

केंद्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

विभाग, जल शक्ति मंत्रालय

भारत सरकार Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

AMALNER, BODWAD, CHALISGAON, CHOPDA, JALGAON, MUKTAINAGAR, PAROLA, YAWAL & RAVER BLOCK, JALGAON DISTRICT, MAHARASHTRA

> मध्य क्षेत्र, नागपुर Central Region, Nagpur

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, AMALNER, BODWAD, CHALISGAON, CHOPDA, JALGAON, MUKTAINAGAR, PAROLA, YAWAL & RAVER BLOCK, JALGAON DISTRICT, MAHARASHTRA

AAP 2013-14, 2016-17 and 2017-18

CONTRIBUTORS

Principal Authors		
S. K. Bhatnagar	:	Scientist-D
J. R. Verma	:	Scientist-D
Nelofar Khan	:	Scientist-B
Rahul Shende	:	Assistant Hydrogeologist
Supervision & Guidance		
P. K. Parchure	:	Regional Director
S. Bhattacharya	:	Head of Office
Dr. P. K. Jain	:	Superintending Hydrogeologist
Hydrogeology, GIS maps and Management Plan		
J. R. Verma	:	Scientist-D
S. K. Bhatnagar	:	Scientist-D
Nelofar Khan	:	Scientist-B
Rahul Shende	:	Assistant Hydrogeologist
Kartik P. Dongre	:	Scientist-C
Groundwater Exploration		
Abhay Niwasarkar	:	Scientist-D
V. Venktesam	:	Senior Technical Assistant (HG)
Sandip Bhowal	:	Senior Technical Assistant (HG)
Chemical Analysis		
Dr. Devsharan Verma	:	Scientist B (Chemist)
Dr. Rajni Kant Sharma	:	Scientist B (Chemist)
T. Dinesh Kumar	:	Assistant Chemist

Amalner, Bodwad, Chalisgaon, Chopda, Jalgaon, Muktainagar, Parola, Yawal & Raver Block, Jalgaon District, Maharashtra-2019

JALGAON DISTRICT AT A GLANCE

1	. GENERAL INFORMATION		
	Geographical Area	:	11,762.70 Sq. km.
	Administrative Divisions	:	Block-15; Amalner, Bhadgaon, Bhusaval, Bodwad,
			Chalisgaon, Chopda, Dharangaon, Erandol, Jalgaon,
			Jamner, Muktainagar, Pachora, Parola, Raver, Yawal
	Villages	:	1519
	Population (2011)	:	42,244,42
	Normal Rainfall		755.60 mm
	Rainfall (2017)		525.50 mm
	Average Annual Rainfall (2008-17)	:	657.69 mm
2.	GEOMORPHOLOGY		
	Major Physiographic unit	:	Three; Satpuda hill range, Ajanta hill range and Tapi
			plain
	Major Drainage	:	Tapi River
3.	SOIL TYPE	:	Deep black and Medium black soils
4	. LAND USE (2013) (www. mahasdb.mahar	rash	tra.gov.in)
	Forest Area	:	2183.02 sq. km.
	Cultivable Area	:	8772.94 sq. km.
	Net Area Sown	:	8027.65 sq. km.
	Double Cropped Area		724.90 sq. km.
5.	PRINCIPAL CROPS (2011) (www. maha	ısdb.	maharashtra.gov.in)
	Cotton	:	3042.31 sq. km.
	Cereals	:	1954.82 sq. km.
	Pulses	:	1131.55 sq. km.
	Banana	:	510.04 sq. km.
	Oil seeds	:	322.66 sq. km.
	Sugarcane	:	148.87 sq. km.
	Spices	:	40.17 sg. km.
6	IRRIGATION BY DIFFERENT SOURCE	ES (2006) Nos. / Potential Created (sg.km)
	Dugwells	:	122221 /2315.64
	Tubewells (Shallow and Deep)	:	13227 /303.33
	Surface flow Schemes	:	236/195.28
	Surface Lift Schemes	:	273/36.94
7.	GROUND WATER MONITORING W	ELL	S (As on 31.03.2018)
	Dugwells	:	54
	Piezometers	:	03
8	. GEOLOGY		
	Recent	:	Alluvium
	Quaternary to Recent	:	Bazada (Talus and Scree), Younger Alluvium, Older
			Alluvium
	Upper Cretaceous-Paleogene	:	Basalt (Deccan Traps)
9.	. HYDROGEOLOGY		
	Water Bearing Formation	:	Alluvium- Coarse Sand, Pebble and Gravel.
			Ground water occurs in Unconfined to Confined
			conditions.
			Basalt (Deccan Traps)- weathered, fractured/
			jointed parts. Ground water occurs in Unconfined

Amalner, Bodwad, Chalisgaon, Chopda, Jalgaon, Muktainagar, Parola, Yawal & Raver Block, Jalgaon District, Maharashtra-2019

			to Confined conditions					
	Pre-monsoon Depth to Water	:	2.70 (Jalgaon city) to 55 (Nimgaon) mbgl					
	Level (Mav-2017)							
	Post-monsoon Depth to Water		0.10 (Lalmati) to 44.1 (Idgaon) mbgl					
	Level (Nov2017)	•						
	Pre-monsoon Water Level Trend	:	Rise: 0.0013 (Bambrud) to 0.42 (Pachora) m/year					
	(2008-2017)		Fall: 0.0014 (Kurha) to 0.8868 (Viroda) m/year					
	Post-monsoon Water Level Trend	:	Rise 0.0154 (mamurabad) to 0.0494 (Raver) m/year					
	(2008-2017)		Fall: 0.0020 (Patne) to 0.9383 (Nagalwadi) m/year					
10	, GROUND WATER EXPLORATION (As o	on 31/03/2018)					
	Wells Drilled	:	EW-100, OW-33, PZ-09, Total -142					
	Depth Range	:	22.70 to 318.45 m bgl					
	Discharge	:	Traces to 47.00 lps					
	Storativity	:	1.65×10^{-2} to 1.05×10^{-4}					
	Transmissivity	:	82.5 to 2314 m ² /day					
11	L. GROUND WATER QUALITY	1						
	The quality of ground water is alk	alin	e and generally suitable for drinking and irrigation					
	purpose, however localized nitrate	con	itamination is observed in rural areas.					
	Type of Water	:	Ca-HCO ₃ and Ca-Cl					
12	2. DYNAMIC GROUND WATER RESO	URC	CES- (2013)					
	Net Annual Ground Water	:	139554.81 ham					
	Availability							
	Annual Ground Water Draft	:	106892.33 ham					
	(Irrigation + Domestic)							
	Allocation for Domestic and	:	8671.06 ham					
	Industrial requirement up to next							
	25 years							
	Stage of Ground Water	:	76.60 %					
	Development							
13	3. AWARENESS AND TRAINING ACTI	VIT	Υ					
Α	Mass Awareness Programme	:	2					
В	Training Programme	:	3					
14	I. ARTIFICIAL RECHARGE & RAINWA	TER	HARVESTING					
	Projects Completed	:	Two, TE-11 and TE-17 watersheds					
	Projects under Technical Guidance	:	Nil					
15	5. GROUND WATER CONTROL & REG	iUL/	ATION					
	Over-Exploited Block	:	Two, Raver and Yawal					
	Semi-Critical Block	:	Three, Bodwad, Muktainagar and Parola					
	Notified Block	:	Nil					
16	5. MAJOR GROUND WATER PROBLE	MS	AND ISSUES					
	Major part of the district shows de	eclir	ning trends in ground water levels, during both pre					
	and post-monsoon periods. Deep	er v	water level areas have been observed in parts of					
	Yawal, Raver and Chopda Blocks. (δroι	und water quality is affected at many places due to					
	contamination of some inorganic	ра	arameters. High concentration of Fluoride is also					
	observed at Varkhedi (1.26 mg/L) and Bholane (1.64 mg/L) in Shallow Aquifer, at deeper							

level high concentration is observed at Manegaon EW (1.44 mg/L).

2019

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, AMALNER, BODWAD, CHALISGAON, CHOPDA, JALGAON, MUKTAINAGAR, PAROLA, YAWAL & RAVER BLOCK, JALGAON DISTRICT, MAHARASHTRA

AAP 2013-14, 2016-17 and 2017-18

CONTENTS

1.0	INTRODUCTION	8
1.1	About the area	8
1.2	Geomorphology, Drainage and Soil Types	10
1.3	Climate and Rainfall	13
1.4	Geology	16
2.0	HYDROGEOLOGY	18
2.1	Major Aquifer Systems	19
2.2	Aquifer Parameters	25
2.3	3-D and 2-D Aquifer Disposition	25
3.0	WATER LEVEL SCENARIO	29
3.1	Depth to water level (Aquifer-I /Shallow Aquifer)	29
3.2	Depth to water level (Aquifer-II /Deeper Aquifer)	31
3.3	Water Level Trend (2008-2017)	
3.4	Hydrograph Analysis	34
4.0	GROUND WATER QUALITY	37
4.1	Electrical Conductivity (EC)	
4.2	Suitability Of Ground Water For Drinking Purpose	41
4.3	Suitability of Ground Water for Irrigation Purpose	
5.0	GROUND WATER RESOURCES	44
5.1	Ground Water Resources – Aquifer-I	44
5.2	Ground Water Resources – Aquifer-II & III	45
6.0	GROUND WATER RELATED ISSUES	46
6.1	Declining Water Levels	46
6.2	Cash Crop Cultivation	46
6.3	Over Exploitation	47
6.4	Deeper Water Levels	
6.5	De-saturated Granular Zones	
6.6	Micro Irrigation Techniques	
6.7	Rainfall and Droughts	
7.0	GROUND WATER MANAGEMENT PLAN	49
7.1	Supply Side Management	
7.2	Demand Side Management	51
7.3	Expected Benefits	52
7.4	Development Plan	53
8.0	SUM UP	55
9.0 A	QUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, AMALNER BLOCK,	JALGAON
	DISTRICT, MAHARASHTRA	57
10.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, BODVAD BLOCK,	JALGAON
	DISTRICT, MAHARASHTRA	65
11.0 /	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, CHALISGAON BLOCK,	JALGAON
	DISTRICT, MAHARASHTRA	74
12.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, CHOPDA BLOCK,	JALGAON
	DISTRICT, MAHARASHTRA	83

Aquifer Maps and Ground Water Management Plan,

Amalner, Bodwad, Chalisgaon, Chopda, Jalgaon, Muktainagar, Parola, Yawal & Raver Block, Jalgaon District, Maharashtra-2019

13.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, PAROLA BLOCK, JALGAON
	DISTRICT, MAHARASHTRA92
14.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, JALGAON BLOCK, JALGAON
	DISTRICT, MAHARASHTRA101
15.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, YAWAL BLOCK, JALGAON
	DISTRICT, MAHARASHTRA110
16.0	AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, RAVER BLOCK, JALGAON
	DISTRICT, MAHARASHTRA119

LIST OF FIGURES

Figure 1.1 : Index map, Jalgaon District	Figure 1.2: Administration map, Jalgaon	
District		9
Figure 1.3: Locations of existing EW's and GW	monitoring wells, Jalgaon district	10
Figure 1.4: Geomorphology, Jalgaon district.		11
Figure 1. 5: Drainage Map, Jalgaon district		12
Figure 1.6: Soil Map, Jalgaon District		13
Figure 1. 7: Long term Annual Rainfall Analysis	s (1998-2017) of Jalgaon district	15
Figure 1.8: Isohyetal map of Jalgaon District		15
Figure 1. 9: Geological Map, Jalgaon district		18
Figure 2.1: Hydrogeology, Jalgaon District		19
Figure 2.2: Major Aquifers, Jalgaon District		20
Figure 2.3: Depth of occurrence and fractured	/granular rock thickness (Aquifer-I)	22
Figure 2.4: Depth of occurrence and fractured	/granular rock thickness (Aquifer-II)	23
Figure 2. 5: Depth of occurrence and fractured	d/granular rock thickness (Aquifer-III)	23
Figure 2.6: Yield Potential (Aquifer-I), Jalgaon	district	24
Figure 2.7: Yield Potential (Aquifer-II), Jalgaon	District	24
Figure 2.8: Yield Potential (Aquifer-III), Jalgaon	n District	25
Figure 2.9: 3D Aquifer Disposition, Jalgaon Dis	trict	25
Figure 2.10: 3D Fence Diagram, Jalgaon Distric	ct	26
Figure 2.11: 3D Fence Diagram, Tapi Alluvium	of Jalgaon District	26
Figure 2.12: 3D Bar Diagram, Jalgaon District		27
Figure 2.13 : Lithological Section		27
Figure 2.14: Lithological Section		27
Figure 2.15: Lithological Section		28
Figure 2.16: Lithological Section		28
Figure 3.1: DTWL shallow aquifer (May 2017),	Jalgaon District	29
Figure 3.2: DTWL shallow aquifer (Nov. 2017),	Jalgaon District	30
Figure 3.3: DTWL deeper aquifer (May 2017),	Jalgaon District	31
Figure 3.4: DTWL deeper aquifer (Nov. 2017),	Jalgaon District	32
Figure 3.5: Pre-monsoon decadal trend (2008-	-17), Jalgaon District Fall @>0.2m/year 2348	3 Sq
km (19.96%)		33
Figure 3.6: Post-monsoon decadal trend (2008	3-17), Jalgaon District Fall@>0.2m/year 247	8.75
sq km (21.07%)		34
Figure 3. 7: Behaviour of Water level with resp	pect to time	37
Figure 4.1: Ground water quality (Aquifer-I), Ja	algaon district	39
Figure 4.2: Ground water quality (Aquifer-II &	III), Jalgaon District	40
Figure 6.1: Area occupied by Banana Cultivation	on	47
Figure 6.2: Increase in Stage of GW Developm	ent	47
Figure 6. 3: Increase in GW Draft for Irrigation		48
Figure 6.4: De-saturated Granular Zones		49
Figure 7.1: Location of Proposed Artificial Rec	harge structures, Jalgaon District	50

Figure 7.2: proposed Area for Demand side interventions, Jalgaon District	52
Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation, Jalgaon	
District	54

LIST OF TABLES

Table 1. 1: Annual Rainfall (mm) Data (2008-2017)	13
Table 1.2: Long-term rainfall analysis 1998-2017, Jalgaon district	14
Table 1.3: Geological Succession of Jalgaon district	16
Table 2. 1: Aquifer Characteristic of Jalgaon district	21
Table 4. 1: Aquifer wise ranges of chemical constituents in Jalgaon district	37
Table 4. 2: Aquifer wise Electrical conductivity analytical data	38
Table 4.3: Aquifer wise nitrate and Fluoride concentration	40
Table 4. 4: Concentration of Chemical constituents in shallow Aquifer	41
Table 4.5: Concentration of Chemical constituents in Deeper Aquifer	42
Table 4. 6: Classification of Ground water for Irrigation based on EC values	42
Table 4. 7: Classification of Ground water for Irrigation based on SAR values	43
Table 4. 8: Classification of Ground water for Irrigation based on RSC values	43
Table 5. 1: Ground water resources, Aquifer-I (Shallow aquifer), Jalgaon district (2013)	44
Table 5. 2: Ground Water Resources of Aquifer-II & III (Deeper aquifer)	45
Table 7. 1: Area feasible and volume available for Artificial Recharge	49
Table 7. 2: Proposed Artificial Recharge Structures	50
Table 7. 3: Area proposed and water saving through Demand side interventions	51
Table 7. 5: Block wise additional area under assured GW Irrigation	53

LIST OF ANNEXURES

Annexure I: Salient Features of Ground Water Exploration, Jalgaon district (As on March	
2018)	.129
Annexure II: Details of GW monitoring wells and KOWs in Jalgaon district	.130
Annexure III: Chemical analysis of ground water samples, Shallow aquifers	.139
Annexure IV: Chemical analysis of ground water samples, Deeper aquifers	.144
Annexure V: Location of proposed Percolation tanks in Jalgaon district	.150
Annexure VI: Location of proposed check dam in Jalgaon district	.154
Annexure VII: Location of proposed Site for Recharge Shaft tanks in Jalgaon district	.161

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, AMALNER, BODWAD, CHALISGAON, CHOPDA, JALGAON, MUKTAINAGAR, PAROLA, YAWAL & RAVER BLOCK, JALGAON DISTRICT, MAHARASHTRA

1.0 INTRODUCTION

National Aquifer Mapping (NAQUIM) has been taken up in XII five-year plan by CGWB to carry out detailed hydrogeological investigations on 1:50,000 scale. The NAQUIM has been prioritized to study Over-exploited, Critical and Semi-Critical blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulatory mechanism has a detrimental effect on ground water scenario of the Country over last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern ground water management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the **"Road Map"** for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. The crux of NAQUIM is not merely on mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the Administration of Jalgaon district, Maharashtra for its effective implementation.

The activities under NAQUIM are aimed at:

- Identifying the aquifer geometry,
- Aquifer characteristics and their yield potential
- Quality of water occurring at various depths,
- Aquifer wise assessment of ground water resources
- Preparation of aquifer maps and
- 🖊 Formulate ground water management plan

1.1 About the area

Jalgaon district, an important district of Khandesh region is situated in north western part of Maharashtra. The district is well known for Banana cultivation. It has a total geographical area of 117670.48 Sq. Km. The district lies between north latitudes 20°15' and 21°25' and east longitudes 74°55' and 76°28 in the northern part of the State abutting Madhya Pradesh in the north. The total area of the district is 11,762.70 sq.km and falls in parts of Survey of India degree sheets 46 K, 46 L, 46 P, 55 C, 55 D, and 56 O. The district is bounded on the north by Madhya Pradesh, on the east by Buldhana district, on the west by Nashik and Dhule districts and on the south by Aurangabad district. It has a total population of 4,224,442 as per 2011 census. The district has 15 towns and 1519 villages. Population density as per 2011 census is 359 persons/sq.km. The major part of the district comes under Tapi basin. Tapi is the main river flowing through the district. (Figure 1.1 & Figure 1.2) Central Ground Water Board has taken up several studies in the district including Systematic Hydrogeological Survey, Reappraisal Hydrogeological Studies, Artificial Recharge Studies & National Aquifer Mapping and Management Programme etc. The data generated have been shared with the Central, State agencies as well as with the stake holders in the form of reports, maps etc.

Figure 1.2: Administration map, Jalgaon District

Under the National Aquifer Mapping & Management Programme (NAQUIM) 9 blocks have been covered in three phases of XII five Year Plan.

- I. Bodvad Block (356.69 sq km) in AAP 2013-14
- II. Raver, Yawal, Chopda, Edlabad (Muktainagar), Amalner, Parola and Jalgaon Blocks (6182.55 Sq Km) in AAP 2016-17.
- III. Chalisgaon block (1089.90 sq km) in AAP 2017-18

Remaining 6 blocks viz., Erandol, Jamner, Bhusaval, Pachora, Bhadgaon and Dharangaon blocks are to be covered in forthcoming years. So far, the existing and generated data has been compiled for the 9 blocks covered as given above. This report focuses the ground water situation and Management Plans for 9 blocks covering 7629.18 Sq Km area.

The ground water exploration has been done in alluvial and hard rock areas occupied by Deccan Trap Basalt. To establish the aquifer geometry, disposition and potential of aquifers, ground water exploration down to the depth of 200 mbgl has been taken up where the data gap exists and accordingly 14 exploratory wells and 1 observation wells have been constructed during the 2013-14 and 2016-17. A total of 100 EW, 33 OW and 09 Piezometers have been constructed till March 2018. Salient Features of Ground Water Exploration are given in **Annexure-I**.

57 existing ground water monitoring stations were being monitored 4 times in a year to assess the ground water scenario of the district. Apart from this, based on data gap analysis additional 76 KOWs and 252 micro level wells were inventoried to acquire micro level hydrogeological data to decipher the water level scenario, sub-surface lithological disposition and hydrogeological setup of shallow aquifer (Aquifer-I). The details of KOWs and GWM wells are given in **Annexure-II.** Locations of existing ground water monitoring stations and exploratory wells are shown in **Figure 1.3**.

Figure 1.3: Locations of existing EW's and GW monitoring wells, Jalgaon district

1.2 Geomorphology, Drainage and Soil Types

The district can be divided into three main physiographic divisions i.e., Satpuda hill ranges in the northern part with dense forest; Tapi valley consisting of alluvial plain in the central part of the district and Ajanta hill ranges, flanking the hill ridges and small valleys in the southern part of the district. (Figure 1.4)

The Tapi valley contains a vast central alluvial plain from Burhanpur in the east and Dhule in the west. However, the river banks are marked by erosion, forming gully and wasteland which inhabit agriculture extension. Alluvial plain of the Tapi River is bounded in the north by steep southern escarpment of the Satpuda, a high hill mountain range trending east north east -west south west. The northern boundary of the district is marked by valleys of the Aner River and its eastern counterpart of Mamat River, which is tributary of Saki River. These two longitudinal valleys separate the southern range of the Satpuda from their northern members. South of Tapi river valley, the area has varied physiography with undulating plains, small hill ranges and broad valleys. The Hatti hills along with Purna Valley on the east has a north west-south east trend and passes through the south east corner of Jalgaon district for about 32 km.

The Satmala, also known as the Chandur or Ajanta, breaking off sharply from the Sahyadries in the north west of Nashik, runs for about 80 km east in a series of ridges and hills formed of Basalt.

Figure 1.4 : Geomorphology, Jalgaon district

Tapi River flows from east to west over 130 km in Jalgaon district. Tapi is the main river flowing through the district and its major tributaries viz; Bhokar, Aner, Suki, Morna, Harki, Manki, Gul, in the north and the Purna, Girna, Bahul, Bori, Vaghur, Hated in the south of Tapi river. Except the Purna and Vaghur rivers, all the southern streams have their sources along the Sahyadri. The Tapi River with pronounced meandering falls under mature stage of River. However, its tributaries on the northern banks are not mature due to which streams may change their course. These streams are controlled by easterly lineament and its course take sudden right angle turns before joining the Tapi main stream (**Figure 1.5**).

Figure 1. 5: Drainage Map, Jalgaon district

The soils in Jalgaon district are essentially derived from the basaltic lava flows and are classified as, a) Deep black soils, b) Medium black soils, c) Loamy and sandy soils and d) Forest soils. Deep black soils are observed in northern part of Amalner, Erandol, Jalgaon, Bhusaval and Edlabad blocks. Medium black soils occur over large areas in the district viz.; the central belt of the wide Tapi valley and southern hills. In Tapi alluvial basin, soils are black alluvial clay occurring in the southern parts of Yawal, Raver, Chopda, Jalgaon, Bhusaval, Chalisgaon, Amalner, and Bhadgaon blocks. Loamy soils are observed in the southern-most part of Amalner, Erandol, Jalgaon and Bhusaval blocks. Sandy soils are observed on the foothills of Satpuda ranges and near southern hillocks. Forest soils are dark brown and occur on slopes mainly in the Satpuda ranges. The thematic map of soil distribution in the district is shown in **Figure 1.6**.

Figure 1.6: Soil Map, Jalgaon District

1.3 Climate and Rainfall

The climate of the district is characterized by a hot summer and general dryness throughout the year except during the south-west monsoon season, i.e., June to September. The mean minimum temperature is 10.8°C and means maximum temperature is 42.2°C. Jalgaon District received an average rainfall of about 521.61 mm during 2017. The average annual rainfall for the last ten years 2008-2017 ranges from 550.94 (Jamner) to 751.65 mm (Chopda) and the same is presented in **Table 1**.

Block	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Decadal
											Average
Jalgaon	422.7	754.1	752.4	735.7	320.2	1007.7	805.6	423.2	747	571.5	654.01
Bhusaval	335	683.7	821.6	542.2	366.2	915.4	685.3	641.3	842.5	440.2	627.34
Yawal	458.2	670	1057.2	626.6	490	1071.1	834.4	476.5	662.4	485.8	683.22
Raver	453.3	614	876.2	510	426.8	820.9	639.5	593.2	681.4	644.9	626.02
Muktainagar	470.6	757.6	998.8	571	365.2	773.4	446.6	448.3	548.4	387.9	576.78
Amalner	506.04	677.6	721.4	478.8	408.3	781.6	661.5	391.1	458.2	311.1	539.56

Table 1. 1: Annual Rainfall (mm) Data (2008-2017)

CGWB, CR, Nagpur

Block	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Decadal
											Average
Chopda	555.2	863.8	1025	695.2	485.9	1225.1	877.1	500	719.4	569.8	751.65
Erandol	663	865	864.5	686	488	926.5	904.4	524.6	768.4	643.6	733.4
Parola	573	680.1	817	563.9	555.4	1019.2	619.0	436.3	658	651	657.29
Chalisgaon	649.8	747	823.2	695.8	388	829.6	735.1	518.6	787.9	604.6	677.96
Jamner	585.2	630.2	559.7	516.1	363.2	752	507.2	435.9	658.7	501.2	550.94
Pachora	587.1	716.6	886.6	657.2	388.4	876	699.0	484.5	707.3	580.7	658.34
Bhadgaon	699.2	689	773.8	631.8	364.8	942.3	661.0	462.2	734	412.1	637.02
Dharangaon	549	752	779	585.5	356.2	1069.6	882.8	458	763.1	586.2	678.14
Bodvad	556	769	1064.4	684.9	375.8	956.9	626	496.7	568.9	433.6	653.22
District Av.	537.56	724.65	854.72	612.05	409.49	931.15	705.63	486.03	687.04	521.61	657.69
RF (mm)											

(Source : www.agri.mah.nic.in)

The Normal rainfall of the district is 707.85 mm spread over 47 rainy days in normal condition. Long term rainfall analysis (1998-2017) and annual rainfall data of last 20 years is given in **Table 1.2.**

Based on long term rainfall analysis it is observed that:

- The coefficient of variation of the annual rainfall from the normal rainfall is 30%.
- The probability of receiving Excess rainfall is observed to be 6 % and Normal rainfall to be 55 %.

Annual Average rainfall data of last twenty years is analysed and presented in **Figure 1.7**. This indicates that minimum rainfall occurred in 2012 (414.2 mm) and maximum in 2006 (1261 mm). Normal rainfall isohyet map of the district is presented in **Figure 1.8**.

Period	= 1998 to 2	017		Normal Rainfall = 707.8 mm						
No. of	Years = 20			Standard Deviation = 210 mm						
Year	Annual	Normal	Departure	Coefficient of Va	ariation = 30%					
1998	1025.4	707.8	45	Slope= -7.355 m	ım/year					
1999	605.8	707.8	-14	Intercept= 785 r	nm					
2000	495.1	707.8	-30	Equation of Trei	nd Line= -7.355x	(+785				
2001	660.4	707.8	-7	Category	No. of Years	% of total Years				
2002	758.5	707.8	7	Departures						
2003	949	707.8	34	Positive	8	40				
2004	655.8	707.8	-7	Negative	12	60				
2005	525.1	707.8	-26	Droughts						
2006	1261	707.8	78	Moderate	5	25				
2007	642.2	707.8	-9	Severe	0	0				
2008	543.7	707.8	-23	Acute	0	0				
2009	724	707.8	2	Normal & Exces	s R/F					
2010	858.9	707.8	21	Normal	11	55				
2011	616.2	707.8	-13	Excess	4	6				
2012	414.2	707.8	-41							
2013	963.8	707.8	36							
2014	714.1	707.8	1	NOTE: Rainfall departure: EXCESS: > +25; NORMAL: +25 TO -25; MODERATE: -25 TO -50; SEVERE: -50 TO -75; ACUTE: < -75						
2015	532.8	707.8	-25							
2016	683.7	707.8	-3							
2017	525.5	707.8	-26	1						

Table 1.2: Long-term rainfall analysis 1998-2017, Jalgaon district

Figure 1. 7: Long term Annual Rainfall Analysis (1998-2017) of Jalgaon district

Figure 1.8: Isohyetal map of Jalgaon District

1.4 Geology

Basaltic lava flows are the major rock formations along with alluvium/Bazada. Basaltic Lava flows of the Deccan trap belonging to Upper Cretaceous - Lower Eocene age and the alluvium belonging to Quaternary to Recent age. The geological succession of Jalgaon district is presented in **Table 1.3**.

Age	Group	Formation	Lithology
North of Tapi			
Quaternary (Recent	Alluvium	Alluvium/Bazada Formation	Boulders, gravels, pebbles, Sand &
			стау
Upper Cretaceous	Satpura	 DT. Unclassified 	Group of Aa, Compound, Pahoehoe
to Lower Eocene	Group	 Garga Formation 	type of basaltic lava flows
	(Deccan trap	 Ambabarwa Formation 	
	Basalt)	 Kelpani Formation 	
		 Nagartas Formation 	
Tapi Valley			
Upper Cretaceous	-	Chahardih Formation	Group of Compound Pahoehoe & Aa
to Lower Eocene			type of basaltic lava flows
South of Tapi			
Upper Cretaceous	Sahyadri	 Ajanta Formation 	Group of Megacryst, Aa, Compound,
to Lower Eocene	Group	 Upper Ratangarh 	Pahoehoe type of basaltic lava
	(Deccan trap	Formation	flows, with dykes/intrusive /sills
	Basalt)	 Lower Ratangarh 	
		Formation	

 Table 1.3: Geological Succession of Jalgaon district

1.4.1 Alluvium:

The Tapi river flows from east to west across the district forming a strip of alluvium covered land on both the sides of the river. Alluvium, belonging to the Quaternary period consists of boulders, Cobbles, Pebbles, Gravels, sand, silt, clay and Kankar. The alluvium occurs over an area of 3600 sq. km. in the northern half of the district below the Satpuda ranges. Southern part of the Satpudas was subjected to faulting and went down hundreds of meters along the Great Boundary Fault. Thickness of the alluvial deposits is also variable and ranges from paper thin in the south to more than 350 m in the north. The alluvial cover is much thicker and wider on the west, it thins out on the east and the traps are exposed in the bed of the Tapi River near Bhusaval. However, the alluvium attains a thickness of about 400 m between Adavad and Yawal.

The alluvium comprises of beds of clay and silt with lenses of Coarse sand, Gravel, and Pebbles. The entire thickness of Alluvium can be divided in to Younger Alluvium Occurring up to 80 mbgl and older alluvium occurring between Younger alluvium and the basalt Basement. The younger alluvium is yellowish brown in colour, more coarse grained and contains 2 to 5 layers of granular zones, ranging in thickness from 2 to 20 m. The older is dark brown in colour and comprises sticky clays with 1 to 3 layers of gravels and boulders.

The clast size decreases from north to south towards Tapi river; Graveliferous alluvium occupies the foothills of Satpuda hills and laterally, with progressive decrease in dominant clast size, the sandy alluvium occupies the central part of the alluvium covered area and further toward south Alluvium gets enriched in clay content in the vicinity of Tapi river. The alluvium is clayey and yellowish on the Tapi banks and adjoining ravines. The ravines are more than 30 m deep near kolnhavi, siragad and Pathrale villages. The Purna and the Girna rivers to the east and SW respectively in the district also contain alluvial cover ranging in thickness between 10 and 20 m.

1.4.2 Bazada formation:

The Bazada formation consists of mainly large sediments admixture with pebbles, gravels, sand, silt and clay in the loose form. The formation occurs at the foothills of the Satpuda hill ranges with 80 km east- west extent and it pinches on the western part of Jalgaon near Aner River.

The Bazada zone is covered by brownish to black sandy soils. These deposits are formed due to the deposition of rock fragments transported by local streams from Satpuda hill range. The maximum thickness of these deposits is not known. However, around Naygaon, it is more than 100 mbgl thick.

1.4.3 Deccan traps Basalt:

The area comprises of the Deccan basalts covering major part of the district (70 to 80 per cent) and a few strips of alluvial soil cover on both sides of the major rivers and streams. The Deccan trap lava sequence is grouped under Satpuda and Sahyadri group in the area north and south of Tapi River respectively. The inlier of lava flows immediately north of Tapi and within alluvium comprises lower Pahoehoe and upper Aa flow grouped under Chahardi formation. In Satpura group, the general thickness of individual flow varies between 15-40 m. Satpuda group is further subdivided in to six formations on the basis of megacryst, marker flows or prominent red/ green bole beds. Doleritic, basaltic and Gabbroic dykes traverse the flows. The Sahyadri group is divided into Ajanta and Ratangarh formations and Sahyadri group consist of alternate sequence of Pahoehoe and Aa flows with cumulative exposed thickness varying between 90 to 200 m.

The individual lava flow is composed of two major rock units (1) the massive part and (2) the vesicular part. Each individual lava flow consists of lower massive part becoming vesicular /amygdaloidal towards top, ranges in their individual thickness from a few centimetres to tens of meters. The flows have wide variation in colour and texture especially when they are amygdaloidal in nature with secondary mineral infillings such as Zeolites, calcite, and Agate and Chalcedony etc. The red /green/black bole beds constituting the marker horizons separating the two flows were discontinuous and generally inconsistent. Deccan basalts are hydro geologically in-homogeneous rocks.

A borehole at Bhusaval, 367 m deep, revealed 29 flows ranging in thickness from a few m to 30 m. The systematic geo hydrological studies in Chalisgaon block and the adjoining western parts in Nasik district reveal 17 different lava flows ranging in thickness from 15 to 46 m within a vertical column of 290 m at an altitude between 319 and 609 m above M.S.L. The individual flow in the area can be separated easily with the help of 0.6 to 1.5 m thick marker horizon of red bole. The lava flow is normally horizontal in disposition, but at places they dip at 5 to 6 degrees towards west. In Aner valley and near Dalnet and north of Chopda these flows appear to be horizontal, while at Burhanpur and Raver, assume 5 degrees dip towards west.

Figure 1. 9: Geological Map, Jalgaon district

2.0 HYDROGEOLOGY

Hydrogeology is concerned primarily with the mode of occurrence, distribution, movement and chemistry of water occurring in the subsurface in relation to the geological environment. The occurrence and movement of water in the subsurface is broadly governed by geological frameworks i.e., nature of rock formations including their porosity (primary and secondary) and permeability. The principal aquifers in the area is Bazada, Alluvium and Basalt and the occurrence and movement of ground water in these rocks is controlled by various factors such as grain size and clay content in Bazada, ground water accumulation in Alluvial aquifer is directly proportional to the granular zones i.e., the ground water accumulation. Whereas in Basalt, the occurrence and movement of ground water primarily depends on the degree of interconnection of secondary pores/voids developed by fracturing and weathering. The vesicles in Deccan basalt formation are invariably found filled with secondary minerals thereby reducing the primary porosity to almost nil. The hydrogeological map of area is prepared and presented in **Figure 2.1**.

Figure 2.1: Hydrogeology, Jalgaon District

2.1 Major Aquifer Systems

Three main types of formations are observed in the area i.e., Bazada, Alluvium and Basalt. Alluvium and Basalt form the main aquifers in the district. Two aquifer Systems in Basalt and three in Alluvium are found to be prevailing in the district. Based on the existing data and the data generated so far, map of major aquifer has been prepared and depicted in **Figure 2.1**.

The aquifer units in each of the formation are listed below:

- Bazada Single unit (upto 100 m)
- Alluvium
 - Aquifer –I: up to 80 m,
 - Aquifer –II: 30 to 200 m and
 - Aquifer –III: > 200 m

Figure 2.2: Major Aquifers, Jalgaon District

2.1.1 Occurrence of Ground Water in Bazada

The ground water in Bazada (Talus and Scree) formation occurs under unconfined and semi-confined conditions and form highly productive zone in the area. The formations are highly porous and permeable in nature, which facilitate ground water movement with much ease than in the Alluvial and Basaltic aquifers. The yield of dugwells occurring in this formation is generally higher than those tapping Basaltic and Alluvial aquifer. It generally ranges from 5 to more than 10 lps.

The depth of the dugwells in Bazada range from 16.20 to 70.60 mbgl which are the preferred ground water abstraction structures, ground water occurs in unconfined conditions and the depth to water level varies from 5.10 to 52.10 mbgl, however in majority of the wells it is between 20 and 40 mbgl.

2.1.2 Occurrence of Ground Water in Alluvium

Northern part of the district is underlain by Tapi Alluvium. Tapi Alluvium can be subdivided into two sub units, i.e., the upper younger alluvium extending down to 70-80 m depth and the deeper older alluvium attaining a maximum depth of 400 m. However, only upper 70-80 m of younger alluvium, having 2 to 5 layers of granular zones of sand and gravel ranging in thickness from 2 to 20 m, forms the potential aquifer. At deeper levels the alluvium is mostly clayey and does not form potential aquifer.

Ground water in alluvium occurs under water table, semi-confined and confined conditions. The dugwells in these formations are deep ranging from 25 to 50 mbgl in depth with yield varying from 120 to 200 m³/day in winter and from 100 to 150 m³/day in summer.

2.1.3 Occurrence of Ground Water in Basalt

Deccan Trap Basalt of Upper Cretaceous to Paleogene age is the major rock formation, covering about 8040 sq. km. area in central and the southern parts of the district. These rock formations are intruded by the dykes of the same period. Alluvium occurs over an area of 3600 sq. km. in the northern part of the district below the Satpura ranges. A map depicting hydrogeological features is presented in **Figure 2.2**.

Ground water in Deccan Basalt formation occurs mostly in the upper weathered and fractured parts down to 20-25 m depth. At places potential zones are encountered at deeper levels in the fractures and inter-flow zones. The upper weathered and fractured parts form phreatic aquifer and ground water occurs under water table (unconfined) conditions. At deeper levels, the ground water occurs under semi-confined conditions. The yield of dugwells with the depth range of 5-15 mbgl, tapping upper phreatic aquifer, is found between 21 and $337m^3/day$. Borewells drilled down to 60-150 m depths, tapping weathered and fractured basalt are found to yield 1.8 to 52 m³/day.

Shallow Aquifer is generally tapped by the dug wells of 9 to 38 m depth, water levels range from 0.1 to 35 mbgl and yield varies from 10-200 m³/day. The deeper Aquifer is being tapped by borewells with depth ranging from 20-200 mbgl and the water level from 17-99.40 m bgl. Based on Ground Water Exploration, aquifer wise characteristics are given in **Table 2.1**. Maps depicting aquifer wise depth of occurrence and fractured/granular zone's thickness and yield potential are shown in **Figure 2.3 to 2.5 and 2.6 to 2.8** respectively.

Major Aquifers Basalt (Deccan Traps)		Alluvium (River Alluvium)			
Type of Aquifer	Aquifer-I	Aquifer-II	Aquifer-I (AL02)	Aquifer-II	Aquifer-III
				(ALU1)	(ALU1)
Formation	Weathered/	Jointed /	Alluvium-Gravel	Alluvium-	Alluvium-
	Fractured	Fractured	dominant or	sand/Clay	Clay
	Basalt	Basalt	Alluvium-Sand /	dominant	dominant
			silt &Clay		
			alternating beds		
Depth of Occurrence (mbgl)	9 to 38	20 to 200	27 to 80	30 to 200	120 to 350
Fractures/granular zones	up to 30	up to 200	up to 60	up to 200	up to 350
encountered (mbgl)					
Granular/Weathered/Fract	5 to 30	0.5 to 12	5 to 60	5 to 30	3 to 40
ured rocks thickness (m)					
SWL (mbgl)	0.1 to 35	17.15 to	3.1 to 55	2.2 to 72.50	2.2 to
		99.40			72.50
Yield	<10 to 200	0 to 5 lps	25 to 200 m ³ /day	0 to 5 lps	0 to 2 lps
	m³/day				
Sustainability	0.5 to 3 hrs	2 to 6 hrs	1 to 10 hrs	2 to 12 hrs	1 to 2 hrs
Transmissivity (m ² /day)	4 to 55	10 to 60	10 to 200 m ² /day	20 to 562	15 to 250
	m²/day	m²/day		m²/day	m²/day

 Table 2. 1: Aquifer Characteristic of Jalgaon district

CGWB, CR, Nagpur

Amalner, Bodwad, Chalisgaon, Chopda, Jalgaon, Muktainagar, Parola, Yawal & Raver Block, Jalgaon District, Maharashtra	-2019
---	-------

Major Aquifers	Basalt (Deccan Traps)		Alluvium (River Alluvium)		
Type of Aquifer	Aquifer-I	Aquifer-II	Aquifer-I (AL02)	Aquifer-ll (AL01)	Aquifer-III (AL01)
Formation	Weathered/	Jointed /	Alluvium-Gravel	Alluvium-	Alluvium-
	Fractured	Fractured	dominant or	sand/Clay	Clay
	Basalt	Basalt	Alluvium-Sand /	dominant	dominant
			silt &Clay		
			alternating beds		
Specific Yield/ Storativity	0.02	1.0 x10 ⁻⁴ -	0.06-0.1	3.47 x 10 ⁻³	3.47 x 10 ⁻³
(Sy/S)		to 2.5 X 10 ⁻⁵		to 3.96 x 10 ⁻	to 3.96 x 10 ⁻⁴
Suitability for drinking/	Suitable for	Suitable for	Suitable for both	Suitable for	Suitable
irrigation	both (except	both (except	(except Nitrate	both except	for both
	Nitrate &	Nitrate &	affected villages	Nitrate &	except
	Fluoride	Fluoride	for drinking)	Fluoride	Fluoride
	affected	affected		affected	affected
	villages for	villages for		villages for	villages for
	drinking)	drinking)		drinking)	drinking)

Figure 2.3: Depth of occurrence and fractured/granular rock thickness (Aquifer-I)

Figure 2.4: Depth of occurrence and fractured/granular rock thickness (Aquifer-II)

Figure 2. 5: Depth of occurrence and fractured/granular rock thickness (Aquifer-III)

Figure 2.6: Yield Potential (Aquifer-I), Jalgaon district

Figure 2.7: Yield Potential (Aquifer-II), Jalgaon District

Figure 2.8: Yield Potential (Aquifer-III), Jalgaon District

Yield potential	Aquifer I	Aquifer II	Aquifer III
Alluvium	25 to 200 m ³ /Day	0 to 5.0 lps	0.0 to 2.0 lps
Basalt	0 to 200 m ³ /Day	0 to 5.0 lps	-

2.2 Aquifer Parameters

Aquifer parameters are available from ground water exploration carried out in the alluvial area of the district. The specific capacity ranges between 0.07 and 21.6 lps/m of drawdown and the transmissivity ranges from 82.5 to 2314 m²/day. The Storativity varies from 1.6×10^{-2} and 1.057×10^{-4} while permeability varies from 0.19 and 154.62 m/day. The results of pumping test analysis of dugwells in basalt show that the permeability and specific capacity ranges from 1.104 to 274.08 m/day and 12.14 to 1818.18 lpm/m-dd respectively.

2.3 3-D and 2-D Aquifer Disposition

Based on the existing data, aquifer disposition in 3D, Fence diagram, 3D Bar diagram and several hydrogeological sections have been prepared along section lines shown in **Figure 2.9 to 2.17** to understand the subsurface disposition of aquifer system.

Figure 2.11: 3D Fence Diagram, Tapi Alluvium of Jalgaon District

Figure 2.12: 3D Bar Diagram, Jalgaon District

Figure 2.14: Lithological Section

Figure 2.17: Lithological Section

3.0 WATER LEVEL SCENARIO

3.1 Depth to water level (Aquifer-I /Shallow Aquifer)

Central Ground Water Board periodically monitors 57 Ground Water monitoring wells in the Jalgaon district, four times a year i.e. in January, May (Premonsoon), August and November (Postmonsoon). Apart from this under NAQUIM studies; 76 KOWs were also established and monitored during the year 2017. These data have been used for preparation of depth to water level maps of the district. Pre-monsoon and post monsoon water levels along with fluctuation during 2017 and long-term water level trends (2008-2017) are given in **Annexure-II.**

During pre-monsoon (may 2017), depth to water ranges between 2.70 (Sivaji Udyan, Jalgaon block) and 55 mbgl (Nimgaon, Yawal block). The water levels less than 5 mbgl are observed in basaltic terrain as isolated patches in Chalisgaon, Pachora, Bhadgaon, Parola, Dharangaon and Jalgaon Blocks. The Water levels between 5-10 mbgl are observed in southern half of the district and small patches in northern parts of Chopda and Raver blocks. The water level between 10 to 20 mbgl is observed in major part of the district. The Deeper water levels between 20 and 30 mbgl are observed in the north of Tapi river covering Chopda, Raver and Yawal blocks and small isolated parts in Jalgaon, Edlabad and Amalner blocks. Deepest water level more than 30 mbgl has been observed in the north of the Tapi River covering entire Yawal block; major part of Raver; part of Chopda blocks , adjoining area of Jalgaon block and one isolated patch is also observed in south of the Jalgaon block. The deeper water levels are characteristic of Tapi basin due to its high ground water potential and over exploitation of the ground water resources. The premonsoon depth to water level map is depicted in **Figure 3.1**.

Figure 3.1: DTWL shallow aquifer (May 2017), Jalgaon District

During Post- Monsoon (Nov. 2017), depth to water level varies between 0.1 (Lalamati, Raver block) and 44.1 mbgl (Idgaon, Jalgaon block). Shallow water levels less than 2 mbgl are observed as isolated parts in Amalner, Chalisgaon, Bhadgaon, Erandol, Pachora and Jalgaon blocks. Water levels between 2 to 5 mbgl are observed covering major parts of southern portion of the district. Water levels between 5 and 10 mbgl are observed as continuous stretch in the south along the Tapi River and in isolated parts in the northern part covering Chopda and Raver blocks. The water levels between 10 to 20 mbgl have been observed covering major part in the north of Tapi River and in isolated parts in Jalgaon, Jamner, Edlabad and Chalisgaon blocks. Deeper water levels of more than 20 mbgl are observed in north of Tapi River covering major part of Yawal block and part of Raver block; isolated parts of Chopda and Jalgaon blocks. Spatial variation in post monsoon depth to water levels is shown in **Figure 3.2**.

Seasonal Water Level Fluctuation (May-Nov. 2017)

It is observed that minimal water level fluctuation was observed at Karamadu, Chalisgaon block (0.20 m) while maximal water level fluctuation was observed at Chinchati, Raver block (27.2 m). Rise in water level has been observed in entire district in the range of Rise 0-2, 2-4 and >4 m. No decline in water level was observed in the District.

3.2 Depth to water level (Aquifer-II /Deeper Aquifer)

Total 142 exploratory wells' data has been used for preparation of depth to water level maps of the district. The pre-monsoon (May 2017) depth to water level, in Jalgaon District ranges from 12.00 (Bodvad, Bodvad block) to 140.00 mbgl (Talwel, Bhusaval block). The depth to water level less than 10 mbgl is observed only in isolated parts of Chalisgaon block. Depth to Water level between 10 to 20 mbgl has been observed in parts of Chopda, Muktainagar, Bodvad, Jamner and Chalisgaon blocks and isolated patches are also observed in rest of the blocks except Jalgaon and Parola blocks. The deeper water level between 20 and 30 mbgl are observed in major parts of Chopda, Raver and Amalner blocks and in parts of almost all the blocks. The water level between 30-40 mbgl has been observed in major part of Yawal, Raver, Jamner, and Pachora blocks and in parts of almost all the blocks except Chopda block. The water level more than 40 m has been observed in major part of South of Tapi River and small part of Yawal and Raver blocks in the north of Tapi River. The North of Tapi River, deeper water levels are observed in Tapi Alluvial formation and water levels in these areas remain deep even after the natural recharge. In the south of Tapi River, deeper water may be attributed low yield potential of the formation. The premonsoon depth to water level for Aquifer -II is given in **Figure 3.3**.

Figure 3.3: DTWL deeper aquifer (May 2017), Jalgaon District

During post monsoon (Nov. 2017), depth to water levels ranges between 4.95 (Hated Kh., Chopda block) and 58.18 mbgl (Tamaswadi, Yawal block). Depth to water level less than 10 mbgl has been observed scattered over the district in small isolated patches. Depth to water level between 10 to 20 mbgl is observed in the major part of the district. Deeper water level between

20 to 30 mbgl has been observed in major part of Jamner, Jalgaon and Yawal blocks and also observed in in parts of almost all the block except Chopda block. The deepest water level of more than 30 mbgl has been observed in major part of Pachora, Parola and Chalisgaon blocks and isolated patches in Jalgaon, Amalner, Bodvad, Raver and Yawal blocks. The post monsoon depth to water level for Aquifer –II is given in **Figure 3.4**.

Figure 3.4: DTWL deeper aquifer (Nov. 2017), Jalgaon District

3.3 Water Level Trend (2008-2017)

During pre-monsoon, rise in water level trend has been recorded at 45 stations ranging from 0.00137 (Bamhrud kh. Pachora block) to 0.42 m/year (Pachora, Pachora block) while falling trend was observed in 76 stations varying from 0.00146 (Kurha, Edlabad block) to 0.88687 m/year (Viroda, Yawal block). During pre-monsoon, declining water level trend has been observed in about 7344.61 sq km area i.e., 62.44 % of the area. Significant decline more than 0.20 m/year has been observed in 2348.34 sq km, i.e., 19.96 % area covering major part of north of Tapi River. Rise in water level trend up to 0.2 m/year has been observed in southern, central and eastern parts of the district covering 4440.38 sq km. Rise in water level more than 0.2 m/year has been observed in about 440.27 sq km area as isolated parts in southern half of the district (Figure 3.5).

Figure 3.5: Pre-monsoon decadal trend (2008-17), Jalgaon District Fall @>0.2m/year 2348 Sq km (19.96%)

During post-monsoon, rise in water level trend has been recorded at 67 stations ranging from 0.0020 (Patne, Chalisgaon block) to 0.93833 m/year (Nagalwadi, Chopda block) while falling trend was observed in 86 stations varying from 0.01545 (Mamurabad, Jalgaon block) to 0.82887 m/year (Raver, Raver block). Rising water level trend has been observed in isolated parts in almost all the blocks. Fall in water level trend has been observed 7924.73 sq km area and covering major part of the district. Significant decline, more than 0.20 m/year has been observed in 2478.75 sq km area in major part of Yawal and Jalgaon blocks and parts of Chopda, Erandol and Dharangaon and Chalisgaon blocks **(Figure 3.6).**

In Alluvium part of the district, declining trend more than 0.2 m/year has been observed in both during pre and postmonsoon periods. These declines may be due to the overexploitation of ground water in Graveliferous /alluvial aquifers.

Figure 3.6: Post-monsoon decadal trend (2008-17), Jalgaon District Fall@>0.2m/year 2478.75 sq km (21.07%)

3.4 Hydrograph Analysis

The variation in short term and long-term water level trends may be due to variation in natural recharge due to rainfall and withdrawal of groundwater for various agricultural activities, domestic and industrial requirements. The analysis of hydrographs shows that the annual rising limbs in hydrographs indicate the natural recharge of groundwater regime due to monsoon rainfall, as the monsoon rainfall is the sole source of natural recharge to the ground water regime (**Figure 3.7**). However, continuous increase in the groundwater draft is indicated by the recessionary limb.

Figure 3. 7: Behaviour of Water level with respect to time

4.0 GROUND WATER QUALITY

Ground water sampling is being done every year from GWM wells during pre-monsoon period (May). The data gap analysis has been carried out to find out the adequacy of information on water quality and identified additional locations, 49 for shallow and 07 for deeper aquifers. Ground water quality data of 159 monitoring wells of CGWB and GSDA representing shallow aquifer have been utilised to decipher the quality scenario of shallow aquifer. 179 exploratory wells - tubewells/borewells of CGWB and GSDA representing deeper aquifer have been utilised to decipher the quality representing deeper aquifer have been utilised to decipher aquifer. The aquifer wise ranges of different chemical constituents present in ground water are given in **Table 4.1**. The details of chemical analysis are given in **Annexure III and IV**.

Constituents	Shallow aquit	fer (Aquifer-I)	Deeper aquifer (Aquifer-II & III)			
constituents	Min	Min Max		Max		
рН	6.97	9.99	7.1	9.52		
EC (µS/cm)	313	3810	397	3350		
TDS (mg/l)	203	2476	216	1840		

Table 4. 1: Aquifer wise ranges of chemical constituents in Jalgaon district

CGWB, CR, Nagpur

Constituents	Shallow aqui	fer (Aquifer-I)	Deeper aquifer	(Aquifer-II & III)
Constituents	Min	Max	Min	Max
TH (mg/l)	89.64	1065	40	885
Calcium (mg/l)	18.4	488.04	8	279
Magnesium (mg/l)	1.944	140.94	2	146
Potassium (mg/l)	0.1	45.89	0	33.2
Sodium (mg/l)	9.6	377.6	8.4	520
Carbonate (mg/l)	0	49.8484	0	244
Bi-carbonate (mg/l)	24.4	606.34	29	964
Chloride (mg/l)	14	683.653	0	858
Sulphate (mg/l)	BDL	472	BDL	256
Nitrate (mg/l)	BDL	260	BDL	281
Fluoride (mg/l)	BDL	1.64	BDL	1.44
Iron (mg/l)	BDL	1.92	BDL	1.4

*BDL- below detection limit

4.1 Electrical Conductivity (EC)

The concentration of EC in shallow aquifer varies between 313 (Gadegaon, Jamner block) and 3810 μ S/cm (Kurha Bk, Amalner block). Out of 159 samples collected from dug wells, 3 samples are having EC in range of > 3000 μ S/cm. Concentration of EC >3000 μ S/cm has been observed at 3 places namely Ambapimpri, Parola Block, Lonsim and Kurha, Amalner Block. 6 samples fall in the range of EC between 2250-3000 μ S/cm, 109 samples fall in the range of EC between 750-2250 μ S/cm, and 41 samples in the range of EC between 250-750 μ S/cm. Almost entire district is covered with EC values ranging between 750-2205 μ S/cm; in the small isolated parts scattered over the district the EC values are found between 250-750 μ S/cm and water samples with the EC values > 2250 μ S/cm are found occurring in isolated localized patches only in Amalner, Erandol, Parola and Bodvad blocks. The ground water is potable in the district. The distribution of electrical conductivity in shallow aquifers is shown in **Figure 4.1** and analytical data is presented in **Table 4.2**.

The concentration of EC in deep aquifer varies between 397 (Karadi, Parola block) and 3350 μ S/cm (Yawal, Yawal block). Out of 179 samples collected from tube wells/bore wells, Concentration of EC between 250 and 750 μ S/cm has been observed in 91 samples covering large part of the district in the north and 85 samples show EC values ranging between 750 to 2250 covering entire district. 2 sample is showing EC in range of 2250 to 3000 μ S/cm and 1 sample is showing EC in range of 3000 to 7500 μ S/cm (EC 3350; at Yawal, Yawal block). The ground water is potable in the district. The distribution of electrical conductivity in deeper aquifers is shown in **Figure 4.2** and analytical data is presented in **Table 4.2**.

S.	EC	Shallow aqu	ifer (Aquifer-I)	Deeper aquifer (Aquifer-II & III)		
No.	(µS/cm)	No. of samples	% of samples	No. of samples	% of samples	
1	< 250	0	0	0	0	
2	>250-750	41	26	91	51	
3	>750-2250	109	69	85	47	
4	2250-3000	6	4	2	1	
5	3000-7500	3	2	1	1	
	Total samples	159	100	179	100	

Table 4. 2: Aquifer wise Electrical conductivity analytical data

Figure 4.1: Ground water quality (Aquifer-I), Jalgaon district

Nitrate:

Nitrogen in the form of dissolved nitrate nutrient for vegetation, and the element is essential to all life. The major contribution in ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. In Jalgaon district nitrate concentration varies between BDL to 260 mg/l (Abhane, Chalisgaon block). As per BIS (2012) the desirable limit is 45 mg/l. In shallow aquifer, 159 samples were analysed; out of this 23 water samples show the nitrate concentrations exceeding the desirable limit of 45 mg/l. The high concentration of Nitrate may be due to domestic waste and sewage in the urban and rural parts of district. In deeper aquifer, 179 wells were analysed and nitrate concentration varies between BDL to 281 mg/l (Vardi EW, Chopda block). Out of 179 samples 32 water samples show nitrate concentration exceeding the desirable limit of 45 mg/l. The deeper aquifer is also affected by nitrate contamination; it may be due to percolation of nitrate contaminants from the ground surface as there are no other reasons for nitrate contamination in deeper aquifers. Aquifer wise nitrate concentration is given in **Table 4.3**.

Figure 4.2: Ground water quality (Aquifer-II &III), Jalgaon District

Fluoride:

In shallow aquifer, concentration of fluoride ranges from BDL to 1.64 mg/l (Bholane, Jalgaon block). Out of 159 samples were analysed, only 2 samples show fluoride concertation more than 1 mg/l. In Deeper Aquifer, concentration of fluoride ranges from BDL to 1.44 mg/l. Out of 179 samples analysed, 8 samples show fluoride concertation more than 1 mg/l. In Deeper aquifer, the highest concentration of fluoride is found in Manegaon EW (1.44 mg/l), Muktainagar Block; it may due to the lithological reason only. Aquifer wise fluoride concentration is given in **Table 4.3**.

 Table 4.3: Aquifer wise nitrate and Fluoride concentration

	No ₃ >	• 45 mg/l	fluoride >1 mg/l				
	No. of samples	No. of samples	No. of samples	No. of samples			
Block	Shallow aquifer (Aquifer-I)	Deeper aquifer (Aquifer-II & III)	Shallow aquifer (Aquifer-I)	Deeper aquifer (Aquifer-II & III)			
Amalner	1	-	-	-			
Bhadgao n	0	-	-	-			

	No ₃ >	• 45 mg/l	fluorio	de >1 mg/l
	No. of samples	No. of samples	No. of samples	No. of samples
	Shallow aquifer	Deeper aquifer	Shallow aquifer	Deeper aquifer
Block	(Aquifer-I)	(Aquifer-II & III)	(Aquifer-I)	(Aquifer-II & III)
Bhusaval	2	3	-	-
Bodwad	0	5	-	-
Chalisgao	6			
n	0	2	-	-
Chopda	1	7	-	1
Dharang				
aon	-	3	-	-
Erandol	3	2	-	-
Jalgaon	2	4	2	2
Jamner	2	-	-	-
Muktain	2			
agar	2	-	-	1
Pachora	2	1	-	2
Parola	2	-	-	1
Raver	-	5	-	1
Yawal	-	-	-	-
Total	22			
samples	23	32	2	8

4.2 Suitability Of Ground Water For Drinking Purpose

In shallow aquifer, < 2% samples are having TDS more than maximum permissible limit (MPL) and 67 % of samples have TDS concentration above the Desirable limit (DL) but below the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment. It is also seen that about 3 to 12 % samples are beyond the maximum permissible limit for the parameters like TH, Ca, Mg, Cl, So₄ and No₃ indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in shallow Aquifer is given in **Table 4.4**.

In Deeper aquifer, 55% samples are having TDS within desirable limit (DL) and 45 % of samples have TDS concentration above the Desirable limit (DL) but below the MPL. The water from such area is suitable for drinking purpose. It is also seen that about 4 to 7 % samples are beyond the maximum permissible limit for the parameters like, TH, Ca, Cl, No₃ and F indicating that the water is not suitable for drinking purpose. Concentration of Chemical constituents in Deeper Aquifer is given in **Table 4.5**.

Parameter	Drinking w	ater Standards	Total	Shallow aquifer (Aquifer-I)						
	(IS-10500-2012)		No of ground	Samp (<d< th=""><th colspan="2">Samples (<dl)< th=""><th>ples MPL)</th><th colspan="2">Samples (>MPL)</th></dl)<></th></d<>	Samples (<dl)< th=""><th>ples MPL)</th><th colspan="2">Samples (>MPL)</th></dl)<>		ples MPL)	Samples (>MPL)		
	DL	MPL	water samples	No	%	No	%	No	%	
рН	6.5-8.5	-	159	150	94.3	9	5.7		0.0	
TDS	500	2000	159	49	30.8	107	67.3	3	1.9	
TH	300	600	159	76	47.8	71	44.7	12	7.5	
Ca (mg/L)	75	200	159	88	55.3	59	37.1	12	7.5	
Mg (mg/L)	30	100	159	67	42.1	87	54.7	5	3.1	
Cl (mg/L)	250	1000	159	138	86.8	21	13.2		0.0	
SO ₄ (mg/L)	200	400	159	149	93.7	9	5.7	1	0.6	
$NO_3 (mg/L)$	45	No relaxation	159	136	85.5	23	14.5		0.0	
F (mg/L)	1	1.5	159	157	98.7	1	0.6	1	0.6	

Table 4. 4: Concentration of Chemical constituents in shallow Aquifer

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

Parameter	Parameter Drinking water Standards (IS-10500-2012)		Total No	Deeper aquifer (Aquifer-II & III)							
			ot ground	Samples	S	Samples		Samples			
						(<dl)< th=""><th></th><th>(DL</th><th>·MPL)</th><th colspan="2">(>MPL)</th></dl)<>		(DL	·MPL)	(>MPL)	
		MDI	samples	Na	No %						
	DL	IVIPL		NO	%	INO	%	INO	%		
рН	6.5-8.5	-	179	162	90.5	17	9.5	-	0.0		
TDS	500	2000	179	99	55.3	80	44.7	-	0.0		
ТН	300	600	179	115	64.2	57	31.8	7	3.9		
Ca (mg/L)	75	200	179	138	84.1	20	12.2	6	3.7		
Mg (mg/L)	30	100	179	70	42.4	89	53.9	6	3.6		
Cl (mg/L)	250	1000	179	138	81.2	28	16.5	4	2.4		
SO ₄ (mg/L)	200	400	179	141	99.3	1	0.7	-	0.0		
NO ₃ (mg/L)	45	No relaxation	179	114	78.1	-	-	32	21.9		
F (mg/L)	1	1.5	179	128	94.1	8	5.9	23	0.0		

Table 4.5: Concentration of Chemical constituents in Deeper Aquifer

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

4.3 Suitability of Ground Water for Irrigation Purpose

The quality of Irrigation water affects the productivity, yield and quality of the crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria, which asses the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The amount of dissolved ions in the water is represented by the electrical conductivity. The classification of water for irrigation based on the EC values is given in **Table 4.6** and discussed as follows: -

Low Salinity Water (EC: 100-250 µS/cm): This water can be used for irrigation with most crops on most soils with little likelihood that salinity will develop.

Medium Salinity Water (EC: 250 – 750 \muS/cm): This water can be used if moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

High Salinity Water (EC: 750 – 2250 \muS/cm): This water cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very High Salinity Water (EC: >2250 \muS/cm): This water is not suitable for irrigation under ordinary condition. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and very salt tolerant crops should be selected.

S.	Water Quality Type		Shallow (Aqui	aquifer ifer-I)	Deeper aquifer (Aquifer-II & III)		
No		EC in μS/cm	No. of samples	% of samples	No. of samples	% of samples	
1	Low Salinity Water	< 250	0	0	0	0	
2	Medium Salinity Water	>250-750	41	26	91	51	
3	High Salinity Water	>750-2250	109	69	85	47	
4	Very High Salinity Water	> 2250	9 5.7		3	1.7	
	Total		159	100	179	100	

Table 4. 6: Classification of Ground water for Irrigation based on EC values

In shallow aquifer, maximum numbers of samples fall under the category of high to medium salinity type of water. In deeper Aquifer, maximum numbers of samples fall under the category of medium to high salinity type of water. The areas where very high salinity prevails (>2250 μ S/cm) ground water can be used for irrigation for very high salt tolerant crops and with proper soil and crop management practices.

Sodium Absorption Ratio (SAR)

Excess of sodium in water render it unsuitable for irrigation on soil containing exchangeable Calcium and Magnesium ions. Soil containing exchangeable Calcium and Magnesium takes up sodium of irrigation water in exchange for Calcium and Magnesium, the ratio reflects the Sodium hazard. The SAR indicates the relative activity of the Sodium ions in exchange reactions with the soil. The main problem with high sodium concentration is its effect on soil permeability; hardening of soil & water irrigation system. Sodium also contributes directly to the total salinity of the water and may be toxic to sensitive crops such as fruit trees. The higher value of SAR indicates soil structure damage.

In shallow aquifer, out of 159 samples analysed and 11 samples are having SAR more than 10 in Alluvium parts of Amalner, Erandol, Jamner and Jalgaon blocks and 146 samples are having SAR value less than 10 in Basaltic and Alluvium formation in the district. In deeper aquifer, out of 157 samples 22 samples are having SAR value more than 10 in alluvium part of Raver, Yawal, Chopda blocks and Basalt part of Amalner, Erandol, Chalisgaon and Pachora blocks. The classification of ground water samples based on SAR values for its suitability for irrigation purpose is shown in **Table 4.7**.

Characteristics Quality → SAR value										
		~	10	10-18		18-26		> 26		
		Go	od	Good to		Doubtful		Bad		
			Permissible		issible	le			(Unsuitable)	
	Total Number of GW samples analysed	No	%	No	%	No	%	No	%	
Shallow Aquifer (Aquifer-I)	159	148	93.08	10	6.28	1	0.62	-	0	
Deeper Aquifer (Aquifer-II & III)	157	135	85.98	10	6.36	7	4.45	5	3.18	
Total	316	283	89.55	20	22.33	8	35.82	5	13.95	

Table 4. 7: Classification of Ground water for Irrigation based on SAR values

Residual Sodium Carbonate (RSC)

Residual Sodium Carbonate (RSC) is considered to be superior to SAR as a measure of sodacity particularly at low salinity levels. Calcium reacts with bi-carbonate and precipitate as CaCO₃. Magnesium salt is more soluble and so there are fewer tendencies for it to precipitate. When calcium and magnesium are lost from the water, the proportion of sodium is increased resulting in the increase in sodium hazard. This hazard is evaluated in terms of RSC. The classification of ground water samples based on RSC values for its suitability for irrigation purpose is shown in **Table 4.8**.

 Table 4. 8: Classification of Ground water for Irrigation based on RSC values.

Characteristics	Quality →			RSC valu	es (meq/L)		
	[< 1	25	1.2	5-2.50	> 2	.50
		Good		Doubtful		Bad (Unsuitable)	
	Total No of	No	%	No	%	No	%
	GW samples						
Shallow Aquifer	159	154	96.86	4	2.52	1	0.63
(Aquifer-I)							
Deeper Aquifer	165	115	60.70	22	12.04	27	10.20
(Aquifer-II & III)	165	115	69.70	23	13.94	27	16.36
Total	324	269	83.02	27	8.33	28	8.64

In shallow aquifer, it is observed that out of 159 samples only 5 samples show RSC values more than 1.25 meq/L indicating that the ground water of the area is not suitable for irrigation while in deeper aquifer, out of 165 samples 50 samples show RSC more than 1.25 meq/L indicating that the ground water of the area is not suitable for irrigation.

5.0 GROUND WATER RESOURCES

5.1 Ground Water Resources – Aquifer-I

Central Ground Water Board and Ground Water Survey and Development Agency (GSDA) have jointly estimated the ground water resources of Jalgaon district based on GEC-97 methodology. Block wise ground water resources are given in **Table 5.1** and graphical representations of the resources on the map are shown in **Figure 5.1**.

Ground Water Resources estimation was carried out in 2013 for 11762.74 sq. km. area out of which 1670.96 sq. km. is under command and 9708.00 sq. km. is non-command. About 8 sq. km. area has poor ground water quality area and that area is not considered for resource estimation. As per the estimation, the net annual ground water availability comes to be 1395.54 MCM. The gross draft for all uses is estimated at 1068.92 MCM with irrigation sector being the major consumer having a draft of 1020.10 MCM. The domestic and industrial water requirements are worked at 18.81 MCM. The net ground water availability for future irrigation is estimated at 86.71 MCM. Stage of ground water development varies from 52.68 % (Jalgaon/safe) to 109.78% (Raver/Over Exploited). Block wise assessments indicate that, out of total 15 blocks, 2 blocks i.e., Raver and Yawal are categorized as "Over-Exploited", 2 blocks i.e., Bodvad and Muktainagar/Edlabad fall in "Semi-Critical" Category whereas remaining 10 blocks fall in "Safe" category. The overall stage of ground water development for the district is 76.60 %.

Watershed wise resources computation indicate that out of 66 watersheds TE-07, TE-17, TE-2, TE-2', TE-25, TE-41, TE-43, TE-48, TE-49 and TE-59 i.e., 10 watersheds fall in "Over-Exploited" category; TE-3 and TE-18 in Critical category; PT, PT-13, PTW-1, TE-1, TE-11, TE-15 A, TE-19', TE-4', TE-50, TE-51, TE-55, and TE-60 fall in "Semi-Critical" category.

Administrat ive Unit	Command / Non- Command / Total	Net Annual Ground Water Availability (ham)	Existing Gross Ground Water Draft for irrigation (ham)	Existing Gross Ground Water Draft for domestic and industrial water supply (ham)	Existing Gross Ground Water Draft for All uses (ham)	Provisio n for domesti c and industri al require ment supply to 2025 (ham)	Net Ground Water Availabili ty for future irrigation develop ment (ham)	Stage of Ground Water Developme nt % /Category
Amalner	Command	4048.84	2500.03	103.17	2603.20			73.46/Safe
Amalner	Non-Command	7411.35	5359.30	456.31	5815.62			
Amalner	Total	11460.19	7859.34	559.48	8418.82	889.22	2734.26	
Bhadgaon	Command	8370.48	6145.45	161.56	6307.01			74.59/
Bhadgaon	Non-Command	2074.74	1446.35	37.79	1484.14			Safe
Bhadgaon	Total	10445.22	7591.80	199.35	7791.15	417.58	2475.77	
Bhusawal	Command	285.14	346.12	11.52	357.64			
Bhusawal	Non-Command	5218.05	3783.84	264.28	4048.12			80.06/
Bhusawal	Total	5503.19	4129.95	275.80	4405.75	552.23	841.01	Safe
Bodwad	Command	56.44	2.69	2.09	4.78			82.71/
Bodwad	Non-Command	3931.89	3078.41	215.59	3294.00			Semi
Bodwad	Total	3988.33	3081.10	217.68	3298.78	370.41	482.41	Critical
Chalisgaon	Command	3695.47	3448.85	116.59	3565.43			75.83/ Safe
Chalisgaon	Non-Command	10790.72	7127.60	292.31	7419.91]
Chalisgaon	Total	14486.19	10576.45	408.90	10985.35	788.04	3275.56	
Chopda	Command	5691.19	4485.04	147.44	4632.48			75.62/ Safe

Table 5. 1: Ground water resources, Aquifer-I (Shallow aquifer), Jalgaon district (2013)

CGWB, CR, Nagpur

					1	1		
Administrat	Command /	Net Annual	Existing	Existing	Existing	Provisio	Net	Stage of
ive Unit	Non-	Ground	Gross	Gross	Gross	n for	Ground	Ground
	Command /	Water	Ground	Ground	Ground	domesti	Water	Water
	Total	Availability	Water	Water	Water	c and	Availabili	Developme
		(ham)	Draft for	Draft for	Draft for	industri	ty for	nt %
			irrigation	domestic	All uses	al	future	/Category
			(ham)	and	(ham)	require	irrigation	
				industrial		ment	develop	
				water		supply	ment	
				vlaguz		to 2025	(ham)	
				(ham)		(ham)		
Chopda	Non-Command	6591.22	4457.04	198.32	4655.35			
Chopda	Total	12282.41	8942.08	345.75	9287.84	628.64	3168.06	-
Dharangaon	Command	3912.86	1869.34	84.55	1953.89			56.50/ Safe
Dharangaon	Non-Command	3633.84	2185.12	124.94	2310.06			
Dharangaon	Total	7546.71	4054.47	209.49	4263.96	303.13	2759.99	-
Frandol	Command	3782.93	2843.95	111.72	2955.66			64.21/ Safe
Frandol	Non-Command	3326.96	1547.43	62.00	1609.44			,
Erandol	Total	7109.88	4391.38	173.72	4565.10	368.29	2942.42	
Jalgaon	Command	758.92	532.56	30.22	562.79			52.68/ Safe
Jalgaon	Non-Command	8096 49	3883.89	218 13	4102.02			
Jalgaon	Total	8855.41	4416.46	248.35	4664.81	501.99	3925.45	
lamner	Command	1113 38	1585 19	103.09	1688.28	501.55	0020110	67.87/Safe
lamner	Non-Command	12849 84	7233.29	554 68	7787 97			
lamner	Total	13963 22	8818 49	657.77	9476 25	1312 69	3891 74	
Muktainaga	Command	92.10	40.95	6 59	17 54	1012.05	3031.74	77 84/
r	command	52.15	40.95	0.55	47.54			Semi
Muktainaga	Non-Command	5585 52	4104.46	267.20	1371 75			Critical
r	Non-Commanu	5565.52	4104.40	207.29	4371.75			Citical
Muktainaga	Total	5677 72	A1A5 A1	272.99	4410 20	E/10 10	004 70	-
r	Total	5077.72	4145.41	275.88	4413.25	340.10	554.70	
Pachora	Command	3165.87	3059.05	71 92	3130 97			68 10/ Safe
Pachora	Non-Command	7757 76	4012.23	296.32	/308 55			00.10, 5ale
Pachora	Total	10923.62	7071 28	250.52	7/29 52	75/1 01	2803.62	
Parola	Command	2200 25	2047.98	222.87	2270.85	734.31	2055.02	86.78/
Parola	Non Command	4961.26	2047.38	222.07	20/2 09			50.757 Somi
Parola	Total	7160 71	5713.10	450.95	6212 02	601 41	1047 10	Critical
Paror	Command	1476.07	3703.07	450.65	2213.92	601.41	1047.10	
Raver	Command New Command	1476.97	3793.57	33.88	3849.44			109.78/
Raver	Non-Command	9801.39	8312.52	218.95	8531.47	225.20	420.00	Over
Kaver		112/8.36	12106.09	274.82	12380.9	335.20	139.69	Exploited
Yawal	Command	1322.48	2745.25	52.64	2/9/.89			104.59/
Yawal	Non-Command	/551.16	6317.82	165.17	6482.99			Over
Yawal	Total	8873.64	9063.07	217.81	9280.88	299.23	983.17	Exploited
Jalgaon	Command	40072.51	35446.02	1281.84	36727.86	ļ	ļ	4
District	Non-Command	99482.30	66564.42	3600.06	70164.48			76.60 %
Total	Total	139554.81	102010.44	4881.90	106892.33	8671.06	32554.95	
	Total (MCM)	1395.54	1020.104	48.8189	1068.923	86.710	325.549	

5.2 Ground Water Resources – Aquifer-II & III

The ground water resources of Aquifer-II (Basalt and Alluvium) and Aquifer III (Alluvium) were also assessed to have the correct quantification of resources so that proper management strategy can be framed. So far, the resources have been estimated for the 9 blocks and remaining 6 blocks shall be completed in forthcoming years. Block wise summarized Ground Water Resources of Aquifer-II and III are given in **Table 5.2**.

Block	(Aquifer-II)	(Aquifer-III)
	Total Resources (in MCM)	Total Resource (in MCM)
Amalner	12.08	-
Bodvad	7.203	-
Chalisgaon	23.11	-

CGWB, CR, Nagpur

Block	(Aquifer-II)	(Aquifer-III)
	Total Resources (in MCM)	Total Resource (in MCM)
Chopda	156.88	3.28
Edlabad	12.69	-
Jalgaon	16.09	-
Parola	12.82	-
Raver	244.16	9.45
Yawal	305.41	17.54
Total	782.958	30.29

6.0 **GROUND WATER RELATED ISSUES**

6.1 **Declining Water Levels**

The ground water exploitation has resulted in decline of water levels over the period of time. In premonsoon season, decline more than 0.20 m/year has been observed in 2348.34 sq km, i.e., 19.96 % area covering major parts of Chopda, Yawal, Raver, Amalner, Jamner and parts of Dharangaon, Chalisgaon, Erandol and Bhusaval blocks. In post monsoon season, decline of more than 0.20 m/year has been observed in 2478.75 sq km, i.e., 21.07 % area covering major parts of Yawal, Chopda, Bhusaval, Erandol, Jamner, Jalgaon and Parola blocks.

6.2 Cash Crop Cultivation

In the northern part of the district, mainly north of Tapi river, banana cultivation is the most prominent cropping practice being followed over an area of about 360 sq km and entire cultivation is dependent on ground water-based irrigation system (Figure 6.1). To cater to the water needs of cash crops particularly banana crop the area has witnessed large scale ground water development resulting in over-exploitation of ground water resources. Banana is a water intensive crop with crop period of 12-15 months and annual crop water requirement is to the tune of 1.70 m. Thus, huge quantum of ground water is required to sustain the crop for such a long duration of 12 to 15 months. This has cascading effects on ground water regime of the area as large-scale water level decline has been observed. Though the farmers of the area have CGWB, CR, Nagpur

adapted large scale micro irrigation techniques, however limited ground water availability has stunted the increase in irrigation potential. The shift in irrigation techniques, from flood to micro irrigation techniques, has created an impact on the ground water regime and as result of this at places namely Balwadi and Faizpur, Raver Block rising depth to water trends are observed over the last ten years (2008-2017) however declining trends are also observed and situation is still grave and needs to be attended.

Figure 6.1: Area occupied by Banana Cultivation.

6.3 Over Exploitation

The stage of ground water development has increased over the period of time from 2004 to 2011 in 2 Blocks from 80.23% to 85.54% in Chopda Block; from 109.92% to 133.80% in Yawal Block, whereas in Raver Block it has decreased from 133.37% to 123.39%. In 2013, the stage of ground water development has decreased in all the 3 Blocks (**Figure 6.2**). However, Yawal and Raver Blocks continued to remain in Over-Exploited category and Chopda Block even though categorised as Safe, it can again migrate to Semi-Critical category if necessary precautions, for maintaining the recharge- withdrawal relation at optimum level, are not put in place.

The main reason for ground water overdraft is utilization for irrigation purpose (**Figure 6.3**). The draft for these 3 Blocks has increased from 291.96 MCM in 2004 to 301.11 MCM in 2013.

Figure 6.2: Increase in Stage of GW Development

Figure 6. 3: Increase in GW Draft for Irrigation

6.4 Deeper Water Levels

The ground water exploitation has resulted in lowering of water levels and over a period of time, the ground water levels have gone down considerably. At present, the deeper water level areas of more than 20 mbgl are observed in 2501 sq.km. area i.e., 21.26 % of the area. (Figure 3.1)

6.5 De-saturated Granular Zones

The ground water exploitation has also resulted in de-saturation of granular zones. The granular zones consisting of sand, gravel and pebbles form the potential aquifer in alluvium. These granular zones in different proportions occur at various depths overlain and underlain by the thick and thin clay beds. The data and lithological logs generated during ground water exploration programme of CGWB and data obtained from State ground water department was utilized for identifying the disposition of granular zones and spatial distribution of water levels was also prepared. Based on the overlay analysis of these two GIS layers, the spatial distribution of de-saturated aquifers was obtained (**Figure 6.4**). The total area identified as occupied by de-saturated granular zones is 1039 sq.km.

Figure 6.4: De-saturated Granular Zones.

6.6 Micro Irrigation Techniques

Micro Irrigation techniques are being practiced in the area since last decade or so. The preference of the people/stake holders has also shifted from the surface water irrigation to ground water irrigation because almost 100% of the farmers have shifted from flood irrigation to modern irrigation practices particularly for banana crop. The ground water-based drip irrigation system is preferred in the area to obtain maximum yield of the cash crop like banana over the canal / surface water-based irrigation system for banana cultivation as the ground water is the most dependable source of water supply at the time of requirement. Total area irrigated by ground water-based drip irrigation system is 517.34 sq.km as per the data provided by Agriculture Department out of the total ground water irrigated area of 707.52 sq. km.

6.7 Rainfall and Droughts

Based on the long-term rainfall analysis from 1901 to 2017 it is observed that Bodhwad and Yawal blocks experienced declining rainfall trend. Severe droughts have been experienced in Raver 2 times, Amalner 3 times, Muktainagar 4 times and Parola 3 times and once in Jalgaon blocks during 1901 to 2017 with exception of Bodhwad and Yawal blocks which have never experienced severe drought conditions during these years; however, it has experienced Moderate droughts 23 times; Raver 24 times; Amalner 22 times; Chopda 21 times; Jalgaon 19 times; Parola 17 times during the period.

7.0 GROUND WATER MANAGEMENT PLAN

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management. The supply side management proposed is based on surplus surface water availability and the unsaturated thickness of aquifer whereas the demand side management is proposed by use of micro irrigation techniques and change in cropping pattern. The management Plan proposed nine blocks namely Amalner, Bodwad, Chopda, Chalisgaon, Jalgaon, Raver and Yawal blocks of Jalgaon district is discussed below

7.1 Supply Side Management

The supply side management of ground water resources can be done through the artificial recharge of surplus runoff available within river sub basins and micro watersheds. Also, it is necessary to understand the unsaturated aquifer volume available for recharge. The unsaturated volume of aquifer was computed based on the area feasible for recharge, unsaturated depth below 5 mbgl and the specific yield of the aquifer. The **Table 7.1** gives the block wise volume available for the recharge.

Block	Geographical Area	Area feasible	Unsaturated Volume	
	(sq. km.)	for recharge (sq. km.)	(MCM)	
Amalner	921.78	804.21	1608.5	
Bodwad	356.69	232.09	464.18	
Chalisgaon	1089.9	839.13	1678.26	
Chopda	1142.65	820.00	1640.00	
Jalgaon	831.98	822.55	1645.1	
Muktainagar	633.92	629.22	1258.33	
Parola	758.06	355.22	710.43	
Raver	980.66	876.17	1752.34	
Yawal	913.51	824.94	1649.88	
Total	7629.15	6203.53	12407.02	

Table 7. 1: Area	feasible and volume	available for	Artificial Recharge
------------------	---------------------	---------------	---------------------

The total unsaturated volume available for artificial recharge is 12407.02 MCM and it ranges from 464.18 MCM in Bodwad block to 1752.34 MCM in Raver block. The available surplus runoff can be utilized for artificial recharge through construction of percolation tanks, Check dams and recharge shafts at suitable sites.

Thus, after taking into consideration all the factors, only 64.62 MCM of surplus water can be utilized for recharge, which is given in table 7.2. This surplus water can be utilized for constructing 368 check dams, 189 percolation tanks and 303 recharge shafts at suitable sites. The number of feasible artificial recharge structures was calculated by considering 0.20 MCM per percolation tanks, 0.03 MCM per check dam and 0.06 MCM per recharge shafts. Apart from this, through Tapi Mega recharge Scheme 278.13 MCM water Potential is available and @75% efficiency of available Volume of water is 208.59 and used to recharge the ground water. This intervention should lead to recharge @ 75% efficiency of about 208.59 MCM/year. Tentative locations of these structures are given in **Figure 7.1** and details also given in **Annexures V, VI and VII.**

The rainwater harvesting in urban areas can be adopted in 25% of the household with 50 sq. km roof area. A total of 4.13 MCM potential can be generated by taking 80% runoff coefficient. However, it is not recommended as it is economically not viable.

Figure 7.1: Location of Proposed Artificial Recharge structures, Jalgaon District

Table 7. 2: Proposed Artificial Recharge Structures

Block	Area feasible for	Unsaturat ed Volume	Surplus water availabl	Proposed number of structures			Others	Others Total Volume of Water expected to be recharged@ 75 % efficiency (MCM)				Total recharge d @ 75
	recharg e (sq. km.)	(MCM)	e for AR (MCM)	РТ	CD	RS	Tapi MRS	PT	CD	RS	Tapi MRS	% efficienc y (MCM)
Amalner	804 21	1608 5	8 38	27	58	21	0	4 05	1 31	0 95	0	6.31

Block	Area feasible for	Unsaturat ed Volume	Surplus water availabl	Propos st	Proposed number of Others structures		Total Volume of Water expected to be recharged@ 75 % efficiency (MCM)				Total recharge d @ 75	
	recharg e (sq. km.)	(MCM)	e for AR (MCM)	РТ	CD	RS	Tapi MRS	PT	CD	RS	Tapi MRS	% efficienc y (MCM)
Bodwad	232.09	464.18	2.42	7	32	0	0	1.05	0.72	0	0	1.77
Chopda	820	1640	8.5	18	30	66	101.74	2.7	0.68	2.97	76.305	82.655
Chalisgaon	839.13	1678.26	8.75	33	72	0	0	4.95	1.62	0	0	6.57
Jalgaon	822.55	1645.1	8.58	21	86	30	0	3.15	1.935	1.35	0	6.435
Muktainag ar	629.22	1258.33	6.56	20	41	22	0	3	0.92	0.99	0	4.91
Parola	355.22	710.43	3.7	13	37	0	0	1.95	0.83	0	0	2.78
Raver	876.17	1752.34	9.13	28	12	94	87.18	4.2	0.27	4.23	65.385	74.085
Yawal	824.94	1649.88	8.6	22	0	70	89.21	3.3	0	3.15	66.9075	73.3575
Total	6203.53	12407.02	64.62	189	368	303	278.13	28.35	8.285	13.64	208.597	58.8725

7.2 Demand Side Management

The Demand Side Management is proposed in areas where the Stage of Ground Water Development is relatively high and adopting micro-irrigation techniques for water intensive crops (Banana/ Sugarcane) or change in cropping pattern or both are required to save water. **Figure 7.2** depicts the proposed demand side interventions of 161.31 Sq Km area.

The micro-irrigation techniques are proposed to be adopted in 61.42 Sq. Km area in Amalner, Bodwad, Chalisgaon, Jalgaon, Muktainagar/Edlabad, Parola blocks by saving a total of 24.71 MCM. Remaining three blocks Raver, Yawal and Chopda already adopted Micro Irrigation practices are being practiced in the area since last decade or so. Almost 100% of the farmers have shifted from flood irrigation to modern irrigation practices particularly for banana crop. The ground water based drip irrigation system is preferred in the area to obtain maximum yield of the cash crop like banana as canal / surface water irrigation system is less suitable for banana cultivation **(Table 7.3).** Thus, further scope of implementing the water use efficiency measures by drip/sprinkler to save or manage the ground water resources are of limited extent in the area. No change in cropping patterns is proposed in any of the blocks.

Block	MICRO-IRRIGA	TION TECHNIQUES	CROPPING PATTERN CHANGE		
	Sugarcane/Banana /Cotton cropped/ Double cropped Area proposed (Sq. Km.)	Volume of Water saved (MCM)	Area under Water Intensive crops (Sq. Km.)	Volume of Water saved by change in cropping pattern (MCM)	
Amalner	1	0.57	Not Proposed	Not Proposed	
Bodhwad	13.05	5.8	Not Proposed	Not Proposed	
Chopda*	Not proposed	-	Not Proposed	Not Proposed	
Chalisgaon	8	4.56	Not Proposed	Not Proposed	
Jalgaon	1.75	1.38	Not Proposed	Not Proposed	
Muktainaga r	2	1.58	Not Proposed	Not Proposed	
Parola	35.62	10.83	Not Proposed	Not Proposed	
Raver*	Not proposed	-	Not Proposed	Not Proposed	
Yawal*	Not proposed	-	Not Proposed	Not Proposed	
Total	61.42	24.72			

Table 7. 3: Area proposed and water saving through Demand side interventions

Note: * major parts of water intensive crops area already covered micro Irrigation technique

Figure 7.2: proposed Area for Demand side interventions, Jalgaon District

7.3 Expected Benefits

The impact of groundwater management plans on the groundwater system in the 9 blocks after its implementation is evaluated and the outcome shows significant improvement in groundwater scenario in the blocks as given in the **Table 7.4.**

Table 7. 4.	Lyberied be	ellents after ma	anagement	ptions			
Block	Water Recharged by Supply side interventi on (MCM)/ye ar	Water saving by demand side interventions (MCM)/year	Net Ground water availability (As per GWRE, 2013) (MCM)/year	Total ground water draft (As per GWRE, 2013) (MCM)/ye ar	Ground water resources after supply side management (MCM)/year	Ground water Draft after demand side managemen t (MCM)/year	Expecte d stage of Develop ment %
Amalner	6.31	0.57	114.60	84.19	120.91	83.62	69.16
Bodwad	1.77	5.8	39.88	32.99	41.65	27.19	65.27
Chopda	82.66	0	122.82	92.88	205.48	92.88	45.20
Chalisgaon	6.57	4.56	144.86	109.85	151.43	105.29	69.53
Jalgaon	6.44	1.38	88.55	46.65	94.99	45.27	47.66
Muktainagar	4.91	1.58	56.78	44.19	61.69	42.61	69.08
Parola	2.78	10.83	71.61	62.14	74.39	51.31	68.98

Table 7. 4: Expected benefits after management options

CGWB, CR, Nagpur

Block	Water Recharged by Supply side interventi on (MCM)/ye ar	Water saving by demand side interventions (MCM)/year	Net Ground water availability (As per GWRE, 2013) (MCM)/year	Total ground water draft (As per GWRE, 2013) (MCM)/ye ar	Ground water resources after supply side management (MCM)/year	Ground water Draft after demand side managemen t (MCM)/year	Expecte d stage of Develop ment %
Raver	74.09	0	112.78	123.81	186.87	123.81	66.25
Yawal	73.36	0	88.74	92.81	162.09	92.81	57.26
Total	258.87	24.72	840.63	689.51	1099.50	664.79	60.46

7.4 Development Plan

The ground water development plan has been proposed in the view of developing the additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. The 104.96 MCM volume of ground water generated can bring 161.331 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 882 Dug wells and 6109 Borewells. Block wise details are given in **Table 7.5.** The area feasible for ground development is shown in **Figure 7.3**.

Table 7.	5: Block v	vise additiona	l area under	assured	GW Irria	zation
						5~~~~

Block	Net Ground water availability (As per GWRE, 2013) (MCM)/yea r	Ground water resources after supply side managemen t (MCM)/tear	Ground water Draft after demand side managemen t (MCM)/year	Expected stage of Develop ment %	Balance GWR available for GW Develop ment after STAGE OF GWD is brought to 70% (MCM)	Proposed No. of DW @1.5 ham for 90% of GWR Available)	Proposed No. of BW @1.5 ham for 10% of GWR Available)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m after 70% stage of GWD is achieved (Sq. Km)
Amalner	114.60	120.91	83.62	69.16	1.02	54	14	1.57
Bodwad	39.88	41.65	27.19	65.27	2	118	12	3.02
Chalisgaon	144.86	151.43	105.29	69.53	0.711	5	43	1.09
Jalgaon	88.55	94.99	45.27	47.66	21.21	141	1273	32.63
Muktainagar	56.78	61.69	42.61	69.08	0.6	34	4	0.87
Parola	71.61	74.39	51.31	68.98	0.8	5	46	1.17

Block	Net Ground water availability (As per GWRE, 2013) (MCM)/yea r	Ground water resources after supply side managemen t (MCM)/tear	Ground water Draft after demand side managemen t (MCM)/year	Expected stage of Develop ment %	Balance GWR available for GW Develop ment after STAGE OF GWD is brought to 70% (MCM)	Proposed No. of DW @1.5 ham for 10% of GWR Available)	Propose d No. of BW @1.5 ham for 90% of GWR Availabl e)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m after 70% stage of GWD is achieved (Sq. Km)
Chopda*	122.82	205.48	92.88	45.20	50.96	340	3057	78.40
Raver*	112.78	186.87	123.81	66.25	7	47	420	10.77
Yawal*	88.74	162.09	92.81	57.26	20.66	138	1240	31.78
Total (9 blocks)	840.63	1099.50	664.79	60.46	104.96	882	6109	161.31

Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation, Jalgaon District

8.0 SUM UP

Intensive studies were carried out to prepare block wise aquifer maps and aquifer management plans of the district based on data generated in-house; data gap analysis, data acquired from State Govt. departments and all the available data was brought on GIS platform and conforming to an integrated approach block wise GIS maps on various relevant themes were prepared.

Jalgaon district covers an area of 11762.70 sq km, out of this 383.87 sq km is hilly terrain. Geologically, the area is occupied by Basalt and Alluvium formations. The stage of ground water development is 76.60 %. The area has witnessed over exploitation; declining water level and low yield potential of aquifers are the major issues in the district. Declining water level trend of more than 0.20 m/year has been observed in 2348 sq km (19.96 % area of the total area) during premonsoon. Declining water level trend of more than 0.20 m/year has been observed in 2478 sq.km (21.06 % area of the total area) during post monsoon. These declines may be due to overexploitation of Graveliferous alluvial zone.

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises of two components namely supply-side management and demand side management.

As a part of Supply side Management, a total 189 Percolation tanks, 368 Check dams and 303 Recharge shafts are proposed, which will augment ground water resources to the tune of 50.27 MCM (28.35 MCM by Percolation tanks, 8.28 MCM by Check dams and 13.64 MCM by Recharge Shafts).

Apart from this, through Tapi Mega recharge Scheme 278.13 MCM water Potential is available and at 75% efficiency of available Volume of water is 208.59 and used to recharge the ground water. This intervention should lead to recharge at 75% efficiency of about 208.59 MCM/year.

A total 50.27 MCM ground water resources will be augmented after adopting artificial recharge measures and 208.59 MCM water harvesting potential can be generated through Tapi mega recharge project.

As a part of Demand side Management, micro-irrigation techniques are to be adopted in 61.42 Sq. Km area thereby saving a total of 24.72 MCM. No change in cropping patterns is proposed in any of the blocks.

The ground water development plan has been proposed in view of the developing additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. The 104.96 MCM volume of ground water generated can bring 161.31 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 882 Dug wells and 6109 Borewells.

These interventions also need to be supported by regulation for deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewells of more than 60 m depth in these blocks, so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought. IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory ground water management.

B LOCK WISE AQUIFER MAPS AND MANAGEMENT PLAN

- **1. AMALNER BLOCK**
- 2. BODWAD BLOCK
- 3. CHALISGAON BLOCK
- 4. CHOPDA BLOCK
- 5. JALGAON BLOCK
- 6. MUKTAINAGAR BLOCK
- 7. PAROLA BLOCK
- 8. YAWAL BLOCK
- 9. RAVER BLOCK

9.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, AMALNER BLOCK, JALGAON DISTRICT, MAHARASHTRA

1. SALIENT FEATURE	1. SALIENT FEATURE				
1.1 Introduction					
Block Name	AMALNER				
Geographical Area (Sq. Km.)	921.78 Sq. Km.				
Hilly Area (Sq. Km)	29.12 Sq. Km.				
Poor Ground Quality Area (Sq. Km.)	Nil				
Population (2011)	2,87,849				
Climate	Tropical Monsoon				
1.2 Rainfall Analysis					
Normal Rainfall	664.8 mm				
Annual Rainfall (2017)	311.1 mm				
Decadal Average Annual Rainfall	539.5 mm				
(2008-17)					
Long Term Rainfall Analysis	Rising Trend 0.1829 mm/year.				
(1901-2017)	Probability of Normal/Excess Rainfall- 59% & 17%.				
	Probability of Drought (Moderate/Severe)-: 21 %				
	Moderate & 3% Severe.				
Rainfall Trend Analysis (1901 To 2017)					
1600 ¬					
1400 -					
1200 -					
1000					
800 -					
	1111 111111 III011111111 III III1111111111				
400 -					
200 -					
0 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	C74.02				
EQUATION OF TREND LINE: Y= 0.1829 X	+ 6/1.93				
Geomorphic Unit	Alluvial Plains of Tani Piver (younger alluvium) and				
	Plateau (Slightly to Moderately dissocted) with				
	weathered thickness ranging from 0 to 5 m				
Soil	Clavey and Sandy soil				
Geology	Alluvium (sand/ silt and clav admixture)				
	Age: Recent to Sub-recent				
	Deccan Trans (Basalt)				
	Age: Upper Cretaceous to Lower Eocene				
1.4 Hydrology & Drainago	0				
	Tani river and its tributaries namely Daniara and Peri				
Diamage	Tapi river and its tributaries namely ranjara allu borr				

	Major project	NIL			
	Bigger Minor Irrigation	NIL			
Hydrology	Project (>100 Ha.)				
	Minor Irrigation Project	NIL			
	(<100 Ha.)				
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern					
Geographical Area	921 78 Sa Km				

Geographical Area		921.78 Sq. Km.			
Forest Area		19.05 Sq. Km.			
Cultivable Area		679.40 Sq. Km.			
Net Sown Area		661.55 Sq. Km.			
Double Cropped Are	ea	70.80 Sq. Km.			
Area under	Surface Water	125 Sq. km.			
Irrigation	Ground Water	51.04 Sq. Km.			
Area under Drip & S	prinkler Irrigation	14.64 Sq. Km.			
Principal Crops		Сгор Туре	Area (Sq. Km.)		
Principal Crops (Reference year 201	3)	Crop Type Cereals	Area (Sq. Km.) 303.50		
Principal Crops (Reference year 201	3)	Crop Type Cereals Cotton	Area (Sq. Km.) 303.50 267.15		
Principal Crops (Reference year 201	3)	Crop Type Cereals Cotton Pulses	Area (Sq. Km.) 303.50 267.15 91.52		
Principal Crops (Reference year 201	3)	Crop Type Cereals Cotton Pulses Oil Seeds	Area (Sq. Km.) 303.50 267.15 91.52 51.23		
Principal Crops (Reference year 201	3)	Crop Type Cereals Cotton Pulses Oil Seeds Banana	Area (Sq. Km.) 303.50 267.15 91.52 51.23 2.01		
Principal Crops (Reference year 201	3)	Crop Type Cereals Cotton Pulses Oil Seeds Banana Citreous fruit	Area (Sq. Km.) 303.50 267.15 91.52 51.23 2.01 0.96		

1.6. Water Level Behaviour

Post-Monsoon (November-2017)

Water level less than 20 mbgl is observed in almost all parts of the block while water level in the range of 10 to 20 mbgl is observed in major part of the block; deeper water level of the magnitude of more than 20 mbgl is observed as isolated patches in eastern, western and northwestern parts of the block. Entire block is covered by water levels less than 20 mbgl, major part of the block lies in the range of 5 to 10 mbgl, in the southwestern parts part of the block is covered by water level ranging from 2 to 5 mbgl, in the vicinity of river water levels are found between 10 to 20 mbgl.

				2 1		0	
Amalner, Bodwad, Chalisgaor	n, Chopda, Jalgaon,	, Muktainagar, Par	ola, Yawal & I	Raver Block,	Jalgaon District,	Maharashtra-2	2019

3.4. Basic Aquifer Characteristics						
Major Aquifers	Basalt	Alluvium				
			(River Alluvium)			
Type of Aquifer	Aquifer-I	Aquifer-II	Aquifer-I (Phreatic)			
(Phreatic/Semiconfined/Confined)	(Phreatic)	(Semiconfined/confin				
		ed)				
SWL (mbgl)	8-23	19-45	10-10			
Depth of Occurrence (mbgl)	10-35	20-175	27.9-50			
Granular/weathered/	6-24	1-8	5-15			
fractured rocks thickness (m)						
Yield	<10-200	0 to 1.5 lps	50-150			
	m³/day		m³/day			
Specific yield/	0.02	0.0003 -0.00021	0.06-0.08			
Storativity (S)			(Clayey to Sandy)			
Transmissivity (T)	15-55 m ² /day	20-60 m ² /day	30-60 m ² /day			
4. GROUND WATER QUALITY						

4.1 Aquifer-I/ Shallow Aquifer

EC is observed upto 2250 μ S/cm over a major part of the block except in some isolated patches where the EC values are found higher than 2250 μ S/cm. Ground water is suitable for all purposes in major part of the block and in the high salinity areas in the east and west, is suitable for irrigation purpose with proper salinity control measures and However the water from such area is not fit for drinking purpose without treatment. Only Khakapat village is affected by high nitrate concentration i.e. 47 mg/L.

4.2 Aquifer II/Deeper Aquifer

EC is observed upto 2250 μ S/cm covering whole of the block. Ground water is suitable for all purposes and deeper aquifer shows no contamination of nitrate and Fluoride.

Net Annual Ground Water Availability (MCM)			114.60			
Existing Gross Gr	ound Water Draft	for irrigation	78.59			
(MCM)						
Existing Gross Gr	ound Water Draft	for domestic	5 59			
and industrial wa	ter supply (MCM)		5.55			
Existing Gross Ground Water Draft for All uses			84 19			
(MCM)			01.15			
Provision for don	nestic and industri	al	8 80			
requirement sun	12310 and 1100311	ai	0.05			
Net Ground Wat	pry to 2023(MCM) ar Availability for f	uturo	27 34			
irrigation develop	ment (MCM)	uture	27.54			
Stage of Ground	Water Developme	nt (%)	73.46			
		110 (70)	SAFF			
5 2 Aquifer-II/De	oper Aquifer		JAIL			
Somiconfined/Co	nfined Aquifor (Pr	vcalt)				
Total Area	Moon aquifor	$\Delta y (S y/S)$	Doizomo	tric Hood (m	Total Pasaurca	
(Sa Km)	thicknoss (m)	AV (39/3)		nfining layor)		
(34. KIII.)	2 21	0.0042	15			
			r 13		12.06	
Available Recourt						
Gross Appual Dra		0/ 10				
6 1 Supply Side	Managamant	04.10				
	6.1. Supply Side Management					
Agricultural Supr		79 50				
Agricultural Supp		78.59				
Agricultural Supp	-SVV	105.30				
Domestic Supply	- GW	5.59				
Domestic Supply	- SVV	1.40				
		250.88				
Area of Block (Sq	. Km.) Antificial	921.78				
Area suitable for	Artificial	804 21				
(Sa Km)		804.21				
(Sq. KIII)	~	Llard Dook		Soft Dool		
Area foasible for	Artificial			SOIL ROCK		
	Altilicidi mbal) (Sa. Km.)	161 61		220.60		
Volumo of Uncat	urated Zone	404.01	464.61 339.60			
	urateu zone	929.224		679.2		
(IVICIVI)	Vield	0.02		0.07		
Volume of Sub Su	Irfaco Storago	0.02		0.07		
Space available for	ar Artificial	18 58//8		17 511		
Becharge (MCM)		10.30440		47.544		
Surplus water Av	ailable (MCM)	1 8/381		3 5/050		
Proposed Structu		Percolation T	ank (Av	Check Dam (Av	Recharge	
FIOPOSEd Struct		Gross Canacit	tv-100	Gross Canacity-10	shaft (Av	
		TCM*2 filling	s = 200	TCM * 3 fillings =	Gross	
		TCM)	5 200	30 TCM)	Capacity-60	
					TCM)	
Number of Struct	ures	27		58	21	
Volume of Water	expected to be	4.05		1.31	0.95	
conserved / rech	arged @ 75%					

efficiency (MCM)	
Proposed Structures	
RTRWH Structures – Urban Areas	
Households to be covered (25%	15200
with 50 m ² area)	
Total RWH potential (MCM)	0.43
Rainwater harvested / recharged	0.34
@ 80% runoff co-efficient	Economically not viable & Not Recommended
6.2 Demand Side Management	
Micro irrigation techniques	
Sugarcane Area proposed for drip	1
irrigation (sq km)	
Volume of Water Saving by use of	0.57
drin (MCM) Surface Elopding reg-	0.57
2 45 m Drin Reg = 1 88 WHE	
0.57 m	
Alternate Sources	Nil
Proposed Cropping Pattern change	
Irrigated area under Water	Not proposed
Intensive Crop (ha)	
Water Saving by Change in	Nil
Cropping Pattern	
6.3. EXPECTED BENEFITS	
Net Ground Water Availability	114.60
(MCM)	
Additional GW resources	
available after Supply side	6.30
interventions (MCM)	
Ground Water Availability after	120.00
Supply side intervention	120.90
Existing Ground Water Draft for	84.18
All Uses (MCM)	
GW draft after Demand Side	82.61
Interventions (MCM)	85.01
Present stage of Ground Water	73.46
Development (%)	73.40
Expected Stage of Ground Water	
Development after interventions	69.16
(%)	
Other Interventions Proposed, if an	у
Alternate Water Sources	Nil
Available	
6.4. Development Plan	
Volume of water available for	1.02
GWD to 70% (MCM)	
Proposed Number of DW (@ 1.5	54
ham tor 90% of GWR Available	
for development)	
Proposed Number of BW (@ 1.5	14
ham for 10% of GWR Available	

10.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, BODVAD BLOCK, JALGAON DISTRICT, MAHARASHTRA

	1. SALIENT FEATURE					
	1.1 Introduction					
Block Name		BODVAD				
	Geographical Area (Sq. Km.)	356.69 Sq. Km.				
Hilly Area (Sq. Km)		Nil				
	Poor Ground Water Quality	Nil				
	Area (Sq. Km.)					
	Population (2011)	91,799				
	Climate	Tropical Monsoon				
	1.2 Rainfall Analysis					
	Normal Rainfall	764.8 mm				
	Annual Rainfall (2017)	433.6 mm				
	Decadal Average Annual	653.22 mm				
	Rainfall (2008-17)					
	Long Term Rainfall Analysis	Declining Trend 12	1.96 mm/year			
	(1998-2017)	Probability of Nor	mal/Excess Rainfall- 53% & 21%.			
		Probability of Dro	ught: -26% Moderate			
	Rainfall trend analysis (1998 to 2	2017)				
	1400					
	1300 -					
	1000 -					
	900 -					
	800 -					
	700 -					
	600 -					
	400 -					
	300 -					
	200 -					
	100 -					
		2 2004 2005 2006 2007				
	1998 1999 2000 2001 2002 200	3 2004 2003 2000 2007	2008 2009 2010 2011 2012 2013 2014 2013 2010 2017			
	Equation of Trend Line: y= -11.96	1 X + 829.72				
	1.3. Geomorphology, soil & geol	ogy				
	Geomorphic Unit	Plateau (Undissected to highly Dissected) with weathered				
		thickness ranging from 0 to 1.				
	Soll	Shallow to Slightly deep clay and sand rich Soil.				
	Geology	Deccan Traps (Basalt)				
		Age: Upper Cretad	ceous to Lower Eocene			
	1.4. Hydrology & Drainage					
	Drainage	Bhagavati, Waqar	and Dev Rivers			
	Hydrology	Major Project	Nil			
		Bigger Minor	Nil			
ļ		Irrigation Project				
		(>100 Ha.)				
l		Minor Irrigation	Completed: 02 Projects,			

		Project	Command Area 58	30 ha		
		(<100 Ha.)	100 Ha.)			
1.5. Land Us	se, Agriculture, Irriga	ation & Cropping P	Pattern			
Geographica	al Area	356.69 Sq. Km.				
Forest Area 64.75 Sq. Km.						
Cultivable A	rea	285.32 Sq. Km.				
Net Sown Ai	rea	266.39 Sq. Km.				
Double Crop	oped Area	7.08 Sq. Km.				
Area	Surface Water	Nil				
under Irrigation	Ground Water	6.37 Sq. Km.				
Area under Irrigation	Drip & Sprinkler	4.07 Sq. Km.	4.07 Sq. Km.			
Principal Cro	ops	Crop Type	Area (Sq. Km.) (Ref	ference year 2013-14)		
•		Cotton	140.77			
		Cereals	77.36			
		Pulses	26.62			
		Oil Seeds	8.48			
Horticultura	l Crops	Banana	2.05			
		Citreous fruit	0.08			
Others		Others	0.83			
1.6. Water I	evel Behaviour					
1.6.1 Aquife	er-I/ Shallow Aquifer					
P	Pre-Monsoon (May-2	2017)	Post-Monsoon (November-2017)			
Water leve	el less than 10 n	nbgl has been	Water Level varies up to 10 mbgl; major part of			
observed in	n central parts of t	the block while	the block is covered by DTW between 5 to 10			
water level	in the range of 10) to 20 mbgl is	mbgl while shallow water level in the range of 2			
observed in	major part of the blo	ock.	to 5 mbgl is observed in northern and			
			southwestern peripheral parts of the block.			
Pre-Mo	nsoon Water Level (May 2017)	Post-Monsoon V	Water Level (Nov. 2017)		
Aquifer I	, Premonsoon , DTW	(May. 2017)	Aquifer I , Postn	nonsoon , DTW (Nov. 2017)		
BOO	dvad Taluka, Jalgaon	District	BOOVAD TA	luka, Jalgaon District		
10 21 - 10 - 10 - 10 - 10 - 10 - 10 - 10			0 25 5 Revolution			
		~ 7				
~	- ma.					
<u> </u>						
ZA.	Body	vad •		Bodvad • 🔸		
0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			• •			
		150		• • • • • •		
			Loca	and		
	<u>regena</u>			<u>, </u>		
DTW (mbg	l) Principal aqui	fer BS01	DIVV (mbgl)	Principal aquifer BS01		
< 10	No of aquifers	5 Two	2 to 5	No of aquifers Two		
10 to	o 20 Area	356.69 sqkm	5 to 10	Area 356.69 sqkm		
	Taluka HQ Drainage	-		Drainage		
	Monitoring we	ell •		Monitoring well		

2. GROUND WATER ISSUES

- The Ground Water Stage incresed over the period from 2008 to 2013 from 74.72% to 82.71%.
- The ground water exploitation has also resulted in declining of water levels over the period of time. At present, the premonsoon declining water level trend has been observed in about 379 sq km area.

• Major part of the block is having low yield Potential (<25 m³/day)

EC up to 2250 μ S/cm observed in major part of block and ground water is suitable for all purpose. Few Villages are also affected by Nitrate contamination.

Phreatic Aquifer (A		Semic	onfined/Confined A	quifer (Aquifer II)		
GROUND W Bodvad Ta NORTH Leg EC in microsiemens at 25° C C 750 750 to 2250 2250 to 3000 Nitrate >45 mg	N) r BS01 Two 59 sqkm 	EC in at 25°	Bodvad Taluka, Jalga H Legend microsiemens/cm C < 750 750 to 2250 Litrate >45 mg/l	ALITY (AQII) aon District		
5. GROUND WATE	R RESOURCE					
5.1 Aquifer-I/ Shall	low Aquifer (Basa	lt)				
Ground Water Recl	harge Worthy	356.69				
Area (Sq. Km.)						
Total Annual Grour	nd Water	41.98				
Recharge (MCM)						
Natural Discharge ((MCM)	2.09				
Net Annual Ground	Water	39.88				
Availability (MCN)		20.01				
Existing Gross Grou	and Water	30.81				
Draft for Irrigation	(IVICIVI)	2 1 7				
Existing Gross Grou	and water	2.17				
Drait for domestic	anu muustriai 4)					
Evicting Gross Grou	(1) und Mator	22.00				
Draft for All uses (N	ACM)	52.90				
Provision for dome	stic and	3.70				
industrial requirem	ent supply to					
2025(MCM)						
Net Ground Water	Availability for	4.82				
future irrigation de	velopment					
(MCM)						
Stage of Ground W	ater	82.71				
Development (%)						
Category		Semi Critica	al			
5.2 Aquifer-II/Dee	per Aquifer (Basal	t)				
Semiconfined/Conf	tined Aquifer (Basa	alt)	- 10			
Total Area (Sq.	Mean aquifer	Av (Sy/S)	Peizometric Head	Total Resource	
Km.)	thickness (m)			(m above	(MCM)	
250	5.62		005	contining layer)	7.000	
356	5.62		005	13.75	7.203	
	ER RESUURLE EN	HANCEIVIEN				

Available Resource (MCM)	39.88				
Gross Annual Draft (MCM)	32.99				
6.1. Supply Side Management					
SUPPLY (MCM)					
Agricultural Supply -GW	30.81				
Agricultural Supply -SW	0.00				
Domestic Supply - GW	2.18				
Domestic Supply - SW	0.97				
Total Supply	140.74				
Area of Block (Sq. Km.)	356.69				
Area suitable for Artificial recharge	232.09				
(Sq. Km)					
Type of Aquifer	Hard Rock Soft Rock				
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	232.09 0				
Volume of Unsaturated Zone (MCM)	464.18 0				
Average Specific Yield	0.02 0.070				
Volume of Sub surface Storage Space	e n				
available for Artificial Recharge	9.28	0			
(MCM)					
Surplus water Available (MCM)	2.42	0	1		
Proposed Structures	Percolation Tank	Check Dam	Recharge shaft		
	(Av. Gross	(Av. Gross	(Av. Gross		
	Capacity-100	Capacity-10 TCM *	Capacity-60		
	$1 \text{ CIVI}^2 \text{ TIIIINgs} = 200 \text{ TCVI}^3$	3 fillings = 30 fCNI	TCM)		
Number of Structures	7	22			
Volume of Water expected to be	/	52	-		
conserved / recharged @ 75%	1 09	0.73	-		
efficiency (MCM)	1.05	0.75			
Proposed Structures					
BTRWH Structures – Urban Areas					
Households to be covered (25% with					
50 m ² area)	5174				
Total RWH potential (MCM)	0.20				
Rainwater harvested / recharged @	0.16				
80% runoff co-efficient	Economically not via	able & Not Recomme	nded		
C.2. Demond Cide Management	•				
6.2. Demand Side Management					
Double crop area proposed to be	12.05				
covered under Drip	13.05				
Volume of Water expected to be	5.80				
saved (MCM). Surface Flooding req-	ז-				
0.90 m. Drip Req 0.50, WUE0.4 m					
Proposed Cropping Pattern change	Not proposal				
(rendea)	Not proposed				
Crop(na)	NII				
Pattern					
Fallelli					
6.3. Expected Benefits	1				
---	----------	--			
Net Ground Water Availability	39.88				
(MCM)					
Additional GW resources available					
after Supply side interventions	1.77				
(MCM)					
Ground Water Availability after	41.7				
Supply side intervention					
Existing Ground Water Draft for All	32.99				
Purposes (MCM)	02.00				
GW draft after Demand Side	27.19				
Interventions (MCM)	27.15				
Present stage of Ground Water	82.72				
Development (%)					
Expected Stage of Ground Water	65.28				
Development after interventions (%)					
Other Interventions Proposed, if any					
Alternate Water Sources Available	Nil				
6.4. Development Plan					
Volume of water available for GWD	2.0				
to 70% (MCM)	2.0				
Proposed Number of DW (@ 1.5 ham					
for 90% of GWR Available)	118				
Proposed Number of BW(@ 1.5 ham					
for 10% of GWR Available)	13				
Additional Area (sq.km.) proposed to					
be brought under assured GW	3.02				
irrigation with av. CWR of 0.65 m					
Regulatory Measures	60m bore	well/tube well			
Supply Side intervention		Demand Side intervention			
Proposed AR Structures		Double cropped area proposed for drip			
- · - •		Irrigation			
Artificial Recharge Structur	۵				
Bodvad Taluka, Jalgaon Distric	t	Bodvad Taluka. Jalgaon District			
NORTH		nom			
The second and a second and as second and a	সি	Southers			
使加强的们的解释了这些更是	EF1	Aquifer , Postmonsoon , DTW (Nov. 2017)			
		in the second se			
EN HELEN AND THE STATE	Stor In	Y Y			
Bodvad	177	Beevad			
	3	S			
に除きます」		N 24			
国家を見て		Legend			
- ARTIN		Principal equifer B601 No of aquifers Two			
A CONTRACTOR		Area Taluka HQ 358 69 sąkm Drankaje			
Legend		Double crop area proposed to be covered under Drp in Bodvad 13.05 ratm .			
Principal aquifer BS	501				
Percolation tank + No of aquifers Tw	10				
Check dam Mrea 356.69 sqkm					
Taluka HQ 🔹 🚽					
Dialitage	/				

11.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, CHALISGAON BLOCK, JALGAON DISTRICT, MAHARASHTRA

1. SALIENT FEATURE		
1.1 Introduction		
Block Name	Chalisgaon	
Geographical Area (Sq. Km.)	1089.90 Sq. Km.	
Hilly Area (Sq. Km)	56.55 Sq. Km.	
Poor ground Water quality	Nil	
Area ((Sq. Km.)		
Population (2011)	4,14,879	
Climate	Tropical Monsoon	
1.1 Rainfall Analysis		
Normal Rainfall	767.7 mm	
Annual Rainfall (2017)	604.6 mm	
Decadal Average Annual	677.96 mm	
Rainfall (2008-17)		
Long Term Rainfall Analysis	Rising Trend 0.0898 mm/year.	
(1901-2017)	Probability of Normal/Excess Rainfall- 68% & 13%.	
	Probability of Drought (Moderate/Severe)-: 17 % Moderate & 2%	
	Severe.	
Rainfall Trend Analysis (1901 T	o 2017)	
1600		
1400 -		
1200 -		
1000 -		
800 -		
600 - 1 - 1 - 1 - 1 - 1 - 1		
400 -		
200 -		
1920 1910 1910 1910 1910 1910 1920 1920	22000000000000000000000000000000000000	
EQUATION OF TREND LINE: Y =	0.0898X + 710.87	
1.3. Geomorphology, Soil & Ge	ology	
Geomorphic Unit	Plateau Undissected to Highly Dissected with 0-5 m weathering	
	belonging to Tapi and Satpuda and Sahyadri groups.	
	Alluvial Plains of Girna River.(Tributary of Tapi river)	
Soil	Shallow to deep Clay loamy and Clay rich Soil	
Geology	Alluvium (sand/clay dominant).	
	Age: Recent to Sub-recent	
	Deccan Traps (Basalt)	
	Age: Upper Cretaceous to Lower Eocene	

1.4. Hydrology	& Drainage				
Drainage		Girna and Titur rivers trib		itaries of Tapi River	
Hydrology	Irology Major project			Nil	
medi		medium Project		03 projects	
Bigger Minor Irriga		Bigger Minor Irrigation	on	Nil	
		Project (>100 Ha.)			
		Minor Irrigation Proj	ject	Nil	
		(<100 Ha.)			
1.5. Land Use,	Agriculture, Irrig	ation & Cropping Patt	tern		
Geographical A	rea	1089.90 Sq. Km.			
Forest Area		169.35 Sq. Km.			
Net Sown Area		893.69 Sq. Km.			
Double Croppe	d Area	27.60 Sq. Km.			
Area under	Surface Water	-			
Irrigation	Ground Water	324.20 Sq. Km.			
Area under Dri	p & Sprinkler	0.233 Sq. Km.			
Irrigation					
Principal Crops		Сгор Туре	1	Area (Sq. Km.) (Reference year 2013-14)	
		Cotton		281.15	
		Oil Seeds	4	41.25	
		Sugarcane		21.60	
		Cereals		13.64	
		Pulses	9	9.25	
Horticultural C	rops	Banana	-	7.40	
		Citreous fruit		1.98	
		Others	(0.29	
1.6. Water Level Behaviour					
1.6.1 Aquifer-I	/Shallow Aquifer	•			
Pre	-Monsoon (May-	2017)	P	ost-Monsoon (November-2017)	
AQUIFER I, PREMONSOON , DTW (MAY. 2017) Chalisgaon Taluka, Jalgaon District		W (MAY. 2017) on District		FER I, POSTMONSOON , DTW (NOV. 2017) Chalisgaon Taluka, Jalgaon District	
kilometres kilometres Principal aquifer No of aquifers Area Taluka HQ Drainage Monitoring well	Girna R. Chalisgaon Chalisgaon AL/BS Two 1033.35sqkm	Legend DTW (mbgl) 2 to 5 5 to 10 10 to 20 20 to 30	Principal No of aq Area Faluka H Drainage Monitorir	etres Girna R: Chailsgraon Chailsgraon Chailsgraon Legend DTW (mbgl) aquifer AL/BS Two 1033.35sqkm Q ag well	

I

3.3. Cross Sections			
Section AA"			
A Shindi 204.75 Scale 50 m Aquifer I-Basal Aquifer I-Basal Massive basalt	Chichkheda Chichkheda 200.2 t Exploratory well Fractured zone Water level AQII Water level AQII	Khedgaon Kunjhar 200.2 200.2	A'
3.4. Basic Aquifer Characteristics			
Major Aquifers	Basal	t (Deccan Traps)	Alluvium (River Alluvium)
Type of Aquifer	Aquifer-I	Aquifer II	Aquifer-I (Phreatic)
(Phreatic/Semiconfined/Confined)	(Phreatic)	(Semiconfined/confin ed)	
SWL (mbgl)	2.8-24.4	21-99.40	5-12
Depth of Occurrence (mbgl)	nce (mbgl) 10-30 25-125 5-25		5-25
Granular/Weathered /Fractured rock thickness (m)	8-20	1-8	3-6
Yield	<10-100 m ³ /day	0-3 lps	150-200m ³ /day
Specific yield/Storativity (S)	0.02	0.0003 -0.00021	0.06-0.08
			(Clayey to Sandy)
Transmissivity (T)	20-35	10-50	10-80
GROUND WATER QUALITY			
Aquifer-I/ Shallow Aquifer			
Ground water having EC up to 225 water is suitable for drinking as wel contamination.	0 μS/cm has be l as irrigation pu	en observed over the ent rposes. Few villages are al	ire block and ground so affected by Nitrate
Aquifer II /Deeper Aquifer			
In Deeper aquifer also ground water is having EC up to 2250 μ S/cm over the entire block over the entire block and ground water is suitable for drinking as well as irrigation purposes. Few villages are also affected by Nitrate contamination. Few villages are also affected by Nitrate contamination.			
Aquifer-I/shallow Aquifer	A	quifer II/Deeper Aquifer	

GRC NORTH 7.5 kilometres Principal aqu No of aquifer Area Taluka HQ Drainage Monitoring w	DUND WATER QUALITY (halisgaon Taluka, Jalgaon Di Girna R Girna R Chalisgaon Le EC in cm at Ts Two 1033.35sqkm	AQI) strict	Principal aquifer AL/BS No of aquifers Area 1033.35sqkm Taluka HQ Drainage Monitoring well	LITY (AQII) gaon District
5.1 Aquifer-l	/ Shallow Aquifer (B	asalt)		
Ground Wat	er Recharge Worthy A	Area (Sq. Km.)	1033.35	
Total Annual	Ground Water Rech	arge (MCM)	152.48	
			152.10	
Natural Disc	harge (MCM)		7.62	
Net Annual O	Ground Water Availab	oility (MCM)	144.86	
Existing Gros	s Ground Water Draf	t for irrigation	105.76	
(MCM)				
Existing Gros	s Ground Water Draf	t for domestic	4.08	
and industria	al water supply (MCN	1)		
Existing Gros	ss Ground Water Draf	t for All uses	109.85	
(IVICIVI)		rial	7.00	
requirement	uomestic and indust	1 i di 1)	7.00	
Net Ground	Supply to 2023(1VICIV	1/ future	32 75	
irrigation de	velopment (MCM)	iature	52.75	
Stage of Gro	und Water Developm	ent (%)	75.83	
Category			SAFE	
5.2 Aquifer-l	I/ Deeper Aquifer (B	asalt)	1	
Total Area	Mean aquifer	Av (Sy/S)	Peizometric head (m	Total Resource
(Sq. Km.)	thickness (m)		above confining layer)	(MCM)
1033	4.16	0.005	15	23.11
6.0. GROUN	D WATER RESOURCE	MANAGEMEN		
Available Re	source (MCM)		144.86	
Gross Annual Draft (MCM)		109.85		
6.1. Supply S	ide Management			
SUPPLY (MC	M)			
Agricultural	Supply -GW		105.76	
Agricultural Supply -SW		0		

Domestic Supply - GW	4.09		
Domestic Supply - SW	1.0225		
Total Supply	110.8725		
Area of Block (Sq. Km.)	1089.90		
Area suitable for Artificial recharge			
(Sq. Km)	839.13		
Type of Formation	Hard Rock	Soft Rock	
Area feasible for Artificial Recharge (WL			
>5mbgl) (Sq. Km.)	839.13	-	
Volume of Unsaturated Zone (MCM)	1678.26	-	
Average Specific Yield	0.020	-	
Volume of Sub Surface Storage Space available	22.57		
for Artificial Recharge (MCM)	33.57	-	
Surplus water Available (MCM)	8.75	-	
Proposed Structures	Percolation	Check Dam	Recharge shaft
	Tank (Av. Gross	(Av. Gross	(Av. Gross
	Capacity-100	Capacity-10	Capacity-60
	TCM*2 fillings	TCM * 3	TCM)
	= 200 TCM)	fillings = 30	
		TCM)	
Number of Structures	33	72	0
Volume of Water expected to be conserved /	4.05	1.02	0.00
recharged @ 75% efficiency (MCM)	4.95	1.62	0.00
Proposed Structures			
RTRWH Structures – Urban Areas			
Households to be covered (25% with 50	0.000		
m ² area)	9,200		
Total RWH potential (MCM)	0.2599		
Rainwater harvested / recharged @ 80% runoff	0.207		
co-efficient	Economically not viable & Not Recommended		
6.2. Demand Side Management	•		
Micro irrigation techniques			
Sugarcane Area (sq km) proposed for Drip	8		
Irrigation			
Volume of Water expected to be saved by use	4.56		
of drip (MCM). Surface Flooding req- 2.45 m.			
Drip Req 1.88, WUE- 0.57 m			
Proposed Cropping Pattern change			
Irrigated area under Water Intensive Crop(ha)	Not proposed		
Water Saving by Change in Cropping Pattern	Nil		
6.3. Expected Benefits			
Net Ground Water Availability (MCM)	144.86		
Additional GW resources available after Supply	6 57		
side interventions (MCM)	0.57		
Ground Water Availability after Supply side	151 4		
intervention	101.4		
Existing Ground Water Draft for All Uses (MCM)	er Draft for All Uses (MCM) 109.85		
GW draft after Demand Side Interventions (MCM)	105.29		
Present stage of Ground Water Development	75.83		

(%)	
Expected Stage of Ground Water Development	60 52
after interventions (%)	09.55
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD to 70%	0.711
(MCM)	0.711
Proposed Number of DW (@ 1.5 ham for 90%	
of GWR Available)	5
Proposed Number of BW (@ 1.5 ham for 10%	
of GWR Available)	43
Additional Area (sq.km.) proposed to be	
brought under assured GW irrigation with av.	1
CWR of 0.65 m	
Regulatory Measures	60 m bore well/tube well
Supply Side interventions	Demand Side interventions
Proposed AR structures	Sugarcane Area proposed for drip irrigation

12.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, CHOPDA BLOCK, JALGAON DISTRICT, MAHARASHTRA

1. SALIENT FEATURE		
1.1 Introduction		
Block Name	Chopda	
Geographical Area (Sq. Km.)	1142.65 Sq. Km.	
Hilly Area (Sq. Km)	40.85 Sq. Km.	
Poor ground Water quality	Nil	
Area (Sq. Km.)		
Population (2011)	3,12,815	
Climate	Tropical Monsoon	
1.2 Rainfall Analysis		
Normal Rainfall	762.5 mm	
Annual Rainfall (2017)	565.8 mm	
Decadal Average Annual	751.65 mm	
Rainfall (2008-17)		
Long Term Rainfall Analysis	Rising Trend 0.291 mm/year.	
(1901-2017)	Probability of Normal/Excess Rai	nfall- 64 % & 18%.
	Probability of Drought (Moderate	e/Severe)-: 18 % Moderate
Rainfall Trend Analysis (1901	То 2017)	
1600 1500 1400 1300 1200 1000 900 900 900 900 900 900	1 1	sected to highly dissected with 0-5 m is formation of Satpuda Group in the he (Bazada -Deep) and alluvial plains
	In the central and southern parts	s of the block.
SUII	Widderate to Deep clay rich soll	
Geology	Alluvium (Older and You Age: Recent to Sub-received)	nger Alluvium) nt
	 Deccan Traps (Basalt) 	
	Age: Upper Cretaceous t	o Lower Eocene
1.4. Hydrology & Drainage		
Drainage	Tapi River and its tributaries Ane	r and Gul rivers
Hydrology	Major project	01 project (Gul project) Cultivable
		area: 3708 ha
	Bigger Minor Irrigation Project	01 project

		(>100 Ha.)		
		Minor Irrigation P	roiect	PT-03. Cement bund-326 nos. nala
		(<100 Ha.)	oject	bund-32 nos
1.5. Land Us	e, Agriculture, Irr	igation & Cropping	Pattern	
Geographica	al Area	1142.65 Sq. Km.		
Forest Area		40.85 Sq. Km.		
Cultivable A	rea	707.92 Sg. Km.		
Net Sown A	rea	620.64 Sq. Km.		
Double Crop	ped Area	71.50 Sq. Km.		
Area	Surface Water	133.11 Sq. km.		
under	Ground Water	292.44 Sq. Km.		
Irrigation				
Area under	Drip & Sprinkler	205.46 Sq. Km.		
Irrigation				
Principal Cro	ops	Crop Type		Area (Sq. Km.) (Reference year2013-14)
		Cotton		309.98
		Cereals		131.56
		Pulses		112.08
		Sugarcane		44.33
		Oil Seeds		13.45
Horticultura	l Crops	Banana		134.30
	•	Citreous fruit		0.60
		Others 2.60		2.60
1.6. Water I	evel Behaviour			
1.6.1 Aquife	er-I/Shallow Aquif	er		
P	re-Monsoon (Ma	y-2017)	Post	-Monsoon (November-2017)
AQUIFE	R I. PREMONSOON	. DTW (MAY, 2017)	AQUIFER	L POSTMONSOON DTW (NOV. 2017)
C	Chopda Taluka,Jalg	aon District	С	hopda Taluka.Jalgaon District
-	man			
kilometers	•		NORTH e 12 kilometers	
¢.	Chopda	i	æ.	
P.		R	P200	chopda 0
		Z Yr		E IV
		Tapi R.		Tapi B.
	Legend			
DTW (mb	ogl)		DTM (make	Legend
	Principal a	quifer AL/BS		D Principal aquifer AL/RC
1	0 to 20 Area	1143.65 sqkm	2	to 5 No of aquifers Two
2	to 30 Drainage		5	to 10 Area 1143.65 sqkm
3	80 to 40 Monitoring	well	10	D to 20 Drainage
4	10 to 50		20	to 30 Monitoring well
Water level	loss than 10 m	ad is observed in	30	0 to 40
water level	iess uidii 10 M	ugi is observed in		less then 10 mbol and sharmed in
small isolated parts of the block; while water		vvater Level	less than 10 mbgi are observed in	
ievel in the range of 10 to 20 mbgl is observed		normern na	II OI DIOCK EXCEPT SMAII ISOlated	
in major pa	rt of the block o	leeper water level	natchos in sa	uthern part of the block while water

i.e., >20 mbgl has been observed as isolated

level between >10 mbgl are observed in southern

purposes in major part of the block. EC values <750 μ S/cm are observed in north-eastern and eastern parts of the block. Ground water is suitable for drinking as well as irrigation purposes. Only in Chopda village ground water is affected by Nitrate contamination (51 mg/l).

4.2 Aquifer II & III/Deeper Aquifer

EC between 750 and 2250 μ S/cm in southern half of the block and in northern half of the block EC varies up to 750 μ S/cm. Ground water is suitable for is suitable for drinking as well as irrigation purposes. Few villages are affected by Nitrate contamination.

Alluvium	245	13.73	0.04	40-70	144.38	
Aquifer-III/	Deeper Aquifer (Al	luvium)				
Total Area	Mean aguifer	Av(Sy/S)	Piezometric I	Head (m above	Total Resource	
(Sq. Km.)	thickness (m)		confining lay	er)	(MCM)	
124.55	12.5	0.0037	110-120	•	3.28	
6.0. GROUN	D WATER RESOUR	CE ENHANCEMENT	-			
Available Re	source (MCM)		122.82			
Gross Annua	al Draft (MCM)		92.87			
6.1. Supply	Side Management					
SUPPLY (MC	CM)					
Agricultural	, Supply -GW		89.42	89.42		
Agricultural	Supply -SW		133.11			
Domestic Su	GW - GW		4.71			
Domestic Su	W2 - Vlag		0.625			
Total Supply			227.865			
Area of Bloc	k (Sg. Km.)		1142.65			
Area suitabl	e for Artificial recha	arge				
(Sq. Km)		0	820			
Type of Forr	nation		Hard Rock	Soft Rock		
Area feasible	e for Artificial Rech	arge (WL >5mbgl)	200	C 20		
(Sq. Km.)			200	620		
Volume of U	Insaturated Zone (N	ЛСМ)	400	1240		
Average Spe	cific Yield		0.020	0.070		
Volume of S	ub Surface Storage	Space available	0	96.90		
for Artificial	Recharge (MCM)		0	80.80		
Surplus wate	er Available (MCM)		0	8.5		
Proposed Structures		Percolatio	Check Dam (Av.	Recharge shaft		
		n Tank	Gross Capacity-10	(Av. Gross		
			(Av. Gross	TCM * 3 fillings =	Capacity-60	
			Capacity-	30 TCM)	TCM)	
			100			
			TCM*2			
			fillings =			
			200 TCM)			
Number of S	Structures	. ,	18	30	66	
Volume of V	Vater expected to b	e conserved /	2.7	0.68	2.97	
recharged @	v 75% efficiency (M	CM)				
RIRWH Stru	ictures – Urban Are		42.007			
Households	to be covered (25%	with 50 m ⁻ area)	12,987			
Total RWH p	otential (MCM)		0.4/0//15			
Rainwater harvested / recharged @ 80% runoff		U.3700				
co-efficient		Economica	lly not viable & Not R	ecommended		
6.2. Deman	d Side Managemen	t				
		Notareas	ad			
Irrigation Area (ha) proposed for irrigation		Not proposed				
urrougn Sprinkier						
Water Savin	g by use of Sprinkle	ers	Nil			
Proposed C	opping Pattern cha	ange				
Irrigated are	a under Water Inte	ensive Crop(ha)	Not proposed			
Water Saving by Change in Cropping Pattern		Nil				

Other Interventions Proposed, if any	
Alternate Water Sources Available	
Tapi Mega Recharge Scheme	101.74
Quantum of water recharged- Tapi MRS (MCM)	76.30
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	122.82
Additional GW resources available after Supply side interventions (MCM)	82.65
Ground Water Availability after Supply side	205.46
Existing Ground Water Draft for All Lloss (MCM)	02.82
GW draft after Demand Side Interventions (MCM)	92.87
Present stage of Ground Water Development (%)	75.67
Expected Stage of Ground Water Development (%)	75.02
after interventions (%)	45.20
6 4 Development Plan	
6.4. Development Plan	
(MCM)	50.96
Proposed Number of DW(@ 1.5 ham for 10% of	240
GWR Available)	340
Proposed Number of BW(@1.5 ham for 90% of	2057
GWR Available)	3037
Additional Area (sq.km.) proposed to be brought	
under assured GW irrigation with av. CWR of 0.65	78.39
m	
Regulatory Measures	80 m borewell/tube well
Regulatory Measures Supply side intervention	80 m borewell/tube well Demand side intervention
Regulatory Measures Supply side intervention Proposed AR Structures	80 m borewell/tube well Demand side intervention
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure	80 m borewell/tube well Demand side intervention
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure Chopda Taluka,Jalgaon District	80 m borewell/tube well Demand side intervention
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure Chopda Taluka, Jalgaon District	80 m borewell/tube well Demand side intervention MAJOR ARE OF WATER INTENSIVE CROP ALREADY COVERED BY MICRO IRRIGATION TECHNIQUE
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure Chopda Taluka, Jalgaon District OFF OFF Chopda Taluka, Jalgaon District District Decision and activity of the point Legend	80 m borewell/tube well Demand side intervention MAJOR ARE OF WATER INTENSIVE CROP ALREADY COVERED BY MICRO IRRIGATION TECHNIQUE
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure Chopda Taluka, Jalgaon District ORTH ORT	80 m borewell/tube well Demand side intervention MAJOR ARE OF WATER INTENSIVE CROP ALREADY COVERED BY MICRO IRRIGATION TECHNIQUE
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure Chopda Taluka,Jalgaon District ORTH OCTOB Chopda Taluka,Jalgaon District ORTH OCTOB Chopda Taluka,Jalgaon District ORTH OCTOB Chopda Taluka,Jalgaon District ORTH OCTOB Chopda Taluka,Jalgaon District ORTH OCTOB Chopda Taluka,Jalgaon District OCTOB Chopda Taluka,Jalgaon District OCTOB Chopda Taluka,Jalgaon District OCTOB Chopda Taluka,Jalgaon District OCTOB Chopda Taluka,Jalgaon District OCTOB Chopda Taluka,Jalgaon District OCTOB OCTOB OCTOB Chopda Taluka,Jalgaon District OCTOB OCTO	80 m borewell/tube well Demand side intervention MAJOR ARE OF WATER INTENSIVE CROP ALREADY COVERED BY MICRO IRRIGATION TECHNIQUE
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure Chopda Taluka,Jalgaon District ORTH	80 m borewell/tube well Demand side intervention MAJOR ARE OF WATER INTENSIVE CROP ALREADY COVERED BY MICRO IRRIGATION TECHNIQUE
Regulatory Measures Supply side intervention Proposed AR Structures Artificial Recharge Structure Chopda Taluka,Jalgaon District OFFH OFFH OFFH Chopda Taluka,Jalgaon District OFFH OF	80 m borewell/tube well Demand side intervention MAJOR ARE OF WATER INTENSIVE CROP ALREADY COVERED BY MICRO IRRIGATION TECHNIQUE

13.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, PAROLA BLOCK, JALGAON DISTRICT, MAHARASHTRA

1.SALIENT FEATURE	
1.1 Introduction	
Block Name	Parola
Geographical Area (Sq. Km.)	758.06 Sq. Km.
Hilly Area (Sq. Km)	46.46 Sq. Km.
Poor ground water quality	Nil
area (Sq. Km.)	
Population (2011)	1,96,863
Climate	Tropical Monsoon
1.2 Rainfall Analysis	
Normal Rainfall	703.3 mm
Annual Rainfall (2017)	651 mm
Decadal Average Annual	657.29 mm
Rainfall (2008-17)	
Long Term Rainfall Analysis	Rising Trend 0.525 mm/year.
(1901-2017)	Probability of Normal/Excess Rainfall- 62% & 18%.
	Probability of Drought (Moderate/Severe)-: 17 % Moderate &
	3% Severe.
Rainfall Trend Analysis (1901 to	2017)
1000 - 1400 - 1400 - 1200 - 1000 - 900 - 800 - 700 - 600 - 500 - 400 - 100	
EQUATION OF TREND LINE: Y=0	.5252X +077.82
Geomorphic Unit	Plateau (Slightly Dissected to highly Dissected) with weathered
	thickness ranging from 0 to 2 m.
	Alluvial Plain (Younger and Older)
Soil	Slightly to moderately deep clay and sand rich soil
Geology	Alluvium (Sand/ Silt/Clay Dominant).
	Age: Recent to Sub-recent
	Deccan Trans (Basalt)
	Age: Upper Cretaceous to Lower Focene
1 4 Hydrology & Drainago	
Drainago	Pari and Chikhli Pivor
Draillage	

Hydrology		Major project	Completed -02 (Bhokarbari and Bori projects)			
			Command Area :2388 and 9007 ha			
		Bigger Minor Irrigation	Completed: - 2 medium projects			
		Project (>100 Ha.)				
		Minor Irrigation	02 project: Command area 21.25 ha			
		Project (<100 Ha.)				
1.5. Land Us	se, Agriculture, Irrig	ation & Cropping Pattern				
Geographica	al Area	758.06 Sq. Km.				
Forest Area		106.40 Sq. Km.				
Cultivable A	rea	630.13 Sq. Km.				
Net Sown A	rea	536.08 Sq. Km.				
Double Cropped Area		6.66 Sq. Km.				
Area	Surface Water	81 Sq. Km.				
under	Ground Water	40.22 Sq. Km.				
Irrigation						
Area under	Drip & Sprinkler	16.88 Sq. Km.				
Irrigation						
Principal Cro	ops	Сгор Туре	Area (Sq. Km.) (Reference year 2013-14)			
		Cereals	125.72			
		Cotton	83.89			
		Pulses	40.30			
		Oil Seeds	8.26			
		Sugarcane	0.57			
Horticultura	l Crops	Banana	1.10			
		Citreous fruit	0.54			
		Others	0.80			

1.6. Water Level Behavior

Confined)		/confined)				
SWL (mbgl)	4.4-20	35-78	4-15			
Depth of Occurrence (mbgl)	10-35	50-200	5-20			
Granular/Weathered/	5-30	1-8	10-15			
Fractured rocks thickness (m)						
Yield	<10-50m ³ /day	0-1.5	50-100m ³ /day			
Specific yield/	0.02	0.0003 -0.00021	0.06-0.08			
Storativity (S)			(Clayey to Sandy)			
Transmissivity (T)	10-35	14-40	-			
4 GROUND WATER QUALITY						

4.1 Aquifer-I/ Shallow Aquifer

EC > 2250 μ S/cm has been observed as isolated patch in north western part of the block; A large part of the block is covered by the EC ranging up to 2250 μ S/cm. Major part of the area is covered by the EC varying between 750 to 2250 μ S/cm. Over major part of block ground water is suitable for drinking as well as irrigation purposes. Few villages are affected by Nitrate contamination.

4.2 Aquifer-II/ Deeper Aquifer

 $EC < 750 \ \mu$ S/cm has been observed in southern part of the block; A large part of the block is covered by the EC ranging between 750 and 2250 μ S/cm in the northern half of the block. Ground water is suitable for drinking as well as irrigation purposes.

domestic and industrial water supply (MCM)						
Existing Gro	ss Ground Water	Draft for All	62.13			
uses (MCM)						
Provision for domestic and industrial		6.01				
requiremen	t supply to 2025(MCM)				
Net Ground	Water Availabilit	v for future	10.47			
irrigation de	evelopment (MCN	л)				
Stage of Gro	ound Water Deve	jopment %	86.78			
Category			Semi Critical			
5.2 Aquifer-	II/ Deeper Aquif	er (Basalt)				
Total Area	Mean aquifer	Av(Sv/S)	Peizometric Head (m above	Tota	l Resource
(Sq. Km.)	, thickness (m)		confining layer)		(MCI	∕1)
758.62	5.62	0.005	10-15		12.82	2
6.0. GROUN	ID WATER RESOL	JRCE MANAGEM	ENT			
Available Re	source (MCM)		71.61			
Gross Annu	al Draft (MCM)		62.14			
6.1. Supply	Side Managemer	nt				
SUPPLY (MO	CM)					
Agricultural	Supply -GW		57.63			
Agricultural	Supply -SW		105.7			
Domestic Su	ipply - GW		4.51			
Domestic Su	upply - SW		1.1275			
Total Supply	y		168.9675			
Area of Bloc	k (Sq. Km.)		758.06			
Area suitable for Artificial recharge (Sg. Km)		355.03				
Type of Formation		Hard Rock Soft Rock				
Area feasible for Artificial Recharge (WL		255.22				
>5mbgl) (Sq	. Km.)		355.22	0		
Volume of Unsaturated Zone (MCM)		710.44	0			
Average Specific Yield		0.020	0.070			
Volume of Sub surface Storage Space		14.21	0			
available for Artificial Recharge (MCM)						
Surplus wat	er Available (MCI	VI)	3.703	0		
Proposed St	tructures		Percolation Tank	Check Dam (Av. Recharg		Recharge
			(Av. Gross	Gross Capa	city-	shaft (Av.
			Capacity-100	10 TCM * 3		Gross
			TCM*2 fillings =	fillings = 30		Capacity-
			200 TCM)	TCM)		60 TCM)
Number of S	Structures		13	37		0
Volume of Water expected to be conserved			1.95	0.83		0.00
/ recharged	@ 75% efficiency	/ (MCM)		0.00		
Proposed Structures						
RTRWH Stru	uctures – Urban A	Areas				
Households to be covered (25% with 50		10.000				
m ⁻ area)						
Total RWH potential (MCM)			0.46			
Rainwater harvested / recharged @ 80%		0.368				
runott co-etticient		Economically not viable & Not Recommended				
6.2. Demand Side Management						
Micro irriga	tion techniques					

Micro Irrigation Techniques in 50% of	35.62
Cotton cropped area proposed to be	
covered under Drip (sq.km.)	
Volume of Water expected to be saved	10.82
(MCM). Surface Flooding req- 0.815 m. Drip	
Req 0.511, WUE- 0.304 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive	Not proposed
Crop(ha)	
Water Saving by Change in Cropping Pattern	Nil
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	71.62
Additional GW resources available after	2 78
Supply side interventions (MCM)	2.70
Ground Water Availability after Supply side	74.4
intervention	····
Existing Ground Water Draft for all uses	62.14
(MCM)	02.14
GW draft after Demand Side Interventions	51 31
(MCM)	51.51
Present stage of Ground Water	86 78
Development (%)	66.76
Expected Stage of Ground Water	68.97
Development after interventions (%)	
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD to 70%	0.8
(MCM)	
Proposed Number of DW (@ 1.5 ham for	5
90% of GWR Available)	5
Proposed Number of BW (@ 1.5 ham for	46
10% of GWR Available)	
Additional Area (sq.km.) proposed to be	
brought under assured GW irrigation with	1.17
av. CWR of 0.65 m	
Regulatory Measures	60 m borewell/tube well

14.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, JALGAON BLOCK, JALGAON DISTRICT, MAHARASHTRA

1.0 SALIENT FEATURE	1.0 SALIENT FEATURE				
1.1 Introduction					
Block Name	Jalgaon				
Geographical Area (Sq. Km.)	831.98 Sq. Km.				
Hilly Area (Sq. Km)	Nil				
Population (2011)	6,76,041				
Climate	Tropical Monsoon				
1.2 Rainfall Analysis					
Normal Rainfall	781.9 mm				
Annual Rainfall (2017)	571.5 mm				
Decadal Average Annual	654.01 mm				
Rainfall (2008-17)					
Long Term Rainfall Analysis	Falling Trend 0.20 m	ım/year.			
(1901-2017)	Probability of Norma	al/Excess Rainfall- 70 % & 13%.			
	Probability of Droug	ht (Moderate/Severe)-: 16 % Moderate & 1%			
	Severe				
Rainfall Trend Analysis (1901 to	2017)				
1600 1500 - 1400 - 1300 - 1200 - 1100 - 1000 - 900 - 800 - 700 - 600 - 500 - 400 - 500 - 100	-0.2013X + 780.39 ology	1964 1967 1978 1978 1978 1978 1978 1988 1988 1994 1994 1994 1994 1994 2005 2006 2009 2006 2009 2012 2012			
Geomorphic Unit	Plateau (Slightly diss	sected to highly dissected) with weathered			
	thickness ranging from 0 to 5 m.				
	Alluvial Plain (Younger and Older)				
Soil	Shallow to deep Clay rich soil.				
Geology • Alluvium (River Alluvium)		ver Alluvium)			
	Age: Recent to Sub-recent				
	Deccan Traps (Basalt)				
	Age: Upper Cretaceous to Lower Eocene				
1.4. Hydrology & Drainage	L				
Drainage	Tapi River and its tri	butaries Waghur and Girna rivers			
Hydrology	Major Project	03 projects; Aner, Girna, Panjan and Waghur			
		projects			
		Command Area:8813 ha, 1065 ha, 28702 ha,			

			34403 ha respectively			
		Minor Irrigation	02 projects, Command area 20 ha			
		Project				
1.5. Land Use,	Agriculture, Irrig	ation & Cropping Pat	tern			
Geographical A	Area	831.98 Sq. Km.				
Forest Area		188.95 Sq. Km.				
Cultivable Are	а	598.98 Sq. Km.				
Net Sown Area	a	535.74 Sq. Km.	535.74 Sq. Km.			
Double Cropp	ed Area	58.45 Sq. Km.				
Area under	Surface Water	137 Sq. Km				
Irrigation	Ground Water	26.08 Sq. Km.				
Area under Dr	ip & Sprinkler	2.68 Sq. Km.				
Irrigation						
Principal Crop	S	Crop Type	Area (Sq. Km.) (Reference year 2013-14)			
		Cotton	232.10			
		Pulses	207.43			
		Cereals	98.98			
		Oil Seeds	38.66			
		Sugarcane	4.82			
Horticultural Crops		Banana	35.04			
		Citreous fruit	0.74			
		Others	0.83			

1.6.Water Level Behaviour

Water levels between 10 to 40 mbgl are observed covering major part of the block while water level <10 mbgl is observed in small isolated patches in north-eastern and western part of the block.

Water levels between 2 to 40 mbgl are observed covering entire extent of the block while water levels up to 20 mbgl are observed covering major parts of the block.

			-
		/confined)	
SWL (mbgl)	1-24.95	35-88	9.55-50
Depth of Occurrence (mbgl)	9-35	20-200	30-79.92
Granular/Weathered/	5-24	1-12	10-60
Fractured rocks thickness (m)			
Yield	<10-200	0-5 lps	50-400
	m3/day		m3/day
Specific yield/	0.018-0.02	0.000057	0.06-0.08
Storativity (S)			
Transmissivity (T)	10-45	15-35	25-100
4. GROUND WATER QUALITY			

4.1 Aquifer-I/ Shallow Aquifer

EC ranges up to 2250 μ S/cm have been observed over the entire block. In major part of the block EC values vary between 750 to 2250 μ S/cm; EC less than 750 μ S/cm is observed in small isolated patches. Ground water is suitable for dinking as well as irrigation purposes Fluoride and Nitrate and Fluoride contamination is observed in few villages.

4.2 Aquifer-II/ Deeper Aquifer

EC ranges up to 2250 μ S/cm have been observed over the entire block. In major part of the block EC values vary between 750 to 2250 μ S/cm; EC less than 750 μ S/cm is observed in small isolated patches. Ground water is suitable for dinking as well as irrigation purposes. Nitrate and Fluoride contamination is observed in few villages.

5.1 Aquifer-I/ Shallow Aquifer (Basalt & Alluvium)				
Ground Water Recharge Worthy Area (Sq.	831.98			
Km.)				
Total Annual Ground Water Recharge	93.21			
(MCM)				
Natural Discharge (MCM)	4.66			
Net Annual Ground Water Availability	88.55			
(MCM)				

[
Existing Gross Ground Water Draft for		44.16					
irrigation (MCM)		2.40					
Existing Gross Ground Water Draft for		2.48					
domestic and industrial water supply							
			10.01				
Existing Gro	ss Ground wate	r Draft for All	46.64				
Provision fo	r domestic and i	ndustrial	5.01				
requiremen	t supply to 2025	(MCM)					
Net Ground	Water Availabili	ity for future	39.25				
irrigation de	evelopment (MC	M)					
Stage of Gro	ound Water Deve	elopment %	52.68				
Category			SAFE				
5.2 Aquifer-	II/Deeper Aquif	er (Basalt & Alluv	/ium)	1	1		
Aquifer	Total Area	Mean aquifer	Av	Piezometr	Total Resource	e (MCM)	
	(Sq. Km.)	thickness (m)	(Sy/S)	ic Head (m			
				above			
				confining			
				layer)			
Basalt	828.09	4.64	0.005	10-20	14.45		
Alluvium	3.2	10	0.05	70	1.635		
6.0. GROUN	ID WATER RESO	URCE MANAGEM	ENT				
Available Re	source (MCM)		88.55				
Gross Annua	al Draft (MCM)		46.65				
6.1. Supply	Side Manageme	ent					
SUPPLY (MO	CM)						
Agricultural Supply -GW			44.16				
Agricultural Supply -SW			267.00				
Domestic Supply - GW			2.48				
Domestic Supply - SW			0.62				
Total Supply			314.26				
Area of Block (Sq. Km.)			831.98				
Area suitable for Artificial recharge (Sq. Km)			822.55				
Type of Forr	nation		Hard Rock Soft Rock				
Area feasibl	e for Artificial Re	echarge (WL	E12 0E1		200 5		
>5mbgl) (Sq	. Km.)		515.051		509.5		
Volume of Unsaturated Zone (MCM)			1026.10		619.00		
Average Spe	ecific Yield		0.02		0.07		
Volume of S	ub surface Stora	ige Space	20.52		42.22		
available for Artificial Recharge (MCM)			20.32		43.33		
Surplus water Available (MCM)			5.349		3.227		
Proposed St	tructures		Percolation Tank (Av.		Check Dam	Recharge	
		Gross Capacity-100		(Av. Gross	shaft (Av.		
		TCM*2 fillings = 200		Capacity-10	Gross		
		TCM)		TCM * 3	Capacity-60		
				fillings = 30	TCM)		
					TCM)		
Number of Structures			21		86	30	
Volume of V	Vater expected t	to be conserved	3.15		1.935	1.35	
/ recharged @ 75% efficiency (MCM)					1.000	1.00	
Proposed Structures							
--	---						
RTRWH Structures – Urban Areas							
Households to be covered (25% with 50							
m ² area)	36,600						
Total RWH potential (MCM)	0.94428						
Rainwater harvested / recharged @ 80%	0.7554						
runoff co-efficient	Economically not viable & Not Recommended						
6.2. Demand Side Management							
Micro irrigation techniques							
Banana crop Area (sq km) proposed to be covered under Drip	1.75						
Volume of Water expected to be saved	1.3825						
through drip (MCM). Surface Flooding req-							
1.76 m. Drip Req 0.97, WUE- 0.79 m							
Proposed Cropping Pattern change							
Irrigated area under Water Intensive	Not proposed						
Crop(ha)							
Water Saving by Change in Cropping	Nil						
Pattern							
6.3. Expected Benefits							
Net Ground Water Availability (MCM)	88.55						
Additional GW resources available after	6 / 37						
Supply side interventions (MCM)	0.437						
Ground Water Availability after Supply side	94 985						
intervention	5,505						
Existing Ground Water Draft for All Uses	46 65						
(MCM)	1000						
GW draft after Demand Side Interventions (MCM)	45.27						
Present stage of Ground Water	52.68						
Development (%)	52.00						
Expected Stage of Ground Water	47.66						
Development after interventions (%)	47.00						
Other Interventions Proposed, if any							
Alternate Water Sources Available	Nil						
6.4. Development Plan							
Volume of water available for GWD to 70% (MCM)	21.21						
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	141						
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	1273						
Additional Area (sg.km.) proposed to be							
brought under assured GW irrigation with	32.64						
av. CWR of 0.65 m							
Regulatory measures	80 borewells/ tubewells						

15.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, YAWAL BLOCK, JALGAON DISTRICT, MAHARASHTRA

1.0 SALIENT FEATURE				
1.1 INTRODUCTION				
Block Name	Yawal			
Geographical Area (Sq. Km.)	913.50 Sq. Km.			
Hilly Area (Sq. Km)	75.81 Sq. Km.			
Poor Ground Water Quality	Nil			
(Sq. Km.)				
Population (2011)	2,72,242			
Climate	Tropical Monsoon			
1.2 Rainfall Analysis				
Normal Rainfall	854.1 mm			
Annual Rainfall (2017)	783.8 mm			
Decadal Average Annual	683.22 mm			
Rainfall (2008-17)				
Long Term Rainfall Analysis	Falling Trend 0.22 mm/year.			
(1901-2017)	Probability of Normal/Excess Rainfall- 59 % & 21%.			
	Probability of Drought (Moderate/Severe)-: 20 % Moderate			
Rainfall Trend Analysis (1901 to	o 2017)			
$ \begin{array}{c} 1600\\ 1500\\ 1400\\ 1300\\ 1000\\ 900\\ 900\\ 900\\ 900\\ 900\\ 900\\ $				
EQUATION OF TREND LINE: Y= -	0.2233x+749.94			
1.3. Geomorphology, Soil & Ge	ology			
Geomorphic Unit	Deccan trap Plateau (highly dissected) belongs to Satpuda Group, Nagartas formation in the North followed by Piedmont zone Bazada (Deep) and alluvial plains in the central and southern parts of the block.			
Soil	Moderate to Very deep Clayey soil in Central and Southern part of the block and Clayey Sandy-Loamy Soil in northern part of the block.			
Geology	 Alluvium (River Alluvium) Age: Recent to Sub-recent Deccan Traps (Basalt) Age: Upper Cretaceous to Lower Eocene 			

						_	
Amalner, Bodwad, Chalisgaor	<mark>ı, Chopda, Jalgao</mark> n,	, Muktainagar, I	Parola, Ya	awal & Raver	Block, Jalgaon	District, Maharashtra-	-2019

1.4. Hydrology	y & Drainage				
Drainage	<u> </u>	Tapi River and its t	ributary Mor	River; Sur and Hated Nala originate	
-		from Satpuda hill			
Hydrology		Major Project		Mor project; Command Area	
				3198 ha	
		Medium / Irrigation	n Project	1 medium and 5 minor projects	
		Minor Irrigation Pro	oject	34 CD, 88 Nala bunds and 06 PT	
1.5. Land Use,	Agriculture, Irrig	gation & Cropping Pa	attern		
Geographical /	Area	913.50 Sq. Km.			
Forest Area		332.93 Sq. Km.			
Net Sown Area	a	535.24 Sq. Km.			
Double Croppe	ed Area	27.79 Sq. Km.			
Area under	Surface Water	110.60 Sq. km			
Irrigation	Ground Water	155.60 Sq. Km.			
Area under Dr	ip & Sprinkler	104.30 Sq. Km.			
Irrigation					
Principal Crop	S	Сгор Туре		Area (Sq. Km.) (Reference year 2013- 14)	
		Cotton		180.05	
		Pulses		96.40	
		Cereals		58.30	
		Sugarcane		24.84	
		Oil Seeds		18.60	
Horticultural C	Crops	Banana		92.85	
		Citreous fruit		0.32	
		Others		0.11	
1.6. Water Lev	el Behaviour				
1.6.1 Aquifer-	I/Shallow Aquife	r			
Pre-Monsoon	(May-2017)		Post-Monso	oon (November-2017)	
AQUIF	ER I. PREMONSOON . [DTW (MAY, 2017)	AQUI	FER I, POSTMONSOON , DTW (NOV. 2017)	
	Yawal Taluka, Jalgaon	District		Yawal Taluka, Jalgaon District	
- date	-	NORTH	- m	NORTH	
Limites Value		Lunden		Veniara	
Tapi R. Legend DTW (mbgl) 10 to 20 20 to 30 Principal aquifer AL/BS No of aquifers Three		aquifer AL/BS		A c e n d W (mbgl) 5 to 10 10 to 20 20 to 30 No of aquifers Three	

Water levels ranging between 10 to 40 mbgl Over the major part of the block depth to water are observed in major part of the block while level ranges from 20 to 50 mbgl. Water levels water level <10 mbgl is observed in small between 10 to 20 mbgl are observed in small isolated parts in the block. isolated patches in the block.

No of aquifers

Taluka HQ Drainage Monitoring well

Area

30 to 40

40 to 50

> 50

Three 913.5 sqkm

?

30 to 40

40 to 50

Three 913.5 sqkm

4

Area Taluka HQ Drainage Monitoring well

4.CHEMICAL QUALITY OF GROUND WATER & CONTAMINATION 4.1 Aquifer-I/Shallow Aquifer

EC values ranging up to 2250 μ S/cm have been observed covering the entire block. EC values ranging up to 750 μ S/cm have been observed covering northern part of the block; while in southern part the EC values range from 750 to 2250 μ S/cm. Ground water is suitable for Drinking as well as irrigation purposes.

4.2 Aquifer II & Aquifer III /Deeper Aquifer

In Deeper aquifers also, EC values ranging up to 2250 μ S/cm have been observed covering the entire block. EC values ranging upto 750 μ S/cm have been observed covering northern part of the block; while in southern part the EC values range from 750 to 2250 μ S/cm. A small isolated patch near Yawal is observed having EC > 2250 μ S/cm. In major part of the block ground water is suitable for drinking as well as irrigation purposes.

S: GROOND WATER RESOURCE	
5.1 Aquifer-I/ Shallow Aquifer (Basalt & Alluv	ium)
Ground Water Recharge Worthy Area	837.69
(Sq. Km.)	
Total Annual Ground Water Recharge	93.40
(MCM)	
Natural Discharge (MCM)	4.67
Net Annual Ground Water Availability	88.73
(MCM)	
Existing Gross Ground Water Draft for	90.63
irrigation (MCM)	
Existing Gross Ground Water Draft for	2.17
domestic and industrial water supply (MCM)	
Existing Gross Ground Water Draft for All	92.80
uses (MCM)	
Provision for domestic and industrial	2.99

requirement su	pply to 2025(MCM)				
Net Ground Wa	ter Availabilit	y for future	9.83			
irrigation development (MCM)						
Stage of Ground	d Water Deve	lopment (%)	104.59			
Category			Over Exploited			
5.2 Aquifer-II/D	eeper Aquife	er (Basalt & Alluv	ium)	1		
Aquifer	Total Area	Mean aquifer	Av (Sy/S)	Piezometric	Total	
	(Sq. Km.)	thickness (m)		Head (m above	Resource	
				confining layer)	(MCM)	
Basalt	437.06	2.7	0.005	10-15	9.521	
Alluvium	400.63	13.73	0.06	40-90	295.89	
Aquifer-III/Dee	per Aquifer (/	Alluvium)				
Total Area (Sq.	Km.)	Mean aquifer	Av (Sy/S)	Piezometric	Total	
		thickness (m)		Head (m above	Resource	
				confining layer)	(MCM)	
339.23		15.97	0.003	55-120	17.54	
6.0. GROUND V	VATER RESOL	JRCE MANAGEM	ENT			
Available Resou	rce (MCM)		88.73			
Gross Annual D	raft (MCM)		92.80			
6.1. Supply Side	e Managemer	nt				
SUPPLY (MCM)						
Agricultural Sup	wgly -GW		90.63			
Agricultural Sup	W2- ylg		110.20			
Domestic Suppl	v - GW		2.17			
Domestic Suppl	y - SW		0.54			
Total Supply		203.54				
Area of Block (Sg. Km.)		913.51				
Area suitable for Artificial recharge (Sg. Km)		824.94				
Type of Formation		Hard Rock	Soft Rock			
Area feasible fo	r Artificial Re	charge (WI		Sort Nook		
>5mbgl) (Sq. Kn	n.)		0	0 824.94		
Volume of Unsa	turated Zone	(MCM)	0	1649.88		
Average Specifi	r Yield		0.02	0.07		
Volume of Sub	surface Storag	ze Snace	0.02	0.07		
available for Art	tificial Rechar		0	115.49		
Surplus water A	vailable (MC		0.00	8 60		
Proposed Struc		•••	Percolation	Check Dam (Av	Recharge	
	cures.		Tank (Av. Gross	Gross Canacity-	shaft (Av	
			Canacity-100		Gross	
				filling $= 20 \text{ TCM}$	Capacity 60	
			-200 TCM	$111111g_{3} = 50 \ 1 \ Clv1)$		
Number of Structures		200 10101	0	70		
Volume of Mat	or ovported +	he concorried	~~	U	70	
/ recharged @ -	TS% officiance		3.3	0	3.15	
/ recharged @ 75% efficiency (MCM)						
	uics	Vroas				
Households to H		S% with E0	12156.2			
$m^2 arca)$	Je covereu (2		12130.2			
	ntial (NACNA)		0 45160292			
	acted (restart	rand @ 200/	0.45100283			
Rainwater harvested / recharged @ 80%			0.361			

runoff co-efficient	Economically not viable & Not Recommended
6.2. Demand Side Management	
Micro irrigation techniques	
Irrigation Area (ha) proposed for irrigation	Not proposed
through Sprinkler	(Already major area covered under in MI)
Water Saving by use of Sprinklers	Nil
Proposed Cropping Pattern change	
Irrigated area under Water Intensive	Not proposed
Crop(ha)	
Water Saving by Change in Cropping Pattern	Nil
Other Interventions Proposed, if any	
Alternate Water Sources Available-	89.21
(Tapi Mega Recharge Scheme) (MCM)	05.21
Quantum of water recharged- Tapi MRS	66.91
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	88.73
Additional GW resources available after	72.26
Supply side interventions (MCM)	73.30
Ground Water Availability after Supply side	162.00
intervention	
Existing Ground Water Draft for All Uses	92.80
(MCM)	52.80
GW draft after Demand Side Interventions	92.80
(MCM)	52.80
Present stage of Ground Water	104 59
Development (%)	
Expected Stage of Ground Water	57.25
Development after interventions (%)	57.25
6.4. Development Plan	r
Volume of water available for GWD to 70%	20 66125
(MCM)	20.00123
Proposed Number of DW (@ 1.5 ham for	138
10% of GWR Available)	155
Proposed Number of BW (@ 1.5 ham for	1240
90% of GWR Available)	12-10
Additional Area (sq.km.) proposed to be	
brought under assured GW irrigation with	32
av. CWR of 0.65 m	
Regulatory measures	60 borewells/ tubewells

16.0 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, RAVER BLOCK, JALGAON DISTRICT, MAHARASHTRA

1.0 SALIENT FEATURE			
1.1 Introduction			
BLOCK NAME	RAVER		
Geographical Area (Sq. Km.)	980.66 Sq. Km.		
Hilly Area (Sq. Km)	41.59 Sq. Km.		
Poor ground water quality	Nil		
area (Sq. Km.)			
Population (2011)	3,12,082		
Climate	Tropical Monsoon		
1.2 Rainfall Analysis			
Normal Rainfall	770.2 mm		
Annual Rainfall (2017)	644.9 mm		
Decadal Average Annual	626.02 mm		
Rainfall (2008-17)			
Long Term Rainfall Analysis	Rising Trend 0.142 mm/year.		
(1901-2017)	Probability of Normal/Excess Rainfall- 57 % & 19%.		
	Probability of Drought (Moderate/Severe)-: 22 % Moderate & 2%		
	Severe		
Rainfall Trend Analysis (1901 to	o 2017)		
1700 1600 1500 1400 1200 1200 1000 900 900 900 900 900 900	0.142x+724.76		
1.3. Geomorphology, Soil & Ge	ology		
Geomorphic Unit	Deccan trap Plateau (highly dissected to slightly dissected) with 1-		
	2 m weathering belonging to Nagartas Formation of Satpuda Group in the north followed by piedmont zone (Bazada Deep) and alluvial plains in the central and southern parts of the block.		
Soil	Shallow to Very deep Clayey soil and Sandy Clayey Soil		
Geology	 Alluvium (River Alluvium) Age: Recent to Sub-recent Deccan Traps (Basalt) Age: Upper Cretaceous to Lower Eocene 		

1.4. Hydrology	y & Drainage					
Drainage		Tapi River and its tributary na	mely Mor River and Suki Nala			
Hydrology		Major project	02 Abhora and Sukli Projects			
			Command Area 1754 ha and 9191			
			ha respectively			
		Bigger Minor Irrigation Project	2 medium projects			
		(>100 Ha.)				
		Minor Irrigation Project (<100	135 CD, 18 PT and 11 others			
		Ha)				
1.5. Land Use,	Agriculture, Irri	gation & Cropping Pattern				
Geographical /	Area	980.66 Sq. Km.				
Forest Area		260.17 Sq. Km.				
Cultivable Are	а	637.63 Sq. Km.				
Net Sown Area	а	610.62 Sq. Km.				
Double Croppe	ed Area	87.63 Sq. Km.				
Area under	Surface Water	29.20 Sq. Km				
Irrigation	Ground Water	259.48 Sq. Km.				
Area under Dr	ip & Sprinkler	207.58 Sq. Km.				
Irrigation						
Principal Crop	S	Сгор Туре	Area (Sq. Km.) (Reference year 2013-14)			
		Cereals	149.53			
		Cotton	128.96			
		Pulses	52.28			
		Oil Seeds	14.29			
Horticultural C	Crops	Banana	222.15			
		Citreous fruit	0.09			
		Mango	0.40			
1.6. Water Lev	el Behaviour					

1.6.1 Aquifer-I/ Shallow Aquifer

2. Ground Water Issues

- Ground Water based Banana cultivation, a water intensive crop, in 148.72 Sq Km area results in increase in ground water draft.
- Declining Water Level trend is observed in 478.95 sq km(48.83%) area of the block.
- Deeper Water level >20 mbgl is observed in about 195 sq km (19.88%) area.
- Desaturation of granular Zone/ potential Aquifer Consisting of sand, gravel and pebbles with thin layer of Clay at Various depths.

3.4. Basic Aquifer Characteri	stics					
Major Aquifers	Basalt (Deco	can Traps)	Alluvium (R	liver Alluvium)		
Type of Aquifer	Aquifer-I	Aquifer-II	Aquifer-I	Aquifer-II	Aquifer-III	
(Phreatic/Semiconfined/co	(Phreatic)	(Semiconfin	(Phreatic)	(Semiconfine	(Semiconfine	
nfined)		ed		d/confined)	d/confined)	
		/confined)				
SWL (mbgl)	0.1-21.4	17.15-25	3.1-46	6.06-42	6.06-42	
Depth of Occurrence (mbgl)	9-20	25-50	27-79.92	30-120	90-250	
Granular/Weathered/	5-15	0.5-12	10-40	2-30	1-15	
Fractured rocks thickness						
(m)						
Yield	0-50	0-1 lps	25-400	0-5 lps	0-2 lps	
	m³/day		m³/day			
Specific yield/	0.02	0.000054	0.06-0.1	3.47 x 10 ⁻³ to	3.47 x 10 ⁻³ to	
Storativity (S)				3.96 x 10⁻⁴	3.96 x 10 ⁻⁴	
Transmissivity (T)	20-30	15-30	15-145	50-250	30-90	
4.CHEMICAL QUALITY OF GROUND WATER & CONTAMINATION						

4.1 Aquifer-I/ Shallow Aquifer

EC values ranging up to 2250 μ S/cm have been observed covering the entire block; while EC values between 750 to 2250 μ S/cm are observed covering large part of the block and EC values < 750 μ S/cm are observed covering small isolated parts in peripheral parts of the block. Ground water is suitable for Drinking as well as irrigation purposes.

4.2 Aquifer II & Aquifer III/ Deeper Aquifer

EC values ranging up to 2250 μ S/cm have been observed covering the entire block; while EC values between 750 to 2250 μ S/cm are observed covering southern half of the block and EC values < 750 μ S/cm are observed covering northern half of the block. Ground water is suitable for Drinking as well as irrigation purposes. Few villages also affected by nitrate Contamination and only Shinai village affected by Fluoride Contamination with 1.06 mg/L Concentration.

5. GROUND WA	ATER RESOURCE					
5.1 Aquifer-I/ S	hallow Aquifer (Ba	salt & Allu	vium)			
Ground Water I	Recharge Worthy A	rea (Sq.	939.07			
Km.)						
Total Annual Gr	ound Water Recha	rge	118.71			
(MCM)						
Natural Dischar	ge (MCM)		5.93			
Net Annual Gro	und Water Availabi	lity	112.78			
(MCM)						
Existing Gross G	Fround Water Draft	for	121.06			
irrigation (MCN	1)					
Existing Gross C	Fround Water Draft	for	2.74			
domestic and in	idustrial water supp	bly				
(MCM)		f All	122.00			
Existing Gross G	round Water Draft	tor All	123.80			
uses (IVICIVI)						
Provision for do	mestic and industr	ial	3.35			
requirement su	pply to 2025(MCM)					
Net Ground Wa	ter Availability for f	uture	1.39			
irrigation devel	opment (MCM)					
Stage of Ground	d Water Developme	ent %	109.78			
Category			Over Exploit	ed		
5.2 Aquifer-II/D	Deeper Aquiter (Bas	alt & Alluv	vium)			
Aquifer	Total Area (Sq.	Mean	Av (Sy/S)	Piezometric	Total Resource	
	Km.)	aquifer		Head (m above	(MCM)	
		thicknes		confining layer)		
Decelt	500	s (m)	0.005	10.20	F 20	
Basalt	500	1.75	0.005	10-20	5.20	
E 2 Aquifor III/	414 Deeper Aquifer (Al	13.73	0.06	45-80	233.05	
5.3 Aquifer-III/	Deeper Aquifer (Al	iuvium)	Av (5v/5)	niozomotrio		
Aquiter	Total Area (Sq.	nviedn	AV (SY/S)	plezometric	(NACNA)	
	KIII.)	thicknes				
		c(m)		comming layer)		
Alluvium	274.86	5 (III) 6 37	0.0045	75-120	9.45	
	VATER RESOURCE F		0.0045	75-120	5.45	
Available Resou			112 78			
Gross Annual D	raft (MCM)		123.80			
6 1 Supply Side	Management		125.00			
	e management					
Agricultural Sur	only -GW		121.06			
Agricultural Sur	ply SW		29.20			
Domestic Supply - GW		1.14				
Domestic Supply - SW		0.69				
Total Supply			152.09			
Area of Block (S	g. Km.)		980.66			
Area suitable fo	r Artificial recharge	(Sg. Km)	876.17			
Type of formati	on	1-11	Hard Rock	Soft Rock		
Area feasible fo	r Artificial Recharge	e (WL				
>5mbgl) (Sq. Km.)		458.569	417.6			

Average Specific Yield 0.02 0.07 Volume of Sub surface Storage Space available for Artificial Recharge (MCM) 18.34 58.46 Surplus water Available (MCM) 4.78 4.35 Proposed Structures Percolation Check Dam (Av. Gross Capacity-100 TCM* 3 fillings = 200 TCM) Recharge shaft (Av. Gross capacity-100 TCM* 2 fillings = 200 TCM) Recharge Number of Structures 28 12 94 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) 4.2 0.27 4.23 Proposed Structures 13,725 13,725 14.23 Total RWH Structures - Urban Areas 13,725 13,725 Households to be covered (25% with 50 m ³ area) 0.4078 0.4078 unoff co-efficient Economically not viable & Not Recommended 6.2. Demand Side Management Mil Mico irrigation techniques Not proposed (already major area covered under MI) Water Saving by use of Sprinklers Nil Proposed Structures Sile Irrigation Area (ha) proposed for irrigation through Sprinkler Not proposed (already major area covered under MI) Water Saving by Change in Cropping Pattern Sile Order Benefits Sile Crophing Pattern Sile Other Interventions Proposed, if any Alternate Water Sources Available	Volume of Unsaturated Zone (MCM)	917.14	835.20			
Volume of Sub surface Storage Space available for Artificial Recharge (MCM) 18.34 58.46 Surplus water Available (MCM) 4.78 4.35 Proposed Structures Percolation Tank (Av. Gross Capacity-100 Composed Structures Recharge Structures Number of Structures 28 12 94 Volume of Water expected to be conserved /recharged @ 75% efficiency (MCM) 0.27 4.23 Proposed Structures 28 12 94 Volume of Water expected to be conserved /recharged @ 75% efficiency (MCM) 0.27 4.23 Proposed Structures Intervention (MCM) 0.509 Rainwater harvested / recharged @ 80% runoff co-efficient 0.4078 Economically not viable & Not Recommended 6.2. Demand Side Management Micro irrigation techniques Not proposed (already major area covered under MI) Mil Water Saving by use of Sprinklers Not proposed Foroposed Foroposed Water Saving by Change in Cropping Nil Foroposed Foroposed Vater Saving by Change in Cropping S1.12 S1.28 S1.28 Crop(na) Gross available after Supply side interventions (MCM) S1.28 S1.28 S1.28 Outer mode water recharge G-rapin	Average Specific Yield	0.02	0.07			
available for Artificial Recharge (MCM)18.4458.46Surplus water Available (MCM)4.784.35Proposed StructuresPercolationCheck Dam (Av. Gross Capacity-10 TCM * 3 fillings = 200 TCM)Recharge shaft (Av. Gross Capacity-10 TCM * 3 fillings = 200 TCM)Recharge Gross Capacity-10 TCM * 3 fillings =Number of Structures281294Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)0.274.23Proposed Structures13,7254.23RTRWH Structures - Urban Areas13,725	Volume of Sub surface Storage Space	10.24	50.46			
Surplus water Available (MCM) 4.78 4.35 Proposed Structures Percolation Check Dam (Av., Gross Capacity-100 Gross Recharge shaft (Av., Gross Capacity-100 TCM* 3 fillings = 200 TCM) Recharge Number of Structures 28 12 94 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) 4.2 0.27 4.23 Proposed Structures TRTWH Structures- Urban Areas	available for Artificial Recharge (MCM)	18.34	58.46			
Proposed StructuresPercolation Tank (Av. Gross Capacity-10 TCM*2 fillingsCheck Dam (Av. Gross Capacity-10 TCM*2 fillingsRecharge Arst (Av. Gross Capacity-10 TCM*2 fillingsRecharge Gross Capacity-10 TCM*2 fillingsNumber of Structures281294Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)4.20.274.23Proposed Structures13,7254.2394RTRWH Structures - Urban Areas0.4078 Economically not viable & Not RecommendedHouseholds to be overed (25% with 50 m*area)0.40780.4078Rainwater harvested / recharged @ 80% unoff co-efficient0.40780.4078Micro irrigation techniquesNot proposed (already major area covered under MI)Water saving by use of SprinklersNilProposed Cropping Pattern changeNot proposedCrop(ha)Not proposedWater Saving by Change in Cropping Pattern87.18Other Interventions Proposed, if any Aldternate Water Sources Available (Tapi-Mega Recharge Scheme)Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits123.80Wet Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)123.80Ground Water Availability after Supply side interventions (MCM)123.80Ground Water Availability after Supply side interventions (%)109.78Expected Stage of Ground Water Development 1(%)109.78	Surplus water Available (MCM)	4.78	4.35			
Tank (Av. GrossGross Capacity-10 TCM * 3 fillings = 3 TCM)shaft (Av. Gross Gross Capacity-60 	Proposed Structures	Percolation	Check Dam (Av.	Recharge		
Gross Capacity-100 TCM*2 fillings = 200 TCM) Gross 30 TCM) Gross Capacity-60 TCM 1 Number of Structures 28 12 94 Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM) 4.2 0.27 4.23 Proposed Structures Intermediate Intermediate Intermediate Intermediate RTRWH Structures – Urban Areas Intermediate Intermediate Intermediate Intermediate Total RWH potential (MCM) 0.509 Rainwater harvested / recharged @ 80% 0.4078 Intermediate Intermediate Rincouring taion techniques Intermediate Intermediate </td <td></td> <td>Tank (Av.</td> <td>Gross Capacity-10</td> <td>shaft (Av.</td>		Tank (Av.	Gross Capacity-10	shaft (Av.		
Capacity-100 TCM*2 fillings30 TCM) TCM*2 fillings a 200 TCM)Capacity-60 TCM*2 fillings a 200 TCM)Capacity-60 TCM 1Number of Structures281294Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)4.20.274.23Proposed StructuresImage of TS% efficiency (MCM)13,725Image of TS% efficiency (MCM)RTRWH Structures – Urban Areas13,725Image of TS% efficiency (MCM)0.509Rainwater harvested / recharged @ 80% mander ficient0.4078 Economically not viable & Not Recommended6.2. Demand Side Management0.4078 Economically not viable & Not RecommendedMicro irrigation techniquesNot proposed (already major area covered under Mi)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposedIrrigated area under Water intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilWater Saving by Change in Cropping PatternS7.18Miternate Water Sources Available (Tapi-Mega Recharge Scheme) Quantum of water recharged -Tapi MRS)S7.18Other Interventions Proposed, if any Alternate Water Sources available after Supply side interventions (MCM)12.78Additional GW resources available after Supply side interventions (MCM)123.80Ground Water Availability offer All Uses (MCM)123.80Ground Water Availability after Supply side intervention123.80Ground Water Availability after Supply side 		Gross	TCM * 3 fillings =	Gross		
TCM 12 fillings = 200 TCM)TCM 1Number of Structures281294Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)4.20.274.23Proposed Structures4.23		Capacity-100	30 TCM)	Capacity-60		
= 200 TCM)Number of Structures281294Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)4.20.274.23Proposed Structures		TCM*2 fillings		TCM)		
Number of Structures281294Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)4.20.274.23Proposed Structures13,725		= 200 TCM)				
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)4.20.274.23Proposed StructuresRTRWH Structures – Urban Areas13,725Mouseholds to be covered (25% with 50 m²area)13,725Total RWH potential (MCM)0.509Rainwater harvested / recharged @ 80% runoff co-efficient0.4078Economically not viable & Not Recommended6.2. Demand Side ManagementMicro irrigation techniquesIrrigation Area (ha) proposed for irrigation through SprinklerNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposedIrrigated area under Water Intensive Crop(ha)Not proposedOther Interventions Proposed, if any Alternate Water Sources Available (Tapi-Mega Recharge Scheme) Quantum of water recharged -Tapi MRS)87.18Intervention112.78Additional GW resources available after Supuly side interventions (MCM)112.78Additional GW resources available after Supuly side interventions (MCM)123.80Ground Water Availability after Supply side intervention123.80Gw draft after Demand Side Interventions (MCM)123.80Fresent Stage of Ground Water Development (%)66.25Expected Stage of Ground Water Development after interventions (%)66.25Gevelopment Plan66.25	Number of Structures	28	12	94		
/ recharged @ 75% efficiency (MCM) International and the second seco	Volume of Water expected to be conserved	4.2	0.27	4.23		
Proposed StructuresImage: ConstructuresRTRWH Structures – Urban Areas13,725Mouscholds to be covered (25% with 50 m²area)13,725Total RWH potential (MCM)0.509Rainwater harvested / recharged @ 80%0.4078 Economically not viable & Not Recommended6.2. Demand Side ManagementEconomically not viable & Not RecommendedMicro irrigation techniquesNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposed (already major area covered under MI)Water Saving by Change in Cropping PatternNot proposed (already major area covered under MI)Water Saving by Change in Cropping PatternNot proposed (already major area covered under MI)Other Interventions Proposed, if anyAlternate Water Sources Available (Tapi-Mega Recharge Scheme)Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits74.09Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)123.80GW araft after Demand Side Interventions (MCM)123.80Present Stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development fater interventions (%)66.25Expected Stage of Ground Water Development fater interventions (%)66.25	/ recharged @ 75% efficiency (MCM)		0127			
RTRWH Structures – Urban AreasHouseholds to be covered (25% with 50 m³area)13,725Total RWH potential (MCM)0.509Rainwater harvested / recharged @ 80% runoff co-efficient0.4078 Economically not viable & Not Recommended6.2. Demand Side ManagementMicro irrigation techniquesIrrigation Area (ha) proposed for irrigation through SprinklerNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposed (area under Water Intensive Crop(ha)Water Saving by Change in Cropping PatternNilWater Saving by Change in Cropping PatternNilOther Interventions Proposed, if any Alternate Water Sources Available (Tapi-Mega Recharge Scheme) Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits74.09Net Ground Water Availability (MCM) Ground Water Availability for All Uses (MCM)123.80Existing Ground Water Draft for All Uses (MCM)123.80Fristing Ground Water Draft for All Uses (MCM)109.78Expected Stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development After interventions (%)66.25	Proposed Structures					
Households to be covered (25% with 50 m ² area)13,72513,72513,725Total RWH potential (MCM)0.509Rainwater harvested / recharged @ 80% runoff co-efficient0.4078Economically not viable & Not Recommended6.2. Demand Side ManagementMicro irrigation techniquesIrrigation Area (ha) proposed for irrigation through SprinklerNillProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Use of SprinklersNillPatternOther Interventions Proposed, if any Alternate Water Sources Available (Tap-Mega Recharge Scheme) Quantum of water recharged -Tapi MRS)65.396.3.Expected BenefitsNet Ground Water Availability (MCM) sing Ground Water Availability after Supply side interventionExisting Ground Water Draft for All Uses (MCM)GW draft after Demand Side Interventions (MCM)Present stage of Ground Water Development (%)Expected Stage of Ground Water Development flan	RTRWH Structures – Urban Areas					
m area)rTotal RWH potential (MCM)0.509Rainwater harvested / recharged @ 80%0.4078runoff co-efficientEconomically not viable & Not Recommended6.2. Demand Side ManagementIrrigation techniquesIrrigation Area (ha) proposed for irrigationNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposedIrrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilPatternOther Interventions Proposed, if anyAlternate Water Sources Available (Tap-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits74.09Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)123.80Ground Water Availability after Supply side intervention123.80Fixing Ground Water Draft for All Uses (MCM)109.78Expected Stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development After interventions (%)66.25	Households to be covered (25% with 50 $\frac{2}{3}$	13,725				
Total RWH potential (MCM)0.509Rainwater harvested / recharged @ 80%0.4078cunoff co-efficientEconomically not viable & Not Recommended6.2. Demand Side ManagementEconomically not viable & Not RecommendedMicro irrigation techniquesNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposedIrrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilPatternNilOther Interventions Proposed, if any Alternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits74.09Supply side interventions (MCM)112.78Additional GW resources available after Supply side interventions (MCM)123.80Ground Water Availability after Supply side intervention123.80KitcM)123.80Fersent stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	m ² area)	,				
Kannwater narvested / recharged (# 80%)0.40%runoff co-efficientEconomically not viable & Not Recommended6.2. Demad Side ManagementMicro irrigation techniquesIrrigation Area (ha) proposed for irrigation through SprinklerNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposedIrrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilOther Interventions Proposed, if anyNilAlternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits74.09Supply side interventions (MCM) Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)66.25Expected Stage of Ground Water Development after interventions (%)66.25	I OTAL KWH POTENTIAL (MCM)	0.509				
Control to -enricent Economically not viable & Not Recommended 6.2. Demand Side Management Micro irrigation techniques Irrigation Area (ha) proposed for irrigation through Sprinkler Not proposed (already major area covered under MI) Water Saving by use of Sprinklers Nil Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Not proposed Water Saving by Change in Cropping Nil Pattern Pattern Other Interventions Proposed, if any 87.18 Alternate Water Sources Available 87.18 (Tapi-Mega Recharge Scheme) 65.39 Galter Availability (MCM) 112.78 Additional GW resources available after 74.09 Supply side interventions (MCM) 123.80 Ground Water Availability after Supply side interventions (MCM) 123.80 GW draft after Demand Side Interventions (MCM) 123.80 Present stage of Ground Water 109.78 Development 4[%) 62.5 Expected Stage of Ground Water 66.25 Development 4[Pan 64.25	Rainwater harvested / recharged @ 80%	0.4078	at viable 9 Nat Dagan	a wa a wa al a al		
bit Demand side Management Micro irrigation techniques Irrigation Area (ha) proposed for irrigation through Sprinkler Not proposed (already major area covered under MI) Water Saving by use of Sprinklers Nil Proposed Cropping Pattern change Irrigated area under Water Intensive Crop(ha) Not proposed Water Saving by Change in Cropping Nil Pattern Other Interventions Proposed, if any Alternate Water Sources Available 87.18 (Tapi-Mega Recharge Scheme) Quantum of water recharged -Tapi MRS) 65.39 6.3.Expected Benefits 112.78 Additional GW resources available after Supply side interventions (MCM) 112.78 Ground Water Availability after Supply side intervention 186.86 Existing Ground Water Draft for All Uses (MCM) 123.80 GW draft after Demand Side Interventions (MCM) 123.80 Present stage of Ground Water 109.78 Expected Stage of Ground Water 66.25 Development (%) 66.25	runoff co-efficient	Economically n	ot viable & Not Recon	nmended		
Nich Irrigation techniquesIrrigation Area (ha) proposed for irrigation through SprinklerNot proposed (already major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Water Saving by Change in Cropping PatternNilPatternNilOther Interventions Proposed, if any Alternate Water recharge Scheme) Quantum of water recharged -Tapi MRS)87.186.3.Expected Benefits65.39Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention123.80GW draft after Demand Side Interventions (MCM)123.80GW draft after Demand Side Interventions (MCM)109.78Expected Stage of Ground Water Development (%)66.25Expected Tapi66.25	b.2. Demand Side Ivianagement					
Intraction Area (na) proposed for inigationNot proposed (aready major area covered under MI)Water Saving by use of SprinklersNilProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilOther Interventions Proposed, if any Alternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development Plan66.25	Invitoro Irrigation techniques	Not proposed (under		
InitialMitWater Saving by use of SprinklersNilProposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilWater Saving by Change in Cropping PatternNilOther Interventions Proposed, if anyNilAlternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Gw draft after Demand Side Interventions (MCM)109.78Expected Stage of Ground Water Development (%)66.25Expected Stage of Ground Water Development Plan66.25	through Sprinkler		alleady major area cov	lered under		
Water Saving by use of SprinklersNilProposed Cropping Pattern changeNot proposedIrrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilPatternNilOther Interventions Proposed, if anyItapi-Mega Recharge Scheme)Alternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.256.4.Development Plan54.Development Plan						
Proposed Cropping Pattern changeIrrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilOther Interventions Proposed, if anyAlternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.396.3.Expected Benefits112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)109.78Expected Stage of Ground Water bevelopment (%)66.25Expected Stage of Ground Water bevelopment Plan66.25	Water Saving by use of Sprinklers Nil					
Irrigated area under Water Intensive Crop(ha)Not proposedWater Saving by Change in Cropping PatternNilOther Interventions Proposed, if anyNilAlternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.39 6.3.Expected Benefits 112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Kitsing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)109.78Expected Stage of Ground Water Development (%)66.25Expected Stage of Ground Water Development Plan66.25	Proposed Cropping Pattern change					
Crop(ha)NilWater Saving by Change in Cropping PatternNilOther Interventions Proposed, if anyAlternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.39 6.3.Expected Benefits Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Kitting Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.256.4.Development Plan66.25	Irrigated area under Water Intensive	Not proposed				
Water Saving by Change in Cropping PatternNilPattern	Crop(ha)	N:1				
PatternOther Interventions Proposed, if anyAlternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.39 6.3.Expected Benefits 65.39Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	Water Saving by Change in Cropping	Nil				
Other Interventions Proposed, if anyAlternate Water Sources Available (Tapi-Mega Recharge Scheme)87.18Quantum of water recharged -Tapi MRS)65.39 6.3.Expected Benefits 112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)66.25Expected Stage of Ground Water Development after interventions (%)66.25	Pattern					
Alternate Water Sources Available87.18(Tapi-Mega Recharge Scheme)65.39Quantum of water recharged -Tapi MRS)65.39 6.3.Expected Benefits 112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	Other Interventions Proposed, if any	07.40				
(Tapi-Mega Recharge Scheme)Quantum of water recharged -Tapi MRS)65.39 6.3.Expected Benefits Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	Alternate Water Sources Available	87.18				
Quantum of water recharged - Lapi MRS)65.396.3.Expected Benefits112.78Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	(Tapi-Mega Recharge Scheme)	65.00				
o.3.Expected BenefitsNet Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	Quantum of water recharged - Tapi MRS)	5.39				
Net Ground Water Availability (MCM)112.78Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	o.s.expected Benefits	112 70				
Additional GW resources available after Supply side interventions (MCM)74.09Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.25	Additional CW recourses available after	112.78				
Suppry side interventions (inclui)Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.2564.Development Plan109.78	Auditional GW resources available atter	74.09				
Ground Water Availability after Supply side intervention186.86Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.2564.Development Plan109.78	Supply side interventions (IVICIVI)					
Existing Ground Water Draft for All Uses (MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.2564.Development Plan109.78	intervention	186.86				
Listing oroting water brack of All Oses123.80(MCM)123.80GW draft after Demand Side Interventions (MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.2564.Development Plan109.78	Existing Ground Water Draft for All Lises					
GW draft after Demand Side Interventions (MCM) 123.80 Present stage of Ground Water Development (%) 109.78 Expected Stage of Ground Water Development after interventions (%) 66.25 6.4.Development Plan 109.78	(MCM)	123.80				
(MCM)123.80Present stage of Ground Water Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.2564.Development Plan66.25	GW draft after Demand Side Interventions					
Present stage of Ground Water 109.78 Development (%) 66.25 Development after interventions (%) 66.25	(MCM)	123.80				
Development (%)109.78Expected Stage of Ground Water Development after interventions (%)66.2564.Development Plan66.25	Present stage of Ground Water					
Expected Stage of Ground Water66.25Development after interventions (%)64.Development Plan	Development (%)	109.78				
Development after interventions (%) 6.4.Development Plan	Expected Stage of Ground Water	66.25				
6.4.Development Plan	Development after interventions (%)					
	6.4.Development Plan	1				

ANNEXURES

Taluka	Ту	pe of We	ell	Lithology	Depth Range	Static Water	Discharge (lps)	Zones
	EW	ow	PZ		(m bgl)	Level (m bgl)		(m bgl)
Amalner	3	-	-	Basalt	200	45-75	meagre	26.00-29.00, 89.00-
								90.00
Bhadgaon	3	-	-	Basalt	200.2	6.40- 7.14	0.38-1.41	50.00- 177.00
Bhusawal	5	-	-	Basalt and	168.35- 204.35	6.50- 140.00	1.37- 7.76	9.00- 200.00
				Alluvium				
Bodwad	8	1	-	Basalt	124-204.75	7.0 - > 100	Traces to 12.0	13.00 - 184
Chalisgaon	4	-	-	Basalt	200.2	25.00-99.40		
Chopda	20	13	2	Basalt and	56.00-300.00	4.95 to 20.90	0.81- 30.50	7.00-181.40
				Alluvium				
Dharangaon	1	-	-	Basalt	204.75	8	0.78	18.2- 143
Erandol	1	-	-	Basalt	204.75	40	Traces	30 -31.85
Jalgaon	4	1	-	Basalt and	198-67- 204.75	32.00 - 88.00	0.38 – 20.00	12.00- 197.00
				Alluvium				
Jamner	1	-	-	Basalt	204.75	70	1.37	29 -30 ,121 -123
Muktainagar	2	-	-	Basalt	200	13.9-128	0.38	16.80-19.90, 65.60-
								68.70, 77.80-80.90
Pachora	5	-	-	Basalt	175.95- 204.75	5.20- 100.00	0.14-29.16	9.00- 175
Parola	3	-	-	Basalt	200	158-182	meagre	37.00-38.00, 56.00-
								59.00, 181.50-184.50
Raver	19	9	3	Basalt and	22.70- 229.00	4.95 to 72.50	Traces to 47.00	9.10-162
				Alluvium				
Yawal	21	9	4	Basalt and	45.50- 318.45	18.00 to >100	Traces to 38.00	10.36- 271.00
				Alluvium				
Total	100	33	9		22.70-318.45	4.95 to 179.00	Traces to 47.00	7.00 to 271.00

Annexure I: Salient Features of Ground Water Exploration, Jalgaon district (As on March 2018)

Annexure II: Details of GW monitoring wells and KOWs in Jalgaon district

S.no.	Block	Location	Agency	Торо	Alt.	Form	Aquifer	Well	Diam	MP	Lining	Total	Depth to	Thickn	DTW	Spot EC	DTW	Spot	Pre	Post
			Name	sheet	(mamsl)	-ation		Depth	eter	(magl)	(m)	Thickness	Fractures	ess of	(mbgl)		(mbgl)	EC	trend	trend
								(11)	(11)			portion	(IIIDEI)	e	ividy-17		NOV17		(III/year)	(III/year)
												(m)		zone						
											_			(m)						
1	Amalner	Dangar Bk.	Public	46L/1	255	Basalt	FMB	18	8	1	3	2.5			17	1200	1.6	1200		
2	Amalner	lalod	Public	460/4	175	alluvi	Sand &	27	4	0.5	3	NA			27	2100	18	1900		
-	, and the	Julou	1 dbite	100/1	1/5	um	Gravel			0.5	5				27	2100	10	1500		
3	Amalner	Kurha Bk.	Public	460/4	198	Basalt	FMB	11	4	0.3	3	2			10.1	4500	8	1900		
4	Amalner	Amalner (M Cl)	Public	460/4	180	Basalt	FMB	9	5	0.4	3	5			8.9	750	3.5	740		
5	Amalner	Khakarpat	Public	46P/1	197	Basalt	FMB	11	5.5	0.3	3	6.5			10.3	1100	7.4	1600		
6	Amalner	Matgavan	Public		174	Basalt		40							39		38			
7	Amalner	Savkheda	Public		172.9	Basalt		19.5							19.5		17			
8	Amalner	Chopdai	Public		263	Basalt		12							8		3.8			
9	Amalner	Kamatwadi Bk	Public		160	Basalt		16							14		5			
10	Amalner	Mudi pr. dangr	Public		184.7	Basalt		18.5							18.5		5.1			
11	Amalner	Pimpri. p. jalod.	Public		169.1	Basalt		21.5							23		8.8			
12	Amalner	Nisardi	Public	46K/1 6	216	Basalt	FMB	13	6	GL	3	6			12	2800	4.4	1640		
13	Amalner	Rundhati	Public	460/4	209	alluvi um	Sand & Gravel	30	4	0.4	3	NA			22	550	3.8	1600		
14	Amalner	Lon Sim	Public	46K/1 6	195	Basalt	FMB	12	6	0.6	3	7			10.15	4000	3.4	4600		
15	Amalner	Kalamsare	Public	46K/1 6	171	Basalt	FMB	14	6	0.2	3	10			12	1800	11	900		
16	Amalner	Galvade	Public	460/4	196	Basalt	FMB	13	6.5	0.6	3	7			10	880	3.8	1000		
17	Amalner	Dahivad	Public	460/4	168	Basalt	FMB	15	7	1	3	5			12	1800	10	1950		
18	Bhadgaon	Balad kh.	Public		267.6	Basalt		12.1							8.8		7.7		-0.081	-0.330
19	Bhadgaon	Pimparkhed	Public		273.6	Basalt		10.3							5.3		3.9		-0.052	0.015
20	Bhadgaon	Tongaon	Public		267.2	Basalt		7.9							4.8		2.9		-0.023	-0.024
21	Bhadgaon	Kajgaon	Public		294.2	Basalt		15.5							6.4		4		-0.294	0.028
22	Bhadgaon	Nimbhore	Public		276.9	Basalt		12							7.4		3		0.085	0.009
23	Bhadgaon	Vadgaon nalbandi	Public		285.9	Basalt		12.3							9.3		4.6		0.253	0.084
24	Bhadgaon	Pendraon	Public		211.2	Basal+		1 0						+	٥		12		0.233	0.054
25	Bhusawal	Kandari	Public		206.8	Basalt		15.4							14.6		12.8		0.092	0.758

S.no.	Block	Location	Agency	Торо	Alt.	Form	Aquifer	Well	Diam	MP	Lining	Total	Depth to	Thickn	DTW	Spot EC	DTW	Spot	Pre	Post
			Name	sheet	(mamsi)	-ation		Depth	eter	(magi)	(m)	Thickness	Fractures	ess of	(mbgl)		(mbgl)	EC	trend	trend
								(m)	(m)			nortion	(ingain)	ractur	way-17		NOV17		(m/year)	(m/year)
												(m)		zone						
												(,		(m)						
26	Bhusawal	Sakegaon	Public		204.3	Basalt		18							12.2		9.7		-0.380	0.289
27	Bhusawal	Kahurkheda	Public		257.3	Basalt		15.5							10.1		5.9		0.335	0.058
28	Bhusawal	Kurhe p.n.	Public		248.7	Basalt		14							11.6		5.2		-0.091	0.345
29	Bhusawal	Talvel	Public		222.2	Basalt		16.2							16		9.4		-0.018	0.132
30	Bhusawal	Vichave	Public		250.7	Basalt		16.5							13.2		4.4		0.330	0.293
31	Chalisgaon	Daregaon	Public	46L/1	355	Basalt	WB	10.7	-	0.8	3.2	-	-	-	10	513	8.5	612		
				4				5												
32	Chalisgaon	Londhe	Public	46L/1	326	Basalt	WB	12.4	6	0.5	9.2	-	-	-	9.5	779	7.2	760		
				4																
33	Chalisgaon	Kharadi	Public	46L/1	405	Basalt	FMB	13.1	5	0.3	5.9	-	11.8	-	11.3	889	11	674		
				5					_											
34	Chalisgaon	Talonde Pr.	Public	46L/1	363.8	Basalt	WB	9.85	7	1	4.3	-	-	-	8.3	2036	3.7	2346		
		Dehere		5					_											
35	Chalisgaon	Dhamangaon	Public	46L/1	636	Basalt	FB	13	7	0.82	2.75	5.3	11	-	13	858	11.2	1254		
26	Challenaar	Dhamana Kh	Dublis	4	04	Deselt	5140	45.7	F 2	0.65	Γ.4		44 5		12.0	1222	0.7	1200		
36	Challsgaon	Bhamare Kn	Public	46P/2	94	Basalt	FIVIB	15.7	5.2	0.65	5.4	-	11.5	-	13.6	1333	9.7	1308	1	
37	Challsgaon	Snewari	Public	46L/1	3/3./	Basalt	JR	13.85	10.9	1.1	3.95		10.8	-	11.15	8//	4	616		
20	Chalicgaan	Savagaan	Dublic	5	246	Bacalt	W/D	4 5		0.0	2.2				4	9770	1 1	2267		
50	Chansgaon	Sayagaon	Public	40L/1	540	DdSdll	VVD	4.5	-	0.9	2.2	-	-	-	4	2778	1.1	2207		
20	Chalisgaon	Tamaswadi	Public	4	277.8	Bacalt	\//B	16 5	7	1	73				15.2	262	7.4	504		
55	Chansgaon	Tamaswadi	1 ublic	401/1	527.0	Dasan	VVD	10.5	,	1	7.5				13.2	505	7.4	504		
40	Chalisgaon	Tambole Bk.	Public	461/1	346.7	Basalt	WB	11.1	7	1	5.9	-	-	-	7	803	3.9	721		
	enanoguen			5	0.00	Dabart				-	0.0						0.0	/		
41	Chalisgaon	Rajmane	Public	-	347.4	Basalt		10							9		6.95		0.067	0.339
42	Chalisgaon	Khadki. bk.	Public		326.2	Basalt		11							4.8		4.3		0.027	0.331
43	Chalisgaon	Sevanagar	Public		342.4	Basalt		12.5							2.8		1.8		-0.308	-0.107
44	Chalisgaon	Hirapur	Public		377	Basalt		12.6							6		5		-0.364	0.177
45	Chalisgaon	Wakdi	Public		330.2	Basalt		11							5.6		4.4		-0.165	0.188
46	Chalisgaon	Bodhre	Public		384.7	Basalt		14.3							4.9		2.8			
	Ŭ							5											-0.066	0.009
47	Chalisgaon	Bilkheda	Public		339.7	Basalt		8.35							8.3		5.8		0.240	0.478
48	Chalisgaon	Mundkheda bk.	Public		319.3	Basalt		12		1				1	7.4		4.85		-0.088	0.177
49	Chalisgaon	Upkheda	Public		332.1	Basalt		11.3		1				1	7.7		5.1			
	-							6											0.005	0.178

S.no.	Block	Location	Agency	Торо	Alt.	Form	Aquifer	Well	Diam	MP	Lining	Total	Depth to	Thickn	DTW (mbal)	Spot EC	DTW	Spot	Pre	Post
			Name	sneet	(mamsi)	-ation		Deptn	eter	(magi)	(m)	Inickness	Fractures	ess or	(mbgi) May 17		(mbgi) New 17	EC	trena (m./v.com)	trena (m/waar)
								(11)	(11)			portion	(IIIDgi)		IVIdy-17		NOV17		(III/year)	(III/year)
												(m)		zone						
												(,		(m)						
50	Chalisgaon	Adgaon	Public		336.6	Basalt		13							6.2		3.5		-0.113	0.062
51	Chalisgaon	Dasegaon. bk.	Public		312	Basalt		20							12		9.1		0.087	0.253
52	Chalisgaon	Mehunbare	Public		316.4	Basalt		16							16		13.1		0.093	0.632
53	Chalisgaon	Bhoras bk.	Public		327.5	Basalt		8.56							7.2		3.9		-0.002	0.135
54	Chalisgaon	Kharjai	Public		335.5	Basalt		14							5.5		1.45		0.015	0.014
55	Chalisgaon	Shevri	Public		381.9	Basalt		12							7		2.6		-0.220	0.054
56	Chalisgaon	Rajdehre	Public		455.1	Basalt		10.8							7.7		2.1		0.098	0.132
57	Chalisgaon	Chinchgavan	Public		339	Basalt		12							12		5.7		0.294	0.230
58	Chalisgaon	Vadgaon	Public		395.1	Basalt		10							7.55		0.95			
		lambe.																	0.228	-0.113
59	Chalisgaon	Patne	Public		414.9	Basalt		15.9							12.6		4.05			
								5											-0.075	0.002
60	Chalisgaon	Pimpalgaon	Public		427.4	Basalt		10.2							10.2		1.1		0.096	-0.024
61	Chalisgaon	Pilkhod	Public		342.3	Basalt		24.2							24.2		5		0.428	0.128
62	Chalisgaon	Chalisgaon	Public		346	Basalt	WB	7.45	1.9	0.7	2	7.45	-	-	5.25	1177	3.2	1057		
63	Chalisgaon	Karamadu	Public	46L14	381	Basalt	FMB	14.4	7.5	0.6	2.95	-	10.1	-	14.1	642	13.9	672		
64	Chalisgaon	Abhone	Public	46L/1	390	Basalt	FMB	10.6	-	0.5	3	-	-	-	6.5	1269	6.1	995		
65	Chalisgaon	Chinchgayhan	Public	4	220.7	Bacalt	IR	15.2	_	1	20	5.95	72	-	73	1101	63	1204		
05	Chansgaon	Chincingavitan	FUDIC	401/1	339.7	Dasan	10	5	-	1	2.5	J.0J	7.5	-	7.5	1191	0.5	1304		
66	Chalisgaon	Chambhardi Bk	Public	46P/3	339	Basalt	WB	10.5	5	03	6.6	-	-	-	94	1023	76	787		
	enanoguen			,.		Dabart		5		0.0	0.0				511	1010				
67	Chalisgaon	Borkhede Bk	Public	46P/2	293.4	Basalt	WB	11.8	8.7	0.4	5.5	11.6	-	-	11.6	1821	9.1	1601		
68	Chalisgaon	Shindi	Public	46L/1	404	Basalt	WB	8.6	5	0.6	1.8	-	-	-	8.1	815	7.6	488		
				5																
69	Chalisgaon	Patana	Public	46L/1	413	Basalt	WB	14.3	5	1	8.5	-	-	-	12.5		6.9	739		
				5																
70	Chalisgaon	Varkhede Kh.	Public	46L/1	340	Basalt	WB	13.8	5.5	0.7	2.8	6	10.4	-	13.6	1068	6.1	1167		
				4																
71	Chalisgaon	Bahal	Public	46P/2	302.9	Basalt	WB	16	4.5	0.35	5.1	11.95	-	-	11.95	2591	9	2327		
72	Chopda	Adawad	Public		190.7			34						<u> </u>	31	ļ	21		0.826	0.095
73	Chopda	Chopda	Public		190.2			25.3						<u> </u>	13.5	ļ	12.5		-0.171	0.118
74	Chopda	Hated .bk.	Public		185.4			16.6						<u> </u>	14	ļ	11.7		0.092	0.555
75	Chopda	Lahasur	Public		259			12.5						<u> </u>	8.9	ļ	6.3		-0.071	0.004
76	Chopda	Nagalwadi	Public		240.6			21.1				1	1		20.5	1	17.6		0.522	0.938

S.no.	Block	Location	Agency	Торо	Alt.	Form	Aquifer	Well	Diam	MP	Lining	Total	Depth to	Thickn	DTW	Spot EC	DTW	Spot	Pre	Post
			Name	sheet	(mamsl)	-ation		Depth	eter	(magl)	(m)	Thickness	Fractures	ess of	(mbgl)		(mbgl)	EC	trend	trend
								(m)	(m)			weatherd	(mbgl)	rractur	May-17		Nov17		(m/year)	(m/year)
												(m)		zone						
												(,		(m)						
77	Chopda	Satrasen	Public		235.8			17							16		12.5		-0.008	0.370
78	Chopda	Mitawali	Public		168.5			45							37.5		34		0.466	0.450
79	Chopda	Galangi	Public		158.8			21							21		17.1		0.058	0.027
80	Chopda	Maratha	Public		217.8			22.4							11.2		6.55		0.170	0.250
81	Chopda	Deoziri	Public		431.8			12							8.9		1.8		0.177	-0.278
82	Chopda	Karjane	Public		257			23.5							9.4		2.2		0.025	-0.105
83	Chopda	Budhagaon	Public		163.9			40.1							22.5		14.8		-0.359	-0.536
84	Chopda	Vishnapur	Public		280.5			14.6							12		4.1		0.126	-0.132
85	Chopda	Adgaon	Public		213.9			14							14		6.1		0.887	0.100
86	Dharangaon	Paldhi Kh.	Public		208.7	Basalt		13.5							6.4		6.1		0.105	0.355
87	Dharangaon	Dharangaon	Public		217.4	Basalt		9.7							4.6		3.4		-0.180	0.174
88	Dharangaon	Zurkheda	Public		180.2	Basalt		8							8		5		0.063	0.231
89	Dharangaon	Rotwad	Public		177	Basalt		18							12.5		8.2		0.024	0.218
90	Dharangaon	Bhamardi	Public		167.2	Basalt		16.2							8.9		4.3		0.283	-0.161
91	Dharangaon	Musli Kh.	Public		202	Basalt		16							8.9		2.4		0.163	-0.018
92	Dharangaon	Chandsar Bk	Public		181.6	Basalt		20							14.5		4.9		0.224	-0.050
93	Edlabad	Sukli	Public		230	Basalt		13.5							8.7		8.1		-0.176	-0.159
94	Edlabad	Chikhli	Public		226.9			24.3							23		21.5		-0.114	-0.445
95	Edlabad	Kurha	Public		243.6			14							9.8		8.1		0.001	0.035
96	Edlabad	Muktainagar	Public		218			15							11.2		9.3		-0.089	0.011
97	Edlabad	Shemalde	Public		225.6			37.2							12.7		10.2		-0.029	0.163
98	Edlabad	Sarola	Public		292.6			10.6							10.65		6.5			
								5											0.016	0.094
99	Edlabad	Dui	Public		226.6			20.3							16		10		-0.145	-0.117
100	Edlabad	Pimpri Pancham	Public		239.1			11.6							12		4.8		-0.024	-0.205
101	Edlabad	Nandwel	Public		223.4			25.75							24		16.2		-0.092	0.011
102	Edlabad	Karaki	Public		231.3			17.7							13		3.5			
								1											-0.106	-0.788
103	Edlabad	Nimkhedi bk.	Public		234			35.2							24		12.4		0.277	-0.525
104	Erandol	Pimpri seem.	Public		221.1			17.2							7.9		5.5		0.250	0.250
105	Erandol	Pimpalkotha bk.	Public		205.1			15							11		8.1		0.284	0.284
106	Erandol	Erandol	Public		219.1			13.9							13		5.1		-0.193	-0.193
107	Erandol	Galapur	Public		263.8			19.5							14.1		1.3		0.072	0.072
108	Jalgaon	Bholane	Public	460/12	233	Alluvi	Sand &	40	3	0.3	5	NA			36.2	1300	31.6	1480		

S.no.	Block	Location	Agency Name	Topo sheet	Alt. (mamsl)	Form -ation	Aquifer	Well Depth	Diam eter	MP (magl)	Lining (m)	Total Thickness	Depth to Fractures	Thickn ess of	DTW (mbgl)	Spot EC	DTW (mbgl)	Spot EC	Pre trend	Post trend
								(m)	(m)			weatherd portion	(mbgl)	fractur e	May-17		Nov17		(m/year)	(m/year)
												(m)		zone						
														(m)						
100	1-1	11	Dublia	460/0	275	um	Gravel	15	6.5	0.2	2				-	000	2.5	750		
109	Jaigaon	Umale Jalgaon Kh	Public	46P/9	275	Basiat	FIVIB	15	6.5	0.2	3	5.5			5	800	3.5	750		
110	Jaigaon	Jaigaon Kn.	Public	550/12	196	Alluvi	Gravel	30	Э	0.4	3	NA			29	2500	22.4	2600		
111	lalgaon	Nandra Bk.	Public	460/8	192	Alluvi	Sand &	24	4	0.4	3	NA			21.8	1400	10	1200		
	Julguon		1 ublie	100/0	192	um	Gravel		•	0.1	3				21.0	1100	10	1200		
112	Jalgaon	Asoda	Public	460/12	187	Alluvi	Sand &	25	3.5	0.5	3	NA			19.6	1400	16.8	2450		
						um	Gravel													
113	Jalgaon	Phupnagri	Public	460/12	239	Alluvi	Sand &	34	4	0.4	3	NA			31	1930	30.2	2400		
						um	Gravel													
114	Jalgaon	Dhamangaon	Public		185			48.5							43.5		43.2			
115	Jalgaon	Jalke	Public		233.8			96							24.95		23.7			
116	Jalgaon	Dapore	Public		206.2			9.9							7.9		6.5			
117	Jalgaon	Kanalda	Public		185.1			18							12.1		9.55			
118	Jalgaon	Kadgaon	Public		188.1			24.2							24.25		20.5			
								5												
119	Jalgaon	Shirsoli	Public		224.9			15.5							10.8		7			
120	Jalgaon	Bholane	Public		174.1			45							45		39.1			
121	Jalgaon	Idgaon	Public		174.1			50							50		44.1			
122	Jalgaon	Jalgaon	Public		208.6			18.5							11		5			
122	Jalgaon	(primpraia) Chincholi	Public		252.0			15							11		A 45			
123	Jalgaon	Mamurahad	Public		192.9			24.1							19		11			
124	Juiguon	Wallandbad	1 ublic		192.4			5							15					
125	Jalgaon	Mhasawad	Public		218.3			17.3							17.3		8			
126	Jalgaon	Jalgaon (M Cl)	Public	460/12	216	Basalt	FMB	11	4	GL	3	5			10.7	1920	1.5	2430		
127	Jalgaon	Pathri	Public	46P/9	229	Basalt	FMB	19	5	0.8	3	14			14.4	2450	1	2000		
128	Jalgaon	Lonwadi Bk.	Public	46P/9	245	Basalt	FMB	19	8	0.6	3	8			18.2	750	2.5	1500		
129	Jalgaon	Vakadi	Public	46P/5	212	Basalt	FMB	21	5.5	GL	3	16			19	1600	12.5	1300		
130	Jamner	Garkheda bk.	Public		248.7	Basalt		8.5							8		7.8		-0.066	0.588
131	Jamner	Jalandri bk.	Public		295	Basalt		10							6.8		5.6		-0.011	0.032
132	Jamner	Lahasar	Public		272.1	Basalt		10.5							7.1		5.8		0.571	0.203
133	Jamner	Sonale	Public		290.6	Basalt		13.1							12.7		10.1		0.093	0.574
134	Jamner	Neri digar.	Public		249.1	Basalt		10		1					10		7.1		0.065	0.253

S.no.	Block	Location	Agency	Topo	Alt.	Form	Aquifer	Well	Diam	MP (magl)	Lining	Total	Depth to	Thickn	DTW (mbgl)	Spot EC	DTW (mbgl)	Spot	Pre	Post
			Name	Sheet	(manisi)	-ation		(m)	(m)	(IIIagi)	(111)	weatherd	(mbgl)	fractur	Mav-17		Nov17	LC	(m/year)	(m/year)
								(,	(,			portion	(е	,				(, ,,	(, ,,
												(m)		zone						
														(m)						
135	Jamner	Mundkheda bk.	Public		262.3	Basalt		14.5							9		5.6		0.030	-0.153
136	Jamner	Rampura	Public		259.6	Basalt		11.8 1							7.8		4.2		-0.216	0.189
137	Jamner	Godri	Public		342.7	Basalt		12							9		5.1		-0.336	-0.211
138	Jamner	Shahapur	Public		280.7	Basalt		11							9.8		5.8		0.328	-0.109
139	Jamner	Gadegaon p.n.	Public		258.2	Basalt		11.6							7.7		3			
								1											-0.049	0.257
140	Jamner	Gangapuri	Public		239.5	Basalt		19							13.3		8.6		-0.380	-0.143
141	Jamner	Hiverkheda bk.	Public		240.5	Basalt		11.3 1							11		6.2		-0.218	0.007
142	Jamner	Wadi	Public		285.9	Basalt		10							8		3.1		-0.003	-0.157
143	Jamner	Jamner	Public		257	Basalt		18.3							17		11.2		0.157	0.319
144	Jamner	Pahur peth.	Public		301	Basalt		10.5							8.2		2.1		0.346	0.112
145	Jamner	Malkheda digar.	Public		316.4	Basalt		13							11.1		5		-0.019	0.062
146	Jamner	Paldhi	Public		291.6	Basalt		15.5							8.7		2.3		-0.098	-0.242
147	Jamner	Chinchkheda	Public		240	Basalt		16							13.1		6.5			
		bk.																	0.055	-0.023
148	Jamner	Waghari	Public		303.1	Basalt		12.5							11.8		4.2		0.210	0.042
149	Jamner	Madani	Public		323.3	Basalt		13.5							10.8		2.8		0.088	-0.309
150	Jamner	Wakod	Public		342.6	Basalt		15							11		2.3		0.127	-0.180
151	Jamner	Talegaon	Public		284.7	Basalt		15							11.5		1.9		0.019	-0.289
152	Jamner	Bhagdare	Public		273.9	Basalt		16							14.5		2.9		0.603	0.031
153	Edlabad	Karki	Public	55C/4	241	Basalt	FMB	18	6.5	0.4	3	3			14.4	2120	7			
154	Edlabad	Ruikhed	Public	55D/1	271	Basalt	FMB	18	6.5	0.1	3	12			16.2	2200	2.5			
155	Edlabad	Sula	Public	55D/5	270	Basalt	FMB	17	5	GL	3	5			16.4	980	9.2			
156	Edlabad	Halkheda	Public	55C/8	292	Basalt	FMB	10	5	0.1	3	6			9.6	780	4.3			
157	Edlabad	Kurha Kakora	Public	55D/5	223	Basalt	FMB	15	4	0.3	1	5			14.8	1610	6.2			
158	Edlabad	Icchapur	Public	55C/4	226	Basalt	FMB	15	5	0.4	3	8			14.5	2180	6.4			
159	Edlabad	Dui	Public	55C/4	229	Alluvi	Sand &	28	5	0.4	3	NA			22	2100	12.2			1
						um	Gravel		-	-	-									
160	Edlabad	Morjhari	Public	55C/8	272	Basalt	FWB	14	6	GL	3	NA			13	790	5.2			
161	Edlabad	Narvel	CGWB		376.77			27	0	0.5	0				26.49		23.1			
162	Edlabad	Mendhoda	CGWB		237.36			17.7	0	0.7	0				14.2		9.4			il
163	Edlabad	Muktai Nagar-1	CGWB		229			16.3	0	1	0	1		1	13.3		1.8			1

S.no.	Block	Location	Agency Name	Topo sheet	Alt. (mamsl)	Form -ation	Aquifer	Well Depth (m)	Diam eter (m)	MP (magl)	Lining (m)	Total Thickness weatherd portion (m)	Depth to Fractures (mbgl)	Thickn ess of fractur e zone	DTW (mbgl) May-17	Spot EC	DTW (mbgl) Nov17	Spot EC	Pre trend (m/year)	Post trend (m/year)
164	Pachora	Ghusardi	Public		283	Basalt		25.6						(m)	4		29			
101	T denord	Chubaran	i ubiic		200	Busuit		1							•		2.5		-0.332	-0.074
165	Pachora	Dujkheda	Public		242.3	Basalt		11.1							8.1		6.9		0.035	0.231
166	Pachora	Sarola kh.	Public		269.9	Basalt		15							10.6		8.4		-0.084	0.097
167	Pachora	Anturli bk. p. p.	Public		260.3	Basalt		18							11.1		8.8		0.292	0.282
168	Pachora	Galan bk.	Public		277.9	Basalt		8							4.2		1.7		-0.072	-0.081
169	Pachora	Pachora	Public		255.2	Basalt		16.2							5.5		2.7			
								1											-0.420	-0.484
170	Pachora	Nagardeola bk	Public		289.5	Basalt		16.6							7.6		4.5			
								1											-0.004	-0.055
171	Pachora	Hadsan	Public		241	Basalt		10							5.5		1.9		-0.359	-0.089
172	Pachora	Dighi	Public	_	323	Basalt		15	-				-		11.5		7.7		0.411	0.357
173	Pachora	Satgaon	Public		317.7	Basalt		9.7							5		1.1		-0.104	-0.069
174	Pachora	Shindad	Public		300.6	Basalt		7.5							5.1		1		-0.021	0.008
175	Pachora	Vadgaon ambe.	Public		292.7	Basalt		16.9							6.2		1.5			
		_				_		6							-				-0.048	0.035
176	Pachora	Dongargaon	Public		289.7	Basalt		12							9		4.2		-0.045	-0.038
177	Pachora	Bambrud	Public		255.3	Basalt		12.3							10.8		5.8		0.001	0.126
170	Darola	.KII.P.P. Dalachkhada Bk	Dublic	46D/1	240	Bacalt		16	c	0.0	2	7 5	-		14	2100	77	1660	-0.001	-0.126
178	Parola	Palashkhede BK.	Public	46P/1	240	Basalt		10	0	0.8	3	7.5	-		14	2100	1.7	1600	<u>├</u> ────┦	
1/9	Parola		Public	40F/1 /6D/1	235	Basalt		12	6	0.0	2	2			7	550	4.5	1030		
100	Parola	Karmad Pk	Public	407/1	227	Basalt		10	6	0.5	2	7			/	1490	1.2	1100	┥────┦	
182	Parola	Mondhale	Public	40F/1 /6D/1	230	Basalt	EMR	211 Q	6	0.8	2	/			6	1240	4.5	1050		
183	Parola	Pimpalkhote	Public	401/1	257	Basalt	EMB	12	3	0.2	3	4			10.25	3000	3.4	2200	┦───┦	
105	1 01010	Ппракносс	1 ublic	3	200	Dasan	TIVID	12	5	0.5		7			10.25	5000	5.4	2200		
184	Parola	Sumthana	Public	46P/1	211	Basalt	FMB	14	6	0.5	3	4			10.3	1050	4.6	890	├	
185	Parola	Shirasmani	Public		286	Basalt		9.65	<u> </u>	0.0					4.4	1000	2.4	000	├	
186	Parola	Sarve Bk	Public		266.2	Basalt		9.9							6.7		3.7			
187	Parola	Dholi	Public		288	Basalt		8							7	1	3.9			
188	Parola	Rajwad	Public	ł	218.8	Basalt		12.5	1		ł		1	1	11	1	6.9		<u>†</u>	
189	Parola	Titvishiv	Public	1	299.4	Basalt	1	10.8	ł		ł	1	1	1	6.4	1	2.1	1	† +	
								1					1	1						
190	Parola	Mhasve	Public		248.1	Basalt		10							10		4.4			
191	Parola	Adgaon	Public	1	271.1	Basalt		10.5			1				10.5	1	4.1			

S.no.	Block	Location	Agency	Торо	Alt.	Form	Aquifer	Well	Diam	MP	Lining	Total	Depth to	Thickn	DTW	Spot EC	DTW	Spot	Pre	Post
			Name	sheet	(mamsl)	-ation		Depth	eter	(magl)	(m)	Thickness	Fractures	ess of	(mbgl)		(mbgl)	EC	trend	trend
								(m)	(m)			nortion	(ingain)		way-17		NOV17		(m/year)	(m/year)
												(m)		zone						
												. ,		(m)						
192	Parola	Jamde	Public		261.8	Basalt		15							12		3.1			
193	Parola	Mangrool	Public		280.7	Basalt		15.7							15		3.9			
194	Parola	Mundane. Pr.	Public		242	Basalt		20							20		1.6			
105	Darola	Andhalgaon	Public	46D/1	207	Pacalt	ENAD	20	6	0.4	2	0			10.2	600	2.2	050		ł
195	Parola	Anchaigaon	Public	40P/1 46D/1	212	Basalt		20	0	0.4	2 2	9			19.2	2700	2.5	2200		ł
190	Parola	Karadi	Public	40F/1	212	Basalt	EMB	15 5	0	0.0	2	5			14	2000	3.6	2300		
157	Falua	Karaul	Fublic	3	234	Dasan	TIVID	15.5	'	0.5	5	0			14	2000	5.0	3000		
198	Raver	Mohgan bk.	Public		323.5			24.6							24		21.4			
	_							5											-0.205	-0.122
199	Raver	Lalmati	Public		306.7			8.1							4.2		0.1		-0.015	-0.143
200	Raver	Padle bk.	Public		2//		-	20		-					10.1		5		-0.118	0.123
201	Raver	Bhokari	Public		256.9			1/./							16.1		9.1		0 207	0.242
202	Raver	Waghoda bk	Public		228			5 46 55							46		31.1		0.207	-0.245
202	Raver	Raver	Public		259.9			32.1		1					32		16		0.049	-0.829
204	Raver	Savkheda kh.	Public		249.4			43.6							40		23.4		0.736	0.241
205	Raver	Lohare	Public		451			35.45							34.5		11.6		0.162	-0.378
206	Raver	Chinchati	Public		327.1			35.7							30.3		3.1		0.367	0.003
207	Yawal	Yawal	Public		218.3			35							22		12.4		0.065	0.123
208	Yawal	Viroda	Public		214.3	alluvi		24.75							24		12.8			
						um													0.887	0.257
209	Yawal	Giradgaon	Public		212.5	alluvi		38							41		21			
210	Marrial	N 4 - h	Dulalia		274	um		50							50		20.4		0.108	-0.190
210	rawai	wonrale	PUDIIC		274			50							50		28.1		0 211	0 1 9 0
211	Vawal	Dambhurni	Public		10/ 5	alluvi		38.0							38.0		16.2		0.511	0.180
211	Tawai	Dambharn	T UDIC		154.5	um		50.5							50.5		10.2		0.120	-0.170
212	Yawal	Nimgaon	Public		203.2	alluvi		50.55							55		32.1			
						um													0.324	0.310
213	Yawal	Chincholi	Public		221.7	alluvi		45							44		20.8			
						um							-			ļ			0.032	-0.190
214	Jalgaon	Balajipeth	CGWB		213.9			8.64	0	0.82	0				8		5.8			
215	Jalgaon	Harivitthal Nagar	CGWB		208.6			10.1	0	0.2	0				9.8		3.97			ļ
216	Chopda	Mondhale	CGWB		254.76			7.86	0	0.66	0				5.5		5.2			

S.no.	Block	Location	Agency	Topo sheet	Alt.	Form	Aquifer	Well Depth	Diam	MP (magl)	Lining (m)	Total	Depth to	Thickn	DTW (mbgl)	Spot EC	DTW (mbgl)	Spot	Pre	Post trend
			Name	Sheet	(mamsi)	-ation		(m)	(m)	(magi)	(11)	weatherd portion (m)	(mbgl)	fractur e zone (m)	May-17		Nov17		(m/year)	(m/year)
217		Kasamwadi	CGWB		218.3			8.01	0	0.55	0				3.5		2.31			
218	Jalgaon	Shivaji Udhyan	CGWB		229.3			6.7	0	0.9	0				2.7		1.3			
219	Jalgaon	Naseerabad	CGWB		216.79			20	0	0.6	0				15.6		14			
220	Parola	Parola-1	CGWB		249.7	Basalt		14.85	0	2.85	0				7.9		5.8			
221	Amalner	Amalner-1	CGWB		182	Basalt		7.8	0	0.6	0				7.2		4.1			
222	Parola	Talwade Kd	CGWB		287.13			11.9	0	0.4	0				10.2		4.6			
223	Jalgaon	Sindhi Colony	CGWB		223.3	Basalt		7.53	0	0.4	0				7.2		1.2			
224		Kusumbe-1	CGWB		259			16.5	0	1	0				14.4		8.3			
225		Sirsala	CGWB		306			14.9	0	0.9	0				13		5.5			

BWL: Below water level, GL: Ground level

Annexure III: Chemical analysis of ground water samples, Shallow aquifers

SL.	Block	Village	Туре	рН	EC	тн	TDS	Ca	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F	Fe	SAR	RSC
No.					μS/cm							Mg	/L						%	meq/L
1	Amalner	Amalner (M Cl)	DW	7.5	703	154.38	-	89.64	15.73	50.35	4.43	0.00	180.56	43.69	62.0	43.00	0.49	0.00	2.88	-2.81
2	Amalner	Dahivad	DW	7.6	1725	343.62	-	209.16	32.67	100.51	1.47	0.00	126.88	164.49	279.0	13.00	0.69	0.00	3.78	-11.05
3	Amalner	Dangar Bk.	DW	7.2	974	129.48	-	119.52	2.42	117.18	1.17	0.00	24.40	182.48	130.0	34.00	0.27	0.00	6.02	-5.76
4	Amalner	Dhar	DW	8.05	1182	152	768	38.40	13.61	170.00	1.40	0.00	110.04	228.00	0.0	0.00	0.00	0.00	14.27	-1.23
5	Amalner	Galvade	DW	7.7	762	149.4	-	89.64	14.52	70.80	1.33	0.00	136.64	61.68	123.0	21.00	0.45	0.00	4.06	-3.43
6	Amalner	Jalod	DW	7.9	1861	154.38	-	74.70	19.36	377.60	1.32	0.00	405.04	197.90	210.0	43.00	0.89	0.00	23.19	1.32
7	Amalner	Kalamsare	DW	7.7	1640	343.62	-	159.36	44.78	100.83	0.97	0.00	146.40	149.07	252.0	43.00	0.89	0.00	4.22	-9.24
8	Amalner	Khakarpat	DW	7.6	920	189.24	-	89.64	24.20	77.57	0.74	0.00	190.32	56.54	37.0	47.00	0.88	0.00	4.34	-3.35
9	Amalner	Kurha Bk.	DW	7.4	3810	672.3	-	268.92	98.02	337.10	0.95	0.00	234.24	683.65	367.0	42.00	0.56	0.00	10.67	-17.65
10	Amalner	Lon Sim	DW	7.7	3484	582.66	-	169.32	100.44	352.90	2.51	0.00	253.76	578.28	472.0	42.00	0.74	0.00	13.44	-12.56
11	Amalner	Mehergaon	DW	8.35	768	143	499	54.00	1.94	21.30	0.80	2.31	109.58	32.00	18.0	0.00	0.24	0.27	1.62	-0.98
12	Amalner	Mudi pr.dangr	DW	7.73	956	412	621	83.20	49.57	43.90	0.40	0.00	335.50	80.00	56.0	0.00	0.35	0.19	2.38	-2.73
13	Amalner	Mundane	DW	9.07	485	141	315	30.00	16.04	35.90	0.50	11.88	107.54	50.00	15.0	0.00	0.35	0.33	3.28	-0.66
14	Amalner	Nisardi	DW	7.7	2414	567.72	-	348.60	53.25	68.20	0.66	0.00	146.40	218.46	296.0	7.90	0.32	0.00	1.99	-19.38
15	Amalner	Pimpri. p. jalod	DW	8	853	257	554	89.60	8.02	65.40	0.70	0.00	215.94	120.00	18.0	0.00	0.24	0.22	3.81	-1.59
16	Amalner	Rundhati	DW	7.7	458	134.46	-	99.60	8.47	28.70	17.28	0.00	170.80	20.56	28.0	44.00	0.39	0.00	1.59	-2.87
17	Amalner	Savkheda	DW	8.01	1294	428	841	73.60	59.29	76.80	0.60	0.00	391.62	112.00	72.0	0.00	0.30	0.16	4.26	-2.13
18	Bhadgaon	Balad kh.	DW	7.29	1152	212	749	72.00	7.78	145.00	1.20	0.00	180.56	208.00	59.0	0.00	0.00	0.00	9.39	-1.27
19	Bhadgaon	Kajgaon	DW	7.65	1088	384	707	86.40	40.82	112.80	2.50	0.00	224.48	212.00	90.0	0.00	0.00	0.00	6.16	-3.99
20	Bhadgaon	Nimbhore	DW	8.37	1272	332	827	41.60	55.40	81.50	0.80	7.20	263.52	106.00	16.0	0.00	0.50	0.27	5.52	-2.08
21	Bhadgaon	Pendgaon	DW	9.19	411	158	267	30.00	20.17	31.90	0.20	18.58	127.64	42.00	16.0	0.00	0.35	0.25	2.84	-0.45
22	Bhusawal	Bhusawal	DW	-	884	355	468	80.16	37.67	82.93	1.08	0.00	225.70	184.34	21.0	81.00	0.23	0.00	4.70	-3.40
23	Bhusawal	Bodwad	DW	-	880	360	440	70.14	44.96	70.95	2.64	0.00	280.60	138.26	60.0	69.00	0.40	0.00	4.16	-2.60
24	Bhusawal	Borgaon	DW	8.17	984	408	640	68.40	57.59	57.30	0.70	0.00	247.66	110.00	92.0	0.00	0.33	0.19	3.28	-4.09
25	Bhusawal	Sonoti	DW	8.01	1317	506	856	106.00	58.56	63.60	3.40	0.00	307.44	114.00	129.0	0.00	0.14	0.21	3.09	-5.07
26	Bhusawal	Talvel	DW	8.39	756	282	491	32.80	48.60	45.50	0.40	3.61	156.27	84.00	84.7	0.00	0.23	0.27	3.40	-2.95
27	Bhusawal	Vichve	DW	7.55	2440	743	1586	65.20	140.94	193.00	26.6	0.00	435.54	314.00	240.0	0.00	0.05	0.14	9.35	-7.71
28	Chalisgaon	Abhane	DW	7.8	1950	677.3	-	353.60	78.70	17.50	1.30	0.00	219.60	251.90	120.0	260.00	0.60	0.00	0.50	-20.52
29	Chalisgaon	Adgaon	DW	6.97	1596	480	1037	145.60	28.19	97.60	0.90	0.00	379.42	182.00	80.8	0.00	0.00	0.00	4.36	-3.37
30	Chalisgaon	Bhamare Kh	DW	7.8	1946	508	-	209.20	72.60	18.40	1.20	0.00	239.10	138.80	130.0	160.00	0.40	0.00	0.66	-12.49
31	Chalisgaon	Bhoras bk.	DW	9.3	395	195	257	31.60	28.19	32.00	0.20	22.43	119.58	50.00	45.0	0.00	0.14	0.29	2.67	-1.19
32	Chalisgaon	Bhoras Kh	DW	8.1	1280	403.4	-	174.30	55.70	29.00	0.70	0.00	351.40	97.70	86.0	47.30	0.70	0.00	1.15	-7.52
33	Chalisgaon	Bodar	DW	-	604	295	320	50.10	41.32	46.83	4.63	0.00	329.40	85.08	26.0	11.00	0.57	0.00	3.14	-0.50
34	Chalisgaon	Borkhede Bk	DW	8	829	234.1	-	84.70	36.30	15.30	0.90	0.00	234.20	36.00	34.0	27.90	0.60	0.00	0.85	-3.38
35	Chalisgaon	Chinchgavhan	DW	7.9	915	308.8	-	114.50	47.20	87.10	1.70	0.00	351.40	48.80	22.0	79.00	0.50	0.00	4.18	-3.84
36	Chalisgaon	Daregaon	DW	7.9	846	348.6	-	54.80	71.40	53.70	2.50	0.00	322.10	64.30	36.0	29.40	0.40	0.00	3.18	-3.33

SL.	Block	Village	Туре	рН	EC	тн	TDS	Са	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	Fe	SAR	RSC
No.					μS/cm							Mg	/L						%	meq/L
37	Chalisgaon	Hirapur	DW	7.89	1181	292	768	70.40	28.19	115.90	0.80	0.00	189.10	216.00	70.0	0.00	0.00	0.00	7.11	-2.73
38	Chalisgaon	Kharadi	DW	7.9	674	293.8	-	94.60	48.40	25.90	0.70	0.00	297.70	33.40	26.0	23.00	0.30	0.00	1.34	-3.82
39	Chalisgaon	Kharjai	DW	9.99	397	141	258	21.60	21.14	28.10	0.40	49.85	54.27	38.00	16.0	0.00	0.18	0.27	2.80	-0.27
40	Chalisgaon	Mehunbare	DW	8.87	640	183	416	30.00	26.24	37.30	0.10	8.05	115.58	50.00	67.0	0.00	0.35	0.86	3.20	-1.49
41	Chalisgaon	Patne	DW	8.23	1833	581	1191	71.20	97.93	144.00	0.80	0.00	355.02	272.00	61.0	0.00	0.55	0.56	7.41	-5.79
42	Chalisgaon	Pimpalgaon	DW	8.14	2060	627	1339	91.20	96.96	142.00	0.70	0.00	420.90	258.00	23.0	0.00	0.55	0.10	6.78	-5.63
43	Chalisgaon	Sevanagar	DW	8.03	632	228	411	46.40	27.22	57.50	0.90	2.00	198.94	82.00	46.0	0.00	0.30	0.32	4.19	-1.23
44	Chalisgaon	Shindi	DW	7.3	1224	378.5	-	94.60	69.00	87.10	1.10	0.00	424.60	79.70	86.0	160.00	0.60	0.00	4.32	-3.44
45	Chalisgaon	Talonde Pr	DW	7.9	1331	537.8	-	109.60	104.10	54.40	0.90	0.00	444.10	123.40	104.0	170.00	0.30	0.00	2.41	-6.76
46	Chalisgaon	Tambole Bk.	DW	7.8	1308	478.1	-	69.70	99.20	76.50	0.90	0.00	522.20	133.60	100.0	41.40	0.50	0.00	3.95	-3.08
47	Chalisgaon	Wakdi	DW	8.14	1169	394	760	71.20	52.49	94.00	0.40	0.00	385.52	142.00	15.0	0.00	0.14	0.11	5.37	-1.55
48	Chopda	Adawad	DW	7.49	1084	304	705	40.00	49.57	73.60	1.40	0.00	268.40	140.00	0.0	0.00	0.00	0.00	5.16	-1.68
49	Chopda	Adgaon	DW	8.19	782	249	508	52.40	28.67	29.30	2.80	0.00	195.20	56.00	11.0	0.00	0.50	0.19	2.02	-1.78
50	Chopda	Chopda	DW	-	655	210	346	46.09	23.09	56.00	2.22	0.00	189.10	102.81	10.0	51.00	0.53	0.00	4.16	-1.10
51	Chopda	Deoziri	DW	8.07	386	131	251	40.80	7.05	21.20	4.80	1.53	138.41	34.00	11.0	0.00	0.18	0.30	1.80	-0.30
52	Chopda	Hated .bk.	DW	8.1	815	314	530	78.40	28.67	74.80	0.70	0.00	256.20	132.00	18.0	0.00	0.43	0.63	4.38	-2.07
53	Chopda	Karjane	DW	8.59	990	347	744	50.40	53.70	81.10	0.70	9.60	186.66	120.00	85.0	0.00	0.35	0.52	5.21	-3.55
54	Chopda	Lahasur	DW	8.02	1277	457	830	63.60	72.41	79.30	0.30	0.00	344.04	120.00	87.0	0.00	0.30	0.40	4.48	-3.49
55	Chopda	Maratha	DW	7.93	776	298	504	40.80	47.63	37.10	0.10	0.00	231.80	70.00	38.0	0.00	0.35	1.71	2.60	-2.16
56	Chopda	Mitawali	DW	7.63	942	224	612	43.20	28.19	29.50	0.70	0.00	295.24	48.00	0.0	0.00	0.00	0.00	2.20	0.36
57	Edlabad	Mendhoda	DW	-	1850	710	981	112.22	104.51	88.00	6.12	0.00	323.30	340.32	44.0	87.00	0.45	0.00	3.87	-8.90
58	Edlabad	Muktai Nagar-1	DW	-	674	215	358	42.08	26.73	92.00	0.63	0.00	384.30	85.08	11.0	16.00	0.92	0.00	6.97	2.00
59	Erandol	Chandsar	DW	7.61	2290	539	1489	73.60	86.27	193.00	26.1	0.00	307.44	340.00	166.0	0.00	0.35	0.13	10.08	-5.73
60	Erandol	Dharangaon	DW	-	1382	400	733	78.16	49.82	74.00	4.21	0.00	335.50	113.44	38.0	114.0	0.95	0.00	4.11	-2.50
61	Erandol	Erandol	DW	-	667	300	354	60.12	36.46	51.22	0.82	0.00	225.70	124.08	50.0	43.00	0.17	0.00	3.26	-2.30
62	Erandol	Kasoda	DW	-	2699	1065	1432	246.49	109.37	125.22	3.78	0.00	353.80	666.46	58.0	193.0	0.37	0.00	4.07	-15.50
63	Erandol	Paldhi kh.	DW	8.45	1812	612	1178	89.60	94.28	177.00	26.8	4.80	418.46	336.00	97.0	0.00	0.24	0.11	8.54	-5.21
64	Erandol	Pimpalkotha	DW	-	1800	605	954	122.24	72.91	117.00	6.90	0.00	268.40	329.69	46.0	148.0	0.36	0.00	5.24	-7.70
65	Erandol	Pimpri seem.	DW	7.95	1746	408	1135	108.80	33.05	172.00	5.80	0.00	606.34	228.00	0.0	0.00	0.00	0.00	8.67	1.79
66	Erandol	Zurkheda	DW	8.03	1142	306	742	73.60	29.65	84.00	0.80	0.00	280.60	116.00	67.0	0.00	0.50	0.15	5.04	-1.51
67	Jalgaon	Asoda	DW	7.8	1289	199.2	-	89.64	26.62	187.62	1.46	0.00	322.08	110.52	138.0	15.00	0.71	0.00	10.43	-1.38
68	Jalgaon	Bholane	DW	7.7	1313	304	853	78.40	26.24	131.90	2.90	0.00	215.94	200.00	85.0	0.00	0.00	0.00	7.78	-2.53
69	Jalgaon	Bholane	DW	8	1258	89.64	-	39.84	12.10	185.60	0.62	0.00	463.60	33.41	72.0	40.00	1.64	0.00	15.46	4.61
70	Jalgaon	Chincholi	DW	8.05	810	260	557	49.60	33.05	66.60	0.20	0.00	241.56	93.00	49.0	0.00	0.40	0.29	4.62	-1.24
71	Jalgaon	Dapore	DW	7.63	1350	420	878	88.00	48.60	80.30	0.30	0.00	378.20	130.00	75.0	0.00	0.40	0.33	4.28	-2.19
72	Jalgaon	Balajipeth	DW	-	832	295	440	60.12	35.24	99.13	45.89	0.00	378.20	106.35	31.0	61.00	0.53	0.00	6.34	0.30
73	Jalgaon	Kasamwadi	DW	-	443	225	228	60.12	18.23	52.66	4.34	0.00	268.40	85.08	10.0	27.00	0.29	0.00	3.57	-0.10
74	Jalgaon	Shivaji Udhyan	DW	-	707	340	374	78.16	35.24	53.82	1.97	0.00	231.80	88.63	11.0	124.0	0.45	0.00	3.10	-3.00

SL.	Block	Village	Туре	рН	EC	тн	TDS	Са	Mg	Na	к	CO3	HCO3	Cl	SO4	NO3	F	Fe	SAR	RSC
No.					μS/cm							Mg	/L						%	meq/L
75	Jalgaon	Jalgaon (M Cl)	DW	7.5	1618	318.72	-	179.28	33.88	116.02	1.94	0.00	253.76	192.76	139.0	39.00	0.38	0.00	4.67	-7.58
76	Jalgaon	Jalgaon Kh.	DW	7.7	2227	413.34	-	174.30	58.09	208.62	2.52	0.00	287.92	233.88	185.0	8.00	0.39	0.00	8.25	-8.76
77	Jalgaon	Jalke	DW	7.63	1316	406	855	68.80	56.86	50.30	0.20	0.00	419.68	96.00	21.0	0.00	0.40	0.16	2.88	-1.23
78	Jalgaon	Kusumbe kh.	DW	8.17	918	276	597	44.80	39.85	60.30	3.10	0.00	253.76	102.00	32.0	0.00	0.73	0.21	4.23	-1.36
79	Jalgaon	Kusumbe-1	DW	-	506	245	268	68.14	18.23	18.15	0.82	0.00	189.10	81.54	13.0	34.00	0.48	0.00	1.17	-1.80
80	Jalgaon	Lonwadi Bk.	DW	7.7	644	179.28	-	94.62	20.57	31.40	0.48	0.00	170.80	28.27	73.0	23.00	0.49	0.00	1.73	-3.62
81	Jalgaon	Nandra Bk.	DW	7.8	1269	174.3	-	69.72	25.41	189.10	1.98	0.00	287.92	143.93	168.0	41.00	0.52	0.00	11.75	-0.85
82	Jalgaon	Naseerabad	DW	-	681	280	360	62.12	30.38	66.59	4.59	0.00	292.80	106.35	19.0	28.00	0.20	0.00	4.27	-0.80
83	Jalgaon	Pathri	DW	7.6	2189	473.1	-	288.84	44.78	85.48	1.71	0.00	151.28	292.99	98.0	39.00	0.48	0.00	2.73	-15.62
84	Jalgaon	Phupnagri	DW	7.8	1794	293.82	-	94.62	48.41	209.42	1.78	0.00	287.92	210.75	135.0	42.00	0.70	0.00	10.84	-3.99
85	Jalgaon	Umale	DW	7.7	684	199.2	-	119.52	19.36	29.61	1.15	0.00	195.20	48.83	39.0	39.00	0.45	0.00	1.47	-4.36
86	Jalgaon	Vakadi	DW	8	1583	209.16	-	74.70	32.67	226.28	3.09	0.00	351.36	167.06	69.0	39.00	1.26	0.00	13.38	-0.66
87	Jamner	Bhagdare	DW	7.9	625	326	406	84.80	27.70	25.70	0.30	2.22	297.74	42.00	31.0	0.00	0.88	0.32	1.46	-1.56
88	Jamner	Gadegaon p.n.	DW	7.63	313	126	203	29.20	12.88	18.10	0.10	0.48	119.50	34.00	6.0	0.00	0.27	0.60	1.71	-0.54
89	Jamner	Godri	DW	7.89	600	269	390	65.20	25.76	26.00	0.10	1.80	246.17	48.00	30.0	0.00	0.72	0.34	1.66	-1.28
90	Jamner	Hiverkheda bk.	DW	7.93	1007	441	655	66.80	66.58	57.90	0.10	0.00	407.48	110.00	36.0	0.00	0.44	0.18	3.27	-2.13
91	Jamner	Jalandri bk.	DW	7.59	2270	548	1476	62.40	95.26	140.00	1.00	0.00	422.12	260.00	0.0	0.00	0.00	0.00	7.53	-4.03
92	Jamner	Kharsane	DW	7.59	321	151	209	32.80	16.77	10.60	0.10	0.41	111.57	20.00	26.0	0.00	0.27	0.39	0.93	-1.17
93	Jamner	Malkheda digar.	DW	7.83	1540	296	1001	100.80	10.69	208.00	0.70	0.00	128.10	392.00	0.0	0.00	0.00	0.00	11.39	-3.81
94	Jamner	Mundkheda bk.	DW	7.65	327	143	213	27.60	17.98	9.60	0.10	0.60	143.38	16.00	8.0	0.00	0.38	1.92	0.90	-0.49
95	Jamner	Neri	DW	-	1471	665	781	132.26	81.42	27.36	0.85	0.00	195.20	244.61	44.0	150.00	0.57	0.00	1.17	-10.10
96	Jamner	Paldhi	DW	7.85	1030	502	670	44.00	95.26	57.50	1.00	0.00	468.48	110.00	37.0	0.00	0.44	0.21	3.39	-2.36
97	Jamner	Rampura	DW	8.09	1058	473	688	73.60	70.23	59.00	2.60	0.00	391.62	110.00	40.0	0.00	0.38	0.39	3.19	-3.03
98	Jamner	Shendurni	DW	-	626	230	331	56.11	21.87	24.30	13.3	0.00	213.50	74.45	12.0	13.00	0.40	0.00	1.67	-1.10
99	Jamner	Shengola	DW	-	789	295	418	90.18	17.01	30.98	2.55	0.00	195.20	113.44	45.0	41.00	0.66	0.00	1.76	-2.70
100	Jamner	Talegaon	DW	7.99	966	308	628	36.80	52.49	74.10	2.00	0.00	259.86	136.00	0.0	0.00	0.00	0.00	5.27	-1.90
101	Jamner	Vakdi	DW	-	897	380	476	64.13	53.47	67.69	15.44	0.00	341.60	145.35	60.0	48.00	0.62	0.00	4.01	-2.00
102	Jamner	Wadi	DW	7.87	1677	734	1090	190.80	62.45	146.00	0.60	0.00	416.02	280.00	137.0	0.00	0.33	0.00	5.53	-7.84
103	Jamner	Wakod	DW	8.09	1040	404	676	73.60	53.46	57.70	2.40	0.00	356.24	106.00	33.0	0.00	0.44	0.13	3.25	-2.23
104	Edlabad	Dui	DW	7.65	1584	661	1030	148.40	70.47	107.00	10.2	0.00	407.48	192.00	142.0	0.00	0.33	0.15	4.45	-6.53
105	Edlabad	Dui	DW	7.5	1630	328.68	-	189.24	33.88	103.33	0.90	0.00	204.96	190.19	146.0	42.00	0.55	0.00	4.06	-8.87
106	Edlabad	Halkheda	DW	7.9	665	209.16	-	114.54	22.99	29.77	1.95	0.00	244.00	28.27	37.0	43.00	0.46	0.00	1.50	-3.61
107	Edlabad	Icchapur	DW	7.3	1716	363.54	-	249.00	27.83	69.82	2.71	0.00	195.20	231.31	81.0	11.00	0.42	0.00	2.43	-11.52
108	Edlabad	Karaki	DW	8.19	1026	441	667	73.60	62.45	57.50	2.50	0.00	387.96	110.00	30.0	0.00	0.44	0.21	3.17	-2.45
109	Edlabad	Karki	DW	7.4	1667	378.48	-	189.24	45.99	67.46	0.98	0.00	190.32	195.33	127.0	43.00	0.23	0.00	2.61	-10.11
110	Edlabad	Kurha Kakora	DW	7.7	1491	333.66	-	129.48	49.62	79.68	1.91	0.00	248.88	167.06	70.0	39.00	0.46	0.00	3.62	-6.46
111	Edlabad	Morjhari	DW	7.6	756	204.18	-	124.50	19.36	29.09	2.67	0.00	214.72	35.98	52.0	8.00	0.41	0.00	1.42	-4.29
112	Edlabad	Muktainagar	DW	8.31	625	249	406	32.80	40.58	36.10	0.40	3.09	160.81	65.00	29.0	0.00	0.38	0.16	2.80	-2.24

SL.	Block	Village	Туре	рН	EC	тн	TDS	Са	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	Fe	SAR	RSC
No.					μS/cm							Mg	/L						%	meq/L
113	Edlabad	Nimkhedi bk.	DW	7.69	826	347	537	65.20	44.71	35.40	0.40	0.00	307.44	58.00	30.0	0.00	0.33	0.24	2.13	-1.89
114	Edlabad	Ruikhed	DW	7.8	1286	249	-	119.52	31.46	93.18	2.45	0.00	200.08	118.23	123.0	40.00	0.50	0.00	4.52	-5.27
115	Edlabad	Sarola	DW	7.99	979	184	636	51.20	13.61	89.00	1.10	0.00	128.10	170.00	31.0	0.00	0.00	0.00	6.59	-1.58
116	Edlabad	Sukli	DW	7.94	991	288	644	22.40	56.38	44.00	0.40	0.00	280.60	64.00	34.0	0.00	0.00	0.00	3.49	-1.16
117	Edlabad	Sula	DW	7.8	921	159.36	-	64.74	22.99	117.60	2.35	0.00	356.24	35.98	46.0	8.00	0.82	0.00	7.60	0.72
118	Edlabad	Narvel	DW	-	889	410	470	86.17	47.39	82.15	1.43	21.00	408.70	109.90	36.0	55.00	0.20	0.00	4.42	-0.80
119	Pachora	Bambrud	DW	8.11	963	204	626	44.80	22.36	63.20	11.2	0.00	236.68	82.00	35.8	0.00	0.00	0.00	4.77	-0.20
120	Pachora	Lasgaon	DW	-	754	335	399	68.14	40.10	66.74	2.05	0.00	366.00	88.63	56.0	58.00	0.62	0.00	4.01	-0.70
121	Pachora	Nagardeola bk	DW	7.69	773	228	502	24.00	40.82	60.90	11.1	0.00	261.08	82.00	36.5	0.00	0.00	0.00	5.16	-0.28
122	Pachora	Pachora	DW	-	942	435	499	74.15	60.76	74.06	3.04	0.00	347.70	159.53	34.0	80.00	0.33	0.00	4.09	-3.00
123	Pachora	Satgaon	DW	7.4	1289	380	838	124.80	16.52	109.60	2.60	0.00	308.66	202.00	60.0	0.00	0.00	0.00	5.36	-2.53
124	Pachora	Shindad	DW	8.89	1183	303	769	76.40	27.22	86.00	0.70	10.80	206.18	114.00	18.0	0.00	0.43	0.52	5.11	-2.31
125	Pachora	Vadgaon ambe.	DW	7.11	1303	280	847	99.20	7.78	167.00	1.10	0.00	275.72	214.00	79.6	0.00	0.00	0.00	9.28	-1.07
126	Parola	Adgaon	DW	8.23	1001	270	651	66.40	25.27	61.50	0.50	10.80	190.32	96.00	44.0	0.00	0.80	0.29	3.90	-1.91
127	Parola	Ambapimpri	DW	7.1	3141	502.98	-	488.04	3.63	294.40	2.40	0.00	34.16	614.26	97.0	18.00	0.71	0.00	7.50	-24.09
128	Parola	Anchalgaon	DW	7.5	488	144.42	-	69.72	18.15	41.89	1.22	0.00	117.12	30.84	80.0	44.00	0.72	0.00	2.66	-3.05
129	Parola	Badarde	DW	7.4	2038	468.12	-	273.90	47.20	60.48	1.55	0.00	92.72	267.29	173.0	43.00	0.31	0.00	1.98	-16.03
130	Parola	Chiklod Kh.	DW	7.2	523	119.52	-	64.74	13.31	33.02	2.05	0.00	107.36	38.55	38.0	44.00	0.29	0.00	2.20	-2.57
131	Parola	Dholi	DW	8.05	400	148	260	33.60	15.55	33.50	1.40	1.21	114.73	64.00	14.0	0.00	0.35	0.07	2.94	-1.04
132	Parola	Jamde	DW	7.9	528	174	343	36.80	19.93	14.10	0.60	1.11	148.85	26.00	24.0	0.00	0.35	0.09	1.16	-1.00
133	Parola	Karadi	DW	7.5	1760	219.12	-	184.26	8.47	214.32	3.14	0.00	39.04	313.56	200.0	40.00	0.68	0.00	8.81	-9.25
134	Parola	Karmad Bk.	DW	7.6	1339	323.7	-	154.38	41.14	52.05	1.42	0.00	161.04	82.24	206.0	18.00	0.37	0.00	2.22	-8.45
135	Parola	Mhasve	DW	9.04	431	125	280	24.80	15.31	44.30	1.00	10.41	101.04	62.00	16.0	0.00	0.24	0.33	4.39	-0.49
136	Parola	Mondhale	DW	-	841	320	446	44.09	51.04	37.00	2.89	0.00	280.60	88.63	10.0	58.00	0.71	0.00	2.50	-1.80
137	Parola	Mondhale	DW	7.7	1212	189.24	-	94.62	22.99	118.20	3.17	0.00	175.68	141.36	127.0	44.00	0.76	0.00	6.47	-3.73
138	Parola	Palashkhede Bk.	DW	7.2	1935	249	-	214.14	8.47	219.74	1.61	0.00	39.04	344.40	258.0	39.00	0.58	0.00	8.39	-10.74
139	Parola	Parola-1	DW	-	2195	790	1164	156.31	97.22	121.00	22.21	0.00	292.80	425.40	53.0	182.0	0.26	0.00	4.77	-11.00
140	Parola	Pimpalkhote	DW	7.5	2627	557.76	-	313.74	59.30	137.20	3.35	0.00	146.40	285.28	210.0	43.00	0.23	0.00	4.18	-18.14
141	Parola	Rajwad	DW	8.4	440	95	286	18.40	11.91	28.80	0.20	2.14	90.73	38.00	14.0	0.00	0.14	0.45	3.29	-0.34
142	Parola	Sarve. bk.	DW	7.99	842	351	547	21.20	72.41	27.70	26.3	0.00	352.58	50.00	11.0	0.00	0.10	0.13	2.06	-1.24
143	Parola	Sumthana	DW	7.7	851	194.22	-	79.68	27.83	76.58	1.88	0.00	185.44	48.83	80.0	17.00	0.75	0.00	4.47	-3.23
144	Parola	Talwade Kd	DW	-	659	315	350	60.12	40.10	46.05	1.98	0.00	335.50	74.45	16.0	33.00	0.30	0.00	2.90	-0.80
145	Parola	Titvishiv	DW	7.09	610	184	397	33.60	24.30	36.80	0.40	0.20	170.80	65.00	14.0	0.00	0.10	0.25	3.07	-0.87
146	Raver	Balvadi	DW	-	554	255	294	56.11	27.95	52.45	1.72	0.00	353.80	63.81	10.0	7.00	0.13	0.00	3.53	0.70
147	Raver	Bhokri	DW	8.51	451	220	293	22.80	39.61	9.60	0.50	5.66	186.18	18.00	8.0	0.00	0.05	0.11	0.83	-1.16
148	Raver	Lalmati	DW	8.39	535	249	348	40.80	35.72	10.40	0.50	5.68	246.20	14.00	7.0	0.00	0.11	0.09	0.77	-0.75
149	Raver	Lohara	DW	8.41	1653	408	1074	49.60	69.01	135.00	0.20	4.80	398.94	202.00	28.0	0.00	0.50	0.14	8.31	-1.46
150	Raver	Padle bk.	DW	7.81	789	310	513	62.00	37.67	35.40	0.40	0.00	268.40	68.00	20.0	0.00	0.37	0.18	2.22	-1.79

SL.	Block	Village	Туре	рН	EC	тн	TDS	Ca	Mg	Na	К	CO3	HCO3	Cl	SO4	NO3	F	Fe	SAR	RSC
No.					μS/cm		Mg/ L												%	meq/L
151	Raver	Raver1	DW	-	974	360	515	50.10	57.11	37.60	0.47	0.00	256.20	131.17	32.0	34.00	0.29	0.00	2.39	-3.00
152	Raver	Savkheda kh.	DW	7.67	1340	364	871	78.40	40.82	102.00	2.20	0.00	366.00	166.00	30.0	0.00	0.22	0.10	5.79	-1.27
153	Yawal	Dangarda	DW	-	575	295	305	78.16	24.30	40.91	3.20	0.00	396.50	46.09	11.0	25.00	0.26	0.00	2.43	0.60
154	Yawal	Faizpur	DW	-	782	255	415	28.06	44.96	102.80	0.73	0.00	408.70	81.54	56.0	12.00	0.20	0.00	8.16	1.60
155	Yawal	Kingaon	DW	-	1110	490	589	102.20	57.11	54.11	0.31	0.00	237.90	198.52	43.0	44.00	0.11	0.00	2.67	-5.90
156	Yawal	Mohrale	DW	7.97	719	265	467	57.20	29.65	32.10	1.40	1.74	198.22	60.00	44.0	0.00	0.16	0.23	2.13	-1.99
157	Yawal	Nimgaon	DW	8.03	1218	352	792	46.40	57.35	109.00	1.30	0.00	336.72	196.00	19.0	0.00	0.40	0.18	7.10	-1.52
158	Yawal	Sangvi Bk	DW	-	771	360	409	40.08	63.19	60.27	0.67	0.00	341.60	99.26	33.0	12.00	0.26	0.00	4.02	-1.60
159	Yawal	Viroda	DW	7.75	1240	490	806	65.20	79.46	80.90	0.40	0.00	400.16	120.00	90.0	0.00	0.11	0.20	4.46	-3.23
Desirable limit (DL)						200	500	75	30					250	200	45	1.5		0	
Maximum permissible limit (MPL)						600	2000	200	100					1000	400				18	
Minimum				6.97	313	89.64	203	18.4	1.944	9.6	0.1	0	24.4	14	0	0	0	0	0.498075	-24.0921
Maximum				9.99	3810	1065	1586	488.04	140.94	377.6	45.89	49.848	606.34	683.653	472	260	1.64	1.92	23.1918	4.614564
Annexure IV: Chemical analysis of ground water samples, Deeper aquifers

SN	Block	Village	Source	рН	EC	TDS	TH	Ca	Mg	Na	к	CO3	HCO3	Cl	SO	NO	F	Fe	SAR	RSC
1	Baver	Utkheda	0W	85	750	415	250	12	54.0	81.0	0.1	33.0	354.0	32	4	-	-	0.0	73	1 85949
2	Raver	Utkheda	EW	8	690	360	215	30	34.0	58.0	4	0.0	354.0	32	10	-	-	0.0	4.8	1.5072
_		Raver R.S.							0.110	00.0		0.0	00.10	01				0.0		1.0072
3	Raver	(OW)	ow	8.3	1450	960	115	20	16.0	350.0	8	0.0	964.0	50	24	-	-	0.0	37.3	13.48532
4	Raver	Raver R.S.	EW	8.4	1250	644	155	28	28.0	215.0	0.1	51.0	610.0	43	-	-	-	0.0	18.7	7.99641
5	Raver	Savkheda	OW	8.5	750	415	250	12	54.0	81.0	0.1	33.0	354.0	32	-	-	-	0.0	7.3	1.85949
6	Raver	Savkheda	EW	8	740	352	315	44	50.0	25.0	0.1	0.0	372.0	46	-	-	-	0.0	1.7	-0.21302
7	Yawal	Borkheda	EW	8.6	550	282	225	22	41.0	32.0	2	18.0	323.0	14	-	-	-	0.0	2.8	1.42222
8	Yawal	Pimprud	OW	8	870	480	240	32	39.0	106.0	2.7	0.0	506.0	-	-	-	-	0.0	8.3	3.48723
9	Yawal	Pimprud	EW	8.3	840	468	230	32	36.0	104.0	1.6	0.0	488.0	43	-	-	-	0.0	8.3	3.43908
10	Raver	Savda R.S.	EW	8	1050	370	290	18	80.0	124.0	0.1	0.0	451.0	135	-	-	-	0.0	9.2	-0.08951
11	Raver	Atwade	EW	7.7	430	240	150	12	5.0	71.0	0.1	0.0	122.0	64	20	-	-	0.0	10.5	0.98933
12	Chopda	Virwade (OW)	OW	8.3	440	240	55	10	7.0	78.0	0.1	0.0	201.0	43	-	-	-	0.0	12.0	2.21936
13	Chopda	Virwade	EW	8.4	500	270	60	10	9.0	85.0	4	0.0	238.0	36	5	-	-	0.0	12.6	2.66121
14	Chopda	Hingo-	OW	7.7	710	375	240	38	35.0	57.0	11	0.0	397.0	35	-	-	-	0.0	4.3	1.73048
15	Chopda	Hingo-	EW	7.5	700	390	210	28	34.0	69.0	0.1	0.0	336.0	50	20	-	-	0.0	5.8	1.31198
16	Raver	Mohrad (OW)	OW	8	550	310	190	24	32.0	51.0	0.1	0.0	348.0	18	-	-	-	0.0	4.5	1.87284
		Mohrad																		
17	Raver	(DZOW)	OW	8.6	470	225	55	10	77.0	74.0	0.1	6.0	232.0	11	-	-	-	0.0	6.0	-2.83287
18	Chopda	Mohrad	EW	8	500	250	180	20	32.0	32.0	4	0.0	281.0	18	-	-	-	0.0	3.0	0.97431
19	Chopda	Kusumbe	OW	8.1	530	290	105	14	11.0	76.0	0.1	0.0	201.0	71	5	-	-	0.0	9.7	1.6906
20	Chopda	Kusumbe	EW	7.9	480	240	165	28	23.0	32.0	4	0.0	262.0	18	-	-	-	0.0	2.9	1.00431
		Palsoda																		
21	Yawal	(DZOW)	OW	8.3	520	300	260	22	50.0	25.0	2	0.0	566.0	18	-	-	-	0.0	2.1	4.06444
22	Yawal	Palsoda	EW	7.7	520	277	235	34	36.0	25.0	27	0.0	317.0	21	-	-	-	0.0	2.0	0.53659
23	Yawal	Borkheda (DZ)	OW	7.8	1430	824	150	24	22.0	276.0	3.9	0.0	92.0	372	80	-	-	0.0	26.3	-1.5001
24	Chopda	Ajantisim	OW	8	720	390	275	26	51.0	51.0	0.1	244	110.0	-	29	-	-	0.0	4.0	4.44123
25	Chopda	Ajantisim	EW	8	660	395	240	10	52.0	64.0	0.1	0.0	214.0	107	53	-	-	0.0	6.0	-1.27062
26	Yawal	Dongaon	EW	8.3	460	240	130	20	14.0	48.0	0.1	0.0	275.0	7	-	-	-	0.0	5.2	2.35719
27	Yawal	Dongaon (OW)	OW	8.5	600	335	40	8	5.0	117.0	1.6	15.0	244.0	43	15	-	-	0.0	20.4	3.68846
28	Raver	Waghode	OW	7.8	1800	1050	365	32	69.0	267.0	2.3	0.0	122.0	560	125	-	-	0.0	18.5	-5.27523
29	Yawal	Chitode	EW	7.9	590	290	150	10	30.0	67.0	0.1	0.0	342.0	11	-	-	-	0.0	7.6	2.63768
30	Yawal	Chikli O.W.	OW	8.7	630	300	180	10	38.0	60.0	0.1	6.0	360.0	4	-	-	-	0.0	6.3	2.47436
31	Yawal	Chikli Bk	EW	8.3	720	360	280	20	41.0	69.0	0.1	0.0	439.0	7	-	-	-	0.0	6.1	2.82332
32	Chopda	Mangrule	PZ	7.8	1170	576	140	22	21.0	205.0	2.3	0.0	464.0	43	21	29	0.52	0.0	20.3	4.77907
33	Chopda	Dhanora	PZ	7.3	880	445	365	82	39.0	35.0	0.2	0.0	451.0	35	1	25	0.1	0.0	2.0	0.09078

SN	Block	Village	Source	рН	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	Cl	SO	NO	F	Fe	SAR	RSC
															4	3				
34	Yawal	Faijpur	PZ	8.2	950	485	235	24	43.0	107.0	1.6	0.0	476.0	46	7	18	0.22	0.0	8.9	3.06557
35	Yawal	Bamnol	PZ	8.6	1000	515	255	30	44.0	115.0	2	21.0	470.0	46	5	15	-	0.0	9.0	3.28547
36	Yawal	Yaval-I	PZ	7.7	3350	1840	515	96	67.0	520.0	4	0.0	445.0	858	40	28	0.8	0.0	25.8	-3.01028
37	Chopda	Vavarde	EW	7.7	1140	669	320	70	35.0	114.0	0.8	0.0	104.0	227	119	50	1.22	0.0	6.9	-4.66859
38	Raver	Shi-i	EW	8.3	1500	857	210	60	15.0	256.0	0.5	0.0	122.0	354	105	4	1.06	0.0	17.6	-2.22877
39	Bhusawal	Talwil	EW	7.6	1530	868	355	112	18.0	191.0	1	0.0	165.0	351	110	2	0.94	0.0	9.8	-4.36567
40	Bhusawal	Talwel	EW	7.6	1530	868	355	112	18.0	191.0	1	0.0	165.0	351	110	2	0.94	0.0	9.8	-4.36567
41	Dharangaon	Bilakheda	EW	7.5	1430	810	560	34	115	70.0	7.2	0.0	226.0	206	115	150	0.45	0.0	4.1	-7.45581
42	Dharangaon	Bilakheda	EW	7.5	1210	687	485	52	86.0	58.0	4	0.0	159.0	181	102	124	0.64	0.0	3.4	-7.06573
43	Dharangaon	Bilakheda	EW	7.5	1210	687	485	52	86.0	58.0	4	0.0	159.0	181	102	124	0.64	0.0	3.4	-7.06573
44	Bhusawal	Gojore	EW	7.9	580	329	215	46	24.0	20.0	0.2	0.0	177.0	25	37	88	0.56	0.0	1.5	-1.36933
45	Bhusawal	Gojore	EW	7.8	580	337	225	54	22.0	21.0	0.3	0.0	165.0	28	40	88	0.71	0.0	1.5	-1.80063
46	Bhusawal	Gojore	EW	7.8	580	337	225	54	22.0	21.0	0.3	0.0	165.0	28	40	88	0.71	0.0	1.5	-1.80063
47	Jalgaon	Mohavi	EW	7.7	730	395	255	38	39.0	45.0	3.1	0.0	268.0	46	37	53	0.42	0.0	3.3	-0.71299
48	Jalgaon	Mohadi	EW	7.7	720	385	265	46	36.0	45.0	3	0.0	232.0	50	39	49	0.51	0.0	3.2	-1.45536
49	Jalgaon	Mohadi	EW	8	700	357	235	18	46.0	45.0	2.8	0.0	268.0	43	33	35	0.46	0.0	4.0	-0.29102
50	Jalgaon	Mohadi	EW	7.7	720	385	265	46	36.0	45.0	3	0.0	232.0	50	39	49	0.51	0.0	3.2	-1.45536
51	Jalgaon	Dhenwadi	EW	7.8	700	430	150	32	17.0	109.0	1.4	0.0	165.0	128	38	21	1.4	0.0	9.7	-0.29138
52	Bodwad	gaon	EW	7.8	1020	591	395	48	64.0	49.0	1	0.0	183.0	124	76	137	0.48	0.0	3.1	-4.66239
53	Bodwad	gaon	EW	7.9	1090	620	390	48	66.0	58.0	0.4	0.0	207.0	131	81	131	0.66	0.0	3.6	-4.43361
54	Bodwad	gaon	EW	7.9	1090	620	390	48	66.0	58.0	0.4	0.0	207.0	131	81	131	0.66	0.0	3.6	-4.43361
55	Jalgaon	Vavarda	EW	7.7	1140	669	320	70	35.0	114.0	0.8	0.0	104.0	227	119	50	1.22	0.0	6.9	-4.66859
56	Pachora	Samner	EW	9.2	1080	622	290	86	18.0	121.0	0.3	0.0	104.0	266	76	2	0.52	0.0	7.0	-4.06806
57	Pachora	Samner	EW	7.8	1240	673	340	88	29.0	128.0	0.7	0.0	110.0	269	101	2	0.65	0.0	7.1	-4.97471
58	Bodvad	Dhondkhede	EW	7.7	850	485	180	36	22.0	106.0	1	0.0	226.0	121	52	33	0.74	0.0	8.7	0.09736
59	Bodwad	Dha-kheda	EW	8	740	400	295	38	49.0	34.0	0.2	0.0	250.0	64	24	64	0.75	0.0	2.4	-1.83091
60	Bodwad	Dha-kheda	EW	8	700	371	260	26	47.0	33.0	0.1	0.0	250.0	53	24	62	0.54	0.0	2.6	-1.06753
61	Bodwad	Dha-kheda	EW	7.7	850	485	180	36	22.0	106.0	1	0.0	226.0	121	52	33	0.74	0.0	8.7	0.09736
62	Erandol	Talai	EW	7.5	1150	652	440	50	77.0	66.0	1	0.0	262.0	96	113	117	0.67	0.0	4.0	-4.53715
63	Erandol	Talai	EW	7.5	1150	652	440	50	77.0	66.0	1	0.0	262.0	96	113	117	0.67	0.0	4.0	-4.53715
64	Pachora	Kalemraza	EW	7.8	490	260	145	30	17.0	45.0	2	0.0	195.0	46	16	6	0.54	0.0	4.1	0.30012
65	Pachora	Kalemraza	EW	7.4	580	277	230	38	33.0	24.0	8.3	0.0	232.0	35	15	8	0.48	0.0	1.8	-0.80929
66	Pachora	Varkhedi	EW	8.2	1740	1000	490	160	22.0	171.0	1.6	0.0	85.0	486	87	28	0.52	0.0	7.4	-8.40123
67	Pachora	Lohtar	EW	8.3	1710	1012	140	44	7.0	329.0	4	0.0	598.0	131	74	123	1.4	0.0	26.9	7.02959
68	Chalisgaon	Khadgaon	EW	7.8	600	306	210	40	27.0	40.0	3.6	0.0	256.0	39	21	7	0.65	0.0	3.1	-0.02199
69	Bhadgaon	Pasardi	EW	7.5	400	216	120	28	12.0	40.0	0.2	0.0	153.0	28	28	3	0.54	0.0	3.9	0.12299
70	Bhadgaon	Pasardi	EW	8.2	700	397	190	40	22.0	68.0	0.5	0.0	98.0	85	130	2	0.74	0.0	5.4	-2.20016
71	Chalisgaon	Chinchkheda	EW	7.8	890	539	190	34	26.0	103.0	1.3	0.0	171.0	103	39	147	0.74	0.0	8.5	-1.03345

SN	Block	Village	Source	рН	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	CI	SO	NO	F	Fe	SAR	RSC
		_							-						4	3				
72	Chalisgaon	Chinchkheda	EW	7.8	890	539	190	34	26.0	103.0	1.3	0.0	171.0	103	39	147	0.74	0.0	8.5	-1.03345
73	Chopda	Satragen	OW	7.2	610	396.5	260	26	47.4	28.0	7	0.0	317.0	32	12.4	5	0.47	0.0	2.2	-0.00232
															12.					
74	Chopda	Satragen	EW	7.2	600	390	255	40	37.7	26.0	5	0.0	323.0	28	2	5	0.47	0.0	1.9	0.195637
75	Raver	Nirul	PYT	7.6	690	448.5	360		-	-	-	-	-	-	-	77	BDL	0.0	-	-
76	Chopda	Vardi	EW-PYT	8	1980	1287	500		-	-	-	-	-	-	-	281	BDL	0.0	-	-
77	Chopda	Vadti	E.W -PYT	7.1	500	325	430		-	-	-	-	-	-	-	28	BDL	0.0	-	-
78	Raver	Charwad	E.W - PYT	7.9	900	585	470		-	-	-	-	-	-	-	112	BDL	0.0	-	-
79	Raver	Waghoda	EW	7.5	2000	1300	665		-	-	-	-	-	-	-	193	0.91	0.0	-	-
80	Raver	Tamaswadi	E.W - PYT	7.6	1210	786.5	550		-	-	-	-	-	-	-	131	BDL	0.0	-	-
81	Raver	Tamaswadi	OW - PYT	7.6	1180	767	480		-	-	-	-	-	-	-	118	BDL	0.0	-	-
82	Chopda	Chopda	OW-PYT	8.3	1160	754	210		-	-	-	-	-	-	-	15	0.15	0.0	-	-
83	Chopda	Chopda	EW-PYT	7.5	2080	1352	340		-	-	-	-	-	-	-	110	BDL	0.0	-	-
84	Chopda	Hated Kh	EW-PYT	8.1	1540	1001	780		-	-	-	-	-	-	-	224	BDL	0.0	-	-
85	Chopda	Hated Kh	OW-PYT	8.4	1460	949	410		-	-	-	-	-	-	-	156	0.62	0.0	-	-
86	Chopda	Chahardi	E.W - PYT	7.9	1480	962	450		-	-	-	-	-	-	-	55	0.38	0.0	-	-
87	Chopda	Chahardi	PYT	7.9	1340	871	280		-	-	-	-	-	-	-	35	0.77	0.0	-	-
88	Chopda	Satrasen	EW(APT)	7.3	720	468	195	30	29.2	75.0	13	0.0	336.0	39	13.2	21	0.37	0.0	6.3	1.607172
89	Chopda	Satraren	APT	7.5	660	429	340	78	35.0	-	-	0.0	183.0	64	-	25	0.1	0.0	-	-3.77298
90	Chopda	Satraren	EW APT	7.5	660	429	340	78	35.0	-	-	0.0	183.0	64	-	25.5	0.1	0.0	-	-3.77298
91	Chopda	Hatedkhurd	APT	7.3	1130	734.5	375	14	83.0	90.0	16	0.0	384.0	145	47	41	0.45	0.0	6.8	-1.23491
92	Chopda	Chahadi	OW APT	7.4	1530	994.5	220	24	38.9	255.0	18	0.0	653.0	163	48.3	5	0.68	0.0	21.8	6.303989
93	Bodwad	Junnone	EWPYT	7.7	2242	1457.3	885	114	146.0	-	-	0.0	177.0	383	96	23	0.44	0.0	-	-14.8019
94	Bodwad	Yengaon	EWPYT	8.2	1283	833.95	400	48	68.0	-	-	0.0	287.0	230	58	39	0.59	0.0	-	-3.28699
		Danger																		
95	Amalner	(BK)Amalner	Exploration	8	1158	752.7	294	249	11.0	117.0	0.52	0.0	44.0	337	62	7	0.55	0.0	4.1	-12.6091
96	Amalner	Lon Bk.	Borewell	7.45	1680	1092	400	40	72.9	200.0	9.2	0.0	330.6	258	0	0	0	0.0	12.9	-2.57641
97	Amalner	Lone	Borewell	8.55	416	270.4	155	37.6	14.8	23.0	4.9	4.8	143.1	42	14	0	0.18	0.3	1.9	-0.58874
98	Amlner	Takarkheda	Exploration	8.1	540	351	144	75	17.0	52.0	0.29	0.0	63.0	100	50	7	0.41	0.0	3.2	-4.10886
99	Bhusawal	Bhusawal	Borewell	7.91	2320	1508	722	245.6	26.2	197.0	25.7	0.0	400.2	340	162	0	0.5	0.9	6.9	-7.85216
100	Bhusawal	Chorwad	Borewell	7.64	1428	928.2	444	92.8	51.5	145.9	33.2	0.0	384.3	270	63.8	0	0	0.0	7.6	-2.56998
101	Bhusawal	Mandve digar	Borewell	8.03	671	436.15	314	57.2	41.6	45.9	1.7	3.0	300.9	70	21	0	0.38	0.7	2.9	-1.2458
102	Bhusawal	-ndgaon	Borewell	8.1	2230	1449.5	694	106	104.2	197.0	5	0.0	307.4	336	256	0	0.5	0.3	8.8	-8.82573
103	Bhusawal	Varangaon	Borewell	8.11	1209	785.85	543	76.8	85.3	85.0	0.5	0.0	351.4	124	138	0	0.33	1.3	4.4	-5.09221
104	Chalisgaon	Adgaon	Borewell	8	1511	982.15	444	102.8	45.4	152.0	1.3	0.0	192.8	286	48	0	0.35	0.3	7.7	-5.70569
105	Chalisgaon	Kharjai	Borewell	8.89	506	328.9	178	31.6	24.1	24.6	0.5	9.4	129.2	34	46	0	0.35	0.3	2.1	-1.12914
		Khedi																		
106	Chalisgaon	Khedgaon	Borewell	8.59	1268	824.2	320	21.6	64.6	75.1	0.7	4.8	259.9	100	25	0	0.5	0.3	5.8	-1.97403

SN	Block	Village	Source	pН	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	CI	SO	NO	F	Fe	SAR	RSC
															4	3				
107	Chalisgaon	Mandurni	Borewell	8.17	1003	651.95	369	61.6	52.2	59.2	0.7	0.0	255.0	100	32	0	0.75	0.1	3.6	-3.18993
108	Chalisgaon	Pat-	Borewell	8.6	1813	1178.45	510	40	99.6	180.0	0.6	4.8	318.4	280	57	0	0.35	0.1	10.7	-4.81352
109	Chalisgaon	Pilkhod	Borewell	8.21	973	632.45	361	46.4	59.5	55.9	0.5	0.0	262.3	98	11	0	0.75	0.2	3.6	-2.91252
		Vadgaon																		
110	Chalisgaon	Lambe	Borewell	7.74	1010	656.5	372	84.8	38.9	88.5	2.1	0.0	240.3	168	82	0	0	0.0	4.9	-3.49408
111	Chopda	Ajantisim	Exploration	7.97	660	429	240	10	52.0	64.0	0	0.0	214.0	107	53	0	0	0.1	6.0	-1.27062
112	Chopda	Ajantisim	Exploration	8.02	720	468	275	26	51.0	51.0	0	244.0	110.0	0	29	0	0	0.0	4.0	4.44123
113	Chopda	Chopda	Borewell	7.91	1403	911.95	204	33.6	29.2	148.0	5.9	0.0	276.9	228	0	0	0	0.0	12.0	0.458883
114	Chopda	Hingo-	Exploration	7.5	700	455	210	28	34.0	69.0	0	0.0	336.0	50	20	0	0	0.0	5.8	1.31198
115	Chopda	Hingo-	Exploration	7.67	710	461.5	240	38	35.0	57.0	11	0.0	397.0	35	0	0	0	0.0	4.3	1.73048
116	Chopda	Kusumbe	Exploration	7.91	480	312	165	28	23.0	32.0	4	0.0	262.0	18	0	0	0	0.0	2.9	1.00431
117	Chopda	Kusumbe	Exploration	8.09	530	344.5	105	14	11.0	76.0	0	0.0	201.0	71	5	0	0	0.0	9.7	1.6906
118	Chopda	Mohrad	Exploration	8	500	325	180	20	32.0	32.0	4	0.0	281.0	18	0	0	0	0.0	3.0	0.97431
119	Chopda	Virwade	Exploration	8.43	500	325	60	10	9.0	85.0	4	0.0	238.0	36	5	0	0	0.0	12.6	2.66121
120	Chopda	Virwade (OW)	Exploration	8.34	440	286	55	10	7.0	78.0	0	0.0	201.0	43	0	0	0	0.0	12.0	2.21936
121	Erandol	Adgaon	Borewell	7.85	926	601.9	396	116	25.8	54.8	2.8	0.0	319.6	98	51	0	0.24	0.2	2.7	-2.67324
122	Erandol	Eklag-	Borewell	7.95	1252	813.8	502	68.4	80.4	86.4	0.8	0.0	444.1	122	62	0	0.3	0.1	4.7	-2.75048
123	Erandol	Kharchi bk.	Borewell	7.57	2310	1501.5	596	50.4	114.2	191.0	26.5	0.0	396.5	336	149	0	0.43	0.1	10.4	-5.41384
124	Erandol	Pastane .kh	Borewell	8.39	1860	1209	616	57.2	114.9	171.0	26.7	9.6	412.4	326	98	0	0.3	0.2	9.0	-5.2302
125	Jalgaon	Jalgaon	Borewell	7.22	1316	855.4	272	70.4	23.3	156.0	1.2	0.0	246.4	202	0	0	0	0.0	9.7	-1.39182
126	Jalgaon	Jalke	Borewell	8.04	1908	1240.2	498	83.2	70.5	146.0	0.6	0.0	381.9	272	71	0	0.92	0.3	7.6	-3.69378
127	Jamner	Dhalgaon	Borewell	8.25	1006	653.9	461	72	68.3	60.3	0.2	0.0	408.7	114	36	0	0.44	0.4	3.3	-2.51461
128	Jamner	Kapuswadi	Borewell	7.59	1160	754	352	56	51.5	84.6	1.5	0.0	176.9	162	0	0	0	0.0	5.3	-4.13294
129	Jamner	Khadgaon	Borewell	7.53	1598	1038.7	571	119.2	66.3	104.0	0.8	0.0	419.7	182	143	0	0.5	0.2	4.8	-4.52502
130	Jamner	Kodoli	Borewell	7.75	1638	1064.7	620	39.2	126.8	166.0	1.2	0.0	375.8	278	183	0	0.23	0.2	9.2	-6.23109
		Palaskheda																		
131	Jamner	mirache	Borewell	7.91	1490	968.5	506	65.2	83.3	98.0	3.4	0.0	400.2	180	110	0	0.72	0.3	5.3	-3.54896
132	Jamner	So-le	Borewell	7.95	616	400.4	294	58.8	35.7	26.2	1.3	2.3	277.6	46	27	0	0.33	0.2	1.7	-1.24535
133	Jamner	Takali pimpri	Borewell	8.25	714	464.1	108	22.4	12.6	73.8	0.6	2.5	151.4	134	0	0	0	0.0	7.8	0.410157
		Chinchakheda(
134	Muktai-gar	BK PYT)	Exploration	7.9	919	597.35	369	204	40.0	37.0	0.09	0.0	244.0	111	86	30	0.26	0.0	1.4	-9.47204
		Chinchakheda																		
		(BK)Drilling																		
135	Muktai-gar	200 mtr	Exploration	8	848	551.2	319	259	15.0	48.0	0.18	0.0	195.0	100	100	30	0.27	0.0	1.7	-10.9624
136	Muktai-gar	Halkheda	Borewell	7.23	1148	746.2	224	75.2	8.7	150.3	1.2	0.0	196.4	204	94	0	0	0.0	9.5	-1.24941
		Manegaon 3																		
		Drilling 200																		
137	Muktai-gar	mtr	Exploration	7.8	610	396.5	85	65	5.0	106.0	0.14	0.0	83.0	129	45	14	1.44	0.0	7.3	-2.29458

SN E	Block	Village	Source	рН	EC	TDS	тн	Са	Mg	Na	К	CO3	HCO3	Cl	SO	NO	F	Fe	SAR	RSC
															4	3				
		Pimpri																		
138 N	Muktai-gar	pancham	Borewell	8.15	532	345.8	212	36	29.6	26.7	1.3	2.2	165.7	44	29	0	0.44	0.2	2.1	-1.44304
139 P	Pachora	Khurad bk.	Borewell	9	659	428.35	170	24.8	26.2	39.9	0.1	14.9	158.6	56	13	0	1.3	0.3	3.7	-0.29745
140 P	Pachora	-chankheda	Borewell	8.79	442	287.3	166	33.2	20.2	36.4	0.9	9.1	156.6	50	16	0	0.18	0.2	3.1	-0.44896
141 P	Pachora	Neri	Borewell	7.35	1252	813.8	308	112	6.8	119.5	2.1	0.0	268.4	200	58.1	0	0	0.0	6.3	-1.7493
142 F	Pachora	Sarola.kh.	Borewell	8.61	642	417.3	203	28.4	32.1	45.9	0.1	5.6	145.2	66	50	0	0.5	0.3	3.9	-1.49219
143 F	Pachora	Wadi Shewade	Borewell	9.52	435	282.75	149	24.8	21.1	37.4	0.5	37.7	74.6	52	26	0	0.24	1.4	3.5	-0.4946
		Bahadarpur																		
144 F	Parola	Parola	Exploration	8.2	1263	820.95	349	279	17.0	116.0	0.41	0.0	102.0	306	111	7	0.3	0.0	3.9	-13.6493
145 F	Parola	Karadi	Borewell	8.41	397	258.05	144	28.8	17.5	33.4	1.5	2.0	84.8	64	23	0	0.4	0.2	3.1	-1.42066
146 F	Parola	Shelava Parola	Exploration	7.7	1327	862.55	374	279	23.0	133.0	0.34	0.0	29.0	352	131	7	0.38	0.0	4.4	-15.3395
		Shirasmani																		
147 F	Parola	Parola	Exploration	8.4	414	269.1	149	139	2.0	28.0	0.6	10.0	93.0	41	47	16	0.26	0.0	1.3	-5.24311
148 F	Parola	Undirkheda	Borewell	9.52	629	408.85	178	34.8	22.1	21.1	0.1	50.9	76.5	36	14	0	1.36	0.4	1.8	-0.6048
149 F	Raver	Ahirwadi	Tubewell	7.94	546	354.9	237	32.8	37.7	8.4	0.5	1.9	238.0	14	7	0	0.16	0.0	0.7	-0.77491
150 F	Raver	Gaulwada	Exploration	8.02	420	273	135	8	28.0	33.0	2.3	0.0	226.0	18	0	0	0	0.0	4.0	1.00082
		Mohrad																		
151 F	Raver	(DZOW)	Exploration	8.63	470	305.5	55	10	77.0	74.0	0	6.0	232.0	11	0	0	0	0.0	6.0	-2.83287
152 F	Raver	Mohrad (OW)	Exploration	8	550	357.5	190	24	32.0	51.0	0	0.0	348.0	18	0	0	0	0.0	4.5	1.87284
153 F	Raver	Rasalpur	Tubewell	8.29	477	310.05	257	36	40.6	10.9	0.7	4.7	259.2	20	5	0	0.35	0.1	0.8	-0.73244
154 F	Raver	Raver R.S.	Exploration	8.35	1250	812.5	155	28	28.0	215.0	0	51.0	610.0	43	0	0	0	0.0	18.7	7.99641
		Raver R.S.																		
155 F	Raver	(OW)	Exploration	8.3	1450	942.5	115	20	16.0	350.0	8	0.0	964.0	50	24	0	0	0.0	37.3	13.48532
156 F	Raver	Savda R.S.	Exploration	8	1050	682.5	290	18	80.0	124.0	0	0.0	451.0	135	0	0	0	0.0	9.2	-0.08951
157 F	Raver	Savkheda	Exploration	8.03	740	481	315	44	50.0	25.0	0	0.0	372.0	46	0	0	0	0.0	1.7	-0.21302
158 F	Raver	Savkheda	Exploration	8.5	750	487.5	250	12	54.0	81.0	0	33.0	354.0	32	0	0	0	0.0	7.3	1.85949
159 F	Raver	Utkheda	Exploration	8	690	448.5	215	30	34.0	58.0	4	0.0	354.0	32	10	0	0	0.0	4.8	1.5072
160 F	Raver	Utkheda	Exploration	8.5	750	487.5	250	12	54.0	81.0	0	33.0	354.0	32	0	0	0	0.0	7.3	1.85949
161 F	Raver	Waghode	Exploration	7.8	1800	1170	365	32	69.0	267.0	2.34	0.0	122.0	560	125	0	0	0.0	18.5	-5.27523
162 Y	Yawal	Borkheda	Exploration	8.57	550	357.5	225	22	41.0	32.0	2	18.0	323.0	14	0	0	0	0.0	2.8	1.42222
163 Y	Yawal	Borkheda (DZ)	Exploration	7.75	1430	929.5	150	24	22.0	276.0	3.9	0.0	92.0	372	80	0	0	0.0	26.3	-1.5001
164	Yawal	Chikli Bk	Exploration	8.3	720	468	280	20	41.0	69.0	0	0.0	439.0	7	0	0	0	0.0	6.1	2.82332
165 \	Yawal	Chikli O.W.	Exploration	8.7	630	409.5	180	10	38.0	60.0	0	6.0	360.0	4	0	0	0	0.0	6.3	2.47436
166 Y	Yawal	Chincholi	Tubewell	7.73	676	439.4	265	62	26.7	32.2	0.2	1.3	250.7	48	25	0	0.52	0.2	2.1	-1.13864
167	Yawal	Chitode	Exploration	7.91	590	383.5	150	10	30.0	67.0	0	0.0	342.0	11	0	0	0	0.1	7.6	2.63768
168	Yawal	Dongaon	Exploration	83	460	299	130	20	14.0	48.0	0	0.0	275.0	7	0	0	0	0.0	5.2	2 35719
169 \	Yawal	Dongaon	Exploration	83	610	396 5	45	8	61	120.0	1 56	0.0	268.0	, 43	15	0	0	0.0	20.4	3 491351
170 \	Yawal	Dongaon (OW/)	Exploration	8.5	600	390	40	8	49	117.0	1.56	15.0	244.0	43	15	0	0	0.0	20.4	3 699981

SN	Block	Village	Source	рН	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	CI	SO	NO	F	Fe	SAR	RSC
															4	3				
171	Yawal	Palsoda	Exploration	7.71	520	338	235	34	36.0	25.0	27	0.0	317.0	21	0	0	0	0.0	2.0	0.53659
		Palsoda																		
172	Yawal	(DZOW)	Exploration	8.29	520	338	260	22	50.0	25.0	2	0.0	566.0	18	0	0	0	0.0	2.1	4.06444
173	Yawal	Pimprud	Exploration	8.3	840	546	230	32	36.0	104.0	1.6	0.0	488.0	43	0	0	0	0.0	8.3	3.43908
174	Yawal	Pimprud	Exploration	8	870	565.5	240	32	39.0	106.0	2.7	0.0	506.0	0	0	0	0	0.0	8.3	3.48723
175	Yawal	Waghoda	Tubewell	8	790	513.5	244	60.8	22.4	68.5	2.6	0.0	203.7	130	26	0	0.44	0.1	4.6	-1.53857
176	Chopra	Ghosdogaon	Tubewell	7.69	1195	776.75	288	50	39.6	76.1	3.1	0.0	236.7	140	53.9	0	0	0.0	5.1	-1.87417
177	Yawal	Dongaon	EW	8.3	610	396.5	45	8	6.0	120.0	1.6	0.0	268.0	43	15	-	-	0.0	20.4	3.49958
178	Raver	Gaulwada	EW	8	420	273	135	8	28.0	33.0	2.3	0.0	226.0	18	-	-	-	0.0	4.0	1.00082
179	Chopda	Lasur	EW	8.2	770	500.5	480		-	-	-	-	-	-	-	81	BDL	0.0	-	-
Desira	able limit (DL)					500	200	75	30					250	200	45	1.5		0	
Maxir	num permissible	e limit (MPL)				2000	600	200	100					1000	400				18	
Minin	num			7.1	397	216	40	8	2	8.4	0	0	29	0	BDL	BDL	BDL	BDL	0.7	-15.3395
Maxir	num			9.52	3350	1840	885	279	146	520	33.2	244	964	858	256	281	1.44	1.40	37.32	13.49

Village SN District Taluka х γ Type of structure 21.0746 1 Jalgaon Amalner Amalner 75.0709 Percolation tank 2 Amalner Amalner 75.0518 21.0368 Percolation tank Jalgaon 3 Amalner Amalner 75.0471 21.0495 Percolation tank Jalgaon 4 Amalner Amalner (Rural) 75.0496 21.0163 Jalgaon Percolation tank 5 Jalgaon Amalner Ardi 74.961 21.0428 Percolation tank 6 Jalgaon Amalner Bharvas 74.911 21.1104 Percolation tank 7 Jalgaon Amalner Bhortek 75.0071 21.1124 Percolation tank 8 Amalner Dhar 75.0417 21.0888 Percolation tank Jalgaon 9 Galwade Bk 75.0169 21.0677 Amalner Percolation tank Jalgaon 10 Amalner Galwade Bk 75.0104 21.0895 Percolation tank Jalgaon 11 Hingone Kh.Pr.Jalod 21.1697 Jalgaon Amalner 75.0893 Percolation tank 12 Amalner Jalod 75.1384 21.145 Percolation tank Jalgaon Percolation tank 13 Amalner Javakhede 74.9117 21.0576 Jalgaon 14 74.9862 Jalgaon Amalner Kalamsare 21.1711 Percolation tank 15 Jalgaon Amalner Kalamsare 74.9823 21.148 Percolation tank Jalgaon 16 Amalner Karan Khede 75.0453 21.1369 Percolation tank 17 21.1284 Jalgaon Amalner Mehargaon 75.1087 Percolation tank Amalner 18 Jalgaon Mungase 75.2314 21.1227 Percolation tank 19 Nimb 74.9708 Jalgaon Amalner 21.1838 Percolation tank 20 Jalgaon Amalner Nimbhore 75.108 21.1516 Percolation tank 21 Jalgaon Amalner Nimbhore 75.0828 21.1593 Percolation tank 22 Jalgaon Amalner Nimbhore 75.0903 21.1378 Percolation tank 23 Patonde 75.1937 21.1205 Percolation tank Jalgaon Amalner 24 Patonde 75.2106 21.1232 Percolation tank Jalgaon Amalner 25 Jalgaon Amalner Pingalwade 75.0795 21.1455 Percolation tank 26 Amalner Satri 75.0666 21.1653 Percolation tank Jalgaon 27 Amalner Shahapur 74.9347 21.1569 Percolation tank Jalgaon Bodvad 28 JALGAON Nadgaon 76.0129 20.8878 Percolation tank 29 JALGAON 75.979 20.9469 Bodvad Junone Digar Percolation tank 30 JALGAON Varhad Kh 75.9027 20.8938 Percolation tank Bodvad 31 JALGAON 75.8754 Bodvad Borgaon 20.8828 Percolation tank 32 JALGAON Bodvad Surwade Bk. 75.8727 20.9074 Percolation tank 33 JALGAON Bodvad Kolhadi 76.0358 20.9153 Percolation tank 34 JALGAON Bodvad Shelwad 75.9633 20.8506 Percolation tank 35 Jalgaon Chalisgaon Bahal 75.027 20.5885 Percolation tank 36 Jalgaon Chalisgaon Bahal 75.0392 20.6079 Percolation tank 37 Chalisgaon Bahal 75.0294 20.6108 Percolation tank Jalgaon 38 Jalgaon Chalisgaon Bahal 75.0435 20.5622 Percolation tank 39 Chalisgaon Bhamare Bk. 75.141 20.5057 Percolation tank Jalgaon 40 Chalisgaon Bhaur 74.9788 20.5685 Percolation tank Jalgaon 41 Bhoras Kh. 74.9654 Chalisgaon 20.5057 Percolation tank Jalgaon 42 Jalgaon Chalisgaon Borkhede Bk. 75.0352 20.5442 Percolation tank 43 Chalisgaon Borkhede Bk. 75.0355 20.5634 Percolation tank Jalgaon 44 Chalisgaon Borkhede Kh. 75.077 20.4937 Percolation tank Jalgaon 45 Chalisgaon Chalisgaon Urban 75.0142 20.456 Jalgaon Percolation tank Chambhardi Bk. 46 Jalgaon Chalisgaon 75.124 20.468 Percolation tank 47 Chalisgaon Dasegaon Bk 74.948 20.5439 Percolation tank Jalgaon 48 Chalisgaon Hirapur 74.9526 20.424 Percolation tank Jalgaon Percolation tank 49 Chalisgaon Jamada 75.002 20.5788 Jalgaon 50 20.5282 Jalgaon Chalisgaon Mandurne 74.8091 Percolation tank 51 Chalisgaon Mandurne 74.7849 20.5138 Percolation tank Jalgaon 52 Chalisgaon Mandurne 74.794 20.5174 Percolation tank Jalgaon 53 74.9349 20.5605 Jalgaon Chalisgaon Mehunbare Percolation tank 54 Mundkhede Bk. Jalgaon Chalisgaon 75.0831 20.4817 Percolation tank 55 Chalisgaon Patonda 75.0666 20.4937 Percolation tank Jalgaon 56 74.9382 20.5462 Jalgaon Chalisgaon Pimpri Kh. Percolation tank 57 Jalgaon Chalisgaon Pohare 74.9873 20.645 Percolation tank

Annexure V: Location of proposed Percolation tanks in Jalgaon district

SN	District	Taluka	Village	х	Y	Type of structure
58	Jalgaon	Chalisgaon	Sevanagar	74.8102	20.5575	Percolation tank
59	Jalgaon	Chalisgaon	Tekwade Bk.	75.0575	20.5759	Percolation tank
60	Jalgaon	Chalisgaon	Tirpole	74.9038	20.5525	Percolation tank
61	Jalgaon	Chalisgaon	Umbarkhede	74.9093	20.54	Percolation tank
62	Jalgaon	Chalisgaon	Upkhede	74.8153	20.5397	Percolation tank
63	Jalgaon	Chalisgaon	Vadgaon Lambe	74.9962	20.5445	Percolation tank
64	Jalgaon	Chalisgaon	Waghadu	75.0587	20.4549	Percolation tank
65	Jalgaon	Chalisgaon	Waghali	75.1185	20.5337	Percolation tank
66	Jalgaon	Chalisgaon	Waghali	75.0996	20.4965	Percolation tank
67	Jalgaon	Chalisgaon	Wakadi	75.0654	20.4423	Percolation tank
68	Jalgaon	Chopda	Adgaon	75.3199	21.2975	Percolation tank
69	Jalgaon	Chopda	Adwad	75.4456	21.2528	Percolation tank
70	Jalgaon	Chopda	Ambade	75.3545	21.2686	Percolation tank
71	Jalgaon	Chopda	Chahardi	75.2301	21.2106	Percolation tank
72	Jalgaon	Chopda	Chahardi	75.2517	21.2491	Percolation tank
73	Jalgaon	Chopda	Chaugaon	75.217	21.2899	Percolation tank
74	Jalgaon	Chopda	Chaugaon	75.2262	21.3063	Percolation tank
75	Jalgaon	Chopda	Chopda	75.2876	21.2665	Percolation tank
76	Jalgaon	Chopda	Chopda	75.3098	21.2632	Percolation tank
77	Jalgaon	Chopda	Galangi	75.1188	21.2485	Percolation tank
78	Jalgaon	Chopda	Galwade	75.1668	21.2571	Percolation tank
79	Jalgaon	Chopda	Ghodgaon	75.1315	21.2269	Percolation tank
80	Jalgaon	Chopda	Hatede Bk.	75.1968	21.2612	Percolation tank
81	Jalgaon	Chopda	Lasur	75.1873	21.2863	Percolation tank
82	Jalgaon	Chopda	Machale	75.3692	21.2333	Percolation tank
83	Jalgaon	Chopda	Mamlade	75.2761	21.2963	Percolation tank
84	Jalgaon	Chopda	Nagalwadi	75.3023	21.3191	Percolation tank
85	Jalgaon	Chopda	Shikawal	75.1534	21.2975	Percolation tank
86	Jalgaon	Chopda	Tawase Bk.	75.2896	21.1956	Percolation tank
87	Jalgaon	Chopda	Vardi	75.4045	21.25	Percolation tank
88	lalgaon	Chopda	Virwade	75.3561	21.3118	Percolation tank
89	Jalgaon	Edlabad	Bodwad	76.2407	21.0022	Percolation tank
90	Jalgaon	Edlabad	Bodwad	76.2334	21.0054	Percolation tank
91	Jalgaon	Edlabad	Changdeo	76.0156	21.0754	Percolation tank
92	Jalgaon	Edlabad	Chinchkhede Bk.	76.1943	21.0341	Percolation tank
93	lalgaon	Edlabad	Chinchkhede Kh.	76.3541	20.9988	Percolation tank
94	lalgaon	Edlabad	Chinchol	75.9705	21.0805	Percolation tank
95	Jalgaon	Edlabad	Dhamangaon	76 2639	21.0005	Percolation tank
96	Jalgaon	Ediabad	Edlabad	76.08	21.0210	Percolation tank
97	Jalgaon	Edlabad	Edlabad	76.0528	21.0031	Percolation tank
98	Jalgaon	Edlabad	Ghodasgaon	76.0320	21.0420	Percolation tank
99	Jalgaon	Ediabad	Khamani	76.1515	21.0424	Percolation tank
100	lalgaon	Edlahad	Korhale	76 32	20.9595	Percolation tank
101	lalgaon	Edlabad	Kothali	76.0574	21.0629	Percolation tank
102	lalgaon	Edlabad	Kothe	76.0846	21.0029	Percolation tank
102	Jalgaon	Edlabad	Kurbo	76.0840	21.1345	Percolation tank
103	lalgaon	Edlabad	Mahalkhede	76 2017	20.3003	Percolation tank
104	Jalgaon	Edlabad	Managaon	76.0220	21.021	Percolation tank
105	Jaigaon	Edlabad	Sukali	76.0339	21.0091	Percolation tank
100	Jaigaon	Edlabad	Junali	76.1254	21.0049	Percolation tank
107	Jalgaon	Edlabad	Wadhana	70.1234	20.997	Percolation tank
100	Jaigaon			70.3372	20.970	Percolation tark
1109	Jaigaon	Jaigaon	Asoda		21.0704	Percolation tank
110	Jaigaon	Jaigaon	ASODA	75.5804	21.0586	Percolation tank
111	Jaigaon	Jaigaon	BNOKAR	/5.342/	21.1507	Percolation tank
112	Jalgaon	Jalgaon	Jaigaon (Ma-2)	/5.5231	21.0108	Percolation tank
113	Jalgaon	Jalgaon	Jaigaon (Ma-2)	/5.5202	21.0377	Percolation tank
114	Jalgaon	Jalgaon	Jalgaon (Ma-2)	75.5908	21.0273	Percolation tank
115	Jalgaon	Jalgaon	Jalgaon (Ma-2)	75.5962	21.0111	Percolation tank
116	Jalgaon	Jalgaon	Jalgaon (Ma-2)	75.5361	21.032	Percolation tank

SN	District	Taluka	Village	х	Y	Type of structure
117	Jalgaon	Jalgaon	Kadgaon	75.6589	21.07	Percolation tank
118	Jalgaon	Jalgaon	Kadgaon	75.6658	21.0713	Percolation tank
119	Jalgaon	Jalgaon	Kadgaon	75.7043	21.0464	Percolation tank
120	Jalgaon	Jalgaon	Kanalde	75.4968	21.098	Percolation tank
121	Jalgaon	Jalgaon	Kanalde	75.4875	21.1033	Percolation tank
122	Jalgaon	Jalgaon	Kanaswade	75.656	21.0808	Percolation tank
123	Jalgaon	Jalgaon	Kanaswade	75.6499	21.0882	Percolation tank
124	Jalgaon	Jalgaon	Kanaswade	75.6474	21.1013	Percolation tank
125	Jalgaon	Jalgaon	Mamurabad	75.5804	21.0835	Percolation tank
126	Jalgaon	Jalgaon	Mamurabad	75.5775	21.0758	Percolation tank
127	Jalgaon	Jalgaon	Nashirabad	75.6463	21.0283	Percolation tank
128	Jalgaon	Jalgaon	Nashirabad	75.6265	20.9866	Percolation tank
129	Jalgaon	Jalgaon	Tighre	75.7155	21.0454	Percolation tank
130	Jalgaon	Parola	Ambapimpri	75.0648	20.9321	Percolation tank
131	Jalgaon	Parola	Bahadarpur	75.0388	20.9152	Percolation tank
132	Jalgaon	Parola	Bahadarpur	75.0359	20.8955	Percolation tank
133	Jalgaon	Parola	Dahigaon	75.1944	20.9492	Percolation tank
134	Jalgaon	Parola	Indhave	75.005	20.9392	Percolation tank
135	Jalgaon	Parola	Indhave	74.9909	20.9395	Percolation tank
136	Jalgaon	Parola	Jirali	74.9927	20.9196	Percolation tank
137	Jalgaon	Parola	Mahalpur	75.0806	20.9085	Percolation tank
138	Jalgaon	Parola	Shelave Bk.	75.1483	20.921	Percolation tank
139	Jalgaon	Parola	Shevage Bk.	75.0846	20.888	Percolation tank
140	Jalgaon	Parola	Shirsode	75.0424	20.8844	Percolation tank
141	Jalgaon	Parola	Sumthane	75.0291	20.9624	Percolation tank
142	Jalgaon	Parola	Sumthane	75.0212	20.9342	Percolation tank
143	Jalgaon	Raver	Ahirwadi	76.0829	21.2998	Percolation tank
144	Jalgaon	Raver	Ambhode Kh.	76.0309	21.314	Percolation tank
145	Jalgaon	Raver	Ambhode Kh.	76.0213	21.3201	Percolation tank
146	Jalgaon	Raver	Bhatkhede	75.9895	21.228	Percolation tank
147	Jalgaon	Raver	Chorwad	76.1423	21.2743	Percolation tank
148	Jalgaon	Raver	Karjod	76.0833	21.2734	Percolation tank
149	Jalgaon	Raver	Karjod	76.1041	21.2667	Percolation tank
150	Jalgaon	Raver	Karjod	76.0803	21.2852	Percolation tank
151	Jalgaon	Raver	Khanapur	76.1185	21.263	Percolation tank
152	Jalgaon	Raver	Khirode Pr. Yawal	75.8857	21.2292	Percolation tank
153	Jalgaon	Raver	Khirode Pr. Yawal	75.8717	21.2033	Percolation tank
154	Jalgaon	Raver	Khirode Pr.Raver	76.0196	21.2645	Percolation tank
155	Jalgaon	Raver	Khirode Pr.Raver	76.0242	21.2798	Percolation tank
156	Jalgaon	Raver	Khirode Pr.Raver	76.0091	21.2973	Percolation tank
157	Jalgaon	Raver	Kusumbe Bk.	75.9641	21.2575	Percolation tank
158	Jalgaon	Raver	Lalmati	75.9922	21.302	Percolation tank
159	Jalgaon	Raver	Lohare	75.9161	21.2402	Percolation tank
160	Jalgaon	Raver	Mohagan Bk.	76.0834	21.3237	Percolation tank
161	Jalgaon	Raver	Mohagan Bk.	76.0888	21.3262	Percolation tank
162	Jalgaon	Raver	Padale Bk.	76.1182	21.3029	Percolation tank
163	Jalgaon	Raver	Pimpri	76.0432	21.3264	Percolation tank
164	Jalgaon	Raver	Pimpri	76.0584	21.3241	Percolation tank
165	Jalgaon	Raver	Pimpri	76.049	21.3228	Percolation tank
166	Jalgaon	Raver	Rasalpur	76.0532	21.2651	Percolation tank
167	Jalgaon	Raver	Raver (Rural)	76.0245	21.2137	Percolation tank
168	Jalgaon	Raver	Raver (Rural)	75.998	21.2365	Percolation tank
169	Jalgaon	Raver	Raver (Rural)	76.0182	21.2407	Percolation tank
170	Jalgaon	Raver	Rozode	75.8844	21.1985	Percolation tank
171	Jalgaon	Raver	Savkhede Kh.	75.9056	21.224	Percolation tank
172	Jalgaon	Raver	Utkhede	75.9755	21.239	Percolation tank
173	Jalgaon	Raver	Vivare Kh	75.9647	21.214	Percolation tank
174	Jalgaon	Yawal	Atrawal	75.7453	21.1825	Percolation tank
175	Jalgaon	Yawal	Bhalod	75.7897	21.1633	Percolation tank

SN	District	Taluka	Village	х	Y	Type of structure
176	Jalgaon	Yawal	Bhorkhede Kh	75.7721	21.2294	Percolation tank
177	Jalgaon	Yawal	Borale	75.6487	21.218	Percolation tank
178	Jalgaon	Yawal	Chincholi	75.5573	21.2348	Percolation tank
179	Jalgaon	Yawal	Chitode	75.7417	21.2001	Percolation tank
180	Jalgaon	Yawal	Chunchale	75.6206	21.2102	Percolation tank
181	Jalgaon	Yawal	Chunchale	75.6216	21.2333	Percolation tank
182	Jalgaon	Yawal	Chunchale	75.6438	21.2522	Percolation tank
183	Jalgaon	Yawal	Chunchale	75.6439	21.2281	Percolation tank
184	Jalgaon	Yawal	Dahigaon	75.6683	21.2129	Percolation tank
185	Jalgaon	Yawal	Dangarkuthora	75.7267	21.2507	Percolation tank
186	Jalgaon	Yawal	Dangarkuthora	75.7496	21.2339	Percolation tank
187	Jalgaon	Yawal	Dangarkuthora	75.7463	21.2199	Percolation tank
188	Jalgaon	Yawal	Dangarkuthora	75.7401	21.2358	Percolation tank
189	Jalgaon	Yawal	Dongaon	75.5697	21.2096	Percolation tank
190	Jalgaon	Yawal	Faizpur	75.8629	21.1865	Percolation tank
191	Jalgaon	Yawal	Hingone	75.7799	21.1998	Percolation tank
192	Jalgaon	Yawal	Ichkheda	75.5857	21.2443	Percolation tank
193	Jalgaon	Yawal	Ichkheda	75.5876	21.2705	Percolation tank
194	Jalgaon	Yawal	Khalkot	75.5693	21.2571	Percolation tank
195	Jalgaon	Yawal	Kingaon Bk	75.6098	21.2184	Percolation tank
196	Jalgaon	Yawal	Korpawli	75.695	21.2409	Percolation tank
197	Jalgaon	Yawal	Naigaon	75.6075	21.2397	Percolation tank
198	Jalgaon	Yawal	Naigaon	75.602	21.2464	Percolation tank
199	Jalgaon	Yawal	Nhavi P Yaval	75.8315	21.2017	Percolation tank
200	Jalgaon	Yawal	Savkhedesim	75.6549	21.2531	Percolation tank
201	Jalgaon	Yawal	Virode	75.838	21.1502	Percolation tank
202	Jalgaon	Yawal	Yawal	75.7019	21.1947	Percolation tank
203	Jalgaon	Yawal	Yawal	75.7296	21.1843	Percolation tank

Annexure VI: Location of proposed check dam in Jalgaon district

Sn	District	Taluka	Village	Х	Y	Type of structure
1	Jalgaon	Amalner	Amalner	75.0424	21.0342	Check dam
2	Jalgaon	Amalner	Amalner	75.0878	21.0268	Check dam
3	Jalgaon	Amalner	Amalner	75.0997	21.0675	Check dam
4	Jalgaon	Amalner	Ambasan	75.0115	21.0547	Check dam
5	Jalgaon	Amalner	Anora	74.9563	21.0376	Check dam
6	Jalgaon	Amalner	Anora	74.9571	21.0447	Check dam
7	Jalgaon	Amalner	Bilkhede	75.0871	21.003	Check dam
8	Jalgaon	Amalner	Chopdai	74.927	20.9511	Check dam
9	Jalgaon	Amalner	Dahiwad	75.1937	21.0726	Check dam
10	Jalgaon	Amalner	Dahiwad	75.2074	21.0884	Check dam
11	Jalgaon	Amalner	Dahiwad	75.1912	21.0871	Check dam
12	Jalgaon	Amalner	Dahiwad	75.1847	21.0783	Check dam
13	Jalgaon	Amalner	Dahiwad	75.1995	21.1012	Check dam
14	Jalgaon	Amalner	Dahiwad Kh.(N.V.)	75.2135	21.0473	Check dam
15	Jalgaon	Amalner	Dahiwad Kh.(N.V.)	75.1934	21.0575	Check dam
16	Jalgaon	Amalner	Dangar Bk.	74.9545	20.9683	Check dam
17	Jalgaon	Amalner	Dangar Bk.	74.9412	20.972	Check dam
18	Jalgaon	Amalner	Dangar Bk.	74.9567	20.9835	Check dam
19	Jalgaon	Amalner	Deogaon	75.1116	21.0544	Check dam
20	Jalgaon	Amalner	Dhanore	75.0359	21.1052	Check dam
21	Jalgaon	Amalner	Dheku Seem.	75.0169	21.0615	Check dam
22	Jalgaon	Amalner	Ekrukhi	75.1692	20.9865	Check dam
23	Jalgaon	Amalner	Indrapimpri	75.0165	20.9808	Check dam
24	Jalgaon	Amalner	Indrapimpri	75.0071	20.9855	Check dam
25	Jalgaon	Amalner	Jaitpir	74.992	21.1095	Check dam
26	Jalgaon	Amalner	Janave	74.9574	20.9915	Check dam
27	Jalgaon	Amalner	Janave	74.9657	20.9966	Check dam
28	Jalgaon	Amalner	Janave	74.9621	20.9882	Check dam
29	Jalgaon	Amalner	Kachare	75.1494	21.0796	Check dam
30	Jalgaon	Amalner	Kalamsare	74.9949	21.1524	Check dam
31	Jalgaon	Amalner	Khadke	74.9675	21.0241	Check dam
32	Jalgaon	Amalner	Khaparkhede Pr.Dangri	75.0424	21.1237	Check dam
33	Jalgaon	Amalner	Khavashi	75.1836	21.1068	Check dam
34	Jalgaon	Amalner	Khokar Pat	75.1022	20.9989	Check dam
35	Jalgaon	Amalner	Lon Chara	74.9236	21.0985	Check dam
36	Jalgaon	Amalner	Londhave	74.9996	21.0178	Check dam
37	Jalgaon	Amalner	Mangarul	75.0475	21.0036	Check dam
38	Jalgaon	Amalner	Mangarul	75.0417	21.0181	Check dam
39	Jalgaon	Amalner	Manjardi	75.1411	21.0941	Check dam
40	Jalgaon	Amalner	Nimzari	75.2153	21.0662	Check dam
41	Jalgaon	Amainer	Nisardi	74.9772	21.0282	Check dam
42	Jaigaon	Amainer	INISARAI Delecide	74.9787	21.0144	Check dam
43	Jaigaon	Amainer	Palasdal	75.1292	21.0366	Check dam
44	Jaigaon	Amainer	Pilada	75.1274	21.0252	Check dam
45	Jaigaon	Amainer	Pilode	75.1138	21.0965	Check dam
46	Jaigaon	Amainer	Pilode Dimensio Di	75.1217	21.0861	Check dam
47	Jaigaon	Amainer	Pimpale BK.	75.001	21.0403	Check dam
40	Jaigaon	Amainer	Pamoshwar Kh	75 1572	21.0380	
49	Jaigaon	Amainer		74.0506	21.0238	
	Jaigaon	Amainer	Ranaiche	74.9590	21.0107	
51	Jaigaon	Amainer		74.9558	21.0005	
52	Jaigaon	Amalner	Sabata Pk	75 1662	21.10/2	
50	Jaigaon	Amalner	Saluele DK.	71 0703	20.33/3	
55	Jalgaon	Amalner	Shirud	75 02/1	21.0705	Check dam
56	Jalgaon	Amalner	Shirud	75.0341	20.3373	Check dam
57	Jalgaon	Amalner	Vavade	7/ 0213	21.0023	Check dam
57	Jalgaon	Bodyad	Muktal	75 2005	21.0745	Check dam
70	JaigaOII	Douvau	wuxtai	20202	20.0313	

Sn	District	Taluka	Village	Х	Y	Type of structure
59	Jalgaon	Bodvad	Dhanori	75.8847	20.9266	Check dam
60	Jalgaon	Bodvad	Dhanori	75.8765	20.9236	Check dam
61	Jalgaon	Bodvad	Kholpimpri	75.8969	20.9138	Check dam
62	Jalgaon	Bodvad	Kholpimpri	75.9058	20.9093	Check dam
63	Jalgaon	Bodvad	Kholpimpri	75.9196	20.9085	Check dam
64	Jalgaon	Bodvad	Salshingi	75.9299	20.9078	Check dam
65	Jalgaon	Bodvad	Vichave	75.8642	20.9368	Check dam
66	Jalgaon	Bodvad	Surwade Bk.	75.8806	20.9111	Check dam
67	Jalgaon	Bodvad	Jalchakra Kh.	75.9485	20.8863	Check dam
68	Jalgaon	Bodvad	Jalchakra Kh.	75.9499	20.883	Check dam
69	Jalgaon	Bodvad	Salshingi	75.9628	20.9029	Check dam
70	Jalgaon	Bodvad	Farkande	76.0084	20.9547	Check dam
71	Jalgaon	Bodvad	Amadgaon	76.0091	20.9323	Check dam
72	Jalgaon	Bodvad	Amadgaon	75.9962	20.9279	Check dam
73	Jalgaon	Bodvad	Salshingi	75.9727	20.9331	Check dam
74	Jalgaon	Bodvad	Salshingi	75.9638	20.9304	Check dam
75	Jalgaon	Bodvad	Salshingi	75.9574	20.9129	Check dam
76	Jalgaon	Bodvad	Salshingi	75.961	20.908	Check dam
77	Jalgaon	Bodvad	Salshingi	75.9865	20.9069	Check dam
78	Jalgaon	Bodvad	Manur Bk.	76.006	20.8417	Check dam
79	Jalgaon	Bodvad	Shelwad	75.9702	20.8523	Check dam
80	Jalgaon	Bodvad	Shirsale	76.066	20.9443	Check dam
81	Jalgaon	Bodvad	Shirsale	76.0601	20.9518	Check dam
82	Jalgaon	Bodvad	Hingane	76.0416	20.9342	Check dam
83	Jalgaon	Bodvad	Hingane	76.0389	20.9392	Check dam
84	Jalgaon	Bodvad	Hingane	76.0408	20.9295	Check dam
85	Jalgaon	Bodvad	Hingane	76.036	20.9347	Check dam
86	Jalgaon	Bodvad	Amadgaon	76.0224	20.9251	Check dam
87	Jalgaon	Bodvad	Amadgaon	76.0228	20.9312	Check dam
88	Jalgaon	Bodvad	Farkande	76.0144	20.956	Check dam
89	Jalgaon	Bodvad	Farkande	76.0207	20.956	Check dam
90	Jalgaon	Chalisgaon	Abhane	74.9764	20.6714	Check dam
91	Jalgaon	Chalisgaon	Alwadi	74.8248	20.4852	Check dam
92	Jalgaon	Chalisgaon	Alwadi	74.8202	20.5046	Check dam
93	Jalgaon	Chalisgaon	Chambhardi Bk.	75.1105	20.4561	Check dam
94	Jalgaon	Chalisgaon	Chambhardi Bk.	75.1172	20.4641	Check dam
95	Jalgaon	Chalisgaon	Chambhardi Kh.	75.1301	20.4792	Check dam
96	Jalgaon	Chalisgaon	Chinchgavhan	74.9007	20.606	Check dam
97	Jalgaon	Chalisgaon	Dahiwad	74.9196	20.6114	Check dam
98	Jalgaon	Chalisgaon	Dahiwad	74.9276	20.6234	Check dam
99	Jalgaon	Chalisgaon	Daregaon	74.8458	20.6088	Check dam
100	Jalgaon	Chalisgaon	Deoli	74.9263	20.4915	Check dam
101	Jalgaon	Chalisgaon	Deoli	74.9196	20.4906	Check dam
102	Jalgaon	Chalisgaon	Dhamangaon	74.9529	20.6023	Check dam
103	Jalgaon	Chalisgaon	Dhamangaon	74.9544	20.5871	Check dam
104	Jalgaon	Chalisgaon	Dhamangaon	74.9477	20.6008	Check dam
105	Jalgaon	Chalisgaon	Don Digar	74.9355	20.4803	Check dam
106	Jalgaon	Chalisgaon	Eklahare	75.134	20.4912	Check dam
107	Jalgaon	Chalisgaon	Hatale	75.1099	20.4446	Check dam
108	Jalgaon	Chalisgaon	Hirapur	74.9263	20.4187	Check dam
109	Jalgaon	Chalisgaon	Ichchhapur	74.9971	20.5237	Check dam
110	Jalgaon	Chalisgaon	Ichchhapur	74.9904	20.5123	Check dam
111	Jalgaon	Chalisgaon	Jamada	74.9965	20.5828	Check dam
112	Jalgaon	Chalisgaon	Jamada	74.991	20.5903	Check dam
113	Jalgaon	Chalisgaon	Jawale	75.1264	20.4552	Check dam
114	Jalgaon	Chalisgaon	Kadhere	74.9059	20.5794	Check dam
115	Jalgaon	Chalisgaon	Kalamadu	74,973	20.6548	Check dam
116	Jalgaon	Chalisgaon	Kalamadu	74,9669	20.6619	Check dam
117	lalgaon	Chalisgaon	Kalamadu	74,9562	20.6519	Check dam
±±/	30150011	Shansguon		1.1.3302	20.0010	Sheek duin

Sn	District	Taluka	Village	Х	Y	Type of structure
118	Jalgaon	Chalisgaon	Kalamadu	74.9669	20.6474	Check dam
119	Jalgaon	Chalisgaon	Kalamadu	74.9587	20.6422	Check dam
120	Jalgaon	Chalisgaon	Khadaki Bk.	74.97	20.4375	Check dam
121	Jalgaon	Chalisgaon	Khadaki Seem	74.923	20.5911	Check dam
122	Jalgaon	Chalisgaon	Khedi Kh.	75.002	20.6197	Check dam
123	Jalgaon	Chalisgaon	Khedi Kh.	75.0078	20.6154	Check dam
124	Jalgaon	Chalisgaon	Kunzar	74.9986	20.6971	Check dam
125	Jalgaon	Chalisgaon	Kunzar	74.9956	20.7056	Check dam
126	Jalgaon	Chalisgaon	Kunzar	74.9889	20.6942	Check dam
127	Jalgaon	Chalisgaon	Kunzar	74.9739	20.7102	Check dam
128	Jalgaon	Chalisgaon	Kunzar	74.9715	20.7185	Check dam
129	Jalgaon	Chalisgaon	Kunzar	74.9773	20.725	Check dam
130	Jalgaon	Chalisgaon	Londhe	74.8651	20.6111	Check dam
131	Jalgaon	Chalisgaon	Mandurne	74.8013	20.5228	Check dam
132	Jalgaon	Chalisgaon	Mandurne	74.7829	20.5188	Check dam
133	Jalgaon	Chalisgaon	Mandurne	74.7775	20.5138	Check dam
134	Jalgaon	Chalisgaon	Mandurne	74.7763	20.5228	Check dam
135	Jalgaon	Chalisgaon	Mehunbare	74.93	20.5717	Check dam
136	Jalgaon	Chalisgaon	Mundkhede Bk.	75.0785	20.4712	Check dam
137	Jalgaon	Chalisgaon	Nhave	75.0508	20.5491	Check dam
138	Jalgaon	Chalisgaon	Pimpri Bk.Pr.Chalisga	74.93	20.3844	Check dam
139	Jalgaon	Chalisgaon	Pimpri Bk.Pr.De	74.8968	20.4726	Check dam
140	Jalgaon	Chalisgaon	Pimpri Bk.Pr.De	74.88	20.4723	Check dam
141	Jalgaon	Chalisgaon	Pohare	74.977	20.6562	Check dam
142	Jalgaon	Chalisgaon	Pohare	74.9773	20.6365	Check dam
143	Jalgaon	Chalisgaon	Rokade	75.0739	20.4441	Check dam
144	Jalgaon	Chalisgaon	Sevanagar	74.8096	20.5614	Check dam
145	Jalgaon	Chalisgaon	Sevanagar	74.8071	20.5649	Check dam
146	Jalgaon	Chalisgaon	Sevanagar	74.7993	20.5654	Check dam
147	Jalgaon	Chalisgaon	Sevanagar	74.7951	20.5732	Check dam
148	Jalgaon	Chalisgaon	Shindi	74.9203	20.3713	Check dam
149	Jalgaon	Chalisgaon	Shirasgaon	74.8724	20.492	Check dam
150	Jalgaon	Chalisgaon	lalegaon	74.9175	20.4027	Check dam
151	Jalgaon	Chalisgaon	Talegaon	74.9446	20.4052	Check dam
152	Jalgaon	Chalisgaon	Talonde Pr. Dehere	74.869	20.4872	Check dam
153	Jalgaon	Chalisgaon	Tarwade BK.	75.0319	20.5237	Check dam
154	Jalgaon	Chalisgaon	Tarwade BK.	75.0261	20.5272	Check dam
155	Jalgaon	Chalisgaon	lirpole	74.9077	20.5654	Check dam
156	Jalgaon	Chalisgaon	Upkhede	74.821	20.5535	Check dam
157	Jalgaon	Chalisgaon	Upknede	74.8189	20.5597	Check dam
158	Jaigaon	Challisgaon	Vadgaon Lambe	74.995	20.5363	Check dam
159	Jaigaon	Challsgaon	Wagnali	75.0846	20.5066	Check dam
160	Jaigaon	Chalisgaon	Waghali	75.0922	20.5172	Check dam
161	Jalgaon	Chanda	VVagnan	75.0996	20.5337	Check dam
162	Jaigaon	Chopda	Adwad	75.4519	21.2092	
163	Jaigaon	Chopda	Chausaan	75.267	21.3339	Check dam
164	Jalgaon	Chopda	Chaugaon	75.2204	21.3251	Check dam
166	Jaigaon	Chopda	Chaugaon	75.2284	21.3201	Check dam
167	Jaigaon	Chonda	Chaugaon	75.2344	21.5262	Check dam
10/	Jaigaon	Chords	Chanda	75.2399	21.329	
100	Jaigaon	Chords	Chonda	75.3108	21.2327	
170	Jalgaon	Chonda	Chopda	75.52/1	21.234/	Check dam
171	Jaigaon	Chonda	Chonda	75.3295	21.2428	Check dam
172	Jaigaon	Chonda	Eorost	75.3309	21.240/	Check dam
172	Jaigaon	Chopda	Forest	75.2219	21.3241	Check dam
174	Jalgaon	Chonda	Caratad (N) ()	75.4/12	21.2/34	
175	Jalgaon	Chonda	Khardi	75.3257	21.2293	Check dam
176	Jaigaon	Chondo		75.4093	21.27	
1/0	Jaigaoli	спориа	LaSUI	12.2121	21.313/	

Sn	District	Taluka	Village	Х	Y	Type of structure
177	Jalgaon	Chopda	Lasur	75.2017	21.3125	Check dam
178	Jalgaon	Chopda	Lasur	75.1968	21.3147	Check dam
179	Jalgaon	Chopda	Nagalwadi	75.304	21.3351	Check dam
180	Jalgaon	Chopda	Rukhankhede Pr.Chopda	75.3464	21.2386	Check dam
181	Jalgaon	Chopda	Rukhankhede Pr.Chopda	75.3459	21.2456	Check dam
182	Jalgaon	Chopda	Shikawal	75.1718	21.3074	Check dam
183	Jalgaon	Chopda	Varad	75.2797	21.334	Check dam
184	Jalgaon	Chopda	Varad	75.2859	21.3344	Check dam
185	Jalgaon	Chopda	Vardi	75.4063	21.2782	Check dam
186	Jalgaon	Chopda	Vardi	75.4252	21.2671	Check dam
187	Jalgaon	Chopda	Vardi	75.433	21.2666	Check dam
188	Jalgaon	Chopda	Vardi	75.4201	21.2724	Check dam
189	Jalgaon	Chopda	Virwade	75.3445	21.326	Check dam
190	Jalgaon	Chopda	Virwade	75.3547	21.3257	Check dam
191	Jalgaon	Chopda	Virwade	75.3631	21.3249	Check dam
192	Jalgaon	Edlabad	Changdeo	76.0117	21.052	Check dam
193	Jalgaon	Edlabad	Changdeo	76.0089	21.0589	Check dam
194	Jalgaon	Edlabad	Changdeo	76.0101	21.0677	Check dam
195	Jalgaon	Edlabad	Charthane	76.2486	21.0577	Check dam
196	Jalgaon	Edlabad	Charthane	76.2569	21.056	Check dam
197	Jalgaon	Edlabad	Charthane	76.2694	21.0532	Check dam
198	Jalgaon	Edlabad	Charthane	76.2639	21.0332	Check dam
199	Jalgaon	Edlabad	Chinchkhede Bk.	76.1861	21.0515	Check dam
200	Jalgaon	Edlabad	Chinchkhede Bk.	76.1898	21.058	Check dam
201	Jalgaon	Edlabad	Dhamangaon	76.2651	21.0406	Check dam
202	Jalgaon	Edlabad	Dhamangaon	76.2745	21.033	Check dam
203	Jalgaon	Edlabad	Dhamangaon	76.2855	21.0364	Check dam
204	Jalgaon	Edlabad	Dhule	76.3465	21.017	Check dam
205	Jalgaon	Edlabad	Dhule	76.3465	21.0321	Check dam
206	Jalgaon	Edlabad	Edlabad	76.0705	21.0426	Check dam
207	Jalgaon	Edlabad	Edlabad	76.0681	21.0529	Check dam
208	Jalgaon	Edlabad	Edlabad	76.0583	21.029	Check dam
209	Jalgaon	Edlabad	Ghodasgaon	76.109	21.0475	Check dam
210	Jalgaon	Ediabad	Ghodasgaon	76.1324	21.0324	Check dam
211	Jaigaon	Ediabad	Ghodasgaon	76.1425	21.0358	Check dam
212	Jalgaon	Ediabad	Ghodasgaon	76.1239	21.0264	Check dam
213	Jalgaon	Ediabad	Halkhede	76.3529	21.0389	Check dam
214	Jalgaon	Ediabad	Hartale	76.0132	21.0424	Check dam
215	Jalgaon	Ediabad	Ichchhapur	76.2392	21.0201	Check dam
216	Jalgaon	Ediabad	Kasarkhede	75.9949	21.0688	Check dam
217	Jaigaon	Ediabad	Kasarknede	75.9864	21.0779	Check dam
218	Jaigaon	Ediabad	Knamani	76.162	21.0643	Check dam
512	Jaigaon	Edlabad	Mahalkhede	76.20/1	21.0415	Check dam
220	Jalgaon	Eulabad	Managaan	76.2212	21.0472	Check dam
221	Jalgaon	Ediabad	Morzira	76.0339	21.00	
222	Jalgaon	Ediabad	Morzira	76.2809	21.0483	
223	Jaigaon	Edlabad	Paiuro	76 2124	21.0203	Check dam
224	Jaigaon	Edlabad	Paiuro	76 2000	21.040	Check dam
225	Jalgaon	Edlahad	Calbardi	76.0000	21.0404	Check dam
220	Jaigaon	Edlahad	Jaluarui	76.0352	21.033	Check dam
22/	Jaigaon	Edlabad	Talkhada	76.2090	21.00074	
228	Jalgaon	Ediabad	Talkhada	76.3252	20.9974	
229	Jalgaor	Edlahad	Vadbava	75.0005	21.0133	
230	Jaigaon	Edlahad	Wadhana	75.9925	21.04/2	
231	Jaigaon	Edlabad	Wadhana	76.3054	21.01/9	Check dam
232	Jalgaon		Poli	70.3011	20.9849	
∠33 221	Jalgaon	Jaigaon	Bilwadi	75.0524	20.9049	Check dam
234	Jaigaon	Jaigaon	Diiwdui	75.4851	20.8454	
235	Jaigaon	Jaigaon	Chincholi	15.5986	20.9546	спеск dam

Sn	District	Taluka	Village	Х	Y	Type of structure
236	Jalgaon	Jalgaon	Devhari	75.595	20.9087	Check dam
237	Jalgaon	Jalgaon	Devhari	75.6137	20.9016	Check dam
238	Jalgaon	Jalgaon	Dhanwad	75.5802	20.9222	Check dam
239	Jalgaon	Jalgaon	Dhanwad	75.5871	20.9028	Check dam
240	Jalgaon	Jalgaon	Forest	75.5489	20.8195	Check dam
241	Jalgaon	Jalgaon	Forest	75.5707	20.834	Check dam
242	Jalgaon	Jalgaon	Forest	75.5638	20.8234	Check dam
243	Jalgaon	Jalgaon	Forest	75.5777	20.8372	Check dam
244	Jalgaon	Jalgaon	Forest	75.579	20.8414	Check dam
245	Jalgaon	Jalgaon	Forest	75.5737	20.8483	Check dam
246	lalgaon	Jalgaon	Forest	75.5609	20.8858	Check dam
247	lalgaon	Jalgaon	Forest	75 5912	20.8927	Check dam
248	lalgaon	Jalgaon	Forest	75 5543	20.909	Check dam
249	lalgaon	Jalgaon	Forest	75 5548	20.9013	Check dam
250	lalgaon	Jalgaon	Forest	75 5599	20.893	Check dam
250	Jalgaon	Jalgaon	Jalgaon (Ma-2)	75 5478	21.0183	Check dam
251	Jalgaon	Jalgaon	Jalgaon (Ma-2)	75 5/38	21.0185	Check dam
252	Jalgaon	Jalgaon	Jalgaon (Ma-2)	75 5752	20.9987	Check dam
255	Jalgaon		$\frac{1}{2}$	75 5509	20.9857	Check dam
254	Jalgaon	Jalgaon	Jalgaon (Ma 2)	75.5309	20.9558	Check dam
255	Jaigaon	Jalgaon	Jalgaon (Ma-2)	75.5265	20.979	Check dam
250	Jaigaon	Jaigaon	$\frac{1}{2} \frac{1}{2} \frac{1}$	75 5001	20.373	Check dam
257	Jaigaon	Jalgaon		75.5694	20.9979	Check dam
258	Jalgaon	Jaigaon	Jawkhede	75.4910	20.819	
259	Jaigaon	Jaigaon	Jawknede	75.4891	20.8175	
260	Jaigaon	Jalgaon	Jawknede	75.4833	20.8249	Check dam
261	Jaigaon	Jaigaon	Kandari	75.6854	20.9048	Check dam
262	Jalgaon	Jalgaon	Kandari	75.6461	20.8967	Check dam
263	Jalgaon	Jalgaon	Kandari	75.6492	20.901	Check dam
264	Jalgaon	Jalgaon	Kandari	75.6481	20.9068	Check dam
265	Jalgaon	Jalgaon	Kandari	75.6683	20.9109	Check dam
266	Jalgaon	Jalgaon	Kandari	/5.6/95	20.918	Check dam
267	Jalgaon	Jalgaon	Kandari	75.6692	20.9312	Check dam
268	Jalgaon	Jalgaon	Kandari	/5.662/	20.9284	Check dam
269	Jalgaon	Jalgaon	Kusumbe Kh	75.5708	20.9578	Check dam
270	Jalgaon	Jalgaon	Lonwadi Bk	75.4932	20.8092	Check dam
271	Jalgaon	Jalgaon	Lonwadi Kh	75.5145	20.7995	Check dam
272	Jalgaon	Jalgaon	Lonwadi Kh	75.5078	20.8064	Check dam
273	Jalgaon	Jalgaon	Lonwadi Kh	75.4995	20.8138	Check dam
274	Jalgaon	Jalgaon	Lonwadi Kh	75.5057	20.8007	Check dam
275	Jalgaon	Jalgaon	Mohadi	75.5253	20.9673	Check dam
276	Jalgaon	Jalgaon	Mohadi	75.5354	20.9632	Check dam
277	Jalgaon	Jalgaon	Mohadi	75.5292	20.9738	Check dam
278	Jalgaon	Jalgaon	Nagziri	75.5109	20.9583	Check dam
279	Jalgaon	Jalgaon	Nashirabad	75.6359	21.0116	Check dam
280	Jalgaon	Jalgaon	Nashirabad	75.6123	20.9659	Check dam
281	Jalgaon	Jalgaon	Nashirabad	75.6793	20.9911	Check dam
282	Jalgaon	Jalgaon	Nimgaon Bk	75.6726	20.939	Check dam
283	Jalgaon	Jalgaon	Pathari	75.4689	20.8259	Check dam
284	Jalgaon	Jalgaon	Raipur	75.7144	20.9097	Check dam
285	Jalgaon	Jalgaon	Savkhede Bk	75.5188	20.9901	Check dam
286	Jalgaon	Jalgaon	Savkhede Bk	75.5251	20.9937	Check dam
287	Jalgaon	Jalgaon	Shirsoli P.B.	75.5442	20.9364	Check dam
288	Jalgaon	Jalgaon	Shirsoli P.B.	75.5244	20.9476	Check dam
289	Jalgaon	Jalgaon	Shirsoli P.N.	75.5161	20.8762	Check dam
290	Jalgaon	Jalgaon	Shirsoli P.N.	75.4948	20.8729	Check dam
291	Jalgaon	Jalgaon	Shirsoli P.N.	75.5071	20.8752	Check dam
292	Jalgaon	Jalgaon	Shirsoli P.N.	75.504	20.8808	Check dam
293	Jalgaon	Jalgaon	Shirsoli P.N.	75.5114	20.9185	Check dam
294	Jalgaon	Jalgaon	Shirsoli P.N.	75.5278	20.888	Check dam

Sn	District	Taluka	Village	х	Y	Type of structure
295	Jalgaon	Jalgaon	Shirsoli P.N.	75.5343	20.8895	Check dam
296	Jalgaon	Jalgaon	Umale	75.6184	20.91	Check dam
297	Jalgaon	Jalgaon	Umale	75.6207	20.8996	Check dam
298	Jalgaon	Jalgaon	Umale	75.6301	20.8944	Check dam
299	Jalgaon	Jalgaon	Vadali	75.4884	20.8298	Check dam
300	Jalgaon	Jalgaon	Vadali	75.4842	20.8389	Check dam
301	lalgaon	Jalgaon	Vadali	75.479	20.8326	Check dam
302	lalgaon	Jalgaon	Vadali	75.4795	20.837	Check dam
303	lalgaon	Jalgaon	Vadali	75.4813	20.8449	Check dam
304	lalgaon	Jalgaon	Vadali	75.475	20.8296	Check dam
305	lalgaon	Jalgaon	Vasantwadi	75 5183	20.8601	Check dam
306	Jalgaon	Jalgaon	Vitner	75 5237	20.8328	Check dam
307	Jalgaon	Jalgaon	Vitner	75 5/38	20.8269	Check dam
308	Jalgaon	Jalgaon	Vitner	75 5429	20.8203	Check dam
200	Jalgaon	Jalgaon	Vitner	75.5425	20.8402	Check dam
210	Jalgaon	Jalgaon	Vitner	75 5575	20.8558	Check dam
211	Jalgaon	Jalgaon	Vitner	75.5575	20.8229	Check dam
212	Jalgaon	Jalgaon	Vitner	75.5752	20.8585	Check dam
212	Jalgaon	Jalgaon	Vitner	75.5797	20.8041	Check dam
313	Jaigaon	Jaigaon	Vitner	75.5450	20.856	
314	Jaigaon	Jaigaon	Vitner	75.5534	20.8634	Check dam
315	Jaigaon	Jaigaon	Vitner	75.5474	20.8607	Check dam
316	Jaigaon	Jaigaon	Vitner	75.528	20.8628	Спеск dam
317	Jalgaon	Jalgaon	Vitner	75.5645	20.8575	Check dam
318	Jalgaon	Jalgaon	Vitner	75.5669	20.8636	Check dam
319	Jalgaon	Parola	Bahadarpur	75.0318	20.9011	Check dam
320	Jalgaon	Parola	Bahadarpur	75.0343	20.9063	Check dam
321	Jalgaon	Parola	Bahadarpur	75.0367	20.9141	Check dam
322	Jalgaon	Parola	Bhilali	75.09	20.9473	Check dam
323	Jalgaon	Parola	Bholane	74.9706	20.8952	Check dam
324	Jalgaon	Parola	Bholane	74.9738	20.905	Check dam
325	Jalgaon	Parola	Bholane	74.9913	20.9024	Check dam
326	Jalgaon	Parola	Bholane	74.9996	20.89	Check dam
327	Jalgaon	Parola	Dabapimpri	75.1156	20.9384	Check dam
328	Jalgaon	Parola	Dabapimpri	75.1116	20.9573	Check dam
329	Jalgaon	Parola	Dalwel	74.996	20.8651	Check dam
330	Jalgaon	Parola	Dalwel	74.9938	20.8412	Check dam
331	Jalgaon	Parola	Dalwel	74.9895	20.85	Check dam
332	Jalgaon	Parola	Dalwel	75.0158	20.856	Check dam
333	Jalgaon	Parola	Dalwel	75.0028	20.8567	Check dam
334	Jalgaon	Parola	Dalwel	74.996	20.8534	Check dam
335	Jalgaon	Parola	Jirali	75.0223	20.8982	Check dam
336	Jalgaon	Parola	Jirali	75.0264	20.9088	Check dam
337	Jalgaon	Parola	Jirali	74.9996	20.8974	Check dam
338	Jalgaon	Parola	Khedi Dhok	75.1764	20.973	Check dam
339	Jalgaon	Parola	Mondhale Pr. Amalner	75.0273	20.8459	Check dam
340	Jalgaon	Parola	Mondhale Pr. Amalner	75.0131	20.8356	Check dam
341	Jalgaon	Parola	Pimpalkote	74.9623	20.9294	Check dam
342	Jalgaon	Parola	Pimpalkote	74.965	20.9245	Check dam
343	Jalgaon	Parola	Pimpalkote	74.9544	20.9194	Check dam
344	Jalgaon	Parola	Pimpalkote	74.978	20.9132	Check dam
345	Jalgaon	Parola	Pimpalkote	74.9929	20.9132	Check dam
346	Jalgaon	Parola	Shevage Bk.	75.0882	20.9008	Check dam
347	Jalgaon	Parola	Shevage Bk.	75.0882	20.8749	Check dam
348	Jalgaon	Parola	Shevage Pr.Bahal	75.0203	20.8152	Check dam
349	Jalgaon	Parola	Shirsode	75.0219	20.8732	Check dam
350	Jalgaon	Parola	Shirsode	75.0439	20.8745	Check dam
351	Jalgaon	Parola	Sub Gavhan Kh	74,9884	20,8638	Check dam
352	Jalgaon	Parola	Sumthane	75.0167	20.9297	Check dam
353	Jalgaon	Parola	Undirkhede	75.1058	20.8358	Check dam
	1 0					

Sn	District	Taluka	Village	Х	Y	Type of structure
354	Jalgaon	Parola	Undirkhede	75.0936	20.8365	Check dam
355	Jalgaon	Parola	Vasant Nagar	74.9673	20.9063	Check dam
356	Jalgaon	Raver	Ambhode Bk.	76.014	21.3155	Check dam
357	Jalgaon	Raver	Ambhode Bk.	76.007	21.3068	Check dam
358	Jalgaon	Raver	Forest	75.9777	21.3019	Check dam
359	Jalgaon	Raver	Forest	75.9814	21.2967	Check dam
360	Jalgaon	Raver	Forest	75.9893	21.2901	Check dam
361	Jalgaon	Raver	Forest	75.9266	21.273	Check dam
362	Jalgaon	Raver	Jinsi	76.0111	21.3207	Check dam
363	Jalgaon	Raver	Jinsi	76.0128	21.3239	Check dam
364	Jalgaon	Raver	Lalmati	75.9894	21.3063	Check dam
365	Jalgaon	Raver	Lalmati	76.0041	21.3024	Check dam
366	Jalgaon	Raver	Lalmati	75.9974	21.3035	Check dam
367	Jalgaon	Raver	Lohare	75.9312	21.2682	Check dam

Annexure VII:	Location of p	roposed Site	for Recharge	Shaft tanks in	Jalgaon district
				•••••••••••••••••••••••••••••••••••••••	

SN	District	Block	Village	Х	Y	Type of structure
1	Jalgaon	Amalner	Amalner	75.0716	21.0325	Recharge Shaft
2	Jalgaon	Amalner	Fapore Bk.	75.073	20.9982	Recharge Shaft
3	Jalgaon	Amalner	Fapore Kh.	75.0763	20.9907	Recharge Shaft
4	Jalgaon	Amalner	Hingone Kh.Pr-Amalner	75.0723	21.0061	Recharge Shaft
5	Jalgaon	Amalner	Jalod	75.1384	21.145	Recharge Shaft
6	Jalgaon	Amalner	Kalali	75.0657	21.1662	Recharge Shaft
7	Jalgaon	Amalner	Kalali	75.0887	21.1695	Recharge Shaft
8	Jalgaon	Amalner	Kalamsare	74.9861	21.1714	Recharge Shaft
9	Jalgaon	Amalner	Kanhere	75.0776	20.9846	Recharge Shaft
10	Jalgaon	Amalner	Mehargaon	75.1071	21.1285	Recharge Shaft
11	Jalgaon	Amalner	Mungase	75.2314	21.1228	Recharge Shaft
12	Jalgaon	Amalner	Nandgaon	75.0719	21.0747	Recharge Shaft
13	Jalgaon	Amalner	Nimb	74.9706	21.1845	Recharge Shaft
14	Jalgaon	Amalner	Nimbhore	75.0912	21.1376	Recharge Shaft
15	Jalgaon	Amalner	Nimbhore	75.0844	21.1598	Recharge Shaft
16	Jalgaon	Amalner	Nimbhore	75.1082	21.152	Recharge Shaft
17	Jalgaon	Amalner	Patonde	75.1935	21.1205	Recharge Shaft
18	Jalgaon	Amalner	Patonde	75.2105	21.1235	Recharge Shaft
19	Jalgaon	Amalner	Pingalwade	75.0783	21.145	Recharge Shaft
20	Jalgaon	Amalner	Pragane Dangari	75.0376	21.1637	Recharge Shaft
21	Jalgaon	Amalner	Shahapur	74.9342	21.1578	Recharge Shaft
22	Jalgaon	Chopda	Adgaon	75.3198	21.3027	Recharge shaft
23	Jalgaon	Chopda	Adgaon	75.3409	21.3027	Recharge shaft
24	Jalgaon	Chopda	Adgaon	75.3246	21.2828	Recharge shaft
25	Jalgaon	Chopda	Adgaon	75.3442	21.2899	Recharge shaft
26	Jalgaon	Chopda	Adwad	75.4443	21.2333	Recharge shaft
27	Jalgaon	Chopda	Adwad	75.4534	21.2295	Recharge shaft
28	Jalgaon	Chopda	Adwad	75.4631	21.2388	Recharge shaft
29	Jalgaon	Chopda	Adwad	75.4756	21.2509	Recharge shaft
30	Jalgaon	Chopda	Adwad	75.4468	21.2488	Recharge shaft
31	Jalgaon	Chopda	Adwad	75.4387	21.2491	Recharge shaft
32	Jalgaon	Chopda	Adwad	75.4324	21.2553	Recharge shaft
33	Jalgaon	Chopda	Adwad	75.4742	21.2571	Recharge shaft
34	Jalgaon	Chopda	Adwad	75.4337	21.238	Recharge shaft
35	Jalgaon	Chopda	Akhatwade	75.2797	21.2097	Recharge shaft
36	Jalgaon	Chopda	Akulkhede	75.2639	21.2647	Recharge shaft
37	Jalgaon	Chopda	Bidgaon	75.5199	21.2372	Recharge shaft
38	Jalgaon	Chopda	Bidgaon	75.5349	21.2574	Recharge shaft
39	Jalgaon	Chopda	Bidgaon	75.5238	21.2434	Recharge shaft
40	Jalgaon	Chopda	Bidgaon	75.5296	21.2473	Recharge shaft
41	Jalgaon	Chopda	Chahardi	75.2481	21.1882	Recharge shaft
42	Jalgaon	Chopda	Chahardi	75.2431	21.1973	Recharge shaft
43	Jalgaon	Chopda	Chahardi	75.2639	21.2045	Recharge shaft
44	Jalgaon	Chopda	Chahardi	75.2664	21.2133	Recharge shaft
45	Jalgaon	Chopda	Chahardi	75.2763	21.2027	Recharge shaft
46	Jalgaon	Chopda	Chahardi	75.2691	21.1939	Recharge shaft
47	Jalgaon	Chopda	Chahardi	75.2672	21.188	Recharge shaft
48	Jalgaon	Chopda	Chahardi	75.2589	21.1857	Recharge shaft
49	Jalgaon	Chopda	Chahardi	75.2231	21.2031	Recharge shaft
50	Jalgaon	Chopda	Chaugaon	75.2351	21.2924	Recharge shaft
51	Jalgaon	Chopda	Chaugaon	75.2287	21.3042	Recharge shaft
52	Jalgaon	Chopda	Chaugaon	75.247	21.3006	Recharge shaft
53	Jalgaon	Chopda	Chopda	75.2993	21.2807	Recharge shaft
54	Jalgaon	Chopda	Chopda	75.2899	21.2761	Recharge shaft
55	Jalgaon	Chopda	Chunchade	75.2486	21.2717	Recharge shaft
56	Jalgaon	Chopda	Chunchade	75.2561	21.2823	Recharge shaft
57	Jalgaon	Chopda	Chunchade	75.2489	21.2895	Recharge shaft
58	Jalgaon	Chopda	Dhanwadi (N.V.)	75.3174	21.1968	Recharge shaft

SN	District	Block	Village	Х	Y	Type of structure
59	Jalgaon	Chopda	Ichhapur	75.508	21.2537	Recharge shaft
60	Jalgaon	Chopda	Kazipura	75.2184	21.2614	Recharge shaft
61	Jalgaon	Chopda	Khardi	75.4844	21.2413	Recharge shaft
62	Jalgaon	Chopda	Khardi	75.4933	21.255	Recharge shaft
63	Jalgaon	Chopda	Khardi	75.4953	21.2385	Recharge shaft
64	Jalgaon	Chopda	Kurvel	75.3082	21.1885	Recharge shaft
65	Jalgaon	Chopda	Lasur	75.199	21.273	Recharge shaft
66	Jalgaon	Chopda	Lasur	75.206	21.3037	Recharge shaft
67	Jalgaon	Chopda	Loni	75.4778	21.2274	Recharge shaft
68	Jalgaon	Chopda	Majare Hingone	75.2278	21.2738	Recharge shaft
69	Jalgaon	Chopda	Maiare Hingone	75.2134	21.2743	Recharge shaft
70	Jalgaon	Chopda	Mamlade	75.2686	21.2794	Recharge shaft
71	Jalgaon	Chopda	Mamlade	75.2775	21.2936	Recharge shaft
72	Jalgaon	Chopda	Mangrul	75.4257	21.239	Recharge shaft
73	lalgaon	Chopda	Mangrul	75.4268	21,2315	Recharge shaft
74	lalgaon	Chonda	Nagalwadi	75 3165	21 2917	Recharge shaft
75	Jalgaon	Chopda	Nagalwadi	75.3103	21.2317	Recharge shaft
76	Jalgaon	Chonda	Narwade	75.3661	21.2000	Recharge shaft
70	Jalgaon	Chopda	Narwade	75.3658	21.2734	Recharge shaft
78	Jalgaon	Chopda		75.3030	21.2052	Recharge shaft
70	Jalgaon	Chopda	Vadati	75.278	21.1005	Recharge shaft
9 0	Jalgaon	Chopda	Vadati	75.3924	21.2718	Recharge shaft
00	Jalgaon	Chondo	Vauati	75.3641	21.2747	Recharge shaft
81	Jalgaon	Chopda	Varad	75.2900	21.3029	Recharge shaft
82	Jalgaon	Chopda	Vdrdu	75.2940	21.2944	Recharge shalt
83	Jaigaon	Chopda	Vardi	75.4069	21.2465	Recharge shaft
84	Jalgaon	Chopda	Vardi	75.4202	21.2532	Recharge shaft
85	Jalgaon	Chopda	Vardi	75.4049	21.2625	Recharge shaft
86	Jalgaon	Chopda	Vargavhan	/5.509/	21.247	Recharge shaft
87	Jalgaon	Chopda	Virwade	/5.3/9/	21.2964	Recharge shaft
88	Jalgaon	Chopda	Virwade	/5.3686	21.2904	Recharge shaft
89	Jalgaon	Chopda	Virwade	75.3553	21.301	Recharge shaft
90	Jalgaon	Edlabad	Anturli	76.1297	21.1767	Recharge shaft
91	Jalgaon	Edlabad	Anturli	76.1425	21.1969	Recharge shaft
92	Jalgaon	Edlabad	Anturli	76.1498	21.1942	Recharge shaft
93	Jalgaon	Edlabad	Anturli	76.1604	21.1914	Recharge shaft
94	Jalgaon	Edlabad	Belaswadi	76.1107	21.1607	Recharge shaft
95	Jalgaon	Edlabad	Belkhede	76.1156	21.1691	Recharge shaft
96	Jalgaon	Edlabad	Edlabad	76.0915	21.0746	Recharge shaft
97	Jalgaon	Edlabad	Ghodasgaon	76.149	21.0459	Recharge shaft
98	Jalgaon	Edlabad	Ghodasgaon	76.1181	21.0591	Recharge shaft
99	Jalgaon	Edlabad	Khamkhede	76.0678	21.07	Recharge shaft
100	Jalgaon	Edlabad	Korhale	76.3135	20.9519	Recharge shaft
101	Jalgaon	Edlabad	Mel Sangave	76.0225	21.0809	Recharge shaft
102	Jalgaon	Edlabad	Naigaon	76.076	21.1496	Recharge shaft
103	Jalgaon	Edlabad	Narvel	76.1251	21.1729	Recharge shaft
104	Jalgaon	Edlabad	Pimprale	76.2932	20.9582	Recharge shaft
105	Jalgaon	Edlabad	Pimprale	76.2845	20.9618	Recharge shaft
106	Jalgaon	Edlabad	Pimprale	76.2801	20.9613	Recharge shaft
107	Jalgaon	Edlabad	Pimprale	76.3005	20.961	Recharge shaft
108	Jalgaon	Edlabad	Raigaon	76.342	20.9511	Recharge shaft
109	Jalgaon	Edlabad	Sukali	76.1306	21.0497	Recharge shaft
110	Jalgaon	Edlabad	Therole	76.2739	20.9724	Recharge shaft
111	Jalgaon	Edlabad	Uchande	76.0437	21.0794	Recharge shaft
112	Jalgaon	Jalgaon	Asoda	75.6107	21.078	Recharge Shaft
113	Jalgaon	Jalgaon	Asoda	75.5804	21.0596	Recharge Shaft
114	Jalgaon	Jalgaon	Asoda	75.5959	21.0704	Recharge Shaft
115	Jalgaon	Jalgaon	Asoda	75,6182	21.0643	Recharge Shaft
116	Jalgaon	Jalgaon	Bhadli Bk	75.6377	21.0536	Recharge Shaft
117	Jalgaon	Jalgaon	Bhokar	75.3419	21,1507	Recharge Shaft
<u>_</u>						

SN	District	Block	Village	Х	Y	Type of structure
118	Jalgaon	Jalgaon	Bholane	75.629	21.0692	Recharge Shaft
119	Jalgaon	Jalgaon	Jalgaon (Ma-2)	75.5645	21.0429	Recharge Shaft
120	Jalgaon	Jalgaon	Kanalde	75.5256	21.1065	Recharge Shaft
121	Jalgaon	Jalgaon	Kanalde	75.5177	21.1153	Recharge Shaft
122	Jalgaon	Jalgaon	Kanalde	75.4875	21.1043	Recharge Shaft
123	Jalgaon	Jalgaon	Kanalde	75.4961	21.098	Recharge Shaft
124	Jalgaon	Jalgaon	Kanaswade	75.656	21.0806	Recharge Shaft
125	Jalgaon	Jalgaon	Kanaswade	75.6492	21.0887	Recharge Shaft
126	Jalgaon	Jalgaon	Kanaswade	75.6452	21.1022	Recharge Shaft
127	Jalgaon	Jalgaon	Mamurabad	75.575	21.0958	Recharge Shaft
128	Jalgaon	Jalgaon	Mamurabad	75.5534	21.0998	Recharge Shaft
129	Jalgaon	Jalgaon	Mamurabad	75.5808	21.0833	Recharge Shaft
130	Jalgaon	Jalgaon	Mamurabad	75.5685	21.0914	Recharge Shaft
131	Jalgaon	Jalgaon	Mamurabad	75.5645	21.0598	Recharge Shaft
132	Jalgaon	Jalgaon	Mamurabad	75.5595	21.078	Recharge Shaft
133	Jalgaon	Jalgaon	Mamurabad	75.5527	21.0904	Recharge Shaft
134	Jalgaon	Jalgaon	Mamurabad	75.5444	21.0991	Recharge Shaft
135	Jalgaon	Jalgaon	Mamurabad	75.5775	21.0754	Recharge Shaft
136	Jalgaon	Jalgaon	Nandgaon	75.4489	21.1462	Recharge Shaft
137	Jalgaon	Jalgaon	Nandre Bk	75.4972	21.1284	Recharge Shaft
138	Jalgaon	Jalgaon	Nandre Bk	75.4734	21.1405	Recharge Shaft
139	Jalgaon	Jalgaon	Phupani	75.428	21.1465	Recharge Shaft
140	Jalgaon	Jalgaon	Sujde	75.5919	21.0894	Recharge Shaft
141	Jalgaon	Raver	Ahirwadi	76.0776	21.3013	Recharge shaft
142	Jalgaon	Raver	Ahirwadi	76.0902	21.3005	Recharge shaft
143	Jalgaon	Raver	Ajande	76.041	21.2024	Recharge shaft
144	Jalgaon	Raver	Ajande	76.0268	21.2098	Recharge shaft
145	Jalgaon	Raver	Ajande	76.0472	21.1958	Recharge shaft
146	Jalgaon	Raver	Ambhode Kh.	76.0212	21.3107	Recharge shaft
147	Jalgaon	Raver	Ambhode Kh.	76.032	21.3073	Recharge shaft
148	Jalgaon	Raver	Bhatkhede	75.9997	21.2324	Recharge shaft
149	Jalgaon	Raver	Bhatkhede	76.0074	21.2283	Recharge shaft
150	Jalgaon	Raver	Bhatkhede	/5.9958	21.2367	Recharge shaft
151	Jalgaon	Raver	Bhokari	76.0592	21.2441	Recharge shaft
152	Jalgaon	Raver	Bhokari	76.061	21.257	Recharge shaft
153	Jalgaon	Raver	Chinawal	/5.9451	21.2005	Recharge shaft
154	Jaigaon	Raver	ChinaWai	75.907	21.2122	Recharge shaft
155	Jaigaon	Raver	Chinchol	75.9647	21.1052	Recharge shaft
150	Jaigaon	Raver	Dasanoor	75.9403	21.1526	Recharge shaft
157	Jaigaon	Raver	Dasanoor	75.9483	21.1512	Recharge shaft
158	Jalgaon	Raver	Faizpur	75.8040	21.1/01	Recharge shalt
159	Jaigaon	Raver	Gauikneue	75.9422	21.2353	Recharge shalt
161	Jalgaon	Raver	Kalmada	75.9651	21.1509	Recharge shaft
162	Jalgaon	Raver	Kandwol	75.8085	21.2110	Recharge shaft
162	Jalgaon	Raver	Kariod	76.0001	21.1221	Recharge shaft
164	Jalgaon	Raver	Karjou	76.0833	21.2032	Recharge shaft
165	Jalgaon	Raver	Karjou	70.0828	21.2722	Recharge shaft
166	Jaigaon	Raver	Kerhale Kh	76.09	21.2003	Recharge shaft
167	Jalgaon	Raver	Kerhale Kh	76.0562	21.2722	Recharge shaft
169	Jaigaon	Raver	Khananur	76.0303	21.2904	Recharge shaft
160	Jalgaon	Raver	Khananur	76.1100	21.2012	Recharge shaft
170	Jaigaon	Raver	Khananur	76.1210	21.2303	Recharge shaft
171	Jalgaon	Raver	Khananur	76 1026	21.2/44 01 00E	Recharge shaft
172	JaigaOII	Pavor	Khirodo Dr. Vowal	70.1220	21.205	Recharge stidit
172	Jaigaon	Raver	Khirodo Pr. Yawal	75.88/4	21.2200	Recharge shaft
174	Jaigaon	Pavor	Khirodo Dr Bouer	75.8748	21.2352	Recharge stidit
175	Jaigaon	Raver	Khirode Pr Rayor	76.0371	21.3004	Recharge shaft
176	JaigaOII	Pavor	Khinwad	76.0193	21.203/	Recharge stidit
1/0	JaigaUII	Navel	KIII Wau	70.1039	21.2108	necharge sildit

SN	District	Block	Village	х	Y	Type of structure
177	Jalgaon	Raver	Khirwad	76.0952	21.2257	Recharge shaft
178	Jalgaon	Raver	Kochoor Bk.	75.908	21.1811	Recharge shaft
179	Jalgaon	Raver	Kumbharkhade	75.9465	21.2141	Recharge shaft
180	Jalgaon	Raver	Kusumbe Kh.	75.9735	21.2662	Recharge shaft
181	Jalgaon	Raver	Lohare	75.9252	21.2497	Recharge shaft
182	Jalgaon	Raver	Lohare	75.911	21.2539	Recharge shaft
183	Jalgaon	Raver	Lohare	75.94	21.2441	Recharge shaft
184	Jalgaon	Raver	Lohare	75.9342	21.2627	Recharge shaft
185	Jalgaon	Raver	Lohare	75.9172	21.2443	Recharge shaft
186	Jalgaon	Raver	Maskawad Bk.	75.915	21.1355	Recharge shaft
187	Jalgaon	Raver	Morgaon Bk.	76.1187	21.2319	Recharge shaft
188	Jalgaon	Raver	Morgaon Bk.	76.1161	21.2353	Recharge shaft
189	Jalgaon	Raver	Morgaon Kh.	76.1109	21.2249	Recharge shaft
190	Jalgaon	Raver	Morgaon Kh.	76.1063	21.2249	Recharge shaft
191	Jalgaon	Raver	Nimbol	76.0476	21.185	Recharge shaft
192	Jalgaon	Raver	Padale Bk.	76.1138	21.3074	Recharge shaft
193	Jalgaon	Raver	Padale Bk.	76.1183	21.2995	Recharge shaft
194	Jalgaon	Raver	Padale Kh	76.1167	21.3172	Recharge shaft
195	Jalgaon	Raver	Padale Kh	76.107	21.3161	Recharge shaft
196	Jalgaon	Raver	Padale Kh	76.1031	21.3286	Recharge shaft
197	Jalgaon	Raver	Pimpri	76.0569	21.3063	Recharge shaft
198	Jalgaon	Raver	Pimpri	76.0588	21.3005	Recharge shaft
199	Jalgaon	Raver	Pimpri	76.0599	21.3178	Recharge shaft
200	Jalgaon	Raver	Punkhede	76.0583	21.221	Recharge shaft
201	Jalgaon	Raver	Punkhede	76.0549	21.2313	Recharge shaft
202	Jalgaon	Raver	Puri	75.964	21.12	Recharge shaft
203	Jalgaon	Raver	Rasalpur	76.0541	21.2605	Recharge shaft
204	Jalgaon	Raver	Raver	76.0436	21.2473	Recharge shaft
205	Jalgaon	Raver	Raver (Rural)	76.0277	21.2264	Recharge shaft
206	Jalgaon	Raver	Raver (Rural)	76.0255	21.2512	Recharge shaft
207	Jalgaon	Raver	Raver (Rural)	76.0069	21.2769	Recharge shaft
208	Jalgaon	Raver	Raver (Rural)	76.0385	21.2083	Recharge shaft
209	Jalgaon	Raver	Raver (Rural)	76.0233	21.2154	Recharge shaft
210	Jalgaon	Raver	Rozode	75.8869	21.1944	Recharge shaft
211	Jalgaon	Raver	Rozode	75.8742	21.1976	Recharge shaft
212	Jalgaon	Raver	Rozode	75.8816	21.1936	Recharge shaft
213	Jalgaon	Raver	Rozode	75.8932	21.1994	Recharge shaft
214	Jalgaon	Raver	Savda	75.8858	21.1484	Recharge shaft
215	Jalgaon	Raver	Savkhede Bk.	75.8986	21.2258	Recharge shaft
216	Jalgaon	Raver	Savkhede Bk.	75.9019	21.2442	Recharge shaft
217	Jalgaon	Raver	Savkhede Kh.	75.9077	21.2204	Recharge shaft
218	Jalgaon	Raver	Savkhede Kh.	75.9099	21.2288	Recharge shaft
219	Jalgaon	Raver	Singanoor	75.9519	21.1671	Recharge shaft
220	Jalgaon	Raver	Singat	75.968	21.1336	Recharge shaft
221	Jalgaon	Raver	Singat	75.9606	21.136	Recharge shaft
222	Jalgaon	Raver	Thorgavhan	75.882	21.1126	Recharge shaft
223	Jalgaon	Raver	Utkhede	75.966	21.253	Recharge shaft
224	Jalgaon	Raver	Vivare Bk.	75.9968	21.1903	Recharge shaft
225	Jalgaon	Raver	Vivare Bk.	75.9801	21.1873	Recharge shaft
226	Jalgaon	Raver	Vivare Bk.	75.9876	21.2279	Recharge shaft
227	Jalgaon	Raver	Vivare Bk.	75.9962	21.1789	Recharge shaft
228	Jalgaon	Raver	Wadgaon	75.9497	21.1865	Recharge shaft
229	Jalgaon	Raver	Waghadi	76.0052	21.161	Recharge shaft
230	Jalgaon	Raver	Waghod	76.0987	21.2509	Recharge shaft
231	Jalgaon	Raver	Waghod	76.1183	21.2505	Recharge shaft
232	Jalgaon	Raver	Waghode Bk.	75.9297	21.1803	Recharge shaft
233	Jalgaon	Raver	Waghode Bk.	75.9461	21.182	Recharge shaft
234	Jalgaon	Raver	Waghode Kh	75.899	21.1384	Recharge shaft
235	Jalgaon	Yawal	Adgaon	75.5638	21.2387	Recharge shaft

SN	District	Block	Village	х	Y	Type of structure
236	Jalgaon	Yawal	Anjale	75.7631	21.0918	Recharge shaft
237	Jalgaon	Yawal	Atrawal	75.7484	21.1791	Recharge shaft
238	Jalgaon	Yawal	Atrawal	75.7436	21.1777	Recharge shaft
239	Jalgaon	Yawal	Awar	75.5568	21.1469	Recharge shaft
240	Jalgaon	Yawal	Bhalod	75.7914	21.1593	Recharge shaft
241	Jalgaon	Yawal	Bhalshiv	75.682	21.1369	Recharge shaft
242	Jalgaon	Yawal	Bhalshiv	75.6877	21.1274	Recharge shaft
243	Jalgaon	Yawal	Bhalshiv	75.6813	21.142	Recharge shaft
244	Jalgaon	Yawal	Bhalshiv	75.6767	21.1346	Recharge shaft
245	Jalgaon	Yawal	Bhalshiv	75.687	21.131	Recharge shaft
246	Jalgaon	Yawal	Bhortek	75.7915	21.0967	Recharge shaft
247	Jalgaon	Yawal	Borale	75.6419	21.2111	Recharge shaft
248	Jalgaon	Yawal	Borale	75.6374	21.2126	Recharge shaft
249	Jalgaon	Yawal	Borale	75.6427	21.2182	Recharge shaft
250	Jalgaon	Yawal	Borawal Bk	75.7173	21.1223	Recharge shaft
251	Jalgaon	Yawal	Borawal Kh	75.714	21.1261	Recharge shaft
252	Jalgaon	Yawal	Borkhede Bk	75.8328	21.2219	Recharge shaft
253	Jalgaon	Yawal	Borkhede Bk	75.8205	21.2311	Recharge shaft
254	Jalgaon	Yawal	Chincholi	75.5517	21.2219	Recharge shaft
255	Jalgaon	Yawal	Chitode	75.7438	21.1978	Recharge shaft
256	Jalgaon	Yawal	Chunchale	75.646	21.2484	Recharge shaft
257	Jalgaon	Yawal	Chunchale	75.6275	21.2308	Recharge shaft
258	Jalgaon	Yawal	Chunchale	75.6331	21.2577	Recharge shaft
259	Jalgaon	Yawal	Chunchale	75.6383	21.255	Recharge shaft
260	Jalgaon	Yawal	Chunchale	75.6441	21.2263	Recharge shaft
261	Jalgaon	Yawal	Dagadi	75.5838	21.1556	Recharge shaft
262	Jalgaon	Yawal	Dagadi	75.5843	21.1642	Recharge shaft
263	Jalgaon	Yawal	Dagadi	/5.58/	21.1567	Recharge shaft
264	Jalgaon	Yawal	Danigaon	/5.6565	21.2124	Recharge shaft
265	Jalgaon	Yawal	Dambhurni	75.5548	21.1642	Recharge shaft
266	Jaigaon	Yawai	Damphurni	75.5659	21.1622	Recharge shaft
267	Jaigaon	Yawal	Dangarkuthora	75.7512	21.2294	Recharge shaft
208	Jalgaon	Yawal	Dangarkuthora	75.7410	21.2314	Recharge shalt
209	Jalgaon	Yawal	Dangarkuthora	75.7559	21.214	Recharge shaft
270	Jalgaon	Yawal	Dangarkuthora	75.7505	21.2500	Recharge shaft
271	Jalgaon	Yawal	Dangaon	75.7474	21.2132	Recharge shaft
272	Jalgaon	Vawal	Faizpur	75.2031	21.2100	Recharge shaft
273	Jalgaon	Yawal	Hambardi	75.8029	21.1937	Recharge shaft
275	Jalgaon	Yawal	Ichkheda	75.5877	21.1317	Recharge shaft
276	Jalgaon	Yawal	Karanii	75.847	21.233	Recharge shaft
277	Jalgaon	Yawal	Kasarkhede	75.5761	21.2377	Recharge shaft
278	lalgaon	Yawal	Kingaon Bk	75.6129	21,2142	Recharge shaft
279	Jalgaon	Yawal	Kingaon Bk	75.5923	21.2238	Recharge shaft
280	Jalgaon	Yawal	Korpawli	75.697	21.2321	Recharge shaft
281	Jalgaon	Yawal	Korpawli	75.6943	21.2219	Recharge shaft
282	Jalgaon	Yawal	Korpawli	75.7061	21.2447	Recharge shaft
283	Jalgaon	Yawal	Kosgaon	75.8141	21.1034	Recharge shaft
284	Jalgaon	Yawal	Mahelkhedi	75.6825	21.2142	Recharge shaft
285	Jalgaon	Yawal	Manwel	75.6077	21.1594	Recharge shaft
286	Jalgaon	Yawal	Manwel	75.6189	21.1614	Recharge shaft
287	Jalgaon	Yawal	Marul	75.8161	21.2197	Recharge shaft
288	Jalgaon	Yawal	Mohrale	75.7064	21.249	Recharge shaft
289	Jalgaon	Yawal	Mohrale	75.6693	21.2445	Recharge shaft
290	Jalgaon	Yawal	Mohrale	75.6905	21.2593	Recharge shaft
291	Jalgaon	Yawal	Mohrale	75.6965	21.2449	Recharge shaft
292	Jalgaon	Yawal	Nhavi P Adawad	75.539	21.1652	Recharge shaft
293	Jalgaon	Yawal	Nhavi P Yawal	75.8327	21.2058	Recharge shaft
294	Jalgaon	Yawal	Nhavi P Yawal	75.8399	21.1928	Recharge shaft