Draft Report

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on

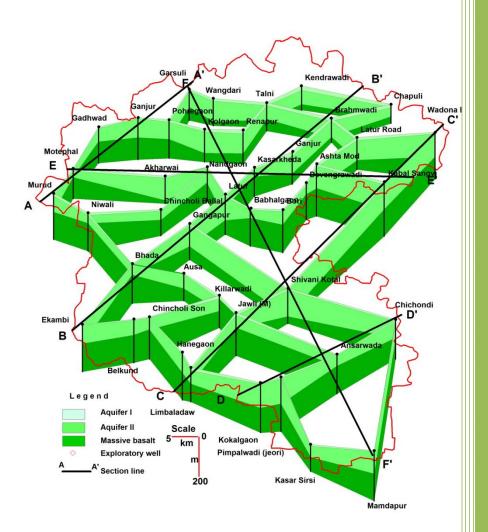
AQUIFER MAPPING AND GROUND WATER MANAGEMENT PLAN

AUSA, CHAKUR, LATUR, NILANGA & RENAPUR TALUKAS

Latur District, Maharashtra

मध्य क्षेत्र, नागपुर Central Region, Nagpur

भारत सरकार


Government of India जल संसाधन, नदी विकास एवं गंगा संरक्षण मंत्रालय Ministry of Water Resources, River Development & Ganga Rejuvenation

केन्द्रीय भूमि जल बोर्ड

CENTRAL GROUND WATER BOARD

जलभृत नक्शे तथा भूजल प्रबंधन योजना Aquifer Maps and Ground Water Management Plan

AUSA, CHAKUR, LATUR, NILANGA & RENAPUR TALUKA OF LATUR DISTRICT MAHARASHTRA

AUSA,CHAKUR, LATUR, NILANGA & RENAPUR TALUKAS, LATUR DISTRICT, Maharashtra

मध्य क्षेत्र, नागपुर / Central Region, Nagpur जून 2016 / June 2016

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS AUSA,CHAKUR,LATUR,NILANGA & RENAPUR TALUKAS, LATUR DISTRICT, MAHARASHTRA STATE

CONTRIBUTORS'

Principal Authors		
J. R. Verma	:	Junior Hydrogeologist / Scientist-D
A. Nivasarkar	:	Junior Hydrogeologist / Scientist-D
Supervision & Guidance		
D. Subba Rao	:	Regional Director
Dr. P. K. Jain	:	Supdtg. Hydrogeologist
Hydrogeology, GIS maps an	ıd M	anagement Plan
J. R. Verma	:	Junior Hydrogeologist / Scientist-D
A. Nivasarkar	:	Junior Hydrogeologist / Scientist-D
Groundwater Exploration		
A. Nivasarkar	:	Junior Hydrogeologist / Scientist-D
S.K.Bhatnagar	:	Junior Hydrogeologist / Scientist-D
Sandip .Bhowal.	:	S.T.A. Hydrogeologist
Geophysics		
P. Narendra	:	Junior Geophysicist / Scientist-D
Chemical Analysis		
Dr. Devsharan Verma	:	Junior chemist/ Scientist B
Dr. Devsharan Verma T. Dinesh Kumar	:	Junior chemist/ Scientist B Assistant Chemist

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS AUSA, CHAKUR, LATUR, NILANGA & RENAPUR TALUKAS, LATUR DISTRICT, MAHARASHTRA STATE

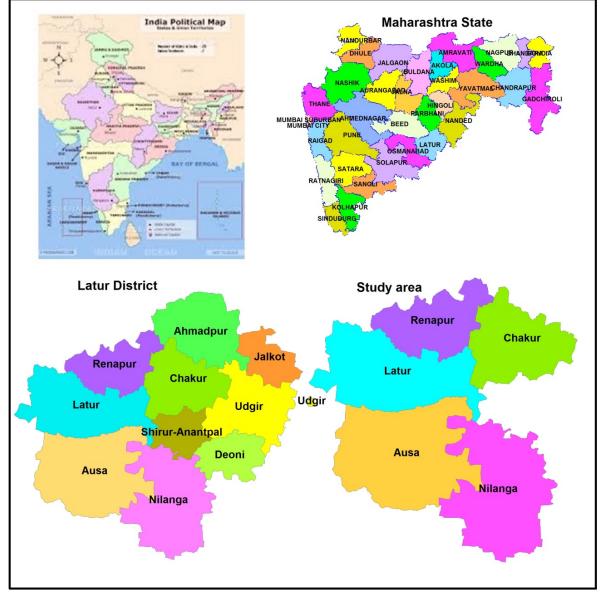
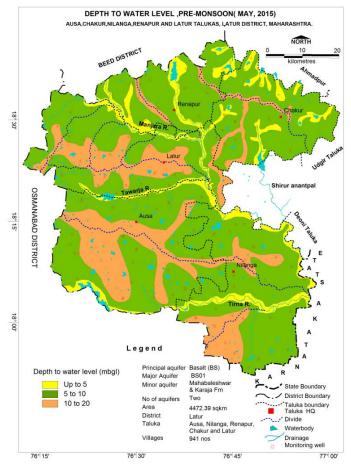
CONTENTS

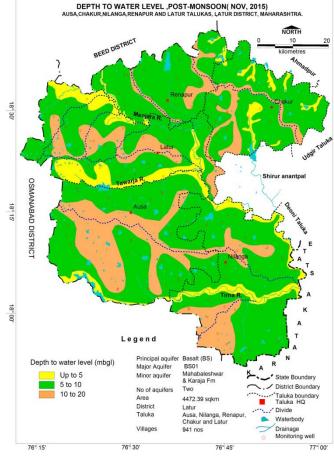
1	BRI	EF INTRODUCTION	1
2	SAL	IENT FEATURES	2
3	AQ	UIFER DISPOSITION	4
4	GR	OUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES	8
5	GR	OUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANAGEMENT INTERVENTIC	0NS.10
	5.1	Probable Benefits	13
	5.2	Regulatory Measures	13
6	SUI	VI UP	14

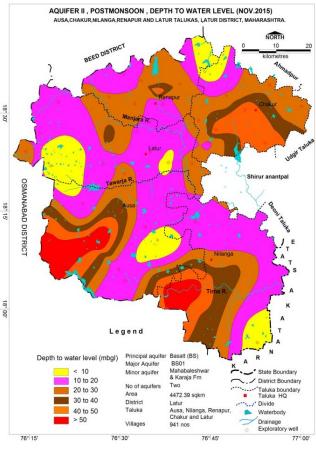
AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, AUSA, CHAKUR, LATUR, NILANGA & RENAPUR TALUKAS, LATUR DISTRICT, MAHARASHTRA STATE

1 BRIEF INTRODUCTION

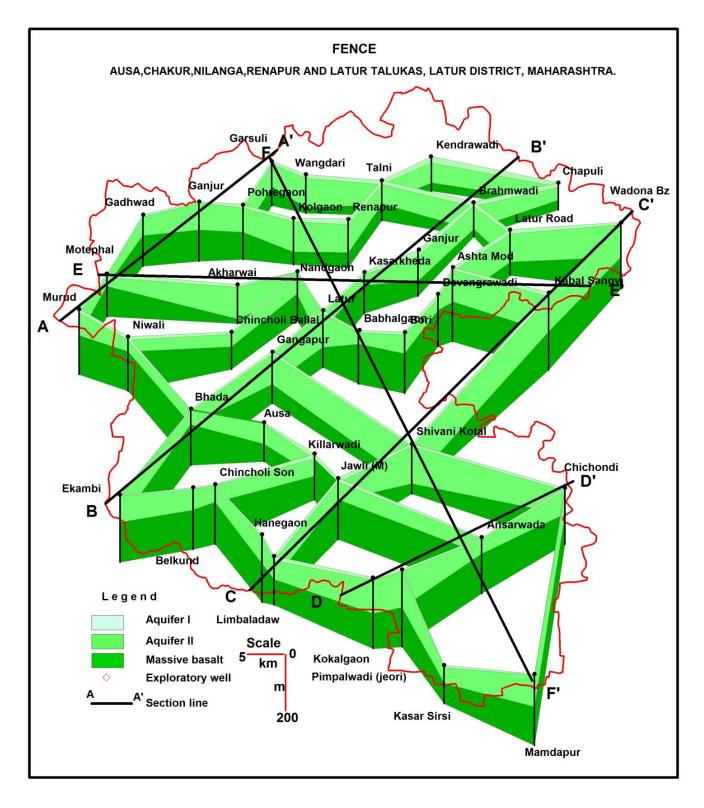
In XII five-year plan (2012-17), National Aquifer Mapping (NAQUIM) has been introduced to carry out detailed hydrogeological investigation on toposheet scale (1:50,000). Keeping in view the current demand vis-à-vis supply and futuristic requirement of water, Central Ground Water Board has taken up NAQUIM in Over-exploited, Critical and Semi-Critical talukas and prioritised stress areas. Hence, water stress area i.e., Ausa, Chakur, Latur, Nilanga & Renapur Talukas of Latur district has been taken up to carry out detailed hydrogeological investigation covering an area of 4472.39 sq.km in the year 2015-16. The index map of the study area is presented below- **Fig 1.1**.

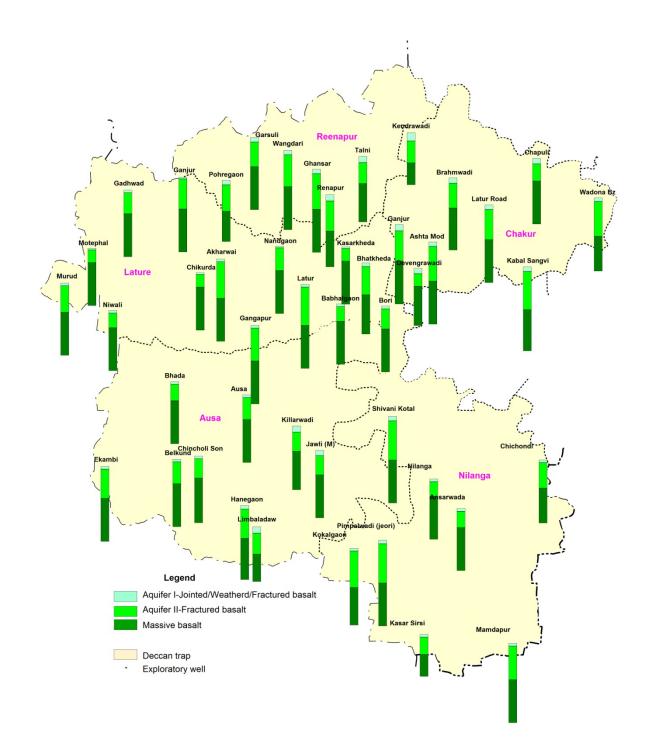



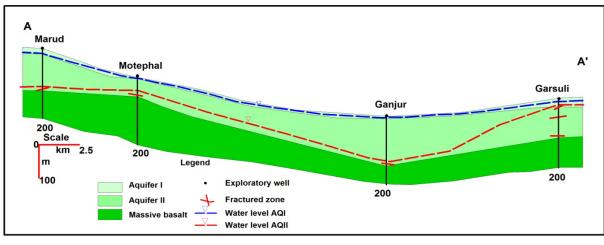

Fig 1.1 Index map of the Study area


2 SALIENT FEATURES

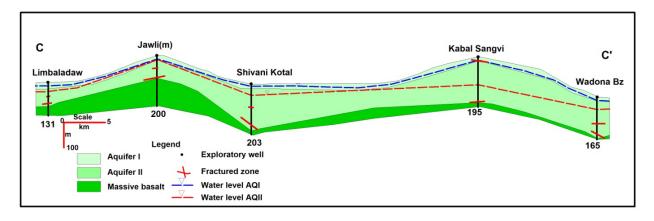
PARTICULARS	Chakur	Renapur	Ausa	Nilanga	Latur
District	Latur	Latur	Latur	Latur	Latur
State	Maharashtra	Maharashtra	Maharashtra	Maharashtra	Maharashtra
Area (sq.km.)	520.21	512.22	1213.67	1255.58	970.71
Population (2011) Rural/Urban	177956/0	142187/0	273453/36118	289083/36172	286711/396955
Total	177956	142187	309571	325255	683666
Rainfall (mm)					
I. Normal Annual Rainfall	858.5 mm	782.1 mm	742.8 mm	823.3 mm	730.4 mm
II. Current Rainfall (2015)	469.3 (-45 %	577.7 (-26 %	413.2 (-44%	573(-30%	483.7(-34 %
	deficient)	deficient)	deficient)	deficient)	deficient)
III. Rainfall Trend (mm/yr)	,	,	,	,	,
	-24.13	-14.8	-30.27	-13.26	-1.74
	(1998 to 2015)	(1998 to 2015)	(1998 to 2015)	(1998 to 2015)	(1901 to 2015)
Agriculture (sq.km.)	,	ř	, , , , , , , , , , , , , , , , , , , ,	, ,	, <u>,</u>
i. Principal Crops					
Jawari	65.65	74.83	248.82	134.36	120.11
Wheat	11.97	15.19	52.0	12.97	23.59
Sugarcane	23.58	40.87	56.33	46.22	82.83
Onion	2.25	0.4	8.36	1.9	3.5
Grape	1.29	0.43	2.3	0.23	0.38
Mango	3.05	1.61	2.24	0.96	3.72
Sunflower	1.9	0.44	7.44	6.61	0.23
Sumower	1.9	0.44	7.44	0.01	0.25
ii. Cultivable Area	480.67	470	1144.07	1125	919.75
iii. Net Sown Area	461.39	450	1041.04	883.13	716.09
iv. Forest	1.55	10.3	2.35	3.5	0.88
Irrigation Sources (sq.km.)	1.55	10.5	2.55	5.5	0.88
i. Ground water	28.89	80.33	53.18	67.04	125.37
ii. Surface Water	80.77	75.88	133.45	134.04	125.57
Data Utilised	80.77	75.88	155.45	154.04	120.74
	16	10	22	25	26
i. Key Observation Wells	16	19	33	35	36
ii. GW exploration	8EW+1 OW + 1	8 EW+ 0 OW +		10 EW+ 0 OW +	16 EW+ 4 OW +
iii. VES	Pz	2 Pz	+1 Pz	1 Pz	2Pz
iv. GWQ sampling locations- AQI	11	7	13	12	43
AQII	3	0	3	4	15
Filthing / Filthing Wetter Demonstra					
Existing / Future Water Demands					
(MCM)	1 (2/2 (2	1 24/2 2	2 57/7 02	4 4 / 7 2 4 /2025	4 24/7 4 (2027)
Domestic & Industrial	1.63/ 2.43	1.34/2.2	3.57/7.02	4.4/7.34 (2025)	4.24/7.1 (2025)
	(2025)	(2025)	(2025)	96.54 / 15.87	101.9 / 11.35
Irrigation	41.44 / 9.42	36.93 / 5.5	98.15 / 33.7		
Water Level Behaviour					
Aquifer I					
Pre-monsoon WL (m bgl)	7 to 25	3.4 to 24	6.6 to 28	5.12 to 27	5.8 to 22.8
Post-monsoon WL (m bgl)	4.5 to 16	4.6 to 10.5	4.1 to 18	4.5 to 20	3.1 to 16.6
Pre-monsoon WL Trend –Rise (m/y)	0	0.0 to 0.58	0.00 to 0.14	0	0.01 to 0.54
Pre-monsoon WL Trend-Fall(m/y)	-0.03 to 0.6	-0.007 to-0.8	-0.08 to -0.75	-0.071 to 0.73	-0.1 to 0.58
Post-monsoon WL Trend -Rise(m/y)	0.01 to 0.06	.01 to 0.15	0.0071 to 0.38	0.14 to 0.4	0.01 to 0.36
Post-monsoon WL Trend -Fall(m/y)	-0.07 to -0.54	-0.02 to -0.44	-0.0071 to -0.7	-0.08 to -0.64	-0.08 to -0.5
Aquifer II					
Pre-monsoon WL (Aq-II) m bgl	11 to 65	14 to 70	9 to 78	9 to 78	18 to 80
Post-monsoon WL (Aq-II) m bgl	6 to 45	10.9 to 47	1.9 to 58	5 to 55	2.15 to 56

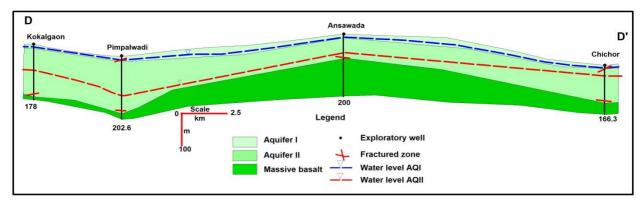


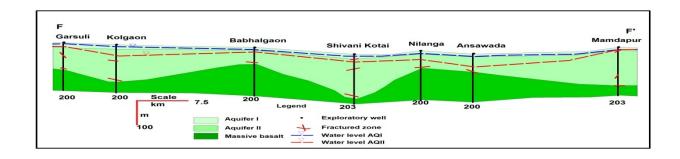


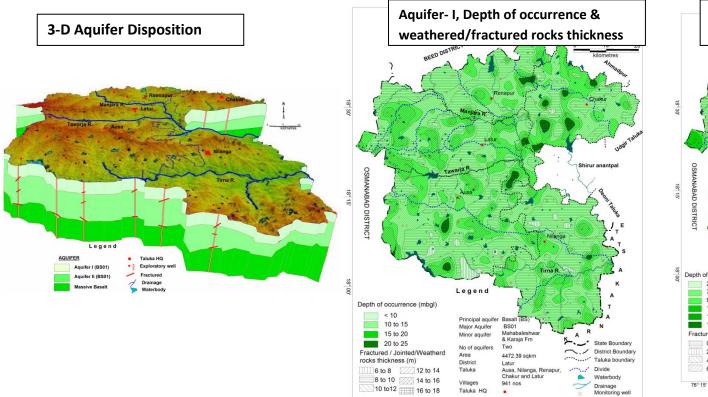


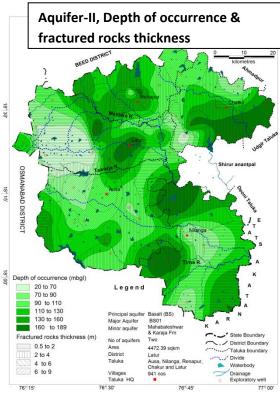

3 AQUIFER DISPOSITION


2-D and 3-D Aquifer	Aquifer: Basalt; Aquifer I - Weathered/Fractured Basalt: Depth range- 8 to
Disposition	25 m and thickness of 6 to 18m.
	Aquifer II - Jointed/Fractured Basalt: Depth range - 20 to 189 m, Thickness
	– 0.5 to 9.0 m



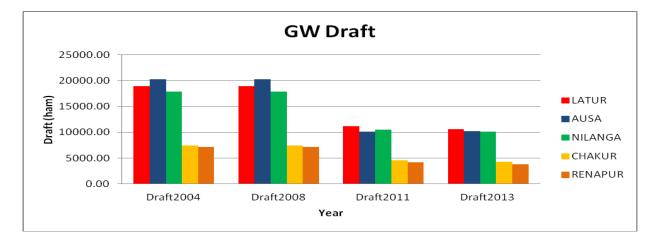




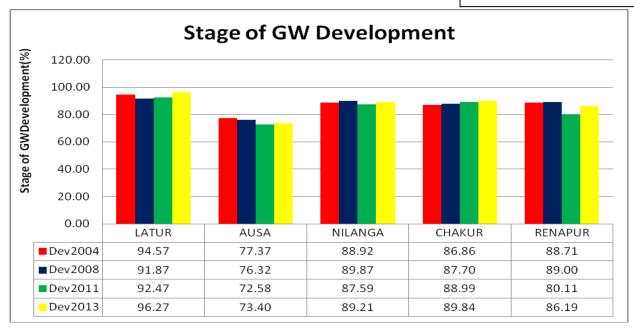


76° 15'

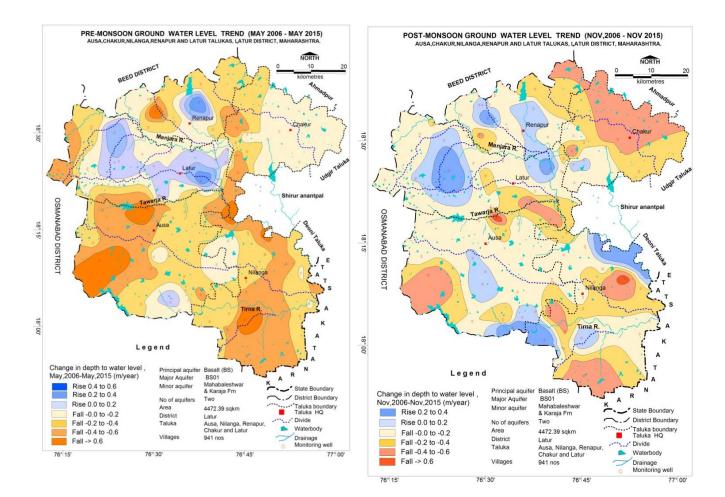
Aquifer	Formation	Depth range (mbgl)	SWL (mbgl)	Thickness (m)	Fractures Zones encountered (m bgl)	Yield	Sustaina- bility	Aquifer parameter (Transmissivity – m ² /day)	Sy/S	Suitability for drinking/ irrigation
Aquifer-I	Weathered/Fractur ed /Jointed Basalt	6-25	4.60 to 23.15	6 to 18	4 to 25	10 to 100 m ³ /day	1 to 2 Hours – recurring	-	0.02	Yes for both (except Nitrate affected villages for drinking)
Aquifer-II	Jointed/Fractured Basalt	20-189	6 to > 50	0.5 to 9.0	20 to 189	25 - 200 LPM	1 to 2 hours	T- 10-25 m ² /day	0.0024 to 1.25 x10 ⁻⁴	Yes for both


76° 45'

77° 00'

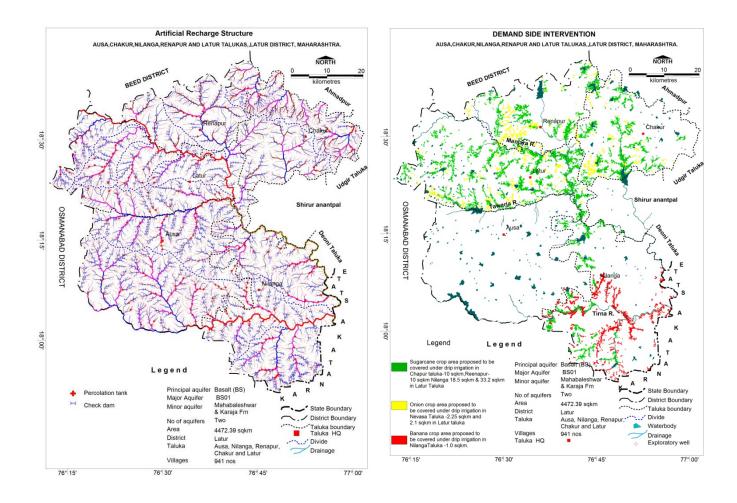

76° 30'

4	GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND
	OTHER ISSUES


	Chakur	Renapur	Ausa	Nilanga	Latur
Aquifer wise Ground	Water Resour	ce availability and	d Extraction		
Ground Water Resource (MCM)					
Aquifer –I: upto 25 m					
Availability	47.94	44.41	138.58	113.15	110.26
Withdrawal Ground Water Resource (MCM) Aquifer –II: 20 to 189 m	43.07	38.28	101.72	100.94	106.14
Availability	2.5	2.68	5.69	0.74	1.261
Withdrawal	0	0	0	0	
Stage of GW Development	89.84%	86.19%	73.40%	89.21%	96.27%
Present Category	Safe	Safe	Safe	Safe	Semi- Critical
Ground Water Relat	ed Issues				
Over Exploitation Deeper Water Levels	for irrigation	•		he period of time ea 1980sq km	. Overdraft
Declining Water Levels	-	ter Levels area –F Falling Trend > 0.2		59 sq.km & Post	-monsoon
GW based irrigation of cash crops like sugarcane	Sugarcane cr	op (249.8.5sq.km	ı)– water intensi	ve crop.	
Micro Irrigation		-	•	rrigation through ne crop,Banana,C	

ISSUE: OVER-EXPLOITATION

ISSUE: DECLINE OF WATER LEVEL



5 GROUND WATER RESOURCE ENHANCEMENT AND PROPOSED MANAGEMENT INTERVENTIONS

	Chakur	Renapur	Ausa	Nilanga	Lattur				
5.1 Resource Enhancement	5.1 Resource Enhancement by Supply Side Interventions								
Recharge Potential	10.84	13.3044	43.0476	38.0972	35.82				
Surface water requirement @	14.41	17.694852	57.25331	50.6693	47.64				
75% efficiency									
Availability of Surplus surface	6.056	7.436	24.06	21.29	20.02				
runoff									
Surplus runoff considered for	6.056	7.436	24.06	21.29	20.02				
planning									
Proposed Artificial Recharge St	ructures								
РТ	21	26	84	75	70				
CD	61	74	241	213	200				
Volume of Water expected to	4.523	5.565	18.0225	16.0425	15				
be recharged @ 75% efficiency									
(MCM)									
Proposed RTRWH									
Households to be covered	8700	7205	16110	15960	33472				
Total RWH potential	0.246	0.185889	0.46	0.41	0.95				

Rainwater harvested / recharged @ 80% runoff co- efficient	0.197	0.1487112	0.36	0.33	0.76				
	12.05	10.0075	24.17	22.04	50.21				
Estimated Expenditure (Rs. in	13.05	10.8075	24.17	23.94	50.21				
Cr.)									
RTRWH Economically not via	RTRWH Economically not viable & Not Recommended. Total estimated Cost of								
RTRWH would be- 122.17 Cr. Fc	or Harvesting	g 1.79 MCM of R	ain Water.						
Total volume of water	4.523	5.565	18.0225	16.0425	15				
expected to be recharged/									
conserved by AR									
Total Estimated Expenditure	49.8	61.2	198.3	176.4	165				
for AR									

Block	Cha	akur	Ren	apur	A	usa	Nila	nga	Lat	ur
DEMAND SIDE INT	ERVENTION	NS								
Cropping Pattern cl	hange-not	recommend	ed							
Micro irrigation techniques	Cropped area	Proposed area	Croppe d area	Propos ed area	Crop ped area	Prop osed area	Cropp ed area	Prop osed area	Cropp ed area	Prop osed area
Sugarcane cropped area (Sqkm)	23.58	10	40.87	10			46.22	18.5	82.83	33.2
Total volume of water expected to be saved	8.3		8.3				15.355		27.565	
Estimated Expenditure (Rs. in Cr.) @ Rs. 60,000/- per acre	15		15				28.5		48	
Onion cropped area	2.25	2.25							3.5	2.1
Total volume of water expected to be saved	0.585								0.546	
Estimated Expenditure (Rs. in Cr.) @ Rs. 60,000/- per acre	3.375								3.15	
Banana/Grape cropped area	Grape- 1.29	1.29					Banana- 1.35	1		
Total volume of water expected to be saved	0.25						0.79			
Estimated Expenditure (Rs. in Cr.) @ Rs. 60,000/- per acre	1.935						1.5			
Alternate Sources	Nil		Nil		Nil		Nil		Nil	

5.1 Probable Benefits

	Chakur	Renapur	Ausa	Nilanga	Lattur
GW resources available after implementing above measures (Artificial recharge and micro irrigation)	13.6575	13.865	18.0225	32.1875	43.111
Stage of GW Development after intervention in %	69.92	65.69	64.95	69.457	69.20

5.2 Regulatory Measures

	Chakur	Renapur	Ausa	Nilanga	Lattur
o ,	Regulation of wells below	0	Regulation of wells below	•	
		below 60 m		60 m	

6 SUM UP

A thorough study was carried out based on data gap analysis, data generated inhouse; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of aquifer maps and aquifer management plans of Ausa, Chakur, Latur, Nilanga & Renapur Talukas of Latur district

The study area is spanning over 4472.39 sq.km. Geologically the area is occupied by Basalt and the stage of ground water development is 89.84 % in Chakur , 86.19 % in Renapur , 73.4 % in Ausa 89.21 in Nilanga and 96.27 % in Laturr taluka. The area has witnessed ground water depletion and over exploitation over a period of time. In Aquifer-I, the deeper water levels of >15 m bgl has been observed in central parts of Latur and Ausa talukas, southern parts of Nilanga taluka, while in Aquifer –II, deeper water levels of > 40 mbgl has been observed in major parts (about 1980 Sqkm in premonsoon) of the study area. The declining water level trend > 0.20 m/yr. has been observed in major part about 1808 sqkm during postmonsoon and 2959 sqkm during premonsoon trend(2006 to 2015). This has been due to cultivation of water intensive cash crop like Sugarcane (249.8 sq.km), which are completely dependent on ground water irrigation.

Ground water management plan has been prepared with the objective of bringing the current stage of ground water development down to 70% and decline of water level may be arrested, so that the taluka comes under Safe category by adopting both, supply side and demand side interventions.

As a part of supply side interventions, a total of 276 Percolation Tanks and 789 Check Dam is proposed in Ausa, Chakur, Latur, Nilanga & Renapur Talukas , which will augment ground water resources to the tune of 59.15 MCM (41.4 MCM by Percolation Tanks and 17.75 MCM by Check Dam). The total cost of implementing these interventions will be Rs. 650.7 crore.

As a part of demand side interventions, change in irrigation techniques from surface flooding to drip irrigation is also proposed. A total of 71.7 sqkm out of 249.8 sqkm Sugarcane crop area in Ausa, Chakur, Latur, Nilanga & Renapur Talukas, 4.35 sqkm onion, 1.0 sqkm Banana and 1.29 sqkm Grape cropped is proposed to be covered under drip irrigation techniques instead of flood irrigation that will save 61.69 MCM of water resources. The total cost of implementing these interventions will be Rs 116.46 crore.

In Ausa, Chakur, Latur, Nilanga & Renapur Talukas, a total of 59.15 MCM resources will be augmented after adopting artificial recharge, whereas and 61.69 MCM will be saved after implementing water user efficiency measures (drip irrigation). This will bring the stage of ground water development to 69.92 % in Chakur , 65.69 % in Renapur , 64.95 % in Ausa 69.45 in Nilanga and 69.2 % in Laturr taluka respectively from the present stage of 89.84 % in Chakur , 86.19 % in Renapur , 73.4 % in Ausa 89.21 in Nilanga and 96.27 % in Laturr taluka This will probably result in arresting the decline of water levels. These interventions also need to be supported by regulation of deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewells of more than 60 m depth in these talukas, so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought.

Similarly IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory groundwater management.