70	1.70	20.4
10.00	30	16.90	1.90	11.4

Duration (min)	Cum Time (min)	Water level Depth (cm)	Infiltrated water depth	Infiltration rate
			(cm)	(cm/hr)
10.00	40	16.70	1.70	10.2
10.00	50	16.90	1.90	11.4
10.00	60	16.80	1.80	10.8
10.00	70	16.70	1.70	10.2
10.00	80	16.60	1.60	9.6
10.00	90	16.40	1.40	8.4
10.00	100	16.20	1.20	7.2
10.00	110	16.00	1.00	6
10.00	120	15.80	0.80	4.8
10.00	130	15.80	0.80	4.8
10.00	140	15.80	0.80	4.8

S.	Taluka	Site name	lat	Long	PH	EC	TDS	TH	Са	Mg	Na	К	HCO	CI	SO4	NO	F	SAR	RSC
No													3			3			
1	Nagpur	Hudkeshwar Bk.	21.0831	79.1269	8	116 0	757	245	92.0	3.6	152	4.7	170	199	20	40		4.22	-2.11
2	Umred	Wadegaon	21.0367	79.1908	7.9	968	632	345	90.0	29.2	62	2.0	160	128	23	47		1.45	-4.28
3	Nagpur (R)	Banawadi	21.0500	79.0928	7.7	670	438	300	90.0	18.2	16	2.0	149	50	22	29		0.40	-3.56
4	Umred	Matkazari	20.9822	79.1378	7.6	965	630	275	90.0	12.2	92	19. 6	273	57	24	31		2.41	-1.03
5	Umred	Jamgarh	20.8844	79.1378	8.1	670	438	260	84.0	12.2	23	2.0	152	50	23	28		0.62	-2.70
6	Umred	Chargaon	20.8589	79.0814	7.8	902	589	370	108.0	24.3	37	7.8	135	160	24	42		0.83	-5.19
7	Nagpur (R)	Chimnazari	20.8225	78.9561	7.6	995	650	400	96.0	38.9	44	0.4	202	113	8	43		0.95	-4.69
8	Nagpur (U)	Saubhagyanagar	21.0931	79.1208	7.9	105 0	686	360	122.0	13.4	71	7.8	142	195	6	81		1.63	-4.88
9	Nagpur	Jaitala	21.1119	79.0264	8.1	315	206	110	40.0	2.4	21	3.9	64	21	23	23		0.86	-1.15
10	Hingna	Panjari	21.0358	78.9617	8.1	916	598	240	82.0	8.5	92	7.8	199	110	6	31		2.58	-1.55
11	Nagpur (U)	Pioli Nadi	21.1889	79.1228	8	815	532	350	88.0	31.6	35	3.9	131	117	48	25		0.80	-4.85
12	Hingna	Salai Dabha	20.9625	78.9500	7.7	104 5	682	285	100.0	8.5	104	3.9	174	156	11	48		2.67	-2.85
13	Hingna	Lakhmpur	20.9505	78.8874	7.8	606	396	250	74.0	15.8	23	2.0	163	21	24	19		0.63	-2.33
14	Hingna	Khairi kh.	20.9094	78.9000	7.6	972	635	235	80.0	8.5	115	3.9	163	113	53	37		3.26	-2.03
15	Hingna	Chauki	20.8998	78.7814	7.8	608	397	230	76.0	9.7	35	2.0	149	25	34	25		0.99	-2.16
16	Hingna	Navegaon	20.9896	78.7948	7.9	550	359	200	72.0	4.9	35	3.9	142	25	34	19		1.06	-1.68
17	Hingna	Ambazari	21.0517	78.8374	8	709	463	290	100.0	9.7	28	3.9	177	35	48	25		0.70	-2.89
18	Umred	Paradgaon	20.9203	79.2192	7.9	460	300	200	62.0	10.9	14	2.0	71	64	38	12		0.42	-2.84
19	Umred	Virali	20.9172	79.2828	8.1	954	623	380	118.0	20.7	46	3.9	89	181	72	37		1.03	-6.15
20	Umred	Bramhni	20.9128	79.3575	7.9	243 3	1589	625	98.0	92.4	276	11. 7	43	638	211	37		4.80	- 11.8
																			0
21	Umred	Belgaon	20.8290	79.3378	8.1	492 0	3213	225	64.0	15.8	103 5	15. 6	124	145 0	240	12		30.0 0	-2.47
22	Umred	Dighori	20.7783	79.2319	8.1	660	431	240	58.0	23.1	41	3.9	53	149	22	17		1.16	-3.93
23	Nagpur (R)	Shiwa	21.1172	78.7439	8.2	648	423	270	86.0	13.4	23	3.9	142	46	24	37		0.61	-3.08
24	Hingna	Digdoh	21.0886	78.7567	7.9	134 3	877	530	180.0	19.4	64	7.8	238	199	23	37		1.22	-6.71
25	Hingna	Turagondi	21.1122	78.8314	8	658	430	205	64.0	10.9	53	3.9	82	78	58	25		1.61	-2.76

Annexure-V: Chemical analysis of ground water samples, Aquifer- I / Shallow aquifers

26	Umred	Belpeth/Shedesh	20.7477	79.1181	8.1	160	1045	640	120.0	82.6	78	7.8	284	206	82	37		1.34	-8.15
		war				0													
27	Umred	Kinhala	20.7040	79.1405	7.9	581	379	200	64.0	9.7	41	2.0	43	103	48	37		1.27	-3.30
28	Umred	Sirsi	20.6783	79.1619	7.9	143	937	605	142.0	60.8	46	7.8	39	397	58	37		0.81	-
						5													11.4
																			6
29	Nagpur (R)	Bori	20.9194	79.0111	8	204	1332	710	222.0	37.7	143	7.8	121	425	230	37		2.33	-
						0													12.2
																			2
30	Nagpur	Gowari	21.2697	78.9478	7.9	108	709	340	122.0	8.5	92	3.9	46	248	72	37		2.17	-6.04
						5													
31	UMRED	Umrer	20.8500	79.3333	7.9	221	1171	637.	139.0	69.3	181.	10.	862.	130.	182	2	0.9	3.14	1.49
						2		5			8	22	4	3			2		
32	PARSEONI	Ramtek	21.4000	79.3000	7.7	140	746	387.	87.9	40.1	102.	10	469.	117.	51	44	0.9	2.27	0.01
						7		6			23		9	9			5		
33	NARKHED	Narkhed	21.4667	78.5333	7.4	141	750	351.	/3.6	40.1	109	1.9	487.	85.6	43	44	0.5	2.54	1.02
		<u>^</u>	20.0017	70.0000	7.0	/	102	9		10.2	20	9	/	11.2	42	0	5	0.00	0.04
34	HINGNA	Gumgaon	20.9917	79.0333	7.9	758	402	285.	83.8	18.2	38	8.7	398.	11.2	12	9	0.7	0.98	0.84
25	DANATEK	Destaura	24 5022	70.2007		642	225	6	47.0	20.7	44	9	5	12.0	4.4	0	3	4.25	1.00
35	RAIVITER	Deolapar	21.5833	/9.366/	1.1	613	325	204	47.0	20.7	41	5.0	345.	13.6	11	0	1.3	1.25	1.60
26		Danahasan	21 0222	70 1667	0	F04	210	220	62.4	17.0	17	1	0	12.6	41	20	0	0.40	0.47
30	UNIKED	Panchgaon	21.0333	/9.166/	8	584	310	229. F	63.4	17.0	17	1	249.	13.6	41	28	1.2	0.49	-0.47
27	Kalmoshwa	Wardhampa	21 1 4 1 7	79 0222	76	150	0/1	5 450	02.0	FOF	61	6 1	0 175	170	22	4		1.24	1 20
57	r	Walullallilla	21.1417	76.9555	7.0	150	041	459	05.0	59.5	01	2	475. o	170.	25	4	0.5	1.24	-1.29
38	KALAMESH	Kalmeshwar	21 2333	78 9167	77	685	363	260	10.9	37.7	25	46	178	80.6	25	3	0.4	0.68	-2.22
50	WAR	Kunneshwar	21.2355	/0.510/	7.7	005	505	1	40.5	57.7	23	6	4	00.0	55	5	6	0.00	2.22
39	RAMTEK	Chorbaoli	21,4667	79.3167	8	113	566	255	51.1	30.4	133	2.1	487.	73.2	20	0	0.8	3.64	2.94
				/ 0.0 20/	Ũ	4		200	01.1		100	3	7	/ 012		°	4	0.0.	
40	PARSEONI	Parseoni	21.5500	79.1667	7.5	696	369	214.	42.9	25.5	33	33.	309.	26.1	19	11	0.1	0.98	0.82
								2				16	3				2		
41	PARSEONI	Nagalwadi	21.5667	79.0167	7.7	781	414	229.	47.0	26.7	51	7.0	327.	28.5	18	15	0.6	1.47	0.81
		0						5				7	1				5		
42	RAMTEK	Sivani	21.4000	79.4708	7.9	790	418	234.	42.9	30.4	69	1.4	374.	33.5	23	14	1.2	1.97	1.50
								6				1	7				3		
43	Umrer	Uti	20.9500	79.2167	7.8	967	512	311.	61.3	37.7	51	3.2	410.	38.5	35	34	0.7	1.26	0.56
								1				5	4				7		
44	MOUDA	Chacher	21.2833	79.3417	7.7	792	420	234.	53.1	24.3	65	1.8	315.	45.9	64	4	1.3	1.85	0.51
								6				1	2				1		

45	RAMTEK	Manegaon Tek	21.6806	79.4222	7.6	145	773	433.	83.8	53.5	42	5.5	463.	95.5	7	46	0.8	0.88	-0.99
						9		5				6	9				3		
46	SAVNER	Kelod	21.4597	78.8764	7.7	123	655	311.	65.4	35.2	128	4.5	428.	75.7	55	42	1.3	3.17	0.85
						6		1				2	2				4		
47	HINGNA	Sathnaori	21.1333	78.8000	7.8	101	539	244.	65.4	19.4	60	43.	345.	50.9	41	42	0.6	1.67	0.78
						5		8				87	0				3		
48	PARSEONI	Nayakund	21.3667	79.1833	7.8	773	409	239.	45.0	30.4	50	6.0	309.	36.0	22	33	0.9	1.41	0.32
								7				6	3				2		
49	SAVNER	Khubala	21.4500	78.9667	7.6	728	386	234.	42.9	30.4	41	14.	321.	23.6	21	21	0.9	1.17	0.62
								6				06	2				1		
50	PARSEONI	Wagholi	21.3333	79.2167	7.7	666	353	214.	40.9	26.7	52	4.6	315.	23.6	14	15	0.9	1.55	0.92
								2					2				6		
51	RAMTEK	Sirpur Toli	21.3667	79.4000	7.3	502	266	198.	34.7	26.7	23	4.0	226.	16.1	21	24	0.2	0.71	-0.23
								9				7	0				8		
52	MOUDA	Khat	21.2417	79.5458	7.9	861	456	249.	47.0	31.6	56	2.0	368.	48.4	32	7	2.2	1.55	1.09
								9				4	7				2		
53	NAGPUR	Borkhedi	20.8833	78.9750	7.6	826	438	239.	49.1	27.9	54	3.9	386.	26.1	18	9	0.5	1.52	1.58
	(RURAL)							7				3	6				5		
54	KATOL	Chargaon	21.2667	78.7583	7.7	858	454	285.	45.0	41.3	56	1.2	356.	31.0	28	39	0.5	1.45	0.20
		(Punarwasi)						6				2	9				4		
55	NAGPUR	Nagpur_Ramdasp	21.1306	79.0639	7.9	693	367	198.	42.9	21.9	55	1.3	303.	40.9	16	4	2.4	1.70	1.03
	(RURAL)	eth						9				9	3				9		
56	Narkhed	Lohara	21.2658	78.4083	7.3	647	342	229.	65.4	15.8	43	1.6	291.	36.0	33	8	0.2	1.24	0.21
								5					4				2		
57	BHIWAPUR	Nawegaon	20.8028	79.4286	7.7	564	299	163.	38.8	15.8	41	7.5	291.	16.1	21	1	1.1	1.40	1.54
		(Deshmukh)						2				6	4				2		
58	SAVNER	Kothulna	21.4194	79.0383	7.7	232	1233	647.	110.4	88.7	125	6.7	713.	232.	71	45	1.2	2.15	-1.12
						9		7				3	7	0			6		
59	Hingana	Kanholi bara	20.9333	78.8500	7.5	688	365	234.	63.4	18.2	33	4.0	309.	43.4	22	4	0.4	0.94	0.40
								6				4	3				1		
60	UMRED	Makardhokda	20.8667	79.2194	7.9	727	384	295.	59.3	35.2	28	0.6	327.	28.5	30	10	0.6	0.71	-0.50
								8				6	1				4		
61	HINGNA	Amgaon	20.9944	78.9250	7.4	564	299	188.	42.9	19.4	26	1.1	243.	31.0	22	1	0.3	0.83	0.25
								7				4	8				8		
62	NARKHED	Sawargaon	21.3917	78.6350	7.5	824	436	285.	47.0	40.1	24	3	321.	48.4	21	13	0.3	0.62	-0.39
								6					2				4		
63	Nagpur	Mohpa	21.1417	78.7625	7.8	877	465	290.	49.1	40.1	48	1.9	345.	36.0	28	30	1.2	1.23	-0.10
	(Rural)							7				4	0				5		

64	KALAMESH	Dhapewada	21.3028	78.9139	7.5	136	722	504.	106.3	57.1	78	1.0	463.	122.	41	44	0.4	1.52	-2.41
	WAR					2		9				4	9	8			4		
65	KAMPTEE	Koradi	21.2528	79.0800	7.5	476	252	147.	38.8	12.2	40	4.7	166.	45.9	24	7	0.6	1.43	-0.21
								9				8	5				3		
66	NAGPUR	Nagpur_Hanuma	21.1264	79.1056	7.5	103	549	362.	40.9	62.0	53	2.1	428.	58.3	37	6	1.6	1.22	-0.12
	(RURAL)	n nagar				9		1				8	2				7		
67	SAVNER	Saoner-1	21.3897	78.9406	7.9	130	691	418.	63.4	62.0	62	0.7	487.	73.2	38	44	0.5	1.33	-0.27
						4		2				3	7				1		
68	KATOL	Nandora	21.1706	78.6111	7.8	397	210	137.	26.6	17.0	28	2.6	148.	13.6	64	4	0.4	1.04	-0.29
								7				6	7				5		_
69	HINGNA	Takalghat	20.9144	78.9439	7.6	220	1170	627.	126.7	74.1	109	88.	927.	155.	59	47	0.5	1.90	2.77
						9		3				05	8	1			8		
70	SAVNER	Bhasali Takli	21.3533	78.9906	7.8	150	798	387.	85.9	41.3	162	3.3	606.	103.	52	46	0.3	3.59	2.25
		D : 111	20.0224	70.0050		/	101	6	47.0	10.0	10	8	6	0		-	1	4.05	0.00
/1	UMRED	Pipaldol	20.8331	79.2656	8	915	484	321.	47.0	48.6	43	6.3	350.	68.2	66	5	0.2	1.05	-0.60
72	Dhimanun	Dhimenur	20.7004	70 51 64	7.0	044	500	3	50.2	26.7	70	4	9	00.0	70	15	9	2.14	0.00
/2	Bniwapur	Bhiwapur	20.7664	79.5164	7.6	944	500	260.	59.3	26.7	79	8.3	315.	98.0	76	15	1.0	2.14	0.00
72		Kharpada	21 5209	70.2475	7 5	124	760	1	02.0	27.7	E 2	9	2	05.5	02	16	2	1 21	2 1 2
/5	RAIVITER	Kilaipaua	21.5508	79.5475	7.5	154	700	2	03.0	57.7	55	9.1 Q	515. 2	95.5	02	40	5	1.21	-2.12
74	NARKHED	Malapur	21 /1322	78 6594	77	767	406	270	12 0	38.0	20	12	2 71 /	1/15	40	12	0.4	0.77	_/ 18
/4	NANNIED	Ivialapui	21.4522	78.0554	/./	/0/	400	3	42.5	50.5	25	6	/1.4	2	40	42	9.4 9	0.77	-4.10
75	NAGPUR	Gonkhedi	21 1364	78 9008	77	724	384	214	42.9	25.5	55	15	315	285	50	12	10	1 64	0.92
/3	(RURAL)	Gommeur	21.1504	70.5000	/./	124	504	214.	72.5	23.5	55	8	2	20.5	50	12	5	1.04	0.52
76	KATOI	Ridhora	21,2322	78.6206	7.6	638	338	198.	40.9	23.1	33	2.1	285.	21.1	20	17	0.5	1.02	0.74
				/ 0.0200				9		2012	00	5	5				4	2.02	
77	NAGPUR	Nagpur Wadi	21.1522	79.0178	7.6	912	483	316.	47.0	47.4	53	2.1	309.	68.2	56	22	0.3	1.30	-1.18
	(RURAL)	naka	_			_		2	-			4	3				3		_
78	NAGPUR	Nagpur Chinchb	21.0661	79.0611	7.5	154	818	351.	83.8	34.0	158	11.	493.	120.	87	44	0.6	3.67	1.10
	(RURAL)	hawan				2		9				11	6	4			9		
79	NAGPUR	Nagpur_Punapur	21.1608	79.1692	7.5	990	524	275.	63.4	27.9	82	11.	208.	140.	78	2	0.1	2.16	-2.06
	(RURAL)							4				41	2	2			9		
80	Nagpur	Nagpur_Koradi	21.2086	79.0772	7.8	159	844	346.	85.9	31.6	165	9.8	493.	189.	14	8	0.5	3.86	1.20
	(Rural)	naka				1		8				3	6	8			4		
81	NAGPUR	Nagpur_Police	21.1764	79.0653	7.6	454	240	204	38.8	25.5	17	0.8	107.	21.1	130	2	0.8	0.52	-2.29
	(RURAL)	line takli										4	1				1		
82	KUHI	Kuhi-1	21.0150	79.3603	7.9	780	413	163.	18.4	27.9	62	2.2	321.	18.6	19	14	0.7	2.12	2.05
						1		2				3	2						

83	MOUDA	Tarsha	21.2258	79.3811	7.5	249	1318	821.	177.8	89.9	143	58.	731.	219.	178	36	0.5	2.18	-4.30
						0		1				65	5	6			1		
84	HINGNA	Mohgaon Zelpi	21.0683	78.8875	7.5	749	397	219.	47.0	24.3	32	0.9	249.	23.6	35	41	0.6	0.94	-0.26
								3				1	8				8		
85	SAVNER	Patansaongi-2	21.3353	79.0167	8	560	297	209.	65.4	10.9	34	1.5	309.	13.6	8	14	0.4	1.02	0.90
								1				9	3				5		
86	KALAMESH	Lohgad	21.3422	78.7231	7.5	908	480	321.	47.0	48.6	36	2.9	291.	45.9	42	47	0.2	0.88	-1.57
	WAR							3			-	9	4				7		_
87	UMRED	Singori	20.7453	79.0697	7.7	557	295	209.	42.9	24.3	43	1.0	243.	23.6	29	27	0.4	1.30	-0.15
								1				9	8				4		
88	Kalmeshwa	Tondakhairi	21.2692	78.9525	7.7	825	436	300.	47.0	43.7	39	15.	380.	36.0	19	37	0.7	0.98	0.29
	r		24.2650	70 74 20		100	707	9	4047		20	51	6	112	07	20	4	0.70	2.20
89	Katol	Metpanjara	21.2658	/8./128	1.1	139	/3/	469.	124.7	37.7	39	6.3	368.	112.	8/	30	0.4	0.78	-3.29
00	Kalmashuka	Cillori	21 2022	79.0721	77	1	1241	2	240.4	60.9	100	2 11	/	9	126	16	0	1 5 6	2.26
90	r	511011	21.3022	78.9731	1.1	234	1241	8//. 2	249.4	60.8	106	11	921.	187.	120	40	0.2	1.50	-2.30
01	Kalmoshwa	Khapri	21 2252	79 9250	70	052	505	2	45.0	60.9	26	4.2	269	4 10 1	26	45	4	0.50	1 20
91	r	Кпартт	21.2355	78.8550	7.0	933	202	2	43.0	00.8	20	1.1	7	40.4	30	45	5	0.55	-1.20
92	Kalmeshwa	Linga	21.2028	78.8214	7.7	147	782	418.	47.0	71.7	63	63.	529.	85.6	75	46	0.5	1.35	0.43
	r					6		2				78	3				4		
93	Kalmeshwa	Kohli	21.2522	78.8161	7.7	908	482	367.	65.4	48.6	29	1.6	380.	40.9	42	41	1.0	0.66	-1.03
	r							2				4	6				3		
94	Katol	Wasboli	21.2189	78.7022	7.7	114	569	326.	42.9	52.3	40	12.	386.	53.4	41	44	0.6	0.97	-0.11
						1		4				84	6				2		
95	Kalmeshwa	Ramgiri	21.3019	78.7514	7.2	522	276	163.	45.0	12.2	45	1.7	273.	16.1	14	9	0.6	1.54	1.24
	r							2				9	6						
96	Nagpur	Khairgaon	21.1858	78.9567	7.3	133	706	453.	92.0	53.5	33	1.8	428.	78.2	66	47	0.2	0.68	-1.98
	(Rural)					3		9					2				5		
97	Nagpur	Satgaon	20.9297	79.0036	7.7	101	536	214.	42.9	25.5	72	0.7	243.	83.1	62	25	1.0	2.15	-0.25
	(Rural)					2		2				7	8				2		
98	KALAMESH	Ashti	21.2019	78.9683	7.8	782	414	300.	65.4	32.8	37	1.2	374.	18.6	26	41	0.7	0.93	0.17
	WAR							9			100	3	/				6		
99	NARKHED	Niohad	21.4686	/8.4458	1.1	207	1100	622.	139.0	65.6	130	3.0	463. 9	294. 1	68	16	0.2	2.27	-4.74
10	MOUDA	Mouda-1	21.1472	79,4003	7,6	228	1212	275	40.9	41.3	286	10.	624.	- 204.	154	46	0.5	7.54	4,79
0						8		4				67	5	7			0.0		
10	HINGNA	Hingna	21.0739	78.9578	7.6	664	352	249.	24.5	45.0	33	1.5	321.	21.1	23	23	0.3	0.91	0.34
1		(Dhangarpura)						9				5	2				2		

10	Ramtek	Karwahi	21.6689	79.4500	8	170	1107	438.	145.7	71.1	170.	2.5	385.	215.	99	31	2	2.90	-6.82
2						3		2			87	1	5	9					
10	Ramtek	Pathrai	21.5306	79.3000	7.8	638	415	239	73.9	40.1	38.4	2	263.	25.7	50	10	(0.89	-2.68
3													5						
10	Ramtek	Kamthi	21.6067	79.3722	7.8	474	308	229.	77.8	36.8	19.9	2.0	253.	12.9	12	16	0	0.47	-2.76
4					_			1			6	1	8		-				
10	Ramtek	Lakhapur	21.5603	79.4311	7.6	335	218	109.	31.9	18.9	33.4	1.6	107.	28.3	35	8	1	1.16	-1.39
5						10-		6	100 -		6		4						
10	Ramtek	Murda	21.4589	79.4164	7.4	125	813	448.	129.7	//.4	65.0	0.6	170.	267.	11	31	1	1.11	-
6						1 I		2			1	5	8	3					10.0
10	Pamtok	Gugaldah/	21 4217	70 4222	76	150	1024	E17	1677	0E 1	0E 0	0.0	277	210	100	21		1 2 /	Э
7	Namlek	Gugaluony	21.4217	79.4522	7.0	159	1054	o 0	107.7	05.1	05.Z	6	522. 1	210. g	109	51	-	1.54	-
<i>'</i>		Gliogra				0		5			2	0	T	0					10.1
10	Kamthi	Asoli Sakwa	21 1414	79 2042	79	129	839	219	77.8	34 3	165	0.2	361	138	33	10	-	3 92	-0.79
8	Kannen			75.2012	7.5	0	000	1	77.0	51.5	19	8	1	8	55	10		0.52	0.75
10	Kamthi	Gumthala	21.1375	79.2836	7.7	687	447	288.	93.8	47.4	34.0	0.8	185.	79.7	53	31	(0.71	-5.55
9								8			5	5	4						
11	Kamthi	Palsad	21.1147	79.2717	7.6	908	590	303.	101.8	49.1	61.8	2.0	161	79.7	139	39	1	1.26	-6.49
0								8			1	7							
11	Kamthi	Chikli	21.0867	79.3031	8	553	359	164.	49.9	27.8	61.7	1.8	190.	43.7	36	16	1	1.74	-1.66
1								3			1	3	3						
11	Kamthi	Badoda/ Wadoda	21.1339	79.3192	7.8	473	307	204.	61.9	34.6	14.3	11.	195.	18	32	11	(0.36	-2.74
2								2			4	5	2						
11	Mauda	Vanjara	21.1172	79.4189	7.8	619	402	254	79.8	42.3	36.3	1.8	253.	18	49	29	0	0.82	-3.31
3												2	8						
11	Mauda	Chirvha	21.1278	79.4511	8	900	585	234.	81.8	37.0	102.	4.1	292.	79.7	43	15	2	2.35	-2.33
4								1			06	6	8						
11	Mauda	Marodi	21.1564	79.4500	7.9	777	505	219.	65.9	37.2	38.4	2.8	302.	43.7	15	18	(0.94	-1.40
5	N 4 a v al a	Dhanala	24.4050	70.4606	7.0	224	1450	1	205.4	162.0	3	/	6	601	1.45	44		0.50	
	Iviauda	Dhanala	21.1858	79.4686	7.6	224	1456	976.	305.4	163.0	51.2	0.8	117.	601.	145	41	C	0.59	-
0						0		T				4	T	4					20.7
11	Mauda	Govri	21 1214	79 5056	79	188	1225	562	167.7	96.0	125	30	551	246	76	37	-	2 07	-7.25
7	Mauua	0001	21.1214	79.3030	1.5	5	1225	7	107.7	50.0	69	03	4	240. 7	/0	57	1	2.07	1.25
11	Mauda	Panira	21.2114	79.5369	8.2	177	1151	368.	123.8	59.5	235	1.6	395	231	127	28	4	4.34	-4.61
8					0.2	0		5				7	3	3					
11	Mauda	Sirsoli	21.2853	79.5369	8.1	685	445	293.	85.8	50.5	41.1	3.0	253.	77.1	31	20	(0.87	-4.29
9								8			7	9	8						

12	Mauda	Bori Ghiwari	21.3281	79.5078	7.9	289	1881	358.	123.8	57.1	320.	1.9	385.	390.	72	32	5.97	-4.57
0						4		6			48		5	7				
12	Mauda	Aroli	21.3228	79.4494	8.2	919	597	408.	125.7	68.7	12.3	0.0	219.	79.7	81	12	0.22	-8.34
1								4			8	6	6					
12	Mauda	Kumbhapur	21.1989	79.3283	8.1	751	488	403.	139.7	64.1	2.24	0.0	322.	20.6	52	19	0.04	-6.98
2								4				6	1					
12	Mauda	Bhendala	21.2308	79.4289	7.9	167	1088	338.	105.8	56.6	138.	0.6	331.	208.	53	31	2.71	-4.51
3						4		6			9	2	8	2				
12	Mauda	Hingna	21.2622	79.3878	7.9	169	1099	408.	141.7	64.8	138.	0.5	409.	182.	56	30	2.41	-5.70
4						1		4			25	9	9	5				
12	Mauda	Chacher	21.2831	79.3372	8.2	197	1281	343.	117.8	54.9	35.1	0.4	175.	105.	59	30	0.67	-7.53
5					_	0		6			9	1	7	4	-			
12	Mauda	Rewral	21.2647	79.4639	7.8	295	1919	308.	103.8	49.8	175	10	444.	336.	21	41	3.53	-2.01
6						2		8				2.4	1	/				
12			24.2475	70.4500	7.6	250	4.620	011	270.4	100.0	20	1	224	420			0.40	
12	Kamthi	Waregaon	21.2475	79.1539	7.6	250	1629	811.	279.4	129.3	39	24.	234.	439.	//	88	0.48	-
/						6		/				02	2	5				20.7
12	Ka math i	Currenderui	21 2460	70 1211	7.0	150	1020	200	<u> </u>	25.2	105	22	220	210	70	F 1	4 1 1	/
0	Kamuni	Suradevi	21.2409	79.1211	7.0	120	1020	209.	03.9	35.5	105	22	229. 1	Z18. E	70	51	4.11	-2.34
0	Kamthi	Chorpada	21 1996	70 1002	76	9 109	1200	2 //10	1/2 7	66.7	27.0	20	4	5 277	62	0	0.65	
0	Kamun	Ghorpada	21.1000	75.1552	7.0	5	1250	2	145.7	00.7	57.5	20. 6	122	6	02	0	0.05	10.6
5						5		5				0		0				7
13	Kamthi	Gada	21 1964	79 2344	75	585	380	144	47 9	23.5	32.6	18	224	30.8	19	15	0.96	-0.65
0	Kanten	ouuu	21.1501	/ 5125 11	7.5	505	300	4	17.5	20.0	52.0	49	5	50.0	15	10	0.50	0.05
13	Kamthi	Ungaon	21.1903	79.2922	7.7	889	578	308.	101.8	50.3	37.6	19.	297.	69.4	24	29	0.76	-4.35
1								8				34	7					
13	Parseoni	Khandala	21.2192	79.2672	7.7	724	471	119.	35.9	20.3	68	21	283	43.7	22	17	2.25	1.17
2								5										
13	Kalmeshwa	Kalmeshwar	21.2297	78.9183	7.6	189	1234	308.	91.8	52.7	175	20	214.	411.	48	16	3.60	-5.41
3	r					8		8					7	2				
13	Kalmeshwa	Uparvani	21.2150	78.8553	7.9	117	763	239	79.8	38.7	85.3	20.	361.	100.	29	59	1.96	-1.25
4	r					4					3	16	1	2				
13	Kalmeshwa	Wathoda	21.2825	78.8389	7.4	123	802	263.	93.8	41.3	61	34.	209.	156.	45	50	1.32	-4.65
5	r					4		9				07	8	8				
13	Kalmeshwa	Mohpa	21.3064	78.8283	7.6	110	721	318.	107.8	51.3	35.1	20.	239.	125.	32	62	0.70	-5.69
6	r					9		7			6	45	1	9				
13	Kalmeshwa	Khairi	21.2925	78.7908	7.5	847	551	244	73.9	41.4	30.5	5.8	136.	97.7	29	43	0.70	-4.86
7	r										1	8	6					

13	Kalmeshwa	Mandvi	21.3425	78.8058	7.8	962	625	139.	47.9	22.2	60.5	36.	39	92.5	84	46	1.81	-3.58	
8	r							4				6							
13	Kalmeshwa	Tishti	21.3731	78.7875	7.4	102	667	259	87.8	41.6	35.3	20.	175.	107.	35	78	0.78	-4.93	
9	r					6						9	7	9					
14	Kalmeshwa	Parsodi Wakil	21.3464	78.8856	7.7	756	491	149.	43.9	25.6	52.9	20.	268.	28.3	16	32	1.57	0.10	
0	r							4				46	4						
14	Kalmeshwa	Tel-Kamthi	21.3761	78.8517	7.7	105	688	219.	67.9	36.8	60.8	30.	219.	128.	35	53	1.48	-2.82	
1	r					9		1				07	6	5					
14	Kalmeshwa	Dadhera	21.3889	78.7728	7.9	929	604	159.	49.9	26.6	68.1	21.	195.	74.5	55	19	1.94	-1.48	
2	r							4			6	9	2						
14	Saoner	Khursipar	21.4731	78.7589	7.8	590	384	169.	49.9	29.0	60.7	20.	185.	79.7	21	23	1.69	-1.84	
3								3				38	4						
14	Saoner	Jatamkhor	21.4747	78.8103	7.4	970	631	179.	55.9	30.0	34	20.	161	46.3	42	75	0.91	-2.62	
4								3				7							
14	Saoner	Umri	21.4203	78.8136	7.6	543	353	129.	41.9	21.3	30.1	20.	209.	25.7	23	17	0.95	-0.41	
5								5			6	1	8						
14	Saoner	Rampuri	21.4436	78.8642	7.5	124	806	313.	119.8	47.1	53.8	22.	219.	169.	41	68	1.05	-6.27	
6						0		7				3	6	6					
14	Saoner	Kelwad	21.4633	78.8792	8	132	864	273.	91.8	44.2	122	20.	409.	110.	108	51	2.62	-1.51	
7						9		9				44	9	5					
14	Parseoni	Satak	21.3367	79.2661	7.4	124	808	363.	133.7	55.8	36.8	30.	156.	161.	52	72	0.67	-8.72	
8						3		5				2	2	9					
14	Ramtek	Amgaon	21.3881	79.3489	7.5	229	149	64.7	20.0	10.9	12.3	3.4	53.7	28.3	12	10	0.55	-1.02	
9																			
15	Parsioni	Tamaswadi	21.3111	79.1350	7.5	551	358	154.	53.9	24.4	28.7	1.4	248.	22.1	2	4	0.82	-0.62	
0								4			7	3	9						
15	Parsioni	Guramde	21.3136	79.1750	7.1	476	309	114.	33.9	19.6	54.3	2.7	248.	12.9	36	9	1.84	0.77	
1								5			3	6	9						
15	Parsioni	Kharanbad	21.3739	79.1139	7.6	136	884	263.	91.8	41.8	116.	49.	327	195.	7	59	2.53	-2.67	
2						0		9			49	81		3					
15	Parsioni	Khubala	21.4656	78.9956	7.8	690	449	164.	59.9	25.4	33.3	23.	214.	38.6	35	9	0.91	-1.57	
3								3			2	99	7						
15	Saoner	Tembhurdoh	21.5047	78.9472	7.8	215	140	144.	47.9	23.5	69.3	2.6	307.	22.1	22	29	2.05	0.71	
4								4			2	2	4						
15	Saoner	Waki	21.3358	79.0250	7.8	693	450	179.	63.9	28.0	64.0	0.9	278.	46.3	61	41	1.68	-0.94	
5								3			6	3	2						
15	Saoner	Gujarwadi	21.3756	78.9436	7.8	934	607	263.	93.8	41.3	81.7	0.5	458.	64.3	17	39	1.77	-0.57	
6								9			4	9	7			1			
15	Saoner	Khurajgaon	21.4147	78.9081	7.9	605	393	164.	59.9	25.4	72.3	10.	219.	59.1	30	33		1.97	-1.49
----	----------	-------------	---------	---------	-----	-----	------	------	-------	------	------	-----	------	------	-----	----	-----	------	-------
7								3			8	25	6						
15	Saoner	Nanda Kuurd	21.4414	78.9583	7.9	613	398	164.	59.9	25.4	84.6	1.1	361.	22.1	23	6		2.31	0.83
8		Nandapur						3			4	8	1						
15	Saoner	Kawatha	21.4753	78.9047	7.8	111	724	298.	111.8	45.4	76.2	6.1	390.	84.8	4	39		1.54	-2.93
9						4		8			9	6	4						
16	Parseoni	SuwarDhara	21.4856	79.1256	7.7	437	284	144.	53.9	22.0	30.7	2.8	131.	22.1	61	14		0.89	-2.34
0								4			6	6	8						
16	Parseoni	Bitoli	21.4347	79.1650	7.7	218	1418	438.	139.7	72.5	298.	0.8	444.	308.	149	12		5.10	-5.67
1						1		2			3	1	1	4					
16	Parseoni	Mahul	21.4150	79.1883	7.4	108	708	249	99.8	36.3	50.6	15.	268.	120.	2	9		1.10	-3.58
2						9					9	01	4	8					
16	Parseoni	Khandala	21.2189	79.2672	7.9	612	398	129.	37.9	22.2	74.2	2.5	307.	15.4	16	3		2.37	1.32
3		Ghatate						5			2	5	4						
16	Parseoni	Kherdi	21.2600	79.2900	8.2	184	1199	378.	119.8	62.9	103.	26.	336.	311	2	1		1.91	-5.65
4						4		5			8	51	7						
16	Ramtek	Kachurwadi	21.3317	79.3853	7.8	401	261	119.	35.9	20.3	22.2	1.4	156.	22.1	7	20		0.74	-0.90
5								5			7		2						
16	Mohda	KhaperKhedi	21.3531	79.4292	7.7	770	501	129.	39.9	21.8	10.5	0.6	53.7	82.2	4	38		0.33	-2.91
6		-						5				5							
16	Ramtek	Patgavri	21.3936	79.2278	8.1	103	670	219.	73.9	35.3	101	15.	419.	72	54	12		2.42	0.28
7		_				1		1				4	7						
16	Borda	Ramtek	21.4483	79.2742	8	121	788	253.	89.8	39.8	111.	56.	380.	156.	55	31		2.47	-1.53
8						3		5			84	62	6	8					
16	Warghat	Ramtek	21.5481	79.4075	7.6	970	631	164.	59.9	25.4	82.7	4.6	205	77.1	25	5		2.26	-1.72
9								3			4	4							
17	Karwahi	Ramtek	21.3936	79.4492	7.8	984	640	234.	81.8	37.0	55.3	3.7	248.	79.7	15	22		1.27	-3.05
0								1				4	9						
17	Parsodi	Mauda	21.0958	79.2092	7.6	176	1148	373	135.7	57.7	113.	7.2	224.	254.	23	17		2.05	-7.85
1						6					2	3	5	4					
17	Bhiwapur	Kaodasi	20.7698	79.3038	8	504		200	32.0	29.0	25	3	195	35	33	19	0.8	0.77	-0.79
2																			
17	Bhiwapur	Zamkoli	20.6314	79.1953	8	622		265	60.0	28.0	21	2	226	64	10	37	0.6	0.56	-1.60
3																			
17	Bhiwapur	Kholdoda	20.5974	79.3098	8	314		295	56.0	38.0	610	20	427	638	374	8	0.8	15.4	1.07
4					1	2												1	
17	Bhiwapur	Malewada	20.7262	79.3695	8	156		325	82.0	29.0	202	16	336	266	96	37	1.1	4.88	-0.98
5					1	0													

17 6	Bhiwapur	Seloti	20.7450	79.4421	8	600		225	60.0	18.0	32	8	293	28	14	16	0.6	0.93	0.32
17	Bhiwapur	Adhyal	20.8030	79.5158	8	583		210	40.0	27.0	37	3	220	32	62	4	0.8	1.11	-0.62
, 17 8	Bhiwapur	Somnala	20.8383	79.5119	8	738		260	70.0	21.0	48	4	232	78	38	36	0.4	1.29	-1.42
17 9	Kuhi	Gothangaon	20.9252	79.5316	8	675		245	60.0	23.0	41	4	311	39	14	17	1.1	1.14	0.21
18 0	Kuhi	Jiwanapur	20.9462	79.5167	8.2	728		240	40.0	34.0	58	3	348	50	10	4	0.5	1.63	0.91
18 1	Kuhi	Tutanbori	20.7992	79.4353	8.1	322		200	66.0	9.0	51	4	311	21	24	7	0.4	1.56	1.06
18 2	Bhiwapur	Gondbori	20.7949	79.4498	8.2	850		320	80.0	29.0	48	4	183	177	19	11	0.3	1.17	-3.39
18 3	Kuhi	Adam	20.9977	79.4521	8.2	646		290	60.0	34.0	14	4	244	67	24	2	0.3	0.36	-1.80
18 4	Kuhi	Channa	20.9933	79.5230	8	141 0		355	136.0	4.0	145	6	336	220	58	40	0.8	3.34	-1.62
18 5	Kuhi	Pauni	21.0189	79.4919	8	168 0		385	40.0	69.0	207	8	336	365	43	8	0.4	4.59	-2.17
18 6	Kuhi	Bhiwkund	21.0519	79.4594	8.2	630		265	60.0	28.0	23	2	244	53	24	23	0.8	0.61	-1.30
18 7	Kuhi	Rajola	21.0733	79.5244	8.1	145 0		410	46.0	72.0	147	2	391	248	29	40	0.4	3.15	-1.82
18 8	Kuhi	Kuhi	21.0119	79.3509	8.1	950		290	100.0	10.0	94	20	226	199	34	24	0.8	2.40	-2.12
18 9	Kuhi	Dhanoli	21.0446	79.2636	7.9	947		310	36.0	53.0	74	8	415	53	38	30	0.9	1.83	0.64
19 0	Kuhi	Dodama	21.0112	79.2560	8	190 6		500	62.0	84.0	207	16	336	440	43	37	0.8	4.02	-4.50
19 1	Kuhi	Ambadi	21.0569	79.3643	8.1	928		270	46.0	38.0	85	8	281	135	14	37	0.5	2.24	-0.82
19 2	UMRED	Umrer	20.8500	79.3333	7.9	221 2	1171	637. 5	139.0	69.3	181. 8	10. 22	862. 4	130. 3	182	2	0.9 2	3.14	1.49
19 3	PARSEONI	Ramtek	21.4000	79.3000	7.7	140 7	746	387. 6	87.9	40.1	102. 23	10	469. 9	117. 9	51	44	0.9 5	2.27	0.01
19 4	NARKHED	Narkhed	21.4667	78.5333	7.4	141 7	750	351. 9	73.6	40.1	109	1.9 9	487. 7	85.6	43	44	0.5 5	2.54	1.02

19	HINGNA	Gumgaon	20.9917	79.0333	7.9	758	402	285.	83.8	18.2	38	8.7	398.	11.2	12	9	0.7	0.98	0.84
5								6				9	5				3		
19	RAMTEK	Deolapar	21.5833	79.3667	7.7	613	325	204	47.0	20.7	41	5.6	345.	13.6	11	0	1.3	1.25	1.60
6												7	0				6		
19	UMRED	Panchgaon	21.0333	79.1667	8	584	310	229.	63.4	17.0	17	1	249.	13.6	41	28	1.2	0.49	-0.47
7								5					8				1		
19	Kalmeshwa	Wardhamna	21.1417	78.9333	7.6	158	841	459	83.8	59.5	61	6.1	475.	170.	23	4	0.5	1.24	-1.29
8	r					7						3	8	0			1		
19	KALAMESH	Kalmeshwar	21.2333	78.9167	7.7	685	363	260.	40.9	37.7	25	4.6	178.	80.6	35	3	0.4	0.68	-2.22
9	WAR							1				6	4				6		
20	RAMTEK	Chorbaoli	21.4667	79.3167	8	113	566	255	51.1	30.4	133	2.1	487.	73.2	20	0	0.8	3.64	2.94
0						4						3	7				4		
20	PARSEONI	Parseoni	21.5500	79.1667	7.5	696	369	214.	42.9	25.5	33	33.	309.	26.1	19	11	0.1	0.98	0.82
1								2				16	3				2		
20	PARSEONI	Nagalwadi	21.5667	79.0167	7.7	781	414	229.	47.0	26.7	51	7.0	327.	28.5	18	15	0.6	1.47	0.81
2								5				7	1				5		
20	RAMTEK	Sivani	21.4000	79.4708	7.9	790	418	234.	42.9	30.4	69	1.4	374.	33.5	23	14	1.2	1.97	1.50
3								6				1	7				3		
20	Umrer	Uti	20.9500	79.2167	7.8	967	512	311.	61.3	37.7	51	3.2	410.	38.5	35	34	0.7	1.26	0.56
4								1				5	4				7		
20	MOUDA	Chacher	21.2833	79.3417	7.7	792	420	234.	53.1	24.3	65	1.8	315.	45.9	64	4	1.3	1.85	0.51
5								6				1	2				1		
20	RAMTEK	Manegaon Tek	21.6806	79.4222	7.6	145	773	433.	83.8	53.5	42	5.5	463.	95.5	7	46	0.8	0.88	-0.99
6						9		5				6	9				3		
20	SAVNER	Kelod	21.4597	78.8764	7.7	123	655	311.	65.4	35.2	128	4.5	428.	75.7	55	42	1.3	3.17	0.85
7						6		1				2	2				4		
20	HINGNA	Sathnaori	21.1333	78.8000	7.8	101	539	244.	65.4	19.4	60	43.	345.	50.9	41	42	0.6	1.67	0.78
8						5		8				87	0				3		
20	PARSEONI	Nayakund	21.3667	79.1833	7.8	773	409	239.	45.0	30.4	50	6.0	309.	36.0	22	33	0.9	1.41	0.32
9								7				6	3				2		
21	SAVNER	Khubala	21.4500	78.9667	7.6	728	386	234.	42.9	30.4	41	14.	321.	23.6	21	21	0.9	1.17	0.62
0								6				06	2				1		
21	PARSEONI	Wagholi	21.3333	79.2167	7.7	666	353	214.	40.9	26.7	52	4.6	315.	23.6	14	15	0.9	1.55	0.92
1								2					2				6		
21	RAMTEK	Sirpur Toli	21.3667	79.4000	7.3	502	266	198.	34.7	26.7	23	4.0	226.	16.1	21	24	0.2	0.71	-0.23
2								9				7	0				8		
21	MOUDA	Khat	21.2417	79.5458	7.9	861	456	249.	47.0	31.6	56	2.0	368.	48.4	32	7	2.2	1.55	1.09
3					1			9				4	7				2		

a (RURAL) (Curar) (Cur	21	NAGPUR	Borkhedi	20.8833	78.9750	7.6	826	438	239.	49.1	27.9	54	3.9	386.	26.1	18	9	0.5	1.52	1.58
11 NATOL (PUNAWAS) Chargaon (PUNAWAS) 21.667 78.783 7.7 87.8 6.7 9.8 4.9 1.2 37.0 <t< td=""><td>4</td><td>(RURAL)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td>3</td><td>6</td><td></td><td></td><td></td><td>5</td><td></td><td></td></t<>	4	(RURAL)							7				3	6				5		
5 (purawas) (puraw	21	KATOL	Chargaon	21.2667	78.7583	7.7	858	454	285.	45.0	41.3	56	1.2	356.	31.0	28	39	0.5	1.45	0.20
11 NAGPUR (RUAL) Nagpur etc) Nagpur (Ruspur) Nagpur etc) Nagpur (Ruspur) Nagpur etc) Nagpur (Ruspur) Nagp	5		(Punarwasi)						6				2	9				4		
6 (RURAL) eth - 9 6 9 3 - 0 9 0 0 0<	21	NAGPUR	Nagpur_Ramdasp	21.1306	79.0639	7.9	693	367	198.	42.9	21.9	55	1.3	303.	40.9	16	4	2.4	1.70	1.03
11 Narkhed Ushare	6	(RURAL)	eth						9				9	3				9		
7 - - 5 - - - 4 - - 2 - - 1	21	Narkhed	Lohara	21.2658	78.4083	7.3	647	342	229.	65.4	15.8	43	1.6	291.	36.0	33	8	0.2	1.24	0.21
11 BHIWAPUR Nawegoon (Deshnuch) 20.8028 7.9.4286 7.7 564 29 10.1 20 1.1 1.1 1.0 1.4 1.0 1.5 1.1 1.0	7								5					4				2		
8 (c) (c) (c) (c) (m) (m) 7 7 23 67 7 10.4 87. 125 6.7 71. 23. 7.7 23. 7.9 7.0 <	21	BHIWAPUR	Nawegaon	20.8028	79.4286	7.7	564	299	163.	38.8	15.8	41	7.5	291.	16.1	21	1	1.1	1.40	1.54
11 SAVNER Kothulna 21.4194 79.0383 7.7 23 7133 67 713 232. 71 45 1.2 2.15 -1.12 9 Kanholi bara 20.9333 78.8500 7.5 688 65 64 182. 33 4.0 30.9 43.4 22.5 71 45 1.2 2.15 -1.2 22 UMRED Makardhokda 20.867 79.194 7.9 72 88 65 59.3 35.2 88 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.6 32.7 48.4 30.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 <th< td=""><td>8</td><td></td><td>(Deshmukh)</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>6</td><td>4</td><td></td><td></td><td></td><td>2</td><td></td><td></td></th<>	8		(Deshmukh)						2				6	4				2		
9	21	SAVNER	Kothulna	21.4194	79.0383	7.7	232	1233	647.	110.4	88.7	125	6.7	713.	232.	71	45	1.2	2.15	-1.12
22 Hingana Kanholi bara 20.9333 78.8500 7.5 688 365 624. 63.4 18.2 33 4.0 309. 43.4 22 4 1 1 22 UMRED Makardhokda 20.8667 79.2194 7.9 7.7 884 295. 59.3 35.2 28 0.6 327. 85.4 1.0 0.4 0.4 0.4 0.4 0.50 22 HINGNA Amgaon 20.9944 78.9250 7.4 564 299 18.8 420.7 7.4 6 1.1 24.8 81.0 22.1 1.0 0.3 0.62 -0.39 3 MakrHeD Sawargaon 21.3917 78.6350 7.5 824 436 285. 47.0 40.1 24 8 21.4 4.4 0.4 1.2 <td< td=""><td>9</td><td></td><td></td><td></td><td></td><td></td><td>9</td><td></td><td>7</td><td></td><td></td><td></td><td>3</td><td>7</td><td>0</td><td></td><td></td><td>6</td><td></td><td></td></td<>	9						9		7				3	7	0			6		
0 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $ $	22	Hingana	Kanholi bara	20.9333	78.8500	7.5	688	365	234.	63.4	18.2	33	4.0	309.	43.4	22	4	0.4	0.94	0.40
22 UMRED Makardhokda 20.867 79.2194 7.9 727 384 295 59.3 35.2 28 0.6 327. 28.5 30 10 0.6 0.71 0.50 22 HINGNA Amgaon 20.9944 78.9250 7.4 564 29 188. 42.0 7.4 26 1.1 24.3 13.0 22.0 1 0.3 0.6 0.71 0.50 22 NARKHED Sawargaon 21.3917 78.6350 7.6 824 46 280. 47.0 40.1 48 1.9 345.0 28.0 <	0								6				4	3				1		
1	22	UMRED	Makardhokda	20.8667	79.2194	7.9	727	384	295.	59.3	35.2	28	0.6	327.	28.5	30	10	0.6	0.71	-0.50
22 HINGNA Amgaon 20.9944 78.9250 7.4 564 299 188. 42.9 1.4 26 1.1 24.8 31.0 22 1 0.3 0.83 0.25 22 NARKHED Sawargaon 21.3917 78.6350 7.5 824 436 285. 47.0 40.1 24 3 321. 48.4 21 13 4 0 0.62 0.39 22 NARKHED Mohpa 21.1417 78.7625 7.8 877 465 290. 49.1 40.1 48 1.9 345. 36.0 28 30 1.2 1.23 0.10 4 (Rural) Dhapewada 21.3028 78.9139 7.5 136 722 504. 106.3 57.1 78 14 44 9 4 9 8 5 7 6 1.52 2.141 7 7 6 1.52 2.141 9 16.1 4.7 16. 45.9 2.4 7 0.62 1.52 2.1 9 16.1	1								8				6	1				4		
2	22	HINGNA	Amgaon	20.9944	78.9250	7.4	564	299	188.	42.9	19.4	26	1.1	243.	31.0	22	1	0.3	0.83	0.25
22 NARKHED Sawargaon 21.3917 78.6350 7.5 824 436 285. 47.0 40.1 24 3 321. 48.4 21 13 0.3 0.62 -0.39 22 Nagpur (Rural) Mohpa 21.1417 78.7625 7.8 877 465 290. 49.1 40.1 24 3 321. 48.4 21 13 0.3 0.62 -0.39 22 KALAMESH (Rural) Dhapewada 21.3028 78.9139 7.5 136 722 504. 106.3 57.1 78 1.0 463. 122. 41 44 0.4 1.52 -2.41 5 WAR Nagpur_Hanuma 21.2528 79.0800 7.5 103 549 362. 40.9 62.0 53 2.1 428. 58.3 37 6 1.6 1.22 -0.12 7 (RURAL) nagar 21.1264 79.1056 7.5 103 549 362. 40.9 62.0 53 2.1 428. 58.3 37 6 <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td>4</td> <td>8</td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td>	2								7				4	8				8		
3 - - - 6 - - 2 - - 4 4 - 4 22 Nagpur (Rural) Mohpa 21.1417 78.7625 7.8 877 46 290. 49.1 40.1 48 1.9 345. 360. 2 35 - - 5 - - 5 - - 5 - - 5 - - 5 - 5 - - 5 - - 5 - - 5 - - 7 - 6 - 7 7 6 - 7	22	NARKHED	Sawargaon	21.3917	78.6350	7.5	824	436	285.	47.0	40.1	24	3	321.	48.4	21	13	0.3	0.62	-0.39
22 Nagpur (Rural) Mohpa 21.1417 78.7625 7.8 877 465 290. 49.1 40.1 48 1.9 345. 36.0 28 30 1.2 1.23 -0.10 4 (Rural) Dhapewada 21.3028 78.9139 7.5 136 72 504. 106.3 57.1 78 1.0 46.3 1.2 41 40 0.4 0.5 5 22 KALAMESH Dhapewada 21.3028 78.9139 7.5 136 722 504. 106.3 57.1 78 1.0 46.3 4 0.4 0.4 0.5 5 22 KAMPTEE Koradi 21.2528 79.0800 7.5 476 252 147. 38.8 12.2 40 4.7 166. 45.9 24 7 0.6 1.43 -0.21 6 naggur_n naggur_n 79.1056 7.5 476 252 147. 38.8 12.2 40.9 42.1 42.1 4 4 0.4 1.2 1.2 1.2 <td>3</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td>-</td> <td>6</td> <td></td> <td></td> <td>_</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td>	3			-			_	-	6			_		2				4		
4 (Rural) Percense Cond	22	Nagpur	Mohpa	21.1417	78.7625	7.8	877	465	290.	49.1	40.1	48	1.9	345.	36.0	28	30	1.2	1.23	-0.10
22 KALAMESH Dhapewada 21.3028 78.9139 7.5 136 722 504. 106.3 57.1 78 1.0 463. 122. 41 44 0.4 1.52 -2.41 5 WAR 21.2528 79.0800 7.5 476 22 9 147. 38.8 12.2 40 4.7 166. 45.9 2 7 0.6 1.43 -0.21 6 9 1 8 2 7 0.6 1.43 -0.21 6 9 1 8 2 1.43 -0.21	4	(Rural)							7			_	4	0				5		_
S WAR	22	KALAMESH	Dhapewada	21.3028	78.9139	7.5	136	722	504.	106.3	57.1	78	1.0	463.	122.	41	44	0.4	1.52	-2.41
22 KAMPTEE Koradi 21.2528 79.0800 7.5 476 252 147. 38.8 12.2 40 4.7 166. 45.9 24 7 0.6 1.43 -0.21 6 NAGPUR Nagpur_Hanuma 21.2528 79.1056 7.5 103 549 362. 40.9 62.0 53 2.1 428. 5 5 6 1.6 1.22 -0.21 7 (RURAL) n nagar 21.1264 79.1056 7.9 130 691 418. 63.4 62.0 53 2.1 428. 58.3 37 6 1.6 1.22 -0.21 22 SAVNER Saoner-1 21.3897 78.9406 7.9 130 691 418. 63.4 62.0 62 0.7 87 73.2 38 44 0.5 1.33 -0.27 24 7 78.6111 7.8 397 210 137. 26.6 17.0 28 2.6 148. 13.6 64 4 0.4 0.4 0.4 0.	5	WAR					2		9				4	9	8		_	4		
b	22	KAMPTEE	Koradi	21.2528	79.0800	7.5	476	252	147.	38.8	12.2	40	4.7	166.	45.9	24	7	0.6	1.43	-0.21
22 NAGPUR Nagpur_Hanuma 21.1264 79.1056 7.5 103 549 362. 40.9 62.0 53 2.1 428. 58.3 37 6 1.6 1.22 -0.12 7 (RURAL) n nagar 21.3897 78.9406 7.9 130 691 418. 63.4 62.0 62 0.7 487. 73.2 38 44 0.5 1.33 -0.27 8 - - - - - - - - 3 7 - - 1 - - - 1 - - - 1 - - - 1 - - - 1 - - - 1 - - - 1 - - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - - 1 - - 1 - - - - - -	6								9				8	5			-	3		
7 (RURAL) in hagar in haga	22	NAGPUR	Nagpur_Hanuma	21.1264	79.1056	7.5	103	549	362.	40.9	62.0	53	2.1	428.	58.3	37	6	1.6	1.22	-0.12
22 SAVNER Saoner-1 21.3897 78.9406 7.9 130 691 418. 62.0 62 0.7 487. 7.3.2 38 44 0.5 1.33 -0.27 8 22 KATOL Nandora 21.1706 78.6111 7.8 397 210 137. 26.6 17.0 28 2.6 148. 13.6 64 4 0.4 1.04 -0.29 9 - - - 7 - - 6 7 - 6 7 -	/	(RURAL)	n nagar	24 2007	70.0406	7.0	9	604	1	<u> </u>	62.0	62	8	2	70.0	20		/	4.00	0.07
8	22	SAVNER	Saoner-1	21.3897	78.9406	7.9	130	691	418.	63.4	62.0	62	0.7	487.	/3.2	38	44	0.5	1.33	-0.27
22 KATOL Nandora 21.706 78.6111 7.8 397 210 137. 26.6 17.0 28 2.6 148. 13.6 64 4 0.4 1.04 -0.29 9 137. 7 7 7 6 7 6 7 6 7 5 1.04 -0.29 23 HINGNA Takalghat 20.9144 78.9439 7.6 220 1170 627. 126.7 74.1 109 88. 927. 155. 59 47 0.5 1.90 2.77 0 23 SAVNER Bhasali Takli 21.3533 78.9906 7.8 150 798 387. 85.9 41.3 162 3.3 606. 103. 52 46 0.3 3.59 2.25 1 7 6 7 6 7 6 6 6 7 10 10.3 52 46 0.3 3.59 2.25 1 23 UMRED Pipaldol 20.8331 79.2656 8 915 </td <td>8</td> <td>KATOL</td> <td>Nevelove</td> <td>24.4700</td> <td>70 (111</td> <td>7.0</td> <td>4</td> <td>210</td> <td>2</td> <td>26.6</td> <td>17.0</td> <td>20</td> <td>3</td> <td>/</td> <td>12.0</td> <td>64</td> <td></td> <td>1</td> <td>1.04</td> <td>0.20</td>	8	KATOL	Nevelove	24.4700	70 (111	7.0	4	210	2	26.6	17.0	20	3	/	12.0	64		1	1.04	0.20
9	22	KATOL	Nandora	21.1706	78.6111	7.8	397	210	137.	26.6	17.0	28	2.6	148.	13.6	64	4	0.4	1.04	-0.29
23 HiNGNA Takaignat 20.9144 78.9439 7.6 220 1170 627. 126.7 74.1 109 88. 927. 155. 59 47 0.5 1.90 2.77 0 9 3 3 3 109 88. 927. 155. 59 47 0.5 1.90 2.77 0 9 3 3 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 110 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 160 2.1 100 2.1 160 2.1 100 2.1 100 2.1 100 2.1 100 2.1 100 2.1 100 2.1 100 100 100 100 100	9		Takalahat	20.0144	70.0420	7.0	220	1170	/	100 7	74.1	100	0	/	155	50	47	5	1.00	2 77
0 - - - - - - - - 0 - 0 - 0 - 0	23	TINGNA	Takaignat	20.9144	78.9439	7.6	220	11/0	027. 2	120.7	/4.1	109	88. 05	927.	155.	59	47	0.5	1.90	2.77
23 34VILLIX Diasair lakii 21.5355 76.9900 7.6 150 796 587. 85.9 41.3 102 5.3 600. 103. 52 46 0.3 3.59 2.25 1 7 6 7 6 8 6 0 1 1 23 UMRED Pipaldol 20.8331 79.2656 8 915 484 321. 47.0 48.6 43 6.3 350. 68.2 66 5 0.2 1.05 -0.60	22		Rhacali Takli	21 2522	78 0006	70	9 1E0	700	5 207	85.0	11 2	162	22	0 606	102	50	16	02	2 50	<u>ר</u> כ
1 0 0 0 0 0 0 0 0 1 23 UMRED Pipaldol 20.8331 79.2656 8 915 484 321. 47.0 48.6 43 6.3 350. 68.2 66 5 0.2 1.05 -0.60	1	SAVINER		21.3333	78.9900	7.0	7	/90	507.	6.50	41.5	102	3.3 Q	6000.	105.	52	40	0.5	3.39	2.23
	23		Pipaldol	20 8331	79 2656	Q	, 015	181	321	47.0	18.6	13	63	350	68.2	66	5	<u> </u>	1.05	-0.60
	23	OWINED	Fipaluul	20.0331	75.2050	0	910	404	321.	47.0	40.0	45	0.5 4	9 9	00.2	00	5	9.2	1.05	-0.00

23	Bhiwapur	Bhiwapur	20.7664	79.5164	7.6	944	500	260.	59.3	26.7	79	8.3	315.	98.0	76	15	1.0	2.14	0.00
3								1				9	2				2		
23	RAMTEK	Kharpada	21.5308	79.3475	7.5	134	760	367.	83.8	37.7	53	9.1	315.	95.5	82	46	0.2	1.21	-2.12
4						5		2				8	2				5		
23	NARKHED	Malapur	21.4322	78.6594	7.7	767	406	270.	42.9	38.9	29	1.3	71.4	145.	40	42	0.4	0.77	-4.18
5								3				6		2			9		
23	NAGPUR	Gonkhedi	21.1364	78.9008	7.7	724	384	214.	42.9	25.5	55	1.5	315.	28.5	50	12	1.0	1.64	0.92
6	(RURAL)							2				8	2				5		
23	KATOL	Ridhora	21.2322	78.6206	7.6	638	338	198.	40.9	23.1	33	2.1	285.	21.1	20	17	0.5	1.02	0.74
7								9				5	5				4		
23	NAGPUR	Nagpur_Wadi	21.1522	79.0178	7.6	912	483	316.	47.0	47.4	53	2.1	309.	68.2	56	22	0.3	1.30	-1.18
8	(RURAL)	naka						2				4	3				3		
23	NAGPUR	Nagpur_Chinchb	21.0661	79.0611	7.5	154	818	351.	83.8	34.0	158	11.	493.	120.	87	44	0.6	3.67	1.10
9	(RURAL)	hawan				2		9				11	6	4			9		
24	NAGPUR	Nagpur_Punapur	21.1608	79.1692	7.5	990	524	275.	63.4	27.9	82	11.	208.	140.	78	2	0.1	2.16	-2.06
0	(RURAL)							4				41	2	2			9		
24	Nagpur	Nagpur_Koradi	21.2086	79.0772	7.8	159	844	346.	85.9	31.6	165	9.8	493.	189.	14	8	0.5	3.86	1.20
1	(Rural)	naka				1		8				3	6	8			4		
24	NAGPUR	Nagpur_Police	21.1764	79.0653	7.6	454	240	204	38.8	25.5	17	0.8	107.	21.1	130	2	0.8	0.52	-2.29
2	(RURAL)	line takli										4	1				1		
24	KUHI	Kuhi-1	21.0150	79.3603	7.9	780	413	163.	18.4	27.9	62	2.2	321.	18.6	19	14	0.7	2.12	2.05
3								2				3	2						
24	MOUDA	Tarsha	21.2258	79.3811	7.5	249	1318	821.	177.8	89.9	143	58.	731.	219.	178	36	0.5	2.18	-4.30
4						0		1				65	5	6			1		
24	HINGNA	Mohgaon Zelpi	21.0683	78.8875	7.5	749	397	219.	47.0	24.3	32	0.9	249.	23.6	35	41	0.6	0.94	-0.26
5								3				1	8				8		
24	SAVNER	Patansaongi-2	21.3353	79.0167	8	560	297	209.	65.4	10.9	34	1.5	309.	13.6	8	14	0.4	1.02	0.90
6								1				9	3				5		
24	KALAMESH	Lohgad	21.3422	78.7231	7.5	908	480	321.	47.0	48.6	36	2.9	291.	45.9	42	47	0.2	0.88	-1.57
7	WAR							3				9	4				7		
24	UMRED	Singori	20.7453	79.0697	7.7	557	295	209.	42.9	24.3	43	1.0	243.	23.6	29	27	0.4	1.30	-0.15
8								1				9	8				4		
24	Kalmeshwa	Tondakhairi	21.2692	78.9525	7.7	825	436	300.	47.0	43.7	39	15.	380.	36.0	19	37	0.7	0.98	0.29
9	r							9				51	6				4		
25	Katol	Metpanjara	21.2658	78.7128	7.7	139	737	469.	124.7	37.7	39	6.3	368.	112.	87	30	0.4	0.78	-3.29
0						1		2				2	7	9			8		
25	Kalmeshwa	Sillori	21.3022	78.9731	7.7	234	1241	877.	249.4	60.8	106	11	921.	187.	126	46	0.2	1.56	-2.36
1	r					3		2				4.2	9	4			4		

25	Kalmeshwa	Khapri	21.2353	78.8350	7.8	953	505	367.	45.0	60.8	26	1.1	368.	48.4	36	45	0.7	0.59	-1.20
2	r							2					7				5		
25	Kalmeshwa	Linga	21.2028	78.8214	7.7	147	782	418.	47.0	71.7	63	63.	529.	85.6	75	46	0.5	1.35	0.43
3	r					6		2				78	3				4		
25	Kalmeshwa	Kohli	21.2522	78.8161	7.7	908	482	367.	65.4	48.6	29	1.6	380.	40.9	42	41	1.0	0.66	-1.03
4	r							2				4	6				3		
25	Katol	Wasboli	21.2189	78.7022	7.7	114	569	326.	42.9	52.3	40	12.	386.	53.4	41	44	0.6	0.97	-0.11
5						1		4				84	6				2		
25	Kalmeshwa	Ramgiri	21.3019	78.7514	7.2	522	276	163.	45.0	12.2	45	1.7	273.	16.1	14	9	0.6	1.54	1.24
6	r							2				9	6						
25	Nagpur	Khairgaon	21.1858	78.9567	7.3	133	706	453.	92.0	53.5	33	1.8	428.	78.2	66	47	0.2	0.68	-1.98
7	(Rural)					3		9					2				5		
25	Nagpur	Satgaon	20.9297	79.0036	7.7	101	536	214.	42.9	25.5	72	0.7	243.	83.1	62	25	1.0	2.15	-0.25
8	(Rural)					2		2				7	8				2		
25	KALAMESH	Ashti	21.2019	78.9683	7.8	782	414	300.	65.4	32.8	37	1.2	374.	18.6	26	41	0.7	0.93	0.17
9	WAR							9				3	7				6		
26	NARKHED	Mohad	21.4686	78.4458	7.7	207	1100	622.	139.0	65.6	130	3.0	463.	294.	68	16	0.2	2.27	-4.74
0						6		2				6	9	1			6		
26	MOUDA	Mouda-1	21.1472	79.4003	7.6	228	1212	275.	40.9	41.3	286	10.	624.	204.	154	46	0.5	7.54	4.79
1						8		4				67	5	7					
26	HINGNA	Hingna	21.0739	78.9578	7.6	664	352	249.	24.5	45.0	33	1.5	321.	21.1	23	23	0.3	0.91	0.34
2		(Dhangarpura)						9				5	2				2		
26	Kuhi	khairi Pannase	78.9331	21.0977	7.8	130	850.8	205	54.1	17.0	9	0.2	305.	212.	360.22	93	0.1	0.27	0.90
3		(dw)				9	5						1	7	5		1		

s.	TAHSIL_	Site Name	LONGITU	LATITUD	рН	EC	TDS	TH	Ca	mg	Na(m	K(m	HCO3(Cl(m	SO4(m	NO3	F	SAR	RSC
no.	NAME		DE	Е			(mg/l)	(mg/l)	(mg/l	(mg/l	g/l)	g/l)	mg/l)	g/l)	g/l)	(mg/l)	(mg/		
))							I)		
1	Ramtek	Amgaon	79.3483	21.3889	6.8	203	132.0	90	20	9.7	4.6	3.9	42.7	35.5	19.2	3.1	0.21	0.21	-1.10
2	Ramtek	Amgaon PYT	79.3483	21.3889	7	179	116.4	70	20	4.9	8.7	2.0	36.6	24.8	8.2	1.24	0.15	0.45	-0.80
3	Ramtek	Wadamba	79.3803	21.6053	7.4	458	297.7	160	40	14.6	29.9	2.0	164.8	46.1	76.8	24.8	0.65	1.03	-0.50
		EW Drilling																	
4	Ramtek	Wadamba	79.3803	21.6053	7.3	214	139.1	90	24	7.3	6.9	2.0	42.7	31.9	9.6	9.92	0.77	0.32	-1.10
		EW PYT																	
5	Ramtek	WadambaO	79.3803	21.6053	7.4	465	302.3	150	40	12.2	34.5	3.9	73.2	70.9	24.0	6.82	0.7	1.22	-1.80
		W Driiling																	
6	Ramtek	Wadamba	79.3803	21.6053	7.3	581	377.7	160	20	26.7	57.5	3.9	195.3	49.6	43.2	18.6	0.72	1.98	0.00
		OW PYT																	
7	Ramtek	Borda EW	79.2797	21.4439	7.9	801	520.7	275	20	54.7	50.6	3.9	372.2	21.3	43.2	16.74	1.3	1.33	0.60
		PYT 1																	
8	Ramtek	Borda	79.2797	21.4439	8.2	810	526.5	250	10	54.7	69.0	4.7	244.1	53.2	225.6	24.8	1.37	1.90	-1.00
		EWPYT 2																	
9	Ramtek	Borda EW	79.2797	21.4439	7.9	807	524.6	275	40	42.5	59.8	5.1	109.8	24.8	307.2	24.8	1.4	1.57	-3.70
		Drilling																	
10	Ramtek	Borda OW	79.2797	21.4439	8.2	638	414.7	240	30	40.1	34.5	3.1	256.3	39.0	192.0	4.96	1	0.97	-0.60
		PYT																	
11	Ramtek	Chichala EW	79.3428	21.3483	8.1	171	1117.4	575	22	126.	135.7	4.7	793.3	269.	19.2	31	0.38	2.46	1.50
		Drilling				9				4				4					
12	Ramtek	WadambaD	79.3811	21.6050	7.6	812	527.8	310	96	17.0	41.4	3.9	305.1	81.5	14.4	31	1	1.02	-1.20
		ugwell 1																	
13	Ramtek	Wadamba	79.3814	21.6039	7.7	792	514.8	340	66	42.5	25.3	2.0	311.2	70.9	19.2	31	0.9	0.60	-1.70
		Dugwell 2																	
14	Mauda	Tarsha	79.3814	21.2286	7.6	175	1138.2	475	114	46.2	202.4	7.8	286.8	407.	86.4	24.8	0.52	4.04	-4.80
		Dugwell 1				1		-		-				7		-			
15	Mauda	Tarsha	79.3786	21.2331	7.7	121	791.1	275	98	7.3	149.5	3.9	274.6	124.	163.2	43.4	0.98	3.92	-1.00
		Dugwell 2				7								1					
16	Mauda	Tarsha	79.3811	21.2281	7.6	254	1652.3	900	168	116.	172.5	9.0	335.6	655.	48.0	42.16	0.45	2.50	-12.50
		HandPump				2				7				8					
17	Parseoni	Nayakund	79.1947	21.3653	7.8	123	800.8	465	100	52.3	66.7	5.1	335.6	159.	76.8	43.4	0.67	1.34	-3.80
		Dugwell 1				2						ļ		5					
18	Parseoni	Nayakund	79.2011	21.3667	7.9	690	448.5	210	30	32.8	59.8	3.9	274.6	35.5	57.6	13.02	0.7	1.79	0.30
		Dugwell 2							1		1								

Annexure-VI: Chemical analysis of ground water samples, Aquifer- II / Deeper aquifers

s.	TAHSIL_	Site Name	LONGITU	LATITUD	рН	EC	TDS	TH	Са	mg	Na(m	K(m	HCO3(Cl(m	SO4(m	NO3	F	SAR	RSC
no.	NAME		DE	E			(mg/l)	(mg/l)	(mg/l	(mg/l	g/l)	g/l)	mg/l)	g/l)	g/l)	(mg/l)	(mg/		
))							I)		
19	Parseoni	Nayakund	79.1961	21.3694	7.4	752	488.8	300	70	30.4	29.9	7.8	305.1	49.6	28.8	31	0.8	0.75	-1.00
		HandPump																	
20	Kampte	GumthalaDu	79.2836	21.1375	7.6	753	489.5	250	30	42.5	52.9	7.8	280.7	70.9	14.4	38.44	0.42	1.45	-0.40
	e	gwell 1																	
21	Kampte	GumthalaDu	79.2856	21.1406	7.6	949	616.9	290	66	30.4	80.5	3.9	439.3	35.5	33.6	31	0.44	2.06	1.40
	e	gwell 2																	
22	Savner	Nandagomu	78.7753	21.4306	7.8	365	237.3	125	20	18.2	25.3	2.0	122.0	35.5	14.4	24.8	0.33	0.98	-0.50
		khDugwell 1																	
23	Savner	Nandagomu	78.7700	21.4211	7.3	132	858.0	500	20	109.	71.3	3.9	335.6	212.	43.2	49.6	0.27	1.39	-4.50
		khDugwell 2				0				4				7					
24	Savner	Nandagomu	78.7694	21.4175	7.6	115	748.2	450	24	94.8	46.0	4.7	305.1	184.	25.0	24.8	0.4	0.94	-4.00
		khHandPum				1								3					
		р																	
25	Bhiwapu	Mandawa	79.2587	20.7515	8.1	458	297.7	120	38.07	6.1	2.0	0.9	189.2	35.5	190.1	23	0.29	0.08	0.70
	r								6										
26	Hingna	khairi	78.9331	21.0977	7.5	116	755.3	230	56.11	21.9	6.9	0.2	146.4	262.	460.3	83	0.14	0.20	-2.20
		Pannase				2			2					3					
27	Kuhi	Salwa	79.4444	21.0497	7.7	765	497.3	105	28.05	8.5	5.0	0.6	366.1	28.4	110.1	11	1.3	0.21	3.90
									6										
28	KUHI	ADAM	79.4521	20.9977	7.3	193	1258.0	264						224.	148.0	9	0.89	#DIV	0.00
						5								0				/0!	
29	BHIWAP	ADYAL (PU)	79.5158	20.8030	7.9	723	470.0	188						30.0	32.0	2	0.84	#DIV	0.00
	UR																	/0!	
30	MOUDA	AROLI	79.4494	21.3228	7.1	512	333.0	200						52.0	9.0	12	0.52	#DIV	0.00
					6													/0!	
31	MOUDA	AROLI	79.0367	21.1694	7.2	586	381.0	236						54.0	56.0	3	0.62	#DIV	0.00
					8													/0!	
32	BHIWAP	BESUR	79.2660	20.6936	8.4	167	1091.0	244						216.	92.0	9	2	#DIV	0.00
	UR					8								0				/0!	
33	BHIWAP	BESUR	78.7250	21.0458	8.3	302	1963.0	402						350.	300.0	15	1	#DIV	0.00
	UR					0								0				/0!	
34	MOUDA	CHACHER	79.3372	21.2831	7.5	216	1404.0	359						308.	198.0	114	0.65	#DIV	0.00
					2	0								0				/0!	
35	MOUDA	CHACHER	79.1675	21.0861	8.1	226	1472.0	460						264.	120.0	286	1.46	#DIV	0.00
					9	5								0				/0!	
36	HINGNA	KANHOLIBA	78.8686	21.2394	8.4	115	753.0	238						82.0	46.0	6	0.03	#DIV	0.00

s.	TAHSIL_	Site Name	LONGITU	LATITUD	рΗ	EC	TDS	TH	Са	mg	Na(m	K(m	HCO3(Cl(m	SO4(m	NO3	F	SAR	RSC
no.	NAME		DE	E			(mg/l)	(mg/l)	(mg/l	(mg/l	g/l)	g/l)	mg/l)	g/l)	g/l)	(mg/l)	(mg/		
))							I)		
		RA			9	8												/0!	
37	SAONER	KELWAD	78.8792	21.4633	7.4	678	441.0	313						54.0	18.0	16	0.91	#DIV	0.00
					2													/0!	
38	SAONER	KELWAD	79.3250	20.8500	7.4	803	522.0	338						54.0	22.0	31	1.03	#DIV	0.00
					8													/0!	
39	NAGPUR	WATHODA	78.8389	21.2825	8.4	125	818.0	372						112.	35.0	49	0.43	#DIV	0.00
	RURAL				8	8								0				/0!	
40	КОНІ	WELTUR	79.4500	21.1597	7.9	124	808.0	124						128.	92.0	65	0.69	#DIV	0.00
						3								0				/0!	
41	BHIWAP	ZAMKOLI	78.9917	21.0194	8.7	146	955.0	324						220.	126.0	170	0.85	#DIV	0.00
-	UR					9								0				/0!	
42	NAGPUR	BAHADURA	79.1675	21.0861	8.1	235	1530.0	676						254.	75.0	102	0.66	#DIV	0.00
	RURAL				6	3								0				/0!	
43	Katol	Ladgaon	78.5644	21.2269	7.8	885	575.0	410	86	47.0	41.0	3.3	244.0	89.0	104.0	51	0.24	0.88	-4.17
		Ow-I																	
44	Katol	Maragsur-	78.7071	21.2073	7.9	772	502.0	220	38	30.0	63.0	47.5	79.0	121.	173.0	48	0.2	1.85	-3.07
		EW												0					
45	Katol	Ladgaon Ew-	78.5644	21.2269	7.5	621	404.0	90	26	6.0	109.0	1.7	207.0	71.0	62.0	33	1.87	5.00	1.60
		-																	
46	Katol	Khangaon Z-	78.5467	21.2942	7.6	523	340.0	220	62	16.0	44.0	8.4	275.0	43.0	45.0	24	0.66	1.29	0.09
		TOW																	
47	Katol	Metpanjra-	78.7000	21.2583	7.9	979	636.0	100	34	4.0	188.0	0.9	43.0	216.	203.0	16	0.39	8.11	-1.32
		EW				60 7							1-0.0	0					0.50
48	Katol	Narkhed PZ	/8.5381	21.3381	7.8	697	439.1	255	32.06	42.5	7.6	0.4	158.6	46.1	/8.0	12	1.04	0.21	-2.50
- 10	14 1 1	141	70 5 4 6 7	24 2242	74	440	700.0	225	4		102.0		4.65.0	1.62	222.0		0.04	5 4 4	2.04
49	Katol	Khangaon	/8.546/	21.2942	7.1	118	769.0	235	86	5.0	192.0	5.5	165.0	163.	323.0	11	0.94	5.44	-2.01
50	Katal	EW	70 7022	24.2007	0.2	3	725.0	70	26	4.2	225.0	2.0	420.0	0	225.0			42.2	0.70
50	Katol	Dorli-OW	/8./833	21.2667	8.3	116	/25.0	70	26	1.2	235.0	2.0	128.0	170.	225.0	1.4		12.2	0.70
F 4	N a shika a d	Labard	70 40 4 4	24.2000	0.1	0	N1.4	60	40	7.2	N 1.0		242 5	0	N1.0		4	2	2.20
51	Narkned	Lonari	78.4044	21.2600	8.1	700	NA	60	12	7.3	NA	NA	213.5	99.3	NA	BDL	1	0.00	2.30
		SdWdligd-																	
E2	Narkhod	Fil	70 6242	21 4009	7 5	020	E 20 0	225	06	22.0	71.0	2.2	207.0	80.0	102.0	E1	0.17	1.60	2 20
52	INDIKINU	Sawargaun	78.0342	21.4008	1.5	829	539.0	535	90	23.0	/1.0	2.2	207.0	89.0	192.0	21	0.17	1.09	-3.30
52	Narkhod	Lw Koni Ew	70 5022	21 / 20/	70	772	502.0	220	20	20.0	62.0	175	70.0	121	172.0	10	0.2	1 95	2.07
55	Narkieu	KUTII EW	10.3022	21.4394	1.9	112	302.0	220	30	50.0	05.0	47.5	79.0	0	1/5.0	40	0.2	1.05	-3.07
														0					

s.	TAHSIL_	Site Name	LONGITU	LATITUD	рН	EC	TDS	TH	Са	mg	Na(m	K(m	HCO3(Cl(m	SO4(m	NO3	F	SAR	RSC
no.	NAME		DE	E			(mg/l)	(mg/l)	(mg/l	(mg/l	g/l)	g/l)	mg/l)	g/l)	g/l)	(mg/l)	(mg/		
))							I)		
54	Narkhed	Manikwada	78.4997	21.4969	8	450	293.0	155	48	9.0	46.0	2.1	183.0	32.0	51.0	48	0.2	1.60	-0.14
		Z-III Ew																	
55	Narkhed	Manikwada	78.4997	21.4969	7.8	400	260.0	150	52	5.0	37.0	1.2	153.0	32.0	43.0	47	0.17	1.31	-0.50
		Z-II Ew																	
56	Narkhed	Jamgaon	78.4367	21.3381	7.3	980	NA	365	68	47.4	NA	NA	274.5	67.4	NA	46.32	0.55	0.00	-2.80
		KhEW																	
57	Narkhed	Manikwada	78.4997	21.4969	8	402	261.0	180	40	19.0	25.0	1.0	201.0	25.0	24.0	45	0.24	0.81	-0.27
		Ew PYT																	
58	Narkhed	Narkhed-	78.5292	21.4722	7.9	142	898.4	470	64.12	75.3	17.1	0.1	225.7	212.	42.0	44	0.33	0.34	-5.71
		OW				6			8					7					
59	Narkhed	Manikwada	78.4997	21.4969	8	350	228.0	130	32	12.0	36.0	1.7	92.0	32.0	42.0	38	0.21	1.38	-1.08
		Z-I Ew																	
60	Narkhed	Arambhi-EW	78.3486	21.2694	7.5	700	NA	75	20	6.1	110.0	25.0	103.7	127.	55.0	32	0.45	5.52	0.20
														7					
61	Narkhed	Arambhi	78.3486	21.2694	8.1	670	NA	90	14	13.4	NA	NA	244.0	81.5	NA	24.3	1	0.00	2.20
62	Narkhed	Jamgaon	78.4367	21.3381	8.7	116	NA	160	38	15.8	NA	NA	170.8	109.	NA	20.6	0.55	0.00	0.80
		KhEW PYT				0								9					
63	Narkhed	Arambhi	78.3486	21.2694	7.8	640	NA	75	10	12.2	NA	NA	237.9	81.5	NA	20	0.99	0.00	2.40
64	Narkhed	Khedi Ew	78.6444	21.4589	7.9	979	636.0	100	34	4.0	188.0	0.9	43.0	216.	203.0	16	0.39	8.11	-1.32
														0					
65	Narkhed	Arambhi-EW	78.3486	21.2694	6.8	183	NA	545	106.2	68.1	150.2	32.0	274.5	205.	374.4	7.8	0.13	2.80	-6.41
					5	0			12					6					
66	Narkhed	Tinkheda-	78.4903	21.4033	7.2	961	NA	215	46.09	24.3	116.7	2.4	201.3	124.	122.4	2.55	0.3	3.46	-1.00
		EW PYT			4				2					1					
67	Narkhed	Belona-EW	78.4864	21.4833	7.3	630	NA	140	38.07	10.9	88.9	0.7	286.7	42.5	36.0	0.75	0.93	3.26	1.90
		PYT			2				6										
68	Narkhed	Wadvihra-	78.3986	21.3472	7.5	750	0.0	135	24	9.0	0.0	0.0	140.0	136.	0.0	0		0.00	0.35
		EW												0					
69	Katol	Sonkhamb	78.7225	21.2723	8.3	857	105.0	400	26	81.0	16.0	0.2	128.0	160.	147.0	11	1.4	0.35	-5.77
														0					
70	Katol	Ramgiri	78.7575	21.3001	8.2	798	105.0	325	48	50.0	6.0	0.2	128.0	89.0	95.0	65	0.5	0.14	-4.42
71	Katol	Malegaon	78.7183	21.3078	8	519	140.0	235	42	32.0	5.0	0.3	171.0	46.0	21.0	42	0.46	0.14	-1.93
72	Kalmesh	Kohli	78.8094	21.2653	8.1	852	55.0	375	16	81.0	16.0	0.2	67.0	106.	189.0	44	1.4	0.36	-6.37
	war													0					
73	Kalmesh	Dahegaon	78.9456	21.2163	8.3	540	110.0	235	30	39.0	8.0	0.4	134.0	67.0	33.0	28	0.68	0.23	-2.21
	war																		

s.	TAHSIL_	Site Name	LONGITU	LATITUD	рΗ	EC	TDS	TH	Са	mg	Na(m	K(m	HCO3(Cl(m	SO4(m	NO3	F	SAR	RSC
no.	NAME		DE	E			(mg/l)	(mg/l)	(mg/l	(mg/l	g/l)	g/l)	mg/l)	g/l)	g/l)	(mg/l)	(mg/		
))							l)		
74	Kalmesh	Khapri	78.8408	21.2397	8.5	492	185.0	225	12	47.0	9.0	0.3	226.0	25.0	7.0	21	1.31	0.26	-0.36
	war																		
75	Kalmesh	Mohgaon	78.8475	21.2965	8.4	563	170.0	275	50	36.0	3.0	0.3	207.0	57.0	26.0	21	0.36	0.08	-1.77
	war																		
76	Savner	Dhapewada	78.9050	21.3033	8.1	747	205.0	330	58	45.0	6.0	0.3	250.0	78.0	41.0	32	0.53	0.14	-2.50
77	Mauda	Gowri	78.9497	21.2686	8.3	470	95.0	210	26	35.0	5.0	0.7	116.0	85.0	13.0	1	0.36	0.15	-1.98
78	Kalmesh	Khairi	78.9517	21.2528	7.2	221	110.0	960	246	84.0	10.0	17.9	134.0	557.	187.0	31	0.9	0.14	-17.02
	war	lakhmaji				1								0					
79	Katol	Raulgaon	78.7831	21.2376	8.2	904	120.0	395	22	83.0	17.0	0.2	146.0	110.	139.0	46	1.23	0.37	-5.54
														0					
80	Kalmesh	Waroda	78.9047	21.2636	8	142	250.0	250	60	120.	9.8	0.2	305.0	202.	100.2	39.1	0.41	0.17	-7.90
	war					1				3				0					
81	NAGPUR	Salai	79.1203	21.0093	7.5	564		155	52	6.1	57.5	2.0	213.6	24.8	48.0	25.42	0.67	2.01	0.40
	RURAL	Godhani			6														
82	Kuhi	Dhanoli	79.2645	21.0418	7.8	251		585	24	127.	338.1	15.6	61.0	694.	288.0	14.26	2.2	6.08	-10.70
						2				6				8					
83	Hingna	Sukali	78.9473	20.9829	8.2	169		335	46	53.5	236.9	3.9	140.3	322.	259.2	19.84	4.4	5.63	-4.40
		Gharapure				8								6					
84	Bhiwapu	Mandwa	79.2587	20.7515	7.4	392		145	26	19.4	23.0	2.0	73.2	70.9	28.8	3.1	0.43	0.83	-1.70
	r				7														

S.No.	District	Site name	Site id	Lat	Long	DTWL_May 2019	Pre-trend	DTWL_Nov.19	Post-trend
						(m bgl)	(m /year)	(m bgl)	(m /year)
1	Nagpur	Amgaon	W205940078553001	20.99444	78.925	6.4	-0.002	2.7	-0.00564
2	Nagpur	Bela_Pz	W204630079004501	20.775	79.0125	7.6	-0.24677	3.2	-0.69044
3	Nagpur	Bhasali Takli	W212112078592601	21.35333	78.99056	12.9	-0.78714	15	-0.44319
4	Nagpur	Bhiwapur	W204559079305901	20.76639	79.51639	9.7	-0.56891	6.4	-0.67144
5	Nagpur	Bokhara_Pz	W211340079041002	21.22778	79.06944	5.85		2.1	0.477883
6	Nagpur	Borkhedi	W205300078583001	20.88333	78.975		-0.025	3.6	-0.08705
7	Nagpur	Borkhedi_Pz	W205152078581101	20.86444	78.96972	8.04			-1.02897
8	Nagpur	Chacher	W211700079203001	21.28333	79.34167	8.05	-0.78452	3.2	0.101203
9	Nagpur	Chargaon (Punarwasi)	W211600078453001	21.26667	78.75833	5.05	-0.31066	3.2	0.104029
10	Nagpur	Chorbaoli	W212800079190001	21.46667	79.31667	8.95	0.906192	3.9	-0.06602
11	Nagpur	Deolapar	W213500079220001	21.58333	79.36667	13.2	-0.02907	4	2.535773
12	Nagpur	Dhapewada	W211810078545001	21.30278	78.91389	8.7	-0.42924	12.8	-0.25912
13	Nagpur	Fetri_Pz	W211209078595301	21.2025	78.99806	7.7	-0.13529		-0.29411
14	Nagpur	Gonkhedi	W210811078540301	21.13639	78.90083		-0.05015	3.9	-0.63235
15	Nagpur	Gumgaon	W205930079020001	20.99167	79.03333		-0.23449		-1.25452
16	Nagpur	Hingna(Raipur)_Pz	W210439078575101	21.0775	78.96417		-2.25589	4.6	0.12178
17	Nagpur	Inderwada_Pz	W212107078274401	21.35194	78.46222		-0.62022		0.071632
18	Nagpur	Jalalkheda_Pz	W212301078250901	21.38361	78.41917		-4.94745		1.89802
19	Nagpur	Jamgaon Bk_Pz	W211915078260001	21.32083	78.43333	5.3	-0.30992	2.5	0.04406
20	Nagpur	Kalmeshwar	W211400078550001	21.23333	78.91667	11	-0.79902	2.2	-0.19591
21	Nagpur	Kamptee	W211230079123001	21.20833	79.20833	7.9	-0.52308	6.95	-0.68743
22	Nagpur	Kanholi bara	W205600078510001	20.93333	78.85	10	-0.12076	5.7	-0.48929
23	Nagpur	Kanholibara_Pz	W205609078511401	20.93583	78.85389	13.95	-0.79163	4	-0.07937
24	Nagpur	Katol	W211700078350001	21.28333	78.58333	9.85	-1.3991	5.1	0.121706
25	Nagpur	Kelod	W212735078523501	21.45972	78.87639	10.9	-0.27849	10.35	0.092891
26	Nagpur	Kharpada	W213151079205101	21.53083	79.3475	4.8	-0.34504	4	-0.05339
27	Nagpur	Khat	W211430079324501	21.24167	79.54583	11.25	-0.82062	1.3	-0.758
28	Nagpur	Khubala	W212700078580001	21.45	78.96667	4.8	-0.02148	3.6	-0.57668
29	Nagpur	Kondhali	W210800078390001	21.13333	78.65	8.8	-1.38704	7.2	2.689655
30	Nagpur	Koradi	W211510079044801	21.25278	79.08	8.8	-0.02561	3.1	-0.08191
31	Nagpur	Kothulna	W212510079021801	21.41944	79.03833	5.3	-1.36949	1.6	-0.31288
33	Nagpur	Makardhokda	W211557078243001	21.26583	78.40833	9.6	-0.80574	2.5	0.092835
34	Nagpur	Makardhokda_Pz	W205200079131001	20.86667	79.21944	10.05	-0.38797	4.4	-0.21928
35	Nagpur	Malapur	W205227079123401	20.87417	79.20944	11.5	-3.86675	12.5	-3.93917
36	Nagpur	Manegaon Tek	W212556078393401	21.43222	78.65944	10.32	-0.05548	6.3	-0.19401

Annexure-VII: Water Level of Ground water monitoring wells (2019) with long term trend (2010-2019)

S.No.	District	Site name	Site id	Lat	Long	DTWL_May 2019	Pre-trend	DTWL_Nov.19	Post-trend
						(m bgl)	(m /year)	(m bgl)	(m /year)
37	Nagpur	Mangli1	W214050079252001	21.68056	79.42222	19	-0.35309	7	-0.09692
38	Nagpur	Mauda_Pz	W210142079181801	21.02833	79.305		-0.18286		-1.20906
39	Nagpur	Mohpa	W210900079220002	21.15	79.36667	10.8			-0.18163
40	Nagpur	Mouda-1	W210830078454501	21.14167	78.7625	10.55	-0.85077	10.4	1.701493
41	Nagpur	Nagalwadi	W210850079240101	21.14722	79.40028	7.4		8.7	-0.88299
42	Nagpur	Nagpur VNIT_Pz	W213400079010001	21.56667	79.01667		-0.26727		-0.02276
43	Nagpur	Nagpur_Chinchbhawan	W210800079020001	21.13333	79.03333	7.5	-0.09965	7.1	0.463174
44	Nagpur	Nagpur_Koradi naka	W210358079034001	21.06611	79.06111	7	2.35	2.3	-9.12855
45	Nagpur	Nagpur_Police line takli	W211231079043801	21.20861	79.07722		-0.87979	2.2	-0.90019
46	Nagpur	Nagpur_Punapur	W211035079035501	21.17639	79.06528	4	-0.07331	0.4	0.038742
47	Nagpur	Nagpur_Ramdaspeth	W210939079100901	21.16083	79.16917	6	-0.84957	3.6	2.404691
48	Nagpur	Nagpur_Wadi naka	W210750079035001	21.13056	79.06389	10.4	-0.63449	0.4	0.005769
49	Nagpur	Nandora	W210908079010401	21.15222	79.01778	4.4	0.183585	3	-0.17251
50	Nagpur	Nara_Pz	W211014078364001	21.17056	78.61111	10.5	-2.42023	12.8	0.453333
51	Nagpur	Narkhed	W211230079045001	21.20833	79.08056	15.35	0.289243	6	-1.2606
52	Nagpur	Narkhed_Pz	W212800078320001	21.46667	78.53333	13	-1.35666	3	-0.59557
53	Nagpur	Nawegaon (Deshmukh)	W212815078321301	21.47083	78.53694	8.45	0.445542	4.4	-0.21379
54	Nagpur	Nayakund	W204810079254301	20.80278	79.42861		-0.84163	10.8	-2.92633
55	Nagpur	Pallora	W212200079110001	21.36667	79.18333	8.6	0.219476	12	-0.98807
56	Nagpur	Panchgaon	W213320079200501	21.55556	79.33472	12	-1.4454	4.1	0.266968
57	Nagpur	Paradsinga_Pz	W210200079100001	21.03333	79.16667	5.4	-0.29919	25.2	-0.01458
58	Nagpur	Parseoni	W211905078311001	21.31806	78.51944	8.9	-1.09739	5	-14.7851
59	Nagpur	Pipaldol	W213300079100001	21.55	79.16667	7.79	-0.00763	2	-0.02697
60	Nagpur	Ramtek	W204959079155601	20.83306	79.26556	10	-0.85802	4.3	0.462318
61	Nagpur	Ridhora	W212400079180001	21.4	79.3	12.1	-1.62976	13	-0.65252
62	Nagpur	Rohna	W211356078371401	21.23222	78.62056	10.2	-0.84031	5.2	0.447029
63	Nagpur	Rohna_Pz	W212057078284801	21.34917	78.48	8.45	-0.47214	7.2	-0.13285
64	Nagpur	Rui_Gavsi Manapur	W212050078284801	21.34722	78.48	14.1	-1.16249	7.7	-1.2304
65	Nagpur	Saoner-1	W210112079025501	21.02	79.04861	10.8	-0.11241	8.7	-0.58764
66	Nagpur	Sathnaori	W212323078562601	21.38972	78.94056	6.25	-0.46363	11	-1.17467
67	Nagpur	Sawargaon	W210800078480001	21.13333	78.8	4.65	-2.00545	5.6	-0.33383
68	Nagpur	Sirpur Toli	W212330078380601	21.39167	78.635	10.4	-0.01214	4.2	0.105399
69	Nagpur	Sivani	W212200079240001	21.36667	79.4	12.2	-0.12329	6.3	0.116961
70	Nagpur	Sonoli_Pz	W212400079281501	21.4	79.47083	19.2	-1.78802	5.6	-0.64639
71	Nagpur	Takalghat	W212145078373301	21.3625	78.62583	1.1	-1.85325	7.4	-1.82538
72	Nagpur	Umrer	W205452078563801	20.91444	78.94389	8	-0.10368	1	-0.14911

S.No.	District	Site name	Site id	Lat	Long	DTWL_May 2019	Pre-trend	DTWL_Nov.19	Post-trend
						(m bgl)	(m /year)	(m bgl)	(m /year)
73	Nagpur	Uti	W205237079173001	20.87694	79.29167	10.6		2	-0.11882
74	Nagpur	Wagholi	W205700079130001	20.95	79.21667	12	-0.20502	3.3	-0.63584
75	Nagpur	Wardhamna	W212000079130001	21.33333	79.21667		0.229631	1.4	-0.35151

Annexure VIII: Location of Percolation Tanks

S.	Village	Block
No.		
1	Indora	MAUDA
2	Khaparkheda (Ga	MAUDA
3	Chacher	MAUDA
4	Barshi	MAUDA
5	Babadeo	MAUDA
6	Ajangaon	MAUDA
7	Korad	MAUDA
8	Ashti	MAUDA
9	Dhanla	MAUDA
10	Mohadi	MAUDA
11	Sawagi	MAUDA
12	Tanda	MAUDA
13	Dahegaon	MAUDA
14	Gangner	MAUDA
15	Wagbodi	MAUDA
16	Berdipar	MAUDA
17	Amgaon	RAMTEK
18	Nagardhan	RAMTEK
19	Masala	RAMTEK
20	Khirsadi(Rithi)	RAMTEK
21	Nanda Gomukh	SAVNER
22	Salai	SAVNER
23	Umari (Bharatpu	SAVNER
24	Umari (Bharatpu	SAVNER

S.	Village	Block
No.		
25	Pandhari (J)	SAVNER
26	Kelwad	SAVNER
27	Malegaon	SAVNER
28	Wakodi	SAVNER
29	Takali	SAVNER
30	Kodegaon	SAVNER
31	Khairi (Panjabr	SAVNER
32	Badegaon	SAVNER
33	Itangoti	SAVNER
34	Kesori	KAMPTEE
35	Bhugaon	KAMPTEE
36	Mahalgaon	KAMPTEE
37	Temsana	KAMPTEE
38	Palsad	KAMPTEE
39	Parsodi	KAMPTEE
40	Pawangaon	KAMPTEE
41	Raibasa	SAVNER
42	Sironji	SAVNER
43	Sindewani Kh.	SAVNER
44	Khubala	SAVNER
45	Bichwa	SAVNER
46	Yeltur	SAVNER
47	Mangsa	SAVNER
48	Joga	SAVNER

S.	Village	Block
No.		
49	Jalalkheda	SAVNER
50	Ajani	SAVNER
51	Umari	SAVNER
52	Bhendala	SAVNER
53	Chorkhairi	SAVNER
54	Jakhegaon	KAMPTEE
55	Ajani	KAMPTEE
56	Gumthala	KAMPTEE
57	Suradevi	KAMPTEE
58	Zharap	KAMPTEE
59	Khapari (uma)	KALAMESHWAR
60	Khapari (uma)	KALAMESHWAR
61	Khapari (kothe)	KALAMESHWAR
62	Sonegaon	KALAMESHWAR
63	Susundri	KALAMESHWAR
64	Kanyadhol	KALAMESHWAR
65	Panuabali	KALAMESHWAR
66	Khumari	KALAMESHWAR
67	Pipla (kewalram	NARKHED
68	Telkamthi	KALAMESHWAR
69	Khairi (Harji)	KALAMESHWAR
70	Budhla	KALAMESHWAR
71	Telkamthi	KALAMESHWAR
72	Pohigond Khairi	KALAMESHWAR
73	Mandvi	KALAMESHWAR
74	Parsodi wakil	KALAMESHWAR

S.	Village	Block
No.		
75	Ramgiri	KALAMESHWAR
76	Sonoli	KALAMESHWAR
77	Belori bk.	KALAMESHWAR
78	Tishti bk.	KALAMESHWAR
79	Tishti kh.	KALAMESHWAR
80	Wathoda	KALAMESHWAR
81	Tidangi	KALAMESHWAR
82	Khursapar	KALAMESHWAR
83	Bori (Rani)	PARSEONI
84	Panjara (Ri)	PARSEONI
85	Naikund	PARSEONI
86	Nandgaon	PARSEONI
87	Yesamba	PARSEONI
88	Karanbhad	PARSEONI
89	Karanbhad	PARSEONI
90	Karanbhad	PARSEONI
91	Digalwadi	PARSEONI
92	Tamaswadi	PARSEONI
93	Hingana (Ba)	PARSEONI
94	Parshivni	PARSEONI
95	Sakarla	PARSEONI
96	Palasavali	PARSEONI
97	Makardhokada	PARSEONI
98	Salai (Mokasa)	PARSEONI
99	Salai (Mokasa)	PARSEONI
100	Satak	PARSEONI

S.	Village	Block
No.		
101	Ukhali	BHIWAPUR
102	Zilbodi	BHIWAPUR
103	Polgaon	BHIWAPUR
104	Bhagwanpur	BHIWAPUR
105	Sukali	BHIWAPUR
106	Wani	BHIWAPUR
107	Khapari	BHIWAPUR
108	Ukhali	BHIWAPUR
109	Pandharwani	BHIWAPUR
110	Dhamangaon	BHIWAPUR
111	Besur	BHIWAPUR
112	Nand	BHIWAPUR
113	Mankapur	BHIWAPUR
114	Yedsambha	BHIWAPUR
115	Shivmadka	HINGNA
116	Gumgaon	HINGNA
117	Sukali	HINGNA
118	Wagdara	HINGNA
119	Sumthana	HINGNA
120	Dahegaon	NAGPUR (RURAL)
121	Isasani	HINGNA
122	Wagdara	HINGNA
123	Salaidabha	HINGNA
124	Sirul	HINGNA
125	Wadgaon	HINGNA
126	Dhanoli	HINGNA

S.	Village	Block
No.		
127	Khapri (Moreshw	HINGNA
128	Bhansuli	HINGNA
129	Ghodeghat	HINGNA
130	Sawangi	HINGNA
131	Wadgaon	HINGNA
132	Menkhat	HINGNA
133	Dhanoli	HINGNA
134	Kinhi	HINGNA
135	Ghodeghat	HINGNA
136	Sawangi	HINGNA
137	Chauki	HINGNA
138	Nildoh	HINGNA
139	Gondkhairi	KALAMESHWAR
140	Chandrapur	NAGPUR (RURAL)
141	Neri	HINGNA
142	Turagondi	HINGNA
143	Nildoh	HINGNA
144	Mangrul	HINGNA
145	Neri	HINGNA
146	Khokarla	КОНІ
147	Sonpuri	КОНІ
148	Khokarla	КОНІ
149	Gonha	КОНІ
150	Weltur	KUHI
151	Ambhora kh.	КОНІ
152	Pandhargota	КОНІ

S.	Village	Block
No.		
153	Jiwanapur	KUHI
154	Gonha	KUHI
155	Weltur	KUHI
156	Khairlanji	KUHI
157	Khairlanji	KUHI
158	Sonpuri	KUHI
159	Madnapur	KUHI
160	Khenda	KUHI
161	Khenda	KUHI
162	Hudpa	KUHI
163	Pachkhedi (gand	KUHI
164	Majri	KUHI
165	Chikna tukum	KUHI
166	Lohara	KUHI
167	Satara	KUHI
168	Pilkapar	KUHI
169	Chanoda	KUHI
170	Kuhi	KUHI
171	Silli	KUHI
172	Umarpeth	KUHI
173	Rajola	KUHI
174	Bodkhipeth	КОНІ
175	Bhandarbodi	KUHI
176	Chapegadi	КОНІ
177	Chanoda	KUHI
178	Pandegaon	KUHI

S.	Village	Block
No.		
179	Rajola	КОНІ
180	Navegaon	КОНІ
181	Salwa	КОНІ
182	Lanjala	КОНІ
183	Kuchadi	КОНІ
184	Dhanoli	КОНІ
185	Kuchadi	КОНІ
186	Mangli	КОНІ
187	Dodma	KUHI
188	Malni	КОНІ
189	Titur	КОНІ
190	Dodma	KUHI
191	Mangli	КОНІ
192	Khalasana	КОНІ
193	Mohadi	КОНІ
194	Chitapur	КОНІ
195	Warada	NAGPUR (RURAL)
196	Gawasi Manapur	NAGPUR (RURAL)
197	Bothali	NAGPUR (RURAL)
198	Dhawalpeth	NAGPUR (RURAL)
199	Tarsi	NAGPUR (RURAL)
200	Nawegaon	NAGPUR (RURAL)
201	Chimanzari	NAGPUR (RURAL)
202	Khairi (Lakhmaj	KALAMESHWAR
203	Walani	NAGPUR (RURAL)
204	Brahmanwada	NAGPUR (RURAL)

S.	Village	Block
No.		
205	Padri khapa	NAGPUR (RURAL)
206	Jangeshwar	NAGPUR (RURAL)
207	Dudha	NAGPUR (RURAL)
208	Isapur (navegao	KUHI
209	Champa	UMRED
210	Salaimendha	UMRED
211	Sonoli	KATOL
212	Sonoli	KATOL
213	Dorli (Bhandwal	KATOL
214	Rajni	KATOL
215	Khamli	KATOL
216	Mohkhedi	KATOL
217	Yenwa	KATOL
218	Bori	KATOL
219	Khamli	KATOL
220	Nanda	KATOL
221	Tapani	KATOL
222	Tapani	KATOL
223	Bori	KATOL
224	Mukani	KATOL
225	Yenwa	KATOL
226	Harankhuri	KATOL
227	Chichala	KATOL
228	lsapur (Kh)	KATOL
229	lsapur (Kh)	KATOL
230	Dongargaon	KATOL

S.	Village	Block
No.		
231	Dongargaon	KATOL
232	Dongargaon	KATOL
233	Pathar	KATOL
234	Bordoh	KATOL
235	lsapur (Kh)	KATOL
236	Wadvihara	KATOL
237	Digras (Bk)	KATOL
238	Lamdham	KATOL
239	Digras (Bk)	KATOL
240	Wadvihara	KATOL
241	Kalambha	KATOL
242	Kalambha	KATOL
243	Ambada	NARKHED
244	Paradsinga	KATOL
245	Paradsinga	KATOL
246	Paradsinga	KATOL
247	Masli	KATOL
248	Junewani	KATOL
249	Khandala (Kh)	KATOL
250	Ambada (sonak)	KATOL
251	Khadki	KATOL
252	Junewani	KATOL
253	Ambada (sonak)	KATOL
254	Khandala (Kh)	KATOL
255	Jatamkohala	KATOL
256	Paradsinga	KATOL

S.	Village	Block
No.		
257	Fetri	KATOL
258	Khaprikene	NARKHED
259	Junewani	KATOL
260	Paradsinga	KATOL
261	Junewani	KATOL
262	Junewani	KATOL
263	Fetri	KATOL
264	Khadki	KATOL
265	Pandhardhakani	KATOL
266	Chaurepathar	KATOL
267	Mohgaon (Jangli	KATOL
268	Chaurepathar	KATOL
269	Khedi Gowargond	NARKHED
270	Mohadi (Dalvi)	NARKHED
271	Bamhani	NARKHED
272	Pimpalgaon (wak	NARKHED
273	Toyapar	NARKHED
274	Ambola	NARKHED
275	Sawargaon	NARKHED
276	Mogra	NARKHED
277	Ambada (Deshmuk	NARKHED
278	Umari	NARKHED
279	Sawargaon	NARKHED
280	Chorkhairi	NARKHED
281	Nawegaon	NARKHED
282	Wadgaon (Umari)	NARKHED

S.	Village	Block
No.		
283	Khaprikene	NARKHED
284	Tinkheda	NARKHED
285	Wiwara	NARKHED
286	Indarwada	NARKHED
287	Кһара	NARKHED
288	Jamgaon Bk	NARKHED
289	Kinhi	HINGNA
290	Mangli	HINGNA
291	Sukali (Gharpur	HINGNA
292	Pipri	HINGNA
293	Khairi kh	HINGNA
294	Panjari	HINGNA
295	Mandawa	HINGNA
296	Dongargaon	HINGNA
297	Bhansoli	HINGNA
298	waranga	HINGNA
299	Dhokarda	HINGNA
300	Chauki	HINGNA
301	Singardip	HINGNA
302	Majri	КОНІ
303	Rajola	КОНІ
304	Dighori bk.	KAMPTEE
305	Gothangaon	КОНІ
306	Sonarwahi	КОНІ
307	Salai	UMRED
308	Musalgaon	КИНІ

S.	Village	Block
No.		
309	Banor	КОНІ
310	Yekardi	KAMPTEE
311	Sagundhara	КОНІ
312	Akoli	КОНІ
313	Khobna	КОНІ
314	Chirwha	MAUDA
315	Lapaka	MAUDA
316	Nerla	MAUDA
317	Khodegaon	RAMTEK
318	Chacher	MAUDA
319	Ghat Rohana	PARSEONI
320	Babadeo	MAUDA
321	Khedi	KAMPTEE
322	Chitapur	КОНІ
323	Sahajapur	KALAMESHWAR
324	Selu	KALAMESHWAR
325	Susundri	KALAMESHWAR
326	Lonara	KALAMESHWAR
327	Sawangi	KALAMESHWAR
328	Uparwani	KALAMESHWAR
329	Khangaon	KALAMESHWAR
330	Dhapewada bk.	KALAMESHWAR

S.	Village	Block
No.		
331	Khursapar	KALAMESHWAR
332	Kalmeshwar	KALAMESHWAR
333	Kalmeshwar	KALAMESHWAR
334	Yelkapar	KALAMESHWAR
335	Dhawalapur	KATOL
336	Dhurkheda	KATOL
337	Khursapur	KATOL
338	Chandanpardi	KATOL
339	Murti	KATOL
340	Sakarla	PARSEONI
341	Parsodi	PARSEONI
342	Itagaon	PARSEONI
343	Itagaon	PARSEONI
344	Dahegaon (joshi	PARSEONI
345	Dahegaon (joshi	PARSEONI
346	Bhage Mahari	PARSEONI
347	Karanbhad	PARSEONI
348	Karanbhad	PARSEONI
349	Pardi	PARSEONI
350	Makardhokada	PARSEONI
351	Makardhokada	PARSEONI

Sr.	Village	Block	Type of
No.			Structure
1	Ajangaon	MAUDA	Check Dam
2	Ajangaon	MAUDA	Check Dam
3	Ajangaon	MAUDA	Check Dam
4	Aroli	MAUDA	Check Dam
5	Aroli	MAUDA	Check Dam
6	Ashti	MAUDA	Check Dam
7	Babadeo	MAUDA	Check Dam
8	Chokhala	RAMTEK	Check Dam
9	Barshi	MAUDA	Check Dam
10	Batnor	MAUDA	Check Dam
11	Chacher	MAUDA	Check Dam
12	Chacher	MAUDA	Check Dam
13	Charbha	MAUDA	Check Dam
14	Dhani	MAUDA	Check Dam
15	Dhani	MAUDA	Check Dam
16	Dhani	MAUDA	Check Dam
17	Dhanoli	MAUDA	Check Dam
18	Gangner	MAUDA	Check Dam
19	Isapur	MAUDA	Check Dam
20	Kargaon(rithi)	MAUDA	Check Dam
21	Khandala	MAUDA	Check Dam
22	Khandala	MAUDA	Check Dam
23	Kirnapur	RAMTEK	Check Dam
24	Khaparkheda	MAUDA	Check Dam

Annexure IX: Locati	on of Check Dams
---------------------	------------------

Sr.	Village	Block	Type of
No.			Structure
25	Khaparkheda	MAUDA	Check Dam
26	Khaparkheda	MAUDA	Check Dam
27	Khaparkheda	MAUDA	Check Dam
28	Khaparkheda (Ga	MAUDA	Check Dam
29	Khaparkheda (Ga	MAUDA	Check Dam
30	Khaparkheda (Ki	MAUDA	Check Dam
31	Khaparkheda (Ki	MAUDA	Check Dam
32	Kharda	MAUDA	Check Dam
33	Khat	MAUDA	Check Dam
34	Khidki	MAUDA	Check Dam
35	Kodamendhi	MAUDA	Check Dam
36	Korad	MAUDA	Check Dam
37	Mangli(Teli)	MAUDA	Check Dam
38	Mangli(Teli)	MAUDA	Check Dam
39	Mathani	MAUDA	Check Dam
40	Morgaon	MAUDA	Check Dam
41	Mouda	MAUDA	Check Dam
42	Nandgaon	MAUDA	Check Dam
43	Nawargaon	MAUDA	Check Dam
44	Nerla	MAUDA	Check Dam
45	Astikala	KALAMESHWAR	Check Dam
46	Astikala	KALAMESHWAR	Check Dam
47	Astikala	KALAMESHWAR	Check Dam
48	Mohgaon	NARKHED	Check Dam

Sr.	Village	Block	Type of
No.			Structure
	(Bhadad		
49	Belori bk.	KALAMESHWAR	Check Dam
50	Bordoh	KALAMESHWAR	Check Dam
51	Budhla	KALAMESHWAR	Check Dam
52	Budhla	KALAMESHWAR	Check Dam
53	Budhla	KALAMESHWAR	Check Dam
54	Budhla	KALAMESHWAR	Check Dam
55	Dahegaon	KALAMESHWAR	Check Dam
56	Dhapewada bk.	KALAMESHWAR	Check Dam
57	Dhapewada bk.	KALAMESHWAR	Check Dam
58	Dorli gangaji	KALAMESHWAR	Check Dam
59	Dudhabardi	KALAMESHWAR	Check Dam
60	Gondkhairi	KALAMESHWAR	Check Dam
61	Gondkhairi	KALAMESHWAR	Check Dam
62	Gondkhairi	KALAMESHWAR	Check Dam
63	Gondkhairi	KALAMESHWAR	Check Dam
64	Gowari	KALAMESHWAR	Check Dam
65	Gumthala	KALAMESHWAR	Check Dam
66	Gumthala	KALAMESHWAR	Check Dam
67	Jirola	KALAMESHWAR	Check Dam
68	Kalambi	KALAMESHWAR	Check Dam
69	Kalambi	KALAMESHWAR	Check Dam
70	Kalambi	KALAMESHWAR	Check Dam
71	Kanyadhol	KALAMESHWAR	Check Dam
72	Karli	KALAMESHWAR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
73	Karli	KALAMESHWAR	Check Dam
74	Ketapar	KALAMESHWAR	Check Dam
75	Ketapar	KALAMESHWAR	Check Dam
76	Ketapar	KALAMESHWAR	Check Dam
77	Khairi (Desh)	KALAMESHWAR	Check Dam
78	Khairi (Harji)	KALAMESHWAR	Check Dam
79	Khairi (Harji)	KALAMESHWAR	Check Dam
80	Khairi (Harji)	KALAMESHWAR	Check Dam
81	Khapari (kothe)	KALAMESHWAR	Check Dam
82	Khapari (uma)	KALAMESHWAR	Check Dam
83	Khursapar	KALAMESHWAR	Check Dam
84	Khursapar	KALAMESHWAR	Check Dam
85	Khursapar	KALAMESHWAR	Check Dam
86	Kohali	KALAMESHWAR	Check Dam
87	Kohali	KALAMESHWAR	Check Dam
88	Kohali	KALAMESHWAR	Check Dam
89	Kohali	KALAMESHWAR	Check Dam
90	Linga	KALAMESHWAR	Check Dam
91	Linga	KALAMESHWAR	Check Dam
92	Linga	KALAMESHWAR	Check Dam
93	Linga	KALAMESHWAR	Check Dam
94	Raulgaon	KATOL	Check Dam
95	Linga	KALAMESHWAR	Check Dam
96	Linga	KALAMESHWAR	Check Dam
97	Lohagad	KALAMESHWAR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
98	Lohagad	KALAMESHWAR	Check Dam
99	Lonara	KALAMESHWAR	Check Dam
100	Nanda	KALAMESHWAR	Check Dam
101	Nimboli	KALAMESHWAR	Check Dam
102	Parsodi wakil	KALAMESHWAR	Check Dam
103	Parsodi wakil	KALAMESHWAR	Check Dam
104	Parsodi wakil	KALAMESHWAR	Check Dam
105	Pipla	KALAMESHWAR	Check Dam
106	Pohigond Khairi	KALAMESHWAR	Check Dam
107	Pohigond Khairi	KALAMESHWAR	Check Dam
108	Pohigond Khairi	KALAMESHWAR	Check Dam
109	Pohigond Khairi	KALAMESHWAR	Check Dam
110	Ramgiri	KALAMESHWAR	Check Dam
111	Ramgiri	KALAMESHWAR	Check Dam
112	Ramgiri	KALAMESHWAR	Check Dam
113	Ramgiri	KALAMESHWAR	Check Dam
114	Ramgiri	KALAMESHWAR	Check Dam
115	Rohana	KALAMESHWAR	Check Dam
116	Sawali kh.	KALAMESHWAR	Check Dam
117	Selu	KALAMESHWAR	Check Dam
118	Selu	KALAMESHWAR	Check Dam
119	Sonegaon	KALAMESHWAR	Check Dam
120	Sonoli	KALAMESHWAR	Check Dam
121	Sonoli	KALAMESHWAR	Check Dam
122	Susundri	KALAMESHWAR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
123	Telgaon	KALAMESHWAR	Check Dam
124	Chakorda (rithi	RAMTEK	Check Dam
125	Nagardhan	RAMTEK	Check Dam
126	Sirpur	RAMTEK	Check Dam
127	Nawargaon	RAMTEK	Check Dam
128	Kelapur (R)	RAMTEK	Check Dam
129	Musewadi	RAMTEK	Check Dam
130	Amgaon	RAMTEK	Check Dam
131	Bhondewada	RAMTEK	Check Dam
132	Guguldoh	RAMTEK	Check Dam
133	Bhandar Bodi	RAMTEK	Check Dam
134	Bhandar Bodi	RAMTEK	Check Dam
135	Bhandar Bodi	RAMTEK	Check Dam
136	Agra	SAVNER	Check Dam
137	Agra	SAVNER	Check Dam
138	Ajani	SAVNER	Check Dam
139	Badegaon	SAVNER	Check Dam
140	Bhendala	SAVNER	Check Dam
141	Bichawa	SAVNER	Check Dam
142	Bid jatamkhora	SAVNER	Check Dam
143	Chhatrapur	SAVNER	Check Dam
144	Chorkhairi	SAVNER	Check Dam
145	Gadami	SAVNER	Check Dam
146	Hetikheda	SAVNER	Check Dam
147	Hingna	SAVNER	Check Dam

Sr.	Village	Block	Type of
No.			Structure
148	Itangoti	SAVNER	Check Dam
149	Jaitgad	SAVNER	Check Dam
150	Jaitgad	SAVNER	Check Dam
151	Jaitgad	SAVNER	Check Dam
152	Jaitgad	SAVNER	Check Dam
153	Jaitpur	SAVNER	Check Dam
154	Jakhewada	SAVNER	Check Dam
155	Jakhewada	SAVNER	Check Dam
156	Jalalkheda	SAVNER	Check Dam
157	Jatamkhora	SAVNER	Check Dam
158	Joga	SAVNER	Check Dam
159	Joga	SAVNER	Check Dam
160	Joga	SAVNER	Check Dam
161	Khapa (Narsala)	SAVNER	Check Dam
162	Khurajgaon	SAVNER	Check Dam
163	Khursapar	SAVNER	Check Dam
164	Kodadongri	SAVNER	Check Dam
165	Kodegaon	SAVNER	Check Dam
166	Kormeta	SAVNER	Check Dam
167	Kothulana	SAVNER	Check Dam
168	Kusumbi	SAVNER	Check Dam
169	Maharkund	SAVNER	Check Dam
170	Malegaon	SAVNER	Check Dam
171	Malegaon	SAVNER	Check Dam
172	Telkamthi	KALAMESHWAR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
173	Manegaon	SAVNER	Check Dam
174	Nanda Gomukh	SAVNER	Check Dam
175	Nanda Gomukh	SAVNER	Check Dam
176	Patansavangi	SAVNER	Check Dam
177	Pendhari	SAVNER	Check Dam
178	Pipla (da-B)	SAVNER	Check Dam
179	Raibasa	SAVNER	Check Dam
180	Ranala	SAVNER	Check Dam
181	Ranala	SAVNER	Check Dam
182	Salai	SAVNER	Check Dam
183	Sawali	SAVNER	Check Dam
184	Sawangi	SAVNER	Check Dam
185	Tekadi	SAVNER	Check Dam
186	Telang Khedi	PARSEONI	Check Dam
187	Tembhurdoh	SAVNER	Check Dam
188	Telang Khedi	PARSEONI	Check Dam
189	Satak	PARSEONI	Check Dam
190	Naikund	PARSEONI	Check Dam
191	Satak	PARSEONI	Check Dam
192	Satak	PARSEONI	Check Dam
193	Khandala (Du)	PARSEONI	Check Dam
194	Juni Kamptee	PARSEONI	Check Dam
195	Panjara (Ri)	PARSEONI	Check Dam
196	Amadi	PARSEONI	Check Dam
197	Digalwadi	PARSEONI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
198	Parsodi	PARSEONI	Check Dam
199	Nimbha	PARSEONI	Check Dam
200	Nimbha	PARSEONI	Check Dam
201	Nimbha	PARSEONI	Check Dam
202	Bhage Mahari	PARSEONI	Check Dam
203	Itagaon	PARSEONI	Check Dam
204	Karanbhad	PARSEONI	Check Dam
205	Pendhari	PARSEONI	Check Dam
206	Kusumdhara	PARSEONI	Check Dam
207	Kusumdhara	PARSEONI	Check Dam
208	Salai (Mokasa)	PARSEONI	Check Dam
209	Kanhadevi	PARSEONI	Check Dam
210	Kusumdhara	PARSEONI	Check Dam
211	Kondasawari	PARSEONI	Check Dam
212	Kondasawari	PARSEONI	Check Dam
213	Palasavali	PARSEONI	Check Dam
214	Mogra	PARSEONI	Check Dam
215	Tigai	SAVNER	Check Dam
216	Kanhadevi	PARSEONI	Check Dam
217	Sakarla	PARSEONI	Check Dam
218	Bhage Mahari	PARSEONI	Check Dam
219	Nimkheda	PARSEONI	Check Dam
220	Telang Khedi	PARSEONI	Check Dam
221	Naikund	PARSEONI	Check Dam
222	Khandala (Du)	PARSEONI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
223	Mahedi	PARSEONI	Check Dam
224	Naikund	PARSEONI	Check Dam
225	Parshivni	PARSEONI	Check Dam
226	Parshivni	PARSEONI	Check Dam
227	Naikund	PARSEONI	Check Dam
228	Mahedi	PARSEONI	Check Dam
229	Tekadi	PARSEONI	Check Dam
230	Pali	PARSEONI	Check Dam
231	Umari	PARSEONI	Check Dam
232	Makardhokada	PARSEONI	Check Dam
233	Suwardhara	PARSEONI	Check Dam
234	Khandala (Gha	PARSEONI	Check Dam
235	Khandala (Gha	PARSEONI	Check Dam
236	Bhulewadi	PARSEONI	Check Dam
237	Neur Wada	PARSEONI	Check Dam
238	Umari jambhalp	SAVNER	Check Dam
239	Mahadula	PARSEONI	Check Dam
240	Aoleghat	PARSEONI	Check Dam
241	Umari (Bharatpu	SAVNER	Check Dam
242	Adaka	KAMPTEE	Check Dam
243	Ajani	KAMPTEE	Check Dam
244	Asalwada	KAMPTEE	Check Dam
245	Avandhi	KAMPTEE	Check Dam
246	Avandhi	KAMPTEE	Check Dam
247	Babulkheda	KAMPTEE	Check Dam

Sr.	Village	Block	Type of
No.			Structure
248	Bhowari	KAMPTEE	Check Dam
249	Bhugaon	KAMPTEE	Check Dam
250	Bhugaon	KAMPTEE	Check Dam
251	Bidgaon.	KAMPTEE	Check Dam
252	Chikhali	KAMPTEE	Check Dam
253	Dighori bk.	KAMPTEE	Check Dam
254	Dighori bk.	KAMPTEE	Check Dam
255	Rewaral	MAUDA	Check Dam
256	Gada	KAMPTEE	Check Dam
257	Ghorpad	KAMPTEE	Check Dam
258	Gumthala	KAMPTEE	Check Dam
259	Kadoli.	KAMPTEE	Check Dam
260	Kapsi bk	KAMPTEE	Check Dam
261	Kawtha	KAMPTEE	Check Dam
262	Kem	KAMPTEE	Check Dam
263	Lihigaon	KAMPTEE	Check Dam
264	Mahalgaon	KAMPTEE	Check Dam
265	Nerala	KAMPTEE	Check Dam
266	Neri	KAMPTEE	Check Dam
267	Neri	KAMPTEE	Check Dam
268	Palsad	KAMPTEE	Check Dam
269	Pawangaon	KAMPTEE	Check Dam
270	Ranala	KAMPTEE	Check Dam
271	Zilbodi	BHIWAPUR	Check Dam
272	Dhaparla	BHIWAPUR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
273	Zilbodi	BHIWAPUR	Check Dam
274	Bhagwanpur	BHIWAPUR	Check Dam
275	Taka	BHIWAPUR	Check Dam
276	Taka	BHIWAPUR	Check Dam
277	Taka	BHIWAPUR	Check Dam
278	Bordkhurd	BHIWAPUR	Check Dam
279	Sukali	BHIWAPUR	Check Dam
280	Alesur	BHIWAPUR	Check Dam
281	Khapari	BHIWAPUR	Check Dam
282	Alesur	BHIWAPUR	Check Dam
283	Kharkada	BHIWAPUR	Check Dam
284	Alesur	BHIWAPUR	Check Dam
285	Polgaon	BHIWAPUR	Check Dam
286	Polgaon	BHIWAPUR	Check Dam
287	Polgaon	BHIWAPUR	Check Dam
288	Khapari	BHIWAPUR	Check Dam
289	Taka	BHIWAPUR	Check Dam
290	Taka	BHIWAPUR	Check Dam
291	Sukali	BHIWAPUR	Check Dam
292	Chorvihara	BHIWAPUR	Check Dam
293	Salebhatti	BHIWAPUR	Check Dam
294	Dhamangaon	BHIWAPUR	Check Dam
295	Nand	BHIWAPUR	Check Dam
296	Chorvihara	BHIWAPUR	Check Dam
297	Chorvihara	BHIWAPUR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
298	Salebhatti	BHIWAPUR	Check Dam
299	Polgaon	BHIWAPUR	Check Dam
300	Polgaon	BHIWAPUR	Check Dam
301	Polgaon	BHIWAPUR	Check Dam
302	Polgaon	BHIWAPUR	Check Dam
303	Pirawa	BHIWAPUR	Check Dam
304	Pirawa	BHIWAPUR	Check Dam
305	Khapari	BHIWAPUR	Check Dam
306	Bhagwanpur	BHIWAPUR	Check Dam
307	Wani	BHIWAPUR	Check Dam
308	Lonara	BHIWAPUR	Check Dam
309	Mankapur	BHIWAPUR	Check Dam
310	Pirawa	BHIWAPUR	Check Dam
311	Bhagwanpur	BHIWAPUR	Check Dam
312	Asola	HINGNA	Check Dam
313	Bhansuli	HINGNA	Check Dam
314	Bhansuli	HINGNA	Check Dam
315	Bothali	HINGNA	Check Dam
316	Chauki	HINGNA	Check Dam
317	Datala	HINGNA	Check Dam
318	Telhara	NAGPUR	Check Dam
		(RURAL)	
319	Dahegaon	NAGPUR	Check Dam
		(RURAL)	
320	Datala	HINGNA	Check Dam

Sr.	Village	Block	Type of
No.			Structure
321	Dhanoli	HINGNA	Check Dam
322	Dongargaon	HINGNA	Check Dam
323	Ghodeghat	HINGNA	Check Dam
324	Girola	HINGNA	Check Dam
325	Godhani	HINGNA	Check Dam
326	Gumgaon	HINGNA	Check Dam
327	Isasani	HINGNA	Check Dam
328	Isasani	HINGNA	Check Dam
329	Junapani	HINGNA	Check Dam
330	Junapani	HINGNA	Check Dam
331	Junapani	HINGNA	Check Dam
332	Junapani	HINGNA	Check Dam
333	Kanholi	HINGNA	Check Dam
334	Kanholi	HINGNA	Check Dam
335	Kanholi (Rithi)	HINGNA	Check Dam
336	Kanholi (Rithi)	HINGNA	Check Dam
337	Kanholi (Rithi)	HINGNA	Check Dam
338	Kanholi (Rithi)	HINGNA	Check Dam
339	Kanholibara	HINGNA	Check Dam
340	Khairi kh	HINGNA	Check Dam
341	Khairi kh	HINGNA	Check Dam
342	Jamtha	NAGPUR	Check Dam
		(RURAL)	
343	Jamtha	NAGPUR	Check Dam
		(RURAL)	

Sr.	Village	Block	Type of
No.			Structure
344	Khairi kh	HINGNA	Check Dam
345	Khairi kh	HINGNA	Check Dam
346	Khapri (Moreshw	HINGNA	Check Dam
347	Khapri (Moreshw	HINGNA	Check Dam
348	Kinhi	HINGNA	Check Dam
349	Kinhi	HINGNA	Check Dam
350	Kinhi	HINGNA	Check Dam
351	Kinhi	HINGNA	Check Dam
352	Kinhi	HINGNA	Check Dam
353	Kirmati	HINGNA	Check Dam
354	Kirmati	HINGNA	Check Dam
355	Kohala	HINGNA	Check Dam
356	Kohala	HINGNA	Check Dam
357	Kohala	HINGNA	Check Dam
358	Kohala	HINGNA	Check Dam
359	Kotewada	HINGNA	Check Dam
360	Kotewada	HINGNA	Check Dam
361	Ladgaon	HINGNA	Check Dam
362	Ladgaon	HINGNA	Check Dam
363	Ladgaon	HINGNA	Check Dam
364	Mandavghorad	HINGNA	Check Dam
365	Mandavghorad	HINGNA	Check Dam
366	Mangli	HINGNA	Check Dam
367	Menkhat	HINGNA	Check Dam
368	Metaumari	HINGNA	Check Dam

Sr.	Village	Block	Type of
No.			Structure
369	Metaumari	HINGNA	Check Dam
370	Metaumari	HINGNA	Check Dam
371	Murzari	HINGNA	Check Dam
372	Vyahad	NAGPUR	Check Dam
		(RURAL)	
373	Neri	HINGNA	Check Dam
374	Neri	HINGNA	Check Dam
375	Neri	HINGNA	Check Dam
376	Neri	HINGNA	Check Dam
377	Neri	HINGNA	Check Dam
378	Neri	HINGNA	Check Dam
379	Nildoh	HINGNA	Check Dam
380	Nildoh	HINGNA	Check Dam
381	Nildoh	HINGNA	Check Dam
382	Telkamthi	KALAMESHWAR	Check Dam
383	Mohgaon bk.	NAGPUR	Check Dam
		(RURAL)	
384	Panjari	HINGNA	Check Dam
385	Gonha	КИНІ	Check Dam
386	Mendhe kh.	КИНІ	Check Dam
387	Chikhali	KUHI	Check Dam
388	Chikhali	KUHI	Check Dam
389	Sonarwahi	KUHI	Check Dam
390	Weltur	KUHI	Check Dam
391	Weltur	KUHI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
392	Weltur	КОНІ	Check Dam
393	Weltur	КОНІ	Check Dam
394	Weltur	КОНІ	Check Dam
395	Pratappur	КОНІ	Check Dam
396	Adegaon	КИНІ	Check Dam
397	Adegaon	КИНІ	Check Dam
398	Weltur	КОНІ	Check Dam
399	Weltur	КИНІ	Check Dam
400	Fegad	КИНІ	Check Dam
401	Dhanla	КИНІ	Check Dam
402	Dhanla	КИНІ	Check Dam
403	Dhanla	КОНІ	Check Dam
404	Dhanla	КИНІ	Check Dam
405	Dhanla	КИНІ	Check Dam
406	Dhanla	КИНІ	Check Dam
407	Dhanla	КИНІ	Check Dam
408	Pratappur	КИНІ	Check Dam
409	Sonpuri	КОНІ	Check Dam
410	Pratappur	КОНІ	Check Dam
411	Sonpuri	КИНІ	Check Dam
412	Rajoli	КОНІ	Check Dam
413	Kesori	КИНІ	Check Dam
414	Kesori	КОНІ	Check Dam
415	Pachkhedi (gand	КОНІ	Check Dam
416	Pachkhedi (gand	КОНІ	Check Dam

Sr.	Village	Block	Type of
No.			Structure
417	Khairlanji	КОНІ	Check Dam
418	Madnapur	КОНІ	Check Dam
419	Khairlanji	КОНІ	Check Dam
420	Parsodi (raja)	КОНІ	Check Dam
421	Pandhargota	КОНІ	Check Dam
422	Pandhargota	КОНІ	Check Dam
423	Pachkhedi (gand	КОНІ	Check Dam
424	Fegad	КОНІ	Check Dam
425	Pandhargota	КОНІ	Check Dam
426	Rajoli	КОНІ	Check Dam
427	Sonpuri	КОНІ	Check Dam
428	Pratappur	КОНІ	Check Dam
429	Channa	КОНІ	Check Dam
430	Sonpuri	КОНІ	Check Dam
431	Sonpuri	КОНІ	Check Dam
432	Kesori	КОНІ	Check Dam
433	Kesori	КОНІ	Check Dam
434	Kesori	КОНІ	Check Dam
435	Kesori	КОНІ	Check Dam
436	Khairlanji	КОНІ	Check Dam
437	Weltur	КОНІ	Check Dam
438	Khenda	КИНІ	Check Dam
439	Khenda	KUHI	Check Dam
440	Takli	KUHI	Check Dam
441	Adam	KUHI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
442	Khenda	КОНІ	Check Dam
443	Khenda	КОНІ	Check Dam
444	Navegaon (devi)	КОНІ	Check Dam
445	Navegaon (devi)	KUHI	Check Dam
446	Adam	КОНІ	Check Dam
447	Adam	KUHI	Check Dam
448	Katara	КОНІ	Check Dam
449	Adam	KUHI	Check Dam
450	Bamhani	KUHI	Check Dam
451	Mohgaon	КОНІ	Check Dam
452	Bodkhipeth	КОНІ	Check Dam
453	Navegaon	КОНІ	Check Dam
454	Navegaon	КОНІ	Check Dam
455	Khobna	КОНІ	Check Dam
456	Bhowardeo	КОНІ	Check Dam
457	Umarpeth	КОНІ	Check Dam
458	Umarpeth	КОНІ	Check Dam
459	Umarpeth	КОНІ	Check Dam
460	Umarpeth	КОНІ	Check Dam
461	Umarpeth	КОНІ	Check Dam
462	Umarpeth	КОНІ	Check Dam
463	Mohgaon	КОНІ	Check Dam
464	Katara	KUHI	Check Dam
465	Chipdi	KUHI	Check Dam
466	Chipdi	КОНІ	Check Dam

Sr.	Village	Block	Type of
No.			Structure
467	Kuhi	КИНІ	Check Dam
468	Kuhi	KUHI	Check Dam
469	Kuhi	КОНІ	Check Dam
470	Kuhi	KUHI	Check Dam
471	Chipdi	КОНІ	Check Dam
472	Kuhi	KUHI	Check Dam
473	Kuhi	КИНІ	Check Dam
474	Satara	KUHI	Check Dam
475	Satara	KUHI	Check Dam
476	Satara	KUHI	Check Dam
477	Sonegaon	KUHI	Check Dam
478	Heti	KUHI	Check Dam
479	Kuhi	КИНІ	Check Dam
480	Kuhi	KUHI	Check Dam
481	Silli	КИНІ	Check Dam
482	Parsodi	КОНІ	Check Dam
483	Powari	KUHI	Check Dam
484	Kuhi	КОНІ	Check Dam
485	Silli	КОНІ	Check Dam
486	Malni	КОНІ	Check Dam
487	Malni	KUHI	Check Dam
488	Bhamewada	KUHI	Check Dam
489	Heti	KUHI	Check Dam
490	Sagundhara	KUHI	Check Dam
491	Titur	KUHI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
492	Selu	KAMPTEE	Check Dam
493	Bhamewada	КОНІ	Check Dam
494	Titur	КОНІ	Check Dam
495	Titur	КОНІ	Check Dam
496	Chitapur	КИНІ	Check Dam
497	Titur	КИНІ	Check Dam
498	Titur	КИНІ	Check Dam
499	Titur	КИНІ	Check Dam
500	Bhamewada	КИНІ	Check Dam
501	Mangli	КИНІ	Check Dam
502	Dodma	КИНІ	Check Dam
503	Nawargaon	КИНІ	Check Dam
504	Nawargaon	КИНІ	Check Dam
505	Sasegaon	КИНІ	Check Dam
506	Sasegaon	КИНІ	Check Dam
507	Sasegaon	КИНІ	Check Dam
508	Sasegaon	КИНІ	Check Dam
509	Sasegaon	КИНІ	Check Dam
510	Mohadi	КИНІ	Check Dam
511	Titur	КИНІ	Check Dam
512	Kuchadi	КИНІ	Check Dam
513	Kuchadi	КИНІ	Check Dam
514	Kuchadi	КОНІ	Check Dam
515	Mohadi	КИНІ	Check Dam
516	Kuchadi	КОНІ	Check Dam

Sr.	Village	Block	Type of
No.			Structure
517	Dipala	КОНІ	Check Dam
518	Bothali	NAGPUR	Check Dam
		(RURAL)	
519	Pewatha	NAGPUR	Check Dam
		(RURAL)	
520	Khapari	NAGPUR	Check Dam
		(RURAL)	
521	Pewatha	NAGPUR	Check Dam
		(RURAL)	
522	Pewatha	NAGPUR	Check Dam
		(RURAL)	
523	Pewatha	NAGPUR	Check Dam
		(RURAL)	
524	Rui	NAGPUR	Check Dam
		(RURAL)	
525	Rui	NAGPUR	Check Dam
		(RURAL)	
526	Jamtha	NAGPUR	Check Dam
		(RURAL)	
527	Dongargaon	NAGPUR	Check Dam
		(RURAL)	
528	Dongargaon	NAGPUR	Check Dam
		(RURAL)	
529	Panjari	HINGNA	Check Dam
530	Panjari	HINGNA	Check Dam

Sr.	Village	Block	Type of
No.			Structure
531	Panjari	HINGNA	Check Dam
532	Pipardhara	HINGNA	Check Dam
533	Pipardhara	HINGNA	Check Dam
534	Pohi	HINGNA	Check Dam
535	Dhawalpeth	NAGPUR	Check Dam
		(RURAL)	
536	Dhawalpeth	NAGPUR	Check Dam
		(RURAL)	
537	Dhawalpeth	NAGPUR	Check Dam
		(RURAL)	
538	Salaidabha	HINGNA	Check Dam
539	Salaidabha	HINGNA	Check Dam
540	Rui khairi	NAGPUR	Check Dam
		(RURAL)	
541	Murarpur	NAGPUR	Check Dam
		(RURAL)	
542	Bamhani	NAGPUR	Check Dam
		(RURAL)	
543	Bamhani	NAGPUR	Check Dam
		(RURAL)	
544	Dudha	NAGPUR	Check Dam
		(RURAL)	
545	Dhawalpeth	NAGPUR	Check Dam
		(RURAL)	
546	Dudha	NAGPUR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
		(RURAL)	
547	Pardi	NAGPUR	Check Dam
		(RURAL)	
548	Telkamthi	KALAMESHWAR	Check Dam
549	Yerla	NAGPUR	Check Dam
		(RURAL)	
550	Yerla	NAGPUR	Check Dam
		(RURAL)	
551	Telkamthi	KALAMESHWAR	Check Dam
552	Pachanvari	NAGPUR	Check Dam
		(RURAL)	
553	Mohgaon bk.	NAGPUR	Check Dam
		(RURAL)	
554	Pachanvari	NAGPUR	Check Dam
		(RURAL)	
555	Pachanvari	NAGPUR	Check Dam
		(RURAL)	
556	Pachanvari	NAGPUR	Check Dam
		(RURAL)	
557	Mangli	UMRED	Check Dam
558	Chimanazari	UMRED	Check Dam
559	Ukadwadi	UMRED	Check Dam
560	Isapur (navegao	KUHI	Check Dam
561	Bothali	NAGPUR	Check Dam
		(RURAL)	

Sr.	Village	Block	Type of
No.			Structure
562	Dhawalpeth	NAGPUR	Check Dam
		(RURAL)	
563	Mohgaon bk.	NAGPUR	Check Dam
		(RURAL)	
564	Kaldongri	NAGPUR	Check Dam
		(RURAL)	
565	Champa	UMRED	Check Dam
566	Haladgaon	UMRED	Check Dam
567	Pachgaon	UMRED	Check Dam
568	Gollarkhapa	KATOL	Check Dam
569	Gollarkhapa	KATOL	Check Dam
570	Gollarkhapa	KATOL	Check Dam
571	Gollarkhapa	KATOL	Check Dam
572	Tapani	KATOL	Check Dam
573	Tapani	KATOL	Check Dam
574	Malapur	NARKHED	Check Dam
575	Jatamzari	KATOL	Check Dam
576	Gangaldoh	KATOL	Check Dam
577	Isapur (Kh)	KATOL	Check Dam
578	Isapur (Kh)	KATOL	Check Dam
579	Gangaldoh	KATOL	Check Dam
580	Bordoh	KATOL	Check Dam
581	Isapur (Kh)	KATOL	Check Dam
582	Gangaldoh	KATOL	Check Dam
583	Mendki	KATOL	Check Dam

Sr.	Village	Block	Type of
No.			Structure
584	Gollarkhapa	KATOL	Check Dam
585	Zilpa	KATOL	Check Dam
586	Sonoli	KATOL	Check Dam
587	Zilpa	KATOL	Check Dam
588	Zilpa	KATOL	Check Dam
589	Bori	KATOL	Check Dam
590	Zilpa	KATOL	Check Dam
591	Khairi (Navghar	KATOL	Check Dam
592	Isapur(Bk)	KATOL	Check Dam
593	Gonhi	KATOL	Check Dam
594	Isapur(Bk)	KATOL	Check Dam
595	Gonhi	KATOL	Check Dam
596	Bhajipani	KATOL	Check Dam
597	Gonhi	KATOL	Check Dam
598	Isapur (Kh)	KATOL	Check Dam
599	Bordoh	KATOL	Check Dam
600	Bhajipani	KATOL	Check Dam
601	Dongargaon	KATOL	Check Dam
602	Dongargaon	KATOL	Check Dam
603	Dongargaon	KATOL	Check Dam
604	Rajni	KATOL	Check Dam
605	Rajni	KATOL	Check Dam
606	Sawargaon	NARKHED	Check Dam
607	Rajni	KATOL	Check Dam
608	Sawargaon	NARKHED	Check Dam

Sr.	Village	Block	Type of
No.			Structure
609	Khamli	KATOL	Check Dam
610	Khamli	KATOL	Check Dam
611	Khamli	KATOL	Check Dam
612	Sonoli	KATOL	Check Dam
613	Gollarkhapa	KATOL	Check Dam
614	Rajni	KATOL	Check Dam
615	Mukani	KATOL	Check Dam
616	Rajni	KATOL	Check Dam
617	Malapur	NARKHED	Check Dam
618	Gonhi	KATOL	Check Dam
619	Yenwa	KATOL	Check Dam
620	Yenwa	KATOL	Check Dam
621	Yenwa	KATOL	Check Dam
622	Yenwa	KATOL	Check Dam
623	Mohkhedi	KATOL	Check Dam
624	Kalambha	KATOL	Check Dam
625	Kalambha	KATOL	Check Dam
626	Mohkhedi	KATOL	Check Dam
627	Kalambha	KATOL	Check Dam
628	Kalambha	KATOL	Check Dam
629	Karla	KATOL	Check Dam
630	Yenwa	KATOL	Check Dam
631	Yenwa	KATOL	Check Dam
632	Mohkhedi	KATOL	Check Dam
633	Yerla (Dhote)	KATOL	Check Dam

Sr.	Village	Block	Type of
No.			Structure
634	Gondidigras	KATOL	Check Dam
635	Digras (Bk)	KATOL	Check Dam
636	Khandala (Kh)	KATOL	Check Dam
637	Ambada (sonak)	KATOL	Check Dam
638	Ambada (sonak)	KATOL	Check Dam
639	Khandala (Kh)	KATOL	Check Dam
640	Khandala (Kh)	KATOL	Check Dam
641	Khandala (Kh)	KATOL	Check Dam
642	Khandala (Kh)	KATOL	Check Dam
643	Ambada (sonak)	KATOL	Check Dam
644	Dongargaon	KATOL	Check Dam
645	Ambada	NARKHED	Check Dam
646	Panwadi	KATOL	Check Dam
647	Dongargaon	KATOL	Check Dam
648	Dongargaon	KATOL	Check Dam
649	Kolambi	KATOL	Check Dam
650	Junewani	KATOL	Check Dam
651	Kolambi	KATOL	Check Dam
652	Fetri	KATOL	Check Dam
653	Khangaon	KATOL	Check Dam
654	Kolambi	KATOL	Check Dam
655	Dhiwarwadi	KATOL	Check Dam
656	Jatamkohala	KATOL	Check Dam
657	Junewani	KATOL	Check Dam
658	Junewani	KATOL	Check Dam

Sr.	Village	Block	Type of
No.			Structure
659	Junewani	KATOL	Check Dam
660	Junewani	KATOL	Check Dam
661	Junewani	KATOL	Check Dam
662	Junewani	KATOL	Check Dam
663	Ambada (sonak)	KATOL	Check Dam
664	Jatamkohala	KATOL	Check Dam
665	Junewani	KATOL	Check Dam
666	Jatamkohala	KATOL	Check Dam
667	Jatamkohala	KATOL	Check Dam
668	Jatamkohala	KATOL	Check Dam
669	Jatamkohala	KATOL	Check Dam
670	Jatamkohala	KATOL	Check Dam
671	Jatamkohala	KATOL	Check Dam
672	Jatamkohala	KATOL	Check Dam
673	Khandala (Kh)	KATOL	Check Dam
674	Paradsinga	KATOL	Check Dam
675	Paradsinga	KATOL	Check Dam
676	Paradsinga	KATOL	Check Dam
677	Paradsinga	KATOL	Check Dam
678	Paradsinga	KATOL	Check Dam
679	Paradsinga	KATOL	Check Dam
680	Wadvihara	KATOL	Check Dam
681	Paradsinga	KATOL	Check Dam
682	Paradsinga	KATOL	Check Dam
683	Bhidhnur	NARKHED	Check Dam

Sr.	Village	Block	Type of
No.			Structure
684	Bhidhnur	NARKHED	Check Dam
685	Masli	KATOL	Check Dam
686	Bhidhnur	NARKHED	Check Dam
687	Wadvihara	KATOL	Check Dam
688	Khaprikene	NARKHED	Check Dam
689	Khaprikene	NARKHED	Check Dam
690	Junewani	KATOL	Check Dam
691	Khaprikene	NARKHED	Check Dam
692	Junewani	KATOL	Check Dam
693	Khaprikene	NARKHED	Check Dam
694	Junewani	KATOL	Check Dam
695	Khaprikene	NARKHED	Check Dam
696	Khadki	KATOL	Check Dam
697	Chaurepathar	KATOL	Check Dam
698	Chaurepathar	KATOL	Check Dam
699	Junewani	KATOL	Check Dam
700	Chaurepathar	KATOL	Check Dam
701	Khadki	KATOL	Check Dam
702	Chaurepathar	KATOL	Check Dam
703	Khadki	KATOL	Check Dam
704	Junewani	KATOL	Check Dam
705	Khadki	KATOL	Check Dam
706	Chaurepathar	KATOL	Check Dam
707	Chaurepathar	KATOL	Check Dam
708	Khadki	KATOL	Check Dam
Sr.	Village	Block	Type of
-----	----------------	---------	-----------
No.			Structure
709	Khadki	KATOL	Check Dam
710	Chaurepathar	KATOL	Check Dam
711	Pandhardhakani	KATOL	Check Dam
712	Chaurepathar	KATOL	Check Dam
713	Chaurepathar	KATOL	Check Dam
714	Pandhardhakani	KATOL	Check Dam
715	Pandhardhakani	KATOL	Check Dam
716	Pandhardhakani	KATOL	Check Dam
717	Pandhardhakani	KATOL	Check Dam
718	Pandhardhakani	KATOL	Check Dam
719	Pandhardhakani	KATOL	Check Dam
720	Pandhardhakani	KATOL	Check Dam
721	Pandhardhakani	KATOL	Check Dam
722	Junewani	NARKHED	Check Dam
723	Pandhardhakani	KATOL	Check Dam
724	Junewani	NARKHED	Check Dam
725	Junewani	NARKHED	Check Dam
726	Kakaddara	NARKHED	Check Dam
727	Kakaddara	NARKHED	Check Dam
728	Kakaddara	NARKHED	Check Dam
729	Kakaddara	NARKHED	Check Dam
730	Pandhardhakani	KATOL	Check Dam
731	Kakaddara	NARKHED	Check Dam
732	Khaprikene	NARKHED	Check Dam
733	Junewani	NARKHED	Check Dam

Sr.	Village	Block	Type of
No.			Structure
734	Ambada	NARKHED	Check Dam
	(Deshmuk		
735	Pithori	NARKHED	Check Dam
736	Chorkhairi	NARKHED	Check Dam
737	Khedi Gowargond	NARKHED	Check Dam
738	Khedi Gowargond	NARKHED	Check Dam
739	Khedi Gowargond	NARKHED	Check Dam
740	Umari	NARKHED	Check Dam
741	Mhasora	NARKHED	Check Dam
742	Mhasora	NARKHED	Check Dam
743	Umari	NARKHED	Check Dam
744	Khandala[Bk]	NARKHED	Check Dam
745	Ambola	NARKHED	Check Dam
746	Toyapar	NARKHED	Check Dam
747	Mogra	NARKHED	Check Dam
748	Mogra	NARKHED	Check Dam
749	Toyapar	NARKHED	Check Dam
750	Toyapar	NARKHED	Check Dam
751	Wadgaon (Umari)	NARKHED	Check Dam
752	Mohadi (Dhotra)	NARKHED	Check Dam
753	Mohadi (Dhotra)	NARKHED	Check Dam
754	Ambola	NARKHED	Check Dam
755	Ambola	NARKHED	Check Dam
756	Khandala[Bk]	NARKHED	Check Dam
757	Khandala[Bk]	NARKHED	Check Dam

Sr.	Village	Block	Type of
No.			Structure
758	Khandala[Bk]	NARKHED	Check Dam
759	Singarkheda	NARKHED	Check Dam
760	Khandala[Bk]	NARKHED	Check Dam
761	Mhasora	NARKHED	Check Dam
762	Mhasora	NARKHED	Check Dam
763	Koni	NARKHED	Check Dam
764	Mohadi (Dalvi)	NARKHED	Check Dam
765	Mohadi (Dalvi)	NARKHED	Check Dam
766	Nawegaon	NARKHED	Check Dam
767	Mohadi (Dalvi)	NARKHED	Check Dam
768	Palasgaon	NARKHED	Check Dam
769	Palasgaon	NARKHED	Check Dam
770	Bamhani	NARKHED	Check Dam
771	Bamhani	NARKHED	Check Dam
772	Bamhani	NARKHED	Check Dam
773	Nawegaon	NARKHED	Check Dam
774	Wadgaon (Umari)	NARKHED	Check Dam
775	Wadgaon (Umari)	NARKHED	Check Dam
776	Tinkheda	NARKHED	Check Dam
777	Pandhardhakani	KATOL	Check Dam
778	Pandhardhakani	KATOL	Check Dam
779	Pandhardhakani	KATOL	Check Dam
780	Salaidabha	HINGNA	Check Dam
781	Sawangi	HINGNA	Check Dam
782	Singardip	HINGNA	Check Dam

Sr.	Village	Block	Type of
No.			Structure
783	Singardip	HINGNA	Check Dam
784	Sinka	HINGNA	Check Dam
785	Sirul	HINGNA	Check Dam
786	Sirul	HINGNA	Check Dam
787	Sirul	HINGNA	Check Dam
788	Sumthana	HINGNA	Check Dam
789	Sumthana	HINGNA	Check Dam
790	Wagdara	HINGNA	Check Dam
791	Wagdara	HINGNA	Check Dam
792	Wagdara	HINGNA	Check Dam
793	Wagdara	HINGNA	Check Dam
794	Wagdara	HINGNA	Check Dam
795	Wagdara	HINGNA	Check Dam
796	Wagdara	HINGNA	Check Dam
797	Wagdara	HINGNA	Check Dam
798	Wagdara	HINGNA	Check Dam
799	Wagdara	HINGNA	Check Dam
800	Wagdara	HINGNA	Check Dam
801	Wagdara	HINGNA	Check Dam
802	Wagdara	HINGNA	Check Dam
803	Wanadongri	HINGNA	Check Dam
804	Waranga	HINGNA	Check Dam
805	Wayfal	HINGNA	Check Dam
806	Wadgaon	HINGNA	Check Dam
807	Wadgaon	HINGNA	Check Dam

Sr.	Village	Block	Type of
No.			Structure
808	Wadgaon	HINGNA	Check Dam
809	Wadgaon	HINGNA	Check Dam
810	Dhanoli	HINGNA	Check Dam
811	Dhanoli	HINGNA	Check Dam
812	Dhanoli	HINGNA	Check Dam
813	Dhanoli	HINGNA	Check Dam
814	Nildoh	HINGNA	Check Dam
815	Nildoh	HINGNA	Check Dam
816	Nildoh	HINGNA	Check Dam
817	Nildoh	HINGNA	Check Dam
818	Nildoh	HINGNA	Check Dam
819	Nildoh	HINGNA	Check Dam
820	Nildoh	HINGNA	Check Dam
821	Nildoh	HINGNA	Check Dam
822	Wanadongri	HINGNA	Check Dam
823	Wanadongri	HINGNA	Check Dam
824	Surabardi	NAGPUR	Check Dam
		(RURAL)	
825	Kuhi	КИНІ	Check Dam
826	Kuhi	КИНІ	Check Dam
827	Ambadi	КИНІ	Check Dam
828	Shirpur	KAMPTEE	Check Dam
829	Tarodi bk.	KAMPTEE	Check Dam
830	Tarodi bk.	KAMPTEE	Check Dam
831	Parsodi	UMRED	Check Dam

Sr.	Village	Block	Type of
No.			Structure
832	Paradgaon	UMRED	Check Dam
833	Kanheri kh.	КОНІ	Check Dam
834	Kanheri kh.	КОНІ	Check Dam
835	Akoli	КОНІ	Check Dam
836	Chanoda	КОНІ	Check Dam
837	Sawli	КОНІ	Check Dam
838	Mandhal	КОНІ	Check Dam
839	Wag	KUHI	Check Dam
840	Chikhali	КОНІ	Check Dam
841	Fegad	КОНІ	Check Dam
842	Dahegaon	КОНІ	Check Dam
843	Parsodi (raja)	KUHI	Check Dam
844	Navegaon (devi)	КОНІ	Check Dam
845	Karhandla	КОНІ	Check Dam
846	Awarmara	KUHI	Check Dam
847	Navegaon	КОНІ	Check Dam
848	Rajola	KUHI	Check Dam
849	Rajola	КОНІ	Check Dam
850	Rajola	KUHI	Check Dam
851	Siroli	КОНІ	Check Dam
852	Murbi	КОНІ	Check Dam
853	Chipdi	KUHI	Check Dam
854	Titur	КОНІ	Check Dam
855	Dodma	KUHI	Check Dam
856	Dodma	KUHI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
857	Mendha	КОНІ	Check Dam
858	Powari	КОНІ	Check Dam
859	Bhojapur	КОНІ	Check Dam
860	Kuhi	КОНІ	Check Dam
861	Kuhi	КОНІ	Check Dam
862	Malchi	КОНІ	Check Dam
863	Pachkhedi	КОНІ	Check Dam
864	Chikna tukum	КОНІ	Check Dam
865	Virkhandi	КОНІ	Check Dam
866	Chikna tukum	КОНІ	Check Dam
867	Pohara	КОНІ	Check Dam
868	Channa	КОНІ	Check Dam
869	Channa	КОНІ	Check Dam
870	Borada	КОНІ	Check Dam
871	Weltur	КОНІ	Check Dam
872	Sonegaon	MAUDA	Check Dam
873	Tanda	MAUDA	Check Dam
874	Tarsa	MAUDA	Check Dam
875	Tondli Rithi	MAUDA	Check Dam
876	Tuman	MAUDA	Check Dam
877	Wagholi (Rithi	MAUDA	Check Dam
878	Waygaon	MAUDA	Check Dam
879	Wirshi	MAUDA	Check Dam
880	Wirshi	MAUDA	Check Dam
881	Wirshi	MAUDA	Check Dam

Sr.	Village	Block	Type of
No.			Structure
882	Zullar	MAUDA	Check Dam
883	Waygaon	MAUDA	Check Dam
884	Waygaon	MAUDA	Check Dam
885	Tondli Rithi	MAUDA	Check Dam
886	Umari	KAMPTEE	Check Dam
887	Undgaon	KAMPTEE	Check Dam
888	Wadoda	KAMPTEE	Check Dam
889	Tondli Rithi	MAUDA	Check Dam
890	Tondli Rithi	MAUDA	Check Dam
891	Yekardi	KAMPTEE	Check Dam
892	Yekardi	KAMPTEE	Check Dam
893	Pawangaon	KAMPTEE	Check Dam
894	Umari	KAMPTEE	Check Dam
895	Yekardi	KAMPTEE	Check Dam
896	Tarodi bk.	KAMPTEE	Check Dam
897	Mahalgaon	KAMPTEE	Check Dam
898	Asalwada	KAMPTEE	Check Dam
899	Avandhi	KAMPTEE	Check Dam
900	Telkamthi	KALAMESHWAR	Check Dam
901	Tidangi	KALAMESHWAR	Check Dam
902	Tishti bk.	KALAMESHWAR	Check Dam
903	Tishti bk.	KALAMESHWAR	Check Dam
904	Tishti bk.	KALAMESHWAR	Check Dam
905	Tishti bk.	KALAMESHWAR	Check Dam
906	Tishti kh.	KALAMESHWAR	Check Dam

Sr.	Village	Block	Type of
No.			Structure
907	Tishti kh.	KALAMESHWAR	Check Dam
908	Ubagi	KALAMESHWAR	Check Dam
909	Ubagi	KALAMESHWAR	Check Dam
910	Ubagi	KALAMESHWAR	Check Dam
911	Ubali	KALAMESHWAR	Check Dam
912	Ubali	KALAMESHWAR	Check Dam
913	Ubali	KALAMESHWAR	Check Dam
914	Wathoda	KALAMESHWAR	Check Dam
915	Umari (Bharatpu	SAVNER	Check Dam
916	Malegaon	SAVNER	Check Dam
917	Malegaon	SAVNER	Check Dam
918	Malegaon	SAVNER	Check Dam
919	Maharkund	SAVNER	Check Dam
920	Maharkund	SAVNER	Check Dam
921	Maharkund	SAVNER	Check Dam
922	Raibasa	SAVNER	Check Dam
923	Kothulana	SAVNER	Check Dam
924	Kothulana	SAVNER	Check Dam
925	Kothulana	SAVNER	Check Dam
926	Bid jatamkhora	SAVNER	Check Dam
927	Bid jatamkhora	SAVNER	Check Dam
928	Hetikheda	SAVNER	Check Dam
929	Hetikheda	SAVNER	Check Dam
930	Hetikheda	SAVNER	Check Dam
931	Jalalkheda	SAVNER	Check Dam

Sr.	Village	Block	Type of
No.			Structure
932	Jalalkheda	SAVNER	Check Dam
933	Jalalkheda	SAVNER	Check Dam
934	Chorkhairi	SAVNER	Check Dam
935	Chorkhairi	SAVNER	Check Dam
936	Chorkhairi	SAVNER	Check Dam
937	Zilpi	KALAMESHWAR	Check Dam
938	Zilpi	KALAMESHWAR	Check Dam
939	Zilpi	KALAMESHWAR	Check Dam
940	Zilpi	KALAMESHWAR	Check Dam
941	Murti	KATOL	Check Dam
942	Pandhardhakani	KATOL	Check Dam
943	Sonkhamb	KATOL	Check Dam
944	Metpanjara	KATOL	Check Dam
945	Dhawalapur	KATOL	Check Dam
946	Gangaldoh	KATOL	Check Dam
947	Gangaldoh	KATOL	Check Dam
948	Panjra (Kate)	KATOL	Check Dam
949	Jatlapur	KATOL	Check Dam
950	Jatlapur	KATOL	Check Dam
951	Masod	KATOL	Check Dam
952	Masod	KATOL	Check Dam
953	Masod	KATOL	Check Dam
954	Chicholi	KATOL	Check Dam
955	Junapani	KATOL	Check Dam
956	Bihalgondi	KATOL	Check Dam

Sr.	Village	Block	Type of
No.			Structure
957	Mendhepathar	KATOL	Check Dam
958	Hatla	KATOL	Check Dam
959	Mendhepathar	KATOL	Check Dam
960	Mendhepathar	KATOL	Check Dam
961	Sonmoh	KATOL	Check Dam
962	Dorli (Bk)	KATOL	Check Dam
963	Sawandri	KALAMESHWAR	Check Dam
964	Pohigond Khairi	KALAMESHWAR	Check Dam
965	Mohpa	KALAMESHWAR	Check Dam
966	Deoli	KALAMESHWAR	Check Dam
967	Chargaon	KATOL	Check Dam
968	Dorli (Bk)	KATOL	Check Dam
969	Khutamba	KATOL	Check Dam
970	Tarabodi	KATOL	Check Dam
971	Khapari (Kh)	KATOL	Check Dam
972	Gujarkhedi	KATOL	Check Dam
973	Ghukashi	PARSEONI	Check Dam
974	Bachhera	PARSEONI	Check Dam
975	Salai	PARSEONI	Check Dam
976	Gundhari (pande	PARSEONI	Check Dam
977	Chichbhuwan	PARSEONI	Check Dam
978	Salai	PARSEONI	Check Dam
979	Dundakhairi	PARSEONI	Check Dam
980	Nandgaon	PARSEONI	Check Dam
981	Nandgaon	PARSEONI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
982	Bakhari	PARSEONI	Check Dam
983	Nandgaon	PARSEONI	Check Dam
984	Dumari Kh.	PARSEONI	Check Dam
985	Bakhari	PARSEONI	Check Dam
986	Chargaon	PARSEONI	Check Dam
987	Dahegaon (joshi	PARSEONI	Check Dam
988	Dahegaon (joshi	PARSEONI	Check Dam
989	Dahegaon (joshi	PARSEONI	Check Dam
990	Dahegaon (joshi	PARSEONI	Check Dam
991	Sawali	PARSEONI	Check Dam
992	Tamaswadi	PARSEONI	Check Dam
993	Itagaon	PARSEONI	Check Dam
994	Dahegaon (joshi	PARSEONI	Check Dam
995	Dahegaon (joshi	PARSEONI	Check Dam
996	Bhage Mahari	PARSEONI	Check Dam
997	Naikund	PARSEONI	Check Dam
998	Tamaswadi	PARSEONI	Check Dam
999	Kanhadevi	PARSEONI	Check Dam
1000	Sakarla	PARSEONI	Check Dam
1001	Bhage Mahari	PARSEONI	Check Dam
1002	Nimkheda	PARSEONI	Check Dam
1003	Telang Khedi	PARSEONI	Check Dam
1004	Bhage Mahari	PARSEONI	Check Dam
1005	Mahuli	PARSEONI	Check Dam
1006	Panjara (Ri)	PARSEONI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
1007	Amadi	PARSEONI	Check Dam
1008	Digalwadi	PARSEONI	Check Dam

Sr.	Village	Block	Type of
No.			Structure
1009	Bhage Mahari	PARSEONI	Check Dam
1010	Mahuli	PARSEONI	Check Dam