भारत सरकार

Government of India

जल शक्ति मंत्रालय, जल संसाधन, नदी विकास एवं गंगा संरक्षण बिभाग

Ministry of Jal Shakti, Department of Water Resources, River Development & Ganga Rejuvenation

केन्द्रीय भूमि जल बोर्ड

Central Ground Water Board

सूरजपुर जिला, छत्तीसगढ़ के जलभृत नक्शे एवं भूजल प्रबंधन योजना

Aquifer Maps and Ground Water Management Plan of Surajpur District, Chhattisgarh

केन्द्रीय भूमि जल बोर्ड

उत्तर मध्य छत्तीसगढ़ क्षेत्र द्वितीय तल, एल. के. कॉरपोरेट एवं लांजिस्तिक पार्क, धमतरी रोड, डूमरतराई, रायपुर (छत्तीसगढ़)-492015 फोन-0771-2974405, फैक्स-2974405, ईमैल-rdnccr-cgwb@nic.in

2022

FOREWORD

Groundwater resources are being developed over years in order to meet domestic, irrigation and industrial requirements. The spatial distribution of availability of ground water resources however, is uneven and is being indiscriminately exploited by various users thereby creating relentless pressure. On the other hand, rapid urbanization, industrialization and land use changes has resulted decline of water levels in many parts of the country.

There is an urgent need for scientific approach for proper management of the available ground water resources for sustainability of this precious natural resource for present and future generation.

Central Ground Water Board has been in the forefront of activities for occurrence, development, and management of this resource through various scientific studies and techniques. Over the last four decades CGWB, NCCR, Raipur has gathered a huge amount of data regarding ground water resources of Chhattisgarh. Based on this experience aquifer mapping of Surajpur district was prepared with the vast amount of data generated and available with North Central Chhattisgarh Region. The report embodies all the features of ground water and related aspects of the study area including physiography, meteorological conditions, hydrology, drainage, geomorphology, geology, hydrogeology, ground water resources, hydrochemistry, geophysics, ground water problems etc.

The report titled "A REPORT ON AQUIFER MAPS AND GROUNDWATER MANAGEMENT PLAN OF SURAJPUR DISTRICT, CHHATTISGARH" is prepared by Sh Mukesh Anand, Scientist-B under the supervision of Dr. Prabir K. Naik (Regional Director), Sh. A.K. Biswal (Scientist-E), and Smt. Prachi Gupta (Scientist-B & OIC-NAQUIM). I appreciate the concerted efforts put by the author to make it possible to bring the report in its present shape. I hope this report will no doubt be useful and worthy for the benefit of Surajpur district and would be a useful document for academicians, administrators, planners and all the stakeholders in ground water.

Though utmost care has been taken to minimize the errors, some errors may have inadvertently crept in. It is expected that these mistakes will be taken in the proper spirit.

Dr. Prabir K. Naik (REGIONAL DIRECTOR)

कार्यकारी सारांश

राष्ट्रीय जलभृत नक्शा ऐवम भूजल प्रबंधन योजना एक बहु-विषयक वैज्ञानिक प्रक्रिया है जिसमें भूगर्भीय, जल-भूवैज्ञानिक, भूभौतिकीय, जल विज्ञान और गुणवत्ता जानकारी के संयोजन को एक्वीफर्स में भूजल की मात्रा, गुणवत्ता और गति को चिहिनत करने के लिए एकीकृत किया जाता है। हालांकि, पिछले एक दशक में विकास से भूजल प्रबंधन पर ध्यान केंद्रित करने के कारण, स्थानीय स्तर पर भूजल संसाधनों के न्यायसंगत और टिकाऊ प्रबंधन के लिए बड़े पैमाने पर अधिक विश्वसनीय और व्यापक जलभृत मानचित्रों की आवश्यकता महसूस की गई है। भूजल का बड़ा मूल्यांकन और भविष्य के विकास और प्रबंधन के लिए रणनीति जलभृत मानचित्रण के प्राथमिक उद्देश्य हैं।

जलभृत मानचित्रण कार्यक्रम के तहत, सूरजपुर जिले के सभी विकास खंड अर्थात् सूरजपुर, प्रतापपुर, प्रेमनगर, रामानुजनगर, भैयाथन और ओडगी को 2786.76 वर्ग किमी के क्षेत्र में शामिल किया गया था। यह सर्वे ऑफ इंडिया के डिग्री शीट नंबर 641, 64M, 64N, 64J में भागों (1:250000 स्केल) में अक्षांश 22°47'46' से 23°55'06"N और देशांतर 82°29'56" से 83°21'30" पूर्व के बीच आता है। यह जिला उत्तर में बलरामपुर जिले और मध्य प्रदेश राज्य, पश्चिम में कोरिया जिले और दक्षिण-पूर्व और दक्षिण में क्रमशः सरगुजा और कोरबा जिले से घिरा है। हालांकि जिला सड़क मार्ग से राज्य के भीतर सरगुजा और रायपुर जैसे आसपास के जिलों से जुड़ा हुआ है, रेलवे कनेक्टिविटी खराब है और निकटतम रेलवे स्टेशन अंबिकापुर (छ.ग.) और गढ़वा (झारखंड) में है। राज्य के भीतर निकटतम हवाई अड्डा रायपुर की राजधानी है जो रायपुर से लगभग 400 किमी दूर है। जिले के सभी महत्वपूर्ण स्थान राज्य के राजमार्गों और अन्य सभी सड़कों के नेटवर्क से अच्छी तरह से जुड़े हुए हैं।

2011 की जनगणना के अनुसार 789043 (पुरुष-398381, स्त्री-390662) की कुल जनसंख्या 547 गांवों में निवास करती है। जिले का जनसंख्या घनत्व 283 व्यक्ति/वर्ग किमी है। जनगणना के अनुसार। जनगणना के अनुसार साक्षरता दर 60.95% है, हालांकि लिंगानुपात प्रति 1000 पुरुषों पर 980 महिलाओं के अनुरूप है।

अध्ययन क्षेत्र उपोष्णकटिबंधीय जलवायु का अनुभव करता है। अध्ययन क्षेत्र के लिए औसत वार्षिक वर्षा लगभग 1300 मिमी (पिछले पांच वर्षों का औसत यानी 2013 से 2017 तक) है।

भू-आकृति विज्ञान की दृष्टि से अध्ययन क्षेत्र के उत्तरी, दक्षिणी और मध्य भाग पेडिमेंट/पेडीप्लेन प्रदर्शित करते हैं। ओडगी ब्लॉक के प्रमुख भाग पर निम्न स्तर का संरचनात्मक पठार मौजूद है। केंद्रीय पेडिमेंट/पेडीप्लेन के उत्तरी भाग में डेन्यूडेशनल हिल्स और घाटियाँ मौजूद हैं। जिले के शेष भाग पर गोंडवाना चट्टानों के संरचनात्मक मैदानों का कब्जा है। शुद्ध बुवाई क्षेत्र 170399 हेक्टेयर है, जबकि दो फसली क्षेत्र 19076 हेक्टेयर है। कुल बोए गए क्षेत्र के लगभग 75% भाग में चावल बोया जाता है।

अध्ययन क्षेत्र में कुल सिंचित क्षेत्र 17495 हेक्टेयर है जहां भूजल का योगदान 1572 हेक्टेयर ही है। शुद्ध सिंचित क्षेत्र की तुलना में भूजल द्वारा सिंचित क्षेत्र का प्रतिशत 9% है। शुद्ध बुवाई क्षेत्र के संबंध में लगभग 90% क्षेत्र केवल वर्षा पर निर्भर है।

iii

ब्लॉकों के लिए उत्पन्न अन्वेषणात्मक ड्रिलिंग डेटा के आधार पर, क्षेत्र में मौजूदा एक्वीफर सिस्टम को फ़्रीटिक और सेमीकॉन्फ़िंड एक्विफ़र में विभाजित किया जा सकता है। अध्ययन क्षेत्र में मौजूद प्रमुख जलभृत गोंडवाना सुपरग्रुप और छोटानागपुर ग्रेनाइट जेनिस हैं। सैंडस्टोन में डिस्चार्ज नगण्य से 9.8 एलपीएस और अपक्षय ग्रेनाइट में 5.9 एलपीएस तक भिन्न होता है, सैंडस्टोन में 23.27 मीटर का औसत ड्रॉडाउन 12.96 मीटर अपक्षयित ग्रेनाइट में होता है और उच्च पैदावार प्राप्त होती है जहां मोटे मौसम वाले क्षेत्र बेडरॉक फ्रैक्चरिंग से जुड़े होते हैं।

2020 के अनुसार अध्ययन क्षेत्र में भूजल विकास का भूजल संसाधन गणना चरण 59.78% है। इसलिए, यह खतरनाक आंकड़ा है और अध्ययन क्षेत्र में भूजल के मसौदे को संतुलित करने और भूजल संरक्षण संरचनाओं के निर्माण पर ध्यान केंद्रित करने की आवश्यकता है क्योंकि चरण अर्ध-महत्वपूर्ण वर्गीकरण की ओर बढ़ रहा है।

क्षेत्र में सिंचाई की मौजूदा मांग 17896.36 हैम है जबकि घरेलू उपयोग के लिए 2053.19 हैम और औद्योगिक क्षेत्र के लिए 566.68 हैम है। भविष्य में भूजल की मांग को पूरा करने के लिए कुल 20516.25 हैम भूजल भविष्य में उपयोग के लिए उपलब्ध है।

अध्ययन क्षेत्र में सर्वेक्षण के दौरान पहचाने गए प्रमुख भूजल मुद्दे इस प्रकार हैं: (i) गर्मियों के दौरान कुओं और हैंडपंपों का सूखना। (ii) जलभृत का अंतर्निहित जल भूवैज्ञानिक लक्षण। (iii) फ्लोराइड सांद्रता। (iv) लौह संदूषण। (v) नाइट्रेट संदूषण।

अध्ययन क्षेत्र में जटिल जल भूगर्भीय परिस्थितियों के कारण भूमि की उपलब्धता बिखरी हुई है। उस क्षेत्र में जहां भूजल की उपलब्धता सीमित है, सतही जल का संरक्षण और उपयोग किया जा सकता है। कई स्थानों से फ्लोराइड और आयरन के उच्च मूल्य की सूचना मिली है। बलुआ पत्थर जलभृत प्रणाली में कई स्थानों पर भूगर्भीय कारणों से भूजल फ्लोराइड से दूषित होता है। पीने के पानी में फ्लोराइड संदूषण की समस्या से प्रभावित गांवों में छोटी डीफ्लोरिनेशन इकाइयों की स्थापना करके या वैकल्पिक स्रोत की पहचान की जा सकती है। इसी प्रकार, उच्च लौह सांद्रता वाले गांवों के लिए आयरन फिल्टर का उपयोग किया जा सकता है। नियमित भूजल गुणवत्ता निगरानी की भी आवश्यकता है।

जहां तक भूजल उपलब्धता के लिए प्रबंधन रणनीतियों का संबंध है, भूजल के प्रभावी उपयोग के लिए सिंचाई के लिए मौजूदा ड्राफ्ट को सूक्ष्म सिंचाई प्रणाली के साथ जोड़ा जा सकता है। सिंचाई पद्धति में परिवर्तन, उपलब्ध संसाधनों का इष्टतम उपयोग, कृत्रिम पुनर्भरण के बाद निर्मित भूजल क्षमता के उपयोग से भूजल की बचत हो सकती है और जिले के सकल फसल क्षेत्र में वृद्धि हो सकती है।

iv

Executive summary

Aquifer mapping is a multidisciplinary scientific process wherein a combination of geological, hydrogeological, geophysical, hydrological and quality data is integrated to characterize the quantity, quality and movement of ground water in aquifers. However, due to paradigm shift in focus from development to management of ground water in last one decade, the need for more reliable and comprehensive aquifer maps on larger scale has been felt for equitable and sustainable management of the ground water resources at local scale. Volumetric assessment of ground water and strategies for future development and management are the primary objectives of aquifer mapping.

Under the aquifer mapping Programme, all the development blocks of Surajpur District namely Surajpur, Pratappur, Premnagar, Ramanujnagar, Bhaiyathan and Odgi were taken up covering an area of 2786.76 sq. km. It falls in the Survey of India's Degree Sheet No. 64I, 64M, 64N, 64J in parts (1:250000 Scale) between latitudes 22°47'46'to 23°55'06"N and longitudes 82°29'56"to 83°21'30"E. The district is bounded by Balrampur district and Madhya Pradesh State in the north, Koriya district in the west and Surguja & Korba district in the south-east & south respectively. Though the district is well connected by road to adjoining districts such as Surguja and Raipur within the state, the railway connectivity is poor and the nearest railway station is in Ambikapur (Chhattisgarh) and Garhwa (Jharkhand). The nearest airport within the state is the capital of Raipur which is around 400 km from Raipur. All-important places within the district are well connected by a network of the state highways and all-other roads.

According to the Census 2011, total population of 789043 (Male – 398381, Female – 390662) dwells in 547 villages. The Population density of the district is noted as 283 persons/sq.km. as per the census. The literacy rate as per the census is 60.95%, however the sex ratio corresponds to 980 females per 1000 males.

The study area experiences sub-tropical climate. The average annual rainfall for the study area is around 1300 mm (Average of the last five years i.e., 2013 to 2017)

Geomorphologically the Northern, Southern and Central parts of the study area displays Pediment/Pediplain. Low level structural plateau exists on major part of Odgi block. Denudational Hills and Valleys are present in northern part of Central pediment/pediplain. Remaining part of the district is occupied by structural plains of Gondwana rocks.

The net sown area is 170399 hectares, while double-cropped area is 19076 hectares. Rice is sown in nearly 75% of the net sown area.

The net irrigated area in the study area is 17495 hectares where ground water contribution is 1572 Ha only. Percentage of Area Irrigated by ground water with respect to net irrigated area is 9%. About 90% area with respect to net sown area is dependent on rain only.

Based on the exploratory drilling data generated for the blocks, the existing aquifer systems in the area may be divided into phreatic and semiconfined aquifer. The major aquifers present in the study area are Gondwana supergroup and Chotanagpur Granite Geneiss. Discharge varies from negligible to 9.8 lps in Sandstone and 5.9 lps in weathered granite, having Average Drawdown of 23.27 m in Sandstone 12.96 m in weathered granite and higher yields are obtained where thick weathered zones are associated with bedrock fracturing.

As per 2020 ground water resource calculation stage of ground water development in the study area is 59.78 %. So, this is alarming figure and need to be focused on to balance the groundwater draft and construct groundwater conservation structures in the study area as stage is increasing towards Semi-critical categorization.

The existing demand for irrigation in the area is 17896.36 Ham while the same for domestic use is 2053.19 Ham and for industrial field is 566.68 Ham. To meet the future demand for ground water, a total quantity of 20516.25 Ham of ground water is available for future use.

The major ground water issues identified during the survey in the study area are as follows: (i) Drying of Dugwells and handpumps during summer. (ii) Inherent hydrogeological character of aquifer. (iii) Fluoride concentration. (iv) Iron contamination. (v) Nitrate contamination.

In study area because of complex hydrogeological conditions ground availability is scattered. In area where ground water availability is limited surface water may be conserved and utilized. High value of Fluoride and Iron has been reported from several locations. In Sandstone aquifer system at many places ground water is contaminated with Fluoride because of geogenic reasons. The problem of fluoride contamination in drinking water may be tackled by setting up of small defluorination units in affected villages or alternate source may be identified. Similarly, Iron filter may be used for the villages having high Iron concentration. Regular ground water quality monitoring is also required. So far as Management strategies are concerned for ground water availability, for effective utilization of Ground water existing draft for irrigation may be coupled with micro irrigation system. Change in irrigation pattern, optimum use of available resource, use of ground water potential created after artificial recharge can lead to groundwater savings and increase in gross cropped area of the district.

Acknowledgement

I am grateful to Shri Sunil Kumar, Chairman, Central Ground Water Board for giving opportunity for preparation of Aquifer Map and Management Plan of, Surajpur district of Chhattisgarh state. I express my sincere gratitude to Shri. Sateesh Kumar Member East (Scientist), *CGWB* for giving valuable guidance, encouragement and suggestions during the preparation of this report. I am thankful to Dr. Prabir Kumar Naik, Regional Director and Shri A. K. Biswal, Scientist-E, Central Ground Water Board, NCCR, Raipur extending valuable guidance and constant encouragement during the preparation of this report. I am extremely grateful to Smt Prachi *Gupta, Scientist-B & OIC NAQUIM, for her continuous guidance and support during preparation of* this report. I am very thankful to Sh Uddeshya Kumar Sc-B and Sh Sidhanta Kumar Sahu, Sc-B for their constant support for carrying out scientific studies and report compilation and at last reviewing the report for its maximum beneficiation. I am thankful to Smt. Priyanka B. Sonbarse (Scientist-B & OIC RODC) for providing necessary data for data integration and generation and constantly motivating for timely completion of the task. I want to express my deepest bunch of thanks to Dr. Pradeep K. Naik (Regional Director (Retd.), NCCR) for his constant support during the field work and taking up the special studies. I am also thankful to Sh Rakesh Dewangan, Sc-B, *Smt Kiran Singh Sc-B and Dr. Anita Bind, STA for the chemical analysis. The author is very grateful* to Sh. Sarboday Barik (Assistant Hydrogeologist) for his great assistance in cross section digitization and other calculation and software related works that were useful in report compilation and its enhancement. The efforts made by Sh. T.S. Chouhan, Draftsman, for digitization of maps are thankfully acknowledged. I am also thankful to the Water Resource Department, Chhattisgarh State for providing the various needful data. I am thankful to Technical Section, Data Centre, Chemical Section, Report Processing Section and Library of CGWB, NCCR, Raipur for providing the various needful data. Last but not the least I want to deliver my gratefulness towards the great Almighty and my parents for being my real power behind successful completion of the assigned task.

Mukesh Anand/मुकेश आनंद

Scientist-B (JHG)/वैज्ञानिक-ख

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, SURAJPUR DISTRICT, CHHATTISGARH (06 BLOCKS-SURAJPUR, PRATAPPUR, PREMNAGAR, RAMANUJNAGAR, BHAIYATHAN & ODGI)

KEY C O N T R I B U T O R S'

Principal Author		
Mukesh Anand	:	Junior Hydrogeologist / Scientist-B
Supervision & Guidance		
Dr. Prabir Kumar Naik	:	Regional Director
A K Biswal	:	Scientist-E & TS
Prachi Gupta	:	Scientist-B & OIC NAQUIM
Uddeshya Kumar	:	Scientist-B & OIC NAQUIM (April 2021-January 2022)
Sidhanta Kumar Sahu	:	Junior Hydrogeologist/ Scientist-B
Groundwater Exploration 2021-22, Surajpur district		
Mukesh Anand	:	Junior Hydrogeologist/ Scientist-B
Chemical Analysis		
Rakesh Dewangan	:	Scientist B (Chemist)
Section Finalization / Map Digitization		
Prachi Gupta	:	Scientist-B
Mukesh Anand	:	Scientist-B
T S Chauhan	:	Draftsman

Contents

1.	INTRODUCTION	1
	1.1 Objective	1
	1.2 Scope of study	1
	1.3 Approach and Methodology	2
	1.4 Area Details	3
	1.4.1 Administrative Division	3
	1.5 Data Availability, Data Adequacy and Data gap Analysis	5
	1.6 Rainfall	5
	1.7 Physiography/Geomorphology	6
	1.8 Land use	7
	1.9 Soil	9
	1.10 Hydrology and Drainage	10
	1.11 Geology	13
	1.12 Agriculture, Irrigation, Cropping Pattern	18
2.	DATA GENERATION513, DATA INTERPRETATION AND DATA INTEGRATION	19
	2.1 Hydrogeological Data	19
	2.1.1 Water level behavior	20
3.	AQUIFER DEPOSITION AND GROUND WATER RESOURCES	29
	3.1 Aquifer Geometry and Characterization	29
	3.2 Groundwater Resources Availability and Extraction	35
	3.3 Existing and Future Water Demand (2025)	36
4.	GROUND WATER RELATED ISSUES	37
5.	GROUND WATER MANAGEMENT STRATEGY	37
6.	SPECIAL STUDY ON CHINDIYA GRAM PANCHAYAT, SURAJPUR DISTRICT	42
7.	CONCLUSION	51

List of Tables

Table 1 Data Integration	5
Table 2 Land use pattern (in ha)	7
Table 3 Generalized Geological succession of Surajpur district	15
Table 4(A) Cropping Pattern (in ha)	
Table 4(B) Area irrigated by various sources (in ha)	
Table 4(C) Contribution of Groundwater in Irrigation Pattern (in ha)	
Table 5(A)- Aquifer wise Depth to Water Level (Pre monsoon)	
Table 5(B)- Aquifer wise Depth to Water Level (Post monsoon)	
Table 6 Aquifer Characteristics of Surajpur District	29
Table 7 Groundwater Resource up to 100m bgl (MCM)	35
Table 8 Ground Water Resources of the Study area in Ham	
Table 9 Types of Artificial Recharge structures feasible	
Table 10 Potential of Additional GW abstraction structure creation	
Table 11 Detail of groundwater saved through change in cropping pattern and other interv	entions51

List of Figures

Figure 1 Administrative Map of Surajpur District	
Figure 2 Avg. Rainfall in Surajpur District	5
Figure 3 Geomorphology Map of the Study area	6
Figure 4 Landuse map of the study area	
Figure 5 Soil map of the study area	9
Figure 6 Drainage map of the study area	12
Figure 7 Geological map of the study area	17
Figure 8 Groundwater Contribution in Irrigation	19
Figure 9 Hydrogeological Map of Study Area	20
Figure 10 Key Wells of the study area	21
Figure 11 Pre monsoon Water Level Maps of Phreatic Aquifer	23
Figure 12 Pre monsoon Water Level Maps of Fractured Aquifer	24
Figure 13 Post monsoon Water Level Map of Phreatic Aquifer	25
Figure 14 Post monsoon Water Level Maps of Fractured Aquifer	26
Figure 15 Water level fluctuation of Phreatic aquifer 2018	27
Figure 16 Water level fluctuation of Fractured aquifer 2018	28
Figure 17(A&B) Cross-section of Study area along North-South Direction	30
Figure 18(A&B) Cross-section of Study area along East-West Direction	31
Figure 19 3D model daigram of the study area	32
Figure 20 Fence diagram of Study area	
Figure 21 Strip log of the Study area	33
Figure 22 3D-Explode section of the study area	34
Figure 23 Glimpses of PIP conducted in Surajpur district	
Figure 24 Ground water feasibility for abstraction structures	40

Annexure 1 Details of Key wells established	52
Annexure 2 Details of Exploration in Surajpur District	55
Annexure 3 Details of Chemical Analysis	58
5	

ABBREVIATIONS

a msl	above mean sea level
BDR	Basic Data Report
BW	Borewell
CGWB	Central Ground Water Board
Dia	Diameter
DTW	Depth to Waterlevel
DW	Dugwell
EC	Electrical Conductivity
EW	Exploratory Wells
GS	Gabion structures
GW/ gw	Ground Water
ham	Hectare meter
HP	Handpump (Shallow)
lpcd	litres per capita per day
lpm	litres per minute
lps	liters per second
m	meter
m bgl	meter below ground level
m2/day	Square meter/ day
m3/day	cubic meter/day
MCM/mcm	Million Cubic Meter
NCCR	North Central Chhattisgarh Region
NHNS/ NHS	National Hydrograph Network Stations
OW	Observation Well
PZ	Piezometre
STP	Sewage Treatment Plan
Т	Transmissivity
TW	Tubewell

1. INTRODUCTION

1.1 Objective

The groundwater is the most valuable resource for the country. However, due to rapid and uneven development, this resource has come under stress in several parts of the country. Central Ground Water Board (CGWB) is, therefore, involved in hydrogeological investigations for Re-appraisal of ground water regime. CGWB has also carried out ground water exploration in different phases with prime objective of demarcating and identifying the potential aquifers in different terrains for evaluating the aquifer parameters and also for developing them in future. The reports and maps generated from the studies are mostly based on administrative units such as districts and blocks and depict the subsurface disposition of aquifer on regional scale. However, due to paradigm shift in focus from development to management of ground water in last one decade, the need for more reliable and comprehensive aquifer maps on larger scale has been felt for equitable and sustainable management of the ground water resources at local scale.

1.2 Scope of study

The demand for ground water for various types of use is increasing day by day; consequently, indiscriminate development of ground water has taken place and the ground water resource has come under stress in several parts of the country. On the other hand, there are also areas where adequate development of ground water resources has not taken place. These facts underscore the need for micro-level study of the aquifer systems of the country. The water resource managers and planners to develop and implement effective long term as well as short term aquifer management strategies, a host of scientific questions must be answered. These questions can be best answered through a comprehensive process that integrates the available scientific data. Aquifer mapping study thus is a multidisciplinary scientific process wherein a combination of geological, hydrogeological, geophysical, hydrological and quality data is integrated to characterize the quantity, quality and movement of ground water in aquifers. It primarily depends on the existing data that are assembled, analyzed and interpreted from available sources. The data gap analysis carried out helped to generate data from data newly collected through activities such as exploratory drilling, groundwater level monitoring on a regular basis for a considerable period and groundwater quality analysis. These existing as well as generated data were analyzed in ordered to prepare regional hydrogeological, thematic, water quality maps, cross-sections, 2-D and 3-D aquifer disposition maps. The aquifer maps are the maps depicting aquifer disposition, giving lateral and vertical extension. The maps will also provide information on the quantity and quality. It explains the components of the Aquifer Classification System, outlines the assumptions underlying the map information presented and summarizes the content of an aquifer classification map. The goal is to help the map users understand the strengths and limitations of the information contained on the aquifer classification maps so that they can apply that information appropriately to their particular water and land management needs. The system and maps are designed to be used together and in conjunction with other available information as a screening tool for setting groundwater management priorities. These provide a way of comparing aquifers within a consistent hydrogeological context and prioritizing future actions at various planning levels. The maps may provide some background information for site-specific projects. However, the maps are not to be used for making site-specific decisions. The classification of an aquifer reflects the aquifer as a whole and at a specific time. Groundwater conditions, such as the degree of vulnerability and water quality, may vary locally and over time respectively. This variability in the data sometimes requires subjective decision-making and generalizing of information for an entire aquifer.

1.3 Approach and Methodology

The activities under the aquifer project can be summarized as follows:

i) Data Compilation & Data Gap Analysis: One of the important aspects of the aquifer mapping Programme was the synthesis of the large volume of data already collected during specific studies carried out by the Central Ground Water Board and various other government organizations with a new set of data generated that broadly describe an aquifer system. The data were compiled, analyzed, synthesized and interpreted from available sources. These sources were predominantly non-computerized data that were converted into computer-based GIS data sets. On the basis of these available data, Data Gaps were identified.

ii) Data Generation: It was evident from the data gap that additional data should be generated to fill the data gaps in order to achieve the objective of the aquifer mapping Programme. This was done by multiple activities like exploratory drilling, hydro chemical analysis, use of geophysical techniques as well as detail hydrogeological surveys.

ii) Aquifer map Preparation: On the basis of integration of data generated through various hydrogeological and geophysical studies, aquifers have been delineated and characterized in terms of quality and potential. Various maps have been prepared bringing out the Characterization of Aquifers. These maps may be termed as Aquifer Maps depicting spatial

(lateral and vertical) variation of the aquifers existing within the study area, quality, water level and vulnerability (quality and quantity).

iv) Aquifer Management Plan: Based on the integration of these generated, compiled, analysed and interpreted data, the management plan has been prepared for sustainable development of the aquifer existing in the area.

1.4 Area Details

Under the aquifer mapping Programme, all the development blocks of Surajpur District namely Surajpur, Pratappur, Premnagar, Ramanujnagar, Bhaiyathan and Odgi were taken up covering an area of 2786.76 sq. km. It falls in the Survey of India's Degree Sheet No. 64I, 64M, 64N, 64J in parts (1:250000 Scale) between latitudes 22°47'46'to 23°55'06"N and longitudes 82°29'56"to 83°21'30"E. The district is bounded by Balrampur district and Madhya Pradesh State in the north, Koriya district in the west and Surguja & Korba district in the south-east & south respectively (**Plate 1**). Though the district is well connected by road to adjoining districts such as Surguja and Raipur within the state, the railway connectivity is poor and the nearest railway station is in Ambikapur (Chhattisgarh) and Garhwa (Jharkhand). The nearest airport within the state is the capital of Raipur which is around 400 km from Raipur. All-important places within the district are well connected by a network of the state highways and all-other roads.

1.4.1 Administrative Division

District includes 06 blocks and it is further divided in 424 village panchayats and 547 villages. The names of the 6 blocks are given below.

- 1. Surajpur Block
- 2. Pratappur Block
- 3. Premnagar Block
- 4. Ramanujnagar Block
- 5. Bhaiyathan Block
- 6. Odgi Block

The administrative map for the study area is given in Figure 1.

Figure 1 Administrative Map of Surajpur District

1.5 Data Availability, Data Adequacy and Data gap Analysis

Blocks		Existing	5	Data Generation			
	EW	Chem	WL	EW	WL		
Pratappur	9	15	18	0	15		
Bhaiyathan	7 4		7 1		11		
Surajpur	15	13	16	0	15		
Ramanujnagar	1	2	4	0	10		
Odgi	1	1	1	2	09		
Premnagar	4	7	12	0	06		
Total	37	42	58	03	66		

Table 1 Data Integration

1.6 Rainfall

The study area receives rainfall mainly from south-west monsoon. It sets in third/fourth week of June and continues till mid-August/September with heaviest showers in the months of July and August and nearly 95% of the annual rainfall is received during this period. The average annual rainfall for the study area is around 1043 mm (Average of the last five years i.e., 2015 to 2020) which is presented below in Figure 2. *Source: IMD. Raipur*

1.7 Physiography/Geomorphology

Geomorphologically the study area displays: -

- Low level structural plateau exists on major part of Odagi tahsil
- Northern, southern and central part is pediment/pediplain
- Denudational hill and valley/structural hills and valleys are present in northern side of central pediment/pediplains
- Remaining part is occupied by structural plains of gondwana rocks

Figure 3 Geomorphology Map of the Study area

Geomorphologically the district displays Pediment/Pediplain, Structural plain, Structural Hills & Valleys, Structural Plateau, Denudational Plateau and Region of Plateau. The eastern and southern part of the district is represented by Pediment/Pediplain in patches. This unit is developed over Granite & Meta-morphic rocks. This unit has fractures & joints. They are having gently sloping, smooth surface of erosional bed rock between hill & plain with veneer of detritus. Structural plain on Gondwana rocks is formed in south, north and western part of the district. It is developed over rocks of Gondwana with extensive criss-crossed fractures and Joints. The broad gently sloping erosional surface is covered with detritus of rock and thin to moderate cover of soil. Structural Hills & Valleys on Gondwana rocks are formed in the central part in the form of east-west strip of the district. They are associated with folding /faulting etc. They are having high relief steep sided linear to arcuate hills showing definite trend lines covered with thin soil and forest.

The region of Plateau is developed in western part of the district. This unit is developed over Granite & Meta-morphic rocks. This unit has extensive cris-crossed fractures/ joints. It is having flat top and steep slope relief controlled by structure. Denudational Plateau on Gondwana rocks is developed in central part of the district. This unit is developed over Gondwana rocks. This unit has extensive cris-crossed fractures/ joints and lineaments. It is formed by extensive flat top and steep slopes, relief controlled by structure. The Structural Plateau on Gondwana rocks is developed in western part of the district. This unit is developed over Gondwana rocks is developed in western part of the district. This unit is developed over Gondwana rocks. This unit has extensive cris-crossed fractures/ joints. It is developed over Gondwana rocks. This unit has extensive cris-crossed fractures. The Structural Plateau on Gondwana rocks. This unit has extensive cris-crossed fractures/ joints. It is developed over Gondwana rocks. This unit has extensive cris-crossed fractures/ joints. It is having flat top and steep slope relief controlled by structure.

Overall, the topography in the district varies between 300 m to 1200 m amsl. The area has general slope towards north direction with average elevation of 800 m amsl.

1.8 Land use

There is 15219 ha revenue forest, protected forest and other forest in the district. Area not available for cultivation is 29239 ha. Details are presented in Table no.2 and Figure 4 shows the Landuse pattern in the study area.

District	Total Geographical Area (In ha)	Revenue forest area (In ha)	Area not availabl e for cultivati on (In ha)	Non- agricultur al & Fallow land (In ha)	Agricultur al Fallow land (In ha)	Net sown area (In ha)	Double croppe d area (In ha)	Gross croppe d area (In ha)
Surajpur	278520	15219	29239	53529	170399	10134	19076	172681

Table 2Land use pattern 2018-19 (in ha)*

(*Due to Pandemic outbreak Latest Statistical Data publication is in progress)

Figure 4 Landuse map of the study area

1.9 Soil

The soils in the district are having wide variations. In all three types of soils exist in the district and are mostly insitu in nature. Most of the area is covered by Red gravely/ sandy Alfisols. It occurs over the Suprabarakars (Mahadeva/ Suprapanchet/ Parsora formation) in the area. The Shallow black Inceptisols are present over the Panchet and the Barakar formations. The R and yellow Ultisols rich in iron oxide occurs on the Upper Pali and the Mahadeva/ Suprapanchet/ Parsora formations.

Figure 5 Soil map of the study area

1.10 Hydrology and Drainage

The general slope of the district comes under Lower Ganges river slope and is towards the north and locally in some places towards east. The Lower Ganges basin covers almost total area of the district. Rihand river Mahan rivers draining the district. All of them flow in north direction. The high drainage density in the northern part of the basin reflects the imperviousness of the bedrock as well as the high slope of the area resulting in high runoff. The drainage in the district is mainly of dendritic pattern and is young in nature.

Ground water in the district occurs under phreatic, semi confined and confined conditions. It is controlled by the local topography, drainage, lithology and disposition of

Structural features like fractures and joints. Similarly medium to coarse-grained sandstone forms good aquifers in which movement of ground water is controlled by inter-granular porosity. Basic dykes, and sills traversing the basement crystalline and gondwana formations also play significant role in sub-surface movement of groundwater. As such the aquifer system in the district constitutes two type aquifers.

The hydrogeological properties of the different lithological formations in the district are described as follows.

Chhota Nagpur Gneissic Complex & Unclassified Metamorphics of Bilaspur-Raigarh-Surguja belt: Ground water generally occurs under phreatic conditions in the weathered, jointed and fractured zones, ranging thickness from 10-40 meters in Archeans. These formations exposed in large parts of the district are hard and compact and poorly permeable rocks. Gneisses, granites and quartzites are susceptible to weathering and have weathered, jointed and fractured zones extending about 15 to 25 mbgl. The schists and phyllites are moderately permeable and the occurrence of groundwater in them is dependent on the intensity of fractures and development of weathered zone. Impervious bands of siliceous phyllites with vertical foliation at places acts as sub-surface barrier for ground water movements. Sites having such disposition are suitable for ground water development on its upstream side.

Gondwans Supergroup of rocks: Gondwanas comprise thick beds of sandstone, shales, clays and coal seams. Sandstones having felsdpathic composition and medium to coarse grained, it is then porous and permeable and forms good aquifers. Sandstone having siliceous matrix behave like impervious hard rocks. Shales are fine grained, compact and though porous lack in permeability and so do not form good aquifers. Among Gondwana formation the Barakar sandstones are the most important water bearing formations in the district. These sandstones are medium to coarse-grained felsdpathic and highly porous and permeable. The inter granular pore spaces, joints and fractures control ground water movement in them. Shale beds behave as confining layers and help to form different aquifer systems. The ground water occurs under phreatic, semi confined and confined conditions.

Talchir sandstone which is very fine- grained and compact yields comparatively less ground water. Ground water is extracted by dug wells and tube wells for domestic and irrigation purposes. Shallow dug wells in the depth range 5-20 mbgl tapping Barakar sandstones can give a yield range of 25 to 15 m3/day. The depth to water level in these wells ranges from 4 to 16 mbgl.

Deccan Traps: Deccan trap basalts occur in patches in southern parts of the district. Ground water occurs in weathered zone, joints and fracture and vesicular zones under both phreatic and semiconfined conditions. Semi confined conditions are observed in interflow zones at shallow depths, whereas confined conditions are observed in the interflow zones at deeper depth. The bottom of each flow is massive, hard and compact in nature and the overlying vesicular basalt comprise rounded to oval shaped vesicles which are filled in by secondary minerals like quartz, calcite and zeolites. Thickness of vesicular horizon is limited. It is observed that ground water in Deccan Traps occur in Weathered loose morrum like material in upper weathered zone, Weathered amygdaloidal basalts in each flow, Exfoliated weathered zones covered by flows with columnar joints, Fractured massive basalt, dykes etc.

The shallow aquifers are tapped by open wells of depth range of 8 to 25 mbgl in which depth to water level range from 1.5 to 21.0 mbgl. The yield of shallow dug wells ranges from 20 to 100 m³/day, while those wells located in topographic lows near the confluences of streams or at intersection of fractures often yields from 50 to 150 m³/day. The yield of shallow/ deep boreholes depends on the thickness of vesicular and jointed horizons and it's interconnection with the overlying recharge zone.

Figure 6 Drainage map of the study area

1.11 Geology

Geologically, the district comprises of rocks of Unclassified metamorphic of Bilaspur-Raigarh-Surguja formation and Chhota Nagpur Gneissic Complex of Archaen- Paleao Proterozoic age, Gondwana Supergroup of rocks especially Talchir formation, Barakar formation, Raniganj formation, Jabalpur-Parsora-Tikki formation of Paleozoic-Mesozoic age, Deccan Trap of Cenozoic age.

Unclassified metamorphic of Bilaspur-Raigarh-Surguja formation: The Archean rocks mainly comprising of gneisses, granite, schist and quartzite occupying the eastern & western portion of the district. The porphyritic gneiss is pink in coloured and contains phenocrysts in the area. The gneisses exhibit banded structure. The granite of the area comprises of quartz, felspar and biotite. The weathering of these rocks shows biotite altering to chlorite. It is observed that the weathering in these rocks extended down to a depth range of 30 mbgl with the average depth ranging from12 to 15 mbgl.

Chhotanagpur gneissic complex: A part (i.e. eastern & northern) of the district is covered by Chhotanagpur gneissic complex. These rocks are younger than Bastar gneisses.

These rocks have proposed geological sequence for the prominent Central Surguja Shear Zone extending for over 100 km from river Mahan in the west to Binda Nagar in the east in ENE-WSW direction. The CGC comprises of group of meta-sedimentary and gneissic rocks. This rock unit consists of granite gneiss, quartz-mica schist, chlorite- biotite schist, quartzite, calc-silicates and quartz-feldpathic cataclasites. The assemblages of these litho-units occur as isolated patches within the biotite gneiss. Two types of gray and pink colored granites occur as intrusive along with pegmatites, aplites and quartz veins.

The CGC is highly metamorphosed and highly disturbed and dominated by ENE-WSN trending lineaments. The CGC was thrown into isoclinal tight folds as a result of coming together of peninsular and Bundelkhand block during Satpura Orogeny. The crystallines of these areas suffered three phases of deformation and folding. During first phase of deformation, resulting due to N-S compressive stresses, tight isoclinal folds (F_1) having ENE-WSW trending axial plane foliation was produced. The phase was culminated by granite activity. The open to tight up right folds (F_2) with their axes aligned in the same direction of F_1 were superimposed during the second phase of deformation. F_2 folds depict variable low angle plunge towards East or West or both with axial plane shearing. The second phase was marked by emplacement of pink granite and pagmatites. The third phase of folding (F_3) is conspicuous shown by the closure of the outcrops along the strike, with their axes running perpendicular to F_1 axes. As a result of East-West compressive stresses, cross folds formed during the third phase with simultaneous generation of several cross faults and associated fractures. Intrusion of pegmatite, applites and dolerite dykes marked the culmination of this phase. Due to poly phase deformation mylonites, cataclasites and phyllonites can be recognized in Surguja area and they host uranium mineralization in this shear zone.

Gondwana Supergroup:

The Gondwana Supergroup of rocks are semi consolidated sedimentary rocks of carboniferous to Triassic age occupy the district large part. These rocks form a linear (nearly 200 km long and 50-150 km wide) strip deposited in rift basin characterized by horst and graben, open folds and are intruded by dolerites. These rudaceous- arenaceous -carbono- argillaceous sediments rest directly on Archean granites and gneisses.

i) Talchir Formation

The rocks of Gondwana Supergroup started depositing with the formation of conglomerates over the undulating basement crystallines, known as Tillite, composed of clasts of granite, gneisses, BHQ/BHJ breccia and pinkish quartzite, sandstone – khaki green, fine to medium grained sandstone with lenses of pebbles and clasts of shale. The conglomerate followed by shale and/or sandstone. The outcrop of this formation can be seen in detached pockets/patches. The niddle shape weathering patterns of the shales are typical in nature for this formation. The thickness of the Talchir Formation is generally few tens of meters but occasionally varies up to 100 meters and is exposed in south & northern part of the district.

ii) Barakar Formation

The Talchir Formation is overlained by coal bearing argillarenaceous formation known as Barakar Formation and is exposed in eastern & north-western part of the district. The Barakars have fine to course-grained, sub rounded to rounded, subarkosic semi consolidated sandstones. They are white, grey or pink to brown in colour, intercalated with shales and coal. Shales are many times bituminous in nature. The intercalation of sandstone & shale in various ratios produces sandstone, shale sandy shale, shaly sand etc. The total thickness of Barakar Formation varies from 100 to 800 m in the area.

iii) Raniganj

Small area of Surajpur district is covered by these formations as E-W linear patches of sandstoneshale with thin coal seams in faulted contact with Barakar Formation. It is exposed in eastern part of the district.

iv) Supra Panchet or Undifferentiated Tiki, Parsora and Jabalpur Formation

These formations are exposed in northern part of the district. The rocks are forming hills and traversed by dolerite intrusive. The sandstones are whitish and medium to course grained intercalated with micaceous siltstone.

Deccan Traps:

The Deccan Traps are younger than lametas (infratrappeans) and at places directly overlie the Archaean granite gneisses. These comprise layered basaltic lava flows, which are known as Deccan

Trap, due to their step like structure. These basalts are melanocratic, dense hard, medium grained composed of feldspar augite hornblned, quartz, etc. These rocks are also exposed in eastern & western part of the district in very small patch. Basic intrusive or dykes of dolerite, etc are seen exposed at a number of places in Gondwana formation. The lower parts of the flows are sandstones form prominent hill ranges generally massive, hard and compact in nature. The upper part of each flow is vesicular and comprises rounded to oval shaped vesicles, which are generally filled with zeolities, calcites or quartz.

Lithology	Stratigraphi	c status	Age	Nature and Characteristics
Alluvium	Calc-tuff, alluvial sands			Sand, Silt, Clay & Pebble
Laterite			Quaternary	Red, dark brown, pisolitic, massive, cavernous, hard, compact, ferrugenous
Deccan Trap	Basaltic flows		Cenozoic	The trap basalts are dark brownish black to grayish black, fine to medium grained, hard and compact rocks.
Lameta Group	Infratrappean beds			
	Mahadevas			
Sandstone, shale	Panchet			Sandstones are whitish and medium to course grained intercalated with micaceous siltstone.
	Kamthi	Gondwan a		
Sand stone and shale thin coal seams	Raniganj	a Supergrou p	Paleozoic to Mesozoic	Greyish to brown in colour, intercalated with shales and coal. Shales are many times bituminous in nature.
	Supra Barakars			

Table 3 Generalized geological successions in Surajpur district

Grits, sandstones with shale and coal	Barakars			White, grey or pink to brown in colour, intercalated with shales and coal. Shales are many times bituminous in nature.				
	Karharbaris	-						
Boulder bed, sandstone , shale and tillite	Talchirs			Clasts of granite, gneisses, BHQ/BHJ breccia and pinkish quartzite, sandstone – khaki green, fine to medium grained sandstone with lenses of pebbles and clasts of shale.				
		Chhattisgarh	Supergroup					
Granite gneiss, Quartz-mica schist, Chlorite- biotite schist, Quartzite, Calc-silicates and Quartz-feldpathic cataclasites	Chhota Nagpu Comp	ır Gneissic Iex	Palaeo Proterozoic	Gray and pink in colored granites occur as intrusive along with pegmatites, aplites and quartz veins.				
Gneisses, Granite, Schist and Quartzite.	Unclassified Me of Bilaspur- Surguja	etamorphics Raigarh- belt	Paleao Proterozoic to Archaean	Porphyritic gneiss is pink in coloured with phenocrysts. The gneisses exhibit banded structure. The granite of the area comprise of quartz, felspar and biotite.				
Archeans								

Figure 7 Geological map of the study area

1.12 Agriculture, Irrigation, Cropping Pattern

Agriculture is the prime source of livelihood for majority of the population. Rice, Wheat, Maize, Jaoo, Kodokutki are important Kharif crops grown in the district. In Surajpur district, rice is grown in 108067 hectares.

Wheat, Rice and Tuwar the main Rabi crops grown in the district. The gross & net irrigated area in the district is 19019 & 17495 hectares respectively. The Net irrigated area in the district as on June 2013 by Dug wells is 1572 ha, by Tube wells/ Bore wells is 593, by Tanks is 357, by canal is 1501 and by other sources is 13472 hectares.

In the district Rehand and Mahan rivers flows. No major dam is constructed in the Surajpur district. However, most of the agriculture is rainfed due to limited irrigation infrastructure, lack of multicropping and reliance on outdated agricultural technology and equipments. Many farmers are dependent on the rains and dug well/tube wells for irrigation.

Table No. 4(A) Cropping pattern (in ha)

			Cereal										
Kharif	Paddy	Wheat	Jwar	Maize	Kodo Kutki	Others	Pulses	Tilhan	Fruits Vegetables	Reshe/Fibres	Mirch Masala	Sugarcane	Medicina
244058	111561	5594	289	9723	1277	2879	13854	13545	9196	418	1897	2436	12

Table No. 4(B) Area irrigated by various sources (in ha)

No. of	Irrigated	No.of	Irrigated	No. Of	Irrigated	No. of	Irrigated	Irrigated	Net	% of
canal s	area	bore	area	dug	area	Ponds	area	area by	Irrigated	irrigated
(private		wells/		wells				other	area	area
and		Tube						sources		wrt. Net
Govt.)		wells								sown
										area
47	661	9989	10684	23215	2077	920	363	3774	15017	10.17

Table No. 4(C) Contribution of Groundwater in Irrigation Pattern (in ha)

Area Irrigated through Borewells/Tube wells	Area Irrigated through Dug wells	Area Irrigated through Groundwater	Net Area Irrigated through all sources	% Groundwater contribution in Irrigation wrt Net Irrigated Area
10684	2077	12761	17559	73

Figure 8 Area Irrigated by groundwater is 12761 ha i.e., 73% (12%-Borewell, 61%-Dugwell) of the total Irrigated area.

2. DATA GENERATION, DATA INTERPRETATION AND DATA INTEGRATION

2.1 Hydrogeological Data

Both in phreatic and fractured condition in general two aquifers exist in the area although both are hydraulically connected. The first shallow unconfined/phreatic aquifer between 0-20 mbgl and the second semi confined to confined aquifer below 20 mbgl. It has been found that within the second aquifer, there are 2-3 set of aquifers which are not well connected. The different sets of aquifers are of different thickness as well as of varying horizontal extent. The details of exploration are shown in Annexure 2. In the study area, key wells were established during the pre-monsoon period and have been subsequently monitored in the post-monsoon period (Annexure-1). The key wells are distributed throughout the study area (Figure 10) covering all the geological formations.

Figure 9 Hydrogeological map of the study area

Figure 10 Key Wells established in the study area

2.1.1 Water level behavior

Based on the depth to water level periodical monitoring data of the key wells established in the study area, pre-monsoon and post-monsoon depth to water level maps as well as seasonal fluctuation maps have been prepared.

i. Pre-monsoon water level (May 2020):

In the pre-monsoon period, it has been observed that in the study area water level in Phreatic aquifer vary between 2.4 to 12.66 mbgl with average water level of 6.34 mbgl. In deeper semi-confined aquifer, water level varies between 2.56 to 32.3 m bgl with average water level of 12.55 m bgl shown in Table No. 5(A).

District	Aquifer Type	Min	Max	Avg
	Phreatic aquifer	2.45	12.66	6.34
Surajpur	Semi-confined Aquifer	4.67	22.6	10.23

Table 5(A)- Aquifer wise Depth to Water Level (Pre-monsoon)

ii. Post- monsoon water level (Nov 2020):

In the post-monsoon period, it has been observed that in the study area, water level in Phreatic aquifer varies between 1.0 to 7.88 m bgl with average water level of 3.75 m. In deeper semi-confined aquifer, water level varies between 2.15 to 15.3 m bgl with average water level of 6.15 m bgl shown in Table No. 5(B).

District	Aquifer Type	Min	Max	Avg
	Phreatic aquifer	1.0	7.88	3.75
Surajpur	Semi-confined Aquifer	2.15	15.3	6.15

Table No. 5(B)- Aquifer wise Depth to Water Level (Post-monsoon)

iii.Seasonal water level fluctuation:

The water level fluctuation data indicates that in the study area, water level fluctuation in phreatic aquifer varies from 0.05 to 8.86m with an average fluctuation of 2.5m. Water level fluctuation in semi-confined aquifer varies from 0.03 to 13.53 m with an average fluctuation of 4.08m shown in below mentioned table.

District	Aquifer Type	Min	Max	Avg
	Phreatic aquifer	0.5	8.25	3.25
Surajpur	Semi-confined Aquifer	0.02	11.2	4.60

Figure 11 Pre monsoon Water Level Maps of Phreatic Aquifer

Figure 12 Pre monsoon Water Level Maps of Fractured Aquifer

Figure 13 Post monsoon Water Level Map of Phreatic Aquifer

Figure 14 Post monsoon Water Level Maps of Fractured Aquifer

Figure 8 Water level fluctuation of Phreatic aquifer 2020

Figure 16 Water level fluctuation of Fractured aquifer 2020

3. AQUIFER DEPOSITION AND GROUND WATER RESOURCES

3.1 Aquifer Geometry and Characterization

Based on the exploratory drilling data generated for the blocks (Annexure 2), the existing aquifer systems in the area may be divided into two namely phreatic and deeper fractured aquifer. The major aquifers present in the study area is (1) Gondwana formation, (2) Basement Crystalline. Details are represented in Table no. 6.

CHARACTERISTICS	AQUIFER	R SYSTEM
	Sandstone and shale with coal bed	Geneissic Complex
Major Geological Formation	Gondwana formation	Chotanagpur Geneissic Complex
Major Rock type	Sandstone	Granite Geneiss
Avg Weathered Thickness (m)	104.09	18.126
Transmissivity (m²/day)	1 to 113	14 to 44
Average Drawdown (m)	21.6	17.62
Discharge	Negligible to 9.8 lps	23.93 lps
	1 to 2 set < 50 m	1 set >100 m
No. of Potential Zone	1 to 2 set: 50m to 100m	1 to 2 set: 0 to 50m
	2 to 3 set: 100m to 200m	2 to 3 set: 50 m to 100m
	(Most potential zone- 100 to 150m)	(Most potential zone- 50 to 100m)

Table 6 Aquifer Characteristics of Surajpur District

Figure 17(A) Cross-section of Study area along North-South direction (Badsara-Kalyanpur)

Figure 17(B) Cross-section of Study area along North-South direction (Inderpur-Kalyanpur)

Figure 18(A) Cross-section of Study area along East-West direction (Pal Danauli-Tara)

Figure 18(B) Cross-section of Study area along East-West direction (Reonti-Tara)

Figure 19: 3-D Section of Suajpur District

Figure 20: Fence structure of Surjarpur district

Figure 21: Strip log of Surjarpur district

Figure 22: Explode 3-D section of Surjarpur district

3.2 Groundwater Resources Availability and Extraction

In the ground water resource estimation, the unit of assessment to ground water resources has been taken as the smallest administrative unit i.e. Block. The hilly areas (slope greater than 20%) have been excluded from the computations. The assessment unit has been divided into command and non-command areas and ground water resources have been estimated separately for command and non-command areas. The ground water recharge in the monsoon season and nonseason has also been estimated separately.

The water level data collected by CGWB through NHS monitoring and from state ground water survey, has been utilized for resource estimation. The rainfall data from Indian Meteorological Department has been incorporated in the assessment. The irrigation data for tube wells and dug wells were provided by Water Resources Department. The state could not get success to obtain the stream data from the concern department. The domestic dug wells & bore wells data are not available, therefore per capita consumption of 60 liters per day per person for rural areas and 100 liters per day per person for urban areas have been taken into consideration. The data of ground water withdrawal for industries incorporated from the NOC issued by CGWA and from State Industries Department. The district is mainly underlain by crystalline rocks of Proterozoic age belonging to Chota Nagpur gneissic complex. Presence of sandstone and Limestone of Lameta Formation (infratrappeans) and Deccan trap basalt though insignificant, have also been reported. Extensive lateritisation with occasional bauxite deposits are also found. Laterite, which forms the phreatic aquifer, is extensive and is exploited through dug wells. Average thickness of laterite is 15m. At places it is as high as 30m. Potential of the basalts as aquifer material has not been explored properly as this part is covered mostly by forests and is thinly populated. Total Annual Ground Water Recharge and Annual Extractable Ground Water Recharge of the district have been estimated to be 39433 Ham and 35676 Ham respectively. Gross ground water Extraction for all uses in the district is only 13944 Ham. Stage of ground water extraction in the district is 39.09%. All the blocks in the district have been categorized as 'safe'.

Based on the resource assessment made, the resource availability in Block wise in Surajpur district upto 100m depth is given in Table no 7.

Block	Dynamic Resources (MCM)		Insitu Ro (Mo	Total Resources (MCM)	
	Aquifer I	Aquifer II	Aquifer I	Aquifer II	
Bhaiyathan	2 3.00	41.76	1 46.57	20.31	508.16
Odgi	1 3.92	25.24	1 34.31	18.31	145.96
Pratappur	3 7.05	40.21	211.84	28.82	173.34
Premnagar	1 4.36	18.48	9 7.57	13.42	150.02
Ramanujnagar	3 7.63	46.21	1 26.11	18.67	159.20
Surajpur	4 3.48	46.73	1 86.63	27.16	246.47

Table 7 Groundwater Resource up to 200m bgl (MCM)

3.3 Existing and Future Water Demand (2025)

	Total Annual Ground Water (Ham) Recharge	Total	Annual Extractable	Current A	nnual Ground	Water Extra	ction (Ham)	Annual GW Allocatio	Net Ground Water	Stage of ground
Block		Natural Discharge s (Ham)	Ground Water (Ham) (3=1- 2)	Irrigation Use	Industrial Use	Domestic Use	Total Extraction (7=4+5+6)	n for Domestic Use as on 2025	Availabilit y for future use (9=3-4-5-8)	water developme nt in % (7/3 *100)
	1	2	3	4	5	6	7	8	9	
Surajpur	8552.84	499.36	8053.48	5140.44	200.45	600.78	5941.67	659.44	2132.1	73.78
Pratappur	8550.51	855.05	7695.46	4715	84	398.75	5197.75	456.08	2440.38	67.54
Premnagar	3483.35	348.55	3135.02	743.68	0.072	172.40	916.16	196.27	2194.99	29.22
Ramanujna gar	5547.05	302.76	5244.29	2169.68	17.32	313.06	2950.07	349.50	2258.04	56.25
Bhaiyathan	6315.54	339.85	5975.79	3332.71	264.48	335.65	3932.85	369.94	2008.65	65.81
Odgi	4686.05	468.81	4217.44	1344.84	0.36	232.55	1577.75	267.05	2605.19	37.41
TOTAL	37135.44	2813.96	34321.48	17896.36	566.68	2053.19	20516.25	2298.05	13639.35	59.78*

Table 8 Ground Water Resources of the Study area in Ham

*Stage represents average of stage of GW Extraction for all 06 blocks

The existing demand for irrigation in the area is 17896.36 Ham while the same for domestic use is 2053.19 Ham and for industrial field is 566.68 Ham. To meet the future demand for ground water, a total quantity of 13639.35 ham of ground water is available for future use.

4. GROUND WATER RELATED ISSUES

- **Drying up of Dugwells and handpumps during summer-** Dugwells dug in Granitic aquifers and also in Gondwanas due to presence of massive consolidated sandstone gradually becomes dry in lean period in Summer. Hence the number of Dugwells are decreasing gradually.
- Inherent hydrogeological character of aquifer- The aquifer itself is a low yielding one in Odgi and Ramanujnagar blocks. Somewhere it yielded which indicate uneven distribution of yield potential in consolidated Chotanagpur granite gneiss. Good potential zone confined in structurally low laying areas whereas in higher elevation, it is poorly yielding.
- Fluoride concentration Fluoride observed in Gondwanas and granitic terrain at palces of Surajpur district (Annexure-4). More than permissible limit found at Songara (Pratappur block) and Tara (Premnagar block) and also in some parts of Bhaiyathan block.
- Iron contamination- More than permissible limit found in villages Dalbahara (Bhaiyathan block), Narayanpur, Newara and Surajpur (Surajpur block),

Samauli(Bhaiyathan) Fulkona (Premnagar) and Gonda (Pratappur Block). Shown in Annexure 4.

- **Nitrate contamination:** More than permissible limit found in villages Sumouli (Bhaiyathan Block), Biharpur and Surajpur (Surajpur Block). Shown in Annexure 4.
- **Heavy Metals:** Arsenic was traced out in Bhediya village (Pratappur block), Lead was found in Dawankera village (Pratappur block), Narayanpur, Surajpur, Kalyanpur villages (Surajpur block) and Uranium was also found in Ganeshpur village of Ramanujnagar block. Shown in Annexure 4.

5. GROUND WATER MANAGEMENT STRATEGY

• It has been observed during fieldwork, there is colossal wastage of groundwater through private well and public water supply system. So, Information, Education and Communication (IEC) activities need to be organized to sensitize people on the issues of depleting groundwater resource. Massive awareness campaigns are essential to aware people about the importance of community participation in saving water.

Figure 23 Public Interaction Program has been successfully conducted at Government College, Silphili, Surajpur in which 158 participants have graced the event.

- Desiltation of existing Tanks and Talabs to be carried out for efficient storage of rainwater. Also Rain water harvesting structures may be constructed in villages to reduce stress on groundwater.
- It has been observed that the demand of ground water is increasing for irrigation, industrial and domestic uses. At locations where water level is declining, we have to go for artificial recharge on a long-term sustainability basis. Artificial Recharge structures may be constructed at suitable locations especially in the areas where the water level remains more than 3m in the post-monsoon period in this block to arrest the huge non-committed run-off and augment the ground water storage in the area. The different types of artificial structures feasible in the block are described in Table 10 and Figure 27 shows Ground water feasibility of Abstraction structures and priority areas for artificial recharge.

		Vol. of	Types of S	Structures	Feasible and their	r Numbers
Block/District	Area Feasible for recharge (sq.km)	Sub Surface Potential for Artificial recharge (MCM)	Percolation tank	Nalas bunding cement plug/ check dam	Gravity head /Dug well/ tube well/Recharge shaft	Gully plugs Gabion structures
Recharge Capacity - (MCM)/structure		0.2192	0.0326	0.00816	0.0073	
Bhaiyathan	234.34	401	27	89	200	152
Odgi	406.13	844	56	187	421	321
Pratappur	66.66	192	13	43	96	73
Premnagar	275.31	1018	64	214	482	367
Ramanujnagar	0.00	0.00	0	0	0	0
Surajpur	344.25	564	47	156	352	268
Total (Surajpur)	1326.7	3019	207	689	1551	1181

Table 9 Types of Artificial Recharge structures feasible

- Abandoned tube well and dug well may be used for the recharge through shaft especially in urban and water stressed areas.
- Fluoride and Iron filter plant may be installed in the villages having higher value of contaminants.
- In urban areas STP may be installed for the treatment of sewage water in proper numbers to avoid contamination of ground water. Treatment of sewage water in village through soak pit for the individual houses and Seechewal model or similar model for

community level may be adopted to avoid contamination of ground water. Treated water may also be reused for irrigation and other industrial purposes.

• Since the stage of development in the district is 39.09 %. There is scope of utilizing more ground water for future irrigation purpose. Additional number of Ground water abstraction structure may be developed for the effective utilization of ground water resources in the block. The ground water is presently developed through dug wells and tube wells. Yield potential for the block has been shown in Aquifer map (Figure 24). Sites for wells need to be selected only after proper scientific investigation. The ground water quality also needs to be ascertained and the wells used for water supply should be first checked for Iron, Fluoride and other pollutants.

Figure 24 Ground water feasibility of Abstraction structures

Table 10 Potential of Additional GW abs	traction structure creation
---	-----------------------------

Block	Net Groundw ater availabili ty (ham)	Present Stage of ground water Develop ment (%)	Present ground water draft (Ham)	Ground water draft at 50% stage of developm ent (ham)	Surplus ground water at present Stage of Develop ment (ham)	Number of TW/BW Recommended in each block (Assuming unit draft as 1.6 ham/structure/ year)	Number of DW Recommende d in each block (Assuming unit draft as 0.72 ham/structur e/year)
Bhaiyathan	2008.65	65.81	3298	253	3212	76	89
Odgi	2605.19	37.41	2039	1481	1944	444	518
Pratappur	2440.38	67.54	4271	106	4036	32	37
Premnagar	2194.99	29.22	714	2154	714	646	754
Ramanujnagar	2258.04	56.25	2404	503	2434	151	176
Surajpur	2132.1	73.78	5635	0.00	5604	0	0
Total (Surajpur)	13639.35	59.78	18361	4497	17944	4136	1574

6. SPECIAL STUDY ON NATIONAL WATER AWARDEE CHINDIYA GRAM PANCHAYAT, RAMAMNUJNAGAR BLOCK, SURAJPUR DISTRICT

Chindiya Village Pachayat, Block-Ramanujnagar, District-Surajpur

Chhindiya is a Village in **Ramanujnagar** Tehsil in **Surajpur** District of **Chhattisgarh** State, India. It is located 5 KM from **Ramanujnagar** and 30 KM towards South from District headquarters **Surajpur**. It falls under the agro ecological zone of **Platue of Baghelkhand** of Chhattisgarh State.

Panchayat	Chhindiya			
Tehsils	Ramanujnagar			
District	Surajpur			
State	Chhattisgarh			
Lattitude	23.118562			
Longitude	82.683642			
Population	2012			
Female Population	989			
Male population	1023			
ST Population	1682			
SC Population	8			
OBC	300			
Other	22			
Literacy rate	41%			
Geographical area	854.34 ha			
Agricultural land	642.27 ha			

Non- agricultural land	32.55 ha
Forest area	11.18 ha
Barren land	0.4 ha
Irrigated area	642.27 ha
Percentage of net shown area	75.18%

The district administration utilizing the funds from MGNREGA have constructed many water conservation structures constructed on *Chindiyaa-Rampa naala* which originates *Tiuragadi Gram Panchayat* and ends up in *Jheek* river via *Chindiya* and *Panchvati* Gram Panchayat.

The Gabion structure and Stop dam inside the forest area have been constructed to channelize the flow of *Chindiya Rampa naala* for flowering and nursery as there these structures were situated beside the forest nursery of Chindiya Gram Panchayat. The efforts of MGNREGA team and Janpad Panchayat resulted into a beautiful nursery and blossom of flower inside the dense forest which also gave employment to local villagers.

The second Gabion structure were constructed just outside the forest boundary touching its periphery. The efforts of the MGNREGA team gave villagers the gift of irrigation for the agricultural practices and as result after channelizing the flow of Chindiya-Rampa Naala the lush green cultivation of rice was observed which was not possible in earlier times as per the local stakeholders and Groundwater level was also elevated which was observed in near dug well.

Several farm ponds have also been created and pond deepening works were going on. In between all this there was a game changer stop dam which beneficiated a lot the villagers that enabled them for farming in the nearby area which changed their life and provided them employment and better education to the children. All was mentioned by local stakeholders and this stop dam was a success story also and you tube video link (https://youtu.be/kWbM_adwG0o) is also attached of this story.

Concluding Remarks:-

The special study was taken up in the Chindiya Gram Panchayat, Ramanujnagar Jan pad, Surajpur district with the aim to learn and highlight the water conservation practices done in the above mention village. The Jan pad Panchayat and team of MGNREGA have efficiently used the government funds and constructed the water conservation structures and there was not any compromise found in terms of quality and quantity of the structures. It was very cherishing to see that local stake holders are highly benefited with these practises, and nearby gram panchayats were also inspired with these works. Many barren lands got changed into agricultural land by channelizing the flow of Chindiya Rampa naala with help of these proposed structures. The awareness was created and government efforts were taken up for conservation of this precious element of life. It was a great learning that how to work for good cause in any situation as we know that Surajpur is hilly area which bears rugged and undulating topography and covered by huge and dense forests, but then also highly commendable and appreciable efforts were made by Jan pad Panchayat and highly efficient and energetic team of MGNREGA is continuously working for conservation of water to benefit the local stakeholders. Their efforts are highly inspiring for other gram panchayats also.

Criteria	Observations
1. Number of water bodies revived with community participation.	Water bodies revived with community participation.
2. Innovative practices for enhancing ground water. Furnish data & documents to substantiate.	Underground dyke and Recharge pits are constructed.
3. Number of new water conservation structures and their storage capacity.	LBCD, Gully plug, Dyke cum Boulder check, Gabion structure, Stop Dams & 15 nos. Farm Ponds (Dabari) having capacity of 24300 cumec constructed.
4. Community mobilization for adopting of water efficient cropping pattern, and efficient water management practices, and results thereof.	Beneficiaries of community farming are cultivated vegetable on their own land which increases their income
5. Water Shed development activities (contour bunding/trenching), and tree plantation.	Gabion and Boulder check Dams constructed including creation of nursery near water storage.
6. Number of new ponds created and capacity in Cum., and mechanism for sustainment of creations.	15 nos. Farm Ponds (Dabari) having capacity of 24300 cumec constructed and 2 nos. pond deepening having 9000 cumec capacity.
7. Mass sensitization and capacity building in water conservation and management, including water budgeting. Furnish details of activities and impact thereof.	Mass sensitization program executed & rain water harvesting in government building and private building and also construction of soak pit.

The observations made in compliance with the criteria taken up for the study are as under: -

7. CONCLUSION:

For effective utilization of Ground water existing draft for irrigation may be coupled with micro irrigation system. Change in irrigation pattern, optimum use of available resource, use of ground water potential created after artificial recharge can lead to groundwater savings and increase in gross cropped area of the district (Table 10).

Block	Existing Gross Ground Water Draft for Irrigation in Ham	Additional Saving of GW after using Micro Irrigation methods in Ham (Assuming 30 % saving)	GW Potential created after Artificial recharge structure in Ham	Development by new GW abstraction structure	Additional GW irrigation Potential created in Ham	Additional Irrigation potential creation for Maize/ wheat in winter season in Ha (Assuming 500 mm water requirement)	Percent increase in Crop area compare to Gross cropped area
Bhaiyathan	3332.71	999.81	6851	4202.58	7930	10172.21	19.08%
Odgi	1344.84	403.45	6851	678.31	7254	2865.2	16.48%
Pratappur	4715	1414.50	8285	495.66	9699	2440.23	10.38%
Premnagar	743.68	223.11	5736	865.54	5959	3118.95	12.36%
Ramanujnagar	2619.68	785.90	5514	600.46	6299	2523.5	9.18%
Surajpur	5140.43	1542.13	10463	1568.36	12005	4827.07	18.33%
Total (Surajpur)	17896.34	5368.91	43780	11028.75	49418	34020.74	13.24%

Table 11 Detail of groundwater saved through change in cropping pattern and other interventions

Annexure 1 Details of key wells established

DISTRICT	BLOCK	VILLAGE	LATITUDE	LONGITUDE	WELL TYPE	Pre monsoon WL	Post monson WL	FLUCTUATION
Surajpur	Pratappur	Bharda	23.402789	83.132169	DW	4.25	3.31	0.94
Surajpur	Pratappur	Paldha	23.39666	83.108488	DW	3.84	2.38	1.46
Surajpur	Pratappur	Kanaknagar	23.413689	83.230208	DW	4.19	2.28	1.91
Surajpur	Pratappur	Godgavan	23.462078	83.209525	DW	5.8	3.5	2.3
Surajpur	Pratappur	Semra Kala	23.498516	83.277867	DW	4.25	3.39	0.86
Surajpur	Pratappur	Mayapur	23.510948	83.17694	DW	4.14	2.35	1.79
Surajpur	Pratappur	Pakni	23.527738	83.105065	DW	4.24	3.2	1.04
Surajpur	Pratappur	Sarhari	23.472858	83.140893	DW	5.84	2	3.84
Surajpur	Pratappur	Deori	23.525094	83.131125	DW	5.4	4.7	0.7
Surajpur	Pratappur	Chitkabahara	23.441142	83.205157	DW	2.9	1.23	1.67
Surajpur	Pratappur	Khadgawan	23.314107	83.193041	DW	5.68	2.75	2.93
Surajpur	Bhaiyathan	Palma	23.424837	83.007503	DW	6	5.15	0.85
Surajpur	Bhaiyathan	Patiadandh	23.408801	82.904593	DW	5.86	3.5	2.36
Surajpur	Bhaiyathan	Salka	23.370769	82.928276	DW	6.85	3.2	3.65
Surajpur	Bhaiyathan	Satyanagar	23.377314	82.886688	DW	8.5	3.32	5.18
Surajpur	Bhaiyathan	Jamdi Darripara	23.398123	82.810893	DW	4.88	2.1	2.78
Surajpur	Bhaiyathan	Tarkapara	23.388748	82.78519	DW	6.13	4.9	1.23

Surajpur	Bhaiyathan	Sava Rawa	23.420923	82.721762	DW	7.1	5.5	1.6
Surajpur	Bhaiyathan	Birnidand	23.440263	83.050609	DW	8.3	5	3.3
Surajpur	Bhaiyathan	Dawna	23.407451	82.937649	DW	4.95	2.82	2.13
Surajpur	Bhaiyathan	Govindgarh	23.40624	82.757889	DW	3.3	3.1	0.2
Surajpur	Surajpur	Baskar	23.36125	82.764731	DW	2.8	1	1.8
Surajpur	Surajpur	Karampur	23.40624	82.757889	DW	9.9	7.84	2.06
Surajpur	Surajpur	Ajabnagar	23.161587	83.098517	DW	6.2	2.9	3.3
Surajpur	Surajpur	Beltikri	23.1765	82.900491	DW	5.23	3.6	1.63
Surajpur	Surajpur	Bharatpur	23.148018	82.908022	DW	6.63	4.1	2.53
Surajpur	Surajpur	Unchdeeh	23.295022	82.828731	DW	6.53	3.75	2.78
Surajpur	Surajpur	Lanchi	23.186218	82.874304	DW	3.45	2.9	0.55
Surajpur	Surajpur	Shivsagarpur	23.210846	83.043283	DW	5.82	2.35	3.47
Surajpur	Surajpur	Banja	23.31152	82.80828	DW	5.21	3.55	1.66
Surajpur	Ramanujnagar	Pandri	23.240513	82.745848	DW	8.62	4.6	4.02
Surajpur	Ramanujnagar	Madneshwarpur	23.189804	82.728856	DW	7.4	3.69	3.71
Surajpur	Ramanujnagar	Nakna	23.172749	82.683118	DW	5	4.1	0.9
Surajpur	Ramanujnagar	Patrapali	23.118889	82.763241	DW	5.42	3.63	1.79
Surajpur	Ramanujnagar	Parshurampur	23.095339	82.778194	DW	7.4	3.6	3.8
Surajpur	Ramanujnagar	Madanpur	23.093475	82.678439	DW	3.95	2.65	1.3
Surajpur	Ramanujnagar	Hanumangarh	23.066351	82.640548	DW	8.2	2	6.2
Surajpur	Odgi	Devansara	23.405052	82.904241	DW	6.3	4.16	2.14
Surajpur	Odgi	Bhandi	23.420558	82.882681	DW	5.85	5.12	0.73
Surajpur	Odgi	Dharsedi	23.410879	82.730024	DW	6.73	5.88	0.85
Surajpur	Odgi	Chabda	23.453213	82.721762	DW	7.1	5.48	1.62
Surajpur	Odgi	Bhavarkhor	23.455313	82.699998	DW	3.47	1.4	2.07
Surajpur	Odgi	Masanaki	23.5607	82.843955	DW	5.5	4.95	0.55
Surajpur	Odgi	Tamki	23.627134	82.8350347	DW	4.47	2	2.47
Surajpur	Premnagar	Kanchanpur	23.045118	82.660029	DW	3.92	1.1	2.82
Surajpur	Premnagar	Raghunathpur	22.945876	82.720358	DW	5.82	1.6	4.22
Surajpur	Premnagar	Namna	22.959843	82.730309	DW	7.82	4.25	3.57
Surajpur	Premnagar Brom Nagar	Mendra Katarouli (Harranara)	22.88821	82.7222	DW	2.8	1.2	1.6
Suraipur	Prompagar	Abbayour	22.3778	82.3337	DW	6.55	6.5	0.05
Suraipur	Pratannur	Banshinur	22.3037	82 7303	DW	6.34	6.16	0.18
Suraipur	Pratappur	Bhediva	23.2407	83 1566	DW	10.6000	5.28	5.32
Suraipur	Bhaivathan	Dalabahara(Bhaskar)	23.3031	82 6862	DW	4.91	4.6	0.31
Suraipur	Bhaiyathan	Khandapara	23.3543	82.6528	DW	1.62	4.95	2.05
Surajpur	Pratappur	Podi	23.3957	83.6237	DW	9.74	4.29	0.33
Surajpur	Surajpur	Surajpur	23.1775	82.3673	DW	6.54	3.28	5.46
Surajpur	Pratappur	Dwarikanagar	23.2850	83.1885	DW	9.27	2.78	3.76
Surajpur	Surajpur	- Krishnapur(Kalwa)	23.2439	82.8233	DW	12.26	5./	3.57
Surajpur	Premnagar	Shivnagar	22.8815	82.7882		10.1	5.18 7 °°	7.Uð
Surajpur	Surajpur	Badsara	23.3444	82.7708		8.1	1.00	2.22
Surajpur	Surajpur	Biharpur	23.2721	82.9210		7.4	5 1	3.24
Surajpur	Surajpur	Bishrampur	23.1850	82.9883	D\W	7	3.1	2.5
Surajpur	Pratappur	Chandora	23.5111	83.1569	DW	8	3.07	<u> </u>
Surajpur	Pratappur	Darhora	23.4421	82.8346	DW	9	5.1	3.9
L		I	1	1			0.2	0.0

Surajpur	Surajpur	Deonagar	23.2400	82.8033	DW	8	2.2	5.8
Surajpur	Premnagar	Fulkona	23.0250	82.6672	DW	2.4	1.9	0.5
Surajpur	Ramanujnagar	Ganeshpur	23.0806	82.6353	DW	11.66	2.8	8.86
Surajpur	Premnagar	Hanumangarh	23.0629	82.6476	DW	8.32	4.86	3.46
Surajpur	Pratappur	Jagannathpur	23.3786	83.1950	DW	4.8	3.16	1.64
Surajpur	Surajpur	Kaliyanpur	23.2472	83.2000	DW	8.5	4.92	3.58
Surajpur	Surajpur	Majeera	23.1482	82.9514	DW	7.5	3.7	3.8
Surajpur	Bhaiyathan	Satipara(Bhaingamunda)	23.1997	82.6074	DW	7.66	5.16	2.5
Surajpur	Bishrampur	Bishrampur	23.1618	82.7425	DW	7.76	3.87	3.89
Surajpur	Pratappur	Madannagar	23.41488	83.190387	HP	22.8	9.27	13.53
Surajpur	Pratappur	Baikuna	23.494731	83.241518	HP	4.67	4.28	0.39
Surajpur	Pratappur	Silauta	23.502734	83.304696	HP	14	7.28	6.72
Surajpur	Pratappur	Satipara	23.448956	83.06743	HP	10.68	4.86	5.82
Surajpur	Bhaiyathan	Baijnathpur	23.431908	82.78742	HP	6.23	4.26	1.97
Surajpur	Surajpur	Ajabnagar	23.15961	83.10604	HP	14.63	12.32	2.31
Surajpur	Surajpur	Kumda	23.207155	83.007717	HP	12.15	11.26	0.89
Surajpur	Surajpur	Parri	23.23964	82.863951	HP	13.33	11.23	2.1
Surajpur	Surajpur	Ketka	23.152421	82.887189	HP	7.78	5.95	1.83
Surajpur	Surajpur	Pampapur	23.201219	82.848765	HP	10.7	8.56	2.14
Surajpur	Surajpur	Birpur	23.198544	83.029926	HP	9.18	6.32	2.86
Surajpur	Ramanujnagar	Manja	23.20685	82.688321	HP	6.58	3.3	3.28
Surajpur	Ramanujnagar	Chindiya	23.127707	82.700525	HP	4.68	4.65	0.03
Surajpur	Ramanujnagar	Arjunpur	23.104155	82.621373	HP	4.65	2.23	2.42
Surajpur	Odgi	Kharra	23.508177	82.824111	HP	16.88	12.77	4.11
Surajpur	Premnagar	Bhagwanpur	23.020677	82.689915	HP	17.41	15.3	2.11
Surajpur	Premnagar	Nayandihri	22.998732	82.658309	HP	17.88	15.22	2.66
Surajpur	Bhaiyathan	Bhaiyathan	23.4042	82.8667	PZ	9.7	5.7	4
Surajpur	Surajpur	Surajpur	23.2119	82.8728	PZ	9.36	5.48	3.88
Surajpur	Premnagar	Tara	22.8333	82./39/	PZ	15.76	8.17	7.59
Surajpur	Premnagar	Premnagar	22.9667	82.6958	PZ	19.02	10.25	8.77
Surajpur	Bhaiyathan	Baijnathpur	23.43083	82.78833	PZ	6.41	3.45	2.96
Surajpur	Odgi	Odgi	23.47722	82.82056	PZ	7.21	2.15	5.06
Surajpur	Pratappur	Dandkarwa	23.63417	83.1477	PZ	9.5	4.81	4.69
Surajpur	Pratappur	Pondi	23.47611	83.11417	PZ	8.8	5.05	3.75
Surajpur	Pratappur	Jagannathpur	23.36667	83.20111	PZ	6.88	3.1	3.78
Surajpur	Surajpur	Surajpur	23.2125	82.86056	PZ	9.97	3.5	6.47
Surajpur	Bhaiyathan	Palma	23.43111	83.00194	PZ	7.96	3.4	4.56
Surajpur	Bhaiyathan	Bhaiyathan	23.39111	82.84417	PZ	8.4	5.05	3.35
Surajpur	Bhaiyathan	Knadgawa	23.30528	82.79861	PZ	7.05	3.7	3.35
Surajpur	Bhaiyathan	Salka	23.36806	82.95139	PZ	10.5	3.06	7.44
Surajpur	Bhaiyathan	Vhadagawalaalaa	23.285	83.01667	PZ	8.85	4.03	4.82
Surajpur	Pratappur	Dratannur	23.3125	83.18361	PZ	0.//	3.95	2.82
Surajpur	Pratappur	rratappur Silebili	23.48278	83.22444	PZ	0.07	3.0	3.07
Surajpur	Pratappur	Damanuinagar	23.41611	83.25806	PZ	0.00	3.72	4.13
Surajpur	Ramanujnagar	Richrommur	23.14694	82.72333	PZ	<u>ــــــــــــــــــــــــــــــــــــ</u>	4.1	7.13
Surajpur	Surajpur	Cilabili	23.185	82.98933	PZ	0.95	4.01	2.94
Surajpur	Surajpur	Subini	23.1825	83.06417	PZ	0.2	4.15	4.05

				D	С					
				е	as			Dis		
Locati	Bloc	LO	LA	pt	in			cha	Stratigraph	
on	k	NG	Т	h	g	Formation	Zone_encountered	rge	У	Lithology
			23.	41	1					Sandstone,
Tulsi -	Prata	83.	28	3.	4			7.9		Shale with
I	ppur	1	33	5	3	Barakar Fm	14-21,100-118,128-131,140-143	5	Barakar	Coal bed
			23.	80						Sandstone,
Tulsi -	Prata	83.	28	.4	7					Shale with
II	ppur	1	33	5	6	Barakar Fm	43.5-52.5,64.5-73.5	5.9	Barakar	Coal bed
	_			21	1					Sandstone,
	Prata	83.	23.	2.	0					Shale with
Durti	ppur	05	4	6	5	Barakar Fm	40-46,56-70,79-80,86-105	2.4	Barakar	Coal bed
			23.		1					Sandstone,
Kenap	Suraj		16	10	0			0.4		Shale with
ara	pur	83	67	4	0	Barakar Fm	40-50,65-70,92-98	7	Barakar	Coal bed
	Prem	82.	22.	32	1					Sandstone,
T	naga	/3	83	3.	4	Develop For		2.5	Develop	Shale with
Tara	r	33	33	59	/	Barakar Fm	14-16,45-60,68-76,90-105,116-147	3.5	Barakar	Coal bed
Dhuha	Ram	0.2	22		1					Condetone
Bhuba	anuj	82.	23.	20	1					Sandstone,
nesw	naga	73	10	30	2	Talahir Em	14 16 106 111 121 125 128 144		Darakar	Shale with
arpur	ſ	04	92	0	0		14-10,100-111,121-125,138-144		BdrdKdr	Coal bed
Kalua	Curret	83.	23.	22	1			2.0		Sandstone,
кагуа	Suraj	19	23	22	2	Dorokor Em	20 42 40 57 66 111 110 124	3.6	Darakar	Shale with
npur	pur Dhai	73	09	2	1		30-42, 49-57,00-111,119-124	0	DdfdKdf	Coal bed
Panci	Bridi	83. 02	23.	15						Sanustone,
Ddlisi	yatti	52	- 30 - 72	15	0	Barakar Em	14-16-20		Barakar	
pui	an	02	72	11	0	0-101 66 Parakar	14-10, 30		Darakai	Sandstono
Aiabn	Surai	03. 11	23. 1/	7	٩	Em 101.66-117.64		3.2		Shale with
agar	nur	94	17	64	8	Talchir	71-76 87-95	5	Barakar	Coal bed
Aiahn	pui	83	23	04	0	Talefill	/1/0,0/ 35	5	Barakar	Sandstone
agar	Surai	11	14	59	5			17		Shale with
OW	pur	94	17	.3	8	Barakar Em	35-41, 47-56	7	Barakar	Coal bed
	P	82	23	19	1					Sandstone
Datim	Surai	96	26	6.	6		72-82.86-96.118-122.125-129.132-	1.1		Shale with
а	pur	67	25	05	3	Barakar Fm.	140,150-160	6	Barakar	Coal bed
		82.	23.	67						Sandstone,
Datim	Suraj	96	26	.0	6					Shale with
a OW	pur	67	25	9	7	Barakar Fm	31-35.5,40		Barakar	Coal bed
		83.	23.	29	2		47-50,68-71,100-105,114-116,127-			Sandstone,
Reont	Prata	18	64	6.	2		137,140-142,143-150,159-162,165-	4.0		Shale with
i	ppur	47	58	2	9	Barakar Fm	171,174-180,188-204,216-226	4	Barakar	Coal bed
		83.	23.	27	1					Sandstone,
	Suraj	09	21	2.	5		75-94,129-140,157-176,193-			Shale with
Latori	pur	89	42	08	5	Barakar Fm	196,207-213,263-270	7.4	Barakar	Coal bed
		83.	23.		2					Sandstone,
Brij	Prata	09	36	24	3		70-82,90-116,123-141,147-153,164-			Shale with
Nagar	ppur	83	78	6	2	Barakar Fm	180,190-198,219-229	8.7	Barakar	Coal bed
		83.	23.	60		0-55.25 Barakar Fm.				Sandstone,
Chhat	Suraj	13	18	.0	3	55.25-60.02 Talchir				Shale with
irama	pur	33	33	2	5	Fm.	23-32,55.25-60.02	1.1	Barakar	Coal bed
			23.							Sandstone,
Kewar	Prata	83.	43	11	7			0.7		Shale with
а	ppur	1	06	8	5	Barakar Fm	49-55,57-61,63-73	8	Barakar	Coal bed
			23.	62	_					Sandstone,
Kewar	Prata	83.	43	.8	6			1.3		Shale with
a OW	ppur	1	06	3	0	Barakar Fm	16-18, 37-58	7	Barakar	Coal bed
		83.	23.	20	1	0-198 Barakar				Sandstone,
C11011	Suraj	08	16	0.	3	Fm198-200.25		2.5	Barri	Shale with
Siltili	pur	33	67	25	4	Taichir	57-66,75-93,97-106,122-131	3.6	Barakar	Coal bed
CHER	C	83.	23.	14	1			2.4		Sandstone,
Siltili	Suraj	08	16	0.	3	Develop		2.1	Develop	Shale with
UW	pur	33	67	08	4	Barakar Fm	51-54,57-66,75-93,97-106,122-131	2	Barakar	Coal bed

name Surgi 93 18 1 8 1/11.165/21.7/6 2.9 9 93 18.0 Cal bed main 2.1 31 37 6 7 7 7.9 2.9 3.9 2.0 3.9 2.0 3.9 2.0 3.9 3.9 3.0 </th <th>Shiva</th> <th></th> <th>82.</th> <th>23.</th> <th>21</th> <th></th> <th>0-211.66 Barakar</th> <th></th> <th></th> <th></th> <th>Sandstone,</th>	Shiva		82.	23.	21		0-211.66 Barakar				Sandstone,
Ippi put 13 13 15 10 Index for body Sample	nanda	Suraj	93	18	1.	8	Fm211.66-211.76	50.77	2.9		Shale with
iteratic Sural On A D Paragraphic Parallel Strates Paralle Strates Parallel Strates Paralle Strates Parallel Strates Pa	npur	pur	33	33	76	0	Talchir Boulder bed	50-77	5	Barakar	Coal bed
etchik ele our 5 17 69 3 Barakar Cont bed Sandstore, 1415(0-7),02,216-220 59 Barakar Can bed Sandstore, 1415(0-7),02,29,9-116,117-140, 15 1 e 88 28, 28 3 16 1 -	Keshk	Surai	85. 00	23. 24	1.	2		74-92, 99-114, 117-140, 157-175, 179-			Shale with
Keah sum 83 23 30 2 Part A Sundatione, Sandatione, Sanda	ela	pur	5	17	69	3	Barakar Fm	194,200-205,216-220	5.9	Barakar	Coal bed
ele Sural 00 2 1 6 Shale with Call bed w 83 23 16 1 607.28.29.21.00 106.136 148.151 5.1 Sandtöne, Sandtöne	Keshk		83.	23.	30	2					Sandstone,
UM DUT S 1 <th1< th=""> 1 1 1</th1<>	ela	Suraj	00	24	1.	2			45		Shale with
iator isor isor <t< td=""><td>OW</td><td>pur</td><td>5 83</td><td>1/</td><td>69 16</td><td>3</td><td></td><td>14-16,70-92,99-116,117-140,</td><td>15</td><td>Barakar</td><td>Coal bed Sandstone</td></t<>	OW	pur	5 83	1/	69 16	3		14-16,70-92,99-116,117-140,	15	Barakar	Coal bed Sandstone
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Latori	Surai	09	23.	0.	5		60-72.82-92.100-106.136-148.151-	5.1		Shale with
B3. B3. B3. B D Archo,54-60,63-66,70-79,82-88,95 C Sandstore, Sanga Sandstore, F Sandstore, Sanga Sandstore, F Sandstore, Sandstore	OW	pur	89	42	78	7	Barakar Fm	155	7	Barakar	Coal bed
Songa Prata 08 20 1. 0 47:50,54:60,63:66,70:79,82:88,95 2.4 Shale with Barakar Coal bed ra Porta 83 0.5 0 1 Sandstore, 2010 Sandsto			83.	23.	15	1					Sandstone,
ra pput rs 23 24 1 Data data frim 36	Songa	Prata	08	30	1.	0	Develop a Free	47-50,54-60,63-66,70-79,82-88,95-	2.4	Developer	Shale with
Songe Print GB Son Son<	ra	ppur	75 02	83	10	1	Barakar Fm	98	5	Barakar	Coal bed
ra GW ppur 75 83 85 1 Barakar fm 98 3 Barakar Coalbed Bhai 82 23 12 1 Baraker 00.64- 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 5 6 6 6 5 6 6 6 5 6 6 6 5 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 7 8 7 7 8 7 7 7 8 7 7 8 7 7 8 7 8 7 8	Songa	Prata	08	23. 30	5.	0		45-50.54-60.63-66.70-79.82-88.95-			Shale with
Brain Collect Sandstore, Shale with Sandstore, Shale with Sandstore, Shale with Brain S2 23 11 2. 1 Sandstore, Shale with Control Genesise Genesise Wath 91 31 7. 0 Fractured grante 15-21,37 3 Genesise Genesise Wath 91 32 12 1 3 Sandstore, Sites Genesise Wath 7 5 19 31 2 Sandstore, Sites Sandstore, Sites Sandstore, Sites Wath 82 23 12 2 Sandstore, Sites Sandstore, Sites Sandstore, Sites Odigi Odigi 64 82 7 Fractured grante 16-18,30 <td< td=""><td>ra OW</td><td>ppur</td><td>75</td><td>83</td><td>85</td><td>1</td><td>Barakar Fm</td><td>98</td><td>3</td><td>Barakar</td><td>Coal bed</td></td<>	ra OW	ppur	75	83	85	1	Barakar Fm	98	3	Barakar	Coal bed
Bhai 82. 23. 12 1 Barker10.64- Sandstone, Sandstone, wan an 17 33 20 1 TalchirBoulder bed 40-49,55-67,73-89,92-98 15. Barakar Cable ded was 19 31 7 0 Fractured granite 15-21,37 3 Complex Complex Was an 72 78 92 6 Fractured granite 15-21,37 3 Complex Complex Valir and 7.0 9 2 6 Fractured granite 15-21,37 3 Complex Complex Valir an 7.0 3 2.0 5 Sandstone, Sandstone, <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0-100.64</td><td></td><td></td><td></td><td></td></t<>							0-100.64				
	Talaa	Bhai	82.	23.	12	1	Baraker100.64-				Sandstone,
With Bhai Data bit	l eiga wan	yath	99 17	28	1. 20	0	121.29 TalchirBoulder bed	10-19 55-67 73-89 92-98	15	Barakar	Shale with
Bhai 82. 23. 11 2 press press press press press general khopa an 72 78 92 6 Fractured grante 15-21,37 3 Complex Complex Complex valir naga 64 98 9. 0 1 Talkin Sandstone, main r 5 19 12 2 Shale 45-130 1 Talkin Badia 5 34 6. 4 Sandstone,	wan	an	17	55	25	1	Talefii boulder bed		1.5	Chhotanag	coarbed
yath 91 31 7. 0 Fractured granite 15-21,37 3 Complex Complex Prem 82. 22. 1 0 Somplex Tillite, Somplex Complex Tillite, Solidstone, Solidst		Bhai	82.	23.	11	2.				pur	
Rhopa an 72 78 92 6 Fractured granite 15-21,37 3 Complex Complex Prem 82. 22. 11 0 Sandstone, Sandstone, Shale 5 Sandstone, Shale with Sandstone, Shadstone, Shale with Sandstone, Sha		yath	91	31	7.	0				Gneissic	Gneissic
Prem 82. 22. 1 3 Mark Mark 1	Khopa	an	72	78	92	6	Fractured granite	15-21,37	3	Complex	Complex
Vakir nage 64 98 9 0 Silistone Silistone ma r 5 19 31 2 Shale 45:130 1 Talchir Bou Bhai 82, 23, 12 2, Shale 45:130 1 Talchir Bou an 81 36 82, 9 Shale 14:16,35 0.5 Barakar Coal bed an 81 47 0. 9, Fractured granite 16:18,30 0.5 Barakar Coal bed Odigi Odgi 69 62 8 7 Fractured granite 16:18,30 0.5 Barakar Coal bed yath 00 42 3.4 - - - Chiotanag pur 6 81 59 1 Fractured granite 18:20,42:42:2:53:5:54,71:2:71.5 9 Complex Complex Complex Complex Complex Complex Complex Complex		Brom	02	22	11	3					Tillite, Sandstono
ma r.r.g. 5 19 31 2 Shale 45-130 1 Talchir Bou Badsa Vath 76 34 6. 4 Sandstone, Sandstone, Sandstone, Shale with a a1 36 62 9 Shale 14-16,35 0.5 Baraka Coal bed b a2 23 14 - - Sandstone, Shale with Odigi Odgi 69 62 8 7 Fractured granite 16-18, 30 0.5 Barakar Coal bed Palma an 86 81 9 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Sandstone, Sandstone, <td< td=""><td>Vakir</td><td>naga</td><td>64</td><td>22. 98</td><td>9.</td><td>0.</td><td></td><td></td><td></td><td></td><td>Siltstone and</td></td<>	Vakir	naga	64	22. 98	9.	0.					Siltstone and
Badas ra Bhai an 82. 23. 12 2. Sandstone, Shale with Sandstone, Shale with Sandstone, Shale with Sandstone, Shale with Odigi Odigi 69 62 8 7 Fractured granite 16-18, 30 0.5 Barakar Coal bed Bhai 83. 23. 11 2 Sandstone, Shale with Sandstone, Shale with Palma an 86 81 59 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Conplex Complex Shivpr Bhai 82. 23. 10 1. Sististone and Sististone and Nagar an 44 78 3 Shale 14-16,20-21 0.5 Tichir Bout Nagar r 39 31 9 2 Weathered granite 21-23,30 6 BRABelt aries/Un Prem 82. 22. 1. Chobtanag pur Ganesisc Ganesisc Ganesisc Ganesisc <td>ma</td> <td>r</td> <td>5</td> <td>19</td> <td>31</td> <td>2</td> <td>Shale</td> <td>45-130</td> <td>1</td> <td>Talchir</td> <td>Bou</td>	ma	r	5	19	31	2	Shale	45-130	1	Talchir	Bou
Bhai 82 23 12 2 Stade with Fa Stade Fa Stade Fa <thstade fa<="" th=""> Stade Fa <ths< td=""><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td></ths<></thstade>						2					
Badsa yath 76 34 6. 4 Shale 14-16,35 0.5 Barakar Cool bed ra an 81 36 82 9 Shale 14-16,35 0.5 Barakar Cool bed Odigi Odgi 69 62 8 7 Fractured granite 16-18,30 0.5 Barakar Cool bed Wath 00 42 3. 4. Pur pur pur yath 00 42 3. 4. Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Shivpr Bhai 82. 2. 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Shivpr Bhai 82. 2. 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Gomplex Complex Shivpr Bhai 82. 2. 1 Fractured granite 18-16,02-21 0.5 Gomplex		Bhai	82.	23.	12	2.					Sandstone,
Ind and Barl 30 82 93 State 14-10,35 U.5 Barlard Coal Deci-State Odigi Odgi 69 62 8 7 Fractured granite 16-18, 30 0.5 Barlard Coal bed Bhai 81 23 11 2 Fractured granite 16-18, 30 0.5 Barlard Cohotanag Palma an 86 81 59 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Palma an 86 81 59 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Complex Complex Complex Complex Complex Siltstone and metasediment anse/Un Boai Baai Siltstone and Siltstone and Siltstone and Siltstone and Siltstone and Siltstone and Siltstone	Badsa	yath	76	34	6.	4	Chala	14.16.25	0.5	Developer	Shale with
Odigi Odi Bit 47 0. 9. Shale with Coal bed Odigi Odi 63 62 8 7 Fractured granite 16-18, 30 0.5 Barakar Contonang Complex Bhai 83. 23. 11 2 Chhotanag Pur Pur ghai 83. 23. 11 2 Chhotanag Pur Pur Palma as 86 81 59 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 5 Geneissic Complex Complex Palma as 82 23. 10 1. Sandstone, Siltstone and Sandstone, Siltstone and asad vath 78 30 9. 2 Sandstone, Siltstone and Prem 82. 22. 1 Prem 2 Weathered granite 21-23,30 6 BRA Belt aries/Un Bhai 82. 22. 1 2 Pur 30 3.2 Geneisic Geneisic <td>ra</td> <td>an</td> <td>81</td> <td>30</td> <td>82 14</td> <td>9</td> <td>Shale</td> <td>14-16,35</td> <td>0.5</td> <td>Barakar</td> <td>Sandstone</td>	ra	an	81	30	82 14	9	Shale	14-16,35	0.5	Barakar	Sandstone
Odigi Odigi 69 62 8 7 Fractured granite 16-18, 30 0.5 Barakar Coal bed Palma 83. 83. 11 2 -			81	47	0.	9.					Shale with
Bhai 83 23. 11 2 Palma 9 Chobanag pur Palma an 86 81 59 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Shivpr Bhai 82. 23. 10 1. Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Shivpr Bhai 82. 23. 10 1. Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Sandstone, San	Odigi	Odgi	69	62	8	7	Fractured granite	16-18, 30	0.5	Barakar	Coal bed
Bhai 83. 23. 11 2 pur pur yath 00 42 3. 4. 5.5 Gneissic Gneissic Palma an 86 81 59 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Shivpr Bhai 82. 23. 10 1. Sandstone, Sitstone and Agar an 44 78 87 3 Shale 14-16, 20-21 0.5 Talchir Bou Nagar an 44 78 87 3 Shale 14-16, 20-21 0.5 Talchir Bou Nagar r 30 9. 2 Weathered granite 21-23,00 6 BRA Belt aries/Un angar r 32 3 7.9 Gneissic Gneissic Bhai 82. 23. 1 2 Sandstone, Sandstone, Shivin										Chhotanag	
Palma a 88 85 59 1 Fractured granite 18-20, 42.42.2-53.5-54,71.2-71.5 9 Complex Complex Shivpr Bhai 82. 23. 10 1. Sandstore, Sands		Bhai	83.	23.	11	2				pur	Choisein
Shivp Bhai 82. 23. 10 1. 2 Tillite, Sadstone, Sandstone, Sandstone, Siltstone and Ba Prem an 44 78 30 9. 2 Sandstone, Siltstone and Ba Siltstone and Ba Siltstone and Ba Undifferentiat ed ed Undifferentiat ed ed Undifferentiat ed ed Undifferentiat ed ed Siltstone and metasediment angar r 39 31 9 2 Weathered granite 21-23,30 6 BRA Belt aries/Un Bhai 82. 23. 12 2. metasediment ed pur Bhai 82. 23. 12 2. Greissic Greissic Greissic and 22 97 65 5 Granite 14-18, 63-63.50, 125-126 1.2 Complex Complex Shivin nagar 78 87 10 8 Barakar Fm. 36-54,66-84 5 Barakar Coal bed Sandstone,	Palma	an	86	42 81	3. 59	4. 1	Fractured granite	18-20, 42, 42, 2-53, 5-54, 71, 2-71, 5	5.5 9	Complex	Complex
Shivpr asad Bhai 82. 23. 10 1. Sandstone, Sitistone and Sitistone and Bou Nagar an 44 78 87 3 Shale 14-16, 20-21 0.5 Talchir Bou Prem 82. 22. 1. Prem 82. 22. 1. Undifferentiat ed Prem 82. 22. 1. Prem 82. 22. Undifferentiat ed Bhai 82. 23. 12 2. Weathered granite 21-23,30 6 BRA Belt aries/Un Bhai 82. 23. 12 2. Weathered granite 14-18, 63-63.50, 125-126 1.2 Chhotanag Gneissic Bhaiy yath 85 87 10 8 Cashive Assistone, Sandstone, Sandstone, Sandstone, Bhaiy yath 83. 23. 1. Sandstone, Sandstone, Sandstone, Sandstone, Shale with agar r 06 5 0 7 Barakar Fm.						2			-		Tillite,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Shivpr	Bhai	82.	23.	10	1.					Sandstone,
Nagar an 44 78 87 3 Shale 14-16, 20-21 0.5 Taichir Bou Prem naga 70 95 96 8 .	asad	yath	78	30	9.	2					Siltstone and
Prem 82. 22. 1. Accord of the transmission of transmissin of transmission of transmission of transmissin of tra	Nagar	an	44	78	87	3	Shale	14-16, 20-21	0.5	Talchir	Bou
Prem naga 70 95 96 8 metasediment angar r 39 31 .9 2 Weathered granite 21-23,30 6 BRA Belt aries/Un Bhaiy str .2 Chtotanag pur Gneissic Gneissic Bhaiy yath 85 38 7. 9 Gneissic Gneissic Complex athan an 22 97 65 5 Granite 14-18, 63-63.50, 125-126 1.2 Complex Complex Shivn naga 78 87 10 8 A A A A S Sandstone, Shivn naga 78 87 10 8 A A A Sandstone,		Prem	82.	22.		1.					ed
angar r 39 31 .9 2 Weathered granite 21-23,30 6 BRA Belt aries/Un Bhai 82. 23. 12 2. Chotanag pur Bhai 82. 23. 12 2. Chotanag pur Bhai 82. 23. 12 2. Gneissic Gneissic athan a 22 97 65 5 Granite 14-18, 63-63.50, 125-126 1.2 Complex Shivn naga 78 87 10 8 Sandstone, Shale with agar r 06 5 0 7 Barakar Fm. 36-54,66-84 5 Barakar Coal bed suraj 09 21 15 2 Chhota Nagpur Iso intermited Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed S	Prem	naga	70	95	96	8			3.2		metasediment
Bhai 82. 23. 12 2. Bhaiy vath 85 38 7. 9 Gneissic Gneissic Gneissic Bhaiy vath 85 38 7. 9 Gneissic Gneissic Gneissic Bhaiy vath 85 7. 9 Gneissic Gneissic Complex Shivn naga 78 87 10 8 Sandstone, Sandstone, gaar r 06 5 0 7 Barakar Fm. 36-54,66-84 5 Barakar Coal bed suraj 09 21 15 2 Chhota Nagpur Sandstone, Shale with Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70- Barakar Sandstone, Inder 76 48 20	angar	r	39	31	.9	2	Weathered granite	21-23,30	6	BRA Belt	aries/Un
Bnai 82. 23. 12 2. 12 2. 12 2. 12 2. 12 12 12 13 13 14 85 38 7. 9 14-18, 63-63.50, 125-126 1.2 12 Complex Complex athan an 22 97 65 5 Granite 14-18, 63-63.50, 125-126 1.2 Complex Complex Shivn naga 78 87 10 8 4.5 Barakar Coal bed agar r 06 5 0 7 Barakar Fm. 36-54,66-84 5 Barakar Coal bed suraj 09 21 15 2 Chhota Nagpur Integration Sandstone, Shale with Sandstone, Shale with Latori pur 93 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70-		D 1 · ·		~~		2				Chhotanag	
athan an 22 97 65 5 Granite 14-18, 63-63.50, 125-126 1.2 Complex Complex Shivn naga 78 87 10 8 4.5 Sandstone, Shale with agar r 06 5 0 7 Barakar Fm. 36-54,66-84 5 Barakar Coal bed suraj 09 21 15 2 Chhota Nagpur 16-18, 69.4-70.4 Barakar Sandstone, Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70- Sandstone, Sandstone, a an 83 4 6 5 Sandstone 150.70 9.8 Talchir Siltstone a an 83 4 6 5 Sandstone 150.70 9.8 Talchir Siltstone	Bhain	Bhai	82. or	23.	12	2.				pur Gnoissic	Gnoissia
Prem 82. 22. Prem 82. 23. Sandstone, Sandstone, Shivin Sandstone, Shivin Sandstone, Sandstone, Shale with Coal bed Sandstone, Shale with Sandstone, Shale with Sandstone, Sandstone, Shale with Sandstone, Sandstone, <td>athan</td> <td>an</td> <td>22</td> <td>97</td> <td>65</td> <td>5</td> <td>Granite</td> <td>14-18, 63-63.50, 125-126</td> <td>1.2</td> <td>Complex</td> <td>Complex</td>	athan	an	22	97	65	5	Granite	14-18, 63-63.50, 125-126	1.2	Complex	Complex
Shivn agar naga r 78 87 10 8 Altor Altor Altor Shale with Coal bed agar r 06 5 0 7 Barakar Fm. 36-54,66-84 5 Barakar Coal bed agar r 06 5 0 7 Barakar Fm. 36-54,66-84 5 Barakar Coal bed Suraj 09 21 15 2 Chhota Nagpur 16-18, 69.4-70.4 1 Barakar Coal bed Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 1 Barakar Coal bed Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 1 Barakar Coal bed Kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70- Sandstone, Sandstone, a an 83 4 6 5 Sandstone 150.70 9.8 </td <td></td> <td>Prem</td> <td>82.</td> <td>22.</td> <td></td> <td></td> <td></td> <td>.,</td> <td></td> <td></td> <td>Sandstone,</td>		Prem	82.	22.				.,			Sandstone,
agar r 06 5 0 7 Barakar Fm. 36-54,66-84 5 Barakar Coal bed agar 83. 23. 1. 3 Sandstone, Sandstone, Sandstone, Shale with Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Kewar yath 80 27 16 4. Sandstone, San	Shivn	naga	78	87	10	8			4.5		Shale with
kewar yath 83. 23. 1. Sandstone, Sandstone, Shale with Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70- 9.8 Talchir Sandstone, a an 83 4 6 5 Sandstone 150.70 9.8 Talchir Siltstone Inder 62 06 2. 2. Consolidated Panchet Sandstone pur Odgi 9 4 7 5 Sandstone Panchet Sandstone Pal 80 49 20 3 Panchet Sandstone Pal 80 49 20 3 Panchet Sandstone<	agar	r	06	5	0	7	Barakar Fm.	36-54,66-84	5	Barakar	Coal bed
Suraj 09 21 15 2 Chhota Nagpur 16-18, 69.4-70.4 Barakar Shale with Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Bhai 82. 37 1 Coal bed Sandstone, Sandstone, Kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70- 9.8 Talchir Sandstone, a an 83 4 6 5 Sandstone 150.70 9.8 Talchir Siltstone Inder 62 06 2. 2. Consolidated Panchet Sandstone Panchet Sandstone pur Odgi 9 4 7 5 Sandstone Panchet Sandstone Pal 82. 23. - - - - - - - Jona 60 50 2. 0. - - <td></td> <td></td> <td>82</td> <td>22</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>Sandstono</td>			82	22		3					Sandstono
Latori pur 95 36 3 5 Granite Gneiss. 16-18, 69.4-70.4 Barakar Coal bed Bhai 82. 37 1		Surai	85. 09	25. 21	15	1. 2	Chhota Nagnur				Shale with
Bhai 82. 37 1 Kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70- 9.8 Talchir Sandstone, a an 83 4 6 5 Sandstone 150.70 9.8 Talchir Sandstone, Inder 62 06 2. 2. Consolidated Panchet Sandstone Inder 62 06 2. 2. Consolidated Panchet Sandstone Pal 80 49 20 3 Pana Pana Sandstone Panchet Sandstone Uli Odgi 8 7 7 5 Sandstone Panchet Sandstone	Latori	pur	95	36	3	5	Granite Gneiss.	16-18, 69.4-70.4		Barakar	Coal bed
Bhai 82. 37 1 25.80-28.80, 80.70-83.70, 147.70- 150.70 9.8 Talchir Sandstone, Siltstone a 83 4 6 5 Sandstone 150.70 9.8 Talchir Sandstone, Siltstone an 83 4 6 5 Sandstone 150.70 9.8 Talchir Siltstone Inder pur 62 06 2. 2. Consolidated - - Panchet Sandstone Pal 82. 23. -			[23.					[
Kewar yath 80 27 16 4. 25.80-28.80, 80.70-83.70, 147.70- 150.70 9.8 Talchir Sandstone, Siltstone a an 83 4 6 5 Sandstone 150.70 9.8 Talchir Siltstone a an 82. 23. -		Bhai	82.	37		1					
a a b 4 0 3 Sandstone 150.70 5.0 Failure Sitistifie Inder 76 48 20 1 <td>Kewar</td> <td>yath</td> <td>80 82</td> <td>27</td> <td>16 6</td> <td>4. 5</td> <td>Sandstono</td> <td>25.80-28.80, 80.70-83.70, 147.70- 150.70</td> <td>00</td> <td>Talchir</td> <td>Sandstone,</td>	Kewar	yath	80 82	27	16 6	4. 5	Sandstono	25.80-28.80, 80.70-83.70, 147.70- 150.70	00	Talchir	Sandstone,
Inder 76 48 20 1 Inder 62 06 2. 2. Consolidated pur Odgi 9 4 7 5 Sandstone Panchet Sandstone Pal 82. 23.	d	all	82.	23.	0	5	Janustone	130.70	9.0	raitiii	Sitstone
Inder pur 62 06 2. 2. Consolidated Sandstone Panchet Panchet Sandstone Pal 82. 23. -			76	48	20	1					
pur Odgi 9 4 7 5 Sandstone Panchet Sandstone Pal 82. 23. -	Inder		62	06	2.	2.	Consolidated				
82. 23. 60 50 20. 3 Pal 80 49 20 3 Dana 60 50 2. 0. uli Odgi 8 7 7 5 Sandstone 99-102, 114.20-117.30 3.2 Panchet Sandstone	pur	Odgi	9	4	7	5	Sandstone			Panchet	Sandstone
Fail 60 49 20 5 Dana 60 50 2. 0. uli Odgi 8 7 7 5 Sandstone 99-102, 114.20-117.30 3.2 Panchet Sandstone	Dal		82.	23.	20	2					
uli Odgi 8 7 7 5 Sandstone 99-102, 114.20-117.30 3.2 Panchet Sandstone	Dana		60 60	49 50	20	0					
		Odai	8	7	7	5	Sandstone	99-102. 114.20-117.30	3.2	Panchet	Sandstone

Annexure 3 Details of Chemical Analysis

SI.								С												Р													
no	Dist					Р	Е	0	HC		Ν	SO		т	С	м	Ν			o		м				67Zn	70Zn	Α	S	Α	С	Ρ	
•	rict	Block	Location	Long	Lat	h	С	3	03	CI	о3	4	F	Н	а	g	а	К	Si	4	Cr	n	Fe	Ni	Cu	(KED)	(KED)	s	е	g	d	b	U
	Sur	_				7.	1			1	34		0.	_			_	_	_	_	<0.	<0	<0	<0.	<0			<	<	<	<	<	<
84	ajpu	Prem	Katarouli	82.5	22.9	2	3	_	24	0.	.2	4.	0	5	1	_	2.	6.	8.	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
6	r	nagar	(Harrapara)	557	097	1	8	0	.4	5	1	87	0	5	2	6	2	9	77	0	5	3		2	5					_		_	
	Sur	_			23.2	-	1			2	_	_	0.	_			_	_	_	_	<0.	0.	<0	<0.	<0			<	<	<	<	<	<
84	ajpu	Premn		82.7	487	8.	8		54	4.	6.	6.	0	6	1		8.	2.	5.	0.	00	03	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
7	r	agar	Abhaypur	347	2	2	3	0	.9	5	42	12	0	5	6	6	3	4	93	0	5			2	5								
	Sur	. .		82.7		8.	1						0.	_			_	_			<0.	<0	<0	<0.	<0			<	<	<	<	<	<
84	ajpu	Pratap		302	23.5	1	4		36	1	8.	9.	0	5	1	4.	7.	3.	8.	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
8	r	pur	Banshipur	8	854	1	8	0	.6	4	06	21	0	0	2	8	3	5	51	1	5	3		2	5			4					
	Sur	Ductor		02.1	23.4	8.	4		19	2	_	15	0.		2	1	1	-	16	_	<0.	0.	<0	<0.	<0	-0 F	-0 F	1.	<	<	<	<	<
84	ajpu	Pratap	Dhadius	83.1	028	1	1	~	5.	2	0.	.6	5	6	3	1	3.	7.	.0	0.	00	21	.1	00	.1	<0.5	<0.5	0	1	1	1	1	1
9	r Curr	pur	впесіуа	566	22.4	-	1	0	2	1	28	9	3	0	4	8	/	4	/	0	5		11	2	5			1					
OE	Sur	Phaiwat	Dalababara	82.0	23.4	7.	3		20	1	2	10	0. ว	1	2	1		0	0	0	<0.	0.	11	<0.	<0	<0 F	<0 E	<	<	<	<	<	<
0	ajpu	bildiyat	Dalaballala(001	0/1	6	2	0	1. 2	U. E	2. 17	10	5	4	2	0	4.	0.	9. 17	0.	5	18	.4	2	.1	<0.5	<0.5	1	1	1	1	1	1
0	l Sur	lidii	DIIdSKdI)	0	2 07 6	0	2	0	5	5	22	.2	9	1	0	0	1	9	21	1	5	<0	/	2	5							1	
95	Sui	Proton		122	520	о. О	2		01	2	55	1/	0. ว	2	2	1	2	2	21	0	<0. 00	0	<0	<0. 00	1	1 47	1 21	<	<	<	<	1. 0	<
1	ajpu r	nur	Dawankera	133	J28 2	1	1	0	51	2	.4	.0	2	0	2	4. 1	2. Q	J. ⊿	.0	0.	5	.0 3	.1	2	5	1.47	1.51	1	1	1	1	2	1
-	Sur	pui	Dawankera	23.3	23.1	8	1	0	.5	1	-	,	0	0	0	7	5	4	10	-	20	5		2	20							2	
85	ainu	Bhaivat		23.3 542	23.1	0.	8		24	0	2	4	0.	2	1	2	2	2	3	0	<0. 00	0.	<0	<0. 00	1	<05	<05	<	<	<	<	<	<
2	ajpu r	han	Khandanara	542	5	5	2	0	4	5	95	77	0	5	0	2. 4	2. 1	2. 5	.5	0.	5	02	.1	2	5	<0.J	<0.J	1	1	1	1	1	1
2	Sur	nan	Kildildapara	0	23.3	8	1	U		1	31	,,	0	5	Ŭ	-	-	1	13	0	<0	<0		2	<0							1	
85	aipu	Surain		82.6	957	0	7		36	7.	.9	2	0	5	1		6.	0.	.2	0.	00	.0	1.	0.0	.1	<0.5	<0.5	<	<	<	<	5	<
3	r	ur	Naravanpur	353	3	3	7	0	.6	5	1	2	0	5	2	6	8	8	4	0	5	3	38	3	5	10110	.0.15	1	1	1	1	1	1
	Sur			83.6	82.3	7.	1	-		-	17		0.	-		-	1	-	27	-	<0.	<0		<0.	<0							_	
85	aipu	Pratap		237	672	8	8		48	2	.5	6.	0	5	1	3.	5.	0.	.0	0.	00	.0	<0	00	.1	<0.5	<0.5	<	<	<	<	<	<
4	r	pur	Podi	2	7	7	1	0	.8	1	5	05	5	0	4	6	9	9	4	1	5	3	.1	2	5			1	1	1	1	1	1
	Sur			23.1		7.	4						0.	1					27		<0.	<0		<0.	<0							1.	
85	ajpu	Surajp		775	23.2	7	0		12	4	26	8.	0	7	5	9.	9.	2.	.0	0.	00	.0	<0	00	.1	<0.5	<0.5	<	<	<	<	2	<
5	r	ur	Surajpur	1	85	2	2	0	2	2	.8	46	0	0	2	6	8	0	4	0	5	3	.1	2	5			1	1	1	1	6	1
	Sur					8.	1		1		13		0.							l	<0.	<0	~	<0.	<0								
85	ajpu	Pratap	Dwarikanag	83.1	23.2	0	2		48		.2	4.	0	5	1		5.	3.	8.	0.	00	.0	<0	00	.1	<0.5	<0.5	<	<	<	<	<	<
6	r	pur	ar	885	439	5	9	0	.8	7	4	55	0	0	0	6	3	6	96	0	5	3	.1	2	5			1	1	1	1	1	
	Sur				23.4		7		18			70	0.	1			9		10		<0.	0	0	<0.	<0							/	
85	ajpu	Surajp	Krishnapur(k	82.8	244		4		9.	9	2.	.2	0	4	4	7.	5.	2.	.8	0.	00	0.	12	00	.1	0.52	<0.5	1				1	1
7	r	ur	alwa)	233	2	8	0	0	1	8	76	6	0	0	4	2	4	1	1	0	5	07	12	2	5			1		1		1	1
	Sur			82.7		8.	6		18	7	69	24	0.	2		1	3		22		<0.	0	2	<0.	<0			~	/	/	~	/	
85	ajpu	Bhaiyat	Samouli(Bha	652	22.8	1	8		9.	3.	.7	.8	0	2	6	3.	8.	2.	.3	0.	00	10	40	00	.1	<0.5	<0.5	1	1	1	1	1	1
8	r	han	yathan)	1	815	2	4	0	1	5	4	9	0	5	8	2	5	6	3	0	5	10	45	2	5			1	1	1	1	T	Т

		i				•																					i							
		Sur				23.3	8.							0.						13		<0.	<0	<0	<0.	<0			~	~	~	~	~	~
	85	ajpu	Premn		82.7	444	0	8		18		9.	3.	0	2		2.	2.	6.	.9	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
	9	r	agar	Shivnagar	882	4	3	1	0	.3	7	48	5	0	5	6	4	4	5	8	0	5	3		2	5			-	_	_		-	
		Sur			82.7		7.	9		23	1	18	44	0.	2		1	9		12		<0.	<0	<0	<0.	<0			<	<	<	<	<	<
	86	ajpu	Surajp		708	23.2	9	0		7.	3	.0	.6	0	2	7	0.	2.	4.	.1	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
	0	r	ur	Badsara	3	721	1	8	0	9	3	7	9	2	0	0	8	6	9	7	0	5	3		2	5							_	<u> </u>
		Sur					8.	4				79	25	0.	1	_	_	1	1	10	_	<0.	<0	<0	<0.	<0			<	<	<	<	<	<
	86	ajpu	Surajp		82.9	23.1	0	4		91	4	.5	.3	0	6	5	7.	6.	1.	.8	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
	1	r	ur	Biharpur	21	85	6	4	0	.5	2	8	3	0	0	2	2	9	0	4	0	5	3		2	5								
		Sur	<u> </u>		82.9	23.5	8.	4			-	47	15	0.	1		1	2	-	22		<0.	<0	<0	<0.	<0	0.5	0.5	<	<	<	<	<	<
	86	ajpu	Surajp		883	111	0	2		97	5	.3	.2	0	6	4	3.	0.	2.	.8	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
	2	r	ur	Bishrampur	3	1	5	7	0	.6	6	7	2	0	5	4	2	9	0	3	0	5	3	-	2	5								
		Sur	. .		83.1		7.	4		10		46	22	0.	1		2	2		29		<0.	<0	0.	<0.	<0	0.5	0.5	<	<	<	<	<	<
	86	ajpu	Pratap		569	23.4	7	7		9.	4	.2	.9	2	9	4	1.	2.	1.	.2	0.	00	.0	13	00	.1	<0.5	<0.5	1	1	1	1	1	1
	3	r	pur	Chandora	4	421	6	4	0	8	9	2	5	8	0	0	6	0	1	8	0	5	3	-	2	5								
		Sur	. .				7.	3		4.0			-	0.	1		1	-	-	12		<0.	0.	<0	<0.	<0	0.5	0.5	<	<	<	<	<	<
	86	ajpu	Pratap	Dauhaua	82.8	23.2	8	0	~	12	2	8.	5.	0	3	3	0.	6.	2.	.8	0.	00	06	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
-	4	r	pur	Darnora	346	4	9	8	0	2	8	28	44	0	5	6	8	2	4	3	0	5	.0		2	5								
	06	Sur	c		82.8	22.0	8.	3		12	6	~	2	0.	1	2		3	~			<0.	<0	0.	<0.	<0	-0 F	-0 F	<	<	<	<	<	<
	86	ajpu	Surajp	Deserves	033	23.0	1	8	~	12	6	0.	3. 05	2	3	3	1	b. Э	0.	10	0.	00	.0	16	00	.1	<0.5	<0.5	1	1	1	1	1	1
-	5	r	ur	Deonagar	3	25	1	9	0	2	3	31	85	0	0	2	2	2	9	18	0	5	3		2	5								
	00	Sur	Duana		02 C	23.0	8.	6		1/	~	23	12	0.	2		2	2	1	10	_	<0.	0.	4.	<0.	<0	0.75	0.64	<	<	<	<	<	<
	86	ajpu	Premn	Fulliana	82.6	805	0	9	~	0.	9	.5	./	3	0	4	2.	3.	1.	.3	0.	00	32	57	00	.1	0.75	0.64	1	1	1	1	1	1
-	0	۱ ۲	agar	FUIKONA	072	22.4	7	0	0	0	T	12	0	2	5	4	0	5	0	11	0	5			2	5								2
	06	Sur	Paman		82.0 250	23.4	7.	0		20		13	2	0.	2		2	4	4	11	0	<0.	0.	0.	<0.	<0 1	<0 E	<0 E	<	<	<	<	<	3.
	80 7	ajpu r	Luipagar	Ganoshnur	552 0	291	0	5	0	50	7	0. 0	э. 5	0	0	0	2. 1	4.	4.	.0	0.	5	17	22	2	.1	<0.5	<0.5	1	1	1	1	1	5
-	/	ı Sur	ujnagai	Galleslipul	82.0	/	0	7	0	.J 21	2	17	10	1	1	0	4	2	2	14	1		<0		2 20	J 20								
	86	ainu	Proton		583	23.0	0.	4 0		21	1	7/	10	1.	6	Λ	0	5	0	6	0	<0. 00	0	1.	_∪. ∩∩	1	<0.5	<05	<	<	<	<	<	<
	8	ajpu r	nur	Gonda	305	629	1	0	0	5.	 5	د. ۵	.5	0	5	8	0. 8	<u>р</u> .	0. 7	.0	0.	5	3	49	2	5	NO.5	NO.5	1	1	1	1	1	1
-	0	I Sur	pui	Gonda	5	22.2	0	2	0	17	5	9	2	0	1	0	0	1		/	0	5			2									
	86	ainu	Dromn	Hanumanga	82.6	786	0.	6		6	2	Л	٩	3	5	Λ	8	2	6	٩	0	00	0	<0	00.	1	<0.5	<05	<	<	<	<	<	<
	9	ajpu r	agar	rh	476	1	6	0	0	0. 9	1	- - . 71	74	Δ	0	6	٥. ۵	6	0.	66	0.	5	.0 २	.1	2	5	NO.5	NO.5	1	1	1	1	1	1
-		Sur	ugui		470	23.2	7	1	Ū	5	-	18	74	0	Ŭ	0	-		0	00		<0			2 20									+
	87	ainu	Pratan	lagannathnu	83.1	472	7.	6		48	1	10	5	0.	6	1	7	4	5	٩	0	00	0	0.	00.	1	<0.5	<0.5	<	<	<	<	<	<
	0	ajpu r	nur	r	95	- 72	5	5	0	40	4	./	07	0	5	4	2	- - . 1	5.	45	0.	5	3	13	2	5	NO.5	NO.5	1	1	1	1	1	1
-	0	Sur	pui	•	55	2	7	2	0	.0	-	/5	07	0	5	-	2	1	0	11					2						┝──┦	-	1	
	87	ainu	Surain			23.1	2	1		30	2	7	з	0.	8	2		0	5	7	0	00	0	0.	00	1	<0.5	<0.5	<	<	<	<	0	<
	1	r r	ur	Kalivannur	83.2	869	1	2	0	5	8	., 4	73	0	0	2	6	4	1	./	0.	5	3	19	2	5	×0.5	×0.5	1	1	1	1	1	1
-	-	Sur	ui	Kanyanpur	05.2	005	8	2	0	.5	0	-	/3	0	Ŭ	2	0	-	-	12		<0	<0		<0	ر د0					┝──┦	-	-	
	87	ainu	Surain		83.0	23.1	0	8		24		٩	2	0	2		2	4	1	1	0	00	0	<0	00	1	<05	<05	<	<	<	<	<	<
	2	r	ur	Kanaknur	555	482	5	2	n	4	7	61	26	n	5	6	2. 4	 २	6	5	0.	5	3	.1	2	5	-0.5	\$0.5	1	1	1	1	1	1
F	-	Sur	u 1	Nariaipui	555	23.4	8	2			,		11	n n	1	5	-	1		20		<0		1	<0	<0		1						+
	87	aipu	Suraip		82.9	833	2	2		97	2	30	.3	0	1	3		9.	1.	.2	0.	00	0.	<0	00	.1	<0.5	<0.5	<	<	<	<	<	<
	3	r	ur	Maieera	514	3	1	6	0	.6	1	.1	.5	0 0	5	6	6	4	4	5	0	5	24	.1	2	5	.0.0	.0.5	1	1	1	1	1	1
	-							· ·						. <u> </u>	· ·	~						<u> </u>	1	1			1	1	1	1			1	1

1	Sur			83.2	22.9	7.	4		21	1	26	14	0.	1		1	2		28	l	<0.	<0		<0.	<0		1	1	1	'			1
87	ajpu	Pratap		027	666	8	9		3.	0.	.3	.2	1	9	5	3.	1.	0.	.2	0.	00	.0	<0	00	.1	<0.5	<0.5	<	<	<	<	<	<
4	r	pur	Pratappur	8	7	2	0	0	5	5	5	1	8	0	4	2	6	5	7	0	5	3	.1	2	5			1	1	1	1	1	1
	Sur			82.6		8.	5		19	6		14	0.	2		1	3		16		<0.	<0	.0	<0.	<0						,		
87	ajpu	Premn		958	23.1	0	5		5.	6.	0.	.7	0	0	5	4.	1.	0.	.8	0.	00	.0	<0	00	.1	<0.5	<0.5	<	<	<	<	<	<
5	r	agar	Premnagar	3	5	2	6	0	2	5	83	1	4	0	6	4	0	7	3	0	5	3	.1	2	5			1	1	1	1	1	1
	Sur				23.6	7.	1				19		0.								<0.	~	_	<0.	<0								
87	ajpu	Raman	Ramanuj	82.7	477	7	9		67	1	.3	5.	0	7	1		5.	2.		0.	00	0.	5.	00	.1	<0.5	<0.5	<	< 1	< 1	< 1	< 1	< 1
6	r	ujnagar	nagar	25	8	6	3	0	.1	4	9	19	0	0	8	6	9	6	13	0	5	19	00	2	5			1	1	1	Т	Т	1
	Sur			83.1	23.3	7.	2				21		0.				1		19		<0.	0	-0	<0.	<0						,	,	
87	ajpu	Pratap		763	527	2	4		91	1	.4	8.	0	9	3	3.	2.	0.	.9	0.	00	0.	<0	00	.1	<0.5	<0.5	< 1	< 1	< 1	< 1	< 1	< 1
7	r	pur	Reonti	9	8	1	8	0	.5	4	2	89	1	0	0	6	3	6	4	1	5	07	.1	2	5			T	T	1	T	T	T
	Sur			82.8		8.	1			1	24		0.						13		<0.	<0	0	<0.	<0						1	/	
87	ajpu	Surajp		630		0	2		30	0.	.5	3.	0	4	1	4.	6.	4.	.6	0.	00	.0	20	00	.1	<0.5	<0.5	1	1	1	1	1	1
8	r	ur	Sirsi	6	23.3	2	0	0	.5	5	4	26	0	5	0	8	0	9	9	1	5	3	20	2	5			T	T	1	T	T	T
	Sur			83.0	23.2	7.	5		13	8		31	1.	1			6				<0.	<0	~0	<0.	<0			/	/		1	/	/
87	ajpu	Pratap		791	982	9	4		4.	7.		.8	8	4	4	7.	0.	5.	8.	0.	00	.0	1	00	.1	<0.5	<0.5	1	1	1	1	1	1
9	r	pur	Songara	7	8	9	6	0	2	5	0	5	8	5	6	2	8	5	51	0	5	3	1.	2	5			1	1	1	T	Т	1
	Sur			82.5	21.1	7.	2				60		0.					1			<0.	0	0	<0.	<0			/	/		/	/	/
88	ajpu	Surajp		715	920	8	7		48	2	.2	5.	8	9	2	9.	9.	8.	9.	0.	00	0.	25	00	.1	<0.5	<0.5	1	1	1	1	1	1
0	r	ur	Newara	3	8	8	8	0	.8	1	1	71	5	0	0	6	4	0	34	0	5	05	25	2	5			1	1	1	1	Т	1
	Sur			81.7	23.1	7.	6		21	6			1.	1		1	5		16		<0.	<0	~0	<0.	<0			/	/		/	/	/
88	ajpu	Premn		198	996	3	4		3.	6.	2.	36	4	9	5	5.	8.	2.	.3	0.	00	.0	1	00	.1	<0.5	<0.5	1	1	1	1	1	1
1	r	agar	Tara1	3	7	3	7	0	5	5	13	.1	5	0	0	6	0	3	1	0	5	3	.1	2	5			-	1	-	-	1	-
	Sur			82.6	23.6	7.	2				15		1.				1		10		<0.	0	~0	<0.	<0			1	1		/	/	
88	ajpu	Bhaiyat	Satipara(Bha	073	423	9	1		85	1	.6	5.	0	8	2	7.	0.	1.	.5	0.	00	58	1	00	.1	<0.5	<0.5	1	1	1	1	1	1
2	r	han	ingamunda)	7	7	7	7	0	.4	4	9	65	9	5	2	2	9	6	1	0	5	50	.1	2	5			-	1	-	-	-	-
	Sur			83.1	23.1	7.	1				33		0.				1	1	13		<0.	<0	<0	<0.	<0			~	~	~	<	~	~
88	ajpu	Pratap		754	632	7	8		24	2	.8	5.	8	5	1	2.	1.	1.	.9	0.	00	.0	1	00	.1	<0.5	<0.5	1	1	1	1	1	1
3	r	pur	Dhondha	9	8	5	2	0	.4	1	1	2	3	5	8	4	2	4	5	0	5	3		2	5			-	-		-	-	-
	Sur			83.0	23.1	7.	2			2	19		0.				1		13		<0.	0	<0	<0.	<0			<	<	<	<	<	<
88	ajpu	Surajp		906	617	7	0		54	4.	.2	7.	8	7	1	8.	1.	7.	.9	0.	00	03	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
4	r	ur	Madanpur	4	8	4	8	0	.9	5	7	87	3	5	6	4	3	7	3	0	5			2	5			-	_		-	-	
	Sur			83.1	23.3	7.	1			1	11		0.						13		<0.	<0	<0	<0.	<0			<	<	<	<	<	<
88	ajpu	Pratap		985	867	8	2		36	0.	.9	3.	8	5	1		3.	5.	.9	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
5	r	pur	Dharampur	1	2	7	3	0	.6	5	5	61	1	0	0	6	7	2	3	0	5	3	L	2	5			<u> </u>	<u> </u>	Ļ	_	-	<u> </u>
	Sur			83.0	23.1	7.	1				18		0.						10		<0.	<0	<0	<0.	<0			<	<	<	<	<	<
88	ajpu	Pratap		314	083	8	0		24		.4	3.	8	4	1	3.	2.	3.	.2	0.	00	.0	.1	00	.1	<0.5	<0.5	1	1	1	1	1	1
6	r	pur	Durti	6	3	1	2	0	.4	7	6	09	2	5	2	6	4	1	1	0	5	3		2	5				<u> </u>		-	-	_

SOME GLIMPSES OF FIELD WORK DURING NAQUIM STUDY IN THE DISTRICT

REFERENCES: -

- 1. Biswal A.K., Sonkhusare M.M., Ground Water Brochure of Surajpur District 2014-15, Central Ground Water Board, North Central Chhattisgarh Region, Raipur, Chhattisgarh
- Gupta Prachi, Kumar Uddeshya, Ground Water Year Book of Chhattisgarh state, 2020-21, Central Ground Water Board, North Central Chhattisgarh Region, Raipur, Chhattisgarh
- 3. Kumar Uddeshya, Dynamic Groundwater Resource of Chhattisgarh state as on March 2021, Central Ground Water Board, North Central Chhattisgarh Region, Raipur, Chhattisgarh.
- 4. Verma J.R., State Report of Chhattisgarh state 2020-21, Central Ground Water Board, North Central Chhattisgarh Region, Raipur, Chhattisgarh
- 5. Singh, Dheeraj, U. P. Sharma, and G. B. Rout. "Disequilibrium of uranium mineralization–a case study of Devri area, Surajpur district, Chhattisgarh, India." *Current Science* 120, no. 11 (2021): 1753.
- 6. Upadhyay, Manish, and Komal Kumari. "DETERMINATION OF FLUORIDE AROUND IN SURAJPUR DISTRICT CHHATTISGARH, INDIA." *Journal of Atoms and Molecules* 3, no. 1 (2013): 437.
- 7. Mahilange, Monika, and Gopi Krishna Das. "Analysis of rainfall trend in five districts of northern hill zone of Chhattisgarh state." *Journal of Pharmacognosy and Phytochemistry* 7, no. 5 (2018): 3283-3286.

