

केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report

on

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN

Washim District, Maharashtra

मध्यक्षेत्र, नागपुर Central Region, Nagpur

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, WASHIM DISTRICT, MAHARASHTRA (AAP 2018-19)

CONTRIBUTORS'

Principal Author						
Ms. Pournima Barahate	:	Jr. Hydrogeologist/Scientist-B				
Supervision & Guidance						
S. Bhattacharya	:	Regional Director				
Dr. P. K. Jain	:	Superintending Hydrogeologist				
Dr. Bhushan R. Lamsoge	:	Senior Hydrogeologist/ Scientist-D				
Hydrogeology, GIS maps and Mana	ger	nent Plan				
Sh. J. R. Verma	:	Scientist-D				
Dr. Bhushan R. Lamsoge	:	Senior Hydrogeologist/ Scientist-D				
Ms. Pournima Barahate	:	Jr. Hydrogeologist/Scientist-B				
V. Venkatesam	:	Senior Technical Assistant (HG)				
Groundwater Exploration						
V. Venkatesam	:	Senior Technical Assistant (HG)				
Ms. Pournima Barahate	:	Jr. Hydrogeologist/Scientist-B				
Chemical Analysis						
Dr. Devsharan Verma	:	Scientist B (Chemist)				
Dr. Rajni Kant Sharma	:	Scientist B (Chemist)				
T. Dinesh Kumar	:	Assistant Chemist				

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, WASHIM DISTRICT, MAHARASHTRA (AAP 2018-19)

1.	INTRODUCTION	1
1.1	About the study area	1
1.2	Geomorphology, Drainage and Soil Types	3
1.3	Climate and Rainfall	4
1.4	Geology	7
2.	HYDROGEOLOGY	8
2.1	Major Aquifer System	8
2.2	Aquifer Parameters	14
	2.2.1 Specific Yield Tests	. 14
2.3	Soil Infiltration Tests	14
2.4	3-D and 2-D Aquifer Disposition	15
3.	WATER LEVEL SCENARIO	. 18
3.1	Depth to water level (Aquifer-I /Shallow Aquifer)	18
	3.1.1 Depth to Water Level – Pre-monsoon (May-2018)	. 18
	3.1.2 Depth to Water Level – Post monsoon (Nov-2018)	. 18
3.2	Depth to water level (Aquifer-II / Deeper Aquifer)	19
	3.2.1 Pre-monsoon Depth to Water Level (May-2018)	. 19
~ ~	3.2.2 Post-monsoon Depth to Water Level (Nov2018)	. 19
3.3	Water Level Trend (2009-2018)	20
3.4	Hydrograph Analysis	22
4.	GROUND WATER QUALITY	. 24
4.1	Electrical Conductivity (EC)	24
	4.1.1 Distribution of Electrical Conductivity in Aquifer II / Deeper Aquifer:	. 24 25
1 2	A.1.2 Distribution of Electrical Conductivity in Aquilet-it / Deeper Aquilet	. 25 25
4.Z	Fluorido	20
4.5 1 1	Suitability of ground water for drinking purpose	20
4.4 1 C	Suitability of ground water for irrigation	20
4.5	Solicability of ground water for inigation	21
4.0	Social Absol priori Ratio (SAR)	20
4.7 5		29
J. 5 1	Ground Water Resources – Aquifer-I	·29
5.1	Ground Water Resources – Aquifer II	20
5.2 6	GROUND WATER RELATED ISSUES	30
6.1	Declining Water Levels	31
6.2	Rainfall and Droughts	31
7.	GROUND WATER MANAGEMENT PLAN	.32
7.1	Supply Side Management	32
7 2	Demand Side Management	35
73	Expected Benefits	35
7.5 7.4	Development Plan	35
8	SUM UP	.37
BI O	CK WISE AQUIEER MAPS AND MANAGEMENT PLAN	. 38

9.1 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, KARANJA BLOCK,	
WASHIM DISTRICT, MAHARASHTRA	39
9.2 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MALEGAON BLOCK,	
WASHIM DISTRICT, MAHARASHTRA	47
9.3 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MANGRULPIR BLOCK,	
WASHIM DISTRICT, MAHARASHTRA	55
9.4 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MANORA BLOCK,	
WASHIM DISTRICT, MAHARASHTRA	63
9.5 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, RISOD BLOCK,	
WASHIMDISTRICT, MAHARASHTRA	70
9.6 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, WASHIM BLOCK,	
WASHIMDISTRICT, MAHARASHTRA	77
PANCHAYAT LEVEL	85
AQUIFER MANAGEMENT PLAN	85
10.1 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGKA-1, PGD-1, P	G-8,
VILLAGE CHICHAMBA PEN, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA	86
10.2 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGD-1, VILLAGE	
DAPURI KH. RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA	92
10.3 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDSPGKA-1, VILLAGE	
GOWARDHAN, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA	98
10.4 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGKA-1 AND PGD	-1,
VILLAGE TIWALI, MALEGAON BLOCK, WASHIM DISTRICT, MAHARASHTRA	. 105
10.5 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGD-1, PGKA-1,	
VILLAGE WAGHI KH, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA	. 111
10.6 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGD-1, VILLAGE	
YEVATA, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA	. 118
ANNEXURES	. 125

LIST OF FIGURES

Figure 1.1. Administrative map of Washim District	2
Figure 1.2. An Index map of Washim District	3
Figure 1.3: Geomorphology Figure 1.4: Drainage	4
Figure 1.5: Soil Figure 1.6: Land Use	4
Figure 1.7: Isohyetal map of Washim District	5
Figure 1.8: Long term annual rainfall (1998-2018)	6
Figure 1.9: Geological Map with basaltic flowError! Bookmark not de	fined.
Figure 1.10: Soil Infiltration test	15
Figure 2.1- Hydrogeology	11
Figure 2.2: Aquifer wise Depth of occurrence and fractured rock thickness	12
Figure 2.3: Aquifer wise yield Potential	13
Figure 2.4 -3D Aquifer Disposition	15
Figure 2.5: 3D Fence Diagram	16
Figure 2.6: 3D Bar Diagram	16
Figure 2.7 (a): Lithological section along A – A'	17
Figure 2.7 (b): Lithological section along B – B'	17
Figure 2.7 (c): Lithological section along C – C'	17
Figure 2.7 (d): Lithological section along D – D'	17
Figure3.1: DTWL Aquifer-I Shallow aquifer(May 2018)	18

Figure 3.2: DTWL Aquifer-IShallow aquifer (Noember 2018)	19
Figure 3.3: DTWL Aquifer-II deeper aquifer (May 2018)	20
Figure 3.4: DTWL Aquifer-II deeper aquifer (Nov. 2018)	21
Figure3.5: Pre-monsoon decadal trend (Shallow aquifer) (2009-18)	21
Figure 3.7 a: Hydrograph (2008-18), Karanja, Karanja Block, WashimDistrict	22
Figure 3.7 b: Hydrograph (2008-18), Loni, Risod Block, Washim District	23
Figure 3.7 c: Hydrograph (2008-18), Washim, Washim Block, Washim District	23
Figure 3.7 d: Hydrograph (2008-18), Medshi, Malegon Block, Washim District	23
Figure 3.7 e: Hydrograph (2008-18), Wada, Mangrulpir Block, Washim District	24
Figure 4.1: Ground water quality, Aquifer-I / Shallow aquifer	25
Figure 4.2: Ground water quality, Aquifer-II/Deeper aquifer	26
Figure 7.1: Location of Proposed Artificial Recharge structures	34
Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation	36

LIST OF TABLES

Table 1.1: Long term (1998-2018) Rainfall Analysis, Washim district, Maharashtra	5
Table 1.2: Long term (1998-2018) Rainfall Analysis, Washim district, Maharashtra	6
Table 1.3: Generalized Geological sequence Washim district	7
Table 1.4: Salient Features of Infiltration Tests	. 14
Table 1.5: Salient features of pumping tests – shallow aquifer (dug well) using Kumarswal	my
method	. 14
Table 2.1: Aquifer Characteristic of Washim district	. 10
Table 4.1: Aquifer wise ranges of chemical constituents in Washimdistrict	. 24
Table 4.2: Concentration of Chemical constituents in aquifer-I/shallow Aquifer	. 27
Table 4.3: Concentration of Chemical constituents in Deeper Aquifer	. 27
Table 4.4: Classification of Ground water for Irrigation based on EC values	. 28
Table 4.5: Classification of Ground water for Irrigation based on SAR values	. 28
Table 4.6: Classification of Ground water for Irrigation based on RSC values	. 29
Table 5.1 Ground water resources, Aquifer-I (Shallow aquifer), Washimdistrict (2013)	. 29
(Values in ham)	. 29
Table 5.2: Ground Water Resources of Aquifer-II (Deeper aquifer)	. 30
Table 7.1: Area feasible and volume available for Artificial Recharge	. 32
Table 7.2: Proposed Artificial Recharge Structures	. 32
Table 7.3: Demand side interventions proposed	. 35
Table 7.4: Expected benefits after management options	. 35
Table 7.5: Block wise additional area under assured GW Irrigation	. 36

LIST OF ANNEXURES

Annexure-I: Salient Features of Ground Water Exploration, Washim District	. 126
Annexure-II: Details of KOWs in Washim district	. 129
Annexure-III: Details of GW monitoring wells in Washim district	. 134
Annexure IV: Soil Infiltration Test	. 136
Annexure-IV: Chemical analysis of ground water samples, Aquifer- I / Shallow aquifers	. 147
Annexure-V: Chemical analysis of ground water samples, Aquifer- II / Deeper aquifers	. 151

Annexure-VI: Water Level of Ground water monitoring wells (2018) with long te	erm trend
(2009-2018)	154
Annexure VII: Location of proposed Check dams in Washim district	158
Annexure VIII: Location of proposed Percolation tanks in Washim district	162

WASHIM DISTRICT AT A GLANCE

1. G	ENERAL INFORMATION		
	Geographical Area	:	5196 sq.km
	Administrative Divisions	:	6 (Washim, Risod, Manora, Malegaon,
	(2011)		Mangrulpir, Karanja)
	Villages	:	789
	Population (2011)	:	1197160 Lac
	Average Annual Rainfall	:	
	(2008-2017)		
	Rainfall	:	900-1000 mm
	Actual Rainfall 2018	:	783.10 mm
2. G	EOMORPHOLOGY		
	Major Physiographic unit	:	
	Major Drainage	:	Painganga river
			(Tributaries: Chandrabhaga, Katepurna,Uma,
			Bebla, Adan, Nigurna, Arunavati, Pus)
3. L/	AND USE (2016-17) (source: mal	has	db.maharashtra.gov.in/district Report)
	Forest Area	:	370.68 sq. km.
	Net Area Sown	:	3876.67 sq. km.
	Cultivable Area	:	4234.30 sq. km.
4.	SOIL TYPE	:	Medium black and Deep black soil.
5. P	RINCIPAL CROPS (2016-17)		
	Soyabean	:	2323.14sq. km.
	Cotton	:	669.78sq. km.
	Jowar	:	175.65 sq. km.
	Total Pulses	:	1151.27 sq. km.
		:	
IRRI	GATION BY DIFFERENT SOURCE	S (2	2016-17) –
Nos	. / Potential Created (ha)		
	Dugwells	:	14206/16546
	Minor Irrigation (ZP)	:	385/18061 ha
	Medium Irrigation		2/5585
	Net Irrigated Area	:	40192 ha
7. G	ROUND WATER MONITORING	WE	LLS (2018)
	Dugwells	:	39
	Piezometers	:	07
8. G	EOLOGY		
	Recent	:	Alluvium
	Upper Cretaceous-Lower	:	Deccan Trap Basalt
	Eocene		
9. H	YDROGEOLOGY		
	Water Bearing Formation	:	Basalt- weathered/fractured/ jointed
			vesicular/massive, under. phreatic and semi-
		1	confined to confined conditions. Alluvium-

		Sand and Gravel under phreatic and semi-
		confined to confined conditions.
Pre-monsoon Depth to	:	3.2 mbgl (Jamkheda)-40.0 mbgl(Manora)
Water Level (May-2018)		
Post-monsoon Depth to	:	1.8 mbgl (Jamkheda)- 11.5 mbgl (Shirpur)
Water Level (Nov2018)		
Pre-monsoon Water Level	:	Rise : 0.016 m/yr (Kenwad)-0.467 m/yr
Trend (2008-2017)		(karanja)
		Fall : 0.050 m/yr (Loni) – 4.356 m/yr (Manora)
Post-monsoon Water Level	:	Rise : 0.0167 m/yr (Sakhar Doha) – 0.732 m/yr
Trend (2008-2017)		(karanja)
		Fall : 0.0163 m/yr (Risod)-0.467 m/yr (Rithad)
10. GROUND WATER EXPLORATION	I (N	1arch, 2018)
Wells Drilled		EW-28, OW-12, Pz-6
Depth Range	:	30.00 to 208.65 m bgl
Discharge	•••	0.025 – 9.84 lps
Storativity	:	3.1 x 10 ⁻³ to 6.6 x 10 ⁻⁶
Transmissivity	:	8.10 to 1638.73 m ² /day (Basalt)
11. GROUND WATER QUALITY		
Good and suitable for drinking	an	d irrigation purpose, however localized nitrate
contamination is observed.		
Type of Water		Ca-Cl and Ca-HCO ₃
12. DYNAMIC GROUND WATER RES	OU	IRCES(ham)- (2013)
Net Annual Ground Water Availability	:	57053.45
Total Draft (Irrigation +	:	21788.94
Domestic+ Industrial)		
Projected Demand	:	3230.75
(Domestic + Industrial)		
Stage of Ground Water	:	38.19
Development		
Overall Category		Safe
16. MAJOR GROUND WATER PROBL	.EN	IS AND ISSUES
Ground water quality is advers	ely	affected by nitrate contamination.
Declining water level trend bot	th p	pre-monsoon and post-monsoon

AQUIFER MAPS AND GROUND WATER MANAGEMENT PLANS, WASHIM DISTRICT, MAHARASHTRA

1. INTRODUCTION

National Aquifer Mapping (NAQUIM) has been taken up in XII five year plan by CGWB to carry out detailed hydrogeological investigation on toposheet scale of 1:50,000. The NAQUIM has been prioritized to study Over-exploited, Critical and Semi-Critical blocks as well as the other stress areas recommended by the State Govt. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once ample alluvial aquifers, lack of regulation mechanism has a negative effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely mapping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the Administration of Washim district, Maharashtra for its effective implementation.

The activities under NAQUIM are aimed at:

- Identifying the aquifer geometry,
- Aquifer characteristics and their yield potential
- Quality of water occurring at various depths,
- Aquifer wise assessment of ground water resources
- Preparation of aquifer maps and
- 🖊 🔰 Formulate ground water management plan

1.1 About the study area

Washim district is one of the eleven districts of Vidarbha Region and is located in the eastern region of Vidharbha of Maharashtra State. Washim district was formed on 1 July 1998. Washim was once known as Vatsagulma, the capital of the Vatsagulma line of Vakataka dynasty. In the year 1905 during the period of the British Raj Washim district was bifurcated into two separate districts, namely, Akola District and Yavatmal District. It again became a district in 1998. The district headquarters is located at Washim town. This district is divided into 3 sub-divisions, namely, Washim, Mangrulpir and Karanja. These are further divided into 6 talukas.

The talukas are Malegaon, Mangrulpir, Karanja, Manora, Washim and Risod. Washim is located in the eastern part of Vidharbha. Akola on its north, Amravati in the northeast, Hingoli is on the south, Buldhana is on the west, Yavatmal is on the east. The river Penganga is the main river in the district. It flows through the tehsil of Risod. Later flowing through the boundaries of Washim and Hingoli districts Kasa is the main tributary of

Panganga. The area of Kas River is about 1 km from the village of Sheelgaon Rajgure. Arunavati River and its suburbs originate in Washim taluka and flow through Mangrulpir and Manora talukas in Yavatmal district. The origin of the Katepuna River is in the hills of the district and, it travels north to Akola district through the Tehsil.

Washim district has been taken up under NAQUIM study during the year 2018-19. The total area of the district is about 5,150 sq. km. The district is categorized as safe as per Ground Water Resources Estimation as on March 2013. The Administrative and Index map of the study area is presented in **Figure 1.1 (a & b).** Central Ground Water Board has taken up several studies in the district since 1982 to 2003 including Systematic Hydrogeological Survey, Reappraisal Hydrogeological Studies, etc. The data generated have been shared with the Central, State agencies as well as with the stake holders in the form of reports, maps etc.

Figure 1.1. Administrative map of Washim District

Figure 1.2. An Index map of Washim District

1.2 Geomorphology, Drainage and Soil Types

The district forms part of Deccan Plateau with slope towards southeast from Sahayadri hills and has a varied topography consisting of hills, plains and undulating topography near riverbanks. The district forms a part of Godavari and Tapi basins. The Balaghat Plateau comprises of low-lying hills forming water divide. Many of the tributaries to Godavari and Tapi rivers originate from the Balaghat Plateau. Penganga River is the main river flowing through the district. Other rivers are Adol, Aran, Kapsi, Nirguna and Mun. Based on geomorphological setting and drainage pattern, the district is divided into 36 watersheds. The soil of the district is basically derived from Deccan Trap Basalt and major part of the district is occupied by medium black soil of 25-50 cm depth occurring in the plains in entire south western, north eastern and northern parts of the district, whereas the shallow black soil of 7.5 to 25 cm depth occur in restricted hilly parts of the district in central elongated part and the northern peripheral part.

Figure 1.3: Geomorphology

Figure 1.4: Drainage

Figure 1.6: Land Use

1.3 Climate and Rainfall

The climate of the district is characterized by a hot summer and general dryness throughout the year except during the south-west monsoon season, i.e., June to September. The mean minimum temperature is 12.1°C and mean maximum temperature is 42.8°C. May is the hottest month. With the arrival of south-west monsoon in the district by around mid-June there is an appreciable drop in the day temperature and the weather becomes pleasant. With the withdrawal of the monsoon by the end of September day temperatures rise a little in October. Both day and night temperatures begin to drop rapidly by November. December is the coldest month with the mean daily minimum and maximum temperatures at 11.18°C and 30.02°C respectively.

CGWB, CR, Nagpur

Rainfall is not uniform in all the blocks of the district. The district normal rainfall for the year is 924.3 mm. The decadal average rainfall for the district ranges from 591.5 mm (2017) to 1334.7 mm (2002). District decadal average rainfall for the period 1998-2018 is presented in **Table 1** and depicted in **Figure 1.8.** The long term rainfall analysis (1998-2018) is presented in **Table 2**.

Figure 1.7: Isohyetal map of Washim District

Table 1.1: Long term ((1998-2018) Rainfall Analysis,	, Washim district, Maharashtra
------------------------	--------------------------------	--------------------------------

YEAR	AVERAGE	NORMAL	DEPARTURE	CATEGORY
	Rainfall (mm)	Rainfall (mm)	(%)	
1998	1039.6	924.3	12.47	NORMAL
1999	1039.6	924.3	12.47	NORMAL
2000	607.4	924.3	-34.28	MODERATE
2001	919.3	924.3	-0.54	NORMAL
2002	1334.7	924.3	44.40	EXCESS
2003	819.4	924.3	-11.34	NORMAL
2004	635	924.3	-31.29	MODERATE
2005	975.8	924.3	5.57	NORMAL
2006	1188.4	924.3	28.57	EXCESS
2007	830.4	924.3	-10.15	NORMAL
2008	659.6	924.3	-28.63	MODERATE
2009	634.6	924.3	-31.34	MODERATE
2010	1072.7	924.3	16.05	NORMAL

2011	726.8	924.3	-21.36	NORMAL
2012	846.6	924.3	-8.40	NORMAL
2013	846.6	924.3	-8.40	NORMAL
2014	607.2	924.3	-34.30	MODERATE
2015	758.5	924.3	-17.93	NORMAL
2016	905.9	924.3	-1.99	NORMAL
2017	591.5	924.3	-36.00	MODERATE
2018	783.1	924.3	-15.27	NORMAL

(Source-website of Maharashtra Government: mahaagri.gov.in)

Table 1.2: Long term (1998-2018) Rainfall Analysis, Washim district, Maharashtra

Period	1998 to 2018		
No. of years	21		
Normal rainfall	924.3	Mea	n : 848.7
Standard deviation	204.63 mm	Med	ian : 830.4
Coefficient of variation	24.1 %	Mod	e : 1039.6
Slope	-12.847 mm/year	No o	f years:21
Intercept	990.02		
Equation of trend line	y = -12.847x + 990	.02	
CATEGORY	NUMBER OF YE	ARS	% OF TOTAL YEARS
DEPARTURES			
POSITIVE	6		29
NEGATIVE	15		71
DROUGHTS			
MODERATE	6		29
SEVERE	0		0
ACUTE	0		0
NORMAL & EXCESS R/F			
NORMAL	13		62
EXCESS	2		9

Figure 1.8: Long term annual rainfall (1998-2018)

1.4 Geology

Geologically, the area is occupied by Recent River Alluvium and Basaltic lava flows known as Deccan Traps belonging to Cretaceous to Eocene (68-62 m.y.), with patches of inter-trappean beds. The generalized geological sequence occurring in the area is given in **Table 1.3** and the geological map is shown in **Figure 1.9**.

Figure 1.9a: Geological Map, Washim district

Alluvium:

The alluvium cover deposited during Recent to Quaternary period is restricted to the banks of Penganga River and comprises of sand, silt, clay and gravels.

Table 1.3: Generalized Geological sequence Washim district

Age	Formation	Lithology
Recent-Quaternary	Alluvium	Sand, silt and Gravel
Eocene-Upper Cretaceous	Deccan trap Volcanic lava	Basalt
	flows with inter-trappean	
	beds.	

Deccan Trap Basalt:

Deccan trap basalts of Upper Cretaceous- Eocene period occupy almost 100% area of the district. The Basaltic lava flow comprises of two types of flows viz., "Pahoehoe" flows and "aa" flows. "Pahoehoe" flows are compound flows with several unit of varied thickness from a meter to several meters thick. Each unit shows a basal section massive Basalt followed by vesicular Basalt in the upper unit. The vesicles are spherical and filled with zeolites, cherts or quartz. The "Pahoehoe" flow is generally altered and shows grey, purple and red colors. Upper surface of "Pahoehoe" flow is reddish and shows curved or twisted rope like structures.

The other type of flow, which is at basal section, has a thin layer of clinker block of vesicular trap cemented in glass, zeolite or pulverised rock. Mainly the flow comprises of dark grey massive Basalt, flow breccia, consisting of sub-rounded zeolites and pulverised rock at the top. Top surface of "aa" flows shows elongated or twisted vesicles filled with zeolite, quartz or chert. In "aa" flows massive Basalt is hard, resistant and shows spheroidal weathering while the brecciated Basalt weathers deeply.

2. HYDROGEOLOGY

Basalt forms the main aquifers in the district. Based on the existing data and the data generated it is observed that there is two aquifer Systems in Basalt prevailing in the district.

2.1 Major Aquifer System

Deccan Traps occurs as Basaltic lava flows, which are normally horizontally disposed over a wide stretch and give rise to tableland type of topography, on weathering also known as plateau. These flows occur in layered sequence ranging in thickness from few metres to 50 m. Flows are represented by massive portion at bottom and vesicular portion at top and are separated from each other by marker bed known as bole bed.

Ground water in Deccan Trap Basalt occurs under phreatic and semi-confined conditions. The weathered and fractured trap occurring in topographic lows form the main aquifer in the district. The vesicular portion of different lava flow varies in thickness from 8 to 10 m and forms the potential zones.

Deccan Trap Basalt of upper Cretaceous to lower Eocene age is the major rock formation in the district covering entire district. Although, Alluvium occurs along the major river in the district but it does not form potential aquifer except locally. A map depicting hydrogeological features is presented in **Figure 2.1**.

Deccan basalts are hydro geologically in-homogeneous rocks. The weathered and jointed /fractured parts of the rock constitute the zone of ground water storage and flow. The existence of multiple aquifers is characteristic of basalt and is indicative of wide variation in the joint/fracture pattern and intensity. The yield of wells is function of the permeability and transmissivity of aquifer and it depends upon the degree of weathering, intensity of joints\fractures and topographic setting of the aquifer. Due to wide variation in secondary openings, the potential areas for ground water are generally localized. In general Ground water occurs under phreatic/unconfined to semi-confined conditions in basalts. Shallow Aquifer is generally tapped by the dug wells of 5 to 35 m depth, water levels range from 3 to 21 m bgl and yield varies from 10 to 100 m³/day. The deeper Aquifer is being tapped by borewells with depth 40 m bgl and the water level from 8 to 11 m bgl. Based on Ground Water Exploration, aquifer wise characteristics are given in **Table 2.1.** Maps depicting aquifer wise depth of occurrence and fractured/granular zone's thickness and yield potential are shown in **Figure 2.2 and 2.3** respectively.

The occurrence of red bole beds plays major role in local hydrogeological conditions. It is observed that in Washim district red bole encountered different depth ranes as shown in following table.

S.	Village	Taluka	Depth Range of Red	Thickness of Red Bole
no.			Bole	
1	Kinhiraja	Malegaon	102.00-111.30 m bgl	9.3 m
2	Dhanora Kh.	Mangrulpir	187.50-188.50 m bgl	1.00 m
3	Dapuri	Risod	111.30-112.30 m bgl	1.00 m
4	Pangarkhed	Malegaon	93.00-102.10 m bgl	9.1 m

Contacts: Basalt flows and red bole, near village Girda, Karanja Block/taluka, Washim District

Red bole encountered (93 to 102 m bgl) at EW at Pangarkhed, Malegaon Taluka, Washim district

Major Aquifer	Basalt (Deccan Traps)					
Type of Aquifer	Aquifer-I	Aquifer-II				
Formation	Weathered/Fractured Basalt	Jointed / Fractured Basalt				
Depth of Occurrence (mbgl)	8 to 18	70 to 194				
SWL (mbgl)	2.1 to 25	9.0 to 90				
Weathered / Fractured rocks thickness	5 to 14	0.5 to 12				
(m)						
Fractures encountered (mbgl)	Upto 25	Upto 165				
Yield	10 to 100 m ³ /day	10 to 100 lpm				
Sustainability	1 to 3 hrs	0.5 to 3 hrs				
Transmissivity (m ² /day)	30 to 131.80 m ² /day	25 to 210 m ² /day				
Specific Yield/ Storativity (Sy/S)	0.018 % to 0.05%	1.2 x104 to 3.57 X 104				
Suitability for drinking/ irrigation	Suitable for both (except high EC and Nitrate affected					
	villages) drinking & agriculture	2				

Table 2.1: Aquifer Characteristic of Washim district

Figure 2.1- Hydrogeology

Figure 2.2: Aquifer wise Depth of occurrence and fractured rock thickness

Figure 2.3: Aquifer wise yield Potential

2.2 Aquifer Parameters

Aquifer parameters are available from historic data of ground water exploration carried out in the district as well as from the pumping tests. Pumping tests conducted on wells in the district show that transmissivity of shallow aquifer in basalts ranges from 30 to $80 \text{ m}^2/\text{day}$, specific capacity of wells ranges from 75 to 200 lpm/m. with an average of about 110 lpm/m. The specific capacity of wells and transmissivity in alluvium ranges from 130 to 2050 lpm/m and 120 to 210 m³ / day respectively. On an average, specific yield of basalt aquifers comes to be only 2%.

2.2.1 Specific Yield Tests

To estimate the aquifer parameters of shallow aquifer (Aquifer-I) in the area, 2 pumping tests on open dug wells have been conducted during the year 2018-19. The data has been analyzed by Kumarswamy method. The salient features of pumping tests are given in **Table 2.2**. The discharge of the wells ranged from 240 to 300 lpm for pumping duration of 60 to 120 minutes.

The drawdown observed at the end of the pumping ranged from 1.6 to 2.8 m and the residual drawdown for the 1st minute was observed to be ranging from 0.3 to 0.2 m. The aquifer parameter values estimated by Kumarswamy method are observed to be well within the general range of values for weathered and jointed basalt i.e., the transmissivity value was observed from 31.73 to 131.80 m²/day, whereas the specific yield 0.018 % to 0.05 %, whereas specific capacity values ranged from 150 to 107.14 lpm/m.

Table 2.2: Salient features of pumping tests – shallow aquifer (dug well) usingKumarswamy method

S. No.	Village	Diameter (m)	Depth (mbgl)	SWL (mbgl)	Q (lpm)	Pt (min)	DD (m)	RDD (m)	C (lpm/m)	T m2/day	Sy
1	Dapuri kh.	5.7	17.2	11.1	240	60	1.6	0.3	150.00	31.73	0.018
2	Wasari	5.5	20	12.3	300	120	2.8	0.2	107.14	131.80	0.05

Here, SWL – Static Water Level, Q – Discharge, Pt - Pumping duration, D/D – Drawdown, RDD - Residual drawdown, C - Specific Capacity, T – Transmissivity, Sy - Specific Yield

2.3 Soil Infiltration Tests

To estimate the actual rate of infiltration of various soil cover and their impact on recharge to ground water, 6 infiltration tests have been conducted at Risod, Borhala phata, Chehel, Nagartas, Dadgaon and Loni Arab in various soil types. The data has been analyzed and the salient features of the infiltration tests are presented in **Table 2.3**, whereas the data is presented in **Annexure-VI** and the plots of soil infiltration tests are presented in **Figure 2.4**. The duration of the test ranged from 90 to 140 minutes, the depth of water infiltrated varied from 0.10 cm to 0.60 cm and the final infiltration rate in the area ranged from 0.60 cm/hr at Loni Arab to 3.60 cm/hr at Borhala phata.

S.	Village	Date	Duration	Water Level	Final Infiltrated	Final Infiltration
No.			(min)	(cm agl)	Water Depth (cm)	Rate (cm/hr)
	Borhala phata	12.02.2019	140	29.40	0.60	3.60
	Risod	13.02.2019	110	29.70	0.30	1.80
	Chehel	14.02.2019	100	29.80	0.20	1.20
	Nagartas	14.02.2019	90	29.70	0.30	1.80
	Dadgaon	15.02.2019	100	29.50	0.50	3.00
	Loni Arab	15.02.2019	100	29.90	0.10	0.60

Table 2.3: Salient Features of Infiltration Tests

Figure 2.4: Soil Infiltration test

2.4 3-D and 2-D Aquifer Disposition

Based on the existing data, aquifer disposition in 3D, Fence diagram, 3D Bar diagram and few hydrogeological sections have been prepared along section lines shown in **Figure 2.5, 2.6, 2.7 and 2.8 (a to d)** to understand the subsurface disposition of aquifer system.

Figure 2.5 - 3D Aquifer Disposition

Figure 2.6: 3D Fence Diagram

Figure 2.7: 3D Bar Diagram

Figure 2.8 (a): Lithological section along A – A'

Figure 2.8 (b): Lithological section along B – B'

Figure 2.8 (c): Lithological section along C – C'

Figure 2.8 (d): Lithological section along D – D'

3. WATER LEVEL SCENARIO

3.1 Depth to water level (Aquifer-I /Shallow Aquifer)

Central Ground Water Board periodically monitors 46 Ground Water Monitoring Wells (GWMWs) including 39 dugwells and 7 piezometers in the Washim district, four times a year i.e. in January, May (Pre-monsoon), August and November (Post-monsoon). Apart from this under NAQUIM study; 113 KOW were also established and monitored during the year 2018. These data have been used for preparation of depth to water level maps of the district. Pre-monsoon and post-monsoon water levels along with long-term water level trends (2009-2018) are given in **Annexure-VI**.

3.1.1 Depth to Water Level – Pre-monsoon (May-2018)

The depth to water levels in aquifer-I(Shallow aquifer) Washim district during May 2018 ranges between 2.9 mbgl (Kokalgaon, Washim block) and 21.9 mbgl (Govardhan, Risod block). The depth to water levels between 5 to 10 and 10 to 20 mbgl are observed in entire district covering all the blocks. The Deeper water levels i.e., 20 to 30 mbgl are observed as isolated patches, in almost all the blocks. The pre-monsoon depth to water level map is depicted in **Figure 3.1**.

3.1.2 Depth to Water Level – Post monsoon (Nov-2018)

The depth to water levels in Washim district during Nov. 2018 ranges between near ground level / 0.9 mbgl at Dhodap Bk., and Wanoja Risodbock and 15.23 mbgl (Hisai, Mangrulpir Block). Shallow water levels within 5 m bgl observed in entire district covering all blocks and moderate water level 5 to 10 mbgl are observed in North-East and North-West parts and in patches in East and South-West parts of the district. Deeper water levels 10 to 20 m bgl are observed as small isolated patch in Mangrulpir and Risod blocks. Spatial variation in post-monsoon depth to water levels is shown in **Figure 3.2**.

Figure 3.1: DTWL Aquifer-I Shallow aquifer (May 2018)

Figure 3.2: DTWL Aquifer-I(Shallow aquifer (November 2018)

3.2 Depth to water level (Aquifer-II / Deeper Aquifer)

3.2.1 Pre-monsoon Depth to Water Level (May-2018)

In Aquifer-II (Deeper Aquifer), the pre-monsoon depth to water levels, in Washim District during May 2018, range from 15.00 (Sendurjana, Manora block) to 100 mbgl (Dhanora Kh., Mangrulpir block). The depth to water level less than 20 mbgl is observed only in some parts of Manora, Washim, Malegaon, Mangrulpir and Karanja blocks. The major parts of the district show depth to water level between 20 and 40 mbgl. The deeper water level between 40 and 50 mbgl are observed in Washim, Mangrulpir, Risod and Karanja blocks. The deepest water level (>50 mbgl) has been observed in isolated parts of Washim, Mangrulpir, Risod and Karanja blocks of the district. This may be due to overexploitation of ground water. The pre-monsoon depth to water level for Aquifer -II is given in **Figure 3.3**.

3.2.2 Post-monsoon Depth to Water Level (Nov.-2018)

In Aquifer-II, the post-monsoon depth to water levels in Washim District during Nov. 2018 range between 2.00 (Haral, Risod block) and 53.00 mbgl (Dhanora Kh., Mangrulpir block). Depth to water level less than 10 m bgl has been observed in central part of the district covering parts of Washim, Malegaon, Mangrulpir and Manora blocks also in some parts in Northeast and Southwest parts of the district. The major part of the district shows deeper water levels ranging between 10 and 20 mbgl. The deepest water level of more than 20 mbgl upto 50 mbgl are observed in isolated patches in Karanja, Malegaon, Risod and Mangrulpir blocks. The deepest water level more than 50 mbgl is observed in an isolated patch in Mangrulpir block. The post-monsoon depth to water level for Aquifer –II is given in **Figure 3.4**.

3.3 Water Level Trend (2009-2018)

During pre-monsoon, rise in water level trend has been recorded at 58 stations and ranges from 0.016 (Karli, Manora block) to 2.212 m/year (Agarwadi, Manora block) while falling trend was observed in 22 stations varying from 1.524 (Medshi, Malegaon block) to 0.020 m/year (Kherda Bk., Karanja block). During pre-monsoon, declining water level trend has been observed in area covering almost all blocks. Rise in water level trend has been observed in area covering small parts of Risod, Malegaon, Karanja and Manora blocks of the district (Figure 3.5).

During post-monsoon, rise in water level trend has been recorded at 41 stations and it ranges between 0.018 m/year (Tondgaon, Washim block) to 0.585(Washim, Washim block) while falling trend was observed in 39 stations varying from 1.454 (Mohjaba, Risod block) to 0.011 m/year (Kekatumra, Washim block). Rising water level trend has been observed in covering major parts of Risod , Malegaon and MAnora blocks of the district while small areas of Washim, Mangrulpir and Karanja blocks.Fall in water level trend has been observed in the central, Western and North east parts of the district covering major pats of Washim, Mangrulpir, Malegaon and Karanja also small portion of the Manora and Risod blocks(Figure 3.6).

Figure 3.3: DTWL Aquifer-II deeper aquifer (May 2018)

Figure 3.4: DTWL Aquifer-II deeper aquifer (Nov. 2018)

Figure 3.5: Pre-monsoon decadal trend (Shallow aquifer) (2009-18)

Figure 3.6: Post-monsoon decadal trend (Shallow aquifer) (2009-18)

3.4 Hydrograph Analysis

The variation in short term and long-term water level trends may be due to variation in natural recharge due to rainfall and withdrawal of groundwater for various agricultural activities, domestic requirements and industrial needs. The analysis of hydrographs show that the annual rising limbs in hydrographs indicate the natural recharge of groundwater regime due to monsoon rainfall, as the monsoon rainfall is the sole source of natural recharge to the ground water regime (**Figure 3.7 a to 3.7 f**). However, continuous increase in the groundwater draft is indicated by the recessionary limb.

Figure 3.7 a: Hydrograph (2008-18), Karanja, Karanja Block, Washim District

Figure 3.7 b: Hydrograph (2008-18), Loni, Risod Block, Washim District

Figure 3.7 c: Hydrograph (2008-18), Washim, Washim Block, Washim District

Figure 3.7 d: Hydrograph (2008-18), Medshi, Malegon Block, Washim District

Figure 3.7 e: Hydrograph (2008-18), Wada, Mangrulpir Block, Washim District

4. GROUND WATER QUALITY

Water sampling is being done every year from GWM wells during pre-monsoon period (May). The data gap analysis has been carried out to find out the adequacy of information on water quality. To decipher the ground water quality scenario, 131 samples from aquifer-I / shallow aquifer and 86 from aquifer – II / deeper aquifers have been utilised including monitoring wells/exploratory wells, tubewells/borewells of CGWB and GSDA; data from earlier studies. The aquifer wise ranges of different chemical constituents present in ground water are given in **Table 4.1**. The details of chemical analysis are given in **Annexure VI and VII**.

Constituents	Aquife	r-I / Shallow a	aquifer	Aquifer-II / Deeper aquifer		
	Min	Max	Avg.	Min	Max	Avg.
рН	6.7	9.6	7.7	6.6	10.9	7.9
EC	354	2650	930	384	2650	929
TDS	187	1800	546.11	254	1800	563
ТН	104	844	343.3	75	680	285
Са	6.4	233	63.91	6.4	126	32
Mg	2.4	142.9	44.4	2.0	142.9	50
Na	8	368	46.9	8.0	294	72
К	0.1	121	9.2	0.1	195	11.2
CO3	0.1	57.6	2.8	0.1	57.6	5
HCO3	34.2	613	227.6	31.0	561.2	189
Cl	11	365	99	18	404	114
SO4	4	235	52.429	4	244	53
NO3	0.5	320	39.418	1.7	434	39.63
F	0.05	6	0.4	0.01	6	0.55
Fe	0.1	0.3	0.1	0.1	0.3	0.08

Table 4.1: Aquifer wise ranges of chemical constituents in Washim district

4.1 Electrical Conductivity (EC)

4.1.1 Distribution of Electrical Conductivity in Aquifer-I / Shallow Aquifer:

The concentration of EC in shallow aquifer varies between 354 (Bitoda, Washim block) and 2650μ S/cm (Netansa, Risod block). Out of 132 samples collected from dug wells, 5

samples are having EC in range of 2000 to 3000 μ S/cm observed in 22.05 sq km area.EC in the range 250-750 μ S/cm covering 1500 sq km area in major parts of Washim, Manora and Karanja blocks and small parts of Risod, Malegaon & Mangrulpir blocks. The ground water is potable.EC in the range 750-2250 μ S/cm covering 3635 sq.km area in covering almost all blocks of the district. The distribution of electrical conductivity in aquifer – I / shallow aquifers is shown in **Figure 4.1**.

Figure 4.1: Ground water quality, Aquifer-I / Shallow aquifer

4.1.2 Distribution of Electrical Conductivity in Aquifer-II / Deeper Aquifer:

The concentration of EC in deep aquifer varies between 384 (Zodga, Malegaon block) and 2650 μ S/cm (Netansa, Risod block). Out of 86 samples collected from tube wells/bore wells, 2 samples are having EC in range of 2000 to 3000 μ S/cm observed in 19.91 sq km area in Risod block. EC in the range 250-750 μ S/cm covering 1234 sq km area in major parts of Washim, Manora, Malegaon and Karanja blocks and small parts of Risod and Mangrulpir blocks. The ground water is potable.EC in the range 750-2250 μ S/cm covering 3904 sq.km area in covering almost all blocks of the district. The distribution of electrical conductivity in aquifer – I / shallow aquifers is shown in **Figure 4.1**.

4.2 Nitrate

Nitrogen in the form of dissolved nitrate nutrient for vegetation, and the element is essential to all life. The major contribution in ground water is from sewage, waste disposal, nitrate fertilizer and decaying of organic matter. As per BIS (2012) the desirable limit is 45 mg/l. In aquifer – I / shallow aquifer, nitrate concentration varies between 0.5 to 320 mg/l. Out of 131 samples40 water samples show the nitrate concentrations exceeding the

desirable limit of 45 mg/l (**Figure 4.1**). The high concentration of Nitrate may be due to domestic waste and sewage in the urban and rural parts of district. In aquifer – II / deeper aquifer, nitrate concentration varies between 1.7 to 434 mg/l. Out of 86 samples analyzed 18 water samples show nitrate concentration exceeding the desirable limit of 45 mg/l (**Figure 4.2**). The deeper aquifer affected by nitrate contamination may be due to percolation of nitrate contaminants from the ground surface as there are no other reasons for nitrate contamination in deeper aquifers.

4.3 Fluoride

In aquifer – I / shallow aquifer, concentration of fluoride ranges from 0.05 to 6.0 mg/l. Out of 132 samples were analyzed, only two samples show fluoride concentration more than 1.5 mg/l. The highest concentration of fluoride is found in Panvihir village, Karanja block (6.0 mg/l). In aquifer – II / deeper Aquifer, concentration of fluoride ranges from 0.01 to 6.0 mg/l. Out of 86 samples analyzed, three samples show fluoride concentration more than 1.5 mg/l. The highest concentration of fluoride is found in Panvihir village, Karanja block (6.0 mg/l). The highest concentration of fluoride is found in Panvihir village, Karanja block (6.0 mg/l), it may due to the lithological reason only.

4.4 Suitability of ground water for drinking purpose

In aquifer-I / shallow aquifer, Ca, Mg, NO_3 &TH is found beyond the maximum permissible limit while most of the parameters as within MPL (**Table 4.2**). About 1 % of samples have fluoride concentration above the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment. For rest of the area ground water quality is good and fit for drinking purpose except few locations.

Figure 4.2: Ground water quality, Aquifer-II/Deeper aquifer

Parameter Drinking water			Total no	Aquifer-I/Shallow aquifer							
	Standar	ds	of ground	Samples	Samples		amples Samples			Samples	
	(15-1050	0-2012)	water	(<dl)< th=""><th>1</th><th>(DL-M</th><th>PL)</th><th>(>MPL)</th><th>1</th></dl)<>	1	(DL-M	PL)	(>MPL)	1		
	DL	MPL	samples	No	%	No	%	No	%		
рН	6.5-8.5	-	131	0	0	98	74.81	16	12.21		
TDS	500	2000	131	67	51.15	57	43.51	0	0.00		
TH	300	600	131	59	45.04	62	47.33	10	7.63		
Ca (mg/L)	75	200	131	86	65.65	44	33.59	1	0.76		
Mg (mg/L)	30	100	131	45	34.35	80	61.07	6	4.58		
Cl (mg/L)	250	1000	131	123	93.89	8	6.11	0	0.00		
SO ₄ (mg/L)	200	400	131	129	98.47	2	1.53	0	0.00		
NO ₃ (mg/L)	45	No	131	92	70.23	-	-	39	29.77		
		relaxati									
		on									
F (mg/L)	1	1.5	131	125	95.42	4	3.05	2	1.53		

Table 4.2: Concentration of Chemical constituents in aquifer-I/shallow Aquif
--

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

Likewise, in aquifer-II / deeper aquifer, TH, NO_{3} , & Mg found more than maximum permissible limit (MPL) and about 3 % of samples have fluoride concentration above the MPL. The water from such area is not fit for drinking purpose if directly consumed without treatment (**Table 4.3**). For rest of the area ground water quality is good and fit for drinking purpose except few locations.

Parameter	Drinking water		Total no of	Aquifer-II/Deeper aquifer							
	Standards (IS-10500-2012)		Standards ground		Sar	Samples		nples	Samples		
	DL	MPL	samples	No	%	No	%	No	%		
рН	6.5-8.5	-	86	0	0.00	67	77.91	19	22.09		
TDS	500	2000	86	40	46.51	44	51.16	0	0.00		
TH	300	600	86	58	67.44	25	29.07	3	3.49		
Ca (mg/L)	75	200	86	85	98.84	1	1.16	0	0.00		
Mg (mg/L)	30	100	86	21	24.42	60	69.77	5	5.81		
Cl (mg/L)	250	1000	86	80	93.02	6	6.98	0	0.00		
SO ₄ (mg/L)	200	400	86	84	97.67	2	2.33	0	0.00		
NO ₃ (mg/L)	45	No	86	68	70 07			10	20 02		
		relaxation		08	79.07	-	-	10	20.93		
F (mg/L)	1	1.5	86	71	82.56	3	3.49	3	3.49		

Table 4.3: Concentration of Chemical constituents in Deeper Aquifer

(Here, DL- Desirable Limit, MPL- Maximum Permissible Limit)

4.5 Suitability of ground water for irrigation

The quality of Irrigation water affects the productivity, yield and quality of the crops. The quality of irrigation water depends primarily on the presence of dissolved salts and their concentrations. The Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) are the most important quality criteria, which asses the water quality and its suitability for irrigation.

Electrical Conductivity (EC)

The amount of dissolved ions in the water is represented by the electrical conductivity. As discussed in 4.1 with reference to Figure 4.2 & 4.3, the classification of water for irrigation based on the EC values is given in Table 4.4 and discussed as follows: -

Low Salinity Water (EC: 100-250 μ S/cm): This water can be used for irrigation with most crops on most soils with little likelihood that salinity will develop.

Medium Salinity Water (EC: 250 – 750 μ S/cm): This water can be used if moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control.

High Salinity Water (EC: 750 – 2250 \muS/cm): This water cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very High Salinity Water (EC: >2250 μ S/cm): This water is not suitable for irrigation under ordinary condition. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching and very salt tolerant crops should be selected.

In aquifer-I/shallow aquifer as well as in aquifer-II/deeper aquifer, maximum numbers of samples fall under the category of medium to high to high salinity type of water. While the areas with very high salinity prevails (>2250 μ S/cm), very high salt tolerant crops and with proper soil and crop management practices are recommended (**Figure 4.1 & 4.2**).

S.	Water Quality Type	EC in	Aquifer-I / sha	llow aquifer	Aquifer-II / Deeper Aquifer		
NO		μS/cm	No. of Samples	% of samples	No. of samples	% of samples	
1	Low Salinity Water	< 250	0	0	0	0	
2	Medium Salinity Water	>250-750	56	42.74	30	34.89	
3	High Salinity Water	>750- 2250	73	55.73	54	62.79	
4	Very High Salinity Water	> 2250	2	1.53	2	2.32	
Total			131	100	86	100	

 Table 4.4: Classification of Ground water for Irrigation based on EC values

4.6 Sodium Absorption Ratio (SAR)

Excess of sodium in water render it unsuitable for irrigation on soil containing exchangeable Calcium and Magnesium ions. Soil containing exchangeable Calcium and Magnesium takes up sodium of irrigation water in exchange for Calcium and Magnesium, the ratio reflects the Sodium hazard. The SAR indicates the relative activity of the Sodium ions in exchange reactions with the soil. The main problem with high sodium concentration is its effect on soil permeability; hardening of soil & water irrigation system. Sodium also contributes directly to the total salinity of the water and may be toxic to sensitive crops such as fruit trees. The higher value of SAR indicates soil structure damage.

In aquifer-I /shallow aquifer, 100 % of samples falls in 'Good' category While 99 % samples from aquifer-II/deeper aquifer falls in Good category and only 1% samples falls in good to permissible category whereas no sample fall in bad category. The classification of ground water samples based on SAR values for its suitability for irrigation purpose is shown in **Table 4.5**.

Characteristics	Total SAR value								
	Number of	< 10 Good		10-18 Good to Permissible		18-26 Doubtful		> 26 Bad (Unsuitable)	
	GW samples								
		No	%	No	%	No	%	No	%
Aquifer-I/	131	131	100	-	-	-	-	-	-
	86	85	90	1	1		_	_	_
Deeper Aquifer		00	35	1	1	-	-	_	_
4.7 Residual Sodium Carbonate (RSC)

Residual Sodium Carbonate (RSC) is considered to be superior to SAR as a measure of sodacity particularly at low salinity levels. Calcium reacts with bi-carbonate and precipitate as $CaCO_3$. Magnesium salt is more soluble and so there are fewer tendencies for it to precipitate. When calcium and magnesium are lost from the water, the proportion of sodium is increased resulting in the increase in sodium hazard. This hazard is evaluated in terms of RSC. The classification of ground water samples based on RSC values for its suitability for irrigation purpose is shown in **Table 4.6**.

In aquifer-I/shallow aquifer, it is observed that only 1% samples shows RSC values within 'Bad' category while only 99 % fall in 'good' category indicating that the ground water of the area is suitable for irrigation. In aquifer-II/deeper aquifer, about 92% samples show RSC less than 1.25 meq/L indicating ground water of the area is suitable for irrigation while about 7 % samples fall in 'doubtful to Unsuitable' category and 1% samples fall in 'bad' category indicating that the ground water of the area is bad and not suitable for irrigation.

 Table 4.6: Classification of Ground water for Irrigation based on RSC values

Characteristics	Total No of			RSC values (meq/L)							
	GW samples	< 1.25		1.25-2	.50	> 2.50					
		Good		Doubt	ful	Bad (Unsuitable)					
		No	%	No	%	No	%				
Aquifer-I / Shallow Aquifer	131	129	99	-	-	2	1				
Aquifer-II / Deeper Aquifer	86	79	92	6	7	1	1				

5. GROUND WATER RESOURCES

5.1 Ground Water Resources – Aquifer-I

Central Ground Water Board and Groundwater Surveys and Development Agency (GSDA) have jointly estimated the ground water resources of Washim district based on GEC-97 methodology. Block wise ground water resources are given in **Table 5.1**, and graphical representations of the resources on the map are shown in **Figure5.1**.

Ground Water Resources estimation was carried out for 4811.96 sq. km. area out of which 273.47 sq. km. is under command and 4538.48 sq. km. is non-command. As per the estimation, the net annual ground water availability comes to be 570.53 MCM. The gross draft for all uses is estimated at 217.88MCM with irrigation sector being the major consumer having a draft of 201.73 MCM. The domestic and industrial water requirements are worked at 16.15MCM. The net ground water availability for future irrigation is estimated at 336.49 MCM. The Stage of ground water development varies from 26.94 % (Mangrulpir) to 60.2% (Karanja). The overall stage of ground water development for the district is 38.19 % (SAFE Category). Block wise assessments indicate that all the blocks in the district fall under "Safe" category.

Table 5.1 Ground water resources, Aquifer-I (Shallow aquifer), Washim district (2013)(Values in ham)

Administrative block	Command/ Non- command	Net Annual Ground water Availability	Existing Gross Ground water draft for irrigation	Existing Gross Ground water draft for domestic and industrial water supply	Existing Gross Groundwater draft for all uses	Provision for domestic and industrial requirement supply to 2025	Net ground water availability for future irrigation development	Stage of Groundwater development (%) / Category
Karanja	Command	543.57	132.24	17.73	149.97			
Karanja	Non Command	7155.81	4210.25	274.77	4485.02			
Karanja	Total	7699.37	4342.50	292.50	4634.99	592.17	2895.11	60.20 / Safe
Malegaon	Command	848.93	50.71	56.25	106.95			
Malegaon	Non Command	8222.00	2913.29	282.38	3195.66			
Malegaon	Total	9070.93	2963.99	338.62	3302.62	675.15	5629.35	36.41 / Safe
Mangrulpir	Command	1645.56	185.77	59.11	244.88			
Mangrulpir	Non Command	8189.66	2204.51	200.06	2404.57			
Mangrulpir	Total	9835.22	2390.28	259.17	2649.45	527.81	6714.82	26.94 / Safe
Manora	Command	1807.16	216.96	60.51	277.47			
Manora	Non Command	6571.96	2297.19	159.87	2457.06			
Manora	Total	8379.12	2514.15	220.38	2734.53	418.88	5307.79	32.64 / Safe
Risod	Command	1285.87	335.47	36.59	372.07			
Risod	Non Command	11016.91	4267.89	199.90	4467.79			
Risod	Total	12302.78	4603.37	236.49	4839.86	473.90	7099.70	39.34 / Safe
Washim	Command	1337.30	215.92	56.49	272.41			
Washim	Non Command	8428.75	3143.37	211.72	3355.09			
Washim	Total	9766.04	3359.28	268.22	3627.50	542.84	6002.36	37.14 / Safe

Ground Water Resources – Aquifer-II

5.2

The ground water resource of Aquifer-II was also assessed to have the correct quantification of resources so that proper management strategy can be framed. Block wise summarized Ground Water Resources of Aquifer-II is given in **Table 5.2**.

SN	Taluka	Mean thickness (m)	Area in sq km	PZ (maconfing layer)	Sy	S	Resource above confining layer (MCM)	Resource in confining aquifer (MCM)	Total Aquifer (MCM)
1	Karanja	7.00	0.253	40	0.009	0.00002	0.000	0.016	0.0162
2	Karanja	0.75	265.773	30	0.005	0.00001	0.041	0.997	1.0381
3	Karanja	0.75	0.530	40	0.002	0.00005	0.001	0.001	0.0019
4	Karanja	2.00	222.988	35	0.005	0.00006	0.445	2.230	2.6747
5	Karanja	4.50	329.319	30	0.009	0.00002	0.198	13.337	13.535
6	Malegaon	0.75	174.986	40	0.002	0.00001	0.036	0.262	0.2989
7	Malegaon	2.00	542.360	35	0.005	0.00005	1.025	5.424	6.4487

SN	Taluka	Mean	Area in	PZ	Sy	S	Resource	Resource in	Total
		thickness	sq km	(maconfing			above	confining	Aquifer
		(m)		<mark>layer)</mark>			confining	aquifer	(MCM)
							layer	(MCM)	
							(MCM)		
8	Malegaon	4.50	129.088	40	0.009	0.00006	0.294	5.228	5.5224
9	Mangrulpir	7.00	111.237	35	0.005	0.00006	0.222	3.893	4.1152
10	Mangrulpir	9.00	62.240	30	0.002	0.00006	0.106	1.120	1.2267
11	Mangrulpir	11.00	4.867	35	0.009	0.00001	0.001	0.482	0.4827
12	Mangrulpir	0.75	68.076	50	0.005	0.00001	0.018	0.255	0.2730
13	Mangrulpir	2.00	375.210	40	0.002	0.00005	0.810	1.501	2.3113
14	Mangrulpir	4.50	88.367	30	0.009	0.00006	0.151	3.579	3.7300
15	Manora	0.75	114.298	42	0.005	0.00002	0.096	0.429	0.5246
16	Manora	2.00	588.843	20	0.002	0.00002	0.236	2.355	2.5909
17	Manora	2.00	1.605	30	0.005	0.00002	0.001	0.016	0.0170
18	Risod	0.75	92.805	40	0.002	0.00002	0.074	0.139	0.2135
19	Risod	2.00	122.113	40	0.009	0.00006	0.278	2.198	2.4765
20	Risod	4.50	634.542	45	0.005	0.00001	0.148	14.277	14.425
21	Washim	0.75	15.076	25	0.002	0.00001	0.002	0.023	0.0246
22	Washim	2.00	403.144	30	0.005	0.00005	0.653	4.031	4.6845
23	Washim	4.50	464.214	50	0.009	0.00005	1.253	18.801	20.054

6. GROUND WATER RELATED ISSUES

6.1 Declining Water Levels

The ground water exploitation has resulted in decline of water levels over the period of time. In pre-monsoon season, declining water level trend has been observed in about 3978.8 sq km area covering major part of Washim, Mangrulpir, Risod blocks and parts of karanja, Malegaon and Manora blocks. In post-monsoon season, decline has been observed in about 2668.7 sq.km area covering major parts of Washim, Karanja and Risod blocks and parts in Malegoan, Manora and Mangrulpir blocks.

Pre-monsoon Fall in 5142 Sq km area Post-monsoon Fall 4894.18 Sq km area

6.2 Rainfall and Droughts

Based on the short term rainfall analysis from 1998 to 2018 it is observed that severe drought was observed in one year while three year moderate drought were faced in

the Washim district. It is observed that all the blocks have experienced declining rainfall trend ranging from 6.84 to 13.14 mm/year; except Mangrulpir block. Severe droughts have been observed in Manora and Washim blocks. All the blocks experienced Moderate droughts. Thus, Washim district is facing frequent droughts since long which is ultimately responsible for less ground water recharge and non-availability of surface & ground water for irrigation.

7. GROUND WATER MANAGEMENT PLAN

The aquifer management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management. The supply side management is proposed based on surplus surface water availability and the unsaturated thickness of aquifer whereas the demand side management is proposed by use of micro irrigation techniques and change in cropping pattern.

7.1 Supply Side Management

The supply side management of ground water resources can be done through the artificial recharge of surplus runoff available within river sub basins and micro watersheds. Also, it is necessary to understand the unsaturated aquifer volume available for recharge. The unsaturated volume of aquifer was computed based on the area feasible for recharge, unsaturated depth below 5 mbgl and the specific yield of the aquifer. The **Table 7.1** gives the block wise volume available for the recharge.

		-	
Block	Geographical Area (sq. km.)	Area feasible for recharge (Sq. km.)	Unsaturated Volume (MCM)
Karanja	865.57	818.86	157.16
Malegaon	936.36	846.43	15.67
Mangrulpir	785.69	710	596.84
Manora	777.93	704.88	1236.83
Risod	874.94	849.24	229.15
Washim	919.72	882.45	125
Total	513124	4811.86	2360.65

Table 7.1: Area feasible and volume available for Artificial Recharge

The total unsaturated volume available for artificial recharge is 2360.65MCM and it ranges from 15.67 MCM in Malegaon block to 1236.83 MCM in Manora block. The available surplus runoff can be utilized for artificial recharge through construction of percolation tanks and Check dams at suitable sites (**Figure 7.1**).

Thus, after taking into consideration all the factors, 22.519 MCM of surplus water can be utilised for recharge, which is given in **Table 7.2**. This surplus water can be utilized for constructing 61 percolation tanks and 151 check dams at suitable sites. The number of feasible artificial recharge structures was calculated by considering 0.20 MCM per percolation tanks and 0.03 MCM per check dam. This intervention should lead to recharge @ 75% efficiency of about 16.73 MCM/year. The tentative locations of these structures are given in **Figure 7.1** and details also given in **Annexure VIII and IX**.

The rainwater harvesting in urban areas can be adopted in 25% of the household with 50 sq. km roof area. A total of 1.4631 MCM potential can be generated by taking 80% runoff coefficient. However, it is economically not viable & hence, not recommended.

Table 7.2: Proposed Artificial Recharge Structures

Block	Geograp hical Area (sq. km.)	Area feasible for recharge (sq. km.)	Unsaturate d Volume (MCM)	Surplus water availabl e for AR (MCM)	Proposed number of structures		Total V Water to be re 75 % e	olume of expected charged@ fficiency ICM)	Total recharged @ 75 % efficiency (MCM)
					PT	CD	PT	CD	
Karanja	865.57	818.86	157.16	1.498	04	11	0.8	0.33	1.13
Malegaon	936.36	846.43	15.67	0.149	0	04	0	0.12	0.12
Mangrulpir	785.69	710	596.84	5.498	14	40	2.8	1.2	4.0
Manora	777.93	704.88	1236.83	11.79	35	60	7	1.8	8.8
Risod	874.94	849.24	229.15	2.184	05	21	1	0.63	1.63
Washim	919.72	882.45	125	1.4	03	15	0.6	0.45	1.05
Total	513124	4811.86	2360.65	22.519	61	151	12.2	4.53	16.73

Figure 7.1: Location of Proposed Artificial Recharge structures

Figure 7.2: Proposed Demand side intervention, Washim district

7.2 Demand Side Management

The Demand Side Management is proposed in areas where the stage of ground water development is relatively high and adopting micro-irrigation techniques for water intensive crops or change in cropping pattern or both are required to save water. **Figure 7.2** depicts the proposed demand side interventions in the area. The micro-irrigation techniques are proposed to be adopted in 15 Sq. Km area in entire district by saving a total of 7 MCM as given **Table 7.3.** No change in cropping patterns is proposed in any of the blocks.

Block	MICRO IRRIGATION TECH	NIQUES	CROPPING PATTERN CHANGE						
	Sugarcane or Chilli	Volume of Water	Area under Water	Volume of Water saved by					
	cropped Area proposed	saved (MCM)	Intensive crops (Sq.	change in cropping pattern					
	(Sq. Km.)		Km.)	(MCM)					
Karanja	1	0.57	Nil	Nil					
Malegaon	2	1.14	Nil	Nil					
Mangrulpir	1	0.57	Nil	Nil					
Manora	5	1.3	Nil	Nil					
Risod	4	2.28	Nil	Nil					
Washim	2	1.14	Nil	Nil					
Total	15	7	Nil	Nil					

 Table 7.3: Demand side interventions proposed

7.3 Expected Benefits

The impact of groundwater management plans on the groundwater system in the district after its implementation is evaluated and the outcome shows significant improvement in groundwater scenario in all blocks as given in the **Table 7.4**.

 Table 7.4: Expected benefits after management options

Block	Water Recharge d by Supply side interventi on (MCM)	Water saving by demand side interventions (MCM)	Net Ground water availability (MCM)	Total ground water draft (MCM)	Ground water resources after supply side management (MCM) (2+4)	Ground water Draft after demand side management (MCM) (5-3)	Expected stage of Development (%) [(7/6)*100]	Current Stage of GW Development (%)
1	2	3	4	5	6	7	8	9
Karanja	1.13	0.57	98.35	26.49	99.48	25.92	59.33	60.20
Malegaon	0.12	1.14	83.79	27.34	83.91	26.2	36.36	36.41
Mangrulpir	4.0	0.57	90.70	33.02	94.7	32.45	25.88	26.94
Manora	8.8	1.3	97.66	36.27	106.46	34.97	29.53	32.64
Risod	1.63	2.28	123.02	48.39	124.65	46.11	38.83	39.34
Washim	1.05	1.14	76.99	46.34	78.04	45.2	36.75	37.14
Total	16.73	7	570.53	217.88	587.26	210.88	37.10	38.19

7.4 Development Plan

The ground water development plan is proposed in the view of developing the additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. The 200.195 MCM volume of ground water generated can bring 308 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 12012 Dug wells and 1335 Borewells. The area feasible for ground development is shown in **Figure 7.3** while block wise details are given in **Table 7.5**.

Figure 7.3: Additional area Proposed to be bought under Assured GW irrigation

Table 7.5: Block wise additional area under assured GW Irrigation

lock	Current Stage of GW Developme nt (%)	Net Ground water availabilit γ (MCM)	Ground water resources after supply side manageme nt (MCM)	Ground water Draft after demand side manageme nt (MCM)	Expected stage of Developm ent %	Balance GWR availabl e for GW Develop ment after STAGE OF GWD is brought to 70% (MCM)	Propose d No. of DW @1.5 ham for 90% of GWR Availabl e)	Propo sed No. of BW @1.5 ham for 10% of GWR Availa ble)	Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m after 70% stage of GWD is achieved (Sq. Km)
Karanja	60.20	98.35	99.48	25.92	59.33	8.904	534	59	13.69
Malegaon	36.41	83.79	83.91	26.2	36.36	31.694	1902	211	48.76
Mangrulp ir	26.94	90.70	94.7	32.45	25.88	45.725	2743	304	70.35
Manora	32.64	97.66	106.46	34.97	29.53	38.773	2326	258	59.65
Risod	39.34	123.02	124.65	46.11	38.83	41.142	2469	274	63.30
Washim	37.14	76.99	78.04	45.2	36.75	33.957	2037	226	52.24
Total	38.19	570.53	587.26	210.88	37.10	200.195	12012	1335	308

8. SUM UP

A thorough study was carried out based on data gap analysis, data generated inhouse; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of block wise aquifer maps and aquifer management plans of Washim district.

Washim district covering an area of 5196 Sq.km, out of this 25.11 sq km (0.48 %) is hilly area. Geologically, the area is occupied by Basalt and local river Alluvium. The Stage of ground water development varies from 26.94 % (Karanja) to 60.2 % (Washim). The overall stage of ground water development for the district is 38.19 % (SAFE Category). The area has witnessed declining water level, irregular rainfall and frequent droughts, and low yield potential aquifers are the major issues in the district. Declining water level trend has been observed in 5142 sq km during pre-monsoon while it is 4894.18 sq km during post monsoon.

The occurrence of red bole beds plays major role in local hydrogeological conditions. It is observed that in Wshim district red bole encountered at various depth ranges.

The management plan has been proposed to manage the ground water resources and to arrest further decline in water levels. The management plan comprises two components namely supply-side management and demand side management.

As a part of **Supply Side Management**, a total 61 Percolation tanks and 151 Check dams are proposed, which will augment ground water resources to the tune of **16.73** MCM (12.2 MCM by Percolation tanks and, 4.53 MCM by Check dams).

As a part of **Demand Side Management**, the micro-irrigation techniques are proposed to be adopted in 15 Sq. Km area in entire district by saving a total of 7 MCM.

The **ground water development plan** has been proposed in view of the developing additional ground water resources available after supply side interventions to bring the stage of ground water development up to 70%. The 200.195 MCM volume of ground water generated can bring 308 sq km additional area under assured ground water irrigation with average crop water requirement of 0.65 m by constructing 12012 Dug wells and 1335 Borewells.

These interventions also need to be supported by regulation for deeper aquifer and hence it is recommended to regulate/ban deeper tubewells/borewells of more than 60 m depth in these blocks, so that the deeper ground water resources are protected for future generation and also serve as ground water sanctuary in times of distress/drought. IEC activities and capacity building activities needs to be aggressively propagated to establish the institutional framework for participatory ground water management.

B LOCK WISE AQUIFER MAPS AND

MANAGEMENT PLAN

I. KARANJA BLOCK

II. MALEGAON BLOCK

III. MANGRULPIR BLOCK

IV. MANORA BLOCK

V.RISOD BLOCK

VI.WASHIMBLOCK

9.1 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, KARANJA BLOCK, WASHIM DISTRICT, MAHARASHTRA

1. SALIENT	FEATUR	S																
1 1 Introdu	iction																	
Block Name														Kar	ania			
Geographica	Area (Sa J	(m.)	2)											865	57			
	$\frac{1}{1}$ Km)	<i>j</i>	<u>·/</u>									16	70					
Population (2	2011)													213	874			
Climate	-011)													Mo	ns00	n Tr	onical	
1 2 Rainfal	l Analysia													1010	11500		spical	
Normal Rain	fall)												875	mm			
Annual Rainf	all (2017)													521	 	<u> </u>		
Decadal Aver	an (2017) rage Annua	l Rainf	all (200	8-17										74	1 1 m	nm		
Long Term R	ainfall	Falli	ng tren	d -9 0)) mm	/vea	r							/ 1				
Analysis (199	98-2017)	Prot	ng ti chi nability	of No	ormal	l/Fxc	r. ess F	ainf	all- 7	0%	/ 5%							
7 (lary 515 (155	.0 2017,	Prot	bability	of Dr	ough	t (M	oder	ate/	Seve	re/A	cute	-: 25	% M	oder	ate /	/ Sev	ere&	
		Acu	te –nil.	-		- (,		- 1		_			,			
Rainfall Tr	end Analy	vsis (*	1998 T	o 20	17)													
1 100		0.0 (<u> </u>														
												y = -9	9.902	<u>2</u> 9x +	926	.56		
1200 —						_												
	_																	
		-																
800 -							_									_		
600 -																	_	
400 -		_		_	_		_	_						_	_	_	_	
100																		
200 —				_														
0																		
	ູ່ຄົວ	5	33 73	5	22	່ງ	5	8	6	់ឮ	11	17	13	17	15	_ 16	. 11	
0	1991	20(200	20(20(20(20(20(20(20	20:	20:	20:	20	20:	20:	20:	
1 2 Coom	ornholog				***													
1.3. Geom		plate			5 y od (c	halle) c	liabtl	v dia		od. D	utto	atic	mo	place		ntral	and
Geomorphic	Unit	Nort	b-oasto	rn na	rt of	tho l	nw) s slock	nginu ⁄)	y uis	seci	.eu, c	ulle	auso	лпе	place	25 (CE	:iiu ai	anu
Geology		Deco	an Trar	n pa	(110)		Late	y. Crot		2116	O FO	rono						
Soil		Decc	to ve	v de	en R	rge.	onsie	ting	mos	stlv		av ar		am	50-1	00 c	m an	d at
5011		some	e nlaces	; >10(Cp D) cm	thick	2	Jung	mos	JUIY		iy ui		un,	50 1	.00 0	in un	uut
1 / Hydro		aina		- 10		tiner												
Drainage		Aran	<u>5</u> C rivor ir	tho	outh	of t	ho h	lock	andi	itc ti	ibuta	rioc						
Dramage		Aran river in the south of the block and its tributaries																
Hydrology		Minor Irrigation Projects(Local) 11																
nyurology		Mine	or Irriga	tion	Proje	cts(L)		(امر			227							
		IVIIIIC	n iiriga	uoni	TOJE	CLS(Z	r Le	verj			237 DT_1	דא כ	_/12		_2			
1 F Land	lee Arvie		- Innia			C = 0		D			F 1-1	Ζ, ΚΙ	-43,	000)-Z			
1.5. Land C	Jse, Agric		e, irrig	gatio	næ	Cro	ррі	ng P	atte	ern								
Forest Area		33.3	3 Sq. Kn	11.														
Cultivable Ar	ea	729.	13 SQ. 1	(m.	1/1													
Net Sown Ar			/04.0	<u>r 20</u>	кт.													
	ped Area	lata:	25.72 Sq. Km															
Area under	Surface W	ater	7.365	y. Km	l. /m/													
iiiigatioii	Ground W	aler	ZI.34	asy. I	MII.													

Area under Drip & Sprinkler	0.1854 Sq. Km.									
Irrigation										
Principal Crops	Сгор Туре	Area (Sq. Km.)(Reference year 2016-17)								
	Cotton	111								
	Cereals	33.24								
	Pulses	170								
	Oil Seeds	424.72								
Horticultural Crops	Citreous fruit	-								
	Others	-								
1.6. Water Level Behav	/ior									
1.6.1 Aquifer-I (Shallow	v Aquifer)									
Pre-Monsoon (May-2018)		Post-Monsoon (November-2018)								
DTWL 05 to 20 mbgl is c	bserved in entire block	DTWL less than 2 mbgl is observed in isolated								
except in few isolated sm	all patches of the block	patches in south eastern part of the block. Water								
where water level in the	range of 2 to 5 mbgl is	level in the range of 2 to 5 mbgl is observed in the								
observed.		entire block except in some patches in North-								
		western, south-western and in one isolated patch								
		in south-eastern part of the block where water								
		level ranges between 5 to 10 mbgl.								
Aquifer I, Premonsoor	n , DTW (May, 2018)	Aquifer I, Postmonsoon , DTW (Nov, 2018) Karanja Taluka, Washim District								
Haranja Taraka, H										
NORTH 0 7.5 15	55	0 7.5 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								
kilometers	Jan. 5	kilometers								
· ~ ·	Bennie	Ben								
Ina	2 10 11	Intro Contraction								
	\cdot									
Karar	ija 🌎 🌖 🦳	Karanja								
	· · ·									
	<u> </u>									
~ · · · ·	A A A A A A A A A A A A A A A A A A A									
5.0	· 5 ~									
Legend		Legend								
DTW (mbgl)	No of aquifers Two	DTW (mbgl) Principal aquifer Basalt								
2 to 5	Area (Sqkm) 818.86	0 to 2 Area (Sqkm) 818.86								
5 to 10	No of Village 169	5 to 10 No of Village 169								
	Faluka HQ	Drainage								
	Monitoring well •	Monitoring well								
	-									
1.6.2 Water Level Beha	avior – Aquifer-II (Dee	eper Aquifer)								
Pre-Monsoon (May-2018)	DTWL 10-20 mbgl is	Post-Monsoon (November-2018) DTWL 10-20 mbgl								
observed in northern-east	tern part of the block.	is observed in major part of the block. Northern								
DTWL 20-40 mbgl is obse	rved in central, eastern	and north-eastern part shows the water level below								

observed in northern-eastern part of the block. DTWL 20-40 mbgl is observed in central, eastern and western parts of the block. Southern- western part has DTWL 40-50 mbgl engulfing small patch of >50 mbgl.

1.7. Hydrographs

Hydrograph shows Pre-monsoon declining water	Hydrograph shows Post- monsoon rising water
level trend @ m/year	level trend @ m/year
1.8. Water Level Trend (2009-18)	
1.8.1 Pre-Monsoon trend	1.8.2 Post-Monsoon trend
Falling 0.02 (Kherda bk.) to 1.5(Medshi) m/year	Rising 0.019(Tondgaon) to 1.59 (Washim) m/year;
Rising 0.016 (Karli) to 2.21 (Agarwadi) m/year	Falling 0.012 (Kekatumra) to 1.4 (Mohajabandi)
	m/year
Major part of the block shows falling water level	Major part of the block shows falling trend up to
trend up to 0.6 m/year (646.47 sq km). Rising trend	0.6 m/year (578 sq.km) while rising trend of 0.2 to
upto 0.2 m/year has been observed in North-	0.6 m/year has been observed in South and south-
western part of the block as well as in North-east	western part of the block, also rising trend of 0.2 to
and South-central part of the block in patches	0.4 m/year has been observed in south-western
(212.86 sq km). The central part show falling trend	part in small patches. Falling trend > 0.6 m/year has
0.2 to 0.6 m/year.	been observed in north-eastern part border area of
	the block in a patch.

3.3. Cross Sections – Section AA'			
	Karanja		
A Lohara			Yevta Bandi
	-		A
129	160		
Scale 5		.egend	
50 m	Aquifer I- Aquifer II- Massive I	-Basalt -Basalt -Basalt -Basalt -Basalt -Basalt -Basalt	lared zone 170 level AQI level AQI
3.4. Aquifer Characteristics			
Major Aquifers		Basalt	(Deccan Traps)
Type of Aquifer	Basalt – Ad	quifer-l	Basalt – Aquifer-II (Semi-confined /
(Phreatic/Semi-confined/Confined)	(Phreatic, aquifer)	/ Shallow	confined / Deeper aquifer)
Static Water Level (m bgl)	2.1 - 21.00)	15 – 43
Depth of Occurrence (mbgl)	9-25		70 – 130
weathered/fractured rocks thickness (m)	5- 14	2	1-3
Yield	10 – 100 m	n³/day	10-100 lpm
Specific yield/ Storativity (S)	0.019 to 0.	.028	0.000245 -0.0000145
Transmissivity (1)	30-40 m⁻/o	day	25-210 m ⁻ /day
4.1 Phreatic Aquifer (Aquifer-I/ S aquifer)	hallow	4.2 Semi-con (Aquifer II/ D	fined/Confined Aquifer eeper aquifer)
Karanja Taluka, Washim District		NORTH	a Taluka, Washim District
Karanja	·		Karanja
Legend EC in microsiemens/cm at 25° C 250 to 750 750 to 2250 Nitrate > 45 mg/l Fluoride > 1 mg/l Fluoride = 1 mg/l Fluoride = 250 to 250 mg/l	er Basalt Two 818.86 169 • II •	Legend EC in microsiem at 25° C 250 to 750 750 to 225 Nitrate > 45 Fluoride >	Principal aquifer Basalt No of aquifers Two Area (Sqkm) 818.86 No of Village 169 Drainage Taluka HQ 1 mg/l Taluka HQ Monitoring well
observed in major part of block cov	vering about	observed in No	rthern, northeast and northwest as

515.8 sq. km area of the block whereas EC ranging			well as in south western parts of the block covering				
from 250 to 750 $\mu\text{S/cm}$ observed in northern and			about 490.8 sq. km area of the block whereas EC				
southern parts of the block in patches (339.1 sq.km)			rang	ranging from 250 to 750 $\mu\text{S/cm}$ observed in Central,			
and Ground water is suitable for all purpose. Few			south-eastern parts of the block also in north				
villages are also affected by Nitrate and Fluoride			borc	ler area in m	nall patch(363.	7 sq.km). Ground	
contaminations. water is suitable for all purp			for all purpo	se. However, few			
villages are also affected contaminations.					affected by Ni	trate and Fluoride	
5. GROUND	WATER RESOU	RCE					
5.1 Aquifer	-I/ Shallow Phre	atic Aqu	ifer (Bas	alt)			
Ground Wate	r Recharge Worthy	Area (Sg.	Km.)				818.86
Total Annual (Ground Water Rech	arge (MC	, (N)				81.0460
Natural Disch	arge (MCM)	0 (,				4.0523
Net Annual G	round Water Availal	oility (MCI	M)				76.99
Existing Gross	Ground Water Drat	ft for irrig	ation (MCN	/)			43.42
Existing Gross	Ground Water Drat	ft for dom	estic and i	ndusti	rial water supp	bly(MCM)	29.25
Existing Gross	Ground Water Drat	ft for All u	ses(MCM)				46.35
Provision for a	domestic and indust	rial requi	rement sup	oply to	2025(MCM)		59.22
Net Ground V	/ater Availability for	future iri	rigation dev	velopr	ment(MCM)		28.95
Stage of Grou	nd Water Developm	nent (%)					60.20
Category							SAFE
5.2 Aquifer	-II (Semi-confine	d/Confi	ned Dee	per B	asaltic Aqu	ifer)	
Total Area	Mean aquifer	SY	S		Piezometric	Head	Total Resource
(Sq. Km.)	thickness (m)				(m above co	nfining layer)	(MCM)
1109	2	0.005	0.000014	45	50		11.89242
6.0. GROUN	D WATER MAN	AGEMEI	NT				
6.1. Supply	Side Manageme	ent					
SUPPLY (M	CM)						
Available Resource (MCM) 76.99							
Gross Annual Draft (MCM)					46.35		
Agricultural Demand –GW 43.43					43.43		
Agricultural Demand –SW					4.95		
Domestic Demand – GW					2.92		
Domestic Den	nand – SW						0.73
Total Demand	ł						52.03
Area of Block	(Sq. Km.)						865.57
Area suitable	for Artificial recharg	ge (Sq. Km)				818.86
Type of Aquifer					Hard Rock		
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)					321.3		
Volume of Unsaturated Zone (MCM)					157.16		
Average Specific Yield					0.02		
Volume of Sul	o Surface Storage Sp	oace availa	able for Art	tificial	Recharge (MC	CM)	
Surplus water	Available (MCM)						1.498
Proposed Stru	uctures	Per	colation Ta	nk (Av	v. Gross	Check Dam (A	V. Gross Capacity-
		Cap 200	acity-100 T TCM)	rcm*2	2 fillings =	10 TCM * 3 fi	llings = 30 TCM)
Number of St	Number of Structures 4 11				11		
Volume of Wa	ater expected to be	0.8				0.33	
conserved / re	echarged @ 75%						
efficiency (MC	CM)						
RTRWH Struc	tures – Urban Area	5					
Households to be covered (25% with 50 m ⁻ area)				11900			
Total RWH potential (MCM)				0.336175			
Rainwater harvested / recharged @ 80% runoff co-efficient					0.26894		

6.2. Demand Side Management Micro irrigation techniques Sugarcane crop area (7) ,about 1 sqkm area is ground water irrigated ,100 % ground 1 water irrigated (1 sqkm) proposed to be covered under Drip (sq.km.) Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req. 0.57 - 1.88, WUE- 0.57 m 0.57
Micro irrigation techniques Sugarcane crop area (7) ,about 1 sqkm area is ground water irrigated ,100 % ground 1 water irrigated (1 sqkm) proposed to be covered under Drip (sq.km.) 1 Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req. 0.57 - 1.88, WUE- 0.57 m 0.57
Sugarcane crop area (7) ,about 1 sqkm area is ground water irrigated ,100 % ground1water irrigated (1 sqkm) proposed to be covered under Drip (sq.km.)1Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req.0.57- 1.88, WUE- 0.57 m1
water irrigated (1 sqkm) proposed to be covered under Drip (sq.km.) Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req. 0.57 - 1.88, WUE- 0.57 m
Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req. 0.57 - 1.88, WUE- 0.57 m
- 1.88, WUE- 0.57 m
Proposed Cropping Pattern change
Irrigated area under Water Intensive Crop(ha) Not proposed
Water Saving by Change in Cropping Pattern Nil
6.3. Expected Benefits
Net Ground Water Availability (MCM)76.99
Additional GW resources available after Supply side interventions (MCM) 8.904
Ground Water Availability after Supply side intervention(MCM) 117.71
Existing Ground Water Draft for All Uses (MCM)46.35
GW draft after Demand Side Interventions (MCM)39.90
Present stage of Ground Water Development (%) 60.20 %
Expected Stage of Ground Water Development after interventions (%) 59.33 %
Other Interventions Proposed, if any
Alternate Water Sources Available Nil
6.4. Development Plan
Volume of water available for GWD after stage of GWD brought to 70% (MCM)8.904
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available) 534
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available) 59
Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av.13.69846
CWR of 0.65 m AFTER 70% stage of GWD is achieved
Regulatory Measures 60m borewells/tube wells
DEMAND SIDE INTERVENTION Additional Area proposed to be brought
Karanja Taluka, Washim District under assured GW irrigation Karanja Taluka, Washim Bistrict
$\overrightarrow{NORTH} \qquad \qquad$
kilometers Kilometers
2 7 7 7
Karanja / Karanja 🕰
Legend
Principal aquifer Basalt
No of aquifers Two
Legend No of aquifers Two No of Village 169
Taluka HQ Area (Sqkm) 818.86 Taluka HQ •
No of Village 169 Additional Area proposed to be brought
Sugarcane crop area proposed to be covered under drip irrigation in
ACHIEVED Karanja 1 sqkm

9.2 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MALEGAON BLOCK, WASHIM DISTRICT, MAHARASHTRA

1. SALIENT	FEATURES							
1.1 Introdu	ction							
Block Name		Malegaon						
Geographical	Area (Sq. Kn	936.36						
Hilly Area (Sq	. Km)	89.9292						
Population (2	011)	189051						
Climate		Monsoon Tropical						
1.2 Rainfall	Analysis							
Normal Rainf	all	966.9 mm						
Annual Rainfa	all (2017)	652.3 mm						
Decadal Aver	age Annual F	ainfall (2008-17) 789.8 mm						
Long Term Ra	infall	Insignificantly falling trend -10.85 mm/year.						
Analysis (199	8-2017)	Probability of Rainfall : 65% Normal rainfall and 5% Excess rainfall						
		Probability of Drought-: 30% Moderate Drought						
Rainfall Tre	end Analys	is (1998 To 2017)						
1400 —								
		y = -10.851x + 973.37						
1200								
1000								
800								
600								
100								
400 — —								
200 — —								
0								
86	6 6 5	00 00 00 00 00 00 00 00 00 00 00 00 00						
19	19 20 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2						
1.3. Geomo	orphology,	Soil & Geology						
Geomorphic	Unit	Plateau (Un-dissected to moderately Dissected) with weathered thickness						
		ranging from 0 to 5 m.						
Geology		Deccan Traps (Basalt) Age: Upper Cretaceous to Lower Eocene						
Soil		Shallow, BCS consisting mostly of clay and loam, 0-25 cm thick.						
1.4. Hydrol	Ivdrology & Drainage							
Drainage		Tributaries of Godavari river in the North, north-east, south, south-east and						
_		central part of the block; Tributaries of Tapi river in western part of the block.						
		Major projects None						
Undrology		Medium projects 01						
нуагоюду		Minor Irrigation Projects(Local) 14						
		Minor Irrigation Projects(ZP Level) 206						
		PT-30, KT-33, UGB-2						
1.5. Land U	se, Agricu	ture, Irrigation & Cropping Pattern						
Forest Area		128.52 Sq. Km.						
Cultivable Are	ea	722.63 Sq. Km.						
Net Sown Are	ea	661.83 Sq. Km.						
Double Cropp	oed Area	35.2 Sq. Km.						
Area under	Surface	12.89Sq. Km.						
Irrigation	Water							
	Ground	19.3 Sq. Km.						

Water					
Area under Drip &					
Sprinkler Irrigation					
Principal Crops	Cron Type	Area (Sa Km)/Reference year 2016-17)			
	Cotton	2 72			
	Concolo	3.72			
	Cereais	38.92			
	Pulses	234.81			
	Oil Seeds	522.76			
Horticultural Crops	Sugarcane	0.02			
	Citreous fruit	-			
	Others	-			
1.6. Water Level Beha	vior				
1 6 1 Aquifer-I (Shallo	w Aquifer)				
I.O.I Aquiter-I (Shaho	w Aquiler)	Post Monsoon (November 2018)			
DTA(1 10 to 20 mbal is a	and in mation mante of	DTW// loss them 2 mbg/ are shearward as isolated			
DIVL 10 to 20 mbgi is or	bserved in major parts of	DIWL less than 2 mbgi are observed as isolated			
the block while water leve	er in the range of 5 to 10	patches in north-east and south-east parts of the			
mbgi is observed in northe	rn, northwestern & north	block. DTWL less than 5 mbgl is observed in entire			
eastern parts. Deeper DI	NL >20 mbgl is observed	block except western and small area in north-east			
as in a long narrow horiz	zontal patch in southern	and north-west part of the block where DTWL			
part.		ranging 5 to 10.			
Aquifer I, Premons	soon , DTW (May. 2018)	Aquifer L Postmonsoon DTW (Nov. 2018)			
Malegaon Talu	ka, Washim District	Malegaon Taluka, Washim District			
NORTH	(m	NORTH			
0 7.5 15	25 -5				
kilometers		kilometers			
	atepurna	Mai mai			
		Kato			
	Charles Carlos C				
Maleg	Jaon ~ ~ ·/	Malegaon			
~	5				
~~					
	Legend	Legend			
Principal aquifer Basal	t	Principal aquifer Basalt DTW (mbgl)			
No of aquifers Two	DTW (mbgl)	No of aquifers Two			
Area (Sqkm) 846.6	³ 5 to 10	Area (Sqkm) 846.63			
No of Village 121	10 to 20	No of Village 121 2 to 5			
Drainage 🛛 🗡	20 to 30	Drainage 🦟 5 to 10			
Taluka HQ		Taluka HQ			
Monitoring well •		Monitoring well •			
1.6.2 Water Level Beh	avior– Aquifer-II (Dee	per Aquifer)			
Pre-Monsoon (May-2018)		Post-Monsoon (November-2018)			
DTWL 30-40 mbgl is o	bserved in major part	DTWL 10-20 mbgl is observed in major part of			
engulfing small patch of	10-20 and 20-30 mbgl.	block. DTWL 5-10 mbgl is observed in north-eastern			
Northwestern & small are	a in southwestern has	part as well as in an isolated patch in south west			
DTWI 40-50 mbgl DTWI	10-20 mbol in a natch is	part as well as in an isolated pattin in south West			
observed in north asstars	nart of the block DTM	part of the block. Deeper DIWL IS observed in			
So much is observed in	part of the block. Drive	central, north-western and in small patch in the			
	some part or wash and	south-western part of the block.			
kotha villages.					

Hydrographs

Hydrograph shows Pre-monsoon falling water level	Hydrograph shows Post- monsoon rising water level
trend @ 0.3 m/year.	trend @ 0.0894 m/year
1.8. Water Level Trend (2009-18)	
1.8.1 Pre-Monsoon trend	1.8.2 Post-Monsoon trend
Rising @0.12 m/year (Dongarkinhi) to 1.5 m/year	Rising 0.2 (Dongarkinhi) to 0.8 (Zodga bk.) m/year;
(Karanji); Falling 0.2(Ekamba) to 1.5 (Medshi) m/year.	Falling 0.1 (Karanji) to 0.4 (Dava) m/year
Major part of the block shows falling water level	Northern, North-east and north-west part of the
trend up to 0.6 m/year (620 sq km) except rising	block shows rising trend 0.2 to 0.6 m/year (484.30
trend 0.2-0.6 mbgl (317 sq km) in northwest part of	sq km) while falling trend 0.2 to 0.6 m/year (453.53
the block and 0.0-0.2 in patch in the south-western	sq km) has been observed in Southern,
part of the block .Falling trend>0.6 m/year has	southwestern and southeastern part of the block. A
been observed in Central and southern part of the	small isolated patch of rising trend is found in the
block.	southern part of the block.

observed in 751.6 sq km suitable for a ranges from 2 sq.km area in while EC<750 southern, sour isolated patc western and water is fit & the villages ar	major part of blo area of the block all purpose. Grour 250 to 3000 μS/cm an isolatd patch in is observed in 17 thwestern part of th hes are observed central part of the suitable for all pur e affected by Nitrat	ck coveri & ground nd water is observ south we '6.7 sq.kn ne block. 7 l in nort block. Th pose exce e contami	ng about water is with EC ved in 9.5 stern part n area in Also small th, north he ground opt where ination.	obse 810. suita 250 west patc Nitra	erved in majo 6 sq.km area able for all pur to 750 has be ern and sou hes (127.2 sq ate contamina	or part of of the bloo rpose. Whe een observe th-eastern .km). Few v tion.	block covering about ck & ground water is ereas, EC ranging from ed in southern, south- part of the block in illages are affected by
5. GROUND	WATER RESOU	RCE					
5.1 Aquifer	-I/ Shallow Phre	atic Aqu	ifer (Basa	lt)			ſ
Ground Water	Recharge Worthy	Area (Sq. I	Km.)				846.43
Total Annual C	Ground Water Rech	arge (MC	VI)				95.48
Natural Discha	arge (MCM)		•				4.77
Net Annual Gr	ound Water Availat	Dility (MCI					90.709
Existing Gross	Ground Water Dra	t for Irriga	ation (IVICIVI)) 			29.639
Existing Gross	Ground Water Dra	t for aom	estic and inc	austr	lai water supp		3.3862
Existing Gross	Ground water Drai						33.0262 6.7515
Not Ground M	Iomestic and indust Istor Availability for	futuro irr	igation dove		$\frac{1}{2025(101C101)}$		0.7515
Stage of Grou	nd Water Developm	ont (%)	igation deve	elopi			36.41
		ient (70)					SO.41
E 2 Aquifor	Category SARE						JAIL
J.Z Aquiler	Moon aquifor	sv		егр	Diozomotric	Hood (m	Total Posourco
(Sa Km)	thickness (m)	31	5		above confir	neau (III ning laver)	
53/ 3	1 5	0.005	0.00001/15	5	26.5	iiig iayei j	A 21263A
	534.3 1.5 0.005 0.0000145 26.5 4.212634						
0.0. GROUND WATER RESOURCE EINMAINCEIVIEINT							
6.1. Supply Side Management							
SUPPLY (MCM)							
Available Resource (MCM) 90.7					90.7		
Gross Annual	Draft (MCM)						33.02
Agricultural D	emand –GW						29.63
Agricultural D	emand –SW						4.12
Domestic Dem	hand – GW						3.38
Domestic Dem	hand – SW						0.845
Total Demand							37.975
Area of Block	(SQ. KIII.) for Artificial rachard	o (Sa Km	١				930.30
Area suitable for Artificial recharge (Sq. Km)					040.43		
Area fossible f	er Artificial Pachari		mbal) (Sa Ki	m)			
Volume of Un	saturated Zone (MC	3e (VVL 23 MA)	indgi) (Sq. Ki	,			15 67
Average Speci		.101)					0.02
Volume of Sub Surface Storage Space available for Artificial Pecharge (MCM)					0.02		
Surplus water	Available (MCM)			inciai	incentarge (ivit	2141)	0.3134
Proposed Stru		Per	colation Tan	k (Av	Gross	Check Dar	n (Av. Gross Capacity-
		Cap 200	acity-100 TC TCM)	CM*2	2 fillings =	10 TCM *	3 fillings = 30 TCM)
Number of Str	uctures	0				4	
Volume of Wa	ter expected to be	0				0.12	
conserved / re	echarged @ 75%						
efficiency (MC	CM)						Γ
RTRWH Struct	tures – Urban Areas	5					

Households to be covered (25% with 50 m ² area)	louseholds to be covered (25% with 50 m ² area)		
Total RWH potential (MCM)	0.290975		
Rainwater harvested / recharged @ 80% runoff co-effi	0.23278		
However, it is economically not viable & hence, not rea	commended.		
6.2. Demand Side Management			
Micro irrigation techniques			
Sugarcane crop area (12) ,about 2 sqkm area is ground	2		
ground water irrigated (2 sqkm) proposed to be covered	ed under Drip (sq.km.)		
Volume of Water expected to be saved (MCM). Surface	e Flooding req- 0.36 m. Drip	1.14	
Req 0.24, WUE- 0.12 m			
Proposed Cropping Pattern change			
Irrigated area under Water Intensive Crop(ha)		Not proposed	
Water Saving by Change in Cropping Pattern		Nil	
6.3. Expected Benefits			
Net Ground Water Availability (MCM)		90.709	
Additional GW resources available after Supply side int	terventions (MCM)	31.694	
Ground Water Availability after Supply side intervention	on(MCM)		
Existing Ground Water Draft for All Uses (MCM)		33.0262	
GW draft after Demand Side Interventions (MCM)			
Present stage of Ground Water Development (%)		36.41	
Expected Stage of Ground Water Development after in	nterventions (%)	36.36	
Other Interventions Proposed, if any			
Alternate Water Sources Available		Nil	
6.4. Development Plan			
Volume of water available for GWD after stage of GWI	31.694		
Proposed Number of DW (@ 1.5 ham for 90% of GWR	1902		
Proposed Number of BW (@ 1.5 ham for 10% of GWR	Available)	211	
Additional Area (sg.km.) proposed to be brought unde	r assured GW irrigation with	48.76	
av. CWR of 0.65 m after 70% stage of gwd is achieved	0		
Regulatory Measures	60m borewells/tube we	ells	
DEMAND SIDE INTERVENTION	Additional Area propos	ed to be brought	
Malegaon Taluka, Washim District	under assured G	N irrigation	
	Malegaon Taluka, W	ashim District	
NORTH ~ (NORTH L	(m	
		S • X	
kilometers	Kilometers	main	
Katepurit	Kate		
20 3 3 2 S S S	250 3 12		
Malegaon	Malegac	in Stand	
	1 3 . *		
	7		
5 ~	\sim	ና	
Logond		(
~ A Legena			
Principal aquifer Basalt	regena 27 Prin	cipal aquifer Basalt	
No of aquifers Two	Drainage - No o	or aquiters Two	
Drainage Area (Sqkm) 846.63	Taluka Hu	(Sqkiii) 848.83	

No of Village

Taluka HQ

Malegaon 2 sqkm

No of Village

Sugarcane crop area proposed to be covered under drip irrigation in

121

121

9.3 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MANGRULPIR BLOCK, WASHIM DISTRICT, MAHARASHTRA

Irrigation Ground Water	53.77 Sq. Km.				
Area under Drip & Sprinkler	0.0185 Sq. Km. (1	85 hac)			
Irrigation					
Principal Crops	Сгор Туре	Area (Sq. Km.)(Reference year 2016-17)			
	Cotton	7.63			
	Cereals	37.23			
	Pulses	189.21			
	Oil Seeds	441.40			
	Sugarcane	0.01			
	Citreous fruit	-			
	Others	-			
1.6. Water Level Behavior					
1.6.1 Aquifer-I (Shallow Aqu	lifer)				
Pre-Monsoon (May-2018)	•	Post-Monsoon (November-2018)			
DTWL 10 to 20 mbgl is observe	ed in entire block	Water level in the range of 0 to 2 mbgl is observed			
engulfing DTWL patches of 5 to	10 mbgl. Shallow	in southern part and in small isolated patch in			
DTWL 2-5 mbgl is observed as	isolated patch in	south-western part of the block. DTWL 2 to 10 mbgl			
north-eastern part of the block	k near Amgavhan	is observed in major part of the block. Water level			
village.		in the range of 10 to 20 mbgl is observed only as			
		small isolated patch in north-central part of the			
		block.			
Aquifer I, Premonsoon , DTW Manglulpir Taluka, Washin Aran R Legend DTW (mbgl) 2 to 5 5 to 10 10 to 20 Drainage Taluka HQ Monitoring well	(May. 2018) n District NORTH terms	Aquifer I, Postmonsoon , DTW (Nov. 2018) Manglulpir Taluka, Washim District			
1.6.2 Water Level Behavior	- Aquiter-II (Dee	per Aquiter) Post-Monsoon (November-2018)			
DTWI 20-30 mbgl is observed in	major part of the	DTWI 5-10 mbgl is observed in major part engulfing			
block DTWI >30 mbgl is observed in	d in the southern	small natch of DTWI 2 - 5 mbgl in north west and			
south- central and north-eastern	parts of the block	south west parts of the block. South and South-			
		central part has DTWI 20-40 mbgl and small patch			
		of DTWL >50 mbgl.			

3.3. Cross Sections - Section CC'			
A Bitodavoyar Dha	nora Kh		
			Dhanora Bk
			A
			-
184.25	200		
0 Scale 2.5	200 Legend	- Eveloreter	
m A	quifer I-,Basal quifer II-Basal	+ + Fractured	zone 153.75
50 M	lassive basalt	Water leve	
		Water leve	
3.4. Aquifer Characteristics			
Major Aquifers		Basalt	(Deccan Traps)
Type of Aquifer	Basalt	–Aquifer-l	Basalt – Aquifer-II (Semi-confined /
(Phreatic/Semi-confined/Confined)	(Phreatic	/ Shallow	confined / Deeper aquiter)
	aquifer)		
Static Water Level (m bgl)	3 – 22		17 - 50
Depth of Occurrence (mbgl)	9 - 25		70 - 130
weathered/fractured rocks thickness	5 - 14		0.5 - 4
(m) Viold	10 – 100 n	a ³ /day	10 100 lpm
Specific vield/ Storativity (S)	0.02	1 / Udy	
Transmissivity (T)	0.02 0.41 - 80 m	² /dav	5 - 30 m2/day
	0.12 00 11	, , , , , , , , , , , , , , , , , , , ,	5 55 112, 44,
4.1 Phreatic Aquifer (Aquifer-I	/ Shallow	4.2 Semi-	confined/Confined Aquife
4.1 Phreatic Aquifer (Aquifer-I	/ Shallow	4.2 Semi-	confined/Confined Aquife
4.1 Phreatic Aquifer (Aquifer-I aquifer)	/ Shallow	4.2 Semi- (Aquifer II/ D	confined/Confined Aquife eeper aquifer)
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D	confined/Confined Aquife eeper aquifer) bund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi-o (Aquifer II/ D Grow Mangle	confined/Confined Aquifer eeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi-((Aquifer II/ D Gro Mangle	confined/Confined Aquife eeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi-(Aquifer II/ D	confined/Confined Aquifer eeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Grow Mangle	confined/Confined Aquifer eeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D	confined/Confined Aquifer eeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Distr	/ Shallow	4.2 Semi- (Aquifer II/ D	confined/Confined Aquifer eeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Mangle	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Grow Mangle	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi-o (Aquifer II/ D Gro Mangle C C Mangle C C Mangle C C Mangle C C Mangle C C Mangle C C C Mangle C C C Mangle C C C Mangle C C C C Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle C C Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Grow Mangle C C Mangle Mangle C Mangle C Mangle C Mangle Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer eeper aquifer) bund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C 250 to 750 750 to 2250 No of aquifers	fer Basalt	4.2 Semi- (Aquifer II/ D Grow Mangle Control of the second Control	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District Aran R Aran R Mangrulpir Aran R Mangrulpir Budden Mangrulpir Confined/Confined Aquifer Basalt Two
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C So to 750 Nitrate > 45 mg/l	fer Basalt Two 710	4.2 Semi- (Aquifer II/ D Gro Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District Aran R Aran R Mangrulpir Mangrulpi
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C 250 to 750 750 to 2250 Nitrate > 45 mg/l Fluoride > 1mg/l	fer Basalt Two 710 135	4.2 Semi- (Aquifer II/ D Grow Mangle C C Mangle C C Mangle C C Mangle C C Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District Aran R Aran R Mangrulpir Aran R Principal aquifer Basalt nens/cm So No of aquifers Two Area (Sqkm) 710 No of Village 135
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Distr	/ Shallow rict	4.2 Semi- (Aquifer II/ D	confined/Confined Aquifer eeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Grow Mangle	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Distr	/ Shallow	4.2 Semi- (Aquifer II/ D Grow Mangle	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Distr	/ Shallow	4.2 Semi- (Aquifer II/ D	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi-o (Aquifer II/ D Gro Mangle C Legend Drainage Taluka Ho	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Grow Mangle C C C Mangle C C Mangle C C Mangle C C Mangle C C C Mangle C C C Mangle C C C C Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Aran B Hangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C	/ Shallow	4.2 Semi- (Aquifer II/ D Gro Mangle C Legend Drainage Taluka Ho Monitorin EC in microsien at 25° C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C 250 to 750 Principal aquit	fer Basalt	4.2 Semi- (Aquifer II/ D Gro Mangle C Legend Drainage Taluka Ho Monitorin EC in microsien at 25° C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C 250 to 750 750 to 2250 No of aquifers	fer Basalt	4.2 Semi- (Aquifer II/ D Gro Mangle C C Mangle C Mangle C Mangle C Mangle C Mangle C Mangle C Mangle C Mangle C Mangle C C Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District Aran R. Aran R. Mangrulpir
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C 250 to 750 750 to 2250 Nitrate > 45 mo/l	fer Basalt Two 710	4.2 Semi- (Aquifer II/ D Gro Mangle C Legend Drainage Taluka He Monitorin EC in microsien at 25° C So to 750 750 to 225	confined/Confined Aquifer reeper aquifer) ound Water Quality (AQII) ulpir Taluka, Washim District Aran R. Aran R. Mangrulpir Mangrul
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C So to 750 750 to 2250 Nitrate > 45 mg/l Fluoride > 1 mg/l	fer Basalt Two 710 135	4.2 Semi- (Aquifer II/ D Grow Mangle C C Mangle C C Mangle C C Mangle C C C C C C C C C C C C C C C C C C C	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District Aran R Aran R Mangrulpir Mangrulpir Mangrulpir Mangrulpir Mangrulpir Mangrulpir Mangrulpir Mangrulpir Mangrulpir Araa (Sqkm) 710 No of Village 135
4.1 Phreatic Aquifer (Aquifer-I aquifer) Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Ground Water Quality (AQI) Manglulpir Taluka, Washim Dist Mangrulpir Legend Drainage Taluka HQ Monitoring well EC in microsiemens/cm at 25° C So to 750 Nitrate > 45 mg/l Fluoride > 1mg/l EC ranging from 750 to 2250 uS/cm	fer Basalt Two 710 135	4.2 Semi- (Aquifer II/ D Grow Mangle Mangle	confined/Confined Aquifer reeper aquifer) Dund Water Quality (AQII) ulpir Taluka, Washim District Aran R Aran R Mangrulpir Mangrulpi

675.3 sq.km area of the block & ground water is
suitable for all purpose. Patches of EC ranging 250-
750 µS/cm are observed in north-central and south-
western parts of the block (115nsq.km) . Few
villages are also affected by Nitrate and Fluoride
contamination.

787.5 sq. km area of the block & ground water is suitable for all purpose except a small patch of EC ranging from 250-750 μ S/cm in the southern part at the border(2.3 sq.km). Few villages are also affected by Nitrate and Fluoride contamination.

5. GROUND	WATER RESOU	RCE	·				
5.1 Aguifer-I/ Shallow Phreatic Aguifer (Basalt)							
Ground Wate	r Recharge Worthy	Area (Sc	ı. Km.)				710.08
Total Annual Ground Water Recharge (MCM)							103.52
Natural Disch	arge (MCM)						5.18
Net Annual G	round Water Availal	bility (M	ICM)				98.3521
Existing Gross	Ground Water Drat	ft for irr	igation (MCM)				23.90
Existing Gross Ground Water Draft for domestic and industrial water supply(MCM)							2.59
Existing Gross Ground Water Draft for All uses(MCM)							26.49
Provision for domestic and industrial requirement supply to 2025(MCM)							5.278
Net Ground Water Availability for future irrigation development(MCM)							67.1482
Stage of Ground Water Development (%)							26.94
Category							SAFE
5.2 Aquifer	-II (Semi-confine	ed/Con	fined Deeper	Basaltic Aqu	ifer)		
Total Area	Mean aquifer	SY	S	Piezometric	Head	Tot	tal Resource
(Sq. Km.)	thickness (m)			(m above co	onfining	(M	CM)
				layer)			
1273	2.4	0.005	0.0000145	70		16.	5681
6.0. GROUN	ID WATER RESO	URCE	ENHANCEMEN	IT			
6.1. Supply	Side Manageme	ent					
SUPPLY (M	CM)						
Available Resource (MCM)						98.35	
Gross Annual	Draft (MCM)						26.49
Agricultural Demand –GW						23.9	
Agricultural Demand –SW						13.6	
Domestic Demand – GW						2.59	
Domestic Demand – SW						0.6475	
Total Demand						40.7375	
Area of Block (Sq. Km.)						785.69	
Area suitable	for Artificial recharg	ge (Sq. K	im)				710.08
Type of Aquife	er						Hard Rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)						80.48	
Volume of Un	saturated Zone (MC	CM)					596.84
Average Specific Yield							0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)						11.94	
Surplus water Available (MCM) 5.498							
Proposed Stru	uctures	Pe	Percolation Tank (Av. Gross		Check Dam (Av. Gross Capacity		Av. Gross Capacity-
		Ca	apacity-100 TCM [*]	*2 fillings =	10 TCM '	* 3 fi	llings = 30 TCM)
		20	00 TCM)				
Number of St	ructures	14	14 40		40		
Volume of Water expected to be 2.8 1.2							
conserved / recharged @ 75%							
etticiency (MCM)							
RTRWH Structures – Urban Areas						0540	
Households to be covered (25% with 50 m ⁻ area)						9540	
LIOTAL KWH potential (MUN)					0.269505		
Kainwater narvested / recnarged @ 80% runoπ co-efficient 0.215604						0.215604	
However, it is economically not viable & hence, not recommended.							

6.2. Demand Side Management				
Micro irrigation techniques				
Sugarcane crop area (6) , about 1 sqkm area is ground water irrigated ,100 % ground	1			
water irrigated (1 sqkm) proposed to be covered under Drip (sq.km.)				
Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req.	0.57			
- 1.88, WUE- 0.57 m				
Proposed Cropping Pattern change				
Irrigated area under Water Intensive Crop(ha)	Not proposed			
Water Saving by Change in Cropping Pattern	Nil			
6.3. Expected Benefits				
Net Ground Water Availability (MCM)	98.3521			
Additional GW resources available after Supply side interventions (MCM)	45.725			
Ground Water Availability after Supply side intervention(MCM)				
Existing Ground Water Draft for All Uses (MCM)	26.49			
GW draft after Demand Side Interventions (MCM)				
Present stage of Ground Water Development (%)	26.94			
Expected Stage of Ground Water Development after interventions (%)	25.88			
Other Interventions Proposed, if any				
Alternate Water Sources Available	Nil			
6.4. Development Plan				
Volume of water available for GWD after stage of GWD brought to 60% (MCM)	45.725			
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	2743			
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	305			
Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av.	70.346			
CWR of 0.65 m after 70% stage of GWD is achieved				
Regulatory Measures 60m borewells/tube wells				
Additional Area proposed to be brought under assured GW irrigation Manglupir Taluka, Washim District NORTH Legend Principal aquifer Basatt No of aquifers Two Area (Sqkm) 710 Additional Area proposed to be brought under assured GW irrigation with av. CWR of 0.65 m AFTER 70% STAGE OF GWD IS	al aquifer Basalt quifers Two qkm) 710			

9.4 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, MANORA BLOCK, WASHIM DISTRICT, MAHARASHTRA

1. SALIENT FEATURES							
1.1 Introduc	tion						
Block Name		Manora					
Geographical A	rea (Sg.	Km.)		777.93			
Hilly Area (Sg. I	(m)	/		73.0485			
Population (20)	, 11)			156344			
Climate	,			Monsoon Tropical			
Rainfall Ana	Rainfall Analysis						
Normal Rainfal	1			883.1 mm			
Annual Rainfall	(2017)			431.6 mm			
Decadal Average	ge Annua	l Rainfall (2	2008-17)	762.68 mm			
Long Term Rair	nfall	Significantly falling trend -6.84 mm/year.					
Analysis (1998-	2017)	Probabil	ity of Rainfall : 55% Normal Rainfal	l; 15 % Excess Rainfall			
		Probabil	ity of Drought: 25% Moderate Dro	ught & 5% Severe Drought			
Rainfall Tren	nd Anal	ysis (199	8 To 2017)				
1600			•				
1000			v = -6 8493v + 883	84			
1400 -			y = 0.04997 + 003.				
1200 -							
1200	_						
1000 -							
800 -							
000							
600 -							
400 -							
200 -							
0							
പ്പ	ର	\sim \sim \sim	0, & & & & & &	· · · · · · · · · · · · · · · · · · ·			
N 39 39	20° 29	0, ⁵ 0, ⁵ 0	2, 100, 100, 100, 100, 100, 100, 100, 10	201 201 201 201 201 201 201			
	<u> </u>						
1.3. Geomor	pholog	y & Geol	ogy				
Geomorphic U	nit	Plateau s	lightly dissected to moderately dissected and weathered with				
		weather	ed thickness ranging from 0 to 5 m.				
Geology		Deccan	Fraps (Basalt) Age: Late Cretaceous to Eocene				
Soil Very deer			p BCS consisting mostly of clay and loam, >100 cm thick.				
1.4. Hydrolo	gy & Di	rainage					
Drainage Arunavat			i river, tributary of Painganga river	, Godavari river basin with sub-			
dendritic			to dendritic drainage.				
Hydrology Minor In Hydrology		Major ar	nd Medium project	Nil			
		Minor Irrigation Projects(Local)		5			
		Minor Irr	igation Projects(ZP Level)	176			
				PT-19, KT-16, UGB-0			
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern							
Forest Area			130.33 Sq. Km.				
Cultivable Area			584.71 Sq. Km.				
Net Sown Area			563.7 Sq. Km.				
Double Cropped Area			10.2				
Area under Surface Water		Water	25.7 sq km				
Irrigation	Ground Water		12.43 sq km				

Area under Drip & Sprinkler					
Irrigation	Core a Ta				
Principal Crops	Crop Type	Area (Sq. Km.)(Reference year 2016-17)			
	Corcole				
	Cereals	55.35			
	Pulses	189.22			
	Oil Seeds	324.09			
	Sugarcane	0.03			
	Citreous fruit	-			
	Others	-			
1.6. Water Level Behavior					
1.6.1 Aquifer-I (Shallow Aqu	ifer)				
Pre-Monsoon (May-2018)		Post-Monsoon (November-2018)			
DTWL 5 to 10 mbgl is observe	d in major area	DTWL 2 to 5 mbgl is observed in major part. DTWL			
engulfing DTWL 10 to 20 mbgl. DT	WL 2 to 5 mbgl is	of 5 to 10 mbgl is observed as patches in western,			
observed in Central-eastern and	western part in	Northern and south-eastern part of the block.			
long continues patch.					
Aquifer I, Premonsoon , DTW Manora Taluka, Washim	/ (May. 2018) District	Aquifer I, Postmonsoon , DTW (Nov. 2018) Manora Taluka, Washim District			
Legend Principal a No of aqui DTW (mbgl) Area (Sqkr 2 to 5 No of Villa 5 to 10 Drainage Taluka HO Monitoring wbi Manora	rquifer Basalt fers Two n) 704.88 ge 136	Legend DTW (mbgl) 0 to 2 2 to 5 5 to 10 Drainage Taluka HQ Monitoring With Manora Manora			
1.6.2 Water Level Behavior - Aquifer-II (Deeper Aquifer)					
DTWI 10-20 mbd is observed in	major part DT\//	PUSL-IVIUIISUUN (IVOVEINDEF-2018)			
20-20 mbgl is observed in east	anajui part. DIVVL	south west part of the block DTWI 5-10 mbd is			
south-western part of the block	North part has	observed in South south-west and south-east part			
deeper DTW/ i.e. 20 to 50 mbg		of the block whereas DTWI 10-20 mbgl is observed			
		in North Fast parts of the block and some area in			
		western part of the block			
		western part of the block.			

3.4. Aquifer Characteristics						
Major Aquifers	Basalt (Deccan Traps)					
Type of Aquifer (Phreatic/Semi-confined/Confined)	Basalt –Aquifer-I (Phreatic / Shallow aquifer)	Basalt –Aquifer-II (Semi-confined / confined / Deeper aquifer)				
Static Water Level (mbgl)	5 - 19	21 - 50				
Depth of Occurrence (mbgl)	10 - 25	70 - 165				
weathered/fractured rocks thickness (m)	8 - 14	1 - 4				
Yield	10 – 100 m ³ /day	0.5 - 1.25 lps				
Specific yield/ Storativity (S)	0.019 - 0.028	0.00003 -0.00005				
Transmissivity (T)	40 - 50 m²/day	20 - 60 m2/day				

4. GROUND WATER QUALITY

4.1 Phreatic Aquifer (Aquifer-I/ Shallow aquifer)

EC ranging 750 to 2250 μ S/cm has been observed in major part of the block (442 sq km) while EC ranging 250 to 750 μ S/cm is observed in rest of the part(336.2 sq.km). The ground water is suitable for all purpose. Few villages are also affected by nitrate & fluoride contamination.

4.2 Semi-confined/Confined Aquifer

(Aquifer II/ Deeper aquifer)

EC ranging from 750 to 2250 μ S/cm has been observed in major part (580.9 sq.km) while EC ranging from 250 to 750 μ S/cm is observed in north, north-east part and in small patch in south-east part of the block (197.3). The ground water is suitable for all purpose. Few villages are also affected by nitrate and fluoride contamination.

5. GROUND WATER RESOURCE							
5.1 Aquifer-I/ Shallow Phreatic Aquifer (Basalt)							
Ground Water Recharge Worthy Area (Sq. Km.)	704.88						
Total Annual Ground Water Recharge (MCM)	88.201						
Natural Discharge (MCM)	4.410						
Net Annual Ground Water Availability (MCM)	83.79						
Existing Gross Ground Water Draft for irrigation (MCM)	25.1415						
Existing Gross Ground Water Draft for domestic and industria	water supply(MCM) 2.2038						
Existing Gross Ground Water Draft for All uses(MCM)	27.3453						
Provision for domestic and industrial requirement supply to 2	025(MCM) 4.1888						
Net Ground Water Availability for future irrigation developme	nt(MCM) 56.2935						
Stage of Ground Water Development (%)	32.64						
Category	Safe						
5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)							
Total Area Mean aquifer SY S	Piezometric Head Total Resource						
(Sq. Km.) thickness (m)	(m above confining (MCM)						

				laye	r)		
1089.67	2.4	0.005	0.0000145	25		13.47105	
6.0. GROUN	D WATER RESO			Γ			
6 1 Supply	Side Manageme	ont					
SUPPLY (M							
Available Reso	83.79						
Gross Annual	27.34						
Agricultural D	emand –GW					25.24	
Agricultural D	emand –SW					16.7	
Domestic Den	nand – GW					2.2	
Domestic Den	nand – SW					0.55	
Total Demand	k					44.69	
Area of Block	777.93						
Area suitable	704.88						
Type of Aquife	Hard rock						
Area feasible	for Artificial Rechar	ge (WL >5)	mbgl) (Sq. Km.)			210.7	
Volume of Un	saturated Zone (M	CM)	-0/(1 /			1236.83	
Average Speci	ific Yield	,				0.02	
Volume of Sul	h Surface Storage Si	nace availa	able for Artificial	Recharge (M(°M)	24 74	
Surplus water	Available (MCM)			Recharge (IVI	51417	11 79	
Proposed Stri		Dor	colation Tank (A)	Gross	Check Da	m (Av. Gross Canacity	
Fioposed Stit		Can	acity-100 TCM*1	2 fillings -	10 TCM *	3 fillings – 30 TCM	
		200		2 mmgs –	10 1010	$5 \min\{g_{2} = 50 \ \ C(v)\}$	
Number of St	200 ICM)						
Number of Structures 35 60							
Volume of Water expected to be / 1.8							
officiona (MC	conserved / recharged @ 75%						
	LIVI)						
Households to	he covered (25%)	s with E0 m ²	araal				
Total DM/// ma			alea)			0.2490	
Total RWH po		© 000/ m				0.2486	
Rainwater har	vested / recharged	@ 80% ru	nott co-efficient			0.1988	
However, it is	economically not v	iable & he	nce, not recomn	nended.			
6.2. Deman	d Side Manager	nent					
Micro irrigatio	on techniques						
Cotton crop area (31.17) ,about 50 sqkm area is ground water irrigated , 10 % ground						d 5	
water irrigated (5 sqkm) proposed to be covered under Drip (sq.km.)							
Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req.						eq. 1.3	
- 1.88, WUE- ().57 m						
Proposed Cro	pping Pattern chan	ge					
Irrigated area under Water Intensive Crop(ha)						Not proposed	
Water Saving by Change in Cropping Pattern						Nil	
6.3 EXPECT	ED BENEFITS						
Net Ground Water Availability (MCM)						83 79	
Additional GW resources available after Supply side interventions (MCM)						38 773	
Ground Water Availability after Supply side intervention(MCM)						30.773	
Existing Ground Water Draft for All Uses (MCM)							
Drosont stage of Ground Water Development (0/)					22.64		
Expected Stage of Ground Water Development after interventions (%)					20.52		
Checkled Stag	se of Ground Water	Developm	ient alter interve			29.53	
Alternation M	han Courses A	ally				NI:1	
Alternate Wal	ter Sources Availabl	е				INII	
6.4 Develop	oment Plan						
Volume of wa	ter available for GV	VD after st	age of GWD bro	ught to 60% (I	MCM)	38.773	

9.5 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, RISOD BLOCK, WASHIMDISTRICT, MAHARASHTRA

1. SALIENT FEATUR	ES	1. SALIENT FEATURES						
1.1 Introduction								
Block Name Risod								
Geographical Area (Sq. Km.) 874.94								
Hilly Area (Sq. Km) 2569.81								
Population (2011) 207545								
Climate Monsoon Tropical								
1.2 Rainfall Analysis	5							
Normal Rainfall			880 mm					
Annual Rainfall (2017)			663 mm					
Decadal Average Annua	l Rainfall (2	2008-17)	794.48 mm					
Long Term Rainfall Falling trend -30.14 mm/year.								
Analysis (1998-2017) Probability of Rainfall : 55 % Normal Rainfall; 20 % Excess Rainfall								
	Probability of Drought: 25 % Moderate Drought							
Rainfall Trend Anal	ysis (199	8 To 2017)						
2000								
1800								
1000		y = -30.	146x + 1225.4					
1600 -								
1400 —								
1200								
1000 — — —								
800								
600								
400								
200								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	න බැ බ	2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
\\ \ ³	n Jon Jo	10 20 20 20 20 20 20 20 20 20 20 20 20 20	201 201 201 201 201 201 201					
1.2. Coomarnhalagu & Coolagu								
Geomorphic Unit	Plateau (	ogy slightly dissected to moderately di	ssected and weathered plateau) with					
	weather	and thickness ranging from 0 to 5 m	ssected and weathered plateady with					
Geology Deccan Trans (Basalt) Age: Late Cretaceous to Eccene								
Soil Moderately deen BCS consisting mostly of day, 25, 100 cm thick								
1.4 Hydrology & Drainage								
<b>1.4. Tyuruugy &amp; Urainage</b> Drainaga								
Dramage	Maior ar	a Medium project	Nil					
	Minor Irr	igation Projects(Local)	10					
Hydrology Minor Irrigation Projects(ZP Level) 337								
PT-15, KT-32, UGB-2								
1.5 Land Use Agriculture Irrigation & Cronning Pattern								
Forest Area 19 19 So Km								
Cultivable Area		714.71 Sa. Km.						
Net Sown Area		629.75 Sq. Km.						
Double Cropped Area		149.3						
Area under Surface	Water	38.1 Sg. Km.						
Irrigation Ground	Water	ter 17.93 Sq. Km.						

Area under Drip & Sprinkler	ha					
Principal Crops	Crop Type	Area (Sa Km) (Reference year 2016-17)				
	Cotton	0.76				
	Cereals	6424				
	Pulses	401.87				
	Oil Seeds	563.24				
Horticultural Crops	Sugarcane	0.8				
	Citreous fruit	-				
	Others	0.03				
1 6 Water Level Behavior	Others	0.03				
1.6 1 Aquifer-I (Shallow Aqu	ifor)					
Pre-Monsoon (May-2017)		Post-Monsoon (November-2017)				
DTWL 10 to 20 mbgl is observed in	n major nart while	DTW/ 2 to 5 mbgl is observed in major part. DTW/				
DTWL 5 to 10 mbgl is observed in	Central eastern	of 5 to 10 mbgl is observed as isolated natches in				
north and north-western part	TWI 2 to 5 mbgl	north and north-west part also in south west part				
observed in small patches in north	-west and eastern	of the block. While DTWL 0 to 2 mbgl in isolated				
part near border.		patch in north- west part and also in south west				
		and western part of the block.				
Aquifer I, Premonsoon , DTW	(May. 2018)	Aquifer I, Postmonsoon , DTW (Nov. 2018)				
Risod Taluka, Washim Dis	trict	Risod Taluka, Washim District				
Principal aquifer Area (Sqkm) No of Village Taluka HQ	NORTH 7.5 15 kilometers Portone Romanga Roman Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitation Policitatio	Principal aquifers       Two         No of aquifers       Two         Area (Sqkm)       849.24         No of Village       100         Taluka HQ       Monitoring well				
1.6.2 Water Level Behavior	Aquiter-II (Dee	per Aquifer)				
Pre-Monsoon (May-2018)	ad in mani	Post-Monsoon (November-2018)				
DIWL 30 to 40 mbgl is observe	ed in major part.	DIWL 10-20 mbgl is observed in major part. DTWL				
UTVVL 20 to 30 mbgl is observed	in south east part	20-30 mbgi is observed in central and north-eastern				
whereas DTWL 40 to 50 mbgl is o	bserved in central	part of the block. NW part enguiring a small				
and north eastern part engulfing a	patch of DTWL of	isolated patch of DIWL of 30 to 40 m bgl. DTWL 2				
> 50 m bgl.		to 5 mbgl is observed in south east part near				

border.





3.4. Aquifer Characteristics						
Major Aquifers	Basalt (Deccan Traps)					
Type of Aquifer	Basalt – Aquifer-I	Basalt – Aquifer-II (Semi-confined /				
(Phreatic/Semi-confined/Confined)	(Phreatic / Shallow	confined / Deeper aquifer)				
	aquifer)					
Static Water Level (mbgl)	8 - 19	21 - 50				
Depth of Occurrence (mbgl)	9 - 25	70 - 165				
weathered/fractured rocks thickness	6-14	1 - 4				
(m)						
Yield	10 – 100 m ³ /day	0.2 - 0.75 lps				
Specific yield/ Storativity (S)	0.018 - 0.20	0.0000145				
Transmissivity (T)	20 - 50 m ² /day	20 - 60 m2/day				

### 4. GROUND WATER QUALITY

4.1 Phreatic Aquifer (Aquifer-I/ Shallow aquifer)



EC ranging 750-2250  $\mu$ S/cm has been observed in major part (740.5 sq.km) & EC ranging 250 to 750  $\mu$ S/cm (111.4 sq km) in patches in south-west, north-east and western part near borders. The ground water is suitable for all purpose. One isolated patch of EC ranging 2250-3000  $\mu$ S/cm is observed in northern part of the block(12.54 sq.km). Ground water is suitable for irrigation purpose with proper salinity control measures. However the water from such area is not fit for drinking purpose without treatment. Few villages are also affected by nitrate and fluoride contamination.

# 4.2 Semi-confined/Confined Aquifer (Aquifer II/ Deeper aquifer)



EC ranging 750 - 2250  $\mu$ S/cm has been observed in major part (697.9 sq. km) except EC ranging 250 -750  $\mu$ S/cm in) in patches in south-west, north-east and western and eastern parts near borders(147 sq.km). The ground water is suitable for all purpose. One isolated patch of EC ranging 2250-3000  $\mu$ S/cm is observed in northern part of the block (19.47sq.km).Ground water is suitable for irrigation purpose with proper salinity control measures. However the water from such area is not fit for drinking purpose without treatment. Few villages are also affected by fluoride and nitrate contamination.

5. GROUND WATER RESOURCE	
5.1 Aquifer-I/ Shallow Phreatic Aquifer (Basalt)	
Ground Water Recharge Worthy Area (Sq. Km.)	849.24
Total Annual Ground Water Recharge (MCM)	129.51
Natural Discharge (MCM)	6.49
Net Annual Ground Water Availability (MCM)	123.02
Existing Gross Ground Water Draft for irrigation (MCM)	46.0337

Existing Gross Ground Water Draft for All uses(MCM)       48.3986         Provision for domestic and industrial requirement supply to 2025(MCM)       4.739         Net Ground Water Availability for future irrigation development(MCM)       70.997         Stage of Ground Water Development (%)       39.34         Category       SAFE         5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)       Total Area         Mean aquifer thickness (m)       SY       S         Piezometric Head (M above confining layer)       Total Resource (MCM)       Total Resource (MCM)         693.81       2       0.005       0.0000145       38       7.32         6.0. GROUND WATER RESOURCE ENHANCEMENT       6.1. Supply Side Management       123.03       Gross Annual Draft (MCM)       48.4         Agricultural Demand –GW       46.03       44.03       44.03       44.03         Domestic Demand – GW       2.36       0.59       0.59       0.59         Total Demand       SW       0.59       73.75       37.94       34.94       34.94         Area of Block (Sq. Km.)       78.69       94.94       34.94       34.94       34.94       34.94       34.94       34.94       36.9       36.9       36.9       36.9       36.9       36.9       36.9 <t< th=""></t<>						
Provision for domestic and industrial requirement supply to 2025(MCM)       4.739         Net Ground Water Availability for future irrigation development(MCM)       70.997         Stage of Ground Water Development (%)       39.34         Category       SAFE         5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)       SAFE         Total Area       Mean aquifer       SY       S       Piezometric Head       Total Resource (MCM)         693.81       2       0.005       0.0000145       38       7.32         6.0. GROUND WATER RESOURCE ENHANCEMENT       6.1. Supply Side Management       123.03         Gross Annual Draft (MCM)       48.4       48.4         Agricultural Demand –GW       24.77       2.36         Domestic Demand – GW       2.36       0.59       37.5         Area of Block (Sq. Km.)       874.94       37.94       37.94         Area suitable for Artificial Recharge (Sq. Km)       849.24       79.94       37.95         Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)       78.69       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02 <t< td=""></t<>						
Net Ground Water Availability for future irrigation development (MCM)         70.997           Stage of Ground Water Development (%)         39.34           Category         SAFE           5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)         Total Resource (management)           Total Area         Mean aquifer (Sq. Km.)         S         Piezometric Head (make confining)         Total Resource (MCM)           693.81         2         0.005         0.0000145         38         7.32           6.0. GROUND WATER RESOURCE ENHANCEMENT         6.1. Supply Side Management         123.03         7.32           6.1. Supply Side Management         123.03         48.4         48.4           Agricultural Demand –GW         46.03         48.4           Agricultural Demand –GW         2.36         0.59           Domestic Demand – GW         2.36         0.59           Total Demand – SW         0.59         59.5           Area of Block (Sq. Km.)         849.24         44.94           Area of Block (Sq. Km.)         849.24         78.69           Volume of Unsaturated Zone (MCM)         229.15         0.29.15           Average Specific Yield         0.02         0.02           Volume of Unsaturated Zone (MCM)         4.6         0.02						
Stage of Ground Water Development (%)       39.34         Category       SAFE         5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)       Total Resource (MCM)         Total Area       Mean aquifer       SY       S       Piezometric Head (m above confining layer)       Total Resource (MCM)         693.81       2       0.005       0.0000145       38       7.32         6.0. GROUND WATER RESOURCE ENHANCEMENT       6.1. Supply Side Management       7.32         6.1. Supply Side Management       5       123.03         Gross Annual Draft (MCM)       48.4         Agricultural Demand –GW       46.03         Agricultural Demand –GW       2.36         Domestic Demand – GW       0.59         Total Demand       S7.75         Area of Block (Sq. Km.)       874.94         Area suitable for Artificial recharge (Sq. Km)       849.24         Type of Aquifer       Hard rock         Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)       78.69         Volume of Unsaturated Zone (MCM)       229.15         Average Specific Yield       0.02         Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)       4.6         Surplus water Available (MCM)       2.184						
Category         SAFE           5.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)         Total Area         Mean aquifer         SY         S         Piezometric Head         Total Resource           (Sq. Km.)         thickness (m)         SY         S         Piezometric Head         Total Resource           693.81         2         0.005         0.0000145         38         7.32           6.0. GROUND WATER RESOURCE ENHANCEMENT         6.1. Supply Side Management         123.03           Gross Annual Draft (MCM)         48.4           Agricultural Demand –GW         46.03           Agricultural Demand –GW         24.77           Domestic Demand – GW         23.66           Domestic Demand – GW         0.59           Total Demand – GW         37.55           Area of Block (Sq. Km.)         874.94           Area suitable for Artificial recharge (Sq. Km)         849.24           Type of Aquifer         Hard rock           Area feasible for Artificial Recharge (MCM)         229.15           Volume of Unsaturated Zone (MCM)         4.6           Surgles water Available (MCM)         2.184						
S.2 Aquifer-II (Semi-confined/Confined Deeper Basaltic Aquifer)         Total Area (Sq. Km.)       Mean aquifer thickness (m)       SY       S       Piezometric Head (m above confining layer)       Total Resource (MCM)         693.81       2       0.005       0.0000145       38       7.32         6.0. GROUND WATER RESOURCE ENHANCEMENT       6.1. Supply Side Management       123.03         Gross Annual Draft (MCM)       48.4         Agricultural Demand – GW       48.4         Agricultural Demand – GW       24.77         Domestic Demand – GW       2.36         Domestic Demand – SW       0.59         Total Demand – SW       0.59         Total Demand – SW       874.94         Area of Block (Sq. Km.)       874.94         Area suitable for Artificial recharge (Sq. Km)       78.69         Type of Aquifer       Hard rock         Area feasible for Artificial Recharge (MCM)       229.15         Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)       4.6         Surglus water Available (MCM)       2.184						
J. Proposed Structures       Mean aquifer       SY       S       Piezometric Head (m above confining layer)       Total Resource (MCM)         693.81       2       0.005       0.0000145       38       7.32         6.0. GROUND WATER RESOURCE ENHANCEMENT         6.1. Supply Side Management         SUPPLY (MCM)         48.4         Agricultural Demand –GW       48.4         Agricultural Demand –GW       24.77         Domestic Demand – GW       2.36         Domestic Demand – GW       2.36         Domestic Demand – SW       0.59         Total Demand       S74.94         Area of Block (Sq. Km.)       874.94         Area fassible for Artificial recharge (WL >5mbgl) (Sq. Km.)       78.69         Volume of Unsaturated Zone (MCM)       229.15         Average Specific Yield       0.02         Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)       4.6         Surplus water Available (MCM)       2.184						
Nitean Area         Nitean Aquiter         ST         ST         Prezione child inclusion (MCM)           (Sq. Km.)         thickness (m)         (M above confining layer)         (MCM)           693.81         2         0.005         0.0000145         38         7.32           6.0. GROUND WATER RESOURCE ENHANCEMENT         5         123.03         123.03           Gross Annual Draft (MCM)         48.4         48.4           Agricultural Demand –GW         46.03           Agricultural Demand –GW         24.77           Domestic Demand – GW         2.36           Domestic Demand – GW         2.36           Domestic Demand – SW         0.59           Total Demand         S74.94           Area of Block (Sq. Km.)         874.94           Area of Block (Sq. Km.)         874.94           Area suitable for Artificial recharge (Sq. Km)         78.69           Yolume of Unsaturated Zone (MCM)         229.15           Average Specific Yield         0.02           Yolume of Sub Surface Storage Space available for Artificial Recharge (MCM)         4.6           Surplus water Available (MCM)         2.184						
603.81       2       0.005       0.0000145       38       7.32         6.0. GROUND WATER RESOURCE ENHANCEMENT       6.1. Supply Side Management       7.32         6.1. Supply Side Management       123.03         Gross Annual Draft (MCM)       48.4         Agricultural Demand –GW       48.4         Agricultural Demand –GW       44.03         Agricultural Demand –GW       24.77         Domestic Demand – GW       2.36         Domestic Demand – GW       2.36         Domestic Demand – GW       5.9         Total Demand – SW       0.59         Area of Block (Sq. Km.)       874.94         Area of Block (Sq. Km.)       849.24         Type of Aquifer       Hard rock         Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)       78.69         Volume of Unsaturated Zone (MCM)       229.15         Average Specific Yield       0.02         Volume of Sub Surface Storage Space =vailable for Artificial Recharge (MCM)       4.6         Surplus water Available (MCM)       2.184         Proposed Structures       Percolation Tank (Av. Gross       Check Dam (Av. Gross Capacity-						
693.81       2       0.005       0.000145       38       7.32         6.0. GROUND WATER RESOURCE ENHANCEMENT         6.1. Supply Side Management         6.1. Supply Side Management         SUPPLY (MCM)         123.03         Gross Annual Draft (MCM)       48.4         Agricultural Demand -GW       46.03         Agricultural Demand -GW       24.77         Domestic Demand - GW       2.36         Domestic Demand - SW       0.59         Total Demand       S74.94         Area of Block (Sq. Km.)       874.94         Area of Block (Sq. Km.)       874.94         Area suitable for Artificial recharge (Sq. Km.)       78.69         Volume of Unsaturated Zone (MCM)       229.15         Average Specific Yield       0.02         Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)       4.6         Surplus water Available (MCM)       2.184         Proposed Structures       Percolation Tank (Av. Gross       Check Dam (Av. Gross Capacity-						
0.000140 100 100 1006.000140 1006.000140 1006.000140 1006.000140 1006.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)123.03Gross Annual Draft (MCM)48.4Agricultural Demand -GW46.03Agricultural Demand -GW24.77Domestic Demand - GW2.36Domestic Demand - GW0.59Total DemandArea of Block (Sq. Km.)Area of Block (Sq. Km.)874.94Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
6.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)123.03Gross Annual Draft (MCM)48.4Agricultural Demand –GW46.03Agricultural Demand –GW24.77Domestic Demand – GW2.36Domestic Demand – GW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
6.1. Supply Side ManagementSUPPLY (MCM)Available Resource (MCM)123.03Gross Annual Draft (MCM)48.4Agricultural Demand –GW46.03Agricultural Demand – GW24.77Domestic Demand – GW2.36Domestic Demand – SW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area of Block (Sq. Km.)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
SUPPLY (MCM)123.03Available Resource (MCM)123.03Gross Annual Draft (MCM)48.4Agricultural Demand –GW46.03Agricultural Demand –GW24.77Domestic Demand – GW2.36Domestic Demand – GW0.59Total Demand0.59Total Demand874.94Area of Block (Sq. Km.)874.94Area of Block (Sq. Km.)849.24Type of AquiferHard rockArea feasible for Artificial recharge (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Available Resource (MCM)123.03Gross Annual Draft (MCM)48.4Agricultural Demand –GW46.03Agricultural Demand –SW24.77Domestic Demand – GW2.36Domestic Demand – SW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area of Block (Sq. Km.)849.24Type of AquiferHard rockArea feasible for Artificial recharge (Sq. Km.)849.24Type of Aquifer78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Gross Annual Draft (MCM)48.4Agricultural Demand –GW46.03Agricultural Demand –SW24.77Domestic Demand – GW2.36Domestic Demand – SW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area of Block (Sq. Km.)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)Percolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Agricultural Demand –GW46.03Agricultural Demand –SW24.77Domestic Demand – GW2.36Domestic Demand – SW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area of Block (Sq. Km.)849.24Type of Aquifer46.03Area feasible for Artificial recharge (Sq. Km)849.24Type of Aquifer78.69Volume of Unsaturated Zone (MCM)78.69Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Agricultural Demand –SW24.77Domestic Demand – GW2.36Domestic Demand – SW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Domestic Demand – GW2.36Domestic Demand – SW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Domestic Demand – SW0.59Total Demand73.75Area of Block (Sq. Km.)874.94Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Total Demand73.75Area of Block (Sq. Km.)874.94Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Area of Block (Sq. Km.)874.94Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Area suitable for Artificial recharge (Sq. Km)849.24Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Type of AquiferHard rockArea feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)78.69Volume of Unsaturated Zone (MCM)229.15Average Specific Yield0.02Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)4.6Surplus water Available (MCM)2.184Proposed StructuresPercolation Tank (Av. GrossCheck Dam (Av. Gross Capacity-						
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)       78.69         Volume of Unsaturated Zone (MCM)       229.15         Average Specific Yield       0.02         Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)       4.6         Surplus water Available (MCM)       2.184         Proposed Structures       Percolation Tank (Av. Gross       Check Dam (Av. Gross Capacity-						
Volume of Unsaturated Zone (MCM)       229.15         Average Specific Yield       0.02         Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)       4.6         Surplus water Available (MCM)       2.184         Proposed Structures       Percolation Tank (Av. Gross       Check Dam (Av. Gross Capacity-						
Average Specific Yield     0.02       Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)     4.6       Surplus water Available (MCM)     2.184       Proposed Structures     Percolation Tank (Av. Gross     Check Dam (Av. Gross Capacity-						
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)       4.6         Surplus water Available (MCM)       2.184         Proposed Structures       Percolation Tank (Av. Gross       Check Dam (Av. Gross Capacity-						
Surplus water Available (MCM)     2.184       Proposed Structures     Percolation Tank (Av. Gross     Check Dam (Av. Gross Capacity-						
Proposed Structures         Percolation Tank (Av. Gross         Check Dam (Av. Gross Capacity-						
Capacity-100 TCM*2 fillings = 10 TCM * 3 fillings = 30 TCM)						
200 TCM)						
Number of Structures 5 21						
Volume of Water expected to be 1 0.63						
conserved / recharged @ 75%						
efficiency (MCM)						
RTRWH Structures – Urban Areas						
Households to be covered (25% with 50 m ² area) 10800						
Total RWH potential (MCM) 0.3051						
Rainwater harvested / recharged @ 80% runoff co-efficient0.24408						
However, it is economically not viable & hence, not recommended.						
6.2. Demand Side Management						
Micro irrigation techniques						
Sugarcane crop area (84) ,about 5 sqkm area is ground water irrigated .100 % ground 4						
water irrigated ( 5 sqkm) proposed to be covered under Drip (sq.km.)						
Volume of Water expected to be saved (MCM). Surface Flooding req- 2.45 m. Drip Req. 2.28						
- 1.88, WUE- 0.57 m						
Proposed Cropping Pattern change						
Irrigated area under Water Intensive Crop(ha) Not proposed						
Water Saving by Change in Cropping Pattern Nil						
6.4. Expected Benefits						
Net Ground Water Availability (MCM) 123.02						
Additional GW resources available after Supply side interventions (MCM) 41.142						
Ground Water Availability after Supply side intervention (MCM)						



# 9.6 AQUIFER MAPS AND GROUND WATER MANAGEMENT PLAN, WASHIM BLOCK, WASHIM DISTRICT, MAHARASHTRA

1.1 IntroductionBlock NameWashimGeographical Area (Sq. Km.)919.72Hilly Area (Sq. Km)37.2609Population (2011)255188ClimateMonsoon Tropical1.2 Rainfall Analysis1038.6 mm					
Block NameWashimGeographical Area (Sq. Km.)919.72Hilly Area (Sq. Km)37.2609Population (2011)255188ClimateMonsoon Tropical1.2 Rainfall Analysis1038.6 mm					
Geographical Area (Sq. Km.)919.72Hilly Area (Sq. Km)37.2609Population (2011)255188ClimateMonsoon Tropical1.2 Rainfall Analysis1038.6 mm					
Hilly Area (Sq. Km)37.2609Population (2011)255188ClimateMonsoon Tropical1.2 Rainfall Analysis1038.6 mm					
Population (2011)     255188       Climate     Monsoon Tropical       1.2 Rainfall Analysis     1038.6 mm					
Climate     Monsoon Tropical       1.2 Rainfall Analysis     1038.6 mm					
<b>1.2 Rainfall Analysis</b> Normal Rainfall       1038.6 mm					
Normal Rainfall 1038.6 mm					
Annual Rainfall (2017) 624.3 mm					
Decadal Average Annual Rainfall (2008-17) 909.78 mm					
Long Term Rainfall Falling trend: -15.193 mm/year.					
Analysis (1998-2017) Probability of Rainfall : 60% Normal Rainfall; 15 % Excess Rainfall					
Probability of Drought: 20% Moderate Drought & 5% Severe Drought					
Rainfall Trend Analysis (1998 To 2017)					
2500 - y = -15.193x + 1187.5 $1500 - y = -15.193x + 1187.5$ $1000 - y = -15.193x + 1187.5$ $1000 - y = -15.193x + 1187.5$ $1000 - y = -15.193x + 1187.5$					
Geomorphic Unit Plateau (Un-dissected to slightly dissected) with weathered thickness ranging					
from 0 to 5 m.					
Geology Deccan Traps (Basalt) Age: Late Cretaceous to Eocene					
Soil Major area shows BCS consisting mostly of clay >100 cm thick. Clay with					
thickness 50-100 cm is observed in southern part of the block. At certain places					
gravelly clay loam of 10-25 cm is observed.					
1.4. Hydrology & Drainage					
Drainage Pus river, tributary of Painganga river, Godavari basin.					
Major and Medium project Nil					
Hydrology Minor Irrigation Projects(Local) 6					
Minor Irrigation Projects(ZP Level) 368					
PT-34, KT-7, UGB-1					
1.5. Land Use, Agriculture, Irrigation & Cropping Pattern					
Forest Area 21.18 Sq. Km.					
Cultivable Area 806.86Sq. Km.					
Net Sown Area /12.91 Sq. Km.					
Double Cropped Area         109.15 Sq. Km.           Area under         Surface Water         38.725a. Km.					

Irrigation	Ground Water	40.69 Sq. Km.					
Area under Dr	ip & Sprinkler						
Irrigation							
Principal Crops Crop Type			Area (Sq. Km.)(Reference year 2016-17)				
		Cotton	1.18				
Cereals		Cereals	61.54				
		Pulses	303.12				
		Oil Seeds	599.99				
Horticultural C	Crops	Sugarcane	0.18				
		Citreous fruit	-				
		Others	-				
1.6. Water I	1.6. Water Level Behavior						
1.6.1 Aquife	er-I (Shallow Aqu	iifer)					
Pre-Monsoon	(May-2018)		Post-Monsoon (November-2018)				
Major area is	showing DTWL 10	0 to 20 m bgl ir	DTWL 2- 5 mbgl is observed in major part. DTWL of				
Western and North- western part of block. Rest of			5 to 10 mbgl is observed as a small patch near				
the part is showing DTWL 10 to 20 m bgl in East and			border in the west part of the block. Area with				
South east part of Washim block also Small patches			DTWL 0-2 mbgl is observed as isolated patches in				
are present in	northern part of th	e block. Whereas	SE, SW, NE, NW parts of the block.				
in the southe	rn boundary DTWL	2 to 5 m bgl are					
seen.			<u> </u>				
Drainage Monitoring	well Washim Pus Na Washim Pus Na Principa 5 No of aq 10 Area (Sq 20 No of Vil Taluka H	Autoriters Two 882.45 lage 128 lQ	Washim Taluka, Washim District         Drainage Monitoring well       Image         Washim Taluka, Washim District         Image         Monitoring well         Image         Washim         Washim         Washim         Image         Monitoring well         Image         Image				
1.6.2 Water	Level Behavior	- Aquifer-II (De	eper Aquifer)				
Pre-Monsoon	(May-2018)		Post-Monsoon (November-2018)				
DTWL 10-20 m	nbgl is observed in N	lorth-East part.	DTWL 10-20 mbgl is observed in major part. DTWL				
DTWL >50 mbgl is observed as Patch in Northern			5-10 mbgl is observed as strip running NE-SE part				
part. Strips of DTWL 20-30 ; 30-40 and 40-50 mbgl			engulfing a patch of DTWL of 2-5 m bgl in the NE				
are running NW-SE of the block.			part of block.				







$\mu$ S/cm (421.9 sq km)is observed in north, south, south-east-west and eastern part of the block. The ground water is suitable for all purpose. Few villages			750µS/cm in 396.1 sq. km area in southern, north- west and some area in eastern part of the block. The ground water is suitable for all purpose. Few					
are also affected by nitrate & fluoride villages are affected by nitrate cor					ntamination.			
5 GROUND	WATER RESOLIE	CF 8	FXTRACTI					
5. GROONE	I/ Shallow Phro			al+)				
5.1 Aquiter-I/ Shallow Phreatic Aquiter (Basalt)								
Ground Wate	r Recharge Worthy P	Area (S	$\mathbf{p}(\mathbf{r}, \mathbf{r}, \mathbf{r})$					882.4591
Natural Discharge (MCM)							102.80 F 14	
Natural Discillarge (NICIVI)     5.14       Net Appual Ground Water Availability (MCM)     97.66								
Iver Annual Ground Water Availability (IVICIVI)     97.66       Existing Gross Ground Water Draft for irrigation (MCM)     33.59							32.50	
Existing Gross Ground Water Draft for domestic and industrial water supply (MCM) 2.692							2 682	
Existing Gross Ground Water Draft for All uses (MCM) 2.682							36 275	
Existing Gross Ground Water Dratt for All Uses (MCM) 36.275						5 / 28		
Net Ground W	/ater Availability for	future	e irrigation de	velonr	ment(MCM)			60.023
Stage of Grou	nd Water Developm	ent (%	()	velopi				37 14
Category			.,					SAFF
5 1 Aquifer	-II (Semi-confine	d/Co	nfined Dee	ner B	asaltic Aqu	ifer)		0/11 2
Total Area	Mean aquifer	<u>sv</u>			Piezometric	Head	Tot	al Resource
(Sa Km)	thickness (m)	51	5		(m above co	nfining	(M	CM)
(99.101)					laver)		(	
1238.92	4.15	0.005	05 0.0000145 43 264				48	
6.0. GROUND WATER RESOURCE ENHANCEMENT								
6 1 Supply	6.1. Supply Side Management							
Gross Annual Draft (MCM) 26.29								
Agricultural D	omand -GW							22 50
Agricultural Demand – SW 25.25								
Agricultural Demand – GW 25.2								
Domestic Den	rand = SW							0.67
Total Domand						67 9225		
Area of Block	(Sa Km )							919 72
Area suitable for Artificial recharge (Sg. Km)						882 4591		
					Hard rock			
Area feasible for Artificial Recharge (WL S5mbgl) (Sq. Km.)					33			
Volume of Unsaturated Zone (MCM)					125			
Average Specific Yield					0.02			
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)						2.5		
Surplus water Available (MCM)						1.4		
Proposed Stru	uctures	ſ	Percolation Ta	nk (Av	v. Gross	Check Da	m (A	Av. Gross Capacity-
	Capacity-100 TCM*2 fillings = 10 TCM * 3 fillings = 30 TCM) 200 TCM)						llings = 30 TCM)	
Number of Structures315								
Volume of Water expected to be 0.6 0.45								
conserved / recharged @ 75%								
etticiency (MCM)								
RTRWH Struc	tures – Urban Areas		2					10.100
Households to	be covered (25% w	ith 50	m ⁻ area)					13400
Painwater baryosted (recharged @ 200/ runoff co officient					0.37855			
	vesteu / recharged (	<u> </u>	hence not r	ncient	nended			0.30284
nowever, it is	economically not Via	anie Ø	chence, not re	-comn	nenueu.			

6.2. Demand Side Management						
Micro irrigation techniques						
Sugarcane crop area (25) ,about 2 sqkm area is ground water irrigated ,100 % ground	2					
water irrigated ( 2 sqkm) proposed to be covered under Drip (sq.km.)						
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip Req.	1.14					
- 0.24, WUE- 0.12 m						
Proposed Cropping Pattern change						
Irrigated area under Water Intensive Crop(ha)	Not proposed					
Water Saving by Change in Cropping Pattern	Nil					
6.3. Expected Benefits						
Net Ground Water Availability (MCM)	97.66					
Additional GW resources available after Supply side interventions (MCM)	33.957					
Ground Water Availability after Supply side intervention(MCM)						
Existing Ground Water Draft for All Uses (MCM)	36.275					
GW draft after Demand Side Interventions (MCM)						
Present stage of Ground Water Development (%)	37.14					
Expected Stage of Ground Water Development after interventions (%)	36.75					
Other Interventions Proposed, if any						
Alternate Water Sources Available	Nil					
6.4. Development Plan						
Volume of water available for GWD after stage of GWD brought to 60% (MCM)	33.957					
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	2037					
Proposed Number of BW (@ 1.5 ham for 10% of GWR Available)	226					
Additional Area (sq.km.) proposed to be brought under assured GW irrigation with av.	52.24153846					
CWR of 0.65 m after 70% stage of gwd is achieved						
Regulatory Measures60m borewells/tube wells						
Artificial Recharge Structure Washim Taluka, Washim District Drainage Monitoring well	be brought antion District					







# **P**ANCHAYAT LEVEL

# **AQUIFER MANAGEMENT PLAN**

- I. CHICHAMBA PEN
- II. DAPURI KH
- III. GOWARDHAN
- IV. TIWALI
- V. WAGHI KH
- VI. YEVTA

# 10.1 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGKA-1, PGD-1, PG-8, VILLAGE CHICHAMBA PEN, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA

1. SALIENT FEATURES					
1.1 Introduction					
Village Name			Chichamba pen		
Geographical Area (Sq. Km.)			11.18 sq km		
Hilly Area (Sq. Km)			Nil		
Population (Predicted -2018)			3000		
Climate			Monsoon Tropical		
Normal Rainfall (mm) (nearest rain ga	uge station-Risod)		880 mm		
Annual Rainfall (mm) 2009-18 (neares	t rain gauge statior	n-Risod)	880 mm		
1.2. Geomorphology, Soil & Ge	ology				
Geomorphic Unit	Plateau (slightly t	o moderately dissed	ted).		
Geology	Deccan Traps (E	Basalt) Age: Late Cr	etaceous to Eocene		
Soil	BCS consisting	mostly of clay >10	0 cm and loam 25-50 cm thick.		
	At some places	Sandy clay loam o	f 50-100 cm.		
1.3. Hydrology & Drainage					
Watershed		PGKA-1 (3.772Sq.			
		PG-8 (0.4943 Sq.ki	n.)		
Drainage		Godavari basin, Pe	enganga River with sub-dendritic to		
		parallel drainage p	battern.		
		1 st Order Stream –	20.06 km		
		2 nd Order Stream -	- 4.10 km		
		3 ^{ro} Order Stream – 1.63 km			
		4 ^{ee} Order Stream – 4.34 km			
Irrigation Project (Major/Medium/Mir	nor etc.)	Nil			
WC structures (PT / KT / CD / FP etc.)		06-CD, 1-KTW, 09-	LBS, 01-PT		
1.4. Land Use, Agriculture, Irrig	ation & Croppin	ig Pattern			
Spe	ecifics		Area (Sq. Km.)		
Forest Area			Nil		
Cultivable Area		870 ha			
Net Sown Area		865 na			
Double Cropped Area			NII 105		
Irrigation Dug wells		105			
Area under Drin & Sprinkler Irrigation			70		
Area under brigation	Surface W	ator	NII NII		
Alea under inigation	Ground W	ater	865 ha		
Principal Crops	Sovahean		729 ha		
(Reference vegr 2017-18)	Pulses (Tu	r)	65 ha		
	Pulses (11d	(ad)	15 ha		
Pulses (Ou Dulses (Mr		ona)	8 ha		
	Turmeric	, ong ,	40 ha		
	Cotton		3 ha		
Citreous fi		uit	2-4 ha		
	Other		5 ha		
1.5. Water Level Behavior : Agu	uifer-I (Shallow)	Aquifer)			
Pre-Monsoon (May-2018)		Post-Monsoon (N	ovember-2018)		
Based on pre-monsoon data of 11 Key	Observation	Based on post-monsoon data of 11 Key Observation			
wells in and around the village it is obs	served that in the	wells in and aroun	d the village it is observed that		
north, north-west and north-east part	the DTWL ranges	entire area of the village shows DTWL in the range			



Runoff (2.5%)(RF-AR) (ham)			22.13
Evaporation (35% ) (ham)	309.91		
Water retain in ground Tank, Nala etc. (5%		44.27	
Recharge to phreatic aquifer (10%) (ham)	88.55		
Enhance soil moisture, utilised by root sys	265.64		
	Total Water availab	ility (MCM)	3.99
B. Requirement			
Domestic @60 lpcd X total person(3000) (	MCM)		0.07
Animal @40 lpad X total animal (1111) (M	CM)		0.02
Irrigation water applied (MCM)			2.20
Non agriculture use (MCM)			0.09
	Total Requirem	ent (MCM)	2.37
C. GW available for Planning (MCM)			1.61
Stage of GW Development (%)			59.52
6.0. GROUND WATER RESOURCE N	IANAGEMENT		
6.1. Supply Side Management			
SUPPLY (MCM)			
Available Resource (MCM)			3.99
Agricultural Supply –GW			1.10
Agricultural Supply -SW			0.00
Domestic Supply - GW			0.08
Domestic Supply - SW			0.00
Non agriculture use (MCM)	0.09		
Total GW availability (MCM)			2.72
Gross Annual Draft (MCM)		2.20	
Area of Block (Sq. Km.)		11.18	
Area suitable for Artificial recharge (Sq. Kn	11.18		
Type of Aquifer			Hard rock
Area feasible for Artificial Recharge (WL >	5mbgl) (Sq. Km.)		0.95
Volume of Unsaturated Zone (MCM)			0.000001995
Average Specific Yield			0.02
Volume of Sub Surface Storage Space avai	lable for Artificial Recharge (MCI	VI)	0.000000339
Surplus water Available (MCM)			22.13
Proposed Structures	Percolation Tank (Av. Gross	Check Dam	n (Av. Gross Capacity-10
	Capacity-100 TCM*2 fillings =	TCM * 3 fil	lings = 30 TCM)
	200 TCM)		
Number of Structures	Not Proposed	Not Propo	sed
Volume of Water expected to be			
conserved / recharged @ 75% efficiency			
(MCM)			
Specific Recommendations			Not Proposed
As per State Govt. Resolution, segment wi	se naia/stream (on 2) and 3		
order streams / naia s) desitting, deepening			
without disturbing the ocology/aguifor/on			
nala/stream			
Considering average nala deepening of 1 r			
Considering average nala deepening of 1 r			
75%			
RTRWH Structures			
Households to be covered (25% with 50 m	² area)		227
Total RWH potential (MCM)			0.0000499
Rainwater harvested / recharged @ 80% r	unoff co-efficient		0.0000400
However, RTRWH is economically not viab	le & not Recommended.		

6.2. Demand Side Management	
Micro irrigation techniques	-
Area is proposed to be covered under Drip	Not Proposed
Proposed Cropping Pattern change	-
Irrigated area under Water Intensive Crop(ha)	Not proposed
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	3.99
Additional GW resources available after Supply side interventions (MCM)	0.00
Ground Water Availability after Supply side intervention(MCM)	3.99
Existing Ground Water Draft for All Uses (MCM)	2.37
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	59.52
Expected Stage of Ground Water Development after interventions (%)	59.52
Other Interventions Proposed, if any	-
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 60% (MCM)	0.42
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	25
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	4
Area (ha) proposed to be brought under assured GW irrigation with avg. CWR of 0.65	64.33
m after 60% stage of gwd is achieved	
Regulatory Measures 60m borewells/tube	vells
Panchavat Management Plan	
CHICHAMBA PEN VILLAGE, WATERSHED PGKA-1, PGD-1 AND RISOD BLOCK, WASHIM DISTRICT	PG-8
76° 53' 76° 54' 76	55'



# Panchayat Level Aquifer Management Plan

Village – Chichambapen, Risod Block, Washim District

Aquifer	Current Scenario	Geology /	Geomorphology	Ground water	Reco	mmendations f	or Aquifer [	Developmen	t	Aquifer Management Plan
(Prominent		Basalt flow		quality	Type/number	Zones/Depth	HP of	Pumping	Yield	
Lithology)						to be tapped	pump	Hours	(Cu. m /	
							to be		Day)	
							lowered			
Aquifer I	870 ha cultivable	DT Basalt	Plateau (slightly	Quality of	Dug well / 25	Depth Range	3 to 5	1 to 4	< 10 -	1. About 64.33 ha area is
(Basalt-	land, 6 CD, 1 PT, 9	(Sahyadri	dissected to	ground water		of Zones :			200	proposed to be brought
Weathered	LBS, 1 KTW, 1	Group),	moderately	is good and fit		6 – 15 m			m³/day	under assured GW
and	PWS scheme, 7	Aa/	dissected) with	for drinking,					Or	irrigation during Rabi.
fractures)	DW(d), 105 DW	pahoehoe /	weathered	domestic and						2. The DW should be used for
	(i) <i>,</i>	simple	thickness	irrigation					0.7	irrigation purpose.
	Pre-monsoon	basaltic lava	ranging from 0	purpose; All					ham/year	<ol><li>Desilting of existing water</li></ol>
	DTWL~ 5-15 m	flows	to 7 m.	parameters						conservation and artificial
	bgl.	(Buldhana /	BCS-25 to 100	are within MPL						recharge structures.
	Post-monsoon	Purandargarh	cm.	except Nitrate						
	DTWL~ 1-7 m bgl.	Formation)		contamination.						
	SOD-59.52%									
Aquifer II	70 BW(i)	As above		Not assessed	Bore well / 4	Depth: 60	3 to 5	3 to 8	0.14-2.16	1. The BW should be used for
(Basalt-	Nil BW (d)					m			lps	drinking purpose.
Jointed &	DTWL~ 15-35 m									2. BW should not be drilled
Fractures)	bgl.									down below the red bole
										and depth not more than
										60 m

Note: DW (d) = Dug well Domestic; DW (i) = Dug Well Irrigation; BW(d) = Bore Well Domestic; BW(i) = Bore Well Irrigation

# 10.2 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGD-1, VILLAGE DAPURI KH. RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA

<b>1. SALIENT FEATUR</b>	S							
1.1 Introduction								
Village Name				Dapuri Kh				
Geographical Area (Sq. Km.)				7.12				
Hilly Area (Sq. Km.)				Nil				
Population (Current yea	r -2018)			2000				
Climate				Monsoon Sub-Tropical				
Normal Rainfall (mm) (n	earest rain gaug	ge station-Ri	sod)	880				
Annual Rainfall (mm) 20	09-18 (nearest	rain gauge st	ation-Risod)	880				
1.2. Geomorphology, So	oil & Geology							
Geomorphic Unit	Plateau (slight	ly dissected	to moderately dis	ssected, Weathered).				
Geology	Deccan Traps	s (Basalt) Ag	ge: Late Cretace	ous to Eocene				
Soil	BCS consistir	ng mostly o	f clay >100 cm a	and Gravelly clay loam 10-25 cm thick.				
	At some place	es Sandy cl	ay loam of 50-1	00 cm and clayey of 25 to 50 cm thick.				
1.3. Hydrology & Draina	age							
Watershed			PGD-1 (7.12 sc	ą. Km)				
Drainage			Godavari basir	n with dendritic to sub-dendritic drainage				
			pattern.					
			1 st Order Strea	am – 11.704 km				
			2 rd Order Strea	am – 4.679 km				
			3 th Order Strea	3 th Order Stream – 4.779 km				
	/h / /h /i		4 Order Strea	4 Order Stream –0.2909 km				
Irrigation Project (Majoi		or etc.)	NI					
WC structures (PT / KT /	CD / FP etc.)	<u> </u>	05-CD, 02-PT,					
1.4. Land Use, Agricultu	re, Irrigation &	Cropping Pa	ittern	A				
Faurat Aura	Specifics			Area				
Forest Area								
				596.49 ha				
Net Sown Area				596.00 Ha				
Irrigation Dug wells				08				
Area under Drin & Sprin	klor Irrigation			128				
Area under Irrigation	KIEL II IIgation	Surface W	ator	Nil				
Alea under imgation		Ground W	ater	596 /1 ha				
Principal Crops		Sovahean		476 ha				
(Reference year 2018)			c)	61 ha				
		Pulses (10)	<u>)</u> ad)	10 ha				
		Pulses (U	uu)	10 ha				
Pulses (Mod			iong)					
Jawari								
Cotton				12.25 ha				
		Sugarcano	Turmoric and	13.25 ha				
Sugarcane, Turmeric and 13.0 ha								
1.5. Water Level Behav	ior : Aquifer-I (S	hallow Aqui	fer)	cenario				
Bre-Monsoon (May 201		i to decipiter	Post-Monsoon	(November-2018)				
In the entire village show	Ns the DT\A/L ro	nges	Entire area of th	a village shows DTWL in the range of 0.5				
In the entire village shows the DTWL ranges			Entire area of the village shows DTWL in the range of 0-5					



Water retain in ground Tank, Nala etc. (5%) (ham)	28.2031
Recharge to phreatic aquifer (10%) (ham)	56.4062
Enhance soil moisture, utilised by root system (ham)	169.2187
Total Water availability (MCM)	2.5463
B. Requirement	
Domestic @60 lpcd X total person(3000) (MCM)	0.0438
Animal @40 lpad X total animal (1111) (MCM)	0.0070
Irrigation water applied (MCM)	0.7569
Non agriculture use (MCM)	0.0564
Total Requirement (MCM)	0.8641
C. GW available for Planning (MCM)	1.6823
Stage of GW Development (%)	33.93
GROUND WATER RESOURCE MANAGEMENT	
6.1. Supply Side Management	
Available Bosource (MCM)	2 5 5
Agricultural Supply – GW	2.33
Agricultural Supply SW	0.70
Agricultural supply -SW	0.00
Domestic Supply - GW	0.03
Non agriculture use (MCM)	0.00
Total CN( availability (MCCA)	0.06
	1.08
	0.70
Area guitable for Artificial racharge (cg.km)	7.12
Tures of Aquifor	/.12
Type of Aquiler	
Area reasible for Artificial Recharge (WL >Shibgi) (Sq. Kiii.)	0.15
Average Specific Viold	0.00000515
Average Specific field	0.02
Surplus runoff considered for planning (MCM) @ 100%	0.000000000
Dranasad AB Structures (Check Dem (@ De 20 Jakh Av Grass Canasity 10 TCM * 2	14.08
fillings = 20 TCM()	Not proposed
Pronosed AP Structures Cabbion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	Total of above
Specific Recommendations -	
As ner State Govt Resolution segment wise nala/stream desilting deepening and	
widening unto 3 m denth or unto weathered rock considering the local	
hydrogeological condition without disturbing the ecology/aguifer/environmental flow	
of nala/stream.	
Considering average nala deepening of 1 m depth. additional storage	0.00
Considering average nala deepening of 1 m depth, additional recharge @ 75%	0.00
RTRWH Structures	
Households to be covered (Pakka House only)	330
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However, RTRWH is economically not viable	e & not Recommended
6.2 Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM) Surface Flooding reg- 0.36 m. Drin Reg.	
- 0.24. WUF- 0.12 m	
Proposed Cropping Pattern change	I

Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	2.55
Additional GW resources available after Supply side interventions (MCM)	0.00
Ground Water Availability after Supply side intervention(MCM)	2.55
Existing Ground Water Draft for All Uses (MCM)	0.86
GW draft after Demand Side Interventions (MCM)	0.00
Present stage of Ground Water Development (%)	33.93
Expected Stage of Ground Water Development after interventions (%)	33.93
Other Interventions Proposed, if any	1
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 60% (MCM)	0.92
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	55
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	9
Area (ha) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m	141.28
Panchavat Management Plan	
Fanciayat Management Fian	
PANCHAYAT AQUIFER MANAGEMENT PLAN	
20° RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA	
<i>p</i>	
TIWALI	
0 0.5 1 NORTH	
kilometres Wasa	
1900 No. 1900	
and the second sec	
6' K (-	
DAPURI KH.	
PGD-1	
Sund V	
20°	
CHICHAIMBA PEN	
LEGEND	
Drainage About 141.28 ha area is proposed to be brought under a secured GM intrination ho 55 dow under	
Waterbody & 9 bore wells in Rabi crop area	
MP Village habitate	
76¶53' 76¶54'	

Panchayat Level Aquifer Management Plan, Watershed PGD-1, Village Dapuri kh., Risod Block, Washim District, Maharashtra



# Panchayat Level Aquifer Management Plan

Aquifer	Current Scenario	Geology /	Geomorphology	GW quality		Recommendation	ons for Aqui	ment	Aquifer Management Plan	
(Prominent		Basalt flow			Туре	Zones/Depth	HP of	Pumping	Yield	
Lithology)						to be tapped	pump to	Hours	(Cu. m /	
							be		Day)	
							lowered			
Aquifer I	596.41 ha	DT Basalt	Plateau (slightly	quality of	Dug	Depth Range	3 to 5	1 to 4	< 10 -	1. About 141.28 ha area is
(Basalt-	cultivable land by	(Sahyadri	dissected to	ground water	well	of Zones :			200	proposed to be brought under
Weathered	GW, 5 CD, 02 PT, 1	Group),	moderately	is good and fit	55	6 – 15 m			m³/day	assured GW irrigation during
and	village farm, 1 PWS	Aa	dissected) with	for drinking,					Or	Rabi.
fractures)	scheme, 5 DW(d),	/pahoehoe	weathered	domestic and						2. Desilting of existing water
	68 DW (i),	/simple	thickness	irrigation					0.7	conservation and artificial
	Pre monsoon	basaltic lava	ranging from 0	purpose; All					ham/year	recharge structures.
	DTWL~ 5-15 m bgl.	flows	to 7 m.	parameters						3. The DW should be used for
	Post monsoon	(Buldana /	BCS-25 to 100	are within						irrigation purpose.
	DTWL~ 1-7 m bgl.	Purandargarh	cm.	MPL						
	SOD-33.93%	Formation)								
Aquifer II	128 BW(i),	As above		Not assessed	Bore	Depth : 60	3 to 5	1 to 3	0.14-2.16	1. The BW should be used for drinking
(Basalt-	Nil BW (d), HP-Nil				well	m			lps	purpose.
Jointed &	DTWL~ 15-35 m				09					2. The BW should not be drilled
Fractures)	bgl.									down below the red bole.

Village – Dapuri, Risod Taluka, Washim District

Note: DW(d)= Dug well Domestic; DW (i)= Dug Well Irrigation; BW(d)= Bore Well Domestic; BW(i)= Bore Well Irrigation

# 10.3 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDSPGKA-1, VILLAGE GOWARDHAN, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA

1. SALIENT FEATURE	S							
1.1 Introduction								
Village Name			Gowardhan					
Geographical Area (Sq. H	(m.)	20.94	l sq km					
Hilly Area (Sq. Km.)		Nil						
Population (Current yea	r -2018)	3902						
Climate		Mons	soon Sub-Tropical					
Normal Rainfall(mm)(ne Risod)	arest rain gauge station-	880						
Annual Rainfall (mm) 20 gauge station-Risod)	09-18(nearest rain	880						
1.2. Geomorpholog	y, Soil & Geology							
Geomorphic Unit	Plateau (Weathered, mod	lerately	y dissected, slightly dissected Weathered shallow).					
Geology	Deccan Traps (Basalt) Age: Late Cretaceous to Eocene							
Soil	BCS consisting mostly o	of Clay	ey-Very deep (> 100 cm), Gravelly clay loam (10 to					
	25 cm) and clayey (50 t	to 100	cm) thick. At some places Clay loam-moderately					
	deep (25 to 50 cm).							
1.3. Hydrology & Dr	ainage							
Watershed		PGKA-1 (20.94 sq. Km).						
Drainage		Godavari basin; Penganga River with dendritic to sub						
		dendritic drainage pattern.						
		1 st Order Stream – 37.787 km						
			2 nd Order Stream– 10.744 km					
			3 rd Order Stream–8.247 km					
		4 th order Stream- 3.815 km						
Irrigation Project (Major	/Medium/Minor etc.)		Nil					
WC structures (PT/KT/C	D/FP etc.)		05-CD, 02-PT, 00- Village Pond, other-20					
1.4. Land Use, Agric	ulture, Irrigation & C	roppi	ng Pattern					
Spe	cifics	Area	l					
Forest Area		Nil	Nil					
Cultivable Area		1600.00 ha						
Net Sown Area		1400	).00 ha					
Double Cropped Area		20						
Irrigation Dug wells		225						
Irrigation Bore wells		260						
Area under Drip & Sprin	kler Irrigation	Nil						
Area under Irrigation	Surface Water	Nil						
	Ground Water	1600	).00 ha					
Principal Crops	Soyabean	900	900 ha					

(Reference year 2018)	Pulses ( <i>Tur</i> )	300	ha						
Pulses (Udad) 10			100 ha						
Pulses (Mug) 10			100 ha						
Gram, Wheat 9			ha						
	Vegetables	20 h	а						
1.5. Water Level Beh	navior : Aquifer-I (Sha	llow	Aquifer)						
In the village, 11 KOW we	ere established to deciphe	er the	water level scenario.						
Pre-Monsoon (May-201	8)		Post-Monsoon (November-2018)						
Most of the area of the v	illage DTWL ranges 15-20		Entire area of the village shows DTWL in the range of						
mbgl whereas In the Cen	ter part of the village DTV	VL	0-5 mbgl except in north-west small part a patch of						
ranges >20mbgl. In the s	south and north side of the	е	DTWL ranging 5-10 mbgl is observed. A small isolated						
village DTWL ranges 10-1	L5 mbgl.		patch of the DTWL 5-10 mbgl is observed in the						
			center of the village.						
20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 8° 20° 20° 8° 20° 8° 20° 20° 8° 20° 20° 8° 20° 20° 20° 20° 20° 20° 20° 20	WONSSON (MAY-2018) WATERSHED PGKA-1 AND PGD-1 HIM DISTRICT, MAHARASHTRA		DTWL POST-MONSSON (NOV -2018) GOWARDHAN VILLAGE, WATERSHED POKA-1 AND POD-1 RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA 9 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 20 1 20 1 20 1 20 1 20 1 20 1 20 20 20 20 20 20 20 20 20 20						
76° 49' 78° 50	' 76° 51' 76° 52'		76° 49' 76° 50' 76° 51' 76° 52'						
2. Ground Water Iss	sues								
Declining water level.									
Non availability of surf	ace water for irrigation.								
Less ground water pot	ential basaltic aquifer.								
Water stress situation	during lean period (Mai	rch to	June).						
3. AQUIFER DISPOSI	TION								
3.1. Number of Aqui	fers		Basalt – Aquifer-I (Phreatic / Shallow aquifer)						
3.2. Aquifer Charact	eristics								
Major Aquifers			Basalt (Deccan Traps)						
Type of Aquifer			Basalt –Aquifer-I (Phreatic / Shallow aquifer)						
Static Water Level (m bg	)		14-21						
Depth of Occurrence (m	bgl)		10-20						

4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)

0- 10.00 0.02

Specific yield (Sy)

weathered thickness (m)

Except Nitrate, all the rest parameters are within the Standards IS- 10500-2012. Hence the ground water is a agricultural purposes & other domestic use.	e desir suitable	able, e for	/Permi drinkiı	ssible   ng purp	imits ooses 8	of BIS Drinking Water & also can be used for
						7
PH EC TDS TH Ca Mg Na K CO3 F	HCO3	CI	SO4	NO3	F	_
7.7 652 345 265 55 30 24 3.1 0 2	256	19	14	47	0.28	
5. GROUND WATER RESOURCES- Aquifer-I/ Sha	allow	Phr	eatic	Aquif	er (Ba	isalt)
5. 1 Water budgeting						
A. Water availability						
Area (ha)						2094.00
Rainfall (m)						0.88
Water precipitated, ham, (Area X RF)						1842.72
90 % of precipitations (ham)						1658.45
AR recharge by artificial recharge structure						0.8060
Runoff (2.5%)(RF-AR) (ham)						41.4411
Evaporation (35% ) (ham)						580.4568
Water retain in ground Tank, Nala etc. (5%) (ham)						82.9224
Recharge to phreatic aquifer (10%) (ham)						165.8448
Enhance soil moisture, utilised by root system (ham)						497.5344
Tot	tal Wat	ter a	vailabi	lity (M	CM)	7.4711
B. Requirement						
Domestic @60 lpcd X total person(3000) (MCM)						0.0964
Animal @40 lpad X total animal (1111) (MCM)						0.0084
Irrigation water applied (MCM)						4.3536
Non agriculture use (MCM)						0.1658
	Tota	l Req	uirem	ent (M	CM)	4.6242
C. GW available for Planning (MCM)						2.8468
Stage of GW Development (%)						61.90
6.0. GROUND WATER RESOURCE MANAGEMEN	NT					
6.1. Supply Side Management						
Aveilable Deseures (MCNA)						7 / 7
Agricultural Supply CW						/.4/
Agricultural Supply – SW						4.33
Domestic Supply - GW						0.00
Domestic Supply - SW						0.10
Non agriculture use (MCM)						0.00
Total GW availability (MCM)						2.85
Gross Annual Draft (MCM)						4.35
Area of village (Sq. Km.)						20.94
Area suitable for Artificial recharge (sg km)						20.94
Type of Aquifer						Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq.						1.94
Km.)						
Volume of Unsaturated Zone (MCM)						0.000004074
Average Specific Yield						0.02
Volume of Sub Surface Storage Space available for						0.0000008148
Artificial Recharge (MCM)						
Surplus runoff considered for planning (MCM) @ 100%						41.44
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av.						Not proposed
Gross Capacity-10 TCM * 3 fillings = 30 TCM))						Not proposed
Proposed AR Structures Gabbion						Not proposed
Proposed AR Structures <b>Other</b>						Not proposed
Volume of Water expected to be conserved / recharged						
------------------------------------------------------	--------------------------------------------------					
@ 75% efficiency (MCM)	-					
Specific Percentry (MCM)						
As nor State Cout, Resolution, commont wice						
As per state dovi. Resolution, segment wise						
m donth or unto weathered rock considering the local						
hydrogoological condition without disturbing the						
asology/aguifor/onvironmental flow of nala/stream						
Considering overage note deepening of 1 m donth						
Considering average hala deepening of 1 m depth,						
additional storage						
Considering average hala deepening of 1 m depth,						
additional recharge @ 75%						
RIRWH Structures						
Households to be covered (Pakka House only)	227					
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499					
Rainwater harvested / recharged @ 80% runoff co-	0.0000400					
efficient (MCM)						
However, R1	RWH is economically not viable & not Recommended					
6.2. Demand Side Management						
Micro irrigation techniques						
Area is proposed to be covered under Drip	3.2					
Volume of Water expected to be saved (MCM). Surface	1.44					
Flooding reg- 1.4 m. Drip Reg 0.95, WUE- 0.45 m						
Proposed Cropping Pattern change						
Irrigated area under Water Intensive Crop(ha)	Not proposed					
Water Saving by Change in Cropping Pattern						
6.3 Expected Benefits	I					
Net Ground Water Availability (MCM)	7.47					
Additional GW resources available after Supply side	1.47					
interventions (MCM)	1.44					
Ground Water Availability after above	<u> </u>					
intervention(MCM)	8.51					
Evisting Ground Water Draft for All Lloos (MCM)	4.62					
CW/ draft after Demand Side Interventions (MCM)	4.02					
Bresont stage of Cround Water Development (%)	61.00					
Firesent stage of Ground Water Development (%)	61.90					
Expected Stage of Ground Water Development after	51.89					
Interventions (%)						
Other Interventions Proposed, If any	81:1					
Alternate water Sources Available	NI					
6.4. Development Plan	1					
Volume of water available for GWD after stage of GWD	1.61					
brought to 70% (MCM)						
Proposed Number of DW (@ 1.5 ham for 90% of GWR	97					
Available)						
Proposed Number of BW (@ 1.0 ham for 10% of GWR	16					
Available)						
Area (ha) proposed to be brought under assured GW	248.23					
irrigation with av. CWR of 0.65 m after 70% stage of						
gwd is achieved						
Regulatory Measures	60m borewells/tube wells					
Panchavat Man	agement Plan					



25-50 cm.

clay moderately deep soil is observed of the thickness



Village – Gowardhan, RisodTaluka, Washim District

Aquifer	Current Scenario	Geology /	Geomorphology	GW quality	l	Recommendatio	ns for Aquif	fer Developr	nent		Aquifer Management Plan
(Prominent		Basalt flow			Туре	Zones/Depth	HP of	Pumping	Yield		
Lithology)						to be tapped	pump to	Hours	(Cu. m /		
							be		Day)		
							lowered				
Aquifer I	1600.00 ha	DT Basalt	Plateau	Quality of	Dug	Depth Range	3 to 5	1 to 4	< 10 -	1.	About 248.23 ha area is
(Basalt-	cultivable land,01-	(Sahyadri	(weathered,	ground water	wells-	of Zones :			200		proposed to be brought under
Weathered	MI Tank, 5-CD, 02-	Group),	moderately	is good and fit	97	6 – 15 m			m³/day		assured GW irrigation during
and	PT , 20-other , 1	Aa	dissected,	for drinking,					Or		Rabi.
fractures)	PWS scheme, 8	/pahoehoe	Slightly	domestic and						2.	About 320 ha area under Wheat
	DW(d), 225 DW (i),	/simple	dissected) with	irrigation					0.7		& perennial crops is proposed
	Pre-monsoon	basaltic lava	weathered	purpose; All					ham/year		for drip irrigation.
	DTWL~ 10-21 m	flows	thickness	parameters						3.	Desilting of existing water
	bgl.	(Buldana /	ranging from 0	are within MPL							conservation and artificial
	Post-monsoon	Purandargarh	to 7 m.	except Nitrate							recharge structures.
	DTWL~ 2-8m bgl.	Formation)	BCS-25 to 100	contamination.						4.	The DW should be used for
			cm.								irrigation purpose.
Aquifer II	260 BW(i),	As above			Bore	Depth: 60	3 to 5	1 to 3	0.14-2.16	1.	The BW should be used for
(Basalt-	04 BW (d)				wells-	m			lps		drinking purpose.
Jointed &	DTWL~ 15-35 m				16					2.	BW should not be drilled down
Fractures)	bgl.										below the red bole.

### 10.4 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGKA-1 AND PGD-1, VILLAGE TIWALI, MALEGAON BLOCK, WASHIM DISTRICT, MAHARASHTRA

<b>1. SALIENT FEATURES</b>								
1.1 Introduction				-				
Village Name				Tiwali				
Geographical Area (Sq.	Km.)			16.47				
Hilly Area (Sq. Km.)				Nil				
Population (Current yea	ır -2018)			4350				
Climate				Monsoon Sub-Tropical				
Normal Rainfall (mm) (r	learest rain gauge s	station-Ma	legaon)	966.9				
Average Annual Rainfall Malegaon)	(mm) 2009-18 (ne	arest rain g	gauge station-	797.36				
1.2. Geomorphology, Se	oil & Geology							
Geomorphic Unit	Plateau (slightly o	dissected to	o moderately dissect	ced).				
Geology	Deccan Traps (Ba	Deccan Traps (Basalt) Age: Late Cretaceous to Eocene						
Soil	BCS consisting m	Consisting mostly of clay >100 cm and loam 25-50 cm thick. At some places Sandy						
	clay loam of 50-100 cm.							
1.3. Hydrology & Draina	age							
Watershed			PGKA-1 (3.022 Sq.	km.), PGD-1 (13.76 Sq.km.)				
Drainage			Godavari basin; De	endritic to sub-dendritic drainage				
			pattern.					
			1 st Order Stream –	14.714 km				
			2 nd Order Stream -	- 8.105 km				
			3 rd Order Stream – 0.1803 km					
Irrigation Project (Major	r/Medium/Minor e	etc.)	Nil					
WC structures (PT / KT /	′ CD / FP etc.)		05-CD, *CFP-04, 03	1-PT				
*CFP-Community Farm	pond							
1.4. Land Use, Agricultu	re, Irrigation & Cro	opping Pat	tern					
(Data collected field /Ir	rigation Dept)							
	Specifics			Area				
Forest Area				Nil				
Cultivable Area				1592.50 ha				
Net Sown Area				1550 ha				
Double Cropped Area				250 ha				
Irrigation Dug wells				42				
Irrigation Bore wells				42				
Area under Drip & Sprin	kler Irrigation			Nil				
Area under Irrigation		Surface Wa	ater	Nil				
		Ground Wa	ater	1592.50 ha				
Principal Crops		Soyabean		1377 ha				
(Reference year 2018)		Pulses (Tur	)	105 ha				
		Pulses (Ud	ad)	29 ha				
		Pulses (Mo	oong)	10.40 ha				
		Turmeric		4 ha				
		Cotton		4 ha				
		Fruits		13.30 ha				
		Hybrid		2.60 ha				
		Other		4.60 ha				
1.5. Water Level Behav	ior : Aquifer-I (Sha	llow Aquife	er)					
In the village, 9 KOW we	ere established to c	decipher th	e water level scenar	io.				



Evaporation (35% ) (ham)	440.9843
Water retain in ground Tank, Nala etc. (5%) (ham)	62.9978
Recharge to phreatic aquifer (10%) (ham)	125.9955
Enhance soil moisture, utilised by root system (ham)	377.9865
Total Water availability (MCM	) 5.6739
B. Requirement	
Domestic @60 lpcd X total person(3000) (MCM)	0.10
Animal @40 lpad X total animal (1111) (MCM)	0.03
Irrigation water applied (MCM)	2.08
Non agriculture use (MCM)	0.13
Total Requirement (MCM	) 2.34
C. GW available for Planning (MCM)	3.34
Stage of GW Development (%)	41.19
6.0. GROUND WATER RESOURCE MANAGEMENT	
6.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	5.67
Agricultural Supply –GW	2.07
Agricultural Supply -SW	0.00
Domestic Supply - GW	0.13
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.13
Total GW availability (MCM)	3.35
Gross Annual Draft (MCM)	5.65
Area of village (Sq. Km.)	16.47
Area suitable for Artificial recharge (sq km)	16.47
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	4.119
Volume of Unsaturated Zone (MCM)	0.000010297500
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	0.00000205950
Surplus runoff considered for planning (MCM) @ 100%	31.49
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3	N
fillings = 30 TCM))	Not proposed
Proposed AR Structures Gabbion	Not proposed
Proposed AR Structures <b>Other</b>	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	Not proposed
Specific Recommendations -	4.98
As per State Govt. Resolution, segment wise nala/stream desilting, deepening and	
widening upto 3 m depth or upto weathered rock considering the local	
hydrogeological condition without disturbing the ecology/aquifer/environmental	
flow of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	4.98
Considering average nala deepening of 1 m depth, additional recharge @ 75%	3.74
RTRWH Structures	
Households to be covered (Pakka House only)	3970
However, RTRWH is economically not vic	ble & not Recommended
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip	Not proposed
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip	-
Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	





Aquifer	Current Scenario	Geology /	Geomorphology	Ground water	Recommendations for Aquifer Development					Aquifer Management Plan
(Prominent Lithology)		Basalt flow		quality	Type/number	Zones/Depth to be tapped	HP of pump to be lowered	Pumping Hours	Yield (Cu. m / Day)	
Aquifer I (Basalt- Weathered and fractures)	1592.50 ha cultivable land by GW, 05 CD, *CFP- 04, 01-PT, DW(d), 42 DW (i), Pre monsoon DTWL~ 5-15 m bgl. Post monsoon DTWL~ 0-10 m bgl. SOD – 41.19%	DT Basalt (Sahyadri Group), Aa/ pahoehoe / simple basaltic lava flows (Buldhana / Purandargarh Formation)	Plateau (slightly dissected to moderately dissected).	The GW is brackish. Other parameters are within MPL except Nitrate contamination. GW is unsuitable for drinking & irrigation purpose; domestic	Dug well / 98	Depth Range of Zones : 6 – 15 m	3 to 5	1 to 4	< 10 – 200 m ³ /day Or 0.7 ham/year	<ul> <li>i. About 251.68 ha area is proposed to be brought under assured GW irrigation during Rabi.</li> <li>ii. The DW should be used for irrigation purpose.</li> <li>iii. Desilting of existing water conservation and artificial recharge structures.</li> </ul>
Aquifer II (Basalt- Jointed & Fractures)	70 BW(i) Nil BW (d) DTWL~ 15-35 m bgl.	As above		Not assessed	Bore well / 16	Depth : 60 m	3 to 5	3 to 8	0.14-2.16 lps	<ol> <li>The BW should be used for drinking purpose.</li> <li>BW should not be drilled down below the red bole and depth not more than 60 m</li> </ol>

Village – Tiwali, Malegaon Taluka, Washim District

### 10.5 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGD-1, PGKA-1, VILLAGE WAGHI KH, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA

1. SALIENT FEATURES							
1.1 Introduction							
Village Name				Waghi Kh			
Geographical Area (Sq. Km.)				6.557 sq km			
Hilly Area (Sq. Km.)				Nil			
Population (Current year -201	L8)			2474			
Climate				Monsoon Sub-Tropical			
Normal Rainfall (mm) (neares	t rain gauge	e station-Riso	d)	880			
Annual Rainfall (mm) 2009-18	3 (nearest ra	ain gauge stat	ion-Risod)	880			
1.2. Geomorphology, So	il & Geolo	ogy					
Geomorphic Unit	Plateau (s	lightly dissec	ted to moderately dis	ssected, Weathered).			
Geology	Deccan Tr	aps (Basalt) A	Age: Late Cretaceous	to Eocene			
Soil	BCS consis	BCS consisting mostly of Clayey-Very deep (> 100 cm), Clayey-Moderately deep					
	(25 to 50	(25 to 50 cm) and Gravelly clay loam-Shallow (10 to 25 cm) thick. At some					
places Clay Ioam-Very deep (> 100 cm).							
1.3. Hydrology & Draina	ge						
Watershed	PGD-1 (5.	169 Sq.km.),	PGKA-1(0.6562 Sq.km	າ.).			
Drainage	Godavari	basin; Pengai	nga River with dendri	tic to sub-dendritic drainage			
	pattern.						
	1 st Order S	Stream – 7.56	54 km				
	2 rd Order	Stream – 5.1	3 km				
	3 ^{°°} Order	Stream – 2.84	1 km				
Irrigation Project	01 Minor	Irrigation Tar	ik				
(Major/Medium/Minor etc.)	05 00 04						
WC structures (PT / KT / CD	05-CD, 01	-P1, 01- Villa	ge Pond				
/ FP etc.)	 		ala a Datta wa				
1.4. Land Use, Agricultu	re, Irrigati	on & Crop	ping Pattern				
Specifics				Area			
Forest Area				NII 400.00 hz			
Cultivable Area				490.99 ha			
Net Sown Area				490.90 ha			
Double Cropped Area							
Irrigation Dug wells				36			
Irrigation Bore Wells							
Area under Drip & Sprinkier II	rigation	C	<b>4</b>	NI			
Area under Irrigation		Surface Wa	ter	NII			
		Ground Wa	ter	490.90 ha			
		Soyabean		396.59 ha			
(Reference year 2018)		Pulses (Tur)		58 ha			
		Jawar		3 ha			
		Turmeric		29 ha			
		Wheat		16 ha			
		Gram		35 ha			
		Others		19 ha			
1.5. Water Level Behavio	or : Aquife	er-I (Shallo	w Aquifer)				
In the village, 10 KOW were established to decipher the water level scenario.							
Pre-Monsoon (May-2018)			Post-Monsoon (November-2018)				
In the western part the DTWL	. ranges bet	ween 10-15	Entire area of the vi	illage snows DIWL in the range of 0-			



Recharge to phreatic aquifer (10%) (ham)	51.9314
Enhance soil moisture, utilised by root system (ham)	155.7943
Total Water availability (MCM)	0.0026
B. Requirement	
Domestic @60 lpcd X total person(3000) (MCM)	0.0542
Animal @40 lpad X total animal (1111) (MCM)	0.0047
Irrigation water applied (MCM)	1.0079
Non agriculture use (MCM)	0.0519
Total Requirement (MCM)	1.1187
C. GW available for Planning (MCM)	1.2223
Stage of GW Development (%)	47.79
6.0. GROUND WATER RESOURCE MANAGEMENT	
6.1. Supply Side Management	
SUPPLY (IVICIN)	2.24
	2.34
Agricultural Supply –GW	1.01
Agricultural supply -Sw	0.00
Domestic Supply - GW	0.06
Domestic Supply - Sw	0.00
	0.05
	1.22
Gross Annual Draft (MCM)	1.01
Area of village (Sq. Km.)	6.56
Area suitable for Artificial recharge (sq km)	6.56
Type of Aquifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	1.02
Volume of Unsaturated Zone (MCM)	0.000002142
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	3.99E-08
Surplus runoff considered for planning (MCM) @ 100%	12.97
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3	Not proposed
Pronosed AP Structures Cabbion	Not proposed
Proposed AR Structures Other	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	
Specific Recommendations -	0.00
As ner State Govt Resolution segment wise nala/stream desilting deepening and	0.00
widening unto 3 m denth or unto weathered rock considering the local	
hydrogeological condition without disturbing the ecology/aguifer/environmental flow	
of nala/stream.	
Considering average nala deepening of 1 m depth, additional storage	0.00
Considering average nala deepening of 1 m depth, additional recharge @ 75%	0.00
RTRWH Structures	
Households to be covered (Pakka House only)	396
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However. RTRWH is economically not vial	ble & not Recommended
6.2 Demand Side Management	
Area is proposed to be covered under Drip (sq.km)	0.19
Volume of Water expected to be saved (MCM) Surface Elopding rog, 1.4 m. Drin Bog	0.19
- 0.95 WHE- 0.45 m	0.03
Pronosed Cronning Pattern change	<u> </u>
Irrigated area under Water Intensive Cron(ha)	Not proposed
ההאמנכא מרכם טווטכר אימנכר וונכווזוער כו טף(וומ)	i i o pi o poseu

Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	
Net Ground Water Availability (MCM)	2.34
Additional GW resources available after Supply side interventions (MCM)	0.09
Ground Water Availability after above intervention(MCM)	2.43
Existing Ground Water Draft for All Uses (MCM)	1.12
GW draft after Demand Side Interventions (MCM)	0.09
Present stage of Ground Water Development (%)	47.79
Expected Stage of Ground Water Development after interventions (%)	46.10
Other Interventions Proposed, if any	
Alternate Water Sources Available	Nil
6.4. Development Plan	
Volume of water available for GWD after stage of GWD brought to 70% (MCM)	0.58
Proposed Number of DW (@ 1.5 ham for 90% of GWR Available)	35
Proposed Number of BW (@ 1.0 ham for 10% of GWR Available)	6
Area (ha) proposed to be brought under assured GW irrigation with av. CWR of 0.65 m after 60% stage of gwd is achieved	89.21

Panchayat Management Plan



Panchayat Level Aquifer Management Plan, Watershed PGD-1, Village Waghi Kh., Risod Block, Washim District, Maharashtra



west and east of the village. Small parts of village is
plateau slightly dissected in the North-West side.

Aquifer	Current Scenario	Geology /	Geomorphology	GW quality		Recommendation	ons for Aqui	fer Developi	ment		Aquifer Management Plan
(Prominent		Basalt flow			Туре	Zones/Depth	HP of	Pumping	Yield		
Lithology)						to be tapped	pump to	Hours	(Cu. m /		
							be		Day)		
							lowered				
Aquifer I	490.90 ha	DT Basalt	Plateau (slightly	quality of	Dug	Depth Range	3 to 5	1 to 4	< 10 -	1.	About 19 ha area under perennial
(Basalt-	cultivable land,01-	(Sahyadri	dissected to	ground water	wells	of Zones :			200		crops is proposed for drip
Weathered	MI Tank, 5-CD, 1-PT	Group),	moderately	is good and fit	35	6 – 15 m			m³/day		irrigation.
and	,1-vill Pond, 01-	Aa	dissected) with	for drinking,					Or	2.	About 89.21 ha area is proposed
fractures)	KTW , 1 PWS	/pahoehoe	weathered	domestic and							to be brought under assured GW
	scheme, 5 DW(d),	/simple	thickness	irrigation					0.7		irrigation during Rabi.
	36 DW (i),	basaltic lava	ranging from 0	purpose; All					ham/year	3.	Desilting of existing water
	Pre-monsoon	flows	to 7 m.	parameters							conservation and artificial
	DTWL~ 7-12 m bgl.	(Buldana /	BCS-25 to 100	are within							recharge structures.
	Post-monsoon	Purandargarh	cm.	MPL except						4.	The DW should be used for
	DTWL~ 1-13m bgl.	Formation)		Nitrate							irrigation purpose.
				contamination							
Aquifer II	21 BW(i),	As above		Not assessed	Bore	Depth: 60	3 to 5	1 to 3	0.14-2.16	1.	The BW should be used for
(Basalt-	04 BW (d)				wells	m			lps		drinking purpose.
Jointed &	DTWL~ 15-35 m				06					2.	BW should not be drilled down
Fractures)	bgl.										below the red bole.

Village – Waghi Kh, Risod Taluka, Washim District

## 10.6 PANCHAYAT LEVEL AQUIFER MANAGEMENT PLAN, WATERSHEDS PGD-1, VILLAGE YEVATA, RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA

1. SALIENT FEATURES	;	•	<b>i</b>			
1.1 Introduction						
Village Name				Yevata		
Geographical Area (Sc	ą. Km.)			12.13 sq km		
Hilly Area (Sq. Km.)				Nil		
Population (Current y	ear -2018)			3000		
Climate				Monsoon Sub-Tropical		
Normal Rainfall (mm)	(nearest rain gau	ge station-Ris	sod)	880		
Annual Rainfall (mm)	2009-18 (nearest	rain gauge st	tation-Risod)	880		
1.2. Geomorphology,	Soil & Geology					
Geomorphic Unit	Plateau (Weath	ered, slightly	dissected, moderatel	y dissected).		
Geology	Deccan Traps (B	asalt) Age: La	ate Cretaceous to Eoc	ene		
Soil	BCS consisting r	0 cm), Clayey-Moderately deep (25 to				
	50 cm) and Gra	velly clay loa	am-Shallow (10 to 25	cm) thick. At some places Clay loam		
	(25-50 cm) and	sandy clay lo	am (50 to 100 cm) thi	ck.		
1.3. Hydrology & Drai	inage					
Watershed			PGD-1 (12.13 Sq.km	.)		
Drainage			Godavari basin; Pen	ganga River with dendritic to sub-		
			dendritic drainage p	attern.		
			1 st Order Stream – 2	1.050 km		
			2 rd Order Stream – 6	5.343 km		
			3 Order Stream – 5.156 km			
	· /b a l· /b a·		4 Order Stream – 3.893 km			
Irrigation Project (IVia)	jor/Medium/Mind	or etc.)				
WC structures (PT / K	I / CD / FP etc.)	Currentine De	01-CD, 01-PT, 01- VI	llage pond		
1.4. Land Use, Agricul	iture, irrigation &	Cropping Pa	ittern	A		
Forest Ares	Specif	ICS		Area		
Forest Area				NII 1027.11 ba		
Not Sown Area				1037.11 lld		
Irrigation Dug wolls						
Irrigation Dug wells				79		
Area under Drin & Spr	rinklor Irrigation			78 Nil		
Area under Drip & Spi		Surface Ma	tor			
Area under imgation		Ground Wa	ater	NII 1027 11 ba		
Dringinal Crong		Sovahoan		1057.11 Ha		
(Reference year 2018)	)	Sulsos (Tur	١	227 ha		
		Gram	)	500 ha		
		Wheat		200 ha		
		Vegetables		10 ha		
1.5 Water Level Beba	avior · Aquifer-L (	Shallow Aqui	for)	10 118		
In the village 11 KOW	/ were established	to decipher	the water level scena	rio		
Pre-Monsoon (May-2	018)		Post-Monsoon (Nov	/ember-2018)		
Entire area of the villa	age shows DTWL r	anges	Entire area of the vi	llage shows DTWL in the range of 0-5		
between 10-15 mbgl v	whereas small iso	lated part	mbgl except in cent	er part a small isolated patch of		
in the middle of the vi	illage shows DTW	L ranges	DTWL ranging 5-10 mbgl is observed.			
between 15-20 mbgl.	A small part of th	ne DTWL 0-		-		
5 mbgl is observed in	the south side of	the village				

Panchayat Level Aquifer Management Plan, Watershed PGD-1, Village Yevta Risod Block, Washim District, Maharashtra

		-							
DTWL PRE MONSOON ( MAY -2018 ) YEVTA VILLAGE, WATERSHED PGD-1 RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA			RISOD	DTWL PRE YEVTA VILL BLOCK, W	AGE, WA	OON ( MA ATERSHI ISTRICT,	Y -2018 ) ED PGD- 1 , MAHARA	I SHTRA	
0 0.5 1					0	0.6 1		<b>CR</b> TA	
20" Nitrete's		20 07	а Ч	N PS	kil	oneters	ficility	,	
20° 06°		20° 06'	Dangler,	7	.:	YEY	VTA	, in the second	
		20° 05'	· ·	Children and			, , , ,	y s	
20 04 HMAR PEN		04		LEC	HI HI	INTE PEN	L mar		
COW     OTWL 0-5 mbgl     Vilage habitate     DTWL 10-15 mbgl     OTWL 10-15 mbgl     DTWL 15-20 mbgl		20° 03'	• ) @ \	KOW Villege habitate		OTWL 0-5 mbg OTWL 5-10 mb	gi Sgi		
76° 54' 76° 55' 76° 56'			76° 54'		76 55		76° 56'		
2. GROUND WATER ISSUES	1								
Declining water level. Non availability of surface	water	for irri	igation						
Less ground water potential basaltic aquifer.									
Water stress situation during lean period (March	to Jun	ne).							
3. AQUIFER DISPOSITION									
3.1. Number of Aquifers	Ba	Basalt –	-Aquife	er-I (Phre	atic / S	Shallov	v aquife	er)	
3.2. Aquifer Characteristics									
Major Aquifers		<u> </u>		Basa	It (Dec	can Tr	aps)		
Type of Aquiter	Ba	asalt –	Aquite	r-I (Phrea	atic / S	hallow	aquite	r)	
Static Water Level (mbgi)	10	0.00-15	5.00 0						
weathered thickness (m)	0	0- 10 00							
Specific vield (Sv)	0	0.02 (norms)							
4 GROUND WATER OUALITY: Phreatic Aquifer (	0	Specific yield (Sy) 0.02 (norms)							
	4. GROUND WATER QUALITY: Phreatic Aquifer (Aquifer-I/ Shallow aquifer)								
Nitrate, TH and Mg parameters are above	<b>Aquife</b> e peri	er-I/ Sł rmissib	hallow ble lim	<b>aquifer</b> ) nit, rest	of p	arame	ters a	re wit	hin the
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat	<b>Aquife</b> e peri er Stai	rmissib andards	h <b>allow</b> Ile lim s IS- 1(	<b>aquifer)</b> hit, rest 0500-202	of p 12. He	arame nce th	eters and a grour	re wit nd wate	hin the er is not
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo	<b>Aquife</b> e peri er Stai r dome	er-I/SI rmissib andards nestic a	hallow de lim s IS- 10 and agr	<b>aquifer)</b> hit, rest 0500-202 icultural	of p 12. He uses	arame nce th	eters a e grour	re wit nd wate	hin the er is not
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used foPHECTDSTHCaMg	Aquife e peri er Stai r domo Na l	er-I/ St rmissib andards nestic a K	hallow he lim s IS- 10 ind agr CO3	<b>aquifer)</b> nit, rest 0500-202 icultural HCO3	of p 12. He uses CI	arame nce th SO4	ters and e grour	re wit nd wate F	hin the er is not
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used forPHECTDSTHCaMg7.32174115371917866	Aquife e peri er Star r domo Na I 76	rmissib andards nestic a K 58.2	hallow he lim s IS- 10 nd agr CO3 0	aquifer) hit, rest 0500-202 icultural HCO3 351	of p 12. He uses Cl 145	arame nce th SO4 79	ters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used foPHECTDSTHCaMg7.321741153719178665. GROUND WATER RESOURCES- Aquifer-I/ Shale	Aquife e peri er Star r domo Na I 76 ! Iow Ph	rmissib andards nestic a K 58.2 <b>hreatic</b>	hallow he lim s IS- 10 ind agr CO3 0 c Aquif	aquifer) hit, rest 0500-202 icultural HCO3 351 <b>fer (Basa</b>	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	eters and e grour NO3 320	re wit nd wate F 0.33	hin the er is not
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used forPHECTDSTHCaMg7.321741153719178665. GROUND WATER RESOURCES- Aquifer-I/ Shall5. 1 Water budgeting	Aquife e peri er Stai r dome Na I 76 ! Iow Pf	rmissib andards nestic a K 58.2 <b>hreatic</b>	hallow le lim s IS- 10 nd agr CO3 0 c Aquif	aquifer) nit, rest 0500-202 icultural HCO3 351 fer (Basa	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	e grour NO3 320	re wit nd wate F 0.33	hin the er is not
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used foPHECTDSTHCaMg7.321741153719178665. GROUND WATER RESOURCES- Aquifer-I/ Shale5. 1 Water budgetingA. Water availability	Aquife e peri er Sta r domo Na 1 76 ! Iow Ph	er-I/ SI rmissib andards nestic a K 58.2 hreatic	hallow le lim s IS- 10 nd agr CO3 0 c Aquif	aquifer) hit, rest 0500-20: icultural HCO3 351 fer (Basa	of p 12. He uses CI 145 <b>It)</b>	arame nce th SO4 79	ters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha)	Aquife e peri r domo Na   76 ! Iow Pt	rmissib andards nestic a K 58.2 Phreatic	hallow le lim s IS- 10 nd agr CO3 0 c Aquif	aquifer) hit, rest 0500-20: icultural HCO3 351 <b>Fer (Basa</b>	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	iters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not 1213.00
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha) Rainfall (m)	Aquife e peri er Star r dome Na   76 ! Iow Pł	rmissib andards hestic a K 58.2 hreatic	hallow he lim s IS- 10 nd agr CO3 0 c Aquif	aquifer) hit, rest 0500-20: icultural HCO3 351 <b>fer (Basa</b>	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	nters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not 1213.00 0.88
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha) Rainfall (m) Water precipitated, ham, (Area X RF)	Aquife e peri er Star r domo Na 1 76 ! Iow Ph	rmissib andards hestic a K 58.2 hreatic	hallow he lim s IS- 10 ind agr CO3 0 c Aquif	aquifer) hit, rest 0500-20: icultural HCO3 351 fer (Basa	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	iters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not 1213.00 0.88 1067.44
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha) Rainfall (m) Water precipitated, ham, (Area X RF) 90 % of precipitations (ham)	Aquife e peri er Star r dome Na 1 76 9 Iow Ph	rmissib andards nestic a K 58.2 Phreatic	hallow le lim s IS- 1( ind agr CO3 0 c Aquif	aquifer) hit, rest 0500-20: icultural HCO3 351 <b>Fer (Basa</b>	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	ters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not 1213.00 0.88 1067.44 960.70
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha) Rainfall (m) Water precipitated, ham, (Area X RF) 90 % of precipitations (ham) AR recharge by artificial recharge structure Bunoff (2 5%)(RE-AB) (ham)	Aquife e peri er Star r dome Na 1 76 ! Iow Pt	rmissib andards hestic a K 58.2 hreatic	hallow le lim s IS- 10 nd agr CO3 0 c Aquif	aquifer) hit, rest 0500-20: icultural HCO3 351 fer (Basa	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	ters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not 1213.00 0.88 1067.44 960.70 0.4012 24 0074
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha) Rainfall (m) Water precipitated, ham, (Area X RF) 90 % of precipitations (ham) AR recharge by artificial recharge structure Runoff (2.5%)(RF-AR) (ham) Evanoration (35%) (ham)	Aquife e peri er Star r domo Na 1 76 9 Iow Pt	rmissib andards hestic a K 58.2 hreatic	hallow le lim s IS- 10 nd agr CO3 0 c Aquif	aquifer) hit, rest 0500-202 icultural HCO3 351 fer (Basa	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	ters a e grour NO3 320	re wit nd wate 0.33	hin the er is not 1213.00 0.88 1067.44 960.70 0.4012 24.0074 36 2436
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha) Rainfall (m) Water precipitated, ham, (Area X RF) 90 % of precipitations (ham) AR recharge by artificial recharge structure Runoff (2.5%)(RF-AR) (ham) Evaporation (35% ) (ham) Water retain in ground Tank Nala etc. (5%) (ham	Aquife e peri er Star r domo Na 1 76 9 Iow Pf	rmissib andards nestic a K 58.2 Phreatic	hallow le lim s IS- 10 ind agr CO3 0 c Aquif	aquifer) nit, rest 0500-20: icultural HCO3 351 <b>Fer (Basa</b>	of p 12. He uses CI 145 <b>It)</b>	arame nce th SO4 79	ters a e grour NO3 320	re wit nd wate 0.33	hin the er is not 1213.00 0.88 1067.44 960.70 0.4012 24.0074 36.2436 48.0348
Nitrate, TH and Mg parameters are above desirable/Permissible limits of BIS Drinking Wat suitable for drinking purposes but can be used fo PH EC TDS TH Ca Mg 7.3 2174 1153 719 178 66 5. GROUND WATER RESOURCES- Aquifer-I/ Shal 5. 1 Water budgeting A. Water availability Area (ha) Rainfall (m) Water precipitated, ham, (Area X RF) 90 % of precipitations (ham) AR recharge by artificial recharge structure Runoff (2.5%)(RF-AR) (ham) Evaporation (35% ) (ham) Water retain in ground Tank, Nala etc. (5%) (ham Recharge to phreatic aquifer (10%) (ham)	Aquife e peri er Star r domo Na 1 76 1 Iow Pł	rmissib andards hestic a K 58.2 hreatic	hallow le lim s IS- 10 c Aquif	aquifer) hit, rest 0500-20: icultural HCO3 351 fer (Basa	of p 12. He uses Cl 145 <b>It)</b>	arame nce th SO4 79	ters a e grour NO3 320	re wit nd wate F 0.33	hin the er is not 1213.00 0.88 1067.44 960.70 0.4012 24.0074 36.2436 48.0348 96.0696

Total Water availability (MCM)	4.3271
B. Requirement	
Domestic @60 lpcd X total person(3000) (MCM)	0.0657
Animal @40 lpad X total animal (1111) (MCM)	0.0150
Irrigation water applied (MCM)	3.0994
Non agriculture use (MCM)	0.0961
Total Requirement (MCM)	3.2762
C. GW available for Planning (MCM)	1.05
Stage of GW Development (%)	75.71
6. GROUND WATER RESOURCE MANAGEMENT	
6.1. Supply Side Management	
SUPPLY (MCM)	
Available Resource (MCM)	4.33
Agricultural Supply –GW	3.10
Agricultural Supply -SW	0.00
Domestic Supply - GW	0.08
Domestic Supply - SW	0.00
Non agriculture use (MCM)	0.10
Total GW availability (MCM)	1.05
Gross Annual Draft (MCM)	3.28
Area of village (Sq. Km.)	12.13
Area suitable for Artificial recharge (sq km)	12.13
Type of Aguifer	Hard rock
Area feasible for Artificial Recharge (WL >5mbgl) (Sq. Km.)	0.2
Volume of Unsaturated Zone (MCM)	0.00000042
Average Specific Yield	0.02
Volume of Sub Surface Storage Space available for Artificial Recharge (MCM)	8.4E-09
Surplus runoff considered for planning (MCM) @ 100%	24.01
Proposed AR Structures (Check Dam (@ Rs.30 lakh, Av. Gross Capacity-10 TCM * 3	Not proposed
fillings = 30 TCM))	
Proposed AR Structures Gabbion	Not proposed
Proposed AR Structures <b>Other</b>	Not proposed
Volume of Water expected to be conserved / recharged @ 75% efficiency (MCM)	
Specific Recommendations -	2.85
As per State Govt. Resolution, segment wise nala/stream desilting, deepening and	
widening upto 3 m depth or upto weathered rock considering the local	
hydrogeological condition without disturbing the ecology/aquifer/environmental flow	
of nala/stream. 25 % nala of 2 nd & 3 rd order is proposed.	
Considering average nala deepening of 1 m depth, additional storage	2.85
Considering average nala deepening of 1 m depth, additional recharge @ 75%	2.14
RTRWH Structures	
Households to be covered (Pakka House only)	210
Total RWH potential (MCM) (25% with 50 m2 area)	0.0000499
Rainwater harvested / recharged @ 80% runoff co-efficient (MCM)	0.0000400
However, RTRWH is economically not viable & not Recommended	
6.2. Demand Side Management	
Micro irrigation techniques	
Area is proposed to be covered under Drip (sq km)	0.1
Volume of Water expected to be saved (MCM). Surface Flooding req- 0.36 m. Drip	0.045
Req 0.24, WUE- 0.12 m	
Proposed Cropping Pattern change	
Irrigated area under Water Intensive Crop(ha)	Not proposed
Water Saving by Change in Cropping Pattern	
6.3. Expected Benefits	

Net Ground Water Availabil	ity (MCM)	4.33									
Additional GW resources av	et Ground Water Availability (MCM) dditional GW resources available after Supply side interventions (MCM) round Water Availability after Supply side intervention(MCM) kisting Ground Water Draft for All Uses (MCM)										
Ground Water Availability a	ound Water Availability after Supply side intervention(MCM) isting Ground Water Draft for All Uses (MCM) N draft after Demand Side Interventions (MCM) esent stage of Ground Water Development (%) pected Stage of Ground Water Development after interventions (%)										
Existing Ground Water Draf	t for All Uses (MCM)	3.28									
GW draft after Demand Side	e Interventions (MCM)	0.00									
Present stage of Ground Wa	esent stage of Ground Water Development (%) pected Stage of Ground Water Development after interventions (%) ther Interventions Proposed, if any ternate Water Sources Available <b>4. Development Plan</b> blume of water available for GWD after stage of GWD brought to 70% (MCM) oposed Number of DW (@ 1.5 ham for 90% of GWR Available)										
Expected Stage of Ground V	Vater Development after interventions (%)	50.33									
Other Interventions Propos	ed, if any										
Alternate Water Sources Av	railable	Nil									
6.4. Development Plan											
Volume of water available f	or GWD after stage of GWD brought to 70% (MCM)	1.28									
Proposed Number of DW (@	፬ 1.5 ham for 90% of GWR Available)	77									
Proposed Number of BW (@	9 1.0 ham for 10% of GWR Available)	13									
Area (ha) proposed to be br	ought under assured GW irrigation with av. CWR of 0.65 m	197.01									
after 70% stage of gwd is ac	hieved										
	Panchayat Management Plan										
	PANCHAYAT MANAGEMENT PLAN YEVTA VILLAGE, WATERSHED PGD- 1										
	RISOD BLOCK, WASHIM DISTRICT, MAHARASHTRA										
	0 0.5 1 <b>NORTH</b>										
	20° kilometers										
	walker and the second										
	20°										
	ALL AV										
	POD.1 VEVTA										
	20*										
	05'										
	KA MAN										
	and the second s										
	20° 04'										
	Proposed about 2.85 km Segment wise nala/stream desliting, deepening and videning upto 3 m depth										
	Drainage hydrogeological condition without disturbing the ecology/aquifer/environmental flow of nala										
	wysteroody     wateroody     would be a start of the										
	03' Crop land Rabi About 10 ha area proposed for										
	76° 54' 76° 55' 76° 56'										



Panchayat Level Aquifer Management Plan, Watershed PGD-1, Village Yevta Risod Block, Washim District, Maharashtra



Village – Yevata, Risod Taluka, Washim District

Aquifer	Current Scenario	Geology /	Geomorphology	logy GW quality Recommendations for Aquifer Development							Aquifer Management Plan
(Prominent		Basalt flow			Туре	Zones/Depth	HP of	Pumping	Yield		
Lithology)						to be tapped	pump to	Hours	(Cu. m /		
							be		Day)		
Aquifer I	1037.11 ha	DT Basalt	Plateau	quality of	Dug	Depth Range	3 to 5	1 to 4	< 10 -	1.	Proposed about 2.85 km
(Basalt-	cultivable land 01-	(Sahvadri	(weathered	ground water	well	of Zones	5 10 5	1 10 1	200		Segment wise nala/stream
Weathered	CD. 1-PT. 1-other.	Group).	slightly	is not suitable	/ 77	6 - 15  m			$m^3/dav$		desilting, deepening and
and	1 PWS scheme, 5	Aa	dissected.	for drinking	,	0 10			Or		widening upto 3 m depth or upto
fractures)	DW(d), 55 DW (i).	/pahoehoe	moderately	but it can be					0.		weathered rock considering the
,	Pre-monsoon	/simple	dissected) with	used domestic					0.7		local hydrogeological condition
	DTWL~ 10-15 m	basaltic lava	weathered	and irrigation					ham/vear		without disturbing the
	bgl.	flows	thickness	purpose;					- ,,		ecology/aquifer/environmental
	Post-monsoon	(Buldana /	ranging from 0	Nitrate, TH							flow of nala/stream
	DTWL~ 1-8.0 mbgl.	Purandargarh	to 7 m.	and Mg are						2	About 10 ba area proposed for
	C C	Formation)	BCS-25 to 100	above						۷.	drin irrigation for perennial
		,	cm.	Permissible							
				limit,						2	vegetable/crops.
				Remaining						3.	About 197 ha area is proposed to
				parameters							be brought under assured GW
				are within						4	Irrigation during Rabi.
				MPL						4.	Desitting of existing water
										-	The DW should be used for
										5.	The DW should be used for
										G	ingation purpose.
Aquifor II	70 D\A/(;)	Acabovo		Not accord	Dorc	Donth : 60	2 to 5	2 + 0 9	014 210	0.	The DW should be used for
Aquiter II	70 BVV(I), 25 BVV(d)	As above		Not assessed	Bore	Depth: 60	5 10 5	5 10 8	0.14-2.16	1.	drinking purpose
(BdSdit-					ven / 12	111			ihz	2	utiliking purpose.
Jointed &	DTWL - 15-35 M				/ 13					Ζ.	By should not be drilled down
Fractures)	igu.										below the red bole.

# ANNEXURES

S. no.	Village	Type	Taluka	Year	Lat_De	Long_	Altitud	Topo	Depth	Depth of	Aquifer zones encountered	Aquifer	Pre	Post SW/I	Discharge	DD (m)
		Well				Dec	MSL)	Sheet	(mbgl)	(mbgl)	(IIISEI)		(mbgl)	(mbgl)	(162)	(11)
1.	Haral	EW	Risod	2018	19.976	76.868	525	56 A/13	200	25		FMB	24	2	0.14	70
				-19	6	8		1B			126.50-129.60					
2.	Shelu Bazar	OW	Mangrulpir	1998 -99	20.370 8	77.252 8	434.6	55H/07	30	7.25	6.5 -8 ,13.45 -14	W Basalt	21	2.66	3.17	
3.	Shelu Bazar	ow	Mangrulpir	1998 -99	20.370 8	77.252 8	434.6	55H/07	30	5.6	5 -8 ,13 -13.5	W Basalt	21	2.85	5.94	
4.	Shelu Bazar	EW	Mangrulpir	1998 -99	20.370 8	77.252 8	434.6	55H/07	153.75	7.3	5.5 -7.35 ,13 -13.5 ,59.15 - 62.25 ,22 -23	W Basalt	20.7	3	9.84	
5.	Bhamb Devi	EW	Karanja	1997 -98	20.622 5	77.608 3	349	55H/10	148.65	7.35	8 -10.35 ,27 -28.65	FJMB	17	3.05	1.37	
6.	Shelu Bazar	OW	Mangrulpir	1998 -99	20.370 8	77.252 8	434.6	55H/07	153.75	6.9	5 -8 ,19 -19.5	W Basalt	21	3.14	7.76	
7.	Bitodavoyar	EW	Mangrulpir	1997 -98	20.191 7	77.273 1	536.3	55H/08	184.25	3.25	35 -40.85	VB	19	3.2	1.73	
8.	Sendurjana	EW	Manora	1997 -98	20.147 8	77.453 9	513.7	55H/12	117.15	5.95	8 -10.35	J F MB	15	4	1.05	
9.	Kalamba Mahali	EW	Washim	1999 -00	20.139 7	77.202 8	533.8	55H/04	111.05	5.75	07-Jun	J MB	21	4.6	-	
10.	Pangrekhed	EW	Malegaon	2018 -19	20.176 9	76.935 8	543	56 D/16 1C	123.5	18	3-7.60, 28.90-32	FMB	18	4.9	0.025	
11.	Pimpalgaon	EW	Washim	1999 -00	20.048 6	77.308 9	544.7	55H/08	138.45	4	68 -69	J MB	18	5.15	-	
12.	Dhanora Buzurg	EW	Mangrulpir	1997 -98	20.316 7	77.395 8	449.9	55H/08	153.75	8.5	19.55 -25.65	W VB	25	5.7	-	
13.	Musalwadi	EW	Malegaon	1999 -00	20.366 7	77.091 7	410.2	55H/03	208.65	49.93	10 -11 ,170 -171	J MB	28	7.6	-	
14.	Sendona	EW	Manora	1998 -99	20.061 1	77.591 7	417.6	55H/12	200	-	5 -7.35 ,57 -59.15	J MB	15	7.8	1.37	
15.	Mangrulpir	Pz	Mangrulpir	2011 -12	20.312 2	77.336 4	448.4		40				27	9.2	Traces	
16.	Yevta Bandi	Pz	Karanja	2011 -12	20.508 6	77.584 7	388		40				24	11.7	Traces	
17.	Masela Pen	EW	Digras	1998 -99	20.068 6	77.864 4	313	55D/16	200	2	129.35 -132.35 ,154 -155	W F VB	28.25	12	2.16	

### Annexure-I: Salient Features of Ground Water Exploration, Washim District

S. no.	Village	Type of Well	Taluka	Year	Lat_De c	Long_ Dec	Altitud e ( m a MSL)	Topo sheet	Depth drilled (mbgl)	Depth of casing (mbgl)	Aquifer zones encountered (mbgl)	Aquifer	Pre SWL (mbgl)	Post SWL (mbgl)	Discharge (lps)	DD (m)
18.	Manora	Pz	Manora	2011 -12	20.220 8	77.552 5	365.2		40				18	12.5	0.5	
19.	Vitholi	EW	Manora	1998 -99	20.204 2	77.579 2	367.9	55H/07	200	5.5	35 -37.85 ,84 -86.65	W MB	23	12.75	-	
20.	Masela Pen	OW	Digras	1998 -99	20.068 6	77.864 4	313	55D/16	172.05	2.25	54 -55 ,153 -154	W VB	26.55	13	2.16	
21.	Masela Pen	OW	Digras	1998 -99	20.068 6	77.864 4	313	55D/16	206	3.21			28	13	-	
22.	Kherda (BK)	EW	Karanja	2000 -01	20.586 1	77.436 1	358.5	55H/06	172.05	5.5	37 -44	F VB	29	13.23	1.37	
23.	Kherda (BK)	OW	Karanja	2000 -01	20.586 1	77.436 1	358.5	55H/06	40.05	5.5	37.5 -40.5	F VB	29	13.23	1.37	
24.	Lohara	EW	Barshitakli	1997 -98	20.495 8	77.372 2	399.7	55H/07	129.35	11	30 -33	F VB	23	17	4.43	
25.	Ukalipen	EW	Washim	2018 -19	19.996 8	77.194 7	487	56 E/1 1C	200	25	93.0-96.0, 190.60-193.60	VFB	57.2	17	2.16	
26.	Belkheda	ow	Risod	1998 -99	20.040 3	76.955 6	499.1	55D/16	60	2.25	24 -27 ,46.95 -48.95	F Basalt	35	17.04	5.94	
27.	Belkheda	EW	Risod	1998 -99	20.040 3	76.955 6	499.1	55D/16	153.75	3.9	22.57 -25.67 ,28.68 -31.77 ,54.07 -55 ,43.97 -46.97	F Basalt	35	17.13	4	
28.	Mutha	EW	Malegaon	1998 -99	20.125 0	77.012 5	525	55H/04	200	6.25	4 -6.5 ,42 -44	W J MB	32	17.57	0.78	
29.	Lohara	OW	Barshitakli	1997 -98	20.495 8	77.372 2	399.7	55H/07	104.95	9	30 -33	F VB	26.85	18	3.77	
30.	Mahagaon	EW	Mehkar	1998 -99	20.326 4	76.669 4	501.6	55D/12	200	6.25	7 -10 ,35 -37	F Basalt	33	18	3.7	
31.	Bhoyani	EW	Manora	2018 -19	20.332 4	77.525 2	455	55 H/11 2A	200	18	10.60 -13.70, 53.30-56.40	FMB	48	19	0.025	
32.	Malegaon	Pz	Malegaon	2011 -12	20.242 5	77.002 8	521		40				37	21	Traces	
33.	Medsi	EW	Malegaon	1998 -99	20.326 4	76.943 6	460.4	55D/15	200	2.7	59.25 -62.25	W VB	45	21	0.56	
34.	Murambi	EW	Karanja	2018 -19	20.455 3	77.396 5	427	55H/7 1B	135.7	18	10.60-13.70	FMB	62	26	0.025	
35.	Mothegaon	EW	Risod	2018 -19	20.024 2	76.746 9	521	55 D/12 3C	200	25	74.70-77.70	FMB	60	27	3.17	
36.	Dapuri(Kh)	ow	Risod	2018 -19	20.098 2	76.898 2	522	57 D/16 2B	107.2	25	10.60-13-70, 59.40-62.50	VFB	54.5	29	4.43	

S. no.	Village	Туре	Taluka	Year	Lat_De	Long_	Altitud	Торо	Depth	Depth of	Aquifer zones encountered	Aquifer	Pre	Post	Discharge	DD
		of			с	Dec	e (ma	sheet	drilled	casing	(mbgl)		SWL (mhal)	SWL (mhal)	(lps)	(m)
		wen					IVISL)		(IIIDgI)	(iiibgi)			(IIIDgi)	(IIIDEI)		
37.	Dapuri(Kh)	EW	Risod	2018	20.098	76.898	520	56 D/16	124	25	59.40-62.50	VFB	55.08	29	3.17	
				-19	2	2		2B								
38.	Mothegaon	OW	Risod	2018	19.976	76.746	521	56 D/12	200	25		FMB	70	31	0.14	
				-19	9	9		3C			108.20-111.30					
39.	Dhanora Kh	EW	Magrulpir	2018	20.211	77.332	536	55 H/8	200	18	7.60-10.60	FMB	100	53	0.025	
				-19	7	2		1A								
40.	Karanja	Pz	Karanja	2011	20.486	77.468	424		40				38	14	Traces	
				-12	1	1										
41.	Kinhiraja	EW	Malegaon	2018	20.328	77.166	511	55 H/3	111.3	7.6	19.80-22.80	FMB	18	9	0.025	
				-19	4	9		3c								
42.	Kurha	Pz	Risod	2011	19.910	76.683	549		40				33	11	Traces	
				-12	3	6										

### EC (Pre -SI. no. District Taluka Site name Latitude Longitude D.T.W. D.T.W. **RL Pre** EC (Post -2018) (Pre - 2018) (Post -2018) (m bgl) 2018) (micromhos) (micromhos) (m bgl) 77.5529 Washim Dhotra 20.6966 7.40 5.10 332.60 1270.00 1620.00 1 Karanja 2 Donad Bk 20.5512 77.6350 14.50 4.00 1105.00 1660.00 Washim 370.50 Karanja 3 Washim Ganeshpur 20.5150 77.5656 8.80 6.50 394.20 775.00 1420.00 Karanja 20.4348 77.4926 11.35 7.50 418.65 1122.00 1510.00 4 Washim Karanja Girda 20.6853 77.6132 5.00 885.00 1020.00 5 9.25 311.75 Washim Karanja Hinganwadi 20.4623 77.5537 7.00 1.00 412.00 1616.00 2660.00 6 Washim Kamathwada Karanja 7 Washim Kupti 20.5699 77.5218 9.20 3.00 348.80 881.00 1070.00 Karanja 77.3639 396.20 1300.00 1725.00 8 Lohara 20.4696 8.80 3.70 Washim Karanja 9 20.5310 77.3513 5.50 375.65 1940.00 4515.00 Washim Mahagaon 10.35 Karanja 10 Washim Karanja Nagalwadi 20.6470 77.6193 12.50 5.00 324.50 699.00 1100.00 11 Washim Karanja Parwa Kohar 20.5401 77.4083 9.60 3.95 364.40 803.00 1105.00 20.6299 77.5726 8.70 2.50 325.30 1360.00 3000.00 12 Washim Pimpri Modak Karanja 10.90 Washim Shevti 20.4257 77.3653 8.20 422.10 603.00 1050.00 13 Karanja Washim Somthana 20.4398 77.5794 6.35 2.00 390.65 905.00 1550.00 14 Karanja 7.60 1050.00 15 Washim Takli Kh 20.6389 77.5076 13.60 424.40 811.00 Karanja 1292.00 16 20.4763 77.4439 9.15 5.15 430.85 1600.00 Washim Karanja Tuljapur 17 Umbarda 20.4774 77.5963 15.70 5.45 388.30 1019.00 3135.00 Washim Karanja 2.90 2222.00 18 Washim Malegaon Amani 20.2124 77.0192 7.80 517.20 2332.00 19 Washim Malegaon Bhildurga 20.2758 76.8417 8.50 7.40 435.50 880.00 594.00 20.0933 9.20 Borala S. 76.9781 11.00 500.00 700.00 711.00 20 Washim Malegaon Washim Malegaon Deothan (khamb) 20.3958 77.0125 10.08 4.40 392.92 1370.00 1335.00 21 76.9517 22 Washim Malegaon Dhorkheda 20.0975 10.30 3.80 517.70 1450.00 1812.00 23 Washim Malegaon Kherkheda 20.3572 77.0464 8.00 5.43 449.00 1120.00 1318.00 924.00 24 Washim Kotha 20.1053 76.9342 15.80 11.10 511.20 895.00 Malegaon 25 Washim Malegaon Masala (Kh.) 20.1128 77.1367 10.90 4.43 470.10 425.00 503.00

### Annexure-II: Details of KOWs in Washim district

Sl. no.	District	Taluka	Site name	Latitude	Longitude	D.T.W. (Pre - 2018)	D.T.W. (Post -	RL Pre	EC (Pre - 2018)	EC (Post - 2018)
						(m bgl)	2018)		(micromhos)	(micromhos)
						,	(m bgl)			. ,
26	Washim	Malegaon	Mungala	20.2703	76.9167	10.30	9.20	503.70	530.00	726.00
27	Washim	Malegaon	Nagartas	20.2556	77.0136	7.80	2.55	495.20	970.00	824.00
28	Washim	Malegaon	Pangarkhed	20.1761	76.9317	11.90	5.35	541.10	750.00	1008.00
29	Washim	Malegaon	Pangrabandi	20.4306	77.0311	9.00	4.20	356.00	697.00	826.00
30	Washim	Malegaon	Shelgaon B.	20.2786	76.7806	16.80	5.13	497.20	830.00	1182.00
31	Washim	Malegaon	Tiwali	20.1375	76.8822	10.70	4.50	548.30	2190.00	265.00
32	Washim	Malegaon	Udi	20.3267	77.0678	7.60	1.60	355.40	1440.00	1352.00
33	Washim	Malegaon	Umardari	20.3014	77.1244	3.00	2.10	465.00	610.00	642.00
34	Washim	Malegaon	Wadiramrao	20.3675	77.1222	16.50	5.54	376.50	870.00	852.00
35	Washim	Malegaon	Waghi Bk.	20.1250	76.9558	5.90	2.90	510.10	1350.00	840.00
36	Washim	Malegaon	Wakalwadi	20.3489	76.9625	9.50	5.40	430.50		791.00
37	Washim	Malegaon	Wasari	20.1294	76.9189	8.60	3.40	531.40	-	562.00
38	Washim	Mangrulpir	Belkhed	20.3553	77.3625	9.10	5.90	419.90	640.00	921.00
39	Washim	Mangrulpir	Chikhlagad	20.2458	77.4331	10.90	6.40	410.10	790.00	834.00
40	Washim	Mangrulpir	Dabhadi	20.1481	77.3647	3.60	1.76	484.40	460.00	458.00
41	Washim	Mangrulpir	Hisai	20.3422	77.2956	15.90	15.23	413.10	840.00	1092.00
42	Washim	Mangrulpir	Khadi	20.3753	77.4275	11.20	2.70	389.80	580.00	597.00
43	Washim	Mangrulpir	Mangrulpir	20.3119	77.3458	12.00	4.80	410.00		1224.00
44	Washim	Mangrulpir	Motsawanga	20.2431	77.2639	9.00	1.85	480.00		
45	Washim	Mangrulpir	Pimpri (kh.)	20.3139	77.2617	10.30	3.85	434.70	1140.00	704.00
46	Washim	Mangrulpir	Saikheda	20.2639	77.2811	8.50	4.55	434.50	1750.00	1194.00
47	Washim	Mangrulpir	Shendurjana	20.4061	77.2619	10.00	3.10	403.00	920.00	1519.00
48	Washim	Mangrulpir	Shivni	20.4028	77.3689	12.00	10.10	392.00	720.00	783.00
49	Washim	Mangrulpir	Vanoja	20.4025	77.2211	12.40	8.20	429.60	1090.00	1182.00
50	Washim	Manora	Asola Bk	20.2641	77.5193	6.70	2.00	381.30	1296.00	2780.00
51	Washim	Manora	Dapura	20.3666	77.5207	12.50	6.50	425.50	1345.00	1177.00

Sl. no.	District	Taluka	Site name	Latitude	Longitude	D.T.W. (Pre - 2018)	D.T.W. (Post -	RL Pre	EC (Pre - 2018)	EC (Post - 2018)
						(m bgl)	2018)		(micromhos)	(micromhos)
							(m bgl)			
52	Washim	Manora	Dhamni	20.3772	77.4613	13.30	2.55	398.70	937.00	1090.00
53	Washim	Manora	Gavha	20.1918	77.5526	7.75	5.60	382.25	435.00	720.00
54	Washim	Manora	Gondegaon	20.0819	77.6225	8.25	4.40	370.75	739.00	900.00
55	Washim	Manora	Gosta	20.1049	77.4235	5.80	3.10	428.20	1064.00	1160.00
56	Washim	Manora	Karli	20.2298	77.6138	7.90	2.60	365.10	506.00	940.00
57	Washim	Manora	Kupta	20.3034	77.5577	6.00	2.20	446.00	1373.00	1150.00
58	Washim	Manora	Mahuli	20.1611	77.5929	12.45	8.55	380.55	539.00	760.00
59	Washim	Manora	Palodi	20.1150	77.4972	10.95	2.65	506.05	720.00	830.00
60	Washim	Manora	Ratanwadi	20.1117	77.5338	6.40	3.60	444.60	448.00	780.00
61	Washim	Manora	Vai	20.1265	77.6444	9.80	5.30	366.20	1059.00	2050.00
62	Washim	Manora	Vatphal	20.1046	77.3758	8.90	3.00	462.10	650.00	600.00
63	Washim	Risod	Bhar Jahagir	19.9463	76.7084	14.70	2.00	538.30	604.00	680.00
64	Washim	Risod	Chinchanba Pen	20.0657	76.8934	10.00	1.60	495.00	910.00	707.00
65	Washim	Risod	Dapuri	20.1032	76.8998	5.50	2.50	507.50	770.00	650.00
66	Washim	Risod	Dapuri	20.0980	76.9039	11.20	2.10	498.80	580.00	503.00
67	Washim	Risod	Dhodap Bk.	20.0713	76.7261	5.20	0.90	511.80	891.00	645.00
68	Washim	Risod	Dhodap Kh.	20.0696	76.7954	12.30	4.50	509.70	677.00	636.00
69	Washim	Risod	Gobhani.	20.0888	76.7631	8.00	6.00	523.00	952.00	680.00
70	Washim	Risod	Gohagaon	20.0665	76.6453	7.20	4.60	518.80	710.00	1369.00
71	Washim	Risod	Gowardhan	20.1059	76.8301	14.40	2.40	497.60	531.00	545.00
72	Washim	Risod	Gowardhan	20.1081	76.8302	21.90	2.80	488.10	493.00	550.00
73	Washim	Risod	Haral	19.9798	76.8643	10.40	2.50	509.60	760.00	768.00
74	Washim	Risod	Koyali Bk.	20.1441	76.8042	16.00	12.00	503.00	615.00	690.00
75	Washim	Risod	Koyali Kh.	20.1448	76.8312	4.00	1.70	526.00	450.00	671.00
76	Washim	Risod	Kuksa	20.1894	76.7767	4.40	2.00	529.60	525.00	667.00
77	Washim	Risod	Kuksa	20.1910	76.7731	9.60	3.05	521.40	650.00	712.00

Sl. no.	District	Taluka	Site name	Latitude	Longitude	D.T.W. (Pre - 2018)	D.T.W. (Post -	RL Pre	EC (Pre - 2018)	EC (Post - 2018)
						(m bgl)	2018)		(micromhos)	(micromhos)
							(m bgl)			
78	Washim	Risod	Lehani	20.1070	76.7222	9.30	2.50	529.70	658.00	670.00
79	Washim	Risod	Mangrul Sanak	20.1078	76.7809	12.40	2.00	507.60	575.00	574.00
80	Washim	Risod	Masala Pen	20.0731	76.8633	14.80	2.40	492.20	960.00	873.00
81	Washim	Risod	Mohjabandi	19.8667	76.6683	11.00	5.85	494.00	540.00	777.00
82	Washim	Risod	Mothegaon	20.0238	76.7446	9.10	3.70	510.90	434.00	822.00
83	Washim	Risod	Nandhana	20.1752	76.8636	9.00	1.60	538.00	855.00	2108.00
84	Washim	Risod	Nawali	20.1324	76.8099	10.50	1.60	514.50	631.00	635.00
85	Washim	Risod	Nawali	20.1242	76.8126	13.00	3.00	508.00	690.00	678.00
86	Washim	Risod	Palaskhed	20.0209	76.8024	10.90	3.10	515.10	474.00	500.00
87	Washim	Risod	Pardi Tikhe	20.0694	76.9425	9.30	4.70	494.70	1674.00	1752.00
88	Washim	Risod	Sawad	19.9834	76.8181	17.70	4.25	508.30	320.00	997.00
89	Washim	Risod	Shelgaon Rajgure	20.0832	76.8528	10.10	5.30	499.90	850.00	657.00
90	Washim	Risod	Shelgaon Rajgure	20.0807	76.8554	11.00	2.80	501.00	720.00	682.00
91	Washim	Risod	Shelu Khadse	19.9813	76.7044	11.80	2.60	531.20	945.00	832.00
92	Washim	Risod	Wadji	20.1136	76.7666	9.50	3.45	527.50	670.00	790.00
93	Washim	Risod	Waghi Kh.	20.1110	76.8777	7.00	1.70	538.00	745.00	707.00
94	Washim	Risod	Waghi Kh.	20.1105	76.8731	12.20	1.40	531.80	880.00	1130.00
95	Washim	Risod	Wanoja	20.0196	76.9280	6.00	0.90	513.00	778.00	712.00
96	Washim	Risod	Yevta	20.0846	76.9274	14.80	6.05	509.20	870.00	887.00
97	Washim	Risod	Yevta	20.0853	76.9273	15.70	8.05	506.30	1210.00	1064.00
98	Washim	WASHIM	Atkali	20.0164	77.0269	7.70	7.00	481.30	740.00	808.00
99	Washim	WASHIM	Falegaon Thet	20.0632	77.1975	7.30	3.10	536.70	940.00	910.00
100	Washim	WASHIM	Ghota	19.9951	77.2802	6.80	2.90	503.20	472.00	358.00
101	Washim	WASHIM	Kajlamba	20.1441	77.2628	9.60	1.00	523.40	825.00	803.00
102	Washim	WASHIM	Khandala Kh.	20.0574	77.0534	12.40	3.80	500.60	1022.00	1262.00
103	Washim	WASHIM	Kokalgaon	19.9714	77.0827	2.90	1.10	486.10	1130.00	643.00

Sl. no.	District	Taluka	Site name	Latitude	Longitude	D.T.W.	D.T.W. (Post -	RL Pre	EC (Pre - 2018)	EC (Post - 2018)
						(m bgl)	2018) (m bgl)		(micromhos)	(micromhos)
104	Washim	WASHIM	Panchala	20.0639	77.1444	9.10	4.30	532.90	520.00	504.00
105	Washim	WASHIM	Pardi Takmor	20.1911	77.2438	3.40	2.60	548.60	428.00	1668.00
106	Washim	WASHIM	Sapli	20.0166	77.3029	8.00	1.20	540.00	455.00	495.00
107	Washim	WASHIM	Sawanga Jahagir	20.2153	77.1831	9.90	4.30	494.10	1669.00	1187.00
108	Washim	WASHIM	Shirputi	20.0158	77.2208	5.20	1.30	488.80	532.00	523.00
109	Washim	WASHIM	Songavhan	19.9511	77.2133	3.80	3.20	494.20	698.00	373.00
110	Washim	Washim	Soyata	20.2636	77.2119	7.00	2.00	503.00	650.00	521.00
111	Washim	WASHIM	Surala	20.1843	77.1508	7.90	2.00	561.10	737.00	739.00
112	Washim	WASHIM	Umra Kapase	20.0750	77.2929	8.50	5.00	533.50	512.00	614.00
113	Washim	WASHIM	Wakli Jahagir	20.1027	77.0698	8.30	1.70	535.70	1715.00	1450.00

S.No.	DISTRICT	Block Name	SITE NAME	TOPOSHEET	Lattitude	Longitude	SITE TYPE	Depth	Dia.	Geology	Aquifer	DTWI	DTWI
0	2.01.1.01		0112_10/012			Loughtune	0	of	(m)	0001087	Type	Mav-	Nov.
								Well	• •		71	18	2018
								(mbgl)				(mbgl)	(mbgl)
	Wasim	Mangrulpir	Aasegaon	55 H/8	20°8'59"N	77°20'5"E	DW	10	4.00	DTB	Unconfined	9.99	3.5
	Wasim	Washim	Bitoda (Bhoyar)	55H/08	20°11'0"N	77°16'0"E	DW	12.5	2.30	DTB	Unconfined	12.49	7.9
	Wasim	Risod	Chikli	55H/16	20°0'30"N	76°53'30"E	DW	9.75	2.75	DTB	Unconfined	9.74	6.7
	Wasim	Risod	Dapuri	55D/16	20°6'0"N	76°54'0"E	DW	10.15	4.33	DTB	Unconfined	10.14	8.5
	Wasim	Washim	Deothana	56 E/1	19°58'10"N	77°7'54"E	DW	15.24	7.50	DTB	Unconfined	-	3.7
	Wasim	Karanja	Dhanaj Khurd	55H/10	20°43'0"N	77°35'10"E	DW	11	3.70	DTB	Unconfined	10.99	6.4
	Wasim	Mangrulpir	Dhanora	55 H/8	20°12'14"N	77°19'59"E	DW	14.15	4.80	DTB	Unconfined	14.14	8.05
	Wasim	Malegaon	Dharpimpri	55 D/16	20°12'7"N	76°53'32"E	DW	8	3.50	DTB	Unconfined	5.9	4.3
	Wasim	Manora	Giroli	55 H/8	20°12'31"N	77°28'32"E	DW	11	1.90	DTB	Unconfined	10.99	4
	Wasim	Malegaon	Jamkheda	55 H/3	20°16'40"N	77°5'10"E	DW	9	3.00	DTB	Unconfined	3.2	1.8
	Wasim	Malegaon	Jaulka Rly	55 H/3	20°17'32"N	77°4'20"E	DW	5.3	1.90	DTB	Unconfined	5.29	3.1
	Wasim	Washim	Kalamba Mahal	55 H/4	20°8'14"N	77°12'21"E	DW	9	2.50	DTB	Unconfined	8.99	6.2
	Wasim	Karanja	Kamargaon	55H/10	20°36'50"N	77°30'10"E	DW	10.75	3.52	DTB	Unconfined	6.8	4.2
	Wasim	Karanja	Karanja	55H/07	20°29'0"N	77°29'0"E	DW	13	3.86	DTB	Unconfined	10.8	3.05
	Wasim	Karanja	Karanja_Pz	55 H/7	20°29'10"N	77°28'57"E	BW	40	0.15	DTB	Unconfined	8	7.4
	Wasim	Risod	Kenwad	55D/16	20°12'0"N	76°49'0"E	DW	12	4.57	DTB	Unconfined	11.99	4.4
	Wasim	Malegaon	Kinhi Raja	55H/03	20°19'40"N	77°9'50"E	DW	9.5	3.43	DTB	Unconfined	9.49	4.3
	Wasim	Washim	Kondala Jhambre	55 H/4	20°10'6"N	77°7'32"E	DW	12.2	3.00	DTB	Unconfined	12.19	8
	Wasim	Risod	Kurha_Pz	56 A/9	19°54'37"N	76°41'1"E	BW	40	0.15	DTB	Unconfined	-	6
	Wasim	Risod	Loni	56A/09	19°54'55"N	76°37'30"E	DW	12.95	4.57	DTB	Unconfined	8.9	5.7
	Wasim	Malegaon	Malegaon	55D/14	20°14'0"N	76°59'0"E	DW	11.9	3.20	DTB	Unconfined	11.89	7
	Wasim	Malegaon	Malegaon_Pz	55 H/4	20°12'33"N	77°0'10"E	BW	40	0.15	DTB	Unconfined	10.6	6.7

### Annexure-III: Details of GW monitoring wells in Washim district

S.No.	DISTRICT	Block_Name	SITE_NAME	TOPOSHEET	Lattitude	Longitude	SITE_TYPE	Depth	Dia.	Geology	Aquifer	DTWL	DTWL
								of	(m)		Туре	May-	Nov.
								Well				18	2018
								(mbgl)				(mbgl)	(mbgl)
	Wasim	Mangrulpir	Mangrulpir_Pz	55 H/7	20°18'44"N	77°20'11"E	BW	40	0.15	DTB	Unconfined	14.5	8.5
	Wasim	Manora	Manora_Pz	55 H/12	20°13'15"N	77°33'4"E	BW	40	0.15	DTB	Unconfined	40	7.6
	Wasim	Malegaon	Medshi	55D/15	20°20'0"N	76°56'30"E	DW	10.9	4.60	DTB	Unconfined	9	5.05
	Wasim	Malegaon	Ridhora	55 D/15	20°17'35"N	76°58'18"E	DW	11.2	5.60	DTB	Unconfined	11.19	2.7
	Wasim	Risod	Risod	56A/13	19°58'0"N	76°47'0"E	DW	11.8	2.30	DTB	Unconfined	8.9	5.05
	Wasim	Risod	Rithad	55D/16	20°3'0"N	76°59'0"E	DW	16	4.40	DTB	Unconfined	15.99	7
	Wasim	Mangrulpir	Sakhar Doha	55H/07	20°16'0"N	77°24'0"E	DW	14	2.00	DTB	Unconfined	10	7
	Wasim	Mangrulpir	Sangaon	55H/08	20°11'35"N	77°21'10"E	DW	12.4	2.75	DTB	Unconfined	12.39	4.9
	Wasim	Washim	Sawargaon Barde	55 H/4	20°10'12"N	77°4'11"E	DW	9	3.00	DTB	Unconfined	8.99	3.1
	Wasim	Manora	Sendurjan Adhao	55H/04	20°8'45"N	77°27'0"E	DW	11.8	1.70	DTB	Unconfined	11.79	8
	Wasim	Karanja	Shaha	55H/06	20°31'30"N	77°28'0"E	DW	14.25	1.78	DTB	Unconfined	14.24	9.25
	Wasim	Mangrulpir	Shelu Bazar-1	55 H/3	20°20'6"N	77°14'45"E	DW	8.7	3.00	DTB	Unconfined	8.69	8.6
	Wasim	Karanja	Sheluwada-1	55 H/7	20°26'16"N	77°24'13"E	DW	14	2.65	DTB	Unconfined	13.99	10.4
	Wasim	Washim	Tondgaon	55 H/4	20°0'4"N	77°7'18"E	DW	15	4.50	DTB	Unconfined	7.9	6
	Wasim	Karanja	Vilegaon (Kherda)	55H/06	20°35'10"N	77°26'35"E	DW	7.45	2.20	DTB	Unconfined	7.44	3.7
	Wasim	Mangrulpir	Wada	55H/07	20°22'0"N	77°20'0"E	DW	16	3.63	DTB	Unconfined	15.99	6
	Wasim	Risod	Wakad	55 D/12	20°2'23"N	76°41'45"E	DW	12.2	8.70	DTB	Unconfined	8.2	9.9
	Wasim	Washim	Washim	55H/04	20°7'0"N	77°8'30"E	DW	12.2	3.66	DTB	Unconfined	8.6	4.4
	Wasim	Karanja	Yevta Bandi_Pz	55 H/10	20°30'31"N	77°35'5"E	BW	40	0.15	DTB	Unconfined	11.7	9.5

### Annexure IV: Soil Infiltration Test

02.2019		
el Phata		
In the field of vasanth rao		
bore, By the side of		
arati hotel		
shim		
shim		
02'44.3" <i>,</i> 77°08'21.1"		
}		
ccan Basalt		
lowish clay		
0		

SI.No.	Clock time	Duration(m)	Cumulative time	Water	Infiltrated	Infiltration
			(minutes)	level	water	rate(cm/hr)
				depth(cm)	Depth (cm)	
1	16.15	1.00	1.00	28.20	1.80	108.00
2	16.16	1.00	2.00	28.30	1.70	102.00
3	16.17	1.00	3.00	28.50	1.50	90.00
4	16.18	1.00	4.00	29.00	1.00	60.00
5	16.19	1.00	5.00	29.20	0.80	48.00
6	16.24	5.00	10.00	27.00	3.00	36.00
7	16.29	5.00	15.00	27.80	2.20	26.40
SI.No.	Clock time	Duration(m)	Cumulative time	Water	Infiltrated	Infiltration
--------	------------	-------------	-----------------	-----------	-------------	--------------
			(minutes)	level	water	rate(cm/hr)
				depth(cm)	Depth (cm)	
8	16.34	5.00	20.00	28.40	1.60	19.20
9	16.39	5.00	25.00	28.50	1.50	18.00
10	16.44	5.00	30.00	28.70	1.30	15.60
11	16.54	10.00	40.00	27.80	2.20	13.20
12	17.04	10.00	50.00	28.10	1.90	11.40
13	17.14	10.00	60.00	28.20	1.80	10.80
14	17.24	10.00	70.00	28.50	1.50	9.00
15	17.34	10.00	80.00	28.70	1.30	7.80
16	17.44	10.00	90.00	29.00	1.00	6.00
17	17.54	10.00	100.00	29.10	0.90	5.40
18	18.04	10.00	110.00	29.20	0.80	4.80
19	18.14	10.00	120.00	29.40	0.60	3.60
20	18.24	10.00	130.00	29.40	0.60	3.60
21	18.34	10.00	140.00	29.40	0.60	3.60

#### Soil Infiltration Test_II

Date	13.02.2019
Unique ID No	
Village	Risod
Location	In the field of Siva gharjana Carrier
	Academy
Taluka	Risod
District	Washim
Coordinates	19°58'56.7", 76°48'33.7"

Elevation / RL (mamsl)	527
Initial Water Level (cm)	30
Geology	Deccan Basalt
Soil type	Black cotton
Final Infiltration Rate (cm/hr)	1.80

SI.No.	Clock time	Duration (m)	Cumulative time (minutes)	Water level	Infiltrated water	Infiltration rate(cm/hr)
				depth(cm)	Depth (cm)	
1	15.15	1.00	1.00	29.20	0.80	48.00
2	15.16	1.00	2.00	29.40	0.60	36.00
3	15.17	1.00	3.00	29.60	0.40	24.00
4	15.18	1.00	4.00	29.70	0.30	18.00
5	15.19	1.00	5.00	29.80	0.20	12.00
6	15.24	5.00	10.00	29.40	0.60	7.20
7	15.29	5.00	15.00	29.40	0.60	7.20
8	15.34	5.00	20.00	29.50	0.50	6.00
9	15.39	5.00	25.00	29.60	0.40	4.80
10	15.44	5.00	30.00	29.60	0.40	4.80
11	15.54	10.00	40.00	29.20	0.80	4.80
12	16.04	10.00	50.00	29.30	0.70	4.20
13	16.14	10.00	60.00	29.40	0.60	3.60
14	16.24	10.00	70.00	29.50	0.50	3.00
15	16.34	10.00	80.00	29.60	0.40	2.40
16	16.44	10.00	90.00	29.70	0.30	1.80
17	16.54	10.00	100.00	29.70	0.30	1.80

18 17.04 10.00 110.00 29.70 0.30 1.80	
---------------------------------------	--

Soil Infiltration Test_III	
Date	14.02.2019
Unique ID No	
Village	Chehel
Location	In the field of vasanth rao naik
	asaram school
Taluka	Mangrulpir
District	Washim
Coordinates	20°18'46.1" <i>,</i> 77°23'23.6"
Elevation / RL (mamsl)	451
Initial Water Level (cm)	25
Geology	Deccan Basalt
Soil type	Clay
Final Infiltration Rate (cm/hr)	1.20

SI.No.	Clock time	Duration(m)	Cumulative time (minutes)	Water level depth(cm)	Infiltrated water Depth (cm)	Infiltration rate(cm/hr)
1	14.05	1.00	1.00	29.50	0.50	30.00
2	14.06	1.00	2.00	29.60	0.40	24.00
3	14.07	1.00	3.00	29.60	0.40	24.00
4	14.08	1.00	4.00	29.70	0.30	18.00
5	14.09	1.00	5.00	29.80	0.20	12.00
6	14.14	5.00	10.00	29.50	0.50	6.00
7	14.19	5.00	15.00	29.60	0.40	4.80

SI.No.	Clock time	Duration(m)	Cumulative time (minutes)	Water level depth(cm)	Infiltrated water Depth (cm)	Infiltration rate(cm/hr)
8	14.24	5.00	20.00	29.70	0.30	3.60
9	14.29	5.00	25.00	29.80	0.20	2.40
10	14.34	5.00	30.00	29.80	0.20	2.40
11	14.54	10.00	40.00	29.60	0.40	2.40
12	15.04	10.00	50.00	29.60	0.40	2.40
13	15.09	10.00	60.00	29.70	0.30	1.80
14	15.14	10.00	70.00	29.70	0.30	1.80
15	15.19	10.00	80.00	29.80	0.20	1.20
16	15.24	10.00	90.00	29.80	0.20	1.20
17	15.29	10.00	100.00	29.80	0.20	1.20

Soil Infiltration Test _IV	
Date	14.02.2019
Unique ID No	
Village	Nagardas
Location	In the field of shoka kadase, near
	by trijunction of the road
Taluka	Malegaon

CGWB, CR, Nagpur

District	Washim
Coordinates	20°15'20.0", 77°00'48.3"
Elevation / RL (mamsl)	512
Initial Water Level (cm)	30
Geology	Deccan Basalt
Soil type	Clay
Final Infiltration Rate (cm/hr)	1.80

Sl.No.	Clock time	Duration(m)	Cumulative time (minutes)	Water level depth(cm)	Infiltrated water Depth (cm)	Infiltration rate(cm/hr)
1	10.01	1.00	1.00	29.00	1.00	60.00
2	10.02	1.00	2.00	29.20	0.80	48.00
3	10.03	1.00	3.00	29.40	0.60	36.00
4	10.04	1.00	4.00	29.50	0.50	30.00
5	10.05	1.00	5.00	29.60	0.40	24.00
6	10.10	5.00	10.00	28.80	1.20	14.40
7	10.15	5.00	15.00	29.00	1.00	12.00
8	10.20	5.00	20.00	29.20	0.80	9.60
9	10.25	5.00	25.00	29.40	0.60	7.20
10	10.30	5.00	30.00	29.50	0.50	6.00
11	10.40	10.00	40.00	29.60	0.40	2.40
12	10.50	10.00	50.00	29.60	0.40	2.40
13	11.00	10.00	60.00	29.70	0.30	1.80
14	11.10	10.00	70.00	29.70	0.30	1.80
15	11.20	10.00	80.00	29.70	0.30	1.80

16	11.30	10.00	90.00	29.70	0.30	1.80
17	11.40	10.00	100.00	29.70	0.30	1.80

Soil Infiltration Test V	
Date	15.02.2019
Unique ID No	
Village	Dadgaon
Location	In the field of Gade, Near by pump house
Taluka	Karanja
District	Washim
Coordinates	20°27'07.4", 77°31'09.9"
Elevation / RL (mamsl)	425
Initial Water Level (cm)	30
Geology	Deccan Basalt
Soil type	Black cotton
Final Infiltration Rate (cm/hr)	3.00
Final Infiltration Rate (cm/hr)	3.00

SI.No.	Clock time	Duration(m)	Cumulative time	Water	Infiltrated	Infiltration
			(minutes)	depth(cm)	water Depth (cm)	rate(cm/nr)
1	10.01	1.00	1.00	27.90	2.10	126.00
2	10.02	1.00	2.00	28.20	1.80	108.00
3	10.03	1.00	3.00	28.60	1.40	84.00
4	10.04	1.00	4.00	29.10	0.90	54.00
5	10.05	1.00	5.00	29.40	0.60	36.00
6	10.10	5.00	10.00	28.20	1.80	21.60
7	10.15	5.00	15.00	28.50	1.50	18.00
8	10.20	5.00	20.00	28.80	1.20	14.40
9	10.25	5.00	25.00	29.10	0.90	10.80
10	10.30	5.00	30.00	29.20	0.80	9.60
11	10.40	10.00	40.00	28.70	1.30	7.80
12	10.50	10.00	50.00	28.90	1.10	6.60

SI.No.	Clock time	Duration(m)	Cumulative time (minutes)	Water level depth(cm)	Infiltrated water Depth (cm)	Infiltration rate(cm/hr)
13	11.00	10.00	60.00	29.10	0.90	5.40
14	11.10	10.00	70.00	29.30	0.70	4.20
15	11.20	10.00	80.00	29.50	0.50	3.00
16	11.30	10.00	90.00	29.50	0.50	3.00
17	11.40	10.00	100.00	29.50	0.50	3.00

Soil Infiltration Test VI	
Date	15.02.2019
Unique ID No	
Village	Loni Arab
Location	In the field of Vijay ramrao Andhale
Taluka	Karanja
District	Washim
Coordinates	20°33'29.8", 77°35'45.9"
Elevation / RL (mamsl)	374
Initial Water Level (cm)	30
Geology	Deccan Basalt
Soil type	Clay
Final Infiltration Rate (cm/hr)	0.60

SI.No.	Clock time	Duration(m)	Cumulative time (minutes)	Water level depth(cm)	Infiltrated water Depth (cm)	Infiltration rate(cm/hr)
1	10.01	1.00	1.00	29.00	1.00	60.00
2	10.02	1.00	2.00	29.50	0.50	30.00
3	10.03	1.00	3.00	29.70	0.30	18.00

SI.No.	Clock time	Duration(m)	Cumulative time (minutes)	Water level	Infiltrated water	Infiltration rate(cm/hr)
			(	depth(cm)	Depth (cm)	
4	10.04	1.00	4.00	29.70	0.30	18.00
5	10.05	1.00	5.00	29.80	0.20	12.00
6	10.10	5.00	10.00	29.60	0.40	4.80
7	10.15	5.00	15.00	29.70	0.30	3.60
8	10.20	5.00	20.00	29.70	0.30	3.60
9	10.25	5.00	25.00	29.60	0.40	4.80
10	10.30	5.00	30.00	29.50	0.50	6.00
11	10.40	10.00	40.00	29.60	0.40	2.40
12	10.50	10.00	50.00	29.70	0.30	1.80
13	11.00	10.00	60.00	29.70	0.30	1.80
14	11.10	10.00	70.00	29.80	0.20	1.20
15	11.20	10.00	80.00	29.90	0.10	0.60
16	11.30	10.00	90.00	29.90	0.10	0.60
17	11.40	10.00	100.00	29.90	0.10	0.60

Annexure-V:	Chemical anal	vsis of ground	l water samples	. Aquifer- I	/ Shallow aquifers
				,	

SN	Block_	Village_	Lat	Log	PH	EC_AQI	TDS	TH	Са	Mg	Na	К	CO3	HCO3	CI	SO4	NO3	F	Fe	SAR	RSC
1	Risod	Bhar Jahagir	19.9463	76.7084	7.5	633	335	229.5	44.97	27.95	49.71	2.74	0	237.90	26.06	29	37	0.45	0	1.172	-0.648
2	Risod	Chinchanba	20.0657	76.8934	7.5	947	502	336.6	71.54	37.67	64.33	5.73	0	309.27	65.76	29	47	0.31	0	1.235	-1.607
		Pen																			
3	Risod	Dapuri	20.098	76.9039	7.4	665	352	306	36.79	51.04	15.1	4.25	0	184.37	45.91	39	29	0.28	0	0.331	-3.017
4	Risod	Dhodap Bk.	20.0712	76.7261	7.5	759	402	331.5	53.15	47.39	15.91	1.02	0	261.69	38.46	27	47	0.57	0	0.322	-2.267
5	Risod	Dhodap Kh.	20.0696	76.7954	7.5	759	402	280.5	63.37	29.16	33.24	1.44	0	237.90	45.91	33	45	0.69	0	0.691	-1.668
6	Risod	Gohagaon	20.0665	76.6453	7.7	514	272	229.5	47.01	26.73	21.09	4.09	0	237.90	16.13	20	23	0.27	0	0.494	-0.651
7	Risod	Gowardhan	20.1081	76.8302	7.7	652	345	265.2	55.19	30.38	23.57	3.12	0	255.74	18.61	14	47	0.28	0	0.512	-1.067
8	Risod	Koyali Bk.	20.1441	76.8042	7.6	651	346	280.5	67.45	26.73	24.19	3.8	0	261.69	23.57	37	27	0.19	0	0.497	-1.283
9	Risod	Mohjabandi	19.8667	76.6683	7.5	376	196	163.2	55.19	6.08	17.12	6.5	0	178.43	18.61	4	4	0.22	0	0.429	-0.335
10	Risod	Sawad	19.9834	76.8181	7.3	925	490	438.6	114.47	36.46	13.53	1.51	0	267.64	70.72	37	46	0.3	0	0.219	-4.336
11	Risod	Waghi Kh.	20.111	76.8777	7.2	954	504	423.3	157.39	7.29	14.77	5.12	0	297.38	63.28	60	47	0.12	0	0.225	-3.595
12	Risod	Yevta	20.0853	76.9273	7.3	2174	1153	719.1	177.84	65.62	76.18	58.22	0	350.90	145.17	79	320	0.33	0	0.973	-8.539
13	Risod	Pardi Tikhe	20.0694	76.9425	7.3	854	452	382.5	118.56	20.66	22.13	1.86	0	249.80	70.72	39	19	0.44	0	0.370	-3.533
14	Washim	Atkali	20.0164	77.0269	7.2	2161	1146	754.8	186.01	69.27	77.61	70.75	0	446.06	177.43	87	180	0.16	0	0.968	-7.688
15	Washim	Falegaon	20.0632	77.1975	7.3	857	452	397.8	106.29	31.60	10.82	0.99	0	237.90	55.83	41	46	0.2	0	0.183	-4.015
		Thet																			
16	Washim	Kajlamba	20.1441	77.2628	7.4	1237	656	550.8	145.13	44.96	23.05	5.3	0	297.38	135.24	53	16	0.22	0	0.332	-6.082
17	Washim	Khandala Kh.	20.0574	77.0534	7.4	1405	744	413.1	167.62	-1.22	136.4	3.26	0	416.33	107.95	65	78	0.68	0	2.055	-1.456
18	Washim	Kokalgaon	19.9714	77.0827	7.8	572	303	147.9	28.62	18.23	53.74	2.33	0	178.43	31.02	40	8	0.35	0	1.582	-0.006
19	Washim	Panchala	20.0639	77.1444	7.3	461	244	153	42.93	10.94	20.68	11.49	0	154.64	26.06	32	7	0.22	0	0.558	-0.511
20	Washim	Pardi	20.1911	77.2438	7.2	518	274	163.2	40.88	14.58	31.55	4.94	0	142.74	31.02	64	2	1.05	0	0.844	-0.904
		Takmor																			
21	Washim	Sapli	20.0166	77.3029	7.6	803	425	351.9	96.07	26.73	18.05	1.87	0	226.01	53.35	89	5	0.23	0	0.323	-3.299
22	Washim	Songavhan	19.9578	77.2133	7.6	872	462	351.9	75.63	38.89	43.46	3.53	0	327.11	43.43	69	6	1.22	0	0.815	-1.619
23	Washim	Surala	20.1842	77.1508	7.8	714	378	321.3	67.45	36.46	27.1	2.49	0	190.32	53.35	80	32	0.58	0	0.534	-3.253
24	Washim	Borla	20.0484	77.1405	7.3	1101	584	321.3	42.93	51.04	107.9	3.69	0	243.85	102.98	69	60	0.46	0	2.277	-2.349
25	Washim	Panchala 2	20.0827	77.1441	7.3	926	490	402.9	108.34	31.60	21.03	2.29	0	220.06	73.20	55	46	0.2	0	0.353	-4.409
26	Washim	Sukandi	20.0901	77.1531	7.3	1280	678	504.9	147.17	32.81	33.75	1.62	0	231.95	137.72	54	64	0.19	0	0.497	-6.256
27	Washim	Washim	20.1243	77.1277	7.5	689	365	270.3	83.81	14.58	19.26	1.46	0	249.80	18.61	21	34	0.21	0	0.383	-1.295
28	Risod	Mangawadi	19.9562	76.7521	7.4	1488	789	300.9	112.42	4.86	164.7	9.53	0	285.48	165.02	73	38	0.17	0	2.968	-1.341
29	Risod	Risod	19.9782	76.7883	7.5	821	435	249.9	67.45	19.44	61.85	1.85	0	237.90	65.76	26	46	0.76	0	1.316	-1.073
30	Risod	Ghota	20.9964	76.8596	7.5	632	335	255	61.32	24.30	32.12	2.44	0	285.48	11.17	30	25	0.45	0	0.693	-0.386
31	Washim	Nagtana	20.078	77.0489	7.5	689	365	255	85.85	9.72	25.02	6.2	0	237.90	31.02	43	3	0.31	0	0.502	-1.193
32	Washim	Jambhurna	20.0989	77.0946	7.7	1313	696	453.9	89.94	54.68	68.68	2.87	0	297.38	122.83	72	92	0.25	0	1.150	-4.122
33	Washim	Washim-2	20.1044	77.1088	7.8	579	307	249.9	40.88	35.24	20.18	1.54	0	237.90	11.17	23	46	0.27	0	0.469	-1.044
34	Washim	Pardi	20.1833	77.2499	7.4	1022	542	402.9	104.25	34.03	37.99	2.93	0	297.38	63.28	62	30	0.3	0	0.642	-3.137
		takmore-2																			

SN	Block_	Village_	Lat	Log	PH	EC_AQI	TDS	TH	Са	Mg	Na	К	CO3	HCO3	CI	SO4	NO3	F	Fe	SAR	RSC
35	Malegaon	Borala S.	20.0933	76.9781	7.2	742	393	306	81.76	24.30	13.82	1.21	0	208.16	35.98	57	48	0.38	0	0.266	-2.676
36	Malegaon	Tiwali	20.1375	76.8822	7.4	2435	1290	326.4	108.34	13.37	367.9	6.55	0	606.65	264.28	85	60	0.71	0	6.548	3.428
37	Malegaon	Bhildurga	20.2758	76.8417	7.2	980	519	428.4	89.94	48.61	23.19	11.63	0	208.16	110.43	70	5	0.25	0	0.396	-5.084
38	Malegaon	Deothan	20.3958	77.0125	7.3	1562	827	591.6	128.78	64.41	30.23	16.62	0	434.17	98.02	85	47	0.28	0	0.436	-4.621
		(khamb)																			
39	Malegaon	Pangrabandi	20.4306	77.0311	7.4	743	394	357	79.72	37.67	10.93	2.28	0	303.32	21.09	42	46	0.27	0	0.202	-2.113
40	Malegaon	Masala (Kh.)	20.1128	77.1367	7.7	475	251	183.6	40.88	19.44	14.06	1.98	0	178.43	21.09	12	13	0.26	0	0.362	-0.719
41	Malegaon	Umardari	20.3014	77.1244	7.1	704	373	275.4	89.94	12.15	17.14	1.77	0	237.90	26.06	38	42	0.26	0	0.333	-1.597
42	Malegaon	Wadiramrao	20.3675	77.1222	7.3	935	495	351.9	104.25	21.87	17.19	2.12	0	297.38	40.94	43	47	0.25	0	0.302	-2.137
43	Malegaon	Hisai	20.3422	77.2956	7.4	927	491	306	77.68	26.73	66.32	1.66	0	416.33	26.06	41	47	0.36	0	1.292	0.741
44	Malegaon	Pimpri (kh.)	20.3139	77.2617	7	1427	755	612	159.44	51.04	32.46	7.12	0	535.28	80.65	20	120	0.69	0	0.445	-3.397
45	Malegaon	Belkhed	20.3553	77.3625	7.2	499	369	255	71.54	18.23	12.98	1.07	0	166.53	23.57	36	40	0.41	0	0.271	-2.347
46	Malegaon	Shivali	20.4028	77.3889	7.5	872	462	346.8	102.20	21.87	24.3	1.55	0	309.27	35.98	43	46	0.31	0	0.431	-1.840
47	Karanja	Takli Kh	20.6389	77.5076	7.9	727	385	367.2	85.85	36.46	12	0.82	0	356.85	26.06	27	34	0.66	0	0.217	-1.443
48	Karanja	Nagalwadi	20.647	77.6192	7.7	601	319	300.9	57.23	37.67	16	0.61	0	255.74	53.35	24	34	0.63	0	0.331	-1.769
49	Karanja	Parwa Kohar	20.5401	77.4083	7.6	728	386	357	81.76	36.46	9	0.31	0	368.75	26.06	13	26	0.66	0	0.166	-1.043
50	Karanja	Donad Bk	20.5512	77.635	7.4	972	515	464.1	124.69	36.46	9	0.38	0	327.11	68.24	71	36	0.51	0	0.141	-3.872
51	Karanja	Lohara	20.4696	77.3639	7.7	1336	706	555.9	110.38	66.84	24	0.74	0	434.17	110.43	22	37	0.69	0	0.363	-3.901
52	Karanja	Tuljapur	20.4763	77.4439	7.6	1764	937	810.9	233.03	54.68	16	0.31	0	547.17	276.69	37	35	0.51	0	0.187	-7.181
53	Karanja	Kamathwada	20.4623	77.5537	7.7	1076	1099	510	159.44	26.73	15	6	0	190.32	184.87	62	30	0.54	0	0.217	-7.052
54	Manora	Dapura	20.3666	77.5207	7.8	1621	859	770.1	85.85	132.46	11	0.6	0	612.59	155.09	51	37	0.6	0	0.153	-5.150
55	Manora	Karli	20.2298	77.6138	7.8	451	239	255	63.37	23.09	9	0.18	0	249.80	11.17	22	10	0.63	0	0.193	-0.973
56	Manora	Mahuli	20.1611	77.5929	7.7	463	246	204	61.32	12.15	9	0.21	0	202.22	26.06	16	9	0.59	0	0.207	-0.751
57	Manora	Gosta	20.1049	77.4235	7.6	1076	569	504.9	98.12	61.98	12	0.38	0	463.91	68.24	23	36	0.52	0	0.191	-2.401
58	Manora	Gondegaon	20.0819	77.6225	7.7	668	355	311.1	24.53	59.54	33	0.31	0	315.22	68.24	27	0.5	3.57	0	0.748	-0.959
59	Karanja	Kupti	20.5699	77.5218	7.6	768	407	351.9	40.88	59.54	8	0.75	0	356.85	38.46	20	37	0.6	0	0.164	-1.094
60	Risod	Risod	19.9667	76.7833	0	1997	1057	630	142.28	66.84	116.71	37.6	0	359.90	365.14	171	42	0.07	0	1.616	-6.714
61	Risod	Kenwad	20.2	76.8167	0	1125	600	455	106.21	46.18	71.3	6.1	0	176.90	191.43	197	42	0.21	0	1.154	-6.211
62	Malegaon	Medshi	20.3333	76.9417	0	707	376	305	76.15	27.95	30.03	23.51	0	189.10	106.35	107	32.4	0.09	0	0.586	-3.008
63	Malegaon	Ridhora	20.2931	76.9717	0	962	512	355	68.14	44.96	51.81	16.5	0	292.80	116.99	60	44	0.08	0	0.982	-2.307
64	Malegaon	Jaulka Rly	20.2922	77.0722	0	2076	1103	745	166.33	80.20	72.86	10.55	24	298.90	283.60	233	56	0.07	0	0.929	-9.217
65	Washim	Kondala	20.1683	77.1256	0	551	290	260	58.12	27.95	26.48	1.21	0	268.40	42.54	15.6	59.7	0.08	0	0.572	-0.806
	-	Jhambre																			ļ
66	Washim	Washim	20.1167	77.1417	0	496	263	195	52.10	15.80	30.46	8.01	0	128.10	95.72	51	9.91	0.06	0	0.734	-1.805
67	Washim	Bitoda	20.1833	77.2667	0	354	187	155	42.08	12.15	25.77	5.59	0	183.00	53.18	9.32	9.49	0.09	0	0.694	-0.104
		(Bhoyar)											_						L		
68	Mangrulpir	Dhanora	20.2039	77.3331	0	919	491	365	90.18	34.03	34.31	18	0	201.30	152.44	83	59.7	0.08	0	0.614	-4.009
69	Mangrulpir	Aasegaon	20.1497	/7.3347	0	472	250	225	52.10	23.09	23.07	2.98	0	195.20	60.27	23.5	16.61	0.32	0	0.532	-1.305
70	Mangrulpir	Sangaon	20.1931	77.3528	0	734	390	365	90.18	34.03	20.2	1.91	0	128.10	145.35	93.2	30	0.09	0	0.361	-5.209

SN	Block_	Village_	Lat	Log	PH	EC_AQI	TDS	TH	Са	Mg	Na	К	CO3	HCO3	CI	SO4	NO3	F	Fe	SAR	RSC
71	Karanja	Vilegaon	20.5861	77.4431	0	704	376	275	68.14	25.52	49.31	10.67	0	256.20	88.63	34.9	34	0.24	0	1.016	-1.307
		(Kherda)																			
72	Manora	Sendurjan	20.1458	77.45	0	916	483	425	120.24	30.38	58	31.91	0	420.90	116.99	85.8	43.8	0.14	0	0.936	-1.612
		Adhao																			
73	Manora	Giroli	20.2086	77.4756	0	1620	856	565	152.30	44.96	73.69	11.34	0	390.40	191.43	176	41	0.21	0	1.041	-4.915
74	Karanja	Karanja	20.4833	77.4833	0	950	510	380	82.16	42.53	75.32	6.48	0	213.50	138.26	163	43	0.09	0	1.353	-4.108
75	Karanja	Dhanaj	20.7167	77.5861	0	898	477	450	94.19	52.25	33.56	4.52	0	311.10	134.71	120	9.49	0.12	0	0.557	-3.909
		Khurd																			
76	Darwha	Manbha	20.3436	77.6325	9.6	697	457	260	32.40	43.50	36	2	13.62	36.39	150.00	49	10	0.1	0.1	0.848	-4.149
77	Karanja	Dhanaj Bk	20.6536	77.6283	8.7	1063	698	236	17.60	46.66	70	8	9.6	107.36	140.00	68	31	0.1	0.1	1.819	-2.639
78	Karanja	Dhotra	20.5972	77.6333	7	685	457	240	26.80	42.04	42	15	0.113	119.88	84.00	13	55	1	0.2	1.042	-2.830
		Deshmukh																			
79	Karanja	Karanja	20.4803	77.4833	7.4	702	461	112	24.00	12.64	38.5	0.7	0.292	123.70	46.00	15	12.5	0.5	0	1.276	-0.202
80	Karanja	Kherda	20.4969	77.5442	8.3	483	316	228	35.20	34.02	10	0.1	2.134	113.77	90.00	22	16	0.5	0.3	0.245	-2.623
81	Karanja	Kherda Bk.	20.5583	77.4394	9	451	296	174	8.00	37.42	41	4	12.33	131.17	60.00	21	24	0.1	0.1	1.280	-0.918
82	Karanja	Panvihir	20.4583	77.4708	7.5	438	285	260	24.00	48.60	37	2	0.29	97.69	70.00	89	8	6	0.1	0.899	-3.588
83	Karanja	Sohol	20.4975	77.4408	8.2	1131	743	424	35.20	81.65	59	6	28.8	405.04	170.00	21	12	0.1	0.1	1.134	-0.879
84	Karanja	Tuljapur	20.4767	77.4456	9	766	306	104	8.40	20.17	29	5	9.237	98.26	50.00	19	7	0.09	0.1	1.128	-0.161
85	Malegaon	Davha	20.2875	77.0375	6.9	746	489	160	16.00	29.16	30	9	0.06	79.94	78.00	30	14	0.6	0.1	0.922	-1.887
86	Malegaon	Dongarkinhi	20.2117	76.9019	8.7	1196	786	410	13.20	91.61	91	15	9.6	102.48	174.00	48	100	0.4	0.1	1.880	-6.199
87	Malegaon	Ekamba	20.2117	76.9489	8.9	453	298	180	20.80	31.10	39	3	6.087	81.52	50.00	85	21	0.5	0.1	1.113	-2.060
88	Malegaon	Jaulka	20.2917	77.075	6.7	1485	976	512	67.20	83.59	112	32	0	112.24	194.00	56	148	0.6	0.3	1.867	-8.399
89	Malegaon	Karanji	20.165	77.0394	7.5	1548	1017	680	50.80	134.38	116	48	0	434.32	154.00	235	5	0.6	0.2	1.775	-6.478
90	Malegaon	Malegaon	20.2369	76.9933	7.6	1642	1078	556	54.40	102.06	59	2	0	380.64	244.00	64	31	0.1	0.1	0.975	-4.879
91	Malegaon	Zodaga	20.1894	77.0444	8.4	384	252	188	32.00	26.24	36	5	3.365	142.51	44.00	22	8	0.4	0.3	0.956	-1.311
92	Mangrulpir	Dabhadi	20.1458	77.3694	7.3	889	573	268	20.40	52.73	24	6	0	112.24	86.00	26	41	0.5	0.01	0.584	-3.519
93	Mangrulpir	Jogaldari	20.2614	77.4122	7.1	965	633	288	16.00	60.26	66	21	0	82.96	90.00	35	90	0.7	0.1	1.585	-4.399
94	Mangrulpir	Kalamba	20.3117	77.3792	8.6	980	642	488	51.20	87.48	41	37	57.6	203.74	94.00	93	10	1.4	0.3	0.718	-4.499
95	Mangrulpir	Mangrulpir	20.3164	77.3458	7.7	806	530	480	50.00	86.27	46	1	0	92.72	164.00	21	63	0.8	0.05	0.813	-8.079
96	Mangrulpir	Pimpalgaon	20.4167	77.275	8.6	1146	752	290	26.80	54.19	65	6	19.2	97.60	155.00	78	32	0.1	0.1	1.496	-3.559
97	Mangrulpir	Sheloo Kh.	20.3361	77.2528	9.2	897	574	116	18.40	17.01	197	1.4	0	334.28	78.00	76	12	0.1	0	6.730	3.160
98	Mangrulpir	Wanoja	20.3917	77.2642	7.7	1140	746	328	15.20	70.47	37	15	19.2	34.16	166.00	61	40	0.9	0.2	0.841	-5.359
99	Manora	Bhuli	20.1417	77.5792	8.6	1106	726	364	14.00	79.95	75	5	0	117.12	114.00	17	105	0.05	0.1	1.633	-5.359
100	Manora	Dhavanda	20.1417	77.5792	6.7	1411	928	504	70.40	79.70	67	10	0	117.12	210.00	36	105	0.9	0.1	1.117	-8.159
101	Manora	Kupta	20.3042	77.5625	9.2	566	372	190	12.80	38.39	42	7	12.34	82.86	60.00	35	40	0.1	0.1	1.226	-2.030
102	Manora	Parwa	20.2889	77.5147	7.2	686	447	320	36.00	55.89	21	9	0.107	71.89	210.00	36	16	0.8	0.1	0.451	-5.217
103	Manora	Sakhardoh	20.2528	77.4386	7.2	880	576	232	11.60	49.33	25	11	0	219.60	62.00	14	20	0.2	0.1	0.673	-1.039
104	Manora	Shaha	20.3617	77.4722	7	975	639	332	35.20	59.29	59	20	0	97.60	130.00	32	79	0.7	0.1	1.252	-5.039
105	Manora	Umari Bk.	20.0917	77.5958	8.9	484	317	140	10.80	27.46	40	4	10.81	144.79	26.00	6	25	0.1	0.01	1.346	-0.066

SN	Block_	Village_	Lat	Log	PH	EC_AQI	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	CI	SO4	NO3	F	Fe	SAR	RSC
106	Mehkar	Gohagaon	20.0681	76.6458	8	421	275	220	17.20	43.01	19	6	0.372	39.58	106.00	14	28	0.4	0.1	0.509	-3.738
107	Murtijapur	Janori	20.5986	77.3469	8.1	1222	802	130	48.00	2.43	239	1.3	0	61.00	284.00	185	1.7	0.7	0	6.572	-1.600
108	Risod	Degaon	20.0636	76.8161	8.3	980	643	448	51.20	77.76	35	64	7.2	78.08	220.00	35	31	0.6	0.3	0.634	-7.439
109	Risod	Lehani	20.1039	76.7225	7.8	1663	1091	420	57.60	67.07	65	3	0	561.20	130.00	12	8	1.1	0.1	1.190	0.801
110	Risod	Loni Bk.	19.9144	76.6253	8.1	687	451	276	8.80	61.72	110	8	1.683	142.25	54.00	152	69	0.07	0.1	2.771	-3.131
111	Risod	Mahagaon	20.0747	76.6683	7.4	1712	1125	572	17.20	128.55	121	30	0	73.20	270.00	83	150	0.7	0.2	2.122	-
																					10.238
112	Risod	Masalapen	20.0694	76.8639	6.7	818	537	224	22.40	40.82	25	11	0	102.48	90.00	15	35	0.8	0.1	0.650	-2.799
113	Risod	Mohaja	19.8647	76.6714	7.6	547	360	298	20.40	60.02	65	7	0.708	189.27	26.00	73	75	0.6	0.1	1.513	-2.833
		Bandi																			
114	Risod	Мор	19.95	76.6575	7.6	962	633	408	71.20	55.89	59	19	0	222.04	134.00	85	23	0.4	0.1	1.060	-4.519
115	Risod	Netansa	20.1419	76.7833	8.3	2650	1800	612	19.20	137.05	129	12	38.4	336.72	244.00	33	10	0.5	0	2.183	-5.438
116	Risod	Risod	19.9725	76.7828	7.5	1825	1345	620	12.80	142.88	33	17	0	112.24	360.00	66	50	0.5	0.1	0.562	-
																					10.558
117	Risod	Shelgaon	20.0811	76.8561	8.6	490	322	200	6.40	44.71	50	9	5.043	134.76	34.00	70	12	0.6	0.1	1.479	-1.622
118	Risod	Wanoja	20.0217	76.9292	8.4	764	502	372	24.00	75.82	41	35	16.8	102.48	140.00	95	8	1	0.1	0.858	-5.199
119	Risod	Yeota	20.0969	76.9247	8.1	559	357	212	34.00	30.86	19	121	5.365	180.48	46.00	39	34	0.3	0	0.479	-1.102
120	Washim	Bitoda Teli	20.1806	77.2639	6.9	772	507	184	18.00	33.78	22	13	0	92.72	70.00	29	25	0.9	0.1	0.632	-2.160
121	Washim	Ekamba	20.0708	77.3444	7.3	897	527	236	12.00	50.06	24	8	0	161.04	86.00	24	7	0.1	0.1	0.640	-2.079
122	Washim	Falegaon	20.0622	77.1989	8.1	1512	992	530	67.20	87.97	65	3	19.2	214.72	270.00	88	31	0.1	0.1	1.070	-6.439
123	Washim	Kekatumra	20.02	77.1033	8.5	719	473	240	26.80	42.04	45	2	3.921	131.92	110.00	29	31	0.2	0.2	1.117	-2.506
124	Washim	Rajgaon	19.9747	77.1478	8.7	753	495	260	34.40	42.28	39	2	6.648	141.10	134.00	20	24	0.1	0.1	0.912	-2.665
125	Washim	Sawargaon	20.1731	77.0681	8.2	491	322	150	16.00	26.73	25	4	2.817	189.10	20.00	6	12	0.1	0.1	0.789	0.194
		Barade																			
126	Washim	Sukali	19.9778	77.1703	8.2	541	346	172	27.60	25.03	39	1.4	1.702	114.22	40.00	23	33	0.2	0	1.092	-1.510
127	Washim	Sukali	19.9778	77.1703	8.8	569	373	212	6.80	47.39	89	8	5.581	94.10	42.00	6	100	0.1	0.1	2.557	-2.511
128	Washim	Tondgaon	19.9994	77.1156	8.8	665	436	184	16.00	34.99	34	5	8.045	135.64	60.00	5	28	0.1	0.1	0.988	-1.188
129	Washim	Umara	20.0792	77.2917	8.6	483	317	198	26.80	31.83	16	1	7.207	192.59	40.00	4	15	0.1	0.1	0.427	-0.562
		Kapase																			
130	Washim	Warla	19.9931	77.2617	8.5	482	316	184	14.00	36.21	32	1	3.344	112.50	56.00	32	23	0.5	0.1	0.940	-1.724
131	Washim	Washim	20.1136	77.1356	7.5	837	540	440	56.00	72.90	15	1	0	161.04	120.00	16	22	0.9	0.1	0.271	-6.159

An	nexure-V	I: Chemical a	nalysis (	of groui	nd wate	er san	nples,	, Aqui	fer- II	/ De	eper	' aqui	fers

SN	Block_	Village_	Lat	Log	PH	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	CI	SO4	NO3	F	Fe	SAR	RSC
1		Risod	19.9725	76.7828	7.5	1825	1345	620	13	143	33	17	0	112	360	66	50	0.5	0.1	0.56	-10.56
2		Mahagaon	20.0747	76.6683	7.4	1712	1125	572	17	129	121	30	0	73	270	83	150	0.7	0.2	2.12	-10.24
3		Jaulka	20.2917	77.075	6.7	1485	976	512	67	84	112	32	0	112	194	56	148	0.6	0.3	1.87	-8.40
4		Dhavanda	20.1417	77.5792	6.7	1411	928	504	70	80	67	10	0	117	210	36	105	0.9	0.1	1.12	-8.16
5		Mangrulpir	20.3164	77.3458	7.7	806	530	480	50	86	46	1	0	93	164	21	63	0.8	0.05	0.81	-8.08
6		Degaon	20.0636	76.8161	8.3	980	643	448	51	78	35	64	7	78	220	35	31	0.6	0.3	0.63	-7.44
7		Karanji	20.165	77.0394	7.5	1548	1017	680	51	134	116	48	0	434	154	235	5	0.6	0.2	1.78	-6.48
8		Falegaon	20.0622	77.1989	8.1	1512	992	530	67	88	65	3	19	215	270	88	31	0.1	0.1	1.07	-6.44
9		Dongarkinhi	20.2117	76.9019	8.7	1196	786	410	13	92	91	15	10	102	174	48	100	0.4	0.1	1.88	-6.20
10		Washim	20.1136	77.1356	7.5	837	540	440	56	73	15	1	0	161	120	16	22	0.9	0.1	0.27	-6.16
11		Netansa	20.1419	76.7833	8.3	2650	1800	612	19	137	129	12	38	337	244	33	10	0.5	0	2.18	-5.44
12		Wanoja	20.3917	77.2642	7.7	1140	746	328	15	70	37	15	19	34	166	61	40	0.9	0.2	0.84	-5.36
13		Bhuli	20.1417	77.5792	8.6	1106	726	364	14	80	75	5	0	117	114	17	105	0.05	0.1	1.63	-5.36
14	Karanja	Bhamb Devi		20.623	77.608	7.5	2270	NA	560	126	60	136	195	0	360	206	188	434	0.7	0	2.00
15		Parwa	20.2889	77.5147	7.2	686	447	320	36	56	21	9	0	72	210	36	16	0.8	0.1	0.45	-5.22
16		Wanoja	20.0217	76.9292	8.4	764	502	372	24	76	41	35	17	102	140	95	8	1	0.1	0.86	-5.20
17		Shaha	20.3617	77.4722	7	975	639	332	35	59	59	20	0	98	130	32	79	0.7	0.1	1.25	-5.04
18		Malegaon	20.2369	76.9933	7.6	1642	1078	556	54	102	59	2	0	381	244	64	31	0.1	0.1	0.98	-4.88
19		Мор	19.95	76.6575	7.6	962	633	408	71	56	59	19	0	222	134	85	23	0.4	0.1	1.06	-4.52
20		Kalamba	20.3117	77.3792	8.6	980	642	488	51	87	41	37	58	204	94	93	10	1.4	0.3	0.72	-4.50
21		Jogaldari	20.2614	77.4122	7.1	965	633	288	16	60	66	21	0	83	90	35	90	0.7	0.1	1.58	-4.40
22		Manbha	20.3436	77.6325	9.6	697	457	260	32	43	36	2	14	36	150	49	10	0.1	0.1	0.85	-4.15
23		Gohagaon	20.0681	76.6458	8	421	275	220	17	43	19	6	0	40	106	14	28	0.4	0.1	0.51	-3.74
24		Panvihir	20.4583	77.4708	7.5	438	285	260	24	49	37	2	0	98	70	89	8	6	0.1	0.90	-3.59
25		Pimpalgaon	20.4167	77.275	8.6	1146	752	290	27	54	65	6	19	98	155	78	32	0.1	0.1	1.50	-3.56
26		Dabhadi	20.1458	77.3694	7.3	889	573	268	20	53	24	6	0	112	86	26	41	0.5	0.01	0.58	-3.52
27		Loni Bk.	19.9144	76.6253	8.1	687	451	276	9	62	110	8	2	142	54	152	69	0.07	0.1	2.77	-3.13
28	Mehkar	Mahagaon		20.326	76.669	7.8	660	390	200	38	40	32	2	0	134	71	60	79	0.63	0	0.74
29		Mohaja Bandi	19.8647	76.6714	7.6	547	360	298	20	60	65	7	1	189	26	73	75	0.6	0.1	1.51	-2.83
30		Dhotra Deshmukh	20.5972	77.6333	7	685	457	240	27	42	42	15	0	120	84	13	55	1	0.2	1.04	-2.83
31		Masalapen	20.0694	76.8639	6.7	818	537	224	22	41	25	11	0	102	90	15	35	0.8	0.1	0.65	-2.80
32		Haral	19.9769	76.8917	8.1	514	273	249.9	18	49	9	0.74	0	137	76	13	33	0.01	0	0.23	-2.68
33		Rajgaon	19.9747	77.1478	8.7	753	495	260	34	42	39	2	7	141	134	20	24	0.1	0.1	0.91	-2.66
34		Dhanaj Bk	20.6536	77.6283	8.7	1063	698	236	18	47	70	8	10	107	140	68	31	0.1	0.1	1.82	-2.64
35		Kherda	20.4969	77.5442	8.3	483	316	228	35	34	10	0.1	2	114	90	22	16	0.5	0.3	0.24	-2.62
36		Sukali	19.9778	77.1703	8.8	569	373	212	7	47	89	8	6	94	42	6	100	0.1	0.1	2.56	-2.51
37		Kekatumra	20.02	77.1033	8.5	719	473	240	27	42	45	2	4	132	110	29	31	0.2	0.2	1.12	-2.51
38		Dapuri	20.0981	77.8981	8.1	944	500	418.2	33	80	33	1.36	0	351	103	8	39	0.41	0	0.65	-2.48

SN	Block_	Village_	Lat	Log	PH	EC	TDS	TH	Ca	Mg	Na	К	CO3	HCO3	CI	SO4	NO3	F	Fe	SAR	RSC
39		Bitoda Teli	20.1806	77.2639	6.9	772	507	184	18	34	22	13	0	93	70	29	25	0.9	0.1	0.63	-2.16
40	Malegaon	Medsi	20.326	76.944	7.8	820	490	205	44	23	94	2	0	122	113	120	35	0.57	0	2.30	-2.09
41		Ekamba	20.0708	77.3444	7.3	897	527	236	12	50	24	8	0	161	86	24	7	0.1	0.1	0.64	-2.08
42		Ekamba	20.2117	76.9489	8.9	453	298	180	21	31	39	3	6	82	50	85	21	0.5	0.1	1.11	-2.06
43		Kupta	20.3042	77.5625	9.2	566	372	190	13	38	42	7	12	83	60	35	40	0.1	0.1	1.23	-2.03
44	Risod	Belkheda	20.04	76.956	6.8	1460	885	140	40	10	276	2	0	55	404	110	15	2	0	7.73	-1.92
45		Haral	19.9769	76.8917	8.6	517	273	249.9	16	50	9	0.73	18	149	73	18	6	0.06	0	0.23	-1.90
46		Davha	20.2875	77.0375	6.9	746	489	160	16	29	30	9	0	80	78	30	14	0.6	0.1	0.92	-1.89
47		Dapuri	20.0981	77.8981	8.4	833	441	351.9	41	60	37	1.1	18	274	103	0	37	1.66	0	0.76	-1.87
48	Barshitakli	Lohara	20.496	77.372	6.8	1320	NA	140	38	11	230	3.7	0	61	252	244	2	0.25	0	6.52	-1.81
49		Dapuri	20.0981	77.8981	8	872	460	331.5	20	67	39	1.18	0	291	73	38	40	0.04	0	0.87	-1.74
50		Warla	19.9931	77.2617	8.5	482	316	184	14	36	32	1	3	112	56	32	23	0.5	0.1	0.94	-1.72
51		Shelgaon	20.0811	76.8561	8.6	490	322	200	6	45	50	9	5	135	34	70	12	0.6	0.1	1.48	-1.62
52		Janori	20.5986	77.3469	8.1	1222	802	130	48	2	239	1.3	0	61	284	185	1.7	0.7	0	6.57	-1.60
53		Sukali	19.9778	77.1703	8.2	541	346	172	28	25	39	1.4	2	114	40	23	33	0.2	0	1.09	-1.51
54	Malegaon	Mutha	20.125	77.013	7.2	1200	640	405	40	74	92	1	0	403	113	100	20	0.45	0	1.78	-1.48
55		Zodaga	20.1894	77.0444	8.4	384	252	188	32	26	36	5	3	143	44	22	8	0.4	0.3	0.96	-1.31
56		Tondgaon	19.9994	77.1156	8.8	665	436	184	16	35	34	5	8	136	60	5	28	0.1	0.1	0.99	-1.19
57		Mathgaon		20.0242	76.7469	10.9	880	469	367.2	18	77	19	14.07	18	333	56	17	10	0.05	0	0.41
58	Karanja	Kherda (BK)		20.586	77.436	6.6	850	501	100	32	5	143	1.1	0	55	209	75	8	0.57	0	4.63
59		Yeota	20.0969	76.9247	8.1	559	357	212	34	31	19	121	5	180	46	39	34	0.3	0	0.48	-1.10
60		Dapuri	20.0981	77.8981	7.6	974	516	316.2	20	63	62	1.16	0	315	115	0	40	0.79	0	1.42	-1.05
61		Sakhardoh	20.2528	77.4386	7.2	880	576	232	12	49	25	11	0	220	62	14	20	0.2	0.1	0.67	-1.04
62	Risod	Pangrakhed		20.1769	76.9358	7.6	649	344	295.8	33	51	8	1.21	0	297	34	12	39	0.12	0	0.18
63		Kherda Bk.	20.5583	77.4394	9	451	296	174	8	37	41	4	12	131	60	21	24	0.1	0.1	1.28	-0.92
64	Digras	Masela Pen		20.069	77.864	9.4	1450	720	85	26	5	294	2	9	31	109	110	36	NA	0	10.42
65		Sohol	20.4975	77.4408	8.2	1131	743	424	35	82	59	6	29	405	170	21	12	0.1	0.1	1.13	-0.88
66	Karanja	Kherda (BK)		20.586	77.436	7	810	477	85	30	2	141	0.6	0	61	198	70	5	0.54	0	4.87
67	Risod	Pangrakhed		20.1769	76.9358	7.8	668	353	290.7	16	60	8	1	0	309	34	0	39	0.12	0	0.19
68		Umara Kapase	20.0792	77.2917	8.6	483	317	198	27	32	16	1	7	193	40	4	15	0.1	0.1	0.43	-0.56
69		Karanja	20.4803	77.4833	7.4	702	461	112	24	13	38.5	0.7	0	124	46	15	12.5	0.5	0	1.28	-0.20
70		MOTHEGAON		20.0242	76.7469	7.3	891	472	295.8	45	44	76	0.63	0	345	91	18	23	0.53	0	1.64
71		Tuljapur	20.4767	77.4456	9	766	306	104	8	20	29	5	9	98	50	19	7	0.09	0.1	1.13	-0.16
72		Umari Bk.	20.0917	77.5958	8.9	484	317	140	11	27	40	4	11	145	26	6	25	0.1	0.01	1.35	-0.07
73	Barshitakli	Lohara	20.496	77.372	7.9	810	NA	185	36	23	101	1	0	232	36	26	106	0.44	0	2.65	0.11
74		Sawargaon Barade	20.1731	77.0681	8.2	491	322	150	16	27	25	4	3	189	20	6	12	0.1	0.1	0.79	0.19
75	Manora	Senaona	20.061	77.592	8.1	1040	540	325	40	57	82	4	0	421	57	45	63	NA	0	1.71	0.21
76	Manora	Senaurjana		20.148	77.454	7.3	840	413	300	98	14	55	1.4	0	415	25	12	37	0.7	0	1.02
77		Lehani	20.1039	76.7225	7.8	1663	1091	420	58	67	65	3	0	561	130	12	8	1.1	0.1	1.19	0.80

SN	Block_	Village_	Lat	Log	PH	EC	TDS	TH	Са	Mg	Na	к	CO3	HCO3	CI	SO4	NO3	F	Fe	SAR	RSC
78	Mangrulpir	Bitodavoyar		20.192	77.273	7.2	1130	564	160	60	2	186	0.9	0	244	124	61	8	0.7	0	4.61
79	Manora	Vitholi	20.204	77.579	8.4	940	575	75	26	2	179	3	0	165	142	80	49	NA	0	6.62	1.24
80	Mangrulpir	Shelu Bazar		20.371	77.253	8.3	1000	550	260	38	40	108	2	0	397	35	100	28	NA	0	2.49
81	Digras	Masela Pen		20.069	77.864	8.4	970	580	125	38	7	163	8	6	226	128	80	37	NA	0	4.79
82	Mangrulpir	Shelu Bazar		20.371	77.253	8.3	1010	535	255	32	43	115	2	0	403	39	100	21	NA	0	2.72
83	Mangrulpir	Shelu Bazar		20.371	77.253	8.1	970	520	260	46	35	104	2	0	427	39	60	19	NA	0	2.34
84	Akot	Dhanora Buzurg		20.968	77.129	7	700	357	175	62	5	81	1.4	0	342	18	15	3	0.8	0	1.94
85	Mangrulpir	Shelu Bazar		20.371	77.253	8.3	1110	625	235	28	40	147	2	0	415	43	125	31	NA	0	3.66
86		Sheloo Kh.	20.3361	77.2528	9.2	897	574	116	18	17	197	1.4	0	334	78	76	12	0.1	0	6.73	3.16

S. no.	District	Taluka	Village	Latitude	Longitude	Depth	Pre-monsoon	Pre trend	Post-monsoon	Post trend
						(mbgl)	DTW (May-18) (m.bgl)	(m /year)	DTW (Nov-18)	(m /year)
1	Washim	KARANIA	Bhamdevi	20 6225	77 60694	11 4	10.8	-0 62849	73	0.073004
2	Washim	KARANIA	Dhanai bk	20.6536	77 625	9	77	-0 21998	4 7	0 302671
3	Washim	ΚΔΒΔΝΙΔ	Dhotra deshmukh	20.5972	77 63333	8.8	6.4	0 299791	4.7	0.18
<u>з</u>	Washim	ΚΔΡΑΝΙΔ	Donad bk	20.5572	77 63778	7.5	7.5	0.029899	5.2	0.234628
5	Washim	KARANIA	Janori	20.5472	77 34694	9.9	9.8	-0.12	5.2	0.234020
6	Washim		Karania	20.3023	77 /8333	13	11.6	-0 78562	5.9	0.062113
7	Washim		Karanja Khorda hk	20.4002	77.40555	15	77	-0.78502	3.5	0.002113
/	VVdSIIIII		Maraha	20.5655	77.45944	0.5	7.7	-0.02078	4.5	0.10
8	wasnim	KARANJA	Manbha	20.5102	//.6325	9.2	9	0.18	3.5	-0.4324
9	Washim	KARANJA	Meha	20.6283	77.64167	9.2	8.2	0.35	5.4	1.032161
10	Washim	KARANJA	Nimbha	20.5694	77.61111	8.9	8.9	0.16	6.4	0.106976
11	Washim	KARANJA	Panvihir	20.4583	77.47083	10.35	8	0.628803	4.3	-0.33581
12	Washim	KARANJA	Poha	20.4958	77.40833	10.1	9.6	0.21	2.1	-0.24175
13	Washim	KARANJA	Rahati	20.6888	77.60972	8.4	8.4	0.17	6.9	0.23
14	Washim	KARANJA	Shaha	20.5283	77.47222	14	12.9	1.932649	9.6	0.291038
15	Washim	KARANJA	Sheluwada	20.4416	77.40528	8.35	8.35	0.1	6.1	0.549098
16	Washim	KARANJA	Sohol	20.4980	77.43528	7.5	7.4	0.1	5.8	0.055167
17	Washim	KARANJA	Tuljapur	20.4766	77.44556	9.7	8	0.491711	5.3	0.21
18	Washim	MALEGAON	Amana	20.3638	77.08889	7.2	6.8	0.21	1.1	-0.23
19	Washim	MALEGAON	Dava	20.2875	77.0375	9.1	7.5	1.074942	2.5	-0.43
20	Washim	MALEGAON	Dongarkinhi	20.2097	76.905	10.9	9.8	0.12	2.9	0.21
21	Washim	MALEGAON	Ekamba	20.2097	76.95139	10.8	9.8	-0.27522	4.3	0.784629
22	Washim	MALEGAON	Karanji	20.165	77.00611	14.05	13.8	1.51953	4.8	-0.11318
23	Washim	MALEGAON	Medshi	20.325	76.94583	11.7	7	-1.52449	2.3	-0.28609

## Annexure-VII: Water Level of Ground water monitoring wells (2018) with long term trend (2009-2018)

S. no.	District	Taluka	Village	Latitude	Longitude	Depth	Pre-monsoon	Pre trend	Post-monsoon	Post trend
						(mbgl)	DTW (May-18)	(m /year)	DTW (Nov-18)	(m /year)
							(m bgl)		(m bgl)	0.010770
24	Washim	MALEGAON	Zodga bk	20.2013	77.03194	8.5	8.5	0.23	3.2	0.810556
25	Washim	MANGRULPIR	Bitoda bhoyar	20.1902	77.27222	11.3	10.7	0.165481	5.8	0.407357
26	Washim	MANGRULPIR	Borva kh	20.2902	77.46861	6.1	5.8	0.23	5.5	0.18
27	Washim	MANGRULPIR	Dabhadi	20.1486	77.36944	12.2	11.7	-0.12	6.4	0.44947
28	Washim	MANGRULPIR	Ichori	20.2013	77.25556	8.7	8.1	0.25	4.7	-0.08077
29	Washim	MANGRULPIR	Jogaldari	20.2625	77.41389	10	8.8	0.22	5.9	0.78516
30	Washim	MANGRULPIR	Kalamba	20.2616	77.37917	9.8	9.7	0.26	2.6	0.21
31	Washim	MANGRULPIR	Mangrulpir	20.3163	77.34583	12.5	10.4	0.188837	5.6	0.107468
32	Washim	MANGRULPIR	Poti	20.375	77.3875	14.3	11.7	0.05857	5.8	-0.45587
33	Washim	MANGRULPIR	Shelu kh,	20.3666	77.25	12.8	8.35	0.21	2.5	-0.02719
34	Washim	MANGRULPIR	Wanoja	20.4083	77.22917	8.2	7.2	0.1	4.2	0.33
35	Washim	MANORA	Asola	20.2625	77.52083	10.65	9.1	-0.26	6.2	-0.41
36	Washim	MANORA	Bhoyani	20.3375	77.53333	7.8	7.5	0.22	3.4	-0.6225
37	Washim	MANORA	Bhuli	20.1416	77.57917	11.7	11.1	-0.29	6.3	-0.44201
38	Washim	MANORA	Borva bk.	20.2444	77.61528	13.5	7.5	0.86218	4.2	-0.99939
39	Washim	MANORA	Dhawanda	20.0791	77.65056	10.6	9.5	-0.41	9.5	-0.19133
40	Washim	MANORA	Fulumri	20.0958	77.5625	8	6.2	0.41	4.3	-1.38857
41	Washim	MANORA	Inzori	20.3944	77.51111	18.25	14.6	0.363088	5.3	-0.40676
42	Washim	MANORA	Karli	20.2305	77.625	8.4	5	0.016032	1.7	0.54
43	Washim	MANORA	Khadi dhamni	20.3708	77.45278	10.3	10	0.28	5.7	-0.33757
44	Washim	MANORA	Kupta	20.3083	77.5625	8	5.7	-0.41237	3.8	0.653727
45	Washim	MANORA	Manora	20.2208	77.5625	6.7	6.5	0.14	3.4	-0.45
46	Washim	MANORA	Sakhardoh	20.2527	77.45528	8.7	7.8	0.23	7.6	-0.8169
47	Washim	MANORA	Sawargaon kh.	20.2680	77.59444	7.8	5.6	-0.18015	3.6	0.815086

S. no.	District	Taluka	Village	Latitude	Longitude	Depth	Pre-monsoon	Pre trend	Post-monsoon	Post trend
						(mbgl)	DTW (May-18) (m bgl)	(m /year)	DTW (Nov-18) (m bgl)	(m /year)
48	Washim	MANORA	Somthana	20.2125	77.55	6.2	5.7	-0.21	4.1	0.085294
49	Washim	MANORA	Umri bk	20.0916	77.59583	14.1	12.1	-0.41	6.4	-0.53682
50	Washim	MANORA	Vitholi	20.1944	77.57361	9	7.7	-0.42	4.5	-0.36735
51	Washim	RISOD	Agarwadi	19.9352	76.74861	12.85	12.4	2.212866	2.8	0.458712
52	Washim	RISOD	Asegaon pen	20.0277	76.95694	8.2	5.7	0.329588	2	-0.86147
53	Washim	RISOD	Borkhedi	19.9847	76.66778	8.2	7.7	0.41	2.1	0.257937
54	Washim	RISOD	Chichamba bhar	19.8913	76.73111	11.65	10.9	0.24	3.1	-0.73903
55	Washim	RISOD	Degaon	20.0636	76.98889	11.35	10	-0.03858	1.9	0.50037
56	Washim	RISOD	Gohogaon	19.9730	76.78278	10.7	10.1	0.22	2.2	-0.10485
57	Washim	RISOD	Kalamgavan	20.1958	76.84639	10.2	10.2	0.21	1.9	0.246618
58	Washim	RISOD	Kankarwadi	19.9188	76.75806	8.35	8.3	-0.09	2.1	-1.10139
59	Washim	RISOD	Khandala	20.1027	76.86111	9.5	5.4	-0.21	2.8	1.446711
60	Washim	RISOD	Lehani	20.1038	76.7225	14.4	13	0.245536	2.5	-0.62
61	Washim	RISOD	Loni bk.	19.9144	76.62528	13.5	11.8	0.597861	2.1	0.35339
62	Washim	RISOD	Mahagaon	20.0763	76.66806	13	13	-0.13795	4.3	-1.3067
63	Washim	RISOD	Mohajabandi	19.8647	76.66972	10.6	10.1	0.374215	1.7	-1.49489
64	Washim	RISOD	Мор	19.9536	76.65611	12.6	10.9	0.239065	3.9	-0.06514
65	Washim	RISOD	Netansa	20.1419	76.78333	9.5	8	0.37899	3.1	-1.41147
66	Washim	RISOD	Risod	19.9730	76.78278	12.8	8	-0.22	2.7	-0.65
67	Washim	RISOD	Shelgaon	20.0811	76.85611	8.6	8.1	0.17	2.8	-0.55776
68	Washim	RISOD	Wakad	20.0388	76.68861	11.35	10.1	-0.07103	1.9	0.121269
69	Washim	RISOD	Wanoja	20.0216	76.92917	7.35	7.35	0.165362	2.2	-1.16194
70	Washim	WASHIM	Bithoda teli	20.1805	77.26389	12.2	8.9	0.329761	5.1	0.858135
71	Washim	WASHIM	Ekamba	20.075	77.34167	10.8	9.6	0.41	5.4	0.65386

S. no.	District	Taluka	Village	Latitude	Longitude	Depth (mbgl)	Pre-monsoon DTW (May-18) (m bgl)	Pre trend (m /year)	Post-monsoon DTW (Nov-18) (m bgl)	Post trend (m /year)
72	Washim	WASHIM	Falegaon	20.0622	77.19889	9.9	9.8	0.22	5.2	-0.77963
73	Washim	WASHIM	Kekatumra	20.02	77.10139	7.9	7.2	0.23	3.2	-0.01165
74	Washim	WASHIM	Pimpalgaon	20.0472	77.275	9.25	9.25	0.556026	3.8	-0.18897
75	Washim	WASHIM	Rajgaon	19.9747	77.14778	5.7	5.7	0.18	3.8	1.422145
76	Washim	WASHIM	Sawargaon barde	20.1730	77.06806	7.7	7.6	0.19	5.1	1.012821
77	Washim	WASHIM	Tondgaon	19.9994	77.11556	8.8	7.8	0.21	4.1	0.01888
78	Washim	WASHIM	Umarakapse	20.0819	77.29167	8.5	8.2	0.25	3.1	-0.03167
79	Washim	WASHIM	Warla	19.9930	77.26167	10.5	10.5	0.41	4.3	-0.07874
80	Washim	WASHIM	Washim	20.1136	77.13556	15.16	12.3	0.113899	4.4	1.585677

S.N.	Village	Taluka	District	Х	Y	Structure
1	Amboda	Karanja	Washim	77.6112	20.6795	Checkdam
2	Antrakhed	Karanja	Washim	77.4725	20.5704	Checkdam
3	Bhambdevi	Karanja	Washim	77.6029	20.6395	Checkdam
4	Donad Bk.	Karanja	Washim	77.6363	20.548	Checkdam
5	Kamargaon	Karanja	Washim	77.502	20.5968	Checkdam
6	Khanapur	Karanja	Washim	77.4488	20.6046	Checkdam
7	Manbha	Karanja	Washim	77.6519	20.517	Checkdam
8	Meha	Karanja	Washim	77.6435	20.6229	Checkdam
9	Palana	Karanja	Washim	77.4179	20.567	Checkdam
10	Rahati	Karanja	Washim	77.6143	20.6977	Checkdam
11	Sukali	Karanja	Washim	77.497	20.6711	Checkdam
12	Jaulka	Malegaon	Washim	77.0625	20.3025	Checkdam
13	Marsul	Malegaon	Washim	77.004	20.3875	Checkdam
14	Musalwadi	Malegaon	Washim	77.0898	20.372	Checkdam
15	Wadiramrao	Malegaon	Washim	77.1385	20.3564	Checkdam
16	Borwha kh.	Mangrulpir	Washim	77.4658	20.2903	Checkdam
17	Chandhai	Mangrulpir	Washim	77.421	20.2749	Checkdam
18	Chandhai	Mangrulpir	Washim	77.4154	20.2838	Checkdam
19	Chehel	Mangrulpir	Washim	77.3867	20.3102	Checkdam
20	Chikhali	Mangrulpir	Washim	77.2455	20.358	Checkdam
21	Chincholi	Mangrulpir	Washim	77.3539	20.1534	Checkdam
22	Dhanora bk.	Mangrulpir	Washim	77.3984	20.3178	Checkdam
23	Dhanora bk.	Mangrulpir	Washim	77.3876	20.317	Checkdam
24	Gimbha	Mangrulpir	Washim	77.4447	20.3523	Checkdam
25	Jogaldari	Mangrulpir	Washim	77.409	20.2624	Checkdam
26	Jogaldari	Mangrulpir	Washim	77.4012	20.2663	Checkdam
27	Jogaldari	Mangrulpir	Washim	77.3998	20.2587	Checkdam
28	Jogaldari	Mangrulpir	Washim	77.4224	20.2577	Checkdam
29	Junapani	Mangrulpir	Washim	77.433	20.2626	Checkdam
30	Kanzara	Mangrulpir	Washim	77.2697	20.3436	Checkdam
31	Kasola	Mangrulpir	Washim	77.3048	20.2297	Checkdam
32	Kasola	Mangrulpir	Washim	77.3037	20.2454	Checkdam
33	Kawathal	Mangrulpir	Washim	77.472	20.3374	Checkdam
34	Kawathal	Mangrulpir	Washim	77.4706	20.3222	Checkdam
35	Kothari	Mangrulpir	Washim	77.4268	20.2958	Checkdam
36	Lawana	Mangrulpir	Washim	77.3937	20.2945	Checkdam
37	Mohgavan	Mangrulpir	Washim	77.3034	20.3274	Checkdam
38	Murtijapur	Mangrulpir	Washim	77.3369	20.3316	Checkdam
39	Nimbi	Mangrulpir	Washim	77.2695	20.2673	Checkdam
40	Nimbi	Mangrulpir	Washim	77.2686	20.2752	Checkdam
41	Nimbi	Mangrulpir	Washim	77.2608	20.272	Checkdam
42	Pardi Tad	Mangrulpir	Washim	77.2809	20.3546	Checkdam
43	Pedgaon	Mangrulpir	Washim	77.3271	20.4095	Checkdam

### Annexure VIII: Location of proposed Check dams in Washim district

S.N.	Village	Taluka	District	X	Y	Structure
44	Pedgaon	Mangrulpir	Washim	77.3009	20.4367	Checkdam
45	Pedgaon	Mangrulpir	Washim	77.3303	20.399	Checkdam
46	Pethkhudawatpur	Mangrulpir	Washim	77.3435	20.2976	Checkdam
47	Rahit	Mangrulpir	Washim	77.3906	20.3013	Checkdam
48	Renkapur	Mangrulpir	Washim	77.3775	20.3065	Checkdam
49	Saikheda	Mangrulpir	Washim	77.2906	20.254	Checkdam
50	Sonkhas	Mangrulpir	Washim	77.3218	20.3084	Checkdam
51	Tapovan Bk.	Mangrulpir	Washim	77.2796	20.3817	Checkdam
52	Tarhala	Mangrulpir	Washim	77.3038	20.3768	Checkdam
53	Umari	Mangrulpir	Washim	77.36	20.2791	Checkdam
54	Wadha	Mangrulpir	Washim	77.3405	20.3457	Checkdam
55	Warud Bk.	Mangrulpir	Washim	77.3547	20.2911	Checkdam
56	Asola Bk.	Manora	Washim	77.5205	20.257	Checkdam
57	Chausala	Manora	Washim	77.5511	20.3699	Checkdam
58	Devthana	Manora	Washim	77.5324	20.2086	Checkdam
59	Dhamni	Manora	Washim	77.5405	20.2303	Checkdam
60	Dhanora Bhuse	Manora	Washim	77.5009	20.356	Checkdam
61	Dhanora Bk.	Manora	Washim	77.636	20.1916	Checkdam
62	Dongargaon	Manora	Washim	77.497	20.2201	Checkdam
63	Eklara	Manora	Washim	77.5433	20.2619	Checkdam
64	Fulumari	Manora	Washim	77.5511	20.1063	Checkdam
65	Fulumari	Manora	Washim	77.5661	20.0995	Checkdam
66	Giroli	Manora	Washim	77.472	20.1999	Checkdam
67	Giroli	Manora	Washim	77.4786	20.1997	Checkdam
68	Giroli	Manora	Washim	77.4767	20.2143	Checkdam
69	Gondegaon.	Manora	Washim	77.6207	20.0818	Checkdam
70	Gundi	Manora	Washim	77.5371	20.2499	Checkdam
71	Hiwara Bk.	Manora	Washim	77.5037	20.2671	Checkdam
72	Inzori	Manora	Washim	77.5148	20.3934	Checkdam
73	Jamni	Manora	Washim	77.5065	20.3707	Checkdam
74	Jamni	Manora	Washim	77.5015	20.3623	Checkdam
75	Jawala Bk.	Manora	Washim	77.4945	20.2569	Checkdam
76	Karli	Manora	Washim	77.6224	20.2386	Checkdam
77	Karli	Manora	Washim	77.6293	20.2337	Checkdam
78	Khandala	Manora	Washim	77.4984	20.3346	Checkdam
79	Kheda Abai	Manora	Washim	77.5012	20.2298	Checkdam
80	Kondoli	Manora	Washim	77.5185	20.241	Checkdam
81	Kupta	Manora	Washim	77.5594	20.3006	Checkdam
82	Kupta	Manora	Washim	77.5714	20.3019	Checkdam
83	Kupta	Manora	Washim	77.5717	20.3108	Checkdam
84	Mahuli	Manora	Washim	77.5853	20.1594	Checkdam
85	Mhasni	Manora	Washim	77.5722	20.3777	Checkdam
86	Mhasni	Manora	Washim	77.5591	20.3864	Checkdam
87	Mhasni	Manora	Washim	77.5625	20.3971	Checkdam
88	Mohgaon	Manora	Washim	77.514	20.2993	Checkdam

S.N.	Village	Taluka	District	X	Y	Structure
89	Rui	Manora	Washim	77.46	20.1043	Checkdam
90	Rui	Manora	Washim	77.46	20.082	Checkdam
91	Sakhardoh	Manora	Washim	77.4533	20.263	Checkdam
92	Sakhardoh	Manora	Washim	77.4786	20.242	Checkdam
93	Sakhardoh	Manora	Washim	77.4681	20.24	Checkdam
94	Sawali	Manora	Washim	77.6458	20.1082	Checkdam
95	Sewadasnagar	Manora	Washim	77.653	20.2224	Checkdam
96	Sewadasnagar	Manora	Washim	77.629	20.2201	Checkdam
97	Sewadasnagar	Manora	Washim	77.648	20.2227	Checkdam
98	Shendona	Manora	Washim	77.5923	20.0692	Checkdam
99	Shinganapur	Manora	Washim	77.4469	20.2695	Checkdam
100	Someshwar Nagar	Manora	Washim	77.5789	20.0927	Checkdam
101	Someshwar Nagar	Manora	Washim	77.5672	20.0901	Checkdam
102	Somthana	Manora	Washim	77.5469	20.2094	Checkdam
103	Somthana	Manora	Washim	77.546	20.2156	Checkdam
104	Talap Bk.	Manora	Washim	77.5884	20.2243	Checkdam
105	Talap Bk.	Manora	Washim	77.5959	20.218	Checkdam
106	Talap Bk.	Manora	Washim	77.6045	20.2143	Checkdam
107	Terka	Manora	Washim	77.5263	20.2996	Checkdam
108	Umarda	Manora	Washim	77.4948	20.3906	Checkdam
109	Vilegaon	Manora	Washim	77.472	20.1861	Checkdam
110	Vitholi	Manora	Washim	77.5745	20.1931	Checkdam
111	Vitholi	Manora	Washim	77.5739	20.1759	Checkdam
112	Vitholi	Manora	Washim	77.5825	20.1814	Checkdam
113	Vitholi	Manora	Washim	77.5753	20.2086	Checkdam
114	Watod	Manora	Washim	77.555	20.2334	Checkdam
115	Watod	Manora	Washim	77.5597	20.2481	Checkdam
116	Bhokarkhed	Risod	Washim	76.8277	20.0245	Checkdam
117	Bibkhed	Risod	Washim	76.7923	19.9983	Checkdam
118	Chinchanba Pen	Risod	Washim	76.8901	20.0689	Checkdam
119	Chinchanba Pen	Risod	Washim	76.906	20.0663	Checkdam
120	Dhodap Kh.	Risod	Washim	76.8051	20.0773	Checkdam
121	Gobhani.	Risod	Washim	76.7684	20.0684	Checkdam
122	Gowardhan	Risod	Washim	76.8366	20.1145	Checkdam
123	Kawatha Kh.	Risod	Washim	76.8659	20.0266	Checkdam
124	Koyali Kh.	Risod	Washim	76.938	19.9988	Checkdam
125	Masala Pen	Risod	Washim	76.862	20.0744	Checkdam
126	Mohaja Ingole	Risod	Washim	76.84	20.015	Checkdam
127	Netanasa	Risod	Washim	76.7837	20.1273	Checkdam
128	Netanasa	Risod	Washim	76.784	20.1427	Checkdam
129	Palaskhed	Risod	Washim	76.8079	20.0143	Checkdam
130	Pardi Tikhe	Risod	Washim	76.9458	20.0687	Checkdam
131	Pedgaon	Risod	Washim	76.8973	20.031	Checkdam
132	Sawad	Risod	Washim	76.828	19.997	Checkdam

S.N.	Village	Taluka	District	X	Y	Structure
133	Wadi Raital	Risod	Washim	76.845	20.0349	Checkdam
134	Waghi Kh.	Risod	Washim	76.8759	20.116	Checkdam
135	Wanoja	Risod	Washim	76.9316	20.0239	Checkdam
136	Yevta	Risod	Washim	76.9177	20.093	Checkdam
137	Falegaon Thet	Washim	Washim	77.1995	20.0609	Checkdam
138	Jambhrun Bhite	Washim	Washim	77.1046	20.084	Checkdam
139	Kekatumra	Washim	Washim	77.1073	20.0162	Checkdam
140	Kokalgaon	Washim	Washim	77.0881	19.9693	Checkdam
141	Krishna	Washim	Washim	77.2143	19.9905	Checkdam
142	Mohgawhan Dube	Washim	Washim	77.1912	20.0476	Checkdam
143	Panchala	Washim	Washim	77.1572	20.0604	Checkdam
144	Tamsala	Washim	Washim	77.1199	20.0348	Checkdam
145	Tondgaon	Washim	Washim	77.1179	20.0055	Checkdam
146	Ukalipen	Washim	Washim	77.1831	19.9992	Checkdam
147	Ukalipen	Washim	Washim	77.1778	20.0044	Checkdam
148	Ukalipen	Washim	Washim	77.172	20.0096	Checkdam
149	Wai	Washim	Washim	77.2525	19.9568	Checkdam
150	Warla	Washim	Washim	77.2597	19.979	Checkdam
151	Washim	Washim	Washim	77.1246	20.062	Checkdam

S.N.	Village	Taluka	District	х	Y	Structure
1	Kherda Pr. Karanja	Karanja	Washim	77.5341	20.5162	Percolation Tank
2	Meha	Karanja	Washim	77.6485	20.6351	Percolation Tank
3	Tamaswadi	Karanja	Washim	77.5892	20.6643	Percolation Tank
4	Wadgaon [Range]	Karanja	Washim	77.6697	20.5245	Percolation Tank
5	Baldeo	Mangrulpir	Washim	77.3282	20.3232	Percolation Tank
6	Gimbha	Mangrulpir	Washim	77.4466	20.3598	Percolation Tank
7	Kanzara	Mangrulpir	Washim	77.2639	20.3313	Percolation Tank
8	Kawathal	Mangrulpir	Washim	77.4736	20.342	Percolation Tank
9	Nagi	Mangrulpir	Washim	77.2603	20.3807	Percolation Tank
10	Pangri	Mangrulpir	Washim	77.2839	20.4368	Percolation Tank
11	Poghat	Mangrulpir	Washim	77.3435	20.4019	Percolation Tank
12	Poti	Mangrulpir	Washim	77.3887	20.3723	Percolation Tank
13	Pur	Mangrulpir	Washim	77.1892	20.3849	Percolation Tank
14	Shivni	Mangrulpir	Washim	77.38	20.4011	Percolation Tank
15	Swasin	Mangrulpir	Washim	77.3789	20.3196	Percolation Tank
16	Tarhala	Mangrulpir	Washim	77.3037	20.3773	Percolation Tank
17	Umardoh	Mangrulpir	Washim	77.3628	20.4063	Percolation Tank
18	Wadha	Mangrulpir	Washim	77.3458	20.3546	Percolation Tank
19	Amkinhi	Manora	Washim	77.6338	20.0557	Percolation Tank
20	Asola Bk.	Manora	Washim	77.5215	20.256	Percolation Tank
21	Bhuli	Manora	Washim	77.5689	20.1579	Percolation Tank
22	Chakur	Manora	Washim	77.5667	20.1647	Percolation Tank
23	Dhanora Bk.	Manora	Washim	77.6357	20.176	Percolation Tank
24	Dhanora Bk.	Manora	Washim	77.6405	20.1953	Percolation Tank
25	Dhawanda	Manora	Washim	77.6424	20.0879	Percolation Tank
26	Dhoni	Manora	Washim	77.4967	20.086	Percolation Tank
27	Dhoni	Manora	Washim	77.4951	20.0947	Percolation Tank
28	Fulumari	Manora	Washim	77.5775	20.1051	Percolation Tank
29	Gadegaon	Manora	Washim	77.6589	20.165	Percolation Tank
30	Galamgaon	Manora	Washim	77.5898	20.1744	Percolation Tank
31	Gavha	Manora	Washim	77.5625	20.1885	Percolation Tank
32	Gavha	Manora	Washim	77.5463	20.1846	Percolation Tank
33	Gogjai	Manora	Washim	77.621	20.0905	Percolation Tank

# Annexure IX: Location of proposed Percolation tanks in Washim district

S.N.	Village	Taluka	District	х	Y	Structure
34	Gondegaon.	Manora	Washim	77.6082	20.0745	Percolation Tank
35	Gosta	Manora	Washim	77.431	20.113	Percolation Tank
36	Hatoli	Manora	Washim	77.5511	20.1488	Percolation Tank
37	Hiwara Bk.	Manora	Washim	77.5112	20.2545	Percolation Tank
38	Jawala Kh.	Manora	Washim	77.5006	20.2479	Percolation Tank
39	Karkheda	Manora	Washim	77.6015	20.1974	Percolation Tank
40	Karli	Manora	Washim	77.6218	20.2323	Percolation Tank
41	Kupta	Manora	Washim	77.58	20.3041	Percolation Tank
42	Poharadevi	Manora	Washim	77.6293	20.1122	Percolation Tank
43	Rohna	Manora	Washim	77.4795	20.2547	Percolation Tank
44	Rui	Manora	Washim	77.4536	20.0798	Percolation Tank
45	Rui	Manora	Washim	77.4455	20.0902	Percolation Tank
46	Sawali	Manora	Washim	77.655	20.1069	Percolation Tank
47	Shendona	Manora	Washim	77.5898	20.063	Percolation Tank
48	Shendurjana (A)	Manora	Washim	77.4377	20.1216	Percolation Tank
49	Talap Bk.	Manora	Washim	77.5836	20.2236	Percolation Tank
50	Talap Bk.	Manora	Washim	77.6043	20.22	Percolation Tank
51	Waigaul	Manora	Washim	77.6605	20.1391	Percolation Tank
52	Waigaul	Manora	Washim	77.6694	20.1391	Percolation Tank
53	Watod	Manora	Washim	77.5597	20.2315	Percolation Tank
54	Gowardhan	Risod	Washim	76.8333	20.1087	Percolation Tank
55	Pedgaon	Risod	Washim	76.9085	20.0485	Percolation Tank
56	Waghi Kh.	Risod	Washim	76.867	20.1045	Percolation Tank
57	Warud Topha	Risod	Washim	76.9706	20.0135	Percolation Tank
58	Yevta	Risod	Washim	76.9372	20.0804	Percolation Tank
59	Rajgaon	Washim	Washim	77.1475	19.9792	Percolation Tank
60	Ukalipen	Washim	Washim	77.2065	20.0015	Percolation Tank
61	Wai	Washim	Washim	77.2658	19.9659	Percolation Tank

## **Annexure X: Photographs**





Release of training module: L to R, Dr. Bhushan Lamsoge, Sh. Ulhas Bund, Sh. P. K. Parchure, Sh. S. S. Kadu and Sh. D Venkateswaran.



Trainee Participants attending



Marathi booklet on "GW information of Washim district" was release by guest (From L to R) Smt Jyotitai More, Member, panchayat samiti, Risod, Smt. Chayatai sunil Patil, sabhapati, panchayat samiti, Risod; Dr. Bhushan Lamsoge, sr. Hg. CGWB, Nagpur and Shivshankar Bharsakade, BDO, Risod.



Sh. Shivshankar Bharsakade, BDO, Risod, addressing to the participants