

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

AQUIFER MAPPING REPORT

Kavthe Mahankal and Miraj Talukas, Sangli District, Maharashtra (Part-II)

> मध्य क्षेत्र, नागपुर Central Region, Nagpur

भारत सरकार

Government of India जल संसाधन, नदी विकास एवं गंगा संरक्षण मंत्रालय Ministry of Water Resources, River Development & Ganga Rejuvenation

केन्द्रीय भूमि जल बोर्ड

CENTRAL GROUND WATER BOARD

जलभृत नक्शे तथा भूजल प्रबंधन योजना पर संक्षिप्त रिपोर्ट Brief Report on Aquifer Maps and Ground Water Management Plan

BRIEF REPORT ON AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, FOR KAVATHE MAHANKAL AND MIRAJ TALUKAS, SANGLI DISTRICT, MAHARASHTRA

CONTRIBUTORS

Principal Authors A. B. Kavade J. R. Verma	:	Sr. Hydrogeologist / Scientist-D Scientist-D
Supervision & Guidance		
D. Subba Rao	:	Regional Director
Dr. P.K. Jain	:	Supdtg. Hydrogeologist
Sourabh Gupta	:	Sr. Hydrogeologist
Hydrogeology, GIS maps and Management Plan J. R. Verma	:	Scientist-D
Hydrogeological Data Acquisit and groundwater Exploratior		
Caterine Louis	:	Scientist-B
J. R. Verma	:	Scientist-D
Chemical Analysis		
Dr. Devsharan Verma	:	Scientist B (Chemist)
Dr. Rajni Kant Sharma	:	Scientist B (Chemist)
T. Dinesh Kumar	:	Assistant Chemist

BRIEF REPORT ON AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, FOR KAVATHE MAHANKAL AND MIRAJ TALUKAS, SANGLI DISTRICT, MAHARASHTRA

CONTENTS

1	BRI	EF INTRODUCTION	2
2	SAL	IENT FEATURES	3
3	AQI	JIFER DISPOSITION	5
4	GRC	DUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES	7
5	GRC	DUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANAGEMENT INTERVENTION	IS9
	5.1	Probable Benefits	.10
	5.2	Regulatory Measures	11
6	SUN	И UP	13

BRIEF REPORT ON AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, FOR KAVATHE MAHANKAL AND MIRAJ TALUKAS, SANGLI DISTRICT, MAHARASHTRA

1 BRIEF INTRODUCTION

In XII five-year plan (2012-17), National Aquifer Mapping (NAQUIM) has been introduced to carry out detailed hydrogeological investigation on toposheet scale (1:50,000). Keeping in view the current demand vis-à-vis supply and futuristic requirement of water, Central Ground Water Board has taken up NAQUIM in Over-exploited, Critical and Semi-Critical talukas and prioritised stress areas. Hence, water stress area i.e., Miraj & Kavathe Mahankal Talukas of Sanghli district has been taken up to carry out detailed hydrogeological investigation covering an area of 1703.59 sq.km in the year 2016-17. The index map of the study area is presented below- **Fig 1.1**.

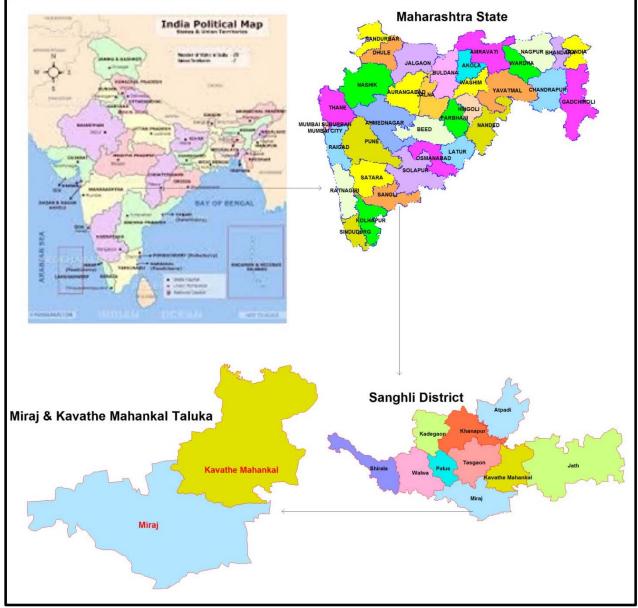
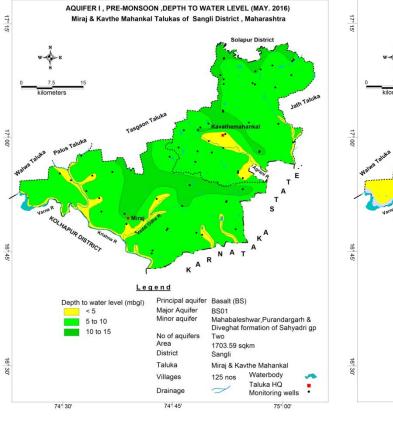
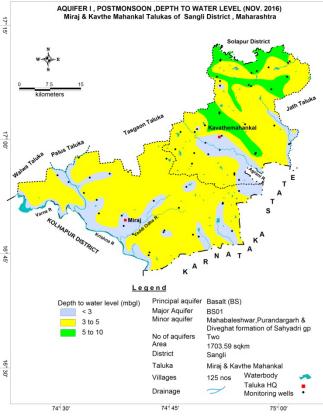
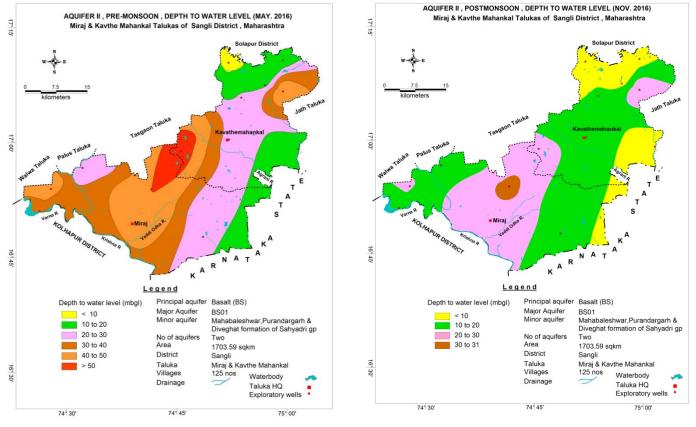
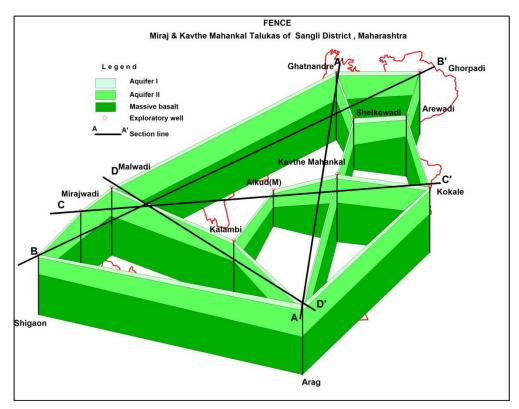
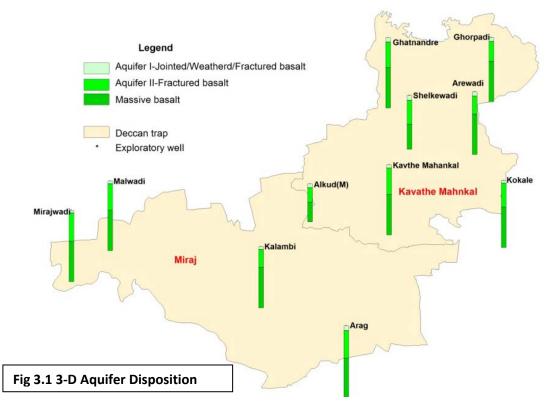
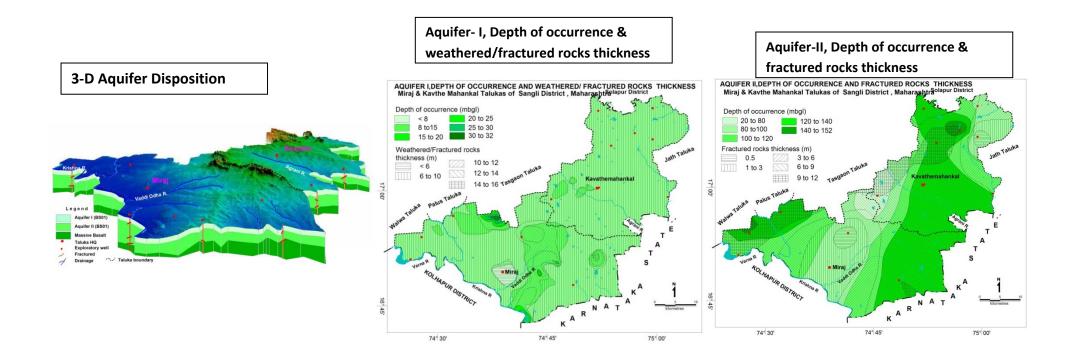




Fig 1.1 Index map of the Study area

2 SALIENT FEATURES

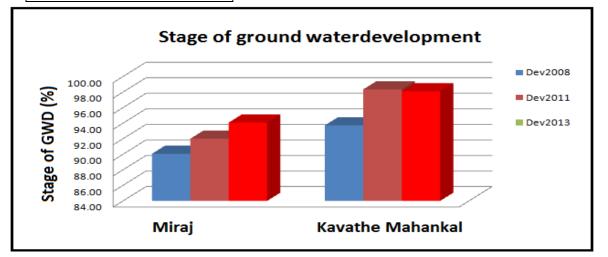
PARTICULARS	Kavathe Mahankal	Miraj
District	Sanghli	Sanghli
State	Maharashtra	Maharashtra
Area (sq.km.)	745.53	954.06
Population (2011)		
Rural/Urban	152327/0	325954/528627
Total	152327	854581
Rainfall (mm)		
I. Normal Annual Rainfall	520.35 mm	584.8 mm
II. Current Rainfall (2015)	445.2 (-14 % deficient)	508.8(-13 % deficient)
III. Rainfall Trend (mm/yr)	-0.9.43 (1998 to 2015)	10.59 (1998 to 2015)
Agriculture (sq.km.)		
i. Principal Crops		
Jawari	227.6	298.78
Bajra	91.0	82.6
Wheat	26.73	38.1
Sugarcane	15.0	138.0
GramHarbhata	21.65	53.08
Cotton	2.59	2.31
Tur	10.0	11.92
Graps	2.15	9.1
ii. Cultivable Area	581.02	806.35
iii. Net Sown Area	514.22	727.37
iv. Forest	9.24	10.79
Irrigation Sources (sq.km.)		
i. Ground water	64.27	180.26
ii. Surface Water	23.96	71.2
Data Utilised		
i. Key Observation Wells	37	26
ii. GW exploration	10EW+ 3 OW	7 EW
iii. VES	0	0
iv. GWQ sampling locations- AQI	33	33
AQII	8	10
Existing / Future Water Demands (MCM)		
Domestic & Industrial	4.59/ 6.24 (2025)	2.61/ 4.16 (2025)
Irrigation	85.18 / 6.94	113.32 / 14.36
Water Level Behaviour		
Aquifer I		
Pre-monsoon WL (m bgl)	3 to 11.9	1 to 14.3
Post-monsoon WL (m bgl)	1.45 to 10.45	0.4 to 7.4
Pre-monsoon WL Trend –Rise (m/yr)	0.01to 0.18	0.06 to 0.15
Pre-monsoon WL Trend-Fall(m/yr)	-0.003 to -0.59	-0.05 to-0.45
Post-monsoon WL Trend –Rise(m/yr)	0.04to 0.1	0.04 to 0.1
Post-monsoon WL Trend –Fall(m/yr)	-0.07 to -0.3	-0.07to -0.52
Aquifer II		
Pre-monsoon WL (Aq-II) m bgl	9.2 to 53.2	21 to 50
Post-monsoon WL (Aq-II) m bgl	5.3 to 25	12 to 31
FOST-MONSOON WE (Ad-II) III DRI	J.J 10 2J	12 10 31

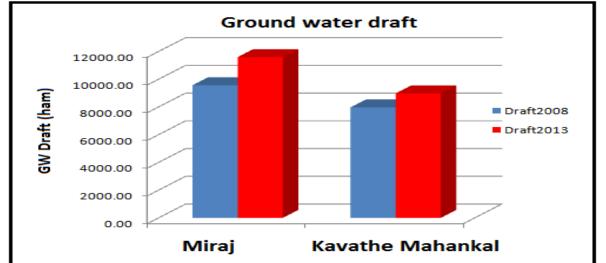




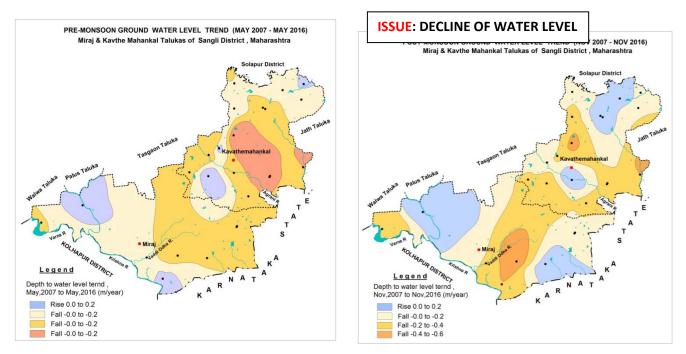

Fig 2.1 Water level of Aquifer I and Aquifer II

3 AQUIFER DISPOSITION

2-D and 3-D Aquifer	Aquifer: Basalt; Aquifer I - Weathered/Fractured Basalt: Depth range- 8 to
Disposition	32 m and thickness of 6 to 16 m.
	Aquifer II - Jointed/Fractured Basalt: Depth range - 20 to 152 m, Thickness
	– 0.5 to 12 m






Type of Aquifer	Formation	Depth range (mbgl)		Fracture/ weathered Zones encountered (m bgl)	Fractured/ weathered rocks Thickness (m)	Yield (m3/day)	Sustai- nability	Aquifer parameter (Transmissivity – m2/day)	Sy/S	Suitability for drinking/ irrigation
Aquifer-I	Deccan Trap- Weathered/ Fractured Basalt	8 - 32	0.5-14.5	Upto 32	6 to 16	10 to 100 m3/day	1 to 2 Hours	10.03-62.81	0.019- 0.028	Yes , suitable for both
Aquifer-II	lointed/ Fractured Basalt	20-152	9.2-53.2	20 to 152	0.5 to 12	Upto 3 lps	0.5 to 3 hours	5.85-177	1.30 x 10-4. 5.31 x 10-4	Yes, suitable for both, except High EC

4 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES

		Kavathe Mahankal	Miraj	
Aquifer	wise Grou	nd Water Resource availabi	lity and Extraction	
Ground Water Resource				
(MCM)				
Aquifer –I: upto 28 m				
Availability		91.15	123.25	
Withdrawal		89.76	115.94	
Ground Water Resource				
(MCM) Aquifer –II: 20 to				
152 m Availability		10.42	25.28	
Withdrawal		0	0	
Stage of GW Development		98.1%	94.07%	
Present Category		Critical	Semi-Critical	
Ground Water Related		Childan	Semi-critical	
Issues				
Over Exploitation	The stag	ge of ground water develo	ppment has increased over the	
	-		from 90.05% to 94.07% in Miraj	
	-		in Kavathe mahankal taluka The	
			cessive draft is for irrigation	
		-	-	
		•	has increased from 9564.01 MCM	
			3 while in Kavathe mahankal the	
	draft ha	s increased from 7969.99	MCM in 2008 to 8976.44 MCM in	
	2013.			
Declining rainfall	In last fi	ve years ,four year rain fa	Il are showing decline trend in the	
	range of	f 10% to 40 % from norma	al rainfall. Thus indicating that both	
	these ta	lukas are experiencing lov	w and declining rainfall with	
	frequen	t droughts		
Declining Water Levels			level trend (2007-2016) of more	
0		-	ed in about 879 Sq.km. (56.6% of	
	area) and the post monsoon declining water level trend of more			
	than 0.2m/year has been observed in about 666 Sq.km. (42.85% of			
	area)			
Low ground water	Low ground water potential areas have been identified in 1100			
potential	sq.km. covering northern part of Miraj Taluka and almost entire			
	Kavathe Mahankal taluka mostly due to restricted depth of			
	weathe	ring in Aquifer-I and limite	ed aquifer thickness of Aquifer-II	

Declining of water level 879 Sqkm in premonsoon and 666 ssqkm during postmonsoon period

5 GROUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANAGEMENT INTERVENTIONS

	Kavathe	Miraj	Total
5.1 Resource Enhancement by Supply Side Interventions	Mahankal		TOLAI
5.1 Resource Emilancement by Supply Side Interventions	10 72	2.05	
Recharge Potential	19.73	3.05	22.78
Surface water requirement @ 75% efficiency	26.31	4.07	30.37
Availability of Surplus surface runoff	12.08	1.87	13.95
Surplus runoff considered for planning	12.08	1.87	13.95
Proposed Artificial Recharge Structures			
РТ	48	7	55
CD	83	16	99
Volume of Water expected to be recharged @ 75%			
efficiency (MCM)	9.07	1.41	10.48
Proposed RTRWH			
Households to be covered	12982	10614	23595
Total RWH potential	0.37	0.27	0.64
Rainwater harvested / recharged @ 80% runoff co-efficient	0.29	0.22	0.51
Estimated Expenditure (Rs. in Cr.)	19.47	15.92	35.39
RTRWH Economically not viable & Not Recommended. Total	l estimated Co	st of RTRWH wo	ould be-
21.64 Cr. For Harvesting 032 MCM of Rain Water.			
Total volume of water expected to be recharged by AR	9.07	1.41	10.48
Total Estimated Expenditure for AR	96.9	15.3	112.2

Resource Enhancement by Supply Side Interventions				
DEMAND SIDE INTERVENTIONS	Kavathe Mahankal	Miraj	Total	
Proposed Cropping Pattern change	None	None		
Micro irrigation techniques				
Area proposed to be covered (sq.km.) 70% in Kavathe Mahankal & 60% in Miraj of sugarcane area	10.5	82.8	93.3	
Volume of Water expected to be conserved (MCM). Sugarcane requirement - 2.45 m, Pomegranate with Drip - 0.7 m, WUE - 1.75 m, Saving-0.57m	5.99	47.2	53.18	
Estimated Expenditure	15.57	122.76	138.327	
Area proposed to be covered (70.0sq.km.) 75% DC area drip/sprinkler	52.5		52.5	
Volume of Water expected to be conserved (MCM). DC requirement - 0.90 m, Drip - 0.40 m,	21.0		21.0	
Estimated Expenditure	32.43		32.43	
Area proposed to be covered (5.5 sq.km.) 90% Cotton area	4.95		4.95	
Volume of Water expected to be conserved (MCM). Onion requirement - 0.78 m, Drip - 0.52 m,	1.49		1.49	
Estimated Expenditure	3.06		3.06	

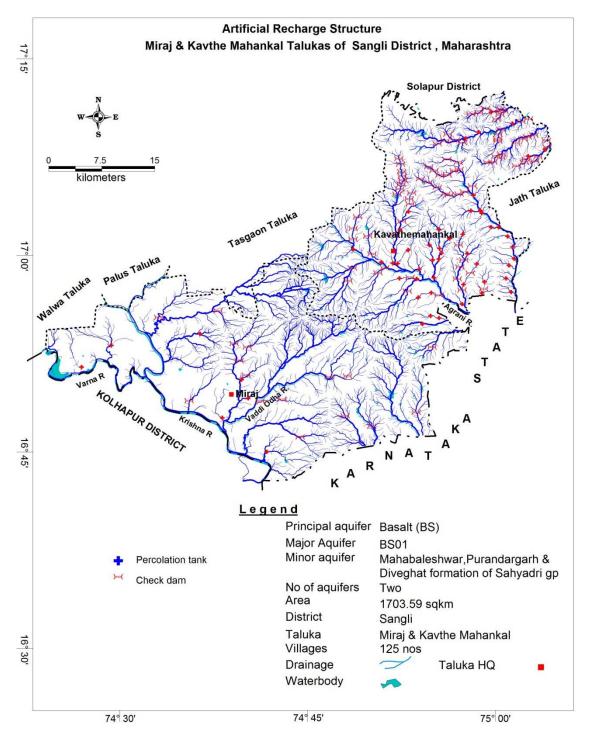


Fig 5.1 Location of artificial recharge structure

Kavathe Item Miraj Total Mahankal Additional GW resources available after 37.54 48.61 86.14 implementing above measures (MCM) Volume of Water Required TO BRING STAGE OF 36.72 42.38 79.1 GWD UPTO 70% Balance GWR available for GW Development 0.82 6.23 7.05 after STAGE OF GWD is brought to 70%

5.1 **Probable Benefits**

Additional Area (sq.km.) proposed to be	1.26	9.581	10.84
brought under assured GW irrigation with av.			
CWR of 0.65 m AFTER 70% STAGE OF GWD IS			
ACHIEVED OR			

5.2 Regulatory Measures

	Baramati	Purandhar
Regulatory Measures	Regulation of wells below	Regulation
	60 m	of wells below 60 m

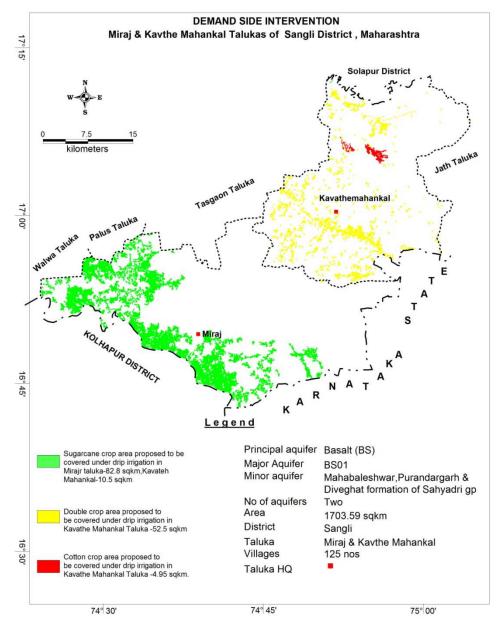


Fig 5.2 Location of proposed drip irrigation

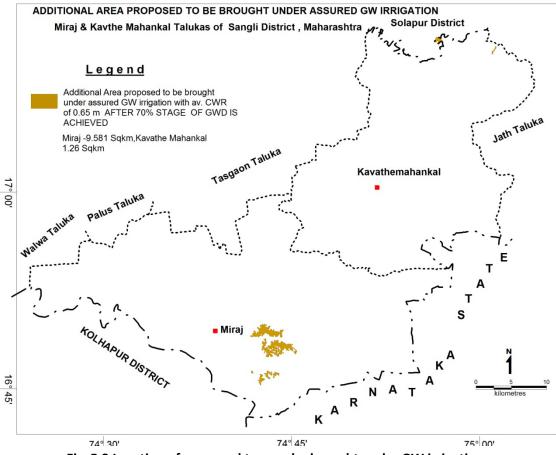


Fig 5.3 Location of proposed to crop be brought under GW irrigation

PROPOSED MANAGEMENT PLAN

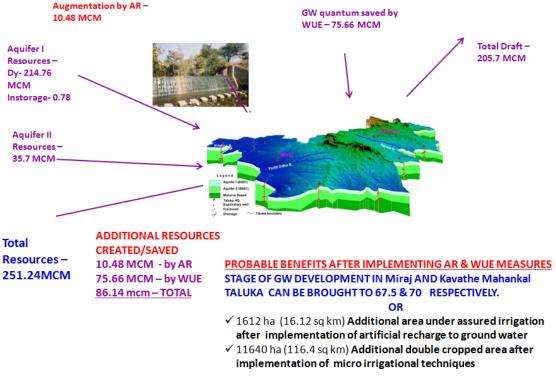


Fig 5.4 Proposed Management Plan

6 SUM UP

A thorough study was carried out based on data gap analysis, data generated inhouse; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of aquifer maps and aquifer management plans of Miraj and Kavathe Mahankal Talukas of Sanghli district

The study area is spanning over 1703.59 sq.km. Geologically the area is occupied by Basalt and the stage of ground water development is 98.1 % in Kavthe Mahankal and 94.07% in Miraj taluka. The area has witnessed ground water depletion and over exploitation over a period of time. In Aquifer-I, The deeper water levels of more than 10 m bgl are observed in limited areas in the central part of the study area covering west to east elongated patch adjacent to the water divide boundary of Agrani River and Krishna River, while in Aquifer –II, deeper water levels of > 40 mbgl has been observed in in western parts of Miraj taluka . The declining water level trend > 0.20 m/yr (2007 to 2016). has been observed in about 879 Sq.km. (56.6% of area) during pre-monsoon and in 666 Sq.km. (42.85% of area) in the post monsoon. This has been due to cultivation of water intensive cash crop like Sugarcane (153 sq.km), which are completely dependent on ground water irrigation.

Ground water management plan has been prepared with the objective of bringing the current stage of ground water development down to 70% and decline of water level may be arrested, so that the taluka comes under Safe category by adopting both, supply side and demand side interventions.

As a part of supply side interventions, a total of 55 Percolation Tanks and 99 Check Dam is proposed in Miraj and Kavathe Mahankal Talukas ,which will augment ground water resources to the tune of 10.48 MCM (8.25 MCM by Percolation Tanks and 2.23 MCM by Check Dam). The total cost of implementing these interventions will be Rs. 112.2 crore. As a part of demand side interventions, change in irrigation techniques from surface flooding to drip irrigation is also proposed. A total of 153 sqkm of Sugarcane crop area is proposed to be covered under drip irrigation techniques instead of flood irrigation that will save 53.18 MCM of water resources. The total cost of implementing these interventions will be Rs 138.33 crore. Double crop of 52.5 sqkm and 4.95 Sqkm of Cotton crop areas in Kavathe Mahankal taluka are also proposed to be covered under drip irrigation techniques instead of flood irrigation that will save 22.49 MCM of water resources. The total cost of implementing these interventions will be Rs 25.49 crore.

In Miraj and Kavathe Mahankal Talukas, a total of 10.48 MCM resources will be augmented after adopting artificial recharge, whereas and 75.66 MCM will be saved after implementing water user efficiency measures (drip irrigation). This will bring the stage of ground water development to 70 % in Kavathe Mahankal and 67.5 % in Miraj talukas from the present stage of 98.1 % in Kavathe Mahankal and 94 07 % in Miraj taluka and 10.84 sq.km area proposed to be brought under assured GW irrigation with av.CWR of 0.65 m.

This will probably result in arresting the decline of water levels. These interventions also need to be supported by regulation of deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewells of more than 60 m depth in these talukas, so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought. Similarly IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory groundwater management.