Concept Note on National Project on Aquifer Management (NAQUIM)

1 Introduction

Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical field and laboratory analyses are applied to characterize the quantity, quality and sustainability of ground water in aquifers. There has been a paradigm shift from "groundwater development" to "groundwater management". An accurate and comprehensive micro-level picture of groundwater in India through aquifer mapping in different hydrogeological settings will enable robust groundwater management plans at the appropriate scale to be devised and implemented for this common-pool resource. This will help achieving drinking water security, improved irrigation facility and sustainability in water resources development in large parts of rural India, and many parts of urban India as well. The aquifer mapping program is important for planning suitable adaptation strategies to meet climate change also. Thus the crux of NAQUIM is not merely mapping, but reaching the goal – that of ground water management through community participation.

2 Objective

The primary objective of the Aquifer Mapping Exercise can be summed up as **"Know your Aquifer, Manage your Aquifer"**. Demystification of Science and thereby involvement of stake holders is the essence of the entire project. The involvement and participation of the community will infuse a sense of ownership amongst the stakeholders. This is an activity where the Government and the Community work in tandem. Greater the harmony between the two, greater will be the chances of successful implementation and achievement of the goals of the Project. As per the Report of the Working Group on Sustainable Ground Water Management, "It is imperative to *design* an aquifer mapping programme with a clear-cut *groundwater management purpose*. This will ensure that aquifer mapping does not remain an academic exercise and that it will seamlessly flow into a participatory groundwater management programme. The aquifer mapping approach can help integrate ground water availability with ground water accessibility and quality aspects.

3 Outputs

The Outputs and of Aquifer mapping will be both scientific and social. Some of the Scientific Outputs include:

I. Disposition of Water Bearing Formations

- Surface outcrop
- Subsurface continuity in vertical and horizontal disposition
- Overlay of different litho units to form a group & aquifer system, E.g. Alluvium Gravel, sand, silt & clay in different percentage underlain by compact Sandstone,/shale, hard rock etc.

II. Water Bearing Capacity

• Variation with depth

- Changes in space & time
- Run off zone, recharge zone, discharge zone
- Abstraction status

III. Aquifer (Formation water) Quality

- In-situ (depositional)
- Anthropogenic
- Vertical zonation
- Blending/Migration of pollutants in aquifers with time

IV. Strategies for Sustainable Management

- Quantification of water within different layers (Aquifers- 1,2 3 etc)
- Quality in each aquifer (group)
- Demand-Supply analysis
- Estimation of prevailing Development Status
- Precise assessment of functional wells for agriculture, industries, drinking water purposes (modified well census as village wise by public participation to be translated into aquifer wise & then administrative unit)

V. Identification of Clusters of Aquifers (layers)

- Vertical-horizontal flow of recharged water from source rainfall, canal, applied irrigation etc.
- Formation of Aquifer Management Unit (clustering of villages & depth defined
- Preparation of Aquifer Management Plans for sustainable ground water management. The AMPs need to be prepared in a simplified manner so that they are easily understood and implementable by the stakeholders and ensuring wider acceptability. Sustainability necessarily means the reliability, resilience and the vulnerability of the resource. Reliability is the ability of system to meet demands; resilience is the measure of the ability of the system to recover from failure and vulnerability is the measure of loss/damage incurred because of failure.

4 Outcomes & benefits

The Social Outputs and benefits are less tangible but their significance cannot be undermined.

- Involvement of community and stakeholders would enable the State Governments to manage their resources in an efficient and equitable manner, thereby contributing to improved overall development.
- Demystification of science will result in better understanding of aquifers at community level. The amalgamation of scientific inputs and traditional wisdom would ensure sustainable ground water resource management.
- Community participation and management would ensure sustainable cropping pattern, thereby contributing towards food security.

5 Implementation Strategy

A national level programme of this nature has to be essentially decentralized, phased programme following a set of basic norms, criteria and training modules but with sufficient opportunities for addressing local needs and subsequent up-scaling.

The entire Aquifer Mapping exercise needs to be structured around three (3) pillars, viz.

- (A) Technology |Support System
- (B) Community Participation
- (C) Institutional Arrangement

(A) Technology |Support System

The technical/scientific pillar is responsible for the entire aquifer <u>mapping</u> exercise. Following flow diagram is indicative of sequence of the major activities envisaged –

The detailed activities, responsible Agencies and timelines are given in Annexure-I.

(B) Community Participation

Since water is a State subject, execution of such a Project cannot be successful without taking the States on board. The involvement of State machinery including various departments, PRIs etc. is essential if the Aquifer Management Plans are to be implemented. The Nodal State Organisations need to be fully involved in preparation of Aquifer Maps. Further, the Aquifer Management Plans need to be developed by the State Government with assistance and support from Central Government.

As India has a large rural and semi-literate population, demystification of the Science of Hydrogeology will be very crucial to enable them to understand the dynamics of ground water availability and its sustainable utilization. The various Stakeholders need to develop a sense of ownership, for only then will such a socially relevant project can be successful. Therefore, the community needs to be made aware of the objectives and benefits of aquifer mapping exercise and

their active participation through local people will be fundamental in implementation of the project.

Some of the local educated people may be identified and imparted basic training on ground water, relevance of aquifer mapping, participatory management, etc. These trained persons, called parahydrogeologists will be responsible for basic data collection like water level monitoring, well inventory, awareness raising etc. They can also be entrusted with activities like water budgeting, assessment of crop water requirements etc. The Aquifer mapping programme is expected to build capacity in the entire country by giving CGWB and State round water personnel hands-on experience in various techniques like aerial surveys, ground water modelling, participatory management etc.

(C) Institutional Arrangement

The programme therefore needs to have a three tier institutional arrangement with a large base and a small apex. The major operational partners proposed are:

- National Inter-departmental Steering Committee (NISC)
- Special Purpose Vehicle (SPV) / Special AQUM Cell in CGWB for implementation of NAQUIM.
- Technical Service Agency (TSA)
- State Coordination Committees (SCCs)
- State Implementing Partners (SIPs) and para-hydrogeologists
- Nodal Departments

The organogram for the National Project on Aquifer Management (NAQUIM) is as given below:

National Inter-departmental Steering Committee

A National Inter-departmental Steering Committee (NISC) is proposed to be constituted with the overall objective to provide guidance in the implementation of the Project at national level under the chairmanship of the Secretary, MoWR with representatives from related ministries like Science & Technology, Earth Sciences, Panchayati Raj, Environment & Forests, Agriculture, Rural Development, Drinking Water & Sanitation, etc. The Principal Secretaries of some of the States shall

be members of the NSC. The NSC shall also have representatives from MoWR like Mission Director, National Water Mission, Joint Secretary (Admn.), MoWR etc.

The proposed NISC shall be responsible for working out a clear National perspective for NAQUIM in consonance with latest technologies world-wide with the objective to tackle the upcoming challenges like over-exploitation of ground water, deteriorating ground water quality, water salinity, inter & intra-sectoral conflicts etc. NISC shall also finalise the protocols for participatory management of ground water.

Special Purpose Vehicle/Special AQUM Cell in CGWB

A Special Purpose Vehicle (SPV) comprising a Special AQUM Cell is proposed to be constituted at for implementation of the Project on national level. The SPV/QUM Cell will comprise officers from CGWB on redeployment basis. <u>The SPV/AQUM Cell will, thus, be an extended arm of CGWB with substantive powers to take decisions</u>. The Structure of AQUM Cell is proposed as given below:

S.	Post	Rank	No. of	Pay Scale
No.			Post	
1	National	Joint Secretary	1	37400-67000 GP 10000
	Coordinator			
2	State Coordinator	Director	18	37400-67000 GP 8700
3	Director at HQ	Director	2	37400-67000 GP 8700
				15600-39100 GP 7600
4	Admn Officer/	Under Secretary	2	15600-39100 GP 6600
	Finance Officer			
5	Project Engineer /	Deputy Secretary to	42 *	15600-39100 GP 7600 to
	Project Scientists	Assistant Director		15600-39100 GP 5400
6	Project Associates	Section Officer	36	9300-34800 GP 4800

*6 Project Scientist required at the Secretariat Head Quarters in the cell.

In addition, following support staff would be required;

PS	– 1 No.	(at HQ)
PS/PA	– 20 Nos.	(2 at HQ and 18 at Regional Offices)
Steno	- 2 Nos.	(at HQ)
Asstt/UDC/LDC	- 20 Nos.	(2 at HQ and 18 at Regional Offices)
SRF/JRF	- 40 Nos.	(4 at HQ and 36 at Regional Offices)
DEOs	- 40 Nos.	(4 at HQ and 36 at Regional Offices)

The SPV/AQUM Cell will be responsible for coordination with the State Coordination Committees (SCCs) and Technical Service Agency (TSA). The SPV/AQUM Cell will assist the States in the preparation of Aquifer Maps, preparation of Aquifer Management Plans and in the participatory management of ground water. The SPV/AQUM Cell shall identify and prioritize the Preliminary Aquifer Boundary and Units (PABUs) for which the Action Plan for data generation will be devised. The SPV/AQUM Cell and the States shall then finalise the Aquifer Maps with 3D disposition. This SPV/AQUM Cell will also identify the Aquifer Management Units (AMUs) in consultation with

SCCs where participatory ground water management programmes will be undertaken. The SPV shall identify partners/ consultants/ organizations/ institutions etc. to assist in project implementation and enter into agreements/ MoUs with the same.

Technical Service Agency

A Technical Service Agency (TSA) is proposed to be constituted at Central level and will be identified by MoWR. The TSA is proposed to comprise a consortium of National level NGOs with adequate experience in the field of ground water, capacity building and participatory management related activities.

The TSA shall be responsible for identification of State specific NGOs, called State Implementation Partners (SIPs), which will be involved in the implementation of the Project. The TSA shall also be responsible for imparting Training of Trainers (TOTs) of the SIPs, standardisation of training modules, oversee the activities of SIPs in organsing participatory aquifer management programmes at Aquifer level, thereby monitoring the capacity building programme on behalf of MoWR.

State Coordination Committees

A State Coordination Committee (SCC) is proposed to be constituted in each State/Union Territory with the overall objective of implementation of the Project at State level. The SCC is proposed to be chaired by the Principal Secretary in-charge of ground water of the State Government with representatives from related departments like Ground Water, Irrigation, Drinking Water, Agriculture, Forests, etc. The SCC will also comprise representative from SPV, TSA, SIPs and Collectors/ Members of Zila Panchayat on rotation basis. Concerned Regional Director, CGWB shall be the Member Secretary of SCC.

The SCC shall be responsible for Implementation of the Project in the State. State level NGOs called State Implementation Partners (SIPs) who would participate in the Project will be identified by the TSA and approved by SCC. SCC shall also be responsible for implementation of the Project through Line departments of the State and will associate with SPV and chalk out a Working Plan for the Preparation of Aquifer Maps, preparation of Aquifer Management Plans implementation of participatory ground water management through SIPs.

State Implementation Partners

State Implementation Partners (SIPs) are proposed to be constituted for each State (2 in Nos.) / Union Territory (1 in No.). The SIPs will be identified by the TSA and the SCC will approve them. SIPs are proposed to comprise State level NGOs with adequate experience in the field of ground water, capacity building and participatory management related activities.

The SIPs shall identify potential rural youths (para-hdrogeologists) in consultation with the PRIs, conduct the actual class room and field trainings using external consultants or resource persons of

TSA and draw supports from other state resource agencies. The SIPs shall provide hand holding support to the trainees (para-hydrogeologists) as their mentor for periodic data collection and sensitization of stakeholders. The SIPs shall submit the data periodically to SCC for onward transmission to SPV. The costs of training the para-hydrogeologists will be borne by the SPV.

Nodal Departments of the State Government

The SCC shall identify the Nodal Department, preferably the Ground Water Department of the State/Union Territory, for implementation of the project. The Nodal Department shall also identify Nodal Officers at district(s) level.

The Nodal Department / Nodal officers shall be responsible for Aquifer Mapping exercise and other allied activities in association with the Regional Offices of CGWB, SIPs and under overall supervision of SCC.

Annexure-I

<u>Time-Lines for various activities under NAQUIM</u>

Task		Activity	Responsible agencies		Year	wise cov	erage	
				1	2	3	4	5
1A. R	Review & Compil	ation of Existing data, Reports etc.						
•	Geology							
•	Landforms (Phy	vsiography)						
•	Sub surface Geo	ology						
•	Well Census – A	Aquifer wise						
	o Dug well, s	shallow tube well/ filter points tapping						
	watertable a	quifer						
	• Bore well ta	pping weathered zones & fractured zones	3					
	down to 200	m (300m in select areas)						
	• Tube wells (300m in general, 600m in select areas)						
1.1		CGWB	CGWB					
1.2		States	CGWB					
		Other Organisations (NIH, NGRI	,					
1.3		NEERI, DWSS, CMPDI, etc.)	CGWB					
1 B. I	Procurement of d	ata						
1.4		SoI toposheets on 1:50,000	CGWB, Digitization to be					
			outsourced					
1.5		SoI toposheets on 1:10,000, including	CGWB, to be outsourced					
		contours at 1m intervals or less; well	to SoI					
		details including lat-long & RLs, all						
		water bodies, bench marking, gravity						
		surveys, aerial photographs, DEMs etc.						

1.6	GSI Maps on 1:50,000 scale	CGWB, Digitization to be			
		outsourced			
1.7	Rainfall data (IMD)	CGWB			
1.8	NRSC data (Geo-referenced) or the data	CGWB			
	from DWSS on 1:50,000 scale				
1.9	NBSS Soil Maps	CGWB, Digitization to be			
		outsourced			
1.10	Any other map/data	CGWB, Digitization to be			
		outsourced			
2 Preparation of The	ematic layers on 1:50,000 scale				
GIS layers (Soil, land	l use, hydrological features, administrative				
units, rainfall distribut	ion, water quality ranges- As, Fe, F, TDS	2			
pesticides etc) requir	red for characterization of groundwater				
resources, stress on re	sources and identification of management	t			
issues.					
• Base map	depicting observed data points	3			
(Central/State/	NGO/Institutions data)				
• Water Le	vel & Water Quality Monitoring wells				
o Sub surfa	ice geology				
o Electrica	l logs of select bore holes –Functional of				
adandone	ea, armed by Government / Private				
• VES data	by CGWB/Outsourcing				
Depth to Bed rock m	aps from CGWB & State agencies from				
Hydrogeological surve	evs & exploration.				
2.1	Compile all available information on	CGWB			
[-·-	Comprise and a variable information on			1	

	1:250,000 scale maps already available				
	with CGWB to bring uniformity				
2.2	Transfer all 1:250,000 thematic layers	CGWB			
	on the 1:50,000 scale toposheets				
3. Identification &	Evaluation of Preliminary Aquife	r			
Boundaries & Units	(PABUs)				
Involves GIS application	tions for demarcation of aquifer boundaries	5			
and division into si	maller units, using various software for	r			
defining preliminary	3-D disposition of aquifer systems and	1			
thereby defining a con	nceptual model of the aquifer units.				
	Define Preliminary Aquifer Boundary &	Z			
3.1	Units	CGWB			
	Preliminary 3-D disposition of aquifers	5			
3.2	using different software	CGWB			
	Development of Conceptua	1			
3.3	Hydrogeological Model	CGWB, SGWD			
4. Identification of I	Data Gaps in PABUs				
Once the smaller A	quifer Units have been defined on the	e			
1:50,000 scale, the un	nits will be defined on the data availability	7			
and data gaps in resp	ect of various essential parameters need to				
be identified.					
4.1	Exploration	CGWB, SGWD			
4.2	Hydrogeology	CGWB, SGWD			
4.3	Geophysics	CGWB, SGWD			
-					

4.4	Water level Monitoring	CGWB, S	SGWD							
4.5	Water Quality	CGWB, S	SGWD							
4.6	Hydrology/Hydrometeorology	CGWB, S	SGWD							
5 Prioritisation of	F PABUs (on the basis of data gaps	/								
availability)										
On the basis of data	availability and data gaps, the PABUs will	1								
be prioritised for dat	a collection. The units will be classified into	D								
various categories or	the basis of extent and type of data gaps.									
5.1	Prioritisation of PABUs	CGWB &	SGWD							
6. Action Plan	for data generation, analysis and	1								
interpretation – Inv	vestigative Work Plan									
On the basis of pri-	oritisation made above, an action plan fo	r								
bridging the data gap	p will be drawn. By the end of 2^{nd} year, the	e								
results of heliborne s	survey would also start coming and can help	p								
in devising the mos	t suitable methodology for data generation									
The role of internation	ional consultants having similar experience	e								
would also be very c	ritical for this phase.									
	Preparation of Action Plan indicating	5								
	type, extent & methodology for data	aCGWB,	SGWD	&						
6.1	collection	Consultan	its							
		CGWB,	SGWD,	Out	Based	on	1:250000			
6.2	Exploration	Sourcing			scale			Based or	n 1:50000	scale
					Based	on	1:250000			
6.3	Hydrogeology		-do-		scale			Based or	n 1:50000	scale
6.4	Geophysics		-do-		Based	on	1:250000	Based or	n 1:50000	scale

					scale					
			-do-		Based	on	1:250000			
6.5	Water level Monitoring				scale			Based or	n 1:50000	scale
			-do-		Based	on	1:250000			
6.6	Water Quality				scale			Based or	n 1:50000	scale
			-do-		Based	on	1:250000			
6.7	Hydrology/Hydrometeorology				scale			Based or	n 1:50000	scale
7. Pre	eparation of Aquifer Maps									
•	2D - Plan View with thickness as Isopach,, qualit	у								
	contours, specific yield/Yield Potential zonations									
•	3D – block view of aquifer disposition and geometry.									
•	Scale 1:50,000 paper copy & soft copy which can b	e								
	used to over lay on 1:10,000 to be prepared by SoI.									
	Refinement of thematic layers o	nCGWB,	SGWD,	Out						
7.1	1:50,000 & 1:10,000 scale	Sourcing								
	Integration of various thematic layer	sCGWB,	SGWD,	Out						
7.2	and models on GIS platform	Sourcing								
	Preparation of Aquifer Maps, i.e. 3-I)								
7.3	Disposition of aquifers	SGWD, C	CGWB							
8. Gr	ound Water Assessment									
Maki	ng an assessment and preparation of various map	s								
indica	ting Points suitable for recharge, Area suitable for	r								
protec	cted water supply, Hydrochemical zonation for	r								
devel	opment & Management strategies, etc.									
8.1	Ground water modelling	CGWB,	SC	GWD,						

		a 1.		1	1	
		Consultants				
		CGWB, SGW	D,			
8.2	Ground water resource assessment	Consultants				
	Preparation of Vulnerability map for	CGWB, SGW	D,			
8.3	aquifer Unit	Consultants				
	Identification of Feasible areas for GW	CGWB, SGW	D,			
8.4	development and Recharge	Consultants				
9. Preparation of Aqu	ifer Management Plans					
Preparing Aquifer man	agement plans which can be implemented	L				
through community	participation. This might also entail					
development of DSS	with GW modeling for prediction of					
different stress condi	tions of particular aquifer or group of					
aquifers						
	Identification of Aquifer Management					
9.1	Units (AMUs)	SGWD, CGWB				
	Preparation of Aquifer Management	SGWD, CGWB, PR	ls,			
9.2	Plans	NGOs				
	Define the scope of participatory ground	SGWD, CGWB, PR	ls,			
9.3	water management.	NGOs				
10. Development of	Aquifer Information & Management	t				
System (AIMS)						
An Aquifer Informat	ion & Management will be developed	L				
which will be for pub	lic domain as well as for domain experts	š				
where information, ma	ps, data can be easily accessed.					
10.1	Development of AIMS	Outsourcing				