

केन्द्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

Vadodara District Gujarat

पश्चिम मध्य क्षेत्र**,** अहमदाबाद West Central Region, Ahmedabad

For official use only Technical Report Series

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES VADODARA DISTRICT,

GUJARAT STATE

Government of India Ministry of Jal Shakti Department of Water Resources, RD and GRCentral Ground Water Board West Central RegionAhmedabad

July 2022

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES VADODARA DISTRICT, GUJARAT STATE

Contributors' page

Name	Designation
Principal Author	
Shri Lakshmi Narayana Damodara	Scientist-B (Hydogeologist)
Report Scrutiny	
Dr A K Jain	Scientist-D (Retired) & Consultant, CGWB,WCR,
	Ahmedabad.
Supervision & Guidance	
Shri. Sanjeev Mehrotra	Scientist-D& H.O.O, CGWB,WCR, Ahmedabad.

ACKNOWLEDGEMENT

I would like to take an opportunity to thank Shri Sanjeev Mehrotra, Head of Office, CGWB, West Central Region, Ahmedabad, Gujarat for offering such opportunity of detailed study of the district. I am very much delighted to express my deep sense of gratitude and regards to my respected colleagues/ seniors Dr. A K Jain Scientist -D (Retired), Sh. Biswaroop Mahapatra, Scientist -C, RGNGWTRI, Raipur, Sh Alok Kumar Sinha, Scientist -B, NER, Patna, Sh Ramesh Jena, Scientist -B, Sh Ankit Vishwakarma, Scientist -B, Sh Satyendra Kumar, Scientist -B, Sh Kamar Ujjam Khan, Scientist -B, Sh Gajanan Ramteke, Scientist -B and Sh Avinash Chandra STA (HG), WCR, Ahmedabad for their valuable and meticulous guidance and support during the study.

I am deeply thankful to **Smt Puja Mehrotra**, Scientist-D, OIC Chemical Lab, **Dr.V.K.Kulshreshta**, Scientist -B, **Dr.H.B Meena** Asst Chemist and **Smt Adiba Khan** STA (Chem) and all other scientists of chemical team for timely analysis of the water samples of the district.

I am also grateful to, Shri M Mishra, EE, Shri S Gupta, AEE, CGWB, Div-I, Ahmedabad, and all staffs of Rig units for their efforts for inhouse data generation and exploration.

I would like to extend my gratitude to **Shri Neelesh Dokia** Draftsman, for suggested map preparation. The help and co-operation of all Scientists, staffs, MTDs of CGWB, WCR, Ahmedabad is greatly recognizable.

> (Lakshmi Narayana Damodara) Scientist-B Central Ground Water Board West Central Region, Ahmedabad

AQUIFER MAP&MANAGEMENT PLAN OF VADODARA DISTRICT GUJARAT (4096.10 sq. km)

	Contents	Page No
	District at a Glance	1
1	Introduction	3
2	Geology and Hydrogeology	12
3	Data integration, interpretation & Aquifer mapping	28
4	Hydrochemistry	38
5	Ground Water Resources	41
6	Ground Water Related Issues and Reasons for Issues	43
7	Management Strategies In Vadodara District	44
8	Conclusions and Recommendations	49
9	Taluka Reports	50
Tables		
1	Details of Taluka area & Nos. of Towns & Villages	6
2	Land Use Classification of Vadodara District (2014-15)	6
3	Details of Irrigated Areas	7
4	Climatological Data of IMD Station -(Baroda) - Vadodara	8
5	Stratigraphic outline of the Vadodara District	12
6	Groundwater trends in m/year for the period of 2011 to 2020 in the district of	20
	Vadodara	20
7	Data integration	28
8	Aquiter Characterisation and Disposition	3/
9	Summarised chemical data of Vadodara district	38
10	G W Resource Potential(GWRE-2017)	42
11	Identification of suitable area for Artificial Recharge	46
12	Computation of volume of unsaturated zone available for recharge	46
13	Computation of volume of water required for recharge	47
14	Feasibility of Artificial Recharge in Vadodara District.	49
15	Rooftop Rainwater harvesting plan for Vadodara district	50
16	Water Conservation and Extraction interventions in Vadodara District	50
17	Proposed Artificial recharge and Water Conservation interventions in Vadodara	51
18	Projected Status of Groundwater Resource after implementation of GW Management Plan of Vadodara District	54
19	Summary of Interventions, Expected Benefits and Cost Estimates of Vadodara	56
	dis	
Figures		
		1 .
1	Activities under NAQUIM	4
2	Administrative Map	5
3	Plot of Climatological Data – (Baroda) –Vadodara IMD Station	8
4	Geomorphology of Vadodara District	9
5	Drainage system	10

6	Geology map of Vadodara	13
7	Hydrogeology map of Vadodara	13
8	DTW Post monsoon(Phreatic)	16
9	DTW Pre Monsoon (Phreatic)	16
10	Water Table Pre monsoon 2019(Phreatic)	17
11	Water Table Post monsoon 2019(Phreatic)	17
12	Depth to piezometric surface Pre monsoon May 2019 (Confined I)	18
13	Depth to piezometric surface Post monsoon November2019 (Confined I).	18
14	Depth to piezometric surface in m MSL in May 2019	19
15	Selected hydrographs of Vadodara District 15 (A to K)	22-27
16	Hydrogeological cross Section lines	29
17	The Hydrogeological cross Section Figs 15 (A to L)	30
18	Fence Diagram of Vadodara District	36
19	3 D Solid Model of Vadodara District	36
20	Electrical Conductivity Phreatic Aquifer	39
21	Electrical Conducivity Confined Aquifer I	40
22	Feasible area for Artificial recharge	45
23	Thematic diagram of Farm pond	52
24	Projected Status of Groundwater Resource after implementation of GW	55
	Management Plan of Vadodara District	
Annexu	res	
1	Annexure 1 Vadodara Pre Monsoon Water Level_2019 (Un Confined)	99
2	Annexure 2 Vadodara Post Monsoon Water Level_2019 (Un Confined)	100
3	Annexure 3 Vadodara Pre Monsoon Water Level_2019 (Confined I)	101
4	Annexure 4 Vadodara Post Monsoon Water Level_2019 (Confined I)	101
5	Annexure 5 Vadodara Pre Monsoon Water Quality_2019 (Un Confined)	101
6	Annexure 6 Vadodara Distrcit Exploration Data	102

	VADODARA DISTRICT AT GLANCE							
SL	Items	Statistics						
No.								
1	General Information							
	i) Geographical area/Total Reporting area (Sq. Km)	4312/4077						
	ii) Administrative Divisions (As on 3/2018)							
	Number of Talukas	8						
	Number of Villages	656						
	iii) Populations (As per 2011 census)	3,093,795						
	iv) Average Annual Rainfall (mm)	894						
2.	GEOMORPHOLOGY							
	Major Physiographic Units :							
	Undulating plain, ridges, isolated hills& Plateaus							
	Major Drainages: Mahi, Narmada & Dhadar.							
	Tributaries of Mahi (Mesari, Goma, Karad),							
	Tributaries of Dhadar(Jambuva, Viswamitre)&							
	Tributaries of Narmada (Unch, Heran, Dev, Orsang, Karjan, Aswan, Bhu	khi)						
3.	LAND USE (Sq. Km)(Directorate of Agriculture Gandhinagar)							
	a) Forest area	142						
	b) Net area sown	2947						
	c) Cultivable area	3291						
	d) Barren and Uncultivable Land	1072						
4.	MAJOR SOIL TYPES: Black Soil, alluvial Soil & Hilly Soil.							
5.	TOTAL AREA UNDER FOOD CROPS (Sq km) Rice-147, Wheat-2	232, Maize-3, Bajra-98						
6.	IRRIGATION BY DIFFERENT SOURCES (Areas in Sq Km and nu	mbers of structures)						
	Dug wells	221/4315						
	Shallow Tube wells/ Deep Tube wells	891/5593						
	Tanks/Ponds/Water conservation structures	109/129						
	Canals	515/7						
	Other Sources(Total Pump sets/Check dam/Boribund)	344						
	Net Irrigated area (sq. km.) (2014-15)	1953						
	Gross Irrigated area (sq. km.) (2014-15)	2080						
7.	NUMBERS OF GROUND WATER MONITORING WELLS OF	28						
	CGWB (As on 31-03-2018)							
	No of Dug Wells	14						
	No of Piezometers	14						
8.	PREDOMINANT GEOLOGICAL FORMATIONS: Granite, Decca	n trap basalt, alluvium and						
	Fluvial marine sediments.							
9.	HYDROGEOLOGY							
	Major Water Bearing Formation: groundwater occurs both as	unconfined and confined						
	conditions. Saturated zones of unconsolidated shallow alluvium and	d weathered zones, shallow						
	depth jointed and fractured rocks forms unconfined aquifers, wh	ereas multilayered aquifer						
	below impervious clay horizons in alluvium formation and interfl	ow zones of basalts, inter-						
	trappean beds, deep seated fracture zones, shear zones in basalts, gra	nites and gneisses give rise						
	to semi confined to confined conditions.							

	Depth to water Level during 2018-19								
	Period	Phreatic Aqu	uifer (DTW)	Semi-c	onfined A	quifer (PZ head)			
		Min	Max	M	lin	Max			
	Pre Monsoon	2.45 (Vejpur)	28.03 (Sankeda)	15.52(Raypura)		42.87(Segwa Chowki II)			
	Post Monsoon	0.65 (Amareshwar)	25.02 (Sinor)	13.65(V	adodara)	37.17(Segwa Chowki II)			
		Long Term (10 Ye	ars) Water Level	Trend (200	09 to 2018)			
	Trend	Pre-Mo	onsoon		Post- M	onsoon			
	Rise (m/Yr)	0.0045 (Sinor) to 1.8004 (Gayaz II)		0.0138 (S (Gayaz I	Saidal) to 1 I)	1.4796			
	Fall (m/Yr)	0.1102 (Masor) to 0.7992(Sankeda))	0.0132(C	Chitral Pz I ankeda)) to			
10.	GROUND WATE	REXPLORATION	BY CGWB (As	on 31-03-2	2018)				
	No of wells drilled	l (EW, OW, Pz, SH	l, Total)	EW :3 Total:	8,OW: 10,	PZ:7, SH :0,			
	Depth Range(m)			50-458	<u> </u>				
	Discharge (Liters	per minute)		3.50-3334					
11	GROUND WATE	ER QUALITY							
	Presence of chemi	cal constituents		Fluoride and Nitrate at few					
	(more than permis	sible limit)		locations					
	Type of water			In general potable					
12.	DYNAMIC GRO	UND WATER RES	SOURCES (As on	2017)					
	Annual Replenis	hable Ground Wate	r Resources (MCI	(Iv	1019.37				
	Net Ground wate	er Availability (MC	M)		968.41				
	Projected Deman	d for Domestic and	industrial Uses u	pto 2025	25.30				
	(MCM)								
	Stage of Ground	Water Developmen	ıt (%)		57.91				
13	GROUND WATE	ER CONTROL ANI	O REGULATION	(3/2017)	1				
	Number of OE B	locks			Nil				
	Number of Critic	al Blocks							
	Number of Semi	Critical Blocks			01				
	Number of Safe	Blocks		07					
	Number of Salin	e Blocks		Nil					
1.4	No. Of Blocks Notified by CGWA Nil								
14	GROUND WAT	ER PROBLEMS A	ND ISSUES						
	 i) Low Groundwater Development ii) Pollution Geogenic and Anthropogenic (Flouride & Nitrate in localised pockets) iii) Limited Yield Potential in Hard Rock iv) Decline Ground water levels in Vadodara City v) Demand supply management 								

AQUIFER MAP AND MANAGEMENT PLAN VADODARA DISTRICT

1. Introduction

Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical field and laboratory analyses are applied to characterize the quantity, quality and sustainability of ground water in aquifers. There has been a paradigm shift from "groundwater development" to "groundwater management". An accurate and comprehensive micro-level picture of groundwater in India through aquifer mapping indifferent hydrogeological settings will enable robust groundwater management plans at the appropriate scale to be devised and implemented for this common-pool resource. This will help achieving drinking water security, improved irrigation facility and sustainability in water resources development in large parts of rural India, and many parts of urban India as well. The aquifer mapping program is important for planning suitable adaptation strategies to meet climate change also. Thus the crux of NAQUIM is not merely mapping, but reaching the goal – that of ground water management through community participation.

Objective:

The primary objective of the Aquifer Mapping Exercise can be summed up as "Know your Aquifer, Manage your Aquifer". Demystification of Science and thereby involvement of stake holders is the essence of the entire project. The involvement and participation of the community will infuse a sense of ownership amongst the stakeholders. This is an activity where the Government and the Community work in tandem. Greater the harmony between the two, greater will be the chances of successful implementation and achievement of the goals of the Project. As per the Report of the Working Group on Sustainable Ground Water Management, "It is imperative to design an aquifer mapping programme with a clear-cut groundwater management purpose. This will ensure that aquifer mapping does not remain an academic exercise and that it will seamlessly flow into a participatory groundwater management programme. The aquifer mapping approach can help integrate ground water availability with ground water accessibility and quality aspects.

Methodology:

Methodology involves creation of database for each of the principal aquifer. Delineation of aquifer extent (vertical and lateral). Standard output for effective presentation of scientific integration of Hydrogeological, geophysical, geological, hydro chemical data facts and on GIS platform, identification of issues, manifestation of issues and formulation of strategies to address the issues by possible interventions at local and regional level.

The activities of the Aquifer Mapping can be grouped as follows.

Data Compilation & Data Gap Analysis:

One of the important aspect of the aquifer mapping programme was the synthesis of the large volume of data already collected during specific studies carried out by Central Ground Water Board and various Government organizations with a new data set generated that broadly describe an aquifer system. The data were assembled from the available sources, analyzed, examined, synthesized and interpreted. These sources were predominantly non-computerized data, which was converted into computer based GIS data sets and on the basis of available data, data gaps were identified.

Data Generation:

There a strong need for generating additional data to fill the data gaps to achieve the task of aquifer mapping. This was achieved by multiple activities such as exploratory drilling, geophysical techniques, hydro-geochemical analysis, remote sensing, and hydrogeological surveys to delineate multi aquifer system to bring out the efficacy of various geophysical techniques and a protocol for use of geophysical techniques for aquifer mapping in different hydrogeological environs.

Aquifer Map Preparation:

On the basis of integration of data generated from various studies of hydrogeology & geophysics, aquifers have been delineated and characterized in terms of quality and potential. Various maps have been prepared bringing out details of Aquifers, these are termed as Aquifer maps providing spatial variation (lateral & vertical) in reference to aquifer extremities (i.e. quality & quantity).

Aquifer Management Plan Formulation:

Aquifer response Model has been utilized to identify a suitable strategy for sustainable development of the aquifer in the area.

All the above activities under the ground National Aquifer Mapping programme is depicted/elaborated in Annexure –I and presented in figure 1.

Locations, Extent and Accessibility

Vadodara district with 4312 Sq km area, is located central part of mainland Gujarat, lies between 21°49'19" and 22°48'37" north latitude and 72°51'05" and 73°35'55" east longitude. It falls in the Survey of India, degree sheets numbered 46B, 46F, & 46G. The district is bounded by Panchmahal district to the north, Anand and Kheda districts to the west, Bharuch and Narmada districts to the south, and Chhota Udaipur to the east. The Mahi River passes through the district. Vadodara city, the district headquarter is about 100 km south of Ahmedabad, is well connected to other parts of the State & Country by network of highways and railway network. (Administrative Map, Fig No. 2).

Vadodara district is divided 8 talukas. Details of the Talukas, their urban & rural areas and numbers of revenue villages & towns etc., are given in Table no: 1

Sr.	Taluka	Area (Sq.km)	Urban (Sq.km)	Rural (Sq.km)	No. Town	No. Villages
1	Dabhai	622 1905	22.82	608 2605	1	110
1	Dabiloi	052.1895	23.82	008.3093	1	110
2	Karjan	601.8724	15.7094	586.163	1	93
3	Padra	534.7288	12.8331	521.8957	1	82
4	Savli 791.9973 0		0	791.9973	0	137
5	Shinor	292.5048	16.1894	276.3154	1	40
6	Vadodara	693.4307	213.8801	479.5506	9	91
7	Vaghodiya	565.1405	15.0595	550.081	1	95
8	Desar 200.136		262.6275	1		
	Total	4312	297.4915	4077	15	656

Table: 1 Details of Taluka area & Nos. of Towns & Villages

Demographic Perticulars

According to the 2011 census Vadodara district has a population of 3,093,795,The district has a population density of 551 inhabitants per square kilometer (1,430/sq mi). Its population growth rate over the decade 2001-2011 was 14.16%. Vadodara has a sex ratio of 934 females for every 1000 males. It has a literacy rate of 81.21% in 2011, an impressive ten percentage points increase in 10 years.

LAND USE PATTERNS, IRRIGATION & AGRICULTURE

Seasons & Crops Record, Vadodara District -year 2014-15, has been refereed for land use, irrigation & agriculture statistics of the district.

Land Use Patterns

As per *Seasons & Crops Record*, 431200 hectares of land is accounted for land use record. Brief account of land use classification for the district, in general, is given in table No.2

Sr No	Land Use Classification	Area in Hectare				
1	Area Reported for Land Use	431200				
2	Forest	14200				
3	Total Uncultivable area	48100				
4	Culturable Waste	9000				
5	Cultivated Area $(1 - 2 - 3 - 4)$	359900				
6	Cultivable Area (5+4)	368,900				
7	Current Fallow	4300				
8	Net Area Sown (5-7)	355600				
9	Area Shown More Than Once	10300				
10	Total Cropped Area (8 + 9)	365900				
11	Net Area Irrigated	195300				
12	Area Irrigated More Than Once	12700				
13	Gross Area Irrigated (11 + 12)	208000				
Land Use & Season -Crop Record - Vadodara District - Year 2014-15 - Agriculture						
Directorate, Government of Gujarat.						

Table No. 2 Land Use Classification of Vadodara District (2014-15)

Irrigation

Details of area irrigated by surface & ground water resources are given in table No 3

Table No. 3 Details of Irrigated Areas

Samuel	Irrigated Area (Hectares)				
Source	Net	Gross			
Tanks	9,400	10,900			
Canals	48,200	51,500			
Total Surface Water	57,600	62,400			
Govt. Tube Wells	84,600	89,100			
Pvt. Tube Wells	20,000	22,100			
Dug Wells	33,100	34,400			
Total Ground Water	1,37,700	1,45,600			
Total Irrigated Area	1,95,300	2,08,000			

Agriculture

The district areas have varied agriculture crops, both food crops & non food crops. Main food crops consist of food grains such as paddy, wheat, *jowar, bajra*, maize etc., and pulses. Other food crops are sugarcane, fruits & vegetables. Non food crops consist of cotton, oil ground nut, castor, tobacco, fodder etc. As per *Season & Crops Records, there* were 365,900 hectares of gross area under various crops in the district, out these 208,000 hectares were under irrigated crops

Urban and Industrial area

Vadodara district is one of the most industrially developed areas the state. It has many *Strategic Industries*, such as oil refinery, petrochemical complex, fertilizers, and heavy water project etc., located around areas of Vadodara Taluka. Other important industries are of metal product, rubber& plastic, non- metallic mineral product, pharmaceuticals, engineering & machinery parts etc. Besides these, there are many industrial notified areas in various Taluka areas of the district of which 8 are established and managed by Gujarat Industrial Development Corporation Ltd. (GIDC Ltd).

CLIMATE

Vadodara district area, in general, being located south of *Tropic of Cancer* and in transition zone of heavy rainfall areas of South Gujarat and arid areas of North Gujarat plains, have sub-tropical climate with moderate humidity. The various season of the year are (a) monsoon - middle of June to October, (b) winter - November to February, and (c) summer – March to June. From March onward the temperature starts rising till it reaches maximum, as high as 41° C in some parts of the district. January is the coldest month of the year.

There is a Indian Meteorological Department (IMD) station located at Baroda (Vadodara), where observation of climatic data is recorded since 1900. Details of this climatological data is given in table No.4 and same is depicted graphically in figure No. 3.

Month	Max Temp (Deg.C)	Mini Temp (Deg.C)	Humidity (%)	Wind Spd. Kmpd	Sun shine (Hours)	Solar Rad. (MJ/m2/d)	Eto (mm/d)	Rainfall (mm)
January	30.30	12.00	50.00	65.80	9.10	17.23	3.02	1.20
February	33.00	13.80	43.00	67.50	9.70	20.07	3.81	0.60
March	37.10	18.40	36.50	69.10	10.20	23.16	4.88	2.20
April	40.20	22.90	36.50	79.00	10.80	25.75	6.03	0.90
May	40.90	26.50	44.50	143.20	10.90	26.38	7.46	4.40
June	37.10	27.00	63.50	169.50	7.10	20.62	5.97	146.80
July	32.70	25.70	80.00	138.20	4.40	16.51	4.11	297.60
August	31.50	25.00	82.00	116.80	4.50	16.32	3.82	284.70
September	33.20	24.30	74.50	83.90	6.90	18.87	4.28	141.70
October	36.00	21.30	58.00	49.40	9.30	20.24	4.12	22.00
November	34.30	16.70	52.50	49.40	9.40	18.02	3.24	16.20
December	31.20	13.40	55.00	59.20	9.10	16.50	2.83	4.40
Total	-	-	-	-	-	-	-	922.70
Average	34.79	20.58	56.33	90.92	8.45	19.97	4.46	-

Table No. 4 - Climatological Data of IMD Station -(Baroda) - Vadodara

GEOMORPHOLOGY

Physiography

Vadodara district forms a part of the great Gujarat plain. The western & southern part, comprising of Mahi & Narmada *Doab*, is a level plain with gentle undulating terrain have elevation in range of 20 to 80 m amsl.

There are some linear tracts, along Mahi, Viswamitre, Dhadahar and Orsang rivers, have *ravine landforms*, with typical head ward erosional featured gully formation in soft alluvium. The banks of the Mahi has high vertical cliff, 10 to 25 m height, generally on left bank; same way left bank of the Narmada also has high cliff of 10 to 20 m high on right bank. All such features of *Mahi-Narmada Doab*, like ravine features, high cliff along banks and entrenched meandering courses with dry and wide sandy river bed of intermediate independent river systems of the Dhadhar & its tributaries indicate mature river stage and also tectonic uplift of *Doab* portion in *Recent* geological past. Fig No:-4 Geomorphology of Vadodara District.

Drainage

The Narmada and the Mahi are the chief rivers of the district, flow along the northwestern and southern boundary respectively while independent small river system of the Dhadhar with its numerous tributaries flow in south central part of the district. Broadly, the entire district, as a *River Basin* is divided into these three basin, namely the Narmada, the Mahi Basin and the Dhadhar. The Mesari, the Goma and the Karad are the small rivers flowing northwest part of the district, are tributaries of Mahi River, and are part of the Mahi Basin. The Jambuva, the Surya, the Viswamitre and the Dhadhar, which flow through central part of the district and empty into the Gulf of Khambat, are part of the Dhadhar Basin. Fig No:- 5

Soils

The soils of Vadodara district can be broadly classified into three groups. They are black soils, alluvial soils and hilly soils.

HYDROLOGY

Surface Water Resources

Vadodara district has huge potential of Surface Water Resources, but the irrigation potential created through various sources was only 208000 hectare according to Season & Crops Report (2014-15). The district having two major rivers, the Narmada and the Mahi on its borders, besides smaller rives like the Viswamitri, the Orsang, the Heran, the Dadhar etc. Recently, water of the Narmada river have been harnessed by Sardar Sarovar Dam and consequently large part of the district now forms a part of *Narmada Canal Command*. The dam constructed on Mahi at Kadana and Weir at Wanakbori did not produced any direct surface water resources benefit for irrigation in parts of Vadodara district as such Mahi Project command areas falls in neighboring Anand & Kheda district. However, surface water release, from Kadana Dam through Wanakbori weir during lean season; satisfy huge demands of Vadodara City and surrounding many Strategic Industrial Units for their domestic and industrial requirement.

Besides these two major rivers, other rivers of the district such as the Orsang and the Heran do sustain some base flow up to February / March which is being utilized for supplement irrigation at places along their course at suitable places.

Previous studies / Work

- Ground water investigation for augmenting Water supply to Baroda city by Sh V V Rane GSI 1961.
- Ground Water Investigation for proposed Fluorspar beneficiation plant GMDC near Amba Dungar, Baroda District by MM Oza GSI 1964-65.
- Hydrogeological investigation for Ground water potential of Mahi basin near Vasad by Soil survey Organisation.
- Systematic Hydrogeological survey in 46f & 46J in Vadodara district by P R Gupte CGWB 1986-87.
- Systematic Hydrogeological survey and Exploration in Vadodara district by A K Jain CGWB 1986-87.
- Ground water exploration work in parts of Vadodara district by B N Warke CGWB 1988-89.
- Hydrogeological Conditions, Ground Water Resources & Development Potential of Vadodara Dsitrict, Gujarat by Prakash R Gupte CGWB in 2010.

2. GEOLOGY AND HYDROGEOLOGY

STRATIGRAPHIC SET UP

The rocks of the Vadodara district shows an age from Proterozoic to Recent but a striking feature of the district stratigraphy is the total absence of Paleozoic, and the development of only the uppermost Mesozoic rocks. The south westerly extended Precambrian basement of Peninsular India, the oldest rocks of Proterozoic age, are exposed in eastern and north eastern part of the district. Post Cretaceous sediments & major volcanic rocks rest over this south westerly extended Precambrian basement. Post Cretaceous sediments, Infratrappean and Intratrappean are exposed as scattered inliers while younger volcanic rocks unit as Deccan trap is well represented and so are the Tertiary and Quaternary, though the Tertiary records are not complete and fully exposed. The stratigraphic outline of the district is given in table no. 5.

Table No. 5 Stratigraphic outline of the Vadodara District

Continental sediments – fluvio-marine, fluvial and aeolian	Quaternary					
Marine and fluvio-marine sediments	Tertiary					
Unconformity						
Basalts of the Deccan Trap with associated differentiates and	Upper Cretaceous to Lower Eocene					
intrusive bodies						
Unconformity						
Marine, fluvio-marine and fluvial sediments	Cretaceous					
Unconformity						
Crystalline rocks -Metasediments associated with granite, gneiss	Precambrian (Aravalli)					
and other mafic rocks						

HYDROGEOLOGY

OCCURRENCE & DISTRIBUTION OF GROUNDWATER

In Vadodara district area, groundwater occurs both as unconfined and confined conditions. Saturated zones of unconsolidated shallow alluvium and weathered zones forms unconfined aquifers, whereas multilayered aquifer below impervious clay horizons in alluvium formation and interflow zones of basalts, inter-trappean beds, deep seated fracture zones, shear zones in basalts give rise to semi confined to confined conditions.

In major part of the district, multilayered alluvium deposits form aquifer system in central, south-central and western half of the district. The weathered basalts, granite, gneiss etc., covered by soil / *muram* and the valley fill & piedmont deposits forms potential aquifer in the vicinity of rivers and on vast undulating plains adjacent to hilly terrain but their regional continuity and extent are limited due to heterogeneous nature of deposits with limited thickness and as such rarely exceed a few square kilometers.

In major part of the district, multilayered alluvium deposits form aquifer system in central, south central and western part of the district. In alluvium part so many exploratory wells has been drilled and the depth rage is 50 to 400 mbgl.And yield of this Aquifer having 3 to 20 lps.In hard rock basaltic terrain exploratory wells depth ranges between 50 to 450 mbgl and yield having 0.23 to 11 lps.

SUBSURFACE GEOLOGY

Exploration Details

The boreholes drilled by CGWB and erstwhile ETO, as a part of Ground Water Exploration work in various parts of Vadodara district have revealed the sub surface geological formation in the district. ETO have drilled few boreholes in parts of the district and adjoining Bharuch & Kheda during under various program. Then CGWB have drilled 14 Boreholes in 'Outfall Area of Narmada Project' (1972-1978) in parts of Vadodara district & Bharuch district. Then under piezometer construction program, few bore holes were drilled in parts of Padara, Karjan, Dabhoi, Vadodara & Savli Taluka areas during 1988 -90.

On the basis of their Litholog and geophysical log data various sub surface geological cross sections were prepared during project studies and exploration programme. The exploration programme of Narmada project revealed that in Northeastern part of Mahi-Narmada-Daob the Tertiary formations encountered at shallow depth range between 13 to 45 mbgl, whereas in the western part of Narmada-Mahi and Daob the tertiaries are overlie by Jambusar formation of Pleistocene age. While the thickness of alluvium increases towards west in Narmada-Mahi Daob.It further reduces in North eastern sector 13 to 45 m in near Almgir,Atkot,Chatral and Palaswada.In western part of the district the depth of tertiary increases to 70 m at Tentalo,85 m at padre and 150 at vagra (Bharuch).

GROUND WATER STRUCTURES

Vadodara district area has varied ground water extraction structures, appropriate to different hydrogeological units and necessity. Various types of dug wells (DW) are common to both alluvial / soft rock areas and also in hard rock areas. In unconsolidated formation the depth of dug well is few meter to more than 25 m; while in hard rock areas, generally their depth depends upon weathering zone, through which they have curbing and below it have naked zone. With declining water levels along with rapid development, bore well of 30 to 90 m depth are drilled at bottom of dried up dug well section and such well are termed as *dug cum bore well (DCB well)*, are common in both unconsolidated & consolidated formation of the district. In consolidated rock units, especially in Deccan Trap areas, horizontal bores at the bottom of the well, with gentle gradient towards well are common. Large dia, collector type wells, generally for regional water supply or for industrial uses are common in sandy beds of Mahi and Orsang rivers. To meet large demands bore well / tube wells are common structures. There are shallow bore wells up to 60 to 80 m depth both in consolidated and unconsolidated areas. Such bore well, in hard rock areas are drilled for hand pump and also for irrigation purposes. In unconsolidated arrears, in areas of Quaternary alluvial deposits having deep aquifer, deep tube wells up to 200 m depth are common.

GROUNDWATER REGIME MONITORING

Ground water regime monitoring is the basic component of groundwater management and it is carried out in parts of Vadodara district through National Hydrograph Network Stations (NHNS or NHS). NHSs are observation wells, comprising of dug wells and purpose built bore wells – known as piezometers. There are 14 Dug wells and 14 piezometers as part of the NHS from CGWB and there are 18 Dug wells and 28 piezometers from GWRDC Ltd. The following maps have been generated to understand the behaviour of ground water regime.

- 1. Phreatic or Unconfined Aquifer
 - > Depth to Water Level Pre monsoon May 2019.
 - > Depth to Water Level Post monsoon November2019.
- 2. Phreatic Depth to water Table maps of May-2019 & Nov-2019.
- 3. Confined Aquifer (Confined I)
 - > Depth to piezometric surface Pre monsoon May 2019.
 - > Depth to piezometric surface Post monsoon November2019.

Depth to Water Level Pre monsoon (May 2019)

The figure 08 shows depth to water level map of Vadodara district, prepared on the basis of NHS data of May 2019. In major part of the district, the water level ranged in between 2 to 20m, southern part of the Sinor, Karjan and central part of Padra taluka has the water level range in between 20 to 40m. On the northern part of Desar and Eastren part of Vagodia taluka also range in between 2 to 5 m bgl of water level. On the central part of Vadodara,vagodia and south eastern part of Daboi water level range in between 10 to 15m bgl. (Figure 08: DTW May 2019 map of Vadodara district.)

DEPTH to Water Level Post monsoon (Nov 2019)

The figure 09 shows depth to water level map of November 2019. The major part of the district have water level in range of 2 to 20 m bgl while eastern part of the Vagodiya taluka, northren part of Desar and have water level ranges of 2 to 5 m. southern part of the Sinor, Karjan and central part of Padra taluka has the water level range in between 20 to 40m.(Figure 09: DTW November 2019 map of Vadodara district.)

Unconfined Depth to water Table maps of May-2019 & Nov-2019.

The maps showing depth to water table above mean sea level of May-2019 & Nov-2019 is given as figure no 10 & 11. The map reveals that the depth to water table with reference to mean sea level decreases from east to west i.e in general ground water is flowing from East to West direction.

Depth to Piezometric Surface:

Piezometric surface in the district ranges from 40 m a MSL to 10 m bMSL. In perusal of map (Fig.14) Two ground water trough are observed. In the Easter boundary the groundwater trough to the depth of 5 m bMSL is extending fro Padar taluka Sinor taluka and also in adjoining district. Groundwater flow direction in the eastern part is from East to West. One prominent ground water trough to a depth of 5 m b MSL in the most part of Karjan taluka is observed and extendin to the adjoining taluka of Vadodara and Dabhoi.

Water Level Trend (2009 - 2018)

From the analysis of the water level trend of the Vadodara district from 2011 to 2020, it is observed that, during year, the water level has a rise of 0.0086 m/yr (Panwad) to 0.83 m/yr (Vadodara-I) and also has a fall of 0.0024 m/yr (Pavi) to 1.489 m/yr (Sankheda). Details of rise and fall during the year 2011 and 2020 is given in the Table 6 and selected hydrographs are shown in Fig.15 (A to K).

Table: 6 Groundwater trends in m/year for the period of 2011 to 2020 in the district of Vadodara										
]	PreMonsoo	n	PostMonsoon Annual					
Sr no	Location	Data Points	Rise	Fall	Data Points	Rise	Fall	Data Points	Rise	Fall
1	Sinor	9	-	0.0272	9	-	0.4271	35	-	0.2546
2	Kaprali	6	-	0.2611	6	-	0.0073	23	-	-
3	Segwa chowki I	9	-	0.1571	9	-	0.4654	35	-	0.285
4	Segwa chouki ii	6	-	1.5749	10	-	0.269	32	-	0.5152
5	Moti chikhali	10	-	0.2915	10	-	0.0631	37	-	0.1206
6	Sengpur	9	-	0.0907	10	-	0.0212	39	-	0.0327
7	Saidivasana	9	0.0037	-	10	0.0702	-	39	0.0586	-
8	Vagudan	8	0.0168	-	10	-	0.0302	34	-	0.0791
9	Waghach	5	-	-	6	-	0.4542	20	-	-
10	Handod1	7	0.2824	-	6	0.263	-	27	0.1599	-
11	Devat (thadgam)	9	-	0.1595	9	0.0837	-	36	0.0267	-
12	Baladgam	9	0.1079	-	9	-	0.1987	36	-	0.148
13	Masor	7	-	0.0652	9	-	0.2586	31	-	0.0783
14	Kosindra Pz-I	7	-	0.0619	9	-	0.0894	28	-	0.0905
15	Tokri	6	-	0.0409	6	0.0832	-	24	0.1397	-
16	Vega	10	-	0.1523	10	-	0.0467	38	-	0.063
17	Vadshala Pzi	6	0.5797	-	5	-	-	21	-	-
18	Chitral Pz-I	9	-	1.2072	10	0.2929	-	39	-	0.6377
19	Chitral PZ_II	6	0.1431	-	7	0.4629	-	25	0.1988	-
20	Chavaria	9	0.2443	-	8	-	0.0533	32	-	0.0679
21	Bhindol	8	0.0163	-	7	0.0126	-	33	-	0.0247
22	Panwad	9	0.7633	-	10	-	0.1601	39	0.0086	-
23	Govindpura	10	-	0.22	10	-	0.0962	39	-	0.1176
24	Amreshwar	9	0.1625	-	8	-	0.0483	31	0.1065	-
25	Ghayaj ii	8	0.4977	-	10	0.3239	-	38	0.2892	-
26	Alladpur	9	-	0.2235	9	-	0.3512	36	-	0.2885
27	Pitha	9	-	0.1208	10	0.2129	-	39	0.1617	-
28	Vadtalav Pz	10	-	0.4796	9	0.6861	-	33	0.4258	-
29	Vadodara_ONGC	6	0.4393	-	6	-	0.2582	18	-	-
30	Bodeli	8	-	0.9257	8	-	0.3005	30	-	0.4108
31	Patiyapura	10	-	0.0453	10	0.0202	-	40	0.0587	-
32	Raypura i	9	-	0.3472	9	-	1.4507	35	-	0.5914

33	Saidal	10	0.1278	-	8	-	0.0116	34	0.0509	-
34	Vadodara_Kevada Bag	6	0.6899	-	5	-	-	17	-	-
35	Vadodara I	10	0.6467	-	10	1.2655	-	39	0.8297	-
36	Vadodara Ii	10	0.0797	-	10	-	0.7653	38	-	0.3237
37	Chhota udepur	10	-	0.3641	10	-	0.1053	37	-	0.2142
38	Pavi	10	-	0.0718	9	0.0308	-	38	-	0.0024
39	Vadodara_Sama	3	-	-	2	-	-	9	-	-
40	Waghodia Pz	10	-	0.1831	6	-	0.095	30	-	0.0823
41	Ghamodi	9	-	0.0515	10	0.147	-	39	0.1231	-
42	Ferkuva	10	0.0812	-	10	0.2478	-	40	0.2182	-
43	Asala	8	-	0.2406	10	0.4657	-	38	0.214	-
44	Chella Karamsiya Pz	9	0.1534	-	8	0.0974	-	33	0.1547	-
45	Chisadia	7	-	-	6	0.4902	-	26	0.3543	-
46	Karamasiya	9	-	0.326	7	0.1544	-	31	-	0.2706
47	Sankarda	10	-	0.7447	8	0.6856	-	32	-	0.2983
48	Sankarda1	7	1.3122	-	3	-	-	18	-	-
49	Jojh	9	-	0.0373	10	0.0471	-	39	0.0113	-
50	Tundav	10	0.5141	-	10	0.3875	-	40	0.3938	-
51	Juna samalya	9	-	0.2881	9	0.0032	-	37	0.0985	-
52	Kevadi	10	-	0.0583	10	-	0.1069	40	-	0.0058
53	Sankheda	8	-	1.5964	4	-	-	25	-	1.4888
54	Chhaliyar	10	-	0.5922	9	-	0.5507	36	-	0.6468
55	Vejpur2	10	0.0094	-	10	0.1349	-	39	0.0922	-
	Minimum		0.0037	0.0272		0.0032	0.0073		0.0086	0.0024
	Maximum		1.312	1.596		1.266	1.451		0.83	1.489

0.0459 m/month respectively.

3. DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

In order to establish the three-dimensional disposition of aquifer system in the area, the existing data of litho logical logs and Electrical logs of Exploratory wells studies carried out by CGWB and state Ground water Departments (GWRDC & GWSSB) were used to prepare a hydro geological cross section, Fence diagram and 3D Model. The data has been analyzed using Rockworks 16 software and is presented below in the Hydrogeological cross sections A-A' to L-L' and Solid Model of the district showing the depiction of Aquifer Groups and Aquitard up to 300m. Map showing section lines are presented in Fig. 16. The stratigraphic sections depicting unconfined aquifer, Confined Aquifer I, II and III for alluvium and weathered aquifer & fractured aquifer for Hard rock are placed at Figs 17 (A to L). Fence Diagram and 3D Solid Model of Vadodara district is depicted in Fig. 18 and 19, respectively.

A total of 55 exploratory wells and piezometers constructed by CGWB. And 35 litho logs and Electrical logs are utilized to decipher the subsurface geometry of the aquifer by using Rockworks 16 software prepared hydro geological cross sections, Fence diagram and 3D Model up to the depth of 300 mbgl.

S.No.	Data	Aquifer	Total Data Points	Source	
				CGWB	GWRDC
1	Panel Diagram (3-D)	Combine	35	Expl:55	-
2	Hydrogeological Cross Sections	12 no	35	Expl:55	-
3	Fence/panel Diagrams	1 no	35	Expl:55	-
4	Depth of weathering	1 no	7	Expl:55	-
5	Depth of fracturing	1 no	7	Expl:55	-
7	Depth to Water Level Maps (2019)	Combine	65	27	38
8	Long term water	Combine	34	16	18
9	Water quality pre-2019 & post-2019	Combine	50	4	46

 Table No: - 7 Data integration

Conceptualization of Aquifer system in 2D

Twelve hydrogeological cross sections are drawn from North-East to South-West and North-West to South-East directions across the area represented in Figs 17 (A to L)

Litho logical logs and Electrical logs of subsurface are correlated based on the position and depth of the geological formations and prepared twelve cross sections one fence diagram and one 3D solid model of Vadodara district.

Finally, the study of these sections revels that the identification and delineating the Aquifers vertically and laterally. The Aquifers are regionally developed in entire district of Vadodara.

Aquifer Disposition: The Alluvium area comprises of silt, sand, clay, gravel and kankar forms unconfined aquifer, occurring up to the depth from 0 to 60m bgl. Confined aquifer I occurs between the depth ranges of 70 to 100 m bgl, whereas confined aquifer II occurs in the depth range of 110-130 m bgl and confined aquifer III occurs in the depth range between 150-200 m bgl. The average thickness of the aquifers varies as given below.

- Unconfined aquifer: 35 to 60 m
- Confined Aquifer I : 10 to 30 m
- Confined Aquifer II: 10 to 20 m
- Confined Aquifer III : 25 to 50 m

The Hard rock area is characterized by Basaltic formation with weathered depth up to 25 m whereas fractured basalt exists from 35 to 100m.E.C of ground water varies from less than 700 μ S/cm to more than 4000 μ S/cm for both phreatic and confined Aquifers in the district. Ground water having more than 3000 μ S/cm is observed in areas where tertiary formation is at depth. The ground water quality is good in hard rock terrain (Basalt).

Aquifer Characterization and Disposition.

On the basis of Hydogeological cross sections the following salient features of aquifer system in the area is summarised below Table No :-08

	Aquifer Characterisation and Disposition											
raphy	ion		Depth of occurrence	Thickness	Water Level (mbgl)	Quality (TDS)	Discharge	Transmis sivity				
tratign	ormat	Aquifer	Aquifer	Range	Range	Range	Range	Range	Nature of			
Ś	H	Nomenclature	(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day	Aquifer	Remarks		
		Unconfined				470 to		1.67 to				
		Aquifer	0 to 60	35 to 60	3 to 38	2890	2 to 50	1067	Phreatic	E C of ground		
		Confined		10.00		360 to			<i>a a</i> 1	water varies		
uy	-	Aquifer I	70 to 100	10 to 30	5 to 50	5370	1.2 to 60	38 to 2665	Confined	from less than		
Quaterna	Alluvium	Confined Aquifer II	110 to 130	10 to 20	18 to 37		4 to 20	602 to2616	Confined	700µS/cm to more than 4000µS/cm in the district		
Tertiary	Alluvium	Confined Aquifer III	150 to 200	25 to 50	24 to 37		6 to 34	2616 to 4622	Confined	Ground water having more than 3000µS/cm is observed in areas where tertiary formation is at depth.		
Uppe r		Weathered Basalt	0 to 25	0 to 25	3 to 17	337 to 1980	0.5 to 5		Weathere d Aquifer	Good Quality		
creta ceous to Lowe r Eocen e	Basalt	Fractured Basalt	35 to 100		9 to 14	1000 to 2120	0.2 to 7		Fractured Aquifer	Good Quality		

4. HYDROCHEMISTRY

The Vadodara district has main two hydrogeological provinces, Deccan trap and Alluvium areas. Each terrain also have varied hydrological regime. Ground water in both Phreatic and confined Aquifers is Potable and fit for domestic, drinking, irrigation and other industrial purposes but higher values of EC and concentration of Fluoride and Nitrate is observed in shallow aquifer at localized pockets. During the course of NHS water samples are collected periodically from National Hydrograph Stations in the district. The Gujarat Water resources and Development Corporation (GWRDC) Ltd., Govt. of Gujarat is also monitoring ground water quality of tube wells. On the basis of chemical analysis of such water samples hydrochemistry of shallow and deeper aquifers are describe as follows.

QUALITY OF SHALLOW GROUND WATER

Generally in hard rock and alluvium areas of entire district overall quality is potable and fit for domestic, drinking, irrigation and other industrial purposes, whereas eastern part in alluvium area quality varies widely, have high EC values. E.C. of ground water varies from less than 700 μ S /cm to more than 4000 μ S/cm in the district. In some localized pockets of alluvium area, overlying Deccan trap rocks, in parts of Vaghodiya, Vadodara & Dabhoi taluka areas also have high EC groundwater. In areas of consolidated formations – hard rock areas and also along Mahi river alluvium zone, ground water with EC less than 2000 μ S /cm are observed.

Based on the analytical results of about NHS water samples distributed throughout the district, collected during pre monsoon may 2019. The various chemical parameters of phreatic aquifer tabulated in table No.9. Map depicting areal distribution of electrical conductance measures of dissolved ions, in phreatic aquifer is prepared and given as figure No.20

Table 09: Sum	Table 09: Summarised chemical data of Vadodara district											
Chemical Parameter	Min	Max	Average	Chemical Parameter	Min	Max	Average					
рН	7.97	8.64	8.24	F	0.37	2.88	1.04					
EC	794	4394	1993	Alk	240	640	399					
TDS	531	2942	1335	Ca	20	240	80					
CO ₃	0	144	34	Mg	24	180	78					

HCO ₃	195	683	419	TH	150	1350	524		
Cl	35	815	307	Na	40	489	224		
NO ₃	7	120	31	К	1.3	71	18.5		
SO_4	4.4	438	140	Fe	0	1.45	0.06		
*All values are in mg/l except pH and EC in µS/cm at 25°C									

QUALITY OF DEEP GROUND WATER

The quality of ground water in the confined aquifer has been determined by analysis of water samples collected during various surveys. Study of exploratory boreholes geophysical logs also reveals the nature of formation water quality at various depths. Plot of electrical conductance of deep aquifer water samples shows that in major part of confined aquifer zones, ground water is within range of 3000 μ S / cm range. More than 3000 μ s / cm are observed in areas where Tertiary formation is at depth. Deterioration of ground water quality is observed at localized pockets where the tertiary formation is at depth.

5. GROUND WATER RESOURCES

The ground water resources of the district were calculated as on March 2017 in collaboration with the Government of Gujarat using the methodology suggested by Ground Water Resource Estimation Committee (GEC-15). These resources were computed after reorganization of the districts.

Ground Water Recharge

The Annual Ground Water Recharge varies from 4057.63 ha.m (Desar taluka) to 18734.32 ha.m (Dabhoi Taluka). The Gross Annual Ground Water Recharge in the district is 101937.97 ha.m. The net available recharge after leaving natural discharge from monsoon period varies from 3854.75 ha.m (Desar Taluka) to 17797.60 ha.m (Dabhoi Taluka). The net available recharge in the district is 96841.08ha.m.

Ground Water Draft

The ground water draft from irrigation and Domestic /Industrial sources is presented in Table: 10. The Existing Gross Ground Water Draft for all uses varies from 1921.41ha.m (Desar taluka) to 12136.00 ha.m (Vadodara Taluka). The Gross Ground Water Draft for All uses in the district is 56076.76 ha.m.

Level of Ground Water Development & Stage

The stage of ground water development at year 2017, for all the talukas of the Vadodara district computed range from 17.05% to 78.11% and 7 units of assessment (talukas) have been categorized as *Safe and one taluka in semi critical stage*, based on the stages of ground water development and the long-term trend of pre and post monsoon ground water levels. The average stage of groundwater development for district is 57.91%. Taluka wise ground water resources and categorization for each assessment unit is presented in table 10.

Tal	Table No:-10 Taluka Wise Ground Water					sources, A	vailabilit	y, Utilizati	ion and S	tage of G	round W	ater Dev	elopment	(2017) D	istrict : V	adodara
SI ·	Assessm ent Unit	Grou	und Water	Recharge(Ham)	Total Annual	Total Natural	Annual Extracta	Cur	rent Annua Extracti	l Ground V on(Ham)	Vater	Annual GW	Net Ground	Stage of Ground	Categorizat ion
N O	Name	Monsoo	n Season	Non-m sea	onsoon son	Ground Water	Dischar ges	ble Ground	Irrigati on Use	Industr ial Use	Domes tic Use	Total Extracti	Allocati on for	Water Availabil	Water Extracti	
		Rechar ge from Rainfal l	Rechar ge from Other Source s	Rechar ge fromRechar ge fromRechar ge ge from(Ham Rechar ge ge ge fromOther SourceRainfal sOther Source0ss18734.	(Ham) Rechar ge	r Recharg e (Ham)				on	Domesti c Use as on 2025	ity for future use				
1	Dabhoi	12022.3 9	1953.30	0.00	4758.62	18734.3 2	936.72	17797.60	11103.0 0	44.46	251.92	11399.3 8	332.00	6318.14	64.05	Safe
2	Desar	109.20	1327.19	0.00	2621.24	4057.63	202.88	3854.75	1749.00	25.86	146.55	1921.41	193.00	1886.89	49.85	Safe
3	Karjan	12154.2 2	757.83	0.00	1821.23	14733.2 7	736.66	13996.61	8750.50	41.27	233.87	9025.64	308.00	4896.83	64.48	Safe
4	Padra	13499.7 2	1339.32	0.00	1386.28	16225.3 2	811.27	15414.05	8434.00	65.49	371.08	8870.57	489.00	6425.57	57.55	Safe
5	Savli	3555.21	2571.97	0.00	3943.22	10070.4 0	503.52	9566.88	4876.50	62.80	355.88	5295.18	469.00	4158.58	55.35	Safe
6	Sinor	7854.97	1148.09	0.00	815.07	9818.13	490.91	9327.22	5386.00	16.12	91.33	5493.44	120.00	3805.11	58.90	Safe
7	Vadodar a	13640.5 3	1462.79	0.00	1250.74	16354.0 6	817.70	15536.36	10582.0 0	233.00	1321.0 0	12136.0 0	343.00	4378.36	78.11	Semi critical
8	Vaghodi a	5591.75	1814.40	0.00	4538.70	11944.8 5	597.24	11347.61	1689.00	36.92	209.21	1935.14	276.00	9345.69	17.05	Safe
		68427.9 9	12374.8 8	0.00	21135.1 0	101937. 97	5096.90	96841.08	52570.0 0	525.91	2980.8 4	56076.7 6	2530.00	41215.16	57.91	

6. GROUND WATER RELATED ISSUES and REASONS FOR ISSUES

Issues

1. Low Ground water development

As per the estimate of ground water resources and irrigation potential, there exists a scope for further development of ground water resources in major parts of the district. As per GWRE 2017 total 07 no blocks of Vadodara district are under safe category and one block i.e. Vadodara is under Semi critical category. Ground water stage of development ranges from 17.05 % (Vaghodiya) to 78.11 % (Vadodara). Thus, management of ground water resources could be developed/augmentated in a judicious way.

2. Pollution (Geogenic and Anthropogenic)

Ground water in both Phreatic and confined Aquifers is Potable and fit for domestic, drinking, irrigation and other industrial purposes but higher values of EC and concentration of Fluoride and Nitrate is observed in shallow aquifer at localized pockets.

3. Sustainability

In northern part of the district, basalt (weathered & Fractured Basalt) forms the major aquifer. Low yield (<2 lps) occurs in ~20 % of area covering entire district. The yield from bore wells have reduced over a period of time and some bore wells which used to yield sufficient quantity of water have gone dry due to low rainfall.

4. Decline water levels in Vadodara City

The long term groundwater regime monitoring studies through NHS reveal an overall declining trend in major parts of the Vadodara City. The decline in range is 0.002 to 0.15 m/year.

Reasons for Issues

Sustainability: Absence of primary porosity, negligible development of secondary porosity, low rainfall, de saturation of weathered zone and urbanization.

Geo-genic pollution (Fluoride): Higher concentration of fluoride in ground water is attributed due to source rock,

Decline water levels in Vadodara City: Over-extraction, Urbanization and limited artificial measures etc.

7. MANAGEMENT STRATEGIES IN VADODARA DISTRICT

As per the estimate of ground water resources and irrigation potential, there exists a scope for further development of ground water resources in major parts of the district. As per GWRE 2017 total 07 no blocks of Vadodara district are under safe category and one block i.e. Vadodara is under Semi critical catogory.Ground water stage of development ranges from 17.05 % (Vaghodiya) to 78.11 % (Vadodara)... Thus, management of ground water resources could be developed/augmentated in a judicious way.

In the entire Vadodara district, there is a scope exists for further ground water development. Large scale artificial recharge schemes may not be feasible due to shallow water level.

Management plan

The uneven distribution of groundwater availability and its utilization indicates that a single management strategy cannot be adopted and requires integrated hydrogeological aspects along with socio-economic conditions to develop appropriate management strategy. The study suggests notable measures for sustainable groundwater management, which involves a combination of various measures given below.

- a) Supply side measures
- b) Demand side measures

SUPPLY SIDE INTERVENTIONS

ARTIFICIAL RECHARGE TO GROUND WATER AND WATER CONSERVATION PLAN

IDENTIFICATION OF RECHARGE AREA

An area of about 1225.11 sq. km has been identified in District Vadodara of Gujarat State. Various water bearing geological formations occurring in the District have been categorized broadly in two hydrogeological units, namely, alluvial deposits and consolidated rock units of Deccan trap basalt/intrusives. The thickness of available unsaturated zone (below 6 m bgl) is computed on basis of Post monsoon (2010-19) decadal average depth to water level map (Fig 22). Based on the decadal average depth to water level of post monsoon period (2010-19) data and long term trend of ground water level (2010-19) four categories were identified as follows.

Area showing declining trend > 0.10 cm / year and water level between 6-9 m bgl. Area showing declining trend 0 to 0.10 cm / year and water level between 6 -9 m bgl. Area showing declining trend > 0.10 cm / year and water level between > 9 m bgl. Area showing declining trend 0 to 0.10 cm / year and water level between > 9 m bgl.

	Table -11 : Identification of suitable area for Artificial Recharge in Vadodara District												
S.No.	Taluka	Aquifer	Area(DTW > 9m; Trend 0 to 10cm / year (Sq.km.)	Area(DTW > 9m; Trend > 10cm / year (Sq.km.)	Area(DTW < 9m; Trend 0to10cm/year (Sq.km.)	Area(DTW < 9m; Trend > 10cm / year (Sq.km.)	Area feasible for artificial recharge (Sq.km.)						
1	Dabhoi	Alluvium	63.89	211.30	2.99	9.19	287.37						
2	Desar	Basalt		15.39	11.37	13.79	40.55						
3	Karjan	Alluvium		172.38			172.38						
4	Padra	Alluvium	180.80	56.07			236.87						
5	Savli	Basalt	91.94	235.11	17.77	38.73	383.55						
6	Sinor	Alluvium											
7	Vadodara	Alluvium	28.64	35.14	6.35	24.26	94.40						
8	Vaghodia	Basalt			9.99		9.99						
	То	tal	365.27	725.39	48.48	85.96	1225.11						

A total of 1225.11 sq. km area spread over the district in the isolated patches having water level & trend as above is computed (Table 11) and same is depicted as suitable areas for artificial recharge.

	Table-12 Computation of volume of unsaturated zone available for recharge												
S.No.	Taluka	Aquifer	Volume MCM : DTW > 9 m; Trend 0 to 10 cm / year	Volume MCM DTW > 9 m ; Trend > 10 cm / year	Volume MCM DTW 6 to 9 m ; Trend 0 to 10 cm / year	Volume MCM DTW 6 to 9 m ; Trend > 10 cm / year	Volume of unsaturated zone available for artificial recharge						
		Average Depth unsaturated below 6 m bgl (Excluding clay & impervious hard zones)	6 m	6 m	3 m	3 m	(MCM)						
1	Dabhoi	Alluvium	383.36	1267.81	8.97	27.56	1687.70						
2	Desar	Basalt	0.00	92.31	34.12	41.37	167.80						
3	Karjan	Alluvium	0.00	1034.28	0.00	0.00	1034.28						
4	Padra	Alluvium	1084.82	336.43	0.00	0.00	1421.25						
5	Savli	Basalt	551.63	1410.65	53.32	116.18	2131.78						
6	Sinor	Alluvium	0.00	0.00	0.00	0.00	0.00						
7	Vadodara	Alluvium	171.84	210.86	19.06	72.78	474.54						
8	Vaghodia	Basalt	0.00	0.00	29.98	0.00	29.98						
		Total	2191.65	4352.35	145.45	257.88	6947.33						

7.1.1.2 SUB-SURFACE STORAGE SPACE AND WATER REQUIREMENT

Further, while calculating the total volume of unsaturated zone available for recharge, clay & massive non porous intervening zones have been deleted from the total thickness of potential zone for recharge. Average specific yield data of above formations, as per norm of GWRE were considered to compute volume of water required for recharge to saturate dry zones. Storage space volume available in aquifers is 6947.33 MCM. On the basis of specific yield factor of major aquifer system considered, the volume of water required for artificial recharge to fully saturate aquifer (below 6 m bgl) in each talukas areas is around 425.47 MCM (Table 13)

Sr No	Taluka	Aquifer	Volume of unsaturated zone available for artificial recharge MCM	Specific yield factor	Volume of water required for recharge MCM	Volume of rain water planned for Artificial recharge (MCM)
1	Dabhoi	Alluvium	1687.70	0.05	84.38	
2	Desar	Basalt	167.80	0.02	3.36	
3	Karjan	Alluvium	1034.28	0.09	93.08	
4	Padra	Alluvium	1421.25	0.07	99.49	
5	Savli	Basalt	2131.78	0.05	106.59	
6	Sinor	Alluvium	0.00	0	0.00	
7	Vadodara	Alluvium	474.54	0.08	37.96	
8	Vaghodia	Basalt	29.98	0.02	0.60	
	Тс	otal	6947.33		425.47	

Table-13 Computation of volume of unsaturated zone available for recharge

7.1.1.3 SOURCE WATER AVAILABILITY

The availability of source water, one of the prime requisites of artificial recharge. Gujarat State has been adopted concept of managed aquifer recharge in the state. While planning/finalization of Master plan for Artificial Recharge (2020) to Ground water in Gujarat state it was said that efforts shall be made for supplying surplus water from surface storage for recharging. Also it is expected that under climatic change effect due to change in hydrology more rain fall water may be available. Considering this 20 MCM of surplus surface water is provisioned for artificial recharge in Vadodara district. 20 MCM of surplus surface water was apportioned with taluka wise and for vadodara district 20 MCM of surplus surface water is considered for artificial recharge through 558 no of recharge shafts and 109 no of existing defunct tube wells which can be used as injection wells in Vadodara district.

To assures local drinking water supply, mainly in events of drought or scarcity and when water table in urban centers has started receding at an alarming rate, there is an urgent need for ground water augmentation. The suitable method for artificial recharge in urban area is to arrest the rainwater from roof tops and store or recharge the same through injection wells/shafts. As per 2011 census 31 urban centers have been identified where the population exceeds 1 Lakh (Masteplan AR Gujarat 2020). There are about 20, 65,771 people resides in the Vadodara City urban area of the Vadodara district. There are about 4, 59,509 number urban households are present in Vadodara city and considering about 25% houses are suitable for harvesting and considering 40 sq. as typical house hold roof top area the total area available for harvesting has been taken as 60% of normal rainfall in the Vadodara City urban centre after making allowance for storm rain etc., thus, the total source water available for harvesting has been taken as 60% of making the roof top harvesting arrangements for storing it at surface and recharging to ground water is @ Rs. 20,000/- per house. Thus, the cost of roof top harvesting for 1, 14,877 Number of houses of the Vadodara city is estimated as Rs. 229.75 crores.

	Table No: 14 Feasibility of Artificial Recharge in Vadodara District As per master Plan Gujarat 2020.												
Sr No	District Name	Area of District in sqkm	Decadal Average (2010- 19) Post Monsoon Depth to Water Level (m bgl)	Area Feasible for Artificial Recharge	Volume of unsaturated zone avilable for recharge (MCM)	Volume of Water required for recharge (MCM)	Surplus Runoff Available District (As per Master Plan 2020) (MCM	Balance Volume of Surplus Local / Distant Sources avilable for recharge	Additional Percolation Tank Structure Proposed Recharge Capacity @0.14 MCM	Additional Check Dam Structure Proposed Recharge Capacity @0.05 MCM	PT	CD	Total Coast (Rs Cores)
1	Vadodara	4096.10	13.76	1225.11	6947.33	425.47	20.00	0.00	As per Master plan 2020 for Artificial Recharg Ground Water in Gujarat state, 20 MCM surplus surface water is provisioned for artifi recharge through 558 no of recharge shafts 109 no of existing defunct tube wells which car used as injection wells in Vadodara distr Ground water recharge of 2000 ham (thro recharge shafts and defunct tube wells) is expect for the district.				

Table 15: R	Rooftop Rain	water harves	ting plan for	Vadodara di	istrict		
District	Town	Urban	Urban	Area for	Average	Volume of	Cost of
Name	having	Population	Household	RWH @	Rinfall of	Rainwater	RWH @
	populatio	(Census	Number	25% of	the	Harvestable	Rs 20,000
	n > 1 lakh	2011)	(Census	houshold	District	(MCM)	/
			2011)	@ 90 %	2009-18		household
				suitable	(mm)		(in cores)
				area of			
				avg 40			
				sqm area /			
				household			
				(sqm)			
Vadodara	1	20, 65,771	4, 59,509	41,35,581	845.00	2.10	229.75

Ground Water Development Plan

As per GWRE 2017 total 07 no blocks of Vadodara district are under safe category and one block i.e. Vadodara is under Semi critical catogory.Ground water stage of development ranges from 17.05 % (Vaghodiya) to 78.11 % (Vadodara). To elevate the stage of ground water development to 65% in all blocks except in Vadodara taluka, 4343 no dug wells (20 m depth) in Hard rock and 1693 no Tube wells (60 to 70 m depth) in alluvium area are proposed as feasible extraction structures. But in Vadodara block only water conservation measures like Micro irrigation system (3830 Ha), Farm ponds (1070 No) and on farm activities (1052 Ha) are proposed. The extraction structures will result in additional ground water draft of 9533.5 ham which will create 19067 Ha additional irrigation potential for the district and same as tabulated below.

Tal	Table-16 Water Conservation and Extraction interventions in Vadodara Districtof Gujarat State													
Sr No	Block	On farm Activities (Area in ha)	Water Use Efficiency (WUE) Measures	No of Farm ponds (30 m x 30m x 1.5 m)	Feasible structure the Sta developr (Soft Ro R	e Extraction es to elevate age of GW nent to 65% ock & Hard ock)	additional ground water draft(ham) by Extraction structures	Additional Irrigation Potential Created (Ha)						
					Dug welll	Tubewell/ Bore well								
1	Sinor				0	203	609	1218						
2	Padra				0	421	1230	2460						
3	Savli				400	296	988	1976						
4	Karjan				0	31	77.5	155						
5	Dabhoi				0	73	182.5	365						
6	Vadodara	1052	3830	1070	0	0	0	0						
7	Vaghodiya				3400	614	5821	11642						
8	Desar				543	55	625.5	1251						
	Total				4343	1693	9533.5	19067						

Creation of irrigation potential on safe development of groundwater.

Based on the additional groundwater availability (GWRE 2017) in the district, created additional irrigation potential area to keep the groundwater development under safe condition (upto 65%). About 19067 Ha, additional area may be irrigated by developing stage of groundwater upto 65%.

Demand side intervention

Along with development plan to prevent Over Exploitation, water conservation activities like on farm activities, farm ponds and Micro irrigation system (Sprinkler/drip) are recommended in the district. By these activities where groundwater extraction can be developed inbetween 61.29% to 70.00% ie under safe category.

Water use efficiency/Water conservation activities by application of on-farm activities, farm pond and Micro irrigation system:

Tabl	Table-17 Proposed Artificial recharge and Water Conservation interventions in Vadodara Districtof Gujarat State												
Sr No	Block	On farm Activities (Area in ha)	Water Use Efficiency (WUE) Measures	No of Farm ponds (30 m x 30m x 1.5 m)	Expected Annual Recharge(Through On farm activities and GW return flow) ham	Conservation from On-farm Activities, WUE Measures & Farm Ponds(ham)							
1	Sinor	0.00	837	623	204.9	318.57							
2	Padra	2368	1607	915	359.9	642.99							
3	Savli	3835	501	562	482.3	441.02							
4	Karjan	1724	1436	635	180.15	498.34							
5	Dabhoi	2874	2003	870	305.65	713.70							
6	Vadodara	944	3830	1070	94.4	953.21							
7	Vaghodiya	100	178	1210	592.1	406.59							
8	Desar	405	301	186	103.05	123.03							
	Total	12251.09	10693	6071	2322.45	4097.45							

12251 Ha area is proposed for on farm activities (Laser leveling/Bench terracing/Contour banding) and 6071 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.10693 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in Vadodara district. Ground water recharge of 2620.75 ham (through on farm activities and GW return flow) is expected for

the district. 4097.45 ham saving of ground water through WUE measures & farm ponds activities is expected for the district.

Farm Ponds

A farm pond is a large hole dug out in the earth, usually square or rectangular in shape (Fig. 23), which harvests rainwater and stores it for future use. It has an inlet to regulate inflow and an outlet to discharge excess water. The pond is surrounded by a small bund, which prevents erosion on the banks of the pond. The size and depth depend on the amount of land available, the type of soil, the farmer's water requirements, the cost of excavation, and the possible uses of the excavated earth. Water from the farm pond is conveyed to the fields manually, by pumping, or by both methods.

Fig. 23: Thematic diagram of Farm pond

Advantages of Farm Ponds

• They provide water to start growing crops, without waiting for rain to fall.

- They provide irrigation water during dry spells between rainfalls. This increases the yield, the number of crops in one year, and the diversity of crops that can be grown.
- Bunds can be used to raise vegetables and fruit trees, thus supplying the farm household with an additional source of income and of nutritious food.
- Farmers are able to apply adequate farm inputs and perform farming operations at the appropriate time, thus increasing their productivity and their confidence in farming.
- They check soil erosion and minimize siltation of waterways and reservoirs.
- They supplies water for domestic purposes and livestock
- They promote fish rearing.
- They recharge the ground water.
- They improve drainage.
- The excavated earth has a very high value and can be used to enrich soil in the fields, levelling land, and constructing farm roads

It is proposed to construct 6071 farm ponds as per the specification $(30 \times 30 \times 1.5 \text{ m})$. Considering 3 fillings this can accommodate **18.80** MCM of runoff rainfall. Farm ponds can be constructed in the village at feasible location. Dimension of the farm pond depends on land holdings.

	Table No-18 Projected Status of Groundwater Resource after implementation of GW Management Plan of Vadodara District of Gujarat state													
Sr No	Taluka	Net G.W. Availabili ty (Ham)	Additional Recharge from Recharge interventio ns (ham)	Addition al Recharg e from Return flow of GW Irrigatio n	Total Net G.W. Availabilit y after interventi on (Ham)	Existing G.W Draft for all purpose (ham)	Conser vation of Groun d water throug h WUE, on farm activit y & farm ponds (ham)	G.W Draft from Extracti on structur es (ham)	Net GW draft after interventio ns (ham)	Present stage of G.W. Developm ent (%)	Projected stage of G.W. Developm ent after constructio n of extraction structures (%)	Projected stage of GW development after construction of extraction structures & implementat ion of conservation measures(in %)	Projected stage of GW development after construction of extraction structures & implementat ion of conservation measures & Recharge measures (in %)	Addition al Irrigatio n Potentia I Created (Ha)
1	Sinor	9327.22	144.00	60.90	9532.12	5493.44	318.57	609.00	5783.87	58.90	65.00	61.61	60.68	1218.00
2	Padra	15414.05	483.90	123.00	16020.95	8870.57	642.99	1230.00	9457.58	57.55	65.01	59.96	59.03	2460.00
3	Savli	9566.88	662.50	98.80	10328.18	5295.18	441.02	988.00	5842.16	55.35	65.01	58.14	56.57	1976.00
4	Karjan	13996.61	466.40	7.75	14470.76	9025.64	498.34	77.50	8604.80	64.48	65.00	60.70	59.46	155.00
5	Dabhoi	17797.60	593.40	18.25	18409.25	11399.38	713.70	182.50	10868.18	64.05	65.01	60.03	59.04	365.00
6	Vadodar a	15536.36	421.40	0.00	15957.76	12136.00	953.21	0.00	11182.79	78.11	78.11	71.54	70.08	0.00
7	Vaghodi ya	11347.61	286.00	582.10	12215.71	1935.14	406.59	5821.00	7349.55	17.05	65.02	61.56	60.16	11642.0 0
8	Desar	3854.75	154.50	62.55	4071.80	1921.41	123.03	625.50	2423.88	49.85	65.02	61.24	59.53	1251.00
			3212.10	953.35	101006.53	56076.76	4097.4 5	9533.50	61512.81	55.67	66.65	61.85	60.57	19067.0 0

Fig No 24 Shows by adopting above management strategies, projected stage of Ground water extraction after creating additional abstraction structures is 65 % for 07 no blocks in Vadodara district. Projected stage of Ground Water extraction after adopting Artificial Recharge and additional conservation activities is 60 % for 07 no blocks in Vadodara district. However in Vadodara block the stage of ground water extraction is 70% after adopting conservation measures.

Table- 18 Summary of Interventions, Expected Benefits and Cost Estimates of Vadodara district of Gujarat State											
Interventions Recommended	Sinor	Padra	Savli	Karjan	Dabhoi	Vadodara	Vaghodiya	Desar	Total		
On-farm Activities (ha)		0	2368	3835	1724	2874	944	100	405	12250	
Water Use Efficiency (WUE) Measures (ha)		837	1607	501	1436	2003	3830	178	301	10693	
No of Farm Ponds	623	915	562	635	870	1070	1210	186	6071		
RTRWH Structures (Per household @ 20000/-)		0	0	0	0	0	114877	0	0	229.75	
Feasible Extraction structures to	DW	0	0	400	0	0	0	3400	543	4343	
elevate the Stage of GW development to 65% (Soft/Hard rock)	TW/BW	203	421	296	31	73	0	614	55	1693	
Expected Benefits											
Expected Annual Recharge(Through activities and GW return flow) ham	204.9	359.9	482.3	180.15	305.65	94.4	592.1	103.05	2322.45		
Expected Annual Recharge(Recharge Defunct Tube wells) ham	142.82	261.03	276.85	293.89	308.88	327.14	276.12	113.28	2000.00		
Conservation from On-farm Activit: Measures & Farm Ponds ham	318.6	642.99	441.02	498.34	713.7	953.21	406.59	123.03	4097.45		
Total Recharge/ Saving (ham)	666.29	1263.92	1200.17	972.38	1328.23	1374.75	1274.81	339.36	8419.90		
Additional Irrigation Potential Created	1218	2460	1976	155	365	0	11642	1251	19067		

8. CONCLUSION AND RECOMMENDATIONS

- Artificial recharge structures like recharge shafts (558 no) and Defunct Tube wells (109 no) are suggested as 20 MCM surplus surface water is provisioned as per the data provided by the State Water Resources Department.
- To elevate the stage of ground water development to 65% in Vadodara district except Vadodara block, 4343 no Dug wells (20 m depth) in Hard rock and 1693 no Tube wells (60 to 70 m depth) in alluvium area are proposed as feasible extraction structures.
- ➢ 19067 Hectare land may additionally irrigated on 65% of groundwater development and observing all intervention proposed.
- To prevent Over Exploitation, water conservation activities like On farm activities, farm ponds and Micro irrigation system (Sprinkler/drip) are recommended.
- 12250 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 6071 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.
- > 10693 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in Vadodara district.
- ➢ Ground water recharge of 2322.45ham (through on farm activities and GW return flow) is expected for the district.
- ➤ 4097.45ham saving of ground water through WUE measures & farm ponds activities is expected for the district.
- As a conservation measure, farmers should be encouraged and educated to adopt modern irrigation techniques like drip, sprinkler irrigation etc. to effect minimum withdrawal and maximum utilisation of groundwater.
- The water quality in general is good. However higher EC values and fluoride concentration is observed in isolated pockets. Ground water in such areas may be used after blending with surface water. In areas where ground water has higher concentration of Nitrate is observed, necessary sanitation measures should be adopted.
- If surface water is not available in aforesaid areas with quality issues there water supply tube wells may be constructed tapping deeper aquifer after casing the phreatic aquifer.

9. Taluka Reports

Principal Aquifer System: Alluvium, Basalt.

Major Aquifer System : Deccan traps basalt, alluvium and Fluvial marine sediments.

Normal Annual Rainfall : 769 mm

Aquifer Disposition

- > Unconfined Aquifer Depth of occurrence 0 to 45 mbgl.
- > Confined Aquifer I depth of occurrence 60 to 110 mbgl.
- Confined Aquifer II depth of occurrence 140 to 165 mbgl.

	Aquifer Characterisation and Disposition											
	Stratigraph y	Formatio n	Aquifer Nomenclatu re	Depth of occurrenc e	Thicknes s	Water Level (mbgl)	Qualit y (TDS)	Discharg e	Transmissivi ty	Nature	Damasha	
				Aquifer	Range Range		Range	Range	Range Aquifer		Kemarks	
				(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day			
			Unconfine d Aquifer	0 to 45	35 to 45	3 to 38	820 to 1330	2 to 50	1.67 to 1067	Phreatic	E.C of ground water	
		Alluviu m Co Aq	Confined Aquifer I	60 to 110	10 to 30	5 to 50	460 to 5370	1.2 to 60	38 to 2665	Confine d	varies from	
	Quaternar y		Confined Aquifer II	140 to 165	10 to 20	18 to 37		4 to 20	602 to2616	Confine d	740μS/cm to more than 8000μS/c m in the Dabhoi taluka	

Groundwater Monitoring Status

CGWB- Dug wells : 02, Piezometers :01

GWRDC- Dug wells : 04, Piezometers :04

Groundwater Quality

- The Electrical conductance of ground water is generally ranges from 740 to 8520 micromhos/cm at 25°c, for the Dabhoi taluka.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.
- Groundwater having more than 5000 µs / cm is observed in proper Dabhoi village area where Tertiary formation is at depth.

DRG. No. DS/NKD/NQ/VDOD/BLCK/42

Groundwater Management Plan

• Ground water development plan

The stage of ground water extraction of Dabhoi taluka is 64.05 %. To elevate the stage of ground water extraction to 65% in Dabhoi taluka, 73 no Tube wells (60 to 70 m depth) in alluvium area are proposed as feasible extraction structures. The extraction structures will result in additional ground water draft of 182.50 ham which will create 365.00 Ha additional irrigation potential for the taluka.

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 3.08 MCM of surplus surface water is provisioned for artificial recharge through 86 no of recharge shafts and 16 no of existing defunct tube wells which can be used as injection wells in Dabhoi taluka of Vadodara district .Ground water recharge of 306.00 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

To prevent Over Exploitation water conservation activities in 2874 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 870 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.2003 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in taluka .Ground water recharge of 305.65 ham (through on farm activities and GW return flow) is expected for the taluka.308.88 ham saving of ground water through WUE measures & farm ponds activities is expected for the taluka.

• Outcome

By adopting above management strategies, projected stage of Ground water development after creating additional extraction structures is 65 % in the Dabhoi Block. Projected stage of Ground Water development after additional conservation activities is 59.04 % in the Dabhoi Block.

			Aquifer C	haracter	isation	and Dis	position			
Stratigraph	Formatio	Aquifer	Depth of occurrenc e	Thicknes s	Wate r Level (mbgl)	Qualit y (TDS)	Discharg e	Transmissivit y	Nature of	Remark
у	n	e	Aquifer	Range	Rang e	Range	Range	Range	Aquifer	s
			(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day		
Upper	Basalt	Weathered Basalt	0 to 35	0 to 35	3 to 30	1980			Phreatic	Good Quality
Cretaceou s to Lower Eocene	Basalt	Fractured Basalt	35 to 130		9 to 14	1950	0.2 to 7		Fracture d	Good Quality
Groundwa	ater Mon	itoring Sta	tus							
CGWB-D	ug wells	: 00, Piezon	neters :00							

GWRDC- Dug wells : 01, Piezometers :01

Groundwater Quality

- In Desar taluka having only one monitored Dug well and one piezometer the Electrical conductance of ground water is generally ranges from 1950 to 1980 micromhos/cm at 25°c.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.

Groundwater Resource

- ➢ GW Availability 3854.75 ham (Dynamic)
- ➢ GW Draft 1921.41 ham
- Stage of GW Development 49.85 %

Existing and Future Water Demand

- Present demand for All Usage: 1921.41 ham.
- Annual Ground Water allocation for Domestic use as on 2025 is 193.00 ham.
- Net Ground Water availability for future use is 1886.89 ham.

Aquifer Management plan

Groundwater Management Issues

> Feeble declining trend is observed in long term water level analysis of fractured aquifer.

Groundwater Management Plan

• Ground water development plan

The stage of ground water extraction of Desar taluka is 49.85 %. To elevate the stage of ground water development to 65% in Desar block, 543 no of Dug wells (20 m depth) and 55 no Tube wells (70m depth) are proposed as feasible extraction structures. The extraction structures will result in additional ground water draft of 625.50 ham which will create 1251 Ha additional irrigation potential for the Desar Block.

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 1.13 MCM of surplus surface water is provisioned for artificial recharge through 32 no of recharge shafts and 06 no of existing defunct tube wells which can be used as injection wells in Desar taluka of Vadodara district .Ground water recharge of 114.00 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

To prevent Over Exploitation water conservation activities in 405 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 186 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.301 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in taluka .Ground water recharge of 103.05 ham (through on farm activities and GW return flow) is expected for the taluka.123.03 ham saving of ground water through WUE measures & farm ponds activities is expected for the taluka.

• Outcome

By adopting above management strategies, projected stage of Ground water development after creating additional extraction structures is 65 % in the Desar Block. Projected stage of Ground Water development after additional conservation activities is 59.53 % in the Desar Block.

Aquifer Information and Management plan of for Karjan Block of Vadodara District, Gujarat state.

Basin/Sub-basin : Major Drainages: Narmada & Tributaries of Narmada (Dev)

Principal Aquifer System : Quaternary Alluvium,

Major Aquifer System : Alluvium and Fluvial marine sediments.

Normal Annual Rainfall: 871 mm

		1	Aquifer C	naracteri	sation a	ind Disp	osition			
Stratigranh	Formatio	Aquifer	Depth of occurrenc	Thicknes	Water Level (mbgl)	y (TDS)	Discharg e	Transmissivit y	Nature	Remark
y	n	Nomenclatur e	Aquifer	Range	Range	Range	Range	Range	of Aquifer	s
		Unconfined	(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day		ECof
		Aquifer	0 to 62	35 to 60	38	360 to	2 to 50	1.67 to 1067	Phreatic	ground water
Quaternar	Alluviu	Confined Aquifer I	80 to 110	10 to 30	5 to 50	1150	1.2 to 60	38 to 2665	Confine d	varies from 53
У	m	Confined Aquifer II	123 to 135	10 to 20	18 to 37		4 to 20	602 to2616	Confine d	μ3/cm t 1800 μS/cm i the Karja Taluka
Tertiary	Alluviu m	Confined Aquifer III	150 to 200	25 to 50	24 to 37		6 to 34	2616 to 4622	Confine d	Ground water having more tha 3000µS/ m is observed in areas where tertiary formatio is at denth
Froundwa	ater Qua	<u>s : 01, Piezo</u> l ity	ometers :()5						
 The minimized of the minimized	e Electri cromhos/ reatic and lustrial pu oundwate	ical conduction conduction at 25°c, d confined urposes. er having me	ometers : C ctance of for the K Aquifers: ore than 3	5 f ground arjan talu Potable 3000 μs /	water ika. and fit	r is ge for do observe	enerally mestic, o d in loca	ranges from Irinking, irr lised village	m 530 igation a s' where	to 18 nd otl
 The mit The mit Phe interpretation of the mit Gr for Gr for (Pre-Mension 20) (UJARAT 	te Electri cromhos/ reatic and dustrial pu oundwate rmation is	ical conduction at 25°c, d confined arposes. The having more at depth.	etance of for the K Aquifers: ore than 3	5 f ground arjan talu Potable 3000 μs /	water ika. and fit cm is c	r is ge for do observe	enerally omestic, o d in loca	ranges from drinking, irr lised village	m 530 igation a s' where	to 18 nd otl Tertia

Electrical Conductivity In utilican at 25° C

> < 750 780 to 1800

DRG. NJ DSINKDINGYDODELCK56

Electrical Conductivity In uS/cm at 25° C

DRG NO. DSINKDINO/VDOD/BLOK59

75010-1580 19701 15 3000

		Summ	arised	Chemi	ical Dat	a of Kar	jan talı	uka of	Vadoda	ara D	istrict	•		
Chemical Parameter				TD	со	нсо		SO	NO	С	М			
S	pН	EC	TH	S	3	3	Cl	4	3	a	g	Na	K	F
Min	7.7	530 180	113	360	0	146.4	104	0	1.02	25	12	66	5.5	0.2
Max	9	100	400	1150	36	244	360	271	1.54	85	45	257	2	1.24
Average	2	2	6	796	14.4	202.52	8	85.4	1.268	53	6	8	4	6
* All values a	re in n	ng/l exc	ept pH	and EC	in µS/c	m at 25°C								
Groundwate	er Res	source	9											
> GW	Avail	ability	13990	5.61ha	m (Dyn	amic)								
> GW	Draft	9025.	64 han	n										
➤ Stage	e of G	W De	velopr	nent 64	4.48%									
> Total	l Gro	ound	Water	resou	irce in	cluding	both	dynai	nic &	in	stora	ge fo	r dist	rict is
1103	00.61	ham.	(Dyn	amic:1	3996.6	1ham &	In stor	age: 9	6304 ł	nam)		-		
Existing and	l Futu	ire W	ater D	eman	ł									
> Prese	ent de	mand	for Al	l Usage	e: 9025	.64 ham.								
Annu	ıal Gr	ound	Water	allocat	tion for	Domest	ic use	as on 2	2025 is	308.	00 hai	m.		
> Net 0	Groun	d Wat	er ava	ilabilit	y for fu	iture use	is 489	6.83 h	am.					
				A	quifer	· Manag	gemen	nt plan	n					
					-		_							
Groundwate Filt is mons Grou form	er Ma obser soon s indwa ation	nager ved th season ter ha is at d	nent I hat the few w ving m epth.	ssues annua vells sh hore tha	l water owing an 3000	level tro feeble do) μs / cm	end of eclinin n is obs	all we g trenc served	ells sho 1. in loca	owing	stabl villaş	ed tren ges' w	nd but here T	in pre ertiary
	DEPTH (P Karjan B	L TO WA' re-Monso- lock, Vad GUJAF	FER LEV on 2019) odara Dist RAT Block Headqu Block Bounds Village Bounds ater Level (m) - 15 m - 20 m - 30 m	EL riot, v arter y ary ball		Develop Repeat	Prophetic serve Provention P	interda interda jon (N) Jon Johnson Datan Datan Sangur Tr Sangura ros Pachtypoyae Sangura Nara Sangura	Vergel error Dranot Dranot Sentene Reamy Creening He Creening He C	General Kurai Kurai Kutai Kutai Kutai Kutai Gasa Sagaa Sagaa Sagaa	Variati Ranacur Maya Maya Maya Maya Maya Maya Maya May	NOTH 5 Richardons	10	

Groundwater Management Plan

• Ground water development plan

The stage of ground water extraction of Karjan taluka is 64.48 %. To elevate the stage of ground water extraction to 65.00% in Karjan taluka, 31 no Tube wells (60 to 70 m depth) in alluvium area are proposed as feasible extraction structures. The extraction structures will result in additional ground water draft of 77.50 ham which will create 155 Ha additional irrigation potential for the taluka.

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 2.93 MCM of surplus surface water is provisioned for artificial recharge through 80 no of recharge shafts and 18 no of existing defunct tube wells which can be used as injection wells in Karjan taluka of Vadodara district .Ground water recharge of 294.00 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

To prevent Over Exploitation water conservation activities in 1724 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 635 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.1436 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in taluka .Ground water recharge of 180.15 ham (through on farm activities and GW return flow) is expected for the taluka.498.34 ham saving of ground water through WUE measures & farm ponds activities is expected for the taluka.

• Outcome

By adopting above management strategies, projected stage of Ground water development after creating additional extraction structures is 65 % in the Karjan Block. Projected stage of Ground Water development after additional conservation activities is 59.46 % in the Karjan Block.

Aquifer Information and Management plan of for Padra Block of Vadodara District, Gujarat state.

General Information

State Name : Gujarat

District name : Vadodara

Block name : Padra

Location

		Salient Features
Area (Km ²):		534.6
No of Talukas		1
No. of Villages:		83
Population:		250,155
Density of Popul	ation/Km ² :	468
Net Sown Area in	n ha	40587
Gross Sown Area	a in ha	41234
Gross Irrigated A	rea in ha	27294
Area Irrigated by	GW (%):	86.04
Cropping Intensi	ty (%):	101.59
Irrigation Intensi	ty (%):	50
	Kharif:	Paddy,Tobacco,Bajra,Banana,Castor,Vegetables,Cotton & Pigeon pea
Principal crops	Rabi:	Wheat,Potato,Tobacco,Mustard,Vegetables,Gram & Forage
	Summer:	Bajra, Paddy,Vegetables,Green Gram & Ground nut

		1	Aquifer C	haracteri	sation a	nd Disp	osition			
Stratigraph	Formatio	Aquifer	Depth of occurrenc e	Thicknes s	Water Level (mbgl)	Qualit y (TDS)	Discharg e	Transmissivit y	Nature	Remark
y	n	Nomenclatur e	Aquifer	Range	Range	Range	Range	Range	of Aquifer	s
			(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day		
		Unconfined Aquifer	0 to 60	35 to 60	3 to 38	1240 to 1950	2 to 50	1.67 to 1067	Phreatic	E.C of ground water
Ouaternar	Alluviu	Confined Aquifer I	74 to 110	10 to 30	5 to 50	550 to 1220	1.2 to 60	38 to 2665	Confine d	from 830
y	m	Confined Aquifer II	135 to 165	10 to 20	18 to 37		4 to 20	602 to2616	Confine d	μS/cm to 3130 μS/cm in the Padra Taluka.
Groundwat	er Monite	oring Status								

CGWB- Dug wells : 02, Piezometers :03

GWRDC- Dug wells : 02, Piezometers :02

Groundwater Quality

- The Electrical conductance of ground water is generally ranges from 830 to 3130 micromhos/cm at 25°c, for the Padra taluka.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.
- Groundwater having more than 3000 µs / cm is observed in localised villages' where Tertiary formation is at depth.

	2	Summan	rised C	hemical	Data	of Padr	a taluk	a of V	adoda	ra Dis	strict.			
Chemical Parameters	pН	EC	TH	TDS	CO3	HCO3	Cl	SO4	NO3	Ca	Mg	Na	к	F
Min	8.1	830	188	550	0	207.4	144	0	0.41	10	18	102	1	0.51
Max	9	3130	488	1950	48	940	744	207	9.25	100	66	493	215.2	1.27
Average	8.5	2036.8	334.8	1312.8	19.8	451.4	351.4	99.6	5.6	55.4	47.2	287.6	45.4	0.88

* All values are in mg/l except pH and EC in $\mu S/cm$ at $25^\circ C$

Groundwater Resource

- ➢ GW Availability 15414.05 ham (Dynamic)
- ➢ GW Draft 8870.57 ham
- ➢ Stage of GW Development 57.55 %
- Total Ground Water resource including both dynamic & in storage for district is 128112.05 ham. (Dynamic:15414.05 ham & In storage: 112698 ham)

Existing and Future Water Demand

- Present demand for All Usage: 8870.57 ham.
- Annual Ground Water allocation for Domestic use as on 2025 is 489.00 ham.
- Net Ground Water availability for future use is 6425.57 ham.

Groundwater Management Plan

Ground water development plan

The stage of ground water extraction of Padra taluka is 57.55 %. To elevate the stage of ground water extraction to 65% in Padra taluka, 421 no Tube wells (60 to 70 m depth) in alluvium area are proposed as feasible extraction structures. The extraction structures will result in additional ground water draft of 1230.00 ham which will create 2460.00 Ha additional irrigation potential for the taluka.

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 2.61 MCM of surplus surface water is provisioned for artificial recharge through 73 no of recharge shafts and 14 no of existing defunct tube wells which can be used as injection wells in Padra taluka of Vadodara district .Ground water recharge of 247.00 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

To prevent Over Exploitation water conservation activities in 2368 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 915 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.1607 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in taluka .Ground water recharge of 359.9 ham (through on farm activities and GW return flow) is expected for the taluka.642.99 ham saving of ground water through WUE measures & farm ponds activities is expected for the taluka.

• Outcome

By adopting above management strategies, projected stage of Ground water development after creating additional extraction structures is 65.00 % in the Padra Block. Projected stage of Ground Water development after additional conservation activities is 59 % in the Padra Block.

Basin/Sub-basin : Major Drainages: Mahi & Tributaries of Mahi (Goma,Karad and Viswamitri) **Principal Aquifer System :** Alluvium and Basalt.

Major Aquifer System : Deccan traps basalt, alluvium and Fluvial marine sediments.

Normal Annual Rainfall: 837 mm

Aquifer Disposition

			Aquifer (Characte	risation	and Di	sposition			
Stratigraph	Formatio	Aquifer	Depth of occurren ce	Thickne ss	Water Level (mbgl)	Qualit y (TDS)	Discharg e	Transmissivi ty	Nature of	Domonka
у	n	re	Aquifer	Range	Range	Range	Range	Range	Aquifer	Kemarks
			(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day		
Quaterna	Alluvin	Unconfine d Aquifer	0 to 61	25to 40	3 to 38		2 to 50	1.67 to 1067	Phreatic	E.C of ground
ry	m	Confined Aquifer I	70 to 105	10 to 30	5 to 50		1.2 to 60	38 to 2665	Confined	water varies from less
	Basalt	Weathered Basalt	0 to 30	0 to 20	3 to 17	470 to			Phreatic	than
Upper Cretaceou s to Lower Eocene	Basalt	Fractured Basalt	40 to 120		9 to 14	1337	0.2 to 7		Fracture d	m to more than 2010 μS/cm in the Savli

Groundwater Monitoring Status

CGWB- Dug wells : 05, Piezometers :01

GWRDC- Dug wells : 04, Piezometers :01

Groundwater Quality

- The Electrical conductance of ground water is generally ranges from 710 to 2010 micromhos/cm at 25°c, for the Savli taluka.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.
- > Occurrence of excessive Nitrate in Shallow aquifers at isolated villages.
- Solution Groundwater having more than 3000 μ s / cm is observed in localised villages' where Tertiary formation is at depth.

		Sum	marise	d Chem	ical Da	ata of S	avli tal	uka of `	Vadod	ara Dis	strict.			
Chemical Parameter														
s	pН	EC	TH	TDS	CO3	HCO3	Cl	SO4	NO3	Ca	Mg	Na	K	F
	2.8		113.0				152.0							0.4
Min	0	710.00	0	470.00	0.00	0.00	0	0.00	0.00	30.00	9.00	97.00	3.09	5
	8.8	2010.0	510.0	1337.0	24.0	403.0	344.0	353.0	92.0	100.0	75.0	230.0	102.2	1.4
Max	0	0	0	0	0	0	0	0	0	0	0	0	0	5
	7.5	1736.8	404.7	1131.1		266.7	294.7	184.4	22.8		51.8	193.0		1.0
Average	0	6	1	4	8.57	7	1	3	7	75.71	6	0	33.77	0
* All values	are ir	n mg/l ev	cent nH	and EC	in uS/c	m at 25°	°C							

Groundwater Resource

- GW Availability 9566.88 ham (Dynamic)
- ➢ GW Draft 5295.18 ham
- ➢ Stage of GW Development 55.35 %
- Total Ground Water resource including both dynamic & in storage for Savli Taluka is 60571.88 ham. (Dynamic:9566.88 ham & In storage: 51005 ham)

Existing and Future Water Demand

- > Present demand for All Usage: 5295.18 ham.
- Annual Ground Water allocation for Domestic use as on 2025 is 469.00 ham.
- ▶ Net Ground Water availability for future use is 4158.58 ham.

Aquifer Management plan

Groundwater Management Issues

- After commencement of Narmada Canal based irrigation, little rising trend is observed in long term water level analysis (last 10 years) of Phreatic Aquifer.
- > Feeble declining trend is observed in long term water level analysis of Confined Aquifer I.
- Solution Groundwater having more than 3000 μ s / cm is observed in localised villages' where Tertiary formation is at depth.

The stage of ground water extraction of Savli taluka is 55.35 %. To elevate the stage of ground water development to 65% in Savli block, 400 no of Dug wells (20 m depth) and 296 no Tube wells (70m depth) are proposed as feasible extraction structures. The extraction structures will result in additional ground water draft of 988 ham which will create 1976 Ha additional irrigation potential for the Savli Block.

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 2.76 MCM of surplus surface water is provisioned for artificial recharge through 78 no of recharge shafts and 15 no of existing defunct tube wells which can be used as injection wells in Savli taluka

of Vadodara district .Ground water recharge of 279.00 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

To prevent Over Exploitation water conservation activities in 3835.00 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 562 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.501 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in taluka .Ground water recharge of 482.3 ham (through on farm activities and GW return flow) is expected for the taluka.441.02 ham saving of ground water through WUE measures & farm ponds activities is expected for the taluka.

• Outcome

By adopting above management strategies, projected stage of Ground water development after creating additional extraction structures is 65 % in the Savli Block. Projected stage of Ground Water development after additional conservation activities is 56.57 % in the Savli Block.

			Aquifer C	haracteri	isation a	and Dis	position			
Stratigraph	Formatio	Aquifer	Depth of occurrenc e	Thicknes s	Water Level (mbgl)	Qualit y (TDS)	Discharg e	Transmissivit y	Nature	Domonika
y	n	re	Aquifer	Range	Range	Range	Range	Range	Aquifer	Kemarks
			(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day		
		Unconfine d Aquifer	0 to 60	35 to 60	3 to 38	470 to	2 to 50	1.67 to 1067	Phreatic	E.C of ground
Quaternar	Alluviu	Confined Aquifer I	70 to 114	10 to 30	5 to 50	650	1.2 to 60	38 to 2665	Confine d	varies from 730
y	m	Confined Aquifer II	124 to 135	10 to 15	18 to 37		4 to 20	602 to2616	Confine d	μS/cm to 970 μS/cm in the Sinor Taluka.
Tertiary	Alluviu m	Confined Aquifer III	150 to 174	25 to 30	24 to 37		6 to 34	2616 to 4622	Confine d	Ground water having more than 3000µS/c m is observed in areas where tertiary formation is at denth

Groundwater Monitoring Status

CGWB- Dug wells : 01, Piezometers :02

GWRDC- Dug wells : 01, Piezometers :03

Groundwater Quality

- The Electrical conductance of ground water is generally ranges from 730 to 970 micromhos/cm at 25°c, for the Sinor taluka.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.
- > Groundwater having more than 3000 μ s / cm is observed in localised villages' where Tertiary formation is at depth.

		Sumr	narised	Chemi	cal Da	ta of Si	nor talu	ıka of V	adoda	ara Dist	trict.			
Chemical														
Parameters	pН	EC	TH	TDS	CO3	HCO3	Cl	SO4	NO3	Ca	Mg	Na	K	F
Min	8.50	730.00	150.00	470.00	12.00	146.40	72.00	0.00	0.88	35.00	15.00	45.00	2.21	0.40
Max	8.80	970.00	375.00	650.00	24.00	280.60	200.00	107.00	5.85	100.00	39.00	131.00	9.65	0.65
Average	8.60	882.50	259.50	575.00	18.00	222.65	148.00	26.75	3.75	61.25	25.50	89.50	5.56	0.47
* All values a	re in r	ng/l exce	ept pH a	nd EC i	n µS/cn	n at 25°C								

Groundwater Resource

- ➢ GW Availability 9327.22ham (Dynamic)
- GW Draft 5493.44 ham
- Stage of GW Development 58.90 %
- Total Ground Water resource including both dynamic & in storage for district is 62562.22 ham. (Dynamic:9327.22 ham & In storage: 53235 ham)

Existing and Future Water Demand

- Present demand for All Usage: 5493.44 ham.
- Annual Ground Water allocation for Domestic use as on 2025 is 120.00 ham.
- ▶ Net Ground Water availability for future use is 3805.11 ham.

Aquifer Management plan

Groundwater Management Issues

- After commencement of Narmada Canal based irrigation, little rising trend is observed in long term water level analysis (last 10 years) of Phreatic Aquifer.
- > Feeble declining trend is observed in long term water level analysis of Confined Aquifer I.
- Solution Groundwater having more than 3000 μ s / cm is observed in localised villages' where Tertiary formation is at depth.

Groundwater Management Plan

Ground water development plan

The stage of ground water extraction of Sinor taluka is 58.90 %. To elevate the stage of ground water extraction to 65% in Sinor taluka, 203 no Tube wells (60 to 70 m depth) in alluvium area are proposed as feasible extraction structures. The extraction structures will result in additional ground water draft of 609.00 ham which will create 1218 Ha additional irrigation potential for the taluka.

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 1.42 MCM of surplus surface water is provisioned for artificial recharge through 40 no of recharge shafts and 08 no of existing defunct tube wells which can be used as injection wells in Sinor taluka

of Vadodara district .Ground water recharge of 144.00 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

To prevent Over Exploitation water conservation activities 623 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.837 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in taluka .Ground water recharge of 204.9 ham (GW return flow) is expected for the taluka.318.6 ham saving of ground water through WUE measures & farm ponds activities is expected for the taluka.

• Outcome

By adopting above management strategies, projected stage of Ground water development after creating additional extraction structures is 65 % in the Sinor Block. Projected stage of Ground Water development after additional conservation activities is 60 % in the Sinor Block.

Aquifer Information and Management plan of for Vadodara Block of Vadodara District, Gujarat state.

General Information

State Name : Gujarat

District name : Vadodara

Block name : Vadodara

Location

	Salient Features
Area (Km ²):	670
No of Talukas	1
No. of Villages:	82
Population:	2,71,670
Density of Population/Km ² :	405.47
Net Sown Area in ha	36595
Gross Sown Area in ha	52488
Gross Irrigated Area in ha	43798
Area Irrigated by GW (%):	41.27
Cropping Intensity (%):	143.43

		1	Aquifer C	haracteri	sation a	nd Disp	osition			
		Aquifer	Depth of occurrenc	Thicknes	Water Level	Qualit y	Discharg e	Transmissivit v	Nature	
Stratigraph y	Formatio n	Nomenclatur e	e Aquifer	s Range	(mbgl) Range	(TDS) Range	Range	Range	of Aquifer	Remark s
			(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day		
		Unconfined Aquifer	0 to 46	35 to 60	3 to 38	550 to 2830	2 to 50	1.67 to 1067	Phreatic	E.C of ground
		Confined Aquifer I	60 to 100	10 to 30	5 to 50	520 to 5630	1.2 to 60	38 to 2665	Confine d	varies from
Quaternar y	Alluviu m	Confined Aquifer II	115 to 130	10 to 20	18 to 37		4 to 20	602 to2616	Confine d	less than 760 µS/cm to more than 8790 µS/cm in the Vadodar a taluka

Groundwater Monitoring Status

CGWB- Dug wells : 05, Piezometers :04

GWRDC- Dug wells : 05, Piezometers :09

Groundwater Quality

- The Electrical conductance of ground water is generally ranges from 760 to 8790 micromhos/cm at 25°c, for the Vadodara taluka.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.
- Groundwater having TDS more than 4000 ppm, and Nitrate >66 ppm is observed in localised pockets due to rapid urbanization, industrial growth nearby the Vadodara city may leads to increase in the ground water pollution level.
- Due to uncontrolled chemical wastes dumping nearby the industries, industrial effluent mixed with sewage and runoff water has arguably turned the local river Vishwamitri into big sewer, which ultimately leads to contaminate the ground water after leaching.

Summarised Chemical Data of Vadodara taluka of Vadodara District.														
Chemical Parameters	pН	EC	тн	TDS	CO3	нсоз	CI	SO4	NO3	Ca	Mg	Na	к	F
Min	7.60	760.00	175.00	520.00	0.00	183.00	104.00	0.00	1.12	25.00	18.00	70.00	2.25	0.13
Max	8.90	8790.00	1875.00	5630.00	36.00	1220.00	1600.00	1030.00	66.00	325.00	255.00	1156.00	28.98	1.41
Average	8.20	2459.00	426.40	1582.73	9.60	400.99	487.00	168.47	8.73	88.47	49.27	363.13	8.05	0.86
* All values are in mg/l except pH and EC in μS/cm at 25°C														

Groundwater Resource

- GW Availability 15536.36 ham (Dynamic)
- ➢ GW Draft 12136.00 ham
- Stage of GW Development 78.11%
- Total Ground Water resource including both dynamic & in storage for taluka is 151211.36 ham. (Dynamic:15536.36ham & In storage: 135675 ham)

Existing and Future Water Demand

- > Present demand for All Usage: 12136.00 ham.
- Annual Ground Water allocation for Domestic use as on 2025 is 343.00 ham.
- Net Ground Water availability for future use is 4378.36 ham.

Aquifer Management plan

Groundwater Management Issues

- The long term groundwater regime monitoring studies through NHS reveal an overall declining trend in major parts of the Vadodara taluka. The decline in range is 0.002 to 0.15 m /year.
- But in some areas after commencement of Narmada Canal based irrigation, little rising trend is observed in long term water level analysis (last 10 years) of both Phreatic and Confined Aquifers.
- Groundwater having TDS more than 4000 ppm, and Nitrate >66 ppm is observed in localised pockets due to rapid urbanization, industrial growth nearby the Vadodara city may leads to increase in the ground water pollution level.

Groundwater Management Plan

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 3.27 MCM of surplus surface water is provisioned for artificial recharge through 92 no of recharge shafts and 17 no of existing defunct tube wells which can be used as injection wells in Vadodara taluka of Vadodara district .Ground water recharge of 105.20 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

944 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 1070 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.3830 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in Vadodara taluka.Ground water recharge of 94.4 ham (through on farm activities and GW return flow) is expected for the Vadodara taluka.953.21 ham saving of ground water through WUE measures & farm ponds activities is expected for the Vadodara taluka.

• Outcome

Projected stage of Ground Water development after additional conservation activities is 70 % (Safe category) in the Vadodara Block.

Stratigraph	Formatio	Aquifer	Aquifer (Depth of occurren ce	Thickne ss	risation Water Level (mbgl)	Qualit y (TDS)	Discharg e	Transmissivi ty	Nature of	Remarks		
y	n	re	Aquifer	Range	Range	Range	Range	Range	Aquifer			
			(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day				
		Unconfine d Aquifer	0 to 45	25to 40	3 to 38		2 to 50	1.67 to 1067	Phreatic	E.C of ground		
Quaterna ry	Alluviu m	Confined Aquifer I	60to 112	10 to 30	5 to 50		1.2 to 60	38 to 2665	Confined	water varies		
		Confined Aquifer II	140 to 165	10 to 20	18 to 37		4 to 20	602 to2616	Confined	from less than 830µS/c m to		
	Basalt	Weathered Basalt	0 to 20	0 to 20	3 to 17	530 to			Phreatic			
Upper Cretaceou s to Lower Eocene	Basalt	Fractured Basalt	35 to 70		9 to 14	2070	0.2 to 7		Fracture d	more than 4460 µS/cm in the Vaghodi a taluka		

Groundwater Monitoring Status

CGWB- Dug wells : 04, Piezometers :00 GWRDC- Dug wells : 05, Piezometers :03

Groundwater Quality

- The Electrical conductance of ground water is generally ranges from 830 to 4460 micromhos/cm at 25°c, for the Vaghodia taluka.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.
- > Occurrence of excessive Fluoride in Shallow aquifers at isolated villages.
- Solution Groundwater having more than 3000 μ s / cm is observed in localised villages' where Tertiary formation is at depth.

Summarised Chemical Data of Vaghodiya taluka of Vadodara District.														
Chemical														
Parameter					СО	HCO			NO					
S	pH	EC	TH	TDS	3	3	Cl	SO4	3	Ca	Mg	Na	K	F
	7.													
Min	2	830	188	530	0	195.2	160	0	0.66	15	27	104	1.58	0.2
	8.													
Max	9	4460	3363	2890	36	927	1184	3020	6.23	615	438	2539	350.25	1.66
	8.	2621.	876.87	1742.			482.	587.		148.	121.	613.37	50.2837	0.9587
Average	4	9	5	5	18.0	506.3	0	3	2.8	1	5	5	5	5
* All values are in mg/l except pH and EC in uS/cm at 25°C														

Groundwater Resource

- GW Availability 11347.61 ham (Dynamic)
- ➢ GW Draft 1935.14 ham
- Stage of GW Development 17.05 %
- Total Ground Water resource including both dynamic & in storage for Vaghodia is 31185.61 ham. (Dynamic:11347.61ham & In storage: 19838 ham)

Existing and Future Water Demand

- Present demand for All Usage: 1935.14 ham.
- Annual Ground Water allocation for Domestic use as on 2025 is 276.00 ham.
- ▶ Net Ground Water availability for future use is 9345.69 ham.

Aquifer Management plan

Groundwater Management Issues

- After commencement of Narmada Canal based irrigation, little rising trend is observed in long term water level analysis (last 10 years) of Phreatic Aquifer.
- > Feeble declining trend is observed in long term water level analysis of Confined Aquifer I.
- > Groundwater having more than 3000 μ s / cm is observed in localised villages' where Tertiary formation is at depth.

Groundwater Management Plan

Ground water development plan

The stage of ground water extraction of Vaghodia taluka is 17.05 %. To elevate the stage of ground water development to 65% in Vaghodia block, 3400 no of Dug wells (20 m depth) and 614 no Tube wells (70m depth) are proposed as feasible extraction structures. The extraction structures will result in additional ground water draft of 5821.00 ham which will create 11642.00Ha additional irrigation potential for the Vaghodia Block.

• Supply side Management Plan

As per Masterplan 2020 for Artificial Recharge to Ground Water in Gujarat state, 2.76 MCM of surplus surface water is provisioned for artificial recharge through 77 no of recharge shafts and 15 no of existing defunct tube wells which can be used as injection wells in Vaghodia taluka of Vadodara district .Ground water recharge of 276.00 ham (through recharge shafts and defunct tube wells) is expected for the taluka.

• Demand side management Plan

To prevent Over Exploitation water conservation activities in 100.00 Ha area is proposed for on farm activities (Laser levelling/Bench terracing/Contour banding) and 1210 no of farm ponds are recommended which will serve dual purpose of irrigation and recharge to ground water.178 Ha area is proposed for Micro irrigation system (Sprinkler/drip) in taluka .Ground water recharge of 592.1 ham (through on farm activities and GW return flow) is expected for the taluka.406.59 ham saving of ground water through WUE measures & farm ponds activities is expected for the taluka.

• Outcome

By adopting above management strategies, projected stage of Ground water development after creating additional extraction structures is 65 % in the Vaghodia Block. Projected stage of Ground Water development after additional conservation activities is 60.16 % in the Vaghodia Block.

Aquifer Information and Management plan of for Vadodara City of Vadodara District, Gujarat state.

General Information

State Name : Gujarat

District name : Vadodara

Block name : Vadodara

City Name : Vadodara

Location

Salient Features of Vadodara City									
Area (Km ²):	156.6								
Population (Census 2011)	20,65,771								
Density of Population/Km ² :	13191								
Urban House hold Number (Census 2011)	4,59,509								
Altitude(MASL)	35.5								
Present Scenario of Water Supply Scheme of Vadodara City									
(Source Vadodara Municipal Corporation)									
Ajwa/Nimeta (Dam)	145 MLD								
Radial Collector Well	250 MLD								
Tube Wells (46 tube wells in City and 23 tube wells i	n								
River mahi)	25 MLD								
Khanpur	37 MLD								
Total	457 MLD								
Per Capita supply	210 lpcd								

Geographical Area: 156.6 sq. km.

Basin/Sub-basin : Major Drainages: Mahi & Tributaries of Mahi (Vishwamitri)

Principal Aquifer System : Quaternary Alluvium

Major Aquifer System : Alluvium and Fluvial marine sediments.

Normal Annual Rainfall: 845 mm

Aquifer Disposition

Unconfined Aquifer Depth of occurrence 0 to 40 mbgl.

Confined Aquifer I depth of occurrence 51 to 83 mbgl.

Ĩ					Aquifer Cl	naracterisati	on and D	isposition			
ĺ				Depth of		Water Level	Quality	Discharge	Transmissivity		
	Stuationanhy	Formation	Aquifer	occurrence	Thickness	(mbgl)	(TDS)	2 is chinge	1101010011105	Nature	Domonka
	straugraphy	rormation	Nomenclature	Aquifer	Range	Range	Range	Range	Range	oi Aquifer	Kemarks
				(mbgl)	(m)	(mbgl)	Mg/l	lps	m2/day		
I			Unconfined Aquifer	0 to 40	35 to 40	5 to 28	392 to 4490	2 to 50	1.67 to 1067	Phreatic	Ground water
	Quaternary	Alluvium	Confined Aquifer I	51 to 83	10 to 20	5 to 35	360 to 5370	1.2 to 60	38 to 2665	Confined	TDS varies from 392 to 4490 in the Vadodara City.

Groundwater Monitoring Status

CGWB- Dug wells : 03, Piezometers :02

GWRDC- Dug wells : 02, Piezometers :02

Groundwater Quality

- > The TDS of ground water is generally ranges from 392 to 4490 ppm for the Vadodara City.
- Phreatic and confined Aquifers: Potable and fit for domestic, drinking, irrigation and other industrial purposes.
- Groundwater having TDS more than 4000 ppm, Nitrate >90 ppm and Fluoride having more than 2.1 ppm is observed in localised pockets due to rapid urbanization, industrial growth nearby the Vadodara city may leads to increase in the ground water pollution level.
- Due to uncontrolled chemical wastes dumping nearby the industries, industrial effluent mixed with sewage and runoff water has arguably turned the local river Vishwamitri into big sewer, which ultimately leads to contaminate the ground water after leaching.

		Vadodara C	ity Water	Quality Data		
		Che	mical Para	ameters		
	TDS	Total Hard.	Cl	No3	F	Alk
Min	392	104	68	0.8	0.22	208
Max	4490	976	2052	91.11	2.06	667
Average	1030	313	301	21	1	391

Groundwater Resource (City-Vadodara GWRE 2017)

- GW Availability 3487.00 ham (Dynamic)
- ➢ GW Draft 3181.00 ham
- ➢ Stage of GW Development 91.24 %

Existing and Future Water Demand (City-Vadodara GWRE 2017)

- > Present demand for All Usage: 3181.00 ham.
- > Projected demand for domestic and Industrial uses up to 2025 is 6699.00 ham.
- Net Ground Water availability for future use is 00.00 ham.

Aquifer Management plan

Groundwater Management Issues

- The long term groundwater regime monitoring studies through NHS reveal an overall declining trend in major parts of the Vadodara City. The decline in range is 0.002 to 0.15 m /year.
- Groundwater having TDS more than 4000 ppm, Nitrate >90 ppm and Fluoride having more than 2.1 ppm is observed in localised pockets due to rapid urbanization, industrial growth nearby the Vadodara city may leads to increase in the ground water pollution level.

Groundwater Management Plan

There are about 20, 65,771 people resides in the Vadodara City urban area of the Vadodara district. There are about 4, 59,509 number urban households are present in Vadodara city and considering about 25% houses are suitable for harvesting and considering 40 sq. as typical house hold roof top area the total area available for harvesting (90% of total roof top) has been estimated to be 41,35,581 sq. m. The source water available for harvesting has been taken as 60% of normal rainfall in the Vadodara City urban centre after making allowance for storm rain etc., Thus, the total source water available for harvesting it at surface and recharging to ground water is @ Rs. 20,000/-per house. Thus, the cost of roof top harvesting for 1, 14,877 Number of houses of the Vadodara city is estimated as Rs. 229.75 crores.

AR & Conservation Possibilities

Ground water resources in the Vadodara City should be augmented by through Roof Top Rain Water Recharge structure and it would lead to saving 2.10 MCM of ground water and improve stage of ground water of Vadodara city from critical (91.24%) to Semi Critical category (86.05%).

REFERENCES

- 1. Prakash R Gupte CGWB in 2010 Hydrogeological Conditions, Ground Water Resources & Development Potential of Vadodara Dsitrict.
- 2. Jilla Panchayat, Vadodara, 2018-19, Jillani Ankadakiya RoopRekha Vadodara.
- 3. Census of India 2011, District Census Handbook, Vadodara District.
- 4. Directorate of Economics and Statistics, Govt. Of Gujarat, Vadodara, Statistical abstract of Gujarat State- 2017.
- 5. District Irrigation Plan (2016-2020) of Vadodara District, under Pradhan Mantri Krishi Sinchayee Yojana (PMKSY).
- 6. Directorate of Economics and Statistics, Govt. Of Gujarat, 2017 Vadodara, Socio Economic review.
- 7. Narmada Water Resources, Water supply &Kalpsar Department, Govt. Of Gujarat, Mukteshwar Irrigation Scheme, Salient features.
- 8. Narmada Water Resources, Water supply &Kalpsar Department, Govt. Of Gujarat, Gandhinagar.

And several other unpublished reports of CGWB and Govt websites.

	A	nnexure 1	Vadodara Pre	Monso	on Wate	r Level_2	2019 (Un	n Conf	fined)	
							Elevatio			
Well	Well	Tahsil /		Geolog		Longitu	n of Ground		Water	Water
No	Туре	Taluk	Village	у	Latitude	de	Level	date	Level	Table
CGW	Dug							01- May		
В	Well	Dabhoi	Amareshwar		22.228	73.483	51.00	-19	4.04	46.96
CGW	Dug							01- Mav		
В	Well	Savli	Juna Samlaya		22.504	73.283	59.00	-19	14.02	44.98
CGW	Dug							01- May		
В	Well	Vadodara	kevdabag		22.29	73.19	36.00	-19	9.55	26.45
CGW	Dug							May		
В	Well	Padra	Masor		22.13	72.9	21.00	-19	14.2	6.80
CGW	Dug							May		
В	Well	Vadodara	Vadodara_ONGC		22.269	73.213	37.00	-19	13.12	23.88
CGW	Dug							May		
В	Well	Vaghodia	Patiyapura		22.275	73.442	60.00	-19	9.42	50.58
CGW	Dug							May		
В	Well	Vaghodia	Saidal		22.283	73.503	66.00	-19	3.05	62.95
CGW	Dug							May		
В	Well	Vadodara	Sama		22.343	73.201	37.00	-19	3.96	33.04
CGW	Dug							May		
В	Well	Savli	Tundav		22.483	73.203	45.00	-19	15.03	29.97
CGW	Dug						17.00	May		
В	Well	Dabhoi	Vega		22.159	73.413	47.00	-19 01-	7.66	39.34
CGW	Dug	0 1	<i>N</i> · · · · ·		22 7 47	72.256	71.00	May	2.45	
В	well	Savii	vejpur2		22.147	/3.356	/1.00	-19	3.45	67.55
CGW	Dug	Couli	Contrada		22 520	72 175	50.00	May	27.0	12.10
Б	wen	Savii	Salikeda		22.339	/3.1/3	50.00	01-	37.9	12.10
CGW B	Dug Well	Sinor	Sinor		21°54'4 5"	73°20'30 "	36.00	May	26	10.00
Б	wen	511101	511101		5		30.00	01-	20	10.00
CGW B	Dug Well	Vadodara	Vadodara li		22 305	73 272	36.00	May -19	8 36	27.64
2		, udouiru			221000	101212	20100	01-	0100	2,101
CGW B	Dug Well	Vaghodia	Chella Karamsiya Pz		22.397	73.432	70.00	May -19	5.12	64.88
aaw								01-		
B	Dug Well	Vaghodia	Waghodia Pz		22.364	73.377	66.00	May -19	9.92	56.08
CGW								01-		
В	Tube Well	Vadodara	Virod		22°23'3 7"	73°13'38 "	35.00	May	20.80	14.20
CGW	wen	Vadodara	Viiou		,		35.00	01-	20.00	14.20
В	Tube	5.11			22°12'2	73°28'37	22.50	May	5 5 0	
CGW	Well	Dabhoi	Lunadra		9"		32.50	-19	6.60	25.90
В	Tube				22°16'3	73°16'13		May		
CGW	Well	Vadodara	Shankarpura		2"	"	31.72	-19	4.70	27.02
B	Tube				22°23'2	73°16'06		01- Mav		
	Well	Vaghodia	Bhaniyara		0"	"	45.12	-19	13.10	32.02
CGW B	Tuba							01- Merr		
	Well	Padra	Ghayaj ii		22.233	73.054	31.00	-19	29.53	1.47
CGW	Tube	Karjan	Handod2		22.074	73.046	23.00	01-	32.22	-9.22

В	Well						May -19		
CGW B	Tube Well	Vadodara	Vadodara I	22.305	73.272	36.00	01- May -19	27.92	8.08
CGW B	Tube Well	Savli	Chaliyar	22.667	73.317	51.00	01- May -19	27.38	23.62

	Aı	nnexure 2	Vadodara Post	Monso	on Wate	r Level_2	2019 (Un	Con	fined)	
							Elevatio n of			
Well No	Well Type	Tahsil / Taluk	Village	Geolog y	Latitude	Longitu de	Ground Level	dat e	Water Level	Water Table
CGWB	Dug Well	Dabhoi	Amareshwar		22.228	73.483	51	01- Oct -19	2.52	48.48
CGWB	Dug Well	Savli	Juna Samlaya		22.504	73.283	59	01- Oct -19	9.3	49.70
CGWB	Dug Well	Vadodara	kevdabag		22.29	73.19	36	01- Oct -19	8.65	27.35
CGWB	Dug Well	Padra	Masor		22.13	72.9	21	01- Oct -19	8.25	12.75
CGWB	Dug Well	Vadodara	Vadodara_ONGC		22.269	73.213	37	01- Oct -19	10.21	26.79
CGWB	Dug Well	Vaghodia	Patiyapura		22.275	73.442	60	01- Oct -19	3.72	56.28
CGWB	Dug Well	Vaghodia	Saidal		22.283	73.503	66	01- Oct -19	1.3	64.70
CGWB	Dug Well	Vadodara	Sama		22.343	73.201	37	01- Oct -19	2.54	34.46
CGWB	Dug Well	Savli	Tundav		22.483	73.203	45	01- Oct -19	5.6	39.40
CGWB	Dug Well	Dabhoi	Vega		22.159	73.413	47	01- Oct -19	3.22	43.78
CGWB	Dug Well	Savli	Vejpur2		22.747	73.356	71	01- Oct -19	0.9	70.10
CGWB	Dug Well	Savli	Sankeda		22.539	73.175	50	01- Oct -19	32.25	17.75
CGWB	Dug Well	Sinor	Sinor		21°54'4 5"	73°20'30 "	36	01- Oct -19	24.21	11.79
CGWB	Dug Well	Vadodara	Vadodara Ii		22.305	73.272	36	01- Oct -19	3.27	32.73
CGWB	Dug Well	Vaghodia	Chella Karamsiya Pz		22.397	73.432	70	01- Oct -19	1.4	68.60
CGWB	Dug Well	Vaghodia	Waghodia Pz		22.364	73.377	66	01- Oct -19	0.57	65.43
CGWB	Tube Well	Vadodara	Virod	ALV	22°23'3 7"	73°13'38 "	35.00	01- Oct -19	13.30	21.70
CGWB	Tube Well	Dabhoi	Lunadra	ALV	22°12'2 9"	73°28'37 "	32.50	01- Oct -19	5.50	27.00

CGWB								01-		
	Tube				22°23'2	73°16'06		Oct		
	Well	Vaghodia	Bhaniyara	ALV	0"		45.12	-19	7.20	37.92
CGWB								01-		
	Tube							Oct		
	Well	Padra	Ghayaj ii		22.233	73.054	31.00	-19	22.53	8.47
CGWB								01-		
	Tube							Oct		
	Well	Karjan	Handod2		22.074	73.046	23.00	-19	28.45	-5.45
CGWB								01-		
	Tube							Oct		
	Well	Vadodara	Vadodara I		22.305	73.272	36.00	-19	11.86	24.14
CGWB								01-		
	Tube							Oct		
	Well	Savli	Chaliyar		22.667	73.317	51.00	-19	24.85	26.15

	Annexure 3 Vadodara Pre Monsoon Water Level_2019 (Confined I)													
Well No	Well Type	Tahsil / Taluk	Village	Geolog y	Latitud e	Longitud e	Elevatio n of Ground Level	date	Piezometri c Head	Elevation of Piezometri ct Surface				
CGWB	Tube Well	Padra	Chitral Pz-I		22.182	72.946	22.00	01- May -19	27.09	-5.09				
CGWB	Tube Well	Vadodara	Raypura i		22.282	73.09	32.00	01- May -19	36.42	-4.42				
CGWB	Tube Well	Vadodara	Sankarda		22.439	73.122	40.00	01- May -19	48.72	-8.72				
CGWB	Tube Well	Sinor	Segwa chouki ii		22.008	73.383	43.00	01- May -19	50	-7.00				

	An	nexure 4 V	adodara Pos	st Monso	oon Wat	ter Level	_2019 (0	Confii	ned I)	
							Elevatio			Elevation
							n of			of
Well	Well	Tahsil /		Geolog	Latitud	Longitud	Ground		Piezometri	Piezometri
No	Туре	Taluk	Village	У	е	е	Level	date	c Head	c Surface
								01-		
	Tube							Oct		
CGWB	Well	Padra	Chitral Pz-I		22.182	72.946	22.00	-19	22.52	-0.52
								01-		
	Tube							Oct		
CGWB	Well	Vadodara	Raypura i		22.282	73.09	32.00	-19	28.3	3.70
								01-		
	Tube							Oct		
CGWB	Well	Vadodara	Sankarda		22.439	73.122	40.00	-19	40.78	-0.78
								01-		
	Tube		Segwa chouki					Oct		
CGWB	Well	Sinor	ii		22.008	73.383	43.00	-19	38.56	4.44

	Annexure 5 Vadodara Pre Monsoon Water Quality_2019 (Un Confined)														
Well	Well	Tahsil /		Geolog			Sampling								
No	Туре	Taluk	Village	у	Latitude	Longitude	Date	EC	NO3	F					
					22°13'48.0	73°28'48.0		1714.0	14.0	0.6					
CGWB	Dug Well	DABHOI	Amreshwar		"	"	May-01-2019	0	0	6					
			Juna		22°13'48.0	73°16'48.0		1762.0	47.0	1.3					
CGWB	Dug Well	SAVLI	samalya		"	"	May-01-2019	0	0	9					
		Vadodara			22°13'48.0			1285.0	66.0	0.9					
CGWB	Dug Well	City	Kevada Bag		"	73.19	May-01-2019	0	0	7					
					22°13'48.0	72°54'36.0		2394.0		0.6					
CGWB	Dug Well	PADRA	Masor		"	"	May-01-2019	0	8.00	5					

				22°13'48.0			1996.0	92.0	1.1
CGWB	Dug Well	SAVLI	Tundav		73°12'0.0"	May-01-2019	0	0	1

			Anne	xure-6 V	Vadoda	ra Dist	t rcit E z	xplora	ation Da	nta		
	Village	Latitude	Agenc y	Basin	Depth	Zones	Tested	SW L		Disch.	Trans.(A T)	
Sr	Well type	Longitu de	Proje ct	Geolog v	Drille d	Zones '	Tapped		-	(lpm)	(m2/day)	Remar
No ·	Taluka	Toposhe et	Year	Aquifer	Const r.	Zo Encou	nes ntered		Date	Drawdo wn	Perm.	ks
						From (m)	To (m)	(m)		(m)	(m/day	
1	2	3	4	5	6	8	9	10	11	12	12	14
1	Maletha (BH-I)	21°56'45 ";	CGW B NP	Narmad a	301.78	170.7 6	200	33.0 6	20-05- 74	-	-	
	EW	72°25'45	6		203	170.7 6	200			-	-	
	Sinor	46C/05	1974- 1975									
2	Kurai (BH-I)	22°04'15 "	CGW B NP	Narmad a	283.77	59.74	65.23	18.0 4	28-10- 72	2074	2616	
	EW	73°05'15 "	6		127.05	76.81	81.69			2.4	49.7	
	Karjan	46F/04	1972- 1973			83.52	87.56					
						91.68	110.0 4					
						113.7	124.0 1					
						76.8	109.7 2					
						113.3 8	123.7 4					
						162.7 6	180.1 8					
3	Nisaria (BH-I)	22°59'31 "	CGW B NP	Narmad a	370.09	191.1 1	196.1 1	-		-	-	
	EW	73°71'45 "	6		252	206.7 9	213			-	-	
	Karjan	46F/04	1976- 1977			242	249					
		22950/21	CCW	Normad								
4	Nisaria	22 39 31 " 72071145	B NP	a	148.34	94	112	-		-	-	
	EW-2	"	6		146.5	136	145			-	-	
	Karjan	46F/04	1976- 1977									
		22850/21	CCW	Nama d			115 5	20.4	21.05			
5	Nisaria	22°59'31 "	B NP	a	114	93.5	115.5	30.4 9	31-05- 77	3334	3086.4	
	EW-3	/3 ⁻ /145 "	6		115.53					6.53	154.32	
	Karjan	46F/04	1976- 1977									
		00050101	00000			170 5		20.5	20.01			
6	Nisaria	22°59'31 "	CGW B NP	Narmad a	256.2	173.5 5	185	28.5 9	20-01- 77	3292	4622	
	EW-4	/ <i>3°</i> /1'45 "	6		253.2	187	189			-	130	

	1		1054									
	Karjan	46F/04	1976- 1977			191	202					
						206	210.5					
						213	215					
						220	222					
						233	237					
						242	251					
7	Nisaria	22°59'31 "	CGW B NP	Narmad a	244.12	176.5	182.0 4	-		-	-	
	EW-5	73°71'45 "	6		241.82	194.5 4	200.6 8			-	-	
	Karjan	46F/04	1976-			232.6	238.8					
			1777			0	2					
8	Nisaria	22°59'31 "	CGW B NP	Narmad a	112.18			-		-	-	Assly. pulled
	EW-6	73°71'45	6		-					-	-	out
	Karian	46E/04	1976-									
	Karjan	401704	1977									
			CGW	Narmad								Acely
9	Nisaria	22°59'31	B NP	a	115.7			-		-	-	pulled
	EW-7	73°71'45	6		-					-	-	out.
	Karjan	46F/04	1976- 1977									
10	Malod (BH-I)	21°52'30 "	CGW B NP	Narmad a	383.24	40	55	27.8 2	12-06- 76	1261	2655.6	
	EW	73°12'15 "	6		57	50	60			4.89	176.9	
	Karjan	46G/01	1976-			96	106					
			1970									
11	Kia	21°57'00 "	CGW B NP	Narmad	458			-		-	-	
	EW-1	73°06'45	6	u	-					-	-	
	Karjan	46G/01	1973-									
	5		1974									
12	Kia	21°57'00 "	CGW B NP	Narmad a	153.31	63.85	82.53	23.7 5	23-04- 74	2669	7620	
	EW-2	73°06'45	6		48.08					3.95	405.6	
	Karjan	46G/01	1973- 1974									
			1774									
13	Bramanga on	22°06'00 "	CGW B NP	Narmad a	296.84	69	73	25.9	/05/197 6	-	-	
	EW-1	73°11'45 "	6		93	75	79			-	-	
	Karjan	46F/04	1975- 1976			84	90					
			17,0									
			1									
14	Bramanga on	22°06'00 "	CGW B NP	Narmad a	49.1	33	45	24.6 2	27-02- 77	160	-	
L		1	1	1	l	l		i	1		1	1

		1					-	-				
	EW-2	73°11'45 "	6		47					0.76	-	
	Karjan	46F/04	1975- 1976									
			1970									
15	Timbarwa	22°01'00 "	CGW B NP	Narmad a	225.22	69.7	79.6	30.5	26-03- 74	2444	1932	
	EW	73°17'45 "	6		177.73	85.95	98			3.51	29.04	
	Karjan	46F/08	1974- 1975			104.7	114.8					
			1975			124.7	134.8					
						140.8	154.8					
						6 146.7	6 174.5					
						8	3					
						115	125					
						115	125					
16	Mobha	22°08"00 "	CGW B NP	Narmad a	218.23	66.2	82.2	19.3 1	01-07- 74	2890	1952.64	
	EW	72°58'00 "	6		85.2	23	36			4.47	162.72	
	Padra	46B/16	1974- 1975			66	82					
						101	112					
17	Sarsauni	22°10'30 "	CGW B NP	Narmad a	196.4	112	122	-		-	-	Assly pulled
	EW	72°05'30 "	6		122					-	-	out
	Padra	46B/04	1975- 1976									
			1770									
18	Sarsauni	22°10'30 "	CGW B NP	Narmad a	80.9	42	48	-		-	-	
	EW-2	72°05'30 "	6		75	55	68			-	-	
	Padra	46B/04	1975- 1976			70	75					
19	Sarsauni	22°10'30 "	CGW B NP	Narmad a	39.5	30	35	-		-	-	
	EW-3	72°05'30 "	6		35					-	-	
	Padra	46B/04	1975- 1976									
			1770									
20	Sarsauni	22°10'30 "	CGW B NP	Narmad a	196.4	47.5	53	20.3 8	11-02- 75	3334	1267.2	
	EW-4	72°05'30 "	6		82.5	62	65			8.55	90.48	
	Padra	46B/04	1975- 1976			74	79.5					
21	Alamgir	22°12'00 "	CGW B NP	Narmad a	235	54	64	-		-	-	
	EW	73°11'30 "	6		-					-	-	
	Vadodara	46F/04	1974-									
			17/3		I			1			L	L

				1	1			1			1	
22	Chatral	22°07'00 "	CGW B NP	Narmad a	270.3	140	162.9 2	25.5 4	06-11- 74	-	-	
	EW	73°17'45 "	6		165.37	55	65			-	-	
	Dabhoi	46F/08	1975- 1976			92	98					
						106	112					
						140	150					
23	Chatral	22°07'00 "	CGW B NP	Narmad a	90.23	60	76	31.0 7	15-03- 76	1250	1065.6	
	EW-2	73°17'45 "	6		78					5.84	66.48	
	Dabhoi	46F/08	1975- 1976									
24	Akotadra	22°09'45 "	CGW B NP	Narmad a	53.65	26	41.5	9. 18	07-12- 75	162	8.47	
	EW	73°27'45 "	6		43.5					15.38	0.55	
	Dabhoi	46F/08	1975- 1976									
25	Palaswada	22°14'00 "	CGW B NP	Narmad a	133	18.28	25.9	14.4 8	12-10- 74	768	-	Trap at 128m.
	EW	73°17'00 "	6		-	30.48	35.96			0.84	-	
	Dabhoi	46F/08	1972- 1973			30.48	35.96					
						67	71.32					
						75	77.4					
						109.7 3	128.0 2					
26	Tentalao	23°25'15 "	CGW B NP	Narmad a	195	60.32	72.42	28.1	15-06- 74	1128	38.88	
	EW	73°25'15 "	6		111	81.51	87.95			18.44	1.3	
	Dabhoi	46E/07	1974- 1975			97.25	109					
27	Segwa Chokdi	22°01'00 "	CGW B PZP		187.38	36	40	36.6 8	16-10- 86	300	602	
	Pz-1	73°23'00 "	101	Alluviu m	162	42	49			3.52	-	
	Sinor	46F/08	1986- 1987			51	54					
						59	64					
						94	103					
						127	139					
						152	161					
28	Segwa Chokdi	22°01'00 "	CGW B PZP		90	36	40	38.6 9	14-11- 86	220	-	
	Pz-2	73°23'00 "	101	Alluviu m	86	42	49			0.31	-	

	Sinor	46F/08	1986- 1987			51	54					
						59	64					
						66	84					
29	Haldarwa	21°54'00 "	CGW B PZP		200.5	149	155	24.9 8	24-12- 86	378	-	
	Pz-1	73°04'45 "	101	Alluviu m	198	174	180			3	-	
	Karjan	46G/01	1986- 1987			188	194					
30	Haldarwa	21°54'00 "	CGW B PZP		137	45	48	22.5 4	08-01- 87	288	189	
	Pz-2	73°04'45 "	101	Alluviu m	137	62	65			1.71	-	
	Karjan	46G/01	1986- 1987			123	135					
31	Ghayaj	22°13'00	CGW B PZP		136.15	74	84	33.4	17-12- 90	750	-	
	Pz-1	73°05'25	101	Alluviu m	130	100	113			0.4	-	
	Padra	46F/04	1990- 1991			123	129					
32	Ghayaj	22°13'00	CGW B PZP		45	20	35	33.8	25-12- 90	-	-	
	Pz-2	73°05'25	101	Alluviu m	36					-	-	
	Padra	46F/04	1990- 1991									
33	Raypura	22°16'55 "	CGW B PZP		200	46	50	41.0 5	16-02- 91	751	-	
	Pz-1	73°05'25	101	Alluviu m	95	55	59			-	-	
	Vadodara	46F/03	1990- 1991			62	65					
						69	79					
						85	94					
34	Raypura	22°16'55 "	CGW B PZP		50	25	31	41.7 9	24-02- 91	-	-	
	Pz-2	73°05'25	101	Alluviu m	44	33	43			-	-	
	Vadodara	46F/03	1990- 1991									
35	Kurali	22°01'23 "	CGW B PZP		200	80	84	37.3	08-04- 91	856	-	
	Pz-1	73°12'15 "	101	Alluviu m	171	87	111			-	-	
	Karjan	46F/04	1990- 1991			123	135					
						150	170					
36	Kurali	22°01'23 "	CGW B PZP		65	39	57	44.8	20-04- 91	-	-	
	Pz-2	73°12'15 "	101	Alluviu m	58					-	-	
	Karjan	46F/04	1991- 1992									
			1772									
	1	1	1	1				1	l	1	1	1

-												
37	Vadaj	22°04 25	CGW B PZP		147.6			35.1 7	04-01- 95	138	224.46	
	Pz	73°28 35	101	Alluviu m	96					0.3	-	
	Dabhoi	46F/08	1994- 1995									
38	Handod	22°04 25	CGW B PZP		200	98	104	2.15	06-03- 95	240	-	
	Pz-1	73°02 45	101	Alluviu m	145	110	116			-	-	
	Karjan	46F/04	1994- 1995			120	134					
						140	143					
39	Handod	22°04 25	CGW B PZP		200	185	195	-		-	-	
	Pz-2	73°02 45	101	Alluviu m	197					-	-	
	Karjan	46F/04	1994- 1995									
40	Handod	22°04 25	CGW B PZP		51	32	40	27.1	24-03- 95	114	-	
	Pz-3	73°02 45	101	Alluviu m	-	42	49			-	-	
	Karjan	46F/04	1994- 1995									
			1775									
41	Sakarda	22°26'00'	CGW B PZP		200	71	72	36.5	08-06- 94	72	-	
	Pz-1	73°7'20"	101	Alluviu m	-	80	83			7.4	-	
	Vadodara	46F/03	1994- 1995			93	97					
42	Sakarda	22°26'00'	CGW B P7P		60.6	30	36	37.6	25-06- 94	-	-	
	Pz-2	73°7'20"	101	Alluviu	-	39	42	2	77	-	-	
	Vadodara	46F/03	1994- 1995			45	51					
			1770									
43	Vankaner	22°32'20	CGW B P7P		101	37	43	40.7	25-06- 94	-	-	
	Pz-1	73°10'36 "	101	Alluviu	-			5	77	-	-	
	Savli	46F/02	1994- 1995									
			1775									
44	Vankaner	22°32'20	CGW B P7P		70	46	54	46.9	20-10- 94	34	-	
	Pz-2	73°10'36 "	101	Alluviu m	-					0.1	-	
	Savli	46F/02	1994-									
			1775									
45	Chitral	22°10'55	CGW B P7P		200	95	104	29.7	03-05-	180	135	
	Pz-1	72°56'45	101	Alluviu	106				33	0.64	-	
	Padra	46B/16	1995- 1996									
			1770									
46	Chitral	22°10'55	CGW		50	37	43	28.6	01-06-	36	79	
			в РДР	1	1			5	95			

	Pz-2	72°56'45 "	01	l Alluviu m	45				0.67	-	
	Padra	46B/16	1995-								
			1990								
47	Ganthial	23°14'00 "	CGW B	Basalt	202.6		23.3	15-05- 03	12		
	EW	72°43'20 "	2						38.24		
	Savli		2003- 04								
48	Khed Karmasiay	22°25'09 "		Basalt	159.9		19.2 7	28-05- 03	210		
	EW - I	73°24'30 "							3.43		
	Vaghoriya		2003- 04								
49	Khed Karmasiay	22°25'09 "		Basalt	159.9			06-06- 03			
	OW	73°24'30 "									
	Vaghoriya		2003- 04								
50	Moti Bhadol	22°32'30 "		Basalt	201.6		(Dry)	24-09- 03			
	EW	73°18'30 "									
	Savli		2003- 04								
51	Rasulpur	22°35'54 "		Basalt	159.9		7.1	10-10- 03	438		
	EW - I	73°13'30 "							10.45		
	Savli		2003- 04								
		22025154						17.10			
52	Rasulpur	22°33'34 "		Basalt	56.2		8.48	03	420		
	EW - II	/3°13'30 "							8.62		
	Savli		2003- 04								
		00005154						20.10			
53	Rasulpur	22°35'54		Basalt	196.5		7.75	20-10- 03	660		
	EW - III	/3°13'30 "	2002								
	Savli		2003- 04								
		22°34'50						10.11			
54	Vasanpur	73°17'28		Basalt	202.6		26.9	03	210		
	EW- I	"	2002						10.45		
	Savli		2003- 04								
		22024150					07.1	10.11			
55	Vasanpur	22-34-50		Basalt	202.6		27.1	03	438		
	OW	73°17'28 "							1.83		

	Savli		2003- 04							
56	Sandhsal	22°38'18 "		SST / Basalt	202.6		10.4	30-11- 03	210	
	EW - I	73°21'30 "							17.95	
	Savli		2003- 04							
57	Sandhsal	22°38'18 "		SST / Basalt	147.7		10.1 6	08-12- 03	420	
	EW - I	73°21'30 "							15.54	
	Savli		2003- 04							
58	Vejpur	22°44'15 "		Basalt	202.6		6.78	19-12- 03	690	
	EW - I	73°21'15 "							2.29	
	Savli		2003- 04							