

केन्द्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

BARMER DISTRICT RAJASTHAN

पश्चिमी क्षेत्र**,** जयपुर Western Region, Jaipur

केन्द्रीय भूमि जल बोर्ड

जल शक्ति मंत्रालय, जल संसाधन, नदी विकास और गंगा संरक्षण विभाग

भारत सरकार सरकार

Central Ground Water Board

Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

AQUIFER MAPPING AND GROUND WATER MANAGEMENT PLAN

BARMER DISTRICT, RAJASTHAN

(24361.74 sq.km)

AAP 2019-20

पश्चिमी क्षेत्र, जयपुर Western Region, Jaipur

CONTRIBUTORS

AQUIFER MAPPING AND MANAGEMENT PLAN BARMER DISTRICT, RAJASTHAN (24361.74sq.km.)

Principal Authors

Pramod Kumar Verma	: Sc-B
Reena Borana	: AHG

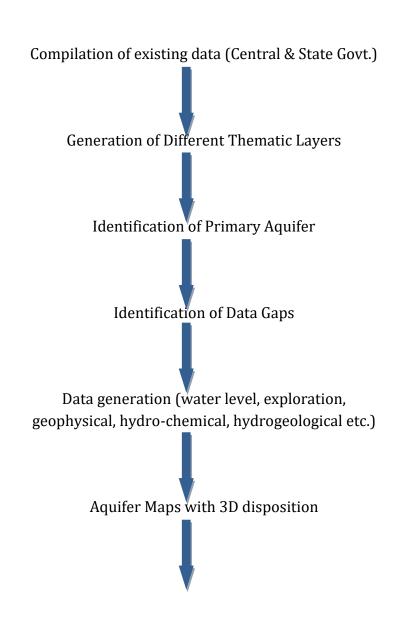
Supervision

Dr. S.K. Jain : Regional Director

Sh M.K. Sharma: Sc-D

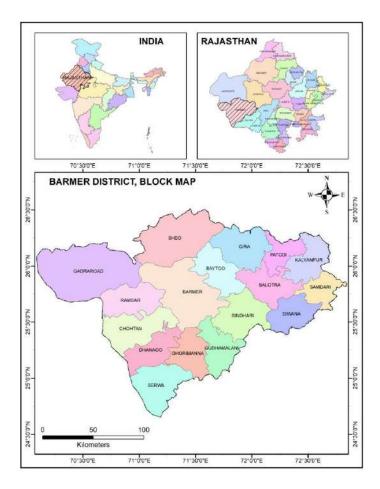
REPORT ON AQUIFER MAPPING AND MANAGEMENT PLAN BARMER DISTRICT, RAJASTHAN (24361.74 sq.km.)

1.0 Introduction


Various developmental activities over the years have adversely affected the groundwater regime in the state. There is a need for scientific planning in development of groundwater under different hydrogeological situation and to evolve effective management practices with involvement of community for better ground water governance. In view of sprouting challenges in the ground water sector in the state there is an urgent need for comprehensive and realistic information pertaining to various aspects of groundwater resource available in different hydrogeological setting through a process of systematic data collection, compilation, data generation, analysis and synthesis. Hence, aquifer mapping and management of the study area is the need of the hour.

1.2 Scope of the study

Aquifer mapping can be understood as a scientific process wherein a combination of geological, geophysical, hydrological & chemical fields and laboratory analyses are applied to characterize the quantity, quality, and sustainability of ground water in aquifers. Aquifer mapping is expected to improve our understanding of the geological framework of aquifer, their hydrologic characteristics, water level in aquifer and how they change over time and space and the occurrence of natural and anthropogenic contaminants that affect the portability of groundwater. Results of these studies will contribute significantly to resource management tools such as long-term aquifer monitoring network and conceptual and quantitative regional groundwater flow models to be used by planners, policy makers and other stake holders. Aquifer mapping at appropriate scale can help to prepare, implement, and monitor the efficacy of various management interventions aimed at long term sustainability of our precious groundwater recourses, which in turn will help to achieve drinking water scarcity, improved irrigation facilities and sustainability of water resource in the state.


1.3 Approach & Methodology

Aquifer mapping is an attempt to integrate the geological, geophysical, hydrological & chemical field and laboratory analyses and are applied to characterize the quality, quantity and sustainability of groundwater in aquifer. Under the National Aquifer Program, it is proposed to generate Aquifer Maps on 1:50000 scale, which basically aims at characterizing the aquifer geometry, behavior of groundwater levels and status of groundwater development in various aquifer system to facilitate planning of their suitable management. The major activities involved in this process encompass compilation of existing data, identification of data gaps, generation of data for feeling data gaps and preparation of different aquifer layers.

1.4 Study Area

Barmer district is situated between 24°40' 00" & 26° 32' 00" North latitudes and 70°05' 00" & 72° 52' 00" East longitudes covering geographical area of 24,361.74 sq km. It is the second largest district in the State covering about 8.29% of its total area. The district forms part of the Great Indian Thar Desert. The district is divided into four sub-divisions. There are seventeen blocks in the district namely Baetu, Balotra, Barmer, Chohtan, Dhanau, Dhorimanna, Gadra Road, Gida, Gudamalani, Kalyanpur, Patodi Ramsar, Samdari, Sedwa, Siwana, Sheo, Sindhari. The district has 2 Municipalities, and 2460 Revenue Villages. It is surrounded by Jaisalmer in the north, Jalore in the south, Pali and Jodhpur in the east and Pakistan in the west. Total population (as per 2011 census) of the district is 2,603,751 out of which 2,421,914 is rural population and 181,837 is urban population. Decadal population growth rate of the district during 2001 to 2011 has been 35.06. Population density of the district is 92 persons/sq km. The district is known for its bentonite, lignite and petroleum mineral wealth. A map showing the blocks of the district is presented as.

Data Availability and Data Gap Analysis:

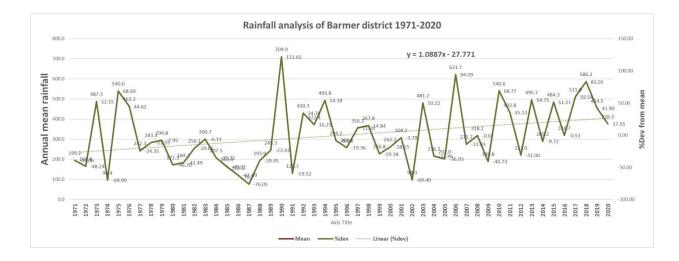
The available data of the Exploratory wells drilled by Central Ground Water Board, Western Region, Jaipur, Geophysical Survey carried out in the area, Ground water monitoring stations and ground water quality stations monitored by Central Ground Water Board were compiled and analysed for adequacy of the same for the aquifer mapping studies. In addition to these the data on ground water monitoring stations and ground water quality stations of the State Government (GWD) was also utilized for data adequacy and data gap analysis. The data adequacy and data gap analysis was carried out for each of the quadrant falling in the study area in respect of various attributes of ground water and is presented in table 1.

S.No	Study Aspect	Data Requirement	Data Availability	Data Gap	
1	Rainfall and 6 Meterological		Data partially	Other Climatic	
	Other climatic	Stations in the area	available	data other than	
	Data			rainfall	
2.	Soil	Soil Map and Soil	Soil Map	Soil Infiltration	
		infiltration rate		rate across the	
				area	
3.	Land Use	Latest land use Pattern	Not available	Latest data in	
		in GIS Platform		GIS platform	
				required	
4.	Geomorphology	Digitized	Available	-	
		Geomorphological Map			
5.	Geophysics	Geophysical Survey in	Available 11 VES	Required in	
		all toposheets		every toposheet	
6.	Exploration	Exploratory wells	Exploratory wells	-	
		along with aquifer	along with aquifer		
		parameters	parameters are		
_		D	available		
7.	Recharge	Recharge parameters	Recharge parameters	-	
	Parameters	of different soil and	are given in Ground		
		aquifer types based on	Water resource		
	Dischause	field studies	estimation		
8.	Discharge	Discharge parameters	Discharge	-	
	Parameters	for different GW	parameters are given		
		abstraction structures	in Ground Water		
			Resource Estimation		

Table 1.1: Data	Availability an	d Data Gap	Analysis in	Barmer District
Tuble III Dutu	invanability all	a Data dap	1111019010111	Durmer District

2.0 Climate and Rainfall

The annual rainfall of 50 years from 1971 to 2020 has been analyzed to know the behavior of rainfall (Figure). The analysis indicates that annual variation of rainfall is large and significant.


The average annual rainfall from 1971 to 2020 is 320.3mm. The highest rainfall of 121.65% more than the average was recorded in 1990 whereas the lowest -76.05% less than the average was experienced in 1987 as show in Table.

The standard deviation of rainfall from 1971 to 2020 is 151 mm which indicates that 169.2 mm rainfall is assured. The coefficient of variation of rainfall is 47.17%. It indicates that rainfall in the area is highly variable.

The trend of annual rainfall by least square method shows decreasing trend of rainfall which is insignificant. The possibility of Excess, normal, and deficient rainfall are 30%, 28%, and 42% respectively as given in Table 3.

Rainfall study for 50 years depicts that only 42% of the years i.e., 1971, 1972, 1974, 1977, 1980, 1981, 1982, 1984, 1985, 1986, 1987, 1988, 1989, 1991, 1996, 1999, 2002, 2004, 2005, 2009, 2012 experienced drought conditions. It means that study area is classified under chronically drought affected area. The probability of mild and severe drought is 12% and 18% respectively. One drought of mild intensity may be possible after 7 or 8 years. In6-years1977 1982, 1989, 1996, 1999, 2012this area is affected with drought of mild intensity, and one severe drought would be possible within 6 to 7 years.

Almost 90% of the total annual rainfall is received during the southwest monsoon, which enters the district in the first week of July and withdraws in the mid of September. As the district lies in the desert area, it faces extremes of heat in summer and cold in winter. Both day and night temperatures increase gradually and reach their maximum values in May and June. The temperature varies from 48 degree in summer to 2 degree in winter. Atmosphere is generally dry except during the monsoon period. Humidity is at its highest in August with mean daily relative humidity of 43%. The annual maximum potential evapotranspiration in the district is 1850 mm and it is highest (260 mm) in the month of May and lowest (77 mm) in the month of December.

RAINFALL PATTERN IN BARMER DISTRICT (1971-2020)

	1	220.27	
Mean		320.27	
Standard Deviation		151.06	
CV%		47.17	
Assured Rainfall		169.21	
Rainfall	Number of	Possibility of occurrence(per	
	Years	year)	
Excess	15	30.00	
Normal	14	28.00	
Deficient	21	42.00	
	Number of	Possibility of occurrence (per	
Draught	Years	year)	
Mild	6	12.00	
Severe	9	18.00	
Moderate	6	12.00	
Maximum Rainfall			
(mm)	710	in year 1990	121.65% (dev)
Minimum Rainfall			
(mm)	77	in year 1987	-76.05% (dev)

TOPOGRAPHY DISTRICT

3.0 Physiographic Set Up

Most part of the district comes under the Great Indian Desert. In the eastern part of the district and to the west of Barmer city, exposures of hill ranges are seen is trending east – west direction. The district is actually a vast sandy tract. The only major drainage course in the area is Luni River, which flows from Balotra and Sindhari Charnan block towards Jalor district. Salt lakes are found in the northeast and northwest parts of the district. The general topographic elevation in the district is between 125 m to 250 m above mean sea level. Elevation ranges from a minimum of 0.00 m above mean sea level in Chohtan block in the southwest part of the district to maximum of 931.8 m above mean sea level In Siwana block in eastern part of the district which is part of Aravalli range.

3.2 Geomorphology

Geographically Barmer district is a part of Thar Desert with varying geomorphic land forms which are present in sandy dunes. There are plains both Aeolian and alluvial origin over which a few scattered hills and hillocks protrude. The western part of the district is marked by well defined valley, surrounded by linear ridges. Among dunes are barchans and longitudinal dunes both stationary and shifting nature. The south eastern part is hilly which the offshoot of Jalore hills is (A part of Aravalli hills). The Luni River represents flood plain in the district. The surface elevation of the district varies from 70 m. above mean sea level (m amsl) at Sindhari to 457 m above msl at Ghonia village. The only major drainage course in the area is Luni River, which flows from Samdari and passing through Balotra takes a turn towards south from Sindhary. The river is ephemeral, flowing only in response to heavy precipitation. In the year of drought there is no run off.

Geomorphology Map of Barmer District				
Aeolian	Dune Complex	An undulating plain composed of number of sand		
		dunes of crescent shape.		
	Dune Valley	Cluster of dunes and interdunal spaces with		
	Complex	undulating topography formed due to wind-blown		
		activity, comprising of unconsolidated sand and silt.		
	Eolian Plain	Formed by aeolian activity, with sand dunes of		
		varying height, size, slope. Long stretches of sand		
		sheet. Gently sloping flat to undulating plain,		
		comprised of fine to medium grained sand and silt.		
		Also scattered xerophytic vegetation		
	Interdunal	Slightly depressed area in between the dunal		
	Depression	complex showing moisture and fine sediments		
	Interdunal Flat	Flat, narrow land between dunes.		

Geomorphology Map of Barmer District

	Sandy Plain	Formed of aeolian activity, wind-blown sand with gentle sloping to undulating plain, comprising of coarse sand, fine sand, silt and clay.		
Denudational	Buried Pediment	Pediment covers essentially with relatively thicker alluvial, colluvial or weathered materials		
	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology, criss-crossed by fractures and faults		
Fluvial	Alluvial Plain	Mainly undulating landscape formed due to fluvial activity, comprising of gravels, sand, silt and clay. Terrain mainly undulating, produced by extensive deposition of alluvium		
	Paleochannel	Mainly buried on abandoned stream/river cours comprising of coarse textured material of varia sizes.		
	Salt Encrustation/Playa	Topographical depression comprising of clay, silt, sand and soluble salts, usually undrained and devoid of vegetation.		
Hills	Denudational, Structural Hill, Linear Ridge	Steep sided, relict hills undergone denudation, comprising of varying lithology with joints, fractures and lineaments. Linear to arcuate hills showing definite trend-lines with varying lithology associated with folding, faulting etc. Long narrow low-lying ridge usually barren, having high run off may form over varying lithology with controlled strike.		

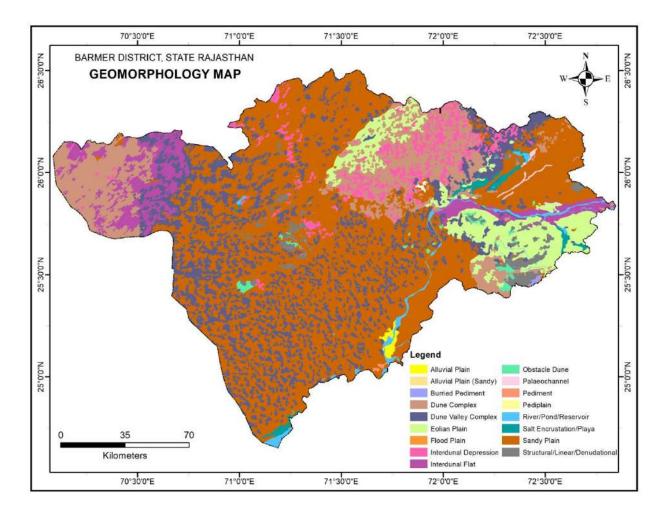


Figure 1.2. Geomorphology Map of Barmer District

3.3 SOILS

The soils of the district belong to desertic type coarse sandy in texture. The main soil types are

1. Desert soil: Desert soil area is occupied by wind blown sand, yellowish brown, sandy to little sandy loamy, loose, structure less, well drained with high permeability and lies in northern, western and central parts of the district.

2. Sand dunes: These are non-calcareous soil, sandy to loamy sand, loose, structure less and well drained. Sand dunes lie in northern, western and central parts of the district.

3. Red desertic soil: These are pale brown to reddish brown soils, structure less, loose, and well drained. Texture varies from sandy loam to sandy clay loam. These soils occupy eastern and southeastern parts of the district.

4. **Saline soil of depressions**: This type of soil is found in salt lakes. They are dark grey to pale brown, heavy soils with water table very near to the surface and are distinctly saline.

5. Lithosols & Regosols of hills: This type of soil is found in isolated hills on lithoslopes. These soils are shallow with gravels very near to the surface, high textured, fairly drained, reddish brown in colour and lie in south eastern part of the district.

3.3 Land Use

Land Use

The socio-cultural and economic factors have significantly influenced over land use both in rural and urban areas in the district. Land forms, slope, soils and natural resources are some of the important which control the land use pattern of the district. The land use pattern of district is based on the statistical outline of the district is presented in Table 3.3

S.No.	Land Use	Area in hectare	%
1	Total geographical area (as per village papers)	2817432	
2	Forest	33375	1.18
3	Uncultivable land	73860	2.62
4	Land not cultivated including pasture land; barren land; trees, grooves & orchards	242048	8.59
5	Fallow and current fallow land	550429	19.54
6	Net sown area (subtracting double)	1630989	57.89
7	Gross sown area	1916447	68.02
8	Area sown more than once	285458	10.13

Table 3.3: Land Use Pattern of Barmer District

Agriculture

Agriculture activity in the district is, by and large, confined to traditional kharif cultivation depending on monsoon rainfall and rabi cultivation is prevailing in areas where irrigation facilities are available. The major crops grown in the area are given in table no. 3.4 and season-wise crops are presented in table 3.5.

Food Grain	Jowar, Bajra, Wheat, Barley, Maunth, Moong
Cereals	Gram, other kharif cereals, other rabi cereals
Oil seeds	Rai & Mustard, Til, Ground Nut, Arandi/Taramira

Non-food grains Cotton, Pomegranate, fodder	
---	--

Table 3.5: Season-wise crops Pattern of Barmer District

Season	Crops covered				
Kharif	Jwar, Bajra, Maunth, Moong, Til, Moongfli, Arandi, Gwar				
Rabi	Wheat, Barley, Gram, Alsi, Rai/Raida/Mustard, Arandi, Pomegranate,				
	vegetables, Cumin seeds				
Zaid	Fruits like watermelon, Gwar, Vegetables, Bajra, fodder				

Apart from these, vegetable and fruits are also being produced in the district. Onion, Cauliflower, are main vegetables and Aonla, Ber are main fruits which are produced in district

Irrigation

Open wells/Dug-cum-Borewells and Tube well are the main source of irrigation in the district. During 2019-20, the net irrigated area in the district was 479953 hectares of which 93.38 percent was irrigated by open wells/dug-cum-borewells and tube well. Other sources constituted canals/other sources and the percentage of area irrigated by them are 6.62 percent. The area irrigation by different means of irrigation in 2019-20 in the district is as given below, figures in the brackets indicate the percent of area irrigated by difference sources to total area irrigated in that category

Table 3.6: Details of Area irrigated with sources in Barmer District

	Dugwells	Tubewells	Canals	Other	Total
Net Sown Area	254063	194108	30984	798	479953
Gross Sown Area	325498	264481	35100	1021	626100

4.0 Hydrogeological Framework

4.1 Geology:

Geologically, the district is underlain by intrusive rocks at the basement (Post Delhi (formation) consisting of Jalore and Siwana granite & Malani rhyolite and granite followed by Mesozoic and Tertiary formations consisting of sandstone, shale, conglomerate. Rocks of Mesozoic era are comprised of Lathi series of Jurassic and Fathgarh series of Cretaceous period. Tertiaries consist of Akali and Kapurdi series of Eocene period. These formations are overlain by Pleistocene to recent alluvium consisting mainly of clay, sand and silt.

Group	Series/Super Group	Formation					
Recent to Sub- recent		Sand, Sandy soil, Kankar vast gypsum & Selenite deposite					
Lower to middle Eocene		Kapurdi formation					
Paleocene		Mandhi formation & Akli formation					
X	XX	XUnconformityXXXXX					
Deccan Traps	Cretaceous	Fateh garh formation					
	Jurassic	Lathi formation					
X	XXXXUnconformityXXXXXX						
Post-Delhi	Proterozoic	Malani igneoues rock					

Table: Geologic succession

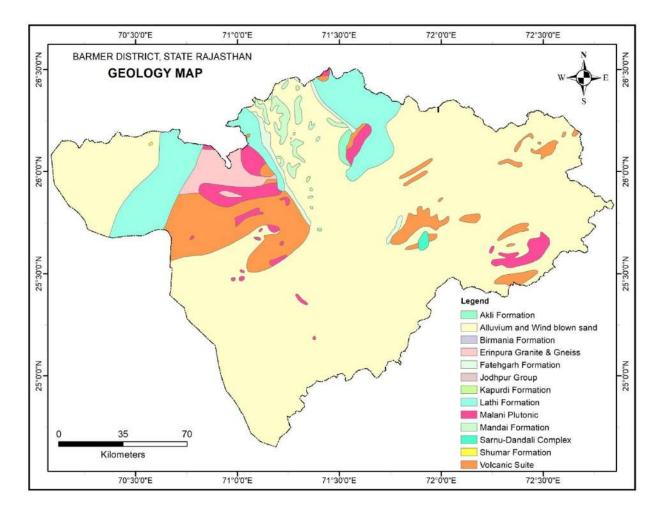


Figure 1.3: Geology of Barmer District

2 Hydrogeology:

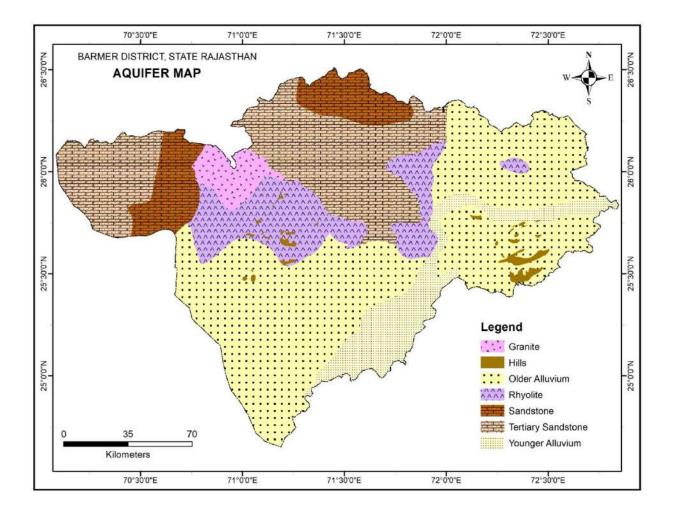
The main water bearing formations in the district are rhyolites and granites of post Delhi; Lathi sandstone, Tertiary sandstone and Quaternary alluvium. In Quaternary alluvium, ground water occurs under semi confined to unconfined conditions. In semi consolidated Tertiary and Mesozoic formations, it occurs under unconfined to confined conditions and in weathered and fractured zones in hard rocks under phreatic conditions. Though ground water occurs in all the formations but the most productive aquifers are the Lathi sandstone, Barmer sandstone and Quaternary sediments. The Tertiary formation, which is predominantly clayey and argillaceous, is not found as productive except locally in the sandstone horizon. In general, the fractured and weathered zones in hard rocks form poor aquifers.

Consolidated formations:

Consolidated formations include intrusives of Malani rhyolite and granite and Jalore & Siwana granites of Post Delhi. They lie in northwestern part of district, south of Siwana and entire western part of Barmer upto Harsani. They form poor aquifer. Ground water occurs under water table condition in fractured and weathered residuum down to a depth of 99 m. The rhyolites are partially impervious. They are sparingly jointed and weathered into a clayey impervious residuum lessening the water bearing capacity. The rocks have secondary porosity and the water yielding capacity of rock units diminishes with depth. Yield of dug wells tapping rhyolites is the lowest and ranges from 15 to 50 m3 /day. Two exploratory well, one piezometer and 4 production wells have been constructed in consolidated formations. The depth of drilling/ depth of wells varies from 37.94 to 171.00 m and discharge of wells is meagre indicating the poor potentiality of aquifer.

Semi consolidated formations:

Semi consolidated formations encompassing rocks of Tertiary period, which comprise of alternate layers of clay and shale associated with fuller's earth are unproductive aquifer. Lathi sandstone forms the most potential aquifer and is constituted of medium to coarse grained sandstone with subordinate amount of gravel. It covers the total area of 7500 sq km and the extent of saturated Lathis with utilizable quality of ground water comprises about 3270 sq km. The aquifer portion of the Lathi formation ranges in thickness from less than 100 m in the east to over 800 m in the northern part, east of Jaisalmer. There are generally three aquifers in the depth ranges of 67 to 100 m, 150 to 200 m and 240 to 280 m which are in hydraulic continuity. The ground water in Lathi formation occurs under perched as well as main water table conditions and under confined condition. The eastern part of Lathis is unsaturated, except for perched saturated zone which supply water locally to villages. The depth to water level and piezometric heads ranges from 30 to over 120m. The perched water table occurs between 6 and 30 mbgl. The piezometeric surface is shallower in area north of Jaisalmer-Pokaran road due to lower topography. The piezometric surface ranges from 540 mamsl near Bhopa to about 490 mamsl north of

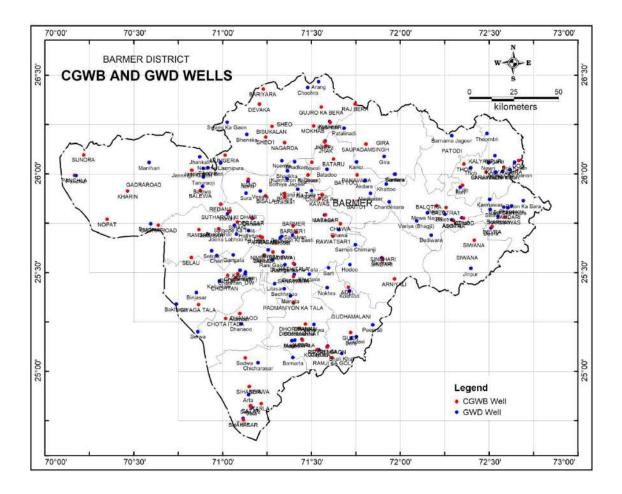

Jaisalmer-Pokaran road and south of Jaisalmer. The piezometric gradient ranges from 0.1 m/km to 1.6 m/km. In semi consolidated formations, 24 exploratory, 3 observation wells, 5 slim holes and 6 piezometers have been drilled. Depth of exploratory drilling varies from 82 to 347 m having depth of wells from 109 to 240 m. Discharge of wells especially in Lathi aquifer in its northern part varies from 303 to 852 lpm for drawdown ranging from 2 to 12 m, while southwards and towards southwest, the discharge of wells having saturated thickness of 15.85 (at Bhimda) to 123 m (at Bothia-II), varies from 632 to 1420 lpm indicating high potentiality of the aquifer. The transmissivity of the Lathi aquifer ranges from less than 100 to over 2000 m2 /day being comparatively higher in the northern part. Wells tapping the aquifer have high specific capacities ranging mostly from 150 to 500 lpm/ m.

Tertiary Formation:

Tertiary formations consisting of alternative layers of clay and shale associated with fuller's earth are unproductive aquifers. The boreholes tapping these formations were abandoned due to very poor yield and due to salinity of formation water. The piezometric level varies from 5.95 m. in the south (Dhanau borehole) to 111.25 m in the north (Gunga borehole). Boreholes tapping the fine grained sandstone in the Tertiaries yielded between 182 lpm (Karim Ka Par borehole) and 189 lpm (Dhanau Borehole) i.e. for drawdown of 10.6 and 12.37 m respectively.

Unconsolidated Formations:

Unconsolidated formation includes Quaternary alluvium that is most extensive, forms the potential aquifer and covers entire southern part and extreme western portion of the district. The exploration drilling data indicate that alluvium is composed of heterogeneous sequence of sand, silt, clay and kankar with occasional tongues and lenses of gravel and cobbles. The thickness of alluvium varies generally from 40 to 100 m except at a borehole at Padru in Balotra block where upto the depth of 140.20 m even bed rock was not encountered. The ground water occurs under water table condition to semiconfined condition. The perched water table condition occurs at shallow depth in clay beds and kankars which arrest the rain water of local precipitation. The piezometric surface lies between 5.51 and 49.87 mbgl. The perched water table condition prevails in central, northern and eastern parts of the district. A total of 28 exploratory, 5 observation wells, 15 piezometers and 9 production wells have been drilled in unconsolidated formation. The exploratory drilling data indicate that the depth of drilling ranges from 18 to 457 m with 18.0 m to 290 m depth of wells. Discharge of wells varies from 22 to 1409 lpm for drawdown ranging from 6.0 m to 35.0 m.

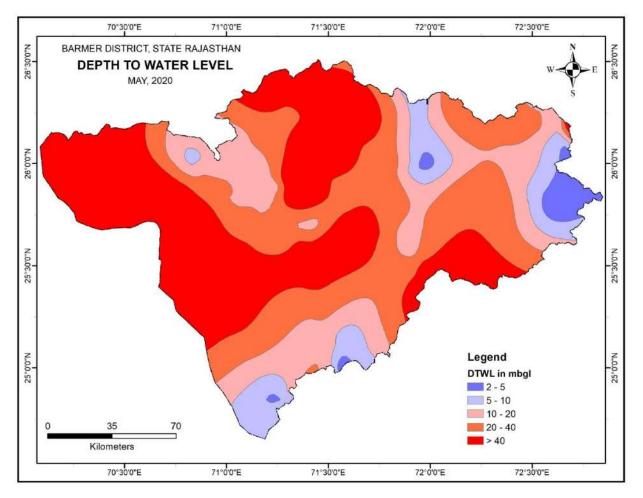


Hydrogeology of Barmer District

Ground Water Exploration

Hydrogeology is concerned primarily with mode of occurrence, distribution, movement and chemistry of water occurring in the subsurface in relation to the geological environment. The occurrence and movement of water in the subsurface is broadly governed by geological frameworks i.e., nature of rock formations including their porosity (primary and secondary) and permeability.

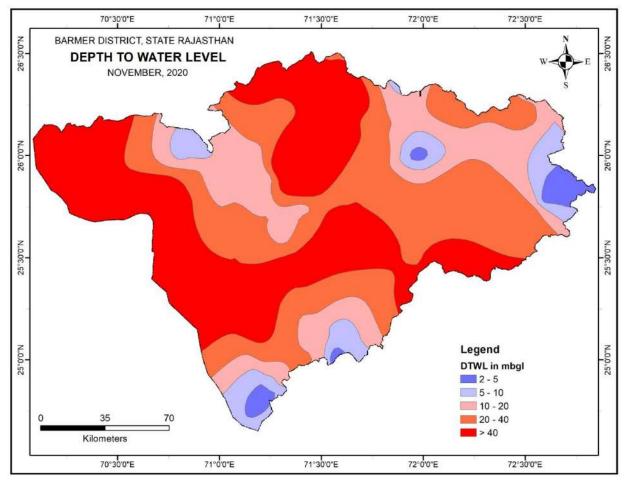
The principal aquifers in the area are Alluvium, sedimentary formations viz. Tertiary sandstone, shale's. Occurrence and movement of ground water in Alluvial aquifer is directly proportional to the granular zones i.e., the ground water accumulation will be higher in coarser formation and the formation clear of clayey admixture or intercalation. The locations of bore holes constructed in Barmer District is prepared in figure



Boreholes constructed in Barmer district

Water Level Behavior

Pre-monsoon (May 2020)


Depth to water level varied from 3.90 to 98.55 m during pre-monsoon 2020. Depth to water level between 10 to 20 m has been observed in 10 observation wells covering about 23% area of the district Deeper water level i.e. more than 20 to 100 m has been recorded in 25 observation wells lying in the north eastern, north eastern and south western part of the district. No area in the block has water level between 0 and 2 m below ground level. In terms of area pre monsoon scenario is presented in figure

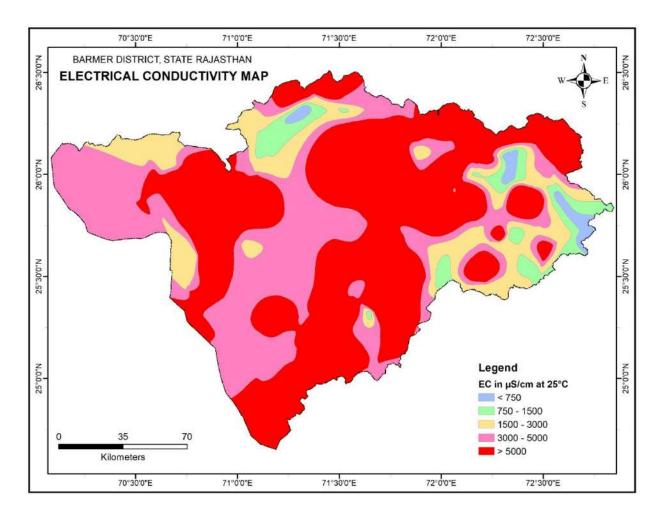
Depth to Water Level Map of May 2020 in Barmer District.

Post monsoon (November 2020)

Depth to water level varied from 3.95 to 99.75 m during the Post monsoon season. Depth to water level behavior is almost same as Pre-monsoon water level between 10 to 20 m has been observed in 9 observation wells covering about 22 % area of the district Deeper water level i.e. more than 20 to 100 m has been recorded in 26 observation wells lying in the north eastern, north eastern and south western part of the district. No area in the block has water level between 0 and 2 m below ground level. In terms of area post monsoon scenario is presented in figure

Depth to Water Level Map of November 2020 in Barmer District

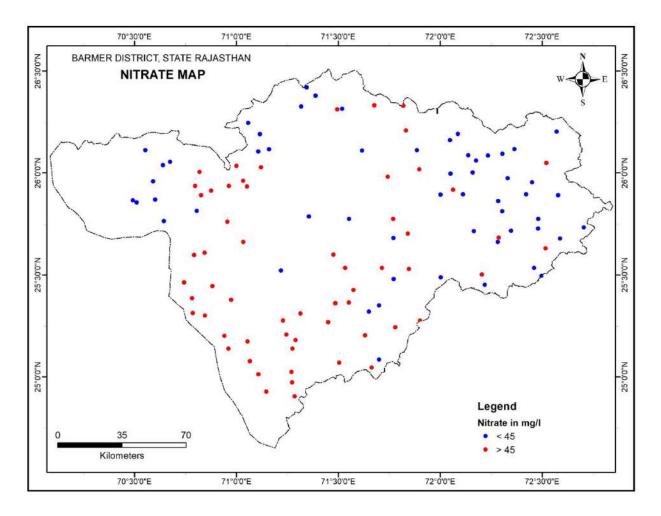
Aquifer Maps and Aquifer Characteristics


GROUND WATER QUALITY

The ground water of Barmer district possesses relatively high mineral concentration, which varies considerably laterally and vertically. Generally, the perched water has less salt concentration, whereas in Gol of Balotra area where it is highly saline with electrical conductivity around 33280 μ S/cm at 25°C. Shallow ground water of the dug well zone has electrical conductivity within 3000 μ S/cm at 25°C.

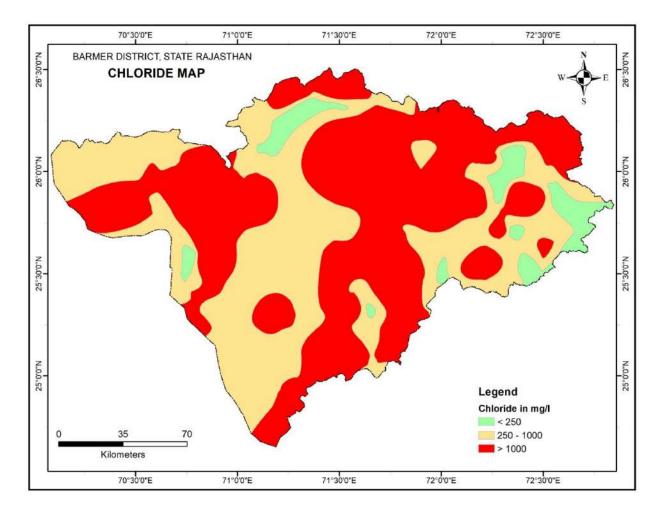
Major Quality Parameters

Electrical Conductivity (EC)


Electrical conductivity is a measure of total mineral contents of dissolved solids in water. It depends upon the ionic strength of the solution. An increase in dissolved solids causes a proportional increase in electrical conductivity. The electrical conductivity value of ground water in Barmer district found to vary from 510 to 33280 μ S/cm at 25°C at Sitaram Ki Dhani in Sheo Block and Gol in Balotra Block respectively. Very high concentration of 11000 to 28000 μ S/cm at 25°C has been reported at Sindhri, Baytuu, Gudamalani, Ramsar and Gadra Blocks of the district. The spatial variation of EC shows that in maximum area the groundwater has EC values more than 5000 μ S/cm at 25°C. EC between 3000 to 5000 μ S/cm at 25°C value has been observed in parts of Dhanau, Gadra, Barmer, Gira and Chohtan Blocks and EC between 750 to 1500 μ S/cm at 25°C value has been observed in parts of Siwana, Sheo and Sindhri Blocks of the district.

Electrical Conductivity map of Barmer District

Nitrate


Concentration of nitrate (NO₃⁻) has been found to vary from < 1 mg/l to 2010 mg/l. Nitrate concentration exceeds the maximum permissible limit of 45 mg/l in drinking water prescribed by BIS (IS-10500:2012) in around 51% of the total ground water samples. Nitrate in excess of maximum permissible limit has been reported mainly from localised pockets in Chohtan, Dhanau, Dhorimanna, Gadra, Ramsar, Serwa and Sheo Blocks. Higher concentrations of NO₃⁻ can be attributed to the sampling from application of more fertilizers and sewage carrying drains. Excess nitrate in drinking water can cause methaemoglobinaemia in infants, gastric cancer, goiter, birth malformations and hypertensions

Nitrate map of Barmer District

Chloride

Concentration of chloride has been found to vary from < 250 mg/l to 9050 mg/l. Chloride concentration exceeds the maximum permissible limit of 1000 mg/l in drinking water prescribed by BIS (IS-10500:2012) in around 44 % of the total ground water samples. Chloride in excess of maximum permissible limit has been reported mainly from localised pockets in Balotra, Barmer, Baytoo, Gadra, Gira, Guda Malani and Sindhri Blocks. Excess limit of chlorine in drinking water can affect the taste, corrosion, and palatability.

Chloride map of Barmer District

Suitability of Ground Water for Drinking Purposes

The suitability of ground water for drinking purpose is determined keeping in view the effects of various chemical constituents in water on the biological system of human being. The standards proposed by the Bureau of Indian Standards (BIS) for drinking water (IS-m10500-91, Revised 2012) were used to decide the suitability of ground water for drinking purpose. The overall classification of ground water samples falling below desirable limit (<DL) in the range of Desirable Limit and Maximum Permissible Limit (DL-MPL) and above maximum permissible limit (MPL) for drinking purpose is presented in table

Parameters	BIS ranges for drinking		Total number	Samples< DL		Samples b DL an		Samples > PL		
			of Samples	Number of		Number of		Number of		
	DL	PL		Samples	%	Samples	%	Samples	%	
рН		No								
	6.5-8.5	relaxation	118	0	0	116	98.30	02	1.70	
TDS mg/l	500	2000	118	07	5.93	31	26.27	80	67.70	
TH mg/l			118							
as CaCO ₃	200	600		14	11.86	62	52.54	41	34.70	
			118							
Ca++ mg/l	75	200		38	32.20	58	49.15	22	18.65	
			118							
Mg⁺⁺ mg/l	30	100		32	27.12	61	51.70	25	21.08	
			118							
Cl [.] mg/l	250	1000		19	16.10	46	38.98	53	44.92	
			118							
SO 4 mg/l	200	400		26	22.04	27	22.88	65	55.08	
		No	118							
NO ₃ -mg/l	45	relaxation		56	47.45			62	52.55	
			118							
F ⁻ mg/l	1	1.5		29	24.57	25	21.18	64	54.25	

DL Desirable Limit MPL Maximum Permissible Limit

Total Hardness (TH)

Classification of ground water samples based on Total Hardness (TH) is given in Table. TH has been found to vary between 105 mg/l and 3700 mg/l, indicating soft to very hard type of ground water. High hardness may cause precipitation of calcium carbonate and encrustation on water supply distribution systems. Long term consumption of extremely hard water might lead to an increased incidence of urolithiasis, anencephaly, parental mortality and cardio-vascular disorders. In Bikaner, Total Hardness exceeds the recommended maximum permissible limit of 600 mg/l (IS-10500: 2012) in 64.40% of total analysed ground water samples. Total hardness in excess of the maximum permissible limit has been reported from parts of Balotra, Siwana, Gira, Baytu and Gudamalani Blocks of the district.

Hardness Classification of water

Hardness (mg/l)	Water Class	No. of Samples	% Sample		
0 – 75	Soft	0	0		
75 – 150	Moderately Hard	7	5.94		
150 - 300	Hard	28	23.72		
>300	Very Hard	83	70.34		

Total Dissolved Solids (TDS)

Total Dissolved Solids (TDS) in water include all dissolved materials in solution, whether ionized or not. It is numerical sum of all mineral constituents dissolved in water and is expressed in mg/l. The TDS contents of ground water are controlled by the mineral dissolution rate, chemical character of ground water and ionic saturation status of solution. The concentration of total dissolved solids in the ground water has been found to vary generally between 175 mg/l to 21632 mg/l. TDS of 50% of analyzed water samples falls in the category of fresh water, while 39% samples have TDS in the range of 3000 - 10,000 mg/l and fall in brackish water category.

Block	Fresh %	Brackish %	Saline %	Brine %
	Samples	Samples	Samples	Samples
	0-3000 mg/l	3000-10000	>10000 mg/l	>35000 mg/l
		mg/l		
Baitu	0.00	50.00	50.00	0.00
Balotra	50.00	16.66	33.34	0.00
Barmer	40.00	40.00	20	0.00
Chohtan	42.85	57.15	0.00	0.00
Dhanau	100.00	0.00	0.00	0.00
Dhorimanna	16.66	83.34	0.00	0.00
Gadra Road	38.46	38.46	23.08	0.00
Gida	28.57	57.14	14.29	0.00
Gudamalani	28.57	42.86	28.57	0.00
Kalyanpur	60.00	40.00	0.00	0.00
Patodi	40.00	60.00	0.00	0.00
Ramsar	33.33	33.33	33.34	0.00
Samdari	100.00	0.00	0.00	0.00
Sedwa	0.00	100.00	0.00	0.00
Shiv	83.34	16.66	0.00	0.00
Sindhri	20.00	80.00	0.00	0.00
Siwana	50.00	50.00	0.00	0.00

Classification of water based on Total Dissolved Solids

Suitability of Ground Water for Irrigation Purposes

The ground water used for irrigation is an important factor in productivity of crop, its yield and quality of irrigated crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria,

which influence the water quality and its suitability for irrigation. The quality of groundwater based on EC and SAR is discussed in tables

		ical Condu 5/cm at 25°		Classification of water	Activity required
Type of Water	Range	No. of Samples	% of Samples		
Low Saline	>250	0	0	Excellent	 Good for all crops little likelihood of development of salinity
Medium Saline	250-750	7	5.00	Good	 Plants with moderate salt tolerance No special practices for salinity control required. Moderate amount of leaching occurs.
Highly Saline	750- 2250	20	16.94	Doubtful	 Cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required Plants with good salt tolerance should be selected.
Very Highly saline	> 2250	92	77.96	Unsuitable	 Not suitable for irrigation under ordinary condition. soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching very salt tolerant crops should be selected
		118	100		

Classification of Ground Water Samples based on EC

High saline water cannot be used on soils with restricted drainage and requires special management for salinity control. Plants with good salt tolerance should be selected for such areas. Very high saline water is not suitable for irrigation under ordinary conditions but may be used occasionally under very special circumstances. The soil must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and salt tolerance crops/plants should be selected.

Type of Water	Sodi	um Adsorptio	Classification of water	
		No. of	% of	
	Range	samples	Samples	
Low Sodium Water	< 10	31	26.28	Excellent
Medium Sodium Water	10 to 18	33	27.96	Good
High Sodium Water	18 to 26	30	25.42	Doubtful
Very High Sodium Water	>26	24	20.34	Unsuitable
		118	100	

Classification of Ground Water Samples based on SAR

Classification of Ground Water Samples based on Na%

Water Class	Na%							
	Range	No. of samples						
Excellent	< 20	02						
Good	20 - 40	05						
Medium	40 - 60	12						
Bad	60 - 80	50						
Very Bad	> 80	49						

Low sodium (alkali) water can be used for irrigation on almost all soils with little danger of the development of harmful levels of exchangeable sodium. Medium sodium water will present an appreciable sodium hazard in fine textured soils having high cation exchange capacity especially under low leaching conditions. This water can be used on coarse textured or organic soils with good permeability.

RSC values in 118 analysed samples of Barmer District were found to be <1.25, 1.25 - 2.0, 2.0 - 2.5, 2.5 - 3.0 samples becomes 95%. Only 05 % samples were found in which the RSC value exceeded 3.0 meq/l limits. The high RSC value makes the groundwater unsuitable for irrigation uses. The block-wise analysis for RSC values for assessing suitability of groundwater for irrigation is presented in table.

RSC (r	neq/l)	Baitu	Balotra	Barmer	Chohtan	Dhanau	Dhorimanna	Gadra Road	Gida	Gudamalani	Kalyanpur	Patodi	Ramsar	Samdari	Sedwa	Shiv	Sindhri	Siwana
Range	No.of samples	% samples	% samples	% samples	% samples	% samples	% samples	% samples	% samples	% samples	% samples	% samples						
< 1.25	111	100	100	75	87.50	100	83.33	100	100	100	100	100	75	87.50	100	100	100	85.71
1.25 - 2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.0 - 2.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.5 - 3.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
> 3.0	07	0	0	25	12.50	0	16.66	0	0	0	0	0	25	12.50	0	0	0	14.29

Ground Water Resources

The ground water resource assessment as on March 2017 has been carried out and the salient features of the resources are given in Table

As per table- out of the total 2436174 ha area, recharge worthy areas are 1447172 ha in non-command areas.

		m , 1				Non
	Dlaska / Assassment	Total	Detential	Hilly	Commond	Comman
C No	Blocks/Assessment			Area	Command	d Area
S.No	Units	Area (ha)	Area (ha)	(ha)	Area (ha)	(ha)
1.	Baitu	140758	25036	0	0	25036
2.	Balotra	156683	44860	0	0	44860
3.	Barmer	241209	151337	0	0	151337
4.	Chohtan	180275	115025	0	0	115025
5.	Dhanau	124474	124474	0	0	124474
6.	Dhorimanna	165986	141375	0	0	141375
7.	Gadra Road	392564	118750	0	0	118750
8.	Gida	155036	5156	0	0	5156
9.	Gudamalani	128265	118235	0	0	118235
10.	Kalyanpur	126304	31850	0	0	31850
11	Patodi	83162	35000	0	0	35000
12.	Ramsar	158707	36875	0	0	36875
13.	Samdari	83687	25600	0	0	25600
14.	Sedwa	170357	113750	0	0	113750
15.	Shiv	266379	148329	0	0	148329
16.	Sindhri	162984	70109	0	0	70109
17.	Siwana	120828	111500	0	0	111500
	Total	2436174	1447172	0	0	1447172

Table : Area for Resource assessment (as on March 2017) in Barmer District

Recharge Component

During the monsoon season, the rainfall recharge is the main recharge parameter, which is estimated as the sum total of the change in storage and gross draft. The change in storage is computed by multiplying groundwater level fluctuation between pre and post monsoon

periods with the area of assessment and specific yield. Monsoon recharge can be expressed as:-

 $R = h \times Sy \times A + DG$ Where h = rise in water level in the monsoon season, Sy = specific yield A = area for computation of recharge, DG = gross ground water draft

The monsoon ground water recharge has two components- rainfall recharge and recharge from other sources. The other sources of groundwater recharge during monsoon season include seepage from canals, surface water irrigation, tanks and ponds, ground water irrigation, and water conservation structures.

During the non-monsoon season, rainfall recharge is computed by using Rainfall Infiltration Factor (RIF) method. Recharge from other sources is then added to get total non-monsoon recharge.

The season wise and block-wise wise assessment of recharge from various components such as rainfall and other sources for various units was done and presented in table. The recharge from rainfall contributes maximum component (26062.15 ham) during monsoon season and recharge from other sources (848.480 ham). The total annual ground water recharge is 30343.62 ham and net ground water availability after natural discharge is 1111.730 ham.

Blocks/ Assessment Units	Accepted Value of Mon. Rainfall recharge Rrf (Normal)	Total Recharge from other sources	Recharge from Rainfall during non- monsoon	Recharge from other sources (Rgw+Rc+ Rsw+Rt)	Total Annual ground water Recharge	Environm ental flows during Non Monsoon Season	Net GW Availabili ty
	(ham)	(ham)	(ham)	(ham)	(ham)	(ham)	(ham)
BAITU	322.28	3.95	0.00	11.86	338.10	33.81	0.00
BALOTRA	909.79	59.09	0.00	59.09	1027.97	102.80	0.00
BARMER	1977.99	17.74	208.47	81.86	2286.06	228.61	513.09
CHOHTAN	2181.29	15.47	0.00	45.43	2242.19	224.22	543.49
DHANAU	2694.61	31.78	0.00	476.77	3203.16	320.32	9.77
DHORIMANA	205.65	48.41	214.22	211.80	680.08	68.01	0.00
GADRA ROAD	813.11	7.01	97.78	35.74	953.64	95.36	0.00

Recharge Components evaluated for Resource Estimation

GIDA	66.37	2.29	0.00	6.86	75.52	7.55	0.00
GUDAMALANI	2948.94	230.27	0.00	399.20	3578.40	357.84	0.00
KALYANPUR	618.61	17.58	0.00	17.58	653.77	65.38	15.87
PATODI	765.28	14.81	0.00	22.73	802.82	80.28	0.00
RAMSAR	483.32	8.56	61.13	46.08	599.09	59.91	0.00
SAMADRI	1184.46	52.64	0.00	72.72	1309.82	130.98	0.00
SEDWA	2415.10	70.18	0.00	90.82	2576.10	257.61	29.52
SHIV	844.50	98.53	103.90	330.07	1377.01	137.70	0.00
SINDHARY	2737.65	86.20	0.00	177.19	3001.04	300.10	0.00
SIWANA	4893.21	83.96	409.83	251.88	5638.88	281.94	0.00
DISTRICT	26062.15	848.480	1095.322	2337.668	30343.62	2752.418	1111.730

The annual gross draft for all uses is estimated at 34284.64 ham with irrigation sector being the major consumer having a draft of 29153.67 ham. The annual draft for domestic and industrial uses was 5130.97 ham. The allocation for domestic & industrial requirement supply up to next 25 years is about 6926.82 ham.

Block	Potential Zone	Annual Extractab le Ground Water Recharge	Existing Gross Ground Water Draft for Irrigation	Existing Gross Ground Water Domestic & Industrial Uses	Existing Gross Ground Water Draft for all uses	Stage of Ground Water Extraction %	Category
BAITU	25036	304.29	316.28	15.00	331.28	108.87	OE
BALOTRA	44860	925.18	1575.76	94.95	1670.71	180.58	OE
BARMER	151337	2057.45	677.10	642.42	1319.52	64.13	Safe
CHOHTAN	115025	2017.97	1211.52	194.79	1406.31	69.69	Safe
DHANAU	124474	2882.84	2542.76	244.68	2787.44	96.69	Critical
DHORIMANA	141375	612.07	1129.60	161.97	1291.57	211.02	OE
GADRA ROAD	118750	858.27	494.12	828.96	1323.08	154.16	OE
GIDA	5156	67.96	60.96	99.00	159.96	235.35	OE
GUDAMALANI	118235	3220.56	3888.10	422.22	4310.32	133.84	OE
KALYANPUR	31850	588.39	468.80	76.83	545.63	92.73	Critical
PATODI	35000	722.54	970.94	30.30	1001.24	138.57	OE

Block wise GW Resources of Barmer (March 2017) (in ham)

RAMSAR	36875	539.18	409.60	113.82	523.42	97.08	Critical
SAMADRI	25600	1178.84	1403.77	315.45	1719.22	145.84	OE
SEDWA	113750	2318.49	2054.88	173.40	2228.28	96.11	Critical
SHIV	148329	1239.31	2933.97	765.23	3699.19	298.49	OE
SINDHARY	70109	2700.94	2298.78	388.65	2687.43	99.50	Critical
SIWANA	111500	5356.93	6716.74	563.31	7280.05	135.90	OE
DISTRICT	1447172	27591.20	29153.67	5130.97	34284.64	124.26	OE

In-storage Resources

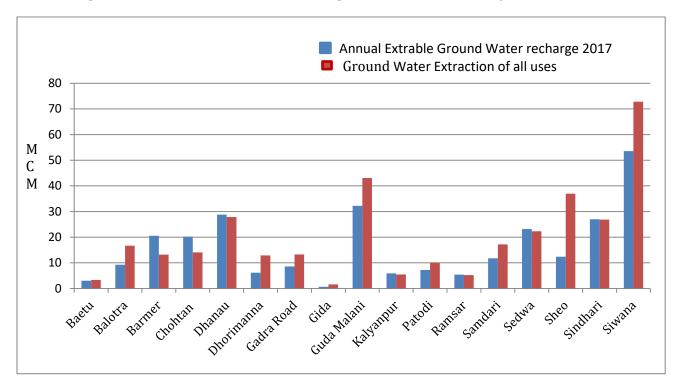
Ground water resource assessment of the zone below water level fluctuation is carried out is presented in table.

Block	Total Area (Sq.Km)	Main aquifer	Sp yield	Utilizable Volume (mcm)	In storage Resources (mcm)
Baetu	1407.58	250.36	0.0100	17.03	42.64
Balotra	1566.83	448.60	0.0100	19.88	178.39
Barmer	2412.09	1513.37	0.0100	15.66	51.32
Chohtan	1802.75	1150.25	0.0150	25.13	237.30
Dhanau	1244.74	1244.74	0.0150	15.82	267.53
Dhorimanna	1659.86	1413.75	0.0150	71.44	717.97
Gadra Road	3925.64	1187.50	0.0100	24.60	292.12
Gida	1550.36	51.56	0.0100	27.34	14.09
Guda Malani	1282.65	1182.35	0.0150	18.87	334.66
Kalyanpur	1263.4	318.50	0.0150	14.23	60.31
Patodi	831.62	350.00	0.0150	26.85	140.96
Ramsar	1587.07	368.75	0.0150	21.36	34.01
Samdari	836.87	256.00	0.0150	12.02	46.15
Sedwa	1703.57	1137.50	0.0150	21.99	375.20
Sheo	2663.79	1483.29	0.0100	21.38	317.12
Sindhari	1629.84	701.09	0.0150	11.76	123.67
Siwana	1208.28	1115.00	0.0150	9.86	164.90
Total	27439.88	14172.61	0.013	375.22	3157.63

Table: Block wise In-storage Resources of Barmer District

The total in-storage resources of the district, comes to 3157.63 mcm. The block-wise sustainability period of aquifers, if the present ground water draft for all uses continues to be same, is calculated after considering both dynamic resources and in-storage resources and presented in table

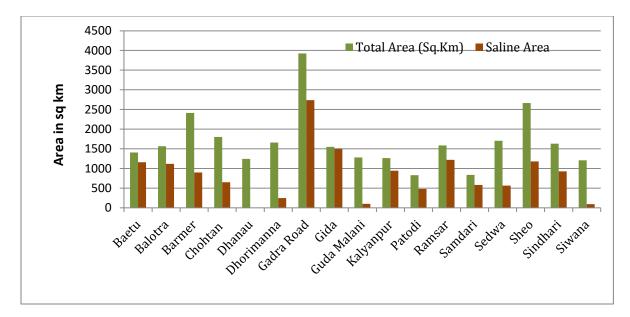
block wise Sustainability of Aquiter in Darmer							
Block	Dynamic Resource	In- Storage	Current annual gross ground	Sustainability period of Aquifer			
	(mcm)	Resources	water extraction	(years)			
		(mcm)	for 'All Uses'				
			(mcm)				
Baetu	3.04	42.64	3.31	13.8			
Balotra	9.25	178.39	16.70	20.29			
Barmer	20.57	51.32	13.19	3.495			
Chohtan	20.17	237.30	14.06	12.76			
Dhanau	28.82	267.53	27.87	10.28			
Dhorimanna	6.12	717.97	12.91	118.3			
Gadra Road	8.58	292.12	13.23	35.05			
Gida	0.67	14.09	1.59	22.03			
Guda Malani	32.20	334.66	43.10	11.39			
Kalyanpur	5.88	60.31	5.45	11.26			
Patodi	7.22	140.96	10.01	20.52			
Ramsar	5.39	34.01	5.23	7.31			
Samdari	11.78	46.15	17.19	4.918			
Sedwa	23.18	375.20	22.28	17.19			
Sheo	12.39	317.12	36.99	26.59			
Sindhari	27.00	123.67	26.87	5.58			
Siwana	53.56	164.90	72.80	4.079			
Total	275.82	3157.63	337.33	12.44			


Block wise Sustainability of Aquifer in Barmer

Aquifer Management Plan

8.1 Ground Water Related Issues

Over Exploitation of Groundwater


The ground water draft is more than net ground water availability in all the blocks The Stage of Ground Water is also increasing. This is due to over-exploitation of ground water for irrigation purposes. The groundwater resource estimation was done for all blocks of the district, stage of ground water development has increased over the period of time from 2009 to 2017 in almost all blocks of the District.

The ground water draft is more than net ground water availability in all the blocks

Inland Salinity

The parts of Baetu, Balotra, Barmer, Chohtan, Dhorimanna, Gadra, Gida, Guda Malani,Kalyanpur, Patodi, Ramsar, Samdari, Sedwa, Sheo, Sindhri Blocks covering an area of 14403.97 sq.km area has saline nature due to inland salinity problems with EC ranging from 3000 to 33,280 μ S/cm at 25°C. The ground water in these areas is neither suitable for drinking nor for irrigation purposes. Figure depicts the ground water quality of aquifer

Distribution of Saline Area in Barmer District

Ground Water Management Plan

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels and improve the Stage of Ground Water Development in the district which is 124.26 % for the district and falls in Over-Exploited category. The management plan comprises two components namely supply-side management and demand side management. The management plan proposed in all the 17 blocks of Barmer District is discussed below

Supply Side Management

The supply side management of ground water resources is proposed based on availability of surplus surface water. 4.71 mcm surplus surface water is available during rainy season for which a total of 42117 Tanka (Nos.) (Capacity 50,000 liters) are proposed to be constructed in the district. After construction of water conservation structures, volume of 2.10 mcm surface water conserved.

Block	Geographical Area (sq km)	Hilly Area (sq km)	Potential Area (sq km)	Tanka (Nos.) (Capacity 50,000 liters)	Average cost (Rs) of Tanka	Total cost (Rs in crore) of Tanka
Baetu	1407.58	0	250.36	1999	200000	4.00
Balotra	1566.83	0	448.60	2316	200000	4.63
Barmer	2412.09	0	1513.37	4319	200000	8.64
Chohtan	1802.75	0	1150.25	3156	200000	6.31
Dhanau	1244.74	0	1244.74	2421	200000	4.84
Dhorimanna	1659.86	0	1413.75	2545	200000	5.09
Gadra Road	3925.64	0	1187.50	2370	200000	4.74
Gida	1550.36	0	51.56	2306	200000	4.61
Guda Malani	1282.65	0	1182.35	2458	200000	4.92
Kalyanpur	1263.4	0	318.50	2222	200000	4.44
Patodi	831.62	0	350.00	1487	200000	2.97
Ramsar	1587.07	0	368.75	2213	200000	4.43
Samdari	836.87	0	256.00	1972	200000	3.94
Sedwa	1703.57	0	1137.50	3382	200000	6.76
Sheo	2663.79	0	1483.29	1672	200000	3.34
Sindhari	1629.84	0	701.09	2601	200000	5.20
Siwana	1208.28	0	1115.00	2677	200000	5.35
Total	27439.88	0	14172.61	42117	200000	84.21

Block-wise Proposal of Water Conservation Structures in Barmer District

Demand Side Management

The Demand Side Management is proposed in all the blocks as the Stage of Ground Water Development is 124.26. Baytu, Balotra, Dhorimanna, Gadra, Gida, Gudamalani, Patodi, Samdari, Shiv and Shivana blocks fall in over exploited Category, Dhanau, Kalyanpur, Ramsar, Sedwa and Sindhry falls in Critical category. Even though after implementation of supply side management options in the current scenario, the water saving is still less to compensate the withdrawal. So, there is a need of adopting micro-irrigation techniques for water intensive crops or change in cropping pattern or both are required to save water.

The micro-irrigation techniques viz. sprinkler or drip irrigation, which is not in practice in the district till date is proposed to be adopted in 93194 ha. area of the district which can save a total of 74.55 mcm water. Similarly, if the 50% of cropping area of wheat be changed to gram crop it can save water up to 25.71 mcm (Figure 8.5).

Blocks	Net Irrigated Area through Ground Water (ha)				50% of area proposed for adopting Micro Irrigation Techniques (ha) (Sprinklers)	Water Saving through Micro Irrigation (mcm)
	Canals	TW	DW	Total		
Baetu	0	21002	26	21028	10514	8.4112
Barmer	0	7902	5253	13155	6577.5	5.262
Chohtan	0	0	27137	27137	13568.5	10.8548
Dhorimanna	8055	1127	32456	41638	20819	16.6552
Gadra Road	0	15893	0	15893	7946.5	6.3572
Gida	0	2725	0	2725	1362.5	1.09
Guda Malani	13534	0	47724	61258	30629	24.5032
Ramsar	0	4	485	489	244.5	0.1956
Samdari	0	4946	3537	8483	4241.5	3.3932
Sedwa	9395	17299	131042	157736	78868	63.0944
Sheo	0	76834	743	77577	38788.5	31.0308
Sindhari	0	12601	1079	13680	6840	5.472
Siwana	0	26687	4834	31521	15760.5	12.6084
Panchpadra	0	7088	543	7631	3815.5	3.0524
Total	30984	194108	254859	479951	239975.5	191.9804

Block-wise proposal for adopting Micro-Irrigation in Barmer District

Block-wise proposal for Crop Change and Water Saving in Barmer District

Blocks	Area Proposed for crop change from Wheat to Gram (ha)	Water Saving through Change in Crop (mcm)
Baetu	26	0.026
Barmer	194	0.194
Chohtan	37	0.037
Dhorimanna	1675	1.675
Gadra Road	1	0.001
Gida	27	0.027
Guda Malani	3000	3
Ramsar	1	0.001
Samdari	2323	2.323
Sedwa	1168	1.168
Sheo	142	0.142
Sindhari	650	0.65
Siwana	3664	3.664
Balotra	4140	4.14
Total	17048	17.048

Expected Benefits

The impact of groundwater management plans on the groundwater system in the district after its implementation is evaluated and the outcome shows significant improvement in groundwater scenario in all blocks as given in the table

After implementation of interventions the total Stage of Groundwater Extraction will improve from 145% to 70%.

Block	Net G.W. Availability (mcm)	Additional Recharge from RWH & conservation (mcm)	Total Net G.W. Availability after intervention (mcm)	Existing G.W Draft for all purpose (mcm)	Saving of Ground water through projects (mcm)	Net GW draft after interventions (mcm)	Present stage of G.W. development (%)	Projected stage of G.W. Dev. (in %)
Baetu	3.04	0.00	3.04	3.31	1.68224	1.63	108.87	53.54
Barmer	20.57	0.00	20.57	13.19	5.466	7.72	64.13	37.55
Chohtan	20.17	0.00	20.17	13.06	10.8918	2.17	69.69	10.75
Dhorimanna	6.12	0.00	6.12	12.91	3.33104	9.58	211.02	156.52
Gadra Road	8.58	0.00	8.58	13.23	6.3582	6.87	154.16	80.09
Gida	0.67	0.00	0.67	1.59	1.117	0.47	235.35	70.60
Guda Malani	32.2	0.00	32.20	43.1	28.2332	14.87	133.84	46.17
Ramsar	5.39	0.00	5.39	5.23	0.1966	5.03	97.08	93.38
Samdari	11.78	0.00	11.78	17.19	6.3362	10.85	145.84	92.14
Sedwa	23.18	0.00	23.18	22.28	12.61888	9.66	96.11	41.68
Sheo	12.39	0.00	12.39	36.99	31.1728	5.82	298.49	46.95
Sindhari	27	0.00	27.00	17.19	7.202	9.99	99.5	36.99
Siwana	53.56	0.00	53.56	72.8	17.1224	55.68	135.9	103.95
Balotra	9.25	0.00	9.25	16.7	8.0024	8.70	180.58	94.03
Total	233.90	0.00	233.90	288.77	139.7308	149.04	145	70.00

Table : Ground Water Availability & Stage After Interventions in Barmer District

Conclusions

The study was carried out based on data gap analysis, data generated in-house; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of block wise aquifer maps and aquifer management plans of Barmer District.

Barmer district covering an area of 24361.74 sq.km. Geologically, the area is occupied by Alluvium, Tertiary Sandstone and Malani Rhyolites. The stage of ground water development is 145 %. The area witnessed Inland Salinity, Declining water level, Over-exploitation and low yield potential aquifers, being the major issues in the district.

Managing ground water is a grand challenging problem in its severity, pervasiveness and importance. To increase the water use efficiency, source sustainability plans of rain water harvesting and artificial recharge have been envisaged in the district.

The management plan has been proposed for all 17 blocks namely to manage the ground water resources and to arrest further decline in water levels.

The management plan comprises two components namely supply-side management and demand side management.

As a part of **Supply side Management**, a total of 42117 Tanka proposed for water conservation. After which an amount of 2.10 mcm surface water conserved.

As a part of **Demand side Management**, micro-irrigation techniques are to be adopted in 2399.75 sq. km area thereby saving a total of 191.9 mcm water. Change in cropping pattern is proposed in 17048 ha of area which will save 17.08 mcm water in the district and in turn bring down the Stage of Ground Water Development to 70%.

Recommendations

Awareness program to educate about conservation of precious ground water resources and training on rainwater harvesting will be beneficial to check decline in water level and justified use.

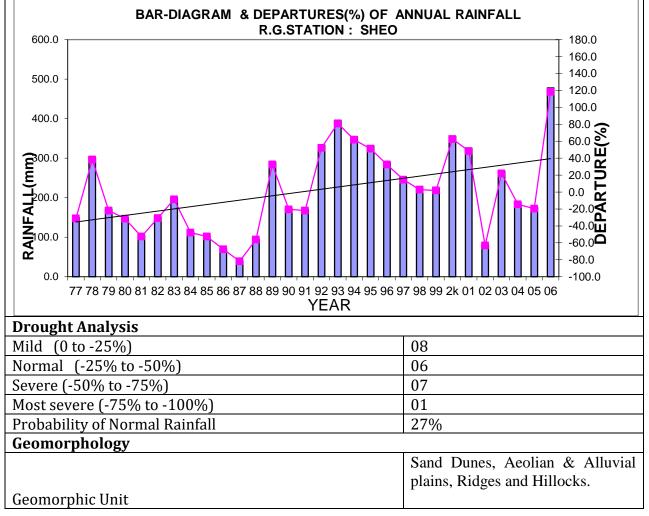
Ground water development in over-exploited, critical and semi-critical area should not be encouraged.

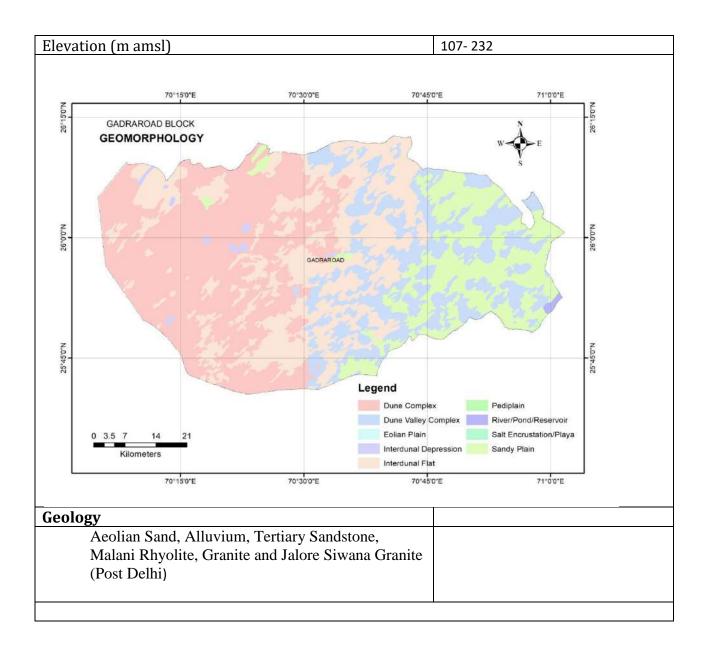
Use of water saving devices like sprinklers and close field distribution channels etc should be promoted.

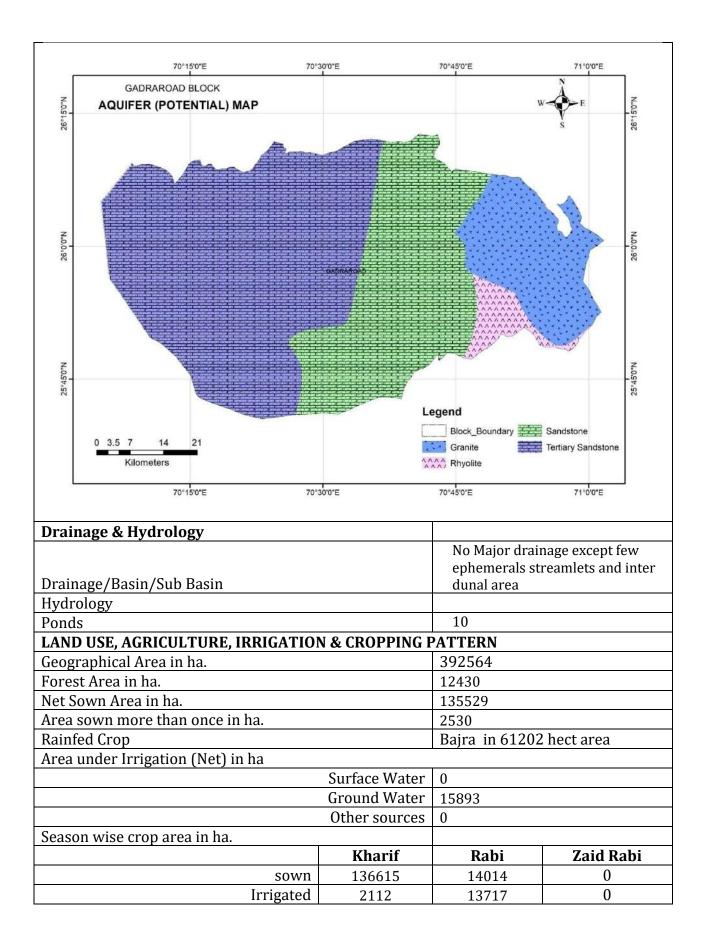
Modern agricultural management techniques have to be adopted for effective and optimum utilization of the water resources. This can be achieved by maintaining irrigation through minimum pumping hours as per minimum requirement of water by the crop and also selecting most suitable cost effective crop pattern.

High water requirement crops to be discouraged. Proper agriculture extension services should be provided to the farmers so that they can go for alternate low water requirement economical crops.

Salt resistant crops can be sown in the area having brackish ground water.

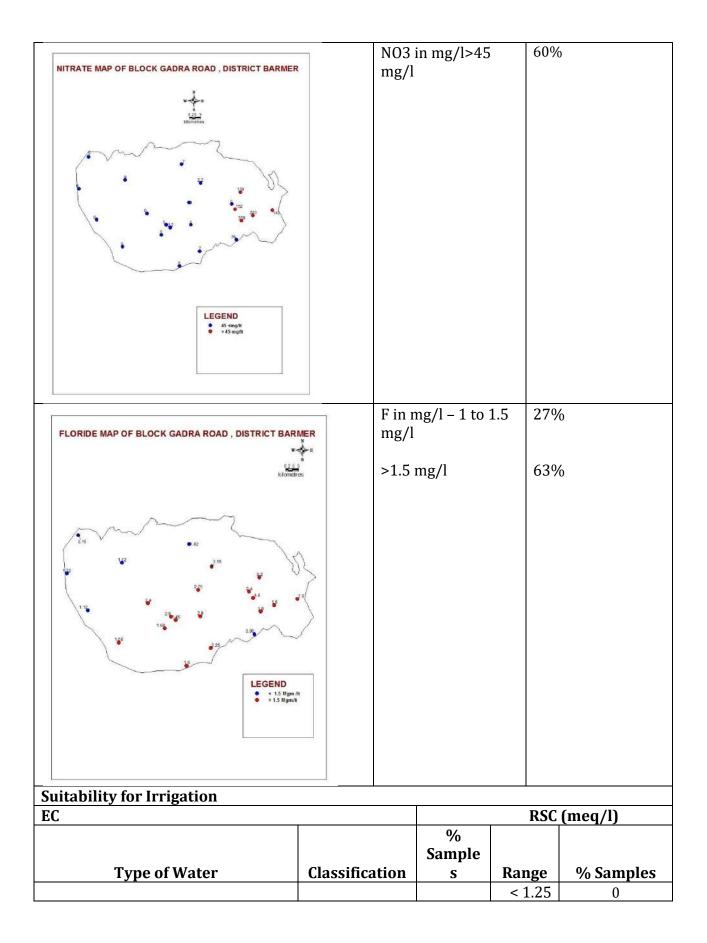

Traditional rainwater harvesting structures like tankas, roof top rain water storage should be encouraged for meeting day to day requirements which will reduce ground water withdrawal.


Large-scale recharge potentials exist in depleted aquifers. Implementation of artificial recharge in such areas through outside surface water sources like lift canal from IGNP system or floodwater during excess rainy years be promoted.

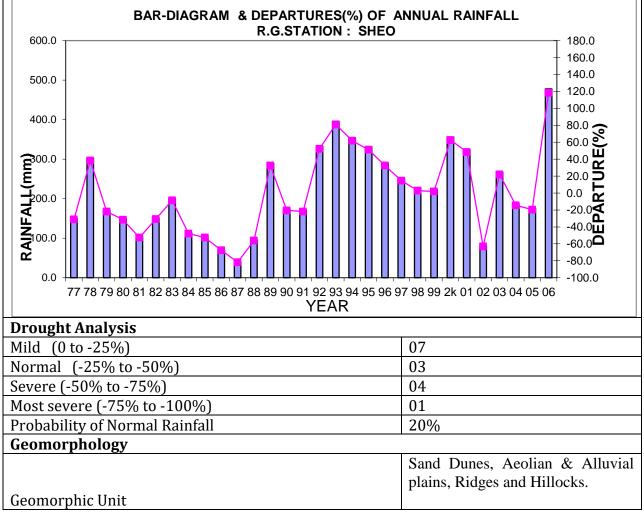

Conjunctive use of ground water and surface water should be encouraged in canal command areas to prevent further water logging in the CCA. Anti water logging measures have to be adopted in the canal command areas.

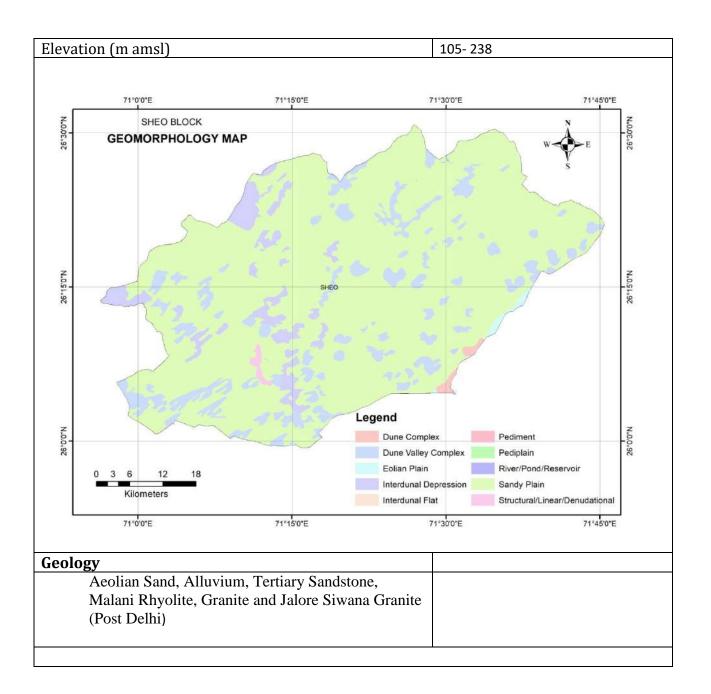
GADRA ROAD

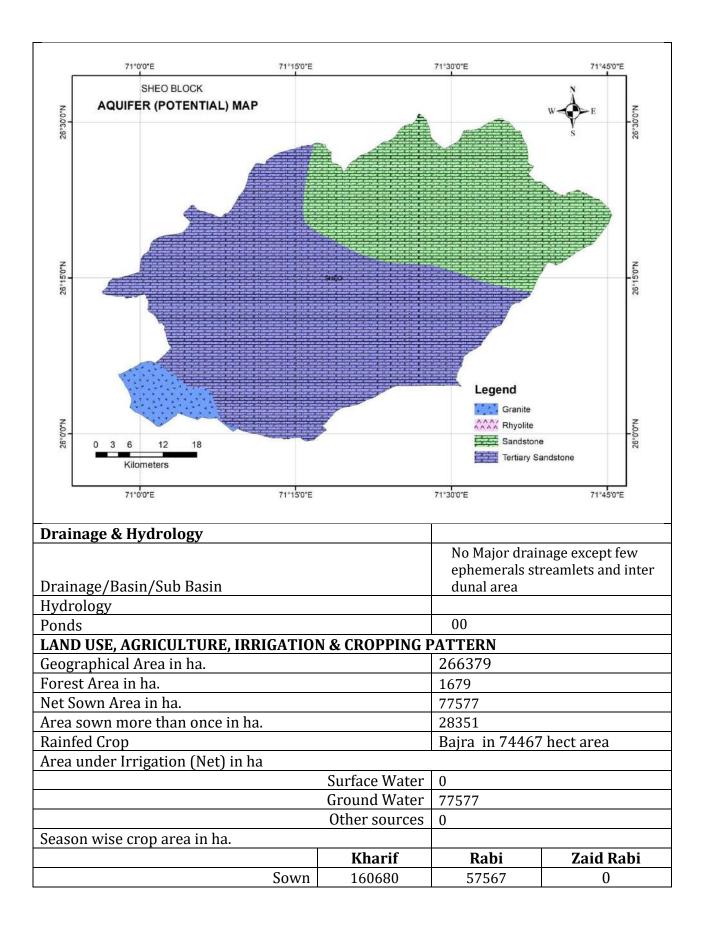
SALIENT INFORMATION	
Block Name	GADRA ROAD
Longitude	70°04'55" to 71°01'45"
Latitude	25°40'25" to 26°12'39"
Geographical Area Sq.km	3925.64
Hilly Area (Sq.km)	Nil
Population (2011)	108710
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	249.2
Mean Annual rainfall (mm)	245.7
Highest annual rainfall with year (mm)	746.2 (1976)
Lowest annual rainfall (mm) with year	40 (1987)
Standard deviation (mm)	131.9
Coefficient of Variation (%)	53.7



Principal Crop Area (ha)				
Сгор Туре				
	Cereals	1584		
	Oil Seeds	540		
Hydrogeology				
Monitoring Stations (May 2019)				
	CGWB SGWD	05		
	02			
NAQ	14			
WATER LEVEL BEHAVIOUR				
Pre-Monsoon (May-2019) Water level		Post-Monsoon (N 2019)Water leve		
8.65 to 104.50 m bgl			96.20 m bgl	
Water Level Trend (2010-2019)		Pre-monsoon	Post-monsoon	
Average Trend (m/year)		Declining 0.28	Declining 0.27	
		Pre-monsoon	Post-monsoon	
	Rise	-0.03 - (0)	-0.06- (0)	
	Fall	NA	NA	
400 350 300 E250 1150 100 100 100 100 100 100	y = -0.06x		- 78 - 77 - 76 - 75 (L) - 74 - 73 - 73 - 72 - 71 - 71 - 70 - 71 - 71 - 70 - 71 - 71 - 70 - 72 - 71 - 71 - 72 - 71 - 72 - 71 - 73 - 72 - 71 - 73 - 72 - 73 - 74 - 73 - 72 - 73 - 74 - 73 - 72 - 73 - 74 - 73 - 74 - 73 - 72 - 73 - 74 - 73 - 72 - 73 - 74 - 73 - 72 - 74 - 73 - 74 - 73 - 74 - 73 - 74 - 73 - 74 - 73 - 74 - 74 - 73 - 74 - 71 - 74 - 71 - 74 - 71 - 72 - 71 - 72 - 71 - 71 - 71 - 71 - 71 - 71 - 71 - 71	
AQUIFER DISPOSITION				
Number of Aquifers (Major)		Тwo		
I	Alluvium followed by tertiary Sand Stone			
II		Tertiary Sandstone		
Major Aquifer System	CGWB		GWD	
Status of GW Exploration	15		02	

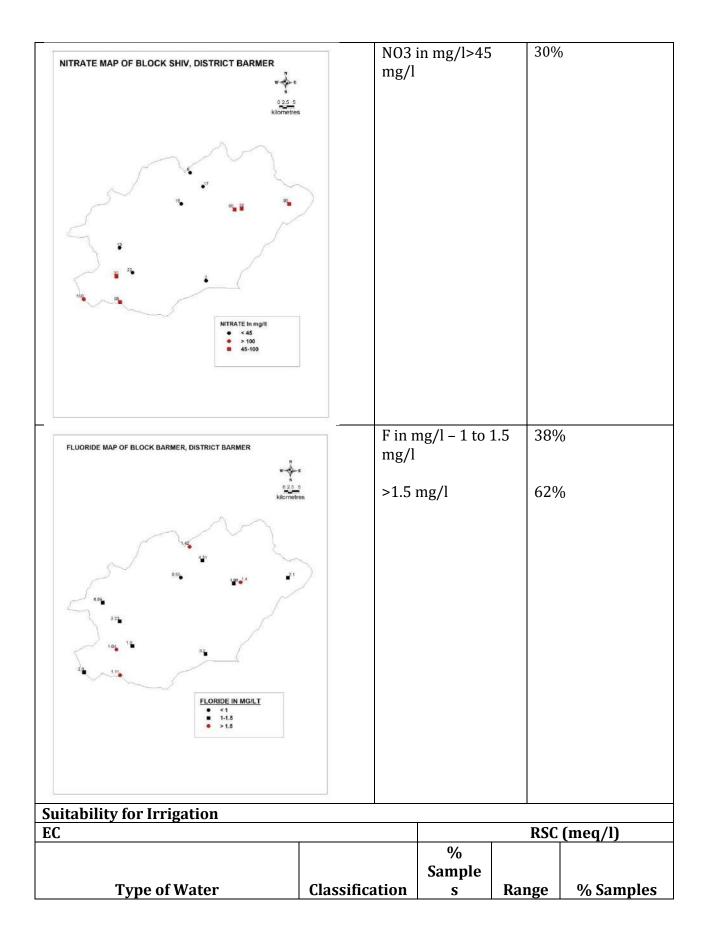

BASIC AQUIFER CHARACTERISTICS					
Type of Aquifer Ac		juifer-I	Aquifer-	II	Aquifer-III
Depth of Occurrence (mbgl)	4	7-107	120-19	3	223-281
Yield Potential(lpm)	13	0-396	340-144	:0	634-822
Drawdown(m)	7.	6-9.66	2.55-7.2	.8	7.28-10.0
EC μS/cm at 25°C	570	0-11500	6900-114	100	6900-7900
CHEMICAL QUALITY OF GROUND WAT	ER				
Suitability for Drinking					
TDS(mg/l)		Range		% S	amples
Fresh		0-3000		40%	, D
Brackish		>-3000		60%)
Hardness (mg/l)as CaCO ₃		Range		% S	amples
Soft		0 – 75		0%	
Moderately Hard		75 – 150		0%	
Hard		150 - 300		20%	
Very Hard		>300		80%	
	VARIATION IN MAJOR & MINOR				
CHEMICAL QUALITY MAP		ELEMENTS EC < 2000 μS/cm at			
EC MAP OF BLOCK GADARA ROAD , DISTRICT BARMER		25°C	ο μογ επι αι	0 70	
t <u>c₂>> s</u> kitometree					
Legend EC in micro ohmsicm at 25 C 0 0					




					1.25 -		
Low Saline< 250 mg/l	Excel	lent	0.00		2.0	13	
	Плест				2.0 -	15	
Medium Saline 250 – 750 mg/l	Good		33.00		2.5	6	
	0000	0000		0	2.5 -	0	
Highly Saline 750 – 2250 mg/l	Perm	issible	06.0	0	3.0	0	
Very Highly saline> 2250 mg/l	Doub		61.0		> 3.0	81	
Na%	Doub	titil	SAR	0	- 510	01	
		%	UIII				
	Rang	Sample	Wate	er			
Water Class	e	S	Class		Range	% Samples	
		_	Excell		8-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Excellent	< 20	0.00	t	•	<10	20.0	
	20 -	0100			10 to	2010	
Good	40	0.00	Good		18	40.0	
	40 -				18 to		
Medium	60	13.00	Mediu	m	26	26.0	
	60 -				_		
Bad	80	66.0	Bad		>26	14.0	
Very Bad	> 80	21					
GROUND WATER ISSUES		I	1				
1. Over-Exploitation – Resource Av	ailability			At present the Ground water			
				Draft 13.23 is more than			
				Annual Availability 11.19 mcm			
2. Rainfall and Drought				٠		Droughts in	
					6.00% ye		
				•		rought in	
					1.00% ye	ears	
3. Decadal Water Level Trend (200	0 2010)			Do	clining		
GROUND WATER RESOURCE & EX		ONICWRE	-2017)	De	Jiiiiig		
Ground Water Recharge Worthy An			-2017)	110	27.50		
Total Annual Ground Water Rechai				1187.50 09.53			
Natural Discharge (mcm)	ge (mem)		9.5			
Net Annual Ground Water Availability (mcm)					54.62		
					13.23		
Existing Gross Ground Water Draft for All uses(mcm) Provision for domestic and industrial requirement supply to					23		
2025(mcm)					19		
Stage of Ground Water Development	154.16						
Category		Over Exploited					
In-Storage Resource							
Total Area (Sq.Km)					37.50		
Specific yield					0.06		
Total Resource (mcm)					813.75		
Utilizable Volume (mcm)				36			

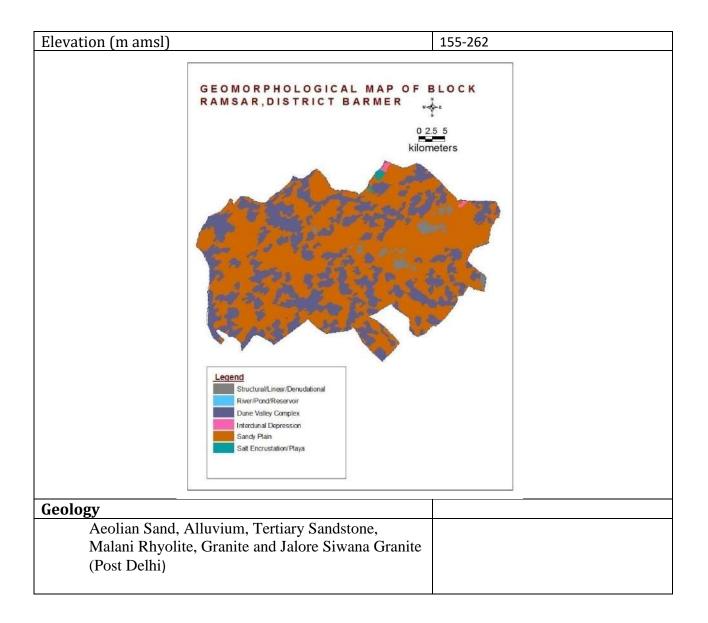
Tankas51SUPPLY SIDE MANAGEMENT51Water Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer			
Sustainability Period with existing draft62GROUND WATER RESOURCE ENHANCEMENT62Artificial Recharge & Water Conservation PossibilitiesExisting Structures constructed by State Govt.54Water Harvesting Structure0Contour Continuous Trench (CCT)0Talai (Talab)1Tankas51SUPPLY SIDE MANAGEMENT2370Water Supply(mcm)0.1185Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. Tertiary 968.75			
GROUND WATER RESOURCE ENHANCEMENTArtificial Recharge & Water Conservation PossibilitiesExisting Structures constructed by State Govt.54Water Harvesting Structure0Contour Continuous Trench (CCT)0Talai (Talab)1Tankas51SUPPLY SIDE MANAGEMENT2370Water Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. Tertiary 968.75			
Artificial Recharge & Water Conservation PossibilitiesExisting Structures constructed by State Govt.54Water Harvesting Structure0Contour Continuous Trench (CCT)0Talai (Talab)1Tankas51SUPPLY SIDE MANAGEMENT51Water Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. Tertiary 968.75			
Existing Structures constructed by State Govt.54Water Harvesting Structure0Contour Continuous Trench (CCT)0Talai (Talab)1Tankas51SUPPLY SIDE MANAGEMENTWater Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. Tertiary 968.75			
Water Harvesting Structure0Contour Continuous Trench (CCT)0Talai (Talab)1Tankas51SUPPLY SIDE MANAGEMENT51Water Supply(mcm)1Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. Tertiary 968.75	41		
Contour Continuous Trench (CCT)0Talai (Talab)1Tankas51SUPPLY SIDE MANAGEMENTWater Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. Tertiary 968.75	7		
Tankas51SUPPLY SIDE MANAGEMENT51Water Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. Tertiary 968.75	1		
Tankas51SUPPLY SIDE MANAGEMENT51Water Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. TertiarySoft Rock Area (sq.km)968.75	5		
Water Supply(mcm)2370Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. TertiarySoft Rock Area (sq.km)968.75	15		
Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. TertiarySoft Rock Area (sq.km)968.75			
Tanks (Nos) Capacity 50.000 lts2370Volume of water to be conserved (mcm)0.1185Type of Aquifer1. TertiarySoft Rock Area (sq.km)968.75			
Type of Aquifer 1. Tertiary Soft Rock Area (sq.km) 968.75			
Type of Aquifer 1. Tertiary Soft Rock Area (sq.km) 968.75			
Soft Rock Area (sq.km) 968.75			
	v Sand Stone :		
Volume of Sub surface Storage Space available for Artificial 858 27			
Recharge (mcm)	3.27		
Surplus Surface water Availability (mcm) 0.00	.00		
Volume of Water expected to be conserved (mcm) 0.1185	0.1185		
DEMAND SIDE MANAGEMENT			
DEMAND SIDE MANAGEMENT			
Micro irrigation techniques			
Use of Sprinklers for Irrigation			
Irrigation Area (ha) proposed for irrigation through9538.8			
Water Saving by use of Sprinklers (mcm)7.628			
Cropping Pattern change			
Cropping Area (ha) proposed for change in crop 1			
Water Saving by Change in Cropping Pattern(mcm)0.001			
EXPECTED BENEFITS			
Net Ground Water Availability (mcm) 2017 54.62			
Existing Ground Water Draft for All Purposes (mcm) 13.23			
GW draft after Demand Side Interventions (mcm) 5.60			
Present stage of Ground Water Development (%) 243.84			
Projected Stage of Ground Water Development after Supply Side			
and demand side interventions (%) 65.26			
Total Ground Water Resources (In-storage & Availability after all			
interventions) mcm 822.23			
Sustainability of GW Resources with existing Draft (in years)70			

SALIENT INFORMATION	
Block Name	SHEO
Longitude	70°56'21" to 71°45'28"
Latitude	25°59'20" to 26°30'45"
Geographical Area Sq.km	2663.79
Hilly Area (Sq.km)	Nil
Population (2011)	128370
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	248.9
Mean Annual rainfall (mm)	245.7
Highest annual rainfall with year (mm)	396 (1993)
Lowest annual rainfall (mm) with year	40 (1987)
Standard deviation (mm)	131.9
Coefficient of Variation (%)	53.7



Irrigated	28490	48465	0		
Principal Crop Area (ha)					
Сгор Туре					
	Cereals	679			
	Oil Seeds	4331			
Hydrogeology					
Monitoring Stations (May 2019)					
	CGWB	04			
	SGWD	02			
NAQ	UIM Key Wells	13			
WATER LEVEL BEHAVIOUR	•				
Pre-Monsoon (May-2019) Water level		Post-Monsoon (N Water level	lovember-2019)		
13.67 to 98.50 m bgl		16.20 to	99.60 m bgl		
Water Level Trend (2010-2019)		Pre-monsoon	Post-monsoon		
Average Trend (m/year)		Declining 0.28	Declining 0.27		
		Pre-monsoon	Post-monsoon		
	Rise	-0.03 - (0)	-0.06- (0)		
	Fall	NA	NA		
			99 98 (m) 97 98 97 97 96 97 96 97 96 97 96 97 96 99 96 97 96 99 96 99 97 99 96 99 96 99 97 99 96 99 96 99 97 99 98 99 97 99 98 99 97 99 98 99 99 99 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9		
	PRE POST	Linear (PRE)	Linear (POST)		
AQUIFER DISPOSITION		m			
Number of Aquifers (Major)		Two Alluvium followed by tertiary Sand			
I		Stone			
	0.01175	Tertiary Sandsto			
Major Aquifer System	CGWB		GWD		
Status of GW Exploration	09		05		
BASIC AQUIFER CHARACTERISTICS					

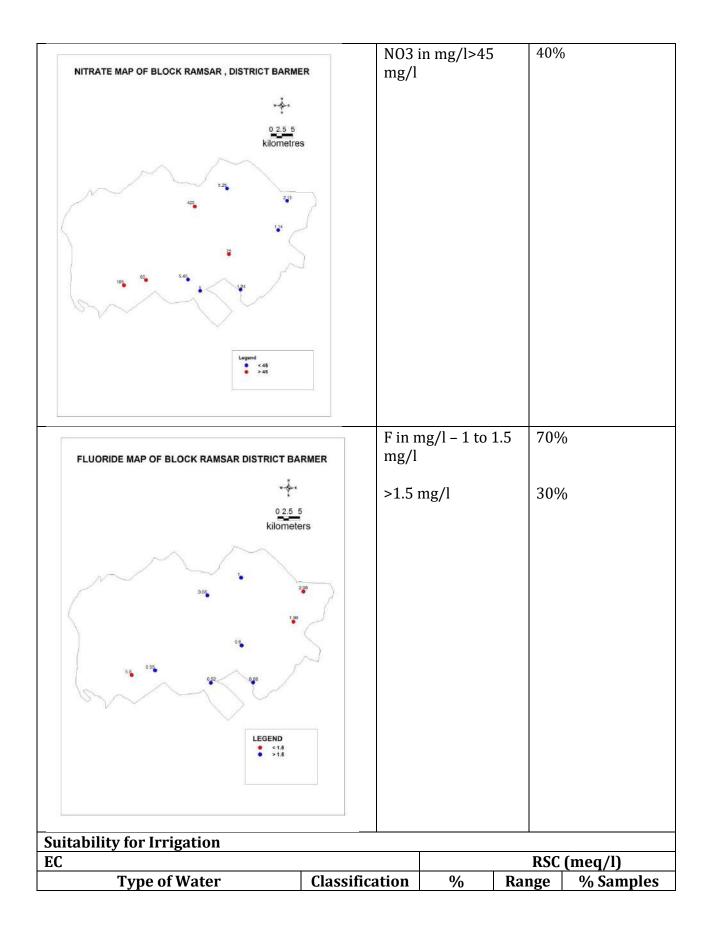
Type of Aquifer	Aq	uifer-I	Aquifer-	II	Aquifer-III	
Depth of Occurrence (mbgl)	4	4-73	106-17	1	203-288	
Yield Potential(lpm)	Mea	ger-279	158-634	1	279-664	
Drawdown(m)	13.4	6-21.96	8.28-12	.7	6.3-9.47	
EC μS/cm at 25°C	181	0-7500	7800-100	000	11300-12900	
CHEMICAL QUALITY OF GROUND WAT	ER					
Suitability for Drinking						
TDS(mg/l)		Range		% S	amples	
Fresh		0-3000		85%	, D	
Brackish		>-3000		15%)	
Hardness (mg/l)as CaCO ₃		Range		% S	amples	
Soft		0 – 75		0%	0%	
Moderately Hard		75 – 150		0%		
Hard		150 – 300)	30%		
Very Hard		>300		70%)	
CHEMICAL QUALITY MAP		ELEMENT	ON IN MAJO <u>S</u> 0 μS/cm at	R & M		



					< 1.25	92
					1.25 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Low Saline< 250 mg/l	Excel	lent	0.00)	2.0	8
	Lineer	10110	0.00	,	2.0 -	0
Medium Saline 250 – 750 mg/l	Good		07.0	0	2.5	0
			0,10	0	2.5 -	
Highly Saline 750 – 2250 mg/l	Perm	issible	46.0	0	3.0	0
Very Highly saline> 2250 mg/l	Doub		47.0		> 3.0	0
Na%			SAR	-		
		%				
	Rang	Sample	Wate	er		
Water Class	e	s	Clas	S	Range	% Samples
			Excell	en	0	-
Excellent	< 20	84	t		<10	53.0
	20 -				10 to	
Good	40	16	Good		18	30.0
	40 -	0.00			18 to	
Medium	60		Mediu	ım	26	17.0
	60 -	0.00				
Bad	80		Bad		>26	0
Very Bad	> 80	0.00				
GROUND WATER ISSUES						
1. Over-Exploitation – Resource Ava	ailability			-		Ground water
					ift 36.99 is 1	
				Anı		bility 12.39 mcm
2. Rainfall and Drought				•		Oroughts in 3 %
					years	
				•		rought in 4%
					years	
2 Decedel Weter Level Trees d (200)	2010)			Da	-1::	
3. Decadal Water Level Trend (2009	,		2017		clining	
GROUND WATER RESOURCE & EX		<u> </u>	2-2017		2 20	
Ground Water Recharge Worthy Ar					33.29	
Total Annual Ground Water Rechar	ge (mem)		13. 1.3		
Natural Discharge (mcm) Net Annual Ground Water Availabil	ity (man)				
				$\frac{12}{26}$		
Existing Gross Ground Water Draft Provision for domestic and industri			nly to	36.	フプ	
2025(mcm)	arrequir	ement sup	ply to	10	22	
Stage of Ground Water Developmer	nt 0/2			10.33 298.49		
Category	11 /0				er Exploite	hd
In-Storage Resource				00		u
Total Area (Sq.Km)			I	266	53.79	
Specific yield				0.0		
Total Resource)3.91	
				521	12.21	

Utilizable Volume (mcm)	36	
Total In-storage Resource (mcm)	3203	
Total Resource Dynamic + In-storage(Fresh)	3216	
Sustainability Period with existing draft	87	
GROUND WATER RESOURCE ENHANCEMENT	07	
Artificial Recharge & Water Conservation Possibilities		
Existing Structures constructed by State Govt.		451
Farm Ponds		07
Check Dam		01
Contour Continuous Trench (CCT)		01
Tankas		442
SUPPLY SIDE MANAGEMENT		
Water Supply(mcm)		
Tanks (Nos) Capacity 50.000 lts	1672	
Volume of water to be conserved (mcm)	0.0836	6
Type of Aquifer		-
	2.	Tertiary Sand Stone :
Soft Rock Area (sq.km)		2643.79
Volume of Sub surface Storage Space available for Artificial	1644.	53
Recharge (mcm)		
Surplus Surface water Availability (mcm)	0.00	
Volume of Water expected to be conserved (mcm)	0.0830	6
DEMAND SIDE MANAGEMENT		
Micro irrigation techniques		
Use of Sprinklers for Irrigation		
Irrigation Area (ha) proposed for irrigation through		
Sprinkler	38788	8.5
Water Saving by use of Sprinklers (mcm)	31.03	
Cropping Pattern change		
Cropping Area (ha) proposed for change in crop	142	
Water Saving by Change in Cropping Pattern(mcm)	31.17	
EXPECTED BENEFITS		
Net Ground Water Availability (mcm) 2017		12.39
Existing Ground Water Draft for All Purposes (mcm)		36.99
GW draft after Demand Side Interventions (mcm)		5.84
Present stage of Ground Water Development (%)		204.44
Projected Stage of Ground Water Development after Supply Si	de	
and demand side interventions (%)		47.10
Total Ground Water Resources (In-storage & Availability after	all	
interventions) mcm		3216
Sustainability of GW Resources with existing Draft (in years)		99

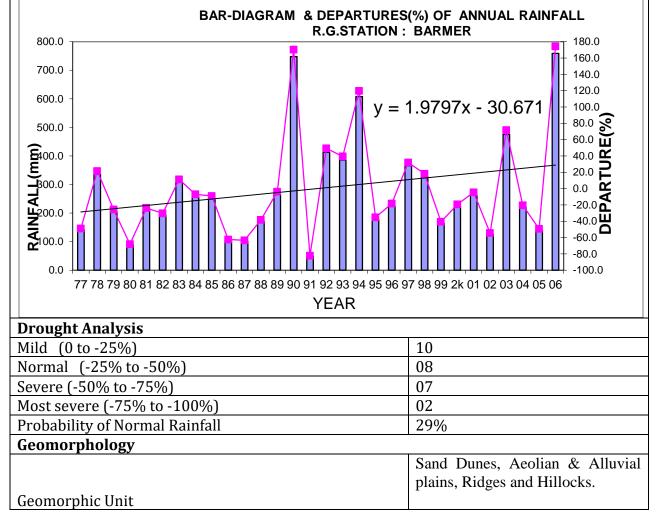
RAMSAR

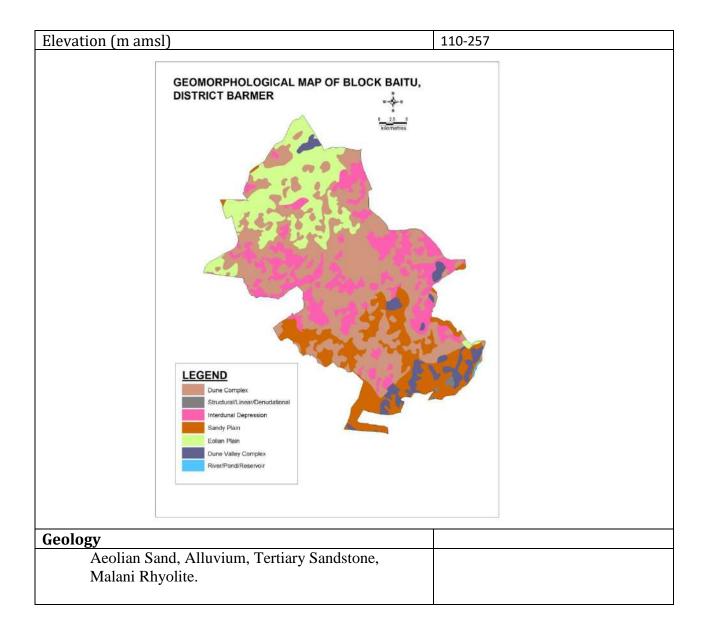

SALIENT INFORMATION	
Block Name	RAMSAR
Longitude	70°39'11" to 71°13'54"
Latitude	25°30'16" to 25°51'55"
Geographical Area Sq.km	1587.07
Hilly Area (Sq.km)	Nil
Population (2011)	163786
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	299.5
Mean Annual rainfall (mm)	285.8
Highest annual rainfall with year (mm)	748 (1990)
Lowest annual rainfall (mm) with year	49 (1991)
Standard deviation (mm)	170.1
Coefficient of Variation (%)	59.5
BAR-DIAGRAM & DEPARTURES(%) OF AN R.G.STATION : BARMER 800.0 700.0 600.0 500.0 500.0 500.0 500.0 500.0 500.0 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 9 YEAR	180.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0 20.0 0.0 -20.0 -40.0 -60.0 -40.0 -60.0 -80.0 -60.0
Drought Analysis	
Mild (0 to -25%)	10
Normal (-25% to -50%)	08
Severe (-50% to -75%)	07
Most severe (-75% to -100%)	02
Probability of Normal Rainfall	29%
Geomorphology Geomorphic Unit	Sand Dunes, Aeolian & Alluvial plains, Ridges and Hillocks.

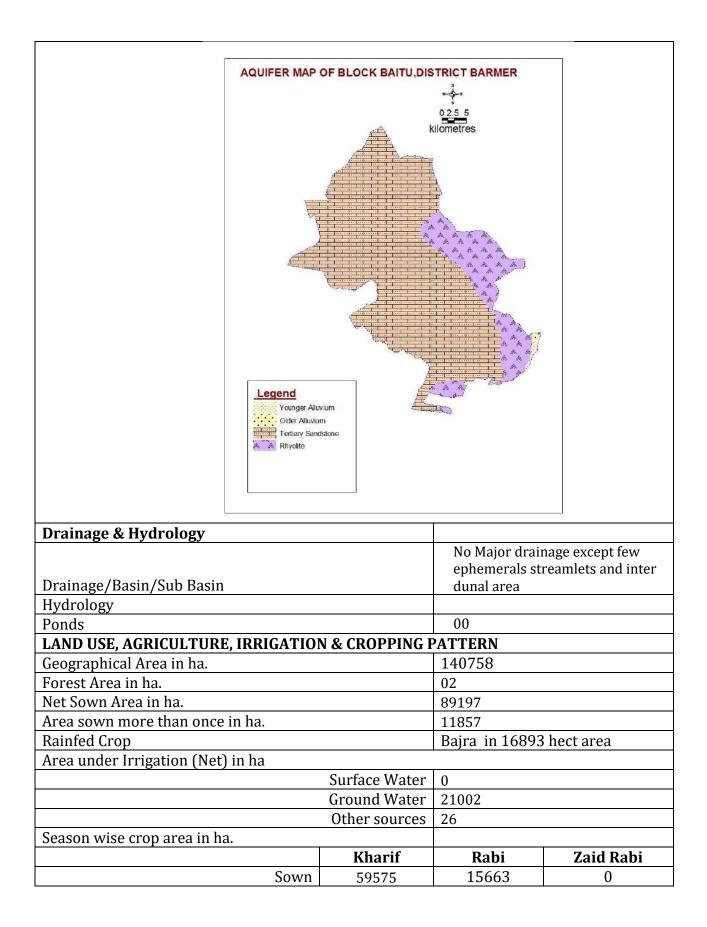
AQUIFER MA DISTRICT BA	025 Skilomete	5		
Drainage & Hydrology				
		No Major drainage except few ephemerals streamlets and inter		
Drainage/Basin/Sub Basin		ephemerals sti dunal area	reamiets and inter	
Hydrology				
Ponds		00		
LAND USE, AGRICULTURE, IRRIGATIO	N & CROPPING F	PATTERN		
Geographical Area in ha.		158707		
Forest Area in ha.		507		
Net Sown Area in ha.		89755		
Area sown more than once in ha.		2737		
Rainfed Crop		Bajra in 54881	hect area	
Area under Irrigation (Net) in ha				
	Surface Water	0		
	Ground Water	489		
	Other sources	0		
Season wise crop area in ha.				
	Kharif	Rabi	Zaid Rabi	
Sown	89346	3146	0	
Irrigated	0	489	0	
Principal Crop Area (ha)				
Сгор Туре				

		4 4 2 4 2	
		14240	
He days are also are	Oil Seeds	2	
Hydrogeology			
Monitoring Stations (May 2019)	CCMD	0.4	
		04	
ΝΑΟΠ		07 04	
WATER LEVEL BEHAVIOUR	IM Key Wells	04	
WATER LEVEL BEHAVIOOR		Post-Monsoon (N	Jovember-2019)
Pre-Monsoon (May-2019) Water level		Water level	
13.67 to 98.50 m bgl			99.60 m bgl
Water Level Trend (2010-2019)		Pre-monsoon	Post-monsoon
Average Trend (m/year)		Declining	Declining
		Pre-monsoon	Post-monsoon
		0.07-(0)	0.19- (0)
Hydrograph of Pre & Post Mor Annual & Monsoon Rainfall fro District 400 1200 1200 100 2010 2011 2012 2013 207 YEAR AQUIFER DISPOSITION	om 2010 to 2019 ct Barmer	9 of Block-Ram y = 0.08x + 41.6 y = 0.19x + 39.9	sar, ⁴⁶ ⁵ ⁴⁶
Number of Aquifers (Major)		Three	
I		Alluvium	
I		Tertiary Sandsto	ne
III		reruary buildsto	
Status of GW Exploration	CGWB		GWD
	07		05
BASIC AQUIFER CHARACTERISTICS			
Type of Aquifer	Aquifer-I	Aquifer-II	
Depth of Occurrence (mbgl)	27-140	189-296	
I I I I I I I I I I I I I I I I I I I			

CHEMICAL QUALITY OF GROUND WATER Suitability for Drinking		
TDS(mg/l)	Range	% Samples
Fresh	< 500	0%
Brackish	500-1000	0%
Saline	>1000	100%
Hardness (mg/l)as CaCO3	Range	% Samples
Soft	0 – 75	0%
Moderately Hard	75 – 150	25%
Hard	150 - 300	25%
Very Hard	>300	50%
CHEMICAL QUALITY MAP	VARIATION IN MAJOR & MINOR ELEMENTS	
EC MAP OF BLOCK RAMSAR DISTRICT BARMER	EC < 2000 μS/cm at 25°C	25%

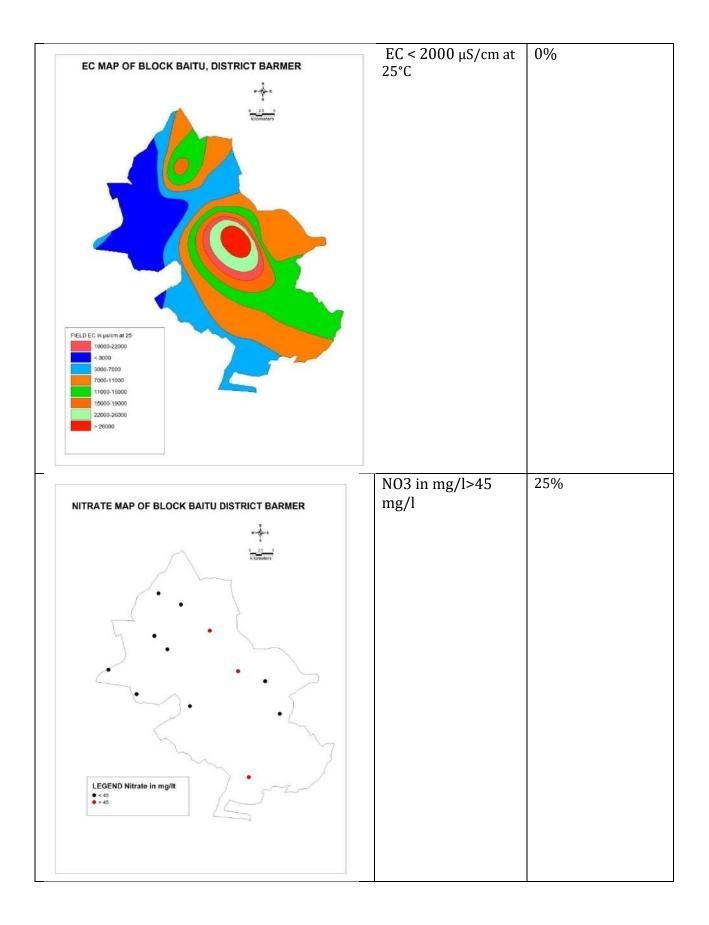



				Sam	ple		
				S		.1.25	
						< 1.25	80
Low Spling < 250 mg/l		Eve	ellent	0.0	0	1.25 - 2.0	0
Low Saline< 250 mg/l		EXC	ellent	0.0	0	2.0	0
Madium Salina 250 750 mg/	1	Goo	d	00.0	0	2.0 -	0
Medium Saline 250 – 750 mg/	l	600	u	00.0	0	2.5	0
Highly Saline 750 – 2250 mg/l		Peri	nissible	20.0	0	3.0	0
Very Highly saline > 2250 mg/l			btful	80.0		> 3.0	20
Na%		Dou	berur	SAR	,0	× 510	20
11470			%	Wat	er		
Water Class	Ran	ge	Samples	Cla		Range	% Samples
Excellent	< 20	5	0	Excel		<10	0
Good	20 - 4	0	0	Good		10 to 18	40
Medium	40 - 6		0	Medi		18 to 26	20
Bad	60 - 8	-	30	Bad		>26	40
Very Bad	> 80	•	70	2010			10
GROUND WATER ISSUES							
2. Rainfall and Drought					Ann •	Normal Dr years	lity 13.92 mcm roughts in 8 % ought in 7%
3. Decadal Water Level Trend						lining	
GROUND WATER RESOURCE				-2017)		
Ground Water Recharge Worth		· ·			368		
Total Annual Ground Water Re	echarge	(mcr	n)		5.9		
Natural Discharge (mcm)					0.5		
Net Annual Ground Water Ava					13.		
Existing Gross Ground Water I					52.	34	
Provision for domestic and inc	lustrial	requi	irement sup	ply to			
2025(mcm)					1.5366		
Stage of Ground Water Develo	pment [®]	%			97.		
Category					Crit	tical	
In-Storage Resource					150	7.07	
Total Area (Sq.Km)							
Specific yield Total Resource					0.0		
Utilizable Volume (mcm)					374		
	m)				35.0 792		
Total In-storage Resource (mc		Eracl				.08	
Total Resource Dynamic + In-s	lorage	riesi	1)		514	.1410	


Sustainability Period with existing draft	71		
GROUND WATER RESOURCE ENHANCEMENT	1		
Artificial Recharge & Water Conservation Possibilities			
Existing Structures constructed by State Govt.		438	
Farm Ponds		01	
Talai		01	
Water Harvesting Structure		01	
Tankas		430	
SUPPLY SIDE MANAGEMENT			
Water Supply(mcm)			
Tanks (Nos) Capacity 50.000 lts	2213		
Volume of water to be conserved (mcm)	0.110	65	
Type of Aquifer			
Alluvium (sq.km)	300.8	0	
Volume of Sub surface Storage Space available for Artificial	244.4	5	
Recharge (mcm)			
Surplus Surface water Availability (mcm)	0.00		
Volume of Water expected to be conserved (mcm)	0.110)65	
DEMAND SIDE MANAGEMENT			
Micro irrigation techniques	-		
Use of Sprinklers for Irrigation			
Irrigation Area (ha) proposed for irrigation through			
Sprinkler	244.5		
Water Saving by use of Sprinklers (mcm)	0.195	6	
Cropping Pattern change	-		
Cropping Area (ha) proposed for change in crop	01		
Water Saving by Change in Cropping Pattern(mcm)	0.001		
EXPECTED BENEFITS		Γ	
Net Ground Water Availability (mcm) 2017		13.92	
Existing Ground Water Draft for All Purposes (mcm)		52.34	
GW draft after Demand Side Interventions (mcm)		5.04	
Present stage of Ground Water Development (%)		99.87	
Projected Stage of Ground Water Development after Supply S	ide		
and demand side interventions (%)		43.43	
Total Ground Water Resources (In-storage & Availability after	r all		
interventions) mcm		374.14	
Sustainability of GW Resources with existing Draft (in years)		76	

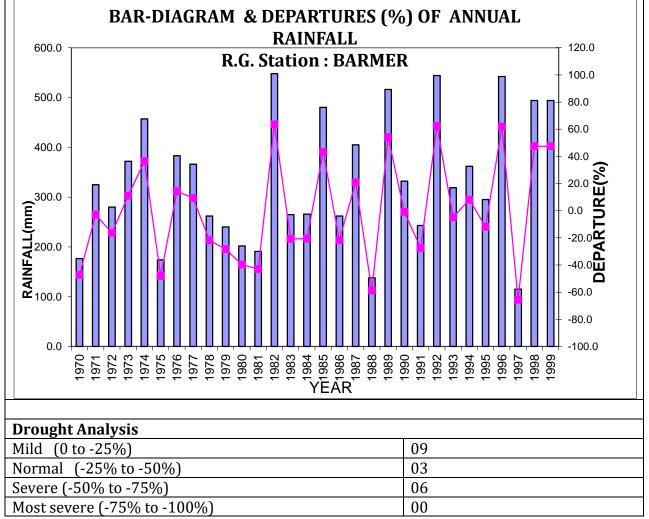
BAYTU

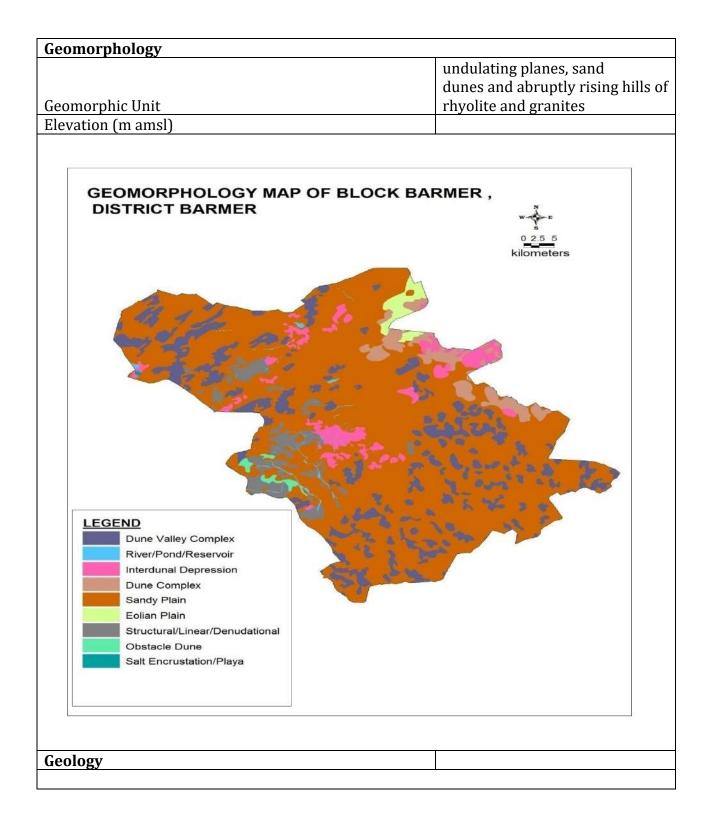
SALIENT INFORMATION	
Block Name	BAYTU
Longitude	71°26'24" to 71°56'44"
Latitude	25°41'20" to 26°13'16"
Geographical Area Sq.km	1407.58
Hilly Area (Sq.km)	Nil
Population (2011)	294237
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	299.5
Mean Annual rainfall (mm)	285.8
Highest annual rainfall with year (mm)	748 (1990)
Lowest annual rainfall (mm) with year	49 (1991)
Standard deviation (mm)	170.1
Coefficient of Variation (%)	59.5

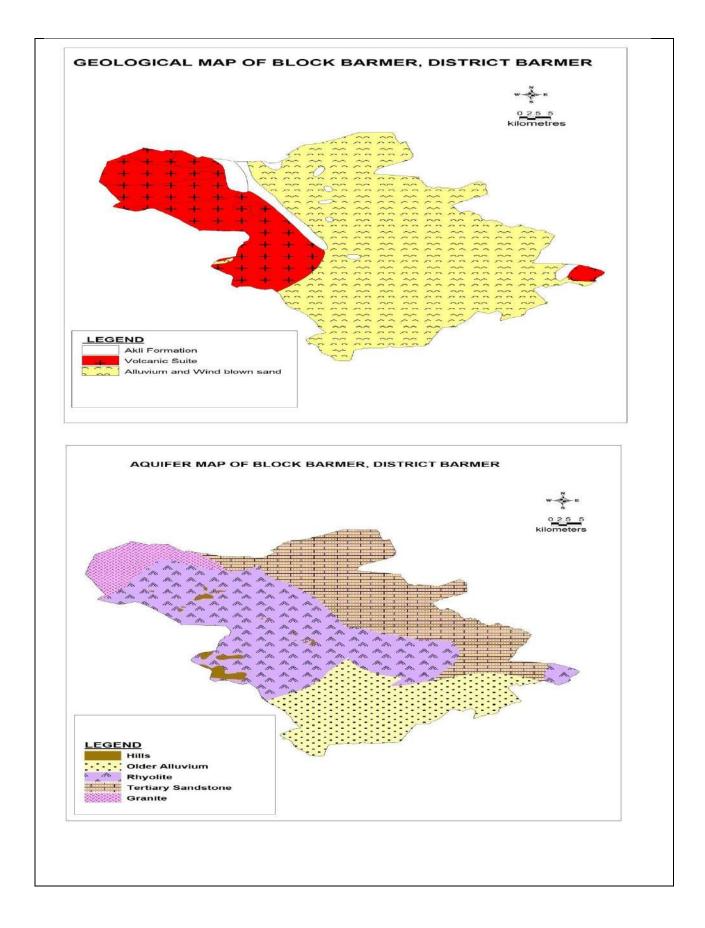


Irrigated				
	5745	15212	0	
Principal Crop Area (ha)				
Сгор Туре				
	Cereals	18517		
	Oil Seeds	807		
Hydrogeology				
Monitoring Stations (May 2019)				
	CGWB	10		
	SGWD	15		
NAQ	UIM Key Wells	04		
WATER LEVEL BEHAVIOUR				
Pre-Monsoon (May-2019) Water level		Post-Monsoon (N Water level	lovember-2019)	
13.67 to 98.50 m bgl		16.20 to	99.60 m bgl	
Water Level Trend (2010-2019)		Pre-monsoon	Post-monsoon	
Average Trend (m/year)		Declining	Declining	
		Pre-monsoon	Post-monsoon	
	Rise	2.03 - (0)	2.07(0)	
	Fall	NA	NA	
450 400 350 400 350 400 350 400 350 400 400 350 400 50 400 400 400 400 400 40				
150 150 150 150 100 50 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100			- 68 (u) - 65 - 62 - 59 - 59 - 56 - 56 - 53 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
YEAR ²⁰¹⁰ 2011 2012 2013 22		016 2017 20	- 68 (u) - 65 - 62 - 59 - 59 - 56 - 56 - 53 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
YEAR ²⁰¹⁰ 2011 2012 2013 22			- 68 (u) - 65 - 62 - 59 - 59 - 56 - 56 - 53 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
200 150 150 100 50 0 VEAR 2010 2011 2012 2013 2			- 68 (u) - 65 - 62 - 59 - 59 - 56 - 56 - 53 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
AQUIFER DISPOSITION		Linear (PRE)	- 68 (L) - 65 - 62 - 59 - 59 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
200 150 150 100 50 0 0 2011 2012 2013 2013 2 AQUIFER DISPOSITION Number of Aquifers (Major)		Three	- 68 (L) - 65 - 62 - 59 - 59 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
200 150 150 150 100 2011 2012 2013 2013 YEAR 2010 2011 2012 2013 2013 2013 AQUIFER DISPOSITION MONSOON MONSOON 4000000000000000000000000000000000000		Three Alluvium	- 68 (L) - 65 - 62 - 59 - 56 - 53 - 56 - 53 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
200 150 100 100 50 0 YEAR 2010 2011 2012 2013 2013 ANNUAL MONSOON ANNUAL MONSOON AQUIFER DISPOSITION II II II II II		Three Alluvium Lathi Sandstone Tertiary Sandsto	- 68 (L) - 65 - 62 - 59 - 56 - 53 - 56 - 53 - 50 - 50 - 50 - 18 - 2019 - Linear (POST)	
200 150 100 1	PRE POST -	Three Alluvium Lathi Sandstone Tertiary Sandsto	- 68 (E) - 65 - 62 - 59 - 59 - 56 - 53 - 50 - 50	
AQUIFER DISPOSITION Number of Aquifers (Major) I II III	CGWB	Three Alluvium Lathi Sandstone Tertiary Sandsto	- 68 (E) - 65 - 62 - 59 - 59 - 56 - 53 - 50 - 50	
AQUIFER DISPOSITION Number of Aquifers (Major) I II III Status of GW Exploration	CGWB	Three Alluvium Lathi Sandstone Tertiary Sandsto	68 (m) 65 13 62 23 59 13 56 23 59 13 50 4 53 2019 - Linear (POST)	

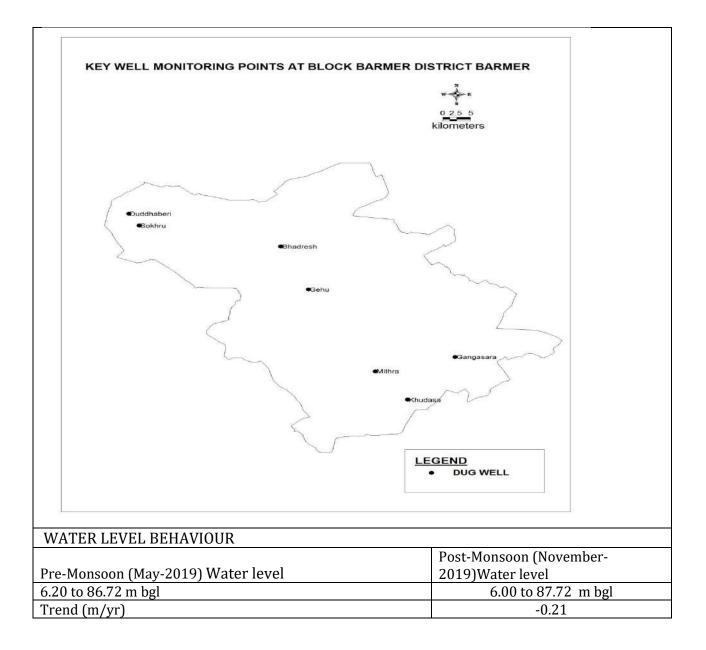
Depth of Occurrence (mbgl)	60-139	148-155		
Yield Potential(lpm)	146	108-275		
Drawdown(m)	04	02-06		
EC μS/cm at 25°C	1570	19000-26300		
CHEMICAL QUALITY OF GROUND WATER				
Suitability for Drinking				
TDS(mg/l)	Range	%	Samples	
Fresh	< 500	0%)	
Brackish	500-1000	0%)	
Saline	>1000	100)%	
Hardness (mg/l)as CaCO ₃	Range	%	Samples	
Soft	0 – 75	0%)	
Moderately Hard	75 – 150	0%	0%	
Hard	150 - 300) 0%	0%	
Very Hard	>300	100	100%	
CHEMICAL QUALITY MAP	VARIATION IN MAJOR & MINOR ELEMENTS			

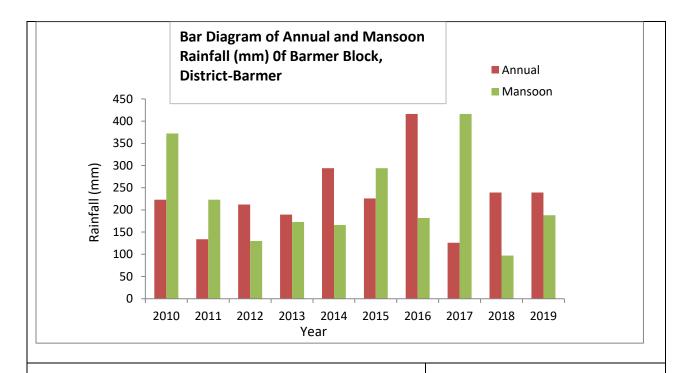

A REPORT OF A R				F in mg/l – 1 to 1.5 mg/l		66%	
FLUORIDE In mg/lt	0.92	7	>1.5	mg/l	34%		
EC					RSC	(meq/l)	
				%	noe		
				Sample	_		
Type of Water		Clas	sification	S	Range	% Samples	
					< 1.25 1.25 -	84	
Low Saline< 250 mg/l		Exce	ellent	0.00	2.0	8	
		-			2.0 -	-	
Medium Saline 250 – 750 mg/	l	Good		16.00	2.5	0	
					2.5 -		
Highly Saline 750 – 2250 mg/l			nissible	16.00	3.0	0	
Very Highly saline> 2250 mg/l Na%		Dou	btful	68.00 SAR	> 3.0	8	
INa 70			%	Water			
Water Class	Ran	ge	Samples	Class	Range	% Samples	
Excellent	< 20	5	0	Excellent	<10	42	
Good	20 - 40	0	16	Good	10 to 18	25	
Medium	40 - 60	0	8	Medium	18 to 26	25	
Bad	60 - 80	0	34	Bad	>26	8	
Very Bad	> 80		42				
GROUND WATER ISSUES				I .			
1. Over-Exploitation – Resourc	e Availa	ability	/	At p	resent the (Ground water	


	Draft 33.12 mcm is more than Annual Availability 21.17 mcm
2. Rainfall and Drought	 Normal Droughts in 8 % years Severe Drought in 7% years
3. Decadal Water Level Trend (2009-2019)	Declining
GROUND WATER RESOURCE & EXTRACTION(GWRE-2017)	
Ground Water Recharge Worthy Area (sq. km.)	350.00
Total Annual Ground Water Recharge (mcm)	8.028
Natural Discharge (mcm)	0.802
Net Annual Ground Water Availability (mcm)	21.17
Existing Gross Ground Water Draft for All uses(mcm)	33.12
Provision for domestic and industrial requirement supply to	
2025(mcm)	0.2525
Stage of Ground Water Development %	108.87
Category	Over Explo.
In-Storage Resource	
Total Area (Sq.Km)	1407.58
Specific yield	0.06
Total Resource	28.402
Utilizable Volume (mcm)	26
Total In-storage Resource (mcm)	390.56
Total Resource Dynamic + In-storage(Fresh)	28.402
Sustainability Period with existing draft	09
GROUND WATER RESOURCE ENHANCEMENT	
Artificial Recharge & Water Conservation Possibilities	
Existing Structures constructed by State Govt.	527
Water Harvesting Structures	14
Piezometer	01
Tanka	512
SUPPLY SIDE MANAGEMENT	
Water Supply(mcm)	
Tanks (Nos) Capacity 50.000 lts	1999
Volume of water to be conserved (mcm)	0.9995
Type of Aquifer	
Soft Rock Area (sq.km)	Tertiary Sand Stone : 1182.58
Volume of Sub surface Storage Space available for Artificial Recharge (mcm)	288.99
Surplus Surface water Availability (mcm)	0.03
Volume of Water expected to be conserved (mcm)	0.1136

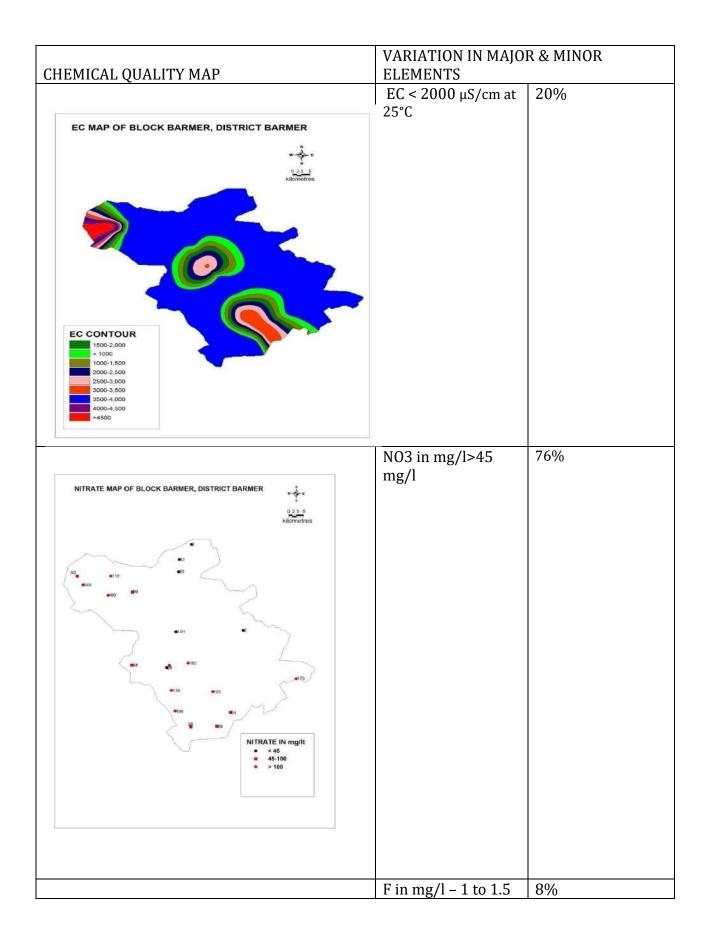

DEMAND SIDE MANAGEMENT				
Micro irrigation techniques				
Use of Sprinklers for Irrigation				
Irrigation Area (ha) proposed for irrigation through				
Sprinkler	10514	4		
Water Saving by use of Sprinklers (mcm)	8.411	2		
Cropping Pattern change				
Cropping Area (ha) proposed for change in crop				
Water Saving by Change in Cropping Pattern(mcm) 0.026				
EXPECTED BENEFITS				
Net Ground Water Availability (mcm) 2017	21.17			
Existing Ground Water Draft for All Purposes (mcm)		33.12		
GW draft after Demand Side Interventions (mcm)		-5.13		
Present stage of Ground Water Development (%)		0		
Projected Stage of Ground Water Development after Supply Si				
and demand side interventions (%)	-168			
Total Ground Water Resources (In-storage & Availability after				
interventions) mcm	28.40			
Sustainability of GW Resources with existing Draft (in years)		11		

BARMER BLOCK


SALIENT INFORMATION	
Block Name	BARMER
Longitude	70° 59' 21" to 71° 48' 37"
Latitude	25° 24' 47" to 26° 4' 39"
Geographical Area Sq.km	2412.09
Hilly Area (Sq.km)	106.95
Population (2011)	370721
Climate	
Average Temperature range (°C)	03 to 48
Rainfall Analysis	
Normal Rainfall (mm)	272.7
Mean Annual rainfall (mm)	275.9
Highest annual rainfall with year (mm)	739 (1981)
Lowest annual rainfall (mm) with year	73 (2002)
Standard deviation (mm)	154.00
Coefficient of Variation (%)	55.8



Drainage & Hydrology			
			nage except few
Drainage/Basin/Sub Basin		ephemerals st	reamlets
Hydrology			
Ponds		0	
LAND USE, AGRICULTURE, IRRIGATION	N & CROPPING I	PATTERN	
Geographical Area in ha.		241209	
Forest Area in ha.		4461	
Net Sown Area in ha.		161840	
Area sown more than once in ha.		8886	
Rainfed Crop		Bajra in 61202	hect area
Area under Irrigation (Net) in ha	Surface Water		
	0		
Ground Water		12803	
Other sources		352	
Season wise crop area in ha.			
	Kharif	Rabi	Zaid Rabi
sown	144699	17124	0
Irrigated	1558	11580	17
Principal Crop Area (ha)			
Сгор Туре		1	
	Cereals Oil Seeds	103832	
	13230		
	27620		
Hydrogeology			
Hydrogeology Monitoring Stations (May 2019)			
	CGWB	14	
	CGWB SGWD	14 25	

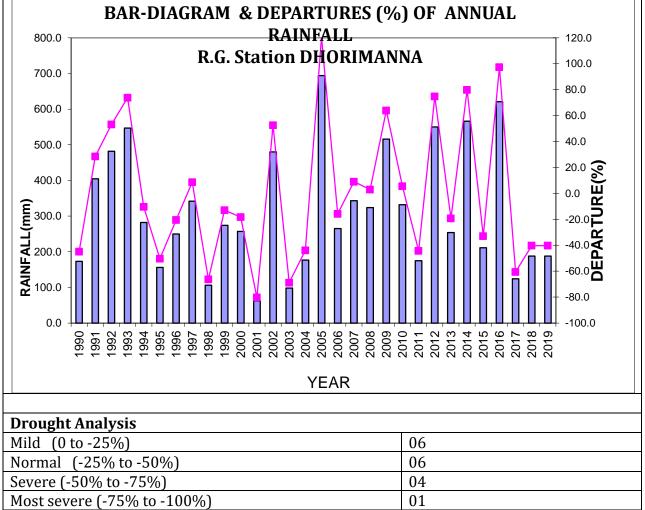

AQUIFER DISPOSITION

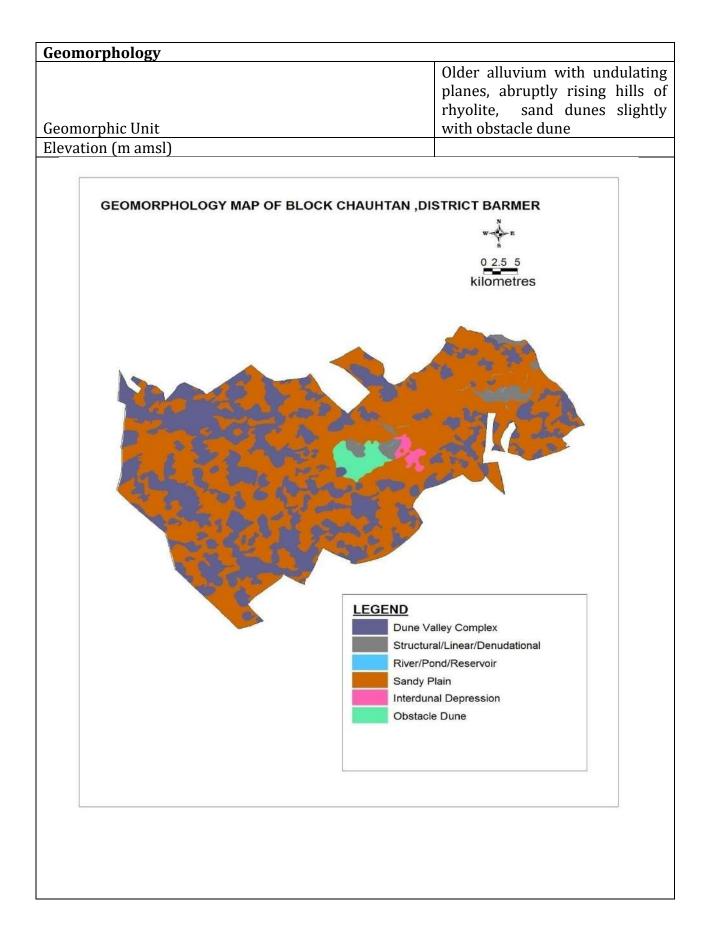
~	
Status of GW Exploration	Exploratory Wells-0
	Observation Wells-0
	Piezometers - 00
	Slim hole -00
Aquifer Characteristics	The Alluvium, Tertiary Sandstone and Granite forms the most
	important aquifer in the block, Specific Yeild value in the range of
	0.015 to 0.06.
GW Quality	EC varies from 380 µS/cm to 17990 µS/cm
Aquifer Potential	Static Water level varies from 6.20 to 86.72 m, Area is yet unexplored

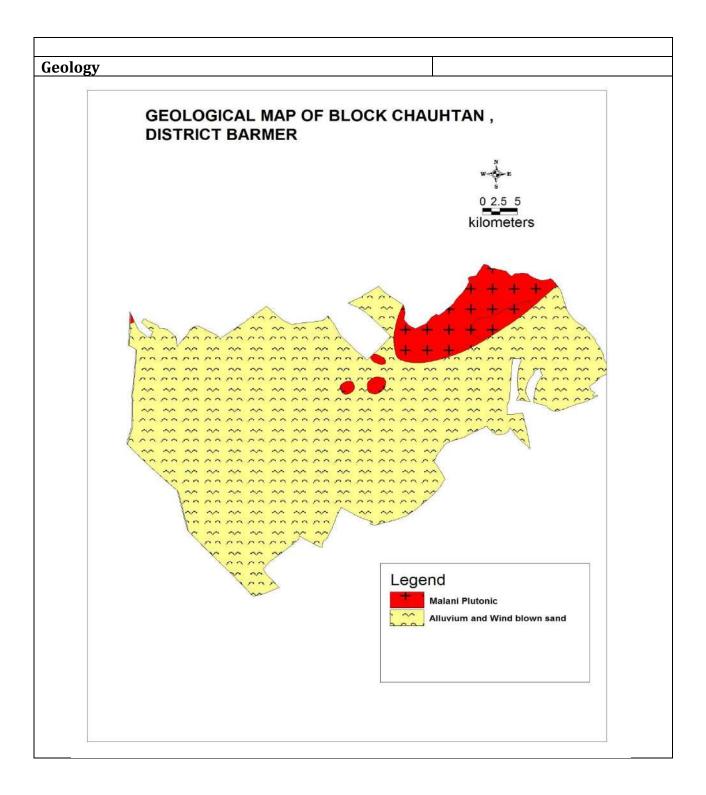
CHEMICAL QUALITY OF GROUND WATER

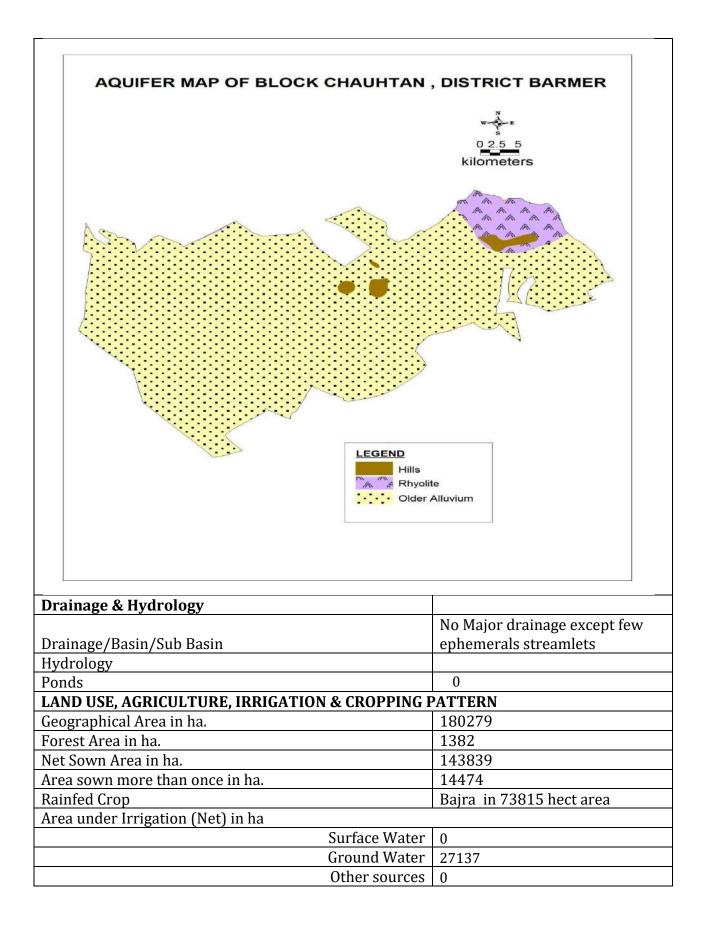
Suitability for Drinking

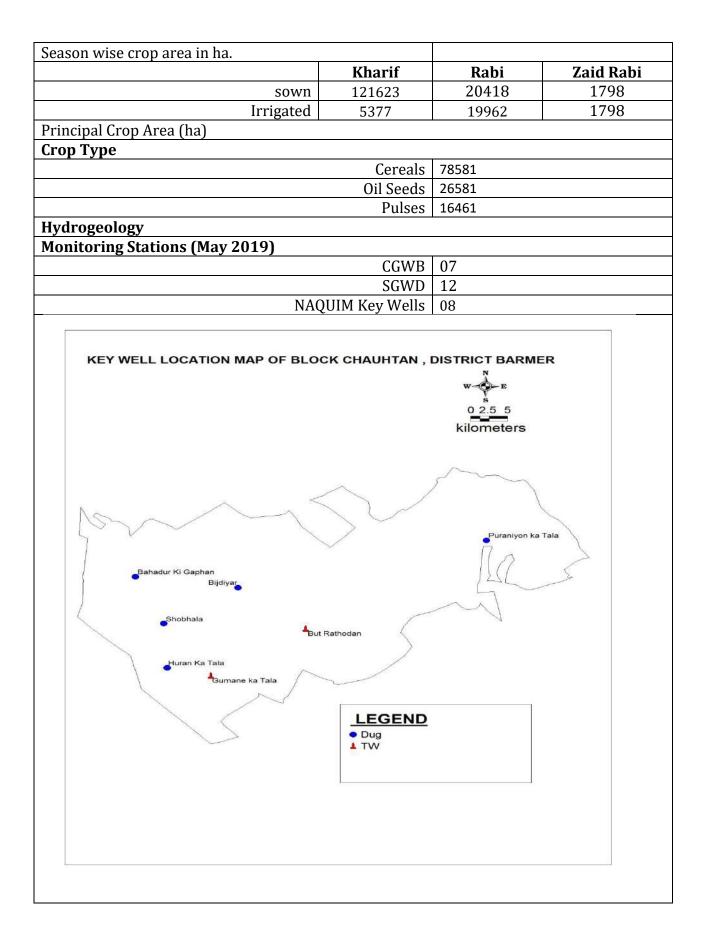
TDS(mg/l)	Range	% Samples
Fresh	0-3000	48%
Brackish	>-3000	52%
Total Hardness (mg/l)	Range	% Samples
Soft	0 – 75	13.63 %
Moderately Hard	75 – 150	13.63 %
Hard	150 - 300	4.54 %
Very Hard	>300	68.18 %

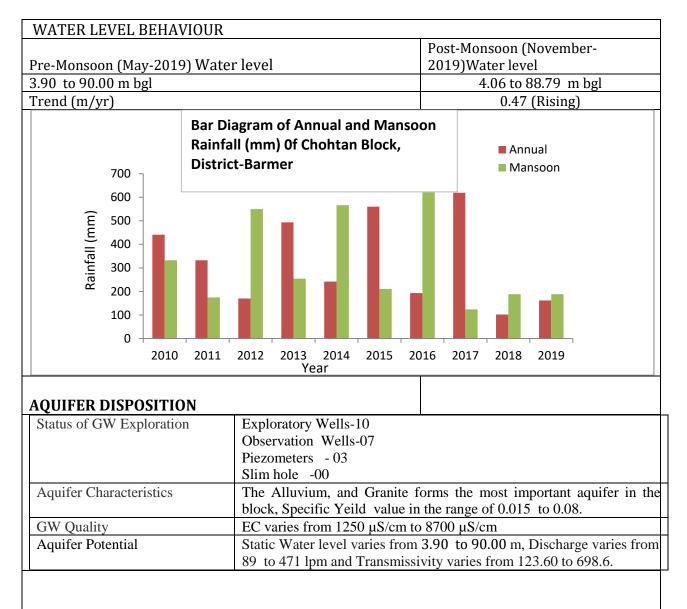



FLORIDE MAP OF BLOCK BARMER	mg/l	
FLORIDE MAP OF BLOCK BARMER DISTRICT BARMER	<pre>signature kilometres</pre> >1.5 n	mg/l 40%
Suitability for Irrigation EC Type of Water	Classification	% Samples
Low Saline< 250 mg/l	Excellent	0.00
Medium Saline 250 – 750 mg/l	Good	8.00
Highly Saline 750 – 2250 mg/l	Permissible	12.00
Very Highly saline> 2250 mg/l	Doubtful	80.00
Na%		
Water Class	Range	% Samples
Excellent	< 20	0.00
Good	20 - 40	8.00
Medium	40 - 60	0.00
Bad	60 - 80	00.0
Very Bad	> 80	92.00
GROUND WATER ISSUES		
1. Salinity		High EC and Na%
2. Rainfall and Drought		Normal Droughts in 10% years
		• Severe Drought in 20% years


Fotal Annual Ground Water Recharge (mcm) 22	513.37	
Fotal Annual Ground Water Recharge (mcm)22		
	2.86	
	.28	
	0.57	
Existing Gross Ground Water Draft for All uses(mcm) 13	3.19	
	.67	
	4.13	
	afe	
In-Storage Resource		
	51.337	
S	ST01:0.06	
A	LO3:0.06	
G	RO2a:0.015	
Specific yield G	RO2b:0.015	
GROUND WATER RESOURCE ENHANCEMENT		
Artificial Recharge & Water Conservation Possibilities		
Existing Structures constructed by State Govt.	475	
Water Harvesting Structure	06	
Farm Pond / Khet Talai 05		
Talai (Talab) 01		
Fankas	463	
SUPPLY SIDE MANAGEMENT		
Water Supply(mcm)		
Fanks (Nos) Capacity 50.000 lts43	319	
Volume of water to be conserved (mcm) 0.	.2160	
Volume of Sub surface Storage Space available for Artificial 69	97.34	
Recharge (mcm)		
Surplus Surface water Availability (mcm) 0.	.00	
DEMAND SIDE MANAGEMENT:		
DEMAND SIDE MANAGEMENT		
rrigitation by permitted TW almost already using Micro irrigati	on techniques like	
rrigation through Sprinkler. No more scope is feasible		
Cropping Pattern change: The sown crops are already less wate	er consuming crops like	
Bajra, Mung etc. The change in cropping pattern is not feasible.		
EXPECTED BENEFITS		
Net Ground Water Availability (mcm) 2017	20.57	
Existing Ground Water Draft for All Purposes (mcm)	13.19	
Present stage of Ground Water Development (%)	64.13	
Projected Stage of Ground Water Development after Supply Side		
and demand side interventions (%)	63.46	

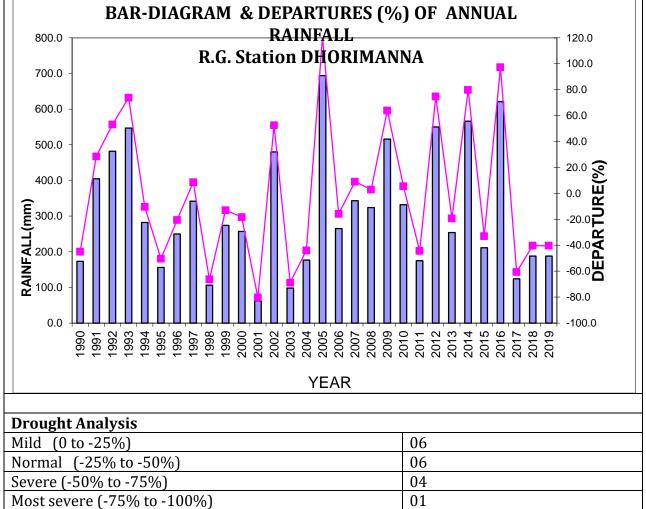

CHOHTAN BLOCK

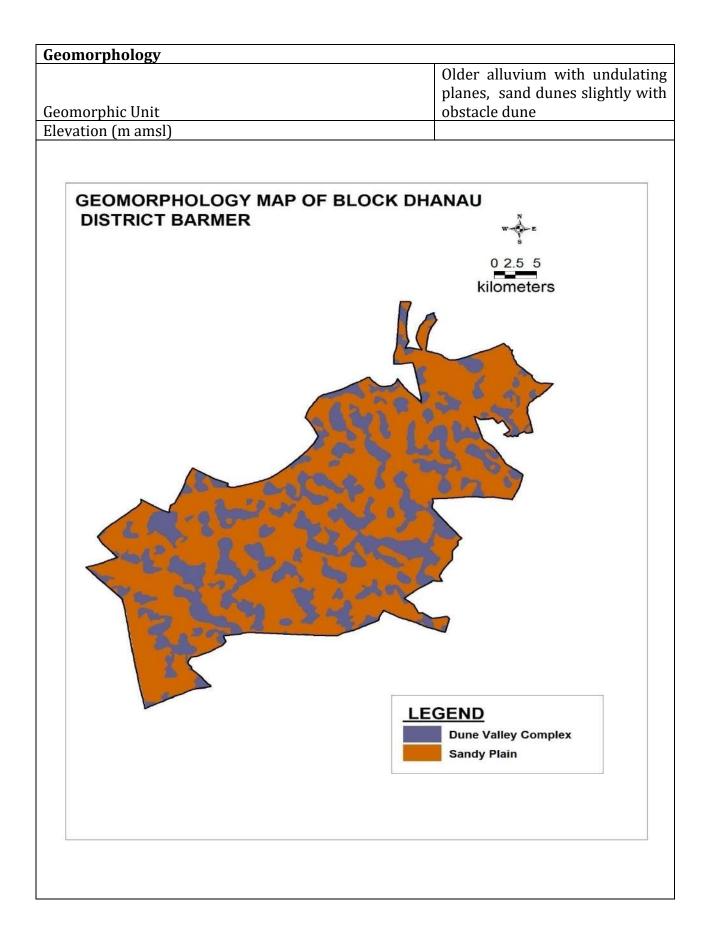

SALIENT INFORMATION	
Block Name	CHOHTAN
Longitude	70° 40' to 71° 21' 26"
Latitude	25° 11' 18" to 25° 38' 34"
Geographical Area Sq.km	1802.79
Hilly Area (Sq.km)	10.51
Population (2011)	203797
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	266.1
Mean Annual rainfall (mm)	314.7
Highest annual rainfall with year (mm)	694 (1983)
Lowest annual rainfall (mm) with year	62 (1989)
Standard deviation (mm)	171.20
Coefficient of Variation (%)	54.4

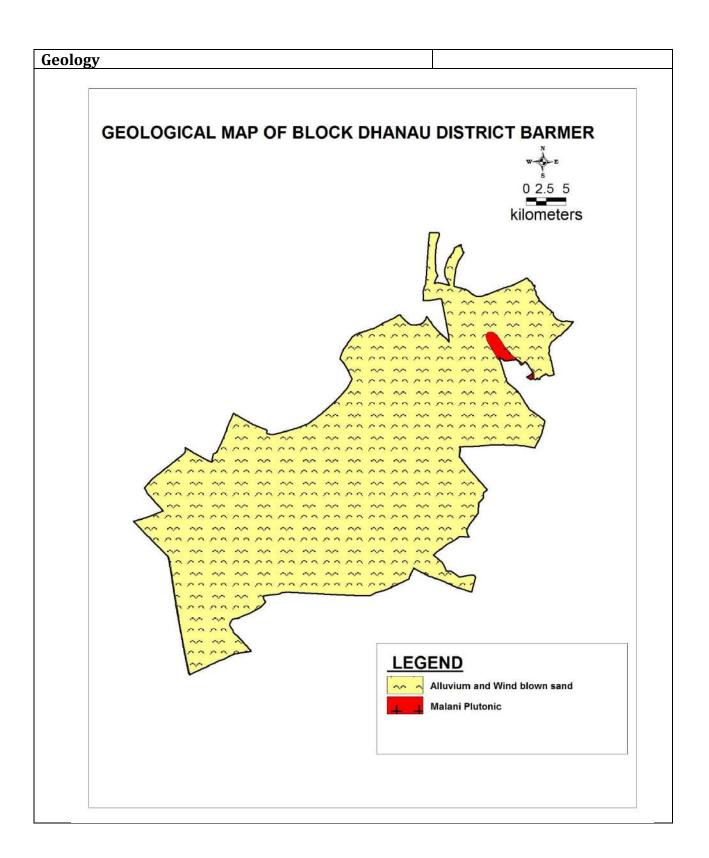


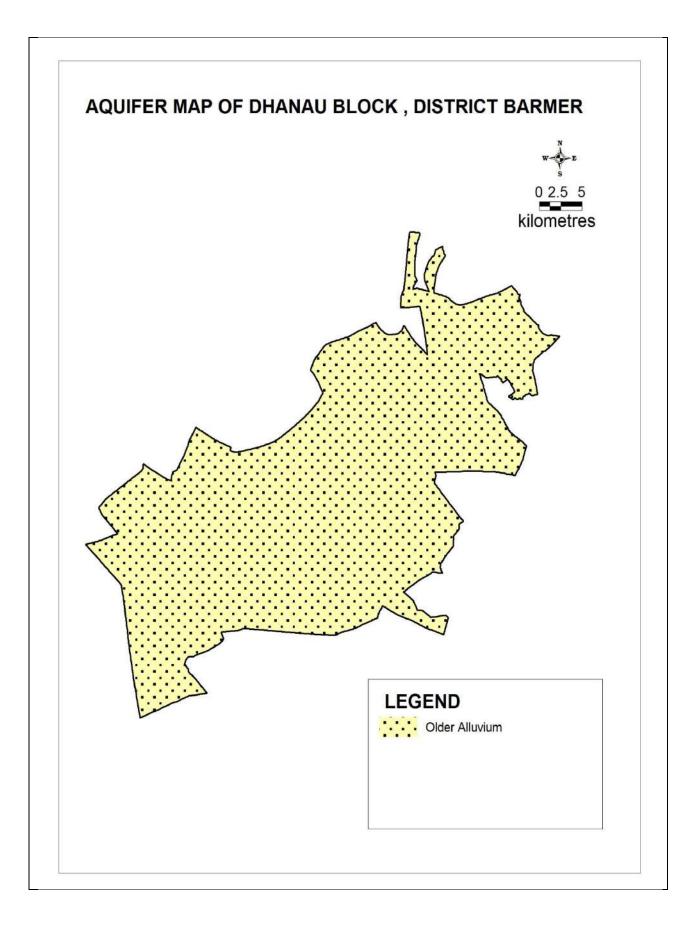
CHEMICAL QUALITY OF GROUND WATER Suitability for Drinking

TDS(mg/l)	Range	% Samples
Fresh	0-3000	53.85%
Brackish	>-3000	46.15%
Total Hardness (mg/l)	Range	% Samples
Soft	0 – 75	0 %
Moderately Hard	75 – 150	0%
Hard	150 - 300	30.77 %
Very Hard	>300	69.23 %

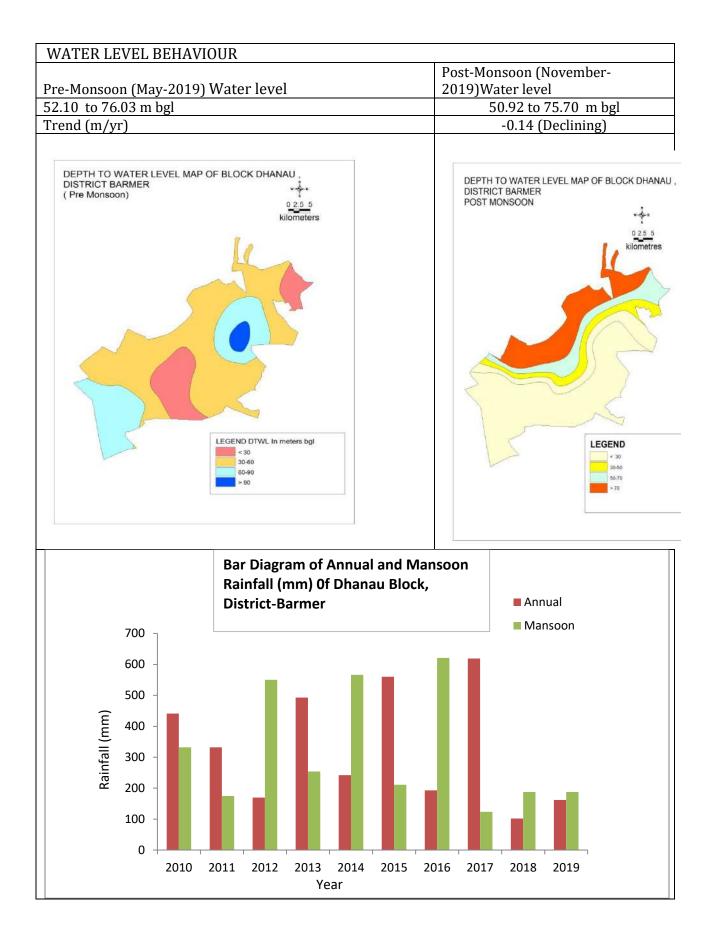

CHEMICAL QUALITY MAP	VARIATION IN MAJO ELEMENTS	R & MINOR
	EC < 2000 μS/cm at 25°C	7.69%
NITRATE MAP OF CHAUHTAN BLOCK, DISTRICT BARMER	NO3 in mg/l>45 mg/l	84.62%

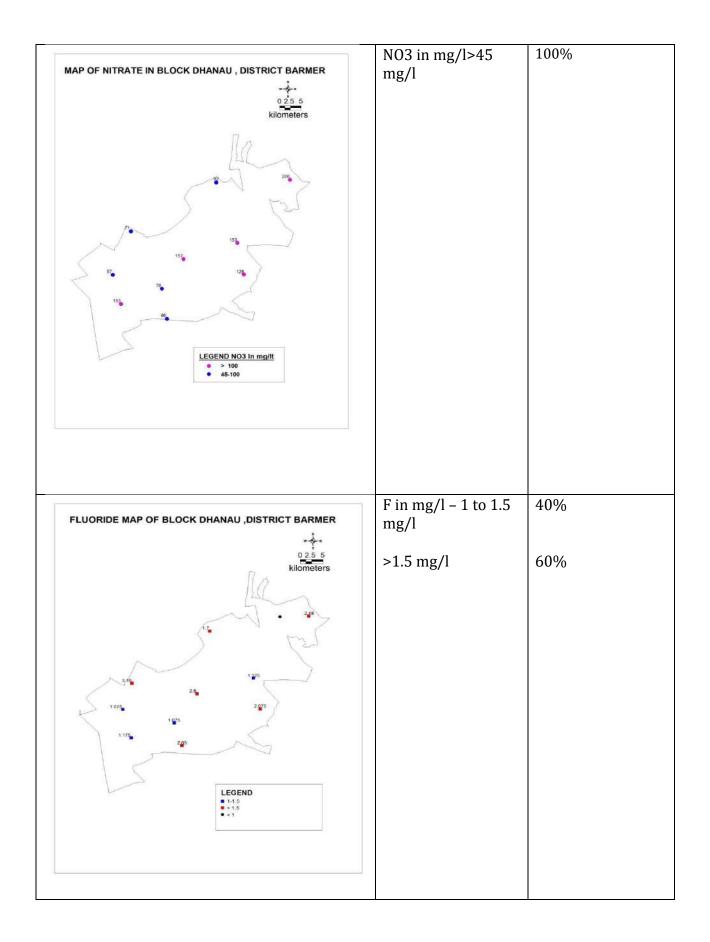

FLOURIDE MAP OF BLOCK CHAUHTAN, DISTRICT BAR PRE MONSOON	Image mg 0255 >1. 0255 >1.	n mg/l – 1 to 1.5 ;/l .5 mg/l	15.38% 76.92%	
Suitability for Irrigation				
EC				
Type of Water	Classification	n % S	amples	
Low Saline< 250 mg/l	Excellent		0.00	
Medium Saline 250 – 750 mg/l	Good		8.00	
Highly Saline 750 – 2250 mg/l	Permissible		7.69	
Very Highly saline> 2250 mg/l			92.31	
Na%				
Water Class	Range	%	Samples	
Excellent	< 20		0.00	
Good	20 - 40		0.00	
Medium	40 - 60		0.00	
Bad	60 - 80		00.0	
Very Bad	> 80		100.00	
GROUND WATER ISSUES		··· ·		
1. Salinity			and Na%	
2. Rainfall and Drought			rmal Droughts in	
			% years	
			rere Drought in	
		13.	33% years	
3. Decadal Water Level Trend (2009-2019)				


GROUND WATER RESOURCE & EXTRACTION(GWRE-2017)		
Ground Water Recharge Worthy Area (sq. km.)	1150.2	25	
Total Annual Ground Water Recharge (mcm)	22.42		
Natural Discharge (mcm)	2.24		
Net Annual Ground Water Availability (mcm)	20.17		
Existing Gross Ground Water Draft for All uses(mcm)	14.06		
Provision for domestic requirement supply to 2025(mcm)	2.62		
Stage of Ground Water Development %	69.69		
Category	Safe		
In-Storage Resource			
Total Area (Sq.Km)	115.0	25	
	ALO3	a :0.08	
		b :0.08	
Specific yield	GRO2	:0.015	
GROUND WATER RESOURCE ENHANCEMENT			
Artificial Recharge & Water Conservation Possibilities	1		
Existing Structures constructed by State Govt.		652	
Water Harvesting Structure	08		
Farm Pond / Khet Talai	04		
Sub Surface barrier	02		
Tankas	638		
SUPPLY SIDE MANAGEMENT			
Water Supply(mcm)			
Tanks (Nos) Capacity 50.000 lts3156			
Volume of water to be conserved (mcm)	0.1578		
Volume of Sub surface Storage Space available for Artificial595.15		5	
Recharge (mcm)			
Surplus Surface water Availability (mcm)0.00			
DEMAND SIDE MANAGEMENT:			
DEMAND SIDE MANAGEMENT			
Irrigitation by permitted TW almost already using by Micro in	rrigatio	n techniques like	
irrigation through Sprinkler. No more scope is feasible			
Cropping Pattern change: The sown crops are already less v		onsuming crops like	
Bajra, Mung etc. The change in cropping pattern is not feasible	е.		
EXPECTED BENEFITS			
Net Ground Water Availability (mcm) 2017		20.17	
Existing Ground Water Draft for All Purposes (mcm)		14.06	
Present stage of Ground Water Development (%)		69.69	
Projected Stage of Ground Water Development after Supply S	ide		
and demand side interventions (%) 69.22			


DHANAU BLOCK

SALIENT INFORMATION	
Block Name	DHANAU
Longitude	70° 50'5" to 71° 24' 7"
Latitude	25° 1'24" to 25° 30' 28"
Geographical Area Sq.km	1244.74
Hilly Area (Sq.km)	0
Population (2011)	No census available
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	275.2
Mean Annual rainfall (mm)	314.7
Highest annual rainfall with year (mm)	694 (1983)
Lowest annual rainfall (mm) with year	62 (1989)
Standard deviation (mm)	171.20
Coefficient of Variation (%)	54.4

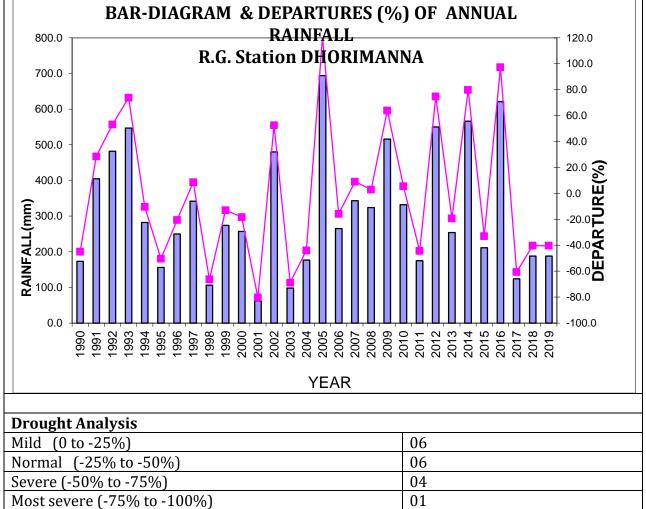


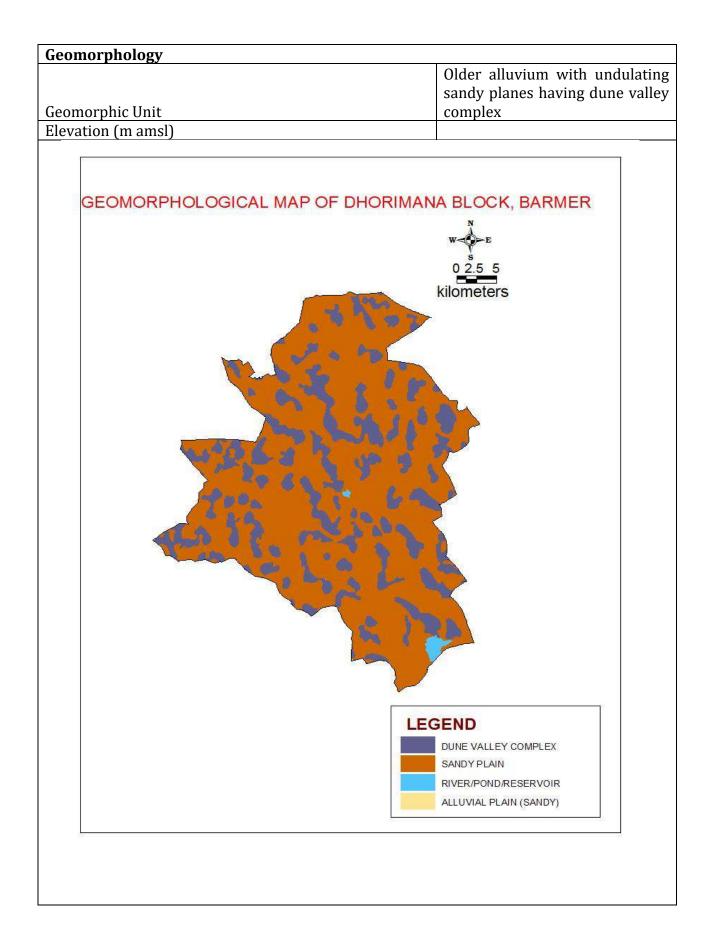

Drainage & Hydrology				
		No Major drain	nage except few	
Drainage/Basin/Sub Basin		ephemerals streamlets		
Hydrology		•		
Ponds		0		
LAND USE, AGRICULTURE, IRRIGATIO	N & CROPPING F	PATTERN		
Geographical Area in ha.		124474		
Forest Area in ha.		2		
Net Sown Area in ha.			101054	
Area sown more than once in ha.		11857		
Rainfed Crop		Bajra in 50162	2 hect area	
Area under Irrigation (Net) in ha		-,		
	Surface Water	0		
	Ground Water	21002		
	Other sources	26		
Season wise crop area in ha.				
A	Kharif	Rabi	Zaid Rabi	
sown	85320	15663	71	
Irrigated	5745	15212	71	
Principal Crop Area (ha)				
Сгор Туре				
	Cereals	26955		
	Oil Seeds	12893		
	Pulses	18517		
Hydrogeology				
Monitoring Stations (May 2019)				
	CGWB	01		
	SGWD	05		
NA	QUIM Key Wells	06		
KEYWELL LOCATION MAP OF BLOCK D	HANAU,			
	0 2.5 5			
17.2	kilometres			
LICE				
	the C			
	1 2 s			
Avivvataia	/			
esonar Ka Tata Alenung	ph.			
Slurhaan Ka Tala				
Cinhar				
LEGEN				
	g cum Bore			

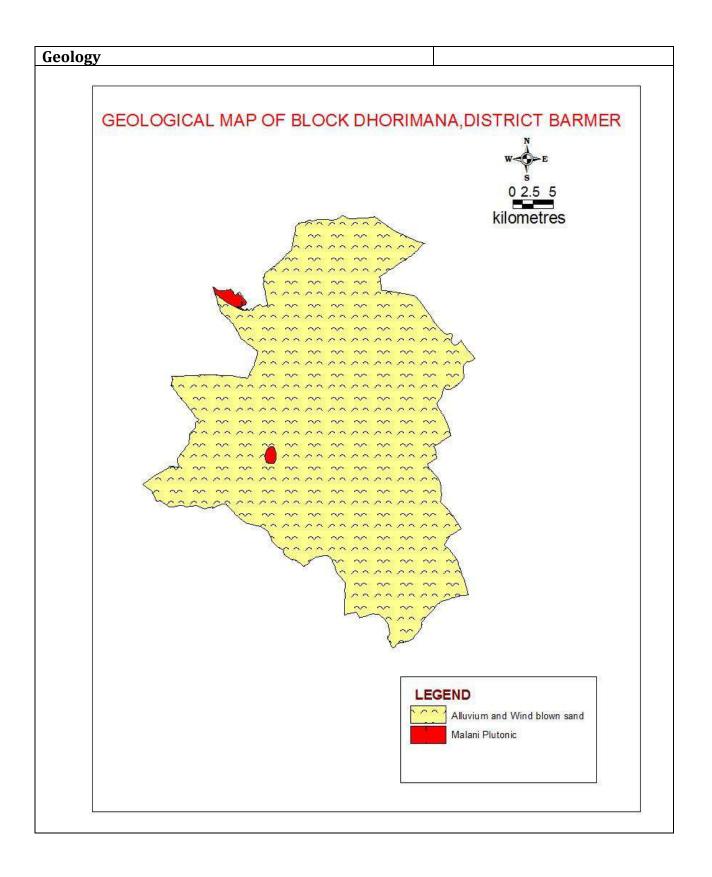
AQUIFER DISPOSITION	
Status of GW Exploration	Exploratory Wells-0
	Observation Wells-0
	Piezometers - 01
	Slim hole -00
Aquifer Characteristics	The Alluvium form the most important aquifer in the block, Specific
	Yeild value in the range of 0.1 to 0.08.
GW Quality	EC varies from 3000 µS/cm to 8000 µS/cm
Aquifer Potential	Static Water level varies from 52.10 to 76.03 m.
	The area is still unexplored.

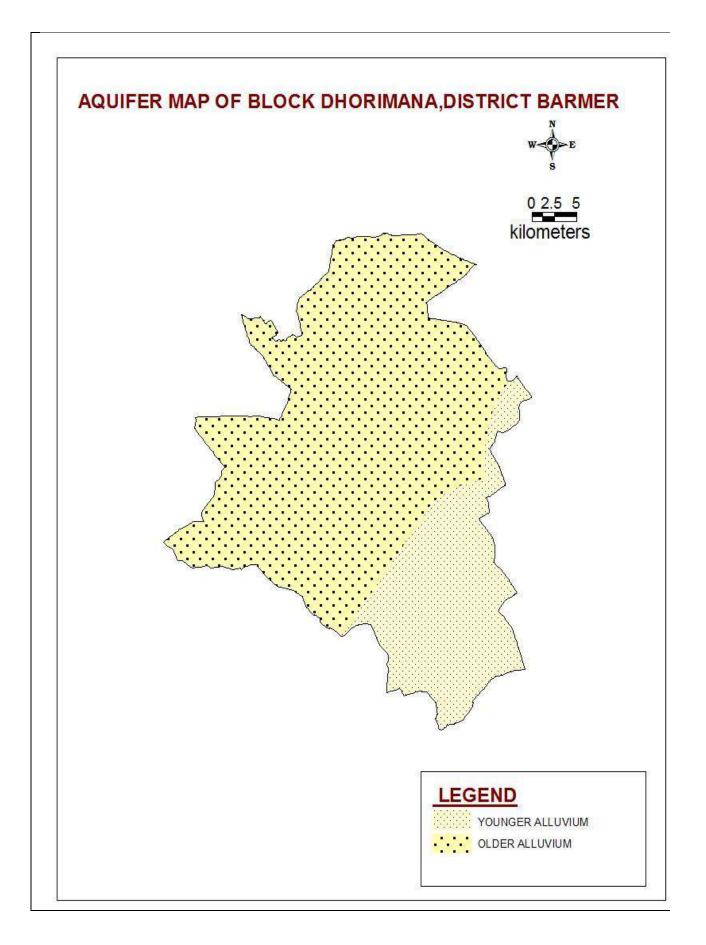
CHEMICAL QUALITY OF GROUND WATER Suitability for Drinking

Suitability for Drinking		
TDS(mg/l)	Range	% Samples
Fresh	0-3000	90.00%
Brackish	>-3000	10.00%
Total Hardness (mg/l)	Range	% Samples
Soft	0 – 75	0 %
Moderately Hard	75 – 150	20.00%
Hard	150 – 300	60.00 %
Very Hard	>300	20.00 %
CHEMICAL QUALITY MAP	VARIATION IN MAJO ELEMENTS EC < 2000 μS/cm at 25°C	R & MINOR
3000-4000 400-4000 6600-4000 7000-8000 7000-8000 ⊁ 6000		

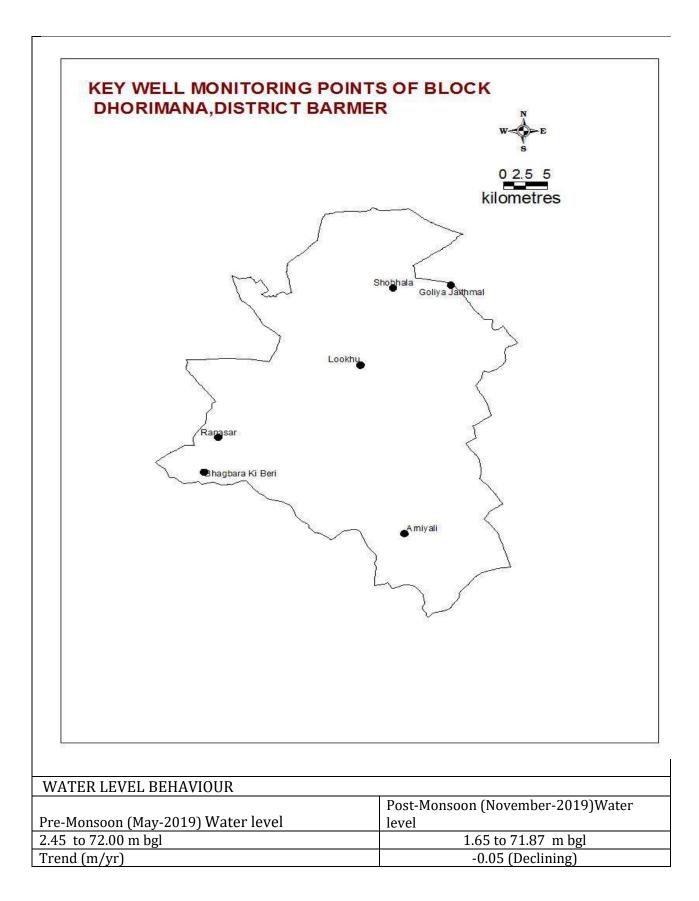


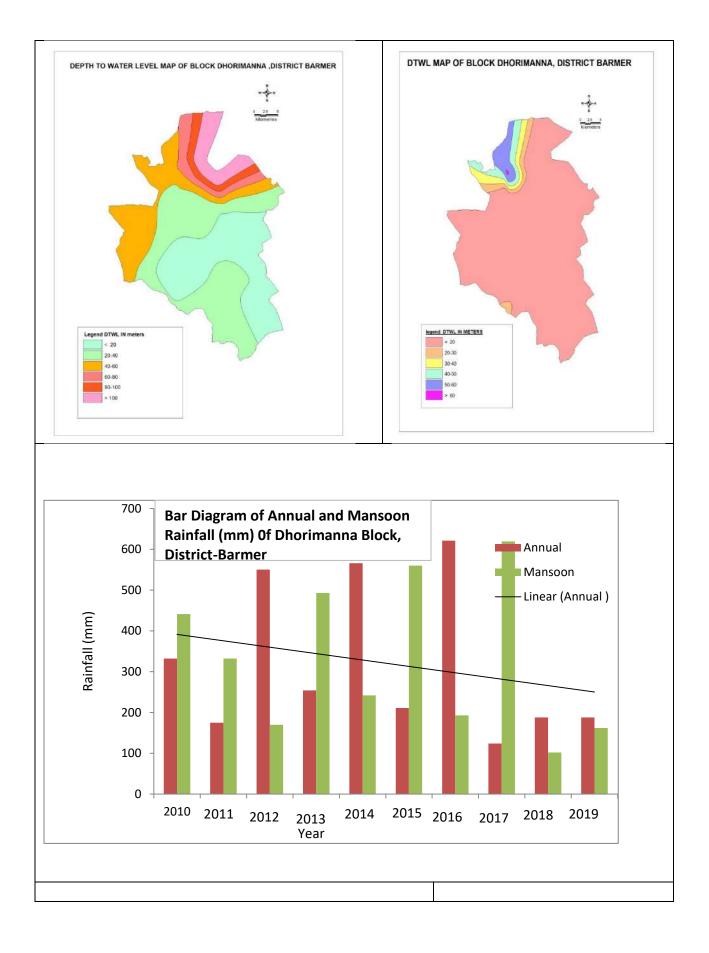

Suitability for Irrigation			
EC			
Type of Water	Classification	% Samples	
· · ·			
Low Saline< 250 mg/l	Excellent	0.00	
Medium Saline 250 – 750 mg/l	Good	0.00	
Highly Saline 750 – 2250 mg/l	Permissible	0.00	
Very Highly saline> 2250 mg/l			
Na%	_		
Water Class	Range	% Samples	
Excellent	< 20	0.00	
Good	20 - 40	0.00	
Medium	40 - 60	0.00	
Bad	60 - 80	00.0	
Very Bad	> 80	100.00	
GROUND WATER ISSUES			
1. Salinity		Very High EC and Na%	
2. Rainfall and Drought		Normal Droughts in	
		20% years	
		Severe Drought in	
		13.33% years	
3. Decadal Water Level Trend (200		Declining	
GROUND WATER RESOURCE & E			
Ground Water Recharge Worthy Area (sq. km.)		1244.74	
Total Annual Ground Water Recha	rge (mcm)	32.03	
Natural Discharge (mcm)		3.20	
Net Annual Ground Water Availability (mcm)		28.82	
Existing Gross Ground Water Draft for All uses(mcm)		27.87	
Provision for domestic requireme		3.30	
Stage of Ground Water Development %		96.69	
Category		Critical	
In-Storage Resource			
Total Area (Sq.Km)		124.474	
		ALO1 :0.1	
Specific yield		ALO3 :0.08	
GROUND WATER RESOURCE EN	HANCEMENT		
Artificial Recharge & Water Conser			
Existing Structures constructed by	State Govt.	951	
Water Harvesting Structure		15	
Recharging Shaft for Aquifers		03 05	
	Farm Pond / Khet Talai		
Earthen Checkdam		12	
Talai (Talab)		01	

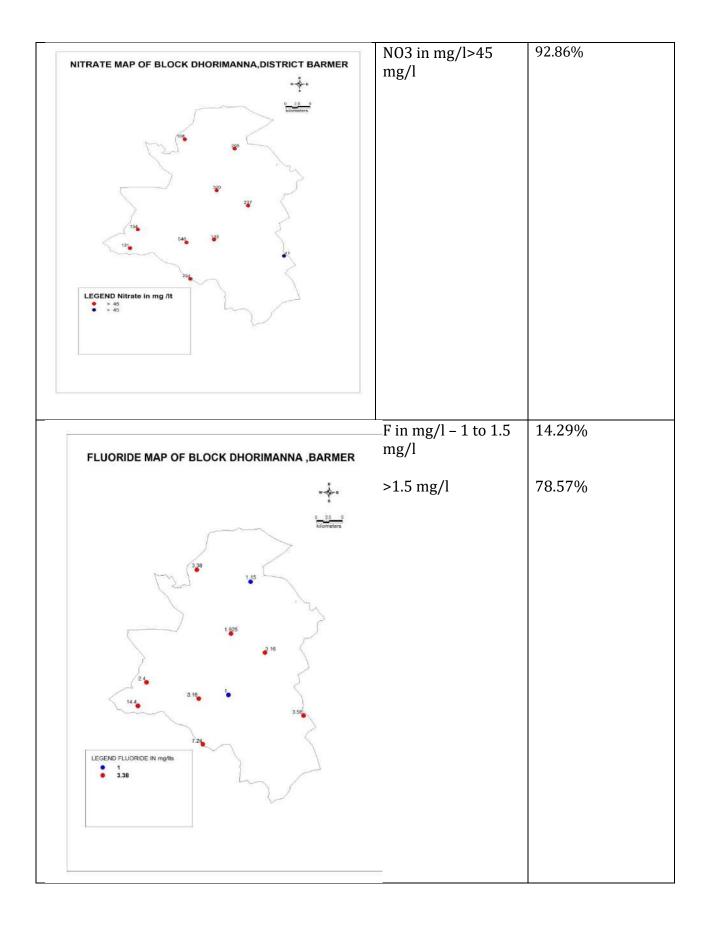

Tankas	915	
SUPPLY SIDE MANAGEMENT		
Water Supply(mcm)		
Tanks (Nos) Capacity 50.000 lts	2421	
Volume of water to be conserved (mcm)	0.1211	
Volume of Sub surface Storage Space available for Artificial 3050.60		
Recharge (mcm)		
Surplus Surface water Availability (mcm) 0.00		
DEMAND SIDE MANAGEMENT:		
DEMAND SIDE MANAGEMENT		
Irrigitation by permitted TW almost already using by Micro i	rrigation techniques like	
irrigation through Sprinkler. No more scope is feasible		
Cropping Pattern change: The sown crops are already less v	vater consuming crops like	
Bajra, Mung etc. The change in cropping pattern is not feasible.		
EXPECTED BENEFITS		
Net Ground Water Availability (mcm) 2017	28.82	
Existing Ground Water Draft for All Purposes (mcm)	27.87	
Present stage of Ground Water Development (%)	96.69	
Projected Stage of Ground Water Development after Supply S	ide	
and demand side interventions (%)	96.30	


DHORIMANNA BLOCK

SALIENT INFORMATION	
Block Name	DHORIMANNA
Longitude	71° 13' 20" to 71° 37' 28"
Latitude	24° 58' 28" to 25° 27' 29"
Geographical Area Sq.km	1659.86
Hilly Area (Sq.km)	2.57
Population (2011)	142416
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	284.3
Mean Annual rainfall (mm)	314.7
Highest annual rainfall with year (mm)	694 (1983)
Lowest annual rainfall (mm) with year	62 (1989)
Standard deviation (mm)	171.20
Coefficient of Variation (%)	54.4

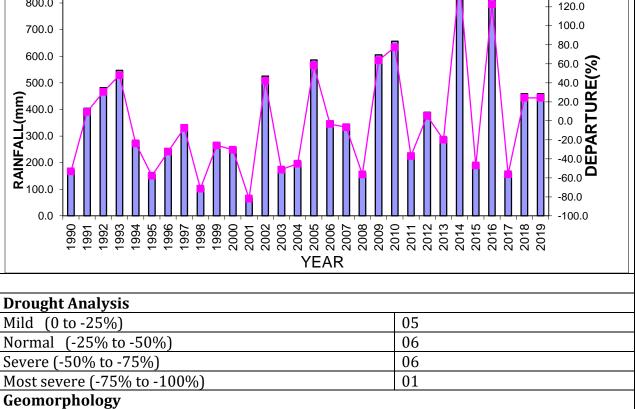


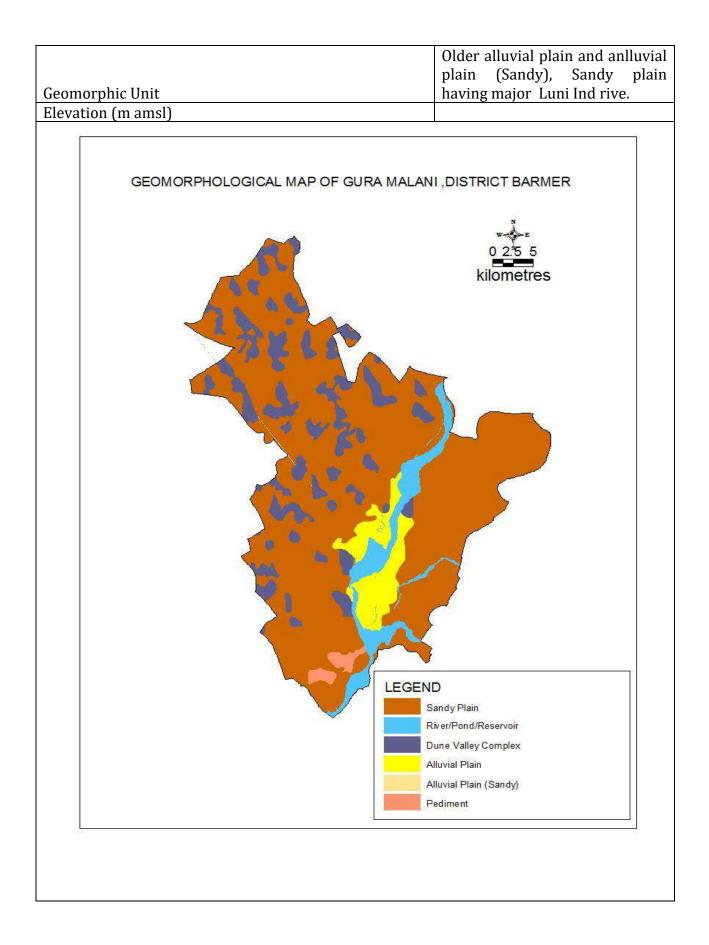


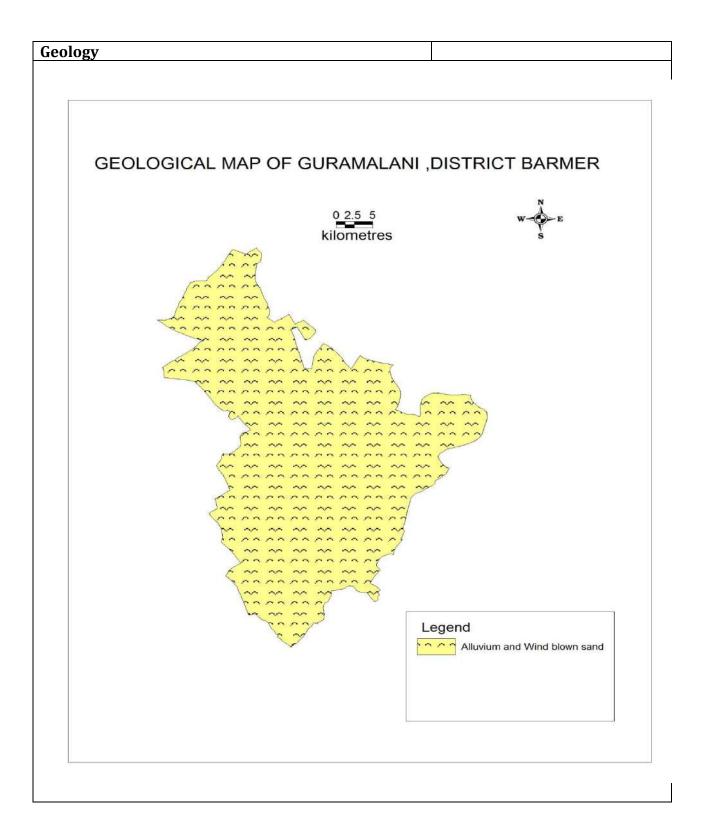


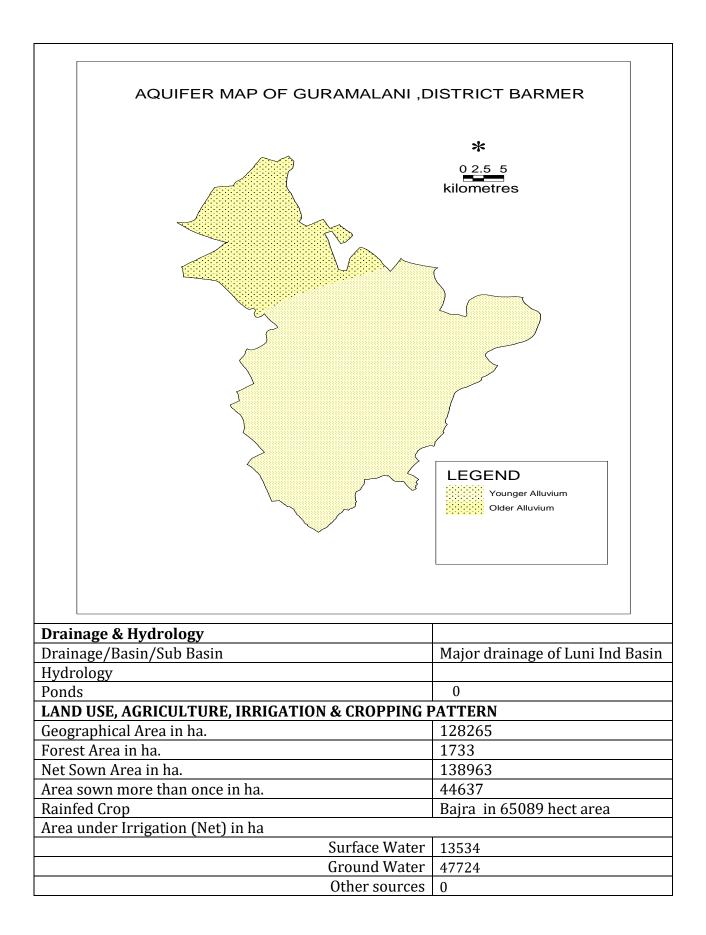
Drainage & Hydrology			
		No Major drain	age except few
Drainage/Basin/Sub Basin		ephemerals streamlets	
Hydrology			
Ponds		0	
LAND USE, AGRICULTURE, IRRIGATION	N & CROPPING F	PATTERN	
Geographical Area in ha.		165986	
Forest Area in ha.		752	
Net Sown Area in ha.		104060	
Area sown more than once in ha.		26321	
Rainfed Crop		Bajra in 48918	hect area
Area under Irrigation (Net) in ha			
Surface Water		8055	
Ground Water		33583	
Other sources		0	
Season wise crop area in ha.			
	Kharif	Rabi	Zaid Rabi
sown	65459	38134	467
Irrigated	3037	38134	467
Principal Crop Area (ha)			
Сгор Туре			
Cereals		49583	
Oil Seeds		11654	
Pulses		4222	
Hydrogeology			
Monitoring Stations (May 2019)			
	CGWB	03	
	SGWD	03	
NAG	QUIM Key Wells	06	

AQUIFER DISPOSITION Status of GW Exploration	Exploratory Wells- Observation Wells- Piezometers - 00 Slim hole -00		
Aquifer Characteristics	The Alluvium forms the most important aquifer in the block, Specific		ifer in the block, Specific
CWOrality		range of 0.10 to 0.06 .	
GW Quality Aquifer Potential	Static Water level v	0 μS/cm to 10480 μS/cm paries from 2.45 to 72.00 Transmissivity varies from	e e
CHEMICAL QUALITY OF GI Suitability for Drinking	ROUND WATER		
TDS(mg/l)		Range	% Samples
Fresh		0-3000	21.43%
Brackish		>-3000	78.57%
Total Hardness (mg/l)		Range	% Samples
Soft		0 – 75	0 %
Moderately Hard		75 – 150	8.33%
Hard		150 - 300	16.67 %
Very Hard		>300	75.00 %
CHEMICAL QUALITY MAP		VARIATION IN MAJO ELEMENTS	R & MINOR
EC MAP OF BLOCK DHORIMAN	NNA , DISTRICT BARMER	EC < 2000 μS/cm at 25°C	7.14%
LEGEND EC_µS_cm_at_25_C 2000-4000 2000-4000 4000-6000	the second secon		

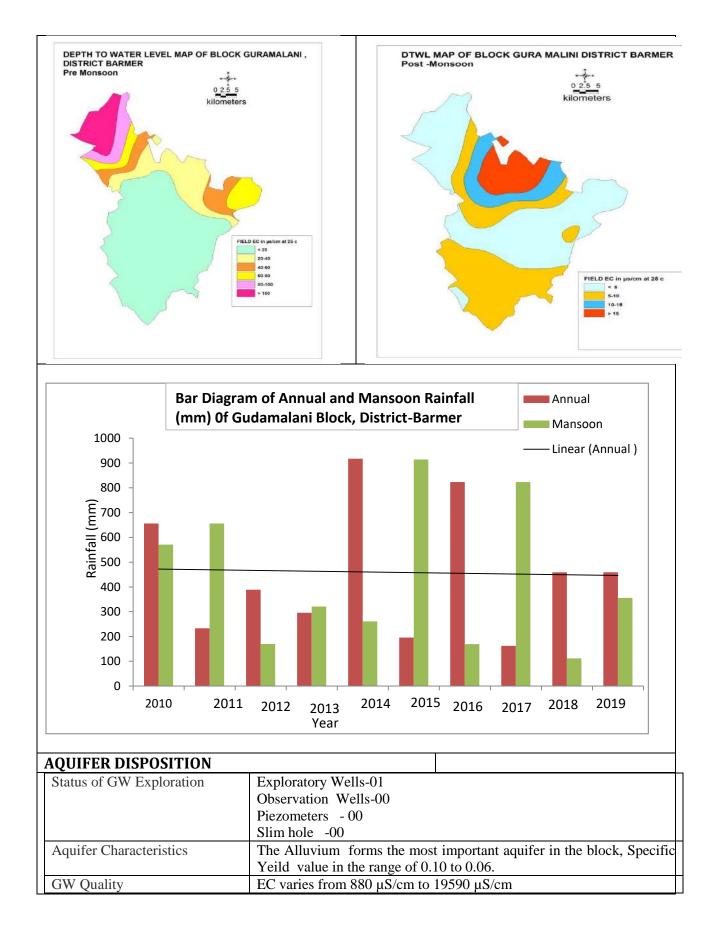


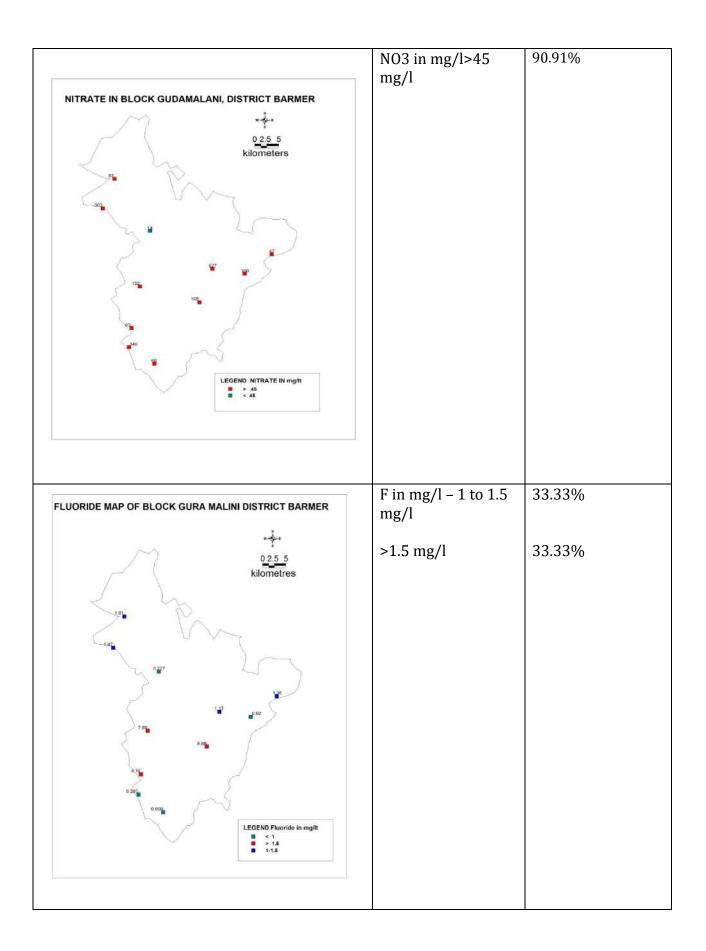

Suitability for Irrigation		
EC		
Type of Water	Classification	% Samples
y k		•
Low Saline< 250 mg/l	Excellent	0.00
Medium Saline 250 – 750 mg/l	Good	0.00
Highly Saline 750 – 2250 mg/l	Permissible	7.14
Very Highly saline> 2250 mg/l	Doubtful	92.86
Na%		
Water Class	Range	% Samples
Excellent	< 20	0.00
Good	20 - 40	0.00
Medium	40 - 60	0.00
Bad	60 - 80	07.14
Very Bad	> 80	92.86
GROUND WATER ISSUES		
1. Salinity		High EC and Na%
2. Rainfall and Drought		Normal Droughts in
		20% years
		• Severe Drought in
		13.33% years
3. Decadal Water Level Trend (200	09-2019)	Declining
GROUND WATER RESOURCE & E	EXTRACTION(GWRE-2	017)
Ground Water Recharge Worthy Area (sq. km.)		1413.75
Total Annual Ground Water Recha	rge (mcm)	6.80
Natural Discharge (mcm)		0.68
Net Annual Ground Water Availab	ility (mcm)	6.12
Existing Gross Ground Water Draf	t for All uses(mcm)	12.92
Provision for domestic requirement	ent supply to 2025(mcm	n) 2.19
Stage of Ground Water Developme	ent %	211
Category		Over exploited
In-Storage Resource		
Total Area (Sq.Km)		141.375
		ALO1a :0.1
		ALO3 :0.06
Specific yield		ALO1b :0.1
GROUND WATER RESOURCE EN		
Artificial Recharge & Water Conse		
Existing Structures constructed by	v State Govt.	949
Water Harvesting Structure		12
Farm Pond / Khet Talai		01
Earthen Checkdam		12


Tankas	924	
SUPPLY SIDE MANAGEMENT		
Water Supply(mcm)		
Tanks (Nos) Capacity 50.000 lts	2545	
Volume of water to be conserved (mcm)	0.1273	
Volume of Sub surface Storage Space available for Artificial Recharge (mcm)	323.98	
Surplus Surface water Availability (mcm)	0.07	
DEMAND SIDE MANAGEMENT:		
DEMAND SIDE MANAGEMENT		
Irrigitation by permitted TW almost already using by Micro irrigation techniques like		
irrigation through Sprinkler. No more scope is feasible		
Cropping Pattern change: The sown crops are already less w	water consuming crops like	
Bajra, Mung etc. The change in cropping pattern is not feasible.		
EXPECTED BENEFITS		
Net Ground Water Availability (mcm) 20176.12		
Existing Ground Water Draft for All Purposes (mcm)	12.91	
Present stage of Ground Water Development (%)	211	
Projected Stage of Ground Water Development after Supply S	ide	
and demand side interventions (%)	206.65	


GUDAMALANI BLOCK

SALIENT INFORMATION	
Block Name	GUDAMALANI
Longitude	71° 30' 5" to 71° 57' 6"
Latitude	24° 59' 11" to 25° 33' 34"
Geographical Area Sq.km	1282.65
Hilly Area (Sq.km)	0
Population (2011)	153728
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	294.0
Mean Annual rainfall (mm)	369.6
Highest annual rainfall with year (mm)	917 (2019)
Lowest annual rainfall (mm) with year	67 (1989)
Standard deviation (mm)	209.7
Coefficient of Variation (%)	56.7
BAR-DIAGRAM & DEPAR	TURES (%) OF ANNUAL
RAINE	FALL
1000.0 R.G. Station : G	
900.0 -	
800.0 -	+ 140.0
700.0	+ 100.0
	- 80.0
600.0 -	- 60.0 😪
500.0	+ 40.0 Ŭ

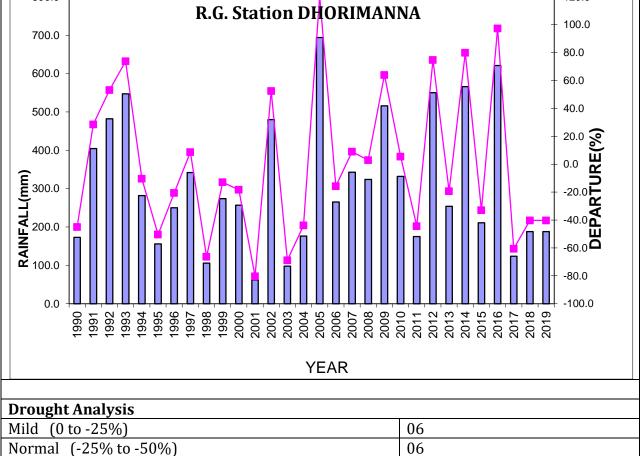



Season wise crop area in ha.			
	Kharif	Rabi	Zaid Rabi
sown	81026	57710	227
Irrigated	3485	57546	227
Principal Crop Area (ha)			
Сгор Туре			
	Cereals	49583	
	Oil Seeds	6913	
	Pulses	8623	
Hydrogeology			
Monitoring Stations (May 2019)			
	CGWB	00	
	SGWD	03	
NAQU	JIM Key Wells	09	
KEYWELL MONIOTORIN GURA MALANI , DISTRI		AP OF	
		N	
		W-Q-E S	
\sim		0 2.5 5	
		kilometers	
	~		
	(C)		
	\sim	7	
	Mangle Ki Dhani	5	
~ ~	Khaddali	25 5	
۲۵. ۲۵.			
C		PEEPRALI	
Barasar	BANTA	·	
<	•		
2		3	
AALPURA	5		
Arniyali	Dabli		
	کہ		
L			
WATER LEVEL BEHAVIOUR			
Pre-Monsoon (May-2019) Water level	Post-Monso	oon (November-2	019)Water level
3.65 to18.65m bgl		3.30 to 18.70	
Гrend (m/yr)		-0.07 (Declin	ing)

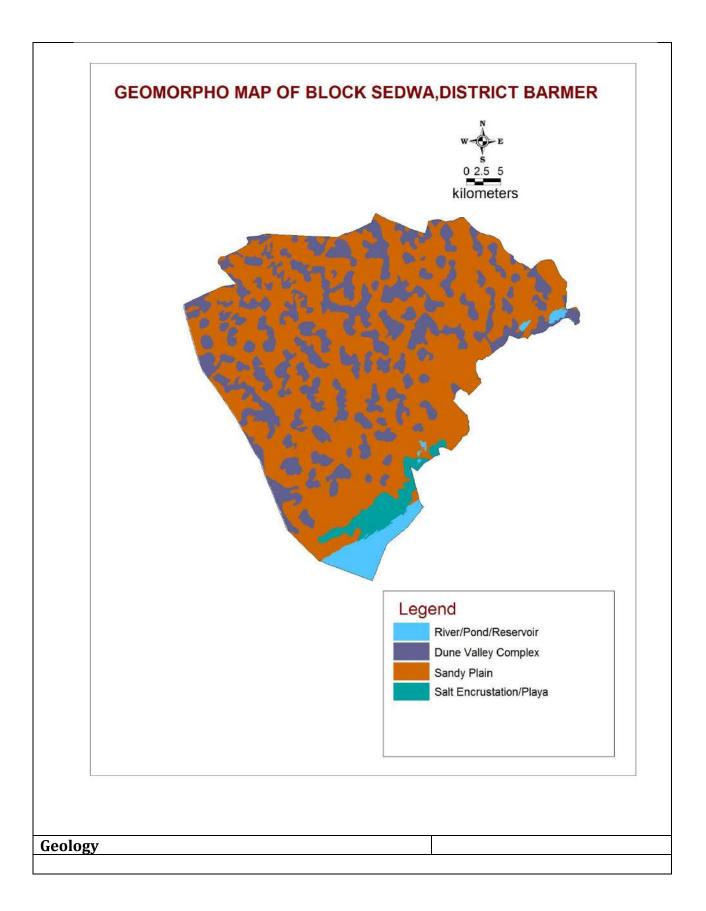
I	Aquifer Potential	Static Water level varies from 3.65 to 18.65 m. Area is yet
		unexplored and only one Exploratory Well was constructed in 1991
		which was abandoned due to lack of granular zone.

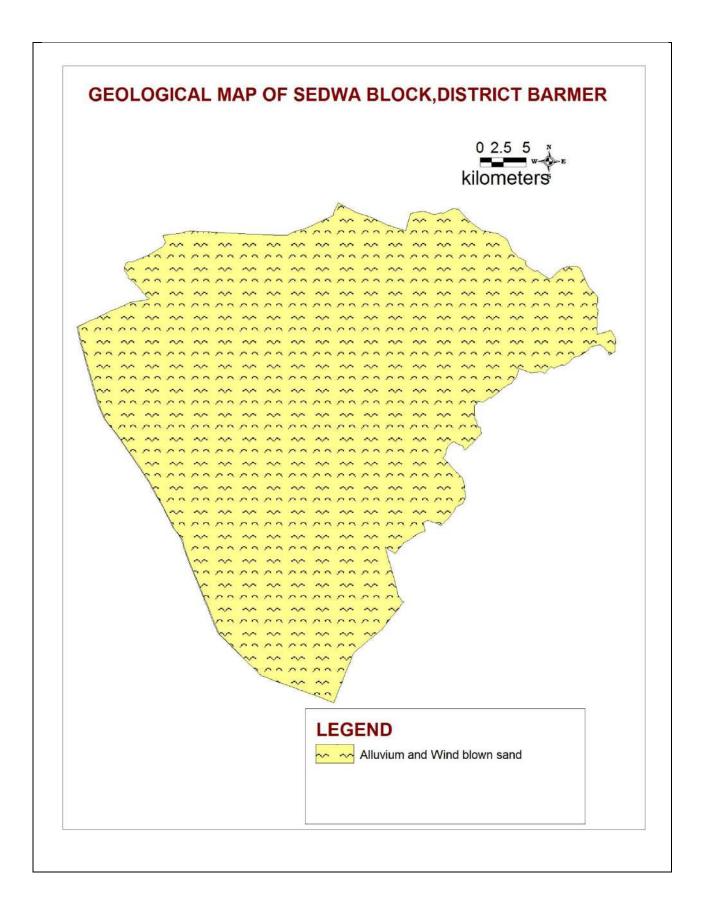
CHEMICAL QUALITY OF GROUND WATER Suitability for Drinking

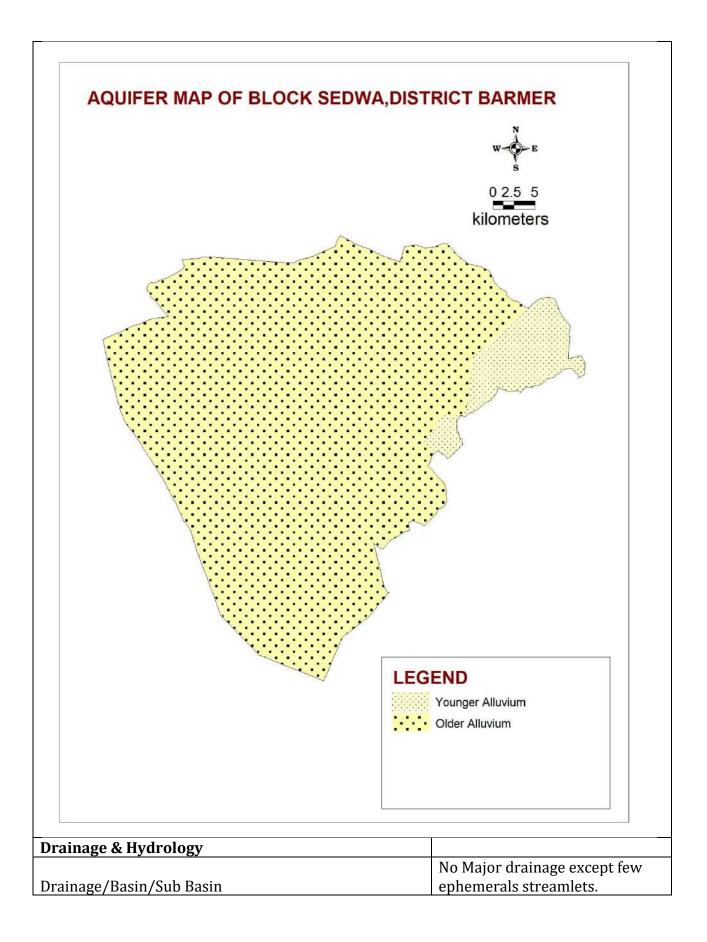
TDS(mg/l)	Range	% Samples
Fresh	0-3000	50.00%
Brackish	>-3000	50.00%
Total Hardness (mg/l)	Range	% Samples
Soft	0 – 75	0 %
Moderately Hard	75 – 150	9.10%
Hard	150 – 300	27.27 %
Very Hard	>300	63.63 %
CHEMICAL QUALITY MAP	VARIATION IN MAJO ELEMENTS	R & MINOR
EC MAP OF GUDAMALANI BLOCK, BARMER DISTRICT	EC < 2000 μS/cm at 25°C	16.66%

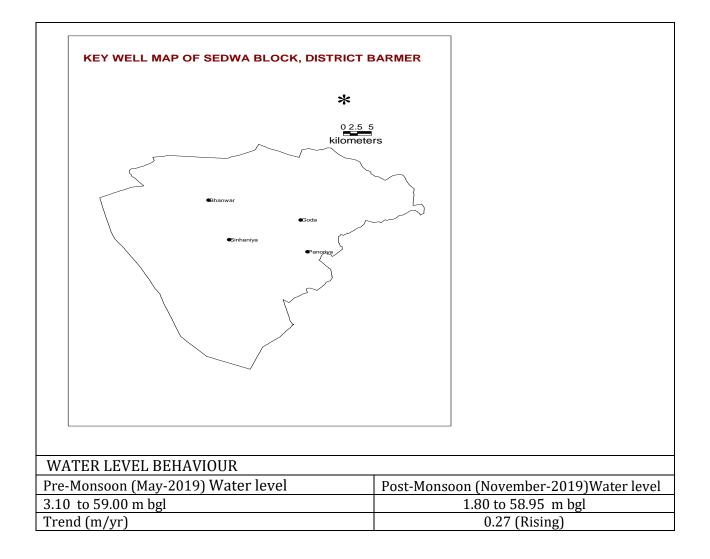


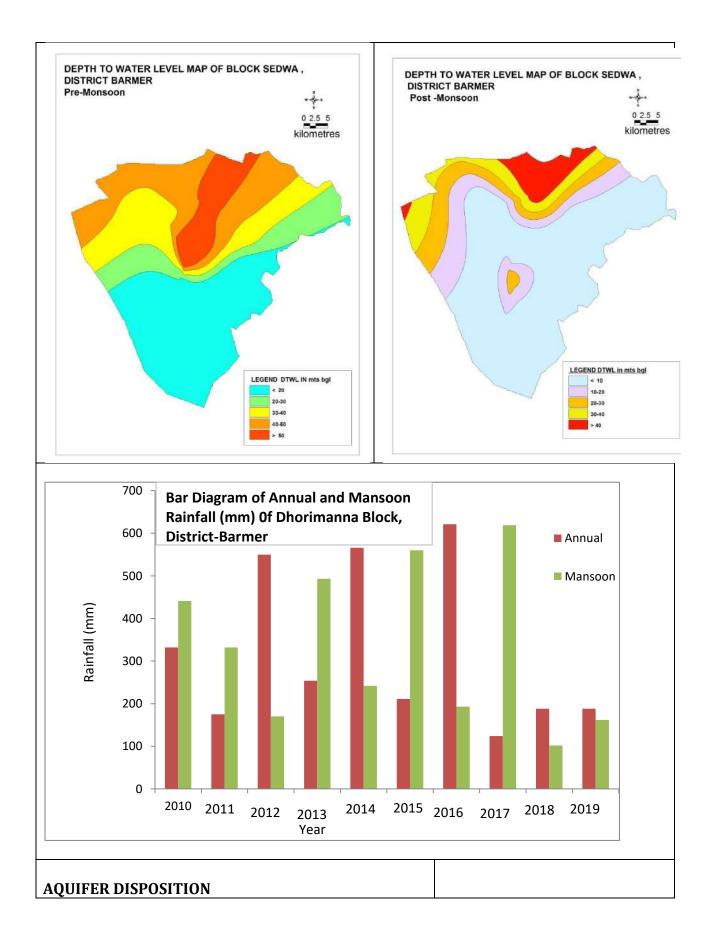
Suitability for Irrigation			
EC			
Type of Water	Classification	% Samples	
Low Saline< 250 mg/l	Excellent	0.00	
Medium Saline 250 – 750 mg/l	Good	0.00	
Highly Saline 750 – 2250 mg/l	Permissible	25.00	
Very Highly saline> 2250 mg/l	Doubtful	75.00	
Na%			
Water Class	Range	% Samples	
Excellent	< 20	0.00	
Good	20 - 40	0.00	
Medium	40 - 60	0.00	
Bad	60 - 80	0.00	
Very Bad	> 80	100.00	
GROUND WATER ISSUES			
1. Salinity		High EC and Na%	
2. Rainfall and Drought		Normal Droughts in	
		20% years	
		• Severe Drought in 20%	
		years	
3. Decadal Water Level Trend (200)9-2019)	Declining	
GROUND WATER RESOURCE & E	XTRACTION(GWRE-20)17)	
Ground Water Recharge Worthy A	rea (sq. km.)	1182.35	
Total Annual Ground Water Recharge (mcm)		35.78	
Natural Discharge (mcm)		3.58	
Net Annual Ground Water Availability (mcm)		32.21	
Existing Gross Ground Water Draft for All uses(mcm)		43.10	
Provision for domestic requirement	nt supply to 2025(mcm)	5.70	
Stage of Ground Water Developme	nt %	133.84	
Category		Over exploited	
In-Storage Resource			
Total Area (Sq.Km)		118.235	
		ALO1a :0.1	
		ALO1b :0.1	
		ALO3 :0.06	
Specific yield		ALO1c :0.1	
GROUND WATER RESOURCE ENI	HANCEMENT		
Artificial Recharge & Water Consei	rvation Possibilities		
Existing Structures constructed by	State Govt.	805	
Farm Pond / Khet Talai		06	
Earthen Checkdam		04	
Tankas			

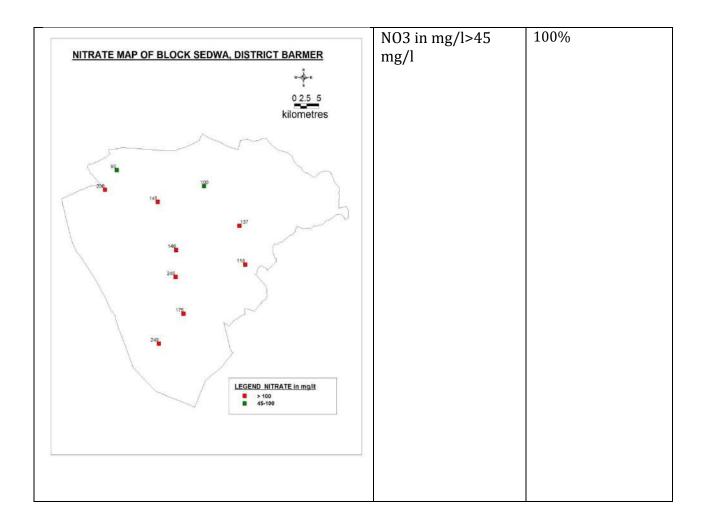

SUPPLY SIDE MANAGEMENT		
Water Supply(mcm)		
Tanks (Nos) Capacity 50.000 lts	2458	
Volume of water to be conserved (mcm)	0.1229	
Volume of Sub surface Storage Space available for Artificial	302.09	
Recharge (mcm)		
Surplus Surface water Availability (mcm)	0.73	
DEMAND SIDE MANAGEMENT:		
DEMAND SIDE MANAGEMENT		
Irrigitation by permitted TW almost already using by Micro irrigation techniques like		
irrigation through Sprinkler. No more scope is feasible		
Cropping Pattern change: The sown crops are already less	water consuming crops like	
Bajra, Mung etc. The change in cropping pattern is not feasible.		
EXPECTED BENEFITS		
Net Ground Water Availability (mcm) 2017 32.21		
Existing Ground Water Draft for All Purposes (mcm) 43.10		
Present stage of Ground Water Development (%) 133.84		
Projected Stage of Ground Water Development after Supply S	lide	
and demand side interventions (%)	133.30	


SEDWA BLOCK

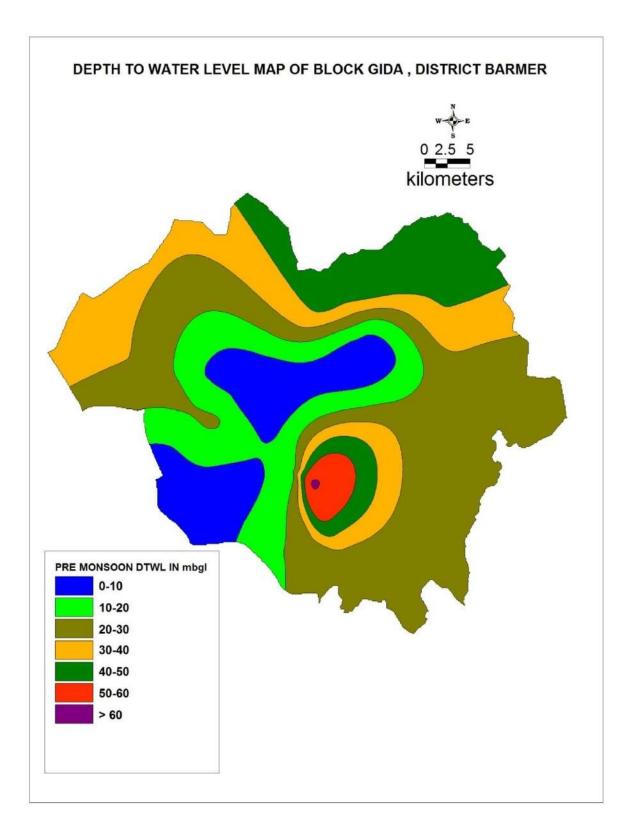

SALIENT INFORMATION	
Block Name	SEDWA
Longitude	70° 55' 23" to 71° 29' 18"
Latitude	24° 38' 41" to 25° 8' 25"
Geographical Area Sq.km	1703.57
Hilly Area (Sq.km)	0
Population (2011)	281547
Climate	
Average Temperature range (°C)	02 to 48
Rainfall Analysis	
Normal Rainfall (mm)	275.2
Mean Annual rainfall (mm)	314.7
Highest annual rainfall with year (mm)	694 (1983)
Lowest annual rainfall (mm) with year	62 (1989)
Standard deviation (mm)	171.20
Coefficient of Variation (%)	54.4
BAR-DIAGRAM & DEPARTURES (%) OF ANNUAL
800.0 TRAINFALL	
R.G. Station DHORIMA	NNA
700.0 -	- 100.0
	- 80.0
600.0 -	- 60.0
	40.0
500.0	
	- 20.0 🔶


Severe (-50% to -75%)	04
Most severe (-75% to -100%)	01
Geomorphology	
	Older alluvium with undulating sandy planes having dune valley complex including some salt
Geomorphic Unit	encrustation/playa.
Elevation (m amsl)	

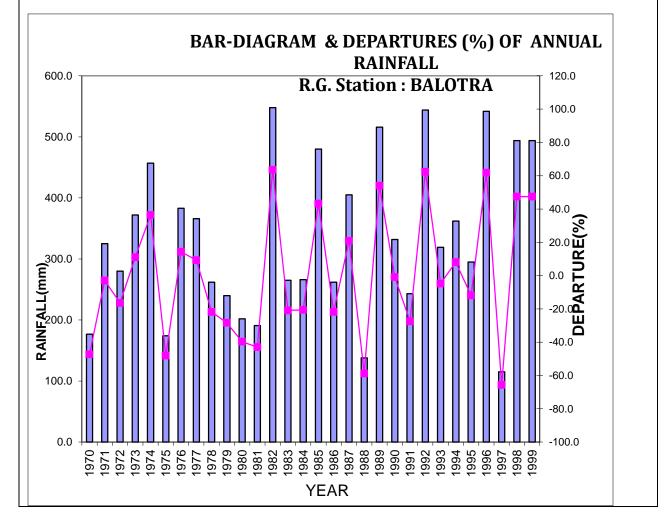




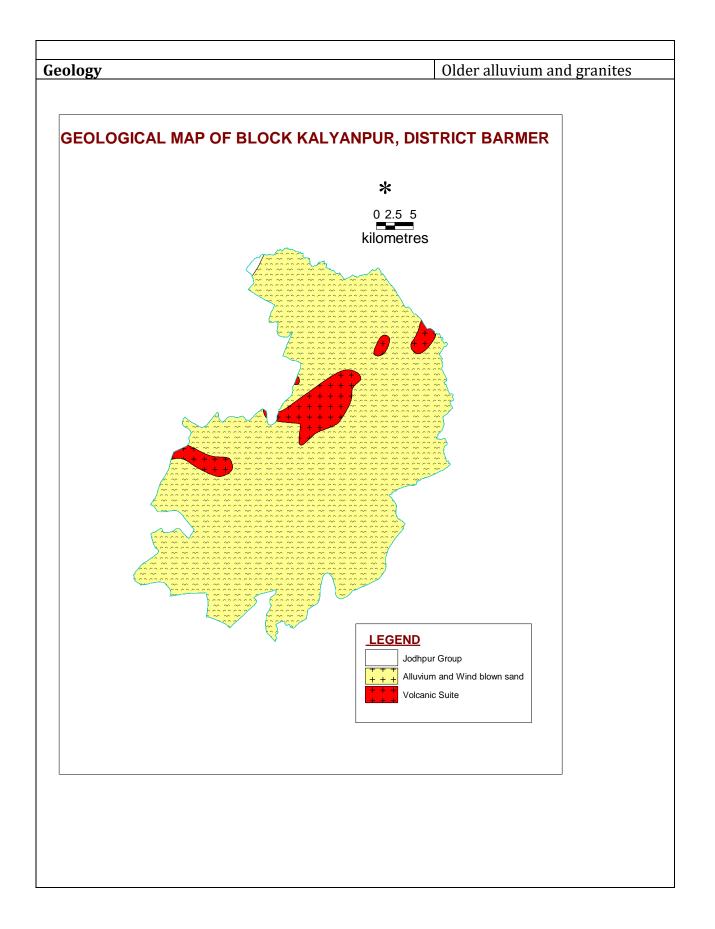
Hydrology				
Ponds		0		
LAND USE, AGRICULTURE, IRRIGATIO	PATTERN			
Geographical Area in ha.		170357		
Forest Area in ha.	1100			
Net Sown Area in ha.	271139			
Area sown more than once in ha.	Area sown more than once in ha.		87908	
Rainfed Crop		Bajra in 67380) hect area	
Area under Irrigation (Net) in ha				
	Surface Water		9395	
Ground Water		148341		
	Other sources		0	
Season wise crop area in ha.				
	Kharif	Rabi	Zaid Rabi	
sown	142778	121569	6792	
Irrigated	29375	121569	6792	
Principal Crop Area (ha)				
Сгор Туре		1		
Cereals		86593		
Oil Seeds		54161		
Pulses		1930		
Hydrogeology				
Monitoring Stations (May 2019)				
	06			
	06			
NA	04			



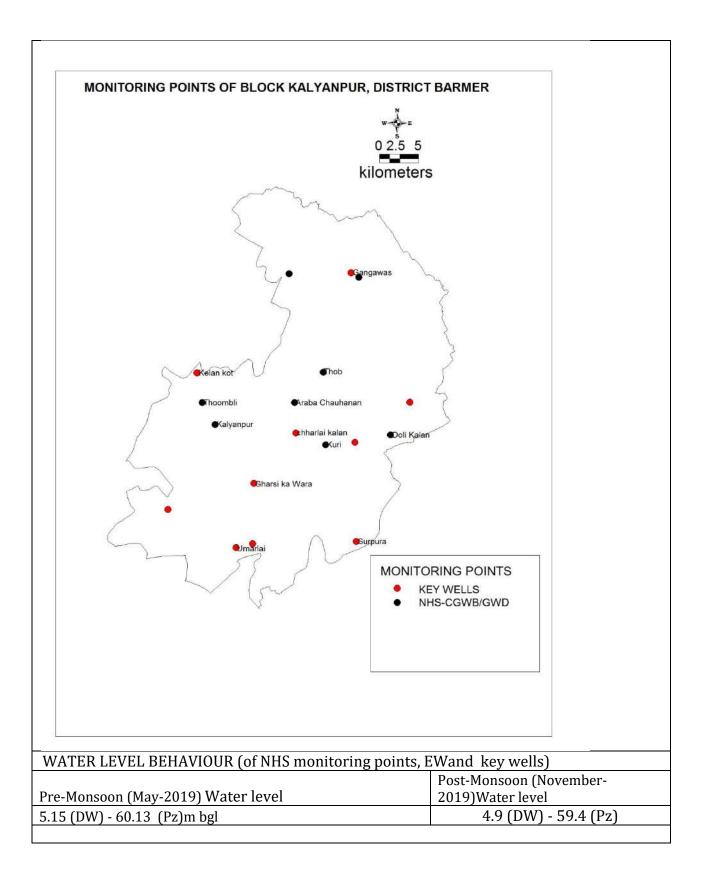
Status of GW Exploration	Exploratory Wells-00 Observation Wells-00 Piezometers - 00 Slim hole -00			
Aquifer Characteristics	The Alluvium forms the most important aquifer in the block, Specific Yeild value in the range of 0.10 to 0.06.			
GW Quality		EC varies from 2930 μS/cm to 7700 μS/cm		
Aquifer Potential	Static Water level varies from 3.10 to 59.00 m, Area is yet unexplored and only NHS and GWD wells were present			
CHEMICAL QUALITY OF G Suitability for Drinking	ROUND WATER			
TDS(mg/l)		Range	% Samples	
Fresh		0-3000	30.00%	
Brackish		>-3000	70.00%	
Total Hardness (mg/l)		Range	% Samples	
Soft		0 – 75	0 %	
Moderately Hard		75 – 150	10.00%	
Hard		150 - 300	20.00 %	
Very Hard		>300	70.00 %	
CHEMICAL QUALITY MAP		R & MINOR		
EC MAP OF BLOCK SEDWA , D	ISTRICT BARMER	— EC < 2000 μS/cm at 25°C	0%	
	Egend EC in µs/cm at 25 c + 3,000 3000-4,000 4000-5,000 4000-5,000 4000-5,000			

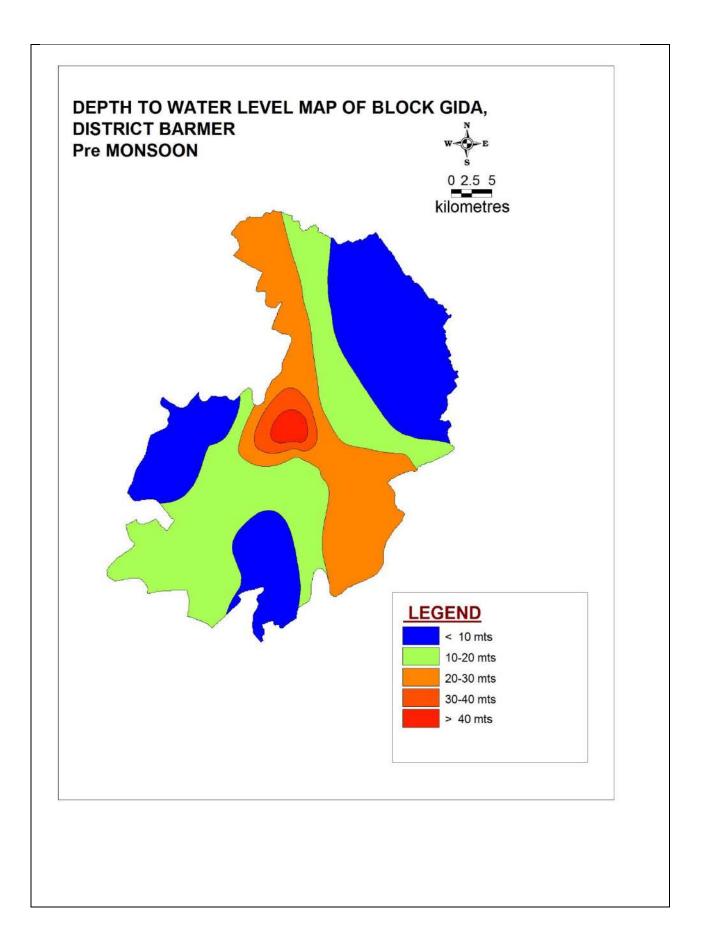

FLUORIDE MAP OF BLOCK SEDWA, DISTRICT B	F in mg/l – 1 ng/l >1.5 mg/l	to 1.5 20.00% 70.00%		
EC	Classificant		0/ Complete	
Type of Water	Classificati		% Samples	
Low Saline< 250 mg/l	Excellent		0.00	
Medium Saline 250 – 750 mg/l	Good		0.00	
Highly Saline 750 – 2250 mg/l	Permissible		0.00	
Very Highly saline> 2250 mg/l	Doubtful		100	
Na%				
Water Class	Range		% Samples	
Excellent	< 20		0.00	
Good	20 - 40		0.00	
Medium	40 - 60		0.00	
Bad	60 - 80		0.00	
Very Bad > 80			100	
GROUND WATER ISSUES		I		
1. Salinity			High EC and Na%	
2. Rainfall and Drought			Normal Droughts in	
			20% years	
			Severe Drought in	
			13.33% years	

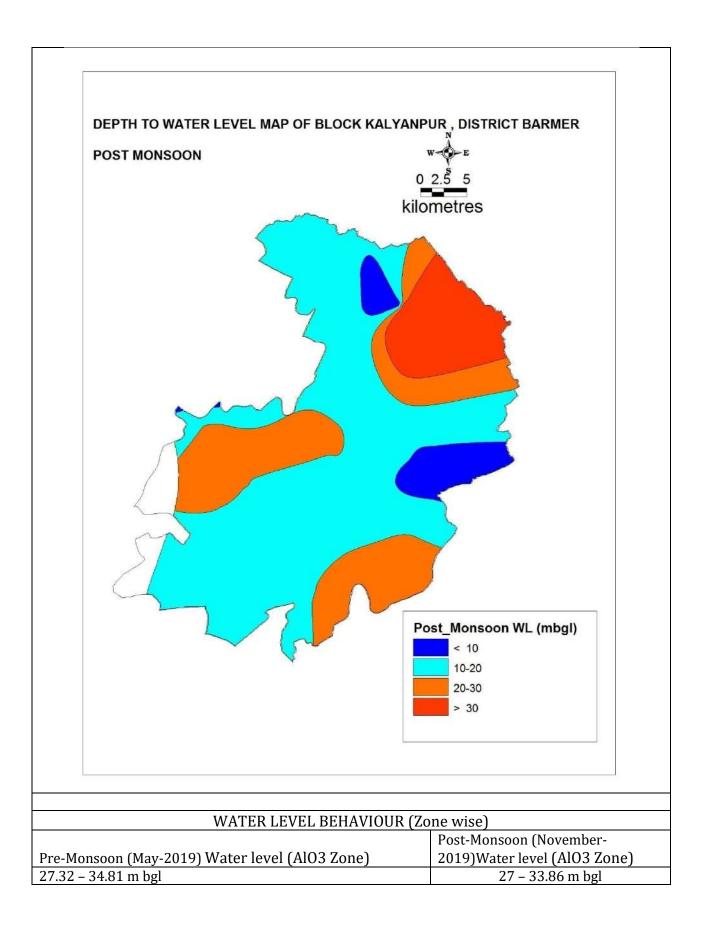
3. Decadal Water Level Trend (2009-2019)	Rising		
GROUND WATER RESOURCE & EXTRACTION(GWRE-2017			
Ground Water Recharge Worthy Area (sq. km.)	1137.50		
Total Annual Ground Water Recharge (mcm)	25.76		
Natural Discharge (mcm)	2.58		
Net Annual Ground Water Availability (mcm)	23.18		
Existing Gross Ground Water Draft for All uses(mcm)	22.28		
Provision for domestic requirement supply to 2025(mcm)	2.34		
Stage of Ground Water Development %	96.11		
Category	Critical		
In-Storage Resource			
Total Area (Sq.Km)	113.750		
	AL01:0.1	10	
Specific yield	ALO3 :0.0)6	
GROUND WATER RESOURCE ENHANCEMENT			
Artificial Recharge & Water Conservation Possibilities			
Existing Structures constructed by State Govt.	492		
Water Harvesting Structure	20		
Talai(Talab)	02		
SUPPLY SIDE MANAGEMENT	T		
Water Supply(mcm)			
Tanks (Nos) Capacity 50.000 lts	3382		
Volume of water to be conserved (mcm)	0.1691		
Volume of Sub surface Storage Space available for Artificial			
Recharge (mcm)			
	Surplus Surface water Availability (mcm)0.16		
DEMAND SIDE MANAGEMENT:			
DEMAND SIDE MANAGEMENT		1 . 11	
Irrigitation by permitted TW almost already using by Micro i	rrigation te	echniques like	
irrigation through Sprinkler. No more scope is feasible		. 1.1	
Cropping Pattern change: The sown crops are already less v		iming crops like	
Bajra, Mung etc. The change in cropping pattern is not feasibl	e.		
EXPECTED BENEFITS			
Net Ground Water Availability (mcm) 2017		.18	
Existing Ground Water Draft for All Purposes (mcm)		.28	
Present stage of Ground Water Development (%)		.11	
Projected Stage of Ground Water Development after Supply S	ide		
and demand side interventions (%)	95	.42	

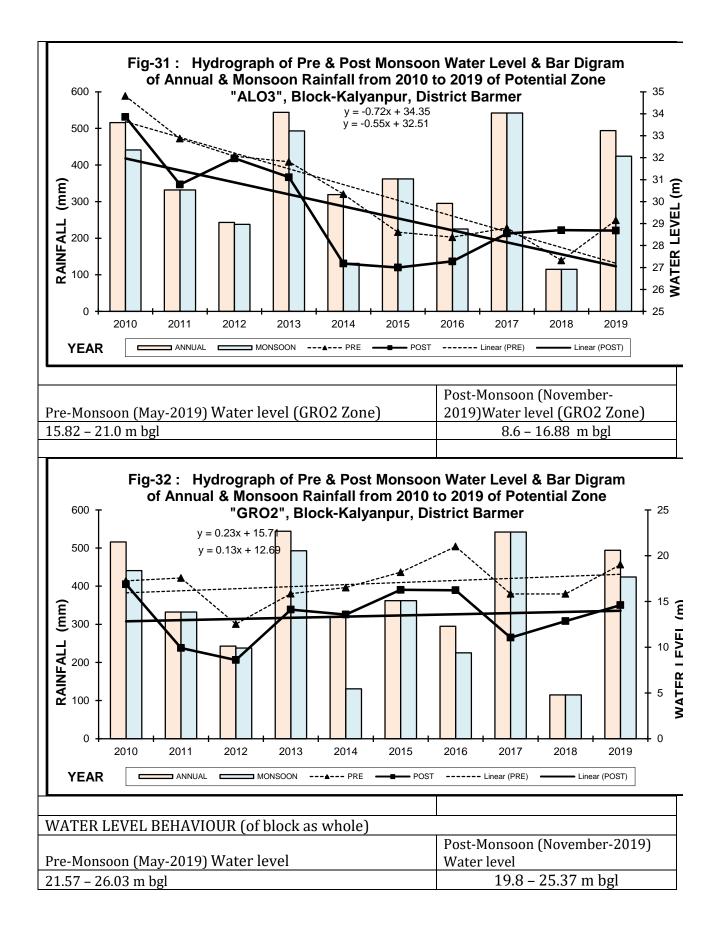


KALYANPUR BLOCK

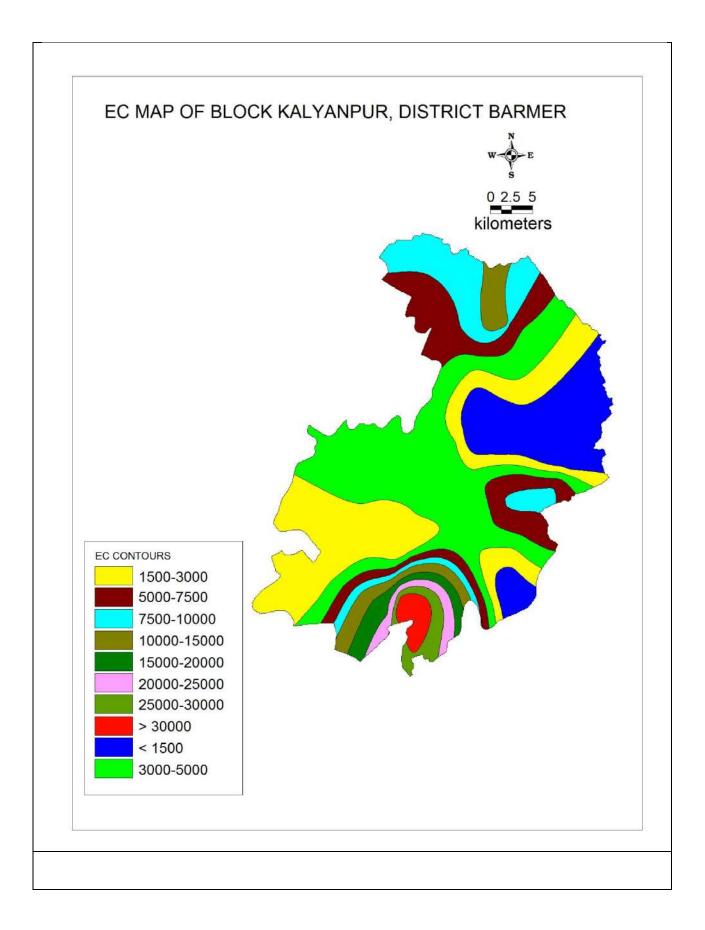

SALIENT INFORMATION	
Block Name	KALYANPUR
Longitude	72°17.5'26" to 72°42'3.5"
Latitude	25°49'15" to 26°18'14"
Geographical Area Sq.km	1263.04
Hilly Area (Sq.km)	0
Population (2011)	No Census available
Climate	
Average Temperature range (°C)	03 to 48
Rainfall Analysis	
Normal Rainfall (mm)	262.13
Mean Annual rainfall (mm)	334.95
Highest annual rainfall with year (mm)	548 (2002)
Lowest annual rainfall (mm) with year	115 (2017)
Standard deviation (mm)	128.76
Coefficient of Variation (%)	38.44

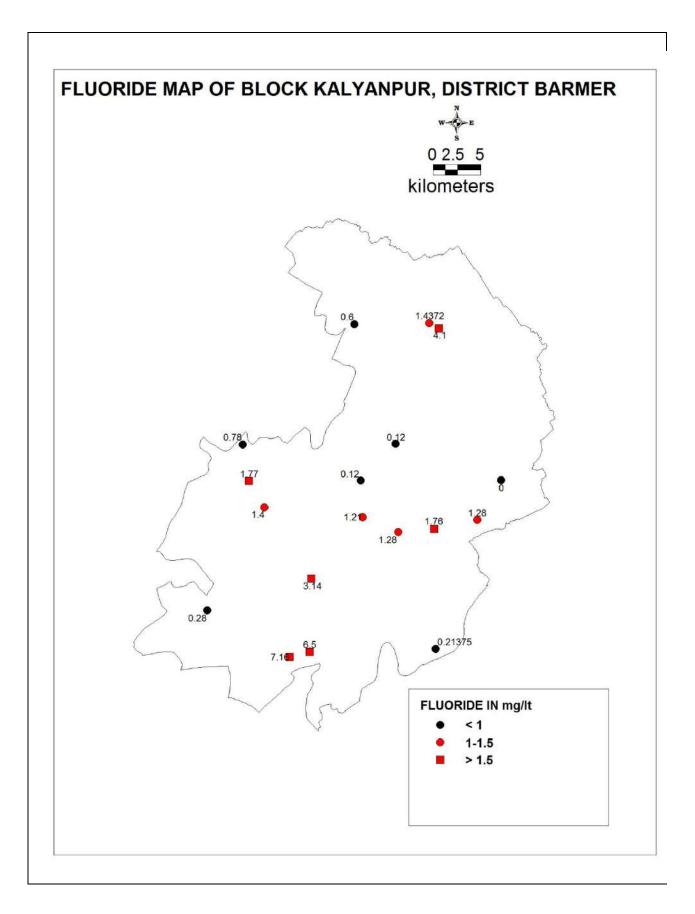


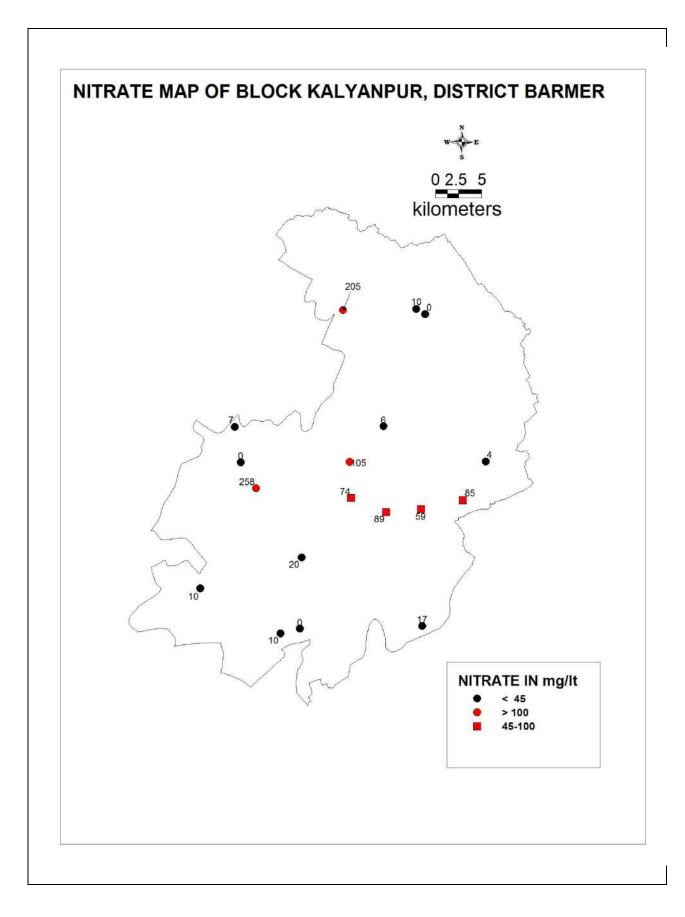

-			
Drought Analysis			
Mild (0 to -25%)	0 / 2	09	
Normal (-25% to -50%)		06	
Severe (-50% to -75%		02	
Most severe (-75% to	-100%)	00	
Geomorphology			
		undulating planes, sand	
a		dunes and abruptly rising hills o	
Geomorphic Unit		rhyolite and granites	
Elevation (m amsl)			
	GEOMORPHOLOGY I DISTRICT BARMER	MAP OF BLOCK KALYANPUR,	
		*	
		0 2.5 5	
		kilometres	
	2	LEGEND Dune Complex Dune Valley Complex	
	2	LEGEND Dune Complex Dune Valley Complex Palaeochannel	
		Image: Constraint of the second se	
		LEGEND Dune Complex Dune Valley Complex Palaeochannel River/Pond/Reservoir Eolian Plain	
		Dune Complex Dune Valley Complex Palaeochannel River/Pond/Reservoir Eolian Plain Interdunal Flat	
		Dune Complex Dune Valley Complex Palaeochannel River/Pond/Reservoir Eolian Plain Interdunal Flat Sandy Plain	
		Dune Complex Dune Valley Complex Palaeochannel River/Pond/Reservoir Eolian Plain Interdunal Flat Sandy Plain Structural/Linear/Denudational	
		Dune Complex Dune Valley Complex Palaeochannel River/Pond/Reservoir Eolian Plain Interdunal Flat Sandy Plain	



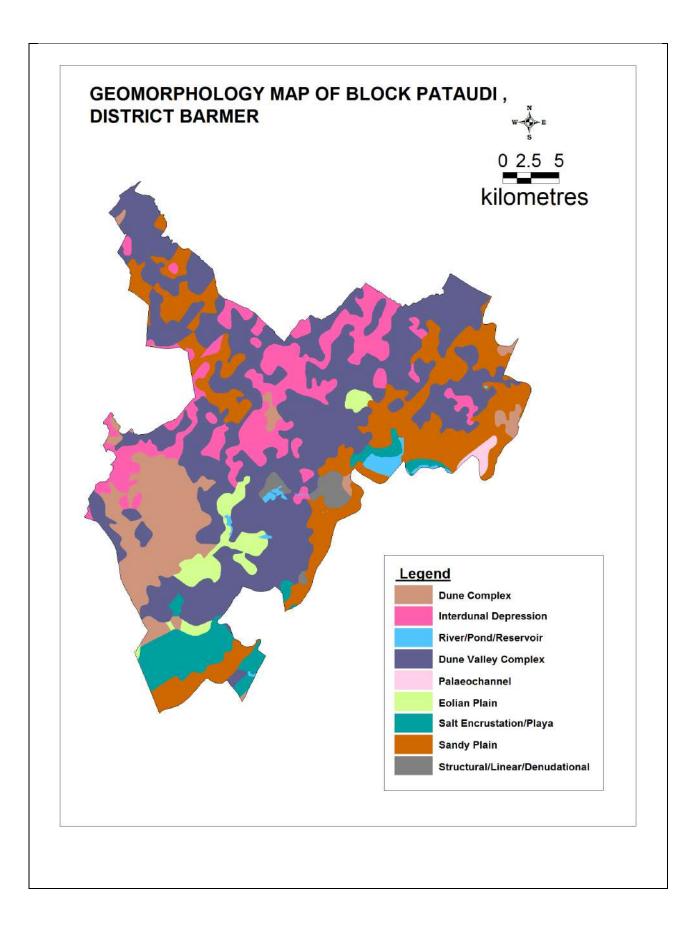
Drainage & Hydrology			
		-	nage except few
Drainage/Basin/Sub Basin		ephemerals streamlets	
Hydrology			
Ponds		0	
LAND USE, AGRICULTURE, IRRIGATIO	N & CROPPING I	PATTERN	
Geographical Area in ha.		126304	
Forest Area in ha.			
Net Sown Area in ha.			
Area sown more than once in ha.			
Rainfed Crop			
Area under Irrigation (Net) in ha			
Surface Water			
Ground Water			
	Other sources		
Season wise crop area in ha.			
	Kharif	Rabi	Zaid Rabi
sown			
Irrigated			
Principal Crop Area (ha)			
Сгор Туре			
Cereals			
Oil Seeds			
Pulses			
Hydrogeology			
Monitoring Stations (May 2019)			
CGWB		5 (3 EW monitored once)	
SGWD		3	
NAG	QUIM Key Wells	08	
	-	•	

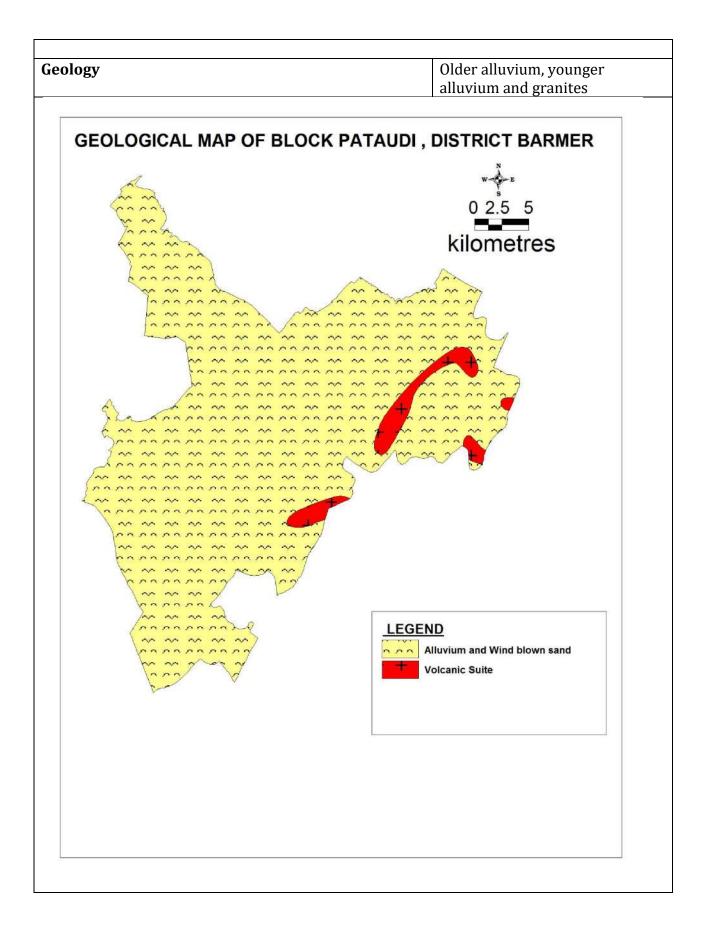


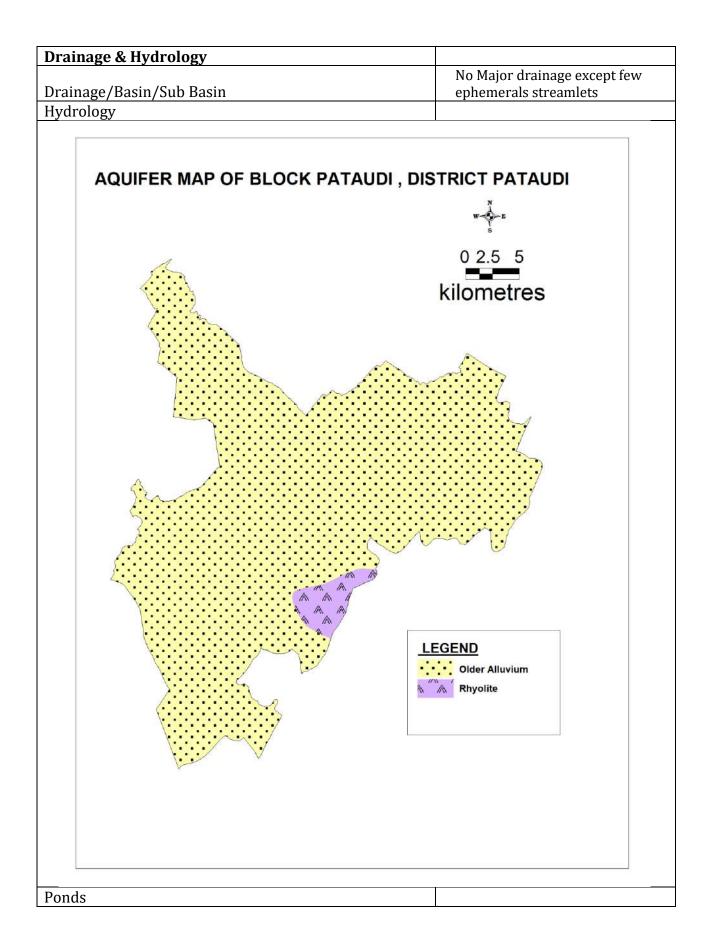




	rograph of Pre & Post		
of Annual &	Monsoon Rainfall from		k-Kalyanpur,
	District	Barmer	- 27
500	y = -0.24x + 25	.03	26
	y = -0.21x + 22	2.60	- 25
400 -			- 24
1 m			
			+ 20 A + 19 H
🏹			
- 000 - 100			+ 18 H + 17 H + 16 K
2010 2011	2012 2013 2014	2015 2016 2017	2018 2019
	MONSOON	POST Linear (PRE)	Linear (POST)
AQUIFER DISPOSITION			
Status of GW Exploration	Exploratory Wells-3		
Observation Wells-0			
Piezometers			
Slim hole -00			
Aquifer Characteristics	The older Alluvium	, and Granite forms the n	nost important aquifer in
the block, Specific Yeild value is 0.015 for older alluvium ar		older alluvium and 0.06	
	for granite.		
GW Quality	EC varies from 450	μS/cm to 19770 μS/cm	
CHEMICAL QUALITY OF	GROUND WATER		
Suitability for Drinking			
	mg/l	No. of Samples	% of Samples
	0-3000	10	66.67
	3000-10000	4	26.67
	> 10000	1	6.67
Brine >	>35000 0 0.00		0.00
	Water Class	No. of Samples	% Sample
	Soft	0	0.00
	Moderately Hard	2 4	13.33
			26.67
>300	Ver Hard	9	60.00
Nitrate ((mg/l)		
	< 45	8	53%
;	> 45	7	47%
Fluoride r	mg/l		
		10	
1	1-1.5	12	66.6666667

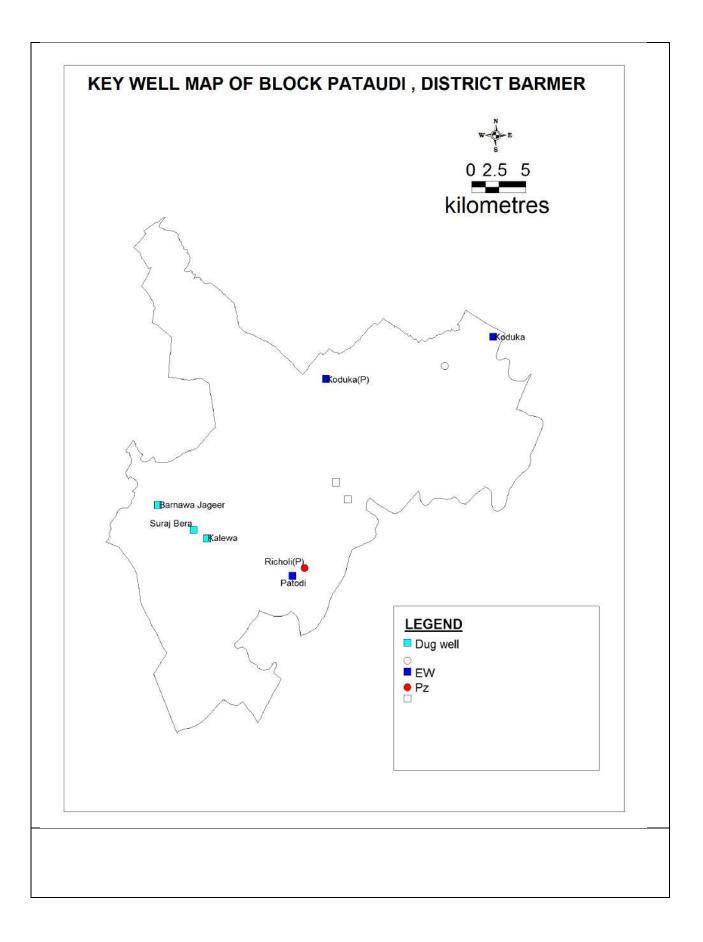

Suitability for Irrigation		
EC		
Type of Water	Classification	% Samples
V A		•
Low Saline< 250 mg/l	Excellent	0
Medium Saline 250 – 750 mg/l	Good	22.22222
Highly Saline 750 – 2250 mg/l	Permissible	11.1111
Very Highly saline> 2250 mg/l	Doubtful	66.66667
Na%	1	
Water Class	Range	% Samples
Excellent	< 20	0.00
Good	20 - 40	8.00
Medium	40 - 60	0.00
Bad	60 - 80	00.0
Very Bad	> 80	92.00
4.0.1		
1. Salinity		High EC and declining water level trend
1. Inland Salinity	area in sq.km	944.54
2. Ground Water Resource=Net		10 -
availability - Draft		42.7
2. Rainfall and Drought		Mild Droughts in
		Droughts in 30% years
		S0% years
		Normal
		Droughts in
		20% years
		Severe
		Drought in
		7.00%
		years
3. Decadal Water Level Trend (20	09-2019)	Declining (-0.42)
GROUND WATER RESOURCE & 1	EXTRACTION(GWRE-2	
Total Annual Ground Water Recharg	e (MCM)	6.537
Natural Discharge (MCM)		0.653
Net Annual Ground Water Availabilit		5.883
Existing Gross Ground Water Draft for All uses(MCM)		5.456

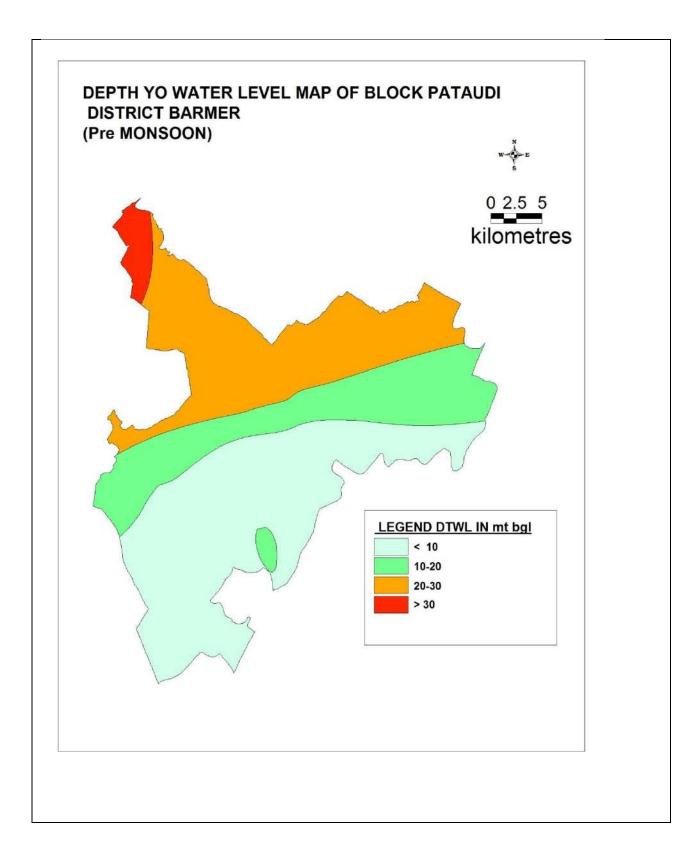

2025(MCM) Critical Stage of Ground Water Development % Critical Category Critical In-Storage Resource In-Storage Resource Total Area (Sq. Older Alluvium Aquifer Older Alluvium Sy Granite Sy Granite Sy In-Storage Resource Aquifer Older Alluvium Sy In-Storage Resource Aquifer Granite Sy In-Storage Resource Aquifer In-Storage Resource Sy In-Storage Resource Aquifer In-Storage Resource Sy In-Storage Resource Granite In-Storage Resource Sy In-Storage Resource Granite In-Storage Resource Sy In-Storage Resource Granite In-Storage Resource Sy In-Storage Resource </th <th>1.0372 92.73 28256 0.06 0.015</th>	1.0372 92.73 28256 0.06 0.015
CategoryCriticalIn-Storage ResourceCriticalTotal Area (Sq.Older AlluviumAquiferOlder AlluviumSyGraniteSySyAquiferGraniteSySyAquiferGraniteSySyArtificial Recharge & Water Conservation PossibilitiesExisting Structures constructed by State Govt.250Farm Pond / Khet Talai03	28256 0.06
In-Storage Resource Total Area (Sq. Aquifer Older Alluvium Sy Aquifer Granite Sy Granite Sy Granite Comparise Compar	0.06
Total Area (Sq. Older Alluvium Aquifer Older Alluvium Sy Granite Granite Granite Sy Granite GROUND WATER RESOURCE ENHANCEMENT Granite Artificial Recharge & Water Conservation Possibilities Existing Structures constructed by State Govt. Existing Structures constructed by State Govt. 250 Farm Pond / Khet Talai 03	0.06
Aquifer Older Alluvium Sy Granite Aquifer Granite Sy Image: Sy GROUND WATER RESOURCE ENHANCEMENT Image: Sy Artificial Recharge & Water Conservation Possibilities Image: Sy Existing Structures constructed by State Govt. 250 Farm Pond / Khet Talai 03	0.06
Sy Aquifer Granite Granite Sy Granite Sy Granite Sy Granite Sy GROUND WATER RESOURCE ENHANCEMENT Artificial Recharge & Water Conservation Possibilities Existing Structures constructed by State Govt. 250 Farm Pond / Khet Talai 03	
Aquifer Granite Sy	
Sy GROUND WATER RESOURCE ENHANCEMENT Artificial Recharge & Water Conservation Possibilities Existing Structures constructed by State Govt. 250 Farm Pond / Khet Talai 03	0.015
GROUND WATER RESOURCE ENHANCEMENT Artificial Recharge & Water Conservation Possibilities Existing Structures constructed by State Govt. 250 Farm Pond / Khet Talai 03	0.015
Artificial Recharge & Water Conservation PossibilitiesExisting Structures constructed by State Govt.250Farm Pond / Khet Talai03	
Artificial Recharge & Water Conservation PossibilitiesExisting Structures constructed by State Govt.250Farm Pond / Khet Talai03	
Existing Structures constructed by State Govt.250Farm Pond / Khet Talai03	
Farm Pond / Khet Talai03	
Stagered Trench 01	
Tankas 246	
SUPPLY SIDE MANAGEMENT	
Water Supply(mcm)	
Agricultural Supply -GW	4,688
Domestic Supply - GW	0.7683
Total Supply	4,689
Area suitable for Artificial recharge & Water Conservation Structures(sq.km)	
Type of Aquifer	
	Specific yield
Soft Rock	0.06
Hard Rock	0.015
Tanks (Nos) Capacity 50.000 lts 2222	
Volume of water to be conserved (mcm) 0.1111	
Volume of Sub surface Storage Space available for Artificial 40.81	
Recharge (mcm)	
Surplus Surface water Availability (mcm) 0.29	
DEMAND SIDE MANAGEMENT:	
DEMAND SIDE MANAGEMENT	
Irrigitation by permitted TW almost already using Micro irrigation techniques li	ike
irrigation through Sprinkler. No more scope is feasible	
Cropping Pattern change: The sown crops are already less water consuming cr	ons like
Bajra, Mung etc. The change in cropping pattern is not feasible.	opo nice
EXPECTED BENEFITS	
5.8839	
Net Ground Water Availability (mcm) 2017	
Additional GW resources available after Supply side interventions (MCM)	
and the resources available area supply side interventions (Pion)	

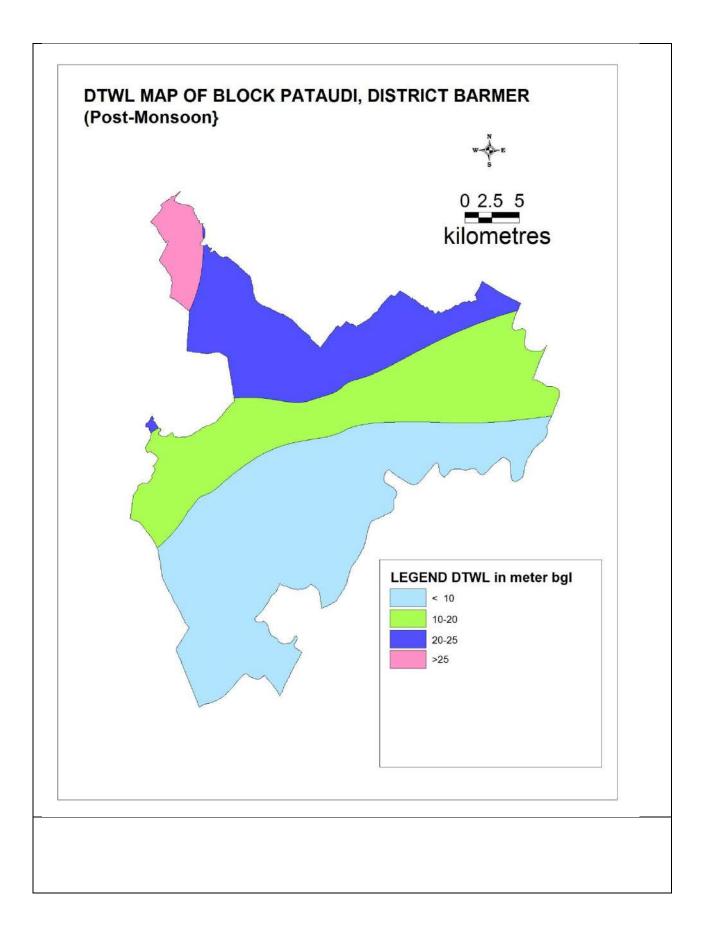

Net Ground Water Availability after Supply side intervention	
	6.00
	5.4563
Existing Ground Water Draft for All Purposes (mcm)	
Existing Ground Water Draft for All Purposes (mcm) after	5.4563
intervention	
	92.73
Present stage of Ground Water Development (%)	
Projected Stage of Ground Water Development after Supply Side	90.95
and demand side interventions (%)	

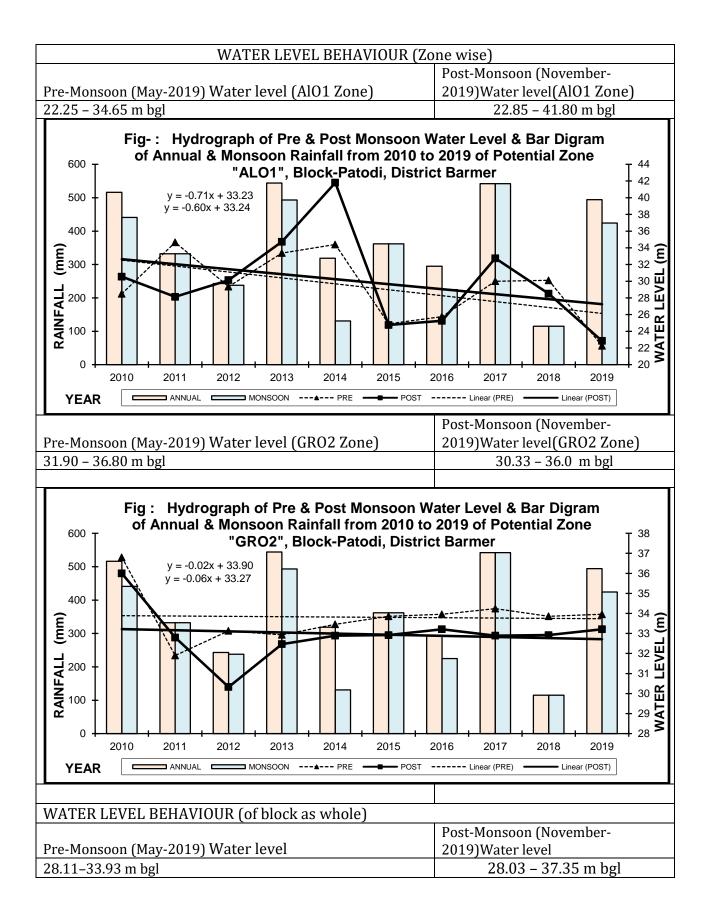
PATAUDI BLOCK

SALIENT INFORMATION		
Block Name	PATAUDI	
Longitude	72°05'10" to 72°29'24"	
Latitude	25°53'52" to 26°19'26"	
Geographical Area Sq.km	831.62	
Hilly Area (Sq.km)	0	
Population (2011)	No Census available	
Climate		
Average Temperature range (°C)	03 to 48	
Rainfall Analysis		
Normal Rainfall (mm)	267.39	
Mean Annual rainfall (mm) (from Rain Gauge of		
Balotra)	334.95	
Highest annual rainfall with year (mm)	548 (2002)	
Lowest annual rainfall (mm) with year	115 (2017)	
Standard deviation (mm)	128.76	
Coefficient of Variation (%)	38.44	
Drought Analysis		
Mild (0 to -25%)	09	
Normal (-25% to -50%)	06	
Severe (-50% to -75%)	02	
Most severe (-75% to -100%)	00	
Geomorphology		
	undulating planes, sand	
	dunes and abruptly rising hills of	
Geomorphic Unit	rhyolite and granites	
	Older Alluvium, younger	
Geology	alluvium, rhyolite	
Elevation (m amsl)		

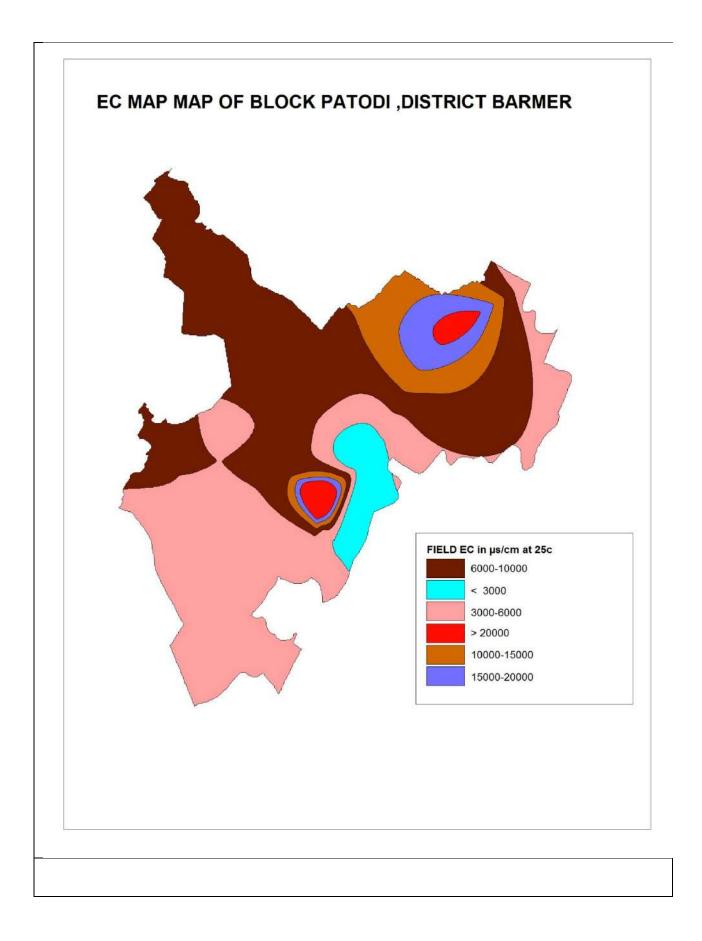


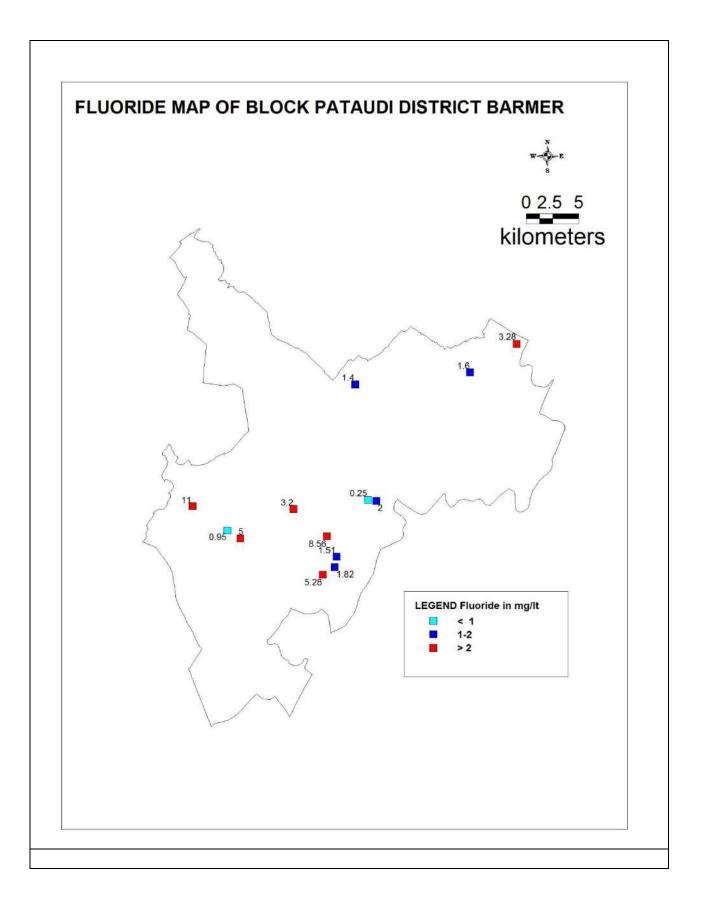


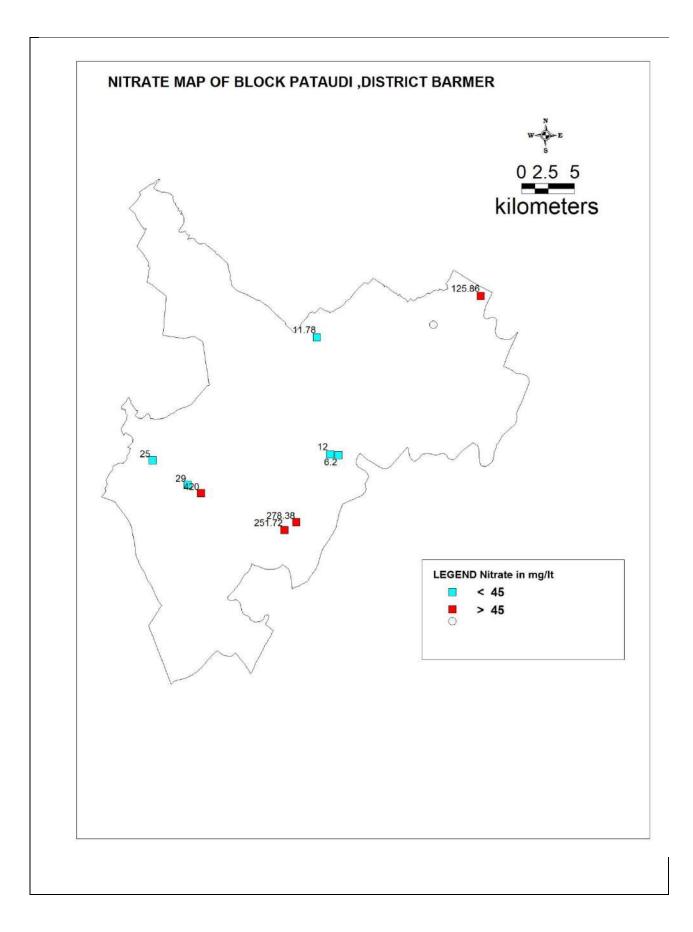


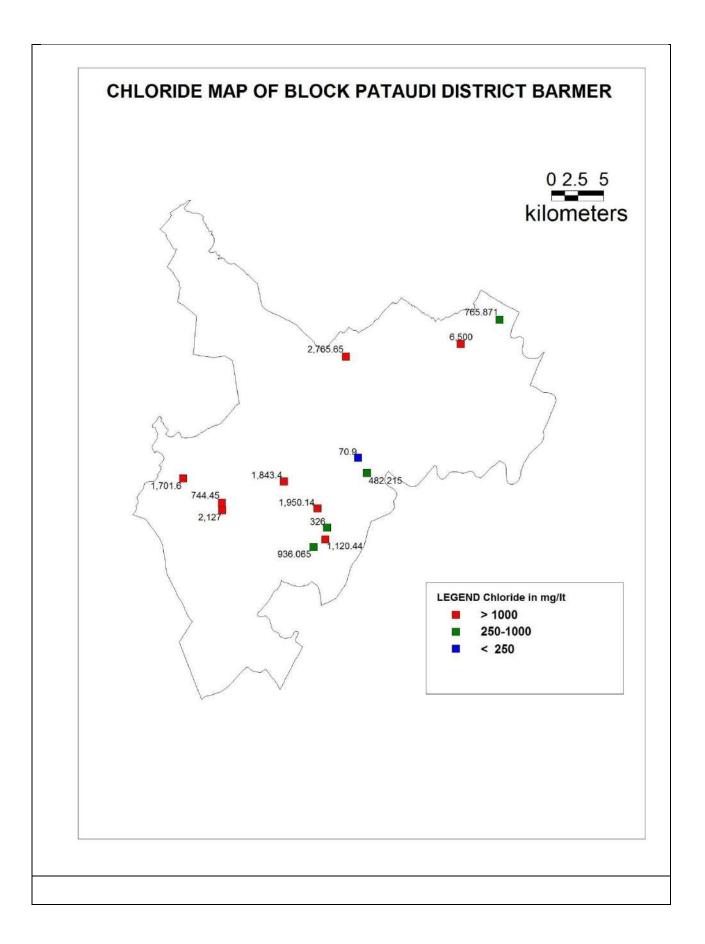

LAND USE, AGRICULTURE, IRRIGATIO	N & CROPPING I	PATTERN	
Geographical Area in ha.		831.62	
Forest Area in ha.		001102	
Net Sown Area in ha.		No data availal	ole
Area sown more than once in ha.			
Rainfed Crop			
Area under Irrigation (Net) in ha		·	
	Surface Water		
	Ground Water		
	Other sources		
Season wise crop area in ha.			
	Kharif	Rabi	Zaid Rabi
sown			
Irrigated			
Principal Crop Area (ha)			
Сгор Туре			
	Cereals		
	Oil Seeds		
Pulses			
Hydrogeology			
Monitoring Stations		-	
CGWB			nonitored once)
SGWD		6	
NAQUIM Key Wells		4	
WATER LEVEL BEHAVIOUR (of NHS mo	nitoring points, I		
Der Masser (Mar 2020) Water level		Post-Monsoon (
Pre-Monsoon (May-2020) Water level		2020)Water leve	
3.8 (DW) – 26.5 (DW)m bgl		4.02 (DW) – 22.5 (DW)

Г



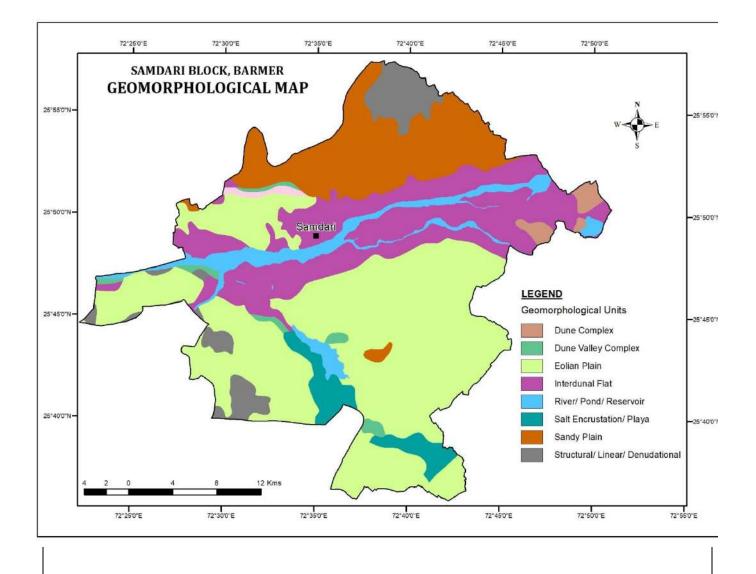




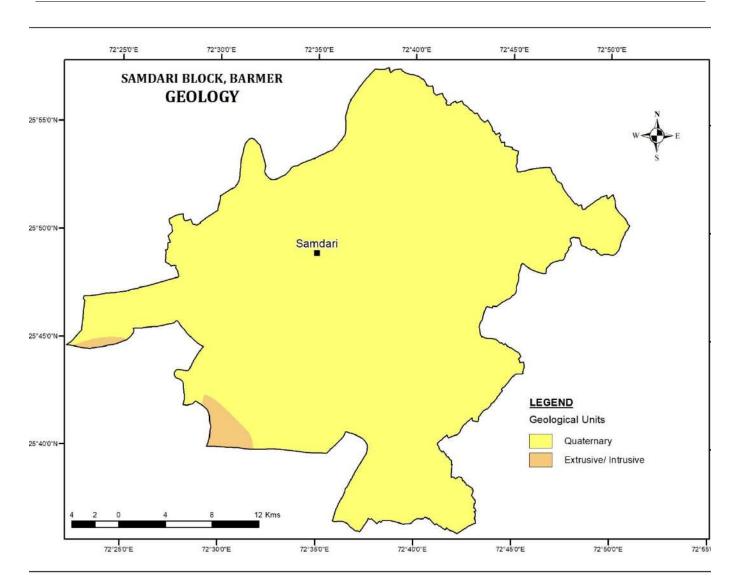


of Annual 600 500 400 (m) 300 12200 100 2010 2010 2011 YEAR ANNUAL	<pre>< + 33.26 2012 2013 2014 </pre>	n 2010 to 2019 of Bloc	
AQUIFER DISPOSITION Status of GW Exploration	Exploratory Wells-2		
Observation Wells-0 Piezometers - 00 Slim hole -00 Aquifer Characteristics The older Alluvium, and Granite forms the most important aquifer in the block, Specific Yeildvalue is 0.015 for older alluvium and 0.06 for granite. GW Quality EC varies from 625 µS/cm to 32330 µS/cm CHEMICAL QUALITY OF GROUND WATER			
Suitability for Drinking			
TDS	mg/l	No. of Samples	% of Samples
Fresh Brackish	0-3000	<u> </u>	45.45
	3000-10000	5	45.45
Saline Brine	> 10000 >35000	0	9.09 0.00
Dime	-33000	0	0.00
Hardness (mg/l)	Hardness (mg/l) Water Class No. of Samples % Sample		
0 – 75	Soft	0	0.00
75 – 150	Moderately Hard	0	0.00
150 - 300	Hard		10.00
		1	
>300	Ver Hard 9 90.0		90.00
Nitrate	(mg/l)		
	< 45	6	60%
	> 45	4	40%
Fluoride	mg/l		
Fluoride	mg/l 1-1.5	3	23.077

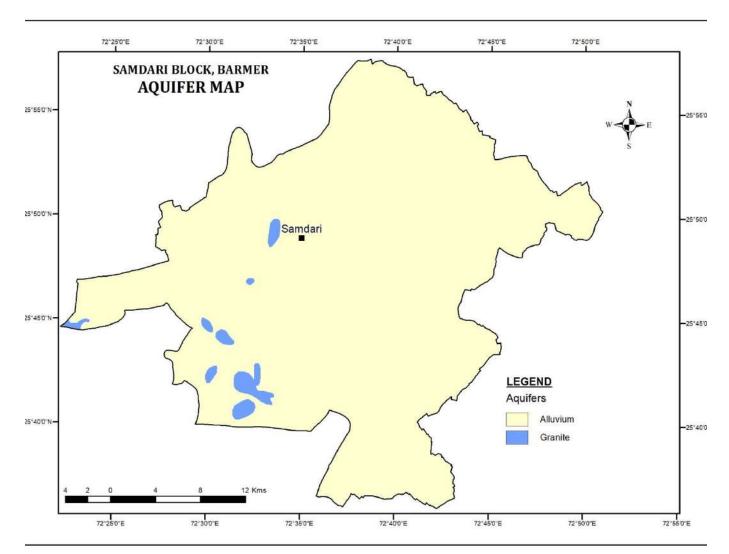
Suitability for Irrigation		
EC		
Type of Water	Classification	% Samples
		· · · ·
Low Saline< 250 mg/l	Excellent	0
Medium Saline 250 – 750 mg/l	Good	7.692308
Highly Saline 750 – 2250 mg/l	Permissible	7.692308
Very Highly saline> 2250 mg/l	Doubtful	84.61538
Na%		
Water Class	Range	% Samples
Excellent	< 20	
Good	20 - 40	
Medium	40 - 60	
Bad	60 - 80	
Very Bad	> 80	
GROUND WATER ISSUES		· · · · · · · · · · · · · · · · · · ·
1. Salinity		High EC and declining water level trend
1. Inland Salinity	area in sq.km	481.62
2. Ground Water Resource=Net	1	
availability - Draft		-2.787
2. Rainfall and Drought		Mild Droughts in 30% years Normal Droughts in 20% years Severe
		Drought in 7.00% years
3. Decadal Water Level Trend (200		Declining (-1.86)
GROUND WATER RESOURCE & E		
Total Annual Ground Water Recharge (MCM)		8.0282
Natural Discharge (MCM)		0.8028
Net Annual Ground Water Availability		7.2254
Existing Gross Ground Water Draft for Provision for domestic and industrial		10.0124
2025(MCM)		0.4095
Stage of Ground Water Development	%	138.57


Category	Over Exploited
In-Storage Resource	
Total Area	35000 ha m
Aquifer	Older Alluvium
Sy	0.06
Aquifer	Granite
Sy	0.015
Aquifer	Younger ALuuvium
Sy	0.1
GROUND WATER RESOURCE ENHANCEMENT	
Artificial Recharge & Water Conservation Structures construct	cted by State Govt
Existing Structures constructed by State Govt.	611
Farm Pond / Khet Talai	00
Water Harvesting Structure	01
Tankas	610
SUPPLY SIDE MANAGEMENT	
Water Supply(mcm)	
Agricultural Supply -GW	9.7044
Domestic Supply - GW	0.303
Total Supply	10.0124
Area suitable for Artificial recharge & Water Conservation Structur	
Type of Aquifer	
	Specific yield
"ALO1"	0.1
"ALO3"	0.06
"GRO2"	0.015
Tanks (Nos) Capacity 50.000 lts	1487
Volume of water to be conserved (mcm)	0.07435
Volume of Sub surface Storage Space available for Artificial	99.77
Recharge (mcm)	
Surplus Surface water Availability (mcm)	0.06
DEMAND SIDE MANAGEMENT:	
DEMAND SIDE MANAGEMENT	
Irrigitation by permitted TW almost already using Micro irrig	ration techniques like
irrigation through Sprinkler. No more scope is feasible	
Cropping Pattern change: The sown crops are already less v	water consuming crops like
Bajra, Mung etc. The change in cropping pattern is not feasibl	
EXPECTED BENEFITS	
	7.2254
Net Ground Water Availability (mcm) 2017	/.2251
Additional GW resources available after Supply side interventions	(MCM)
Automational Gw resources available after suppry side interventions	0.07435
Net Ground Water Availability after Supply side intervention	0.07455
net oround water Avanability after supply side lifter vehicibil	7.29975
	1.49973

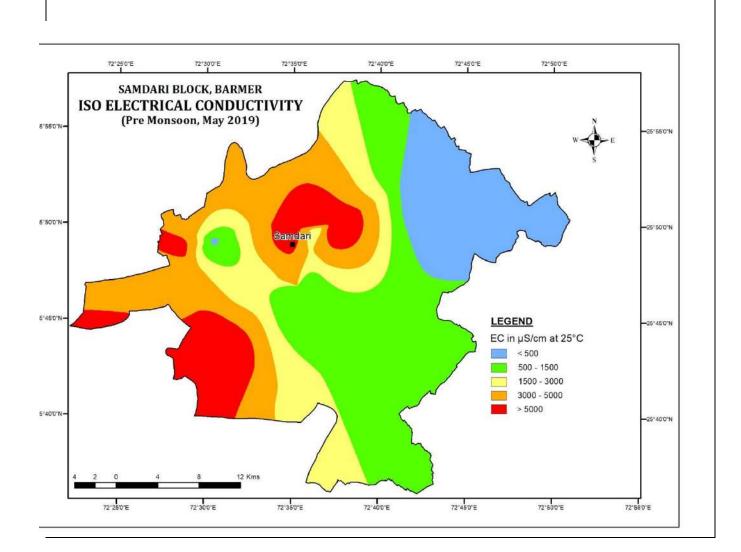
	10.0124
Existing Ground Water Draft for All Purposes (mcm)	
Existing Ground Water Draft for All Purposes (mcm) after	10.0124
intervention	
	138.57
Present stage of Ground Water Development (%)	
Projected Stage of Ground Water Development after Supply Side	137.16
and demand side interventions (%)	

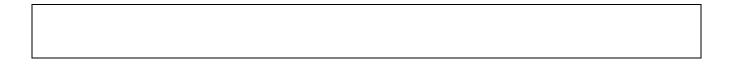

SAMDARI BLOCK

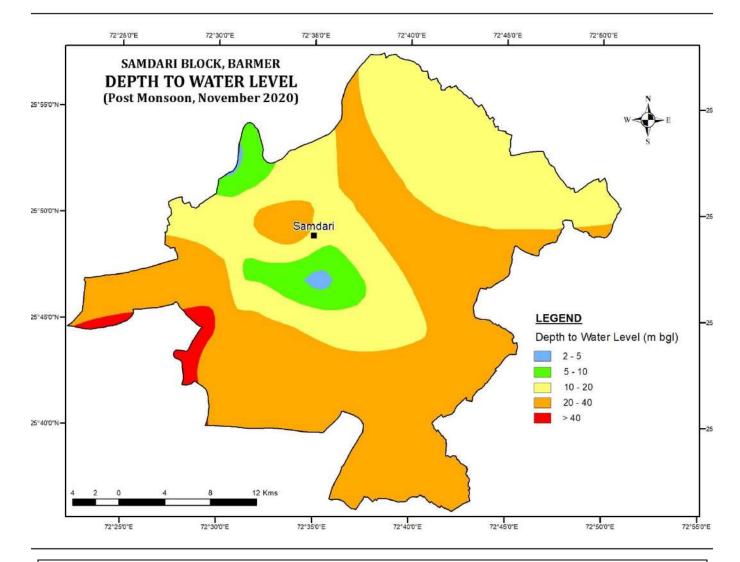
SALIENT INFORMATION		
Block Name	SAMDARI	
Longitude	72°22'26" to 72°50'49"	
Latitude	25°36'0" to 26°57'32"	
Geographical Area Sq.km	836.87	
Hilly Area (Sq.km)	0	
	103180 (Human)	
Population (2011)	19239 (Cattle)	
Climate		
Average Temperature range (°C)	06 to 48	
Rainfall Analysis		
Normal Rainfall (mm)	353.9	
Mean Annual rainfall (mm) (from Rain Gauge of Siwana)	399.467	
Highest annual rainfall with year (mm)	780 (2016)	
Lowest annual rainfall (mm) with year	125 (2004)	
Standard deviation (mm)	130.7	
Coefficient of Variation (%)	39.40	
Duou abt Analysia		
Drought Analysis	05	
Mild (0 to -25%)	07	
Normal (-25% to -50%)	02	
Severe (-50% to -75%) Most severe (-75% to -100%)	00	
	00	
BAR-DIAGRAM & DEPARTUR	RES (%) OF ANNUAL	
900 TRAINFAL		
R.G. Station : SI	IWANA	
800 -		
700 -	+ 80	
100 -		
600 -	+ 60	
500 -	+ 40 (%) + 20 DEBARTURE + 0 + -20 DEBARTURE	
400 - 001 -		
	Δ	
	+ -60	
	, U	
22019 2019 2019 2019 2019 2019 2019 2019		


Geomorphology	
	undulating planes, eolian plains,, interdunal flats and few abruptly
Geomorphic Unit	rising hills of rhyolite and granites

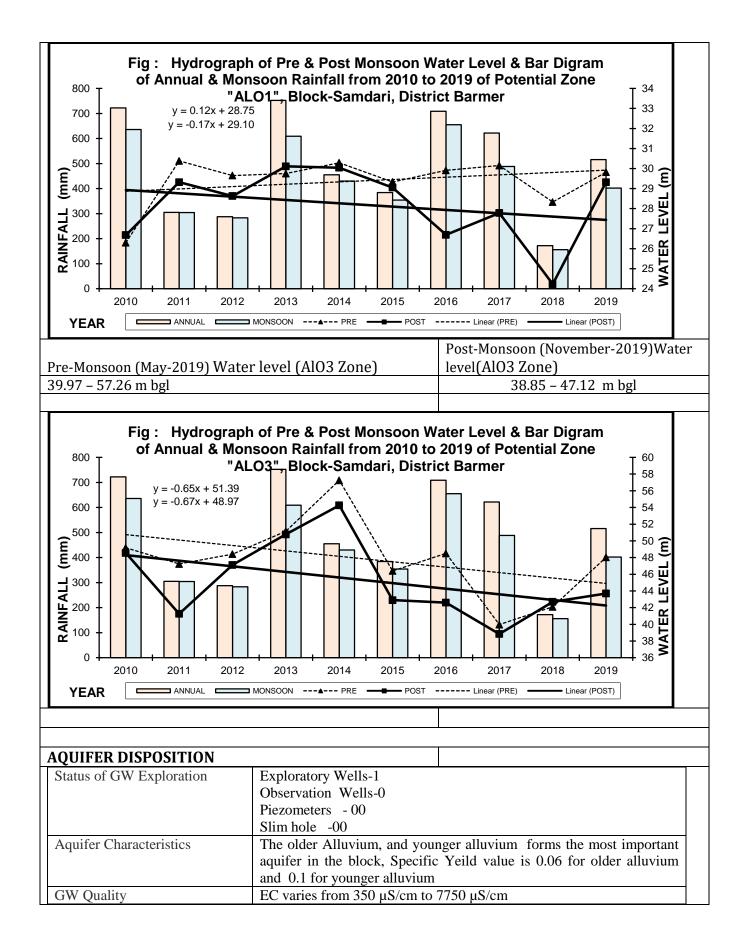
Geology	Older alluvium, younger alluvium
	and granites

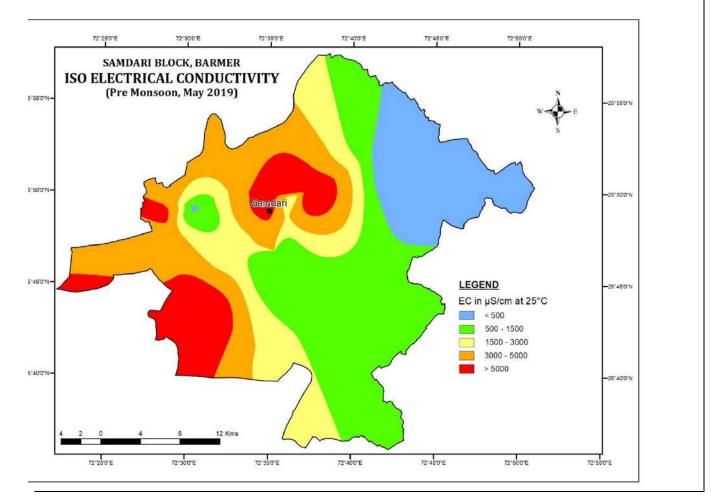


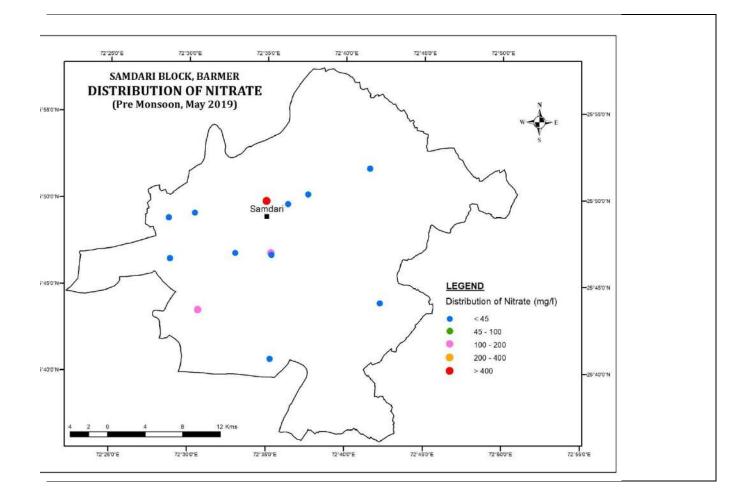

Drainage & Hydrology	
	Luni River flows across the west-east direction of block and few small rivulets joins the Luni river during
Drainage/Basin/Sub Basin	rainy season. Part of Luni River Basin
Hydrology	Alluvium is major aquifer.

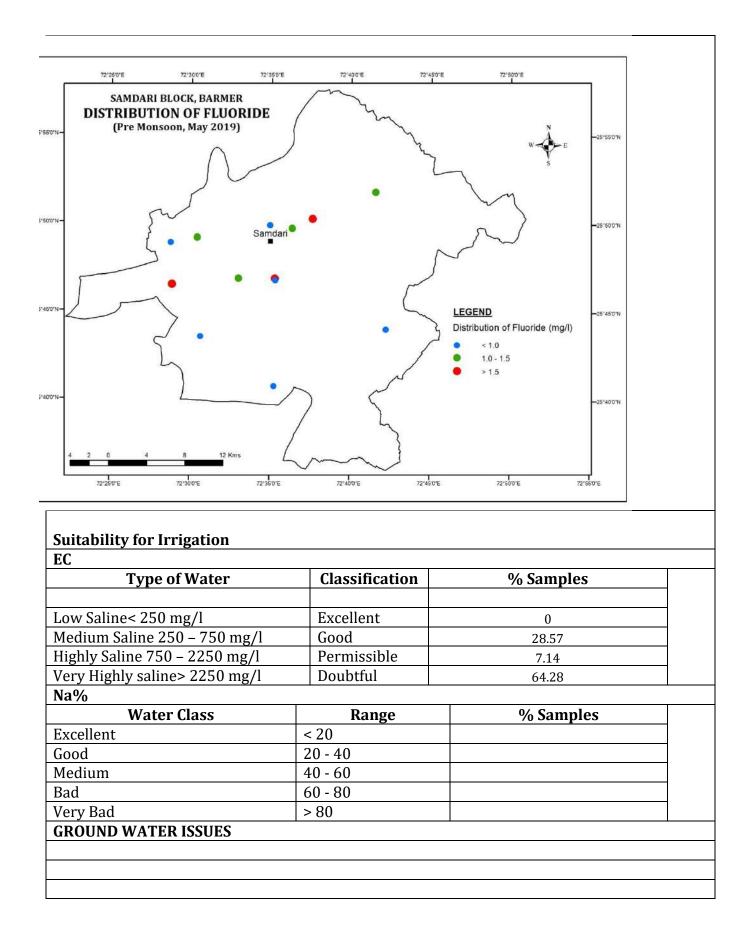


Ponds			
LAND USE, AGRICULTURE, IRRIGATIO	N & CDADDINC I) A TTED N	
Geographical Area in ha.		83687	
Forest Area in ha.		825	
Net Sown Area in ha.		46163	
Area sown more than once in ha.		6797	
Rainfed Crop			
Area under Irrigation (Net) in ha			
Rainfed	/ Surface Water	37952	
	Ground Water	6215	
	Other sources	0	
Season wise crop area in ha.			
	Kharif	Rabi	Zaid Rabi
sown	39269	6797	97


Irrigated	259	5859	97
Principal Crop Area (ha)		·	
Сгор Туре			
	Cereals	21525	
	Oil Seeds	5730	
	Pulses	15721	
	Masala	3035	
Hydrogeology			
Monitoring Stations			
	CGWB	2 (1 EW were m	onitored once)
	SGWD	10	
NAQ	UIM Key Wells	3	
WATER LEVEL BEHAVIOUR (of NHS mon	itoring points, l	EW and key wells	5)
		Post-Monsoon (N	lovember-2020)Water
Pre-Monsoon (May-2020) Water level		level	
4,2 (DW) – 48.03 (Pz)m bgl		3.1 (DW) -	- 43.7 (Pz) m bgl






	$(7 \circ n \circ v n \circ o)$
WATER LEVEL BEHAVIOUR	(Zone wise)
	Post-Monsoon (November-2019)Water
Pre-Monsoon (May-2019) Water level (AlO1 Zone)	level(AlO1 Zone)
26.30 – 30.28 m bgl	24.23 – 30.11 m bgl

CHEMICAL QUALIT	TY OF GROUND WATER		
Suitability for Drink	ing		
TDS	mg/l	No. of Samples	% of Samples
Fresh	0-3000	10	71.43
Brackish	3000-10000	4	28.57
Saline	> 10000	0	0
Brine	>35000	0	0
Hardness (mg/l)	Water Class	No. of Samples	% Sample
0 – 75	Soft	0	0
75 – 150	Moderately Hard	0	0
150 - 300	Hard	0	0
>300	Ver Hard	13	100
Nitrate	(mg/l)		
	< 45	10	71.42%
	> 45	4	28.57%
Fluoride	mg/l		
	1-1.5	10	71.42%
	>1.5	4	28.57%

1. Salinity		High EC and declining level trend	g water
1. Inland Salinity	area in sq.km		580.87
2. Ground Water Resource=Net			
availability - Draft			-5.4038
2. Rainfall and Drought		Mild	
		Droughts in	
		30% years	
		Normal	
		Droughts in	
		20% years	
		Severe	
		Drought in	
		7.00%	
		years	
3. Decadal Water Level Trend	(2009-2019)	Declining (-0.24)	
GROUND WATER RESOURCE	& EXTRACTION(GWRE-20	17)	
Total Annual Ground Water Rech	arge (MCM)		13.0982
Natural Discharge (MCM)			1.3098
Net Annual Ground Water Availa	bility (MCM)		11.7884
Existing Gross Ground Water Dra			17.1922
Provision for domestic and indus	trial requirement supply to		
2025(MCM)			4.2585
Stage of Ground Water Developm	ent %		145.84
Category		Over Exploited	
In-Storage Resource			
Total Area			25600 ha m
Aquifer		Older Alluvium	
Sy			0.06
Aquifer		Younger ALuuvium	
Sy		0.1	
GROUND WATER RESOURCE			
Artificial Recharge & Water Co			
Existing Structures constructe	d by State Govt.	244	
Farm Pond / Khet Talai		01	
Water Harvesting Structure		12	
Tankas		231	
SUPPLY SIDE MANAGEMENT			
Water Supply(mcm)			
Agricultural Supply -GW			14.0376
Domestic Supply - GW			3.1545
Total Supply			17.1922
	ge & Water Conservation Struc		

Type of Aquifer	
	Specific yield
"ALO1"	0.1
"ALO3"	0.06
Tanks (Nos) Capacity 50.000 lts	1972
Volume of water to be conserved (mcm)	0.0986
Volume of Sub surface Storage Space available for Artificial	142.46
Recharge (mcm)	
Surplus Surface water Availability (mcm)	0.62
DEMAND SIDE MANAGEMENT:	
DEMAND SIDE MANAGEMENT	
Irrigitation by permitted TW almost already using Micro irriga	tion techniques like irrigation
through Sprinkler. No more scope is feasible	
Cropping Pattern change: The sown crops are already less w	ater consuming crops like Bajra,
Mung etc. The change in cropping pattern is not feasible.	
EXPECTED BENEFITS	
	11.7884
Net Ground Water Availability (mcm) 2017	
Additional GW resources available after Supply side interventions (I	MCM)
	0.0986
Net Ground Water Availability after Supply side intervention	
	11.887
	17.1922
Existing Ground Water Draft for All Purposes (mcm)	
Existing Ground Water Draft for All Purposes (mcm) after	17.1922
intervention	
	145.84
Present stage of Ground Water Development (%)	
Projected Stage of Ground Water Development after Supply Sid and demand side interventions (%)	de 144.63

a .	11	•
Sin	dh	r1
om	un	

General Information

Goographical	1629.84 sq km
Geographical	1029.04 SQ KIII
area	
Basin/Sub basin	Luni Basin
Principal	Younger and Older Alluvium (Principle), Rhyolite
Aquifer system	
Major Aquifer	Younger and Older Alluvium (Principle)
System	
Normal Annual	303.6 mm
Rainfall	
Latitude	25.3175 to 25.8122
Longitude	71.6359 to 71.1769
Geology	• Alluvium (sand/ silt and clay alternating beds). Age: Recent to Sub-
	recent
	Rhyolites
Images / Photo	Geology Map
	Geomorphology Map
	Physiography Map

Aquifer Disposition

The major aquifers of the district are younger and older
Alluvium and Rhyolite
Exploratory Wells-6
Observation Wells-1
Piezometers - 03
Slim hole -00
The Alluvium (Older and younger) forms the most important
aquifer in the block, Specific Yeild value in the range of 0.10 to
0.06. (The data is annexed as Annexure)
04 NHS Wells (01 DW; 03 Pz)
08 points Wells (07 DW; 01 Tw)
9.4 m bgl to 40.8 m bgl (Pre monsoon)
10.2 m bgl to 41.5 m bgl
AS per the analysis of ground water sample collected from key
wells the pH varies from 7.72 to 8.46; EC varies from 3400 to
11130 μ S/cm at 25°C; Chloride varies from 709 to 3323.3 mg/l;
Nitrate from 0 to 2010 mg/l and Fluoride from 1.7 to 10.8 mg/l.
06 EW constructed.
Aquifer Potential Map of Sindhari
Key well and NHS point map of Sindhari Block
EC Map of Sindhari block

Nitrate Map of Sindhari block	

Management Plan

GW Management Issues	 Over exploitation and Decline in water levels. EC varies from 3400 to 11130 µS/cm at 25°C Area is devoid of sustainable fresh surface water bodies.
	• Area is devoid of sustainable fresh surface water bodies.
Ground Water Resources	
Ground Water Recharge	701.09 sq km
Worthy Area (Sq. Km.)	
Total Annual Ground Water Recharge (MCM)	30.0104
Natural Discharge (MCM)	3.001
Net Annual Ground Water Availability (MCM)	27.0094
Existing Gross Ground Water Draft for All uses(MCM)	26.8743
Provision for domestic and industrial requirement supply to 2025(MCM)	5.2469
Stage of Ground Water Development %	99.08
Category	Critical
Static Ground Water resources	Al01- 28.424 mcm Al03- 41.685 mcm
	Under MJSA Scheme, 01 Farm Pond and 955 tankas have been constructed in the Sindhari block of Barmer district
GW Management Plan	 Supply Side Management – Artificial Recharge No surplus water is available for artificial Recharge No supply side interventions proposed Construction of 2601 Tanka (Nos.) (Capacity 50,000 liters). Total rain water conserved through proposed tankas: 0.13005 mcm
	Demand Side Management – Use of Sprinklers

	Block	Irrigated Area by ground water (ha)	Irrigated Area proposed for irri through sprinkler	-	Water Saving by sprinkler in MCM (@0.08 m)	
	Jaisalmer					
	Demand Side	Management	– Change in crop	oing Patt	tern	
	Block	Irrigated Area of wheat (ha)	Irrigated Area (ha) under wheat proposed for Gram cultivation	-	Saving by in cropping in MCM m saving)	
	Sindhari					
AR & Conservation Possibilities	 Ground water resources should be augmented by means of artificial recharge through various techniques feasible in alluvial terrains. In alluvial area recharge techniques like Roof top/paved area rainwater harvesting for recharge to ground water in urban areas and construction of House hot tankas. Due to quality issues, emphasis on conservation structures will be given and no recharge can be given. 					

Summary of expected benefits of Management Plan

Block	Net G.W.	Additional	Total Net	Existing	Saving of	Net GW	Present stage	Projected
	Availability	Recharge	G.W.	G.W	Ground	draft after	of G.W.	stage of
	(MCM)	from RWH	Availability	Draft	water	interventions	development	G.W. Dev.
		&	after	for all	through	(MCM)	(%)	(%)
		conservation	intervention	purpose	demand			
		(MCM)	(MCM)	(MCM)	side			
					intervention			
					(MCM)			
Sindhari	27.0094	13.05	40.0594	26.8743			99.05	

Management Options:

Supply Side Management

- Low rainfall and no surplus runoff available and thus no recharge possible.
- Rain water can be used for conservation through household tankas

Demand Side Management

- Water saving ------ /yr possible through use of sprinklers.
- Already water deficit crops are sown so crop diversification or change in crop pattern cannot be used in the area

Other Options

- Huge brackish/saline ground water resources available
- Can be used after desalinisation

State	Rajasthan
District	Barmer
Block	Sindhari

General Information

Geographical	1629.84 sq km
area	
Basin/Sub basin	Luni Basin
Principal	Younger and Older Alluvium (Principle), Rhyolite
Aquifer system	
Major Aquifer	Younger and Older Alluvium (Principle)
System	
Normal Annual	303.6 mm
Rainfall	
Latitude	25.3175 to 25.8122
Longitude	71.6359 to 71.1769
Geology	• Alluvium (sand/ silt and clay alternating beds). Age: Recent to Sub-
	recent
	Rhyolites
Images / Photo	Geology Map
	Geomorphology Map
	Physiography Map

Aquifer Disposition

Aquifer Disposition	The major aquifers of the district are younger and older							
	Alluvium and Rhyolite							
Status of GW Exploration	Exploratory Wells-6							
	Observation Wells-1							
	Piezometers - 00							
	Slim hole -00							
Aquifer Characteristics	The Alluvium (Older and younger) forms the most important							
	aquifer in the block, Specific Yeild value in the range of 0.10 to							
	0.06. (The data is annexed as Annexure)							
CGWB Monitoring Status	04 NHS Wells (01 DW; 03 Pz)							
Key Well Monitoring Status	08 points Wells (07 DW; 01 Tw)							
Ground water level	9.4 m bgl to 40.8 m bgl (Pre monsoon)							
	10.2 m bgl to 41.5 m bgl							
GW Quality	AS per the analysis of ground water sample collected from key							
	wells the pH varies from 7.72 to 8.46; EC varies from 3400 to							
	11130 μ S/cm at 25°C; Chloride varies from 709 to 3323.3 mg/l;							
	Nitrate from 0 to 2010 mg/l and Fluoride from 1.7 to 10.8 mg/l.							
Aquifer Potential	06 EW constructed.							

Images1	Aquifer Potential Map of Sindhari
Images2	Key well and NHS point map of Sindhari Block
Image 3	EC Map of Sindhari block
Option Image	Nitrate Map of Sindhari block

Management Plan

GW Management Issues	• Over exploitation and Decline in water levels.
	• EC varies from 3400 to 11130 µS/cm at 25°C
	• Area is devoid of sustainable fresh surface water bodies.
Ground Water Resources	
Ground Water Recharge	701.09 sq km
Worthy Area (Sq. Km.)	
Total Annual Ground Water Recharge (MCM)	30.0104
Natural Discharge (MCM)	3.001
Net Annual Ground Water Availability (MCM)	27.0094
Existing Gross Ground Water Draft for All uses(MCM)	26.8743
Provision for domestic and industrial requirement supply to 2025(MCM)	5.2469
Stage of Ground Water Development %	99.08
Category	Critical
Static Ground Water resources	Al01- 28.424 mcm Al03- 41.685 mcm
	Under MJSA Scheme, 01 Farm Pond and 955 tankas have been constructed in the Sindhari block of Barmer district
GW Management Plan	 Supply Side Management – Artificial Recharge No surplus water is available for artificial Recharge No supply side interventions proposed Construction of 2601 Tanka (Nos.) (Capacity 50,000 liters). Total rain water conserved through proposed tankas: 13.05 mcm

	Demand Side I	Management	– Use of Sprinkle	rs		
		Irrigated Area by ground water (ha)	Irrigated Area proposed for irri through sprinkler	-	Water Saving by sprinkler in MCM (@0.08 m)	
	Jaisalmer					
	Demand Side I	Management	– Change in crop	ping Pat	tern	
	Block	Irrigated Area of wheat (ha)	Irrigated Area (ha) under wheat proposed for Gram cultivation	1	0,	
	Sindhari					
AR & Conservation Possibilities	Ground water resources should be augmented by means of artificial recharge through various techniques feasible in alluvial terrains. In alluvial area recharge techniques like					
	Roof top/pa ground wate tankas. Due	ved area ra er in urban to quality i	inwater harvest	ting for ruction is on co	r recharge to n of House hold onservation	

Summary of expected benefits of Management Plan

Block	Net G.W.	Additional	Total Net	Existing	Saving of	Net GW	Present stage	Projected
	Availability	Recharge	G.W.	G.W	Ground	draft after	of G.W.	stage of
	(MCM)	from RWH	Availability	Draft	water	interventions	development	G.W. Dev.
		&	after	for all	through	(MCM)	(%)	(%)
		conservation	intervention	purpose	demand			
		(MCM)	(MCM)	(MCM)	side			
					intervention			
					(MCM)			
Sindhari	27.0094	13.05	40.0594	26.8743			99.05	

Management Options:

Supply Side Management

- Low rainfall and no surplus runoff available and thus no recharge possible.Rain water can be used for conservation through household tankas

Demand Side Management

- Water saving ------ /yr possible through use of sprinklers.
- Already water deficit crops are sown so crop diversification or change in crop pattern cannot be used in the area

Other Options

- Huge brackish/saline ground water resources available •
- Can be used after desalinisation