

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report

on

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN

Bhokardan Taluka, Jalna District, Maharashtra

Part-I

मध्य क्षेत्र, नागपुर Central Region, Nagpur Government of India Ministry of Water Resources, River Development & Ganga Rejuvenation CENTRAL GROUND WATER BOARD

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN OF BHOKARDAN TALUKA, JALNA DISTRICT MAHARASHTRA

CENTRAL REGION, NAGPUR May 2016

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN OF BHOKARDAN TALUKA, JALNA DISTRICT, MAHARASHTRA

CONTENTS

1	INTRODUCTION					
1.1	Objective and Scope					
1.2	Approach and Methodology					
1.3	Study area					
1.4	Data Adequacy and Data Gap Analysis:					
1.5	Rainfall and Climate					
1.6	Physiography					
1.7	Geomorphology					
1.8	Land Use, Agriculture, Irrigation and Cropping Pattern					
1.9	Soil					
1.10	Hydrology and Drainage					
1.11	Prevailing Water Conservation and Recharge Practices					
2	DATA COLLECTION AND GENERATION					
2.1	Data Collection and Compilation					
2.2	Data Generation					
3	DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING					
3.1	Hydrogeology					
3.2	Occurrence of Ground Water in Basalt					
3.3	Water Level Scenario					
3.4	Ground Water Quality					
3.5	3-D and 2-D Aquifer Disposition					
3.6	2-D Aquifer Disposition					
3.7	Aquifer Group Thickness and Demarcation					
3.8	Aquifer Parameters and Yield Potentials					
3.9	3D Aquifer Disposition					
4	GROUND WATER RESOURCES					
4.1	Ground Water Resources – Aquifer-I					
4.2	Ground Water Resources – Aquifer-II and Aquifer-III					
5	GROUND WATER RELATED ISSUES					
5.1	Declining Water Levels					
5.2	Water Scarcity					
6	MANAGEMENT STRATEGY					
6.1	Aquifer Management plan for Bhokardan Taluka					
7	SUM-UPAND RECOMMENDATION					
7.1	Tangible and Non-Tangible benifits					

List of Figures

Fig.1.1: Location Map of the area Bhokardan Taluka, Jalna District	
Fig.1.2: Physiography, Bhokardan Taluka, Jalna District	
Fig.1.3: Geomorphology, Bhokardan Taluka, Jalna District	
Fig.1.4: Land Use, Bhokardan Taluka, Jalna District	
Fig.1.5: Soil, Bhokardan Taluka, Jalna District	
Fig.1.6: Drainage, Bhokardan Taluka, Jalna District	
Fig. 2.1 a-f Soil infiltration charts	
Fig. 3.1: Hydrogeology, Bhokardan Taluka, Jalna District	
Fig. 3.2: Premonsoon Depth to Water Level (May 2014)-Aquifer-I, Bhokardan Taluka, Jalna District	
Fig. 3.3: Postmonsoon Depth to Water Level (Nov. 2014)-Aquifer-I	
Fig. 3.4: Premonsoon Depth to Water Level (May 2015)-Aquifer-I	
Fig. 3.5: Postmonsoon Depth to Water Level (Nov. 2015)-Aquifer-I	
Fig. 3.6: Premonsoon Depth to Water Level (May 2015) – Aquifer II	
Fig. 3.7: Postmonsoon Depth to Water Level (May 2015) –Aquifer II	
Fig. 3.8: Premonsoon Decadal Water Level Trend (2005-14)	
Fig. 3.9: Postmonsoon Decadal Water Level trend (2005-14)	
Fig. 3.10: Ground Water Flow, BhokardanTaluka.	
Fig. 3.11: Auifer I, Iso Conductivity, BhokardanTaluka.	
Fig. 3.12: Aquifer II , Iso Conductivity, BhokardanTaluka.	
Fig. 3.13: 3-D Fence Diagram, BhokardanTaluka.	
Fig. 3.14: Depth of Occurance and fractured thickness of Aquifer-I, BhokardanTaluka.	
Fig. 3.15: Depth of Occurance and fractured thickness of Aquifer-II, BhokardanTaluka.	
Fig. 3.16 : Aquifer Group Thickness (Thickness of Granular /Fracturd Zones), Bhokardan Taluka	
Fig. 3.17: Aquifer-I, Yield potential, Bhokardantaluka.	
Fig. 3.18: Aquifer-II, Yield potential, Bhokardantaluka.	
Fig. 3.19:Scematic 3-D Aquifer Disposition of Basalt Aquifer.	
Fig. 4.1:Ground Water Resource and Categorisation.	
Fig. 5.1:Double Crop Area, Bhokardan Taluka, Jalna District	
Fig. 6.1: Present Ground Water Resources and draft scenario in Bhokardantalukas.	
Fig. 6.2: Management Plan to Generate Additional Resource in Bhokardantalukas.	
Fig. 6.3: Supply Side Interventions for proposed Artificial Recharge Structures in Bhokardantaluka.	
Fig 6.4 Location of Proposed additional area of 40.67 sq.km under assured GW irrgation in	
Bhokardan Taluka.	

List of Tables

Table.1.1: Data adequacy and Data Gap analysis	
Table.1.2:Details of medium and bigger minor irrigation Structures and their comman areas	
Table – 1.3: Details of Water Conservation Structures constructed by State Govt.	
Table- 2.1: Salient features of Soil Infiltration tests	
Table-2.2: Salient Features of dugwell pumping test	
Table 3.1: Seasonal fluctuation (May-14 vs Nov-14) of water level with percentage	
Table 3.2 : Aquifer wise ranges of chemical constituents in BhokardanTaluka.	
Table 3.3 Aquifer Characteristic of BhokardanTaluka, Aurangabad district	
Table-4.1: Ground Water Recharge Worthy Areas for Resource Estimation	
Table-4.2: Recharge Components evaluated for Resource Estimation	
Table- 4.3: Ground Water Resources Availability, Draft and Stage of GW Development.	
Table- 4.4: Ground Water Resources of Aquifer-II.	
Table 6.1: Aquifer management plan of Bhokardan.	

Annexures

Annexure.I: Rainfall Analysis	
Annexure.II: Salient Features of Ground water exploration in BhokardanTaluka	
Annexure.III: Aquifer-I Depth to water level data, BhokardanTaluka	
Annexure.IV: Aquifer-I Ground water quality,BhokardanTaluka	
Annexure. V: Microlevel Hydrogeological Data	
Annexure.VI: Soil Infiltation Test Data, BhokardanTaluka	
Annexure.VII:Aquifer-II Depth to water level data, BhokardanTaluka	
Annexure.VIII: Aquifer-I Pre and Post water level trend, BhokardanTaluka	
Annexure.IX: Aquifer-II Ground water quality, BhokardanTaluka	
Annexure. X: Location of proposed Check Dam in Bhokardan	
Annexure. XI: Location of proposed Percolation Tank in Bhokardan	

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN OF BHOKARDAN TALUKA, JALNA DISTRICT, MAHARASHTRA

1. INTRODUCTION

In XII five year plan, National Aquifer Mapping (NAQUIM) had been taken up by CGWB to carry out detailed hydrogeological investigation on toposheet scale of 1:50,000. The NAQUIM has been prioritised to study Over-exploited, Critical and Semi-Critical talukas as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulation mechanism has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management planswill provide the **"Road Map"** for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the State Govt. for its effective implementation.

1.1 Objective and Scope

Aquifer mapping itself is an improved form of groundwater management – recharge, conservation, harvesting and protocols of managing groundwater. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e, the aquifer map and management plan. The activities under NAQUIM are aimed at:

- identifying the aquifer geometry,
- aquifer characteristics and their yield potential
- quality of water occurring at various depths,
- aquifer wise assessment of ground water resources
- preparation of aquifer maps and
- Formulate ground water management plan.

This clear demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a **"Road Map"** to systematically manage the ground water resources for equitable distribution across the spectrum.

An area of 43,058 sq.km. was initially envisaged to be covered during the XII plan, which has been increased to 49,000 sq.km. to cover the gap areas as well as recent drought affected areas of Latur district.

1.2 Approach and Methodology

The ongoing activities of NAQUIM include toposheet wise micro-level hydrogeological data acquisition supported by geophysical and hydro-chemical investigations supplemented with ground water exploration down to the depths of 200 / 300 meters.

Considering the objectives of the NAQUIM, the data on various components was segregated, collected and brought on GIS platform by geo-referencing the available information for its utilisation for preparation of various thematic maps. The approach and methodology followed for Aquifer mapping is as given below: Compilation of existing data (Central & State Govt.)

1.3 Study area

Keeping in view the current demand and supply and futuristic requirement of water, Central Ground Water Board has initiated the National Aquifer Mapping Programme (NAQUIM) in India during XII five year plan, with a priority to study Over-exploited, Critical and Semi-Critical Taluka. Out of which, Bhokardan taluka have been selected for NAQUIM having area of 1273 sq. kmin the year 2014-15. The Location map of the study area is presented in **Fig.1.1**. ThisTalukais categorized as Safeand taken up on request of State Government.

Fig1.1: Location map, Bhokardan Taluka of Jalna district

1.4 Data Adequecy and Data Gap Analysis.

The available data of the Exploratory wells drilled by Central Ground Water Board,Central Region, Nagpur, Geophysical Survey carried out in the area, Ground water monitoring stations and ground water quality stations monitored by Central Ground Water Board were compiled and analysed for adequacy of the same for the aquifer mapping studies. In addition to these the data on ground water monitoring stations and ground water quality stations of the State Govt. (GSDA) was also utilised for data adequacy and data gap analysis. The data adequacy and data gap analysis was carried out for each of the quadrant of the toposheets falling in the study area is mainlyin respect of following primary and essential data requirements:

ExploratoryWells

GeophysicalSurveys

Ground Water Monitoringand

Ground Water Quality

After taking into consideration, the available data of Ground Water Exploration, Geophysical survey, Ground Water Monitoring and Ground Water Quality, the data adequacy is compiled and the summarised details of required, existing and data gap of Exploratory wells, Ground Water monitoring and Ground water quality stations is given in **Table 1.1**.

EXPLOR	ATORY DA	ΔTA	GEOPHYSICAL DATA			GWMONITORING DATA			GWQUALITYDATA		
Req.	Exist.	Gap	Req	Exist.	Gap	Req.	Exist.	Gap	Req.	Exist.	Gap
8	14	0	63	28	37	21	46	0	21	46	0

Table: 1.1 Data adequacy and Data Gap analysis

1.5 Rainfall and Climate

Agriculture in the area depends mainly on the rainfall from south-west monsoon. The area experiences the sub-tropical to tropical temperate monsoon climate. It was observed that the distribution of rainfall is more or less uniform over the area. The details of Rainfall analysis is given in **Annexure-I**. The rains usually start in the second week of June and last till the end of September. The intensity of rainfall is the highest in July. On the basis of rain fall analysis it is observed that:

- A total of 50 years of data has been used for Bhokardan taluka (1951-2015).
- The normal annual rainfall of Bhokardan taluka is 641.6 mm.
- During the year 2015, normal rainfall was recorded.
- The coefficient of variation in rainfall is observed as 31%.
- Normal rainfall has been received for 60 % of years at Bhokardan taluka of the total years, whereas excess rainfall has been received for 22% of years.
- The taluka have suffered moderate drought conditions in 8 % of years. Wheras, severe drought in 10% of the years.

The long term trend of rainfall was calculated and it is observed that there is a falling trend in Bhokardan taluka @ 1.853 mm/year.

Temperature during rainy season ranges from 21 to 30° C. In winter season temperature fall appreciably and range from 10 to 25° C. In nights temperature range is 20 to 25° C with privilege of cool breeze.

The air is generally high over the district except during the southwest monsoon when the relative humidity is high. The summer months are the driest when the relative humidity is generally between 20 and 25 percent in the afternoon.

Winds are generally light to moderate with increase in speed during the later half of the hot season and in monsoon season. The winds blow predominantly from directions between west and north during the hot season. They are mostly from directions between southwest and northwest during the southwest monsoon season.

1.6 Physiography

The area can be broadly divided into four physiographic units i.e., the Ajanta Hill range, undulating plateau, Denudational slope and older flood plain. The altitude in Bhokardan taluka range between 534to 710 mamsl. The major older flood plain is observed along Purna River. The physiography of the area is shown in **Fig. 1.2**

Fig. 1.2: Physiography, Bhokardan Taluka, Jalna District

1.7 Geomorphology

Geomorphologically, the area comprises of varied topographic features and landscapes consisting of moderately to gently sloping undulated topography. Major part of the taluka is occupied by slightly dissected to weathered plateau. The northern part of the area is occupied by Ajanta and Satmala hill ranges. A very small part of the area(North Eastern part)falls under the Tapi basin with the general slope towards Northeast. Rest of the taluka is having general slope towards major drainages of Godavari basin. The geomorphology of the area is shown in **Fig. 1.3**

Fig. 1.3: Geomorphology, Bhokardan Taluka, Jalna District

1.8 Land Use, Agriculture, Irrigation and Cropping Pattern

The landuse details and the thematic map available with the MRSAC, Nagpur has been collected and analysed with reference to the present agricultural practices, various land use etc. It has been observed that the major parts of the area are covered by agricultural land. Forest covers very little area in the northern part. The built up area is reflected wherever settlements have come up. The thematic map on land use is shown in **Fig. 1.4**

Fig. 1.4: Landuse, Bhokardan Taluka, Jalna District

1.9 Soil

Soil plays a very important role in the agricultural activities and forest growth of the area. The fertility of the soil from agricultural point of view depends upon the texture and structure which controls the retaining and transmitting capacity of moisture and various nutrients such as nitrogen, phosphorous and potassium present in the soil. The formation of the soil in the area is influenced by the climate, geology, vegetation and topography. The soil data and the thematic map of the area available with the MRSAC, Nagpur has been collected and analysed. It has been observed that the major part of the area is occupied by clayey and sandy soil. Maximum area of the taluka is covered by Clayey loamy soil with extremely shallow to very shallow depth. The Sandy clayeysoil is observed all along the major drainages. The soil varies both in texture and depth. Deep soils occur along plains of lower elevation, depressions and along river banks. These are dark black cotton soils. The thematic map on the soil distribution in the study area is shown in **Fig.1.5.**

Fig. 1.5: Soil, Bhokardan Taluka, Jalna District

1.10 Hydrology and Drainage:

1.10.1 Hydrology

There are one major, onemedium and three bigger minor irrigation projects in the Bhokardan taluka. However, the State Govt. constructed a number of minor irrigation structures. As per the Irrigation Department, Govt. of Maharashtra, 8403 ha land was irrigated in Bhokardan Taluka through these irrigation structures. The details of irrigation projects are presented as **Table 1.2**.

SI No.	Name	Storage Capacity (MCM)			Command area (Ha)			
		Gross	Live	Length	Width	Discharge	Gross	Ву
				(Km.)	(m)	(Cumec)		Latest
								Date
1	Chandai Eko	2.82	2.45	4.5		465.39	440	396
2	Banegaon	6.98	6.03	left (6000)		974.26	860	773
				right (3000)				
3	Palashkheda	9.01	8.01	left (10000)		929.02	1378	1240
				right (5000)				
4	Jui (Major)	6.03	0.52	16.65			3296	2636
5	Dhamna (Medium)	10.72	Foundation Level	16.03			2429	1973

Table:1.2 Detalis of Major, Medium & Bigger minor structures and their command areas.

(Source: Irrigation Department, Govt. of Maharashtra)

1.10.2 Drainage

Major Part of the area falls under the Godavari basin. The river Purna flows from the southern-central part of the areaand meets river Godavari in the neighbouring district. The river Khelna and Girja are other important tributaries of river Purna which flows through the area. The drainage map of Bhokardan taluka is shown in **Fig. 1.6**. A very small part of the arealocated in North Eastern part fallsunder the Tapi basin. The general slope of the area is towards Southeast. The drainage pattern in the area is sub-dendritic to dendritic. Depending on the drainage and geomorphology, thistalukas has been divided into 7 watersheds.

Fig. 1.6: Drainage, Bhokardan Taluka, Jalna District

1.11 Prevailing Water Conservation and Recharge Practices

The State Govt. has also constructed number of water conservation structures such as MI tanks (8), KT Weirs (54), percolation tank (92), UG Bandhara (83) etc. The area irrigated through these structures is 5521 ha. The details are presented in **Table 1.3**.

Table – 1.3: Details of Water Conservation Structures constructed by State Govt.

Taluka	Minor Projets	ктw	РТ	UG Bandhara/ Stoarage Tanks	Irrigation Wells	Net Area Irrigated (Ha)	Gross area irrigated
Bhokardan	8	54	92	83	399	5521	10508

2. DATA COLLECTION AND GENERATION

The data collection from various agencies such as GSDA, Irrigation, Agriculture, Revenue, etc., was carried out. The data was collected and then compiled and validated so as to remove the discrepancies and make it utilisable on GIS platform.

2.1 Data Collection and Compilation

The data collection and compilation for various components was carried out as given below.

- Hydrogeological Data Current and historical water levels along with water level trend data of 46 monitoring wells representing shallow aquifer of CGWB.
- Hydrochemical Data Ground water quality data of 40 monitoring wells of CGWB representing shallow aquifer and data of 12 exploratory wellsrepresenting deeper aquifer.
- Exploratory Drilling Ground water exploration data of 14 exploratory wells of CGWB down to the depth of 200 m bgl.
- Hydrology Data Data on various irrigation projects, their utilisation status from Irrigation Dept.
- Hydrometeorological Data Long term rainfall data for each of the taluka from Revenue Dept.
- Irrigation Data Data on land under surface and ground water irrigation from Irrigation Dept. and Agriculture Dept.
- Water Conservation Structures Numbers, type and storage potential of water conservation structures prevailing in the area.
- Cropping Pattern Data Data on prevailing cropping pattern from Agriculture Dept.

2.2 Data Generation

Based on the data collected and existing data available with CGWB, data adequacy was worked out to decide the scope and extent of further data generation. The data requirement was optimised and considering the predominance of basaltic aquifers in the area, it was decided that the existing hydrogeological data is insufficient to generate the desired outputs of aquifer maps and management plan.

2.2.1 Ground Water Exploration

The drilling at Nine sites was done down to the depth ranges from 196.50 to 200 mbgl by deploying DTH/REL-06/119 to assess the lithological disposition of shallow aquifer (Aquifer-I) and deeper aquifer (Aquifer-II). The deeper aquifers are encountered in depth of 19.50 - 22.50, 178.40 - 181.40, however their yield was negligible, whereas the water level was recored as more than 100 mbgl. The details of exploratory wells are given in **Annexure-II**.

2.2.2 Ground Water Monitoring Wells

A total of 46 key observation wells (KOW) were established in addition to the existing GWMW to assess the ground water scenario of shallow aquifer (Aquifer-I) of the area. The depth of these dug well varies from 2.8 -26.22 mbgl. The pre monsoon depth to water level (May 2015) in these wells varies from 0.01 (Siphora) to 18.19 mbgl (Borgaon Taru). The post monsoon depth to water level (Nov. 2015) in

the dug well varies from 0.10 (Siphora and Avana) to 15.05 mbgl (Borgaon Taru). The details of water level data are given in **Annexure-III.**

2.2.3 Ground Water Quality

A total of 46 water samples were collected in addition to the existing GWMW to assess the ground water quality of shallow aquifer (Aquifer-I) of area. The EC values range between 328 to 2870 µmhos/cm. except few locations where Fluoride is more than 1.5 mg/I, rest of the area is having fluoride within desirable limt. Nitrate concentration more than 45 mg/I has been observed in alomost all the samples, due to anthropogenic activities. The details of chemical analysis is given in **Annexure-IV**.

2.2.4 Micro Level Hydrogeological Data Acquisition

In addition to the 46 KOW's, micro level hydrogeological data were also collected from 263 locations for deciphering the sub-surface lithological disposition, water level scenario and other hydrogeological inputs such as weathered thickness, EC, etc., of shallow aquifer (Aquifer-I). The details of dugwells inventoried for micro level data acquisition are given in **Annexure-V**.

2.2.5 Soil Infiltration Tests

To estimate the actual rate of infiltration of various soil cover and their impact on recharge to ground water, 6 infiltration tests have been conducted at Mehegaon, Jomala, Kothakoli, Nalni Budrukh, Baranjala, Janephalon various soil types. The data has been analyzed and the salient features of the infiltration tests are presented in **Table 2.1**, whereas the data is presented in **Annexure-VI** and the plots of soil infiltration tests are presented in **Fig. 2.1a to 2.1f**. The duration of the test ranged from 105 to 165 minutes, the depth of water infiltrated varied from 0.40 cm to 2.60 cm and the final infiltration rate in the area ranged from 0.80 cm/hr at Nalni Budrukh to 6.20 cm/hr at Baranjla Lokhande.

S.	Village	Date	Duration	Water Level (cm	Final Infiltrated	Final
No.			(min)	agl)	Water Depth	Infiltration
					(cm)	Rate (cm/hr)
1.	Mehegaon	27.02.16	150	20	2.20	4.40
2.	Jomala	29.02.16	105	17	2.60	5.20
3.	Kothakoli	27.02.16	150	15	0.70	1.40
4.	Nalni Budrukh	29.02.16	165	20	0.40	0.80
5.	Baranjala	28.02.16	165	17	3.10	6.20
	Lokhande					
6.	Janephal	29.02.16	150	16	1.50	3.00

Table 2.1: Sa	lient Features	of Infiltration	Tests
		•••••••	

Fig. 2.1 f

2.2.6 Specific Yield Tests

To estimate the aquifer parameters of shallow aquifer (Aquifer-I) in the area, 6 pumping tests on open dug wells have been conducted. The data has been analyzed by Kumarswamy method, the salient features of pumping tests are given in **Table 2.2**. The discharge of the wells ranged from 240 to 396 lpm for pumping duration of 60 to 300 minutes.

The drawdown observed at the end of the pumping ranged from 1.01 to 4.4 m and the residual drawdown for the 1st minute was observed to be ranging from 0.07 to 3.55 m. The aquifer parameter values estimated by Kumarswamy method are observed to be well within the general range of values for weathered and jointed basalt i.e., the transmissivity value was observed from 97.21 to 9799.48 m²/day, whereas the specific yield 0.020% to 0.094%, whereas specific capacity values ranged from 81.82 to 267.33 lpm/m.

S.	Village	Diameter	Depth	SWL	Q	Pt	DD	RDD	С	т	Sy
No.		(m)	(mbgl)	(mbgl)	(lpm)	(min)	(m)	(m)	(lpm/m)	m2/day	
1	Mahegaonwadi	4.5	16	4.3	300	120	3.2	2.09	93.75	202.13	0.085
2	Jomala	7.4	16	14.3	270	60	1.01	0.25	267.33	9799.48	0.020
3	Nalni	4.6	15	9.85	240	120	1.05	0.59	228.57	352.40	0.090
4	Janephal			5.5					240.06	4104 27	0.061
	Dabhadi	7	8		396	150	1.59	0.07	249.00	4194.37	0.061
5	Khandala	7	17	5.55	360	300	4.4	3.55	81.82	334.17	0.094
6	Adgaon	5	22.16	17.5	300	110	1.78	1.49	168.54	97.21	0.055

Table 2.2: Salient features of pumping tests - shallow aquifer (dug well) using Kumarswamy method

Here, SWL – Static Water Level, Q – Discharge, Pt - Pumping duration, D/D – Drawdown, RDD - Residual drawdown, C - Specific Capacity, T – Transmissivity, Sy - Specific Yield

However, the thematic layers for various themes needed to be procured and the following layers were procured from MRSAC. These thematic layers supported the primary database and provided precise information to assess the present ground water scenario and also to propose the future management plan.

Drainage Physiography Geomorphology Soil Land Use – Land Cover

3 Data Interpretation, Integration and Aquifer Mapping

The data collected and generated on various parameters viz., water levels, water quality, exploration, aquifer parameters, geophysical, hydrology, hydrometeorology, irrigation, thematic layers was interpreted and integrated. Based on this the various maps on hydrogeology, aquifer wise water level scenario both current and long term scenarios, aquifer wise ground water quality, 2-D and 3-D sub surface disposition of aquifers by drawing fence and lithological sections, aquifer wise yield potential, aquifer wise resources, aquifer maps were generated and as discussed in details.

Fig. 3.1: Hydrogeology, Bhokardan Taluka, Jalna District

3.1 Hydrogeology

Hydrogeologically, the area occupied by Deccan traps with inter-trappean beds (**Fig. 3.1**). Eight basaltic lava flows of 'aa' type are exposed within the altitude of 544 to 690m.amsl in the area. Each lava flow comprises 3 units namely top vesicular basalt followed by fractured/massive basalt and bottom massive unit. Recent Alluvium is occupied along the Purna River and its major tributaries.

The yields of wells are functions of the permeability and transmissivity of aquifer encountered and varies with location, diameter and depth etc. There are three types of ground water structures in the area i.e. dugwells, borewells and dug cum borewells (DCB). Their yield characteristics are described below.

Dugwells are generally used for both domestic water supply and irrigation purposes in this area. It is observed that the dugwells varying from 5.60 m to around 30 m in depth in basaltic lava flows can sustain assured water supply for domestic needs of about 500 people throughout the year. The yield of dugwells in basalt for irrigation purposes varies from 20 to 90 m³/day. However, dugwells in alluvium and wells located in favourable area in basalt can yield upto 100 to 250 m³/day.

Ground water is predominantly used for irrigation. State government has drilled large number of borewells fitted with hand pumps and electric motors for rural drinking water purposes in the area. Yields of borewells range from 90 to 150 lph. The ground water development in thistaluka is mostly through dugwells.

3.2 Occurrence of Ground Water in Basalt

The basaltic lava flows of Upper Cretaceous to Lower Eocene age occur in the area and consists of two units namely lower massive unit and upper vesicular unit occurring in layered sequence. The various flows are generally separated by bole/inter-trappean beds normally consists of clay.

Ground water occurs in unconfined state in shallow aquifer tapped by dugwells of 10 to 30 m depth, water levels are ranging from 1.25 to 19.00 m bgl and the yield of dug wells is obcerved 10 to 50 m³/day. The deeper aquifer is also present in the area, which is being tapped by borewells upto 200 m bgl. The water level in deeper aquifer ranges from 11.4 to > 50 m bgl.

3.3 Water Level Scenario

3.3.1 Aquifer I-Depth to water level (May 2014)

The depth to water levels in Bhokardan Taluka during May 2014 ranges between 1.25 (Siphora) and 19.00 (Borgaon Taru) m bgl. Depth to water levels during premonsoon shows water level within 5 m bgl and observed in central and eastern part all along the major drainages, and also as isolated paches in north central and southern part, whereas water levels between 5-10 mbgl is observed in 60% area in thistaluka. The pre-monsoon depth to water level map is given in **Fig.3.2** and the water level data is presented as **Annexure-III.**

Fig. 3.2. Premonsoon Depth to Water Level (May 2014)

Fig. 3.3.Postmonsoon Depth to Water Level (Nov 2014)

3.3.2 Aquifer I-Depth to water level (Nov 2014)

The depth to water levels in BhokardanTaluka during Nov 2014 ranges between 0.00 (Siphora) and 11.42 (Longaon) m bgl. Except small isolated patch in north western part, where the water level is more than 10 mbgl, rest of the area shows depth to water levels within 10 m bgl. The postmonsoon depth to water level map is given in **Fig.3.3**.

3.3.3 Aquifer I-Depth to water level (May 2015)

The depth to water levels in BhokardanTaluka during May 2015 ranges between 0.1 (Siphora) and 18.19 (Borgaon Taru) m bgl. Depth to water levels during premonsoon lies within 10 m bgl and observed all along major drainages from north to southern. Whereas, water levels between 10-20 mbgl is observed in 40% area in western and southern periphery of the Taluka. The premonsoon depth to water level map is given in **Fig.3.4**.

3.3.4 Aquifer I-Depth to water level (Nov 2015)

The depth to water levels in BhokardanTaluka during Nov 2015 ranges between 0.1 (Siphora and Avana) and 15.05 (Borgaon Taru) m bgl. Except isolated patch in western part, where water level is more than 10 mbgl, rest of the area shows depth to water levels during postmonsoon within 10 m bgl. The postmonsoon depth to water level map is given in **Fig.3.5**.

Fig. 3.4.Pre-monsoon Depth to Water Level (May 2015) Fig. 3.5.Postmonsoon Depth to Water Level (Nov 2015)

3.3.5 Aquifer-II- Depth to water level (May-2015)

The pre-monsoon (May 2015) in Aquifer-II, the deeper DTW (>50 m bgl) has been observed in eastern part and SE part of the Bhokardan taluka. The Shallow DTW (upto 20 m bgl) has been observed in northern part of the area, particularly in the vicinity of the hilly terrain. The water levels between 20-30 mbgl has been observed in northernpart and isolated paches in southern part followed by the water level 30-40 mbgl. The pre-monsoon depth to water level for Aquifer –II is given in **Fig.3.6** and the details are presented in **Annexure VII**.

Fig. 3.6. Aquifer-II, Premonsoon Depth to Water Level (May 2015) Fig. 3.6. Aquifer-II, Postmonsoon Depth to Water Level (Nov 2015)

3.3.6 Aquifer-II- Depth to water level (Nov-2015)

The post-monsoon (Nov 2015) in Aquifer-II, the deeper DTW (>50 m bgl) has been observed in the extreme south west tip of the Bhokardan taluka. The Shallow DTW (upto 10 m bgl) has been observed in northernpart of the area, particularly in the vicinity of the hilly terrain. The water levels between 20-30 mbgl has been observed in central part extending from east to west followed by the water level 30-40 mbgl. The water levels between 40-50 mbgl has been observed in SE part with some isolated paches in NW part of the taluka. The post-monsoon depth to water level for Aquifer –II is given in **Fig.3.7**

3.3.7 Water Level Fluctuation

The water level measured during pre and post monsoon period (2014) was used to compute the seasonal fluctuation. In the area, number of wells and their percentage falling in each fluctuation range is presented in **Table 3.1**.

No. of key wells	Seasonal fluctuation in water level m with %						
	0 to 2	2 to 4	4 to 6	6 to 8	8 to 10	> 10 m	
16	18	11	8	6	1	2	
40	(39.13%)	(23.91%)	(17.39%)	(13.04%)	(2.17 %)	(4.34%)	

Table 3.1: Seasonal fluctuation (May-14 vs Nov-14) in water level with percentage

It is observed that minimum water level fluctuation was observed at Bhokardan (0.04m) while maximum water level fluctuation was observed at Nimgaon (16.83m). The water level fluctuations are grouped under three categories and are discussed under.

0-2 m and 2-4 m	-	Less water level fluctuation
4-6 m and 6-8 m	-	Moderate water level fluctuation
8-10 m and >10 m	-	High water level fluctuation

Area with less water level fluctuation, about 63.04% wells (29wells) were showing the water level fluctuation less than 4m. The area with less water level fluctuation is observed in Dhavada, Gosegaon, Nanja, Khandala, Takli, Talegaon, Ekiphal, Hasnabad, Barangala Lokhande, Barangala Sable, Takli, Kedarkheda, Janephal, Chandai Thombri, Nalni Buzurg, Banegaon,

Palashkheda, Rajur, Longaon, Adgaon, Jalgaon, Pokhari, Valsawangi, Anva, Karajgaon, Paradh Badi, Sawangi, Bhokardan, Siphora in NE to SE part of the taluka.

Area with moderate water level fluctuation, about 30.43% wells (14 wells) were showing the water level fluctuation between 4 and 8m.In Bhokardan taluka it is observed in central part ofthe taluka.

Area with high water level fluctuation, about 6.52 % wells (3 wells) were showing the water level fluctuation more than 8m.It is observed in small isolated patches in Bhokardan Taluka.

3.3.8 Water Level Trend (2005-14)

Based on the CGWB's GWMW and Observation wells of GSDA, Jalna, the long-term trend of water levels for pre-monsoon and post-monsoon periods for the last ten years (2005-14) have been computed. The long term water level datat of 28 GWMW of CGWB and GSDA has been utilised. The maps depicting the spatial variation in long-term water level trend is presented as (**Fig 3.8 and 3.9**). The data is presented in **Annexure VIII**.

In pre monsoon the falling water level trend between 0.2 & 0.4 and 0.4 to 0.6 in northern, eastern and southern part of the taluka while rising trend between 0.02 & 0.2 has been observed in rest of the area.

Fig 3.8 Premonsoon decadal water level trend (2005-14)

Fig 3.9 Postmonsoon decadal water level trend (2005-14)

In post monsoon, the rising water level trend in the range of 0 to 0.2m/yearhas been observed in central and western parts and occur as small patches while falling trend in the range from 0.0 to 0.6 m/year has been observed in almost entire taluka with maximum falling trend of 0.4 to 0.6 m/year confined tonorthern and southwestern part of the taluka.

3.3.9 Ground Water Flow

In a groundwater regime, the line joining points of equal head on the potentiometric surface(equipotential lines), were drawn based on the area of variation of the head of an aquifer. Based on the Water table elevation, ground water flow directions are demarcated (**Fig. 3.10**). It has been observed that

- 1) The Purna river and its tributaries Riaghoi, Jui, Khelna, Girja and Banganga and their tributaries constitute the principal drainage system in the area. The other nalas are seasonal emanating from the hilly terrain and form the main nalas and rivers. The drainage pattern is parallel and then sub dendritic to dendritic. The meandering of Purnariver indicates their mature stage of development. All the major drainages are flowing towards east meeting to main Godavari River.
- The water table varies from 550 m amsl near Purnariverin eastern part to about 600 m amsltowards hilly area in northern and southern part.
- 3) The overall ground water movement is from northwest to southeast i.e. towards Purna river and its tributaries, maintaining the general flow direction of Godavari River.

It has been observed that the ground water flow directions follow the major drainage of Purnariverand topography of the area. This indicates the topographic control for the ground water movement. However, in northern, southern and western part of the study area, the ground water movement is control by structural discontinuity and also acts as a water divide.

Fig. 3.10 Ground water flow, Bhokardan Taluka, Jalna District

3.4 Ground Water Quality

The suitability of ground water for drinking/irrigation/industrial purposes is determined keeping in view the effects of various chemical constituents present in water on the growth of human being, animals, various plants and also on industrial requirement. Though many ions are very essential for the growth of plants and human body but when present in excess, have an adverse effect on health and growth. For estimation of the quality of ground water, ground water samples from 40 KOW's (shallow dug wells representing phreatic aquifer) have been collected during pre-monsoon. Similarly for Aquifer – II, the ground water samples were collected during the drilling and pumping test activities of 12 exploratory constructed in Bhokardan. The ground water samples were analysed for major chemical constituents. The aquifer wise ranges of different chemical constituents present in ground water are given in **Table 3.2.**The details of water quality analysis of Aquifer I and II is given in **Annexure IV and IX** respectively.

Constituents	Shallow aquifer		Deeper aquifer	
	Min	Max	Min	Max
рН	7.6	8.8	7.1	8.3
EC	488	3134	373	2250
TDS	244	1567	214	1557
TH	180	1085	75	650
Calcium	34	244	24	132
Magnesium	17	149	2	8
Potassium	0.31	90.03	0.2	5
Sodium	19	408	8	483
Carbonate	0	9	0	9
Bi-carbonate	79	403	61	506
Chloride	53	560	32	603
Sulphate	20	606	35	439
Nitrate	10	60	nd	53
Fluoride	0.33	1.60	0.09	1.28

Table 3.2: Aquifer wise ranges of chemical constituents in Bhokardan

On perusal of above table, based on EC, out of 40 total samples of shallow aquifer, 82.50 % (33 samples) falls in excellent to Good category, where EC values in range between 0-1500, while only 3 samples (7.50 %) are falling permissible category, where EC values in range between 1500-2250 and only 10% (4 samples) falls in doubtful category, where EC is > 2250.

Out of 12exploratory wells drilled, a total of 12 samples of deeper aquifer were analysed, based on EC, out of 12 samples 83.33 % (10 samples) falls in excellent to Good category, where EC values in range between 0- 1500, while only 1 samples (8.33 %) are falling permissible category, where EC values in range between 1500-2250 and only 8.34% (1 samples) falls in doubtful category, where EC is > 2250. The iso-conductivity map of Aquifer I and II has been prepared and presented as **Fig 3.11** and **Fig 3.12** respectively.

On perusal of the **Fig 3.11** it is observed that the electrical conductivity for shallow aquifer in Bhokardan taluka is within Permissible Limit (750-2250 μ Mhos/cm @ 25°C) except few isolated patches, where Ec values are > 2250. Nitrate concentration of >45 mg/l is observed in almost all the KOW in Bhokardan taluka, where intense agricultutal activity is predominant. The high EC values are due to dumping of garbage and nearby accumulation cow dung.

Whereas, perusal of **Fig 3.12** for Aquifer-II shows that, the quality of water is good for both Drinking and agricultural activity.

Fig. 3.11: Aquifer-I, Iso conductivity, Bhokardan Taluka, Jalna District Fig. 3.12: Aquifer-II, Iso conductivity, Bhokardan Taluka, Jalna District

3.5 3-D and 2-D Aquifer Disposition

The data generated from ground water monitoring wells, micro level hydrogeological inventories, exploratory and observation wells, various thematic layers was utilized to decipher the aquifer disposition of the area. This particularly includes the information on geometry of aquifers and hydrogeological information of these aquifers. The main type of formations observed in the area is Basalt. The aquifer units in each of the formation are listed below:

Basalt–

Aquifer - I upto 30m Aquifer -II 30 to 145 m

The fence diagram indicating the disposition of various aquifers is presented in Fig.3.13.

Fig. 3.13: 3-D Fence diagram, Bhokardan taluka.

Section C-C

Section D-D'

3.5.1 2D Aquifer Disposition

Basalt is the main rock type of the area and comprises two distinct units viz, upper vesicular unit and lower massive unit. The massive basalt is hard, compact and does not have primary porosity and hence impermeable. Weathering, jointing and fracturing induces secondary porosity in massive unit of basalt. In vesicular basalt, when vesicles are interconnected constitutes good primary porosity and when the vesicles are filled/ partly filled the porosity is limited. Ground water occurs under phreatic/ unconfined to semi-confined conditions in basalts. A total of 8 lava flows were demarcated based on GSI maps and ground water exploration.

Based on extensive analysis of historical data, micro level hydrogeological survey data generated and ground water exploration carried out, the following two types of aquifers can be demarcated and the details are given below:

Aquifer I - Unconfined aquifer, occursin Deccan trap basalt which is exposed in major parts of the taluka. This aquifer generally occursin the depth of 10 to 35m bgl in basalts.Based on field observations, map of Aquifer–I is generated and shown in **Fig 3.14.**

Fig. 3.14: Depth of occurance and fractured rock thickness of Aquifer-I Fig. 3.15: Depth of occurance and fractured rock thickness of Aquifer-II

Aquifer II – Semi-confined to confined aquifer. Generally occurs in Deccan trap basalt which is exposed in major parts. This aquifer generally occurs to the depth <200 mbgl. Based on Ground Water Exploration, map of Aquifer –IIshowing isopach as well as depicting Depth of occurrence and fracture thicknessis generated and shown in **Fig 3.15**. A perusal of Fig. 7.3 shows that the depth of occurance of fractures is limited upto 140 mbgl with a thickness of fractures range between 0.5 to 4 m.

3.5.2 Aquifer Group Thickness & Demarcation

Aquifer-Iin the area predominantly consists of weathered fractured and jointed basalt and exposed almost covering entire area. The data collected during detailed well inventory have been used to understand the thickness of Aquifer-I i.e., unconfined shallow basaltic aquifer ranges from 0.5 to 4 m. Similarly, using the historical data of CGWB on ground water exploration and data generated during drilling and construction of exploratory wells in Bhokardhan area, an attempt has been made to decipher the deeper aquifer disposition. Ground water is present in pore spaces in the vesicular unit of each flow and in the jointed and fractured portions of massive unit. However, secondary porosity and permeability that has been developed dueof weathering and fracturing play a very important role in the storage and movement of ground water. Weathering not only produces granular materials but also widens the fractures, joint and shear zones and constitute ground water potential aquifers in the area.

Aquifer-II has been observed between the depth range of 35 m to 145 m bgl. Except the eastern and south western part where the fractured rock thickness of >1 m, rest of the area is having fractured rock thickness range between 2 - 3 m.

Based on above observations of Aquifer I and II, the aquifer group thickness map has been generated and shown in **Fig. 3.16**.

Fig. 3.16: Aquifer group thickness (Thickness of granular/Fracture zones), Bhokardan Taluka, Jalna District

3.5.3 Aquifer Parameters and Yield Potentials

The principle of pumping test is that if we pump water from an Exploratory well and measure the discharge and drawdown both in EW and OW, which is at a known distance, we can substitute these measurements to compute different aquifer prameters such as Transmissivity (T) Storativity (S) and yield potentials.

Transmissivity (T): It is defined as rate of flow under a unit hydraulic gradient through a crosssection of unit width over the saturated thickness of aquifer. It is expressed as m^2/day . The T value in Bhokardan Taluka range between 0.41 to 100 m²/day. **Storativity (S):** It is the volume of water released from storage per unit surface area of the aquifer per unit decline in the hydraulic head normal to that surface. It is dimensionless property. The S value in Bhokardan Taluka range between 2.4×10^{-3} to 1.25×10^{-4}

Yield potential (Q): A major part of the area is underlain by the Deccan Trap Basalt. The northern part of Bhokardan taluka, is primarily hilly and therefore has a poor ground water potential.Except in central and southern part along the rivers and valleys where the yield of wells is >50LPM, rest of the area is having low potential and wells may yield upto <50 LPM. The ground water in these areas can be developed through dugwells.

Deeper aquifer is limited and wherever aquifer exists, its sustainability is low. The central, western and notheastern part along the major rivers, the yield of borewells would be >60LPM. The yield potential map of Aquifer-I and Aquifer-II is shown in **Fig 3.17** and **3.18** respectively.

Fig. 3.17: Aquifer-I, Yield potential Map

Fig. 3.18: Aquifer-II, Yield potential Map

3.5.4 3D Aquifer Disposition

The 3-D disposition of Basalt aquifer is shown in **Fig. 3.19.** The Aquifer-I is observed in the depth range of 10 to 30 m bgl with water levels of 1.25 to 19.00 m bgl and thickness of 5 to 20 m. The yield of the dugwells tapping this aquifer generally ranges 10 to 50 m³/day. The Aquifer –II is observed in the depth range of 30to 145 m bgl with water levels of 11.4 to > 50 m bgl and thickness of 0.50 to 3 m. The yield of the borewells tapping this aquifer generally ranges upto 1lps.

Fig. 3.19:Schematic3-D Aquifer Disposition, Bhokardan taluka, Jalna district
Based on filed survey and ground water exploration, the aquifer characteristic of Bhokardan takuka is given in **Table 3.3.**

Type of Aquifer	Formation	Depth range (mbgl)	SWL (mbgl)	Fractures / weathered Zones encountere d (m bgl)	Fractures / weathere d rocks Thickness (m)	Yield	Sp. Capacit Y	Aquifer parameter (Transmissivit y – m ² /day)	Sy/S	Suitabilit y for drinking/ irrigation
Aquifer -I	Deccan Trap- Weathered / Fractured Basalt	10-30	1.25- 19.00	5-30	5 to 20	10 to 50 m³/da y	90 to 270 Ipm/m	-	0.02	Yes for both (except Nitrate affected villages for drinking)
Aquifer -II	Jointed/ Fractured Basalt	30- 145	11.4- 90	35 to 145	0.5 to 3	10- 100 LPM	0.5 to 2 hours	5-30	0.002 4 to 1.25 x10 ⁻⁴	Yes for both

Table 3.3 Aquifer Characteristic of Bhokardan Taluka, Jalna District

4.0 Ground Water Resources

The ground water resources have been assessed for two types of aquifer existing in the area i.e., Aquifer-I, Aquifer-II. The details of the assessment are discussed below.

4.1 Ground Water Resources – Aquifer-I

The ground water resource assessment has been carried out and the salient features of the resources are given in **Table 4.1, 4.2 and 4.3** and the map depicting the taluka wise distribution of ground water resources and categorisation of the talukas is presented in **Fig 4.1**.

As per **Table-4.1**, out of the total 127300 ha area, recharge worthy areas are 4155.00 ha in command areas and 123161.26 ha in non-command areas.

Taluka	Predominant Formation	Total Geographical	Hilly Area	Ground Water Recharge Worthy Area	
		Area (ha)	(ha)	Command area (ha)	Non- command area (ha)
Bhokardan	Basalt	127300	00	4155	123161.26
Total	Basalt	127300	00	4155	123161.26

Table-4.1: Ground Water Recharge Worthy Areas for Resource Estimation

Recharge Component

During the monsoon season, the rainfall recharge is the main recharge parameter, which is estimated as the sum total of the change in storage and gross draft. The change in storage is computed by multiplying groundwater level fluctuation between pre and post monsoon periods with the area of assessment and specific yield. Monsoon recharge can be expressed as:-

 $R = h \times Sy \times A + DG$

where,

- h = rise in water level in the monsoon season, Sy = specific yield
- A = area for computation of recharge, DG = gross ground water draft

The monsoon ground water recharge has two components- rainfall recharge and recharge from other sources. The other sources of groundwater recharge during monsoon season include seepage from canals, surface water irrigation, tanks and ponds, ground water irrigation, and water conservation structures.

During the non-monsoon season, rainfall recharge is computed by using Rainfall Infiltration Factor (RIF) method. Recharge from other sources is then added to get total non-monsoonrecharge.

The season wise and taluka wise assessment of recharge from various components such as rainfall and other sources for various units was done and presented in **Table-4.2** and **Fig.4.1**. The recharge from rainfall contributes maximum component (10483.94 ham) during monsoon season and recharge from other sources during monsoon (634.94ham). The total annual ground water recharge is 13882.07 ham and net ground water availability after natural discharge is 13177.83ham.

Table-4.2: Recharge Components evaluated for Resource Estimation

Administrative	Command	Recharge	Recharge	Recharge	Recharge	Total	Provision	Net
Unit	/	from	from	from	from	Annual	for	Annual
	Non-	rainfall	other	rainfall	other	Ground	Natural	Ground
	Command	during	sources	during	sources	Water	Discharges	Water
	/ Total	monsoon	during	non-	during	Recharge	(ham)	Availability
		season	monsoon	monsoon	non-	(ham)		(ham)
		(ham)	season	season	monsoon			
			(ham)	(ham)	season			
					(ham)			
Bhokardan	Command	344.83	50.41	0.00	252.50	647.75	32.39	615.36
Bhokardan	Non	10139.11	584.53	31.02	2479.67	13234.32	671.85	12562.47
	Command							
Bhokardan	Total	10483.94	634.94	31.02	2732.17	13882.07	704.23	13177.83

Fig.4.1: Ground water resources and categorization

Perusal of **Table 4.3** shows the net annual ground water availability comes to be 13177.83ham. The annual gross draft for all uses is estimated at 8138.08ham with irrigation sector being the major consumer having a draft of 7871.08ham. The annual draft for domestic and industrial uses was 267ham. The allocation for domestic & industrial requirement supply up to next 25 years is about 537.78ham.

The perusal of table indicates that the talukais categorised as **Safe**having stage of development is 61.76%.

Taluk	Command/	Net Annual	Existing	Existing	Existing	Provision	Net Ground	Stage of
а	Non-command	Ground	Gross	Gross	Gross	for domestic	Water	Ground
		Water	Ground	Ground	Ground	and	Availability	Water
		Availability	Water	Water	Water	industrial	for future	Developm
			Draft for	Draft for	Draft for	requirement	irrigation	ent
			irrigation	domesti	All uses	supply to	developmen	(%)/Categ
				c and		2025	t	ory
				industri				
				al water				
				supply				
Bhoka	Command	615.36	297.34	21.12	318.45			
rdan								
	Non Command	12562.47	7573.74	245.88	7819.62			
	Total	13177.83	7871.08	267.00	8138.08	537.78	4808.00	61.76/Safe

Table- 4.3: Ground Water Resources Availability, Draft and Stage of GW Development

4.2 Ground Water Resources – Aquifer-II

The ground water resource of the aquifer –II was also estimated to have the corret quantification of resources so that proper management strategy can be framed. To assess these resources, the area was divided into polygons based on water level and the thickness of aquifer –II in that particular polygon (if present), then the storativity value for the nearest exploratory well was taken into consideration. By applying the formula of deeper ground water resource estimation as given by CHQ during the static ground water resources was utilised i.e.,

GWR = Area x Thickness of aquifer x Storativity

By applying above formula, the ground water resources of aquifer-II were estimated and are presented below in **Table- 4.4.** Thus the total resources of aquifer-II have been estimated as **7.71MCM**.

SN	Mean fractured rock thickness(m)	Area (sqkm)	Storativity	GW resource of AQII (mcm)
1	0.75	112.123	0.0024	0.2018
2	2	98.8017	0.0024	0.4742
3	1.5	55.3796	0.0024	0.1994
4	2	35.7466	0.0024	0.1716
5	1.5	30.3539	0.0024	0.1093
6	1.5	62.00291	0.0024	0.2232
7	3	878.9	0.0024	6.3281
		Total		7.71

Table- 4.4: Ground Water Resources of Aquifer-II.

5 GROUND WATER RELATED ISSUES

The study area forms part of Godavari Basin. Ground water draft during the period from 2008 to 2011 has been increased, but from 2011 to 2013, it is showing decrease in ground water draft due to chage in irrigation practices and very limited agricultural activities in postmonsoon. Long term water level trend has shown declining water level trend. The major issues afflicting the areas are discussed below.

5.1 Declining Water Level Trends

The ground water exploitation has resulted also resulted in declining of water levels over the period of time. At present, the premonsoon declining water level trend of more than 0.20 m/year has been observed in about 182.29 sq.km whereas, postmonsoon declining water level trend of more than 0.20 m/year has been observed in about 493.10 sq.kmarea during 2006-15. (**see Fig.3.8 and 3.9**).

5.2 Water Scarcity (Drought Prone Taluka)

Bhokardan taluka comes under drought prone area with acute shortage of both drinking and agricultural purposes. Most of the villages are tanker fed right from December onwards. Only 193 sq. km area is covered by double crop area in southern part of the taluka all along catchment of Purna subbasin.

Fig.5.1: Double crop area (193 sq. km.)

6 MANAGEMENT STRATEGY

A through study was carried out based on data gap analysis, data generated in-house, data acquired from State Govt. departments and maps procurred from MRSAC & GSI, an integrated approach was adopted while preparing aquifer management plan of Bhokardan Taluka of Jalna district which is categorised as Safe. Based on geomorphology, soil, land use, field data and lithological details, following management plan is carried out and the detailed aquifer management plan for Bhokardan Taluka of Jalna district is prepared and presented in **Table 6.1**. The present ground water resources and draft scenario of Bhokardan taluka is shown in **Fig. 6.1**.

6.1 Aquifer Mamnegemnt Plan for Bhokardan Taluka

The geographical area of Bhokrdan Taluka is 1273 sq. km., the stage of ground water development is **61.76** % and categorised as Safe. The annual ground water resource available is 131.77 MCM and the gross ground water draft for all uses is 81.38 MCM. The major issues identified in Bhokardan Taluka are declining water levels, limited aquifer potential and water scarcity (drought prone area), tanker fed.

To manage the resources, demand for agricultural and domestic requirement has been brought out with respect to Supply.

The Agricultural **demand** in rainfed area is worked out as 109.80 MCM. The agricultural demand from ground water and surface water is 78.71 and 31.09 MCM respectively. Whereas, the domestic demand for Ground water and surface water is 2.00 and 0.67 MCM.

The Agricultural **supply** in rainfed area is 109.80 MCM due to monsoon. The agricultural supply from ground water and surface water is 78.71 and 31.09 MCM respectively. Whereas, the domestic supply for Ground water and surface water is 2.00 and 0.67 MCM. The present Demand –Supply gap is NIL. The management plan to generate additional resources is shown in **Fig 6.2.**

Fig 6.1 Present ground water resources and draft scenario in Bhokardan Taluka.

Supply side interventions proposed to bring stage of ground water development upto 70% through Rainwater harvesting and artificial recharge. The volume of unsaturated granular zone available in Bhokardan taluka is worked out as 1300.98 MCM. The recharge potential available in the area is 26.02 MCM. The surface surplus runoff availability is 14.54 MCM. Therefore, the surface runoff of 14.54 MCM is considered. For this, a total of 51 percolation tank and 145 Check dams are required as recharge measures. The volume of water expected to be conserved/recharged @75% efficiency is 7.65 MCM through Percolation tank and 3.26 MCM through Check dams.The cost estimate for 51 percolation tank and 145 check dams are Rs. 76.50 and Rs.43.50 corers respectively.The location of artificial recharge structures proposed are given in **Annexure X** and **XI** and shown in**Fig 6.3.** The additional area of 40.67 sq. km. proposed under assured Ground water irrigation is shown in **Fig 6.4.**

The rainwater harvesting in urban areas can be adopted in 25% of the household with 50 Sq. m roof area.A total of 1.30 MCM potential can be generated by taking 80% runoff coefficient.The estimated cost for rainwater harvesting through roof top is calculated as

Rs.94.56 corers. Hence this technique is not economically viable and therefore it is not recommended.

Overall total volume of water expected to be recharged or conserved by artificial recharge is 10.91 MCM with a cost estimate of Rs. 120 corers, excluding Roof top rain water harvesting which is not economically viable. The aquifer management plan for Bhokardan taluka is given in **Table 1.12**

No Demand side intervention is proposed.

Table 6.1: AQUIFER MANAGEMENT PLAN OF BHOKARDAN TALUKA, JALNA DISTRICT

Block	Bhokardan
District	Jalna
State	Maharashtra
Area	1273
Major issues identified	declining wl limited aquifer potential water scarcity - lean period
Stage of gw development	61.76%
Annual available resource (mcm)	131.78
Gross annual draft (mcm)	81.38
Domestic rquirement (mcm)	2.67
Demand (mcm)	
Agricultural demand -gw	78.71
Agricultural demand -sw	31.09
Domestic demand - gw	2.00
Domestic demand - sw	0.67
Total demand(mcm)	112.47
Supply (mcm)	
Agricultural supply -gw	78.71
Agricultural supply -sw	31.09
Domestic supply - gw	2.00
Domestic supply - sw	0.67
Total supply(mcm)	112.47
Demand - supply gap (mcm)	0.00
Present demand - supply gap (mcm)	0.00
Ground Water Resourvces available to bring stage of development upto 70% after	15.52

development		
Interventions proposed to deal with		
development		
Ground water development		
Ground water development plan		
Proposed structures	Dug well(@ rs.2.50 lakh, av. Unite draft 1.57 ham	
First two year-4.70 mcm resources available (up to 40 % stage of gw development)	300	
Estimated expenditure (rs. In cr.)	7.5000	
Next two year-5.49 mcm resources available (up to 50% stage of gw development)	350	
Estimated expenditure (rs. In cr.)	8.7500	
Next two year-5.33 mcm resources available (up to 50% stage of gw development)	340	
Estimated expenditure (rs. In cr.)	8.5000	
Total gw abstraction structures	990	
Grand total estimated expenditure (rs. In cr.)	24.7500	
TOTAL RESOURCES AVAILABLE AFTER DEVELOPMENT (MCM)	15.52	
Supply side interventions		
Rainwater harvesting and artificial recharge		
Volume of unsaturated granular zone (mcm)	1300.98	
Recharge potential (mcm)	26.02	
Surface water requirement @ 75% efficiency (mcm)	34.61	
Availability of surplus surface runoff (mcm)	14.54	

Surplus runoff considered for planning	14.54	
(mcm)		
· · ·		
Proposed structures	Percolation tank (@ rs.150	Check dam (@ rs.30
	lakh, av. Gross capacity-100	lakh, av. Gross
	tcm*2 fillings = 200 tcm)	capacity-10 tcm * 3
		fillings = 30 tcm)
Number of strcutures	51	145
Volume of water expected to be conserved	7.65	2.26
/ resharged @ 75% offesionsy (msm)	7.05	5.20
/ recharged @ 75% effectency (mcm)		
Estimated expenditure (rs. In cr.)	76.50	12 50
	70.50	45.50
Rtrwh - urban areas		
Households to be covered (25% with 50 m2	63040	
considering roof top area)		
Total much not ontial (mana)	1.62	
Total rwn potential (mcm)	1.63	
Rainwater harvested / recharged @ 80%	1.30	
runoff co-efficient		
Estimated expenditure (rs. In cr.) @ rs.	94.56	Economically not
15000/- per hh		viable & not
		recommended
Total volume of water expected to be	10.91	
recharged/conserved by ar		
Total estimated expn. For ar	120.00	
rotal estimated explinetor al	120.00	
Demand side interventions		
Proposed cropping pattern change	None	
Area proposed to be covered (sq.km.)	-	
40% of sugarcane area		
Volume of water expected to be concerved		
(mcm) Sugarcano requirement 2.45 m		
norma sugarcane requirement - 2.45 m,		
pomegranate with unp - 0.7 m, wite - 1.75		
Estimated expenditure	-	
,		

Micro irrigation techniques		
50% of double crop area (124.22) proposed to be covered under drip (sq.km.)		
Volume of water expected to be saved	0.00	
(mcm). Surface flooding req- 0.90 m. Drip req 0.50, wue- 0.4 m		
Estimated expenditure (rs. In cr.) @ rs.	0.00	
25,000/- per acre		
Alternate sources		
Alternative ground water sources	Nil	Nil
Location and other details of the sources	Nil	Nil
Volume of water expected to be served from these sources	Nil	Nil
Alternative surface water sources		
gw resources available after implementing above measures and respources available to bring development upto 70%	26.44	
Additional area (sq.km.) Proposed to be brought under assured gw irrigation with av. Cwr of 0.65 m or	40.67	
Rise in wl (m/yr)		
Regulatory measures	Regulation of wells below 80 m	

Fig 6.2 Aquifer Management Plan to generate additional Resource in Bhokardan Taluka.

Fig 6.4 Location of Proposed additional area of 40.67 sq.km under assured GW irrgation in Bhokardan Taluka.

7. SUM UP & RECOMMENDATIONS

The highly diversified occurrence and considerable variations in the availability and utilization of groundwater makes its management a challenging task. Scientific development and management strategy for groundwater has become imperative to avert the looming water crisis. In this context, various issues such as, prioritization of areas for development of groundwater resources vis-a-vis its availability, augmentation of groundwater through rainwater harvesting and artificial recharge, pricing and sectoral allocation of resources and participation of the stakeholders must be considered. In view of the above, the present study area a systematic, economically sound and politically feasible framework for groundwater management is required.

A thorough study was carried out based on data gap analysis, data generated in-house, data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of aquifer maps and aquifer management plans of Bhokardan taluka.

The study area is spanning over 1273 sq.km. Geologically the area is occupied by Basalt . The stage of ground water development is 61.76%. The area has witnessed ground water depletion and water scarcity in Lean period (Tanker fed). As per rainfall analysis, the area comes under drought prone affected. The declining water level trend of more than 0.20 m/yr has been observed in 493.10 sq.km. during post-monsoon. The area receives less rainfall and are completely dependent on ground water irrigation. The increasing allurement towards cash crops and decreasing availability of water have compelled the farmers to shift from traditional irrigation methods to micro irrigation techniques like drip irrigation. At present the area under double crop is 193 sq. km. and irrigated through ground water.

Ground water management plan has been prepared with the objective to arrest the declining trend and to reduce the water scarcity period by applying supply side interventions. The supply side interventions are proposed to construct 51 Percolation tank and 145 check dam with a cost estimate of 120 cr. This will generate additional 10.91 MCM water resources. Presently the taluka is having stage of development is 61.76%. The ground water resources available to bring stage of development upto 70% after development is 15.52 MCM. The total resources available is 26.43 MCM. This will bring an area of 40.67 sq.km. under assured ground water irrigation.

Thus the focus of proposed management plan was to use ground water very effectively with supply and demand side interventions. The perusal of above ground water management plan lays stress on adopting micro-irrigation techniques and artificial recharge measures.

However, considering the low storage potential of hard rock aquifer in the area this ground water development should also be coupled with ground water augmentation plan, so that there is no stress on ground water regime of the area.

Root top Rain water harvesting is not recommended, as the volume of water harvested would be 1.30 MCM with an estimate cost of Rs. 94.56 corers. As , it is not economically viable and hence not recommended.

No demand side interventions are proposed.

7.1 Tangible and Non Tangible Benefits

The timely and proper implementation of the above suggested management plan will have many tangible and non-tangible benefits for Bhokardan taluka. Some of the major benefits are listed below.

The proposed construction of the artificial recharge structures viz., 51 percolation tanks and 145 check dams at the estimated cost of Rs. 120 crores to augment the ground water resources to the tune of 10.91 MCM and the ground water resources available to bring stage of development upto 70% after development is 15.52 MCM. The total resource available is 26.43 MCM. This will bring an area of 40.67 sq.km. under assured ground water irrigation considering an average crop water requirement of 0.65 m.

The implementation of above water conservation, artificial recharge and RTRWH measures will have a positive impact on drinking water sources of the area. It will ensure that the wells don't go dry during summer/lean/stress period in the areas of implementation and sufficient ground water availability is there in the wells even during the summer season. Thus the drinking and domestic water sources will be strengthened. These measures will also be able to arrest the decline in water levels of Aquifer-I and raise the water levels in Aquifer-II.

The probable benefits of the proposed management plan after implementing above recharge measures will be help in arrest the declining trend and will reduce the water scarcity period in Bhokardantaluka. Further ground water resources of 26.43 MCM will be available for utilisation.

These interventions also need to be supported by regulation of deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewellsof more than 80 m depth in thistaluka, so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought.

No demand side interventions are proposed.

IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory groundwater management.

Rinfall Analysis of Bhokardan Taluka

PERIOD	= 1951 TO 2015
NO OF YEARS	= 50
NORMAL RAINFALL	= 641.6 mm
STANDARD DEVIATION	= 199 mm
COEFF OF VARIATION	= 31 %
SLOPE	= -1.853 mm/year
INTERCEPT	= 700.8 mm

EQUATION OF TREND LINE: Y= -1.853 X +700.8

YEAR	ANNUAL	DEP%	CATEGORY
1951	844.9	+ 32	EXCESS
1952	326.4	-49	MODERATE
1953	765	+ 19	NORMAL
1954	748.4	+ 17	NORMAL
1955	760	+ 18	NORMAL
1956	893.8	+ 39	EXCESS
1957	673.5	+ 5	NORMAL
1958	1042.6	+ 62	EXCESS
1959	804.4	+ 25	EXCESS
1960	498.5	-22	NORMAL
1961	724.5	+ 13	NORMAL
1962	708.8	+ 10	NORMAL
1963	923.9	+ 44	EXCESS
1964	615.1	-4	NORMAL
1965	NA	NA	NA
1966	NA	NA	NA
1967	627.3	-2	NORMAL
1968	553.5	-14	NORMAL
1969	NA	NA	NA
1970	612.6	-5	NORMAL
1971	486.7	-24	NORMAL

Annexure-I

1972	275.7	-57	SEVERE
1973	658.3	+ 3	NORMAL
1974	589.4	-8	NORMAL
1975	1042.6	+ 62	EXCESS
1976	575.3	-10	NORMAL
1977	817.7	+ 27	EXCESS
1978	687.1	+ 7	NORMAL
1979	941.4	+ 47	EXCESS
1980	703	+ 10	NORMAL
1981	448.8	-30	MODERATE
1982	267	-58	SEVERE
1983	552.7	-14	NORMAL
1984	275.3	-57	SEVERE
1985	287	-55	SEVERE
1986	NA	NA	NA
1987	NA	NA	NA
1988	NA	NA	NA
1989	NA	NA	NA
1990	NA	NA	NA
1991	NA	NA	NA
1992	NA	NA	NA
1993	NA	NA	NA
1994	NA	NA	NA
1995	NA	NA	NA
1996	NA	NA	NA
1997	NA	NA	NA
1998	889.5	+ 39	EXCESS
1999	673.5	+ 5	NORMAL
2000	436.2	-32	MODERATE
2001	658.6	+ 3	NORMAL
2002	646	+ 1	NORMAL
2003	657	+ 2	NORMAL
2004	541.5	-16	NORMAL

2005	630.2	-2	NORMAL
2006	988	+ 54	EXCESS
2007	521.3	-19	NORMAL
2008	577.5	-10	NORMAL
2009	556	-13	NORMAL
2010	778.2	+ 21	NORMAL
2011	460.4	-28	MODERATE
2012	298.8	-53	SEVERE
2013	846	+ 32	EXCESS
2014	561.3	-13	NORMAL
2015	627.8	-2	NORMAL

CATEGORY	NUMBER OF YEARS	%OF TOTAL YEARS
DEPARTURES		
POSITIVE	25	50
NEGATIVE	25	50
DROUGHTS		
MODERATE	4	8
SEVERE	5	10
ACUTE	0	0
NORMAL & EXCESS R/F		
NORMAL	30	60
EXCESS	11	22

Rainfall departure: EXCESS: > +25; NORMAL: +25 TO -25; MODERATE: -25 TO -50; SEVERE: -50 TO -75; ACUTE: < -74

Annexure-II

Aquifer SWL Q (lps) DD T S EC SI. No. Name of site Topo Latitude Longitude Elevation Total Casing Thickn Zones F NO3 (mbgl) sheet No Depth (mbgl) ess of (mbg (m) (mbgl) Fractu I) re (m) 29.5 0.5 46P/12 20.1353 75.6997 584 200 1 Hasnabad Traces 2 Janephal 46P/16 75.7658 570.4 196.5 19.5 3 FMB 17 2 20.1047 108-< 0.14 1294 0.1 111 3 Pimpalgaon 46P/16 20.3697 75.9011 602.2 200 19.5 2 915 0.4 51 Traces Renukai 75.8894 200 19.5 3 FMB 0.2 46 4 Dhavda 46P/14 20.5003 609.9 35-38 11.4 < 0.14 1057 & 108-111 46P/16 5 20.1756 75.8106 574.5 200 19.5 2 Dawargaon Traces Walsa 1 6 20.2581 Siphora 46P/15 75.8647 563.5 200 19.5 Traces 1346 1.28 ND 7 Nalni Bk. 46P/16 20.1544 75.8858 547.8 200 19.5 3 Traces 3 8 Kosgaon 46P/15 20.3356 75.9231 591.4 200 19.5 Traces 9 Bhokardan 46P/15 20.2425 75.7692 596 200 19.5 1 Traces 2 10 46P/11 20.2736 75.7083 623.7 200.2 5.06 Malkheda Traces 10.73 3 46P/12 20.1778 75.7333 573.5 200.2 11 Nimgaon Traces 2 12 Annava 46P/15 20.4219 75.7800 634.4 200.2 5.16 Traces 5 13 46P/16 20.2458 75.8264 576.6 200.2 5.04 Babulgaon Traces 3 14 Rajur 46P/16 20.0611 75.8625 618.1 200.2 5.26 Traces

Salient Features of Ground water exploration in Bhokardan taluka, Jalna district.

Annexture -III

SI No	Village	Elevation (mamsl)	Latitude	Longitude	Depth (m)	Depth of	MP (magl)	May-14 (mbgl)	Nov-14 (mbgl)	May-15 (mbgl)	Nov-15 (mbgl)
						Curbing (mbgl)					
1	Wadhona	622.5	20.5162	75.9374	13.14	6.02	0.95	11.20	4.75	12	5.6
2	Dhavada	606.7	20.5021	75.8862	14.48	3.1	0.40	9.32	8.18	10	7.2
3	Malkheda	628.8	20.2771	75.7059	13	2.18	0.70	6.22	11.35	6.8	11.7
4	Avana	604.2	20.3135	75.7243	14.39	7.06	0.62	8.15	0.10	7.19	0.1
5	Gosegaon	600.2	20.1678	75.6559	11.32	6.35	0.20	5.15	4.21	4.91	5.09
6	Nanja	575.4	20.2212	75.7314	13.5	0	0.00	12.10	10.40	12.35	10.04
7	Khandala	595	20.1817	75.6876	11.52	3.3	0.80	4.00	2.45	4.21	2.98
8	Nimgaon	566.1	20.1794	75.743	25	10.35	1.40	18.75	1.92	19	0.98
9	Takli	616	20.0872	75.6038	15.1	2.73	0.30	5.68	4.58	6.4	3.88
10	Savkheda	580.7	20.1154	75.6589	18	1.78	0.57	11.55	9.35	10.88	9.9
11	Talegaon	609.4	20.076	75.6566	12	3.73	0.25	8.85	4.97	8	4.3
12	Ekiphal	593.8	20.0789	75.6999	8.8	3.07	0.00	7.92	5.15	8.4	5
13	Javkheda BK	577.7	20.0923	75.7308	15.23	12.05	0.60	10.97	6.95	11.8	7.56
14	Hasnabad	569.9	20.1273	75.6981	10	9.03	1.00	11.00	6.50	11.3	7.4
15	Kumbhari	588.6	20.204	75.7643	11.85	2.9	0.55	11.15	6.40	12	6.18
16	Babulgaon	577.2	20.2473	75.8284	13.61	2.85	1.05	5.10	3.92	4.19	4.49
17	Barangala Lokhande	574.6	20.1947	75.8288	15.31	3.85	0.57	4.33	6.80	5	6.3
18	Barangala Sable	566.4	20.1926	75.8721	12.3	7.88	0.37	7.51	6.30	7.4	6.89
19	Takli	559.3	20.2333	75.8685	5.65	4.67	1.10	6.02	3.15	6.4	3.88
20	Tadegaon	543.1	20.1764	75.9238	22.13	8.37	0.45	7.47	6.00	7.49	6.76
21	Borgaon Taru	554.8	20.1315	75.7807	21.75	12.8	1.00	19.00	14.20	18.19	15.05
22	Kedarkheda	557.7	20.1472	75.8231	2.8	1.6	0.30	2.05	2.89	3	2.1
23	Janephal	569.1	20.1049	75.7675	8.65	5.1	0.50	4.10	2.36	4	1.98
24	Chandai Thombri	571.2	20.0941	75.8274	11.85	4.97	1.15	10.30	7.39	10.8	8.05

Aquifer-I, Depth to water level data, Bhokardan taluka, Jalna district.

SI No	Village	Elevation	Latitude	Longitude	Depth	Depth	MP	May-14	Nov-14	May-15	Nov-15
		(mamsl)			(m)	of	(magl)	(mbgl)	(mbgl)	(mbgl)	(mbgl)
						Curbing					
			20.4.4.0	75.0072	40.75	(mbgi)	0.45	6 70	6.00	6.0	
25	Nalni Buzurg	556.8	20.1449	/5.88/2	10.75	7.8	0.45	6.70	6.30	6.3	5.88
26	Banegaon	561.6	20.1193	75.8447	11.14	0	0.00	10.10	10.05	10.3	9.78
27	Palashkheda	571.9	20.1086	75.908	8.73	3.62	0.10	6.45	5.90	6.54	6.13
28	Pimpalgaon	588	20.0615	75.7563	11.85	3.12	0.00	11.83	5.23	11.33	4.75
29	Rajur	630.3	20.0617	75.8526	18.62	5.35	0.35	4.65	4.25	5	3.6
30	Longaon	588.8	20.0526	75.898	13.74	2.76	0.44	10.30	11.42	11.09	12.01
31	Adgaon	610.9	20.4567	75.8262	22.16	7.45	0.90	14.20	11.70	14.7	12.3
32	Jalgaon	602.1	20.4184	75.8415	12	5	0.30	7.40	6.99	7.2	6.65
33	Pokhari	605.2	20.4784	75.894	15.9	11.8	0.30	12.43	9.94	12.21	9.56
34	Valsawangi	592.7	20.4665	75.934	12.55	5.94	0.53	7.65	6.40	7.81	7.05
35	Anva	624	20.4101	75.7823	7	4.42	0.44	4.09	6.46	4.99	6
36	Wakdi	611.6	20.3594	75.7875	11.48	0	0.00	7.40	2.91	7.3	3.91
37	Karajgaon	614.1	20.3755	75.8433	12.2	0.9	0.30	4.40	1.98	5.1	2.9
38	Pimpalgaon Renukai	592.6	20.3854	75.8898	11.23	5.5	0.33	8.47	3.95	8.4	4.9
39	Paradh Badi	574	20.4121	75.9337	25	6	0.20	8.30	3.65	9	4
40	Sawangi	573	20.3806	75.9358	26.22	10.63	0.85	9.78	7.73	9.01	8
41	Bhokardan	582	20.2516	75.7692	10.06	2.31	0.30	2.84	2.88	2	2.3
42	Wadi Buzurg	609.8	20.3154	75.7657	22.93	8.85	0.55	15.15	3.95	15.67	3.95
43	Danapur	582.1	20.3114	75.8271	12.23	2.7	0.45	11.45	8.12	12	9.2
44	Siphora	572.2	20.2596	75.8595	7.82	1.6	0.65	1.25	0.20	1.5	0.32
45	Kolgaon	592.1	20.3157	75.8978	15.1	0	0.00	10.85	8.00	10.89	8.91
46	Valsa	571.7	20.2787	75.9106	14.38	6.57	0.95	7.48	6.80	7.8	7.33

Annexure-IV

S. No	Location/ID	Latitute	Longtitude	рН	EC μS/cm @ 25°C	TDS	тн	Ca	Mg	Na	к	CO3	нсоз	Cl	NO3	SO4	F
1	WADI	20.2787	75.9106	8	1960	980	665	132	81	76	33.78	0	122	273	52	606	0.51
2	AVANA-8	20.3135	75.7243	7.8	2988	1494	1085	188	149	184	16.79	0	183	560	60	543	0.64
3	WALSAWANG	20.4665	75.934	7.9	3134	1567	1040	244	105	116	12.74	0	98	525	57	515	0.4
4	BARANJALA	20.1947	75.8288	7.8	1827	913.5	460	100	51	97	1.48	0	256	301	54	502	0.59
5	ANVA	20.4101	75.7823	7.9	2796	1398	490	72	75	408	7.25	0	171	432	54	408	0.47
6	WALSAWANGI	20.5162	75.9374	7.6	2272	1136	850	204	83	84	7.36	0	79	390	52	354	0.77
7	BHOKARDAN	20.2516	75.7692	8.8	1103	551.5	365	80	40	82	1.55	0	214	177	50	241	0.59
8	BKD-35	20.0617	75.8526	7.7	971	485.5	370	66	50	49	1.09	0	207	138	52	207	0.73
9	JALGAON	20.4184	75.8415	7.8	1329	664.5	400	72	53	72	28.88	0	275	149	52	190	0.48
10	JANEPHAL	20.1049	75.7675	7.9	1265	632.5	345	84	33	72	21.89	0	403	177	52	190	1.34
11	TAKLI	20.0872	75.6038	7.7	1126	563	490	124	44	21	0.31	0	226	135	54	190	0.51
12	KEDARKHEDA	20.1472	75.8231	7.8	1127	563.5	390	90	40	51	4.22	0	317	184	48	184	0.59
13	KODBGAON	20.3157	75.8978	8	985	492.5	410	90	45	39	0.88	0	140	89	54	179	0.56
14	JAVKHEDA	20.0923	75.7308	7.7	942	471	400	92	41	35	0.88	0	183	167	52	172	1.4
15	30-BKD	20.0941	75.8274	7.8	1575	787.5	360	66	47	68	91.03	0	268	167	57	165	0.73
16	TAKLI	20.2333	75.8685	7.9	790	395	320	50	47	27	4.12	0	171	110	52	163	0.59
17	SAWANGI	20.3806	75.9358	7.7	884	442	345	66	44	47	3.18	0	226	106	52	158	0.64
18	NIMGAON	20.1794	75.743	7.8	1108	554	380	62	55	55	1.53	0	262	160	54	156	0.64
19	GOSHEGAO	20.1678	75.6559	7.7	788	394	280	56	34	47	8.61	0	256	110	48	154	0.54
20	NADNI	20.1449	75.8872	7.87	920	460	340	78	35	46	2.35	0	207	156	54	154	0.47
21	BABULGAON	20.2473	75.8284	7.8	1180	590	455	106	46	42	1.05	0	238	160	54	152	0.91
22	BARANJALA	20.1926	75.8721	7.7	1138	569	470	120	41	35	4.40	0	250	117	54	133	0.64
23	PIMPALGAON	20.3854	75.8898	7.8	1389	694.5	500	86	69	52	2.08	0	214	177	54	129	0.44
24	POKHARA	20.4784	75.894	7.6	1399	699.5	555	120	62	28	1.77	0	171	156	52	126	0.4

Aquifer-I, Ground water quality of Bhokardan taluka, Jalna district.

S. No	Location/ID	Latitute	Longtitude	рН	EC μS/cm	TDS	TH	Ca	Mg	Na	к	CO3	HCO3	Cl	NO3	SO4	F
					@ 25°C												
25	ADGAON	20.4567	75.8262	7.8	1340	670	385	68	52	71	28.58	0	238	160	52	117	0.51
26	DANAPUR	20.3114	75.8271	8	986	493	290	76	24	74	2.02	0	146	128	52	101	0.44
27	BKD-33	20.1086	75.908	7.6	828	414	315	90	22	36	2.65	0	207	78	52	97	0.54
28	NANJA	20.2212	75.7314	7.8	839	419.5	320	66	38	43	1.31	0	220	121	54	89	0.64
29	BANEGAON	20.1193	75.8447	7.7	899	449.5	350	86	33	31	1.49	0	189	145	52	82	0.47
30	EKEFAL	20.0789	75.6999	7.8	644	322	250	56	27	31	5.86	0	201	85	46	77	0.47
31	TALEGAON	20.076	75.6566	8.2	743	371.5	265	72	21	40	2.33	9	183	110	54	71	0.64
32	SIPORA	20.2596	75.8595	8.1	527	263.5	180	42	18	28	1.47	0	153	82	26	62	0.44
33	KARAJGAON	20.3755	75.8433	7.8	724	362	295	56	38	33	0.43	0	250	57	50	55	0.33
34	SAVKHEDA	20.1154	75.6589	7.8	785	392.5	350	106	21	19	0.90	0	220	89	54	52	1.66
35	PARAJ	20.1086	75.908	7.8	826	413	340	52	51	40	0.89	0	232	82	52	51	0.37
36	KHANDALA	20.1817	75.6876	7.9	488	244	200	38	26	23	0.57	0	244	53	10	45	0.54
37	PIMPALGAON	20.0615	75.7563	7.7	769	384.5	335	76	35	31	1.31	0	238	71	52	41	0.54
38	BORGAON TARU	20.1315	75.7807	7.8	675	337.5	230	34	35	42	1.53	0	275	78	48	36	0.59
39	NALKHEDA	20.2771	75.7059	8	667	333.5	220	36	32	67	4.66	0	336	121	52	28	0.47
40	21-BKD	20.204	75.7643	7.8	625	312.5	245	70	17	31	1.23	0	250	60	52	20	0.64

Annexure-V Micro level Hydrogeological data

Annexure-VI

Soil Infiltration Test Data

Date	28/2/16						
Unique ID No	SITNQJL-3						
Location	Baranjala Lokhande -In the field of Rustamrao Lokhande						
Taluka	Bhokardan						
Coordinates	20 11 31, 75 49 30.5						
Elevation / RL (mamsl)	575						
Initial Water Level	16						
Geology	Deccan Basalt						
Sl.No.	Clock time	Duration(m)	Cumulative time	Water	Infiltrated	Infiltrati on	Remarks
			(minutes)	Level	water Depth(cm)	rate(cm/ hr)	
				depth(cm)			
1	2.30	5	5	17.40	1.40	16.80	
2	2.40	10	15	19.50	2.10	12.60	
3	2.55	15	30	21.70	2.20	8.80	
4	3.10	15	45	23.50	1.80	7.20	
5	3.25	15	60	25.10	1.60	6.40	
6	3.55	30	75	19.70	3.70	7.40	Filled Upto 16
7	4.25	30	105	22.80	3.10	6.20	

8	4.55	30	135	25.90	3.10	6.20	
9	5.30	30	165	29.00	3.10	6.20	

Date	29/2/16						
Unique ID No	SITNQJL-1						
	Janephal Dabhadi- 100						
	mtrs west of village in						
Location	the field of Bhausaheb						
Toluko	IVIISdi						
Тацика	Bnokardan						
District	Jalna						
Coordinates	20 06 2.2, 75 45 46.6						
Elevation / RL (mamsl)	376						
Initial Water Level	16 cms						
Geology	HWB						
SI.No.	Clock time	Duration(m)	Cumulative	Water	Infiltrated	Infiltration	Remarks
			time				
			(minutes)	level	water	rate(cm/hr)	
					Depth(cm)		
				depth(cm)			
1	16:20	5	5	17.00	1.00	12.00	
2	16:30	10	15	17.60	1.60	9.60	
3	16:45	15	30	18.80	1.20	4.80	
4	17:00	15	45	19.90	1.10	4.40	
5	17:15	15	60	20.90	1.00	4.00	
6	17:45	30	90	22.40	1.50	3.00	
7	18:15	30	120	23.90	1.50	3.00	
8	18:45	30	150	25.40	1.50	3.00	

Date	28/2/16						
Unique ID No	SITNQJL-4						
	Jomala -In the field of Mahadev Namdev						
Location	Phalke						
Taluka	Bhokardan						
District	Jalna						
Coordinates	20 14 12, 75 46 34						
Elevation / RL (mamsl)	596						
Initial Water Level	17						
Geology	Deccan Basalt						
SI.No.	Clock time	Duration(m)	Cumulative	Water	Infiltrated	Infiltration	Remarks
			time				
			(minutes)	level	water Depth(cm)	rate(cm/hr)	
				depth(cm)			
1	10.50	5	5	19.00	2.00	24.00	
2	11.00	10	15	20.50	1.50	9.00	
3	11.15	15	30	22.30	1.80	7.20	
4	11.30	15	45	23.80	1.50	6.00	
5	11.45	15	60	25.10	1.30	5.20	
6	12.15	30	75	19.60	2.60	5.20	Filled Upto
							17
7	12.45	30	105	22.20	2.60	5.20	

Date	27/2/16
Unique ID No	SITNQJL-6
Location	Kotha Koli -In the field of Bharat Shivrang Salve
Taluka	Bhokardan
District	Jalna
Coordinates	20 24 45.8, 75 51 45.8
Elevation / RL (mamsl)	603
Initial Water Level	15
Geology	Deccan Basalt

Sl.No.	Clock time	Duration(m)	Cumulative time	Water	Infiltrated	Infiltration	Remarks
			(minutes)	level	water	rate(cm/hr)	
					Depth(cm)		
				depth(cm)			
1	15.05	5	5	16.10	1.10	13.20	
2	15.15	10	15	16.70	0.60	3.60	
3	15.30	15	30	17.50	0.80	3.20	
4	15.45	15	45	18.00	0.50	2.00	
5	16.00	15	60	18.50	0.50	2.00	
6	16.30	30	90	19.20	0.70	1.40	
7	17.00	30	120	19.90	0.70	1.40	
	17.30	30	150	20.60	0.70	1.40	

Date	27/2/16						
Unique ID No	SITNQJL-6						
	Wiellegaoli waui						
Taluka	Bhokardan						
District	Jalna						
Coordinates	20 31 48.9, 75 53 26.7						
Elevation / RL (mamsl)	608						
Initial Water Level	20						
Geology	Deccan Basalt						
Sl.No.	Clock time	Duration(m)	Cumulative	Water	Infiltrated	Infiltration	Remarks
			+ :				
			time (minutes)	level	water	rate(cm/hr)	
			time (minutes)	level	water Depth(cm)	rate(cm/hr)	
			time (minutes)	level depth(cm)	water Depth(cm)	rate(cm/hr)	
1	9.55	5	time (minutes) 5	level depth(cm) 21.30	water Depth(cm) 1.30	rate(cm/hr) 15.60	
1	9.55	5	time (minutes) 5 15	level depth(cm) 21.30 23.00	water Depth(cm) 1.30 1.70	rate(cm/hr) 15.60 10.20	
1 2 3	9.55 10.05 10.20	5 10 15	time (minutes) 5 15 30	level depth(cm) 21.30 23.00 24.50	water Depth(cm) 1.30 1.70 1.50	rate(cm/hr) 15.60 10.20 6.00	
1 2 3 4	9.55 10.05 10.20 10.35	5 10 15 15	time (minutes) 5 15 30 45	level depth(cm) 21.30 23.00 24.50 26.00	water Depth(cm) 1.30 1.70 1.50 1.50	rate(cm/hr) 15.60 10.20 6.00 6.00	
1 2 3 4 5	9.55 10.05 10.20 10.35 10.50	5 10 15 15 15	time (minutes) 5 15 30 45 60	level depth(cm) 21.30 23.00 24.50 26.00 27.10	water Depth(cm) 1.30 1.70 1.50 1.50 1.10	rate(cm/hr) 15.60 10.20 6.00 6.00 4.40	
1 2 3 4 5 6	9.55 10.05 10.20 10.35 10.50 11.20	5 10 15 15 15 30	time (minutes) 5 15 30 45 60 90	level depth(cm) 21.30 23.00 24.50 26.00 27.10 29.30	water Depth(cm) 1.30 1.70 1.50 1.50 1.10 2.20	rate(cm/hr) 15.60 10.20 6.00 6.00 4.40 4.40	
1 2 3 4 5 6 7	9.55 10.05 10.20 10.35 10.50 11.20 11.50	5 10 15 15 15 30 30	time (minutes) 5 15 30 45 60 90 120	level depth(cm) 21.30 23.00 24.50 26.00 27.10 29.30 22.20	water Depth(cm) 1.30 1.70 1.50 1.50 1.10 2.20 2.20	rate(cm/hr) 15.60 10.20 6.00 6.00 4.40 4.40 4.40	Filled 20 cms

Date	29/2/16						
Unique ID No	SITNQJL-2						
	Nalni Budrukh - In the						
	field of manda						
Location	Suryavanshi						
Taluka	Bhokardan						
District	Jalna						
Coordinates	20 09 6.1, 75 53 1.5						
Elevation / RL (mamsl)	554						
Initial Water Level	20						
Geology	Deccan Basalt						
SI.No.	Clock time	Duration(m)	Cumulative	Water	Infiltrated	Infiltration	Remarks
			time				
			(minutes)	level	water	rate(cm/hr)	
					Depth(cm)		
				depth(cm)			
1	11.40	5	5	20.50	0.50	6.00	
2	11.50	10	15	21.00	0.50	3.00	
3	12.05	15	30	21.70	0.70	2.80	
4	12.20	15	45	22.30	0.60	2.40	
5	12.30	15	60	20.80	0.80	3.20	Filled upto
							20
6	12.45	15	75	21.10	0.30	1.20	
7	13.15	30	105	21.70	0.60	1.20	
8	13.45	30	135	22.10	0.40	0.80	
9	14.15	30	165	22.50	0.40	0.80	

Annexure-VII

SN	Exploratory site	Type of	Toposheet	Latitude	Longitude	RL	Drilled	Casing	Pre DTW	Post DTW
		well					deph			
1	Hasnabad	EW	46P/12	20.1353	75.6997	584	200	29.5	90	55
2	Janephal	EW	46P/16	20.1047	75.7658	570.4	196.5	19.5	17	10
3	Pimpalgaon Renukai	EW	46P/16	20.3697	75.9011	602.2	200	19.5	35	22
4	Dhavda	EW	46P/14	20.5003	75.8894	609.9	200	19.5	11.4	8
5	Dawargaon Walsa	EW	46P/16	20.1756	75.8106	574.5	200	19.5	42	25
6	Siphora	EW	46P/15	20.2581	75.8647	563.5	200	19.5	70	43
7	Nalni Bk.	EW	46P/16	20.1544	75.8858	547.8	200	19.5	70	43
8	Kosgaon	EW	46P/15	20.3356	75.9231	. 591.4	200	19.5	60	35
9	Bhokardan	EW	46P/15	20.2425	75.7692	. 596	200	19.5	65	28
10	Malkheda	EW	46P/11	20.2736	75.7083	623.7	200.2	5.06	40	28
11	Nimgaon	EW	46P/12	20.1778	75.7333	573.5	200.2	10.73	45	32
12	Annava	EW	46P/15	20.4219	75.78	634.4	200.2	5.16	52	42
13	Babulgaon	EW	46P/16	20.2458	75.8264	576.6	200.2	5.04	45	31
14	Rajur	EW	46P/16	20.0611	75.8625	618.1	200.2	5.26	56	44

Aquifer-II, Depth to water level, Bhokardan taluka, Jalna district

Annexure-VIII

SN District Taluka Village Υ Х Pre trend Trend Post trend Trend 20.25917 75.77083333 -0.38 -0.37 Rising Jalna Bhokardan Rising 1 Alapur 2 75.83055556 -0.27 0.41 Falling Jalna 20.195 Rising Bhokardan Baranjala lokhande 3 Jalna Bhokardan 20.195 75.83055556 0.38 Falling 0.41 Falling Baranjala(lokhande) 20.25972 75.77055556 0.20 0.06 Jalna Falling Falling 4 Bhokardan Bhokardan 20.25972 75.77083333 0.21 -0.11 Falling 5 Jalna Rising Bhokardan Bhokardan 20.26944 75.86861111 0.12 Falling 0.01 Falling 6 Jalna Bhokardan Borgaon jahagir 7 20.09444 75.82361111 0.43 0.44 Falling Jalna Bhokardan Chandai Thombri Falling 8 20.32972 75.85333333 -0.09 Rising 0.06 Falling Jalna Bhokardan Dehad -0.26 0.17 Falling 20.16806 75.655 9 Jalna Bhokardan Gosegaon Rising 75.69722222 20.12778 0.01 Falling -0.03 Rising 10 Jalna Bhokardan Hasnabad Jalna 20.11833 75.67722222 -0.14 Rising 0.16 Falling 11 Bhokardan Ita 75.76611111 -0.01 0.13 12 Bhokardan Janefal dhabadi 20.105 Rising Falling Jalna 20.14833 75.81944444 0.10 -0.17 Rising 13 Jalna Bhokardan Kedarkheda Falling 20.18333 75.68777778 0.55 0.11 Falling 14 Jalna Bhokardan Khandala Falling 0.06 20.20833 75.76527778 0.14 Falling 15 Jalna Bhokardan Kumbhari Falling 16 Bhokardan Latifpur 20.12361 75.69861111 -0.06 Rising 0.16 Falling Jalna 0.26 17 Jalna Malkapur 20.30667 75.78055556 0.02 Falling Falling Bhokardan 20.27778 -0.42 -0.06 Rising 75.705 Rising 18 Jalna Bhokardan Malkheda 20.24944 75.7 -0.25 Rising 0.00 Falling Muthad 19 Jalna Bhokardan 75.88888889 20.15889 -0.11 0.56 Falling 20 Jalna Bhokardan Nalani Kh Rising 20.3875 -0.25 -0.01 Rising 21 Jalna Bhokardan Pimpalgaon Renukai 75.8875 Rising Falling 20.37639 75.93472222 0.12 0.37 Falling Jalna 22 Bhokardan Sawangi Awghadrao Rising 0.23 23 20.1825 75.72638889 -0.09 Falling Jalna Bhokardan Shriasgaon mandap -0.12 Takli kolte 20.08667 75.60666667 Rising 0.08 Falling 24 Jalna Bhokardan 20.51944 75.93888889 0.28 0.43 Falling Falling 25 Jalna Bhokardan Wadhona 20.32472 75.77083333 -0.05 Rising 0.26 Falling 26 Jalna Bhokardan Wakadi 27 20.16333 75.79444444 0.38 0.22 Falling Jalna Bhokardan Walsa khalsa Falling Falling 75.79305556 0.32 0.07 28 Jalna Bhokardan Walsadawargaon 20.16111 Falling

Aquifer-I, Pre and Post Monsoon water level trend, Bhokardan taluka, Jalna district.

Annexure-IX

SN	Location	Туре	Latitude	Longitude	рН	EC	TDS	ΤН	Са	Mg	Na	К	CO₃	HCO₃	Cl	SO_4	NO ₃	F
		of				μS/cm												
		Sample																
1	Nimgaon	EW	20.1778	75.7333	7.1	2550	1557	210	80	2	483	3.0	0	61	603	346	3	0.44
2	Rajur	EW	20.0611	75.8625	7.3	1140	690	75	24	4	222	5.0	0	220	170	118	35	0.90
3	Babulgaon	EW	20.2458	75.8264	7.5	2190	1298	650	132	78	200	2.0	0	348	220	439	53	0.44
4	Janephal Zone-II	EW	20.1047	75.7658	7.7	1294	700	430	40	80	34	1	0	92	149	394	2	0.10
5	Dhavda EW	EW	20.5003	75.8894	7.7	1057	605	425	42	78	27	0.3	0	305	85	118	46	0.20
6	Janephal Zone-I	EW	20.1047	75.7658	8	600	343	250	30	43	17	0.2	0	153	50	80	31	0.10
7	Pimpalgaon Renukai	EW	20.3697	75.9011	8	915	520	425	86	51	8	0.3	0	183	85	135	51	0.40
8	Siphora	EW	20.2581	75.8647	8.3	1346	848	635	128	77	8	0.66	3	159	255	128	ND	1.28
9	Hasnabad	EW	20.1353	75.6997	8.3	329	214	120	42	4	48	1.91	9	85	74	35	10	0.23
10	Nalni Bk.	EW	20.1544	75.8858	7.6	1330	743	260	40	39	181	0.2	0	506	43	158	28	0.71
11	Dawargaon Walsa	EW	20.1756	75.8106	7.8	373	242	75	26	2	42	0.35	0	98	32	46	11	0.09
12	Annava	EW	20.4219	75.78	7.8	650	423	215	44	26	17	0.94	0	104	92	51	10	0.09

Aquifer-II, Ground water quality, Bhokardan taluka, Jalna district.
Annexure X

location of	nronosed	Check Dams	in Bhokardan	taluka	laina district
	proposed	Check Buills	III Dilokaraan	curunu	j Juniu albenec

	<u>en er brebe</u>				
SN	Longitude	Latitude	Diatrict	Taluka	Village
1	75.6717	20.0976	Jalna	Bhokardan	Pimpri
2	75.7088	20.0805	Jalna	Bhokardan	Ekephal
3	75.7188	20.0779	Jalna	Bhokardan	Palaskheda
					Dabhadi
4	75.7427	20.0929	Jalna	Bhokardan	Jawkheda Kh.
5	75.6613	20.1505	Jalna	Bhokardan	Goshegaon
6	75.6667	20.1432	Jalna	Bhokardan	Deulgaon (kaman)
7	75.6635	20.1388	Jalna	Bhokardan	Deulgaon (kaman)
8	75.6556	20.1093	Jalna	Bhokardan	Sawkheda
9	75.6624	20.119	Jalna	Bhokardan	Sawkheda
10	75.6745	20.1221	Jalna	Bhokardan	lta
11	75.7256	20.0678	Jalna	Bhokardan	Palaskheda
					Dabhadi
12	75.6785	20.1093	Jalna	Bhokardan	Khadgaon
13	75.8209	20.1184	Jalna	Bhokardan	Banegaon
14	75.8045	20.0527	Jalna	Bhokardan	Chandai Eko
15	75.8102	20.0618	Jalna	Bhokardan	Chandai Eko
16	75.8156	20.0702	Jalna	Bhokardan	Chandai Tepli
17	75.812	20.106	Jalna	Bhokardan	Banegaon
18	75.8302	20.1057	Jalna	Bhokardan	Banegaon
19	75.7445	20.1314	Jalna	Bhokardan	Sirasgaon Waghrul
20	75.7459	20.1408	Jalna	Bhokardan	Rajala
21	75.8284	20.4114	Jalna	Bhokardan	Jalgaon (sapakal)
22	75.7999	20.3552	Jalna	Bhokardan	Kukdi
23	75.8095	20.3518	Jalna	Bhokardan	Kathora Bajar
24	75.8202	20.3709	Jalna	Bhokardan	Kalyani
25	75.8127	20.4134	Jalna	Bhokardan	Jalgaon (sapakal)
26	75.8231	20.4164	Jalna	Bhokardan	Jalgaon (sapakal)
27	75.8352	20.4198	Jalna	Bhokardan	Jalgaon (sapakal)
28	75.8248	20.4034	Jalna	Bhokardan	Jalgaon (sapakal)
29	75.8409	20.4091	Jalna	Bhokardan	Jalgaon (sapakal)
30	75.8459	20.4201	Jalna	Bhokardan	Hisoda Kh.
31	75.8555	20.4248	Jalna	Bhokardan	Hisoda Kh.
32	75.8698	20.4318	Jalna	Bhokardan	Hisoda Bk.
33	75.7802	20.4329	Jalna	Bhokardan	Koda
34	75.7852	20.4205	Jalna	Bhokardan	Anvapada
35	75.7849	20.3672	Jalna	Bhokardan	Kukdi
36	75.7834	20.3773	Jalna	Bhokardan	Wakdi
37	75.7813	20.3873	Jalna	Bhokardan	Anvapada
38	75.7784	20.4007	Jalna	Bhokardan	Anvapada
39	75.7634	20.4138	Jalna	Bhokardan	Karlawadi (n.v.)
40	75.7813	20.3468	Jalna	Bhokardan	Wakdi
41	75.8134	20.3053	Jalna	Bhokardan	Danapur

42	75.8191	20.3029	Jalna	Bhokardan	Danapur
43	75.8231	20.2982	Jalna	Bhokardan	Rajapur
44	75.8173	20.2949	Jalna	Bhokardan	Rajapur
45	75.8073	20.2939	Jalna	Bhokardan	Rajapur
46	75.8198	20.2798	Jalna	Bhokardan	Bhaydi
47	75.8288	20.2765	Jalna	Bhokardan	Bhaydi
48	75.8388	20.2765	Jalna	Bhokardan	Bhaydi
49	75.8406	20.3438	Jalna	Bhokardan	Palaskheda Murtad
50	75.8384	20.3156	Jalna	Bhokardan	Dehed
51	75.8463	20.32	Jalna	Bhokardan	Dehed
52	75.8077	20.33	Jalna	Bhokardan	Kathora Bajar
53	75.8163	20.3233	Jalna	Bhokardan	Danapur
54	75.8234	20.3193	Jalna	Bhokardan	Danapur
55	75.9187	20.1345	Jalna	Bhokardan	Khaparkheda
56	75.8998	20.0946	Jalna	Bhokardan	Palaskheda
					Pimpalya
57	75.9038	20.104	Jalna	Bhokardan	Palaskheda
					Pimpalya
58	75.917	20.1197	Jalna	Bhokardan	Pimpalgaon Thot
59	75.873	20.1023	Jalna	Bhokardan	Banegaon
60	75.8713	20.1087	Jalna	Bhokardan	Banegaon
61	75.8645	20.118	Jalna	Bhokardan	Banegaon
62	75.8684	20.1234	Jalna	Bhokardan	Tondoli
63	75.8827	20.1355	Jalna	Bhokardan	Nalni Bk.
64	75.9045	20.1522	Jalna	Bhokardan	Khaparkheda
65	75.9013	20.0641	Jalna	Bhokardan	Umarkheda
66	75.9084	20.0561	Jalna	Bhokardan	Umarkheda
67	75.8959	20.0487	Jalna	Bhokardan	Longaon
68	75.8748	20.0792	Jalna	Bhokardan	Thigalkheda
69	75.8952	20.3558	Jalna	Bhokardan	Warud Bk
70	75.8691	20.318	Jalna	Bhokardan	Godri
71	75.8616	20.2949	Jalna	Bhokardan	Godri
72	75.8655	20.3029	Jalna	Bhokardan	Godri
73	75.8695	20.3086	Jalna	Bhokardan	Godri
74	75.9009	20.3079	Jalna	Bhokardan	Malegaon
75	75.9105	20.3096	Jalna	Bhokardan	Malegaon
76	75.9105	20.2952	Jalna	Bhokardan	Kolegaon
77	75.9116	20.2895	Jalna	Bhokardan	Kolegaon
78	75.9127	20.2821	Jalna	Bhokardan	Kolegaon
79	75.8788	20.3538	Jalna	Bhokardan	Warud Bk
80	75.8863	20.3562	Jalna	Bhokardan	Warud Bk
81	75.9277	20.3444	Jalna	Bhokardan	Mohalai
82	75.9298	20.3511	Jalna	Bhokardan	Mohalai
83	75.9352	20.3575	Jalna	Bhokardan	Mohalai
84	75.8548	20.3525	Jalna	Bhokardan	Palaskheda Murtad
85	75.8555	20.325	Jalna	Bhokardan	Dehed

96	75 0001	20 5212	Jalpa	Dhokardan	Dhawada
87	75.8991	20.5515	Jaina	Bhokardan	Walsawangi
88	75 9234	20.4751	Jalna	Bhokardan	Walsawangi
89	75 893	20.1731	Jalna	Bhokardan	Leha
90	75.000	20.4124	Jaina	Bhokardan	Mehegaon
01	75 0152	20.5555	Jaina	Bhokardan	Mehegaon
02	75.9152	20.5404	Jairia	Bhokardan	Mohogaon
02	75.9010	20.3324	Jaina	Bhokardan	Mohogaon
95	75.0000	20.341	Jalina	Bhokardan	Dhawada
94	75.0004	20.5079	Jallia	Bhokardan	Dhawada
95	75.0927	20.5129	Jallia	Bhokardan	Malcawangi
90	75.9409	20.4696	Jallia	Bliokardan	Walsawangi
97	75.9352	20.4988	Jaina	Bhokardan	waisawangi
98	75.9348	20.5246	Jaina	Bhokardan	Wadhona
99	75.8798	20.4677	Jalna	Bhokardan	Wadhod Tangdya
100	75.8698	20.4694	Jalna	Bhokardan	Wadhod Tangdya
101	75.9341	20.459	Jalna	Bhokardan	Walsawangi
102	75.9152	20.4861	Jalna	Bhokardan	Walsawangi
103	75.7158	20.3003	Jalna	Bhokardan	Avhana
104	75.7262	20.2986	Jalna	Bhokardan	Avhana
105	75.744	20.2845	Jalna	Bhokardan	Gokul
106	75.744	20.2715	Jalna	Bhokardan	Nasirabad
107	75.7579	20.2587	Jalna	Bhokardan	BHOKARDAN
108	75.8004	20.234	Jalna	Bhokardan	Masanpur
109	75.7983	20.2223	Jalna	Bhokardan	Garkheda
110	75.8572	20.2129	Jalna	Bhokardan	Kodoli
111	75.8614	20.2289	Jalna	Bhokardan	Dautpur
112	75.8771	20.2256	Jalna	Bhokardan	Takli Bhokardan
113	75.6567	20.1677	Jalna	Bhokardan	Goshegaon
114	75.6557	20.158	Jalna	Bhokardan	Goshegaon
115	75.6619	20.1498	Jalna	Bhokardan	Goshegaon
116	75.6575	20.1354	Jalna	Bhokardan	Deulgaon (kaman)
117	75.6607	20.1317	Jalna	Bhokardan	Deulgaon (kaman)
118	75.6839	20.1327	Jalna	Bhokardan	Hasanabad
119	75.6867	20.1268	Jalna	Bhokardan	Hasanabad
120	75.7037	20.1422	Jalna	Bhokardan	Hasanabad
121	75.7199	20.1335	Jalna	Bhokardan	Borgaon Khadak
122	75.7451	20.137	Jalna	Bhokardan	Takli Bajad
123	75.7722	20.1288	Jalna	Bhokardan	Borgaon Taru
124	75.7833	20.138	Jalna	Bhokardan	Borgaon Taru
125	75.665	20.1605	Jalna	Bhokardan	Goshegaon
126	75.656	20.1362	Jalna	Bhokardan	Deulgaon (kaman)
127	75.668	20.1523	Jalna	Bhokardan	Goshegaon
128	75.6907	20.1586	Jalna	Bhokardan	Hasanabad
129	75.8738	20.4939	Jalna	Bhokardan	Dhawada
130	75,9369	20.4417	Jalna	Bhokardan	Padmavati
		/		2	

131	75.9216	20.377	Jalna	Bhokardan	Pimpalgaon (renukai)
132	75.8905	20.3804	Jalna	Bhokardan	Pimpalgaon
					(renukai)
133	75.8295	20.3108	Jalna	Bhokardan	Danapur
134	75.7338	20.1845	Jalna	Bhokardan	Nimgaon
135	75.7335	20.205	Jalna	Bhokardan	Sirasgaon
					(mandap)
136	75.7338	20.2267	Jalna	Bhokardan	Kshirsagar
137	75.7917	20.1899	Jalna	Bhokardan	Soegaon Devi
138	75.8238	20.1839	Jalna	Bhokardan	Baranjala
					(lokhande)
139	75.9162	20.1755	Jalna	Bhokardan	Tadegaon
140	75.6225	20.0908	Jalna	Bhokardan	Ridhora
141	75.6646	20.0844	Jalna	Bhokardan	Pimpri
142	75.7203	20.1129	Jalna	Bhokardan	Khadki
143	75.7849	20.1193	Jalna	Bhokardan	Deulgaon Tad
144	75.8448	20.1293	Jalna	Bhokardan	Tondoli
145	75.8709	20.1484	Jalna	Bhokardan	Tondoli

Annexure XI

Location of proposed Percolation Tanks in	Bhokardan taluka,	, Jalna district
---	-------------------	------------------

SN	Longitude	Latitude	District	Taluka	Village
1	75.9098	20.1108	Jalna	Bhokardan	Pimpalgaon Thot
2	75.897	20.087	Jalna	Bhokardan	Pimpalgaon Barao
3	75.8902	20.0412	Jalna	Bhokardan	Longaon
4	75.9012	20.0469	Jalna	Bhokardan	Longaon
5	75.9134	20.0553	Jalna	Bhokardan	Umarkheda
6	75.9123	20.1272	Jalna	Bhokardan	Pimpalgaon Thot
7	75.9109	20.0673	Jalna	Bhokardan	Umarkheda
8	75.8641	20.1289	Jalna	Bhokardan	Tondoli
9	75.8684	20.0847	Jalna	Bhokardan	Khamkheda
10	75.8616	20.0944	Jalna	Bhokardan	Thigalkheda
11	75.6796	20.1225	Jalna	Bhokardan	lta
12	75.6617	20.1289	Jalna	Bhokardan	Deulgaon (kaman)
13	75.6439	20.0984	Jalna	Bhokardan	Pimpalgaon Kolte
14	75.731	20.077	Jalna	Bhokardan	Jawkheda Kh.
15	75.7424	20.0864	Jalna	Bhokardan	Jawkheda Kh.
16	75.7474	20.0666	Jalna	Bhokardan	Pimpalgaon Sermulki
17	75.7385	20.0757	Jalna	Bhokardan	Jawkheda Kh.
18	75.6871	20.1396	Jalna	Bhokardan	Hasanabad
19	75.6985	20.1312	Jalna	Bhokardan	Hasanabad
20	75.7153	20.1292	Jalna	Bhokardan	Borgaon Khadak
21	75.8366	20.1687	Jalna	Bhokardan	Jawkheda Thombari
22	75.8759	20.1901	Jalna	Bhokardan	Baranjala (sabale)
23	75.9116	20.2791	Jalna	Bhokardan	Walsa Wadala
24	75.8927	20.5286	Jalna	Bhokardan	Dhawada
25	75.8274	20.4276	Jalna	Bhokardan	Jalgaon (sapakal)
26	75.8506	20.4507	Jalna	Bhokardan	Dahigaon
27	75.883	20.4165	Jalna	Bhokardan	Leha
28	75.892	20.4236	Jalna	Bhokardan	Leha
29	75.9312	20.3751	Jalna	Bhokardan	Savangi (auaghadrao)
30	75.9316	20.3553	Jalna	Bhokardan	Mohalai
31	75.8484	20.349	Jalna	Bhokardan	Palaskheda Murtad
32	75.8245	20.359	Jalna	Bhokardan	Surangali
33	75.8281	20.3005	Jalna	Bhokardan	Danapur
34	75.9069	20.2995	Jalna	Bhokardan	Malegaon
35	75.9334	20.5313	Jalna	Bhokardan	Wadhona
36	75.9094	20.539	Jalna	Bhokardan	Mehegaon
37	75.8179	20.2243	Jalna	Bhokardan	Lingewadi
38	75.8379	20.221	Jalna	Bhokardan	Kodoli
39	75.7404	20.27	Jalna	Bhokardan	Nasirabad
40	75.7328	20.2354	Jalna	Bhokardan	Nanja
41	75.9037	20.3538	Jalna	Bhokardan	Relgaon
42	75.7977	20.3528	Jalna	Bhokardan	Kukdi

43	75.797	20.1682	Jalna	Bhokardan	Soegaon Devi
44	75.7909	20.1384	Jalna	Bhokardan	Deulgaon Tad
45	75.7396	20.1733	Jalna	Bhokardan	Nimgaon
46	75.7535	20.1672	Jalna	Bhokardan	Koparda
47	75.741	20.2135	Jalna	Bhokardan	Kshirsagar
48	75.7213	20.183	Jalna	Bhokardan	Sirasgaon (mandap)
49	75.6953	20.1214	Jalna	Bhokardan	Latifpur
50	75.7449	20.1073	Jalna	Bhokardan	Janephal Dabhadi
51	75.8852	20.1786	Jalna	Bhokardan	Baranjala (sabale)