

केंद्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

विभाग, जल शक्ति मंत्रालय

भारत सरकार Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES BULDHANA DISTRICT, MAHARASHTRA

मध्य क्षेत्र, नागपुर Central Region, Nagpur

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, BULDHANA DISTRICT, MAHARASHTRA

(AAP 2018-19)

Principal Authors							
Kartik P. Dongre		Scientist-C					
Priti D.Raut	:	Scientist-B					
Ashwin Kumar Atey	:	Assistant Hydrogeologist					
Supervision & Guidance							
S. N. Bhattachrya	:	Regional Director					
P. K. Parchure	:	Regional Director					
Dr. P. K. Jain	:	Supdtg. Hydrogeologist					
Hydrogeology, GIS maps and							
Management Plan							
J. R. Verma	:	Scientist-D					
Kartik P. Dongre		Scientist-C					
Groundwater Exploration							
Kartik P. Dongre	:	Scientist-C					
V. Venkatesam		Senior Technical Assistant (HG)					
Ashwin Kumar Atey		Assistant Hydrogeologist					
Chemical Analysis							
Dr. Devsharan Verma		Scientist B (Chemist)					
Dr. Rajni Kant Sharma		Scientist B (Chemist)					
T. Dinesh Kumar		Assistant Chemist					

CONTRIBUTORS

BULDHANA DISTRICT AT A GLANCE

1. G	ENERAL INFORMATION			
	Geographical Area	:	9661 Sq Km	
	Administrative Divisions	:	Taluka- 13, Buldhana, Chikhli, Deulgaon Raja,	
	(2011)		Jalgaon (Jamod), Khamgaon, Lonar, Malkapur,	
			Mehkar, Mohala, Nandura, Sangrampur,	
			Sindkhed Raja and Shegaon	
	Villages (Census 2011)	:	1444 Nos.	
	Population	•••	25,86,258	
	Rainfall 2018		500 to 700 mm	
	Normal rainfall (1998-2018)		786 mm (moderate to excess)	
	Short term rainfall Trend		-13.05 m/year	
	(1998-2018)			
2. GI	OMORPHOLOGY			
	Major Physiographic unit	:	Three; Satpudas, Purna plains and Ajanta	
			ranges	
	Major Drainage	:	Two: Purna and Penganga	
3. LA	ND USE (2017-18) (sources: ma	ha	sdb.maharashtra.gov.in/district Report)	
	Forest Area	:	855.41 Sq. Km. (7.65 %)	
	Net Area Sown	:	9536.2 Sq. Km. (79.54 %)	
	Cultivable Area	:	7394 Sq. Km. (81.50 %)	
4.	SOIL TYPE	:	3 Types- a) Shallow and gravelly reddish soil of	
			Satpudas b) Deep and clayey black soil of	
			Purna Alluvium and c) Shallow and black,	
			brown or reddish soils of Ajanta ranges	
5. PF	RINCIPAL CROPS (2017-18) (sou	rce	s: mahasdb.maharashtra.gov.in/district Report)	
	Wheat	:	448.0 sq. km.	
	Jower	:	138.2 sq. km.	
	Pulces	:	2507.9 sq. km.	
	Cotton	:	1180.7 sq. km.	
	Oil seeds		4015.82	
	Sugarcane		4.89	
6. IR	RIGATION BY DIFFERENT SOUR	CES	S (2016-17) - Nos. / Potential Created (ha)	
	Dugwells	:	72393/126319	
	Tubewells/Borewells	••	1021/1803	
	Surface Flow Schemes	••	3700/38539	
	Surface Lift Schemes	:		
7. GI	ROUND WATER MONITORING V	NE	LLS (March 2018)	
	Dugwells	:	55	
	Piezometers : 13			
8. G	OLOGY			
	Recent to sub-recent	:	Alluvium	
	Late Cretaceous to Eocene	:	Basalt (Deccan Traps)	
9. HY	/DROGEOLOGY			

Water Bearing Formation	:	Basalt-Weathered/fractured/jointed
		vesicular/amygdaloidal/massive, under
		phreatic and semi-confined to confined
		conditions.
		Alluvium- Sand and Gravel under semi-
		confined to confined conditions
Depth to water level in Shallo	w /	Aquifer
Premonsoon Depth to Water	:	3.7 to 24.9 mbgl
Level (May-2018)		
Postmonsoon Depth to	:	2.5 to 23.4 mbgl
Water Level (Nov2018)		
Depth to water level in Deepe	er /	Aquifer
Premonsoon Depth to Water		6.3 to 25.19 mbgl
Level (May-2018)		
Postmonsoon Depth to		4.8 to 18.1 mbgl
Water Level (Nov2018)		
Water level Trend (2009-18)		
Premonsoon Water Level	:	Rise: 0.0061 to 0.4339 m/year
Trend (2008-2017)		Fall: 0.3 to 0.89 m/year
Postmonsoon Water Level	:	Rise: 0.0027 to 0.967 m/year
Trend (2008-2017)		Fall: 0.89 to 0.0006 m/year
10. GROUND WATER EXPLORATION	I (A	As on March, 2018)
Wells Drilled	:	EW-80, OW-17, Pz-23
Depth Range	:	19.55 to 311.20 m bgl
Discharge	:	Traces to 14.89 lps
Storativity	:	1.09 x 10-3 to 3 x 10-6 (Alluvium)
		8 x 10 -8 to 4.2 x 10 – 2 (Basalt)
Transmissivity	:	0.89 to 1575m2/day (Alluvium)
		8.35 to 396 m2/day (Basalt)
11. GROUND WATER QUALITY		
Good and suitable for drinking	; an	d irrigation purpose, however localized nitrate
and fluoride contamination is	obs	served.
Type of Water	:	Ca-Cl and Ca-HCO3
12. DYNAMIC GROUND WATER RES	0	IRCES - (2013)
Net Annual Ground Water	:	94448.21 ham
Availability (ham)		
Total Draft (Irrigation +	:	3565.94 ham
Domestic+ Industrial)		
Projected Demand	:	6841.92 ham
(Domestic + Industrial)		
Stage of Ground Water	:	71.83 %
Development		
Category		OE: 1, Jalgaon (Jamod) , SC: 1, Motala, rest
		Blocks are Safe
13. MAJOR GROUND WATER PROB	LEN	/IS AND ISSUES

	The major parts of the district are showing falling ground water level trends							
	mainly in central, northern and eastern parts of the district due to exploitation							
	of ground water for irrigation and other purposes at a faster rate. There is much							
	scope for conjunctive use in	such areas. The conjunctive use of water is						
	recommended in this area. The ground water quality is also non-potable at many							
	places as the concentrations of	of nitrate and total hardness are above desirable						
	limit. Adequate sanitary protection to the wells may be provided to control the							
	nitrate contamination.							
14.	Aquifer Management Plan							
	Supply side Management	Proposed AR structures: 262 Percolation tanks						
		and 482 Check dams and recharge Shaft 158.						
	Demand side Management	The 44.97 MCM volume of ground water						
		generated can bring 146.20 sq km additional						
		area under assured ground water irrigation						
		with average crop water requirement of 0.65						

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, BULDHANA DISTRICT, MAHARASHTRA

(AAP 2018-19)

CONTENTS

1.0	INTRODUCTION1
1.1	Objective and Scope1
1.2	About the Area1
1.3	Geomorphology, Drainage and Soil Types3
1.4	Climate and Rainfall8
1.5	Geology10
1.6	Soil Infiltration Tests 11
2.0	Hydrogeology12
2.1	Major Aquifer System 12
2.2	Aquifer Parameters 18
2.3	3-D and 2-D Aquifer Disposition
3.0	Water Level Scenario 21
3.1	Depth to water level (Aquifer-I /Shallow Aquifer) 21
3.2	Depth to water level (Aquifer-II / Deeper Aquifer)
3.3	Water Level Trend (2009-2018)
3.4	Hydrograph Analysis 24
4.0	Ground Water Quality 28
4.1	Electrical Conductivity (EC)
4.2	Suitability of Ground Water for Drinking Purpose
4.3	Suitability of Ground Water for Irrigation 31
5.0	Ground Water Resources 32
5.1	Ground Water Resources – Aquifer-I 32
5.2	Ground Water Resources – Aquifer-II 35
6.0	Ground Water Management Plan 36
6.1	Supply Side Management
6.2	Demand Side Management 41
6.3	Expected Benefits
6.4	Development Plan
7.0	Sum Up
8.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, CHIKHALI
	BLOCK, BULDHANA DISTRICT, MAHARASHTRA
9.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, DEULGAON
	RAJA BLOCK, BULDHANA DISTRICT, MAHARASHTRA
10.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, KHAMGAON
	BLOCK, BULDHANA DISTRICT, MAHARASHTRA
11.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, LONAR BLOCK,
42.0	
12.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MEHKAR
40.0	BLUCK, BULDHANA DISTRICT, MAHAKASHTRA
13.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, SINDKHED RAJA

	BLOCK, BULDHANA DISTRICT, MAHARASHTRA97
14.0	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE ANJANI BUDRUK,
	WATERSHED PGKA-1, MEHKAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA
	107
15.0	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE DONGAON,
	WATERSHEDS PGKA-1, MEHKAR BLOCK, BULDHANA DISTRICT,
	MAHARASHTRA
16.0	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE HIWARA SABLE,
	WATERSHEDS PGKA-1 AND PG-1, MEHKAR BLOCK, BULDHANA DISTRICT,
	MAHARASHTRA
17.0	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE MADANI,
	WATERSHEDS PGKA-1, MEHKAR BLOCK, BULDHANA DISTRICT,
	MAHARASHTRA
18.0	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, SINDKHED RAJA,
	WATERSHEDS GPP-1, SINDKHED RAJA BLOCK, BULDHANA DISTRICT,
	MAHARASHTRA
19.0	PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE SAOKHED TEJAN,
	WATERSHED GPP-1, SINDKHED RAJA BLOCK, BULDHANA DISTRICT,
	MAHARASHTRA
20.0	INTERVENTION FOR AQUIFER REJUVENATION OF PGKA-1 WATERSHED,
	MEHKAR BLOCK. BULDHANA DISTRICT. MAHARASHTRA
21.0	INTERVENTION FOR AQUIFER REJUVENATION OF GPP-1 WATERSHED.
	SINDKHED RAJA BLOCK. BULDHANA DISTRICT. MAHARASHTRA

LIST OF FIGURES

Fig. 1.1 a & b: Index and Administrative map Buldhana District	2
Fig. 1.2: Locations of Existing Exploratory wells and Ground Water Monitoring Wells	3
Fig. 1.3: Geomorphology ,Buldhana District	6
Fig. 1.4: Drainage, Buldhana District	6
Fig. 1.5: Soil, Buldhana District	7
Fig. 1.6: Landuse , Buldhana District	7
Fig. 1.7: Isohyetal map of Buldhana District	9
Fig. 1.8: Short-term annual rainfall (1998-2018)	10
Fig. 1.9: Principal Aquifer Map of Buldhana district	11
Fig. 1.10: Soil Infiltration Test	12
Fig. 2.1: Major Aquifers of Buldhana district	13
Fig 2.2: Minor Aquifers of Buldhana district	14
Fig 2.3: Water Table contour	15
Fig. 2.4: Depth of occurrence and fractured/granular rock thickness of Aquifer-I	16
Fig. 2.5: Depth of occurrence and fractured/granular rock thickness of Aquifer-II	16
Fig. 2.6: Aquifer-I Yield Potential (Basalt & Alluvium)	17
Fig. 2.7: Aquifer-II Yield Potential (Basalt)	17
Fig. 2.8: Aquifer-III Cummulative yield potential (Basalt)	17
Fig. 2.9: 3D Aquifer Disposition	18
Fig. 2.10: Fence Diagram	18

Fig. 2.11: 3D Bar Diagram	. 19
Fig. 2.12 (a): Lithological section along A – A'	. 20
Fig. 2.12 (b): Lithological section along B – B'	. 20
Fig. 2.12 (c): Lithological section along C – C'	. 20
Fig. 2.12(d): Lithological section along D – D'	. 20
Fig 3.1: DTWL shallow aquifer (May 2018)	. 22
Fig 3.2: DTWL shallow aquifer (Nov. 2018)	. 22
Fig 3.3: DTWL deeper aquifer (May 2018)	. 23
Fig 3.4: DTWL deeper aquifer (Nov. 2018)	. 23
Fig.3.5: Pre-monsoon decadal trend (2009-18	. 24
Fig 3.6: Postmonsoon decadal trend (2009-18)	. 24
Fig 3.7a : Hydrograph (2009-18), Padli, Buldhana Block, Buldhana District	. 25
Fig 3.7b : Hydrograph (2009-18), Dongar Khandala, Chikhali Block, Buldhana District	. 25
Fig 3.7c : Hydrograph (2009-18), Deulgaon Raja, Deulgaon Raja Block, Buldhana District	. 25
Fig 3.7d : Hydrograph (2009-18), Atali , Khamgaon Block, Buldhana District	. 25
Fig 3.7e : Hydrograph (2009-18), Jalgaon Jamod, Jalgaon Jamod Block, Buldhana District	. 26
Fig 3.7f : Hydrograph (2009-18), Lonar, Lonar Block, Buldhana District	. 26
Fig 3.7g : Hydrograph (2009-18), Wagul, Malkapur Block, Buldhana District	. 26
Fig 3.7h : Hydrograph (2009-18), Mehkar, Mehkar Block, Buldhana District	. 26
Fig 3.7i : Hydrograph (2009-18), Motala, Motala Block, Buldhana District	. 27
Fig 3.7j : Hydrograph (2009-18), Nadura, Nadura Block, Buldhana District	. 27
Fig 3.7k:Hydrograph(2009-18),Sindhkhed Raja,Sindhkhed Raja Block,Buldhana District	. 27
Fig 3.7 l : Hydrograph(2009-18),Shegaon,Shegaon Block,Buldhana District	. 27
Fig. 4.1: Ground water quality, Aquifer-I / Shallow aquifer	. 30
Fig. 4.2: Ground water quality, Aquifer-II / Deeper aquifer	. 30
Fig 5.1: Ground Water Resources (2013), Buldhana district	. 34
Fig. 6.2: Proposed Demand side intervention, Buldhana district	. 40
Fig. 6.3: Additional Area Proposed to be bought under Assured GW irrigation	. 43

LIST OF TABLES

4
5
8
8
10
11
15
28
28
29
31
31
32

Table 5.1 Ground water resources, Aquifer-I (Shallow aquifer), Buldhana district (2013) 33
Table 5.2 Ground Water Resources of Aquifer II and Aquifer-III	35
Table 6.1: Area feasible and volume available for Artificial Recharge	37
Table 6.2: Proposed Artificial Recharge Structures	38
Table 6.3: Demand side interventions proposed	41
Table 6.4: Expected benefits after management options	41
Table 6.5: Block wise additional area under assured GW Irrigation	42
Annexure-I: Salient Features of Ground Water Exploration, Buldhana District	153
Annexure-II: Details of GW monitoring wells and KOWs in Buldhana district.	159
Annexure-III: Key observation well of Panchayat Level	164
Annexure-IV: Water Level of Ground water monitoring wells (2018) with long tern	n trend
(2009-2018)	167
Annexure-V: Chemical analysis of ground water samples, Aquifer- I / Shallow aquifers	173
Annexure VI: Chemical analysis of ground water samples, Aquifer- II / Deeper aquifers	s 178
Annexure VII: Location of proposed Percolation tanks in Buldhana district	182
Annexure VIII: Location of proposed check dam in Buldhana district	187
Annexure IX: Location of proposed recharge shaft in Buldhana district	196

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, BULDHANA DISTRICT, MAHARASHTRA

(AAP 2018-19)

1.0 INTRODUCTION

In XII five year plan, National Aquifer Mapping (NAQUIM) had been taken up by CGWB to carry out detailed hydrogeological investigation on toposheet scale of 1:50,000. The NAQUIM has been prioritised to study Over-exploited, Critical and Semi-Critical talukas as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulation mechanism has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the **"Road Map"** for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the State Govt. for its effective implementation.

1.1 Objective and Scope

Aquifer mapping itself is an improved form of groundwater management – recharge, conservation, harvesting and protocols of managing groundwater. These protocols will be the real derivatives of the aquifer mapping exercise and will find a place in the output i.e, the aquifer map and management plan. The activities under NAQUIM are aimed at:

- identifying the aquifer geometry,
- aquifer characteristics and their yield potential
- quality of water occurring at various depths,
- aquifer wise assessment of ground water resources
- preparation of aquifer maps and
- Formulate ground water management plan.

This clear demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a **"Road Map"** to systematically manage the ground water resources for equitable distribution across the spectrum.

1.2 About the Area

Buldhana is the western most district of Vidarbha. It lies between 19°51' and 21°17' north latitudes and 75°57' to 76°59' east longitudes and falls in Survey of India Toposheets 55-A, 55-C, 55-D and 55-P. The district covers a total geographical area of 9661.00 sq.km. It

is surrounded by Madhya Pradesh State in the north, on the east by Akola district, on the south by Parbhani district, in the west by Aurangabad and Jalgaon district and in the north east by Amravati district.

The district headquarters is located at Buldhana Town. For administrative convenience, the district is divided in 13 talukas viz, Buldhana, Chikhli, Motala, Deulgaon Raja, Jalgaon (Jamod), Khamgaon, Lonar, Malkapur, Mehkar, Nandura, Sangrampur, Sindkhed Raja, Shegaon .The population of Buldhana district is 25,86,258 persons and the population density is 268 persons/sq.km. as per the 2011 census. Agriculture is the main occupation of the people. The district forms part of Godavari and Tapi basin. Purna and Penganga Rivers are the main rivers flowing through the district.

Keeping in view the current demand and supply and futuristic requirement of water, Central Ground Water Board has initiated the National Aquifer Mapping Programme (NAQUIM) in India during XII five year plan, with a priority to study Over-exploited, Critical and Semi-Critical talukas. Hence, Semi Critical talukas of Buldhana district has been taken up to carry out detailed hydrogeological investigation in Buldhana, Jalgaon Jamod, Motala during 2013-14, Malkapur ,Sangrampur, Shegaon in the year 2016-17, Buldhana 2016-17 and Khamgaon,Chikhalli,Lonar,Mehkar,Deulgaon Raja, Sindhkhed Raja taluka by covering an area of 8206 sq.km. in the year 2018-19. The Administrative and Index map of the study area is presented in **Fig. 1.1 (a & b)**.

Fig. 1.1 a & b: Index and Administrative map Buldhana District

Ground water exploratory drilling in the district has been taken up in different phases since 1984. The ground water exploration has been done in hard rock areas occupied by Deccan Trap Basalt. To establish the aquifer geometry, disposition and potential of aquifers, ground water exploration down to the depth of 200 m bgl has been taken up where the data gap exists and accordingly 8 exploratory wells has been constructed during 2018-19. A total of 124 EW has been constructed till March 2018. Salient features of ground water exploration are given in **Annexure-I**.

To assess the ground water scenario of the district, 68 existing ground water monitoring stations were being monitored 4 times in a year. Based on data gap analysis 222

Key Observation Wells (KOWs) were inventoried to acquire micro level hydrogeological data to decipher the water level scenario, sub-surface lithological disposition and hydrogeological setup of shallow aquifer (Aquifer-I). The details 222 KOWs/GWM/micro level wells are given in **Annexure-II**. Locations of existing ground water monitoring stations and exploratory wells are shown in **Fig. 1.2**.

Fig. 1.2: Locations of Existing Exploratory wells and Ground Water Monitoring Wells

1.3 Geomorphology, Drainage and Soil Types

The area can be broadly divided into three physiographic units i.e., the Satpudas, the Purna plains and Ajanta ranges. The elevation in the area range between 240-667 m amsl. The analysis of geomorphological data and thematic map collected from MRSAC, Nagpur reveals that southern area forms the Upper Plateau-Highly Dissected (HDP), depending on extent of weathering and thickness of soil cover viz. 1) HDP-a, in Southern part of the area having negligible soil cover, 2) HDP-b, having little soil cover in isolated patches. The Upper Plateau-Moderately Dissected (MDP) covers almost entire area, depending on extent of weathering and soil cover viz. 1) MDP-a, occupying 20-30 % area with exposed rock and thin soil cover. 2) MDP-b, mostly covers 60-70 % area with moderate soil cover and exposure of rocks. 3) MDP-c, occurs in isolated patches in southern part with moderate to high soil cover. The geomorphological map of Buldhana district is shown in **Fig. 1.3**.

Drainage of the district is entirely drained by three major drainage systems. The Purna (Tapi) system covers the complete half of the area of the district. The system is developed along the northern side of the district. The Painganga system & the Purna (Godavari) system originate from the Ajanta hills & covers the southern half portion of the district. The Purna Tapi is having the westerly drainage system and the remaining two system i.e. of Painganga and Purna (Godavari) have SE drainage system. All the rivers have a sub parallel to semi dendritic drainage pattern which is controlled by structures of the bed rocks formed by Deccan basalt lava flows. Based on geomorphological setting and drainage pattern the district is divided into 57 watersheds. The drainage map of Buldhana district is

shown in Fig. 1.4

Soil plays a very important role in the agricultural activities and forest growth of the area. The fertility of the soil from agricultural point of view depends upon the texture and structure which controls the retaining and transmitting capacity of moisture and various nutrients such as nitrogen, phosphorous and potassium present in the soil. The formation of the soil in the area is influenced by the climate, geology, vegetation and topography. The soil data and the thematic map of the area available with the MRSAC, Nagpur has been collected and analysed.

It has been observed that the major part of the area is occupied by clayey deep soil. Maximum area of the talukas are covered by Clayey loamy soil with extremely shallow to very shallow depth. The clayey loamy soil is observed all along the major drainages. The soil varies both in texture and depth. Deep soils occur along plains of lower elevation, depressions and along river banks. These are dark black cotton soils. The thematic map on the soil distribution in the study area is shown in **Fig. 1.5**.

Agriculture, Irrigation and Cropping pattern

The landuse and the thematic map available with the MRSAC, Nagpur has been collected and analysed with reference to the present agricultural practices, various land use etc. The major part of the areas is covered by agricultural land. It has been observed that the major parts of the district are covered by agricultural land with net sown area of 6716.8 Sq. Km. (68.94 %). Forest covers very little area of 1057.42 Sq. Km. (10.84 %) in Khamgaon, Buldhana, Mehkar, and Sindhkhed raja blocks. Small waterbodies are widely spread all over the districts. The built up area is reflected wherever settlements have come up. The landuse map of Buldhana district is shown in **Fig. 1.6**.

The agriculture pattern in most of the area is under double crop and more than double crop. The main crops of area are Bajara, Rice, Jawar. The Wheat is the main Kharif crops. The Maka and Gram are grown during the rabbi season. Vegetables and cotton are main cash crops. After establishment of sugar factories, Sugarcane is also a cash crop grown in the area. The spatial distribution of cropping pattern is presented in **Table No 1.1 & Table No 1.2**.

SR. No.	TALUKA	TOTAL GEOGRAPHICAL AREA(Sq.km)	FOREST	FALLOW LAND	NET AREA	The total area under cultivation (Sq.km)	CULTIVABLE AREA (Sq.km)	Area sown more than once (Sq.km)
1	BULDHANA	798.3675	139.3118	42.1647	37.9013	1033.072	576.382	456.69
2	CHIKHLI	1137.9044	114.67	41.63	879.27	1245.29	879.27	366.02
3	DEULGAON RAJA	476.4554	27.1454	78.664	332.018	478.508	332.018	146.49
4	JALGAON JAMOD	589.6992	123.84	7.98	407.49	483.06	407.49	75.57
5	KHAMGAON	1204.7547	188.0394	64.425	853.675	1053.525	853.675	199.85
6	LONAR	672.2608	14.4607	41.2121	514.725	655.775	514.725	141.05
7	MALKAPUR	465.2192	0.3913	4.7475	410.993	467.353	410.993	56.36
8	MEHKAR	1131.2206	115.8928	25.2163	868.254	1047.664	868.254	179.41
9	MOTALA	759.6277	74.37	3.008	587.49	713.36	587.49	125.87
10	NANDURA	540.9396	4.89	6.9948	486.595	531.735	486.595	45.14
11	SANGRAMPUR	504.1415	4.1023	66.3	383.622	454.842	383.622	71.22
12	SHEGAON	505.4835	4.9985	1.37	454.56	485.074	454.56	30.514
13	SINDKHED RAJA	781.1977	43.3039	33.3178	638.98	887.02	638.98	248.04
	Total	9567.27	855.42	417.03	6855.57	9536.28	7394.05	2142.22

SR.	TALUKA	WHEAT	JOWAR	BAJRA	ΜΑΚΑ	TOTAL	TOTAL	TOTAL	SPICES	TOTAL	SUGAR-	COTTON	OIL-
NO						CEREALS	PULSES	FOOD		FOOD	CANE		SEEDS
								GRAINS		CROPS			
1	BULDHANA	51.12	8.48	0.08	94.14	154.23	352.35	506.58	2.97	3.45	0	26.14	391.23
2	CHIKHLI	91.94	24.92	0.71	23.75	141.32	407.79	550.72	3.86	7.26	0.24	10.97	615.93
3	DEULGAON RAJA	38.12	30.01	0.65	27.05	95.83	104.13	201.22	2.39	5.2	0.38	29.2	179.59
4	JALGAON JAMOD	21.99	8.76	0.51	16.33	47.59	107.01	154.6	0.83	10.4	0.01	114.51	177.11
5	KHAMGAON	61.5	10.8	6.2	10.2	88.7	232	320.7	1.15	4.22	0.15	247.13	425
6	LONAR	26.5	7.38	0.01	2.25	36.14	237.69	274.05	1.84	4.11	0	10.71	352.59
7	MALKAPUR	12.3	20.85	0	22.53	62.05	95.55	157.6	0.73	4.6	0.19	131.79	122.89
8	MEHKAR	36.01	4.42	0	5.11	45.54	273.17	317.87	2.03	3.31	2.02	28.31	677.62
9	MOTALA	12.3	13.82	2.18	28.9	113.07	111.38	224.45	1.31	2.54	0	251.08	141.06
10	NANDURA	7.97	36.69	0.15	22.53	67.72	126.52	194.24	0.17	2.59	0.02	88.23	187.11
11	SANGRAMPUR	13.5	11.76	0	13.33	38.59	102.84	141.43	0.61	13.75	0.01	127.07	146.88
12	SHEGAON	6.35	22.06	0.2	2.36	30.97	166.63	197.6	0.184	3.97	0	49.24	209.46
13	SINDKHED RAJA	60.61	78.3	0.07	8.4	147.38	188.6	335.98	0.54	4.94	1.87	66.47	389.45
		448.06	278.28	10.76	331.27	1070	2507.94	3577.94	18.61	63.1526	4.89	1180.76	4015.82

Table 1.2: Area Under Principal Crops in Buldhna District (fig. in sq.km)

1.4 Climate and Rainfall

Agriculture in the area depends mainly on the rainfall from south-west monsoon. The area experiences the sub-tropical to tropical temperate monsoon climate. The Short term rainfall data (1998-2018) of the rain gauge stations located at taluka headquarters had been collected from available sources and was subjected to various types of statistical analysis to understand the characteristic of the rainfall. The intensity of rainfall is the highest in July. In May, the average maximum temperature is 42.2 °C with the minimum being 15.10 °C. The Normal rainfall of the district is 785.9 mm spread over 47 to 50 rainy days in normal condition. Short term rainfall analysis (1998-2018) and annual rainfall data of last ten years is given in **Table 1.3 and 1.4.** The Isohyetal map of Buldhana district is given in **Fig. 1.7** and short term rainfall data if given in **Fig 1.8**.

District	Period	No of years	Normal Rainfall (mm)	Std. Deviation (mm)	Coefficient of Variation (%)	Rainfall Trend (mm/year)
Buldhana	1998-2018	21	785.9	165.5	21.66	-13.05
		No			Years	
Departures						
Positive	6			29		
Negative	legative 15			71		
Drought						
Moderate	3			14		
Severe	0			0		
Acute	0			0		
Normal & Excess	RF					
Normal	15			71		
Excess	3			14		

Table 1.3: Short-term rainfall analysis

Rainfall departure: EXCESS: > +25; NORMAL: +25 TO -25; MODERATE: -25 TO -50; SEVERE: -50 TO -75; ACUTE: < -75

Table 1.4: Annual rainfall data (1998-2019) (in mm)

Year	Average rainfall (mm)	Normal rainfall (mm)	Departure (%)	Category
1998	925.5	785.9	17.76	NORMAL
1999	925.5	785.9	17.76	NORMAL
2000	582.4	785.9	-25.89	MODERATE
2001	823.5	785.9	4.78	NORMAL
2002	997.6	785.9	26.94	EXCESS
2003	701.7	785.9	-10.71	NORMAL
2004	598.5	785.9	-23.85	NORMAL
2005	595.5	785.9	-24.23	NORMAL
2006	1006.6	785.9	28.08	EXCESS
2007	730.2	785.9	-7.09	NORMAL
2008	622.1	785.9	-20.84	NORMAL
2009	747.1	785.9	-4.94	NORMAL
2010	1039.8	785.9	32.31	EXCESS
2011	628.5	785.9	-20.03	NORMAL
2012	612.3	785.9	-22.09	NORMAL
2013	612.3	785.9	-22.09	NORMAL
2014	551.1	785.9	-29.88	MODERATE
2015	684.7	785.9	-12.88	NORMAL

Year	Average rainfall (mm)	Normal rainfall (mm)	Departure (%)	Category
2016	718.4	785.9	-8.59	NORMAL
2017	618.1	785.9	-21.35	NORMAL
2018	474.5	785.9	-39.62	MODERATE

(Source-website of Maharashtra Government: mahaagri.gov.in)

Rainfall departure: EXCESS: > +25; NORMAL: +25 TO -25; MODERATE: -25 TO -50; SEVERE: -50 TO -75; ACUTE: < -75

Fig. 1.7: Isohyetal map of Buldhana District

Fig. 1.8: Short-term annual rainfall (1998-2018)

1.5 Geology

Geologically, the area is divided into two stratigraphic units i.e., Alluvium and Deccan Trap Basalt formations. The generalized geological sequence occurring in the area is given in **Table 1.5**.

Geologic Period	Stratigraphic unit	Lithology			
Recent to Sub-Recent River Alluvium		Clay, Silt, Sand, Gravel, Kanker etc.			
Late Cretaceous to Eocene Deccan traps		Basalt, vesicular, amygdaloidal wit			
		intertrappeans.			

Table 1.5: Generalized Geological sequence of Buldhana district

Alluvium:

The northern part of the district on either side of Purna River is underlain by thick Alluvial deposits of Pleistocene to Recent age and is termed as Purna Alluvium. The Alluvium is also observed in a small patch southwest of Malkapur and east of Khamgaon along the boundaries of district. The Alluvial valley lies in narrow belt and covers roughly about 1800 sq. km. The valley extends about 51 sq. km. in Buldhana district and it tapers towards the western end.

Purna Alluvium has a proven thickness of more than 300 meters. Based on studies the entire thickness of Alluvium has been divided into younger Alluvium and older Alluvium. The younger Alluvium contains comparatively more sand layers and thus forms good aquifer. The older Alluvium, which is more clayey with thin horizons of sand and silt forms a comparatively lesser potential aquifer. In younger Alluvium ground water generally occurs in confined to semi-confined conditions in the depth range of 11-40 m bgl, while in older Alluvium it occurs under confined conditions below the depth of 40 m.

Deccan Trap Basalt:

The entire district is occupied by Deccan trap basaltic lava flows of Late Cretaceous to Eocene age. The Deccan lava sequence is grouped under Satpura group in the northern part whereas in southern part it is grouped under Sahyadri group. Deccan Trap Basalt forms an important water bearing formation of the district. The Deccan lava sequence is grouped under Satpura group in the northern part whereas in southern part it is grouped under Satpura group. In Basalt, ground water occurs both in Vesicular and Massive Basalt as well as inter-flow zones in weathered mantle, fractured zones. In general ground water occurs

under water table conditions in shallow aquifer and semi-confined to confined conditions in deeper aquifer. The unconfined aquifer is developed due to the weathering and jointing of upper flow in Basalt down to depth of 15-20 mbgl. The Principal Aquifer map of Buldhana district is shown in **Fig. 1.9**.

Fig. 1.9: Principal Aquifer Map of Buldhana district

1.6 Soil Infiltration Tests

To estimate the actual rate of infiltration of various soil cover and their impact on recharge to ground water, 6 infiltration tests have been conducted at Dongaon, Sindkhed raja, Deulgaon Mahi, Hiwarkhed, Amdapur and Lonar in various soil types. The data has been analyzed and the salient features of the infiltration tests are presented in **Table 1.6** and the plots of soil infiltration tests are presented in **Fig. 1.10**. The duration of the test ranged from 60 to 110 minutes, the depth of water infiltrated varied from 0.2 cm to 1.9 cm and the final infiltration rate in the area ranged from 1.2 cm/hr at Deulgaon mahi to 11.4 cm/hr at Lonar.

S. No.	Village	Date	Duration (min)	Water Level (cm agl)	Final Infiltrated Water Depth (cm)	Final Infiltration Rate (cm/hr)
1.	Amdapur	20.12.2018	110	20	0.2	2.4
2.	Deulgaon Mahi	20.12.2018	85	17	0.2	1.2

Table	1.6:	Salient	Features	of	Infiltration	Tests
Table	T .O.	Jancin	i catai co	U.	mmmuation	1 6 3 6 3

3.	Dongaon	21.12.2018	85	15	0.4	2.4
4.	Hiwarkhed	20.12.2018	80	20	0.4	2.4
5.	Lonar	21.12.2018	80	17	1.9	11.4
6.	Sindkhed	20.12.2018	60	16	0.3	1.8
	Raja					

2.0 HYDROGEOLOGY

2.1 Major Aquifer System

There are 2 types of aquifer systems exist in the area namely Alluvium and Basalt. The map showing major aquifer systems of Buldhana district is shown in **Fig 2.1**

2.1.1 Alluvium

Alluvium occurs in small areas along banks and flood plains of major rivers like Purna, Painganga and their tributaries. Coarse grained detrital material like sand and gravel usually occurring as lenses forms good aquifer. The ground water occurs under water table conditions in flood plain deposits near the river banks. Confined conditions are also found wherever the thick clay deposits confine the ground water below it. Ground water exploration in Purna-Painganga Alluvium reveals that the thickness of alluvium is less than 50 m. The yield of the dugwells ranges from 10 to 100 m³/day.

Fig. 2.1: Major Aquifers of Buldhana district.

2.1.2 Basalt

Deccan Trap Basalt of upper Cretaceous to lower Eocene age is the major rock formation in the district covering entire district. Although, Alluvium occurs along the major rivers in the district but it does not form potential aquifer except locally. A map depicting Minor aquifers is presented in **Fig. 2.2** and water table contour map is shown in **Fig. 2.3**.

Deccan basalts are hydro geologically in-homogeneous rocks. The weathered and jointed / fractured parts of the rock constitute the zone of ground water storage and flow. The existence of multiple aquifers is characteristic of basalt and is indicative of wide variation in the joint/fracture pattern and intensity. The yield of wells is function of the permeability and transmissivity of aquifer and it depends upon the degree of weathering, intensity of joints\fractures and topographic setting of the aquifer. Due to wide variation in secondary openings, the potential areas for ground water are generally localized. In general ground water occurs under phreatic/unconfined to semi-confined conditions in basalts.

Shallow Aquifer is generally tapped by the dug wells of 8 to 30 m depth, water levels range from 3 to 30 m bgl and yield varies from 25 to 75 m3/day. The deeper Aquifer is being tapped by borewells with depth ranging from 45 to 168 m bgl and the water level from 4 to 100 m bgl. Based on Ground Water Exploration, aquifer wise characteristics are given in **Table 2.1.** The depth of occurance and fractured/granual rock thickness map of Aquifer-I and Aquifer-II is shown in **Fig 2.4** and **Fig 2.5** respectively and the yield potential map of Aquifer-I, Aquifer-II and Aquifer-III is shown in **Fig 2.6**, **Fig 2.7** and **Fig 2.8** respectively.

Fig 2.2: Minor Aquifers of Buldhana district.

Fig 2.3: Water Table contour

Table 2.1: Aquifer	Characteristic of	Buldhana	district
--------------------	-------------------	----------	----------

Major Aquifers	Basalt (Dec	ccan Traps)	Alluvium	Alluvium	
Aquifer	Aquifer-I	Aquifer-II	Aquifer-I (AL02)	Aquifer-II (AL02)	
Type of Aquifer	Unconfined	Semi-confined	Semi-confined	Semi-confined to	
				confined	
Formation	Weathered/Fracture	Jointed /	Alluvium-Sand / silt	Alluvium-Sand / silt	
	d Basalt	Fractured Basalt	&Clay	&Clay	
Depth of Occurrence	8 to 30	45 to 168	0 to 79	0 to 120	
(mbgl)					
SWL (mbgl)	3.9-30	4- 100	6 to 31.4	19 to 38	
Granular/Weathered	6 to 25	0.5 to 12	0 to 50	0 to 40	
/ Fractured rocks thickness					
(m)					
Fractures/granular zone	Upto 35	Upto 182	Upto 78	Upto 110	
encountered (mbgl)					
Yield	25 to 75 m ³ /day	0.2 to 3 lps	10 -100m ³ /day	0.2 to 3.0 lps	
Sustainability	1 to 2 hrs	3 to 4 hrs	1 to 5 hrs		
Transmissivity (m ² /day)	30 to 60 m ² /day	25 to 395 m ² /day	10 to 1575 m ² /day		
Specific Yield / Storativity	0.2	8.0 x10 ⁻⁸ to 4.2x	10 to 500		
(Sy/S)		10 ⁻²			
Suitability for drinking/	Suitable for both	Suitable for both,	Suitable for both		
irrigation		except high EC			

Fig. 2.4: Depth of occurrence and fractured/granular rock thickness of
Aquifer-IFig. 2.5: Depth of occurrence and fractured/granular rock thickness of
Aquifer-II

Yield potential	Aquifer I	Aquifer II	Aquifer III
Alluvium	40 to 120 m ³ /day	0.5 to 5 lps	0 to 1.5 lps
Basalt	10 to 100 m ³ /day	0.2 to 3 lps	-

2.2 Aquifer Parameters

Aquifer parameters are available from data of ground water exploration carried out in the district as well as from the pumping tests. Pumping tests conducted on wells in the district show that transmissivity of shallow aquifer in basalts ranges from 30 to 60 m²/day, specific capacity of wells ranges from 75 to 200 lpm/m. with an average of about 110 lpm/m. The transmissivity in alluvium ranges from 10 to 1575 m² / day respectively.

2.3 3-D and 2-D Aquifer Disposition

Based on the existing data, 3D aquifer disposition, Fence diagram, Bar diagram and hydrogeological sections along different directions have been prepared and shown in **Fig. 2.9, 2.10, 2.11 and 2.12 (a to d)** to understand the subsurface disposition of aquifer system.

Fig. 2.9: 3D Aquifer Disposition

Fig. 2.10: Fence Diagram

Fig. 2.11: 3D Bar Diagram

Fig. 2.12 (b): Lithological section along B – B'

Fig. 2.12 (c): Lithological section along C – C'

Fig. 2.12(d): Lithological section along D – D'

3.0 WATER LEVEL SCENARIO

3.1 Depth to water level (Aquifer-I /Shallow Aquifer)

Central Ground Water Board periodically monitors 68 Ground Water Monitoring Wells (GWMWs) including 55 dugwells and 13 piezometers in the Buldhana district, four times a year i.e. in January, May (Premonsoon), August and November (Postmonsoon). Apart from this, under NAQUIM study 153 KOW were established and monitored during the year 2018-19. Alos, additional 69 well-inventory done under Panchayat level survey in four blocks (sindhkhed raja urban -19 well, Saokhed Tejan -7 well, Madani-7 well, Hiware sable- 6 Well, Dongaon-14 and Aanjani Bk-16 well). These data has been used for preparation of depth to water level maps of the district & panchayat level. Pre-monsoon and post monsoon water levels along with fluctuation during 2018 and long-term water level trends (2009-2018) is presented in **Annexure-V**.

Depth to Water Level – Pre-monsoon (May-2018)

The depth to water levels in Buldhana district during May 2018 range between 3.7 (sindhkhed raja) and 24.9 (Dighi, Nadura Block) m bgl. Depth to water levels during premonsoon shows water levels within 10-20 m bgl are observed in almost entire area. The water level > 20 mbgl is observed in Nandura and sangrampur Block of Alluvium region. The premonsoon depth to water level map is given in **Fig.3.1**.

Depth to Water Level – Post monsoon (Nov-2018)

The depth to water levels in Buldhana district during Nov 2018 range between 2.5 (Sailani, buldhana Block) and 23.4 (Kalkheda, Shegaon Block) m bgl. Water level ranges between 10-20 m also covers considerable part of Buldhana, Deulgaon Raja, Shegaon, sangrampur, Lonar Block. Water level less then 10 mbgl observed in Chikhli Block whereas deeper water level in more than 20 m observed in scattered patch in Motala, Buldhana Block. Deepest Water level observed in southern part of Nandura Block. Spatial variation in post monsoon depth to water levels area shown in **Fig. 3.2**.

3.2 Depth to water level (Aquifer-II / Deeper Aquifer)

Premonsoon Depth to Water Level (May-2018)

In Aquifer-II (Deeper Aquifer), the pre-monsoon depth to water levels, in Buldhana District during May 2018, range from 6.3 (Janefal , Ambad block) to 25.19 mbgl (Sonala new, Buldhna block). The depth to water level less than 20 mbgl is observed only in isolated parts of Mehkar and Khamgaon blocks. The major parts of the district show depth to water level between 20 and 30 mbgl. The deeper water level between 30 and 50 mbgl are observed in Motala,Sindkhed raja,Deulgao Raja and Sangrampur blocks. The deepest water level (>50 mbgl) has been observed in isolated part of Buldhana and Nadura block of the district. This may be due to overexploitation of ground water. The premonsoon depth to water level for Aquifer -II is given in **Fig. 3.3**.

Postmonsoon Depth to Water Level (Nov.-2018)

In Aquifer-II, the post monsoon depth to water levels in Buldhana District during Nov. 2018 range between 4.8 (Atali, Khamgaon block) and 18.1 mbgl (Dindola Bk Pz, Deulgaon raja block). Depth to water level less than 20 m bgl has been observed in the small isolated patches in Chikhali and Mehkar blocks. The major part of the district shows deeper water levels ranging between 20 and 40 mbgl. The deepest water level of more than 40 mbgl is observed in the Nadura blocks. The post monsoon depth to water level for Aquifer –II is given in **Fig. 3.4**.

3.3 Water Level Trend (2009-2018)

During pre-monsoon, rise in water level trend has been recorded at 67 stations and ranges from 0.006 (Karwand, Chikhali block) to 0.6 m/year (Mendgaon, Deulgaon Raja block) while falling trend was observed in 90 stations varying from 0.0001 (Tandulwadi, Khamgaon block) to 0.8905 m/year (Nimbi, Shegaon block). During pre-monsoon, declining water level trend has been observed in about 2666.98 sq km area covering major part of Buldhana and Deulgaon Raja, Jalgaon Jamod and isolated parts of almost all blocks. Decline more than 0.2 m is observed in 362 sq km area covering central part of Deulgaon raja, sindhkhed Raja, Nandura, Malkapur and Jalgaon jamod blocks (Fig. 3.5).

During post monsoon, rise in water level trend has been recorded at 105 stations and it ranges between 0.002 m/year (Rohana, Khamgaon block) to 0.96 (Belad, Malkapur block) while falling trend was observed in 52 stations varying from Negligible to (Borgaon Kakde, Chikhali block) to 0.8 m/year (Lonar, Lonar block) covering about 7000 sq km area. Decline of more than 0.2 m is observed in 920 sq. km covering parts of the Buldhana, Malkapur, Sindhkhed raja, and Deulgaon Raja blocks and **(Fig 3.6).**

3.4 Hydrograph Analysis

The variation in short term and long-term water level trends may be due to variation in natural recharge due to rainfall and withdrawal of groundwater for various agricultural activities, domestic requirements and industrial needs. The analysis of hydrographs show that the annual rising limbs in hydrographs indicate the natural recharge of groundwater regime due to monsoon rainfall, as the monsoon rainfall is the sole source of natural recharge to the ground water regime (**Fig. 3.7 a to 3.7 I**). However, continuous increase in the groundwater draft is indicated by the recessionary limb.

Fig 3.7a : Hydrograph (2009-18), Padli, Buldhana Block, Buldhana District

Fig 3.7b : Hydrograph (2009-18), Dongar Khandala, Chikhali Block, Buldhana District

Fig 3.7c : Hydrograph (2009-18), Deulgaon Raja, Deulgaon Raja Block, Buldhana District

Fig 3.7d : Hydrograph (2009-18), Atali , Khamgaon Block, Buldhana District

Fig 3.7e : Hydrograph (2009-18), Jalgaon Jamod, Jalgaon Jamod Block, Buldhana District

Fig 3.7f : Hydrograph (2009-18), Lonar, Lonar Block, Buldhana District

Fig 3.7g : Hydrograph (2009-18), Wagul, Malkapur Block, Buldhana District

Fig 3.7h : Hydrograph (2009-18), Mehkar, Mehkar Block, Buldhana District

Fig 3.7i : Hydrograph (2009-18), Motala, Motala Block, Buldhana District

Fig 3.7j : Hydrograph (2009-18), Nadura, Nadura Block, Buldhana District

Fig 3.7k:Hydrograph(2009-18),Sindhkhed Raja,Sindhkhed Raja Block,Buldhana District

Fig 3.7 l: Hydrograph(2009-18), Shegaon, Shegaon Block, Buldhana District
4.0 GROUND WATER QUALITY

Water sampling is being done every year from GWM wells during pre-monsoon period (May). The data gap analysis has been carried out to find out the adequacy of information on water quality. To decipher the ground water quality scenario, 191 samples from aquifer-I / shallow aquifer and 121 from aquifer – II / deeper aquifers have been utilised including monitoring wells/exploratory wells, tubewells/borewells of CGWB and GSDA; data from earlier studies. The aquifer wise ranges of different chemical constituents present in ground water are given in **Table 4.1**. The details of chemical analysis are given in **Annexure VI and VII**.

Constituents	Aquifer-I	/ Shallow ad	uifer	Aquifer-II / Deeper aquifer			
	Min	Max	Avg	Min	Max	Avg	
рН	6.8	9.1	7.4	6.8	9.4	7.8	
EC	380	6970	1188	452	9280	1506.9	
TDS	215	4182	670.4	135	10110	975	
ТН	86.7	1632	350.7	40	5350	400.5	
Са	3.2	290.2	74.35	3.2	1160	76.6	
Mg	6	311	46.19	4	628	54.8	
Na	6	396.9	88.85	10	1855	158.02	
К	0.1	145	6.8	0.1	378	14.69	
CO3	0.03	134.4	1.59	0.2	444	10.3	
HCO3	11.9	1070.5	294.68	18	1074	251.4	
Cl	1.2	966	114.4	5	5747	263.3	
SO4	2	498	57.47	4	1848	103.1	
NO3	3	420	49.39	2	580	55.32	
F	0.06	3.94	0.68	0.01	11.2	1.18	
Fe	0.03	0.5	0.036	0.1	70	1.6	

4.1 Electrical Conductivity (EC)

Distribution of Electrical Conductivity in Aquifer-I / Shallow Aquifer:

The concentration of EC in shallow aquifer varies between 380 (Umapur, Jalgaon Jamod block) and 6970 μ S/cm (Hingna Kazi, Malkapur block). Out of 191 samples collected from dug wells, 5 samples are having EC in range of 3000 to 6970 μ S/cm has been observed in small patches of Malkapur nad Shegaon block The ground water is potable in major block in the district. The distribution of electrical conductivity in aquifer – I / shallow aquifers is shown in **Fig. 4.1**.

Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer:

The concentration of EC in deep aquifer varies between 452 (Nandura, Nandura block) and 9280 μ S/cm (Kalkheda, Shegaon block). Out of 121 samples collected from tube wells/bore wells, 8 samples are having EC in range of 3000 to 9280 μ S/cm has been observed in isolated patches in Lonar,Malkapur,Khamgaon and shegaon blocks. The ground water is potable in the the district, except high EC and Nitrate affected areas. The distribution of electrical conductivity in aquifer – II / deeper aquifers is shown in **Fig. 4.2**.

S.No.	EC	Shallow a	quifer	Deeper Aquifer			
	(µS/cm)	No. of samples	% of samples	No. of samples	% of samples		
1	< 250	0	0	0	0		
2	>250-750	47	24.6	28	23.1		
3	>750-2250	130	68	73	60.3		

Table 4.2: Aquifer wise Electrical conductivity analytical data

S.No.	EC	Shallow a	quifer	Deeper Aquifer			
	(µS/cm)	No. of samples	% of samples	No. of samples	% of samples		
4	2250-3000	9	4.7	12	9.9		
5	3000-5000	4	2	5	4.1		
6	>5000	1	0.5	3	2.4		
Total samples		191	100	121	100		

4.2 Nitrate:

Nitrogen in the form of dissolved nitrate nutrient for vegetation, and the element is essential to all life. The major contribution in ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. As per BIS (2012) the desirable limit is 45 mg/l. In aquifer – I / shallow aquifer, nitrate concentration varies between 3 to 420 mg/l. Out of 191 samples 58 water samples show the nitrate concentrations exceeding the desirable limit of 45 mg/l (**Fig. 4.1**). The high concentration of Nitrate may be due to domestic waste and sewage in the urban and rural parts of district. In aquifer – II / deeper aquifer, nitrate concentration varies between BDL to 580 mg/l. Out of 121 samples analyzed 39 water samples show nitrate concentration exceeding the desirable limit of 45 mg/l (**Fig. 4.2**). The deeper aquifer are also affected by nitrate contamination, it may be due to percolation of nitrate contaminants from the ground surface as there are no other reasons for nitrate contamination in deeper aquifers.

4.3 Fluoride:

In aquifer – I / shallow aquifer, concentration of fluoride ranges from 0.06 to 3.94 mg/l. out of 191 samples were analyzed, 11 samples show fluoride concertation more than 1.5 mg/l. The highest concentration of fluoride is found in Esoli village, Chikhali block (3.94 mg/l). In aquifer – II / deeper Aquifer, concentration of fluoride ranges from 0.01 to 11.2 mg/l. Out of 121 samples analyzed, 17 samples show fluoride concertation more than 1.5 mg/l. The highest concentration of fluoride is found in Singaon Jahagir village, Deulgaon Raja Block (11.2 mg/l), it may due to the lithological reason only. Aquifer wise nitrate & Fluoride concentration is given in **Table 4.3**.

	No ₃ >	• 45 mg/l	Fluoride >1 mg/l			
Aquifer	Total Samples	No. % of samples	Total Samples	No. % of samples		
Shallow Aquifer	191	58 /30.36%	191	11 / 5.75%		
Deeper Aquifer	121	39 / 32.23%	121	17 / 14.04%		

Table 4.3: Ac	quifer wise N	Nitrate and	Fluoride	concentration
---------------	---------------	-------------	----------	---------------

Fig. 4.1: Ground water quality, Aquifer-I / Shallow aquifer

Fig. 4.2: Ground water quality, Aquifer-II / Deeper aquifer

4.4 Suitability of Ground Water for Drinking Purpose

In shallow aquifer, 59.2 % of samples have TDS concentration above the Desirable limit (DL) but below the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment. It is also seen that about 1 to 30.4 % samples are beyond the maximum permissible limit for the parameters like TH, Ca, Mg, SO₄ and NO₃ indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in shallow Aquifer is given in **Table 4.4**.

In Deeper aquifer, 5.8 % samples are having TDS more than maximum permissible limit (MPL) and 64.5 % of samples have TDS concentration above the Desirable limit (DL) but below the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment. It is also seen that about 2.5 to 32.2 % samples are beyond the maximum permissible limit for the parameters like TDS, TH, Ca, Mg, SO₄, F and NO₃, indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in Deeper Aquifer is given in **Table 4.5**.

Parameter	Drinki	ng water	Total no		Αqι	uifer-I/Sl	hallow aq	uifer	
	Standards		of ground	Sar	Samples		nples	Samples	
	(15-105	00-2012)	water	(<	(DL)	(DL-	MPL)	(>MPL)	
	DL	MPL	samples	No	%	No	%	No	%
рН	6.5-8.5	-	191	4	2.1	185	96.9	2	1.0
TDS	500	2000	191	75	39.3	113	59.2	3	1.6
TH	300	600	191	157	82.2	17	8.9	17	8.9
Ca (mg/L)	75	200	191	110	57.6	76	39.8	5	2.6
Mg (mg/L)	30	100	191	72	37.7	109	57.1	10	5.2
Cl (mg/L)	250	1000	191	172	90.1	19	9.9	0	0.0
SO ₄ (mg/L)	200	400	191	186	97.4	3	1.6	2	1.0
NO₃ (mg/L)	45	No	191	133	69.6	0	0.0	58	30.4
		relaxation							
F (mg/L)	1	1.5	191	157	82.2	23	12.0	11	5.8

Table 4.4: Concentration of Chemical constituents in aquifer-I/shallow Aquifer

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

Table 4.5: Concentration of Chemical constituents in Deeper Aquifer

Parameter	Drinking water		Total no		Aquifer-II/Deeper aquifer					
	Standards		of ground	Sam	ples	Sam	ples	Samples		
	(IS-10)500-2012)	water	(<	DL)	(DL-	MPL)	(>MPL)		
	DL	MPL	samples	No	%	No	%	No	%	
рН	6.5-8.5	-	121	0	0.0	105	86.8	16	13.2	
TDS	500	2000	121	36	29.8	78	64.5	7	5.8	
TH	300	600	121	69	57.0	37	30.6	15	12.4	
Ca (mg/L)	75	200	121	82	67.8	31	25.6	8	6.6	
Mg (mg/L)	30	100	121	44	36.4	64	52.9	13	10.7	
Cl (mg/L)	250	1000	121	82	67.8	36	29.8	3	2.5	
SO ₄ (mg/L)	200	400	121	108	67.8	6	5.0	7	5.8	
NO ₃ (mg/L)	45	No relaxation	121	82	67.8	0	0.0	39	32.2	
F (mg/L)	1	1.5	121	78	64.5	26	21.5	17	14.0	

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

4.5 Suitability of Ground Water for Irrigation

The quality of Irrigation water affects the productivity, yield and quality of the crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria, which asses the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The amount of dissolved ions in the water is represented by the electrical conductivity. As discussed in 4.1 with reference to Fig 4.2 & 4.3, the classification of water for irrigation based on the EC values is given in **Table 4.6** and discussed as follows: -

Low Salinity Water (EC: 100-250 µS/cm): This water can be used for irrigation with most crops on most soils with little likelihood that salinity will develop.

Medium Salinity Water (EC: 250 – 750 \muS/cm): This water can be used if moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

High Salinity Water (EC: 750 – 2250 μ S/cm): This water cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very High Salinity Water (EC: >2250 μ S/cm): This water is not suitable for irrigation under ordinary condition. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and very salt tolerant crops should be selected.

S. No	Water Quality Type	EC in μS/cm	Aquifer-I / shallow aquifer		Aquifer-II / Deeper Aquifer		
			No. of Samples	% of samples	No. of samples	% of samples	
1	Low Salinity Water	< 250	0	0	0	0	
2	Medium Salinity Water	>250- 750	48	25.1	28	23.1	
3	High Salinity Water	>750- 2250	129	67.5	73	60.3	
4	Very High Salinity Water	> 2250	14	7.3	20	16.5	
Total			191	100	121	100	

 Table 4.6: Classification of Ground water for Irrigation based on EC values

In aquifer-I/shallow aquifer as well as in aquifer-II/deeper aquifer, maximum numbers of samples fall under the category of medium to high to high salinity type of water. While the areas with very high salinity prevails (>2250 μ S/cm), very high salt tolerant crops and with proper soil and crop management practices are recommended.

5.0 GROUND WATER RESOURCES

5.1 Ground Water Resources – Aquifer-I

Central Ground Water Board and Ground Water Survey and Development Agency (GSDA) have jointly estimated the ground water resources of Buldhana district based on GEC-97 methodology. Block wise ground water resources are given in **Table 5.1**, and graphical representations of the resources on the map are shown in **Figure-5.1**.

Ground Water Resources estimation was carried out for 7702.23 sq. km. area out of which 566.43 sq. km. is under command and 5830.15 sq. km. is non-command. About 266.28 sq. km. area has poor ground water quality area and that area is not considered for resource estimation. As per the estimation, the net annual ground water availability comes to be 834.37 MCM. The gross draft for all uses is estimated at 610.55 MCM with irrigation

sector being the major consumer having a draft of 578.76 MCM. The domestic and industrial water requirements are worked at 31.78 MCM. The net ground water availability for future irrigation is estimated at 245.55 MCM. The overall stage of ground water development for the district is 71.83 % .Block wise assessments indicate that all the blocks in the district fall under "Safe" category except deulgaon raja and Jalgaon blocks

Administrative	Command /	Net Annual	Existing	Existing	Existing	Provision for	Net Ground	Stage of Ground
Unit	Non-	Ground	Gross	Gross	Gross	domestic and	Water	Water
	Command /	Water	Ground	Ground	Ground	industrial	Availability for	Development%
	Total	Availability	Water	Water	Water	requirement	future	/Category
		(ham)	Draft for	Draft for	Draft for	supply to	irrigation	
			irrigation	domestic	All uses	2025	development	
			(ham)	and	(ham)	(ham)	(ham)	
				industrial				
				water				
				supply				
				(ham)				
Buldhana	Command	844.89	1242.33	89.50	1331.84			
Buldhana	Non	7417.73	5473.33	348.67	5822.00			
	Command							
Buldhana	lotal	8262.62	6/15.66	438.17	/153.83	/50.56	831.78	86.58/ Safe
Chikhali	Command	553.19	651.79	58.74	/10.53			
Chikhali	Non	11225.71	7572.70	407.79	7980.49			
	Command	44770.00			0.004.00		0.000 5.4	70 70 / 0 /
Chikhali	lotal	11/78.90	8224.49	466.53	8691.03	929.00	2676.54	/3./8/ Safe
Deulgaon Raja	Command	590.61	/20.84	18.04	/38.88			
Deulgaon Raja	Non	5501.43	3/32.//	1/3.24	3906.00			
D. L. Bata	Command	6002.04	4452.64	101.20	4644.00	200.00	4244.24	76.25/6.6
Deulgaon Raja	Iotal	6092.04	4453.61	191.28	4644.88	380.66	1344.21	76.25/ Safe
Jaigaon jamod	Command	182.51	109.65	25.04	134.69			
Jaigaon Jamod	Non	6093.46	6226.69	166.48	6393.17			
Jalaa an Janaad	Command	6375.00	6226.24	101 50	6527.07	200.54	061.64	101.01/0
Jaigaon Jamod	Iotal	6275.98	6336.34	191.52	6527.87	269.54	861.64	104.01/ Over
Khamgaon	Command	2275 01	1671 74	109.45	1790 10			Exploited
Khamgaon	Commanu	2275.91	2055.04	108.45	1/80.19			
KildiligaUli	Command	7012.90	5055.04	505.09	4156.94			
Khamgaon	Total	0000 07	5527 50	A11 5A	5020 12	700 1/	2406 75	60.06/Safa
Lopar	Command	1272 74	1101.94	70 11	1270.04	735.14	3490.75	00.007 Sale
Lonar	Non	6774 37	3003.01	145.60	3238.62			
Lonar	Command	0774.57	5055.01	145.00	5250.02			
Lonar	Total	8047 11	4284 85	224 71	4509 56	443 31	3336 77	56.04/Safe
Malakapur	Command	1020.21	572.83	67 38	640.21	443.31	5550.77	50.047 Sale
Malakapur	Non	3976.94	2507.89	125.98	2633.87			
Ivialakapul	Command	5570.54	2507.05	125.50	2033.07			
Malakapur	Total	4997,15	3080.71	193.36	3274.08	380.29	1530.75	65.52/Safe
Mehkar	Command	1686.45	1081 11	74.83	1155 95	000.25	2000.00	00.027 00.0
Mehkar	Non	9323 92	5320 72	312 13	5632.85			
Wielika	Command	5525.52	5520.72	512.15	5052.05			
Mehkar	Total	11010.38	6401.83	386.96	6788.80	789.48	3784.68	61.66/ Safe
Motala	Command	788.45	890.95	87.46	978.42			
Motala	Non	4580.31	3004.90	211.98	3216.88			
	Command							
Motala	Total	5368.77	3895.86	299.45	4195.30	608.57	835.14	78.14/ Semi
								Critical
Nandura	Command	499.19	533.99	22.85	556.84			
Nandura	Non	4218.30	3076.26	140.73	3217.00			
	Command							
Nandura	Total	4717.50	3610.25	163.58	3773.84	336.12	812.14	80.00/ Safe
Sangrampur	Command	730.86	378.92	27.35	406.27			
Sangrampur	Non	5034.59	4250.63	135.49	4386.12			
	Command							
Sangrampur	Total	5765.45	4629.55	162.84	4792.39	259.89	912.37	83.12/ Safe
Shegaon	Command	147.61	109.67	9.53	119.20			
Shegaon	Non	3221.37	1347.04	149.15	1496.19			
	Command							

Table 5.1 Ground water resources,	Aquifer-I	(Shallow ag	uifer)	, Buldhana	district	(2013)
,				,		

Administrative	Command /	Net Annual	Existing	Existing	Existing	Provision for	Net Ground	Stage of Ground
Unit	Non-	Ground	Gross	Gross	Gross	domestic and	Water	Water
	Command /	Water	Ground	Ground	Ground	industrial	Availability for	Development%
	Total	Availability	Water	Water	Water	requirement	future	/Category
		(ham)	Draft for	Draft for	Draft for	supply to	irrigation	
			irrigation	domestic	All uses	2025	development	
			(ham)	and	(ham)	(ham)	(ham)	
				industrial				
				water				
				supply				
				(ham)				
Shegaon	Total	3368.98	1456.71	158.68	1615.39	322.37	1612.02	47.95/ Safe
S'indkhed	Command	733.99	696.04	49.40	745.44			
Raja								
S'indkhed	Non	8140.48	4965.23	227.91	5193.14			
Raja	Command							
S'indkhed	Total	8874.47	5661.27	277.31	5938.58	572.96	2520.69	66.92/Safe
Raja								

Fig 5.1: Ground Water Resources (2013), Buldhana district

5.2 Ground Water Resources – Aquifer-II and Aquifer-III

Based on ground water exploration data, the ground water resources of Aquifer-II in Basalt and Alluvium has been estimated as 64.20 mcm and 105.70 mcm respectively. The area coverd by basalt aquifer is 8029.67 sq.km. and alluvium aquifer by 1572.10 sq. km. The resources of Aquifer-III for alluvium have been estimated as 129.28 mcm. The area covered is 1551.07 sq. km.

Taluka	Mean thickness (m)	Area (sq km)	Piezometer (macl)	SY	S	Resource above confining layer (mcm)	Resource in confining layer (mcm)	Total resource (mcm)
Aquifer II Resources (Basalt)								
Buldhana	0.75 to 2	804.95	15 to 36	0.002	0.00004	0.79	2	2.79
Chikhali	0.75 to 2	1153.13	21 to 22	0.002	0.00004	0.76	5.91	6.67
Deulgaon Raja	0.75 to 4.5	486.54	25 to 36	0.002	0.000036	0.61	2.49	3.10
Jalgaon Jamod	4.5 to 9	258.81	35 to 50	0.002	0.00095	2.54	3.22	5.76
Khamgaon	0.75 to 4.5	1202.8	21 to 35	0.002	0.000038	1.12	4.63	5.75
Lonar	0.75 to 2	714.95	25 to 35	0.002	0.000036	0.72	4.30	5.02
Malakapur	7 to 9	314.39	20 to 45	0.002	0.0001	0.26	5.55	5.81
Mehkar	0.75 to 4.5	1093.39	21 to 36	0.002	0.00013	1.66	4.67	6.33
Motala	0.75 to 10.5	743.71	21 to 36	0.002	0.00018	1.44	3.41	4.85
Nandura	3.5 to 11	190.89	21 to 45	0.002	0.00042	3.49	2.66	6.15
Sangrampur	9 to 11	157.25	20 to 45	0.002	0.0004	1.63	3.35	4.98
Shegaon	4.5 to 5.5	130.37	31 to 35	0.002	0.0004	1.41	1.35	2.76
Sindkhed Raja	0.75 to 4.5	778.49	20 to 35	0.002	0.0002	1.64	2.59	4.23
TOTAL		8029.67				18.07	46.13	64.20
Aquifer II Resour	ces (Alluvium)			•	-		
Jalgaon Jamod	2.5 to 35	353.79	45 to 65	0.005	0.00042	7.98	18.56	26.54
Malakapur	2.5 to 15	136.61	25 to 35	0.005	0.0003	0.13	5.07	5.20
Nandura	2.5 to 35	310.88	25 to 65	0.005	0.00022	4.12	22.22	26.34
Sangrampur	2.5 to 35	456.85	25 to 45	0.005	0.00042	7.84	25.76	33.60
Shegaon	2.5 to 15	313.97	20 to 45	0.005	0.00022	1.96	12.06	14.02
TOTAL		1572.10				22.03	83.67	105.70
Aquifer III Resou	rces (Alluviun	า)						
Jalgaon Jamod	10 to 45	319.62	70	0.005	0.00003	0.67	16.28	16.95
Malakapur	10	138.61	25	0.005	0.00042	1.47	6.93	8.40
Sangrampur	10 to 45	994.04	45 to 55	0.005	0.00042	22.06	62.79	84.85
Shegaon	25 to 55	98.80	35	0.005	0.00042	1.47	17.61	19.08
TOTAL		1551.07				25.67	103.61	129.28

Table 5.2 Ground Water Resources of Aquifer II and Aquifer-III.

5.2.1 Declining Water Levels

The ground water exploitation has resulted in decline of water levels over the period of time. In premonsoon season, decline more than 0.20 m/year has been observed in 362 sq km, i.e., 3.78 % area covering parts of Deulgaon Raja, Jalgaon Jamod, Malkapur and Sindhkhed Raja blocks. In post monsoon season, decline of more than 0.20 m/year has been observed in 920 sq km, i.e., 9.62 % covering parts of Malkapur, Lonar, Nandura, Jalgaon Jamod, Shegaon, Deulgaon Raja and Sangrampur Blocks.

Premonsoon Fall of >0.2m in 362 Sq km area. Postmonsoon Fall of >0.2m in 920 Sq km area

5.2.2 Rainfall and Droughts

Based on the short term rainfall analysis from 1998 to 2018 it is observed that Moderate drought was observed in three year .Based on the long term rainfall analysis from 1957 to 2017 it is observed that all the blocks has experienced declining rainfall trend. Acute droughts have been observed in Shegaon taluka in two year. Severe droughts have been observed in Malkapur and Mehkar blocks from 1 to 3 years during 1917 to 2018 .All the blocks experienced Moderate droughts 2 to 22 times during last 18 years period. Malkapur experience 22 times Drought during 1901 to 201. Thus, Buldhana district is facing frequent droughts since long which is ultimately responsible for less ground water recharge and nonavailability of surface & ground water for irrigation.

5.2.3 Over-exploitation

Over exploitation has been observed in Buldhana district over the period of time. The ground water draft has increased from 394 mcm (2004) to 678 mcm (2013). An increased in ground water draft by 171%. As compared to ground water availability, which is 670 MCM (2004) to 944 MCM (2013) with an increase of 141%.

6.0 GROUND WATER MANAGEMENT PLAN

The aquifer management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management. The supply side management is proposed based on surplus surface water availability and the unsaturated thickness of aquifer whereas the demand side management is proposed by use of micro irrigation techniques and change in cropping pattern.

6.1 Supply Side Management

The supply side management of ground water resources can be done through the artificial recharge of surplus runoff available within river sub basins and micro watersheds.

Also, it is necessary to understand the unsaturated aquifer volume available for recharge. The unsaturated volume of aquifer was computed based on the area feasible for recharge, unsaturated depth below 5 mbgl and the specific yield of the aquifer. The **Table 6.1** gives the block wise volume available for the recharge.

Block	Geographical Area	Area feasible for recharge	Unsaturated Volume
	(sq. km.)	(sq. km.)	(MCM)
BULDHANA	798.3675	607.48	325.57
CHIKHLI	1137.9044	935.81	410.55
DEULGAON RAJA	476.4554	448.66	607.13
JALGAON JAMOD	617.76	542.18	516
KHAMGAON	1204.7547	960.87	1319.45
LONAR	672.2608	579.12	487.36
MALKAPUR	465.2192	444.72	628.63
MEHKAR	1131.2206	902.85	1308
MOTALA	759.6277	560.18	869.07
NANDURA	540.9396	536.25	381
SANGRAMPUR	575.21	516.27	314
SHEGAON	509.79	509.79	261
SINDKHED RAJA	781.1977	662.97	28.23
TOTAL	9567.27	8524.5	7456

Table 6.1: Area feasible and volume available for Artificial Recharge

The total unsaturated volume available for artificial recharge is 7456.46 MCM and it ranges from 28.23 MCM in Sindkhed Raja block to 1319.45 MCM in Khamgaon block. The available surplus runoff can be utilized for artificial recharge through construction of percolation tanks and Check dams at suitable sites.

Thus, after taking into consideration all the factors, 56.16 MCM of surplus water can be utilised for recharge, which is given in **Table 6.2**. This surplus water can be utilized for constructing 262 percolation tanks, 482 check dams and 158 Recharge Shaft at suitable sites. The number of feasible artificial recharge structures was calculated by considering 0.20 MCM per percolation tanks and 0.03 MCM per check dam. This intervention should lead to recharge @ 75% efficiency of about 55.97 MCM/year. The tentative locations of these structures are given in **Fig. 6.1** and details also given in **Annexure VIII and IX**.

The rainwater harvesting in urban areas can be adopted in 25% of the household with 50 sq. km roof area. A total of 4.95 MCM potential can be generated by taking 80% runoff coefficient. However, it is economically not viable & hence, not recommended.

Block	Geograp hical Area (sq. km.)	Area feasibl e for	Unsaturated Volume (MCM)	Surplus water availabl e for AR	Proposed number of structures		Total Volume of Water expected to be recharged@ 75 % efficiency (MCM)			Total recharge d @ 75 % efficiency	
		rechar		(MCM)	РТ	CD	RS	РТ	CD	RS	(MCM)
		ge (sq. km.)									
BULDHANA	798.3675	607.48	325.57	2.46	9	22		1.35	0.495		1.85
СНІКНЦІ	1137.904 4	935.81	410.55	3.09	11	30		1.65	0.675		2.33
DEULGAON RAJA	476.4554	448.66	607.13	4.579	16	46		2.4	1.035		3.44
JALGAON JAMOD	617.76	542.18	516	3.89	35	50	23	5.25	1.125	0.517 5	6.89
KHAMGAON	1204.754 7	960.87	1319.45	9.9	30	48		4.5	1.08		5.58
LONAR	672.2608	579.12	487.36	3.675	13	36		1.95	0.81		2.76
MALKAPUR	465.2192	444.72	628.63	4.74	28	24	14	4.2	0.54	0.315	5.06
MEHKAR	1131.220 6	902.85	1308.47	9.868	20	60		4.2	1.35		5.55
MOTALA	759.6277	560.18	869.07	6.554	23	65		3.45	1.462 5		4.91
NANDURA	540.9396	536.25	381	2.875	28	38	20	4.2	0.855	0.45	5.51
SANGRAMP UR	575.21	516.27	314	2.37	23	35	60	3.45	0.787 5	2.7	6.94
SHEGAON	509.79	509.79	261	1.97	18	21	41	2.7	0.472 5	1.845	5.02
SINDKHED RAJA	781.1977	662.97	28.23	0.213	0	7		0	0.157 5		0.16
TOTAL	9567.27	8524.5 3	7456.46	56.28	262	482	158	39.3	10.84	5.827	55.52

Table 6.2: Proposed Artificial Recharge Structures

Fig. 6.1: Location of Proposed Artificial Recharge structures

Fig. 6.2: Proposed Demand side intervention, Buldhana district

6.2 Demand Side Management

The Demand Side Management is proposed in areas where the stage of ground water development is relatively high and adopting micro-irrigation techniques for water intensive crops or change in cropping pattern or both are required to save water. **Fig 6.2** depicts the proposed demand side interventions in the area. The micro-irrigation techniques are proposed to be adopted in 144.2 Sq. Km cotton crop area in entire district by saving a total of 43.8 MCM and 2 sq. km sugarcane area by saving 1.14 MCM as given **Table 6.3.** No change in cropping patterns is proposed in any of the blocks.

Block	MICRO IRRIGA	TION TECHNI	QUES		CROPPING PATTERN CHANGE		
	cotton	Volume	Sugarcan	Volume	Area under	Volume of Water	
	cropped	of Water	e	of	Water Intensive	saved by change	
	Area	saved	cropped	Water	crops (Sq. Km.)	in cropping	
	proposed	(MCM)	Area	saved		pattern (MCM)	
	(Sq. Km.)		proposed	(MCM)			
			(Sq. Km.)				
BULDHA	38	11.55	2	1.14	Nil	Nil	
NA							
CHIKHLI	10	3.05	Nil	Nil	Nil	Nil	
DEULGAO	6	1.82	Nil	Nil	Nil	Nil	
N RAJA							
JALGAON	55	16.72	Nil	Nil	Nil	Nil	
JAMOD							
KHAMGA	2	0.60	Nil	Nil	Nil	Nil	
ON							
LONAR	2	0.60	Nil	Nil	Nil	Nil	
MEHKAR	2	0.60	Nil	Nil	Nil	Nil	
MOTALA	5	1.52	Nil	Nil	Nil	Nil	
NANDUR	6.8	2.06	Nil	Nil	Nil	Nil	
Α							
SANGRA	16.4	4.98	Nil	Nil	Nil	Nil	
MPUR							
SINDKHE	1	0.30	Nil	Nil	Nil	Nil	
D RAJA							
TOTAL	144.2	43.8	2	1.14	Nil	Nil	

Table 6.3: Demand side interventions proposed

6.3 Expected Benefits

The impact of groundwater management plans on the groundwater system in the district after its implementation is evaluated and the outcome shows significant improvement in groundwater scenario in all blocks as given in the **Table 6.4**.

Table 6.4: Expected benefits after management options

Block	Net Ground water availabil ity (MCM)	Total ground water draft (MCM)	Current Stage of GW Develo pment (%) [(3/2)* 100]	Water Recharge d by Supply side intervent ion (MCM)	Ground water resources after supply side managem ent (MCM) (2+5)	Stage of Developm ent after supplu side interventi ons (%) [(3/6)*10 0]	Water saving by demand side interventi ons (MCM)	Ground water Draft after demand side managem ent (MCM) (3-8)	Expected Stage of GW Developm ent after demand side interventi ons (%) [(9/6)*10 0
1	2	3	4	5	6	7	8	9	10
BULDHANA	82.63	71.54	86.58	1.85	84.47	84.69	12.69	58.85	69.67
CHIKHLI	117.79	86.91	73.78	2.32	120.21	72.35	3.05	83.86	69.82
DEULGAON RAJA	69.92	46.45	76.25	3.43	64.36	72.17	1.82	44.63	69.34

Block	Net Ground water availabil ity (MCM)	Total ground water draft (MCM)	Current Stage of GW Develo pment (%) [(3/2)* 100]	Water Recharge d by Supply side intervent ion (MCM)	Ground water resources after supply side managem ent (MCM) (2+5)	Stage of Developm ent after supplu side interventi ons (%) [(3/6)*10 0]	Water saving by demand side interventi ons (MCM)	Ground water Draft after demand side managem ent (MCM) (3-8)	Expected Stage of GW Developm ent after demand side interventi ons (%) [(9/6)*10 0
JALGAON JAMOD	62.76	65.28	104.01	6.89	69.65	92.72 %	16.72	48.56	69.72
KHAMGAON	98.89	59.39	60.06	5.58	104.47	56.84	0.60	58.79	56.27
LONAR	80.47	45.1	56.04	2.76	83.23	54.18	0.60	44.5	53.46
MALKAPUR	49.97	32.74	65.52	5.05	55.02	59.50	0	32.74	59.50
MEHKAR	110.1	67.89	61.66	5.5	115.65	58.70	0.60	67.29	58.18
MOTALA	53.69	41.95	78.14	4.91	58.60	71.58	1.52	40.43	68.99
NANDURA	47.18	37.74	80	5.05	52.23	72.25	2.06	35.68	68.29
SANGRAMP UR	57.65	47.92	83.12	6.93	64.58	74.19	4.98	42.94	66.47
SHEGAON	33.69	16.15	47.95	5.01	38.70	41.72	0	16.15	41.72
SINDKHED RAJA	88.74	59.39	66.92	0.15	88.89	66.80	0.30	59.09	66.47
Total	944.48	678.44	71.83	55.52	1000	67.84	43.8	633.47	63.35

6.4 Development Plan

The ground water development plan has been proposed in the view of developing the additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. The 66.53 MCM volume of ground water generated can bring 102.36 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 482 check dams, 254 percolation tanks and 158 Recharge Shafts. Map showing additional area proposed to be brought under assured ground water irrigation is shown in **Fig 6.3** and the block wise details are given in **Table 6.5**.

Block	Expected stage of Development %	Balance GWR available for GW Development after STAGE OF GWD is brought to 70 % (MCM)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m after 70% stage of GWD is achieved (Sq. Km)
BULDHANA	69.67	0.28	0.44
СНІКНЦІ	69.82	0.21	0.32
DEULGAON RAJA	69.34	0.42	0.65
JALGAON JAMOD	69.72	0.2	0.3
KHAMGAON	56.27	14.34	22.02
LONAR	53.46	13.76	21.18
MALKAPUR	59.50	5.77	8.88
MEHKAR	58.18	13.67	21.03
MOTALA	68.99	0.59	0.91
NANDURA	68.29	0.89	1.37
SANGRAMPUR	66.47	2.27	3.5
SHEGAON	41.72	10.94	16.85
SINDKHED RAJA	66.47	3.14	4.83
Total	63.35	66.53	102.36

Table 6.5: Block wise additional area under assured GW Irrigation

Fig. 6.3: Additional Area Proposed to be bought under Assured GW irrigation.

7.0 SUM UP

The highly diversified occurrence and considerable variations in the availability and utilization of groundwater makes its management a challenging task. Scientific development and management strategy for groundwater has become imperative to avert the looming water crisis. In this context, various issues such as, prioritization of areas for development of groundwater resources vis-a-vis its availability, augmentation of groundwater through rainwater harvesting and artificial recharge, pricing and sectoral allocation of resources and participation of the stakeholders must be considered. In view of the above, the present study area a systematic, economically sound and politically feasible framework for groundwater management is required.

A thorough study was carried out based on data gap analysis, data generated in-house; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of block wise aquifer maps and aquifer management plans of Jalna district.

Buldhana district covering an area of 9567.27 sq km, out of this 1454.84 sq km (15.21 %) is hilly area. Geologically, the area is occupied by Basalt and Purna Alluvium. The Stage of ground water development varies from 47.95 % (Shegaon) to 104.01 % (Jalgaon Jamod). The overall stage of ground water development for the district is 71.83 % (SAFE Category). The area has witnessed declining water level, irregular rainfall and droughts like situation and low yield potential aquifers are the major issues in the district. Declining water level trend of >0.2 m has been observed in 362 sq km during pre-monsoon while it is 920 sq km during post monsoon.

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management.

As a part of **Supply Side Management**, a total 254 Percolation tankss, 482 Check dams and 158 recharge shafts are proposed, which will augment ground water resources to the tune of 55.52 MCM (39.3 MCM by Percolation tanks, 10.84 MCM by Check dams and 5.38 recharge shafts).

As a part of **Demand Side Management**, the micro-irrigation techniques are proposed to be adopted in 146.20 Sq. Km area in entire district by saving a total of 44.97 MCM

The **ground water development plan** has been proposed in view of the developing additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70 %. The 66.53 MCM volume of ground water generated can bring 102.35 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m.

These interventions also need to be supported by regulation for deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewells of more than 60 m depth in these blocks, so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought. IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory ground water management.

BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

- I. BULDHANA BLOCK
- II. CHIKHALI BLOCK
- III. DEULGAON RAJA BLOCK
- IV. KHAMGAON BLOCK
- V. LONAR BLOCK
- VI. MEHKAR BLOCK
- VII. SINDHKHED RAJA BLOCK

8.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, BULDHANA BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURE						
1.1 Introduction						
Block Name			Buldhar	าล		
Geographical Area (Sq. Km	ı.)		798.37	Sq. Km.		
Forest Area (Sq. Km)	139.31	Sq. Km.				
Population (2011)	2					
Climate Hot and dry						
Normal Rainfall (2018)			803.10 591.9 m			
Allitudi Kalitidii (2016)	700 78	mm				
Long Term Rainfall Analysi	aiiiiaii (2 c	Ealling Trend 2 090 mm/	/33.70			
(1998-2018)	3	Probability of Normal/Exc	ress Rainfall- 62%/19	9%		
(1990 2010)		Probability of Drought (I	Moderate/Severe)-:	19 % Moderate &		
		0% Severe.	,,,,,.			
Rainfall Trend Analysis (19	998 To 20)18)				
1400						
1200		1 A A A A A A A A A A A A A A A A A A A	v = -15 669x + 1	036 1		
1200 -			y 15.005X + 1			
1000 -			1 B B B B B B B B B B B B B B B B B B B			
800 -						
600 -						
400 -						
200 -						
200						
	200320042			201620172018		
		CC0x + 402C 4	,112012201320142013	201020172010		
1 2 Coomorphology Soil	r = -15.0	669X +1036.1				
Geomorphic Unit	The Bl	s y ack is divided into 3 uni	ts Aianta hill range	a nlateau ton and		
	modera	ately dissected plateau.				
Geology	Purna	· · ·				
	(Godav	ari) Alluvium (sand/ silt and	d clay alternating be	ds)., Age: Recent to		
	Sub-red	cent				
	Deccan	Traps (Basalt). Age: Late C	retaceous to Eocene	1		
1.4 Hydrology & Drainage						
Drainage	Tributa	ries of Godavari river, Purn	a and Penganga dra	ins the area.		
Hydrology	Major p	project	NIL			
	Mediun	n :	NIL			
	iviinor 250 Ha.)	State: 8, Local sect	UT: Z		
Minor Irrigation Project (0 to 100 6 PT, 7 KT Weirs & 5 SB						
На.)						
1.5 Land Use, Agriculture, Irrigation & Cropping Pattern						
Geographical Area				708.37Sq. Km.		
Forest Area				51.14 Sq. Km.		

Cultivable Are	Cultivable Area					
Net Sown Area	а		517.41 Sq. Km.			
Double Cropp	ed Area		127.33 Sq. Km.			
Area under	Surface Water		53.00 Sq. Km.			
Irrigation	Ground Water		NA			
	(Total Dug wells: Irriga	ition): 5913				
Principal Crops		Сгор Туре	Area (Sq. Km.)			
(Reference yea	ar 2013-14)	Cotton	91.56			
		Cereals	126.93			
		Pulses	177.03			
		Oil Seeds	103.01			
Horticultural (Crops	Citreous fruit	0			
		Sugarcane	0			
		Others (fruit and vegetables)	12.73			
	N. I	•	·			

5. GROUNE	5. GROUND WATER RESOURCES							
5.1 Aquifer	-I/Shallow	Aquifer						
Ground Wa	iter Rechar	ge Worthy Area	(Sq. Kn	ı.)				607.48
Total Annu	al Ground \	Water Recharge ((MCM)					86.97
Natural Dis	charge (MC	CM)						4.35
Net Annual	Ground W	ater Availability	(MCM)					82.62
Existing Gro	oss Ground	Water Draft for	irrigati	on (MCM)				67.16
Existing Gro	oss Ground	Water Draft for	domes	tic and industri	al water sup	ply(MCM)		4.38
Existing Gro	oss Ground	Water Draft for	All use	s(MCM)				71.54
Provision fo	or domestic	and industrial re	equirer	ment supply to	2025(MCM)			7.50
Net Ground	d Water Ava	ailability for futu	re irrig	ation developm	nent(MCM)			8.32
Stage of Gr	ound Wate	r Development (%)	•				86.58
Category								SAFE
5.2 Aquifer	-II/Deeper	Aquifer						_
Total	Mean	S		Piezometric	Resource	Resour	Total	Resource
Area (Sɑ.	aquifer	-	Sv	Head (m	above	ce in	(MCN	/)
Km.)	thicknes		-,	above	confinig	aguifer		,
,	s (m)			confining	laver (mcm) (mcm)		
	- ()			laver)	- / - (-			
489.117	0.75	0.0000426	0.002	15	0.3	1 0.73		1.05
315.831	2	0.0000426	0.002	36	0.4	3 1.26		1.75
						TOTAL		2.80
6. GROUNE	6. GROUND WATER RESOURCE MANAGEMENT							
Available R	Available Resource (MCM) 82.62						2	
Gross Anni	al Draft (M	CM)					71.54	1
6.1 Supply	Side Mana	gement					, 1.0	•
		Bernent						
Agricultura	l Supply -G	W/					67 16	5
Agricultura	I Supply C	۸/					0.07	5
Domestic S	upply - GW	,					4 38	
Domestic S	upply CW						1 10	
Total Sunn							72 71	1
Area of Blo	ck (Sa Km)					607 /	18
Area suitab	le for Artifi	<u>/</u> cial recharge (So	(Km)				607.	18
		cial recharge (50	1. KIII)				Hard	Rock
Area feasib	le for Δrtifi	cial Recharge (W	/l >5m	hal) (Sa Km)			Δnnr	nock 430
Volume of	Insaturate	d Zone (MCM)	/L > Jiii				325 5	57
Average Sp	orific Viold						0.02	57
Volume of	Sub Surface	Storage Shace a	availah	le for Artificial I	Pecharge (M	CM)	6.51	
Surplus wa	tor Availabl	(MCM)					2.46	
Bronocod S			De	realation Tank	(Av. Gross	Chack D	2.40 2m /	Av Gross
Proposed 3	liuciuies			pacity_100 TCN	(AV. GIUSS	Capacity_1		AV. 01055
			_	200 TCM	/i z iiiiigs			1 5 mings
- 200 (Civi) = 30 (Civi) Number of Structures 0								
Volume	Number of structures 9 22							
conserved	volume of water expected to be 1.35 U.49							
(MCM)								
	(IVICIVI)							
Household	to be cover	arod (25% with E	$\frac{1}{0}$ m ² ar	() ()			157	200
	notontial /			caj			0 /	2
	porenniai (I	VICIVIJ					0.4	J

Rainwater harvested / recharged @	80% runoff c	o-efficient	0.34			
RTRWH is econon	nically not vai	able and hence not recommended				
6.2 Demand Side Management						
Micro irrigation techniques						
Irrigation Area (sq. km.) proposed f	for irrigation t	hrough drip (Cotton 38, Sugarcane	40			
Water Saving by use of drip (MCM)			12.69			
Proposed Cropping Pattern change	2					
Ground water Irrigated area under	Water Intensi	ve Crop (sq.km)	Nil			
Water Saving by water use efficient	cy (MCM)		Nil			
	DEMAND SII Buldhan Talul	DE INTERVENTION ka, Buldhana District				
	Contra 75 15 cometers Lege Proposed to be co Buldhana , Sugarc Cotton crop area 3 Principal aquifer B No of aquifers T Area (Sqkm) 6	e n d Vered under drip irrigation in cane crop area 2 sqkm. 38 sqkm masalt No of Village 97 wo Drainage 7 07.48 Taluka HQ •				
6.3 EXPECTED BENEFITS						
Net Ground Water Availability (MC	M)		82.62			
Additional GW resources available	after Supply si	de interventions (MCM)	1.85			
Ground Water Availability after Sup	pply side interv	vention	84.47			
Existing Ground Water Draft for All	Uses (MCM)		71.54			
Stage of Ground Water Developme	nt after supply	y side interventions (%)	84.59			
GW draft after Demand Side Interve	entions (MCM)	58.85			
Stage of Ground Water Developme	nt after dema	nd side interventions (%)	69.67			
Other Interventions Proposed, if an	lý					
Alternate Water Sources Available			Nil			
6.4 Development Plan			1			
Volume of water available for GWD	28.45					
Proposed Number of DW (@ 1.5 ha	17					
Proposed Number of BW (@ 1.5 ha	m for 10% of (GWR Available)	2			
Additional Area (sq.km.) proposed	n 0.44					
av. CWR of 0.65 m after 70% stage of gwd is achieved						
Regulatory Measures						
Proposed locations for AR structur	bought under					

9.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, CHIKHALI BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURI	ES						
1.1 Introduction							
Block Name	Chikhali						
Geographical Area (So	1153.89 Sq. Km.						
Hilly Area (Sq. Km)		218.08					
Population (2011)		227432					
Climate		Hot and dry					
Net Annual Ground W	/ater Availability (MCM)	117.78					
Existing Gross Ground	Water Draft for All uses (MCM)	82.24					
Provision for domestic	c and industrial requirement supply to 20	25(MCM) 9.29					
Stage of Ground Wate	er Development %	73.78					
Category		SAFE					
1.2 Rainfall Analysis	5						
Normal Rainfall		780 mm					
Annual Rainfall (2018)		494.1 mm					
Decadal Average Ann	ual Rainfall (2008-17)	665.22 mm					
Short Term Rainfall	Insignificantly falling trend -11.77 mm/	year.					
Analysis (1998-2018)	Probability of Normal/Excess Rainfall- 6	52 % / 19 %.					
	Probability of Drought (Moderate/Seve	re/Acute)-: 19 % Moderate					
Rainfall Trend Analy	ysis (1998 To 2018)						
1400 - 1200 - 1000 -	y = -11.779x + 909.52						
800 - 600 - 400 - 200 - 0 - 5 ⁹⁵ 5 ⁹⁹ 20 ⁹	$ \begin{array}{c} 1000 \\ 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 0 \\ 98^{9} \\ 98^{9} \\ 98^{9} \\ 10^{99} \\ 10^{19} \\ 10$						
1.3. Geomorpholog	y, Soil & Geology						
Geomorphic Unit	Plateau (Moderatly Dissected) with we	eathered thickness ranging from 0					
	to 5 m.						
Geology	Deccan Traps (Basalt) Age: Late Cretaceous to Eocene						
Soil	Light to Medium BCS consisting mostly	of clay and loam.					
1.4. Hydrology & Dr	ainage						
Drainage	Painganga river and its tributaries.						
	Major project	None					
Hydrology	Minor Irrigation Project (100-300 Ha.)	 (Bramhanwada, Dongarshevali ,Telhara, Kavhala, Haralkhed, Patoda, Misalwadi, Ancharwadi-1,Katwada, 					

					Chikhli, Ancharwadi-2, sarangwadi,	
-		Minor Irrigation Project (0-100 H)-100 Ha)	Kolari) State-6: MILS-2	
				100 110.7	PT-102, KT-34, MI TANK-14,VP-45	
1.5. Land Use	e, Agric	ulture, Ir	rigation & Crop	ping Pattern		
Forest Area			92.32 Sq. Km.			
Cultivable Area	а		766.31 Sq. Km.			
Net Sown Area	à		639.54 Sq. Km.			
Double Croppe	ed Area		173.14			
Area under	Surface	e Water	1.27 Sq. Km.			
Irrigation	Ground	d Water	16.71 Sq. Km.			
Area under Drip & Sprinkler Irrigation		17.98 Sq. Km. (1798 hac)				
Principal Crops	S		Crop Type	Area (Sq. Km.) (Reference year 2017-18)		
			Cotton	10.97		
			Cereals	141.32		
			Pulses	407.79		
			Oil Seeds	615.93		
Horticultural C	crops		Sugarcane	0.24		
4.6.34/-11-			Others	7.26		
1.6. Water Le	evel Be	navior	· ()			
1.6.1 Aquiter	-I (Sna		iter)	Dest Manag	on (November 2018)	
	(IVIAY-2	018) c obcorvo	d in ontiro block	Post-Wionsoon (November-2018)		
excent north-	wester	n easterr	n narts of the	block Water level in the range of 10 to 20		
block while w	ater lev	el in the r	ange of 5 to 10	mbgl is observed as isolated patches in south		
mbgl is observ	ed.			eastern end adjacent to Painganga river,		
0				Northen arts of the block.		
A	quifer I, Pre	monsoon , DTW	/ (May. 2018)		Aquifer I, Postmonsoon , DTW (Nov. 2018)	
	Chikhali Ta	aluka, Buldhana A	District		Chikhali Taluka, Buldhana District	
	/	5.0	NORTH 10 20			
	5		ilometers		kilometers	
	5	Jul				
	\sim				Chikhali	
2		Chikhali	Muh R		··· · · · · · · · · · · · · · · · · ·	
	50	-	1		- Charles	
\sim	- 1	- Aongano		20		
2 - C	N.C.	1	[*] C		Legend	
				D	TW (mbgl) Principal aquifer Basalt	
DTW (mbol) Principal aquifer Basalt					2 to 5 No of aquifers Two 5 to 10 Area (Sqkm) 935.81	
5 to 10 No of aquifers Two			uifers Two	1.	10 to 20 No of Village 145 Drainage	
10 to 20 Area (Sqkm) 535.81 No of Village 145			age 145		Taluka HQ Monitoring well	
Drainage 🥣 Taluka HQ 🔹						
Monitoring well •						
1.6.2 Water I	.evel B	ehavior –	Aquifer-II (Dee	eper Aquifer)		
Pre-Monsoon (May-2018) DTWL 10-20 mbgl is				Post-Monso	on (November-2018) DTWL 5 - 10	
observed in central part .DIWL 20-30 mbgl is				mbgl is obse	erved in central part .DIWL 10-20	
observed in northern & north Western part engulfing small patch of 30-40 mbgl Western				mugi is observe	erved in northern part. Western	
enguiring small patch of 30-40 mbgl. Western					eu sinail pateiles di DTVVL 20-30,	

Panchayat Level Aquifer Management Plan, Watershed PGKA-1, Village Anjani Budruk, Mehkar Block, Buldhana District, Maharashtra

5. GROUND WATER RESOURCE						
5.1 Aguifer-I/ Shallow Phreatic Aguifer (Basalt)						
Ground Water Recharge Worthy Area (Sq. Km.)	935.81					
Command	23.1600					
Non Command	912.65					
Total Annual Ground Water Recharge (MCM)	123.98					
Natural Discharge (MCM)	6.19					
Net Annual Ground Water Availability (MCM)	117.78					
Existing Gross Ground Water Draft for irrigation (MCM)	40.54					
Existing Gross Ground Water Draft for domestic and industrial water	82.24					
supply(MCM)						
Existing Gross Ground Water Draft for All uses(MCM)	86.91					
Provision for domestic and industrial requirement supply to 2025(MCM)	9.29					
Net Ground Water Availability for future irrigation development(MCM)	26.76					
Stage of Ground Water Development (%)	73.78					
Category	SAFE					
5.2 Aquifer-II Semiconfined/Confined Deeper Aquifer (Basalt)						
Total Mean S Piezometr Resource Resource	in Total Resource					
Area aquifer Sy ic Head (m above aquifer	(MCM)					
(Sq. thicknes above confinig (mcm)						
Km.) s (m) confining layer (mcm)						
layer)						
393.45 0.75 0.0000426 0.005 21 0.48 1.26	1.74					
443.84 2 0.0000426 0.005 22 0.35 1.47	1.82					
6. GROUND WATER RESOURCE						
6.1. Supply Side Management						
SUPPLY (MCM)						

Available Resource (MCM)	117.79			
Gross Annual Draft (MCM)	86.91			
Agricultural Supply –GW	82.24			
Agricultural Supply –SW	1.14			
Domestic Supply – GW	1.92			
Domestic Supply – SW			0.48	
Total Supply			85.78	
Area of Block (Sq. Km.)			935.81	
Area suitable for Artificial recharge	e (Sq. Km)		205.28	
Type of Aquifer	· · ·		Hard Rock	
Area feasible for Artificial Recharge	e (WL >5mbgl) (Sq. Km.)		Approx. 800	
Volume of Unsaturated Zone (MC	А)		410.55	
Average Specific Yield			0.20	
Volume of Sub Surface Storage Spa	ace available for Artificial Rechar	ge (MCM)	8.21	
Surplus water Available (MCM)		<u> </u>	3.09	
Proposed Structures	Percolation Tank (Av. Gross	Check Dar	n (Av. Gross	
	Capacity-100 TCM*2 fillings =	Capacity-10	TCM * 3 fillings =	
	200 TCM)	30 TCM)		
Number of Structures	11	30		
Volume of Water expected to be	1.65	0.67		
conserved / recharged @ 75%				
efficiency (MCM)				
RTRWH Structures – Urban Areas				
Households to be covered (25% wi	th 50 m ² area)		15600	
Total RWH potential (MCM)			0.440	
Rainwater harvested / recharged @	2 80% runoff co-efficient		0.352	
RTRWH is econom	nically not viable & hence, not re	commended		
6.2. Demand Side Managemen	t			
Micro irrigation techniques				
Micro Irrigation Techniques in Co	otton cropped area proposed to	be covered	10	
under Drip (sg.km.)			-	
Volume of Water expected to be	reg- 2.45 m.	3.04		
Drip Reg. – 1.88, WUE- 0.57 m		•		
Proposed Cropping Pattern chang	e			
Irrigated area under Water Intensi	ve Crop(ha)		Not proposed	
Water Saving by Change in Croppin	ng Pattern		Nil	
6.3. Expected Benefits	-			
Net Ground Water Availability (MCM) 117.78				
Additional GW resources available	MCM)	2.33		
Ground Water Availability after Su	120.11			
Existing Ground Water Draft for Al	86.91			
Stage of Ground Water Developme	72.36 %			
GW draft after Demand Side Interv	83.87			
Stage of Ground Water Developme	69.83 %			
Other Interventions Proposed, if any				
Alternate Water Sources Available	Nil			
6.4. Development Plan				
Volume of water available for GWD after stage of GWD brought to 70% (ham) 21.05				
Proposed Number of DW (@ 1.5 h	13			
Proposed Number of BW (@ 1.5 h	1			
Lishosed Manuel of BW (@ 1.5 h	1			

10.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, DEULGAON RAJA BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURES				
1.1 Introduction				
Block Name		Deulgaon Raja		
Geographical Area (Sq. K	ːm.)	486.78 Sq. Km.		
Hilly Area (Sq. Km)		38.12		
Population (2011)		125350		
Climate		Hot and dry		
Net Annual Ground Wate	er Availability (MCM)	60.92		
Existing Gross Ground W	ater Draft for All uses (MCM)	46.44		
Provision for domestic a	nd industrial requirement supply to 20	25(MCM) 3.80		
Stage of Ground Water I	Development %	76.25		
Category		Safe		
1.2 Rainfall Analysis				
Normal Rainfall		694.7 mm		
Annual Rainfall (2018)		419.3 mm		
Decadal Average Annual	Rainfall (2009-18)	659.55 mm		
Short term Rainfall	nsignificantly falling trend -7.78 mm/y	ear.		
Analysis (1998-2017) P	Probability of Rainfall : 67 % Normal ra	nfall and 19 % Excess rainfall		
	Probability of Drought-: 14 % Moderate	e Drought		
Rainfall Trend Analysis	s (1998 To 2018)			
1200				
1200	_			
1000	y = -7.7886x + 780.33	-		
800				
600				
400				
400				
200				
<u> </u>				
199° 199° 100° 100°	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	* 201 201 201 201 201 201 201 2010		
1.3 Geomernhology	Soil & Goology			
1.5. Geomorphology, Soll & Geology				
	2 m			
Geology	Ceology Deccan Trans (Basalt) Age: Upper Cretaceous to Lower Eccano			
Soil	Light to Medium BCS consisting mostly of clay and loam			
14 Hydrology & Drai	1290 to medium 200 tonoisting mos			
Drainage Drainage Durna river and its left tributaries				
	Major project	1 Khadakhurna (ongoing)		
	Bigger Minor Irrigation Project	3 (Saokhed bhoi Shivni Armal		
Hydrology	(100-300 Ha)	Mendgaon with 1275 so km total		
		CCA)		

		Minor Irrigation Project	ct (0-100 Ha.)	State-56, MILS-2(Andhera			
				,Pimpalgaon Chilam)			
				PT-20, KT-14, MI tank-4 VP-18			
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern							
Forest Area		43.78 Sq. Km.					
Cultivable Are	a	410.78 Sq. Km.					
Net Sown Are	а	332.01 Sq. Km.					
Double Cropp	ed Area	141.18 Sg. Km.					
Area under	Surface	0.25 Sq. Km.					
Irrigation	Water						
-	Ground	14.6 Sq. Km.					
	Water						
Area under	Drip &	14.85 Sg. Km. (1485 hac)					
Sprinkler Irrig	ation						
Principal Crop	S	Crop Type Area (Sg. Km.) (Reference year 2017-18					
		Cotton	29.2				
		Cereals	85.83				
		Pulses	104.13				
		Oil Seeds	179.59				
Horticultural (Crops	Sugarcane	0.38				
		Others	5.2				
1.6. Water L	evel Beha	vior	-				
	r_I (Shallo	w Aquifer)					
Dro Monsoon	(May 201	0)	Post Monso	on (November 2018)			
	101ay-201	oj ubglic obcorvod in	Post-wonsoon (November-2018)				
DIVL 10 (boostorn (lugi is observed in	DTWL less than 5- 10 mbgi is observed in				
horthern, Nort	ineastern c	in the range of E to 10	wostern and	a parth asstarp part where DTW/			
mbgl is obse	aler lever	tral & south wostern	ranging 10 to 20 is observed as isolated				
norts	erveu cem	lidi & Soulli Western	ranging 10 to 20 is observed as isolated				
parts.	Dramanaaa	- DTM (Mar 2048)					
Deulgao	n Raia Taluk	a, Buldhana District	Aquifer I	, Postmonsoon , DTW (Nov. 2018)			
Dourguo	in naja naiai	la, Dalahana Diotriot	Deulga	Shi Kaja Taluka, Bululiana District			
		-		-			
		NORTH 15	Legend				
		kilometers					
Legend	~	7	DTW (mbal)				
DTW (mbgl)	1	· · · · · · · · · · · · · · · · · · ·	2 to 5	· / · · · · · · · · · · · · · · · · · ·			
5 to 10	لىر ،		🗲 ء 5 to 10				
10 to 2	20 5		10 to	20			
Drainage	25	1	Drainage 🥣 🏹 👗 🔹 丿				
Taluka HQ			Taluka HQ	Paulman Rain			
Monitoring w	ell		Monitoring v	well			
	~ .						
5	Purn		Suma R				
	• • • /	5					
	/ •]						
-	1	Principal aquifer Basalt		Principal aquifer Basalt			
~ ·	j.	No of aquifers Two	Son .	No of aquifers Two			
Area (Sqkm) 448.66 Area (Sqkm)				Area (Sqkm) 448.66			
2	\sim	No of Village 64	2	No or vinage 64			

EC ranging from 750 to 2250 μ S/cm has been observed in major part of block covering about 678.2 sq km area of the block & ground water is suitable for all purpose. EC<750 is observed in 144.68 sqkm area in northwestern,middle & southern part of the block. The ground water is fit & suitable for all purpose except where the village are affected by Nitrate & fluoride contamination.

observed in major part of block covering about 813.4 sq km area of the block & ground water is suitable for all purpose. Ground water becomes brackish towards small patch in the North (1.8 sqkm) with EC ranges from 2250 to 3000 μ S/cm & ground water is suitable for irrigation purpose with proper salinity control measures. However it is fit for drinking purpose without treatment. Few villages are also affected Nitrate & fluride by contamination.

5. GROUND WATER RESOURCE								
5.1 Aquifer-I/	5.1 Aquifer-I/ Shallow Phreatic Aquifer (Basalt)							
Ground Water F	Recharg	ge Wort	hy Area (Sq.	Km.)			44	8.66
Command area	l						23	.89
Non Command							42	4.77
Total Annual Gr	round V	Vater Re	charge (MCI	M)			64	.12
Natural Dischar	ge (MC	M)					3.2	20
Net Annual Ground Water Availability (MCM)						60	.92	
Existing Gross Ground Water Draft for irrigation (MCM)					39	.99		
Existing Gross Ground Water Draft for domestic and industrial water					44	.53		
supply(MCM)	supply(MCM)							
Existing Gross Ground Water Draft for All uses(MCM)					46	.44		
Provision for domestic and industrial requirement supply to 2025(MCM)					M)	3.8	30	
Net Ground Water Availability for future irrigation development(MCM)				1)	13	.44		
Stage of Ground Water Development (%)				76	.25			
Category					SA	FE		
5.2 Aquifer-II Semiconfined/Confined Deeper Aquifer (Basalt)								
Mean Are	ea	Peizo	S	Sy	Resource	Resource	in	Total

aquifer	(Sqkm)	metri			above	aquifer	resource	
thickness		с			confinig	(mcm)	(mcm)	
		Head			layer (mcn	n)		
		(m)						
0.75	0.9529	35	0.00003	0.002	0.001	0.001	0.002	
0.75	155.62	25	0.00003	0.002	0.11	0.23	0.35	
2	143	35	0.0000426	0.002	0.21	0.57	0.78	
4.5	186.97	36	0.0000426	0.002	0.28	1.68	1.96	
6.0. GROU	IND WATE	R RESO	URCE ENHA	NCEMENT				
6.1. Suppl	y Side Ma	nageme	ent					
SUPPLY (N	/ICM)							
Available R	esource (M	CM)					60.92	
Gross Annu	ial Draft (M	CM)					46.45	
Agricultura	l Supply –G	W					44.94	
Agricultura	l Supply –S	W					0.3	
Domestic S	upply – GW	1					1.91	
Domestic S	upply – SW						0.47	
Total Supp	ly						47.22	
Area of Blo	ck (Sq. Km.)					486.78	
Area suitab	le for Artifi	cial rech	arge (Sq. Km	ı)			448.66	
Type of Aguifer					Hard Rock			
Area feasible for Artificial Recharge (WL >5mbgl) (Sg. Km.)					448.66			
Volume of Unsaturated Zone (MCM)					607.13			
Average Specific Yield					0.20			
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)					12.14			
Surplus water Available (MCM) 4.5					4.5			
Proposed S	tructures		Percola	tion Tank	(Av. Gross	Check Da	n (Av. Gros	
-			Capacit	y-100 TCM*	2 fillings =	Capacity-10	TCM * 3 fillings	
			200 TC	M)		30 TCM)		
Number of	Structures		16			46		
Volume of	Water expe	ected to	be 2.4			1.0		
conserved	/ recharge	ed @ 7	5%					
efficiency (MCM)							
RTRWH Str	uctures – L	Jrban Ai	eas					
Household	s to be cove	ered (25	% with 50 m ²	area)			6500	
Total RWH	potential (N	MCM)					0.183	
Rainwater	harvested /	recharg	ed @ 80% ru	inoff co-effic	cient		0.146	
	RTRW	H is ecc	nomically n	ot viable & h	nence, not r	ecommended	•	
6.2. Dema	nd Side M	lanager	nent					
Micro irriga	ation techn	iques						
Cotton crop area (6 sqkm), 7% area is proposed to be covered under Drip					1			
Volume of	Water exp	ected to	be saved (N	/ICM). Surfa	ce Flooding	req- 0.36 m.	1.824	
Drip Req. –	0.24, WUE	- 0.12 m						
Proposed C	Cropping Pa	ittern ch	ange					
Irrigated area under Water Intensive Crop(ha)					Not proposed			
Water Saving by Change in Cropping Pattern					Nil			
6.3. Expec	ted Benef	its						
Net Ground	d Water Ava	ailability	(MCM)				60.92	
Existing Ground Water Draft for All Uses (MCM)					46.44			

11.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, KHAMGAON BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES			
1.1 Introduction				
Block Name		KHAMGAON		
Geographical Area (So	դ. Km.)	1202.41 Sq. Km.		
Hilly Area (Sq. Km)		241.54		
Population (2011)		442557		
Climate		Hot and dry		
Net Annual Ground W	/ater Availability (MCM)	98.89		
Existing Gross Ground	Water Draft for All uses (MCM)	59.39		
Provision for domesti	c and industrial requirement supply to 20	25(MCM) 7.99		
Stage of Ground Wate	er Development %	60.06		
Category		Safe		
1.1 Rainfall Analysis	5			
Normal Rainfall		656.4 mm		
Annual Rainfall (2018)		335.4 mm		
Decadal Average Ann	ual Rainfall (2009-18)	659.75 mm		
Short Term Rainfall	Insignificantly falling trend -5.45 mm/y	ear.		
Analysis (1998-2018)	Probability of Rainfall : 58% Normal Ra	infall; 16 % Excess Rainfall		
	Probability of Drought: 26% Moderate	Drought &0% Severe Drought		
Rainfall Trend Anal	ysis (1998 To 2018)			
1200				
1000 V -	5 4521x + 721 24			
1000 - y	5.45517 + 721.24			
800 -				
600 -				
400 -				
200 -				
ି କ ନ କ	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
3, 3, 3, 50	50, 50, 50, 50, 50, 50, 50, 50, 50, 50,	20° 20° 20° 20° 20° 20° 20°		
1.3. Geomorphology, Soil & Geology				
Geomorphic Unit	Alluvial flood Plains of Painganga & its	tributaries River		
	Plateau (slightly dissected to weathered	l plateau)		
Geology	Deccan Traps (Basalt) Age: Upper Cretaceous to Lower Eocene			
Soil	Light to Medium BCS consisting mostly of clay and loam			
1.4. Hydrology & Di	ainage			
Drainage	Paingana river and its tributaries with s	ub-dendritic to dendritic drainage.		
	Major project (CCA in Ha)	1 (Jigao Project; Ongoing)		
	Medium project	2 (Gyanganga ,Mass)		
Hydrology	Bigger Minor Irrigation Project (100-	6 (Nimkhed,Pimpalgaon		
l i yui u u gy	300 Ha.)	Nath,Fatehpur,Gardgaon ,Pimpali		
		Gavali and botha)		
	Minor Irrigation Project (0-100 Ha.)	State-7; MILS-11		

			PT-35, KT-1, VP-15, MI-6					
1.5. Land Us	e, Agriculti	ure, Irrigation & Crop	ping Pattern					
Forest Area		134.53 Sq. Km.						
Cultivable Are	а	829.22 Sq. Km.	829.22 Sq. Km.					
Net Sown Are	а	597.79 Sq. Km.						
Double Cropp	ed Area	141.08 Sg.Km.						
Area under	Surface W	ater 7.35 Sg. Km.						
Irrigation	Ground W	ater 76.5 Sg. Km.						
Area under [Drip & Spri	nkler						
Irrigation	FF	-						
Principal Crop	S	Crop Type	Area (Sg. Km.) (Reference year 2017-18)					
	-	Cotton	247.13					
		Cereals	88.7					
		Pulses	232					
		Oil Seeds	425					
Horticultural (rons	Sugarcane	0.15					
	51043	Spices	1 15					
		Others	22.2					
1.6 Motor L	aval Pahav	ior	52.2					
1.6. Water L								
1.6.1 Aquife	r-I (Shallov	v Aquiter)						
Pre-Monsoon	(May-2017	()	Post-Monsoon (November-2017)					
DTWL 10 to 2	0 mbgl is ob	oserved in Major block	DTWL 5 to 10 mbgl is observed in major block.					
engulfing DT	WL patche	s of 5 to 10 mbgl.	bgl. Water level in the range of 10 to 20 mbgl					
Shallow DTW	L <5 mbgl is	s observed as isolated	observed in Northen part of the block & 2 to 5					
patches at 1 o	r 2 places.		mgl is observed only as small isolated patches					
			of southern side respectively.					
Aquifer I,	Premonsoon	, DTW (May. 2018)	Aquifer I, Postmonsoon , DTW (Nov. 2018)					
Khamg	aon Taluka, B	uldhana District	Khamgaon Taluka, Buldhana District					
	\sim	NORTH	NORTH					
		0 <u>7.5</u> 15						
	inan	- Kilometers	kilometers					
1. 1	JZ)	· · · · · · · · · · · · · · · · · · ·						
	₹0 /							
\int	2 .	· U z						
ς.	Khamga	aon 🔫 🕂 🍃	Khangaon					
	5 7.	8-1 1-17						
(<u>/</u> *								
	·							
	K)	1 not						
	·~~	NV est	Legend					
	Lege	n d Principal aquifer Pasalt	DTW (mbgl) Principal aquifer Basalt					
	2 to 5	No of aquifers Two	2 to 5 No of aquifers Two					
	5 to 10	Area (Sqkm) 960.47	5 to 10 Area (Sqkm) 960.47					
	10 to 20	No of Village 149	10 to 20 No of Village 149 Drainage ~					
		Taluka HQ	Taluka HQ 🗧					
		Monitoring well •	Monitoring well •					
1 6 2 14/2+2-	lovel Dek-	wion Amilan II /Daa	nor Aquifor)					
1.0.2 water Level Benavior - Aquiter-II (Deeper Aquiter)								
Pre-Ivionsoon	(Iviay-2017	JUIWL 5-10 mbgl is	Post-wonsoon (November-2017) DTWL 10-20					
observed in m	iajor part er	nguiting small patch of	mbgi is observed in half part of block					

Existing Gross Ground Water Draft for domestic and industrial water

4.11

59.39

7.99

Net Ground	Net Ground Water Availability for future irrigation development(MCM) 34.96					34.96	
Stage of Gro	und Wat	ter Developme	ent (%)				60.06
Category		•					SAFE
5.2 Aquifer	-II Semi	confined/Co	nfined Dee	per Aau	ifer (Basal	t)	
Mean	Area	Peizometric	S	Sv	Resource	Resource	Total resource
aquifer	(Sak	Head (m)	0	Ξ,	above	in aquifer	(mcm)
thickness	m)	ficad (iii)			confinig	(mcm)	(
	,				laver	(
					(mcm)		
0.75	204.3	21	0.000042	0.002	0.182	0.306	0.489
	38		6				
2	930.1	22	0.000042	0.002	0.871	3.720	4.592
_	19		6	0.000		0.720	
4.5	67.92	35	0.00003	0.002	0.071	0.611	0.682
	14		0.00000	0.002	0.072	0.011	0.002
						TOTAL	5.763
6.0 GROUN			Έ ΓΝΗΔΝ Ο	FMFNT			
6.1 Supply		2nogomont					
		anagement					
SUPPLY (IVI							00.00
Available Res	source (98.89
Gross Annua	I Draft (I						59.39
Agricultural	Supply -	GW					55.28
Agricultural	Supply -	SW					6.6
Domestic Su	pply - G\	N					1.64
Domestic Su	pply - SV	V					1.037
Total Supply	1						64.557
Area of Block	< (Sq. Kn	n.)					1202.41
Area suitable	e for Arti	ificial recharge	: (Sq. Km)				659.73
Type of Aqui	fer						Hard Rock
Area feasible	e for Arti	ficial Recharge	e (WL >5mbg	gl) (Sq. Kr	n.)		Approx. 560
Volume of U	nsaturat	ed Zone (MCN	/)				1319.45
Average Spe	cific Yiel	d					0.020
Volume of Su	ub Surfa	ce Storage Spa	ice available	for Artifi	icial Rechar	ge (MCM)	26.39
Surplus wate	er Availa	ble (MCM)					9.95
Proposed St	ructures		Percolation	Tank (Av. Gross	Check Dar	n (Av. Gross
			Capacity-10	00 TCM*	2 fillings =	Capacity-10	TCM * 3 fillings =
			200 TCM)			30 TCM)	
Number of S	tructure	S	30			48	
Volume of W	Vater ex	pected to be	4.5			1.08	
conserved /	rechar	ged @ 75%					
efficiency (M	ICM)						
RTRWH Stru	ctures –	Urban Areas					
Households	to be co	vered (25% wi [.]	th 50 m ² area	a)			17500
Total RWH potential (MCM)						0.4515	
Rainwater harvested / recharged @ 80% runoff co-efficient						0.3612	
	RTR	WH is econom	ically not vi	able & h	ence, not re	commended	•
6.2. Deman	d Side I	Management	:				
Micro irrigat	ion tech	iniques					
Cotton crop area (7), about 2 sokm area is ground water irrigated, 100 % 2							

ground water irrigated (2 sqkm) proposed to be covered under Drip (sq.km.)				
Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m.	0.608			
Drip Req 1.88, WUE- 0.57 m				
Proposed Cropping Pattern change				
Irrigated area under Water Intensive Crop(ha)	Not proposed			
Water Saving by Change in Cropping Pattern	Nil			
6.3. Expected Benefits				
Net Ground Water Availability (MCM)	98.89			
Existing Ground Water Draft for All Uses (MCM)	59.39			
Present stage of Ground Water Development (%)	60.06%			
Additional GW resources available after Supply side interventions (MCM)	5.58			
Ground Water Availability after Supply side intervention(MCM)	104.47			
Stage of development after Supply side intervention (%)	56.85			
GW draft after Demand Side Interventions (MCM)	58.78			
Stage of development after demand side intervention (%)	56.26			
Other Interventions Proposed, if any	•			
Alternate Water Sources Available	Nil			
6.4. Development Plan	1			
Volume of water available for GWD after stage of GWD brought to 70% (ham)	1434.7			
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	861			
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	96			
Additional Area (sg.km.) proposed to be brought under assured GW irrigation	22.072			
with av. CWR of 0.65 m after 70% stage of gwd is achieved	_			
Regulatory Measures 60m borewells/tube wells				
Regulatory Measures 60m borewells/tube wells	•			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought DEMAND SIDE INTER	VENTION			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Build DEMAND SIDE INTER Khamgaon Taluka, Build	EVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District DEMAND SIDE INTER Khamgaon Taluka, Buldhana	RVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District DEMAND SIDE INTER Khamgaon Taluka, Buldhana District	RVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH DEMAND SIDE INTER Khamgaon Taluka, Buldhana District	AVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH DEMAND SIDE INTER Khamgaon Taluka, Buldhana District	AVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH DEMAND SIDE INTER Khamgaon Taluka, Buldhana District NORTH	RVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH Kilometers DEMAND SIDE INTER Khamgaon Taluka, Buldhana District Khamgaon Taluka, Buldhana District Khamgaon Taluka, Buldhana District Kilometers	EVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH Khamgaon DEMAND SIDE INTER Khamgaon Taluka, Buldhana District NORTH Khamgaon	EVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH Khamgaon Taluka, Buldhana District Khamgaon Taluka, Buldhana Di	RVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH DEMAND SIDE INTER Khamgaon Taluka, Buldhana District NORTH Khamgaon Taluka, Buldhana District Khamgaon Taluka, Buldhana	RVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District DEMAND SIDE INTER Khamgaon Taluka, Buldhana District V V/S V/S Khamgaon Taluka, Buldhana District V/S Khamgaon Taluka, Buldhana District V/S Khamgaon Taluka, Buldhana District V/S Khamgaon Khamgaon	RVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District DEMAND SIDE INTER Khamgaon Taluka, Buldhana District V V V Khamgaon Taluka, Buldhana District Khamgaon Taluka, Buldhana District Khamgaon Khamgaon	RVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District VORTH Khamgaon DEMAND SIDE INTER Khamgaon Taluka, Buldhana District NORTH Khamgaon Khamgaon Khamgaon Korton crop area proposed Cotton crop area proposed	EVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District Worth Khamgaon Taluka, Buldhana district Khamgaon distr	EVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District DEMAND SIDE INTER Khamgaon Taluka, Buldhana District V V V Khamgaon Taluka, Buldhana District V Khamgaon Taluka, Buldhana District V Khamgaon Khamgaon Le g e n d Cotton crop area proposed to be brought Additional Area proposed to be brought Cotton crop area proposed to be brought	ed to be tion in			
60m borewells/tube wells DEMAND SIDE INTER Madditional Area proposed to be brought under assured GW irrigation NORTH Khamgaon Taluka, Buldhana District NORTH Khamgaon Taluka, Buldhana District NORTH Khamgaon Taluka, Buldhana District NORTH Khamgaon Khamgaon Legend Additional Area proposed to be brought under assured GW irrigation with av. CWR	AVENTION dhana District			
Regulatory Measures 60m borewells/tube wells Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH DEMAND SIDE INTER Khamgaon Taluka, Buld Image: Control of the proposed to be brought under assured GW irrigation with av. CWR of 0.65 m AFTER 70% STAGE OF GWD IS DEMAND SIDE INTER Khamgaon Taluka, Buld Image: Control of the proposed to be brought under assured GW irrigation with av. CWR of 0.65 m AFTER 70% STAGE OF GWD IS DEMAND SIDE INTER Khamgaon 2 sqkm	EVENTION dhana District			
Regulatory Measures60m borewells/tube wellsAdditional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH KilometersDEMAND SIDE INTER Khamgaon Taluka, Buldhana District NORTH Khamgaon Taluka, Buldhana District NORTH KilometersLe g e n dKhamgaon Z sqkm Hamgaon Z sqkmAdditional Area proposed to be brought under assured GW irrigation with av. CWR of 0.65 m AFTER 70% STAGE OF GWD IS ACHIEVED Khamgaon 22.07 Sqkm, Drincipal equifer Basalt D No of Village 149	ed to be tion in varianage aluka HQ			
60m borewells/tube wells DEMAND SIDE INTER Additional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District DEMAND SIDE INTER Khamgaon Taluka, Buldhana District NORTH Image: Colspan="2">Image: Colspan="2" Additional Area proposed to be brought under assured GW irrigation with av. CWR of 0.65 m AFTER 70% STAGE OF GWD IS ACHIEVED Khamgaon 22.07 Sqkm , Principal aquifer Basalt Drainage Image: Colspan="2" Image: Colspan="2	ed to be tion in vrainage aluka HQ			
Regulatory Measures60m borewells/tube wellsAdditional Area proposed to be brought under assured GW irrigation Khamgaon Taluka, Buldhana District NORTH Khamgaon Taluka, Buldhana District Khamgaon Color	ed to be tion in trainage aluka HQ			

12.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, LONAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES		
1.1 Introduction			
Block Name		Lonar	
Geographical Area (So	a. Km.)	714.11	
Hilly Area (Sg. Km)	1 /	134.99	
Population (2011)	152351		
Climate		Hat and dry	
Net Annual Ground W	/ater Availability (MCM)	80.47	
Existing Gross Ground	Water Draft for All uses (MCM)	45.09	
Provision for domesti	c and industrial requirement supply to 20	25(MCM) 4.43	
Stage of Ground Wate	er Development %	56.04	
Category		Safe	
1.2 Rainfall Analysis	5		
Normal Rainfall		786.8 mm	
Annual Rainfall (2018		524.4 mm	
Decadal Average Ann	ual Rainfall (2009-18)	679.2mm	
Short Term Rainfall	Significantly falling trend -32.17 mm/ye	ar.	
Analysis (1998-2017)	Probability of Rainfall : 37% Normal Rai	nfall; 26 % Excess Rainfall	
	Probability of Drought: 37 % Moderate	Drought	
Rainfall Trend Anal	ysis (1998 To 2017)		
y = -32.171x + 1169.5 $y = -32.171x + 1169.5$ $y =$			
1.3. Geomorpholog	y & Geology		
Geomorphic Unit	Alluvial flood Plains of Purna & its tribut	taries River	
	Plateau (slightly dissected to weath	nered plateau) with weathered	
	thickness ranging from 0 to 2 m.		
Geology	Deccan Traps (Basalt) Age: Late Cretace	ous to Eocene	
Soil	Light to Medium BCS consisting mostly of	of clay and loam	
1.4. Hydrology & Di	ainage		
Drainage	Painganga& Purna river and their tributa drainage.	aries with sub-dendritic to dendriti	
	Major project (CCA in Ha)	0	
Hudrology	Medium project (CCA in Ha)	0	
Πγαιοιοχγ	Bigger Minor Irrigation Project (100- 300 Ha.) (CCA in Ha)	13	

ICCA in Ha) [PT-33, KT-2, VP-10, MI-4] 1.5. Land Use, Agriculture, Irrigation & Cropping Pattern Forest Area 14.46 Sq. Km. Cultivable Area 644.85 Sq. Km. Net Sown Area 494.41 Sq. Km. Double Cropped Area 150.44 Sq. Km. Area under Surface Water 2.8 Sq. Km. 280 ha Irrigation Ground Water 5.57 Sq. Km. 557 ha. Area under Drip & Sprinkler none Principal Crops Corp Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane Others 4.11 1.6. Haydifer I (Shallow Aquifer) Pre-Monsoon (November-2018) DTWL 5 to 10 mbgl observed in major area DTWL 5 to 10 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed northeastern & Noth western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Permonsoon, DTW (May 2018) Coriange Gringe Grin		Minor I	rrigation Proje	ct	(0-100 Ha.)	State-8; MILS-1		
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern Forest Area 14.46 Sq. Km. Outlivable Area 644.85 Sq. Km. Net Sown Area 494.41 Sq. Km. Double Cropped Area 150.44 Sq. Km. Double Cropped Area 150.44 Sq. Km. Irrigation Surface Water 5.57 Sq. Km. 557 ha. Area under Drip & Sprinkler none Irrigation Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 1.6.1 Aquifer-1 (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 5 to 10 mbgl is observed in central and northeastern part. Post-Monsoon (November-2018) DTWL 15 to 20 mbgl is observed in Central and northeastern part. No of squifers Two the block while water level in the range of 2 to 5 mbgl is observed in central and northeastern part. Aquifer I, Postmonsoon on DTW (Nov. 2018) DTW (mbgl) Principal aquifers Two Tailawa, Buidhana District Image Trailwa, Buidhana District Monitoringwell • No of squifers Two T	CCA in H		Ha)			PT-33, KT-2, VP-10, MI-4		
Forest Area 14.46 Sq. Km. Cultivable Area 644.85 Sq. Km. Net Sown Area 494.41 Sq. Km. Double Cropped Area 150.44 Sq. Km. Area under Surface Water 2.8 Sq. Km. 280 ha Irrigation Ground Water 5.57 Sq. Km. 557 ha. Area under Drip & Sprinkler none Irrigation Cop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Careals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 1.6.1 Aquifer-I (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 5 to 10 mbgl observed in major area of the block while water level in the range of 2 to 5 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed in small patches. Aquifer I, Premonsoon, DTW (May 2018) DTWL 5 to 10 mbgl observed in small patches. Monitoring weil • Nord squiffer Stwo Nord squi	1.5. Land Use, Agric	culture, Ir	rigation & Cro	opp	oing Pattern			
Cultivable Area b44.85 Sq. Km. Net Sown Area 494.41 Sq. Km. Double Cropped Area 150.44 Sq. Km Area under Drip & Sprinkler none Irrigation Principal Crops Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Coreals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Unters 4.11 1.6. Water Level Behavior 1.6. Unter Level Behavior 1.6. Water	Forest Area		14.46 Sq. Km.					
Net Sown Area 494.41 Sq. Km. Double Cropped Area 150.44 Sq. Km. Area under Surface Water 2.8 Sq. Km. 280 ha Irrigation Ground Water 5.57 Sq. Km. 557 ha. Area under Drigation None Principal Crops Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 1.6.1 Aquifer-I (Shallow Aquifer) Pre-Monsoon (May-2018) Others DTWL 10 to 20 mbgl is observed in major area while DTWL 10 to 20 mbgl observed in Central- and northeastern part. Post-Monsoon (November-2018) DTWL 10 to 20 mbgl is observed in Central- To Smgl is observed in Central- of the block while water level in the range of 2 to 5 mbgl is observed in central parts. Maufer I, Premonsoon, DTW (May 2018) No of waiters Two Aquifer I, Postmonsoon, DTW (Nov. 2018) DTW (mbgl) Sto 10 No of aquifers Two Leg en d DTW (mbgl) Sto 10 No of aquifers Basatt	Cultivable Area		644.85 Sq. Km	۱.				
Double Cropped Area 150.44 Sq. Km. Area under Surface Water 2.8 Sq. Km. 280 ha Irrigation Ground Water 5.57 Sq. Km. S57 ha. Area under Drip & Sprinkler none Principal Crops Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane Others 4.11 1.6. Water Level Behavior 1.6.1 Aquifer-1 (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central- of the block while water level in the range of 2 to 5 mbgl is observed in central parts of the block while water level more and northeastern part. North Vestern parts. DTWL 0 to 2 mbgl is observed in small patches. Small patches. Ionar Talkia, Buidhana District Lonar Talkia, Buidhana District Ionar Talkia, Buidhana District Ionar Talkia, Buidhana District Ionar Talkia, Buidhana District Ionar Talkia, Buidhana District Ionar Talkia, Buidhana District Ionar Talkia, Buidhana District Ionar Ta	Net Sown Area		494.41 Sq. Km	۱.				
Area under Surface Water 2.8 Sq. Km. 280 ha Irrigation Ground Water 5.57 Sq. Km. 557 ha. Area under Drip & Sprinkler none Principal Crops Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 1.6.1 Aquifer-1 (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 5 to 10 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed northeastern & North western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonscon , DTW (May 2018) Sto 10 Lonar Taluka, Budhana District No rd quifers Two ralus Marei S(km) Sto 10 Sto 10 Sto 10 Sto 10 No rd quifer Small Montoring well Sto 10 Sto 10 Sto 10 Sto 10 No rd quifer Small DTW (mbgl) Principal aquifer Basalt No rd quifers Two Sto 10 DTW (mbgl)	Double Cropped Area	1	150.44 Sq. Km	1				
Irrigation Ground Water 5.57 Sq. km. 557 ha. Area under Drip & Sprinkler none Principal Crops Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6.1 Aquifer-1 (Shallow Aquifer) Pre-Monsoon (November-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central-and northeastern part. Post-Monsoon (November-2018) DTWL 10 to 20 mbgl is observed in Central-and northeastern part. Of the block while water level in the range of 2 to 5 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed in small patches. Aquifer I, Premonscon, DTW (May 2018) Aquifer I, Postmonscon, DTW (Nov. 2018) Lonar Taluka, Buldhana District Northorage 90 Montoring well Sto 10 DTW (mbgl) Principal aquifer Basalt North Worther Sto 20 Nort Willage 90 Nort Area (Sqkm) DTW (mbgl) Principal aquifer Basalt North Worther Sto 20 Nort Willage 90 Nort Area (Sqkm) Drainage	Area under Surfac	e Water	2.8 Sq. Km. 28	30 r	าล			
Area under Drip & Sprinkler Irrigation none Principal Crops Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area Post-Monsoon (November-2018) DTWL 5 to 10 mbgl observed in Central- and northeastern part. Post-Monsoon (November-2018) DTWL 5 to 10 mbgl observed in Central- and northeastern part. DTWL 5 to 10 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed northeastern & North western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon, DTW (May 2018) Lonar Taluka, Buldhana District Aquifer I, Postmonsoon, DTW (Nov. 2018) Lonar Taluka, Buldhana District Monitoring well Principal aquifer Basait Drainage Too faquifers Two Two Taluka HO Monitoring well	Irrigation Groun	d Water	5.57 Sq. Km. 5	557	ha.			
Crop Type Area (Sq. Km.) (Reference year 2016-17) Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6.1 Aquifer-I (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area Post-Monsoon (November-2018) DTWL 10 to 20 mbgl observed in Central and northeastern part. Post-Monsoon (November-2018) DTWL 5 to 10 mbgl observed in Central and northeastern part. Post-Monsoon, November-2018) OTW L 5 to 10 mbgl observed in Central and northeastern part. Premonsoon, DTW (May 2018) Lonar Taluka, Buldhana District Sto 10 mbgl is observed in small patches. Aquifer I, Premonsoon, DTW (May 2018) Aquifer I, Postmonsoon, DTW (Nov. 2018) Lonar Taluka, Buldhana District Lonar Taluka, Buldhana District Monitoring well Principal aquifer Basait Drum (mbg) Principal aquifer Basait Drum (mbg) Principal aquifer Basait Drum (mbg) Principal aquifer Basait Monitoring well No of aquifers No of aquifers No of aquifers	Area under Drip & Irrigation	Sprinkler	none					
Cotton 77.29 Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 1.6.1 Aquifer-1 (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central and northeastern part. Post-Monsoon (November-2018) DTWL 10 to 20 mbgl is observed in Central and northeastern part. DTWL 5 to 10 mbgl is observed in the range of 2 to 5 mbgl is observed in the range of 2 to 5 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Aquifer I, Postmonsoon , DTW (Nov. 2018) Lonar Taluka, Buldhana District Sto 10 Monitoring well Principal aquifer Basalt DTW (mbgl) Principal	Principal Crops		Crop Type		Area (Sq. Km	n.) (Reference year 2016-17)		
Cereals 184.69 Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 4.11 1.6. Water Level Behavior The Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central and northeastern part. Post-Monsoon (November-2018) DTWL 5 to 10 mbgl observed in Central and northeastern part. Post-Monsoon (November-2018) Aquifer I, Premonsoon , DTW (May 2018) DTWL 0 to 2 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Aquifer I, Postmonsoon , DTW (Nov. 2018) Lonar Taluka, Buldhana District Lonar Taluka, Buldhana District Montoring multifer Basait Nord aquifer Basait No of Village To in to 20 No of Village To in or aquifer To the assit Montoring well Principal aquifer Basait No of Village To in to 20 No of Village To in to 20 Drainage Drainage District Le g en d Drainage Drainage <t< td=""><td></td><td></td><td>Cotton</td><td></td><td>77.29</td><td></td></t<>			Cotton		77.29			
Pulses 311.26 Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 4.11 1.6.1 Aquifer-I (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central- and northeastern part. Post-Monsoon (November-2018) DTWL 10 to 20 mbgl is observed in Central- and northeastern part. DTWL 5 to 10 mbgl is observed northeastern & North western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Constrained aquifer Basait DTW (mbgl) Principal quifer Basait <td< td=""><td></td><td></td><td>Cereals</td><td></td><td>184.69</td><td></td></td<>			Cereals		184.69			
Oil Seeds 50.33 Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior 4.11 1.6. Water Level Behavior Post-Monsoon (November-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central and northeastern part. Post-Monsoon (November-2018) DTWL 5 to 10 mbgl observed in Central and northeastern part. DTWL 5 to 10 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District Umage Tiles a quifer Basalt Nortinge Basalt Montioning well No of Village Basalt Montioning well No of zapifiers Two Area (Sgkm) 579.12 No of Village Basalt No of zapifiers Two Area (Sgkm) 579.12 Montioning well No of zapifiers Two Area (Sgkm) 579.12 No of zapifiers Two Area (Sgkm) 579.12 No of zapifiers Two Area (Sgkm) 579.12 No of zapifiers Two Area (Sgkm) 579.12 No of zapifiers Two Area (Sgkm) 579.12			Pulses		311.26			
Horticultural Crops Sugarcane 0.96 Others 4.11 1.6. Water Level Behavior Idea to the state of the state o			Oil Seeds		50.33			
Others 4.11 1.6. Water Level Behavior 1.6.1 Aquifer-I (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central- and northeastern part. Post-Monsoon (November-2018) DTWL 5 to 10 mbgl observed in Central- and northeastern part. DTWL 5 to 10 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Aquifer I, Postmonsoon , DTW (Nov. 2018) DTW (mbgl) Principal aquifer Basalt Monitoring well Principal aquifer Basalt No of village 90 DTW (mbgl) Principal aquifer Signage No of village 90 DTW (mbgl) Principal aquifer Basalt No of village 90 DTW (mbgl) Principal aquifer Basalt DTW (mbgl) Principal aquifer Basalt Monitoring well Principal aquifer Basalt	Horticultural Crops		Sugarcane		0.96			
 1.6. Water Level Behavior 1.6.1 Aquifer-I (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central-and northeastern part. Post-Monsoon (November-2018) DTWL 5 to 10 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed northeastern & North western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District Fincipal aquifer Basalt No of aquifers Two Area (Sqkm) 579.12 No of aquifers Two Taluka HQ DTW (mög) Taluka HQ Toto 2 			Others		4.11			
 1.6.1 Aquifer-I (Shallow Aquifer) Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central and northeastern part. Post-Monsoon (November-2018) DTWL 5 to 10 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed northeastern & North western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon, DTW (May 2018) Lonar Taluka, Buldhana District Lonar Taluka, Buldhana District Lonar Taluka, Buldhana District DTW (mbgl) Principal aquifer Basalt No of aquifers Two Area (Sqkm) 579.12 No of aquifers Two Taluka HQ Oto 2 No of aquifers Two Taluka HQ 	1.6. Water Level Be	havior						
Pre-Monsoon (May-2018) DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central and northeastern part. Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District Lonar Taluka, Buldhana District DTW (mbgl) DTW (mbgl)	1.6.1 Aquifer-I (Sha	llow Aqu	ifer)					
DTWL 10 to 20 mbgl is observed in major area while DTWL 5 to 10 mbgl observed in Central- and northeastern part. DTWL 5 to 10 mbgl is observed in central parts of the block while water level in the range of 2 to 5 mbgl is observed northeastern & North western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District Legend DTW (mbgl) bion of aquifer Basalt No of aquifer T wo Area (Sqkm) 579.12 No of aquifer Store Taluka H0 DTW (mbgl) Drainage Taluka H0 Monitoring well	Pre-Monsoon (May-2	2018)			Post-Monso	on (November-2018)		
while DTWL 5 to 10 mbgl observed in Central- and northeastern part. Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District	DTWL 10 to 20 mbgl	is observe	ed in major are	ea	DTWL 5 to 10 mbgl is observed in central parts			
and northeastern part. to 5 mbgl is observed northeastern & North western parts. DTWL 0 to 2 mbgl is observed in small patches. Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District Mort H biometers Legend DTW (mbgl) biometers Two Area (Sqkm) 579.12 Moritoring well biometers Two Area (Sqkm) 579.12 Mort Taluka, Buldhana District DTW (mbgl) Drainage Taluka HQ Mort H Mort H Mort H Mort H DTW (mbgl) Drainage Taluka HQ Mort H Mort H M	while DTWL 5 to 10	mbgl obse	erved in Centra	ı l -	of the block while water level in the range of 2			
Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District	and northeastern par	t.			to 5 mbgl is observed northeastern & North			
Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District					western parts. DTWL 0 to 2 mbgl is observed in			
Aquifer I, Premonsoon , DTW (May 2018) Lonar Taluka, Buldhana District					small patches.			
Image: Trainage T	Aquifer I, Premor Lonar Taluka,	nsoon , DTW Buldhana D	(May 2018) Pistrict		Aquife Lon	r I, Postmonsoon , DTW (Nov. 2018) aar Taluka, Buldhana District		
5 to 10 No of Village 90 Drainage ~ Taluka HQ •	L DTW (mbgl 5 to 7 10 to	e g e n d) Princip 0 No of a 20 Area (S No of V Draina Taluka Monito	kilometers kilometers kilometers kilometers bal aquifer Basalt aquifers Two Sqkm) 579.12 Village 90 ge • hHQ • bring well •			Legend (mbgl) Principal aquifer Basalt 0 to 2 No of aquifers 2 to 5 Area (Sqkm) 579.12 5 to 10 No of Village 90 Drainage Image: Compare the second seco		
1.6.2 Water Level Behavior - Aquifer-II (Deeper Aquifer)	162Water Level B	ehavior	Δαμίfor_II (D		 her Δαμifer)	Montoring weil		

- 3. Water scarcity on lean period
- 4. Normal Probability of Rainfall is only 50% coupled with frequent droughts (37% Moderate) which is ultimately responsible for less ground water recharge and non-availability of surface & ground water for irrigation.
- 5. Less ground water potential basaltic aquifer.

3. AQUIFER DISPOSITION	
3.1. Number of Aquifers	Basalt – Aquifer-I (Phreatic / Shallow aquifer)
	Basalt –Aquifer-II (Semiconfined / confined /
	Deeper aquifer)
5.1 Lithological Dispositoin	

Lon	Ground Water Quality (AQI)				Ground Water Quality (AQII)				
Lonar Taluka, Buldhana District				Autra R	Lege	lar n d		Interes ID	
EC in micro	siemens/cm	Principal aqui	fer Basalt	EC in mi	crosiemens/cm	Princip	al aqui	fer Basalt	
at 25° C 250 to 750 to 2250 Nitrat Fluor	o 750 o 2250 to 3000 te > 45 mg/l ide > 1 mg/l	No of aquifers Area (Sqkm) No of Village Drainage Taluka HQ Monitoring we	S Two 579.12 90 • • ell •	at 25° C 750 225 300 A Nit	0 to 2250 50 to 3000 00 to 5000 trate > 45 mg/l	No of a Area (S No of V Drainag Taluka Monitor	quifers qkm) illage ge HQ ring we	s Two 579.12 90 • •	
5 GROUND WATER RESOURCE									
5.1 Aquifer	-I/ Shallov	v Phreatic Ag	uifer (Basa	lt)					
Ground Wate	er Recharg	e Worthy Area	(Sq. Km.)	,			579.	12	
Command A	rea	,	<u> </u>				60.5	5	
Non comma	nd						518.	57	
Total Annual	Ground W	ater Recharge	(MCM)				84.7	0	
Natural Discl	harge (MCI	∕1)					4.23		
Net Annual C	Ground Wa	ter Availability	(MCM)	80.47					
Existing Gros	s Ground \	Water Draft for	rirrigation (N	ЛСМ)			42.8	4	
Existing Gro	oss Groun	d Water Dra	ft for dom	iestic and	d industrial	water	2.24		
supply(MCM	l) sc Cround V	Natar Draft for		~ \ 4 \			44.0	0	
Provision for	domestic :	and industrial	All uses (IVIC	supply to	2025(M/CM)		44.0	9	
Net Ground	Water Avai	lability for fut	ire irrigation	developn	nent(MCM)		33.3	6	
Stage of Gro	und Water	Development	(%)				56.0	4	
Category		•	()				SAF	E	
5.2 Aquifer	-II Semico	nfined/Confi	ned Deeper	^r Aquifer	(Basalt)				
Mean	Area	Peizometric	S	Sy	Resource	Resour	с Т	otal	
aquifer	(Sqkm)	Head (m)			above	е	in r	esource	
thickness					confinig	aquifer	· (mcm)	
					layer	(mcm)			
0.75	455 721	25	0 00003	0.005	0 341	1 708		050	
2	259,231	35	0.0000426	0.005	0.386	2,592		.978	
			0.0000120	0.000	5.000	TOT	AL 5	5.028	
6.0. GROUN		R RESOURCE E	NHANCEM	ENT				-	
6.1. Supply	Side Man	agement							
SUPPLY (M	CM)	-							

Available Resource (MCM)		80.47	
Gross Annual Draft (MCM)		45.09	
Agricultural Supply -GW		42.85	
Agricultural Supply -SW		2.5	
Domestic Supply - GW		1.64	
Domestic Supply - SW			0.56
Total Supply			91.3025
Area of Block (Sq. Km.)			714.11
Area suitable for Artificial recharge	e (Sq. Km)		579.12
Type of Aquifer			Hard rock
Area feasible for Artificial Recharge	e (WL >5mbgl) (Sq. Km.)		243.68
Volume of Unsaturated Zone (MCN	Л)		487.36
Average Specific Yield			0.20
Volume of Sub Surface Storage Spa	ace available for Artificial Rechar	ge (MCM)	9.75
Surplus water Available (MCM)			3.6
Proposed Structures	Percolation Tank (Av. Gross	Check Dar	n (Av. Gross
•	Capacity-100 TCM*2 fillings =	Capacity-10	TCM * 3 fillings =
	200 TCM)	30 TCM)	-
Number of Structures	13	36	
Volume of Water expected to be	1.95	0.81	
conserved / recharged @ 75%			
efficiency (MCM)			
RTRWH Structures – Urban Areas			
Households to be covered (25% wi	8200		
Total RWH potential (MCM)			0.211
Rainwater harvested / recharged @ 80% runoff co-efficient			0.169
RTRWH is economically not viable & hence, not recommended			•
6.2. Demand Side Managemen	t		
Micro irrigation techniques			
Cotton crop area (48.58), about 2	sqkm area is ground water irrig	gated, 100 %	2
ground water irrigated (2 sqkm) pr	oposed to be covered under Dri	o (sq.km.)	
Volume of Water expected to be	saved (MCM). Surface Flooding	req- 2.45 m.	0.608
Drip Req 1.88, WUE- 0.57 m			
Proposed Cropping Pattern chang	e		
Irrigated area under Water Intensi	ve Crop(ha)		Not proposed
Water Saving by Change in Croppin	ng Pattern		Nil
6.3 EXPECTED BENEFITS			
Net Ground Water Availability (MCM)			80.47
Existing Ground Water Draft for Al	l Uses (MCM)		45.09
Present stage of Ground Water De		56.04	
Additional GW resources available after Supply side interventions (MCM)			2.76
Ground Water Availability after Supply side intervention(MCM)			83.23
Stage of development after Supply side intervention (%)			54.17
GW draft after Demand Side Interventions (MCM)			44.48
Stage of development after demand side intervention (%)			53.44
Other Interventions Proposed, if any			
Alternate Water Sources Available			Nil
6.4 Development Plan			
Volume of water available for GWI	D after stage of GWD brought to	70% (MCM)	1376.9
Proposed Number of DW (@ 1.5 h	am for 90% of GWR Available)	. ,	826

13.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MEHKAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES				
1.1 Introduction					
Block Name		Mehkar			
Geographical Area (Sc	ι. Km.)	1093.33			
Hilly Area (Sq. Km)		190.48			
Population (2011)	Population (2011)				
Climate		Hot and dry			
Net Annual Ground W	/ater Availability (MCM)	110.10			
Existing Gross Ground	Water Draft for All uses (MCM)	67.88			
Provision for domestic	c and industrial requirement supply to 20	25(MCM) 7.89			
Stage of Ground Wate	er Development %	61.66			
Category		Safe			
1.2 Rainfall Analysis	5				
Normal Rainfall		849.8 mm			
Annual Rainfall (2018)		624.4 mm			
Decadal Average Anni	ual Rainfall (2009-18)	761.55 mm			
Short Term Rainfall	Significantly falling trend -11.79 mm/ye	ear.			
Analysis (1998-2018)	Probability of Rainfall : 61 % Normal Ra	Infall; 18 % Excess Rainfall			
	Probability of Drought: 8% Moderate D	rought & 3% Severe Drought			
Raintali Trend Analy	/sis (1998 10 2018)				
2000					
	y = -11.794x + 928.91				
1400					
1200 -	_				
1000 -		_			
800 -					
600 -					
400 -					
200 -					
199°,99°,000	200, 200, 200, 200, 200, 200, 200, 200,	2012 2012 2013 2014 2012 2018 2012 2018			
1.3. Geomorpholog	y & Geology				
Geomorphic Unit	Alluvial flood Plains of Painganga & its	ributaries River			
	Plateau (slightly dissected to weat	hered plateau) with weathered			
	thickness ranging from 2 to 5 m.				
Geology	Deccan Traps (Basalt) Age: Late Cretace	ous to Eocene			
Soil	Light to Medium BCS consisting mostly	of clay and loam.			
1.4. Hydrology & Dr	ainage				
Drainage	Painganga river and its tributaries with	sub-dendritic to dendritic drainage.			
	Major project (CCA in Ha)	1 Paintakli project (ongoing)			
	Medium project	1 Koradi Project			
Hydrology	Bigger Minor Irrigation Project (100-	9(GHANWATPUR,SAVANGIMAL-			
, 0,	300 Ha.) (CCA in Ha)	1,SAVANGIMAL-			
		2,PALASHI,KALMESHWAR,PANGARKHED SAN,CHAIGAO,SONATI BORI .DURGBORI)			

Minor Irrigation Project			(0-100 Ha.)	State-4; MILS-1		
(CCA in I		Ha)		PT-38, KT-11, VP-32, MIS-12		
1.5. Land Us	e, Agriculture, I	rrigation & Crop	opping Pattern			
Forest Area		105.68 Sq. Km.				
Cultivable Are	ea	817.67 Sq. Km.				
Net Sown Are	a	664.30 Sq. Km.				
Double Cropp	ed Area	177.63				
Area under	Surface Water	2.17 Sq. Km.				
Irrigation	Ground Water	12.17 Sq. Km.				
Area under I	Drip & Sprinkler	NONE				
Irrigation						
Principal Crop)S	Сгор Туре	Area (Sq. Km.) (Reference year 2016-17)			
		Cotton	64.35			
		Cereals	200.58			
		Pulses	273.49			
		Oil Seeds	99.71			
Horticultural	Crops	Sugarcane	1.60			
		Spices	4.94			
		Others	3.31			
1.6 Water Le	evel Behavior					
1.6.1 Aquife	r-I (Shallow Aqu	lifer)				
Pre-Monsoor	n (May-2017)		Post-Monsoon (November-2017)			
Major portior	n of the block obs	erved DTWL 5 to	Major portion of the block observed DTWL less			
10 mbgl while	e DTWL 10 to 20 k	ogl is observed in	than 5 mbgl is observed in major part. DTWL of			
isolated patch	nes of Northen, S	outhern, Central,	5 to 10 mbgl is observed as isolated patches in			
part.			northen, southern south western, eastern part			
			of the block. DTWL observed in small patches			
			of north western part of the block towards			
-			mun river			
Aquifer I Mehk	, Premonsoon , DTW	(May. 2018) District	Aquifer I, Postmonsoon , DTW (Nov. 2018)			
Legend	ian fulana, Bulanana	District	Legend			
DTW (mbgl)			DTW (mbgl) 0 to 2			
2 to 5		NORTH	2 to 5			
10 to 2	0	0 <u>7.5</u> 15	10 to 20 <u>7.5</u> 15			
Principal aquif	er Basalt	kilometers	Principal aquifer Basalt kilometers			
No of aquifers	Two	\sim	Area (Sqkm) 902.85			
No of Village	160	· · · · · · · · · · · · · · · · · · ·	No of Village 160			
Drainage	- Aur '		Taluka HQ			
Monitoring we		5L	Monitoring well			
	V. 🔍 🏒	. ~~				
		· · · ·	S Comp.			
	^{9ngang} Mehkar		\sim	Rea Renkar		
			7			
			 			
	~~~					
~						
	1.1.					





- 3. Water scaraity on lean period
- Normal Probability of Rainfall is only 61% coupled with frequent droughts (3 % sever & 18% Moderate) which is ultimately responsible for less ground water recharge and non-availability of surface & ground water for irrigation.
- 5. Less ground water potential basaltic aquifer.

# 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) Basalt –Aquifer-II (Semiconfined / confined / Deeper aquifer) 3.2. Lithological Disposition





Net Ground Water Availability for future irrigation development(MCM)37.84									
Stage of Ground Water Development (%)							61.66		
Category							SAF	E	
5.2 Aquifer	-II Semico	nfined/Con	fined Dee	per Aqui	fer (Basal	t)			
Mean	Area	Peizometri	c S	Sy	Resour	ce	Resour	се	Total
aquifer	(Sqkm)	Head (m)			above		in aqu	uifer	resource
thickness					confini	g	(mcm)		(mcm)
					layer (r	ncm)			
0.75	45.04	25	0.0000	0.002	0.033		0.067		0.101
0.75	206 13	35	0,0000	0.002	0.216		0 309		0 525
0.75	200.15	33	3	0.002	0.210		0.000		0.525
0.75	9.05	25	0.000	0.002	0.006		0.013		0.020
0.75	5.05	20	3	0.002	0.000		0.010		0.020
2	384.87	35	0.000	0.002	0.573		1,539		2,113
-	00 1107	00	426	0.002	0.070		1.505		2.110
4.5	4.92	36	0.0004	0.002	0.075		0.044		0.119
			26						
4.5	33.57	21	0.0004	0.002	0.300		0.302		0.602
_			26						
7.5	20.83	22	0.0004	0.002	0.195		0.312		0.507
			26						
10.5	39.27	35	0.0000	0.002	0.041		0.824		0.866
			3						
		•	•				то	TAL	4.85
6.0. GROUN	ID WATEF	RESOURCE	ENHANC	EMENT					
6.1. Supply	Side Man	agement							
SUPPLY (M	CM)	0							
Available Re	source (MC	CM)						110	.1
Gross Annual Draft (MCM)						39			
Agricultural Supply -GW						)2			
Agricultural Supply - SW 2							-		
Domestic Supply - GW						7			
Domestic Supply - SW 0.96						5			
Total Supply 57 385							385		
Area of Block (Sg. Km.) 1093.33							3.33		
Area suitable for Artificial recharge (Sg. Km) 654.23							.23		
Type of Aguifer Hard rock									
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.) 654.23							.23		
Volume of Unsaturated Zone (MCM) 1308.47							8.47		
Average Specific Yield 0.02							2		
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM) 26.17									
Surplus water Available (MCM) 9.86							5		
Proposed Structures Percolation Tank (Av. Gross Check Dam (Av. Gross									
Capacity-100 TCM*2 fillings = Capacity-10 TCM * 3 fillings					* 3 fillings =				
200 TCM) 30 TCM)									
Number of Structures 28 60									
Volume of Water expected to be 4.2 1.35									
conserved / recharged @ 75%									
efficiency (MCM)									

RTRWH Structures – Urban Areas					
Households to be covered (25% wi	13000				
Total RWH potential (MCM)	0.335				
Rainwater harvested / recharged @	0.268				
RTRWH is econon	nically not viable & hence, not recommended.	•			
6.2. Demand Side Managemen	t				
Micro irrigation techniques					
Cotton crop area (6), about 2 so	km area is ground water irrigated, 100 %	2			
ground water irrigated (2 sqkm) pr	oposed to be covered under Drip (sq.km.)				
Volume of Water expected to be	0.608				
Drip Req 1.88, WUE- 0.57 m					
Proposed Cropping Pattern chang	e				
Irrigated area under Water Intensi	ve Crop(ha)	Not proposed			
Water Saving by Change in Croppin	ng Pattern	Nil			
6.4. Expected Benefits					
Net Ground Water Availability (MC	110.10				
Existing Ground Water Draft for Al	67.88				
Present stage of Ground Water De	61.66 %				
Additional GW resources available	5.55				
Ground Water Availability after Su	115.65				
Stage of Ground Water Developme	58.69				
GW draft after Demand Side Interv	67.27				
Stage of Ground Water Developme	58.16				
Other Interventions Proposed, if any					
Alternate Water Sources Available	Nil				
6.4. Development Plan					
Volume of water available for GW	1367.3				
Proposed Number of DW (@ 1.5 h	820				
Proposed Number of BW (@ 1.5 ha	91				
Additional Area (sq.km.) proposed to be brought under assured GW irrigation 21.035					
with av. CWR of 0.65 m after 70% stage of gwd is achieved					
Regulatory Measures	60m borewells/tube wells				



## 14.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, SINDKHED RAJA BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES						
1.1 Introduction							
Block Name	Sindhkhed Raja						
Geographical Area (So	778.19						
Hilly Area (Sq. Km)	115.22						
Population (2011)		176303					
Climate	Hot and dry						
Net Annual Ground W	88.74						
Existing Gross Ground	59.38						
Provision for domesti	25(MCM) 5.72						
Stage of Ground Wate	er Development %	66.92					
Category		Safe					
1.2 Rainfall Analysis	6						
Normal Rainfall		804.3 mm					
Annual Rainfall (2018)		491 mm					
Decadal Average Ann	ual Rainfall (2009-18)	695.14 mm					
Short Term Rainfall	Significantly rising trend -20 mm/year.						
Analysis (1998-2018)	Probability of Rainfall : 57 % Normal Ra	infall; 19 % Excess Rainfall					
	Probability of Drought: 10% Moderate	Drought & 3% Severe Drought					
Rainfall Trend Analy	ysis (1998 To 2018)						
1400							
1200 -	y = -20.042x + 1024.7						
1200							
1000	╶┱┨╻						
800 -							
600							
400 -							
200 -							
200							
son in the transformation in the transformation in the transformation in the transformation in the second sec							
1.3. Geomorphology, Soil & Geology							
Geomorphic Unit Alluvial flood Plains of Painganga river & its tributaries streams.							
Plateau (slightly dissected to weathered plateau) with weather							
Coology							
Soil Light to Modium PCS consisting mostly of clay and loam							
1.4 Hydrology 9 Draipage							
<b>1.4. Tyur Ology &amp; Drainage</b>							
Drainage Painganga river and its tributaries with sub-dendritic to dendritic d							
Hydrology	Najor Miner Irrightion Drainst (100						
пушоюду	Bigger Winder Irrigation Project (100-						
1	эоо пd.)	HED, I ANDULWADI, JAGDAKI,					

				KESHVSHIVANI ,GARKHED)		
Minor Ir		rigation Project (0-100 Ha.)		State-8; MILS-2		
				PT-85, KT-25, VP-29, MIS-11		
1.5. Land Use, Agric	ulture, Ir	rigation & Crop	ping Pattern	l		
Forest Area		40.33 Sq. Km.				
Cultivable Area		705.79 Sq. Km.				
Net Sown Area		601.49 Sq. Km.				
Double Cropped Area		145.36				
Area under Surface	e Water	0 Sq. Km.				
Irrigation Ground	d Water	14.58 Sq. Km.				
Area under Drip & Irrigation	Sprinkler	Nil				
Principal Crops		<b>Crop Type</b> Area (Sq. Km.) (Reference year 2016-17)				
		Cotton	124.18			
		Cereals	163.05			
		Pulses	230.43			
		Oil Seeds	56.60			
Horticultural Crops		Sugarcane	1.31			
		Spices	5.28			
		Others	4.94			
1.6. Water Level Be	havior					
1.6.1 Aquifer-I (Sha	llow Aqu	ifer)				
Pre-Monsoon (May-2	018)	-	Post-Monsoon (November-2018)			
Major area is show	ing DTW	L 10 to 20 bgl	DTWL less than 5- 10 mbgl is observed in			
engulfing isolated pat	ch of DT\	VL 5 to 10 mbgl major part of the block engulfing		of the block engulfing isolated		
in central & southern	part.		patch of DTWL 10-20. Area with DTWL >5			
			observed in small patches of the block .			
Aquifer I, Premonsoon , DTW (May. 2018) Sindkhed Raja Taluka, Buldhana District			Aquifer I, Postmonsoon , DTW (Nov. 2018) Sindkhed Raja Taluka, Buldhana District			
Legend			Legena DTW (mbal)			
DTW (mbgl)		$\sim$	0 to 2			
2 to 5 5 to 10		r. L	2 to 5 5 to 10			
10 to 20		~ 5	10 to 20			
Principal aquifer Basalt	/	( ) −{	Principal aquifer Basalt			
Area (Sqkm) 662.97	5	. ?	Area (Sqkm) 662.97			
No of Village 113			No of Village 113			
Taluka HQ			Taluka HQ			
Monitoring well	2/1	$\sim$	Monitoring well			
	Putto					
_~~				· · · · · · · · · · · · · · · · · · ·		
	, Q	2				
	~					
	~~~	NORTH				
L'and	¢,	7.5 15 kilometers				
	kilometers					
1.6.2 Water Level Behavior - Aquifer-II (Deeper Aquifer)						
Pre-Monsoon (May-2	18) DTV	VL 20-30 mbgl is	Post-Monso	on (November-2018) DTWL 10-20		
in porthon part DTWL > 20 mbgl is observed			mogi is observed in major part. DIWL < 10			
ContPol & couthors	block	esao si igum	a veu in northern part			
Central & southern p	מונטו נוופ	DIUCK.				

- 1. Block shows declining water level trend up to 0.6 m/year observed during pre-monsoon while in postmonsoon area is experiencing declining trend upto 0.2 m/year.
- 2. Water scarcity on lean period
- 3. Frequent droughts (24 % Moderate) which is ultimately responsible for less ground water recharge and non-availability of surface & ground water for irrigation.
- 4. Less ground water potential basaltic aquifer.

3. AQUIFER DISPOSITION

Panchayat Level Aquifer Management Plan, Watershed PGKA-1, Village Anjani Budruk, Mehkar Block, Buldhana District, Maharashtra

					g layer		
					(mcm)		
0.75	96.90	25	0.000 03	0.002	0.072	0.145	0.218
0.75	70.51	35	0.000 426	0.002	1.051	0.105	1.157
2	602.91	20	0.000 0426	0.002	0.513	2.411	2.925
4.5	8.16	25	0.000 3732	0.002	0.076	0.073	0.149
		•	•	•		Total	4.45
6.0. GROUN	ID WATER	RESOURC	E ENHANC	EMENT			
6.1. Supply	Side Mana	gement					
SUPPLY (M	CM)						
Available Res	source (MCN	Л)					88.74
Gross Annua	l Draft (MCN	Л)					59.39
Agricultural S	Supply -GW						56.61
Agricultural S	Supply -SW						0
Domestic Su	pply - GW						2.77
Domestic Su	pply - SW						0.69
Total Supplynh						60.07	
Area of Block (Sq. Km.)					778.19		
Area suitable for Artificial recharge (Sq. Km)				662.97			
Type of Aquifer				Hard rock			
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)				Approx. 600			
Volume of U	nsaturated Z	Zone (MCN	Л)				28.23
Average Spe	cific Yield						0.020
Volume of Su	ub Surface St	torage Spa	ice available	e for Artific	ial Rechar	ge (MCM)	0.56
Surplus wate	er Available ((MCM)					0.21
Proposed St	ructures		Percolation Capacity-1 200 TCM)	n Tank (A 00 TCM*2	v. Gross fillings =	Check Dar Capacity-10 = 30 TCM)	n (Av. Gross TCM * 3 fillings
Number of S	tructures		0			7	
Volume of W	/ater expect	ed to be	0			0.15	
conserved /	recharged	@ 75%					
efficiency (M	ICM)						1
RTRWH Stru	ctures – Urb	an Areas	2				
Households	to be covere	d (25% wi	th 50 m ⁻ are	a)			9500
Total RWH p	otential (MC	(M)	<u> </u>				0.245
Rainwater ha	arvested / re	charged (v 80% runof	t co-efficie	ent		0.196
6 2 D	RIRWH	is econom	lically not vi	able & he	nce, not re	commended	•
6.2. Deman	d Side Mar	nagement					
Iviicro irrigat		ues		h			1
Volume of M	area (4), 1%	p area is p	noposed to	Ne covere	u under Dr		1 0.24
			saveu (IVICIV	nj. Surface	riooaing	req- 0.36 m.	0.34
Proposed C-	.24, VVUE-U.		0				l
Irrigated area	opping Patt	or Intonci	e ve Crop(ba)				Not proposed
Water Souice	a unuer wat	in Croppin	ve Crop(IId)				
vvalet Savili	s by change	in croppi	ig rallelli				INII

6.3. Expected Benefits		
Net Ground Water Availability (MCM)		88.74
Existing Ground Water Draft for All Uses (MCM)		59.38
Present stage of Ground Water Development (%)		66.92 %
Additional GW resources available after Supply side	interventions (MCM)	0.15
Ground Water Availability after Supply side interver	ntion(MCM)	88.89
Stage of development after Supply side intervention	n (%)	66.80
GW draft after Demand Side Interventions (MCM)	59.04	
Stage of development after Demend side interventi	66.42	
Other Interventions Proposed, if any		
Alternate Water Sources Available		Nil
6.4. Development Plan		
Volume of water available for GWD after stage of G	WD brought to 70% (ham)	314.22
Proposed Number of DW (@ 1.5 ham for 90% of GV	VR Available)	189
Proposed Number of BW (@ 1.5 ham for 10% of GV	VR Available)	21
Additional Area (sq.km.) proposed to be brought u	under assured GW irrigation	4.83
with av. CWR of 0.65 m after 70% stage of gwd is ac	chieved	
Regulatory Measures 60m borewell	s/tube wells	
Additional Area proposed to be brought	DEMAND SIDE IN	TERVENTION
under assured GW irrigation	Sindkhed Raja Taluka,	Buldhana District
Sindkhed Raja Taluka, Buldhana District		
	Legend	~ ~
Additional Area proposed to be brought	Sugarcane crop area propo	osed to be
CWR of 0.65 m AFTER 70% STAGE	Sindkhed Raja 1 sqkm	
Sindkhed Raia 4.83 Sgkm		
		1{
Principal aguiter Basalt /	Principal aquifer Basalt	<u>}</u> -{
No of aquifers Two	Principal aquifer Basalt No of aquifers Two Area (Sokm) 662 97	
No of aquifers Two Area (Sqkm) 662.97 Sindkhed-Raja	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja
No of aquifers Two Area (Sqkm) 662.97 Sindkhed-Raja No of Village 113 Drainage Taluka HQ 0 7.5 15	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 662.97 No of Village 113 Drainage Taluka HQ	Sindkhed-Raja

AQUIFER MAPS AND MANAGEMENT PLAN

- I. Village Anjani Budruk, Watershed PGKA-1, Mehkar Block
- II. Village Dongaon, Watershed PGKA -1, Mehkar Block
- III. **Village Hiwara Sable**, Watersheds PGKA-1 & PG-1, Mehkar Block
- IV. Village Madani, Watersheds PGKA-1, Mehkar Block
- V. Village Sindkhed Raja, Watersheds GPP-1, Sindkhed Raja Block
- VI. Village Saokhed Tejan, Watershed GPP-1, Sindkhed Raja Block

15.0 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE ANJANI BUDRUK, WATERSHED PGKA-1, MEHKAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES				
1.1 Introduction					
Village Name			ANJANI BUDI	RUK	
Geographical Area (Sq. Km.)		24.42		
Hilly Area (Sq. Km.)			Nil		
Population (Current	: year -2018)		7350		
Climate			Hot and dry		
Normal Rainfall (mn	n)		850		
Average Rainfall (m	m) 2009-18		880		
1.2. Geomorpholog	y, Soil & Geolog	SY	- -		
Geomorphic Unit	Plateau (slight	ly dissected to moderately disse	cted).		
Geology	Deccan Traps	(Basalt) Age: Late Cretaceous to	Eocene		
Soil	Soil mostly co	nsisting of clay moderately dee	p 25 to 50 cm a	and clayey very	
	deep more than 100 cm thick.				
1.3. Hydrology & Dr	rainage				
Watershed	PGKA-1				
Drainage	Godavari basir	n; with dendritic to sub-dendrit	ic drainage patt	ern.	
	1 st Order Strea	ım – 26.86 km			
2 nd Order Stream – 6.70 km					
	3 rd Order Strea	am – 6.01 km	-		
Irrigation Project (N	1ajor/Medium/N	/linor etc	Nil		
WC structures (PT /	KT / CD / FP etc	.)	14-CD, 01- ot	her AR	
1.4. Land Use, Agric	ulture, Irrigatio	n & Cropping Pattern			
	Specif	ics	Area		
Forest Area			Nil		
Cultivable Area			2400 ha		
Net Sown Area			2300 ha		
Double Cropped Are	ea		Nil		
Irrigation Dug wells			150		
Irrigation Bore wells	5		250		
Area under Drip & S	prinkler Irrigatio	on	Nil		
Area under Irrigatio	n	Surface Water	Nil		
		Ground Water	1475 ha		
Principal Crops		Soyabean	1500 ha	kharif	
		Pulses (<i>Tur</i>)	200 ha	kharif	
		Pulses (Udad)	200 ha	kharif	
		Pulses (<i>Moong</i>)	200 ha	kharif	
		Wheat	550 ha	Rabi	
		Cotton	200 ha	Kharib	
		Gram	750 ha	Rabi	
		Jawar	50 ha	Rabi	
		Other	130 ha	Rabi	
1.5. Water Level Be	havior : Aquifer	-I (Shallow Aquifer)	1		
1.1.1	W woro ostablic	hed to decipher the water level	scenario		

Pre-Monsoon (May-2018)	Post-Monsoon (November-2018)
In the north, eastern and western part the DTWL	Entire area of the village shows DTWL in the
ranges between 7-9 mbgl whereas in the middle	range of 0-5 mbgl.
and south DTWL ranges between 9-12 mbgl.	
PRE-MONSOON DEPTH TO WATER LEVEL (MAY 2018) ANJANI BK VILLAGE, WATERSHED PCKA-1 MEHKAR BLOCK, BULDHANA DISTRICT	POST-MONSCON DEPTH TO WATER LEVEL (NOV 2018) ANJANI BK VILLAGE, WATERSHED PCKA-1 MEHKAR BLOCK, BULDHANA DISTRICT
79(37 76)38 70°39 76 40° 76 41°	() second second second second to be se second to be second to be s
2. Ground Water Issues	
1. Non-availability of surface water for irrigati	on.
2. Less ground water potential basaltic aquife	r.
3. Water stress situation during lean period (N	Aarch to June)
3. AQUIFER DISPOSITION	L
3.1. Number of Aquifers	Basalt – Aquifer-I (Phreatic / Shallow aquifer)
3.2. Aquifer Characteristics	L
Major Aquifers	Basalt (Deccan Traps)
Type of Aquifer	Basalt –Aquifer-I (Phreatic / Shallow aquifer)
Static Water Level (mbgl)	7.00
Depth of Occurrence (mbgl)	14.00-35.00
weathered thickness (m)	0- 14.00
Yield	< 10 – 200 m³/day
Specific yield (Sy)	0.02 (norms)
4. GROUND WATER QUALITY: Phreatic Aquifer (Aq	uifer-I/ Shallow aquifer)
Ec is ranges from 1335 to 2324, NO ₃ is ranges from	28 to 100, and Fluoride is ranges from 0.42
to 0.72.	-
5.0. GROUND WATER RESOURCE MANAGEMENT	
5.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	8.4068
Agricultural Supply –GW	5.8761
Agricultural Supply -SW	0
Domestic Supply - GW	0.1818
Domestic Supply - SW	0
Non agriculture use (MCM)	0.186813
Total GW availability (MCM)	2.1621
Area of village (Sq. Km.)	24.42
Area suitable for Artificial recharge (sg km)	24.42

Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	0
Volume of Unsaturated Zone (MCM)	0
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0
Surplus runoff considered for planning (MCM) @ 100%	46.7027
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10	
TCM * 3 fillings = 30 TCM))	0
Proposed AR Structures Gabbion	0
Proposed AR Structures Other	0
Volume of Water expected to be conserved / recharged @ 75% efficiency	0
(MCM)	0
Specific Recommendations -	2.542
Segment wise Nala desilting, deepening and widening upto 3 m depth or	
upto weathered rock considering the local hydrogeological condition	
without disturbing the ecology/aquifer/environmental flow of nala.	
RTRWH Structures	
Households to be covered (Pakka House only)	11
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
RTRWH is economically not viable & hence not Recommend	led
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha)	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM)	Not proposed Not proposed 8.4068
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM)	Not proposed Not proposed 8.4068 1.9065
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM)	Not proposed Not proposed 8.4068 1.9065 10.3133
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM) Existing Ground Water Draft for All Uses (MCM)	Not proposed Not proposed 8.4068 1.9065 10.3133 6.2447
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side interventions (MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM)	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM) Present stage of Ground Water Development (%)	Not proposed Not proposed
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after supply side	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side interventions (MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM) Present stage of Ground Water Development (%) Expected Stage of Ground Water Development after supply side interventions (%)	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side interventions (MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM) Present stage of Ground Water Development (%) Expected Stage of Ground Water Development after supply side interventions (%) Other Interventions Proposed, if any	Not proposed Not proposed
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after supply side interventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available	Not proposed Not proposed
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after supply sideinterventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available6.4. Development Plan	Not proposed Not proposed
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after supply side interventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available6.4. Development PlanVolume of water available forFuture planning (MCM)	Not proposed Not proposed
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after supply sideinterventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available6.4. Development PlanVolume of water available forFuture planning (MCM)Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	Not proposed Not proposed
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side interventions (MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after supply sideinterventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available6.4. Development PlanVolume of water available forFuture planning (MCM)Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)Proposed Number of BW (@ 1 ham for 10% of GWR Available)	Not proposed Not proposed
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after supply sideinterventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available6.4. Development PlanVolume of water available forFuture planning (MCM)Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)Proposed Number of BW (@ 1 ham for 10% of GWR Available)Additional Area (sq.km.) proposed to be brought under assured GW	Not proposed Not proposed Not proposed Not proposed 8.4068 1.9065 10.3133 6.2447 0 0 74.28 60.55 Nil Nil Nil Nil Nil Nil

Panchayat Level Aquifer Management Plan, Watershed PGKA-1, Village Anjani Budruk, Mehkar Block, Buldhana District, Maharashtra

Village – Anjani Bk, Mehkar Taluka, Buldhana District

Aquifer	Current Scenario	Geology / Basalt	Geomorphology	GW quality	Aquifer Management Plan
(Prominent		flow			
Lithology)					
Aquifer I	2200 ha cultivable land by GW, 11	DT Basalt	Plateau (slightly	Good; All	 Deeping of 2nd & 3rd order stream.
(Basalt-	CD, 14 kolapuri bandare, 50 DW(d),	(Buldana /	dissected to moderately	parameters are	2. Desilting of existing water conservation and
Weathered and	150 DW (i),	Purandargarh	dissected) with	within MPL except	artificial recharge structures.
fractures)	Pre monsoon DTWL~ 5-17 m bgl.	Formation)	weathered thickness	Nitrate	3. The GW should be used for irrigation purpose.
	Post monsoon DTWL~ 157 m bgl.		ranging from 0 to 14 m.	contamination	
			BCS-25 to 50 cm.		
Aquifer II	240 BW(i),	As above			1. The GW should be used for drinking purpose.
(Basalt- Jointed &	Nil BW (d), HP-Nil				2. BW should not be drilled down below the red bole.
Fractures)	DTWL~ 15-35 m bgl.				

16.0 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE DONGAON, WATERSHED PGKA-1, MEHKAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURE	S					
1.1 Introduction						
Village Name			DONGAON			
Geographical Area (S	q. Km.)		37.58	37.58		
Hilly Area (Sq. Km.)			Nil			
Population (Current	/ear -2018)	21350				
Climate		Monsoon Sub-Tropical				
Normal Rainfall (mm	624.4					
Average Rainfall (mm) 2009-18890						
1.2. Geomorphology	, Soil & Geo	ology				
Geomorphic Unit	Plateau (s	lightly dissected to moderatel	y dissected).			
Geology	Deccan Tra	aps (Basalt) Age: Late Cretace	ous to Eocene			
Soil	Soil mostl	y consisting of clay >100 cm	and clay modera	ately deep 25-50		
1.3. Hydrology & Dra	inage					
Watershed	PGKA-1					
Drainage	Godavari	tic drainage patte	ern.			
	1 st Order S	Stream – 41.54 km				
	2 nd Order					
3 rd Order Stream – 7.36 km						
Irrigation Project (Ma	ajor/Mediur	m/Minor etc.)	Nil			
WC structures (PT / K	T / CD / FP	etc.)	04-CD, 100-oth	er AR		
1.4. Land Use, Agricu	Ilture, Irriga	ation & Cropping Pattern				
	Specif	ics	Area			
Forest Area			Nil			
Cultivable Area			3750 ha			
Net Sown Area			3500 ha	3500 ha		
Double Cropped Area	A		Nil			
Irrigation Dug wells			350			
Irrigation Bore wells			250			
Area under Drip & Sp	orinkler Irrig	ation	Nil			
Area under Irrigation		Surface Water	Nil			
		Ground Water	890 ha			
Principal Crops		Soyabean	2693 ha	Kharif		
		Pulses (<i>Tur</i>)	300ha	Kharif		
		Pulses (Udad)	300ha	Kharif		
		Pulses (Moong)	215ha	Kharif		
		Oha				

Specific yield (Sy)	0.02 (norms)	
4. GROUND WATER QUALITY: Phreatic Aquif	fer (Aquifer-I/ Shallow aquifer)	
In the village of Dongaon, 14 nos Kow establis	shed Ec is ranges 335 to 1675. One	water sample
collected for the chemical analysis. During the	e analysis EC is 801, NO₃ is 28 and F	luoride is 52.
5.0. GROUND WATER RESOURCE MANAGEM		
5.1. Supply Side Management		
Available Resource (MCM)		12.9382
Agricultural Supply –GW		4.3876
Agricultural Supply -SW		0
Domestic Supply - GW		0.5084
Domestic Supply - SW		0
Non agriculture use (MCM)		0.287487
Total GW availability (MCM)		7.7546
Area of village (Sq. Km.)		37.58
Area suitable for Artificial recharge (sq km)		37.58
Type of Aquifer		Hard rock
Area feasible for Artificial Recharge (WL >5mb	ogl) (Sq. Km.)	0
Volume of Unsaturated Zone (MCM)		0
Average Specific Yield		0.02
Volume of Sub Surface Storage Space availabl	e for Artificial Recharge (MCM)	0
Surplus runoff considered for planning (MCM)@100%	71.8686
Proposed AR Structures (Check Dam (@ Rs.3)	0 lakh, Av. Gross Capacity-10	0
TCM * 3 fillings = 30 TCM))		
Proposed AR Structures Gabbion		0
Proposed AR Structures Other		0
Volume of Water expected to be conserved / (MCM)	recharged @ 75% efficiency	0
Specific Recommendations -		
Segment wise Nala desilting, deepening and v	videning upto 3 m depth or upto	
weathered rock considering the local hydroge	eological condition without	
disturbing the ecology/aquifer/environmenta	I flow of nala.	
RTRWH Structures		
Households to be covered (Pakka House only)		2600
Total RWH potential (MCM) (25% with 50 m2	area)	0.0000499
Rainwater harvested / recharged @ 80% runc	off co-efficient (MCM)	0.0000400
RTRWH is economically not v	iable & hence not Recommended	
6.2. Demand Side Management		
Micro irrigation techniques		
Area is proposed to be covered under Drip		Not proposed
Volume of Water expected to be saved (MCN	1). Surface Flooding req- 0.36 m.	
Drip Req 0.24, WUE- 0.12 m		
Proposed Cropping Pattern change		
Irrigated area under Water Intensive Crop(ha)	Not
		proposed
Water Saving by Change in Cropping Pattern		
6.3. Expected Benefits		
Net Ground Water Availability (MCM)		12.9382

Additional GW resources available after Supply side interventions (MCM)	0
Ground Water Availability after Supply side intervention(MCM)	12.9382
Existing Ground Water Draft for All Uses (MCM)	5.1836
GW draft after Demand Side Interventions (MCM)	0
Present stage of Ground Water Development (%)	40.06
Expected Stage of Ground Water Development after supply side interventions	55.52
(%)	
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for Future planning (MCM)	7.7546
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	100
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	50
Additional Area (sq.km.) proposed to be brought under assured GW irrigation	
with av. CWR of 0.65 m after 70% stage of gwd is achieved	

Panchayat Level Aquifer Management Plan, Watershed PGKA-1, Village Dongaon, Mehkar Block, Buldhana District, Maharashtra

Village – Dongaon, Mehkar Taluka, Buldhana District

Aquifer	Current	Geology /	Geomorphology	GW quality	Recommendations for Aquifer Development				Aquifer Management Plan	
(Prominent	Scenario	Basalt flow			Туре	Zones/Depth	HP of	Pumping	Yield	
Lithology)						to be tapped	pump	Hours	(Cu. m /	
							to be		Day)	
							lowered			
Aquifer I (Basalt- Weathered and fractures)	3400 ha cultivable land by GW, 4 CD, 540 DW(d), 350 DW (i), Pre monsoon DTWL~ 7-30 m bgl. Post monsoon DTWL~ 3-11 m bgl.	DT Basalt (Buldana / Purandargarh Formation)	Plateau (slightly dissected to moderately dissected) with weathered thickness ranging from 0 to 14 m. BCS-25 to 50 cm.	Good; All parameters are within MPL.	Dug well	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	 Construction of 100 nos dug wells and 50 nos bore wells. Desilting of existing water conservation and artificial recharge structures. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed & Fractures)	250 BW(i), Nil BW (d), HP- Nil DTWL~ 15-35 m bgl.	As above		-	Bore well	Depth : 60 m	3 to 5	1 to 3	0.14-2.16 lps	 The GW should be used for drinking purpose. BW should not be drilled down below the red bole.

17.0 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE HIWARA SABLE, WATERSHEDS PGKA-1 AND PG-1, MEHKAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Village Name			Hiwara Sable			
Geographical Area (Sq. Km.)			6.769			
Hilly Area (Sq. Km.)			Nil			
Population (Current year -2018)			1108			
Climate			Monsoon Sub-Tropical			
Normal Rainfall (mm)			624.4			
Average Rainfall (mm) 2009-18			890			
1.2. Geomorphology, Soil & Ge	ology					
Geomorphic Unit Plateau (sli	shtly dissected	to moderately diss	ected).			
Geology Deccan Tra	Deccan Traps (Basalt) Age: Late Cretaceous to Eocene					
Soil Soil mostly	Soil mostly consisting of clay 25 to 50 cm and clay very deep >100 cm thick.					
1.3. Hydrology & Drainage						
Watershed PGKA-1 and	PG-1					
Drainage Godavari ba	sin; with dend	lritic to sub-dendriti	c drainage pattern.			
1 st Order St	eam – 12.32 k					
2 nd Order St	ream - 2.96 kn	n				
3 rd Order St	ream - 1.44 km	1				
Irrigation Project (Major/Mediu	m/Minor etc.)		Nil			
WC structures (PT / KT / CD / FP	etc.)		05-CD, 01-PT			
1.4. Land Use, Agriculture, Irrig	ation & Cropp	ing Pattern				
Spe	cifics		Area			
Forest Area			Nil			
Cultivable Area			560 ha			
Net Sown Area			548.16 ha			
Double Cropped Area			Nil			
Irrigation Dug wells			130			
Irrigation Bore wells			15			
Area under Drip & Sprinkler Irrig	ation		Nil			
Area under Irrigation	Surface W	'ater	Nil			
	Ground W	/ater	10 ha			
Principal Crops	Soyabean		298.16 ha			
	Pulses (Tu	ır)	0 ha			
	Pulses (Uc	lad)	0 ha			
	Pulses (M	oong)	0 ha			
	Turmeric		0 ha			
	Cotton		250 ha			
	Citreous f	ruit	0 ha			
	Other		10ha			
1.5. Water Level Behavior : Aqu	ifer-I (Shallow	/ Aquifer)				
In the village, 06 KOW were esta	blished to dec	ipher the water lev	el scenario.			
Pre-Monsoon (May-2018)		Post-Monsoon (November-2018)				
Entire area of the village I	OTWL ranges	Entire area of the	village shows DTWL in the range of			
between 9-12 mbgl except in	the eastern	0-5 mbgl except	in the north-eastern part DTWL			

Area of village (Sq. Km.)	6.769
Area suitable for Artificial recharge (sq km)	6.77
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	0
Volume of Unsaturated Zone (MCM)	0
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0
Surplus runoff considered for planning (MCM) @ 100%	12.9356
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3 fillings = 30 TCM))	0
Proposed AR Structures Gabbion	0
Proposed AR Structures Other	0
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	0
Specific Recommendations -	
Segment wise Nala desilting, deepening and widening upto 3 m depth or	
upto weathered rock considering the local hydrogeological condition	
without disturbing the ecology/aquifer/environmental flow of nala.	
RTRWH Structures	
Households to be covered (Pakka House only)	130
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
RTRWH is economically not viable & hence not Recommer	nded
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change	Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha)	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits	Not proposed Not proposed
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM)	Not proposed Not proposed 2.3343
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM)	Not proposed Not proposed 2.3343 0
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM)	Not proposed Not proposed 2.3343 0 2.3343
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)	Not proposed Not proposed 2.3343 0 2.3343 0.4750
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM)	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM) Present stage of Ground Water Development (%)	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after interventions (%)	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side interventions (MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM) Present stage of Ground Water Development (%) Expected Stage of Ground Water Development after interventions (%) Other Interventions Proposed, if any	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM) Present stage of Ground Water Development (%) Expected Stage of Ground Water Development after interventions (%) Other Interventions Proposed, if any Alternate Water Sources Available	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91 Nil
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after interventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available6.4. Development Plan	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91 Nil
Area is proposed to be covered under DripVolume of Water expected to be saved (MCM). Surface Flooding req- 0.36m. Drip Req 0.24, WUE- 0.12 mProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping Pattern6.3. Expected BenefitsNet Ground Water Availability (MCM)Additional GW resources available after Supply side interventions (MCM)Ground Water Availability after Supply side intervention(MCM)Existing Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development after interventions (%)Other Interventions Proposed, if anyAlternate Water Sources Available6.4. Development PlanVolume of water available for Future planning (MCM)	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91 Nil Nil
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side interventions (MCM) Existing Ground Water Draft for All Uses (MCM) GW draft after Demand Side Interventions (MCM) Present stage of Ground Water Development (%) Expected Stage of Ground Water Development after interventions (%) Other Interventions Proposed, if any Alternate Water Sources Available 6.4. Development Plan Volume of water available for Future planning (MCM) Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91 Nil Nil 1.8593 35
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side interventions (MCM) Ground Water Availability after Supply side intervention(MCM) Existing Ground Water Draft for All Uses (MCM) Present stage of Ground Water Development (%) Expected Stage of Ground Water Development after interventions (%) Other Interventions Proposed, if any Alternate Water Sources Available 6.4. Development Plan Volume of water available for Future planning (MCM) Proposed Number of DW (@ 1.5 ham for 90% of GWR Available) Proposed Number of BW (@ 1 ham for 10% of GWR Available)	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91 0 Nil 1.8593 35 25
Area is proposed to be covered under Drip Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Water Saving by Change in Cropping Pattern 6.3. Expected Benefits Net Ground Water Availability (MCM) Additional GW resources available after Supply side interventions (MCM) Ground Water Availability after Supply side interventions (MCM) Existing Ground Water Draft for All Uses (MCM) Present stage of Ground Water Development (%) Expected Stage of Ground Water Development after interventions (%) Other Interventions Proposed, if any Alternate Water Sources Available 6.4. Development Plan Volume of water available for Future planning (MCM) Proposed Number of DW (@ 1.5 ham for 90% of GWR Available) Proposed Number of BW (@ 1 ham for 10% of GWR Available) Additional Area (sq.km.) proposed to be brought under assured GW	Not proposed Not proposed 2.3343 0 2.3343 0.4750 0 20.35 52.91 0 1.8593 35 25

Panchayat Level Aquifer Management Plan, Watershed PG-24, Village Hiwara Sable, Mehkar Block, Buldhana District, Maharashtra

Village – Hiwara Sable, Mehkar Taluka, Buldhana District

Aquifer	er Current Scenario Geology / Geomorphology GW quality Recommendations for Aquifer Development						pment	Aquifer Management Plan		
(Prominent		Basalt flow			Туре	Zones/Depth	HP of	Pumping	Yield	
Lithology)						to be tapped	pump	Hours	(Cu. m /	
							to be		Day)	
							lowered			
Aquifer I (Basalt- Weathered and fractures)	548.16 ha cultivable land by GW, 5 CD, 1 PT, 6 FP, 3 DW(d), 130 DW (i), Pre monsoon	DT Basalt (Buldana / Purandargarh Formation)	Plateau (slightly dissected to moderately dissected) with weathered thickness	Good; All parameters are within MPL	Dug well	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m³/day Or	 Construction of 35 nos dug wells and 25 nos bore wells Desilting of existing water conservation and artificial recharge structures. The GW should be used for
	DTWL~ 4-13 m bgl. Post monsoon DTWL~ 1-8 m bgl.		ranging from 0 to 6 m. BCS-25 to 100 cm.						0.7 ham/year	irrigation purpose.
Aquifer II (Basalt- Jointed & Fractures)	15 BW(i), Nil BW (d), HP-Nil DTWL~ 15-35 m bgl.	As above		.NA	Bore well	Depth : 60 m	3 to 5	1 to 3	0.14-2.16 lps	 The GW should be used for drinking purpose. BW should not be drilled down below the red bole.

18.0 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE MADANI, WATERSHEDS PGKA-1, MEHKAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATUR	RES					
1.1 Introduction						
Village Name				Madani		
Geographical Area	(Sq. Km.)			15.44		
Hilly Area (Sq. Km.)				Nil		
Population (Curren	it year -2018)			2869		
Climate				Monsoon Sub-Tropical		
Normal Rainfall (m	m) (624.4		
Average Rainfall (m	nm) 2009-18			890		
1.2. Geomorpholo	gy, Soil & Geolo	gy				
Geomorphic Unit	Plateau (slight	ly dissected to r	moderately disse	cted).		
Geology	Deccan Traps	(Basalt) Age: Lat	te Cretaceous to	Eocene		
Soil	Soil mostly co	onsisting of clay	>100 cm and c	lay moderately deep 25-50 cm		
	thick.					
1.3. Hydrology & D	rainage					
Watershed			PGKA-1			
Drainage			Godavari basi	in; dendritic to sub-dendritio		
			drainage patte	ern.		
			1 st Order Stream - 24.87 km			
			2 nd Order Strea	m - 13.22km		
			3 rd Order Strea	m - 3.87 km		
Irrigation Project (Major/Medium/	Minor etc.)	Nil			
WC structures (PT	/ KT / CD / FP et	c.)	02-CD, 5-PT			
1.4. Land Use, Agri	culture, Irrigati	on & Cropping I	Pattern	1		
	Specif	fics		Area		
Forest Area				Nil		
Cultivable Area				1111.28 ha		
Net Sown Area				1343.25 ha		
Double Cropped Ar	rea			Nil		
Irrigation Dug wells	S			160		
Irrigation Bore wel	ls			273		
Area under Drip &	Sprinkler Irrigat	ion		Nil		
Area under Irrigation	on	Surface Water	r	Nil		
		Ground Water		862 ha		
Principal Crops		Soyabean		600 ha Kharif		
(Reference year 20	18)	Pulses (<i>Tur</i>)		150 ha Kharif		
		Pulses (Udad)		150 ha Kharif		
		Pulses (Moon	g)	178 ha Kharif		

Gram 700 ha Rabi Jawar 132 ha Rabi 1.5. Water Level Behavior : Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Post-Monsoon (November-2018) Pre-Monsoon (May-2018) In the north, and south-east part the DTWL ranges between 9-12 mbgl whereas in the south, south-east and eastern DTWL more than 12 mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village. Post-Monsoon (November-2018) Prefinement of the south-eastern part of village. Post-Monsoon (November-2018) mbgl is observed. Prefinement of village DTWL more than 12 mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village. Post-Monsoon (November-2018) Prefinement of village DTWL more than 12 mediate accurate a										
Jawar [132 ha Rabi 1.5. Water Level Behavior : Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monscon (May-2018) Post-Monscon (November-2018) In the north, and south-east part the DTWL range of 0-5 mbgl except in the South-western and middle part of village DTWL ranging 5-7 mbgl is observed in the south-eastern part of village. Post-Monscon (May-2018) Pref.Monscon (May-2018) Post-Monscon (November-2018) Entire area of the village shows DTWL in the range of 0-5 mbgl except in the South-western and middle part of village DTWL ranging 5-7 mbgl is observed in the south-eastern part of village. Pref.Monscon (May-2018) mbgl is observed. Post-Monscon (May-2018) mbgl is observed. </td <td></td> <td>Gram</td> <td></td> <td>700 ha Rabi</td>		Gram		700 ha Rabi						
 1.5. Water Level Behavior : Aquifer-I (Shallow Aquifer) In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2018) In the north, and south-east part the DTWL 7- mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed in the south-eastern part of village. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed in the south-eastern part of village. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed. Pre-Monsoon (May Pre-Mo		Jawar	132 ha Rabi							
In the village, 08 KOW were established to decipher the water level scenario. Pre-Monsoon (May-2018) In the north, and south-east part the DTWL ranges between 9-12 mbgl whereas in the south, south-east and eastern DTWL more than 12 mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village. Pre-Monsoon (Were towns LIFE) (WA KH) Merewake Coll (May August 1) Merewake Coll (May 1) Merewake C	1.5. Water Level Behavior : Aquifer-I (Shallow Aquifer)									
Pre-Monsoon (May-2018) In the north, and south-east part the DTWL ranges between 9-12 mbgl whereas in the south, south-east and eastern DTWL more than 12 mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village. Pre-Monsoon (Movember-2018) Entire area of the village DTWL ranging 5-7 mbgl is observed in the south-eastern part of village. Pre-Monsoon (Movember-2018) Pre-Monsoon (Movember-2018) In the south-eastern part of village. Pre-Monsoon (Movember-2018) mbgl is observed. Pre-Monsoon (Movember-2018) mbgl is observed. Pre-Monsoon (Movember-2018) Pre-Monsoon (Movember-2018) In the south-eastern part of village. Pre-Monsoon (Movember-2018) mbgl is observed. Pre-Monsoon (Movember-2018) Pre-Monsoon	In the village, 08 KOW were established to decipher the water level scenario.									
In the north, and south-east part the DTWL ranges between 9-12 mbgl whereas in the south, south-east and eastern DTWL more than 12 mbgl. A small isolated path of the DTWL 7- 9mbgl is observed in the south-eastern part of village. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL ranging 5-7 mbgl is observed in the south-eastern part of village. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL ranging 5-7 mbgl is observed. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL ranging 5-7 mbgl is observed. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL ranging 5-7 mbgl is observed. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL is used. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL is used. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL is used. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) Memory Lock material provided and the part of village DTWL is used. PREMADBOON PERFIT TO WATER LEVEL (MY 2001) PREMADBOON PERFIT TO WATER LEVEL (MY 2001)	Pre-Monsoon (May-2018)		Post-Monsoon	(November-2018)						
ranges between 9-12 mbgl whereas in the south, south-east and eastern DTWL more than 12 mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village. PRETAMBLECON BERTHET DIVITER LORE (MAY 2001) MERCENT BLOCK BUILDENAND BERTHET MERCENT BLOCK BUILT BERTHET MERCENT BLOCK BUILT BUILT BLOCK BUILT BERTHET MERCENT BLOCK BUILT BUILT BLOCK BUILT BUILT BLOCK BUILT BLOCK BUILT BUILT B	In the north, and south-east p	art the DTWL	Entire area of	the village shows DTWL in the						
south-east and eastern DTWL more than 12 mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village.	ranges between 9-12 mbgl wherea	as in the south,	range of 0-5 mb	ogl except in the South-western						
mbgl. A small isolated patch of the DTWL 7- 9mbgl is observed in the south-eastern part of village. Pretraction visition visit	south-east and eastern DTWL r	more than 12	and middle par	rt of village DTWL ranging 5-7						
Simply is observed in the south-eastern part of village. Prost-Monitoox DEPTH TO WATER LEVEL (MAY SOLE) Methods Code (Martine Control of the con	mbgl. A small isolated patch of	the DTWL 7-	mbgl is observe	d.						
village. PRETMONECCI APPENTO WITER LEVEL (MY XKI) MEXAGE ADDX, WITER LEVEL (MY XKI) MID ADDX	9mbgl is observed in the south-e	astern part of								
PRETAMONBOON DEPTH TO WATER LEVEL (MY 2018) DEPTH TO WATER CUALITY: Prevalue CANIFOR DEPTH TO WATER CUALITY: Prevalue CANIFO	village.									
PRETMONEON DEPTH TO WATER LEVEL (MW 2018) WARNE LEVEL (WW 2018) WARNE SLOCK, BULGHNAL DETRECT POST-MARKON DEPTH TO WATER DEFAULT ON WATER DUCK, WILLIAM DETRECT POST-MARKON DEPTH TO WATER DEFAULT ON WATER DUCK, BULGHNAL DETRECT DEFAULT ON WATER DUCK DETRECT										
2. Ground Water Issues 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 5. Conduction of the state of the state	PRET-MONSOON DEPTH TO WATER LEVEL (MADANI VILLAGE, WATERSHED PGK. MEHKAR BLOCK, BULDHANA DISTRI	MAY 2018) A-1 CT	POST-MONS MAE MEI	COON DEPTH TO WATER LEVEL (NOV 2018) DANI VILLAGE, WATERSHED PGKA-1 IKAR BLOCK, BULDHANA DISTRICT						
2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 31. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 32. Aquifer Characteristics Major Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0 - 8.00 Yield 10 – 200 m ³ /day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER DUALITY: Phreatic Aquifer-I (Apuifer-I (Shallow aquifer)	2 13 I	MORTH		U US I						
2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. AQUIFER DISPOSITION 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0-8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUNDW WATER QUALITY: Phreatic Aquifer (Aquifer I (Phreatic I) Shallow aquifer)	13 muvilace		<u></u>	MVNLASE 1						
Image: Non-availability of surface water for irrigation. Image: Non-av	Ever		DOW	and the second se						
2. Ground Water Issues 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt (Deccan Traps) Type of Aquifer Basalt -Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0 - 8.00 Yield 10 - 200 m ³ /day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER DUALITY: Phreatic Aquifer (Aquifer-I) (Aquifer)			-1							
2. Ground Water Issues 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt (Deccan Traps) Type of Aquifer Basalt -Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0 - 8.00 Yield 10 - 200 m ³ /day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER DUALITY: Phreatic Aquifer (Aquifer-I)			a (
 2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifer Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0 - 8.00 Yield 10 - 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer) 	E C	STRICT								
 2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0-8.00 Yield 10-200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I (Shallow aquifer)) Shall (Deccan Traps) Yield 10-200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I (Shallow aquifer)) Shall (Deccan Traps) Yield 0.02 (norms)	Napani Napani	ASHM D	ON WILLA	Китории						
According to the second sec	WHERE'S	-	ARECM							
Main Differ Note Bite Note Non-availability of surface water for irrigation. 2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0-8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER DUALITY: Phreatic Aquifer (Aquifer-I / Shallow aquifer)		/								
NOEK NOEK Image: Ima	WASHIN DISTRICT			WASHIM DISTRICT						
2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0-8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I (Shallow aquifer))	INDEX 201 07 Pis-mansona dayna to teater issei in a bgi		<u>20</u> *	INDEX						
Image: State of the state	Loss men 5 5 - 7		10000	Less liter o 5 + 7						
were role role role role role role role 2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3. 3. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0- 8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	9 - 12 • wei Utere han 12 S Uternage			7-9 9-12 • Well Hore page 12 · · · · · · · · · · · · · · · · · ·						
2. Ground Water Issues 1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0- 8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	76° 42° 78° 44 78° 45	76 46°	76 49	7et 44 7et 44 7et 45						
1. Non-availability of surface water for irrigation. 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0- 8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	2. Ground Water Issues									
 2. Less ground water potential of basaltic aquifer. 3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0- 8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	1. Non-availability of surface	water for irrigat	ion.							
3. Water stress situation during lean period (March to June) 3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0- 8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	2. Less ground water potentia	al of basaltic aq	uifer.							
3. AQUIFER DISPOSITION 3.1. Number of Aquifers Basalt –Aquifer-I (Phreatic / Shallow aquifer) 3.2. Aquifer Characteristics Major Aquifers Basalt (Deccan Traps) Type of Aquifer Basalt –Aquifer-I (Phreatic / Shallow aquifer) Static Water Level (mbgl) 7.00 Depth of Occurrence (mbgl) 8.00-22.00 weathered thickness (m) 0- 8.00 Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	3. Water stress situation duri	ng lean period (March to June)							
3.1. Number of AquifersBasalt –Aquifer-I (Phreatic / Shallow aquifer)3.2. Aquifer CharacteristicsBasalt (Deccan Traps)Major AquifersBasalt (Deccan Traps)Type of AquiferBasalt –Aquifer-I (Phreatic / Shallow aquifer)Static Water Level (mbgl)7.00Depth of Occurrence (mbgl)8.00-22.00weathered thickness (m)0- 8.00Yield10 – 200 m³/daySpecific yield (Sy)0.02 (norms)4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	3. AQUIFER DISPOSITION									
3.2. Aquifer CharacteristicsMajor AquifersBasalt (Deccan Traps)Type of AquiferBasalt –Aquifer-I (Phreatic / Shallow aquifer)Static Water Level (mbgl)7.00Depth of Occurrence (mbgl)8.00-22.00weathered thickness (m)0- 8.00Yield10 – 200 m³/daySpecific yield (Sy)0.02 (norms)4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	3.1. Number of Aquifers		Basalt – Aquifer	-I (Phreatic / Shallow aquifer)						
Major AquifersBasalt (Deccan Traps)Type of AquiferBasalt –Aquifer-I (Phreatic / Shallow aquifer)Static Water Level (mbgl)7.00Depth of Occurrence (mbgl)8.00-22.00weathered thickness (m)0- 8.00Yield10 – 200 m³/daySpecific yield (Sy)0.02 (norms)4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	3.2. Aquifer Characteristics									
Type of AquiferBasalt –Aquifer-I (Phreatic / Shallow aquifer)Static Water Level (mbgl)7.00Depth of Occurrence (mbgl)8.00-22.00weathered thickness (m)0- 8.00Yield10 – 200 m³/daySpecific yield (Sy)0.02 (norms)4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	Major Aquifers		Bas	salt (Deccan Traps)						
Static Water Level (mbgl)7.00Depth of Occurrence (mbgl)8.00-22.00weathered thickness (m)0- 8.00Yield10 - 200 m³/daySpecific yield (Sy)0.02 (norms)4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	Type of Aquifer		Basalt – Aquifer	I (Phreatic / Shallow aquifer)						
Depth of Occurrence (mbgl)8.00-22.00weathered thickness (m)0- 8.00Yield10 - 200 m³/daySpecific yield (Sy)0.02 (norms)4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	Static Water Level (mbgl)		7.00							
weathered thickness (m)0- 8.00Yield10 - 200 m³/daySpecific yield (Sy)0.02 (norms)4. GROUND WATER OUALITY: Phreatic Aguifer (Aguifer-I/ Shallow aguifer)	Depth of Occurrence (mbgl)		8.00-22.00							
Yield 10 – 200 m³/day Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	weathered thickness (m)		0- 8.00							
Specific yield (Sy) 0.02 (norms) 4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	Yield		10 – 200 m ³ /da	y						
4. GROUND WATER OUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)	Specific vield (Sv)		0.02 (norms)							
	4. GROUND WATER QUALITY: Phre	eatic Aquifer (A	quifer-I/ Shallow	aquifer)						

In the village of Madani, 8 nos Kow established Ec is ranges 813 to 1351. One water sample							
collected for the chemical analysis. During the analysis EC is 1227 NO_3 is 6	52 and Fluoride is 1.1.						
5.0. GROUND WATER RESOURCE MANAGEMENT							
5.1. Supply Side Management							
SUPPLY (MCM)							
Available Resource (MCM)	5.3352						
Agricultural Supply –GW	2.3935						
Agricultural Supply -SW	0						
Domestic Supply - GW	0.0677						
Domestic Supply - SW	0						
Non agriculture use (MCM)	0.118116						
Total GW availability (MCM)	2.7559						
Area of village (Sq. Km.)	15.44						
Area suitable for Artificial recharge (sq km)	15.44						
Type of Aquifer	Hard rock						
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	0						
Volume of Unsaturated Zone (MCM)	0						
Average Specific Yield	0.02						
Volume of Sub Surface Storage Space available for Artificial Recharge	0						
(MCM)							
Surplus runoff considered for planning (MCM) @ 100%	29.4789						
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross	0						
Capacity-10 TCM * 3 fillings = 30 TCM))	0						
Proposed AR Structures Gabbion	0						
Proposed AR Structures Other	0						
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	0						
Specific Recommendations -							
Segment wise Nala desilting, deepening and widening upto 3 m depth							
or upto weathered rock considering the local hydrogeological condition							
without disturbing the ecology/aquifer/environmental flow of nala.							
RTRWH Structures							
Households to be covered (Pakka House only)	212						
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499						
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400						
However, RTRWH is economically not via	ble & not Recommended						
6.2. Demand Side Management							
Micro irrigation techniques	Γ						
Area is proposed to be covered under Drip	Not proposed						
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req 0.24, WUE- 0.12 m							
Proposed Cropping Pattern change	Proposed Cropping Pattern change						
Irrigated area under Water Intensive Crop(ha)	Not proposed						
Water Saving by Change in Cropping Pattern							
6.3. Expected Benefits							
Net Ground Water Availability (MCM)	5.3352						
Additional GW resources available after Supply side interventions	0						
(MCM)							

Ground Water Availability after Supply side interve	ention(MCM) 5.3352
Existing Ground Water Draft for All Uses (MCM)	2.5794
GW draft after Demand Side Interventions (MCM)	0
Present stage of Ground Water Development (%)	48.35
Expected Stage of Ground Water Development after	er interventions (%) 53.97
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available forFuture planning (MC	M) 2.7559
Proposed Number of DW (@ 1.5 ham for 90% of G	WR Available) 15
Proposed Number of BW (@ 1 ham for 10% of GW	R Available) 5
Additional Area (sq.km.) proposed to be brough	t under assured GW
irrigation with av. CWR of 0.65 m after 70% stage of	of gwd is achieved
Soil map	Landuse map
SOIL MADANI VILLAGE, WATERSHED PGKA-1	LAND USE MADANI VILLAGE, WATERSHED PGKA-1 MEHKAR BLOCK BUI DHANA DISTRICT
bounter MEDITA	HERE'S NOTITE
no secondule	225
2000	
w	20 A A A A A A A A A A A A A A A A A A A
	MADANI MAT
	21° 100 100 100 100 100 100 100 100 100 1
	the second states and
WASHIM DISTRICT	WASHINE DISTRICT
INDEX	NOEX
20 17 Hebitation Mask Classes / Middeniely Been (25 to 50 cm)	22* ET Habitation Matsk
Clayoy -Door (50 to 100 om) Clayoy - Very Deet (6100 om)	Corp. and - Roh
R Sy Loon - Very Deep (> 100 cm)	Vieto Land
ndar ndar man ndar	76/47 78/47 78/48 78/48
In the village major area is covered by Clayey soil	In the village major cultivable land is under
of the thickness >100 cm covering 9.006 sq.km	Kharif cropping pattern. Small patches of land
area whereas in some parts such as in South east	under Rabi crops.
and eastern side clayey soil with moderately	
deep is observed with a thickness 25 to 50cm.	
Similarly north east part covered by clay with	
thickness 50 to 100 cm. Small patch of silty loam	

soil is observed at north western side of village.Geomorphology & Drainage mapHydro-geology map

Panchayat Level Aquifer Management Plan, Watershed PGKA-1, Village Madani, Mehkar Block, Buldhana District, Maharashtra

Village – Madani, Mehkar Taluka, Buldhana District

Aquifer	Current Scenario	Geology /	Geomorphology	GW quality	R	ecommendatio	ns for Aqu	ifer Develo	pment	Aquifer Management Plan
(Prominent		Basalt flow			Туре	Zones/Depth	HP of	Pumping	Yield	
Lithology)						to be tapped	pump	Hours	(Cu. m /	
							to be		Day)	
							lowered			
Aquifer I (Basalt- Weathered and fractures)	1111.28 ha cultivable land by GW, 2 CD, 5 PT, 2 DW(d), 160 DW (i), Pre monsoon DTWL~ 8-16 m bgl. Post monsoon DTWL~ 2-7 m bgl.	DT Basalt ((Buldana / Purandargarh Formation)	Moderately dissected plateau with weathered thickness ranging from 0 to 8 m. BCS->100 cm.	Good; All parameters are within MPL.	Dug well	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	 Construction of 15 nosDug wells and 5 nos bore well. Desilting of existing water conservation and artificial recharge structures. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed & Fractures)	273 BW(i), Nil BW (d), HP-Nil DTWL~ 15-35 m bgl.	As above			Bore well	Depth : 60 m	3 to 5	1 to 3	0.14-2.16 lps	1. The GW should be used for drinking purpose.

19.0 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, SINDKHED RAJA, WATERSHEDS GPP-1, SINDKHED RAJA BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Village Name				Sindkhed Raja		
Geographical Area (Sq. Km.)			47.83		
Hilly Area (Sq. Km.)				Nil		
Population (Current	: year -2018)			20000		
Climate				Monsoon Sub-Tropical		
Normal Rainfall (mr	n)			804		
Average Rainfall (m	m) 2009-18			640		
1.2. Geomorpholog	y, Soil & Geolog	ξγ				
Geomorphic Unit	Plateau (slight	ly dissected	to moderately disse	ected).		
Geology	Deccan Traps ((Basalt) Age	: Late Cretaceous to	Eocene		
Soil	Soil mostly cor	nsisting of a	gravelly clay loam 10) -25 cm, clay >100 cm and clay		
	moderately de	ep 25-50 cr	n thick.			
1.3. Hydrology & D	rainage					
Watershed			GPP-1			
Drainage			Godavari basin; dendritic to sub-dendritic drainage			
			pattern.			
			1 st Order Stream – 48.23 km			
			2 nd Order Stream – 23.39 km			
			3 rd Order Stream – 6.25 km			
Irrigation Project (N	1ajor/Medium/N	Vinor etc	Nil			
WC structures (PT /	KT / CD / FP etc)	41-CD, 03-PT, othe	41-CD, 03-PT, other AR-72		
1.4. Land Use, Agric	culture, Irrigatio	on & Croppi	ng Pattern			
	Specifi	ics		Area		
Forest Area				738.6 ha		
Cultivable Area				3654ha		
Net Sown Area				3654 ha		
Double Cropped Are	еа			Nil		
Irrigation Dug wells				21		
Irrigation Bore wells	5			40		
Area under Drip & S	prinkler Irrigatio	on		Nil		
Area under Irrigatio	n	Surface W	/ater	Nil		
		Ground Water		184 ha		
Principal Crops		Soyabean		1000 ha Kharib		
		Pulses (Tu	ır)	200 ha Kharib		
		Pulses (Ud	dad)	200 ha Kharib		

	Dulsos (M	nona)	218 ha Kharih		
	M/heat	Joligj	191 ha Rahi		
	Cotton		2000 ba Kharib		
	Cotton				
	Citreous fr	ruit	U na		
	Other	A	U na		
1.5. Water Level Behavior : Aquifer	-I (Shallow	Aquiter)			
In the village, 22 KOW were establis	ned to deci	pher the water level	scenario.		
Pre-Monsoon (May-2018)		Post-Monsoon (No	vember-2018)		
In the north-east and south part th	e DIWL IS	In the southern par	t village shows DIWL is more		
more than 12 mbgl whereas in th	e western	than 12 mbgl. In t	he eastern and north eastern		
and eastern part DIWL ranges be	tween 5-7	portion the DIWL	9-12 mbgl is observed except		
mbgl. In the middle village DIV	VL ranges	small isolated patc	h. In the western and middle		
between 9-12 mbgl.		portion of village D	TWL is 5-9 mbgl except small		
		patch having DTWL	9-12 mbgl.		
PRE-MONSOOM DEPTH TO WATER LEVEL (MAY SINDAKHED RAJA URBAN VILLAGE, WATERSHED SINDKHED RAJA BLOCK, BULDHANA DISTRI	2018) D CPP-1 CT Kondes Kondes Sala State Sala States States States States States States States States States States States S	POST-MONSOOM D SINDAKHED RAJA U SINDAKHED RAJA U SINDKHED RAJA 19 19 19 19 19 19 19 19 19 19 19 19 19	PETH TO WATER LEVEL (NOV 2018) JRBAN VILLAGE, WATERSHED GPP-1 JA BLOCK, BULDHANA DISTRICT		
19° 54° 54° 7 - 9 € Well 0 - 12 → Croininge Muru than 12 75 5° 75 6° 75 7° 7° 75 8° 75° 9°	75 [°] 10'	75 ⁴ 54 ⁹ 75 5 ⁹ 78 6 ⁴ 7.	Loss than 5 5-7 7-9 9-12 0		
2. Ground Water Issues					
1. Non-availability of surface v	vater for irr	igation.			
2. Less ground water potential basaltic aquifer.					
3. Water stress situation during lean period (March to June)					
3. AQUIFER DISPOSITION					
3.1. Number of Aquifers		Basalt – Aquifer-I (Phreatic / Shallow aquifer)			
3.2. Aquifer Characteristics					
Major Aquifers		Basalt (Deccan Traps)			
Type of Aquifer		Basalt – Aquifer-I (Phreatic / Shallow aquifer)			

7.00

10.00-25.00

Static Water Level (mbgl)

Depth of Occurrence (mbgl)

weathered thickness (m)	0-8.00					
Yield	10 – 200 m³/day					
Specific yield (Sy) 0.02 (norms)						
4. GROUND WATER QUALITY: Phreatic Aquife	r (Aquifer-I/ Shallow aquifer)					
In the village of Sindkhed Raja, 23 nos Kow e	established Ec is ranges 440 to	1946. Three water				
samples collected for the chemical analysis. D	During the analysis EC is ranges	408 to 1636 NO ₃ is				
ranges from 10 to 40 and Fluoride is 0.12 to 0.	87.	Ĵ				
5.0. GROUND WATER RESOURCE MANAGEME	NT					
5.1 Supply Side Management						
SUPPLY (MCM)						
Available Resource (MCM)		12.4109				
Agricultural Supply –GW		3.3347				
Agricultural Supply -SW		0				
Domestic Supply - GW		0.4621				
Domestic Supply - SW		0				
Non agriculture use (MCM)		0.2755008				
Total GW availability (MCM)		8.3386				
Area of village (Sq. Km.)		47.83				
Area suitable for Artificial recharge (sq km)		47.83				
Type of Aquifer	Hard rock					
Area feasible for Artificial Recharge (WL >5mb	0					
Volume of Unsaturated Zone (MCM)						
Average Specific Yield 0.0						
Volume of Sub Surface Storage Space available	0					
Surplus runoff considered for planning (MCM)	68.8418					
Proposed AR Structures (Check Dam (@ Rs.3	0					
TCM * 3 fillings = 30 TCM))		U				
Proposed AR Structures Gabbion		0				
Proposed AR Structures Other		0				
Volume of Water expected to be conserved	/ recharged @ 75% efficiency	0				
(MCM)	tions					
Sogment wise Nala desilting deepening and	widening unto 2 m denth or					
unto weathered rock considering the loc	al hydrogeological condition					
without disturbing the ecology/aquifer/environ	nmental flow of nala					
BTRWH Structures						
Households to be covered (Pakka House only)		2250				
Total RWH potential (MCM) (25% with 50 m2 a	area)	0.0000499				
Rainwater harvested / recharged @ 80% runof	f co-efficient (MCM)	0.0000400				
However. RTRV	VH is economically not viable &	not Recommended				
6.2. Demand Side Management	,,					
Micro irrigation techniques						
Area is proposed to be covered under Drip		Not proposed				
Volume of Water expected to be saved (MCN	M). Surface Flooding reg- 0.36					
m. Drip Req 0.24, WUE- 0.12 m	,					
Proposed Cropping Pattern change						
Irrigated area under Water Intensive Crop(ha)		Not proposed				
Water Saving by Change in Cropping Pattern						

6.3. Expected Benefits	
Net Ground Water Availability (MCM)	12.4109
Additional GW resources available after Supply side interventions (MCM)	0
Ground Water Availability after Supply side intervention(MCM)	12.4109
Existing Ground Water Draft for All Uses (MCM)	4.0723
GW draft after Demand Side Interventions (MCM)	0
Present stage of Ground Water Development (%)	32.81
Expected Stage of Ground Water Development after interventions (%)	49.13
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for Future planning (MCM)	8.3386
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	95
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	60
Additional Area (sq.km.) proposed to be brought under assured GW	
irrigation with av. CWR of 0.65 m after 70% stage of gwd is achieved	

Geomorphology & Drainage map	Hydro-geology map
and area is 11.38 sq. km.	
drainage having thickness more than 100 cm	
11.32 sq. km whereas clay soil along the	
having thickness 25-50cm covering area	
25 cm covering 12.00 sq.km area and clay soil	
gravelly clay loam soil of the thickness 10 to	and Rabi cropping pattern covering 15.83sq.km.
In the village major area is covered by	In the village major cultivable land is under Kharif

Panchayat Level Aquifer Management Plan, Watershed GPP-1, Village Sindkhed Raja, Sindkhed Raja Block, Buldhana District, Maharashtra

Village – Sindkhed Raja, Sindkhed Raja Taluka, Buldhana District

Aquifer	er Current Scenario Geology / Geomorphology GW quality Recommendations for Aquifer Development					pment	Aquifer Management Plan			
(Prominent		Basalt			Туре	Zones/Depth	HP of	Pumping	Yield	
Lithology)		now				to be tapped	pump	Hours	(Cu. m /	
							to be		Day)	
							lowered			
Aquifer I (Basalt- Weathered and fractures)	3654 ha cultivable land by GW, 41 CD, 3 PT, 1 PWS scheme, 31 DW(d), 21 DW (i), Pre monsoon DTWL~ 3- 24 m bgl. Post monsoon DTWL~ 2-20 m bgl.	DT Basalt (Indrayani/ Ajanta formation)	Plateau (dissected to moderately dissected) with weathered thickness ranging from 0 to 7 m.	Good; All parameters are within MPL	Dug well	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	 Construction of dug wells and bore wells. Desilting of existing water conservation and artificial recharge structures. The GW should be used for irrigation purpose.
Aquifer II (Basalt- Jointed & Fractures)	40 BW(i), Nil BW (d), HP-Nil DTWL~ 15-35 m bgl.	As above		Good; All parameters are within MPL.	Bore well	Depth : 60 m	3 to 5	1 to 3	0.14-2.16 lps	 The GW should be used for drinking purpose. BW should not be drilled down below the red bole.

20.0 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, VILLAGE SAOKHED TEJAN, WATERSHED GPP-1, SINDKHED RAJA BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURES					
1.1 Introduction					
Village Name			Saokhed Tejan		
Geographical Area (Sq. Km.)			9.95		
Hilly Area (Sq. Km.)			Nil		
Population (Current year -2018)			2659		
Climate			Monsoon Sub-Tropical		
Normal Rainfall (mm)			804		
Annual Rainfall (mm) 2009-18			640		
1.2. Geomorphology, S	oil & Geology		·		
Geomorphic Unit	Plateau (slightly dissected to moderately dissected).				
Geology	Deccan Traps (Basalt) Age: Late Cretaceous to Eocene				
Soil	Soil mostly consisting of clay >100 cm, gravelly clay loam 25-50 cm and				
	silty loam >1	silty loam >100 cm thick.			
1.3. Hydrology & Drainage					
Watershed	GPP-1	GPP-1			
Drainage	Godavari basin; parallel to sub parallel drainage pattern.				
	1 st Order Stream – 10.93 km				
	2 nd Order Stre	am – 5.43 km			
	3 rd Order Stream – 4.57 km				
Irrigation Project (Major/Medium/Minor etc.)			Nil		
WC structures (PT / KT / CD / FP etc.)			07-CD, 4- other AR		
1.4. Land Use, Agricultu	ure, Irrigation &	Cropping Pattern			
Specifics			Area		
Forest Area			12.1 ha		
Cultivable Area			855 ha		
Net Sown Area			910 ha		
Double Cropped Area			Nil		
Irrigation Dug wells			277		
Irrigation Bore wells			11		
Area under Drip & Sprinkler Irrigation			Nil		
Area under Irrigation		Surface Water	Nil		
		Ground Water	120 ha		
Principal Crops		Soyabean	300 ha <mark> Kharib</mark>		
		Pulses (<i>Tur</i>)	30 ha <mark>Kharib</mark>		
		Pulses (<i>Udad</i>)	30 ha <mark>Kharib</mark>		
		Pulses (Moong)	30 ha <mark> Kharib</mark>		
	Wheat	40 ha Rabi			
--	---	--	---	--	--
	Cotton		400 ha <mark>Kharib</mark>		
	Jawar		30 ha Rabi		
	Maise		50 ha Rabi		
1.5. Water Level Behavior : Aquifer-I (S	hallow Aquife	er)			
In the village, 8 KOW were established t	to decipher the	e water level scen	iario.		
Pre-Monsoon (May-2018)		Post-Monsoon (November-2018)			
In the South, south-east part the DTW	VL more than	Entire area of t	he village shows DTWL in the		
12 mbgl whereas in the east and no	orth east part	range of 9-12	mbgl except in the northern		
DTWL ranges between 9-12 mbgl an	d north part	part and small	part and small patch. Northern part of village		
DTWL ranges between 7-9 mbgl.		DTWI in the ranges 7-9 mbgl.			
PRE-MONSOON DEPTH TO WATER LEVEL (MA) SAOKHED TEJAN VILLAGE, WATERSHED GP SINDKHED RAJA BLOCK, BULDHANA DISTR	Y 2018) IP-1 IICT	POST-MONSOC SAOKHED 1 SINDKHED	IN DEPTH TO WATER LEVEL (NOV 2018) IEJAN VILLAGE, WATERSHED GPP-1 RAJA BLOCK, BULDHANA DISTRIGT		
		<u>0 0,5 1</u>			
Kiomoiros Jekonykunee tean	KORTH	ای 19	ANNULT YE MARIN		
35°			A A A		
The second se		Mett Harry			
Sockhos (10)au		44 A	Seowhed Tejan		
	and a start	121	11		
10" 57"	22	ά.			
NEWERBURG VILLAGE PROMINICHED NOCIONTA	LIA VILLAGE	ופאינהאוונט א	KARE / HAMMATICHEL / AUGAON PRIA VILLAGE		
INDEX Pre-monsoon depth to water level in mitol		Post incrision	INDEX depth to water level or magit.		
19" Less tilan 5 • Woll 56" 5+7 5-40 Drains	30e	19* Lees II 38 5-7	isn 5 ● Well ∠7 * Disirege		
7-9 🗋 Vilag 9-12	a habitata	7 - 3 U Village Naostafe			
76° 10' More than 12 76° 11' 7	6-12	78" 10	76 11' 79' 12'		
2. Ground Water Issues					
1. Non-availability of surface wate	er for irrigation				
2. Less ground water potential bas	saltic aquifer.				
3. Water stress situation during le	an period (Ma	rch to June)			
3. AQUIFER DISPOSITION					
3.1. Number of Aquifers	Ва	salt – Aquifer-I (P	hreatic / Shallow aquifer)		
3.2. Aquifer Characteristics					
Major Aquifers		Basalt (Deccan Traps)			
Type of Aquifer	Ва	salt –Aquifer-I (Phreatic / Shallow aquifer)			
Static Water Level (mbgl)	6.6	63			
Depth of Occurrence (mbgl)	00-15.00 m				
weathered thickness (m)	0-	6 m			
Yield	10	to 200 m³/day			
Specific yield (Sy)	0.0	02 (norms)			
4. GROUND WATER QUALITY: Phreatic	Aquifer (Aqui	ifer-I/ Shallow aquifer)			
In the village of Saokhed tejan , 8 nos K	In the village of Saokhed tejan , 8 nos KOW established . Three nos water samples collected for				

chemical analysis. During the analysis Ec is ranges from 408 to 1675, NO ³ is ran	ges from 10 to 39,
Flouride is ranges 0.10 to 0.87	
5.0. GROUND WATER RESOURCE MANAGEMENT	
5.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	2.5951
Agricultural Supply –GW	1.0445
Agricultural Supply -SW	0
Domestic Supply - GW	0.0736
Domestic Supply - SW	0
Non agriculture use (MCM)	0.057312
Total GW availability (MCM)	1.4197
Area of village (Sg. Km.)	9.95
Area suitable for Artificial recharge (sq km)	9.95
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	0
Volume of Unsaturated Zone (MCM)	0
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0
Surplus runoff considered for planning (MCM) @ 100%	14.2878
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10	0
TCM * 3 fillings = 30 TCM))	
Proposed AR Structures Gabbion	0
Proposed AR Structures Other	0
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	0
Specific Recommendations -	
Segment wise Nala desilting, deepening and widening upto 3 m depth or upto	
weathered rock considering the local hydrogeological condition without	
disturbing the ecology/aquifer/environmental flow of nala.	
RTRWH Structures	
Households to be covered (Pakka House only)	350
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However, RTRWH is economically not viable	& not Recommended
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m.	
Drip Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	Netweened
Water Saving by Change in Cranning Pattern	Not proposed
6.2 Expected Bonefits	<u> </u>
Net Ground Water Availability (MCM)	2 5051
Additional GW/ recources available after Supply cide interventions (MCNA)	2.5951
Ground Water Availability after Supply side intervention(MCM)	2 5051
Existing Ground Water Draft for All Lises (MCM)	2.3931
GW draft after Demand Side Interventions (MCM)	
	0

Present stage of Ground Water Development (%)	45.29
Expected Stage of Ground Water Development after interventions (%)	57.05
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for Future planning (MCM)	1.4197
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	17
Proposed Number of BW (@ 1 ham for 10% of GWR Available)	5
Additional Area (sq.km.) proposed to be brought under assured GW irrigation	
with av. CWR of 0.65 m after 70% stage of gwd is achieved	

sq. km	
observed along the drainage covering area 2.691	
Gravelly clay loam of shallow thickness is	
clayey soil is observed of the thickness 25-50 cm.	
Similarly in northwest and small area in south	
loam soil is observed with a thickness 10-25cm.	
eastern and south western side gravelly clay	
area whereas in some parts such as in north	sq.km. 2.272 sq.km area is under kharif crops.
of the thickness >100 cm covering 4.891 sq.km	Kharif and rabi cropping pattern covering 5.772
In the village major area is covered by Clayey soil	In the village major cultivable land is under

Panchayat Level Aquifer Management Plan, Watershed GPP-1, Village Saokhed Tejan, Sindkhed Raja Block, Buldhana District, Maharashtra

Panchayat Level Aquifer Management Plan

Village – Saokhed Tejan, Sindkhed Raja Taluka, Buldhana District

Aquifer	Current Scenario	Geology /	Geomorphology	GW quality	Recommend	ations for <i>l</i>	Aquifer Management Plan		
(Prominent		Basalt flow			Zones/Depth	HP of	Pumping	Yield	
Lithology)					to be tapped	pump	Hours	(Cu. m /	
						to be		Day)	
						lowered			
Aquifer I (Basalt- Weathered and fractures)	855 ha cultivable land, 7 CD, 1 PT, 1 PWS scheme, 3 DW(d), 277 DW (i), Pre monsoon DTWL~ 9.80 to	DT Basalt Flow-II	village 6.71 sq.km area covered by exposed rock and thin soil.	Good; All parameters are within MPL except Nitrate contamination	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7	 Construction of 17 nos dug well and 5 nos bore wells. Desilting of existing water conservation and artificial recharge structures. The GW should be used for irrigation purpose.
Aquifer II (Basalt-	Post monsoon DTWL~ 7.60 to 13.00 m bgl. 11 BW(i) Nil BW (d)	DT Basalt		Good; All parameters	Depth : 60 m	3 to 5	1 to 3	ham/year 0.14-2.16	1. The GW should be used for drinking purpose.
Jointed & Fractures)	DTWL~ 15-35 m bgl.			are within MPL.				F	8. BW should not be drilled down below the red bole.

Note: DW(d)= Dug well Domestic; DW (i)= Dug Well Irrigation; BW(d)= Bore Well Domestic; BW(i)= Bore Well Irrigation

INTERVENTION FOR AQUIFER REJUVENATION

A.PGKA-1 WATERSHED, MEHKAR BLOCK

B.GPP-1 WATERSHED, SINDKHED RAJA BLOCK

21.0 INTERVENTION FOR AQUIFER REJUVENATION OF PGKA-1 WATERSHED, MEHKAR BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Watershed with Area (S	q. Km.)		PGKA-1 (185.40 sq. Km)			
Climate			Arid to semi arid			
Normal Rainfall (mm) of	nearest rain gauge statio	on	850			
Annual Rainfall (mm) 20	09-18 of nearest rain gau	ige station	890			
1.2. Geomorphology,	Soil & Geology					
Geomorphic Unit	Major part of the	Major part of the watershed PGKA-1 shows moderately				
	dissected plateau cov	ering area 158.08	sq. km.			
Geology	Deccan Traps (Basalt) A	ge: Late Cretaceous	to Eocene			
Soil	Soil consisting mostly of	of clay moderately d	leep with thickness 25 to			
	50 cm.					
1.3. Hydrology & Drai	nage					
Watershed	PGKA-1					
Drainage	The area is drained by I	Kanch and Utavali ri	vers are the tributaries of			
	Penganga river of Goo	lavari basin with s	ub-dendritic to dendritid			
	drainage.					
Irrigation Project	Nil					
(Major / Medium /						
Minor etc.)						
1.4. Land Use						
	Specifics		Area (Sq. Km.)			
Forest Area	Specifics		Area (Sq. Km.) Nil			
Forest Area Cultivable Area -Kharif	Specifics		Area (Sq. Km.) Nil 154.94			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi	Specifics		Area (Sq. Km.) Nil 154.94 11.19			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area	Specifics		Area (Sq. Km.) Nil 154.94 11.19 10.76			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land	Specifics		Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 2.752			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body	Specifics		Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask	Specifics		Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha	Specifics	w Aquifer)	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201	Specifics	w Aquifer) Post-Monsoon (No	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847 vember-2018)			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monso	Specifics Notion : Aquifer-I (Shallo 18) on study 49 nos KOW	w Aquifer) Post-Monsoon (No Major area of wa	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monsoo establish in PGKA-1	Specifics Notion : Aquifer-I (Shallo 18) on study 49 nos KOW watershed of Mehkar	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847 Nil Nil Nil Stershed PGKA-1 Mehkar St monsoon is less than 5 Southern partian DTMI			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monso establish in PGKA-1 taluka. Middle portion of	Specifics Avior : Aquifer-I (Shallo 18) on study 49 nos KOW watershed of Mehkar of the water shed DTWL	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos mbgl whereas the	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monso establish in PGKA-1 taluka. Middle portion of is ranges from 7-9 mbg	Specifics Notion: Aquifer-I (Shallo 18) on study 49 nos KOW watershed of Mehkar of the water shed DTWL gl. In the North portion mbgl. In the western	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos mbgl whereas the is ranges from 5	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monso establish in PGKA-1 taluka. Middle portion of is ranges from 7-9 mbg DTWL is less than 7 portion DTWL is range	Specifics Avior : Aquifer-I (Shallo 18) on study 49 nos KOW watershed of Mehkar of the water shed DTWL gl. In the North portion mbgl. In the western as from 7 to 12 mbgl	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos mbgl whereas the is ranges from 5 patch having DT 12mbgl The fig	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847 Nil Nil 10.76 5.914 0.750 1.847 Nil Nil Nil 10.76 5.914 0.750 1.847 Nil Nil Nil Nil Nil Nil Nil Nil			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monsor establish in PGKA-1 taluka. Middle portion of is ranges from 7-9 mbg DTWL is less than 7 portion DTWL is range	Specifics Avior : Aquifer-I (Shallo avior : Aquifer-I (Shallo avior : Aquifer-I (Shallo b) on study 49 nos KOW watershed of Mehkar of the water shed DTWL gl. In the North portion mbgl. In the western and southern part of and southern part of	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos mbgl whereas the is ranges from 5 patch having DT 12mbgl. The flo monsoon is NW to	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847 Netershed PGKA-1 Mehkar st monsoon is less than 5 southern portion DTWL to 9 mbgl except small WL is ranges from 9- bw direction in post SE.			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monso establish in PGKA-1 taluka. Middle portion of is ranges from 7-9 mbg DTWL is less than 7 portion DTWL is range DTWL in the eastern watershed is more tha	Specifics Evior : Aquifer-I (Shallo 18) on study 49 nos KOW watershed of Mehkar of the water shed DTWL gl. In the North portion mbgl. In the western es from 7 to 12 mbgl. and southern part of n 12 mbgl except small	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos mbgl whereas the is ranges from 5 patch having DT 12mbgl. The flo monsoon is NW to	Area (Sq. Km.)Nil154.9411.1910.765.9140.7501.847ovember-2018)attershed PGKA-1 Mehkarst monsoon is less than 5southern portion DTWLto 9 mbgl except smallWL is ranges from 9-ow direction in postSE.			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monsor establish in PGKA-1 taluka. Middle portion of is ranges from 7-9 mbg DTWL is less than 7 portion DTWL is range DTWL in the eastern watershed is more that patch having DTWL is	Specifics Avior : Aquifer-I (Shallo 18) on study 49 nos KOW watershed of Mehkar of the water shed DTWL gl. In the North portion mbgl. In the western es from 7 to 12 mbgl. and southern part of n 12 mbgl except small 7 to 9 mbgl, The flow	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos mbgl whereas the is ranges from 5 patch having DT 12mbgl. The flo monsoon is NW to	Area (Sq. Km.) Nil 154.94 11.19 10.76 5.914 0.750 1.847 November-2018) Attershed PGKA-1 Mehkar st monsoon is less than 5 southern portion DTWL to 9 mbgl except small WL is ranges from 9- bw direction in post SE.			
Forest Area Cultivable Area -Kharif Cultivable Area -Rabi Double Cropped Area Waste land Water body Habitation mask 1.5. Water Level Beha Pre-Monsoon (May-201 During the pre-monso establish in PGKA-1 taluka. Middle portion of is ranges from 7-9 mbg DTWL is less than 7 portion DTWL is range DTWL in the eastern watershed is more that patch having DTWL is direction in pre monsoo	Specifics Avior : Aquifer-I (Shallo avior : Aquifer-I (Shallo avior : Aquifer-I (Shallo avior : Aquifer-I (Shallo by avior : Aquifer-I (Shallo by avior : Aquifer-I (Shallo B) avior : Aquifer-I (Shallo B) a	w Aquifer) Post-Monsoon (No Major area of wa taluka DTWL in pos mbgl whereas the is ranges from 5 patch having DT 12mbgl. The flo monsoon is NW to	Area (Sq. Km.)Nil154.9411.1910.765.9140.7501.847btershed PGKA-1 Mehkarst monsoon is less than 5southern portion DTWLto 9 mbgl except smallWL is ranges from 9-bw direction in postSE.			

weathered/fractured rocks thickness (m)			0 to 8 0 to 17.5		17.5	
Yield			Upto 100 m ³ /day Upto to 1		o to 1.5 lps	
Specific yield	l/ Storativity (S)		0.02 (norms)	0.02 (norms) -		
Transmissivit	ty (T)		-	-		
4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)						
During the pre-monsoon study 49 nos. KOW established and 7 nos. water samples collected						
from dug wells. Analyzed the water samples from chemical lab and results are given below.						
Parameters	Units	Result in	BIS Dri	nking Water S	Standards	
		Range		IS- 10500-20	12	
			Desir		Maximum	
			able Limits	Permiss	sible Limits	
рН		7.2-7.9	6.5		8.5	
EC	m/mhos at 25°	C 711-2324				
TDS	mg/l	424-1230	500		2000	
Total	,,	158-760	200	600		
hardness	hardness					
Са	,,	45-202	75	200		
Mg	,,	9-61	30	100		
Na	,,	73-233	-		-	
К	,,	1.7-6.3	-		-	
CO ₃	,,	0				
HCO ₃	,,	190-595				
Cl	,,	26-232	250		1000	
SO ₄	,,	27-89	200		400	
NO ₃	,,,	28-150	45	No Relaxation		
F	11	0.41-1.1	1.0		1.5	
EC Range		Percentage	No₃ Range		Percentage	
< 1000		28.57	<45		57.15	
1000 to 1500		57.15	45 to 100		28.57	
>1500		14.28	>100		14.28	

Volume of water required to bring SOD (upto 70%) (MCM)	4.47
Average Specific Yield	0.02
Proposed AR Structures (90 Check Dam Av. Gross Capacity-10 TCM	2 025
* 3 fillings = 30 TCM)	2.025
Proposed AR Structures (10 Percolation tank Av. Gross Capacity-100	1 5
TCM * 2 fillings = 200TCM))	1.5
total Volume of Water expected to be conserved / recharged @ 75%	3 5 7 5
efficiency (MCM)	5.525
RTRWH Structures	
Households to be covered (Pakka House only)	0
Total RWH potential (MCM) (25% with 50 m2 area)	0
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0
RTRWH is economically not viable & hence not Recommended	
Expected Benefits	
Net Ground Water Availability (MCM)	15.9200
Additional GW resources available after Supply side interventions	3.525
(MCM)	
Ground Water Availability after Supply side intervention(MCM)	19.4450
Existing Ground Water Draft for All Uses (MCM)	14.2700
GW draft after Demand Side Interventions (MCM)	0
Present stage of Ground Water Development (%)	89.64
Expected Stage of Ground Water Development after supply side	73.39
interventions (%)	
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil

22.0 INTERVENTION FOR AQUIFER REJUVENATION OF GPP-1 WATERSHED, SINDKHED RAJA BLOCK, BULDHANA DISTRICT, MAHARASHTRA

1. SALIENT FEATURES						
1.1 Introduction						
Watershed with Area	(Sq. Km.)		GI	PP-1 (188 sq. Km)		
Climate			Su	ub-Tropical to arid		
Normal Rainfall (mm)	of nearest rain gauge station	on	80	04.3		
Annual Rainfall (mm)	2009-18 of nearest rain gau	ige station	64	40		
1.2. Geomorpholog	y, Soil & Geology					
Geomorphic Unit	Major part of the wate	ershed shows mode	ately d	issected plateau		
	covering area					
Geology	Deccan Traps (Basalt) Age	: Late Cretaceous to E	ocene			
Soil	Soil consisting mostly o	f clay very deep > 10	00 cm ar	nd gravel clay 10		
	to 25 cm cm thick.					
1.3. Hydrology & Dr	ainage					
Watershed	GPP-1					
Drainage	The area is drained by F	Patalganga river is a	tributary	/ of Purna river of		
	Godavari basin. The drain	age pattern is sub-den	dritic to	dendritic.		
1.4. Land Use						
	Specifics		Area (Sq	ι. Km.)		
Forest Area			11.33			
Cultivable Area- Khari	f	56.13				
Cultivable Area- Rabi		4.76				
Double Cropped Area		69.96				
Waste land			45.82			
1.5. Water Level Be	havior : Aquifer-I (Shallo	w Aquifer)				
Pre-Monsoon (May-2	.018)	Post-Monsoon (November-2018)				
During the pre-mons	soon study 39 nos KOW	In GPP-1 area of Sindkhed Raja taluka DTWL in				
establish in GPP-1 wa	eastern part DTWL is 9-12 mbgl whereas some					
taluka. Western and	North western portion of	patches having DTWL is more than 12 mbgl. In				
the water shed DTW	/L is more than 9 mbgl.	the middle portion of watershed DTWL is 5 to				
Middle portion DTV	9 mbgl. In the north	eastern	n portion of water			
mbgl. In the northern	portion DTWL is less than	shed DTWL is less	than 5	mbgl. The flow		
5 mbgl. The flow dire	ection in pre monsoon is	direction in post monsoon is SW to NE.				
SW to NE.						

Parameters	Units	Result in Range	BIS Drinking Water Standards IS- 10500-2012		
			Desirable Limits	Maximum Permissible Limits	
рН		7.4-8.3	6.5	8.5	
EC	m/mhos at	408-1675			
	25° C				
TDS	mg/l	216-888	500	2000	
Total hardness	mg/l	209-765	200	600	
Са	mg/l	20-157	75	200	
Mg	mg/l	22-89	30	100	
Na	mg/l	12-119	-	-	
К	mg/l	0.3-5.3	-	-	
CO ₃	mg/l	0 -12			
HCO ₃	mg/l	172-613			
CI	mg/l	16-215	250	1000	
SO ₄	mg/l	21-61	200	400	
NO ₃	mg/l	4-40	45	No Relaxation	
F	mg/l	0.1-0.87	1.0	1.5	

During the pre-monsoon study 39 nos. KOW established and 11 nos. water samples collected from wells. Analyzed the water samples from chemical lab and results are given below.

EC Range	Percentage	No₃ Range	Percentage
< 1000	72.72	<45	100
1000 to 1500	9.10	45 to 100	0
>1500	18.18	>100	0

GEOMORPHOLOGY WATERSHED GPP-1, SINDKHED RAJA BLOCK BULDHANA DISTRICT, MAHARASHTRA	HYDROGEOLOGY WATERSHED GPP-1, SINDKHED RAJA BLOCK BULDHANA DISTRICT, MAHARASHTRA		
10 10 10 10 10 10 10 10 10 10	To the second se	A contract of the set	
Major part of the watershed GPP-1 shows	Entire watershed GPP-1	is covered by	
moderately dissected platue with soil	Deccan trap Basalt. Ec is r	anges from 408	
covering area 73.42 sq. km and plateau top	to 2255 m/ mhos and No3	B is ranges from	
covering area 16.27 sq. km.	to 40 mg/l. Fluoride is rang	ges from 0.06 to	
	1.11 mg/l.		
5. Intervention of Aquifer Rejuvenation of G	GPP-1 watershed, Sindkhed	Raja taluka	
Supply Side Management			
Available Resource (MCM)		22.1400	
Agricultural Supply –GW		17.6100	
Agricultural Supply -SW	0		
Domestic Supply - GW	0.6500		
Total Draft (MCM)	18.2600		
Balance GW availability (MCM)	3.8800		
Present stage of Ground Water Development	82.48		
Area of watershed (Sq. Km.)		188	
Area suitable for Artificial recharge (sq km) (C	152.37		
Type of Aquifer		Hard rock	
Volume of water required to bring SOD (upto	70%) (MCM)	3.95	
Average Specific Yield		0.02	
Proposed AR Structures (90 Check Dam Av. fillings = 30 TCM)	2.025		
Proposed AR Structures (10 Percolation tan	1 5		
TCM * 2 fillings = 200TCM))	1.5		
total Volume of Water expected to be cons	2 5 2 5		
efficiency (MCM)	5.525		
RTRWH Structures			
Households to be covered (Pakka House only)	0		
Total RWH potential (MCM) (25% with 50 m2	0		
Rainwater harvested / recharged @ 80% runc	0		
RTRWH is economically not viable & not Reco	ommended		

Expected Benefits	
Net Ground Water Availability (MCM)	22.1400
Additional GW resources available after Supply side interventions	3.525
(MCM)	
Ground Water Availability after Supply side intervention(MCM)	25.6650
Existing Ground Water Draft for All Uses (MCM)	18.2600
GW draft after Demand Side Interventions (MCM)	0
Present stage of Ground Water Development (%)	82.48
Expected Stage of Ground Water Development after interventions (%)	71.15
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
No Demand side intervention proposed	

ANNEXURES

Sr.No	Taluka	Village	xLong	yLat	Altitude	Year	Type	Aquifer	Drilling	Const	Casing	AQ Zones	Pre SWL	Post SWL	PYT Discharge	AQI	AQII	Т
							of well		depth	depth								EC
1	Buldana	Dhad	76	20.3986	578.6	2001-02	EW	JFB	200	-	5.5	8 -11 ,60 -62	11	1.75	-	0	0	
2	Buldana	Urha	76.061	20.7934	298.4	2001-02	EW	FWVB	200	-	5.55	20151201	17	9.8	-	0	0	
3	Buldhana	Hatedi BK	76.1081	20.4673	635.4	2017-18	EW		200	23.7		32-35	75	45	Traces	0	0	
4	Buldhana	Shirapur	76.1912	20.4367	628.8	2017-18	EW		200	25.5		Nil	75	45	dry	0	0	
5	Buldhana	Tardkhed	75.9673	20.4656	614.2	2017-18	EW		200	26		Nil	65	32	dry	0	0	
6	Chikhali	Isoli	76.49125	20.35203		2017- 2018	EW	FMB	200		17.5	22-23	24.5		0.1			
7	Chikhali	Karwand	76.37639	20.45642		2017- 2018	EW		200		17.5							
8	Chikli	Amdapur	76.4394	20.4083	545.9	2002-03	EW	JMB	200	-	4.7	25 - ,82 -	25	12	-	0	0	
9	Chikli	Brahmapuri	76.2661	20.4444	586.9	2001-02	EW	FWB	200	-	12.32	13 -18	17	8.1	0.78	0	0	
10	Chikli	Buldana	76.1852	20.5299	650.1	2001-02	EW	JFB	200	-	5.5	37 -40	42.8	28	-	0	0	
11	Chikli	Chikhli	76.2564	20.3522	598.6	2001-02	EW	JWMB	200	-	5.5	14.5 -16.5	38	10.6	-	0	0	
12	Chikli	Chikhli	76.2564	20.3522	598.6	2011-12	Pz		40	8.4			38	26	Traces	0	0	
13	Chikli	Chikhli	76.2564	20.3522	598.6	2011-12	Pz		40	4.4			34	15	0.38	0	0	
14	Chikli	Sakharkheda	76.4	20.2083	568.1	2001-02	OW	FVB	19.55	-	5.6	13.3 -17	16	4.67	4.43	0	0	
15	Chikli	Utrada	76.3494	20.3792	595.8	2001-02	EW		200	-	5.5		18	7	-	0	0	
16	Deulgaon Raja	Umbarkhed	76.07756	20.01711		2017- 2018	EW	FMB	200		17.5	182-184	35.4		0.025			
17	Deulgaon- Raja	Bharosa	76.2417	20.2292	614.9	2002-03	EW	В	160	-	8	10 - ,42.75 -	21	12.4	2.16	0	0	
18	Deulgaon- Raja	Chikhli	76.2564	20.3522	598.6	2011-12	Pz		40	13.8			29	16.4	2.64	0	0	
19	Deulgaon- Raja	Deolgaon (Mahi)	76.18	20.0867	524.1	2002-03	EW	JAB& JMB	200	-	6.4	- 153, 70 - 70	50	32	-	0	0	
20	Deulgaon- Raja	Shivni (Armal)	76.2667	20.125	531	2002-03	EW	JAB	200	-	6.3	-13	28	15	-	0	0	
21	Deulgaon- Raja	Singaon (Jahangir)	76.0858	20.0819	528.8	2002-03	EW		200	-	6.2	31.4 - ,97 -	50	27	-	0	0	
22	Jalgaon Jamod	Dhanora (Mahasiddh)	76.4667	21.0417	302				34.46	20	20		12	9		33	0	
23	Jalgaon Jamod	Jalgaon Jamod	76.5399	21.0482	293.065				108.6	107	76		25	15		0	91	
24	Jalgaon Jamod	Jamod	76.5998	21.1281	355.88	1985-86	EW		341.41	36	22	7.7 -12.5 ,19.5 -20.7 ,28 -29 ,22.5 -25 ,29.3 -30.2 ,33.5 -	11	8.3	8.96	28.5	0	

Annexure-I: Salient Features of Ground Water Exploration, Buldhana District

Sr.No	Taluka	Village	xLong	yLat	Altitude	Year	Туре	Aquifer	Drilling	Const_	Casing	AQ_Zones	Pre_SWL	Post_SWL	PYT_Discharge	AQI	AQII	
							of well		depth	depth								EC
												35.4 ,98.15 -103						
25	Jalgaon Jamod	Sungaon	76.5568	21.0938	319.5	1993-94	ΡZ		77.66	50	-	32.5 -37 ,54.5 -58.5	19	7	2	77.66	0	
26	JalgaonJamod	Golegaon (Kh)	76.5204	20.9441	247.7	2016-17	EW	FMB	200	38.2		181.50 to 184.60 ,193.00 to 196.80	75	35	4.43	0	0	
27	Jalgaon- Jamod	Bhendwad	76.6004	20.9472	250.4	1985-86	EW	Gravel	62.2	61	17.5	17.4 -21 ,21.95 - 23.47	27	15.28	0.92	0	0	
28	Jalgaon- Jamod	Bhendwad	76.6004	20.9476	250.9	1985-86	OW	Gravel	62	61.5	17.5		32	15.3	-	0	0	
29	Jalgaon- Jamod	Jalgaon Jamod	76.525	21.0333	286	1984-85	EW	Gravel	108.6	107.25	70	74 -76, 87.5 -106	25	15	-	0	0	
30	Jalgaon- Jamod	Jalgaon Jamod	76.525	21.0333	286	1984-85	OW	Gravel	108.3	107	76		25	15	-	0	0	
31	Jalgaon- Jamod	Jalgaon-Jamod	76.5389	21.0528	302.4	2008-09	Pz	Alluvium	113		113		25	15	0.13	0	0	
32	Jalgaon- Jamod	Jalgaon-Jamod	76.5389	21.0528	302.4	2008-09	EW	Alluvium	65		65		25	15	1	0	0	
33	Jalgaon- Jamod	Jamod	76.6069	21.1042	350.3	1985-86	ow	Gravel	34.4	32	22		31	9.66	-	0	0	
34	Jalgaon- Jamod	Madakhed	76.5911	20.9731	261.1	2008-09	Pz	Alluvium	100		23		21	15		0	0	
35	Jalgaon- Jamod	Nimkhedi	76.3638	20.9549	323	2000-01	EW	W F MB	135.45	135.45	5.8	9 -17 ,67 -70	35.45	18	4.43	0	0	
36	Jalgaon- Jamod	Nimkhedi	76.3634	20.9552	323	2000-01	OW	W F MB	130.35	130.35	9	12 -14.5 ,61 -65	35.64	18	6.81	0	0	
37	Jalgaon- Jamod	Nimkhedi	76.365	20.9545	323	2000-01	OW	W F MB	19.55	19.55	5.6	13.5 -17.5	21	10.5	-	0	0	
38	Khamgaon	Devthana	76.4583	20.6267	330.2	2000-01	EW	Boulder & FVB	153.75	153.75	13.5	10.3 -13 ,89 -93	35	17	3.77	0	0	
39	Khamgaon	Devthana	76.4583	20.6267	330.2	2000-01	OW		200	200	17.5		35	17	-	0	0	
40	Khamgaon	Hingna Karegaon	76.6833	20.6111	309.4	2000-01	EW	FJVB	200	200	5.82	8 -10.1	17	5.23	0.78	0	0	
41	Khamgaon	Lokhanda	76.5514	20.5514	379.6	2000-01	EW		200	200	5.7		24	14	_	0	0	
42	Khamgaon	Sirasgaon (Janta Nagar)	76.5486	20.6778	313.4	2000-01	EW	FMB	200	200	5.6		15	3.04	-	0	0	
43	Khamgaon	Atali	76.64408	20.55475		2017- 2018	EW		200		17.5		Dry					
44	Khamgaon	Tandulwadi	76.45136	20.68897		2017-	EW	1	200		17.5				1	1	1	1

Sr.No	Taluka	Village	xLong	yLat	Altitude	Year	Туре	Aquifer	Drilling	Const_	Casing	AQ_Zones	Pre_SWL	Post_SWL	PYT_Discharge	AQI	AQII	
							of		depth	depth								EC
							well											
						2018												
45	Khamgaon	Wazar	76.4925	20.54583		2017- 2018	EW	FMB	200		17.5	103-104	7.5		0.14			
46	Lonar	Bibi	76.3767	20.0158	542	2001-02	EW	JVB	200	-	5.7	42 -46	25	11	-	0	0	
47	Lonar	Gundha	76.5903	20.0319	550.3	2001-02	EW	JFMB	200	-	5.7	15.5 -16.5	19	8.2	-	0	0	-
48	Lonar	Lonar	76.5299	19.9864	590	2011-12	Pz		40	4.4			27	15.4	Traces	0	0	-
49	Lonar	Nandra (Munde)	76.5809	19.8778	488.4	2002-03	EW		200	-	5		25	8	-	0	0	
50	Lonar	Shindkhed Raja	76.1199	19.9453	555	2011-12	Pz		40	2.4			32	12.8	Traces	0	0	
51	Malkapur	Dasarkheda	76.1853	20.9628	246.7	2016-17	EW	-	200	30		No productive Zone Encountered	55	27		0	0	
52	Malkapur	Jambhul Dhaba	76.1297	20.8692	265.9	2002-03	EW	JFVB	200	-	-	15 - ,27 -	15	5.66	-	0	0	
53	Malkapur	Khamkheda	76.1387	20.8966	251.1	2016-17	EW	-	200	30		No productive Zone Encountered	55	25		0	0	
54	Malkapur	Malkapur	76.1835	20.8845	253	2001-02	EW	JWMB	200	-	11	20141201	14	9.45	-	0	0	
55	Malkapur	Malkapur	76.1837	20.8848	253	2011-12	Pz		40	9.05			14.2	9	traces	0	0	
56	Malkapur	Narwel	76.235	20.9633	235	1997-98	ΡZ		24.25	22.25	22.25	18 - 21.75	31	19.2	0.56	0	22	1
57	Malkapur	Umali	76.2292	20.8111	268.3	2008-09	Pz		300.3		3.5		18	11		0	0	
58	Malkapur	Wadoda	76.2803	20.9011	244.5	2016-17	EW	FB	200	20		7.60 to 10.60	32	17	Traces	0	0	
59	Mehkar	Anjani (Bk)	76.6514	20.1736	554.4	2001-02	EW	JFVB & JFMB	200	-	5.7	11 -12 ,145 -150	18	6.2	1.37	0	0	
60	Mehkar	Dongaon	76.7219	20.1839	532.4	2011-12	Pz		40	5.7			21	13.6	Traces	0	0	
61	Mehkar	Janephal	76.575	20.2958	547	2001-02	EW	J F MB	200	-	5.7	5.5 -7.5	12	2.08	-	0	0	
62	Mehkar	Kalyana	76.5431	20.1958	537.1	2001-02	EW	JFVB&JF MB	200	-	5.7	7 -13.5 ,83 -89 ,161 - 163 ,108 -111	18	6.04	3.77	0	0	
63	Mehkar	Kalyana	76.5431	20.1958	537.1	2001-02	ow	JFVB&JF MB	200	-	5	7 -13.5 ,72 -75	18	6.04	3.77	0	0	
64	Mehkar	Mehkar	76.5909	20.1432	556.6	2011-12	Pz		40	4.4			21	5.5	Traces	0	0	1
65	Mehkar	Deulgaon Sakarsha	76.68225	20.4325		2017- 2018	EW		200		17.5		Dry					
66	Mehkar	Pangarkhed	76.77617	20.25325		2017- 2018	EW	FMB	200		17.5	15-16	30.5		traces			
67	Motala	Dhamangaon (Bodhe)	76.0375	20.6728	369.3	2002-03	EW	J AB & J MB	61.1	-	6.4	25 - ,43 -48	13	1.2	1.2	0	0	
68	Motala	Dhamangaon (Bodhe)	76.0375	20.6728	369.3	2002-03	ow	J AB & J MB	60.2	-	6	15 -18 ,35 -	15	1.14	1.14	0	0	

Sr.No	Taluka	Village	xLong	yLat	Altitude	Year	Туре	Aquifer	Drilling	Const_	Casing	AQ_Zones	Pre_SWL	Post_SWL	PYT_Discharge	AQI	AQII	
							of		depth	depth								EC
							well											
69	Motala	Didola Bk.	76.21	20.71	334	2013-14	EW	WAB,FMB	200		20.3	35.00-38.1, 86.80-	59.2	32	Traces	0	0	
												86.90						
70	Motala	Jaipur	76.28	20.6828	327.3	2013-14	EW	AB	200		18	19.80 - 22.80	19	9	0.024	0	0	
		(Junona)																
71	Motala	Kirhala bazar	76.0527	20.6043	432.7	2013-14	EW	WAB	200		21	12.20-15.20	21	13	Traces	0	0	
72	Motala	Kothli	76.26	20.63	362	2013-14	EW	WAB	200		12.5	9.10 -12.00	33.65	18	Traces	0	0	
73	Motala	Mohegaon	76.1872	20.5917	405	2001-02	EW	F W Basalt	200	-	5.8	21 -22 ,101 -104	18.54	9	2.7	0	0	
74	Motala	Motala	76.2104	20.6801	325.7	2011-12	Pz		40	5.4			17	4.55	Traces	0	0	
75	Motala	Motala	76.21	20.68	326	2013-14	EW	-	200		18	-	17	4.55	Dry	0	0	
76	Motala	Pimpalgaon Devi	76.0272	20.7667	315	2002-03	EW	J MB	200	-	10	98 -125	29.07	29.07	-	0	0	
77	Motala	Pimpri Gavli	76.2121	20.6626	336.2	2013-14	EW	FAB	200		12	25.90-28.90	17	8.05	Traces	0	0	
78	Motala	Punhai	76.1764	20.6889	325.2	2001-02	EW		200	-	5.8		21	12	-	0	0	
79	Motala	Rohinkhed	76.1173	20.624	360.4	2013-14	EW	FWB,FAB	200		13	9.10 - 10.00 32.00- 35.00	26.97	17	0.78	0	0	
80	Motala	Sarola Maroti	76.1	20.68	352	2013-14	EW	WAB	200		14	10.60-13.50	35	21	Traces	0	0	
81	Motala	Shelapur Bk.	76.2	20.76	282	2013-14	EW	WAB	200		20.5	32.00 35.00	32	18	1.37	0	0	
82	Nandura	HingneGavhad	76.3639	20.9011	239.7	2016-17	EW	FB	200	20		180.60 - 190.60	75	45	Traces	0	0	
83	Nandura	Nimgaon-I	76.4764	20.8633	256	2007-08	EW	Alluvium	36.5		34.4		30	21	2.5	0	0	
84	Nandura	Nimgaon-II	76.4764	20.8633	256	2007-08	EW		301		65		70	70	2.16	0	0	
85	Nandura	Patonda	76.4361	20.9208	239.6	2008-09	EW		301		30		35	21	2.15	0	0	
86	Nandura	Shemba Bk	76.2861	20.7028	316.3	2002-03	EW	J MB	200	-	6.5	90 -94	50	26	-	0	0	
87	Nandura	Wadi	76.3972	20.8347	257.9	2000-01	EW	W F MB	168	168	11.7	17 -19.5 ,53 -56 ,167	24.71	15	12.18	0	0	
	Number	14/ P	76 2072	20.02.47	257.0	2000.01	0.11		26.65	26.65	44.75	-168,90-92	24.74	45	0.70		0	_
88	Nandura	Wadi	76.3972	20.8347	257.9	2000-01	OW	WEMB	26.65	26.65	11.75	13-15	24.71	15	0.78	0	0	_
89	Nandura	Wadi	76.3972	20.8347	257.9	2001-02	OW	F W Basalt	74.45	-	11.6	33-38	24./1	15	-	0	0	_
90	Nandura	wadner	76.3239	20.8375	266.4	1005.00	EVV		235.78	07.5	19	40.0.04.05.00.0	40	23	0.037	0	31.39	
91	Sangrampur	Allewadi	/6.6833	21.1383	368.3	1985-86	EW	Gravel	102.86	97.5	25	19.2 - 21.35 , 29.9 -	37	15.65	1.26	0	0	
												,53.35-55.75, 67.5 -						
02	Congromnur	Allowedi	76 6922	21 1202	269.2	1005.00	0.44	Crouol	100	00	42	89.9	27	15.25	1 Г	0	0	
92	Sangrampur	Allewadi (DZ)	70.0833	21.1383	308.3	1982-80	0.00	Graver	200	98	43 205	72 02 05 5 00 5	37	15.35	1.5	22	0	
95	Sangrampur	Allewaul (DZ)	70.0055	21.1505	575.015				209	504.25	505	75,05-05.5,00.5-	50	10.05	2	52	0	
												191.300 -302						
94	Sangrampur	Bawanbir	76.7167	21.0833	309		EW		311.2	-	-	,	45	21		51.82	0	1
95	Sangrampur	Bhendwad	76.5667	20.95	241.1				62.2	61	17.5	17.4 -21 ,21.95 -	27	15.28		0	60	1
								1				23.47						

Sr.No	Taluka	Village	xLong	yLat	Altitude	Year	Туре	Aquifer	Drilling	Const_	Casing	AQ_Zones	Pre_SWL	Post_SWL	PYT_Discharge	AQI	AQII	
							of		depth	depth								EC
							well											
96	Sangrampur	Golegaon	76.7028	20.9	280				71.7	70.5	23	- 23.16, 15.84 -17.68	18	11		0	0	
												24.46						
97	Sangrampur	Niwana	76.6375	21.0444	294	1997-98	ΡZ		50.31	18	18	9 -16.5	35	17		50.31	0	
98	Sangrampur	Niwana	76.639	21.0443	296		EW	Clay	220.21	-	-		35	17	-	0	0	
99	Sangrampur	Paturda	76.7541	20.958	256.9	1991-92	ΡZ	Gravel	80	63	-	15.28 -18.28 ,47.16 - 50.61	28	6.1	1.5	0	0	
100	Sangrampur	Sangrampur	76.6767	21.0347	287.6	1984-85	EW	Gravel	215	209	201	8.5 -11 ,14 -15 ,201 - 204 ,172 -174	32	18	-	0	0	
101	Sangrampur	Sangrampur	76.6768	21.0347	287.6	2008-09	Pz	Alluvium	100		23		32	10.39	0.383	0	0	
102	Sangrampur	Tunki	76.6947	21.115	345.4	1991-92	PZ	Sand/ Gravel	80	50	-	6 -35 ,40 -42	21	3.57	10	0	0	
103	Sangrampur	Tunki	76.6947	21.115	345.4	2008-09	Pz	Alluvium	70		37		21	6.35	12.14	0	0	
104	Sangrampur	Warwat (Bakal)	76.7392	21.0314	282.7	1997-98	ΡZ		43.93	37	37	15 -22 ,28 -30.5	29	17.06	4.43	0	0	
105	Sangrampur	WarwatBakal	76.739	21.031	282.2	2016-17	EW	Medium to coarse sand	100	25		18.90 to 25.00	29	17.06	0.014	0	0	
106	Sangrampur	Washali	76.6597	21.15	413.1	2000-01	EW	F MB	160	160	5.6	48 -53 ,92 -96	28	12	5.94	0	0	
107	Sangrampur	Washali	76.6597	21.15	413.1	2000-01	OW		123.25	123.25	5.6	33 -37 ,50 -53 ,92 -98 ,80 -92 ,108 -117	28	12	5.94	0	0	
108	Shegaon	Amsari	76.5051	20.8009	263.1	2000-01	EW	FMB	158.5	158.5	11	19.5 -23 ,80 -83 ,156 -158.5 ,92 -95	15	6.42	12.18	0	0	
109	Shegaon	Amsari	76.5049	20.8011	263.1	2000-01	OW		56.15	56.15	2.5		15	6.42	-	0	0	
110	Shegaon	Amsari	76.5049	20.8008	263.1	2000-01	OW	F VB	200	200	50	19 -22 ,92 -95	15	7.85	-	0	0	
111	Shegaon	Bhastan	76.5811	20.9117	239.1	2007-08	EW		148.1		52		29	20.93	7.73	0	0	
112	Shegaon	Javla (Palaskhed)	76.7056	20.7245	278.5	2016-17	EW	WB,FB	200	20		10 to 13,90-93	24	17.06	Traces	0	0	
113	Shegaon	Jawla (Paraskhed)	76.7056	20.7245	278.5	2000-01	EW	F VB	200	200	5.75	15.5 -18 ,140 -141.5	24	17.06	3.17	0	0	
114	Shegaon	Jawla (Paraskhed)	76.7056	20.7245	278.5	2000-01	ow	F MB	200	200	5.7	16.5 -19	24	17.06	2.64	0	0	
115	Sindkhed-Raja	Palaskhed Chakka	76.1967	19.9864	537.9	2001-02	EW	J F VB	200	-	5.7	11 -13.5 ,113 -117	23	12	3.17	0	0	
116	Sindkhed-Raja	Sakharkheda	76.4	20.2083	568.1	2001-02	EW	F VB	141.55	-	5.7	9 -15, 108 -110	16	4.83	10.98	0	0	
117	Sindkhed-Raja	Sakharkheda	76.4	20.2083	568.1	2001-02	OW	F VB	143.55	-	13.87	9 -12 ,141 -143.55	16	4.63	10.98	0	0	
118	Sindkhed-Raja	Shindkhed Raja	76.3894	20.1281	599.5	2011-12	Pz		40	5.4			32	12.8	0.14	0	0	
119	Sindkhed-Raja	Shindkhed	76.1199	19.9453	555	2011-12	Pz		40	9.4			32	12.8	0.14	0	0	T

Sr.N	o Taluka	Village	xLong	yLat	Altitude	Year	Туре	Aquifer	Drilling	Const_	Casing	AQ_Zones	Pre_SWL	Post_SWL	PYT_Discharge	AQI	AQII	
							of		depth	depth								EC
							well											
		Raja																
120	Sindkhed-Raja	Shindkhed	76.1199	19.9453	555	2011-12	Pz		40	14.7			32	12.8	Traces	0	0	
		Raja																

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude(m	Depth	Geology	Aquifer	Diamesion	D.T.W.(m	D.T.W.(Pre	Fluctuation	EC (Pre -	EC (Post -
No.					•	a msl)	(m		-	(m)	bgl)	- 2018)(m		2018)(micromhos)	2018)(micromhos)
							bgl)					bgl)			
1	Chikli	Mungsari		20.31194	76.32353		15	Basalt	FMB	6	9.9	7.3	2.6	1180	860
2	Chikli	Patoda		20.16494	76.36711		15	Basalt	FMB	10	12.2	4.5	7.7	1080	900
3	Chikli	Naigaon Bk.		20.31235	76.4221		10	Basalt	FMB	14	6.45	4.4	2.05	900	530
4	Chikli	Walti		20.38483	76.26068		10	Basalt	FMB	8	9.8	8	1.8	1400	1280
5	Chikli	Hatni		20.39951	76.23718		12	Basalt	FMB	8	11.2	6.2	5	880	780
6	Chikli	Malshemba		20.3481	76.13601		16	Basalt	FMB	10	14.8	9.2	5.6	840	600
7	Chikli	Waghapur		20.35912	76.19669		6.2	Basalt	FMB	8	5.7	3.4	2.3	1100	840
8	Chikli	Sawarkheda Naik		20.41545	76.39602		12	Basalt	FMB	8	9.1	6.8	2.3	980	740
9	Chikli	Andhai		20.40825	76.31783		15	Basalt	FAB	8	13.1	6.4	6.7	1100	800
10	Chikli	Anvi		20.36402	76.32585		12	Basalt	FMB	10	11.8	8.4	3.4	700	680
11	Chikli	Borgaon Kakre		20.34571	76.3549		13	Basalt	FMB	10	11.9	10.4	1.5	730	580
12	Chikli	Karatwadi		20.36654	76.40387		16	Basalt	FMB	6	14.5	11.8	2.7	880	790
13	Chikli	Mangrul		20.34879	76.43729		16	Basalt	FMB	8	15.6	10.5	5.1	800	1000
14	Chikli	Haralkhed		20.37801	76.47998		16	Basalt	FMB	10	14	9.4	4.6	700	590
15	Chikli	Kinhni Naik		20.39655	76.56216		22	Basalt	FMB	12	19.4	13.3	6.1	650	680
16	Chikli	Asola Naik		20.43386	76.51012		10	Basalt	FMB	8	5.9	4	1.9	1130	700
17	Deulgaon-Raja	Bhokar	55D3-3C	20.31183	76.19239		11.5	Basalt	FMB	6.5	9.3	7.8	1.5	650	530
18	Deulgaon-Raja	MALAGI	55D3-3C	20.27097	76.23258		10.7	Basalt	FAB	7	10.7	13	-2.3	820	990
19	Deulgaon-Raja	DEULGAO	55D3-1C	20.23661	76.209		8.3	Basalt	FMB	5.2	8.3	8.1	0.2	940	1271
		DHANGAR													
20	Deulgaon-Raja	MANGRUL	55D8-2A	20.17697	76.13408		13.5	Basalt	FMB	6.3	12.9	14.5	-1.6	816	1050
21	Deulgaon-Raja	ANCHALWADI	55D4-1C	20.18114	76.20764		10	Basalt	FMB	2	7.4	4.5	2.9	1540	1962
22	Deulgaon-Raja	PIMPARI AANDHLE	55D4-2C	20.14825	76.20197		11.69	Basalt	FMB	5	6.9	7.9	-1	1140	1497
23	Deulgaon-Raja	MENDGAON	55D8-2A	20.14253	76.27756		10	Basalt	FMB	6	6.6	5.5	1.1	490	1274
24	Deulgaon-Raja	Mera Bk.	55D8-1A	20.1915	76.31828		9.2	Basalt	FMB	4.5	7.8	7.5	0.3	2058	2584
25	Deulgaon-Raja	AMBASHI	55D7-3B	20.27064	76.35103		12.8	Basalt	FMB	7	12.8	8.4	4.4	1003	938
26	Deulgaon-Raja	Chinchkhed	55D4-2B	20.12914	76.14183		7.9	Basalt	FAB	7.5	7.1	5.3	1.8	680	560
27	Deulgaon-Raja	Dodra	55D4-2C	20.13775	76.17447		12.19	Basalt	FAB	2.5	6.8	5.2	1.6	2050	2300
28	Deulgaon-Raja	DEULGAO	55D4-1C	20.09178	76.17672		11.19	Basalt	FMB	7.5	7.6	6	1.6	1150	1450
		MAHI													
29	Deulgaon-Raja	PADLI SHINDE	55D8-2A	20.10347	76.28611		9.1	Basalt	FAB	7.2	7.2	6.1	1.1	560	905
30	Deulgaon-Raja	SARAMBA	55D4-3C	20.08428	76.22042		12	Basalt	FAB	5.5	12	5.5	6.5	780	568
31	Deulgaon-Raja	MEHUNA	55D4-3B	20.0665	76.12178		19.69	Basalt	FAB	3	2.9	3.8	-0.9	1003	1335
32	Deulgaon-Raja	PANGRI PR	55D4-3A	20.06231	76.08442		8.4	Basalt	FAB	4	7.6	4.2	3.4	1573	1467
33	Deulgaon-Raja	SINGAON		20.07967	76.08683		10.5	Basalt	FAB	4	6.2	6	0.2	1000	932

Annexure-II: Details of GW monitoring wells and KOWs in Buldhana district.

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude(m	Depth	Geology	Aquifer	Diamesion	D.T.W.(m	D.T.W.(Pre	Fluctuation	EC (Pre -	EC (Post -
No.						a msl)	(m			(m)	bgl)	- 2018)(m		2018)(micromhos)	2018)(micromhos)
							bgl)					bgl)			
		JAHAGIR20													
34	Deulgaon-Raja	GIROLI KHURD		19.9785	76.04958		9.8	Basalt	FMB	7.5	9.3	5.3	4	1100	1630
35	Deulgaon-Raja	TULIJAPUR		19.96142	76.07917		10.4	Basalt	FMB	3	10.1	7.3	2.8	1760	1250
36	Deulgaon-Raja	ALAND		20.03511	76.138		15.24	Basalt	FMB	6	7	14.2	-7.2	1284	622
37	Deulgaon-Raja	PIMPALGAON		20.02561	76.17575		10.3	Basalt	FMB	4.3	9.6	9.3	0.3	1030	1407
		ВК													
38	Khamgaon	Wazar		20.54583	76.4925		13	Basalt	FMB	10	10.2	6.3	3.9	980	690
39	Khamgaon	Nagjhari Bk.		20.51014	76.46144		18	Basalt	FAB	10	16.7	12	4.7	1130	980
40	Khamgaon	Fattehpur		20.48171	76.57806		12	Basalt	FMB	10	10	4.4	5.6	930	830
41	Khamgaon	Lakhanwada		20.5	76.62944		10	Basalt	FMB	3	6.6	5.2	1.4	1280	1050
42	Khamgaon	Lokhanda		20.55137	76.55232		10	Basalt	FMB	8	6.7	5.5	1.2	500	1000
43	Khamgaon	Antraj		20.63003	76.53441		18	Basalt	WB	4	15.6	11.8	3.8	900	730
44	Khamgaon	Bhota Koli		20.5856	76.39769		13	Basalt	FMB	6	9	8	1	1100	700
45	Khamgaon	Rohana		20.65342	76.47838		8	Basalt	FMB	4.5	4	3	1	800	640
46	Khamgaon	Rahud		20.73153	76.45202		25	Basalt	FMB	4.5	19	16.8	2.2	860	780
47	Khamgaon	Tandulwadi		20.68918	76.45136		11	Basalt	FMB	3	8	7	1	1090	800
48	Khamgaon	Umbara		20.70666	76.37076		15	Basalt	FAB	5	13	8.4	4.6	900	640
49	Khamgaon	Dhoravgaon		20.656	76.41996		16	Basalt	FAB	4	14.3	9.9	4.4	1100	900
50	Khamgaon	Kokta		20.76139	76.56764		21	Basalt	FMB	6	20	16	4	1300	1200
51	Khamgaon	Jaipur Londhe		20.71189	76.59815		12	Basalt	FMB	5	9.5	5.9	3.6	920	790
52	Khamgaon	Karegaon		20.61839	76.69091		13	Basalt	FMB	10	12	11.3	0.7	1300	1400
53	Khamgaon	Palshi Bk.		20.59711	76.73383		10	Basalt	FAB	3.5	8.7	6.2	2.5	1520	1250
54	Khamgaon	Loni Gurav		20.5662	76.76324		11	Basalt	FAB	4	10	9.5	0.5	600	720
55	Khamgaon	Shahpur		20.51227	76.74555		8.8	Basalt	FAB	3	8.6	7.2	1.4	460	580
56	Khamgaon	Kanchanapur		20.52292	76.71126		11.5	Basalt	FAB	6	11.2	10	1.2	1400	1480
57	Khamgaon	Adgaon		20.54063	76.69059		12	Basalt	FMB	6	11.9	9.2	2.7	1200	1150
58	Khamgaon	Sherla Nemane		20.4843	76.68442		7	Basalt	FMB	2.5	4.7	2.4	2.3	680	500
59	Khamgaon	Atali		20.57377	76.64132		19	Basalt	FMB	6	16	3.5	12.5	1000	960
60	Khamgaon	Awar		20.62935	76.42413		12	Basalt	FMB	6	11.7	10.5	1.2	1130	1100
61	Khamgaon	Tembhurna		20.67265	76.60134		18	Basalt	FMB	4	15.1	9.2	5.9	1600	1200
62	Lonar	Kingaon Jattu	56 A/5	19.97003	76.35483	498	13.5	Basalt	FMB	7.68	13.06	6.8	6.26	1395	1480
63	Lonar	Bidkhed	56 A/5	19.96125	76.42106	527	9.5	Basalt	FMB	6	5.46	2	3.46	820	1230
64	Lonar	Chorpangra	55 D/8	20.01139	76.35053	538	9.65	Basalt	FMB	3.75	9	3.85	5.15	1028	1660
65	Lonar	Hatta	56 A/5	19.99144	76.42467	543	16.2	Basalt	FMB	4.5	15.1	4.1	11	768	1840
66	Lonar	Shindi	55D/8	20.00442	76.45825	563	9.5	Basalt	FMB	5.5	8.2	6.2	2	726	790
67	Lonar	Anjani Kh	55 D/8	20.06764	76.47814	551	6.72	Basalt	FMB	5.3	4.56	0.7	3.86	2176	2050
68	Lonar	Udanapur	55 D/8	20.05142	76.49142	591	12.5	Basalt	FMB	4.7	12	4.8	7.2	2487	1270
69	Lonar	Shivni Pisa	55 D/8	20.10128	76.45339	552	22	Basalt	FMB	6	18.3	4.2	14.1	949	1020

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude(m	Depth	Geology	Aquifer	Diamesion	D.T.W.(m	D.T.W.(Pre	Fluctuation	EC (Pre -	EC (Post -
No.			-		-	a msl)	(m		-	(m)	bgl)	- 2018)(m		2018)(micromhos)	2018)(micromhos)
						-	bgl)					bgl)			
70	Lonar	Shara	55 D/12	20.01731	76.53003		13.6	Basalt	FMB	3	11.5	5.85	5.65	2397	2880
71	Lonar	Chincholi	56 A/5	19.9475	76.46803		13.27	Basalt	FMB	6.05	9.4	1	8.4	1219	1240
72	Lonar	Kasari	56 A/5	19.93283	76.41558		11.7	Basalt	FMB	8.4	10.5	7.3	3.2	780	630
73	Lonar	Khurampur	56 A/9	19.89147	76.51586		11.93	Basalt	FMB	3	11.6	5.8	5.8	1202	1980
74	Lonar	Nandra	56 A/9	19.87464	76.58206		8.32	Basalt	FMB	7.7	5.15	3.5	1.65	388	400
75	Lonar	Gandari	56 A/9	19.87853	76.60775		5.65	Basalt	FMB	3.56	5.4	3.3	2.1	1032	933
76	Lonar	Kundaras	56 A/9	19.95769	76.60775		11.5	Basalt	FMB	3	8.05	5.55	2.5	673	603
77	Lonar	Paraskhed	56 A/9	19.99814	76.57292		12	Basalt	FMB	4	10.2	6.6	3.6	1571	2208
78	Lonar	Bagulkhed	55 D/12	20.038	76.62064		17.45	Basalt	FMB	3	14.2	3.45	10.75	562	1350
79	Mehkar	Jaitala	55 D/12	20.13464	76.52997	540	17	Basalt	FMB	5.75	14.75	8.7	6.05	1031	905
80	Mehkar	Sarangpur	55 D/12	20.14475	76.5525	522	13.53	Basalt	FMB	10	9.33	6.15	3.18	1210	1140
81	Mehkar	Shubhanpur	55 D/8	20.18467	76.49408	543	8.98	Basalt	FMB	7.97	8.67	3.5	5.17	1303	1020
82	Mehkar	Bramhapuri	55 D/12	20.24128	76.51344	556	7.5	Basalt	FMB	4	7	5.5	1.5	1264	1440
83	Mehkar	Nandra	55 D/8	20.21719	76.525	562	17.48	Basalt	FMB	5.1	15.87	1.15	14.72	1156	980
84	Mehkar	Mandawa	55 D/11	20.41589	76.62119	401	12.48	Basalt	FMB	4.56	8.65	6.24	2.41	1589	1370
85	Mehkar	Mohana Kh	55 D/12	20.2425	76.60058	401	7.63	Basalt	FMB	3.15	5.9	4.3	1.6	941	813
86	Mehkar	Naigaon	55 D/11	20.40031	76.71342	395	11.85	Basalt	FMB	3.15	8.82	5.3	3.52	1273	1013
87	Mehkar	Deulgaon Sakarsha	55 D/11	20.42839	76.68325	358	8.5	Basalt	FMB	4	7.62	5.95	1.67	1261	1490
88	Mehkar	Ghatbori	55 D/11	20.31672	76.69933	497	7.35	Basalt	FMB	4.9	6.95	3.3	3.65	1365	2300
89	Mehkar	Kanaka Bk	55 D/11	20.28197	76.72283	534	8.7	Basalt	FMB	6	8.02	3.1	4.92	3012	3600
90	Mehkar	Loni Gawali	55 D/12	20.24358	76.67569		11.3	Basalt	FMB	3.15	7.73	2.5	5.23	1683	1350
91	Mehkar	Bhosa	55 D/11	20.29189	76.66281		10.47	Basalt	FMB	2.7	5.12	3.15	1.97	503	478
92	Mehkar	Andrudh	55 D/12	20.21947	76.677		12.5	Basalt	FMB	5	9.4	1.6	7.8	1116	1970
93	Mehkar	Anjani Bk	55 D/12	20.17303	76.64722		9.5	Basalt	FMB	3.15	7.72	0.94	6.78	1289	2272
94	Mehkar	Khamkhed	55 D/12	20.15464	76.62186		7.5	Basalt	FMB	3.2	7.4	3.1	4.3	1291	1910
95	Mehkar	Sukri	55 D/12	20.11922	76.60647		13.74	Basalt	FMB	4	8.1	3.45	4.65	1289	1980
96	Mehkar	Nagapur	55 D/12	20.17528	76.69028		7.3	Basalt	FMB	2.65	7.1	1.2	5.9	2147	2240
97	Mehkar	Shelgaon Deshmukh	55 D/11	20.24953	76.73033		5.22	Basalt	FMB	1.75	4.4	2.8	1.6	2724	5250
98	Mehkar	Gohagaon	55 D/16	20.22572	76.75792		19.22	Basalt	FMB	5.7	12.37	1.5	10.87	723	890
99	Mehkar	Pangarkhed	55 D/16	20.25472	76.77747		14.03	Basalt	FMB	6.2	9	4.56	4.44	735	790
100	Mehkar	Aregaon	55 D/12	20.14156	76.71639		27.07	Basalt	FMB	6.12	19.45	10.45	9	896	693
101	Mehkar	Ratnapur	55 D/11	20.12858	76.66025		10.8	Basalt	FMB	3	7.5	4.3	3.2	1458	1256
102	Mehkar	Jawala	55 D/12	20.14486	76.67692		11.58	Basalt	FMB	6.1	8.6	5.3	3.3	612	593
103	Mehkar	Kambarkhed	55 D/12	20.20433	76.55297		10.35	Basalt	FMB	3.75	8.2	1.95	6.25	1186	1660
104	Mehkar	Karmbeshwar	55 D/12	20.29189	76.50622		6.83	Basalt	FMB	2.75	5.85	3	2.85	1892	1360
105	Mehkar	Sula	55 D/11	20.27933	76.52772		6.3	Basalt	FMB	1	6.22	2.95	3.27	1677	1578
106	Mehkar	Mel Janori	55 D/11	20.32075	76.64575		7.1	Basalt	FMB	4	dry	5.1	#VALUE!	976	813
107	Mehkar	Janephal	55 D/11	20.29408	76.57067		8.23	Basalt	FMB	8	7.12	3.32	3.8	1313	1360

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude(m	Depth	Geology	Aquifer	Diamesion	D.T.W.(m	D.T.W.(Pre	Fluctuation	EC (Pre -	EC (Post -
No.						a msl)	(m			(m)	bgl)	- 2018)(m		2018)(micromhos)	2018)(micromhos)
							bgl)					bgl)			
108	Mehkar	Mundephal	55 D/11	20.31242	76.54797		10.07	Basalt	FMB	3.62	6.87	5.17	1.7	815	1670
109	Mehkar	Hiwara Kh	55 D/11	20.32275	76.53144		7.22	Basalt	FMB	1.33	6.93	4.83	2.1	1042	1255
110	Mehkar	Pardi	55 D/11	20.34097	76.56139		4.55	Basalt	FMB	3	4.15	2	2.15	3302	1290
111	Mehkar	Marotipeth	55 D/11	20.27747	76.59456		6.3	Basalt	FMB	3	dry	2.3	#VALUE!		1575
112	Mehkar	Moli	55 D/12	20.22714	76.59456		9.42	Basalt	FMB	3	dry	5.2	#VALUE!		833
113	Mehkar	Umara	55 D/12	20.22239	76.65644		10.8	Basalt	FMB	3	dry	1.05	#VALUE!		660
114	Mehkar	Shahpur	55 D/12	20.20167	76.63525		13.32	Basalt	FMB	6.13	8.48	3.1	5.38	1313	1580
115	Mehkar	Hiwara Sable	55 D/12	20.14606	76.67019		7.58	Basalt	FMB	3	4.3	2.6	1.7	303	1770
116	Mehkar	Madani	55 D/12	20.14267	76.74147		10.32	Basalt	FMB	5	9.8	5	4.8	1239	1351
117	Mehkar	Dongaon	55 D/12	20.18722	76.73283		20.72	Basalt	FMB	5.46	11.05	7.8	3.25	1012	970
118	Sindkhed-R	saodad		20.24461	76.4135		8.2	Basalt	FMB	5.2	6.1	6.3	-0.2	650	892
119	Sindkhed-R	Ratali		20.21722	76.38028		11.6	Basalt	FMB	8	7.3	10.4	-3.1	570	744
120	Sindkhed-R	Sakharkherda		20.20072	76.39908		17.1	Basalt	FMB	6	13.9	12	1.9	1690	1809
121	Sindkhed-R	tandulwadi		20.17536	46.38183		8.6	Basalt	FMB	4	5.9	3.9	2	740	1171
122	Sindkhed-R	Ambewadi		20.09892	76.37433		14.6	Basalt	FMB	10	12	13.8	-1.8	780	878
123	Sindkhed-R	Malkapur Pangra		20.07383	76.33411		15.2	Basalt	FMB	6	14	8.9	5.1	580	1027
124	Sindkhed-R	Jhotinga		20.06539	76.36275		15.9	Basalt	FMB	8	15.2	4	11.2	950	877
125	Sindkhed-R	wardadil Kh		20.03653	76.3185		14.1	Basalt	FMB	7	13.8	10.3	3.5	770	630
126	Sindkhed-R	Raheri Bk		19.99203	76.27792		5.9	Basalt	FMB	2.5	3.5	2.65	0.85	1540	1941
127	Sindkhed-R	Hiwarkhed Purna		20.02306	76.26211		7.15	Basalt	FMB	3	3.9	4.2	-0.3	540	1458
128	Sindkhed-R	Kingaon Raja		19.98953	76.24244		13	Basalt	FMB	4	11.4	9.1	2.3	1140	1376
129	Sindkhed-R	Palaskhed Chakka		19.97661	76.19458		11.7	Basalt	FMB	5	10.3	7	3.3	1073	1305
130	Sindkhed-R	Pimpalgaon lendi		19.98547	76.21214		15.1	Basalt	FMB	7	14.1	13.4	0.7	935	1017
131	Sindkhed-R	Tadshivani		19.96881	76.30097		11.49	Basalt	FMB	6	7.4	9.3	-1.9	670	1019
132	Sindkhed-R	Jambhora		19.94744	76.27792		11.1	Basalt	FMB	2	6.7	5.8	0.9	1540	1847
133	Sindkhed-R	Pangri ugle		19.96053	76.2585		8.2	Basalt	FMB	3	7.7	3.8	3.9	2680	2388
134	Sindkhed-R	Pimpalkhed Bk.		19.91753	76.23561		17.5	Basalt	FMB	9.6	14.8	10.3	4.5	890	730
135	Sindkhed-R	waghora		19.90981	76.17486		12.19	Basalt	FMB	5	6.4	8.7	-2.3	1650	2048
136	Sindkhed-R	Khamgaon		19.89992	76.16486		11.7	Basalt	FMB	2.5	6.7	5.6	1.1	1033	938
137	Sindkhed-R	Maharkhed		19.92728	76.17078		10.9	Basalt	FMB	3	9.6	10.3	-0.7	855	1119
138	Sindkhed-R	Shivani Taka		19.90386	76.12819		13.2	Basalt	FMB	4	11.9	7.1	4.8	2500	2318
139	Sindkhed-R	Sindkhed-Raja		19.9525	76.12722		12.71	Basalt	FMB	1	10.4	9	1.4	1900	2354
		Urban													
140	Sindkhed-R	Sindkhed-Raja		19.95056	76.12389		14.3	Basalt	FMB	6	3.9	2.4	1.5	1031	1175
		Urban													
141	Sindkhed-R	Sindkhed-Raja		19.95867	76.12008		14	Basalt	FMB	10	3.3	3	0.3	500	450
		Urban													
142	Sindkhed-R	Sindkhed-Raja		19.95417	76.12722		12.19	Basalt	FMB	5	5	4	1	1270	2149

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude(m	Depth	Geology	Aquifer	Diamesion	D.T.W.(m	D.T.W.(Pre	Fluctuation	EC (Pre -	EC (Post -
No.						a msl)	(m			(m)	bgl)	- 2018)(m		2018)(micromhos)	2018)(micromhos)
							bgl)					bgl)			
		Urban													
143	Sindkhed-R	Nimkhed		19.92306	76.10306		15.6	Basalt	FMB	7	14.6	14.9	-0.3	410	632
144	Sindkhed-R	Saokhed Tejan		19.95803	76.18231		11.69	Basalt	FMB	2	5.1	6.8	-1.7	2250	2491
145	Sindkhed-R	Saokhed Tejan		19.95436	76.18389		16.76	Basalt	FMB	5	6.8	6.5	0.3	553	643
146	Sindkhed-R	Hanvantkhed		19.93742	76.17783		13	Basalt	FMB	5	10.2	8.3	1.9	740	658
147	Sindkhed-R	Khairkhed		19.90708	76.29186		9	Basalt	FMB	5	8.5	5.5	3	1150	930
148	Sindkhed-R	Shelu		19.85903	76.17628		4.7	Basalt	FMB	1	3.5	3.6	-0.1	970	1080
149	Sindkhed-R	Dawargaon		19.87031	76.11022		10.5	Basalt	FMB	1.5	9.7	8.8	0.9	870	851
150	Sindkhed-R	Najirabad		19.91778	76.09181		9.4	Basalt	FMB	2	5.4	0.5	4.9	580	1315
151	Sindkhed-R	Kingaon Raja		19.98747	76.24339		11.2	Basalt	FMB	4	10.8	7.5	3.3	1800	1233
152	Sindkhed-R	Dusarbeed		20.00836	76.31239		14.74	Basalt	FMB	4	6.8	3.7	3.1	900	1338
153	Sindkhed-Raja	Plaskhed		19.98831	76.10622		13.1	Basalt	FMB	1.5	12.8	6.9	5.9	1290	1579
		Zalte													

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude	Depth(m	Geology	Aquifer	Diames	D.T.W.(pr	D.T.W.(Pos	Fluctuatio	EC (Pre -	EC (Post -
No.						(ma	bgl)			ion (m)	e 2018 m	t - 2018)(m	n	2018)(micromho	2018)(micromho
						msl)					bgl)	bgl)		s)	s)
1	Mehkar	Anjani Bk-1	55 D/12	20.18414	76.65897	552	19.38	Basalt	Unconfined	6.28	17.35	2.7	14.65	928	973
2	Mehkar	Anjani Bk-2	55 D/12	20.19269	76.66642	545	13.75	Basalt	Unconfined	5.94	8.05	1.6	6.45	652	673
3	Mehkar	Anjani Bk	55 D/12	20.17303	76.64722	557	9.5	Basalt	Unconfined	3.15	7.72	0.94	6.78	1289	2272
4	Mehkar	Anjani Bk-3	55 D/12	20.17661	76.65428	549	10.9	Basalt	Unconfined	7.6	10.4	2.15	8.25	1913	1219
5	Mehkar	Anjani Bk-4	55 D/12	20.16561	76.64711	560	17.68	Basalt	Unconfined	3.68	14.33	4.5	9.83	830	788
6	Mehkar	Anjani Bk-5	55 D/12	20.1675	76.65428	551	12.5	Basalt	Unconfined	7.5	9.93	0.98	8.95	829	813
7	Mehkar	Anjani Bk-6	55 D/12	20.16258	76.64283	564	15.55	Basalt	Unconfined	7.95	12.8	3.7	9.1	836	1030
8	Mehkar	Anjani Bk-7	55 D/12	20.16789	76.63461	565	11	Basalt	Unconfined	5.75	8.5	3.9	4.6	603	780
9	Mehkar	Anjani Bk-8	55 D/12	20.17997	76.64289	559	15	Basalt	Unconfined	6.7	7.3	2.05	5.25	840	730
10	Mehkar	Anjani Bk-9	55 D/12	20.16964	76.67411	549	10	Basalt	Unconfined	6.5	7.89	1.4	6.49	1145	905
11	Mehkar	Anjani Bk-10	55 D/12	20.15789	76.66822	554		Basalt	Unconfined		8	1.2	6.8	856	747
12	Mehkar	Anjani Bk-11	55 D/12	20.16186	76.665	557	12	Basalt	Unconfined	7	10.12	3.7	6.42	896	774
13	Mehkar	Anjani Bk-12	55 D/12	20.17689	76.64817	552	15	Basalt	Unconfined	7.9	12	1.8	10.2	930	930
14	Mehkar	Anjani Bk-13	55 D/12	20.18881	76.6445	563	10	Basalt	Unconfined	6.6	5.3	4.7	0.6	856	670
15	Mehkar	Anjani Bk-14	55 D/12	20.19372	76.64269	557	10	Basalt	Unconfined	6.1	8.94	1.7	7.24	978	840
16	Mehkar	Anjani Bk-15	55 D/12	20.17997	76.64289	559	15	Basalt	Unconfined	6.7	10.48	2.05	8.43	925	730
17	Mehkar	Dongaon-1	55 D/12	20.18533	76.71847	513	23.08	Basalt	Unconfined	5	19.25	5.65	13.6	1095	948
18	Mehkar	Dongaon-2	55 D/12	20.18928	76.71981	524	22	Basalt	Unconfined	7	19.8	4.6	15.2	841	933
19	Mehkar	Dongaon-3	55 D/12	20.16472	76.71753	538	20.03	Basalt	Unconfined	6.23	13.08	5.6	7.48	896	922
20	Mehkar	Dongaon-4	55 D/12	20.16378	76.71614	536	17.83	Basalt	Unconfined	7.45	12.75	5.7	7.05	987	935
21	Mehkar	Dongaon-5	55 D/12	20.17506	76.71889	532	25.27	Basalt	Unconfined	6.77	20.12	6.4	13.72	835	1440
22	Mehkar	Dongaon-6	55 D/12	20.183	76.72831	528	28.65	Basalt	Unconfined	2.75	26.75	7	19.75	1318	1220
23	Mehkar	Dongaon-7	55 D/12	20.17536	76.72844	535	27.6	Basalt	Unconfined	3	23.9	5.5	18.4	747	1160
24	Mehkar	Dongaon-8	55 D/12	20.16789	76.72867	540	35	Basalt	Unconfined	6.25	29.59	6.4	23.19	335	820
25	Mehkar	Dongaon-9	55 D/12	20.18722	76.73283	532	10	Basalt	Unconfined	3	7.52	5.9	1.62	1675	1547
26	Mehkar	Dongaon-10	55 D/12	20.17981	76.71536	525	20.72	Basalt	Unconfined	5.46	10.75	7.5	3.25	1012	970
27	Mehkar	Dongaon-11	56 D/12	20.16664	76.70142	538	15	Basalt	Unconfined	10.5	12.47	3	9.47	1047	813
28	Mehkar	Dongaon-12	57 D/12	20.16664	76.70142	540	8.6	Basalt	Unconfined	5.5	7.48	3.7	3.78	926	839
29	Mehkar	Dongaon-13	58 D/12	20.19861	76.71308	539	10	Basalt	Unconfined	4	8.9	3.9	5	913	840
30	Mehkar	Dongaon-14	59 D/12	20.20131	76.73528	540	17	Basalt	Unconfined	6	15.42	11	4.42	995	834
31	Mehkar	Madani-1	55 D/12	20.13656	76.75094	525	22.7	Basalt	Unconfined	5.47	15.85	6.3	9.55	941	915
32	Mehkar	Madani-2	55 D/12	20.13981	76.74064	529	21.25	Basalt	Unconfined	3.67	12.85	5.8	7.05	1026	1070
33	Mehkar	Madani-3	55 D/12	20.14267	76.74147	525	10.32	Basalt	Unconfined	5	9.8	5	4.8	1239	1351
34	Mehkar	Madani-4	55 D/12	20.14908	76.74086	526	11.3	Basalt	Unconfined	5	9.7	4.1	5.6	883	910
35	Mehkar	Madani-5	56 D/12	20.13306	76.75214	527	10	Basalt	Unconfined	6	8.47	2.4	6.07	1014	980
36	Mehkar	Madani-6	57 D/12	20.13644	76.74325	529	10	Basalt	Unconfined	7.3	8.79	6.2	2.59	1347	1290

Annexure-III: Key observation well of Panchayat Level

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude	Depth(m	Geology	Aquifer	Diames	D.T.W.(pr	D.T.W.(Pos	Fluctuatio	EC (Pre -	EC (Post -
No.						(ma	bgl)			ion (m)	e 2018 m	t - 2018)(m	n	2018)(micromho	2018)(micromho
						msl)					bgl)	bgl)		s)	s)
37	Mehkar	Madani-7	58 D/12	20.12767	76.74047	538	17	Basalt	Unconfined	5	13.7	5	8.7	973	815
38	Mehkar	Hiware Sable-1	55 D/12	20.14483	76.6735	571	11.55	Basalt	Unconfined	5.85	8.22	2.7	5.52	683	740
39	Mehkar	Hiware Sable-2	55 D/12	20.14686	76.66622	571	12.7	Basalt	Unconfined	3	12.5	0.9	11.6	684	808
40	Mehkar	Hiware Sable-3	55 D/12	20.15325	76.67028	549	12	Basalt	Unconfined	6	10.9	7.7	3.2	876	720
41	Mehkar	Hiware Sable-4	55 D/12	20.13169	76.66122	556	10	Basalt	Unconfined	6	8.9	5.05	3.85	749	625
42	Mehkar	Hiware Sable-5	55 D/12	20.14811	76.66064	548	12	Basalt	Unconfined	6	10.25	2	8.25	643	429
43	Mehkar	Hiwara Sable	55 D/12	20.14606	76.67019	560	7.58		Unconfined	3	4.3	2.6	1.7	303	1770
44	Sindkhed raja	Sindkhed raja-	56A1-2B	19.95325	77.10686	572	13	Basalt	Unconfined	4	6.7	4.5	2.2	1000	685
		Urban-1													
45	Sindkhed raja	Sindkhed raja-	56A1-2B	19.96003	76.14061	542	14.5	Basalt	Unconfined	3.1	13.5	11.4	2.1	1400	1309
		Urban-2													
46	Sindkhed raja	Sindkhed raja- Urban-3	56A1-2B	19.95822	76.14181	540	18.5	Basalt	Unconfined	0.7	17.3	11.2	6.1	1590	1966
47	Sindkhed raja	Sindkhed raja-	56A1-2B	19.96403	76.15422	540	25.3	Basalt	Unconfined	5.8	23.5	14.9	8.6	800	776
18	Sindkhed raia	Sindkhed raia-	56A1-2B	10 0/302	76 118//	551	15.3	Bacalt	Unconfined	10.5	13.6	3.4	10.2	1050	503
40	Sinukneuraja	Urban-5	JUA1-20	15.54552	70.11044	551	15.5	Dasan	oncommed	10.5	15.0	5.4	10.2	1050	505
49	Sindkhed raia	Sindkhed raia-	56A1-2B	19,94708	76,11519	552	14.2	Basalt	Unconfined	7.2	10	13.8	-3.8	740	829
	omanicaraja	Urban-6	00/12 20	1010 17 00	/ 0122020	001		Basare	encentrea	, . <u> </u>	10	1010	0.0	, 10	025
50	Sindkhed raja	Sindkhed raja-	56A1-2B	19.95706	76.11289	565	19	Basalt	Unconfined	7	14.5	6.7	7.8	890	466
	-	Urban-7													
51	Sindkhed raja	Sindkhed raja-	56A1-2B	19.95936	76.11231	566	23.9	Basalt	Unconfined	5	18.1	8	10.1	600	1034
		Urban-8													
52	Sindkhed raja	Sindkhed raja-	56A1-2B	19.95283	76.10864	554	10.8	Basalt	Unconfined	7.5	10	7.6	2.4	490	521
		Urban-9													
53	Sindkhed raja	Sindkhed raja-	56A1-2B	19.95908	76.11608	559	10	Basalt	Unconfined	2	9.2	8.9	0.3	940	957
		Urban-10													
54	Sindkhed raja	Sindkhed raja-	56A1-2B	19.96028	76.10503	558	14.6	Basalt	Unconfined	5.5	13.3	6.9	6.4	890	1478
		Urban-11													
55	Sindkhed raja	Sindkhed raja-	56A1-2B	19.96028	76.10861	627	17.5	Basalt	Unconfined	5.3	13.3	8.9	4.4	1097	1120
		Urban-12													
56	Sindkhed raja	Sindkhed raja-	56A1-2B	19.95744	76.10225	604	5.6	Basalt	Unconfined	7	4.1	4.9	-0.8	470	579
	o:	Urban-13	5644.00	10.05744	76 4 66 4 9	50.4	10.0	n 1:				10.0			
5/	Sindkhed raja	Sindkhed raja- Urban-14	56A1-2B	19.96744	76.16642	534	13.3	Basalt	Unconfined	4	11	10.9	0.1	540	638
58	Sindkhed raja	Saokhed Tejan-1	56A1-1C	19.96044	76.18033	529	15	Basalt	Unconfined	7	11.1	10.7	0.4	936	1055
59	Sindkhed raja	Saokhed Tejan-2	56A1-1C	19.95606	76.17781	535	13.21	Basalt	Unconfined	4	10.4	12.1	-1.7	960	1359
60	Sindkhed raja	Saokhed Tejan-3	56A1-1C	19.95597	76.1705	533	10.1	Basalt	Unconfined	5	9.8	9.3	0.5	1122	1468

SI.	Taluka	Site name	Toposheet	Latitude	Longitude	Altitude	Depth(m	Geology	Aquifer	Diames	D.T.W.(pr	D.T.W.(Pos	Fluctuatio	EC (Pre -	EC (Post -
No.						(ma	bgl)			ion (m)	e 2018 m	t - 2018)(m	n	2018)(micromho	2018)(micromho
						msl)					bgl)	bgl)		s)	s)
61	Sindkhed raja	Saokhed Tejan-4	56A1-1C	19.95161	76.18103	533	14.74	Basalt	Unconfined	5	13.4	12	1.4	760	976
62	Sindkhed raja	Saokhed Tejan-5	56A1-1C	19.96217	76.17889	528	7.8	Basalt	Unconfined	3	6.2	7.6	-1.4	1150	1430
63	Sindkhed raja	Saokhed Tejan-6	56A1-1C	19.96525	76.16903	528	15.24	Basalt	Unconfined	5	10.5	10.4	0.1	810	1050
64	Sindkhed raja	Saokhed Tejan-7	56A1-1C	19.96022	76.17508	547	15	Basalt	Unconfined	4	14.46	13	1.46	630	976
65	Sindkhed raja	Sindkhed raja-	56A1	19.96094	76.12819	537	12	Basalt	Unconfined	6.5	10	6.8	3.2	1289	1196
		Urban-15													
66	Sindkhed raja	Sindkhed raja-	56A1	19.93628	76.12828	562	18	Basalt	Unconfined	6.5	17.5	15.4	2.1	845	614
		Urban-16													
67	Sindkhed raja	Sindkhed raja-	56A1	19.92794	76.14492	591	22	Basalt	Unconfined	7	21.8	19.3	2.5	860	630
		Urban-17													
68	Sindkhed raja	Sindkhed raja-	56A1	19.93911	76.13978	567	8	Basalt	Unconfined	6	Dry	6.9	6.9		757
		Urban-18													
69	Sindkhed raja	Sindkhed raja-	56A1	19.95197	76.14978	544	10		Unconfined	7.7	Dry	9.5	9.5		1946
		Urban-19													

Sr.No	Taluka	Village	Y	Х	Depth	Year	Premonsoon water	Postmonsoon water	Pre trend (m/	'year)	Post trend (n	n/year)
							level (m bgl)	level (m bgl)				
									Rise (m)	Fall (m)	Rise (m)	Fall (m)
1	BULDANA	Buldana	20.5333	76.1833	7.66	2018	7	2.3	0.19892	`	0.052707	
2	BULDANA	Chikhala	20.4514	76.0847	7.81	2018	7.5	3.8		-0.0291	0.011607	
3	BULDANA	Dattapur	20.5222	76.0958	10	2018	9.2	1.4		-0.01987		-0.06572
4	BULDANA	Deulghat	20.5161	76.1222	8.7	2018	7.5	2.7		-0.22217	0.019206	
5	BULDANA	Dhad	20.4	76	11.4	2018	9.4	4.9		-0.25702	0.07313	
6	BULDANA	Dhalsawangi	20.4139	76.0333	9.65	2018	8.2	6.1		-0.05824	0.140773	0.140773
7	BULDANA	Jamathi	20.4458	76.0139	5.9	2018	5.8	3.2		-0.07842	0.297371	
8	BULDANA	Jamb	20.3125	75.95	11.75	2018	10.2	5.8		-0.09277		-0.01888
9	BULDANA	Mhasla Bk.	20.3403	75.9708	13.9	2018	12	6.6		-0.10565	0.116738	
10	BULDANA	Mondhala	20.3403	75.9569	14	2018	13.8	6.3		-0.08069	0.102253	
11	BULDANA	Nandrakoli	20.4842	76.1661	11	2018	8.8	3	0.061709		0.028755	
12	CHIKHLI	Amdapur	20.4111	76.45	9.81	2018	8.8	3.4		-0.04334	0.094964	
13	CHIKHLI	Amdapur 1	20.4056	76.45	9.81	2018	9.4	4	0.089895		0.051203	
14	CHIKHLI	Borgaon Kakade	20.35	76.3583	10.3	2018	8.8	1		-0.06016		-0.0006
15	CHIKHLI	Borgaon Wasu	20.3736	76.3125	8.61	2018	7.6	0.1		-0.13684		-0.48136
16	CHIKHLI	Chikhli	20.35	76.2583	16.8	2018	7	0.4	0.089619			-0.0268
17	CHIKHLI	Hatni	20.3958	76.2567	6.5	2018	6.5	0.8		-0.05708	0.037931	
18	CHIKHLI	Hatni	20.4014	76.4333	9	2018	6.1	4.4	0.02		0.333908	
19	CHIKHLI	Karwand	20.4583	76.3792	4.5	2018	4.5	0.6	0.006175		0.031035	
20	CHIKHLI	Khor	20.325	76.2722	14.9	2018	14.4	10	0.079726		0.352299	
21	CHIKHLI	Sawna	20.4125	76.2917	12.31	2018	12.2	9.5	0.130274		0.231034	
22	CHIKHLI	Shelodi	20.4153	76.3625	8.5	2018	7.5	4		-0.04099	0.214368	
23	CHIKHLI	Takarkhed	20.4583	76.4167	9	2018	8.9	1.1		-0.06003	0.041092	
		Helga										
24	CHIKHLI	Undri	20.4583	76.4639	5.85	2018	5.8	2.2		-0.10914		-0.01034
25	CHIKHLI	Utrada	20.3583	76.3347	7.2	2018	7.2	1.4		-0.06664		-0.11924
26	DEULGAON	Bharosa	20.2222	76.2417	17.5	2018	14.3	11		-0.34282	0.052291	
	RAJA											
27	DEULGAON	Deulgaon Mahi	20.0875	76.1764	12.2	2018	8.2	1.3		-0.06686	0.029802	
	RAJA											
28	DEULGAON	Deulgaon Raja	20.0139	76.0403	9.5	2018	7	1.5	0.141994			-0.01663
	RAJA											

Annexure-IV: Water Level of Ground water monitoring wells (2018) with long term trend (2009-2018)

Sr.No	Taluka	Village	Y	x	Depth	Year	Premonsoon water level (m bgl)	Postmonsoon water level (m bgl)	Pre trend (m/	'year)	Post trend (n	n/year)
									Rise (m)	Fall (m)	Rise (m)	Fall (m)
29	DEULGAON RAJA	Gunjala	20.1833	76.2917	8.7	2018	8.7	2.9	0.126034		0.12952	
30	DEULGAON RAJA	Konad	20.0139	76.0403	8.61	2018	8.6	5	0.045323		0.098207	
31	DEULGAON RAJA	Mehuna	20.0667	76.1194	9.61	2018	9.6	5	0.12122		0.002988	
32	DEULGAON RAJA	Mendgaon	20.125	76.1417	10.7	2018	10.4	4.1	0.433977		0.166733	
33	DEULGAON RAJA	Mera Kh.	20.225	76.2694	12.7	2018	12.7	6.3		-0.0051	0.487948	
34	DEULGAON RAJA	Pimpalner	20.0042	76.0361	11.61	2018	11.6	6.2	0.036777		0.208566	
35	DEULGAON RAJA	Waki Kh.	20.1278	76.1889	9.2	2018	8.7	4.5		-0.08902	0.073729	
36	DEULGAON RAJA	Yewata	20.2861	76.2028	9	2018	9	4.1		-0.00579	0.184661	
37	JALGAON JAMOD	Chalthana Kh.	21.1278	76.55	15	2018	15	9.1	0.037145		0.365405	
38	JALGAON JAMOD	Hanwatkhed	21.0736	76.4514	0	2018	18	14.5	0.216667		0.256667	
39	JALGAON JAMOD	Jalgaon Jamod	21.0514	76.5333	15.2	2018	16	8.1	0.067052			-0.20106
40	JALGAON JAMOD	Khandvi	20.9667	76.4811	13.7	2018	13.7	9.5	0.010019		0.088564	
41	JALGAON JAMOD	Raipur	21.0958	76.4333	10	2018	5.5	1.9		-0.08574		-0.13378
42	JALGAON JAMOD	Sonapali	21.1389	76.625	5	2018	4.1	0.9		-0.05453	0.020612	
43	JALGAON JAMOD	Umapur	21.1	76.4833	3.41	2018	3.4	2	0.156652		0.11194	
44	KHAMGAON	Ambetakali	20.5139	76.6778	9.9	2018	8.1	5	0.112752		0.05765	
45	KHAMGAON	Awar	20.6333	76.6333	9.5	2018	6.9	3.3	0.134093		0.03477	
46	KHAMGAON	Borjawala	20.725	76.3833	13.15	2018	9.5	3.2		-0.07867	0.008317	
47	KHAMGAON	Bothakaji	20.5333	76.7083	8.4	2018	7.7	2.2	0.052557			-0.15068

Sr.No	Taluka	Village	Y	Х	Depth	Year	Premonsoon water	Postmonsoon water	Pre trend (m/year)		Post trend (m/year)	
							level (m bgl)	level (m bgl)				
									Rise (m)	Fall (m)	Rise (m)	Fall (m)
48	KHAMGAON	Bothakoli	20.5861	76.3972	10.7	2018	9.8	5.5	0.112988		0.024324	
49	KHAMGAON	Divthana	20.625	76.475	12	2018	12	10	0.078018		0.045946	
50	KHAMGAON	Hiwarkhed	20.6083	76.5333	9.5	2018	9.5	5.3	0.123416		0.167568	
51	KHAMGAON	Jalaka Bhadang	20.7167	76.4819	9.81	2018	8.9	4.9		-0.27992	0.097297	
52	KHAMGAON	Jaypur Lande	20.7486	76.6014	12.61	2018	10.4	5	0.145484		0.165017	
53	KHAMGAON	Khamgaon	20.7042	76.575	19.5	2018	11.3	3.9		-0.25323	0.069932	
54	KHAMGAON	Koka	20.7486	76.5681	13.81	2018	13.35	5.4		-0.08112		-0.09865
55	KHAMGAON	Lakhanwada Bk.	20.4917	76.625	8.7	2018	8.1	4.3	0.027053		0.132432	
56	KHAMGAON	Nandri	20.6194	76.4278	13.81	2018	13.3	8.9	0.131292			-0.03716
57	KHAMGAON	Nimkawala	20.6625	76.4542	16.1	2018	16	14		-0.01602	0.109459	
58	KHAMGAON	Nipana	20.7139	76.4014	13	2018	9.1	3.9		-0.29408		-0.08784
59	KHAMGAON	Palshi Kh.	20.6167	76.7528	9.9	2018	9.9	4.9		-0.12584		-0.15811
60	KHAMGAON	Rohana	20.6453	76.4819	9.65	2018	9.6	5.5	0.19565		0.002703	
61	KHAMGAON	Tandulwadi	20.6903	76.4528	10	2018	9.5	5.2		-0.00172		-0.12973
62	KHAMGAON	Vihigaon	20.6	76.6417	12.5	2018	11.5	4.9		-0.34528		-0.14932
63	LONAR	Bhumrala	19.9403	76.3833	9.61	2018	9.5	3.5	0.015949		0.111066	
64	LONAR	Bibkhed	19.9658	76.4236	10.31	2018	8.9	1.6	0.051548		0.106011	
65	LONAR	Borkhedi	20.075	76.5583	8.5	2018	7	1		-0.30599		-0.14454
66	LONAR	Dhayfal	19.9597	76.4542	11.4	2018	9.6	4.2	0.119314		0.175956	
67	LONAR	Kingaon Jatu	19.9667	76.3569	13.11	2018	11.4	5		-0.19791	0.065301	
68	LONAR	Lonar	19.9833	76.3542	23.6	2018	21.7	9.8		-0.15933		-0.84373
69	LONAR	Sawargaon Teli	19.95	76.3625	8.5	2018	8.1	3.3	0.006662		0.015574	
70	LONAR	Shara	20.0306	76.5306	13.61	2018	11.8	4		-0.04743	0.264754	
71	LONAR	Sultanpur	20.0861	76.5194	10.7	2018	8.25	3.3		-0.08671	0.219945	
72	LONAR	Wadhav	19.9583	76.625	12.75	2018	11.7	4.8		-0.02117	0.261475	
73	MALKAPUR	Belad	20.8667	76.2375	14.8	2018	12	6.5		-0.06667	0.967167	
74	MALKAPUR	Dasarkhed	20.8819	76.1833	17.9	2018	12.2	5.1		-0.29103	0.046781	
75	MALKAPUR	Dudhalgaon Bk.	21.025	76.1833	15.4	2018	8.6	3.6	0.047917			-0.0691
76	MALKAPUR	Hingana Kazi	20.9139	76.1347	14.2	2018	11.8	8				-0.18112
77	MALKAPUR	Malkapur	20.8806	76.2042	16.9	2018	16.9	12.5	0.05641		0.372961	
78	MALKAPUR	Morkhed Bk.	20.8167	76.1639	14.7	2018	11	8.9		-0.16474	0.397854	
79	MALKAPUR	Nimkhed	20.7528	76.2778	10.86	2018	10.6	4.1		-0.03453	0.076395	
80	MALKAPUR	Umali	20.8056	76.2375	13.11	2018	10.6	10.1	0.091667		0.596137	
81	MALKAPUR	Waghola	20.9958	76.2	12.6	2018	12.5	9.3	0.256667			-0.04769

Sr.No	Taluka	Village	Y	Х	Depth	Year	Premonsoon water	Postmonsoon water	Pre trend (m/	'year)	Post trend (n	n/year)
							level (m bgl)	level (m bgl)				
									Rise (m)	Fall (m)	Rise (m)	Fall (m)
82	MALKAPUR	Waghud	20.875	76.2681	11	2018	9.2	4.1		-0.03438	0.152361	
83	MEHKAR	Anjani Bk.	20.1792	76.6458	11.81	2018	11.8	2.8	0.125828			-0.03391
84	MEHKAR	Chinchala	20.3069	76.7722	14.61	2018	14.5	8.9	0.086178			-0.064
85	MEHKAR	Degaon	20.2514	76.7833	13	2018	5.2	0.1		-0.18	0.009067	
86	MEHKAR	Deulgaon	20.4264	76.6875	10.9	2018	9.7	5.9		-0.05511	0.118046	
		Sakarasha										
87	MEHKAR	Dongaon	20.1833	76.7222	13.5	2018	13.2	10.4		-0.11131	0.012842	
88	MEHKAR	Gajarkhed	20.2514	76.4569	9.11	2018	5.8	0.1		-0.02711		-0.01089
89	MEHKAR	Gawandhala	20.1736	76.5667	11.61	2018	11.3	3.4		-0.16851	0.059211	
90	MEHKAR	Janefal	20.2958	76.5764	8	2018	7.4	2.2		-0.03913	0.043182	
91	MEHKAR	Khandala	20.1667	76.6056	6.81	2018	6.8	0.8	0.057618		0.039234	
92	MEHKAR	Lavhala	20.2778	76.4167	7.91	2018	6.3	3.1	0.019509		0.031758	
93	MEHKAR	Madani	20.1444	76.7417	7	2018	5.5	1.1		-0.07879	0.162321	
94	MEHKAR	Malkhed	20.2667	76.3889	7.41	2018	6.6	2.4		-0.0861	0.088333	
95	MEHKAR	Mehkar	20.15	76.5708	15.31	2018	10.9	4.5	0.030956		0.253333	
96	MEHKAR	Naigaon	20.2431	76.5764	7.91	2018	7.9	6	0.104778		0.336667	
		Dattapur										
97	MEHKAR	Naigaon	20.3972	76.7181	11.7	2018	11.2	6.3		-0.06972	0.266667	
		Deshmukh										
98	MEHKAR	Partapur	20.125	76.5875	11.5	2018	8	2.3		-0.36258	0.198333	
99	MEHKAR	Rajgad	20.3014	76.7667	8.9	2018	6.5	0.4		-0.01864		-0.07833
100	MEHKAR	Tembhurkhed	20.3347	76.7083	8.31	2018	6.4	0.9	0.04179		0.017969	
101	MEHKAR	Uddhava	20.2681	76.7722	6	2018	6	1.5	0.159489		0.096354	
102	MEHKAR	Vishvi	20.2889	76.7431	12.5	2018	12.5	3.6	0.111547		0.045833	
103	MOTALA	Dhamangaon	20.67	76.03	0	2018	0	0		-0.06208		-0.01037
104	MOTALA	Hanwatkhed	20.5806	76.0556	0	2018	0	0	0.017576		0.147273	
105	MOTALA	Motala	20.675	76.2083	0	2018	0	0		-0.08394		-0.25939
106	MOTALA	Motala	20.68	76.2	0	2018	0	0		-0.01943		-0.01224
107	MOTALA	Panhera	20.6389	76.0694	0	2018	0	0		-0.11939		-0.3303
108	MOTALA	Pimpalgaon	20.7667	76.025	0	2018	0	0	0.027879		0.213939	
		Devi										
109	MOTALA	Pimpalgaon	20.77	76.03	0	2018	0	0		-0.01251		-0.01111
		Devi										
110	MOTALA	Pimpri Gawali	20.7444	76.1417	0	2018	0	0		-0.19727		-0.12182

Sr.No	Taluka	Village	Y	Х	Depth	Year	Premonsoon water	Postmonsoon water	Pre trend (m/year)		Post trend (m/year)	
							level (m bgl)	level (m bgl)				
									Rise (m)	Fall (m)	Rise (m)	Fall (m)
111	MOTALA	Rajur	20.6028	76.1736	0	2018	0	0		-0.05588		-0.11364
112	MOTALA	Rohinkhed	20.625	76.1306	0	2018	0	0	0.040606			-0.20242
113	MOTALA	Rohinkhed	20.63	76.13	0	2018	0	0		-0.01951	0.009738	
114	MOTALA	Sarola (Maroti)	20.6917	76.1083	0	2018	0	0		-0.19333		-0.01773
115	MOTALA	Shelapur Bk.	20.7694	76.2083	0	2018	0	0		-0.24667		-0.04348
116	MOTALA	Ubalkhed	20.5972	76.1	0	2018	0	0		-0.30385		-0.30439
117	MOTALA	Urha	20.7861	76.0639	0	2018	0	0	0.087879		0.080758	
118	NANDURA	Isabpur	20.8625	76.4167	17.21	2018	17.05	13.8		-0.04391		-0.08755
119	NANDURA	Naigaon	20.8236	76.3708	12.81	2018	12.6	9.6		-0.01969		0.465
120	NANDURA	Nimgaon	20.8639	76.4736	27	2018	26.5	18.3	0.178125			0.176824
121	SANGRAMPUR	Alewadi	21.1431	76.6847	22.8	2018	14.9	1.5		-0.33557		-0.10455
122	SANGRAMPUR	Ambabarwa 2	21.2278	76.6486	4.1	2018	3.7	1.9	0.257328			-0.135
123	SANGRAMPUR	Ambabarwa 1	21.2278	76.6486	6.2	2018	5.8	2.7	0.325			-0.26
124	SANGRAMPUR	Awar	20.9772	76.7667	16.4	2018	15	9.1		-0.1482		-0.15492
125	SANGRAMPUR	Chunkhedi	21.2625	76.675	5.2	2018	5	2.5		-0.01879	0.425	
126	SANGRAMPUR	Deulgaon	20.9681	76.7417	27.15	2018	21.3	17.2		-0.18	0.417857	
127	SANGRAMPUR	Durgadiatya	20.9875	76.7292	12.5	2018	12.5	12	0.13738		0.164628	
128	SANGRAMPUR	Kodri	20.95	76.775	17	2018	15	9.3		-0.18		-0.18053
129	SANGRAMPUR	Paturda Bk.	20.9514	76.7319	9.2	2018	9	4.9	0.03815			0.116489
130	SANGRAMPUR	Takali	20.9292	76.7625	16.5	2018	16.5	15.7	0			-0.10106
		Panchgavhan										
131	SHEGAON	Alasna	20.8089	76.6597	17.11	2018	15	11.1		-0.17331		-0.00875
132	SHEGAON	Amsari	20.8042	76.4903	11.31	2018	11.25	8.7		-0.00506		-0.01915
133	SHEGAON	Jalamb	20.8181	76.5917	20.4	2018	11.7	6.9		-0.69085	0.275	
134	SHEGAON	Kalkhed	20.875	76.675	24	2018	21.8	23.7		-0.03476	0.0375	
135	SHEGAON	Lanjud	20.8014	76.5208	11.9	2018	10.1	7.9		-0.16616	0.302394	
136	SHEGAON	Lasura Bk.	20.7542	76.625	7.5	2018	6.4	3.3		-0.04024	0.063165	
137	SHEGAON	Manasgaon	20.9139	76.6847	24.71	2018	21	16.7		-0.69793		-0.75692
138	SHEGAON	Matargaon Bk.	20.8583	76.5639	17.2	2018	17.1	12.6	0.260366		0.81	
139	SHEGAON	Nimbi	20.8361	76.5667	17.5	2018	13.5	16		-0.89055	0.011968	
140	SHEGAON	Pahurjira	20.7833	76.5625	11.3	2018	5.2	3.9		-0.02308	0.260904	
141	SHEGAON	Shegaon	20.7917	76.6889	12.7	2018	4.8	2.4		-0.71098		-0.16237
142	SHEGAON	Shrishetra	20.7597	76.7611	12.81	2018	8.1	5.1		-0.42552	0.178457	
		Nagzari										1
Sr.No	Taluka	Village	Y	Х	Depth	Year	Premonsoon water	Postmonsoon water	Pre trend (m/	'year)	Post trend (n	n/year)
-------	----------	---------------	---------	---------	-------	------	------------------	-------------------	---------------	----------	---------------	----------
							level (m bgl)	level (m bgl)				
									Rise (m)	Fall (m)	Rise (m)	Fall (m)
143	SINDKHED	Changefal	19.9153	76.3417	9.2	2018	9.2	3.5	0.171462		0.17229	
	RAJA											
144	SINDKHED	Dawargaon	19.8667	76.1083	12	2018	11.2	3.5	0.08231		0.308042	
	RAJA											
145	SINDKHED	Dusarbid	20.0069	76.3111	7.1	2018	7.1	0.8	0.157604		0.01479	
	RAJA											
146	SINDKHED	Garkhed	19.9222	76.2264	10.9	2018	8	2.8	0.036137		0.096678	
	RAJA											
147	SINDKHED	Hiwarkhed	20.0236	76.2667	9.5	2018	9.5	1.5	0.422402			-0.03367
	RAJA											
148	SINDKHED	Jafrabad	20.2167	76.4458	10	2018	9.4	1.5		-0.0293	0.022115	0.022115
	RAJA											
149	SINDKHED	Malkapur	20.0708	76.3347	7	2018	7	0.8		-0.02073		-0.08759
	RAJA	Pangra										
150	SINDKHED	Nagazari Bk.	20.1431	76.3486	7.41	2018	7.4	5.3	0.009973		0.167738	
	RAJA											
151	SINDKHED	Nazirabad	19.9181	76.0931	9.61	2018	9.4	1	0.411346		0.041084	
	RAJA											
152	SINDKHED	Palaskhed	19.975	76.1986	10.5	2018	10.5	3	0.118977			-0.00909
	RAJA	Chakka										
153	SINDKHED	Rajegaon	20.1125	76.4306	11.5	2018	10.7	2.4		-0.14876	0.036014	
	RAJA											
154	SINDKHED	Rumhana	19.9389	76.3125	17	2018	11	3.1	0.285397		0.161888	
	RAJA											
155	SINDKHED	Shendurjan	20.125	76.3861	7.81	2018	7.8	2.4		-0.06042	0.008566	
	RAJA											
156	SINDKHED	Sindkhed Raja	19.9542	76.125	11.5	2018	10.4	1.4	0.174461			-0.1257
	RAJA											
157	SINDKHED	Waghora	19.9889	76.175	11.11	2018	10.9	3		-0.07698	0.018357	
	RAJA	-										

SN	Agency	Taluka	Village	рН	EC	TDS	TH	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F	Fe
1	CGWB	Buldhana	Borkhed	7.6	854	0	398.4	99.6	72.6	34.7	0.7	0	366	33.4	41	32	0.32	0
2	CGWB	Buldhana	Chandol	7.6	3142	0	1115.5	184.3	226.3	155.9	9.3	0	639.3	475.5	70	420	0.35	0
3	CGWB	Buldhana	Dongar Khandala	0	2032	943	625	136.272	69.2664	61.1	1.02	0	225.7	138.255	49	378	0.09	0
4	CGWB	Buldhana	Sailani	0	1060	493	360	84.168	36.456	73.38	1.35	0	189.1	170.16	40	119	0.11	0
5	GSDA	Buldhana	Buldhana	7.2	1798	1079	364	52	56.862	103	7	0	82.96	192	49	29	0.9	0.1
6	GSDA	Buldhana	Dattapur	7.4	1589	953	408	64	60.264	92	17	0	68.32	232	22	0	1.2	0.1
7	GSDA	Buldhana	Dhad	7.6	1240	806	480	153.6	23.328	98	0.3	0	270.84	200	28	100	0.8	0.3
8	GSDA	Buldhana	Jamathi	7.9	761	456	224	6.4	50.544	45	5	0.29616	39.6641	54	12	76	0.8	0.1
9	GSDA	Buldhana	Mhasla Bk.	7	2070	1242	604	66.4	106.434	121	15	0	58.56	372	38	13.8	1.7	0.1
10	GSDA	Buldhana	Mondhala	7.7	768	504	156	23.6	23.571	116	9	9.6	58.56	106	34	0	0.7	0.1
11	GSDA	Buldhana	Nandra Koli	9.1	610	390	336	52.8	49.572	156	2.2	27.0225	228.348	208	13	4	0.9	0.5
12	CGWB	Buldhana	Garadgaon	8	718	380	306	26.573	57.1144	64.02	1.29	0	315.217	45.9078	46	56	0.34	0
13	CGWB	Buldhana	Pahurjira	7.6	460	243	193.8	26.573	30.38	35.66	1.29	0	208.162	21.0927	52	4	0.24	0
14	CGWB	Chikhli	ESOLI EW-CHIKHLI	7.6	1827	970	627.3	67.4546	109.368	147	1.16	0	832.65	197.279	15	8	3.94	0
15	CGWB	Chikhli	Andhai	7.7	780	413	204	51.102	18.228	76.86	1.62	0	267.637	28.5373	36	76	0.87	0
16	CGWB	Chikhli	Anwi	7.6	637	337	270.3	71.5428	21.8736	22.72	1.93	0	249.795	13.6482	20	42	0.4	0
17	CGWB	Chikhli	AsolaNaik	7.6	953	505	382.5	87.8954	38.8864	33.24	2.75	0	350.903	23.5742	67	47	0.33	0
18	CGWB	Chikhli	Haralkhed	7.7	547	290	204	53.1461	17.0128	32.22	4.1	0	178.425	33.5003	41	10	0.42	0
19	CGWB	Chikhli	Hatni	7.5	646	342	255	63.3665	23.0888	35.76	1.78	0	291.428	16.1298	21	19	0.42	0
20	CGWB	Chikhli	Karatwadi	7.7	741	393	183.6	53.1461	12.152	85.63	1.13	0	237.9	60.7968	32	13	0.74	0
21	CGWB	Chikhli	Malshemba	7.5	670	355	275.4	69.4987	24.304	21.14	2.96	0	237.9	28.5373	40	44	0.26	0
22	CGWB	Chikhli	Naigaon Bk.	7.5	715	379	311.1	87.8954	21.8736	24.74	5.97	0	208.162	45.9078	47	23	0.28	0
23	CGWB	Deulgaon raja	Datala-1	7.6	1387	735	306	91.9836	18.228	156.2	5.84	0	154.635	239.465	174	3	0.83	0
24	CGWB	Deulgaon raja	Deolgaon Raja	7.4	1736	920	688.5	153.306	72.912	93.58	2.09	0	404.43	162.538	170	160	0.33	0
25	CGWB	Deulgaon raja	Ambashi	7.6	962	510	367.2	67.4546	47.3928	81	2.23	0	457.958	112.908	32	25	0.52	0
26	CGWB	Deulgaon raja	Chinchkhed	7.8	670	355	255	73.5869	17.0128	35	0.62	0	315.217	23.5742	12	11	0.35	0
27	CGWB	Deulgaon raja	Giroli Kh.	7.6	1287	682	576.3	96.0718	80.2032	114	0.6	0	612.593	152.612	35	39	0.18	0
28	CGWB	Deulgaon raja	Mehuna	7.9	993	524	428.4	47.0138	74.1272	52	0.59	0	529.327	85.6118	2	25	0.77	0
29	CGWB	Deulgaon raja	Mendgaon	7.8	508	269	173.4	40.8816	17.0128	53	1.13	0	285.48	26.0558	0	9	0.49	0
30	CGWB	Deulgaon raja	Pangri Ugle	8.2	506	268	260.1	40.8816	37.6712	26	0.98	0	267.637	31.0188	23	33	0.12	0
31	CGWB	Deulgaon raja	Pimpri Andhale	7.8	1188	630	540.6	79.7191	81.4184	21	18.39	0	612.593	70.7228	0	17	0.18	0
32	CGWB	Deulgaon raja	Saramba	7.9	815	433	362.1	65.4106	47.3928	62	0.38	0	428.22	73.2043	10	30	0.55	0
33	CGWB	Jalgaon jamod	Khandvi	8.2	1128	733	360	57.6	52.488	92	0.6	19.2	507.52	44	15	0	1.4	0.1
34	CGWB	Jalgaon Jamod	Adol Kh.	7.8	873	558.72	199.2	89.64	26.6231	70.09	1.39	0	170.8	59.1129	126	42	0.722	0
35	CGWB	Jalgaon Jamod	Golegaon Kh.	8	1460	934.4	94.62	54.78	9.68112	346.5	0.85	0	497.76	51.4025	245	22	1.79	0
36	CGWB	Jalgaon Jamod	Wadsingi	7.8	663	424.32	139.44	59.76	19.3622	74.4	0.56	0	219.6	17.9909	49	41	0.867	0
37	CGWB	Jalgaon Jamod	Takli Khati	7.9	757	484.48	124.5	54.78	16.942	110.7	0.63	0	244	38.5519	64	27	0.942	0

Annexure-V: Chemical analysis of ground water samples, Aquifer- I / Shallow aquifers

38	CGWB	Jalgaon Jamod	Borala Buzurg	8	994	636.16	94.62	24.9	16.942	219.8	0.39	0	366	33.4116	124	35	1.76	0
39	CGWB	Jalgaon Jamod	Dhanora	7.8	1200	768	253.98	114.54	33.8839	91.37	11.14	0	239.12	79.6739	103	11	0.576	0
40	CGWB	Jalgaon Jamod	Kherda Buzurg	7.8	1066	682.24	239.04	114.54	30.2535	81.67	1.05	0	244	89.9544	22	43	0.53	0
41	CGWB	Jalgaon jamod	Jalgaon	7.8	1256	803	556	102.4	72.9	254	2.3	0	63.44	440	50	14.9	1.07	0.1
42	CGWB	Jalgaon jamod	Raipur	7.2	500	330	164	19.2	28.188	25	3	0.148747	99.8433	70	5	0	0.9	0.1
43	CGWB	Jalgaon Jamod	Hanuwantkhed	7.6	581	371.84	134.46	94.62	9.68112	40.09	1.46	0	136.64	17.9909	72	43	0.888	0
44	CGWB	Jalgaon jamod	Umapur	7.5	380	250	108	16	16.524	29	6	0.237052	79.7471	30	6	59	0.9	0.1
45	CGWB	Khamgaon	Godhnapur	7.8	754	400	341.7	47.0138	53.4688	44.25	2.54	0	339.007	43.4262	28	70	0.39	0
46	CGWB	Khamgaon	Ambe Takli	7.6	1095	580	464.1	47.0138	82.6336	78.36	1.25	0	362.798	100.501	65	130	0.37	0
47	CGWB	Khamgaon	Antraj	7.7	730	386	306	49.0579	43.7472	41.6	1.22	0	261.69	35.9818	37	44	0.75	0
48	CGWB	Khamgaon	Jaipur Londe	7.7	703	372	295.8	75.631	25.5192	22.05	2.75	0	327.113	13.6482	41	18	0.39	0
49	CGWB	Khamgaon	Nagjhari Bk.	7.4	930	492	402.9	98.1158	37.6712	39.29	3.28	0	321.165	50.8708	40	47	0.58	0
50	CGWB	Khamgaon	Karegaon	7.6	1174	623	408	79.7191	49.8232	63.26	1.19	0	344.955	70.7228	46	80	0.47	0
51	CGWB	Khamgaon	Dhoravgaon	7.5	880	466	321.3	71.5428	34.0256	55.29	2.58	0	362.798	31.0188	30	40	0.72	0
52	CGWB	Khamgaon	Lakhanwada	7.6	1072	601	397.8	77.675	48.608	66.06	1.15	0	315.217	65.7597	61	66	0.53	0
53	CGWB	Khamgaon	Lokhanda	7.5	1181	625	484.5	81.7632	66.836	46.64	2.5	0	327.113	50.8708	87	90	0.66	0
54	CGWB	Khamgaon	Palshi Bk.	8.1	1408	746	351.9	51.102	53.4688	139.6	3.39	0	434.168	75.6858	64	124	1.1	0
55	CGWB	Khamgaon	Rahud	7.7	782	414	244.8	40.8816	34.0256	56.42	2.44	0	309.27	28.5373	26	32	1.2	0
56	CGWB	Khamgaon	Rohana	7.6	648	343	300.9	71.5428	29.1648	16.34	1.18	0	309.27	18.6113	17	20	0.59	0
57	CGWB	Khamgaon	Shahpur	7.5	841	445	336.6	79.7191	32.8104	36.41	1.44	0	297.375	45.9078	30	47	0.76	0
58	CGWB	Khamgaon	Tembhurna	7.4	1601	849	525.3	106.292	61.9752	84.26	3.25	0	309.27	107.945	87	94	0.58	0
59	CGWB	Khamgaon	Umbara	7.7	675	357	306	61.3224	36.456	18.27	1.3	0	237.9	23.5742	33	45	0.52	0
60	CGWB	Khamgaon	WAZAR	7.3	872	462	341.7	34.7494	60.76	53	0.92	0	374.693	75.6858	27	20	0.5	0
61	CGWB	Lonar	Gandari	7.8	1115	559	499.8	120.601	47.3928	28.5	49.38	0	588.803	33.5003	67	15	0.24	0
62	CGWB	Lonar	Khurampur	7.3	1333	706	453.9	85.8514	57.1144	94.48	1.41	0	356.85	98.0192	71	94	0.27	0
63	CGWB	Lonar	Chincholi	7.5	1226	649	504.9	112.424	53.4688	34.43	9.25	0	237.9	105.464	142	32	0.47	0
64	CGWB	Lonar	Hatta	7.5	756	400	311.1	79.7191	26.7344	30.61	1.32	0	279.533	23.5742	31	42	0.47	0
65	CGWB	Lonar	Paraskhed	7.3	1462	776	428.4	120.601	30.38	99.49	1.31	0	237.9	145.168	80	74	1.36	0
66	CGWB	Lonar	Bugulkhed	7.7	536	284	204	22.4849	35.2408	37.18	3.18	0	77.3175	70.7228	30	17	3.57	0
67	CGWB	Lonar	Anjanj Kh	7.9	2324	1230	591.6	114.468	72.912	209.4	57.44	0	719.648	199.761	72	100	0.42	0
68	CGWB	Lonar	Lonar1	7.9	1505	798	464.1	83.8073	60.76	161	24.94	0	505.538	150.131	160	42	0.72	0
69	CGWB	Malkapur	Umali	6.9	2510	1506	488	61.6	81.162	125	17	0	73.2	388	19	0	1.4	0.1
70	CGWB	Malkapur	Umadi	7.4	1360	870.4	308.76	169.32	33.8839	56.9	3.6	0	244	105.375	110	45	0.255	0
71	CGWB	Malkapur	Morkhed Kh.	8.2	3640	2184	380	12.8	84.564	175	18	0	146.4	420	46	0	1	0.1
72	CGWB	Malkapur	Jambhul Dhaba	7.7	955	611.2	204.18	129.48	18.1521	81.3	1.4	0	214.72	71.9635	57	46	0.664	0
73	CGWB	Malkapur	Belad	7.4	741	474	432	75.2	59.292	57	0.1	0.480515	203.507	164	7.5	0	0.8	0.2
74	CGWB	Malkapur	Malkapur	7.7	940	601.6	124.5	44.82	19.3622	35.5	8.29	0	97.6	102.805	12	8	0.384	0
75	CGWB	Malkapur	Wadoda	7.7	1061	679.04	199.2	94.62	25.4129	117.7	26.6	0	278.16	84.8141	176	7	0.412	0
76	CGWB	Malkapur	Hingana Kazi	7.5	6970	4182	1220	82	246.645	185	19	0	48.8	966	50	7	1.2	0.1
77	CGWB	Malkapur	Malkapur	9.1	1594	1036	116	12.8	20.412	356	0.5	134.4	570.96	92	26	6	1.2	0.2
78	CGWB	Malkapur	Wivra	7.6	1479	946.56	323.7	169.32	37.5143	89.2	3.63	0	268.4	177.339	89	36	0.598	0

79	CGWB	Malkapur	Mahaswadi	7.8	1119	716.16	258.96	119.52	33.8839	67.9	0.87	0	195.2	118.226	94	44	0.481	0
80	CGWB	Malkapur	Dasarkhed	8.4	610	400	340	50	52.245	49	1	5.09492	215.78	50	115	64	0.9	0.3
81	CGWB	Malkapur	Dudhalgaon	8	896	573	260	60.8	26.244	26	0.5	0	141.52	38	71	5	0.3	0.3
82	CGWB	Mehkar	Shara	7.1	2490	1320	856.8	282.083	36.456	45.31	31.36	0	565.013	192.316	33	190	0.24	0
83	CGWB	Mehkar	Aregaon	7.6	813	431	158.1	44.9698	10.9368	102.2	1.68	0	356.85	26.0558	28	33	0.62	0
84	CGWB	Mehkar	Madani	7.5	1227	649	255	87.8954	8.5064	165.9	2.55	0	416.325	70.7228	73	62	1.1	0
85	CGWB	Mehkar	Sarangpur	8.1	1286	681	183.6	28.6171	26.7344	250.6	2.76	0	559.065	80.6487	43	20	1.3	0
86	CGWB	Mehkar	Hiwara Sable	7.5	406	215	163.2	47.0138	10.9368	11.48	5.01	0	124.898	16.1298	50	10	0.44	0
87	CGWB	Mehkar	Anjani Bk	7.2	1335	707	392.7	143.086	8.5064	179.4	6.34	0	452.01	105.464	89	28	0.72	0
88	CGWB	Mehkar	Dongaon	7.6	801	424	229.5	77.675	8.5064	72.89	3.26	0	333.06	26.0558	27	28	0.52	0
89	CGWB	Mehkar	Nagapur	7.3	2314	1225	759.9	202.364	60.76	157.9	6.33	0	594.75	232.02	82	150	0.5	0
90	CGWB	Mehkar	Shahpur	7.4	1334	707	193.8	59.2783	10.9368	232.5	4.05	0	190.32	202.242	70	38	0.45	0
91	CGWB	Mehkar	Kambarkhed	7.3	1244	660	530.4	151.262	36.456	20.35	2.39	0	297.375	120.353	73	39	0.45	0
92	CGWB	Mehkar	Nandra	7.3	1175	584	402.9	130.821	18.228	70.1	2.77	0	220.058	135.242	77	52	0.52	0
93	CGWB	Mehkar	Andrudh	7.3	1044	553	367.2	98.1158	29.1648	75	5.33	0	303.322	73.2043	67	62	0.41	0
94	CGWB	Mehkar	Pangarkhed	7.9	467	246	198.9	14.3086	38.8864	6	0.39	0	184.373	23.5742	0	34	2.67	0
95	CGWB	Mehkar	Pangarkhed	7.5	711	377	285.6	81.7632	19.4432	31.35	1.17	0	279.533	16.1298	33	41	1.6	0
96	CGWB	Mehkar	Sula	7.1	1779	942	693.6	177.835	59.5448	68.15	7.35	0	404.43	115.39	85	170	0.43	0
97	CGWB	Mehkar	Kanaka Bk	7.3	3353	1778	1035.3	290.259	74.1272	197.4	19.18	0	648.278	480.17	80	14	0.34	0
98	CGWB	Mehkar	Naigaon	7.5	722	382	86.7	24.529	6.076	124.1	2.28	0	154.635	70.7228	67	0	2	0
99	CGWB	Mehkar	Mandawa	7.3	1645	872	540.6	138.997	46.1776	120.8	2.1	0	469.853	102.982	56	92	0.57	0
100	CGWB	Mehkar	Mehkar	7.2	1908	1011	673.2	179.879	53.4688	146.5	11.55	0	380.64	264.28	190	90	0.2	0
101	GSDA	Motala	Dhamangaon Badhe	7.3	852	559	104	14.8	16.281	93	6	0	82.96	108	31	74	1	0.1
102	GSDA	Motala	Hanvatkhed	7.4	625	411	116	17.2	17.739	16	2	0.197842	83.7896	32	5	4	0.8	0.1
103	GSDA	Motala	Motala	7.1	1727	1133	280	35.2	46.656	295	12	0	87.84	280	95	4.3	1	0.1
104	GSDA	Motala	Nimkhed	7	1535	921	332	52	49.086	95	11	0	63.44	216	16	13	0.8	0.1
105	GSDA	Motala	Rajur	7	1177	771	380	42.8	66.339	81	11	0	97.6	156	45	0	0.5	0.1
106	CGWB	Motala	Rohinkhed	0	2301	1083	560	72.144	92.3552	188	83.98	0	244	354.5	49	383	0.09	0
107	GSDA	Motala	Rohinkhed	6.9	2060	1236	380	74.8	46.899	165	7	0	82.96	310	32	23	0.7	0.1
108	GSDA	Motala	Sarola Maroti	7	1013	664	184	28.8	27.216	119	12	0	79.3	134	35	54	0.9	0.1
109	CGWB	Motala	Ubalkhed	0	1097	513	460	50.1	81.4184	53.6	1.22	0	341.6	106.35	50	139	0.11	0
110	GSDA	Motala	Ubalkhed	7.97	1492	1014	628	40.32	128.11	134	0.2	24	439.2	252	87.4	7.9	0.42	0.3
111	GSDA	Motala	Urha/liha	8.4	1548	1027	620	32	131.22	115	7	24	131.76	270	71	7	0.6	0.3
112	CGWB	Nandura	Shemba	8	1043	625	232	19.6	44.469	71	4	0	48.8	94	7	5	0.7	0.1
113	CGWB	Nandura	Phuli	7.6	796	509.44	164.34	69.72	22.9927	91.08	1.65	0	195.2	38.5519	160	42	1.04	0
114	CGWB	Nandura	Mahalungi	7.3	753	451	385	17.6	82.863	45	2	0.104815	55.8852	162	5	70	1.2	0.1
115	CGWB	Nandura	Malegaon	7.5	608	389.12	164.34	109.56	13.3115	28.73	1.27	0	204.96	15.4207	28	42	0.452	0
116	CGWB	Nandura	Wadner	7.9	2495	1596.8	239.04	79.68	38.7245	55.8	0.97	0	317.2	79.6739	24	13	0.925	0
117	CGWB	Nandura	Isabpur	7.5	1252	751	182	11.2	37.422	75	4	0	63.44	70	14	14	1.5	0.1
118	CGWB	Nandura	Matond	7.6	698	446.72	154.38	94.62	14.5217	54.2	1.15	0	185.44	64.2531	39	16	0.795	0
119	CGWB	Nandura	Nimgaon	7.4	1188	712	260	14	54.675	37	4	0	78.08	58	7	3.1	2.4	0.1

120	CGWB	Nandura	Alampur	7.7	2970	1782	184	12.8	36.936	157	26	0	170.8	158	11	39	0.8	0.1
121	CGWB	Nandura	Alampur	8	1080	691.2	129.48	49.8	19.3622	218.2	2.43	0	390.4	46.2622	136	45	1.02	0
122	CGWB	Nandura	Chandur Biswa	7.4	930	610	152	9.6	31.104	52	9	0	136.64	96	6	6	1.5	0.1
123	CGWB	Nandura	Hingonegavhan	7.7	868	555.52	119.52	54.78	15.7318	169.7	0.51	0	297.68	33.4116	110	28	0.711	0
124	CGWB	Nandura	Kharkhundi	7.54	1436	919	484	35.2	96.228	294	145	24	375.76	584	31.96	75	0.43	0.2
125	CGWB	Nandura	Sawargaon Nehu	7.8	1074	687.36	129.48	9.96	29.0434	188.02	1.09	0	287.92	84.8141	81	45	0.731	0
126	CGWB	Nandura nandura	Nandura-1	7.7	1655	877	525.3	59.2783	89.9248	186.9	7.05	0	487.695	254.354	82	31	0.24	0
127	CGWB	Sangrampur	Khiroda	8.25	1552	1020	316	99.2	16.524	154	0.5	0	732	46	23	78	0.6	0.2
128	CGWB	Sangrampur	Patorda Kh	7.5	592	355	140	21.2	21.141	15	2	0.035518	11.9487	104	19	0	0.7	0.1
129	CGWB	Sangrampur	Kodri	7.6	1017	650.88	184.26	89.64	22.9927	139.32	7.96	0	370.88	43.6921	51	22	0.56	0
130	CGWB	Sangrampur	Warwat	7.9	1146	733.44	149.4	69.72	19.3622	219.86	0.63	0	453.84	43.6921	101	12	0.95	0
131	CGWB	Sangrampur	Patorda Bk	7.7	1870	1220	140	3.2	32.076	156	16	9.6	258.64	180	33	17	3.1	0.1
132	CGWB	Sangrampur	Awar	7.7	648	414.72	124.5	69.72	13.3115	83.35	1.09	0	209.84	35.9817	40	7	0.25	0
133	CGWB	Sangrampur	Awar	7.6	562	337	140	20.8	21.384	17	2	0.104317	27.8758	102	15	6	0.9	0.1
134	CGWB	Sangrampur	Durgadaitya	8	1016	660	304	62.4	35.964	119	0.3	0	536.8	68	3.8	3	0.6	0.3
135	CGWB	Sangrampur	Tunki	8.3	984	590	160	4.8	35.964	35	5	0	34.16	28	10	21	0.8	0.1
136	CGWB	Sangrampur	Warwant Bakal	8.3	769	505	412	67.2	59.292	104	0.3	0	756.4	26	12	88	0.7	0.2
137	CGWB	Sangrampur	Katel	7.9	885	566.4	139.44	54.78	20.5724	143.52	0.66	0	312.32	38.5519	67	30	0.71	0
138	CGWB	Sangrampur	Jasi	7.7	671	429.44	169.32	89.64	19.3622	52.48	0.48	0	234.24	23.1311	11	35	0.53	0
139	CGWB	Sangrampur	Tunki Kh.	7.6	585	374.4	154.38	74.7	19.3622	29.77	0.39	0	195.2	23.1311	19	34	0.25	0
140	CGWB	Sangrampur	Tunki	7.13	884	566	278	44.4	40.581	50	44	14.4	234.24	65	24	11.8	1.4	0.2
141	CGWB	Sangrampur	Alewadi	7.4	810	486	240	8.8	52.974	52	3	0.131885	55.8556	76	9	13.2	0.8	0.1
142	CGWB	Sangrampur	Sonola	7.6	584	373.76	154.38	79.68	18.1521	35.37	0.41	0	185.44	15.4207	13	48	0.26	0
143	CGWB	Sangrampur	Pingali Jahangir	7.9	856	547.84	199.2	139.44	14.5217	76.49	1.11	0	322.08	28.2714	18	34	0.66	0
144	CGWB	Shegaon	Tintrav	7.7	733	469.12	199.2	119.52	19.3622	31.94	0.52	0	165.92	43.6921	48	25	0.37	0
145	CGWB	Shegaon	Nagzari Bk	7.1	2000	1200	396	16.4	86.265	115	11	0	63.44	264	32	46	0.8	0.1
146	CGWB	Shegaon	Chinchali Karfarma	7.5	997	638.08	263.94	134.46	31.4636	43.94	0.57	0	170.8	100.235	88	42	0.53	0
147	CGWB	Shegaon	Pahurgira	7.3	690	414	328	27.2	63.18	41	5	0.157232	83.8328	130	10	35	1.6	0.1
148	CGWB	Shegaon	Shegaon	8	1364	896	560	148.8	45.684	62	0.4	0	253.76	186	139	29	0.8	0.1
149	CGWB	Shegaon	Lanjud	7	1040	624	390	36.8	72.414	82	12	0	87.84	178	10	82	1	0.1
150	CGWB	Shegaon	Lanjud	7.6	995	636.8	258.96	139.44	29.0434	396.9	0.98	0	429.44	53.9726	498	47	0.356	0
151	CGWB	Shegaon	Alsane	7.6	775	496	159.36	99.6	14.5217	52.55	1.84	0	156.16	56.5427	35	41	0.554	0
152	CGWB	Shegaon	Nimbi	7.4	2020	1212	536	32.4	110.565	110	13	0	39.04	344	55	40	1.1	0.1
153	CGWB	Shegaon	Matargaon Bk.	7.9	1098	702.72	164.34	69.72	22.9927	193.08	1.03	0	322.08	77.1038	132	42	0.708	0
154	CGWB	Shegaon	Jhadegaon	7.8	1050	672	159.36	89.64	16.942	165.4	0.87	0	297.68	82.244	64	44	0.51	0
155	CGWB	Shegaon	Dolarkhed	8.2	1555	995.2	114.54	34.86	19.3622	34.99	0.62	0	53.68	74.5336	32	44	0.801	0
156	CGWB	Shegaon	Shegaon	7.6	4653	2465	1632	130.821	311.091	95	9.29	0	374.693	740.728	450	74	0.26	0
157	CGWB	Sindkhed raja	Ambewadi	7.7	845	447	413.1	85.8514	47.3928	19	0.28	0	374.693	78.1672	38	39	0.06	0
158	CGWB	Sindkhed raja	Dusarbeed	7.6	971	515	377.4	75.631	44.9624	91	0.67	0	493.643	63.2783	20	31	0.13	0
159	CGWB	Sindkhed raja	Jambhora	8.3	484	256	229.5	20.4408	42.532	22	1.16	11.7	172.477	43.4262	61	4	0.75	0
160	CGWB	Sindkhed raja	Jambhora	7.5	641	339	331.5	81.7632	30.38	19	0.32	0	344.955	23.5742	22	29	0.1	0

161	CGWB	Sindkhed raja	Khairkhed	6.8	2255	1195	816	216.672	65.6208	129	0.44	0	1070.55	182.39	33	40	0.15	0
162	CGWB	Sindkhed raja	Kingaon Raja	7.8	1258	665	535.5	122.645	54.684	38	0.55	0	582.855	88.0933	32	39	0.14	0
163	CGWB	Sindkhed raja	Pimpalgaon Lendi	7.7	887	471	408	87.8954	44.9624	12	0.61	0	249.795	85.6118	39	37	0.27	0
164	CGWB	Sindkhed raja	Sakhar Kherda	7.8	1899	1003	596.7	128.777	65.6208	130	1.16	0	731.543	212.168	29	32	0.17	0
165	CGWB	Sindkhed raja	saokhed tejan	7.8	820	435	408	91.9836	42.532	29	0.82	0	428.22	35.9818	39	39	0.26	0
166	CGWB	Sindkhed raja	Saokhed Tejan	7.4	1675	888	433.5	136.953	21.8736	119	5.25	0	612.593	130.279	43	39	0.1	0
167	CGWB	Sindkhed raja	Sindkhed Raja-Urban	8.2	408	216	209.1	32.7053	30.38	18	1.04	0	249.795	16.1298	21	10	0.87	0
168	CGWB	Sindkhed raja	Sindkhed Raja-Urban	8.2	506	268	209.1	40.8816	25.5192	26	0.98	0	267.637	-3.72225	23	33	0.12	0
169	CGWB	Sindkhed raja	Sindkhed-R	8	1636	864	765	157.394	88.7096	16	0.62	0	588.803	214.65	26	40	0.15	0
170	CGWB	Sindkhed raja	Tadshivni	7.8	723	383	331.5	65.4106	40.1016	21	0.72	0	374.693	31.0188	20	6	0.18	0
171	CGWB	Sindkhed raja	Tadshivni	8.3	484	256	229.5	20.4408	42.532	22	1.16	0	255.743	1.24075	61	4	0.75	0
172	CGWB	Sindkhed raja	Tandulwadi	7.8	809	429	321.3	65.4106	37.6712	14	5.02	0	321.165	48.3893	38	25	0.12	0
173	CGWB	Sindkhed raja	Wardadil Kh.	7.9	810	429	377.4	57.2342	55.8992	15	0.16	0	422.272	23.5742	9	39	1.11	0
174	CGWB	Sindkhed raja	Saokhed Tejan	8.2	408	408	209.1	32.7053	30.38	18	1.04	0	249.795	-3.72225	21	10	0.87	0
175	CGWB	Sindkhed raja	Sindkhed Raja	7.7	525	278	249.9	77.675	13.3672	18.97	9.07	0	202.215	38.4633	70	5	0.16	0
176	CGWB	Sindkhed raja	Mera Khurd	7.6	910	482	377.4	65.4106	51.0384	66.21	2.32	0	356.85	60.7968	46	64	0.33	0
177	CGWB		Sultanpur	7.4	1807	957	499.8	75.631	74.1272	185.6	12.34	0	356.85	194.798	200	84	0.26	0
178	CGWB		Sungaon-1	7.8	1114	622	489.6	116.513	47.3928	52.32	5.22	0	297.375	107.945	62	170	0.2	0
179	CGWB		Pimpalgaon Raja	8	752	399	153	30.6612	18.228	101.6	2.68	0	279.533	50.8708	33	30	0.32	0
180	CGWB		Rohinkhed	7.9	855	453	357	57.2342	51.0384	68.5	7.3	0	339.007	68.2413	40	64	0.35	0
181	CGWB		Kelwad	7.4	1390	736	459	102.204	48.608	84.97	36.08	0	297.375	182.39	84	78	0.21	0
182	CGWB		Nandri	7.8	1008	534	351.9	26.573	68.0512	83.91	0.96	0	392.535	80.6487	33	72	0.5	0
183	CGWB		Rohna	7.8	1153	652	372.3	44.9698	61.9752	71.24	1.73	0	267.637	107.945	23	160	0.43	0
184	CGWB		Loni	7.7	682	361	229.5	44.9698	27.9496	48.71	35.13	0	243.848	78.1672	52	17	0.25	0
185	CGWB		Motala	7.7	1523	807	535.5	36.7934	105.722	85.8	1.67	0	356.85	120.353	106	120	0.39	0
186	CGWB		Amdapur	7.5	1084	574	392.7	44.9698	66.836	62.66	9.25	0	243.848	95.5378	74	130	0.19	0
187	CGWB		Warwand	7.7	615	357	260.1	55.1902	29.1648	53.55	1.95	0	267.637	53.3522	30	47	0.4	0
188	CGWB		Jalamb	7.6	2325	1232	1014.9	204.408	120.305	118.7	2.35	0	297.375	294.058	340	350	0.29	0
189	CGWB		Undri	7.9	1021	541	229.5	55.1902	21.8736	162.5	3.93	0	594.75	28.5373	46	35	0.6	0
190	CGWB		Ubalkhed	7.6	1219	646	535.5	87.8954	75.3424	60.41	2.15	0	368.745	90.5747	74	170	0.35	0
191	CGWB		Janephal	7.5	1680	890	515.1	71.5428	80.2032	85.2	93.91	0	457.958	165.02	150	100	0.12	0

SN	Agency	Taluka	Village	рН	EC	TDS	тн	Ca	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	Fe
1	EW2017	Sangrampur	Warwat Bakal(Taluka-Sangrampur)	7.4	1267	669	189	31	27	121	6.5	0	77	216	102	2	3.8	0
2	GSDA	Buldhana	Birsingpur	7.5	2320	1593	100	12.8	16.5	345	19	0	34.2	628	15	30	0.8	0.1
3	GSDA	Buldhana	Nandra Koli	7.2	2160	1420	376	32	71.9	377	46	0	102.5	386	60	0	0.2	0.1
4	GSDA	Buldhana	Sagwan	7.8	583	313	344	65.6	43.7	46	1.6	2.8	477.1	16	18	35	1.22	0.1
5	GSDA	Buldhana	Warud	8.2	1287	823	352	60.8	48.6	34	4.5	9.6	248.9	16	71	85	0.48	0.1
6	GSDA	Chikhali	Borgaon Vasu	7.4	630	416	124	19.2	18.5	30	4	0.2	87.8	56	6	65	2.1	0.1
7	GSDA	Chikhali	Chikhali	6.8	1270	839	400	62.4	59.3	85	4	0	102.5	168	62	82	0.3	0.1
8	GSDA	Chikhali	Hatani	7.7	1492	922	92	12.8	14.6	45	7	0	112.2	42	12	76	0.8	0.1
9	GSDA	Chikhali	Palaskhed Jayanti	8.2	820	533	396	44	69.5	107	1	0	141.5	230	38	79	0.1	0.1
10	GSDA	Deulgaon raja	Deulgaon raja	8.6	822	540	220	35.2	32.1	39	2	14.4	141.5	60	42	39.42	0.3	0.2
11	GSDA	Deulgaon raja	Deulgaon Raja	8.29	1460	934.4	452	72.4	65.9	276	7.4	7.2	245.2	568	74.44	64.2	0.1	0.2
12	GSDA	Jalgaon jamod	Kuwardev	8.1	974	633	492	78.8	71.7	30	0.6	0	327	88	15	55	1.1	0.1
13	GSDA	Khamgaon	Divthana	7.6	732	439	360	44.8	60.3	52	3	0.2	59.8	158	20	10	1.2	0.1
14	GSDA	Khamgaon	Jalka Bhadag	7	1222	733	248	19.2	48.6	76	4	0	73.2	78	6	42	1	0.1
15	GSDA	Khamgaon	Nimkawada	7.4	2000	1200	604	42.8	120.8	118	15	0	73.2	446	16	7	1	0.1
16	GSDA	Khamgaon	Nipana	7.6	2690	1614	296	9.6	66.1	165	22	0	73.2	256	10	59	1.3	0.1
17	GSDA	Khamgaon	Palashi Kh	7.8	6530	4179	2000	257.6	329.5	190	0	4.8	536.8	910	171	4	1.2	0.1
18	GSDA	Lonar	Bibi	7.5	1078	708	220	40	29.2	30	1.3	0	230.6	43	14	22.15	0.5	0.2
19	GSDA	Lonar	Borkhedi	8.3	1120	717	524	92.8	71	230	23	81.6	463.6	415	17	9	0.5	0.1
20	GSDA	Lonar	Pimplner	8	1233	809	570	162	40.1	43	0.2	0	364.8	153	86	77	0.5	0.1
21	GSDA	Lonar	Sultanpur	7.7	1590	1018	488	84.8	67.1	194	0.6	9.6	330.6	424	19	77	0.5	0.1
22	GSDA	Malkapur	Waghola	8.72	797	541	188	30	27.5	45.5	1.9	9.6	224.5	12	39.1	21.7	0.76	0.2
23	GSDA	Malkapur	Waghul	7.2	1703	1089	416	66.4	60.8	41.6	0.1	24	136.6	50	32	0	1	0.2
24	GSDA	Mehkar	Dongaon	8.5	751	496	170	22	27.9	91	5.8	7	236.8	85	15	22	0.5	0.1
25	GSDA	Mehkar	Tembhurkhed	7.8	1010	646	496	88	67.1	40.3	3.1	0	73.2	260	22	81	1	0.2
26	GSDA	Motala	Dhamangaon Badhe	8.6	1154	738	424	86.4	50.5	61	4.3	14.4	436.8	16	52	18	0.65	0.5
27	GSDA	Motala	Pimplgaon devi	7.3	882	579	272	32	46.7	49	5	0	83	5	112	16	0.8	0.1
28	GSDA	Motala	Shelapur Bk	7.2	1338	802	448	44.8	81.6	81	8	0	87.8	290	23	77	1.2	0.1
29	GSDA	Nandura	Alampur	7.7	2970	1782	184	12.8	36.9	157	26	0	170.8	158	11	39	0.8	0.1
30	GSDA	Nandura	Fulli	8	1370	900	40	3.2	7.8	134	31	19.2	117.1	16	7	30	2.4	0.1
31	GSDA	Nandura	Kokalwadi	8.34	1379	937	268	35.84	43.4	371	1.5	9.6	214.7	480	121.9	78	2.22	0.2
32	GSDA	Nandura	Naigaon	7.2	2130	1278	532	63.2	90.9	85	7	0	58.6	374	23	105	1.3	0.1
33	GSDA	Nandura	Nandura	7.7	452	271	280	4.8	65.1	13	2	0.2	39.8	22	10	15.5	1.1	0.1
34	GSDA	Nandura	Narkhed	7.5	2430	1600	840	41.6	178.8	125	30	0	126.9	634	11	13.7	0.5	0.1
35	GSDA	Sangrampur	Kodri	7.9	678	406	88	12.8	13.6	39	7	0.3	39.7	54	27	82	1.1	0.1

Annexure VI: Chemical analysis of ground water samples, Aquifer- II / Deeper aquifers

SN	Agency	Taluka	Village	рН	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	Fe
36	GSDA	Sangrampur	Rohinkhidki	8.33	619	406	190	62	8.5	17.3	0.3	3.8	191.1	18	24	33	0.1	0.2
37	GSDA	Sangrampur	Takli	7.4	1476	880	244	21.6	46.2	85	11	0	43.9	134	8	0	1	0.1
38	GSDA	Shegaon	Bhongaon	8.4	1494	982	340	56	48.6	148	0.4	39.6	355	181	42	63	0.1	0.2
39	GSDA	Shegaon	Jalamb	7.6	1090	654	248	6.4	56.4	35	8	0	34.2	36	5	20	0.9	0.1
40	GSDA	Shegaon	Jawala Bk.	7.2	1970	1182	288	12.8	62.2	58	5	0	48.8	82	5	11.8	1.2	0.1
41	GSDA	Shegaon	Kalkhed	8.2	9280	6100	1780	156.8	337.3	1200	0.7	0	414.8	2050	1848	26.1	0.8	0.1
42	GSDA	Shegaon	Manasgaon	8	523	344	144	43.2	8.7	120	0.8	2	210	54	39	15	0.7	0.2
43	GSDA	Shegaon	Matargaon Bk	7.3	3130	1878	740	20.8	167.2	93	10	0	63.4	596	23	10	1.3	0.1
44	GSDA	Shegaon	Pahurpurna	8.1	3650	2372	300	57.6	37.9	835	1	0	917.4	868	162	49	1	0.2
45	GSDA	Shegaon	Tiwan Bk.	7.5	1074	706	424	67.2	62.2	32	0.2	0	283	84	69	33.2	1.1	0.3
46	GSDA	Shindkhed raja	Changefal	7.3	1825	1200	676	108	98.7	94	0.3	0	414.8	194	86	23	0.7	0.1
47	GSDA	Shindkhed raja	Palaskhed Chakka	7.5	582	303	236	57.6	22.4	80	0.3	0.5	179.5	30	19	5.8	0.7	0.2
48	GSDA	Shindkhed raja	Whagora	7.8	751	135	336	75.2	36	13	5.7	0.9	155	50	17	23	0.9	0.2
49	GWE	Sangrampur	Sangrampur	7.6	1825	1010	200	30	30	304	2.7	0	348	415	200	BDL	BDL	0
50	GWE	Sangrampur	Allewadi (DZ)	7.9	680	380	140	30	16	84	2	0	262	60	40	BDL	BDL	0
51	GWE	Sangrampur	Allewadi	8	600	335	195	18	36	49	0.1	0	323	28	5	BDL	BDL	0
52	GWE	Sangrampur	Allewadi	8	1700	1170	220	22	40	373	0.1	0	1074	53	65	BDL	BDL	0
53	GWE	Jalgaon-Jamod	Jamod	7.9	590	295	214	64	18	29	0.1	0	329	18	BDL	BDL	BDL	0
54	GWE	Jalgaon-Jamod	BheNAwad	6.9	1150	635	175	32	23	171	0.5	0	275	74	30	BDL	BDL	0
55	GWE	Jalgaon-Jamod	BheNAwad	8.6	1050	580	110	12	19	220	0.1	24	531	78	10	BDL	BDL	0
56	GWE	Shegaon	Golegaon	8	3300	2370	1020	128	170	453	1.2	0	500	567	800	BDL	BDL	0
57	GWE	Jalgaon-Jamod	Sungaon	8.9	570	300	160	16	29	53	8	18	207	39	20	15	BDL	0
58	GWE	Jalgaon-Jamod	Nimkhedi	7.7	650	322	280	16	58	21	1	0	336	7	12	39	0.01	0
59	GWE	Jalgaon-Jamod	Nimkhedi	7.7	580	291	220	16	44	29	1	0	329	11	7	18	0.57	0
60	GWE	Jalgaon-Jamod	Nimkhedi	7.6	700	343	295	28	55	22	1.5	0	366	14	7	32	0.47	0
61	GWE	Nandura	Wadi	8.2	850	505	350	48	60	38	0.6	0	171	106	68	101	0.82	0
62	GWE	Nandura	Wadi	7.2	2000	1263	385	144	6	290	1	0	31	408	395	BDL	3.9	0
63	GWE	Shegaon	Amsari	7.4	990	500	375	106	27	48	1	0	433	39	36	23	1	0
64	GWE	Shegaon	Amsari	7.4	1130	610	230	86	4	130	2	0	195	270	11	10	2	0
65	GWE	Shegaon	Amsari	7.3	1150	660	295	90	17	126	1	0	425	142	12	19	1.57	0
66	GWE	Shegaon	Jawla (Paraskhed)	7.2	1090	603	420	106	38	55	0.1	0	354	106	44	76	1.05	0
67	GWE	Shegaon	Jawla (Paraskhed)	7.5	1310	735	495	132	40	68	0.4	0	366	152	56	103	0.99	0
68	GWE	Malkapur	Malkapur	8.6	6400	4165	595	182	34	1150	20	444	811	1060	287	580	1.38	0
69	GWE	Nandura	Wadi	7.5	670	365	220	32	34	48	1.5	0	220	85	27	29	0.66	0
70	GWE	Motala	Mohegaon	8.3	840	518	80	20	7	161	0.5	0	171	145	94	4	2.6	0
71	GWE	Chikli	Brahmapuri	7.8	950	510	265	50	34	72	19	0	256	131	57	22	0.39	0
72	GWE	Buldana	Dhad	7.3	790	422	330	74	35	30	1	0	232	60	30	75	0.87	0
73	GWE	Buldana	Urha	8.5	940	509	320	38	43	69	4	30	201	92	35	96	1.07	0

SN	Agency	Taluka	Village	рН	EC	TDS	TH	Са	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	Fe
74	GWE	Chikli	Buldana	7.4	830	469	75	24	4	150	2	0	110	163	64	5	2.07	0
75	GWE	Chikli	Chikhli	7.2	2700	1247	1135	264	115	52	2.7	0	500	451	69	43	0.32	0
76	GWE	Mehkar	Janephal	8.4	930	548	390	88	41	35	1	12	67	145	39	153	0.29	0
77	GWE	Sindkhed-Raja	Sakharkheda	8.1	1430	865	580	128	63	59	6.4	0	98	234	60	265	0.36	0
78	GWE	Sindkhed-Raja	Sakharkheda	7.5	2000	1128	630	184	41	135	7.5	0	525	273	90	132	3.5	0
79	GWE	Sindkhed-Raja	Sakharkheda	7.6	2200	1298	855	254	53	73	7.3	0	390	284	83	348	0.25	0
80	GWE	Mehkar	Kalyana	7.4	880	463	315	70	34	36	1	0	305	74	24	72	0.4	0
81	GWE	Mehkar	Kalyana	7.6	790	468	305	66	34	39	1.1	0	372	67	22	53	0.79	0
82	GWE	Mehkar	Anjani (Bk)	7.5	1620	952	545	94	75	97	7.5	0	317	161	91	247	0.63	0
83	GWE	Lonar	GuNAha	8.1	1170	743	150	36	15	193	4	0	171	163	88	158	0.84	0
84	GWE	Lonar	Bibi	8.1	810	442	55	10	7	145	3	0	360	46	28	23	0.69	0
85	GWE	Sindkhed-Raja	Palaskhed Chakka	7.3	2300	1459	245	84	9	416	4	0	73	404	490	6	9.6	0
86	GWE	Malkapur	Jambhul Dhaba	7.8	2700	1632	970	210	108	160	10	0	281	440	176	387	0.55	0
87	GWE	Motala	Pimpalgaon Devi	7.8	800	420	255	36	40	67	1.2	0	336	50	18	40	0.8	0
88	GWE	Deulgaon-Raja	Bharosa	7.4	1070	594	440	104	44	33	1.6	0	360	67	57	107	0.27	0
89	GWE	Deulgaon-Raja	Deolgaon (Mahi)	7.5	1120	681	115	36	6	203	3	0	67	259	127	9	4.76	0
90	GWE	Deulgaon-Raja	Singaon (Jahangir)	8.2	1010	615	75	20	6	195	6	0	134	202	99	9	11.2	0
91	GWE	Chikli	Medsing	7.5	1500	887	120	42	4	287	3	0	171	323	140	2	9.8	0
92	GWE	lonar	Kasari	7	4900	10110	5350	1106	628	1855	10	0	43	5747	728	14	1.27	0
93	GWE	Sangrampur	Tunki	7.9	530	273	205	38	27	26	106	0	281	11	6	22	0.38	0
94	GWE	Sangrampur	Sangrampur	7.8	1120	665	245	34	39	128	10	0	305	106	125	70	0.54	0
95	GWE	Jalgaon-Jamod	Madakhed	7.1	2090	1310	280	96	10	330	28	0	116	383	390	12	2.7	0
96	GWE	Nandura	PatoNA	8.7	1880	1022	165	10	34	347	14	120	696	71	51	27	1.02	0
97	GWE	Malkapur	Umali	7.4	2550	1604	410	148	10	378	28	0	31	550	422	49	4.1	0
98	GWE	Jalgaon-Jamod	Jalgaon Jamod	9.4	580	310	115	12	21	74	4.5	30	128	92	4	8.6	0.18	0
99	GWE	Motala	Jalgaon Jamod	8.6	560	307	115	24	13	74	0.3	18	159	82	4	12	0.42	0
100	GWE	Motala	Sholapur Bk	7.5	2332	1516	875	120	140	NA	NA	0	256	372	97	22	0.44	0
101	GWE	Motala	Rohankhed	8	1634	713	700	48	141	23	0.1	0	104	312	308	7	1.3	0
102	GWE	Achalpur	BeNAwad	8.6	530	260	160	14	30	44	5	30	116	60	34	BDL	BDL	0
103	GWE	Nandura	Nimgaon EW-2	7.8	2620	1546	440	140	22	394	6	0	49	766	189	3.6	0.64	0
104	GWE	Nandura	Nimgaon EW-1	8.4	1250	722	340	30	64	121	13	24	214	170	59	134	0.36	0
105		Achalpur	Bendwad	8.55	530	260	160	14	30	44	5	30	116	60	34	0	0	0
106		Jalgaon-Jamod	Bhendwad	8.56	1050	580	110	12	19	220	0	24	531	78	10	0	0	0
107		Jalgaon-Jamod	Bhendwad	6.88	1150	635	175	32	23	171	0.5	0	275	74	30	0	0	0
108		Jalgaon-Jamod	Jalgaon Jamod	7.32	2400	1536	0	0	0	0	0	0	0	0	0	0	0	0
109		Jalgaon-Jamod	Jalgaon-Jamod	8.6	560	307	NA	115	24	13	74	0.3	18	159	82	4	0.42	12
110		Jalgaon-Jamod	Jalgaon-Jamod	9.4	580	310	NA	115	12	21	74	4.5	30	128	92	4	0.18	8.6

SN	Agency	Taluka	Village	рН	EC	TDS	TH	Са	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	Fe
111		Jalgaon-Jamod	Jamod	7.94	590	295	0	64	18	29	0	0	329	18	0	0	0	0
112		Jalgaon-Jamod	Sungaon	8.86	570	300	160	16	29	53	8	18	207	39	20	15	0	0.3
113		Malkapur	Umali	7.4	2550	1604	NA	410	148	10	378	28	Nil	31	550	422	4.1	49
114		Nandura	Patonda	8.7	1880	1022	NA	165	10	34	347	14	120	696	71	51	1.02	27
115		Sangrampur	Allewadi	8.03	600	335	195	18	36	49	0	0	323	28	5	0	0	0
116		Sangrampur	Allewadi	8.03	1700	1170	220	22	40	373	0	0	1074	53	65	0	0	0
117		Sangrampur	Allewadi (DZ)	7.92	680	380	140	30	16	84	1.95	0	262	60	40	0	0	0
118		Sangrampur	Sangrampur	7.8	1120	665	NA	245	34	39	128	10	Nil	305	106	125	0.54	70
119		Sangrampur	Sangrampur	7.57	1825	1010	200	30	30	304	2.73	0	348	415	200	0	0	0
120		Sangrampur	Tunki	7.9	530	273	NA	205	38	27	26	106	Nil	281	11	6	0.38	22
121		Shegaon	Golegaon	8.02	3300	2370	1020	128	170	453	1.2	0	500	567	800	0	0	0

SN	Village	Taluka	Х	Y	Struture
1	Chandol	Buldana	76.0253	20.3291	Percolation tank
2	Gondhankhed	Buldana	76.2952	20.5161	Percolation tank
3	Kolwad	Buldana	76.1622	20.5113	Percolation tank
4	Mhasla Kh.	Buldana	75.9946	20.3548	Percolation tank
5	Raipur	Buldana	76.159	20.3932	Percolation tank
6	Ruikhed	Buldana	76.0247	20.353	Percolation tank
7	Sakhali Bk.	Buldana	76.1615	20.4531	Percolation tank
8	Shirpur	Buldana	76.1865	20.4345	Percolation tank
9	Tandulwadi	Buldana	76.1257	20.4915	Percolation tank
10	Borgaon Wasu	Chikli	76.3064	20.3708	Percolation tank
11	Harni	Chikli	76.4139	20.4874	Percolation tank
12	Isoli	Chikli	76.5221	20.3849	Percolation tank
13	Jamdari	Chikli	76.5224	20.4475	Percolation tank
14	Kinhi naik	Chikli	76.5647	20.4249	Percolation tank
15	Mungi	Chikli	76.5352	20.3738	Percolation tank
16	Palaskhed Jayanti	Chikli	76.2587	20.3791	Percolation tank
17	Sawna	Chikli	76.2813	20.4167	Percolation tank
18	Shrikrishna Nagar	Chikli	76.3666	20.4874	Percolation tank
19	Shrikrishna Nagar	Chikli	76.3512	20.4795	Percolation tank
20	Undri	Chikli	76.4907	20.4848	Percolation tank
21	Andhera	Deulgaon-Raja	76.2408	20.162	Percolation tank
22	Andhera	Deulgaon-Raja	76.2713	20.1765	Percolation tank
23	Antri Khedekar	Deulgaon-Raja	76.2879	20.2127	Percolation tank
24	Baigaon Pr Malkapur	Deulgaon-Raja	76.1621	20.1267	Percolation tank
25	Deulgaon Mahi	Deulgaon-Raja	76.1866	20.1022	Percolation tank
26	Dhotra N.Pr.Malkapur	Deulgaon-Raja	76.2249	20.109	Percolation tank
27	Digras Bk.	Deulgaon-Raja	76.2318	20.0639	Percolation tank
28	Isrul	Deulgaon-Raja	76.1358	20.1573	Percolation tank
29	Mendgaon	Deulgaon-Raja	76.291	20.1367	Percolation tank
30	Mera Bk.	Deulgaon-Raja	76.3064	20.2012	Percolation tank
31	Pimpri Andhale	Deulgaon-Raja	76.2085	20.1597	Percolation tank
32	Pimpri Andhale	Deulgaon-Raja	76.1907	20.1508	Percolation tank
33	Saokhed	Deulgaon-Raja	76.2948	20.1052	Percolation tank
34	Saokhed	Deulgaon-Raja	76.2951	20.1205	Percolation tank
35	Shelgaon Atol	Deulgaon-Raja	76.1734	20.193	Percolation tank
36	Sura	Deulgaon-Raja	76.2324	20.094	Percolation tank
37	Akola Kh.	JALGAON (JAMOD)	76.4806	20.9685	Percolation tank
38	Asalgaon	JALGAON (JAMOD)	76.4622	20.9971	Percolation tank
39	Asalgaon	JALGAON (JAMOD)	76.4641	21.018	Percolation tank
40	Bhendwad Kh.	JALGAON (JAMOD)	76.5508	20.953	Percolation tank
41	Borala Bk.	JALGAON (JAMOD)	76.5973	20.9896	Percolation tank
42	Chavra	JALGAON (JAMOD)	76.5639	20.9482	Percolation tank
43	Dhanora	JALGAON (JAMOD)	76.4673	21.0367	Percolation tank
44	Gadagaon Kh.	JALGAON (JAMOD)	76.5032	20.974	Percolation tank
45	Golegaon Bk.	JALGAON (JAMOD)	76.4703	20.9283	Percolation tank
46	Hingna Pr.balapur	JALGAON (JAMOD)	76.4319	20.9169	Percolation tank
47	JALGAON (JAMOD) (MA-	JALGAON (JAMOD)	76.5214	21.0154	Percolation tank
48	JALGAON (JAMOD) (MA-	JALGAON (JAMOD)	76.5168	21.0332	Percolation tank
49	JALGAON (JAMOD) (MA-	JALGAON (JAMOD)	76.5527	21.0402	Percolation tank
50	Khandvi	JALGAON (JAMOD)	76.4524	20.9709	Percolation tank
51	Khel Paraskar	JALGAON (JAMOD)	76.5877	21.0868	Percolation tank
52	Kherda Bk.	JALGAON (JAMOD)	76.5933	21.0088	Percolation tank
53	Kherda Bk.	JALGAON (JAMOD)	76.5994	21.0432	Percolation tank
54	Kherda Bk.	JALGAON (JAMOD)	76.59	21.0511	Percolation tank
55	Kherda Kh.	JALGAON (JAMOD)	76.576	21.0197	Percolation tank
56	Kolkhed Pr.jamod	JALGAON (JAMOD)	76.5476	21.062	Percolation tank

Annexure VII: Location of proposed Percolation tanks in Buldhana district

SN	Village	Taluka	Х	Y	Struture
57	Kurangad Bk.	JALGAON (JAMOD)	76.5289	20.9596	Percolation tank
58	Kurangad Bk.	JALGAON (JAMOD)	76.5434	20.9696	Percolation tank
59	Nimbhora Bk.	JALGAON (JAMOD)	76.5676	21.0136	Percolation tank
60	Palaskhed	JALGAON (JAMOD)	76.5858	20.9727	Percolation tank
61	Palshi Supo	JALGAON (JAMOD)	76.4319	21.0276	Percolation tank
62	Palshi Supo	JALGAON (JAMOD)	76.4384	21.0398	Percolation tank
63	Palshi Vaidya	JALGAON (JAMOD)	76.3936	20.9731	Percolation tank
64	Parasharampur	JALGAON (JAMOD)	76.5476	20.9892	Percolation tank
65	Pimpalgaon Kale	JALGAON (JAMOD)	76.4373	20.9814	Percolation tank
66	Sawargaon	JALGAON (JAMOD)	76.5051	20.9896	Percolation tank
67	Sawargaon	JALGAON (JAMOD)	76.5163	20.972	Percolation tank
68	Sungaon	JALGAON (JAMOD)	76.5658	21.0589	Percolation tank
69	Sungaon	JALGAON (JAMOD)	76.534	21.0585	Percolation tank
70	Taaroda Kh.	JALGAON (JAMOD)	76.5396	20.9875	Percolation tank
71	Taroda Jamod	IALGAON (IAMOD)	76.5672	21.045	Percolation tank
72	Adgaon	Khamgaon	76.7075	20.5303	Percolation tank
73	Ambetakli	Khamgaon	76 685	20 508	Percolation tank
73	Ambikapur	Khamgaon	76 708	20.6405	Percolation tank
75	Ambikapur	Khamgaon	76 7052	20.0405	Percolation tank
76	Bhalegaon	Khamgaon	76 4175	20.6804	Percolation tank
77	Bothakaji	Khamgaon	76 7198	20.0004	Percolation tank
78	Chinchnur	Khamgaon	76 5657	20.3511	Percolation tank
70	Dudha	Khamgaon	76.5057	20.4976	Percolation tank
80	Ghatouri	Khamgaon	76 5352	20.4370	Percolation tank
81	Laipur londe	Khamgaon	76.5552	20.7131	Percolation tank
82	Kadamanur	Khamgaon	76 7622	20.7491	Percolation tank
82	Kanchannur	Khamgaon	76.7022	20.5504	Percolation tank
83	Kanchanpul Khamgaon Urban	Khamgaon	76.5652	20.3040	Percolation tank
04 95	Khalligaon-Orban	Khamgaon	76.5032	20.7082	Percolation tank
86	Kokta	Khamgaon	76 5715	20.0344	Percolation tank
80 97	Kolori	Khamgaon	76.6029	20.7491	Percolation tank
07	Kurba	Khamgaon	76.4026	20.0073	Percolation tank
80		Khamgaon	76.7650	20.7434	Percolation tank
00	Makta	Khamgaon	76.555	20.3374	Percolation tank
90 Q1		Khamgaon	76 7524	20.7400	Percolation tank
02	Parkhod	Khamgaon	76.5026	20.0121	Percolation tank
92	Parkhod	Khamgaon	76.5030	20.7442	Percolation tank
93		Khamgaon	76.011	20.7465	Percolation tank
94	Sawaigaon Kii.	Khamgaon	76.4571	20.0004	Percolation tank
95	Shelodi	Khamgaon	76.6352	20.3201	Percolation tank
90	Shelodi	Khamgaon	76.6557	20.7120	Percolation tank
98	Shirla Nemane	Khamgaon	76 6001	20.0330	Percolation tank
90		Khamgaon	76 5/15	20.4030	Percolation tank
100	Sutala Bk	Khamgaon	76 5202	20.7437	Percolation tank
100	Wakud	Khamgaon	76.3332	20.7130	Percolation tank
101	Aiispur	Lonar	76/002	10 0176	Percolation tank
102	אפונה Bhananur	Lonar	76 /061	20 0220	Percolation tank
103	Bibkhed	Lonar	76 / 222	10 0///	Percolation tank
104	Borkhedi	Lonar	76 5625	20.0667	Percolation tank
105	Dahha	Lonar	76 6260	20.0007	Percolation tank
107		Lonar	76 5957	10 0761	Percolation tank
107	Gunikhed	Lonar	76 6570	20 0202	Percolation tank
100	Kaulkhed	Lonar	76 6/56	10 0700	Percolation tank
110	Mohotkhed	Lonar	76 6002	20 0605	Percolation tank
111	Parda Pr Lonar	Lonar	76 / 75 /	10.0005	Percolation tank
112	Sultannur	Lonar	76 5072	20 1000	Percolation tank
112	Sultannur	Lonar	76 5/13	20.1009	Percolation tank
11/	Tandulwadi	Lonar	76 512	20.0904	Percolation tank
115	Anurahad		76 2249	20.0452	Porcolation tank
TT2	Allulabau	IVIALNAPUK	10.2348	20.902	

SN	Village	Taluka	Х	Y	Struture
116	Balad Pr. Malkapur	MALKAPUR	76.2069	20.8516	Percolation tank
117	Bhalegaon	MALKAPUR	76.1479	20.9182	Percolation tank
118	Chinchkhed	Malkapur	76.0914	20.8556	Percolation tank
119	Datala	MALKAPUR	76.1869	20.8266	Percolation tank
120	Datala	MALKAPUR	76.1997	20.812	Percolation tank
121	Gahukhed	MALKAPUR	76.2459	20.8308	Percolation tank
122	Ghirni	MALKAPUR	76.2348	20.8422	Percolation tank
123	Harsoda	MALKAPUR	76.2832	20.9249	Percolation tank
124	Harsoda	MALKAPUR	76.2832	20.9437	Percolation tank
125	Hingana Nagpur	MALKAPUR	76.2615	20.9613	Percolation tank
126	Khamkhed Pr.malkapur	MALKAPUR	76.1234	20.888	Percolation tank
127	Khaparkhed	MALKAPUR	76.2186	20.8646	Percolation tank
128	Lahe Kh.	MALKAPUR	76.1986	20.9255	Percolation tank
129	MALKAPUR (MA-2)	MALKAPUR	76.1952	20.8864	Percolation tank
130	Narwel	MALKAPUR	76.2426	20.9691	Percolation tank
131	Nimbari	MALKAPUR	76.1852	20.8407	Percolation tank
132	Nimbari	MALKAPUR	76.1919	20.8344	Percolation tank
133	Nimboli	Malkapur	76.1768	20.9162	Percolation tank
134	Panhera Pr.Malkapur	Malkapur	76.2641	20.9079	Percolation tank
135	Rangaon	Malkapur	76.1553	20.9359	Percolation tank
136	Rantham	MALKAPUR	76.1597	20.9982	Percolation tank
137	Shivni	MALKAPUR	76.1613	20.9327	Percolation tank
138	Umali	MALKAPUR	76.2236	20.812	Percolation tank
139	Wadoda	MALKAPUR	76.2598	20.8849	Percolation tank
140	Wadoda	MALKAPUR	76.2749	20.9041	Percolation tank
141	Waghud	MALKAPUR	76.2454	20.85	Percolation tank
142	Zodga	MALKAPUR	76.247	20.9281	Percolation tank
143	Anjani bk.	Mehkar	76.6745	20.1773	Percolation tank
144	Aregaon	Mehkar	76.7224	20.1404	Percolation tank
145	Bartala	Mehkar	76.5319	20.1604	Percolation tank
146	Chaingaon	Mehkar	76.5122	20.1574	Percolation tank
147	Chinchala	Mehkar	76.7847	20.3006	Percolation tank
148	Deulgaon Sakarsha	Mehkar	76.6901	20.4374	Percolation tank
149	Deulgaon Sakarsha	Mehkar	76.6994	20.4533	Percolation tank
150	Deulgaon Sakarsha	Mehkar	76.701	20.4012	Percolation tank
151	Deulgaon Sakarsha	Mehkar	76.6796	20.4175	Percolation tank
152	Deulgaon Sakarsha	Mehkar	76.6784	20.428	Percolation tank
153	Deulgaon Sakarsha	Mehkar	76.7075	20.4354	Percolation tank
154	Deulgaon Sakarsha	Mehkar	76.7008	20.4389	Percolation tank
155	Dongaon	Mehkar	/6./356	20.1805	Percolation tank
156	Dongaon	Mehkar	76.7138	20.1788	Percolation tank
157	Dongaon	Menkar	76.7201	20.1/12	Percolation tank
158	Ganpur	Mehkar	76.5615	20.11/1	Percolation tank
159	Gonogaon	Mahkar	76.7377	20.2183	
160	Madani	Nehkar	76.7466	20.1467	Percolation tank
161	Mandwa (Forest)	Mehkar	76.6305	20.4524	Percolation tank
162	Mandwa (Forest)	Mahkar	70.0430	20.4040	
164	Mandwa (Forest)	Mohkar	76.6161	20.4159	Percolation tank
165	Mohana Rk	Mohkar	76 5015	20.4281	Percolation tank
165	Naigaon Doshmukh	Mohkar	76.7190	20.4400	Percolation tank
167	Paigad	Mohkar	76.7554	20.4093	Percolation tank
168	Sarangnur	Mehkar	76 5505	20.3131	Percolation tank
169	Sukali	Mehkar	76 5966	20.1307	Percolation tank
170	Tembhurkhed	Mehkar	76 7187	20.1013	Percolation tank
171	Chinchpur	MOTALA	76,1731	20.7107	Percolation Tank
172	Dhamangaon Badhe	MOTALA	76 0372	20 6742	Percolation Tank
173	Dhamangaon Deshmukh	MOTALA	76.2895	20.6604	Percolation Tank
174	Didola Bk	MOTALA	76.1986	20.6985	Percolation Tank

SN	Village	Taluka	Х	Y	Struture
175	Gugali	MOTALA	76.0667	20.7138	Percolation Tank
176	Gugali	MOTALA	76.0667	20.7138	Percolation Tank
177	Hanwatkhed	MOTALA	76.1563	20.6982	Percolation Tank
178	Ibrahimpur	MOTALA	76.2097	20.641	Percolation Tank
179	Isalwadi	MOTALA	76.3358	20.6614	Percolation Tank
180	Isalwadi	MOTALA	76.3358	20.6614	Percolation Tank
181	Kajampur	MOTALA	76.259	20.6394	Percolation Tank
182	Kinhola	MOTALA	76.0612	20.6562	Percolation Tank
183	Kinhola	MOTALA	76.0612	20.6562	Percolation Tank
184	Nalkund	MOTALA	76.0909	20.5763	Percolation Tank
185	Pimpri Gawali	MOTALA	76.1409	20.7493	Percolation Tank
186	Rahera	MOTALA	76.1373	20.5883	Percolation Tank
187	Rahera	MOTALA	76.1373	20.5883	Percolation Tank
188	Rohinkhed	MOTALA	76.1399	20.6507	Percolation Tank
189	Sarola (maroti)	MOTALA	76.108	20.6803	Percolation Tank
190	Shahapur	MOTALA	76.1394	20.6179	Percolation Tank
191	Shahapur	MOTALA	76.1394	20.6179	Percolation Tank
192	Shirwa	MOTALA	76,2358	20.6311	Percolation Tank
193	Talkhed	MOTALA	76.2201	20.7461	Percolation Tank
194	Avdha Bk.	NANDURA	76.5143	20.8482	Percolation tank
195	Avdha Bk	NANDURA	76 4993	20.8534	Percolation tank
196	Belad Pr. Jalgaon	Nandura	76 455	20.0001	Percolation tank
197	Belad Prialgaon		76 4464	20.9075	Percolation tank
198	Chandur Biswa		76 3378	20.3075	Percolation tank
199	Hingna Pr halanur		76.3378	20.0013	Percolation tank
200	ligaon		76 3751	20.9107	Percolation tank
200	ligaon		76 3734	20.3130	Percolation tank
201	Khumgaon		76 3851	20.307	Percolation tank
202	Mamulwadi		76.3796	20.8727	Percolation tank
203	Modba		76.4358	20.8955	Percolation tank
204	Mominahad		76 3211	20.8303	Percolation tank
205	Naigaon		76.2/20	20.3143	Percolation tank
200	Nandura Kh rural		76.4536	20.8302	Percolation tank
207	Narakhed		76 5154	20.8103	Percolation tank
208	Naravannur		76.7708	20.8038	Percolation tank
203	Nimgaon		76 /67	20.8508	Percolation tank
210	Palsoda		76 2069	20.0757	Percolation tank
211	Palsoda	Nandura	76.3308	20.3237	Percolation tank
212	Pimprikoli		76.21//	20.9313	Percolation tank
213			76.2116	20.9387	Percolation tank
214	Wadali		76.069	20.9278	Percolation tank
215	Wadaaan Dighi		76 2027	20.0113	Percolation tank
210	Wadgaon Digni		76.2927	20.913	Percolation tank
21/	Wadner		76.2155	20.0300	
210	Wadner		76.3133	20.0407	
219	Wadner		70.5294	20.0477	
220	Vadiler		70.3005	20.8305	
221	Awar		70.4504	20.9075	
222	Rawanbir		76.7140	20.9004	
223	Bawalipir Chandi	SANGRAMPUR	70.7148	21.0810	
224	Doulgoon		70.03/9	20.976	
225	Deulgaon	SANGRAMPUR	76.732	20.9297	Percolation tank
226	Unamangaon		70.0513	21.0312	Percolation tank
227	Jastgaon	SANGRAMPUK	76.683	20.9511	Percolation tank
228	Jastgaon	SANGRAMPUR	/6.6819	20.9765	Percolation tank
229	Jastgaon	SANGRAMPUR	76.6724	20.9625	Percolation tank
230	Kavthal	SANGRAMPUR	/6.5975	20.9439	Percolation tank
231	Khalad Bk.	SANGRAMPUR	/6.7454	21.0645	Percolation tank
232	Khalad Kh.	SANGRAMPUR	76.7576	21.0603	Percolation tank
233	Khel Thorat Paturda	SANGRAMPUR	76.732	20.9542	Percolation tank

SN	Village	Taluka	Х	Y	Struture
234	Khiroda	SANGRAMPUR	76.6958	20.9271	Percolation tank
235	Kumbarkhed	SANGRAMPUR	76.6446	20.9474	Percolation tank
236	Nirod	SANGRAMPUR	76.6362	21.0031	Percolation tank
237	Paturda Kh.	SANGRAMPUR	76.7554	20.9433	Percolation tank
238	Paturda Kh.	SANGRAMPUR	76.7521	20.9563	Percolation tank
239	Sawali	SANGRAMPUR	76.6802	20.9365	Percolation tank
240	Sawali	SANGRAMPUR	76.6697	20.9443	Percolation tank
241	Wankhed	SANGRAMPUR	76.7398	20.9693	Percolation tank
242	Wankhed	SANGRAMPUR	76.7431	20.9984	Percolation tank
243	Warwat Bakal	SANGRAMPUR	76.7125	21.028	Percolation tank
244	Zashi	SANGRAMPUR	76.6591	21.052	Percolation tank
245	Adsul	SHEGAON	76.7092	20.8637	Percolation tank
246	Bhongaon	SHEGAON	76.6168	20.8798	Percolation tank
247	Bhota	SHEGAON	76.5037	20.9183	Percolation tank
248	Chinchkhed	SHEGAON	76.5828	20.8892	Percolation tank
249	Hingna Bhota	SHEGAON	76.5193	20.9027	Percolation tank
250	Janori	SHEGAON	76.649	20.8559	Percolation tank
251	Janori	SHEGAON	76.649	20.8372	Percolation tank
252	Kalkhed	SHEGAON	76.6669	20.8762	Percolation tank
253	Kalkhed	SHEGAON	76.6585	20.8611	Percolation tank
254	Kathora	SHEGAON	76.5472	20.8959	Percolation tank
255	Kathora	SHEGAON	76.5382	20.8928	Percolation tank
256	Manegaon	SHEGAON	76.7287	20.8434	Percolation tank
257	Matargaon Bk.	SHEGAON	76.5499	20.8585	Percolation tank
258	Matargaon Bk.	SHEGAON	76.5605	20.8507	Percolation tank
259	Taroda Tarodi	SHEGAON	76.6039	20.8632	Percolation tank
260	Taroda Tarodi	SHEGAON	76.6117	20.8496	Percolation tank
261	Waradh	SHEGAON	76.5405	20.8777	Percolation tank
262	Yeulkhed	SHEGAON	76.6413	20.8762	Percolation tank

SN Village Taluka Х Structures γ 76.2773 Borkhed Buldana 20.5384 Checkdam 1 2 Borkhed Buldana 76.2582 20.5463 Checkdam 3 Borkhed Buldana 76.2517 20.5371 Checkdam 4 Borkhed Buldana 76.2724 20.5574 Checkdam 5 76.2699 Checkdam Borkhed Buldana 20.5642 6 Borkhed Buldana 76.2713 20.5703 Checkdam 7 Borkhed Buldana 76.2326 20.5685 Checkdam 8 Borkhed Buldana 76.2368 20.5449 Checkdam 9 Buldhana-Urban Buldana 76.1649 20.523 Checkdam 10 Buldana 76.1126 20.5034 Checkdam Deulghat 11 75.9686 20.4273 Checkdam Dhamangaon Buldana 12 75.966 20.4079 Domrul Buldana Checkdam Gondhankhed 13 Buldana 76.2855 20.5123 Checkdam 14 Ismailpur Buldana 76.1163 20.4821 Checkdam 15 Kolwad Buldana 20.519 Checkdam 76.1489 16 Mhasla Bk Buldana 75.9828 20.3362 Checkdam 17 Mondhala Buldana 75.9658 20.3429 Checkdam Paldhag 18 Buldana 76.2973 20.5689 Checkdam 19 pimparkhed Buldana 76.2836 20.5319 Checkdam 20 Pokhari Buldana 76.2133 20.4968 Checkdam 21 Sakhali Bk. Buldana 76.1777 20.4578 Checkdam 22 Satgaon Buldana 75.9658 20.3534 Checkdam 23 Dewadari Chikli 76.3953 20.3436 Checkdam 24 Dhuma Chikli 76.5153 20.3942 Checkdam 25 Chikli 76.252 20.416 Checkdam Girola 26 Chikli 20.4973 Harni 76.4125 Checkdam 27 Harni Chikli 76.4162 20.5028 Checkdam 28 Harni Chikli 76.4037 20.4705 Checkdam 29 Harni Chikli 76.4051 20.4805 Checkdam 76.4365 20.4921 30 Harni Chikli Checkdam 76.2259 31 Chikli 20.3977 Hatni Checkdam 76.5312 Hiwara Naik 32 Chikli 20.4352 Checkdam 33 Hiwara Naik Chikli 76.5353 20.4382 Checkdam 34 Hiwara Naik Chikli 76.5453 20.4352 Checkdam 35 Kawhala Chikli 76.3983 20.4215 Checkdam 36 Kinhi naik Chikli 76.5521 20.4147 Checkdam 37 Kinhi naik Chikli 76.5551 20.4193 Checkdam 38 Kinhi naik Chikli 76.5595 20.4228 Checkdam 39 Kinhi naik Chikli 76.5749 20.414 Checkdam 40 Kinhi Sawadad Chikli 76.4879 20.479 Checkdam 41 Kusumbi Chikli 76.5032 20.4646 Checkdam 42 20.3593 Peth Chikli 76.3413 Checkdam 43 Sawarkhed Bk. Chikli 76.4576 20.3266 Checkdam 76.2738 44 Sawna Chikli 20.4169 Checkdam 45 Sawna Chikli 76.2641 20.4164 Checkdam 46 Shrikrishna Nagar Chikli 76.3904 20.4751 Checkdam 47 76.3862 20.4797 Checkdam Shrikrishna Nagar Chikli 48 Shrikrishna Nagar Chikli 76.3771 20.4821 Checkdam 49 Takarkhed Helga Chikli 76.4106 20.4664 Checkdam 50 Tambulwadi Chikli 76.2315 20.3449 Checkdam 51 Undri Chikli 76.4639 20.4731 Checkdam 76.4709 52 Vairagad Chikli 20.4884 Checkdam 53 Deulgaon-Raja 76.254 20.1602 Checkdam Andhera 54 Baigaon Pr. Kherda 76.2866 20.1467 Deulgaon-Raja Checkdam 55 Bharosa Deulgaon-Raja 76.2396 20.2157 Checkdam 56 Bharosa Deulgaon-Raja 76.2164 20.2144 Checkdam

Annexure VIII: Location of proposed check dam in Buldhana district

SN	Village	Taluka	х	Y	Structures
57	Bharosa	Deulgaon-Raja	76.2308	20.2393	Checkdam
58	Chandanpur	Deulgaon-Raja	76.3317	20.2284	Checkdam
59	Chandhai Pr.Chikhali	Deulgaon-Raja	76.2219	20.3281	Checkdam
60	Chandhai Pr.Chikhali	Deulgaon-Raja	76.2299	20.325	Checkdam
61	Dagadwadi	Deulgaon-Raja	76.1159	20.0492	Checkdam
62	Dagadwadi	Deulgaon-Raja	76.1131	20.0369	Checkdam
63	Dodra	Deulgaon-Raja	76.1624	20.141	Checkdam
64	Gargundi	Deulgaon-Raja	76.0968	20.0772	Checkdam
65	Jambhora	Deulgaon-Raja	76.0684	19.9976	Checkdam
66	Jawalkhed	Deulgaon-Raja	76.1028	20.0063	Checkdam
67	Jawalkhed	Deulgaon-Raja	76.0875	20.0103	Checkdam
68	Jawalkhed	Deulgaon-Raja	76.0893	20.0234	Checkdam
69	Kawathal	Deulgaon-Raja	76.315	20.2337	Checkdam
70	Khairav	Deulgaon-Raja	76.3331	20.2826	Checkdam
71	Kolara	Deulgaon-Raja	76.3071	20.2914	Checkdam
72	Kumbhari	Deulgaon-Raja	76.0596	20.0238	Checkdam
73	Mangraj Kh.	Deulgaon-Raja	76.1503	20.1672	Checkdam
74	Mehuna	Deulgaon-Raja	76.1396	20.0741	Checkdam
75	Mehuna	Deulgaon-Raja	76.1219	20.0597	Checkdam
76	Mendgaon	Deulgaon-Raja	76.2978	20.127	Checkdam
77	Mera Bk.	Deulgaon-Raja	76.3373	20.1974	Checkdam
78	Mera Bk.	Deulgaon-Raja	76.3108	20.2066	Checkdam
79	Mera Bk.	Deulgaon-Raja	76.3248	20.186	Checkdam
80	Nagangaon	Deulgaon-Raja	76.2513	20.0811	Checkdam
81	Nimgaon Guru	Deulgaon-Raja	76.1689	20.0584	Checkdam
82	Nimgaon Guru	Deulgaon-Raja	76.1638	20.0496	Checkdam
83	Nimgaon Guru	Deulgaon-Raja	76.1991	20.0474	Checkdam
84	Padali Shinde Pr.Mal	Deulgaon-Raja	76.2727	20.1082	Checkdam
85	Palaskhed jatta	Deulgaon-Raja	76.1052	19.9897	Checkdam
86	Palasrke Daulat	Deulgaon-Raja	76.2201	20.3093	Checkdam
87	Pangri Pr.Japharabad	Deulgaon-Raja	76.0824	20.0536	Checkdam
88	Pimpalgaon Bk.	Deulgaon-Raja	76.161	20.019	Checkdam
89	Pimpalgaon chilamkha	Deulgaon-Raja	76.047	20.0527	Checkdam
90	Pimpalner	Deulgaon-Raja	76.0428	20.002	Checkdam
91	Rohana	Deulgaon-Raja	76.1428	20.0369	Checkdam
92	Rohoda	Deulgaon-Raja	76.3001	20.252	Checkdam
93	Rohoda	Deulgaon-Raja	76.2964	20.2643	Checkdam
94	Shelgaon Atol	Deulgaon-Raja	76.1643	20.1978	Checkdam
95	Shivni [Armal]	Deulgaon-Raja	76.2647	20.144	Checkdam
96	Sura	Deulgaon-Raja	76.2359	20.1034	Checkdam
97	Sura	Deulgaon-Raja	76.2261	20.089	Checkdam
98	Yewata	Deulgaon-Raja	76.1973	20.2787	Checkdam
99	Adol kh.	JALGAON (JAMOD)	/6.3857	20.9627	Checkdam
100	Ambabari	JALGAON (JAMOD)	/6.6115	21.15	Checkdam
101	Ambabari	JALGAUN (JAMOD)	/6.6054	21.1556	Checkdam
102	Asaldari	JALGAON (JAMOD)	76.6148	21.1635	Checkdam
103	Asaluari		76.6124	21.1/13	Checkdam
104	Dilligara Phingara		76.5145	21.1225	Checkdam
105	Phingara		76.494	21.1/13	Checkdom
100	Phingara		76 5150	21.1004	Checkdom
107	Bhingara		70.5159	21.1/3/	Checkdom
100	Chalthana Kh		76 58/5	21.1304	Checkdam
110	Chalthana Kh		76.5045	21.1434	Checkdam
111	Gorad Pr jamod		76 5457	21.1391	Checkdam
112	Hanwantkhed		76 4746	21.1100	Checkdam
113	Hanwantkhed		76 4613	21.0707	Checkdam
114	Hanwantkhed	JALGAON (JAMOD)	76.4622	21.0768	Checkdam
115	Hanwantkhed	JALGAON (JAMOD)	76.4492	21.0694	Checkdam

SN	Village	Taluka	х	Y	Structures
116	Hanwantkhed	JALGAON (JAMOD)	76.4646	21.086	Checkdam
117	Hanwantkhed	JALGAON (JAMOD)	76.4737	21.0768	Checkdam
118	Hashampur	JALGAON (JAMOD)	76.4207	21.0503	Checkdam
119	Hashampur	JALGAON (JAMOD)	76.4153	21.0601	Checkdam
120	Hashampur	JALGAON (JAMOD)	76.4251	21.0578	Checkdam
121	Islampur	JALGAON (JAMOD)	76.4048	21.0485	Checkdam
122	Islampur	JALGAON (JAMOD)	76.3981	21.0466	Checkdam
123	Islampur	JALGAON (JAMOD)	76.4016	21.0379	Checkdam
124	Kahupatta	JALGAON (JAMOD)	76.5201	21.1151	Checkdam
125	Karanwadi	JALGAON (JAMOD)	76.3965	20.9914	Checkdam
126	Karanwadi	JALGAON (JAMOD)	76.4039	21.0119	Checkdam
127	Khel-Shivpur(Jamod)	JALGAON (JAMOD)	76.6208	21.1456	Checkdam
128	Khel-Shivpur(Jamod)	JALGAON (JAMOD)	76.5901	21.1443	Checkdam
129	Kuvardeo	JALGAON (JAMOD)	76.5826	21.1578	Checkdam
130	Kuvardeo	JALGAON (JAMOD)	76.5551	21.1826	Checkdam
131	Kuvardeo	JALGAON (JAMOD)	76.5635	21.1844	Checkdam
132	Kuvardeo	JALGAON (JAMOD)	76.5817	21.1892	Checkdam
133	Kuvardeo	JALGAON (JAMOD)	76.5667	21.1495	Checkdam
134	Pimpalgaon Kale	JALGAON (JAMOD)	76.4011	20.9575	Checkdam
135	Raipur	JALGAON (JAMOD)	76.4389	21.0868	Checkdam
136	Raipur	JALGAON (JAMOD)	76.4179	21.0716	Checkdam
137	Rajura Bk.	JALGAON (JAMOD)	76.4874	21.0812	Checkdam
138	Sungaon	JALGAON (JAMOD)	76.5481	21.1347	Checkdam
139	Sungaon	JALGAON (JAMOD)	76.5569	21.1282	Checkdam
140	Sungaon	JALGAON (JAMOD)	76.5593	21.1233	Checkdam
141	Umapur	JALGAON (JAMOD)	76.486	21.0921	Checkdam
142	Umapur	JALGAON (JAMOD)	76.4748	21.1021	Checkdam
143	Umapur	JALGAON (JAMOD)	76.4753	21.1117	Checkdam
144	Umapur	JALGAON (JAMOD)	76.486	21.126	Checkdam
145	Wadgaongad	JALGAON (JAMOD)	76.437	21.0581	Checkdam
146	Wayal	JALGAON (JAMOD)	76.5055	21.0902	Checkdam
147	Wayal	JALGAON (JAMOD)	76.4977	21.1125	Checkdam
148	Wayal	JALGAON (JAMOD)	76.5074	21.0708	Checkdam
149	Ambetakli	Khamgaon	76.6831	20.5311	Checkdam
150	Ambetakli	Khamgaon	76.6759	20.5344	Checkdam
151	Ambetakli	Khamgaon	76.6761	20.5187	Checkdam
152	Ambetakli	Khamgaon	76.6682	20.5028	Checkdam
153	Ambikapur	Khamgaon	76.7057	20.6438	Checkdam
154	Asa	Khamgaon	76.6635	20.5198	Checkdam
155	Belura	Khamgaon	76.4679	20.7022	Checkdam
156	Bori	Khamgaon	76.6856	20.5433	Checkdam
157	Dastapur	Khamgaon	76.755	20.5562	Checkdam
158	Dastapur	Khamgaon	76.7603	20.5608	Checkdam
159	Deulkhed	Khamgaon	76.7503	20.527	Checkdam
160	Gawandhala	Khamgaon	76.654	20.5207	Checkdam
161	Gawandhala	Khamgaon	76.641	20.5189	Checkdam
162	Gawandhala	Khamgaon	76.6386	20.5172	Checkdam
163	Jaipur londe	Khamgaon	76.6035	20.7431	Checkdam
164	Jaipur londe	Khamgaon	76.6051	20.7518	Checkdam
165	Jalaka Bhadang	Khamgaon	76.4721	20.7061	Checkdam
166	Jalaka Bhadang	Khamgaon	76.4911	20.7022	Checkdam
167	Jalaka Bhadang	Khamgaon	76.4902	20.7074	Checkdam
168	Jalaka Bhadang	Khamgaon	76.4846	20.7137	Checkdam
169	Jalaka Bhadang	Khamgaon	76.4779	20.72	Checkdam
170	Kanchanpur	Khamgaon	76.7098	20.5226	Checkdam
171	Karegaon Kh.	Khamgaon	76.7201	20.583	Checkdam
172	Khutpuri	Khamgaon	76.5249	20.6848	Checkdam
173	Kolori	Khamgaon	76.6819	20.6475	Checkdam
174	Kolori	Khamgaon	76.6884	20.656	Checkdam

SN	Village	Taluka	х	Y	Structures
175	Lakhanwada Bk.	Khamgaon	76.6335	20.4845	Checkdam
176	Lakhanwada Bk.	Khamgaon	76.6345	20.4891	Checkdam
177	Lakhanwada Bk.	Khamgaon	76.6252	20.4747	Checkdam
178	Lakhanwada Bk.	Khamgaon	76.6112	20.4775	Checkdam
179	Parkhed	Khamgaon	76.5125	20.7394	Checkdam
180	Parkhed	Khamgaon	76.5111	20.7289	Checkdam
181	Pedka	Khamgaon	76.6668	20.5695	Checkdam
182	Poraj	Khamgaon	76.44	20.6743	Checkdam
183	Rahud	Khamgaon	76.4634	20.7178	Checkdam
184	Rahud	Khamgaon	76.4641	20.7294	Checkdam
185	Rahud	Khamgaon	76.4623	20.7381	Checkdam
186	Shahapur	Khamgaon	76.7631	20.5311	Checkdam
187	Shelodi	Khamgaon	76.6324	20.7002	Checkdam
188	Shelodi	Khamgaon	76.6428	20.7083	Checkdam
189	Shirla Nemane	Khamgaon	76.6766	20.4971	Checkdam
190	Sutala BK.	Khamgaon	76.5244	20.7231	Checkdam
191	Sutala BK.	Khamgaon	/6.5335	20.7342	Checkdam
192	Sutala BK.	Knamgaon	76.536	20.7414	Checkdam
193	Sutala Kn.	Khamgaon	76.5635	20.7263	Checkdam
194	Tandulwani	Khamgaon	76.4653	20.6761	Checkdam
195	Wakud	Khamgaon	76.5702	20.7353	Checkdam
190	Ragulkhad	Lopar	76.4051	20.7505	Checkdam
197	Baguikileu	Lonar	76.5101	20.031	Checkdam
198	Deulgson Kundnal	Lonar	76.3391	10 0538	Checkdam
200	Dhad	Lonar	76 5521	19.9538	Checkdam
200	Dhavnhal	Lonar	76.4376	19 9518	Checkdam
201	Gandhari	Lonar	76 5861	19.5510	Checkdam
203	Gundha	Lonar	76 5709	20 0172	Checkdam
204	Hirday	Lonar	76.5886	20.0071	Checkdam
205	Hirday	Lonar	76.6017	20.0067	Checkdam
206	Hirdav	Lonar	76.6107	20.0152	Checkdam
207	Jafrabad	Lonar	76.6135	20.0237	Checkdam
208	Jambul	Lonar	76.5868	19.9522	Checkdam
209	Kaulkhed	Lonar	76.6524	19.9719	Checkdam
210	Khalegaon	Lonar	76.4427	20.062	Checkdam
211	Khurampur	Lonar	76.5377	19.8687	Checkdam
212	Khurampur	Lonar	76.5209	19.8836	Checkdam
213	Kingaon jatu	Lonar	76.3674	19.9713	Checkdam
214	Kundlas	Lonar	76.5456	19.9675	Checkdam
215	Kundlas	Lonar	76.5447	19.9625	Checkdam
216	Kundlas	Lonar	76.5414	19.9468	Checkdam
217	Madhi	Lonar	76.6452	19.8722	Checkdam
218	Pangradola	Lonar	76.5391	19.9404	Checkdam
219	Parda Pr.Lonar	Lonar	76.4739	19.9319	Checkdam
220	Pimpalkhuta	Lonar	76.516	20.0226	Checkdam
221	Pimpalkhuta	Lonar	76.5139	20.0165	Checkdam
222	Sultanpur	Lonar	76.5288	20.0817	Checkdam
223	Sultanpur	Lonar	76.5351	20.0869	Checkdam
224	Sultanpur	Lonar	76.5042	20.0791	Checkdam
225		Lonar	/6.4453	19.9778	Checkdam
226	Tandulwadi	Lonar	/6.5193	20.0331	Checkdam
227		Lonar	/6.51/2	20.0419	Checkdam
228	Wadhay	Lonar	76.6275	19.9/98	Checkdam
229	Wopi	LUIIdi	70.0008	19.9645	Checkdom
230	Wopi	Lulidi		20.0502	Checkdom
231	Weni	Lonar	76.5458	20.0441	Checkdom
232			76 1062	20.0377	Checkdom
233	Aiallu	IVIALINAF UN	70.1002	20.0402	CHECKUdIII

SN	Village	Taluka	х	Y	Structures
234	Chinchol	MALKAPUR	76.2191	21.0008	Checkdam
235	Deodhaba	MALKAPUR	76.1225	20.9149	Checkdam
236	Deodhaba	MALKAPUR	76.1038	20.9262	Checkdam
237	Dudhalgaon	MALKAPUR	76.1607	20.8308	Checkdam
238	Dudhalgaon Kh.	MALKAPUR	76.1845	21.0178	Checkdam
239	Gaulkhed	MALKAPUR	76.1071	20.8709	Checkdam
240	Harankhed	MALKAPUR	76.094	20.8512	Checkdam
241	Jalalabad	MALKAPUR	76.1519	20.887	Checkdam
242	Jambhuldhaba	MALKAPUR	76.1318	20.8604	Checkdam
243	Khadki	MALKAPUR	76.1108	20.9066	Checkdam
244	Khokodi	MALKAPUR	76.1822	20.8587	Checkdam
245	Khokodi	MALKAPUR	76.1766	20.8434	Checkdam
246	Korwad	MALKAPUR	76.2312	20.989	Checkdam
247	Lahe Kh.	MALKAPUR	76.1864	20.9315	Checkdam
248	Malkapur (Rural)	MALKAPUR	76.1645	20.9031	Checkdam
249	Morkhed Bk.	MALKAPUR	76.1831	20.8155	Checkdam
250	Narwel	MALKAPUR	76.2307	20.9672	Checkdam
251	Rangaon	MALKAPUR	76.1486	20.9363	Checkdam
252	Rantham	MALKAPUR	76.1668	20.9947	Checkdam
253	Talaswada	MALKAPUR	76.199	20.9428	Checkdam
254	Tighra Pr.Malkapur	MALKAPUR	76.1314	20.9742	Checkdam
255	Wagholda	MALKAPUR	76.1934	21.0025	Checkdam
256	Wiwara	MALKAPUR	76.1645	20.9738	Checkdam
257	Andhrudi	Mehkar	76.7012	20.2313	Checkdam
258	Anjani bk.	Mehkar	76.6568	20.1656	Checkdam
259	Anjani bk.	Mehkar	76.6473	20.1745	Checkdam
260	Antri Deshmukh	Mehkar	76.5802	20.1047	Checkdam
261	Bardapur	Menkar	76.6063	20.2236	Checkdam
262	Belgaon	Menkar	76.7808	20.2201	Checkdam
263	Belgaon	Menkar	/6.///3	20.2151	Checkdam
264	Chinabala	Mehkar	76.775	20.2101	Checkdam
265	Chinchala	Mehkar	76.7796	20.3024	Checkdam
200	Degaon	Mohkar	70.7927	20.2042	Checkdam
207	Drugbori	Mohkar	76.7336	20.1774	Checkdam
208	Gappur	Mohkar	76 5522	20.3165	Checkdam
209	Galipul	Mohkar	76.3333	20.1105	Checkdam
270	Ghansar	Mehkar	76 5795	20.3200	Checkdam
271	Gomedhar	Mehkar	76 5984	20.2208	Checkdam
272	Gomedhar	Mehkar	76.603	20.3301	Checkdam
275	Januna	Mehkar	76.7775	20.3423	Checkdam
275	Karhadwadi (ny)	Mehkar	76 7273	20.2021	Checkdam
276	Lawana	Mehkar	76 6235	20.2131	Checkdam
277	Lawana	Mehkar	76.6198	20.2611	Checkdam
278	Lawana	Mehkar	76.6191	20.2685	Checkdam
279	Loni Gavali	Mehkar	76 6915	20.2389	Checkdam
280	Loni Gavali	Mehkar	76.6715	20.2424	Checkdam
281	Loni Gavali	Mehkar	76.681	20.2552	Checkdam
282	Loni Kale	Mehkar	76.6245	20.3233	Checkdam
283	Madani	Mehkar	76.7373	20.1495	Checkdam
284	Madani	Mehkar	76.7475	20.1375	Checkdam
285	Malegaon	Mehkar	76.6149	20.3017	Checkdam
286	Malkhed	Mehkar	76.6058	20.091	Checkdam
287	Mehekar-Urban	Mehkar	76.5693	20.158	Checkdam
288	Mehekar-Urban	Mehkar	76.5828	20.1423	Checkdam
289	Mehekar-Urban	Mehkar	76.6012	20.1545	Checkdam
290	Mel Janori	Mehkar	76.654	20.3181	Checkdam
291	Mel Janori	Mehkar	76.6421	20.3233	Checkdam
292	Nagapur	Mehkar	76.6905	20.18	Checkdam

SN	Village	Taluka	Х	Y	Structures
293	Nageshwadi (n.v.)	Mehkar	76.697	20.3353	Checkdam
294	Nageshwadi (n.v.)	Mehkar	76.6875	20.3431	Checkdam
295	Nimba	Mehkar	76.6063	20.3056	Checkdam
296	Pangarkhed	Mehkar	76.7592	20.2369	Checkdam
297	Partapur	Mehkar	76.5837	20.1314	Checkdam
298	Pimpri Mali	Mehkar	76.6	20.2009	Checkdam
299	Rajgad	Mehkar	76.7496	20.3021	Checkdam
300	Rajgad	Mehkar	76.7475	20.312	Checkdam
301	Rajgad	Mehkar	76.7452	20.3181	Checkdam
302	Ratnapur	Mehkar	76.627	20.2736	Checkdam
303	Sabra	Mehkar	76.5877	20.199	Checkdam
304	Sabra	Mehkar	76.5798	20.1966	Checkdam
305	Sabra	Mehkar	76.5702	20.1929	Checkdam
306	Sarangpur	Mehkar	76.544	20.1359	Checkdam
307	Shahapur	Mehkar	76.6312	20.1918	Checkdam
308	Shelgaon Deshmukh	Mehkar	76.7096	20.2382	Checkdam
309	Shelgaon Deshmukh	Mehkar	76.7045	20.2524	Checkdam
310	Shelgaon Deshmukh	Mehkar	76.748	20.2496	Checkdam
311	Shendla	Mehkar	76.6012	20.233	Checkdam
312	Shendla	Mehkar	76.6075	20.2278	Checkdam
313	Shendla	Mehkar	76.5954	20.2199	Checkdam
314	Sukali	Mehkar	76.5802	20.1196	Checkdam
315	Ukli	Mehkar	76.6268	20.1139	Checkdam
316	Warud	Mehkar	76.6803	20.2921	Checkdam
317	Advihir	MOTALA	76.2327	20.7049	Checkdam
318	Antri	MOTALA	76.1808	20.653	Checkdam
319	Avha Yunuspur	MOTALA	76.1066	20.7926	Checkdam
320	Avha Yunuspur	MOTALA	76.1032	20.7809	Checkdam
321	Borakhedi	MOTALA	76.1961	20.664	Checkdam
322	Dabha	MOTALA	76.0972	20.5724	Checkdam
323	Dabha	MOTALA	76.0996	20.5664	Checkdam
324	Dabha	MOTALA	76.1143	20.5686	Checkdam
325	Dhamangaon Deshmukh	MOTALA	76.3018	20.6496	Checkdam
326	Dhamangaon Deshmukh	MOTALA	76.2974	20.66	Checkdam
327	Didola Kh.	MOTALA	76.2189	20.7181	Checkdam
328	Gugali	MOTALA	76.0653	20.7153	Checkdam
329	Gulbheli	MOTALA	76.1199	20.6005	Checkdam
330	Hanwatkhed	MOTALA	76.0451	20.5647	Checkdam
331	Hanwatkhed	MOTALA	76.0284	20.5501	Checkdam
332	Hanwatkhed	MOTALA	76.1482	20.6849	Checkdam
333	Kajampur	MOTALA	76.2634	20.6157	Checkdam
334	Kalegaon pr rohinkhe	MOTALA	76.0933	20.6541	Checkdam
335	Khadki	MOTALA	76.1559	20.5614	Checkdam
336	Khadki	MOTALA	76.162	20.5692	Checkdam
337	Khairkhed	MOTALA	76.2194	20.5789	Checkdam
338	Khamkhed Pr.Rajur	MOTALA	76.1617	20.595	Checkdam
339	Khandwa	MOTALA	76.0388	20.6387	Checkdam
340	Khandwa	MOTALA	76.0391	20.6425	Checkdam
341	Khedi	MOTALA	76.0598	20.6209	Checkdam
342	Kolhi Gawali	MOTALA	76.0964	20.7565	Checkdam
343	Kolhi Gawali	MOTALA	76.0911	20.754	Checkdam
344	Korhala	MOTALA	76.0469	20.5955	Checkdam
345	Korhala	MOTALA	76.0435	20.6021	Checkdam
346	Korhala	MOTALA	76.0486	20.5919	Checkdam
347	Korhala	MOTALA	76.0614	20.6074	Checkdam
348	Kothali	MOTALA	76.2747	20.6379	Checkdam
349	Kurha	MOTALA	76.0667	20.5837	Checkdam
350	Lidhora Pr.Malkapur	MOTALA	76.1958	20.6851	Checkdam
351	Longhat	MOTALA	76.302	20.6071	Checkdam

SN	Village	Taluka	х	Y	Structures
352	Mohegaon	MOTALA	76.1943	20.5611	Checkdam
353	Motala-Urban	MOTALA	76.2175	20.681	Checkdam
354	Nalkund	MOTALA	76.0889	20.5489	Checkdam
355	Nalkund	MOTALA	76.0761	20.5525	Checkdam
356	Nalkund	MOTALA	76.0682	20.5491	Checkdam
357	Nimkhed	MOTALA	76.3069	20.6166	Checkdam
358	Nipana	MOTALA	76.1206	20.8145	Checkdam
359	Panhera khedi	MOTALA	76.0689	20.6445	Checkdam
360	Pimpalgaon	MOTALA	76.0126	20.7562	Checkdam
361	Pophali	MOTALA	76.1065	20.7305	Checkdam
362	Ridhora Khandopant	MOTALA	76.0607	20.7034	Checkdam
363	Ridhora Khandopant	MOTALA	76.0578	20.6992	Checkdam
364	Rohinkhed	MOTALA	76.0828	20.6214	Checkdam
365	Rohinkhed	MOTALA	76.1149	20.6322	Checkdam
366	Sahastramuli	MOTALA	76.2189	20.5907	Checkdam
367	Sanastramuli	MOTALA	76.2159	20.5889	Checkdam
368	Sinkned	MOTALA	76.0244	20.7306	Checkdam
369	Sonbarad Pr. Malkapur		76.0136	20.7119	Checkdam
370			76.0984	20.7675	Checkdam
3/1	Tapovan		76.0887	20.0025	Checkdam
272	Taroda		76.2500	20.0107	Checkdam
274	Taroda		76.2552	20.6007	Checkdam
374	Taroda	MOTALA	76.2007	20.0001	Checkdam
375	Taroda	MOTALA	76.2491	20.5997	Checkdam
377	Wadgaon mahalungi	MOTALA	76.0126	20.3682	Checkdam
378	Wadgaon pr rohinkhed	MOTALA	76 1397	20.6618	Checkdam
379	Wadj	MOTALA	76.0912	20.7022	Checkdam
380	Warud	MOTALA	76.2286	20.6661	Checkdam
381	Warud	MOTALA	76.2409	20.6785	Checkdam
382	Barafgaon	NANDURA	76.4053	20.745	Checkdam
383	Bhilvadi	NANDURA	76.3712	20.8633	Checkdam
384	Chandur Biswa	NANDURA	76.3651	20.8685	Checkdam
385	Dahigaon	NANDURA	76.4146	20.8563	Checkdam
386	Dighi	NANDURA	76.3539	20.8606	Checkdam
387	Gondankhed	NANDURA	76.4202	20.8419	Checkdam
388	Gosing	NANDURA	76.3213	20.6905	Checkdam
389	Jawala Bazar	NANDURA	76.3185	20.7559	Checkdam
390	Khadatgaon	NANDURA	76.4267	20.7494	Checkdam
391	Khadatgaon	NANDURA	76.4113	20.7603	Checkdam
392	Khaira	NANDURA	76.3334	20.7197	Checkdam
393	Khaira	NANDURA	76.3213	20.7337	Checkdam
394	Khaira	NANDURA	76.3063	20.731	Checkdam
395	Khandala	NANDURA	76.3875	20.7891	Checkdam
396	Lonwadi Pr.Nandura	NANDURA	76.4109	20.7747	Checkdam
397	Lonwadi Pr.Nandura	NANDURA	76.409	20.7947	Checkdam
398	Mahalungi pr wadner	NANDURA	76.374	20.7515	Checkdam
399	Mahalungi pr wadner	NANDURA	76.3717	20.7625	Checkdam
400	Malegaon Pr.P.Raja	NANDURA	76.4249	20.7995	Checkdam
401	Mendhali	NANDURA	/6.3185	20.776	Checkdam
402	Mendhali	NANDURA	76.3143	20.7686	Checkdam
403	Nominabad	NANDURA	/6.3124	20.906	Checkdam
404			/6.4118	20.7293	Checkdam
405	IVIUramba		76.4095	20.7245	Checkdam
400	Phuli		76.3054	20.7066	Checkdam
407	Priuli		76.3199	20.7114	Checkdam
400	Pola		76.3511	20.7680	Checkdam
403	Potali		70.5455	20.7042	Checkdom
410	FULdII	INANDUKA	/0.3/03	20.793	спескаат

SN	Village	Taluka	Х	Y	Structures
411	Potali	NANDURA	76.3656	20.7982	Checkdam
412	Shelgaon Mukund	NANDURA	76.3936	20.7995	Checkdam
413	Sirsodi	NANDURA	76.3133	20.882	Checkdam
414	Tarwadi	NANDURA	76.3423	20.7446	Checkdam
415	Vitali	NANDURA	76.3012	20.8676	Checkdam
416	Wadi Pr.Malkapur	NANDURA	76.3707	20.7699	Checkdam
417	Wadi Pr.Malkapur	NANDURA	76.3623	20.7786	Checkdam
418	Wadner	NANDURA	76.3474	20.8393	Checkdam
419	Wadner	NANDURA	76.3399	20.8126	Checkdam
420	Alewadi	SANGRAMPUR	76.689	21.177	Checkdam
421	Ambabarwa	SANGRAMPUR	76.6423	21.2097	Checkdam
422	Chunkhedi	SANGRAMPUR	76.7272	21.2314	Checkdam
423	Chunkhedi	SANGRAMPUR	76.6969	21.1765	Checkdam
424	Chunkhedi	SANGRAMPUR	76.6848	21.2127	Checkdam
425	Chunkhedi	SANGRAMPUR	76.7039	21.2689	Checkdam
426	Chunkhedi	SANGRAMPUR	76.7216	21.2754	Checkdam
427	Chunkhedi	SANGRAMPUR	76.6974	21.2171	Checkdam
428	Chunkhedi	SANGRAMPUR	76.7025	21.2454	Checkdam
429	Chunkhedi	SANGRAMPUR	76.7114	21.2332	Checkdam
430	Chunkhedi	SANGRAMPUR	76.7081	21.2558	Checkdam
431	Chunkhedi	SANGRAMPUR	76.6764	21.2606	Checkdam
432	Chunkhedi	SANGRAMPUR	76.6698	21.2489	Checkdam
433	Chunkhedi	SANGRAMPUR	/6.6558	21.2319	Checkdam
434	Chunkhedi	SANGRAMPUR	76.7305	21.265	Checkdam
435	Chunkhedi	SANGRAMPUR	76.7062	21.2053	Checkdam
436	Chunkhedi	SANGRAMPUR	76.7202	21.2184	Checkdam
437	Chunkhedi	SANGRAIVIPUR	76.6726	21.1779	Checkdam
438	Chunkhedi	SANGRAIVIPUR	76.7174	21.2054	Checkdam
439	Chunkhedi		76.7208	21.1979	Checkdam
440	Chunkhedi		76.7526	21.2105	Checkdam
441	Kamod		76.0800	21.1990	Checkdam
442	Kille Pimpaldol	SANGRAMPUR	76.6502	21.1737	Checkdam
445	Kille Pimpaldol	SANGRAMPLIR	76.6586	21.1022	Checkdam
445	Kille Pimpaldol	SANGRAMPUR	76.6302	21.17.92	Checkdam
446	Ladnapur	SANGRAMPUR	76.6736	21,1561	Checkdam
447	Rohin Khindki	SANGRAMPUR	76,7384	21,1988	Checkdam
448	Salwan	SANGRAMPUR	76,7548	21.1918	Checkdam
449	Salwan	SANGRAMPUR	76.737	21.2201	Checkdam
450	Salwan	SANGRAMPUR	76.759	21.1996	Checkdam
451	Saykhed	SANGRAMPUR	76.6983	21.1648	Checkdam
452	Saykhed	SANGRAMPUR	76.7109	21.167	Checkdam
453	Wasali	SANGRAMPUR	76.6549	21.1648	Checkdam
454	Wasali	SANGRAMPUR	76.6526	21.1487	Checkdam
455	Amsari	SHEGAON	76.492	20.7973	Checkdam
456	Gaigaon Bk.	SHEGAON	76.6535	20.7367	Checkdam
457	Jalamb	SHEGAON	76.5868	20.7838	Checkdam
458	Jalamb	SHEGAON	76.5905	20.8248	Checkdam
459	Jawala palaskhed	SHEGAON	76.7086	20.7245	Checkdam
460	Kherda	SHEGAON	76.6428	20.7908	Checkdam
461	Lanjud	SHEGAON	76.5378	20.8183	Checkdam
462	Lanjud	SHEGAON	76.521	20.8043	Checkdam
463	Lanjud	SHEGAON	76.5214	20.8231	Checkdam
464	Lanjud	SHEGAON	76.5121	20.7886	Checkdam
465	Lanjud	SHEGAON	76.5457	20.8052	Checkdam
466	Lasura Bk.	SHEGAON	76.647	20.7537	Checkdam
467	Pahurjira	SHEGAON	76.5499	20.7821	Checkdam
468	Sawarna	SHEGAON	76.6582	20.7651	Checkdam
469	Shegaon-Urban	SHEGAON	76.6638	20.7952	Checkdam

SN	Village	Taluka	х	Y	Structures
470	Shegaon-Urban	SHEGAON	76.7053	20.7917	Checkdam
471	Shegaon-Urban	SHEGAON	76.7104	20.8048	Checkdam
472	Shegaon-Urban	SHEGAON	76.6946	20.7734	Checkdam
473	Takali Hat	SHEGAON	76.625	20.7742	Checkdam
474	Tintrav	SHEGAON	76.6932	20.7075	Checkdam
475	Tivhan Bk.	SHEGAON	76.654	20.8174	Checkdam
476	Changefal	Sindkhed-Raja	76.3475	19.9128	Checkdam
477	Jambhora	Sindkhed-Raja	76.3024	19.9465	Checkdam
478	Kingaon Raja	Sindkhed-Raja	76.2452	20.0011	Checkdam
479	Rumhana	Sindkhed-Raja	76.3085	19.9316	Checkdam
480	Soyandeo	Sindkhed-Raja	76.3043	19.922	Checkdam
481	Tadshivni	Sindkhed-Raja	76.3024	19.967	Checkdam
482	Tandulwadi	Sindkhed-Raja	76.3271	19.9268	Checkdam

SN	Village	Taluka	X	Y	Structures
1	Asalgaon	JALGAON (JAMOD)	76.4634	20.9963	Recharge Shaft
2	Asalgaon	JALGAON (JAMOD)	76.4641	21.018	Recharge Shaft
3	Bhendwad Bk.	JALGAON (JAMOD)	76.5597	20.9391	Recharge Shaft
4	Dhanora	JALGAON (JAMOD)	76.4673	21.0354	Recharge Shaft
5	Dhanora	JALGAON (JAMOD)	76.4673	21.0367	Recharge Shaft
6	Gadagaon Kh.	JALGAON (JAMOD)	76.504	20.9729	Recharge Shaft
7	Kajegaon	JALGAON (JAMOD)	76.5948	20.9833	Recharge Shaft
8	Khandvi	JALGAON (JAMOD)	76.4528	20.9698	Recharge Shaft
9	Khel Paraskar	JALGAON (JAMOD)	76.5881	21.0853	Recharge Shaft
10	Kherda Bk.	JALGAON (JAMOD)	76.5892	21.051	Recharge Shaft
11	Manegaon	JALGAON (JAMOD)	76.4494	20.9506	Recharge Shaft
12	Palaskhed	JALGAON (JAMOD)	76.5842	20.9724	Recharge Shaft
13	Satali	JALGAON (JAMOD)	76.4895	20.9401	Recharge Shaft
14	Sungaon	JALGAON (JAMOD)	76.5513	21.091	Recharge Shaft
15	Asalgaon	Jalgaon-Jamod	76.5046	20.9895	Recharge Shaft
16	Gadegaon Kh.	Jalgaon-Jamod	76.5165	20.972	Recharge Shaft
17	Jalgaon-Urban	Jalgaon-Jamod	76.5336	21.0586	Recharge Shaft
18	Kurangad Bk.	Jalgaon-Jamod	76.5419	20.97	Recharge Shaft
19	Nav kh.	Jalgaon-Jamod	76.4313	21.0273	Recharge Shaft
20	Nimbhora Kh.	Jalgaon-Jamod	76.5641	20.9478	Recharge Shaft
21	Pimpalgaon Kale	Jalgaon-Jamod	76.4374	20.9813	Recharge Shaft
22	Takli Khati	Jalgaon-Jamod	76.5212	21.0154	Recharge Shaft
23	Taroda Tulja	Jalgaon-Jamod	76.5659	21.0588	Recharge Shaft
24	Anurabad	MALKAPUR	76.2349	20.905	Recharge Shaft
25	Anurabad	MALKAPUR	76.2296	20.8949	Recharge Shaft
26	Balad Pr. Malkapur	MALKAPUR	76.2083	20.8509	Recharge Shaft
27	Gahukhed	MALKAPUR	76.2455	20.8307	Recharge Shaft
28	Ghirni	MALKAPUR	76.2349	20.842	Recharge Shaft
29	Harsoda	MALKAPUR	76.2809	20.9251	Recharge Shaft
30	Hingana Kazi	MALKAPUR	76.133	20.9114	Recharge Shaft
31	Hingana Nagpur	MALKAPUR	76.2614	20.9608	Recharge Shaft
32	Khamkhed Pr.malkapur	MALKAPUR	76.1234	20.8873	Recharge Shaft
33	Khaparkhed	MALKAPUR	76.2182	20.8669	Recharge Shaft
34	Zodga	MALKAPUR	76.2462	20.9297	Recharge Shaft
35	Zodga	MALKAPUR	76.2554	20.9408	Recharge Shaft
36	Zodga	MALKAPUR	76.2579	20.9511	Recharge Shaft
37	Zodga	MALKAPUR	76.2402	20.9203	Recharge Shaft
38	Belad Pr.jalgaon	NANDURA	76.4468	20.9078	Recharge Shaft
39	Chandur Biswa	NANDURA	76.3361	20.8811	Recharge Shaft
40	Isabpur	NANDURA	76.3952	20.8655	Recharge Shaft
41	Jigaon	NANDURA	76.3746	20.9147	Recharge Shaft
42	Jigaon	NANDURA	76.3743	20.9074	Recharge Shaft
43	Khumgaon	NANDURA	76.3838	20.8734	Recharge Shaft
44	Mamulwadi	NANDURA	76.3789	20.8955	Recharge Shaft
45	Modha	NANDURA	76.4359	20.8903	Recharge Shaft
46	Mominabad	NANDURA	76.3212	20.9149	Recharge Shaft
47	Nandura Kh.rural	NANDURA	76.4532	20.8159	Recharge Shaft
48	Narakhed	NANDURA	76.4995	20.8536	Recharge Shaft
49	Nimgaon	NANDURA	76.4684	20.8737	Recharge Shaft
50	Nimgaon	NANDURA	76.4797	20.8512	Recharge Shaft
51	Palsoda	NANDURA	76.3962	20.927	Recharge Shaft
52	Sawargaon Nehu	NANDURA	76.312	20.9278	Recharge Shaft
53	Wadi Pr.wadner	NANDURA	76.3828	20.8357	Recharge Shaft
54	Wadner	NANDURA	76.2993	20.8311	Recharge Shaft
55	Wadner	NANDURA	76.3145	20.8496	Recharge Shaft
56	Wadner	NANDURA	76.3297	20.8479	Recharge Shaft

Annexure IX: Location of proposed recharge shaft in Buldhana district

SN	Village	Taluka	Х	Y	Structures
57	Yerali	NANDURA	76.4567	20.9091	Recharge Shaft
58	Alewadi	SANGRAMPUR	76.6861	21.1504	Recharge Shaft
59	Banoda Eklara	SANGRAMPUR	76.719	21.0463	Recharge Shaft
60	Banoda Eklara	SANGRAMPUR	76.7201	21.0343	Recharge Shaft
61	Bawanbir	SANGRAMPUR	76.714	21.0812	Recharge Shaft
62	Bhon	SANGRAMPUR	76.6443	20.9313	Recharge Shaft
63	Bhon	SANGRAMPUR	76.6538	20.9427	Recharge Shaft
64	Bodkha	SANGRAMPUR	76.6717	20.9989	Recharge Shaft
65	Bodkha	SANGRAMPUR	76.66	20.9875	Recharge Shaft
66	Chondi	SANGRAMPUR	76.6377	20.9792	Recharge Shaft
67	Dhamangaon	SANGRAMPUR	76.6505	21.0322	Recharge Shaft
68	Kakanwada Kh.	SANGRAMPUR	76.7491	21.0385	Recharge Shaft
69	Kakoda	SANGRAMPUR	76.6483	20.9682	Recharge Shaft
70	Kathargaon	SANGRAMPUR	76.6928	21.0026	Recharge Shaft
71	Kavthal	SANGRAMPUR	76.6287	20.9245	Recharge Shaft
72	Khalad Bk.	SANGRAMPUR	76.7441	21.0661	Recharge Shaft
73	Khel Dalavi Paturda	SANGRAMPUR	76.733	20.9329	Recharge Shaft
74	Khel Thorat Paturda	SANGRAMPUR	76.7291	20.9537	Recharge Shaft
75	Khiroda	SANGRAMPUR	76.6984	20.9277	Recharge Shaft
76	Kolad	SANGRAMPUR	76.7569	21.0588	Recharge Shaft
77	Ladnapur	SANGRAMPUR	76.6683	21.1217	Recharge Shaft
78	Ladnapur	SANGRAMPUR	76.6717	21.0905	Recharge Shaft
79	Ladnapur	SANGRAMPUR	76.6483	21.0994	Recharge Shaft
80	Ladnapur	SANGRAMPUR	76.67	21.1056	Recharge Shaft
81	Lohagaon Bk.	SANGRAMPUR	76.6494	21.0822	Recharge Shaft
82	Marod	SANGRAMPUR	76.6438	21.0692	Recharge Shaft
83	Mominabad	SANGRAMPUR	76.7525	21.0187	Recharge Shaft
84	Nirod	SANGRAMPUR	76.6527	20.9984	Recharge Shaft
85	Paturda Kh.	SANGRAMPUR	76.7558	20.9433	Recharge Shaft
86	Paturda Kh.	SANGRAMPUR	76.7692	20.962	Recharge Shaft
87	Paturda Kh.	SANGRAMPUR	76.7508	20.9584	Recharge Shaft
88	Pesoda	SANGRAMPUR	76.5992	20.9427	Recharge Shaft
89	Pingli Kh.	SANGRAMPUR	76.7458	21.1452	Recharge Shaft
90	Pingli Kh.	SANGRAMPUR	76.7748	21.142	Recharge Shaft
91	Rajpur	SANGRAMPUR	76.6237	21.0541	Recharge Shaft
92	Ringanwadi	SANGRAMPUR	76.7213	21.012	Recharge Shaft
93	Sagoda	SANGRAMPUR	76.7709	21.1139	Recharge Shaft
94	Sawala	SANGRAMPUR	76.6248	21.0395	Recharge Shaft
95	Sawala	SANGRAMPUR	76.6371	21.0447	Recharge Shaft
96	Sawali	SANGRAMPUR	76.6678	20.9438	Recharge Shaft
97	Sawali	SANGRAMPUR	76.6789	20.9396	Recharge Shaft
98	Saykhed	SANGRAMPUR	76.7079	21.1389	Recharge Shaft
99	Saykhed	SANGRAMPUR	76.6845	21.1394	Recharge Shaft
100	Sonala	SANGRAMPUR	76.7541	21.1275	Recharge Shaft
101	Sonala	SANGRAMPUR	76.7179	21.1046	Recharge Shaft
102	Sonala	SANGRAMPUR	76.7475	21.0884	Recharge Shaft
103	Sonala	SANGRAMPUR	76.7486	21.1067	Recharge Shaft
104	Takali Panchgavhan	SANGRAMPUR	76.7692	20.9266	Recharge Shaft
105	Takleshwar	SANGRAMPUR	76.6304	20.9552	Recharge Shaft
106	Umara	SANGRAMPUR	76.6962	21.0577	Recharge Shaft
107	Wankhed	SANGRAMPUR	76.738	20.9865	Recharge Shaft
108	Wankhed	SANGRAMPUR	76.7525	21.0068	Recharge Shaft
109	Wankhed	SANGRAMPUR	76.7658	20.9813	Recharge Shaft
110	Wankhed	SANGRAMPUR	76.738	20.9708	Recharge Shaft
111	Warwat Bakal	SANGRAMPUR	76.7112	21.027	Recharge Shaft
112	Warwat Khanderao	SANGRAMPUR	76.6856	20.9506	Recharge Shaft
113	Wasali	SANGRAMPUR	76.6494	21.1238	Recharge Shaft
114	Wasali	SANGRAMPUR	76.6561	21.1337	Recharge Shaft
115	Wastagaon	SANGRAMPUR	76.6806	20.9745	Recharge Shaft

SN	Village	Taluka	х	Y	Structures
116	Zashi	SANGRAMPUR	76.6611	21.0494	Recharge Shaft
117	Zashi	SANGRAMPUR	76.7881	21.0068	Recharge Shaft
118	Adsul	SHEGAON	76.708	20.864	Recharge Shaft
119	Bhastan	SHEGAON	76.5636	20.8941	Recharge Shaft
120	Bhongaon	SHEGAON	76.6174	20.8785	Recharge Shaft
121	Bhongaon	SHEGAON	76.5958	20.8808	Recharge Shaft
122	Bhongaon	SHEGAON	76.6029	20.8719	Recharge Shaft
123	Bhongaon	SHEGAON	76.6071	20.8769	Recharge Shaft
124	Bhota	SHEGAON	76.5045	20.9182	Recharge Shaft
125	Bhota	SHEGAON	76.5087	20.9113	Recharge Shaft
126	Chinchkhed	SHEGAON	76.5838	20.8894	Recharge Shaft
127	Chinchkhed	SHEGAON	76.5724	20.8936	Recharge Shaft
128	Dolarkhed	SHEGAON	76.5363	20.884	Recharge Shaft
129	Dondwada	SHEGAON	76.5363	20.8615	Recharge Shaft
130	Dondwada	SHEGAON	76.5303	20.8648	Recharge Shaft
131	Golegaon Bk.	SHEGAON	76.6903	20.8703	Recharge Shaft
132	Hingna Bhota	SHEGAON	76.5197	20.9037	Recharge Shaft
133	Janori	SHEGAON	76.6499	20.8559	Recharge Shaft
134	Kalkhed	SHEGAON	76.6584	20.8605	Recharge Shaft
135	Kalkhed	SHEGAON	76.6765	20.8714	Recharge Shaft
136	Kalwad	SHEGAON	76.525	20.8937	Recharge Shaft
137	Kalwad	SHEGAON	76.5339	20.9012	Recharge Shaft
138	Kathora	SHEGAON	76.5378	20.8937	Recharge Shaft
139	Kathora	SHEGAON	76.5498	20.8967	Recharge Shaft
140	Manegaon	SHEGAON	76.7285	20.8438	Recharge Shaft
141	Manegaon	SHEGAON	76.7341	20.8349	Recharge Shaft
142	Matargaon Bk.	SHEGAON	76.5487	20.8593	Recharge Shaft
143	Matargaon Bk.	SHEGAON	76.5629	20.8507	Recharge Shaft
144	Matargaon Bk.	SHEGAON	76.5487	20.8703	Recharge Shaft
145	Matargaon Bk.	SHEGAON	76.5427	20.8532	Recharge Shaft
146	Matargaon Kh.	SHEGAON	76.5395	20.8354	Recharge Shaft
147	Pahurpurna	SHEGAON	76.6666	20.8775	Recharge Shaft
148	Pahurpurna	SHEGAON	76.6627	20.9123	Recharge Shaft
149	Roti	SHEGAON	76.4957	20.9189	Recharge Shaft
150	Roti	SHEGAON	76.4957	20.9189	Recharge Shaft
151	SHEGAON	SHEGAON	76.7119	20.8266	Recharge Shaft
152	Taroda Tarodi	SHEGAON	76.6032	20.863	Recharge Shaft
153	Taroda Tarodi	SHEGAON	76.611	20.8494	Recharge Shaft
154	Taroda Tarodi	SHEGAON	76.616	20.8696	Recharge Shaft
155	Yeulkhed	SHEGAON	76.6421	20.8762	Recharge Shaft
156	Yeulkhed	SHEGAON	76.6506	20.8673	Recharge Shaft
157	Zadegaon	SHEGAON	76.7108	20.8464	Recharge Shaft
158	Zadegaon	SHEGAON	76.7161	20.8567	Recharge Shaft